STATE WATER RESOURCES CONTROL BOARD OPERATOR CERTIFICATION EXAMINATION

Equivalents and Formulae Sheet (Revised Jan 2014)

EQUIVALENTS

Note: conc = concentration, L = liter, mg = milligram, ppm = parts per million, psi = lbs/in²

$27 { ft}^3 = 1 { yard}^3$ $1 { acre} = 43,560 { ft}^2$ $1 { ft}^3 { of water} = 7.48 { gallons}$ $1 { gallon of water} = 8.34 { lbs}$ $365 { days} = 1 { year}$	1 gram = 1,000 mg 1 ton = 2,000 lbs 1 mg/L = 1 ppm 1 % = 10,000 mg/L π = 3.14	60 min = 1 hour 24 hours = 1 day 1 day = 1,440 min = 86,400 sec 1 ft of $H_2O = 0.43$ psi 1 lbs/in ² = 2.31 ft of H_2O
1 HP = 0.746 kW = 550 ft·lb/sec = 33,000 ft-lb/min		
1 Million Gallons/Day (MGD) = 694 Gallons/Minute (gpm) = 1.547 ft ³ /sec = 3.069 acre·ft/day		

FORMULAS

Acronym: AST = Activated Sludge Tank, BOD = Biochemical Oxygen Demand,

ET = Evapotranspiration, F/M = Food to Micro-organism Ratio, HP = Horsepower, kW = Kilo-Watt, MCRT = Mean Cell Residence Time, MG = Million Gallons, MLSS = Mixed Liquor Suspended Solids, MLVSS = Mixed Liquor Volatile Suspended Solids, Q = flow, RBC = Rotating Biological Contactor, SS = Suspended Solids, TDH = Total Dynamic Head, TF = Trickling Filter, VS = Volatile Solids, WAS = Waste Activated Sludge

A CD (1 (C2) 1 (1 (C))

Area of Rectangle, $\{ft^2\}$ = length, $\{ft\}$ x width, $\{ft\}$
Area of Circle, $\{ft^2\} = \frac{\pi}{4} \times [diameter, \{ft\}]^2 = 0.785 \times [diameter, \{ft\}]^2$

Volume of Rectangular or circular tank of uniform depth, $\{ft^3\}$ = area, $\{ft\}^2$ x depth, $\{ft\}$

Volume of Cone,
$$\{ft^3\} = \left[\frac{\text{base area, } \{ft^2\} \times \text{depth, } \{ft\}}{3}\right]$$

Circumference, $\{ft\} = \pi x$ diameter, $\{ft\}$

Removal efficiency,
$$\{\%\} = \left[\frac{(\text{in-out})}{\text{in}}\right] \times 100$$

$$\underline{Velocity,} \{ft/sec\} = \left[\frac{distance,\{ft\}}{time,\{sec\}}\right]$$

$$\underline{\underline{Detention\ time,}}\ \{hr\} = \left[\frac{tank\ volume, \{ft^3\}\ X\ 7.5\ \{\frac{gallons}{ft^3}\}\ X\ 24\{\frac{hrs}{day}\}}{Q,\ \{gallons/day\}} \right]$$

Q, {ft³/sec} = velocity {ft/sec} x area {ft²}

 $\underline{BOD \text{ or SS}}, \{lbs/day\} = 8.34 \{lbs\cdot L/MG\cdot mg\} \times Q, \{MGD\} \times conc, \{mg/L\}\}$

<u>Hydraulic loading rate.</u> $\{gal/day \cdot ft^2\} = \left[\frac{Q \text{ total}, \{gallons/day}\}{area, \{ft^2\}}\right]$

 $\underline{\text{Digester (VS) loading rate,}} \{ \text{lbsVS/day·ft}^3 \} = \left[\frac{\text{VS added, } \{ \text{lbs/day} \}}{\text{volume, } \{ \text{ft}^3 \}} \right]$

Weir overflow rate, $\{\text{gal/day}\cdot\text{ft}\}=\begin{bmatrix} Q, \{\text{gallons/day}\} \\ \text{weir length}, \{\text{ft}\} \end{bmatrix}$

Solids loading rate, { $lbs/day \cdot ft^2$ } = $\left[\frac{solids applied, {<math>lbs/day}$ }{surface area, { ft^2 }}\right]

F/M, {lbs BOD/day·lbs MLVSS} = $\frac{BOD \text{ applied {lbs/day}}}{MLVSS$, {lbs}

STATE WATER RESOURCES CONTROL BOARD OPERATOR CERTIFICATION EXAMINATION

Equivalents and Formulae Sheet (Revised Jan 2014)