Recycled Water Policy #### 1. Preamble California is facing an unprecedented water crisis. The collapse of the Bay-Delta ecosystem, climate change, and continuing population growth have combined with a severe drought on the Colorado River and failing levees in the Delta to create a new reality that challenges California's ability to provide the clean water needed for a healthy environment, a healthy population and a healthy economy, both now and in the future. These challenges also present an unparalleled opportunity for California to move aggressively towards a sustainable water future. The State Water Resources Control Board (State Water Board) declares that we will achieve our mission to "preserve, enhance and restore the quality of California's water resources to the benefit of present and future generations." To achieve that mission, we support and encourage every region in California to develop a salt/nutrient management plan by 2014 that is sustainable on a long-term basis and that provides California with clean, abundant water. These plans shall be consistent with the Department of Water Resources' Bulletin 160, as appropriate, and shall be locally developed, locally controlled and recognize the variability of California's water supplies and the diversity of its waterways. We strongly encourage local and regional water agencies to move toward clean, abundant, local water for California by emphasizing appropriate water recycling, water conservation, and maintenance of supply infrastructure and the use of stormwater (including dry-weather urban runoff) in these plans; these sources of supply are drought-proof, reliable, and minimize our carbon footprint and can be sustained over the long-term. We declare our independence from relying on the vagaries of annual precipitation and move towards sustainable management of surface waters and groundwater, together with enhanced water conservation, water reuse and the use of stormwater. To this end, we adopt the following goals for California: - Increase the use of recycled water over 2002 levels by at least one million acre-feet per year (afy) by 2020 and by at least two million afy by 2030. - Increase the use of stormwater over use in 2007 by at least 500,000 afy by 2020 and by at least one million afy by 2030. - Increase the amount of water conserved in urban and industrial uses by comparison to 2007 by at least 20 percent by 2020. - Included in these goals is the substitution of as much recycled water for potable water as possible by 2030. The purpose of this Policy is to increase the use of recycled water from municipal wastewater sources that meets the definition in Water Code section 13050(n), in a manner that implements state and federal water quality laws. The State Water Board expects to develop additional policies to encourage the use of stormwater, encourage water conservation, encourage the conjunctive use of surface and groundwater, and improve the use of local water supplies. When used in compliance with this Policy, Title 22 and all applicable state and federal water quality laws, the State Water Board finds that recycled water is safe for approved uses, and strongly supports recycled water as a safe alternative to potable water for such approved uses. #### 2. Purpose of the Policy - a. The purpose of this Policy is to provide direction to the Regional Water Quality Control Boards (Regional Water Boards), proponents of recycled water projects, and the public regarding the appropriate criteria to be used by the State Water Board and the Regional Water Boards in issuing permits for recycled water projects. - b. It is the intent of the State Water Board that all elements of this Policy are to be interpreted in a manner that fully implements state and federal water quality laws and regulations in order to enhance the environment and put the waters of the state to the fullest use of which they are capable. - c. This Policy describes permitting criteria that are intended to streamline the permitting of the vast majority of recycled water projects. The intent of this streamlined permit process is to expedite the implementation of recycled water projects in a manner that implements state and federal water quality laws while allowing the Regional Water Boards to focus their limited resources on projects that require substantial regulatory review due to unique site-specific conditions. - d. By prescribing permitting criteria that apply to the vast majority of recycled water projects, it is the State Water Board's intent to maximize consistency in the permitting of recycled water projects in California while also reserving to the Regional Water Boards sufficient authority and flexibility to address site-specific conditions. - e. The State Water Board will establish additional policies that are intended to assist the State of California in meeting the goals established in the preamble to this Policy for water conservation and the use of stormwater. f. For purposes of this Policy, the term "permit" means an order adopted by a Regional Water Board or the State Water Board prescribing requirements for a recycled water project, including but not limited to water recycling requirements, master reclamation permits, and waste discharge requirements. ## 3. Benefits of Recycled Water The State Water Board finds that the use of recycled water in accordance with this Policy, that is, which supports the sustainable use of groundwater and/or surface water, which is sufficiently treated so as not to adversely impact public health or the environment and which ideally substitutes for use of potable water, is presumed to have a beneficial impact. Other public agencies are encouraged to use this presumption in evaluating the impacts of recycled water projects on the environment as required by the California Environmental Quality Act (CEQA). - 4. Mandate for the Use of Recycled Water - a. The State Water Board and Regional Water Boards will exercise the authority granted to them by the Legislature to the fullest extent possible to encourage the use of recycled water, consistent with state and federal water quality laws. - (1) The State Water Board hereby establishes a mandate to increase the use of recycled water in California by 200,000 afy by 2020 and by an additional 300,000 afy by 2030. These mandates shall be achieved through the cooperation and collaboration of the State Water Board, the Regional Water Boards, the environmental community, water purveyors and the operators of publicly owned treatment works. The State Water Board will evaluate progress toward these mandates biennially and review and revise as necessary the implementation provisions of this Policy in 2012 and 2016. - (2) Agencies producing recycled water that is available for reuse and not being put to beneficial use shall make that recycled water available to water purveyors for reuse on reasonable terms and conditions. Such terms and conditions may include payment by the water purveyor of a fair and reasonable share of the cost of the recycled water supply and facilities. - (3) The State Water Board hereby declares that, pursuant to Water Code sections 13550 et seq., it is a waste and unreasonable use of water for water agencies not to use recycled water when recycled water of adequate quality is available and is not being put to beneficial use, subject to the conditions established in sections 13550 et seq. The State Water Board shall exercise its authority pursuant to Water Code section 275 to the fullest extent possible to enforce the mandates of this subparagraph. - b. These mandates are contingent on the availability of sufficient capital funding for the construction of recycled water projects from private, local, state, and federal sources and assume that the Regional Water Boards will effectively implement regulatory streamlining in accordance with this Policy. - c. The water industry and the environmental community have agreed jointly to advocate for \$1 billion in state and federal funds over the next five years to fund projects needed to meet the goals and mandates for the use of recycled water established in this Policy. - d. The State Water Board requests the California Department of Public Health (CDPH), the California Public Utilities Commission (CPUC), and the California Department of Water Resources (CDWR) to use their respective authorities to the fullest extent practicable to assist the State Water Board and the Regional Water Boards in increasing the use of recycled water in California. - 5. Roles of the State Water Board, Regional Water Boards, CDPH and CDWR The State Water Board recognizes that it shares jurisdiction over the use of recycled water with the Regional Water Boards and with CDPH. In addition, the State Water Board recognizes that CDWR and the CPUC have important roles to play in encouraging the use of recycled water. The State Water Board believes that it is important to clarify the respective roles of each of these agencies in connection with recycled water projects, as follows: a. The State Water Board establishes general policies governing the permitting of recycled water projects consistent with its role of protecting water quality and sustaining water supplies. The State Water Board exercises general oversight over recycled water projects, including review of Regional Water Board permitting practices, and shall lead the effort to meet the recycled water use goals set forth in the Preamble to this Policy. The State Water Board is also charged by statute with developing a general permit for irrigation uses of recycled water. - b. The CDPH is charged with protection of public health and drinking water supplies and with the development of uniform water recycling criteria appropriate to particular uses of water. Regional Water Boards shall appropriately rely on the expertise of CDPH for the establishment of permit conditions needed to protect human health. - c. The
Regional Water Boards are charged with protection of surface and groundwater resources and with the issuance of permits that implement CDPH recommendations, this Policy, and applicable law and will, pursuant to paragraph 4 of this Policy, use their authority to the fullest extent possible to encourage the use of recycled water. - d. CDWR is charged with reviewing and, every five years, updating the California Water Plan, including evaluating the quantity of recycled water presently being used and planning for the potential for future uses of recycled water. In undertaking these tasks, CDWR may appropriately rely on urban water management plans and may share the data from those plans with the State Water Board and the Regional Water Boards. CDWR also shares with the State Water Board the authority to allocate and distribute bond funding, which can provide incentives for the use of recycled water. - e. The CPUC is charged with approving rates and terms of service for the use of recycled water by investor-owned utilities. #### 6. Salt/Nutrient Management Plans - a. Introduction. - (1) Some groundwater basins in the state contain salts and nutrients that exceed or threaten to exceed water quality objectives established in the applicable Water Quality Control Plans (Basin Plans), and not all Basin Plans include adequate implementation procedures for achieving or ensuring compliance with the water quality objectives for salt or nutrients. These conditions can be caused by natural soils/conditions, discharges of waste, irrigation using surface water, groundwater or recycled water and water supply augmentation using surface or recycled water. Regulation of recycled water alone will not address these conditions. - (2) It is the intent of this Policy that salts and nutrients from all sources be managed on a basin-wide or watershed-wide basis in a manner that ensures attainment of water quality objectives and protection of beneficial uses. The State Water Board finds that the appropriate way to address salt and nutrient issues is through the development of regional or subregional salt and nutrient management plans rather than through imposing requirements solely on individual recycled water projects. - b. Adoption of Salt/ Nutrient Management Plans. - (1) The State Water Board recognizes that, pursuant to the letter dated December 19, 2008 and attached to the Resolution adopting this Policy, the local water and wastewater entities, together with local salt/nutrient contributing stakeholders, will fund locally driven and controlled, collaborative processes open to all stakeholders that will prepare salt and nutrient management plans for each basin/subbasin in California, including compliance with CEQA and participation by Regional Water Board staff. - (a) It is the intent of this Policy for every groundwater basin/subbasin in California to have a consistent salt/nutrient management plan. The degree of specificity within these plans and the length of these plans will be dependent on a variety of site-specific factors, including but not limited to size and complexity of a basin, source water quality, stormwater recharge, hydrogeology, and aquifer water quality. It is also the intent of the State Water Board that because stormwater is typically lower in nutrients and salts and can augment local water supplies, inclusion of a significant stormwater use and recharge component within the salt/nutrient management plans is critical to the longterm sustainable use of water in California. Inclusion of stormwater recharge is consistent with State Water Board Resolution No. 2005-0006, which establishes sustainability as a core value for State Water Board programs and also assists in implementing Resolution No. 2008-0030, which requires sustainable water resources management and is consistent with Objective 3.2 of the State Water Board Strategic Plan Update dated September 2, 2008. - (b) Salt and nutrient plans shall be tailored to address the water quality concerns in each basin/sub-basin and may include constituents other than salt and nutrients that impact water quality in the basin/sub-basin. Such plans shall address and implement provisions, as appropriate, for all sources of salt and/or nutrients to groundwater basins, including recycled water irrigation projects and groundwater recharge reuse projects. - (c) Such plans may be developed or funded pursuant to the provisions of Water Code sections 10750 *et seq.* or other appropriate authority. - (d) Salt and nutrient plans shall be completed and proposed to the Regional Water Board within five years from the date of this Policy unless a Regional Water Board finds that the stakeholders are making substantial progress towards completion of a plan. In no case shall the period for the completion of a plan exceed seven years. - (e) The requirements of this paragraph shall not apply to areas that have already completed a Regional Water Board approved salt and nutrient plan for a basin, sub-basin, or other regional planning area that is functionally equivalent to paragraph 6(b)3. - (f) The plans may, depending upon the local situation, address constituents other than salt and nutrients that adversely affect groundwater quality. - (2) Within one year of the receipt of a proposed salt and nutrient management plan, the Regional Water Boards shall consider for adoption revised implementation plans, consistent with Water Code section 13242, for those groundwater basins within their regions where water quality objectives for salts or nutrients are being, or are threatening to be, exceeded. The implementation plans shall be based on the salt and nutrient plans required by this Policy. - (3) Each salt and nutrient management plan shall include the following components: - (a) A basin/sub-basin wide monitoring plan that includes an appropriate network of monitoring locations. The scale of the basin/sub-basin monitoring plan is dependent upon the site-specific conditions and shall be adequate to provide a reasonable, cost-effective means of determining whether the concentrations of salt, nutrients, and other constituents of concern as identified in the salt and nutrient plans are consistent with applicable water quality objectives. Salts, nutrients, and the constituents identified in paragraph 6(b)(1)(f) shall be monitored. The frequency of monitoring shall be determined in the salt/nutrient management plan and approved by the Regional Water Board pursuant to paragraph 6(b)(2). - (i) The monitoring plan must be designed to determine water quality in the basin. The plan must focus on basin water quality near water supply wells and areas proximate to large water recycling projects, particularly groundwater recharge projects. Also, monitoring locations shall, where appropriate, target groundwater and surface waters where groundwater has connectivity with adjacent surface waters. - (ii) The preferred approach to monitoring plan development is to collect samples from existing wells if feasible as long as the existing wells are located appropriately to determine water quality throughout the most critical areas of the basin. - (iii) The monitoring plan shall identify those stakeholders responsible for conducting, compiling, and reporting the monitoring data. The data shall be reported to the Regional Water Board at least every three years. - (b) A provision for annual monitoring of Constituents of Emerging Concern (e.g., endocrine disrupters, personal care products or pharmaceuticals) (CECs) consistent with recommendations by CDPH and consistent with any actions by the State Water Board taken pursuant to paragraph 10(b) of this Policy. - (c) Water recycling and stormwater recharge/use goals and objectives. - (d) Salt and nutrient source identification, basin/sub-basin assimilative capacity and loading estimates, together with fate and transport of salts and nutrients. - (e) Implementation measures to manage salt and nutrient loading in the basin on a sustainable basis. - (f) An antidegradation analysis demonstrating that the projects included within the plan will, collectively, satisfy the requirements of Resolution No. 68-16. - (4) Nothing in this Policy shall prevent stakeholders from developing a plan that is more protective of water quality than applicable standards in the Basin Plan. No Regional Water Board, however, shall seek to modify Basin Plan objectives without full compliance with the process for such modification as established by existing law. ## 7. Landscape Irrigation Projects¹ - a. Control of incidental runoff. Incidental runoff is defined as unintended small amounts (volume) of runoff from recycled water use areas, such as unintended, minimal over-spray from sprinklers that escapes the recycled water use area. Water leaving a recycled water use area is not considered incidental if it is part of the facility design, if it is due to excessive application, if it is due to intentional overflow or application, or if it is due to negligence. Incidental runoff may be regulated by waste discharge requirements or, where necessary, waste discharge requirements that serve as a National Pollutant Discharge Elimination System (NPDES) permit, including municipal separate storm water system permits, but regardless of the regulatory instrument, the project shall include, but is not limited to, the following practices: - (1) Implementation of an operations and management plan that may apply to multiple sites and provides for detection of leaks, (for example, from broken sprinkler heads), and correction either within 72 hours of learning of the runoff, or prior to the release of 1,000 gallons, whichever occurs first, - (2) Proper design and aim of sprinkler heads, - (3) Refraining from application during precipitation events, and - (4) Management of any ponds containing recycled water such that no discharge occurs unless the discharge is a result of a 25-year, 24-hour storm event or greater, and there
is notification of the appropriate Regional Water Board Executive Officer of the discharge. - b. Streamlined Permitting. - (1) The Regional Water Boards shall, absent unusual circumstances (i.e., unique, site-specific conditions such as where recycled water is proposed to be used for irrigation over high transmissivity soils ¹ Specified uses of recycled water considered "landscape irrigation" projects include any of the following: i. Parks, greenbelts, and playgrounds; ii. School yards; iii. Athletic fields; iv. Golf courses; v. Cemeteries; vi. Residential landscaping, common areas; vii. Commercial landscaping, except eating areas; viii. Industrial landscaping, except eating areas; and ix. Freeway, highway, and street landscaping. - over a shallow (5' or less) high quality groundwater aquifer), permit recycled water projects that meet the criteria set forth in this Policy, consistent with the provisions of this paragraph. - (2) If the Regional Water Board determines that unusual circumstances apply, the Regional Water Board shall make a finding of unusual circumstances based on substantial evidence in the record, after public notice and hearing. - (3) Projects meeting the criteria set forth below and eligible for enrollment under requirements established in a general order shall be enrolled by the State or Regional Water Board within 60 days from the date on which an application is deemed complete by the State or Regional Water Board. For projects that are not enrolled in a general order, the Regional Water Board shall consider permit adoption within 120 days from the date on which the application is deemed complete by the Regional Water Board. - (4) Landscape irrigation projects that qualify for streamlined permitting shall not be required to include a project specific receiving water and groundwater monitoring component unless such project specific monitoring is required under the adopted salt/nutrient management plan. During the interim while the salt management plan is under development, a landscape irrigation project proponent can either perform project specific monitoring, or actively participate in the development and implementation of a salt/nutrient management plan, including basin/sub-basin monitoring. Permits or requirements for landscape irrigation projects shall include, in addition to any other appropriate recycled water monitoring requirements, monitoring for priority pollutants in the recycled water at the recycled water production facility once per year, except when the recycled water production facility has a design production flow for the entire water reuse system of one million gallons per day or less. For these smaller facilities, the recycled water shall be monitored for priority pollutants once every five years. - (5) It is the intent of the State Water Board that the general permit for landscape irrigation projects be consistent with the terms of this Policy. - c. Criteria for streamlined permitting. Irrigation projects using recycled water that meet the following criteria are eligible for streamlined permitting, and, if otherwise in compliance with applicable laws, shall be approved absent unusual circumstances: - (1) Compliance with the requirements for recycled water established in Title 22 of the California Code of Regulations, including the requirements for treatment and use area restrictions, together with any other recommendations by CDPH pursuant to Water Code section 13523. - (2) Application in amounts and at rates as needed for the landscape (i.e., at agronomic rates and not when the soil is saturated). Each irrigation project shall be subject to an operations and management plan, that may apply to multiple sites, provided to the Regional Water Board that specifies the agronomic rate(s) and describes a set of reasonably practicable measures to ensure compliance with this requirement, which may include the development of water budgets for use areas, site supervisor training, periodic inspections, tiered rate structures, the use of smart controllers, or other appropriate measures. - (3) Compliance with any applicable salt and nutrient management plan. - (4) Appropriate use of fertilizers that takes into account the nutrient levels in the recycled water. Recycled water producers shall monitor and communicate to the users the nutrient levels in their recycled water. - 8. Recycled Water Groundwater Recharge Projects - a. The State Water Board acknowledges that all recycled water groundwater recharge projects must be reviewed and permitted on a site-specific basis, and so such projects will require project-by-project review. - b. Approved groundwater recharge projects will meet the following criteria: - (1) Compliance with regulations adopted by CDPH for groundwater recharge projects or, in the interim until such regulations are approved, CDPH's recommendations pursuant to Water Code section 13523 for the project (e.g., level of treatment, retention time, setback distance, source control, monitoring program, etc.). - (2) Implementation of a monitoring program for CECs that is consistent with Attachment A and any recommendations from CDPH. Groundwater recharge projects shall include monitoring of recycled water for priority pollutants twice per year. - c. Nothing in this paragraph shall be construed to limit the authority of a Regional Water Board to protect designated beneficial uses, provided that any proposed limitations for the protection of public health may only be imposed following regular consultation by the Regional Water Board with CDPH, consistent with State Water Board Orders WQ 2005-0007 and 2006-0001. - d. Nothing in this Policy shall be construed to prevent a Regional Water Board from imposing additional requirements for a proposed recharge project that has a substantial adverse effect on the fate and transport of a contaminant plume or changes the geochemistry of an aquifer thereby causing the dissolution of constituents, such as arsenic, from the geologic formation into groundwater. - e. Projects that utilize surface spreading to recharge groundwater with recycled water treated by reverse osmosis shall be permitted by a Regional Water Board within one year of receipt of recommendations from CDPH. Furthermore, the Regional Water Board shall give a high priority to review and approval of such projects. #### 9. Antidegradation a. The State Water Board adopted Resolution No. 68-16 as a policy statement to implement the Legislature's intent that waters of the state shall be regulated to achieve the highest water quality consistent with the maximum benefit to the people of the state. - b. Activities involving the disposal of waste that could impact high quality waters are required to implement best practicable treatment or control of the discharge necessary to ensure that pollution or nuisance will not occur, and the highest water quality consistent with the maximum benefit to the people of the state will be maintained. - c. Groundwater recharge with recycled water for later extraction and use in accordance with this Policy and state and federal water quality law is to the benefit of the people of the state of California. Nonetheless, the State Water Board finds that groundwater recharge projects using recycled water have the potential to lower water quality within a basin. The proponent of a groundwater recharge project must demonstrate compliance with Resolution No. 68-16. Until such time as a salt/nutrient management plan is in effect, such compliance may be demonstrated as follows: - (1) A project that utilizes less than 10 percent of the available assimilative capacity in a basin/sub-basin (or multiple projects utilizing less than 20 percent of the available assimilative capacity in a basin/sub-basin) need only conduct an antidegradation analysis verifying the use of the assimilative capacity. For those basins/sub-basins where the Regional Water Boards have not determined the baseline assimilative capacity, the baseline assimilative capacity shall be calculated by the initial project proponent, with review and approval by the Regional Water Board, until such time as the salt/nutrient plan is approved by the Regional Water Board and is in effect. For compliance with this subparagraph, the available assimilative capacity shall be calculated by comparing the mineral water quality objective with the average concentration of the basin/sub-basin, either over the most recent five years of data available or using a data set approved by the Regional Water Board Executive Officer. In determining whether the available assimilative capacity will be exceeded by the project or projects, the Regional Water Board shall calculate the impacts of the project or projects over at least a ten year time frame. - (2) In the event a project or multiple projects utilize more than the fraction of the assimilative capacity designated in subparagraph (1), then a Regional Water Board-deemed acceptable antidegradation analysis shall be performed to comply with Resolution No. 68-16. The project proponent shall provide sufficient information for the Regional Water Board to make this determination. An example of an approved method is the method used by the State Water Board in connection with Resolution No. 2004-0060 and the Regional Water Board in connection with Resolution No. R8-2004-0001. An integrated approach (using surface water, groundwater, recycled water, stormwater, pollution prevention, water conservation, etc.) to the implementation of Resolution No. 68-16 is encouraged. - d. Landscape irrigation with recycled water in accordance with this Policy is to the benefit of the people of the State of California. Nonetheless, the State Water Board finds that the use of water for irrigation may, regardless of its source, collectively affect groundwater quality over time. The State Water Board intends to address these impacts in part through the development of salt/nutrient management plans
described in paragraph 6. - (1) A project that meets the criteria for a streamlined irrigation permit and is within a basin where a salt/nutrient management plan satisfying the provisions of paragraph 6(b) is in place may be approved without further antidegradation analysis, provided that the project is consistent with that plan. - (2) A project that meets the criteria for a streamlined irrigation permit and is within a basin where a salt/nutrient management plan satisfying the provisions of paragraph 6(b) is being prepared may be approved by the Regional Water Board by demonstrating through a salt/nutrient mass balance or similar analysis that the project uses less than 10 percent of the available assimilative capacity as estimated by the project proponent in a basin/sub-basin (or multiple projects using less than 20 percent of the available assimilative capacity as estimated by the project proponent in a basin/sub-basin). ## 10. Constituents of Emerging Concern #### a. General Provisions - (1) Regulatory requirements for recycled water shall be based on the best available peer-reviewed science. In addition, all uses of recycled water must meet conditions set by CDPH. - (2) Knowledge of risks will change over time and recycled water projects must meet legally applicable criteria. However, when standards change, projects should be allowed time to comply through a compliance schedule. - (3) The state of knowledge regarding CECs is incomplete. There needs to be additional research and development of analytical methods and surrogates to determine potential environmental and public health impacts. Agencies should minimize the likelihood of - CECs impacting human health and the environment by means of source control and/or pollution prevention programs. - (4) Regulating most CECs will require significant work to develop test methods and more specific determinations as to how and at what level CECs impact public health or our environment. ## b. Research Program - (1) The State Water Board, in consultation with CDPH, convened a "blue-ribbon" advisory panel to guide future actions relating to CECs. - (a) The panel was actively managed by the State Water Board and was composed of the following: one human health toxicologist, one environmental toxicologist, one epidemiologist, one biochemist, one civil engineer familiar with the design and construction of recycled water treatment facilities, and one chemist familiar with the design and operation of advanced laboratory methods for the detection of emerging constituents. Each of these panelists had extensive experience as a principal investigator in their respective areas of expertise. - (b) The panel reviewed the scientific literature and submitted a report to the State Water Board and CDPH that described the current state of scientific knowledge regarding the risks of CECs to public health and the environment. In December 2010, the State Water Board, in coordination with CDPH, held a public hearing to hear a presentation on the report and to receive comments from stakeholders. - (c) The State Water Board considered the panel report and the comments received and adopted an amendment to the Policy establishing monitoring requirements for CECs in recycled water. These monitoring requirements are prescribed in Attachment A. - (2) The panel or a similarly constituted panel shall update the report every five years. The next update is due in June 2015. - (a) Each updated report shall recommend actions that the State of California should take to improve our understanding of CECs and, as may be appropriate, to protect public health and the environment. - (b) The updated reports shall answer the following questions: What are the appropriate constituents to be monitored in recycled water, including analytical methods and method detection limits? What is the known toxicological information for the above constituents? Would the above lists change based on level of treatment and use? If so, how? What are possible indicators that represent a suite of CECs? What levels of CEC's should trigger enhanced monitoring of CEC's in recycled water, groundwater and/or surface waters? - (c) Within six months from receipt of an updated report, the State Water Board shall hold a hearing to consider recommendations from staff and shall endorse the recommendations, as appropriate, after making any necessary modifications. #### c. Permit Provisions Permits for recycled water projects shall be consistent with any CDPH recommendations to protect public health and the monitoring requirements prescribed in Attachment A. #### 11. Incentives for the Use of Recycled Water #### a. Funding The State Water Board will request CDWR to provide priority funding for projects that have major recycling components; particularly those that decrease demand on potable water supplies. The State Water Board will also request priority funding for stormwater recharge projects that augment local water supplies. The State Water Board shall promote the use of the State Revolving Fund (SRF) for water purveyor, stormwater agencies, and water recyclers to use for water reuse and stormwater use and recharge projects. #### b. Stormwater The State Water Board strongly encourages all water purveyors to provide financial incentives for water recycling and stormwater recharge and reuse projects. The State Water Board also encourages the Regional Water Boards to require less stringent monitoring and regulatory requirements for stormwater treatment and use projects than for projects involving untreated stormwater discharges. ## c. TMDLs Water recycling reduces mass loadings from municipal wastewater sources to impaired waters. As such, waste load allocations shall be assigned as appropriate by the Regional Water Boards in a manner that provides an incentive for greater water recycling. #### ATTACHMENT A # REQUIREMENTS FOR MONITORING CONSTITUENTS OF EMERGING CONCERN FOR RECYCLED WATER The purpose of this attachment to the Recycled Water Policy (Policy) is to provide direction to the Regional Water Quality Control Boards (Regional Water Boards) on monitoring requirements for constituents of emerging concern¹ (CECs) in recycled municipal wastewater, herein referred to as "recycled water." The monitoring requirements and criteria for evaluating monitoring results in the Policy are based on recommendations from a Science Advisory Panel². The monitoring requirements pertain to the production and use of recycled water for groundwater recharge reuse³ by surface and subsurface application methods. The monitoring requirements apply to recycled water producers, including entities that further treat or enhance the quality of recycled water supplied by municipal wastewater treatment facilities, and groundwater recharge reuse facilities. Groundwater recharge by surface application is the controlled application of water to a spreading area for infiltration resulting in the recharge of a groundwater basin. Subsurface application is the controlled application of water to a groundwater basin or aquifer by a means other than surface application, such as direct injection through a well. The California Department of Public Health (CDPH) shall be consulted for any additional monitoring requirements for recycled water use found necessary by CDPH to protect human health. ¹ For this Policy, CECs are defined to be chemicals in personal care products, pharmaceuticals including antibiotics, antimicrobials; industrial, agricultural, and household chemicals; hormones; food additives; transformation products, inorganic constituents; and nanomaterials. ² The Science Advisory Panel was convened in accordance with provision 10.b. of the Policy. The panel's recommendations were presented in the report; <u>Monitoring Strategies for Chemicals of Emerging Concern (CECs) in Recycled Water – Recommendations of a Science Advisory Panel</u>, dated June 25, 2010. ³ As used in this attachment, use of recycled water for groundwater recharge reuse has the same meaning as indirect potable reuse for groundwater recharge as defined in Water Code section 13561(c), where it is defined as the planned use of recycled water for replenishment of a groundwater basin or an aquifer that has been designated as a source of water supply for a public water system. #### 1. CECS AND SURROGATES Within this Policy, CECs of toxicological relevance to human health are referred to as "health-based CECs." CECs determined not to have human health relevance, but useful for monitoring treatment process effectiveness, are referred to as "performance indicator CECs." A performance indicator CEC is an individual CEC used for evaluating a family of CECs with similar physicochemical or biodegradable characteristics. The removal of a performance indicator CEC through a treatment process provides an indication of removal of CECs with similar properties. A health-based CEC may also serve as a performance indicator CEC. A surrogate is a measurable physical or chemical property, such as chlorine residual or electrical conductivity, that can be used to measure the effectiveness of trace organic compound removal by treatment process and/or provide an indication of a treatment process failure. A reverse osmosis (RO) treatment process, for example, is expected to substantially reduce the electrical conductivity of the recycled water being treated. This reduction in the level of the surrogate also provides an indication that inorganic and organic compounds, including CECs, are being removed. Recycled water monitoring programs used for groundwater recharge reuse shall include monitoring for: (1) human health-based CECs; (2) performance indicator CECs; and (3) surrogates. The purpose of monitoring performance indicator CECs and surrogates is to assess the effectiveness of unit processes to remove CECs. For this policy for groundwater recharge reuse, unit processes that remove CECs include RO, advanced oxidation processes
(AOPs), and soil aquifer treatment.⁵ AOPs are treatment processes involving the use of oxidizing agents, such as hydrogen peroxide and ozone, combined with ultraviolet light irradiation. Soil aquifer treatment is a natural treatment process that removes CECs as water passes through soil, the vadose zone, and within an aquifer. This Policy provides CEC monitoring requirements for recycled water which undergoes additional treatment by soil aquifer treatment or by RO followed by AOPs. CEC monitoring requirements for groundwater recharge reuse projects implementing treatment processes that provide control of CECs by processes other than soil aquifer treatment or RO/AOPs shall be established on a case-by-case basis by the State Water Board in consultation with CDPH. As modified by State Water Board Resolution 2013-0003 (January 22, 2013) ⁴ Heath-based CECs were determined through a screening process that was developed and conducted by the CEC Science Advisory Panel; <u>Monitoring Strategies for Chemicals of Emerging Concern (CECs) in Recycled Water – Recommendations of a Science Advisory Panel</u>, dated June 25, 2010. ⁵ For evaluating removal of CECs, the treatment zone for soil aquifer treatment is from the surface of the application area through the unsaturated zone to groundwater, including groundwater within a 30-day travel time distance through the aquifer downgradient of the surface application area. Monitoring of health-based CECs or performance indicator CECs is not required for recycled water used for landscape irrigation due to the low risk for ingestion of the water.⁶ #### 1.1. CECs for Monitoring Programs This Policy provides requirements for monitoring CECs in recycled water used for groundwater recharge reuse. The Regional Water Boards shall not issue requirements for monitoring of additional CECs in recycled water beyond the requirements provided in this Policy except when recommended by CDPH or requested by the project proponent. Table 1 provides the health-based CECs and performance indicator CECs to be monitored along with their respective reporting limits. All CECs listed for a recycled water application shall be monitored during an initial assessment monitoring phase, as described in Section 3.1. Based on monitoring results and findings, the list of performance indicator CECs required for monitoring may be refined for subsequent monitoring phases. The health-based CECs listed in Table 1 shall be monitored during the entirety of the initial assessment and baseline monitoring phases (Sections 3.1 and 3.2). Based on the results of the baseline monitoring phase and/or subsequent monitoring, the list of health-based CECs required for monitoring may be revised. The method for evaluation of monitoring results for health-based CECs is provided in Section 4.2. Quality assurance and quality control measures shall be used for both collection of samples and laboratory analysis work. The project proponent shall develop a quality assurance project plan that includes the appropriate number of field blanks, laboratory blanks, replicate samples, and matrix spikes. ⁶ "For monitoring programs to assess CEC threats for urban irrigation reuse, none of the chemicals for which measurement methods and exposure data are available exceeded the threshold for monitoring priority. This is largely attributable to higher Monitoring Trigger Levels (MTLs), because of reduced water ingestion in a landscape irrigation setting compared to drinking water." MTLs are health-based screening level values for CECs for a particular water reuse scenario. MTLs were established in, <u>Monitoring Strategies for Chemicals of Emerging Concern (CECs) in Recycled Water – Recommendations of a Science Advisory Panel</u>, dated June 25, 2010. Table 1 – CECs to be Monitored | Constituent | Constituent
Group | Relevance/Indicator
Type | Reporting
Limit (µg/L) | |---|------------------------|-----------------------------|---------------------------| | GROUNDWATER RECHARGE REUSE - SURFACE APPLICATION | | | | | 17β-estradiol | Steroid
hormones | Health 0.001 | | | Caffeine | Stimulant | Health & Performance | 0.05 | | N-Nitrosodimethylamine (NDMA) | Disinfection byproduct | Health 0.002 | | | Triclosan | Antimicrobial | Health | 0.05 | | Gemfibrozil | Pharmaceutical | Performance | 0.01 | | Iopromide | Pharmaceutical | Performance | 0.05 | | N,N-Diethyl-meta- | Personal care | Performance 0.05 | | | toluamide (DEET) | product | | | | Sucralose | Food additive | Performance 0.1 | | | GROUNDWATER RECHARGE REUSE - SUBSURFACE APPLICATION | | | | | 17β-estradiol | Steroid
hormones | Health | 0.001 | | Caffeine | Stimulant | Health & Performance | 0.05 | | NDMA | Disinfection byproduct | Health & Performance 0.002 | | | Triclosan | Antimicrobial | Health | 0.05 | | DEET | Personal care product | Performance | 0.05 | | Sucralose | Food additive | Performance | 0.1 | μg/L – Micrograms per liter Analytical methods for laboratory analysis of CECs shall be selected to achieve the reporting limits presented in Table 1. The analytical methods shall be based on methods published by the United States Environmental Protection Agency, methods certified by CDPH, or peer reviewed and published methods that have been reviewed by CDPH, including those published by voluntary consensus standards bodies such as the Standards Methods Committee and the American Society for Testing and Materials International. Any modifications to the published or certified methods shall be reviewed by CDPH and subsequently submitted to the Regional Water Board in an updated quality assurance project plan. ## 1.2. Surrogates for Monitoring Programs Table 2 presents a list of surrogates that shall be considered for monitoring treatment of recycled water used for groundwater recharge reuse. Other surrogates not listed in Table 2 may also be considered. Table 2: Surrogates | GROUNDWATER RECHARGE REUSE - SURFACE APPLICATION | |--| | Ammonia | | Total Organic Carbon (TOC) | | Nitrate | | Ultraviolet (UV) Light Absorption | | GROUNDWATER RECHARGE REUSE - SUBSURFACE | | APPLICATION | | Electrical Conductivity | | TOC | The project proponent shall propose surrogates to monitor on a case-by-case basis appropriate for the treatment process or processes. The Regional Water Board shall review and approve the selected surrogates in consultation with CDPH. Where applicable, surrogates may be measured using on-line or hand-held instruments provided that instrument calibration procedures are implemented in accordance with the manufacturer's specifications and that calibration is documented. #### 2. MONITORING LOCATIONS Monitoring locations for CECs and surrogates are described in this section. #### 2.1. Health-Based CEC Monitoring Locations ## 2.1.1. Groundwater Recharge Reuse - Surface Application For groundwater recharge reuse projects implementing surface application of recycled water, health-based CECs shall be monitored at these locations: - (1) Following tertiary treatment⁷ prior to application to the surface spreading area; and - (2) At monitoring well locations designated in consultation with CDPH within the distance groundwater travels downgradient from the application site in 30 days. ⁷ Standards for disinfected tertiary recycled water presented in California Code of Regulations, Title 22, section 60301.230 and 60301.320. Monitoring locations for health-based CECs for the phases of monitoring are presented in Tables 3 through 5. #### 2.1.2. Groundwater Recharge Reuse - Subsurface Application For groundwater recharge reuse projects implementing subsurface application of recycled water, health-based CECs shall be monitored at a location following treatment prior to release into an aquifer. #### 2.2. Performance Indicator CEC and Surrogate Monitoring Locations To allow evaluation of individual unit processes or a combination of unit processes that provide removal of CECs, performance indicator CECs and surrogates shall be monitored at the locations described below and presented in Tables 3 through 5. #### 2.2.1. Groundwater Recharge Reuse - Surface Application For groundwater recharge reuse projects using surface application of recycled water, performance indicator CECs and surrogates shall be monitored at these locations: - (1) Following tertiary treatment prior to application to the surface spreading area; and - (2) At monitoring well locations designated in consultation with CDPH within the distance groundwater travels downgradient from the application site in 30 days. Monitoring locations for performance indicator CECs and surrogates for the phases of monitoring are presented in Tables 3 through 5. ## 2.2.2. Groundwater Recharge Reuse - Subsurface Application For groundwater recharge reuse projects using subsurface application of recycled water, performance indicator CECs shall be monitored in recycled water at these locations: - (1) Prior to treatment by RO; and - (2) Following treatment prior to release to the aquifer. If the project proponent can demonstrate that the RO unit will not substantially remove a CEC, the Regional Water Board may allow monitoring for that CEC prior to the AOPs, instead of prior to the RO unit. For groundwater recharge reuse projects using subsurface application of recycled water, surrogates shall be monitored at locations proposed by the project proponent and approved by the Regional Water Board in consultation with CDPH. #### 3. PHASED MONITORING REQUIREMENTS The Regional Water Board shall phase the monitoring requirements for CECs and surrogates for groundwater recharge reuse projects. The purpose of phased monitoring is to allow monitoring requirements for health-based CECs, performance indicator CECs and surrogates to be refined based on the monitoring results and findings of the previous phase. An initial assessment monitoring phase, followed by a
baseline monitoring phase, shall be conducted to determine the project-specific monitoring requirements for standard operations. The initial assessment and baseline monitoring phases shall be conducted after CDPH approval for groundwater recharge reuse project operation. #### 3.1. Initial Assessment Monitoring Phase The purposes of the initial assessment phase are to: (1) identify the occurrence of health-based CECs, performance indicator CECs, and surrogates in recycled water and groundwater;⁸ (2) determine treatment effectiveness; (3) define the project-specific performance indicator CECs and surrogates to monitor during the baseline phase; and (4) specify the expected removal percentages for performance indicator CECs and surrogates. The monitoring requirements for the initial assessment monitoring phase shall apply to the start-up of new facilities, piloting of new unit processes at existing facilities, and existing facilities where CECs and surrogates have not been assessed equivalent to the requirements of this Policy. Data from prior assessment need not replicate the exact frequency and duration of the initial assessment phase requirements specified in Table 3, if the overall robustness and size of the data are sufficient to adequately characterize the CECs, surrogates, and treatment performance. The initial assessment monitoring phase shall be conducted for a period of one year. During the initial assessment monitoring phase for the applicable recycled water application method, each of the health-based CECs and performance indicator CECs listed in Table 1 and appropriate surrogates (see Section 1.2) shall be monitored. Surrogates shall be selected to monitor individual unit processes or combinations of unit processes that remove CECs. Performance indicator CEC and surrogate monitoring results that demonstrate measurable removal for a given unit process shall be candidates for use in the monitoring programs for the baseline and standard operation phases. Monitoring requirements for the initial assessment phase are summarized in Table 3. For existing groundwater recharge reuse projects, historic monitoring data may be used to assess the occurrence and removal of CECs and surrogates. Existing projects demonstrating prior assessment of CECs and surrogates equivalent to the initial ⁸ The identification of the occurrence of health-based CECs, performance indicator CECs, and surrogates in groundwater only applies to groundwater recharge reuse by surface application. assessment phase requirements of this Policy may skip the initial monitoring phase and initiate the baseline monitoring phase requirements in Section 3.2. Monitoring results shall be evaluated following each sampling event to allow timely implementation of any response actions. If evaluation of monitoring results indicates a concern, such as finding a concentration of a health-based CEC above the thresholds described in Table 7, more frequent monitoring may be required to further evaluate the effectiveness of the treatment process. Additional actions may also be warranted, which may include, but not be limited to, resampling to confirm a result, additional monitoring, implementation of a source identification program, toxicological studies, engineering removal studies, and/or modification of facility operations. If additional monitoring is required, the Regional Water Board shall consult with CDPH and revise the Monitoring and Reporting Program as appropriate. Evaluation of monitoring results and determination of appropriate response actions based on the monitoring results are presented in Section 4. Following completion of the initial assessment monitoring phase, monitoring requirements shall be re-evaluated and subsequent requirements for the baseline monitoring phase shall be determined on a project-specific basis. ## 3.2. Baseline Monitoring Phase Based on the findings of the initial assessment monitoring phase, project-specific performance indicator CECs and surrogates shall be selected for monitoring during the baseline monitoring phase. The purpose of the baseline monitoring phase is to assess and refine which health-based CECs, performance indicator CECs and surrogates are appropriate to monitor the removal of CECs and treatment system performance for the standard operation of a facility. Performance indicator CECs and surrogates that exhibited reduction by unit processes and/or provided an indication of operational performance shall be selected for monitoring during the baseline monitoring phase. Surrogates not reduced through a unit process are not good indicators of the unit's intended performance. For example, soil aguifer treatment may not effectively lower electrical conductivity. Therefore, electrical conductivity may not be a good surrogate for soil aquifer treatment. The baseline monitoring phase shall be conducted for a period of three years following the initial assessment monitoring phase. Monitoring requirements for the baseline phase are summarized in Table 4. If a performance indicator CEC listed in Table 1 is found not to be a good indicator, the project proponent shall propose an alternative performance indicator CEC representative of the constituent group to monitor. This performance indicator CEC shall be subject to approval by the Regional Water Board in consultation with CDPH. For existing groundwater recharge reuse projects, historic monitoring data may be used to assess removal of health-based CECs, performance indicator CECs and surrogates. Existing projects that can demonstrate prior assessment of CECs and surrogates equivalent to the initial assessment phase and baseline phase requirements of this Policy may be eligible for the standard operation monitoring requirements. Monitoring results shall be evaluated following each sampling event to allow timely implementation of any response actions. If evaluation of monitoring results indicates a concern, such as finding a concentration of a health-based CEC above the thresholds described in Table 7, more frequent monitoring may be required to further evaluate the effectiveness of the treatment process. Additional actions may also be warranted, which may include, but not be limited to, resampling to confirm a result, additional monitoring, implementation of a source identification program, toxicological studies, engineering removal studies, and/or modification of facility operation. If additional monitoring is required, the Regional Water Board shall consult with CDPH and revise the Monitoring and Reporting Program as appropriate. Evaluation of monitoring results and determination of appropriate response actions based on the monitoring results are presented in Section 4. Following the baseline operation monitoring phase, monitoring requirements shall be reevaluated and subsequent requirements for the standard operation of a project shall be determined on a project-specific basis. Table 3: Initial Assessment Phase Monitoring Requirements | Recycled Water Use | Constituent | <u>Frequency</u> | Monitoring Point | |---|--|---|--| | Groundwater Recharge
Reuse- Surface
Application | Health-Based CECs and Performance Indicator CECs: All listed in Table 1. | Quarterly ¹ | - Following tertiary
treatment prior to
application to surface
spreading area. | | | | | - At monitoring well locations designated in consultation with CDPH. ² | | | Surrogates: To be selected on a project-specific basis. ⁵ | To be determined on a project-specific basis. ³ | - Following tertiary
treatment prior to
application to the surface
spreading area. | | | | | - At monitoring well locations designated in consultation with CDPH. ² | | | | 3-12 months: To be determined on a project-specific basis. ³ | - Following tertiary treatment prior to application to the surface spreading area. | | | | | - At monitoring well locations designated in consultation with CDPH. ² | | Groundwater Recharge Reuse -Subsurface | Health-Based CECs: All listed in Table 1. | Quarterly ¹ | Following treatment prior to release to the aquifer. | | Application | Performance Indicator CECs: All listed in Table 1. | Quarterly ¹ | Prior to RO treatment.⁴ Following treatment prior to release to the aquifer. | | | Surrogates: To be selected on a project-specific basis. ⁵ | To be determined on a project-specific basis. | - At locations approved by
the Regional Water Board. ⁶ | ^{1 –} This is the initial monitoring frequency for the monitoring and reporting program. The Regional Water Board may require additional monitoring to respond to a concern as stated in Section 3.1. ^{2 –} Groundwater within the distance groundwater travels downgradient from the application site in 30-days. ^{3 –} The monitoring frequency shall be determined by the Regional Water Board in consultation with CDPH. The intent is to have an increased monitoring frequency during the first three months and a decreased monitoring frequency after three months. ^{4 –} If the project proponent can demonstrate that the RO unit will not substantially remove a CEC, the Regional Water Board may allow monitoring for that CEC prior to the AOP, instead of prior to the RO unit. ^{5 –} See Section 1.2 for guidance on selection of surrogates. ^{6 –} See Section 2.2.2 for information on surrogate monitoring locations for subsurface application. Table 4: Baseline Phase Monitoring Requirements | Recycled Water Use | Constituent | Frequency | Monitoring Point | |--
--|--|--| | Groundwater Recharge
Reuse – Surface
Application | Health-Based CECs: All listed in Table 1. Performance Indicator CECs: Selected based on the findings of the initial assessment phase. | Semi-Annually ¹ | Following tertiary treatment prior to application to the surface spreading area. At monitoring well locations designated in consultation with CDPH.² | | | Surrogates: Selected based on the findings of the initial assessment phase. | Based on findings of the initial assessment phase. | Following tertiary treatment prior to application to the surface spreading area. At monitoring well locations designated in consultation with CDPH.² | | Groundwater Recharge
Reuse – Subsurface | Health-Based CECs: All listed in Table 1. | Semi-Annually ¹ | Following treatment prior to release to the aquifer. | | Application | Performance Indicator CECs: Selected based on the findings of the initial assessment phase. | Semi-Annually ¹ | - Prior to RO treatment. ³ - Following treatment prior to release to the aquifer. | | | Surrogates: Selected based on the findings of the initial assessment phase. | Based on findings of the initial assessment phase. | - At locations approved by
the Regional Water Board. 4 | ^{1 –} More frequent monitoring may be required to respond to a concern as stated in Section 3.2. ^{2 –} Groundwater within the distance groundwater travels downgradient from the application site in 30-days. ^{3 –} If the project proponent can demonstrate that the RO unit will not substantially remove a CEC, the Regional Water Board may allow monitoring for that CEC prior to the AOP, instead of prior to the RO unit. ^{4 –} See Section 2.2.2 for information on surrogate monitoring locations for subsurface application. #### 3.3. Standard Operation Monitoring Based on the findings of the baseline monitoring phase, monitoring requirements for health-based CECs, performance indicator CECs and surrogates may be refined to establish project-specific requirements for monitoring the standard operating conditions of a groundwater recharge reuse project. Monitoring requirements for the standard operation phase are summarized in Table 5. The list of health-based CECs may be revised to remove a health-based CEC from the list if monitoring results meet the conditions of the minimum threshold level presented in Table 7. Performance indicator CECs and surrogates that exhibited reduction by a unit process and/or provided an indication of operational performance shall be selected for monitoring of standard operations. If a performance indicator CEC is found to be a poor indicator, the project proponent shall propose an alternative performance indicator CEC representative of the constituent group to monitor. This performance indicator CEC shall be subject to approval by the Regional Water Board in consultation with CDPH. Monitoring locations for the standard operation phase shall be the same as the locations used for the baseline monitoring phase. Monitoring for health-based CECs and performance indicator CECs shall be conducted on a semi-annual basis, unless the project demonstrates consistency in treatment effectiveness in removal of CECs, treatment operational performance, and appropriate recycled water quality. These projects may be monitored for CECs on an annual basis. Monitoring frequencies for CECs and surrogates for standard operation monitoring are presented in Table 5. Monitoring results shall be evaluated following each sampling event to allow timely implementation of any response actions. If evaluation of monitoring results indicates a concern, such as finding a health-based CEC above the thresholds described in Table 7 or a decline in removal of a performance indicator CEC from the performance levels established during the initial and baseline monitoring phases, more frequent monitoring may be required to further evaluate the effectiveness of the treatment process. Additional actions may also be warranted, which may include, but not be limited to, resampling to confirm a result, additional monitoring, implementation of a source identification program, toxicological studies, engineering removal studies, and/or modification of facility operation. If additional monitoring is required, the Regional Water Board shall consult with CDPH and revise the Monitoring and Reporting Program as appropriate. Evaluation of monitoring results and determination of appropriate response actions based on the monitoring results are presented in Section 4. Table 5: Standard Operation Monitoring Requirement | Recycled Water Use | Constituent | <u>Frequency</u> | Monitoring Point | |---|---|---|--| | Groundwater
Recharge Reuse -
Surface Application | Health-Based CECs: Selected based on the findings of the baseline phase. Performance Indicator CECs: Selected based on the findings of the baseline phase. | Semi-Annually or
Annually ¹ | Following tertiary treatment prior to application to the surface spreading area. At monitoring well locations designated in consultation with CDPH.² | | | Surrogates: Selected based on the findings of the baseline phase. | Based on findings of the baseline assessment phase. | Following tertiary treatment prior to application to the surface spreading area. At monitoring well locations designated in consultation with CDPH.² | | Groundwater
Recharge Reuse -
Subsurface Application | Health-Based CECs: Selected based on the findings of the baseline phase | Semi-Annually or
Annually ¹ | -Following RO/AOPs treatment prior to release to the aquifer. | | | Performance Indicator CECs: Selected based on the findings of the baseline phase. | Semi-Annually or
Annually ¹ | - Prior to RO treatment. ³ - Following treatment prior to release to the aquifer. | | | Surrogates: Selected based on the findings of the baseline phase, | Based on findings of the baseline assessment phase. | At locations approved by the Regional Water Board.4 | ^{1 –} More frequent monitoring may be required to respond to a concern as stated in Section 3.3. ^{2 –} Groundwater within the distance groundwater travels downgradient from the application site in 30-days. ^{3 –} If the project proponent can demonstrate that the RO unit will not substantially remove a CEC, the Regional Water Board may allow monitoring for that CEC prior to the AOP, instead of prior to the RO unit. ^{4 –} See Section 2.2.2 for information on surrogate monitoring locations for subsurface application. #### 4. EVALUATION OF CEC AND SURROGATE MONITORING RESULTS This section presents the approaches for evaluating treatment process performance and health-based CEC monitoring results. Monitoring results for performance indicator CECs and surrogates shall be used to evaluate the operational performance of a treatment process and the effectiveness of a treatment process in removing CECs. For evaluation of health-based CEC monitoring results, a multi-tiered approach of thresholds and corresponding response actions is presented in Section 4.2. The evaluation of monitoring results shall be included in monitoring reports submitted to the Regional Water Board and CDPH. #### 4.1 Evaluation of Performance Indicator CEC and Surrogate Results The effectiveness of a treatment process to remove CECs shall be evaluated by determining the removal percentages for performance indicator CECs and surrogates. The removal percentage is the difference in the concentration of a compound in recycled water prior to and after a treatment process (e.g., soil aquifer treatment or RO followed by AOPs), divided by the concentration prior to the treatment process and multiplied by 100. Removal Percentage = $([X_{in} - X_{out}]/X_{in})$ (100) X_{in} - Concentration in recycled water prior to a treatment process X_{out} - Concentration in recycled water after a treatment process During the initial assessment, the recycled water project proponent shall monitor performance to determine removal percentages for performance indicator CECs and surrogates. The removal percentages shall be confirmed during the baseline monitoring phase. One example of removal percentages from Drews et. al. (2008) for each application scenario and their associated processes (i.e. soil aquifer treatment or RO/AOPs) is presented in Table 6. The established removal percentages for each project shall be used to evaluate treatment effectiveness and operational performance. #### 4.1.1. Groundwater Recharge Reuse – Surface Application For groundwater recharge reuse by surface application, the removal percentage shall be determined by comparing the quality of the recycled water applied to a surface spreading area to the quality of groundwater at monitoring wells. The distance between the application site and the monitoring wells shall be no more than the distance the groundwater travels in 30 days downgradient from the application site. The location of the monitoring wells shall be designated in consultation with CDPH. The removal percentage shall be adjusted to account for dilution from potable water
applied to the application site, storm water applied to the application site, and native groundwater. The removal percentage shall also be adjusted to account for CECs in these waters. The project proponent shall submit a proposal to the Regional Water Board and CDPH as part of its operation plan on how it will perform this accounting. ## 4.1.2. Groundwater Recharge Reuse – Subsurface Application For groundwater recharge reuse using subsurface application, the removal percentage shall be determined by comparing recycled water quality before treatment by RO/AOPs and after treatment prior to release to the aquifer. Table 6: Monitoring Trigger Levels and Removal Percentages | Constituent/ | Relevance/Indicator | Monitoring | Removal | |----------------|---------------------|---------------------------------|------------------------------| | Parameter | Type/Surrogate | Trigger Level | Percentages (%) ² | | | | (micrograms/liter) ¹ | | | GROUNDWATER RE | CHARGE REUSE - SI | JRFACE APPLICATIO | N^3 | | 17β-estradiol | Health | 0.0009 | ⁴ | | Caffeine | Health & | 0.35 | >90 | | | Performance | | | | NDMA | Health | 0.01 | - | | Triclosan | Health | 0.35 | | | Gemfibrozil | Performance | | >90 | | Iopromide | Performance | | >90 | | DEET | Performance | | >90_ | | Sucralose | Performance | | <25 ⁵ | | Ammonia | Surrogate | | >90 | | TOC | Surrogate | | >30 | | Nitrate | Surrogate | | >30 | | UV Absorption | Surrogate | | >30 | | | CHARGE REUSE - SI | | ATION ⁶ | | 17β-estradiol | Health | 0.0009 | | | Caffeine | Health & | 0.35 | >90 | | | Performance | | | | NDMA | Health & | 0.01 | 25-50, >80 ⁷ | | | Performance | | | | Triclosan | Health | 0.35 | | | DEET | Performance | | >90 | | Sucralose | Performance | | >90 | | Electrical | Surrogate | | >90 | | Conductivity | | | | | TOC | Surrogate | | >90 | ^{1 –} Monitoring trigger levels for groundwater recharge reuse and landscape irrigation applications were established in <u>Monitoring Strategies for Chemicals of Emerging Concern (CECs) in Recycled Water – Recommendations of a Science Advisory Panel</u>, dated June 25, 2010. ^{2 –}The removal percentages presented in this table are from work by Drewes et.al. (2008) and provide an example of performance for that specific research. Project specific removal percentages will be developed for each groundwater recharge reuse project during the initial and baseline monitoring phases. ^{3 –} Treatment process: Soil aquifer treatment. The stated removal percentages are examples and need to be finalized during the initial and baseline monitoring phases for a given site. ^{4 -} Not applicable ^{5 –} Sucralose degrades poorly during soil aquifer treatment. It is included here mainly as a tracer. ^{6 -} Treatment process: Reverse osmosis and advanced oxidation process. ^{7 –} For treatment using reverse osmosis, removal percentage is between 25 and 50 percent. For treatment using reverse osmosis and advanced oxidation processes, removal percentage is greater than 80 percent. ## 4.2. Evaluation of Health-Based CEC Results The project proponent shall evaluate health-based CEC monitoring results. To determine the appropriate response actions, the project proponent shall compare measured environmental concentrations (MECs) to their respective monitoring trigger levels⁹ (MTLs) listed in Table 6 to determine MEC/MTL ratios. The project proponent shall compare the calculated MEC/MTL ratios to the thresholds presented in Table 7 and shall implement the response actions corresponding to the threshold. For surface application, the results shall be evaluated for groundwater collected from the monitoring wells. For subsurface application projects, results shall be evaluated for the recycled water released to the aquifer. Table 7: MEC/MTL Thresholds and Response Actions | MC/MTL Threshold | Response Action | |--|--| | If greater than 75 percent of the MEC/MTL ratio | A) After completion of the baseline monitoring | | results for a CEC are less than or equal to 0.1 | phase, consider requesting removal of the CEC | | during the baseline monitoring phase and/or | from the monitoring program. | | subsequent monitoring - | | | If MEC/MTL ratio is greater than 0.1 and less | B) Continue to monitor. | | than or equal to 1 - | | | If MEC/MTL ratio is greater than 1 and less than | C) Check the data. | | or equal to 10 - | | | | Continue to monitor. | | If MEC/MLT ratio is greater than 10 and less | D) Resample immediately and analyze to | | than or equal to 100 - | confirm CEC result. | | | | | | Continue to monitor. | | If MEC/MLT ratio is greater than 100 - | E) Resample immediately and analyze to confirm | | | result. | | | | | | Continue to monitor. | | | O to the Berlinell Water Breed at LODBILL | | | Contact the Regional Water Board and CDPH to | | | discuss additional actions. | | | (Additional actions may include but are not | | | (Additional actions may include, but are not | | | limited to, additional monitoring, toxicological | | | studies, engineering removal studies, modification of facility operation, implementation | | | | | | of a source identification program, and | | | monitoring at additional locations.) | As modified by State Water Board Resolution 2013-0003 (January 22, 2013) ⁹ Monitoring Trigger Level (MTL): Health-based screening level value for a CEC for a particular water reuse scenario. MTLs were established in, <u>Monitoring Strategies for Chemicals of Emerging Concern</u> (CECs) in Recycled Water – Recommendations of a Science Advisory Panel, dated June 25, 2010.