ADDITIONS SHOWN IN <u>DOUBLE-UNDERLINE</u>; DELETIONS SHOWN IN STRIKETHROUGH

1. Page 5, section II.A, first paragraph: delete active ingredients bifenthrin, carbaryl, chlorpyrifos, cyfluthrin, cypermethrin, and diflubenzuron.

This General Permit covers the point source discharge of biological and residual pesticides resulting from direct and spray applications for vector control using: 1) larvicides containing monomolecular films, methoprene, *Bacillus thuringiensis* subspecies *isralensis* (or *Bti*), *Bacillus sphaericus* (or *B. Sphaericus*), temephos, diflubenzuron, petroleum distillates, or spinosad; and 2) adulticides containing chlorpyrifos, malathion, naled, pyrethrin, bifenthrin, cyfluthrin, cypermethrin, deltamethrin, etofenprox, lambda-cyhalothrin, permethrin, prallethrin, resmethrin, sumithrin, piperonyl butoxide (PBO), <u>or</u> N-octyl bicycloheptene dicarboximide (or MGK-264), or carbaryl.

2. Page 6, section II.A: amend second paragraph as shown below.

Larvicides and adulticides that are currently registered by DPR and new larvicides and adulticides that will be registered by DPR using these same active ingredients listed above may be used for vector control applications. <u>The State Water Board will review all newly</u> <u>DPR-registered active ingredients and all newly DPR-registered products based on currently</u> <u>DPR-registered active ingredients for vector control to determine their potential impacts to</u> <u>waters of the United States.</u> The State Water Board may reopen this General Permit to add new active ingredients that DPR registers for use in larvicides and adulticides for vector control.

3. Page 17, Table 3-Receiving Water Limitations: delete carbaryl, chlorpyrifos, and cypermethrin from the table.

Ingredient	Unit	Instantaneous Maximum	Basis	
		2.1 (Freshwater)	U.S. EPA's Ambient Water Quality Criteria	
Carbaryl	<mark>µg/L</mark>		California Department of	
		0.81 (Saltwater)	Fish and Wildlife's	
			Ambient Criterion	
			California Department of	
		0.01	0.014 (Freshwater)	Fish and Wildlife's
Chlorpyrifos	<mark>μg/L</mark>		Ambient Criterion	
			0.0050 (0.11,	U.S. EPA's National
			0.0056 (Saltwater)	Recommended Water Quality Criteria
Cypermethrin	Ourograndthrin ug/l	0.002	California Department of	
	<mark>µg/L</mark>		Fish and Wildlife's	

Table 3. Receiving Water Limitations

Ingredient	Unit	Instantaneous Maximum	Basis
			Ambient Criterion
Malathion	µg/L	0.1	U.S. EPA's Ambient Water Quality Criteria

4. Page 18, Table 4-Receiving Water Monitoring Triggers: Delete diflubenzuron, bifentrhin, and cyfluthrin from the table. Change permethrin's instantaneous maximum monitoring trigger to 0.0019 ug/L and its basis to U.S. EPA's Office of Pesticides' Ecotoxicity Database.

Pesticide Type	<u>Active</u> Ingredient	Unit	Instantaneous Maximum Monitoring Triggers	Basis
Larvicides	Diflubenzuron	<mark>µg/L</mark>	0.06 4	U.S. EPA's Office of Pesticides' Ecotoxicity Database
Laivicides	Temephos	µg/L	8	U.S. EPA's Office of Pesticides' Ecotoxicity Database
	Naled	µg/L	0.014	U.S. EPA's Office of Pesticides' Ecotoxicity Database
	Pyrethrin	µg/L	0.14	U.S. EPA's Office of Pesticides' Ecotoxicity Database
	Bifenthrin	µg/ L	0.0019	U.S. EPA's Office of Pesticides' Ecotoxicity Database
Adulticides	Cyfluthrin	<mark>µg/</mark> L	0.00022	U.S. EPA's Office of Pesticides' Ecotoxicity Database
	Deltamethrin	µg/L	0.00017	U.S. EPA's Office of Pesticides' Ecotoxicity Database
	Etofenprox	µg/L	0.0019	U.S. EPA's Office of Pesticides' Ecotoxicity Database
	Lambda-Cyhalothrin	µg/L	0.00041	U.S. EPA's Office of Pesticides' Ecotoxicity Database

Pesticide <u>Type</u>	<u>Active</u> Ingredient	Unit	Instantaneous Maximum Monitoring Triggers	Basis
	Permethrin	ug/l	0.03.0.0010	California Department of Fish and GameWildlife's Ambient Criterion
	Fernieumn	μg/L 0.03-<u>0.0019</u>	U.S. EPA's Office of Pesticides' Ecotoxicity Database	
Adulticides	Prallethrin	µg/L	0.39	U.S. EPA's Office of Pesticides' Ecotoxicity Database
	Resmethrin	µg/L	0.028	U.S. EPA's Office of Pesticides' Ecotoxicity Database
	Sumithrin	µg/L	0.0025	U.S. EPA's Office of Pesticides' Ecotoxicity Database

5. Page D-16, Attachment D, section III.A.2, second sentence: delete the active ingredients diflubenzuron, chlorpyrifos, bifenthrin, cyfluthrin, cypermethrin, and carbamate carbaryl.

This General Permit covers the point source discharge of biological and residual pesticides resulting from direct and spray applications for vector control using: 1) larvicides containing monomolecular films, methoprene, *Bacillus thuringiensis* subspecies *israelensis* (or *Bti*), *Bacillus sphaericus* (or *B. sphaericus*), petroleum distillates, temephos, diflubenzuron, and spinosad; and 2) adulticides containing organophosphates chlorpyrifos, malathion, and naled; pyrethrin; pyrethroids_bifenthrin, cyfluthrin, cypermethrin, deltamethrin, etofenprox, lambda-cyhalothrin, permethrin, prallethrin, resmethrin, and sumithrin; synergists piperonyl butoxide (PBO) and N-octyl bicycloheptene dicarboximide (or MGK 264); and the carbamate carbaryl.

6. Pages D-30 and D-31, Attachment D, section VI.B: revise subject heading, the first paragraph, and the first sentence of the second paragraph as shown below.

Establishing Receiving Water Limitations and Receiving Water Monitoring Triggers

In pesticide applications for vector control, it is reasonable to conclude that some residual pesticides will be deposited in surface waters. These residual pesticides may cause toxicity to aquatic life. However, information regarding residual pesticides deposited in the receiving water as a result of direct or spray applications for vector control is not adequate to develop receiving water limitations for individual and combinations of pesticides; therefore, this <u>This</u> General Permit only contains a <u>Receiving Water Limitation for malathion and</u> Receiving Water Monitoring Triggers for the other active ingredients. The <u>Receiving Water Limitation</u> and <u>Receiving Water Monitoring Triggers</u> monitoring triggers will be used to assess whether the discharge of residual pesticides has the reasonable potential to cause or contribute to an excursion of a water quality standard, including numeric and narrative objectives within a standard. This General Permit includes an Instantaneous Maximum Receiving Water Monitoring Trigger for residual pesticides of concern.

The Instantaneous Maximum <u>Receiving Water Limitations</u> Receiving Water Monitoring Triggers are based on promulgated water quality criteria such as those provided in the CTR, water quality objectives adopted by the State and Regional Water Boards in their water quality control plans, water quality criteria adopted by the California Department of Fish and Game<u>CDFW</u>, or water quality standards such as drinking water standards adopted by the California Department of Public Health.

7. Page D-31, Attachment D, section VI.B, third and fourth full paragraphs: Delete the active ingredients diflubenzuron, chlorpyrifos, bifenthrin, cyfluthrin, cypermethrin, and carbamate carbaryl. Delete permethrin from the list of active ingredients with Ambient Water Quality criteria and add it to the list of active ingredients with Instantaneous Maximum Receiving Water Monitoring Triggers.

The following is a detailed discussion of toxicity data, applicable water quality criteria, if available, and Receiving Water Monitoring Triggers, if required, for: 1) larvicides, including microbial larvicides (*Bti* and *B. sphaericus*), petroleum distillates, methoprene, temephos, diflubenzuron, monomolecular films, and spinosad; and 2) adulticides, including organophosphate insecticides (chlorpyrifos, malathion, and naled), pyrethrin, pyrethroids (bifenthrin, cyfluthrin, cypermethrin, deltamethrin, etofenprox, lambda-cyhalothrin, permethrin, prallethrin, resmethrin, sumithrin), piperonyl butoxide (PBO), <u>and</u> N-octyl bicycloheptene dicarboximide (or MGK-264), and carbamate (carbaryl). Among these pesticides, only-chlorpyrifos, cypermethrin, carbaryl, malathion, and permethrin have <u>has an</u> Ambient Water Quality criteria. Thus, the Instantaneous Maximum Receiving Water Monitoring Trigger for temephos, naled, pyrethrin, bifenthrin, cyfluthrin, deltamethrin, etofenprox, lambda-cyhalothrin, PBO, and MGK-264 is based on one-tenth of the lowest LC50.

This General Permit may be re-opened to add receiving water limitations if the monitoring result for diflubenzuron, temephos, naled, pyrethrin, bifenthrin, cyfluthrin, deltamethrin, etofenprox, lambda-cyhalothrin, permethrin, prallethrin, resmethrin, sumithrin, PBO, and MGK-264 exceed the associated monitoring trigger.

8. Page D-35, Attachment D, section VI.B.1.e: delete the description and table for diflubenzuron and renumber subsequent descriptions and tables.

Diflubenzuron

Diflubenzuron was first registered as a pesticide in the United States in 1976. In September 1985, U.S. EPA issued a Registration Standard for diflubenzuron. Diflubenzuron is an insect growth regulator used to control leaf eating insect larvae. Diflubenzuron is used on cattle, citrus, cotton, mushrooms, ornamentals, standing water, forestry trees, and in programs for mosquito control. Formulations include a soluble concentrate, flowable concentrate, wettable powder, and pellets. Diflubenzuron is applied by airblast, aircraft, and hydraulic sprayers.

Toxicity data for diflubenzuron were obtained from the Ecotoxicity Database to assess toxicity of diflubenzuron to freshwater aquatic life. Table D-1 summarizes the toxicity data for diflubenzuron.

Test Species	Study Length	LC50 (µg/l)	
Atlantic salmon	96 hr	50,000	
Bluegill sunfish	96 hr	50,000	
Bluegill sunfish	96 hr	135,000	
Brook trout	96 hr	50,000	
Channel catfish	96 hr	100,000	
Grass shrimp	96 hr	0.64	
Mysid	96 hr	2.1	
Rainbow trout	96 hr	100,000	
Rainbow trout	96 hr	140,000	
Scud	96 hr	4 5	
Sheepshead minnow	96 hr	13	
Sheepshead minnow	96 hr	130	
Yellow perch96 hr25,000			
Lowest LC50 = 0.64 μg/l			
Lowest LC50/10 = 0.064 μg/l			

Table D1. Summary of Toxicity Data for Diflubenzuron

Ambient Water Quality Criteria are unavailable for diflubenzuron. Table D-1 shows that onetenth of the lowest LC50 to protect the most sensitive freshwater aquatic life for diflubenzuron is 0.064 µg/l. Therefore, this General Permit contains an Instantaneous Maximum Receiving Water Monitoring Trigger of 0.064 µg/l for diflubenzuron.

9. Pages D-38 and D-39, Attachment D section VI.B.2.a.i: delete the description for chlorpyrifos and renumber subsequent descriptions.

Chlorpyrifos

Chlorpyrifos is an organophosphate insecticide, acaricide, and miticide used to control a variety of insects. It is used on food crops, feed crops, golf courses, wood treatment, and for mosquito control. Chlorpyrifos works by disrupting the insect's nervous system.

The California Department of Fish and Wildlife (CDFW) has previously assessed chlorpyrifos based on data from accepted tests and procedures outlined in U.S. EPA guidelines. CDFW assessed chlorpyrifos effects on aquatic organisms in the Sacramento-San Joaquin watershed. These tests have led CDFW to set water quality criteria of 0.014 μ g/l as a continuous concentration (four-day average) and 0.02 μ g/l as a maximum concentration (one-hour average) for freshwater aquatic life protection for chlorpyrifos. U.S. EPA has set water quality criteria of 0.041 μ g/l as a continuous concentration (four-day average) and 0.02 μ g/l as a maximum concentration (one-hour average) for freshwater aquatic life protection for chlorpyrifos. U.S.

average) and 0.083 µg/l as a maximum concentration (one-hour average) for freshwater aquatic life protection for chlorpyrifos.

U.S. EPA has also set water quality criteria of $0.0056 \mu g/l$ as a continuous concentration (four-day average) and $0.011 \mu g/l$ as a maximum concentration (one-hour average) for saltwater aquatic life protection. CDFW has set water quality criteria of $0.009 \mu g/l$ as a continuous concentration (four-day average) and $0.02 \mu g/l$ as a maximum concentration (one-hour average) for saltwater aquatic life protection for chlorpyrifos. Based on this information, this General Permit contains Instantaneous Receiving Water Limitations for chlorpyrifos of $0.014 \mu g/l$ for freshwater and $0.0056 \mu g/l$ for saltwater, respectively.

Under Section 303(d) of the CWA, states, territories, and authorized tribes are required to develop a list of water quality limited segments. The waters on the list do not meet water quality standards, even after point sources of pollution have installed the minimum required levels of pollution control technology. The law requires for waters on the list that priority rankings be established for the development of action plans, called Total Maximum Daily Loads (TMDLs), to improve the water quality. A State Water Board-approved list of California impaired waters impaired due to chlorpyrifos, as approved by the State Water Board, are are shown atlisted on

http://www.waterboards.ca.gov/water_issues/programs/tmdl/integrated2010.shtml. Due to impairment by chlorpyrifos, tThis General Permit does not authorize the discharge of residual chlorpyrifos to the water bodies identified on the California 303(d) listing as impaired by chlorpyrifos.

10. Pages D-45 through D-47, Attachment D, sections VI.B.2.c.i through VI.B.2.c.iii: delete the descriptions and tables for bifenthrin, cyfluthrin, and cypermethrin. Renumber subsequent descriptions and tables.

Bifenthrin

Bifenthrin is a pyrethroid pesticide. Bifenthrin is used in a wide range of pesticides for insects and mites. For vector control purposes, bifenthrin is mainly used to control adult mosquitoes. Bifenthrin works by disrupting the normal functioning of the nervous system in an organism.

Bifenthrin can be used outdoors on residential, institutional, public, commercial, and industrial buildings; lawns; ornamentals; parks; recreational areas; and athletic fields.

Toxicity data for bifenthrin were obtained from U.S. EPA's Ecotoxicity Database to assess the toxicity of bifenthrin to freshwater aquatic life. Table D-5 below summarizes the toxicity data for bifenthrin.

Test Species	Study Length	LC50 (µg/l)			
Bluegill sunfish	96 hr	0.35			
Mysid	96 hr	0.00397			
Rainbow trout	96 hr	0.15			
Sheepshead minnow					
Lowest LC50 = 0.00397 μg/l					
Lowest LC50/10 = 0.000397 μg/l					

Table D-5. Summary of Toxicity Data for Bifenthrin

Ambient Water Quality Criteria are unavailable for bifenthrin. Table D-5 shows that onetenth of the lowest LC50 to protect the most sensitive freshwater aquatic life for bifenthrin is 0.000397 µg/l. Therefore, this General Permit contains an Instantaneous Maximum Receiving Water Monitoring Trigger of 0.000397 µg/l for bifenthrin.

Cyfluthrin

Cyfluthrin is a synthetic pyrethroid. Its primary agricultural uses have been for control of insects on crops such as cotton, turf, ornamentals, hops, cereal, corn, fruit, peanuts, potatoes, and other vegetables. Cyfluthrin is also used for public health protection situations and for structural pest control.

Cyfluthrin-based insecticide formulations are available in the form of emulsifiable concentrates, wettable powder, aerosol, granules, liquid, oil-in-water emulsion, and ULV oil spray. Cyfluthrin works by disrupting the insect's nervous system.

Toxicity data for cyfluthrin were obtained from U.S. EPA's Ecotoxicity Database to assess the toxicity of cyfluthrin to freshwater aquatic life. Table D-6 below summarizes the toxicity data for cyfluthrin.

Test Species	Study Length	LC50 (µg/l)
Bluegill Sunfish	96 hr	0.998
Bluegill Sunfish	96 hr	0.566
Bluegill Sunfish	96 hr	0.28
Mysid	96 hr	0.0022
Mysid	96 hr	0.0023
Rainbow trout	96 hr	0.209
Rainbow trout	96 hr	0.302
Rainbow trout	96 hr	0.085

T	•	6 - - - - -		• • • • •
Table D-6	Summary	Of LOVICITY	v Liata tor	('vtluthrin
	ounnury			Oynuthin

Test Species	Study Length	LC50 (µg/I)		
Rainbow trout	96 hr	0.068		
Rainbow trout	96 hr	0.111		
Lowest LC50 = 0.0022 µg/l				
Lowest LC50/10 = 0.00022 μg/l				

Ambient Water Quality Criteria are unavailable for cyfluthrin. Table D-6 shows that onetenth of the lowest LC50 to protect the most sensitive freshwater aquatic life for cyfluthrin is 0.00022 µg/l. Therefore, this General Permit contains an Instantaneous Maximum Receiving Water Monitoring Trigger of 0.00022 µg/l for cyfluthrin.

Cypermethrin

Cypermethrin is a synthetic pyrethroid insecticide. Cypermethrin is registered for control of a wide range of pests such as mosquitos, ants, cockroaches, fleas, and other insects. Cypermethrin works by affecting the insect's central nervous system.

Cypermethrin is formulated as an emulsifiable concentrate, a soluble concentrate/liquid, and a wettable powder. Cypermethrin is compatible with a number of insecticides and fungicides, and has been formulated in products with two or more active ingredients. Application can be made by aircraft and airblast equipment for large outdoor area. Applications at industrial, commercial, and residential sites can be made by low pressure devices such as backpack sprayers, handwand sprayers, and aerosol cans.

CDFW has set an interim water quality criterion of 0.002 µg/l as a maximum concentration (one-hour average) for freshwater aquatic life for cypermethrin. The U.S. EPA IRIS reference dose as a drinking water level for cypermethrin is 70 µg/l.

Based on the above information, this General Permit contains a Receiving Water Limitation of 0.002 µg/l for cypermethrin.

11. Page D-47, Attachment D, VI.B.2.c.iv: revise last sentence of first paragraph.

Deltamethrin works by disrupting the insect's nervous system <u>and will be used primarily for</u> <u>barrier applications.</u>

12. Page D-49, Attachment D, VI.B.2.c.vi: add sentence to the end of second paragraph.

Lambda-cyhalothrin will be used primarily for barrier applications.

13. Page D-50, Attachment D, section VI.B.2.c.vii: add description and table for permethrin and renumber subsequent descriptions and tables.

U.S. EPA's <u>freshwater</u> Ambient Water Quality Criteria are unavailable for permethrin. Since CDFW has developed a<u>n interim</u> maximum concentration criterion of 0.03 µg/L as a one-hour average to protect freshwater aquatic life for permethrin., this General Permit contains an Instantaneous Maximum Receiving Water Monitoring Trigger based on this criterion. <u>Toxicity data for permethrin obtained from the Ecotoxicity Database to assess toxicity of permethrin to freshwater aquatic life are shown in Table D-8.</u>

Test Species	Study Length	<u>LC50 (µg/L)</u>	
Bluegill sunfish	<u>96 hrs</u>	<u>5.0</u>	
Rainbow trout	<u>96 hrs</u>	<u>2.9</u>	
Fathead minnow	<u>96 hrs</u>	<u>5.7</u>	
<u>Scud</u>	<u>96 hrs</u>	<u>0.17</u>	
<u>Sheepshead</u> <u>minnow</u>	<u>96 hrs</u>	<u>7.8</u>	
Pink Shrinp	<u>96 hrs</u>	<u>0.22</u>	
<u>Mysid</u>	<u>96 hrs</u>	<u>0.019</u>	
<u>Lowest LC50 = 0.019 μg/L</u>			
<u>Lowest LC50/10 = 0.0019 μg/L</u>			

Table D-8. Summary of Toxicity Data for Permethrin

<u>Table D-8 shows that one-tenth of the lowest LC50 to protect the most sensitive freshwater</u> <u>aquatic life for permethrin is 0.0019 µg/L. This value is lower than CDFW's interim maximum</u> <u>concentration criterion of 0.03 µg/L as a one-hour average to protect freshwater aquatic life.</u> <u>Therefore, this General Permit contains an Instantaneous Maximum Receiving Water</u> <u>Monitoring Trigger of 0.0019 µg/L for permethrin.</u>

14. Page D-58, Attachment D, section VI.B.2.f: delete the description for carbaryl.

Carbaryl

Carbaryl was first registered in the United States in 1959. Carbaryl is an N-Methyl Carbamate insecticide. Carbaryl controls a wide variety of insects, including moths, beetles, cockroaches, ants, ticks, and adult mosquitoesadults. Carbaryl works by disrupting the insect's nervous system. Products with carbaryl can be formulated as dust, wettable powders, liquid concentrates, granules, or baits. Carbaryl is used on many agricultural sites including fruit trees, nut trees, vegetables, and grain crops.

CDFW has established an ambient water quality criterion of 2.53 µg/l both as a continuous concentration (4-day average) and a maximum concentration (1-hour average) for freshwater aquatic life protection. U.S. EPA has established an ambient water quality criterion of 2.1 µg/l that applies to both the criterion maximum concentration and criterion continuous concentration for freshwater aquatic life protection.

CDFW used acute toxicity data from U.S. EPA scientific literature and laboratory reports to determine the continuous concentration and maximum concentration for saltwater aquatic life protection. CDFW evaluated the quality of these data by evaluating the test type, method, design, species, and for water quality standards. CDFW has established an ambient water quality criterion of 0.81 μ g/l both as a continuous concentration (four-day average) and a maximum concentration (one hour average) for saltwater aquatic life protection for carbaryl. U.S. EPA has established an ambient water quality criterion of 1.6 μ g/l as a criteria maximum concentration for saltwater aquatic life protection. Based on this

information, this General Permit contains a Receiving Water Limitation of 0.81 µg/l for freshwater and 1.6 µg/l for saltwater for carbaryl.

15. Page D-59, Table D-17, Summary Receiving Water Limitations: delete chlorpyrifos, cypermethrin, and carbaryl from the table.

Ingredient	Unit	Instantaneous Maximum	Basis
Chlorpyrifos	μg/L	0.014 (Freshwater)	CDFW's Ambient Criterion
	55	0.0056 (Saltwater)	CDFW's Ambient Criterion
Cypermethrin	<mark>µg/L</mark>	0.002	CDFW's Ambient Criterion
Carbaryl	μg/L	0.81 (Freshwater)	CDFW's Ambient Criterion
Carbary	¥9, L	1.6 (Saltwater)	CDFW's Ambient Criterion
Malathion	µg/L	0.1	U.S. EPA's Ambient Water Quality Criteria

 Table D-16. Summary Receiving Water Limitations

 Page D-59, Table D-18, Summary of Receiving Water Monitoring Triggers: Delete diflubenzuron, bifenthrin, and cyfluthrin from the table. Change permethrin's instantaneous maximum monitoring trigger to 0.0019 ug/L and basis language to U.S. EPA's Office of Pesticides' Ecotoxicity Database.

 Table D-17. Summary of Receiving Water Monitoring Triggers

Ingredient	Unit	Instantaneous Maximum Monitoring Triggers	Basis
Diflubenzuron	<mark>µg/L</mark>	0.06 4	U.S. EPA's Office of Pesticides' Ecotoxicity Database
Temephos	µg/L	8	U.S. EPA's Office of Pesticides' Ecotoxicity Database
Naled	µg/L	0.014	U.S. EPA's Office of Pesticides' Ecotoxicity Database
Pyrethrin	µg/L	0.14	U.S. EPA's Office of Pesticides' Ecotoxicity Database
Bifenthrin	µg/L	0.000397	U.S. EPA's Office of Pesticides' Ecotoxicity Database
Cyfluthrin	µg/L	0.00022	U.S. EPA's Office of Pesticides' Ecotoxicity Database
Deltamethrin	µg/L	0.00017	U.S. EPA's Office of Pesticides' Ecotoxicity Database

Ingredient	Unit	Instantaneous Maximum Monitoring Triggers	Basis
Etofenprox	µg/L	0.0019	U.S. EPA's Office of Pesticides' Ecotoxicity Database
Lambda-Cyhalothrin	µg/L	0.00041	U.S. EPA's Office of Pesticides' Ecotoxicity Database
Permethrin	µg/L	0.03	CDFW Ambient Criterion U.S. EPA's Office of Pesticides' Ecotoxicity Database
Prallethrin	µg/L	0.39	U.S. EPA's Office of Pesticides' Ecotoxicity Database

17. Page D-60, Table D-19, Persistence of Vector Larvicides Active Ingredients: delete diflubenzuron from the table.

Class	Active Ingredient	Half-Life	Degradation Method (and Matrix)	Reference
	Bacillus	1-4 days	UV light (foliage)	EPA 1998
Microbial ¹	Thuringiensis	Several months	Not reported (soil)	EPA 1998
	Bacillus Sphaericus	0.5-2 weeks	Not reported (formulated product)	EPA 1999
	Monomolecular	5-7 days	Not reported (water)	EPA 2007a
Surface Agents	Films ²	5-22 days	Not reported (water)	Cognis Corporation 2004
	Petroleum Distillates ³	2-3 days	Not reported (water)	EPA 2007b

Table D-19. Persistence of Vector Larvicides Active Ingredients

Class	Active Ingredient	Half-Life	Degradation Method (and Matrix)	Reference	
		2 days	Aerobic metabolism (soil)		
		34 days	Anaerobic metabolism (water)		
Insect Growth		Stable	Hydrolysis, pH=5-7	U.S. EPA 1997	
Regulator	Diflubenzuron	32 days	Hydrolysis, pH=9	(RED)	
		Stable	Photolysis, pH=7 (water)		
		2-14 days	Anaerobic metabolism (soil)		
			-		34 days

Table D-19. Persistence of Vector Larvicides Active Ingredients

18. Page D-61, Table D-20, Persistence of Vector Larvicides Active Ingredients: delete chlorpyrifos, bifenthrin, cyfluthrin, cypermethrin, and carbaryl from the table.

Active Ingredients		Half-Life		Degradation Method (and Matrix)	Reference
	Chloropyrifos	29.6	Days	Photolysis (water)	
		35-78	Days	Hydrolysis, pH=7 (water)	Tuli A. 2013
		72.8	Days	Hydrolysis, pH=5 (water)	
Organophosphates	Malathion	0.1–11	Days	Aerobic metabolism (soil)	U.S. EPA 2009b (RED), Newhart 2006
organophicophiatoo		0.67-42	Days	Photodegradation (water)	U.S. EPA 2009b (RED)
		1-14	Days	Aerobic metabolism (water)	U.S. EPA 2009b (RED)
		Persistence		Anaerobic degradation (water)	U.S. EPA 2009b (RED)
		1.4-147	Days	Aerobic degradation (water)	Newhart 2006

Table D-19. Persistence of Vector Adulticides Active Ingredients

Active Ingredients		Half-Life		Degradation Method (and Matrix)	Reference
Organophosphates	Naled	<2	Days	Hydrolysis & biodegradation (water & soil)	U.S. EPA 2006d (RED)
	-	"high"		Volatilization (soil)	U.S. EPA 2006d (RED)
		<1	Day	Photolysis (water and soil)	U.S. EPA 2006a (RED), Gunasekara 2005
	-	14-17	Hrs	Hydrolysis, pH=9 (water)	U.S. EPA 2006a (RED)
Pyrethrins (naturally occurring chemicals in pyrethrum)	Pyrethrins ¹	86.1	Days	Anaerobic metabolism (soil)	U.S. EPA 2006a (RED)
in pyreunum)		10.5	Days	Aerobic metabolism (soil)	U.S. EPA 2006a (RED)
		1.8-97	Days ²	Volatilization (soil)	Gunasekara 2005
		"slow"		Hydrolysis, neutral or acidic	U.S. EPA 2006a (RED)
	Bifenthrin	97-156	Days	Anaerobic	Fecko 1999
		65-125	Days	Aerobic	Environmental Fate of
		275-416	Days	Photolysis (water)	Bifenthrin
	Cyfluthrin	193	Days	Hydrolysis, pH=7 (water)	Casjens Environmental
Pyrethroids		12.2	Days	Photolysis, pH=5 (water)	Fate of Cyfluthrin
(synthetic)		Stable		Photolysis (water)	Jones Environmental
	Cypermethrin -	>50	Days	Hydrolysis, natural water (water)	Fate of Cypermethrin
		Stable		Hydolysis, pH=5-7	Melen Is
	Deltamethrin	2.5	Days	Hydolysis, pH=9	Melendez, J. and Sappington K. 2013
		64-84	Days	Photolysis (water)	

Active Ingredients	Half-Life	Degradation Method (and Matrix)		Reference	Active Ingredients
	Etofenprox	4.4	Days	Photolysis (soil)	Central Life
	LIGIENPION	1.7	Days	Photolysis (water)	Sciences 2009
		Stable		Hydrolysis, pH= 5 & 7	L.M. He 2008 Environmental Fate of Carbaryl
		8.66	Days	Hydrolysis, pH= 9	
	Lambda- Cyhalothrin	24.5	Days	Photolysis, pH= 5 (water)	
		53.7	Days	Photolysis (soil)	
		21.9	Days	Aerobic (water)	
		42.6	Days	Aerobic (soil)	
	Permethrin	Stable		Hydrolysis, pH= 5-7	U.S. EPA 2009a (RED), Imgrund 2003
Pyrethroids		242	Days	Hydrolysis, pH= 9	Imgrund 2003
(synthetic)		125 – 350	Days	Aquatic degradation, pH= 9	U.S. EPA 2009a (RED),
		113 – 175	Days	Anaerobic degradation (water)	U.S. EPA 2009a (RED),
		51 -100	Days	Photolysis, pH= 5 (water)	Imgrund 2003
		<3 -197	Days	Anaerobic degradation (soil)	Imgrund 2003
		3.5 – 113	Days	Aerobic degradation (soil)	Imgrund 2003
		104 – 324	Days	Photolysis (soil)	Imgrund 2003
		<2.5	Days	Sediment/seawater degradation	Imgrund 2003
		1.8 – 20.4	Days	Stream, pH= 7 -7.5, 13 -15°C	Imgrund 2003
		19.6 -27.1	Days	Photolysis, ponds (water)	Imgrund 2003

Active Ingredients		Half-Life		Degradation Method (and Matrix)	Reference
	Prallethrin	25	Days	Photolysis (soil)	Sumitomo Chemical 2009
	Tranetrinit	13.6	Hours	Photolysis (water)	Sumitomo Chemical 2009
		22	Minutes	Photolysis (sea water)	U.S. EPA 2006b (RED)
		47	Minutes	Photolysis (distilled water)	U.S. EPA 2006b (RED)
	Resmethrin	198	Days	Aerobic metabolism (soil)	U.S. EPA 2006b (RED)
	Resmeanin	37	Days	Aerobic metabolism (water)	U.S. EPA 2006b (RED)
Pyrethroids (synthetic)		Stable		Anaerobic metabolism (soil)	U.S. EPA 2006b (RED)
		> 89	Days	Hydrolysis, pH= 5-9	U.S. EPA 2006b (RED)
	d-phenothrin (Sumithrin)	6.5	Days	Photolysis (water)	U.S. EPA 2008 (RED)
		18.6 - 25.8	Days	Aerobic metabolism (soil)	U.S. EPA 2008 (RED)
		36.1	Days	Aerobic metabolism (water)	U.S. EPA 2008 (RED)
		173.3	Days	Anaerobic metabolism (water)	U.S. EPA 2008 (RED)
		Stable		Hydrolysis, all pH levels	U.S. EPA 2008 (RED)
Synergist for pyrethrin and pyrethroids	Piperonyl Butoxide (PBO)	8.4	Hours	Photolysis (water)	U.S. EPA 2006c (RED)
		"very slow"		Hydrolysis & aerobic/anaerobic metabolism	U.S. EPA 2006c (RED)

Active Ingredients		Half-Life		Degradation Method (and Matrix)	Reference
	>1500	Days	Hydrolysis, pH=5		
	N-Methyl	12.1	Days	Hydrolysis, pH=7	Xu Environmental
N-Methvl		3.2	Hours	Hydrolysis, pH=9	
Carbamate Carbaryl	21	Days	Photolysis, pH=5 (water)	Fate of Carbaryl	
	41	Days	Photolysis (soil)		
		4 -17	Days	Aerobic (soil)	