

The SlurryCarb[™] Process

Renewable energy from biosolids

EnerTech Environmental, Inc. 2008. All rights reserved

Reviews of the SlurryCarb[™] Process

The SlurryCarb[™] process is the next generation of waste-toenergy

Slurry Carbonization is the key to turning [waste] into a highenergy fuel

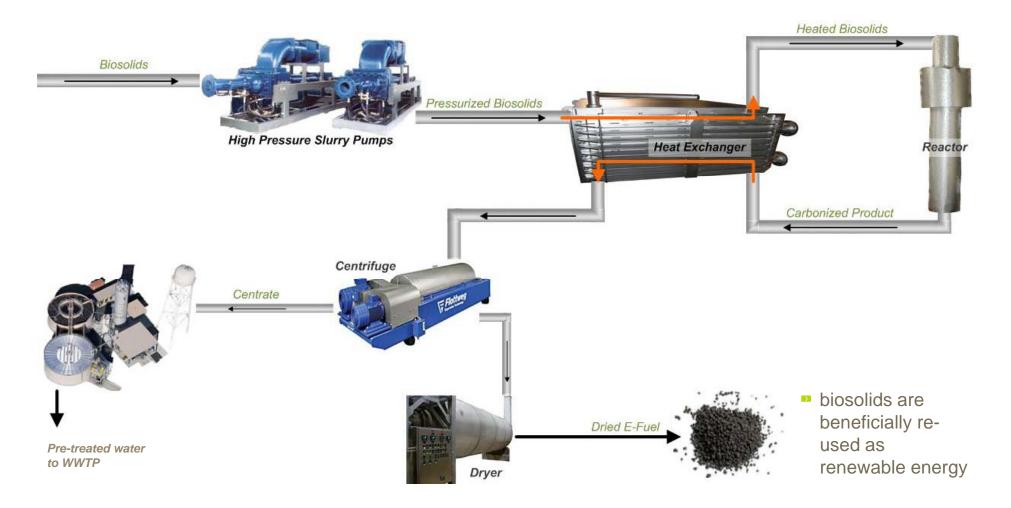
Chemical Engineering Magazine

Mitsubishi Corporation

R enertech

Both a product [clean fuel] and a service [waste disposal] ... that could provide a cost effective solution to a key environmentally-related problem

National Institute of Standards and Technology


What is the SlurryCarb[™] Process?

- The SlurryCarb[™] process is a patented technology that converts biosolids (sewage sludge) and other high moisture organic feedstocks into a renewable fuel called E-Fuel
- The process provides a new option for biosolids management in three ways:
 - 1. recycling the energy content inherent in biosolids
 - 2. producing renewable energy
 - 3. Making possible 100% beneficial reuse of biosolids
- SlurryCarb[™] is an efficient and environmentally sound alternative to current biosolids management options

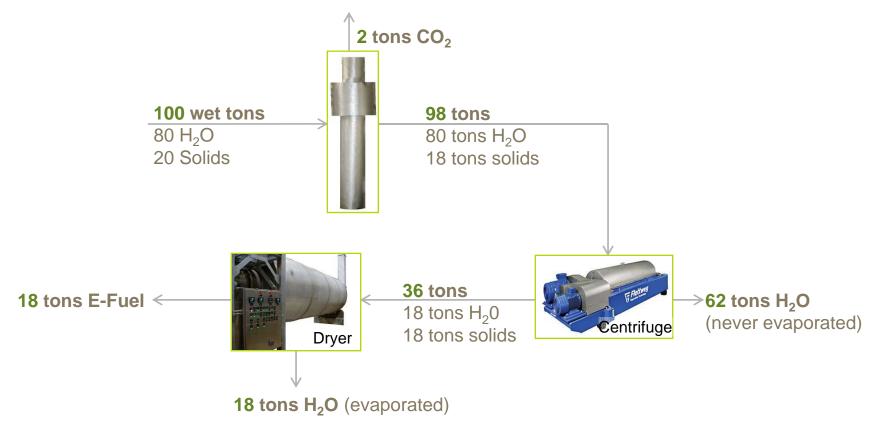
Renewable Energy From Biosolids How does the SlurryCarb[™] process work?

- Biosolids are subjected to pressure and heat
- Upon reaching the desired reaction temperature, the biosolids break down into carbon and light gases
- The result is a slurry with molecules that are much smaller than the original biosolids and very high in energy
- Excess moisture is then extracted from the slurry
- The end product, a renewable fuel called E-Fuel, is an alternative to fossil fuels

The SlurryCarb[™] Process

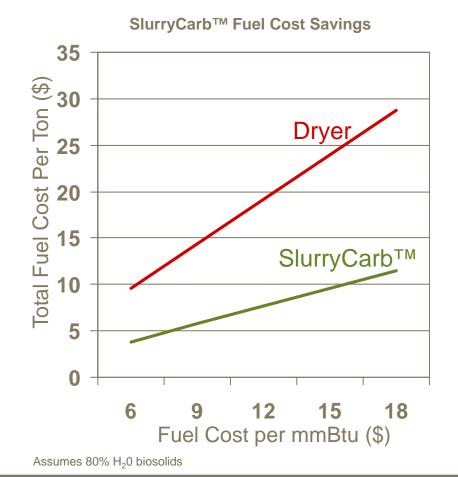
SlurryCarb[™] Process Performance

- A SlurryCarb[™] facility can receive biosolids at 15 to 30 percent solids
- Process reaction time is approximately 10 minutes
- Reacted product is mechanically dewatered to greater than 50% solids
- Using biosolids, the process produces a 6,500-8,000 Btu/lb E-Fuel
- E-Fuel has combustion characteristics similar to coal
- Process produces more energy than it consumes


SlurryCarb[™] Advantages

- Long-term, predictable cost
- Reclaim land utilized for biosolids disposal
- Reduced chemical costs
- Reduced operating costs
- Reduced energy costs
- Regional facilities reduce trucking costs

R enertech


Simple Mass Balance for SlurryCarb™

SlurryCarb[™] consumes approximately two thirds less energy than drying

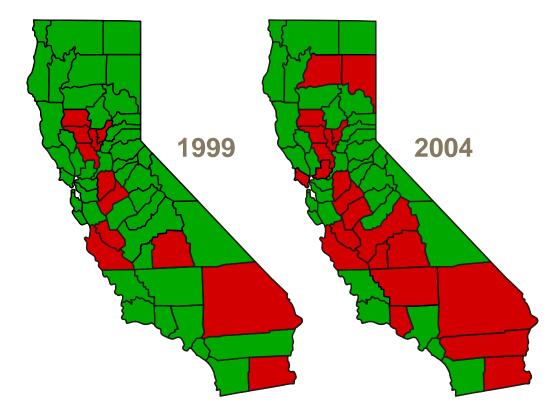
R enertech

Hedge Against Fuel Cost Risk

Energy Consumption: SlurryCarb[™] vs. Drying

	H₂O	
	Evaporated	Total Energy
Drying	80 tons	160,000,000 Btu
SlurryCarb	18 tons	64,000,000 Btu
	Assumes 100 tons of biosolids at 80% H ₂ 0	

SlurryCarb[™] Facilities



Summary: Why the SlurryCarb[™] Process?

- Process is a net energy producer (Environmentally friendly)
- Provides a sustainable biosolids management solution (Cost-effective)
- Converts organic material into carbon by accelerating Mother Nature's method (Proven)
- Produces renewable energy from biosolids (A green technology)
- Most major equipment is off-the-shelf (Simple)
- Design complete (Ready to go)
- Extensively patented (Innovative technology)

Diminishing Capacity

California Land Application: county bans are spreading

Source: OCSD

EnerTech Environmental, Inc. 2008. All rights reserved

@ enertech

E-Fuel: *the product*

- E-Fuel has 6,500-8,000 Btu/lb in dry form
- Suitable for gasification, co-firing, use in cement kilns or utilization in industrial and utility boilers
- Produces approximately 1 MWH per ton
- Minimizes fossil fuel consumption
- Produces essentially zero net greenhouse gas emissions

E-Fuel

E-Fuel vs. Fossil Fuels

Fossil Fuels	E-Fuel
Burning fossil fuels releases ancient carbon that has been sequestered in the earth for millions of years	E-Fuel utilizes carbon that is sequestered by living plants and human-generated waste, and is part of the recent Carbon Cycle
Use of fossil fuels depletes natural resources that take thousands of years to replenish	Waste is a readily renewable resource, resulting in an endless supply of E-Fuel
Fossil fuel use causes a rise in greenhouse gas emissions and contributes to global warming	E-Fuel recycles CO ₂ and produces essentially zero net greenhouse gas emissions

Renewable Standard

E-Fuel is certified as a renewable fuel in the State of California.

EnerTech Environmental, Inc.

