
Characterizing, Predicting, and Modeling Water at Mine Sites – 
SWRCB Training Academy Short Course, May 18-21, 2009 

 
Field Trip Itinerary, Jamestown Mine, Tuolumne County, CA 

Weds. May 20, 2009 
 

8:30 – Depart Marriott Hotel (Rancho Cordova) for Jamestown via Hwys. 16 and 49. 
(Note: it’s about a 2 hour drive so a “pit stop” may be necessary if the bus isn’t 
equipped with a toilet.  There is an Indian Casino located near the mine. 
Portable toilets will be available at the mine.) 

10:30 – Arrive at the Jamestown Mine office parking lot which is located off High 
School Road (not Harvard Mine Road).  Meet Mark Adams (Trustee of the 
Jamestown Trust) and J.C. Isham (Shaw Environmental Inc.).  Shaw manages 
the site for the Trust.  We will receive a tailgate safety talk.  We will then drive 
the bus up to the low-grade ore area (Stop 2) and disembark. 

10:45 – STOP 1 – Tailings Impoundment.  Walk over to the tailings impoundment, 
about 200 meters from where everyone disembarks from the bus.  Victor Izzo 
(Regional Water Quality Control Board) and J.C. Isham will talk about 
historical and current events concerning the tailings impoundment, followed by 
discussion led by course instructors regarding characterization and modeling 
that should be considered for tailings facilities. 

11:45 – Lunch at the low-grade ore area / Crystalline Pit overlook, adjacent to the 
Waste Rock Storage Area.  A box lunch will be provided by the course 
organizers ($10 fee). Mineral collectors can try their luck, and class discussion 
can continue informally.  Portable toilets will be placed in this area. 

12:30 – STOP 2 – Low-grade Ore Area / Crystalline Pit Overlook.  Course 
instructors will talk about the characterization and modeling that should be 
considered for waste-rock dumps and ore piles.  

13:30 – STOP 3 – Waste Rock Storage Area / Harvard Pit Overlook.  Walk over 
to the Waste Rock Storage Area (easy walk), which provides a good vantage 
point to see into the Harvard Pit.  Victor Izzo and J.C. Isham will talk about 
groundwater modeling and pit filling history.  Roger Ashley (U.S. Geological 
Survey) will talk about water quality characterization and geochemical 
modeling that has been done on the Harvard Pit by Kaye Savage and others.   

14:30 – STOP 4 – Harvard Pit Interior.  The group will walk into the pit to look at 
primary and secondary minerals in the ore zone and surrounding rocks.  To 
access the pit, walk back toward the bus and continue on into the mine pit 
(easy downhill walk – access point in NE corner).  The bus will take those who 
prefer to ride to the pit access point via Harvard Mine Road.   

15:30 – Load bus and depart. 
17:30 – Return to Marriott Hotel (Rancho Cordova).  
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Fig. 14. Schematic showing predominant influences on pit lake chemistry  (m odified from Savage et al. , 2000b). 
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Figure 15. Results of  modeling, stage 2: multi-process model for individual seasonal events. Model values were generated by computationally mixing lake  
waters with rain, spring water, ground water, and evaporative fluxes (Tables  4  and  5 ), as well as computationally controlling fluxes of CO 2  and wall  
rock minerals (calcite, magnesite, gypsum, and/or  epsomite, see Table  6 A). Each forward model for a particular seasonal event used the prior lake  
water analysis as the starting composition. The upper set of graphs represents the epilimnion and the lower set represents the hypolimnion. Dots  
represent analyzed values from pit lake and diamonds along grey lines represent modeled values. Vertical error bars represent analytical error (see  
text). On pH and CO 2  graphs, ‘x’ symbols along stippled lines show results of Stage 1 modeling with no CO 2  evasion. On sulfate graphs, ‘+’ symbols  
represent adjusted concentrations after charge balance calculations (see text).  
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Figure 16. Results of  modeling, stage 3: multi-process continuous models. Dashed lines separate years, each of which includes five model events: spring  
stratification, summer evaporation, autumn flush, onset of mixis, and winter/spring rains. The final data point represents October 2004. Dots  
represent analyzed values from the pit lake, vertical error bars represent analytical error (see text), and diamonds along solid lines represent  
modeled values. On sulfate graphs, ‘+’ symbols represent adjusted concentrations after charge balance calculations. Modeled concentration values  
were generated by computationally mixing lake waters with rain, spring water, ground water, and evaporative fluxes, as well as computationally  
controlling seasonal fluxes of CO 2  and wall rock minerals (gypsum and epsomite) as indicated in Table  6 B. Each forward model step used the  
results of the prior step as the starting point, except that constituent concentrations were reset at the final Year 3 event to their measured values.  
Arsenic was reset to values indicated by solid diamonds (see text).  
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SELECTED REFERENCES FOR HARVARD MINE PIT LAKE, GEOLOGY AND 
GEOCHEMICAL MODELING 

 
 compiled by Roger P. Ashley, U.S. Geological Survey 
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WWL Model Predictions versus Observed
1995 through 2007
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B & C Model Predictions versus Observed
2001 through 2007
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HPRM Model Predictions versus Observed
1998 through 2007

1000

1100

1200

1300

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

Date

H
ar

va
rd

 P
it 

W
at

er
 E

le
va

tio
n 

(ft
 a

m
sl

)

Observed Harvard Pit Elevations
HPRM Predicted Elevations

13



14



15



16



17



In case of medical emergency, the closest hospital to 
the Jamestown Mine site is Tuolumne General Hospital 
in Sonora. Phone is 209-533-7100,  See driving 
directions, below.

Field trip guide compiled by Charlie Alpers (USGS) with assistance from Mark Adams (Point 
Environmental), Roger Ashley (USGS), Ross Atkinson (RWQCB), Ross Grunwald 
(GeoResource Management), Rick Humpheys (SWRCB), Victor Izzo (RWQCB), and J.C. 
Isham (Shaw Environmental).
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