1	LAHONTAN REGIONAL WATER QUALITY CONTROL BOARD
2	OCTOBER 2013 BOARD MEETING
3	ITEM NO. 4
4	MR. PUMPHREY: Item 4: Discussion of the Water Board's
5	Role and Authority in Managing the Discharge of Salts to
6	Groundwater of the Lahontan Region.
7	MR. PLAZIAK: Good afternoon, Board chair, Board members,
8	public. I'm Mike Plaziak, Supervising Geologist and Office
9	Manager Region Manager for the South Lahontan Basin Division
10	of Victorville.
11	I am presenting the Water Board's Authority or
12	Role and Authority in the Discharge of Salts to Groundwater.
13	And if you recall, part of the part of the reason why we're
14	talking about this there's two reasons, actually.
15	One dovetails into a comment that was made in our
16	July Board meeting when the regulating community the general
17	manager for the Victor Valley Water Reformation Authority had a
18	concern about how we develop a permit and those effluent limits
19	that go into a permit ultimately.
20	And and the point he wanted to make, I think, and
21	emphasize among other points and I'm not going to go into
22	the other ones but the one point that that he wanted to
23	emphasize is that an incremental change in water quality and
24	improvement that is required in in a WDR issued by the Board
25	can have a substantial increase in the cost not only to the

1	discharger but also to the community. So and and I think
2	the point well taken.
3	The other the other reason for wanting to bring
4	this up to the Board is that staff wrestle with this this
5	type of analysis, these types of decisions, and how we come
6	or or, I should say, how we make the sausage to bring a WDR
7	for you to adopt at a Board meeting.
8	So this this ties in really well. And I'm hoping
9	that we're going to have more discussions in the future as we
10	get into some some real more or I should say more
11	policy detailed policy discussions.
12	So here's our agenda, and I'll talk about the
13	antidegradation policy, some of the factors that we go in to
14	consider in making a determination on that degradation policy,
15	and also talk about some case studies that we use to kind of
16	emphasize the point.
17	What is the State Board's Antidegradation Policy or
18	State Board Resolution 68-16, also known as the Statement of
19	Policy with Respect to Maintaining High Quality Waters in
20	California or the Antidegradation Policy? And for the purposes
21	of this discussion, I'm just going to call it the "Policy."
22	It's essentially when the this policy establishes
23	a requirement that discharges of wastes and waters of the state
24	be regulated to achieve the highest water quality consistent
25	with the maximum benefit to the people of the state. And I'm

1 going to go into what that means.

The policy was adopted in 1968. The Department of 2 3 Interior asked for all the states to come up with an antidegradation policy. California did so. Years later, the 4 EPA came up with its own antidegradation policy -- 1972, I 5 believe. And the difference between the -- the state's policy 6 7 and the EPA's or the federal policy is their policy is really directly related to the surface water discharges. Our policy 8 is 68-16 or "Policy" applies to surface water dischargers and 9 10 also to groundwater.

Not only does the Policy apply to considerations that are made in terms of issuing a permit, it also involves considerations that are made to require cleanups. Under 9249, State Board Resolution 9429, which directs how we do cleanups or how we require cleanups to be made by a discharger or a responsible party also requires a 68-16 or Policy analysis in there.

18 So the Policy -- really there's kind of like two 19 parts to the Policy. The third -- I'm not going to talk 20 about -- that was just simply the Department of Interior 21 saying, hey, when you get this thing done, tell us about it. 22 So I think that's happened since 1968, so I'll focus on the 23 first two parts.

The first is the high quality of water. Essentially it's saying whenever there's existing high quality of water, it

1	must be maintained unless it can be demonstrated the discharge
2	will produce a change of water quality that comports with these
3	three factors: maximum benefit to the people of the state,
4	it's not going to unreasonably affect beneficial uses, and also
5	that the could not result in water quality that's less than
6	the Basin Plan and those water quality objectives in the basin.
7	The other part of that policy or the other area, if
8	you will, talks about when the waste discharge requirements
9	or when the Board is issuing waste discharge requirements for
10	discharge to waste into those high quality waters, the Board
11	must ensure that the discharger finds the best practicable
12	treatment and controls to prevent a pollution or a nuisance and
13	that it maintains the highest water quality. Again, the
14	maximum benefit of the people of the state.
15	So those are the two main components of this Policy.
16	And every time we issue or I should say the Board issues a
17	permit that does involve a discharge to a surface water or the
18	groundwater, that analysis you'll find that in that
19	policy or in that that WDR. We'll go through that whole
20	process.
21	And this is what we're going to talk about a little
22	bit today is how we can do that analysis and how we make those
23	findings that you're able to push the "I believe" button when
24	we say that the degradation that's going to occur from this
25	discharge is in the best interest of the people of the state

1 and still maintains the highest water quality.

2 So what do we mean by "high quality waters"? Well, 3 when we're discussing water quality, we do so in context to a 4 water -- water's physical, chemical and biological 5 characteristics. So any water that has those characteristics 6 that are better than a water quality objective is a high 7 quality water. All right?

8 So an example would be water that we know in some 9 basins as, you know, TDS of 250 to 300. And we know that 10 our -- our secondary standards are 500 to 1000 to 1500. That 11 water would be a high quality water.

You can have a high quality water and it -- it's -it's constituent specific. You can have a high quality water with respect to say TDS or nitrates. In other words, they're below the -- the water quality objective for a municipal use yet not be for some other use or vice versa. Talk a little bit more about that when we talk about some of these other cases.

The other term that I think needs to be discussed or talked about in a little more detail, and that is: What do we mean by "Maximum benefit to the people of the state"? That's a hard one to wrestle with. And that involves a number of things that have to be considered.

And, here, I'm showing them. It's -- it -- you know, for a request or a report waste discharge that comes to us from a discharger proposing to discharge a waste into water of the

1	state, we've got to make some analysis. We've got to do
2	some some determinations here.
3	There's four categories that we're going to look at.
4	We're going to look at the beneficial uses of the receiving
5	water all right? to determine whether or not that
6	receiving water has immune beneficial use, which would have the
7	highest protection standard, and all the other beneficial uses.
8	The environmental factors: What's the background of
9	water quality? What's what's what are some other
10	dischargers that are occurring into the basin, if you will; up
11	gradient; other anticipated uses for that resources? What are
12	some other beneficial uses; or I should say assimilative
13	capacity? And I'm going to talk more in detail what
14	"assimilative capacity" means.
15	Then, also, treatment: What are the different
16	treatment options that are available, feasible? And then that
17	fourth one: The economic and social benefits that are
18	associated with the discharge, not only to the discharger but
19	also to the community or the people of the state.
20	So as we're doing that analysis, we've gotten that
21	report of waste discharge that's come in, for a discharge.
22	Let's say a wastewater treatment plant plans to upgrade not
23	upgrade, but increase its flow.
24	So we've gotten that report of waste discharge, and
25	staff's got to go through some some quick analyses with the

1	data that they get. Sometimes we'll get a good indication that
2	this discharge is going to be small. You know, locally will
3	have a small footprint, maybe temporary, maybe it's a it's
4	a it's a case where we're going to see an increase in TDS
5	over a period of time, that that will be ameliorated, you know,
6	after six months or a year.
7	Like, for example, I think years ago when we had
8	to to do this type of analysis for PG&E and use of
9	irrigated use of irrigation as a disposal option, and we
10	looked at the fact that salts would be discharged or at least
11	salts would be flushed through the ozone into the groundwater
12	and there would be an increase in nitrates and TDS, but then it
13	would come down over a period of time. But that that was
14	a a quick assessment. Actually, it turned out to be more
15	complex, as I will explain here what the complex
16	antidegradation analysis entails.
17	But we're going to look at those factors. How big is
18	this discharge going to be? What's the what's the expected
19	size of of the degradation that's going to occur? Again,
20	it's it's is it temporally limited? And then is this
21	just a minor change in the water quality? Are we talking like
22	one or two percent? In those cases and we can we can
23	work through that without having to require the discharger to
24	come back to us with any more information. Okay?
25	And sometimes, not all the times actually, most of

1	the times not, if they've done a good CEQA analysis, we should
2	see what those effects would be if there is a potential force
3	indicated, and and we'll be looking for that. A lot of
4	times, though, if it is going to have a significant impact,
5	we're going to know we're going to move into the complex or
6	detailed antidegradation analysis. A lot of times we're going
7	to go back to the discharger to request those additional
8	elements.
9	Really what those those are is getting a better
10	handle on the environmental characteristics, what we know about
11	flow, what's the water quality, those kinds of things. But not
12	only that, you can see when we see that or get an indication
13	that there's a substantial increase in the mass of pollutant,
14	you know, 50 percent more, 100 percent more, then we're going
15	to want to get a detailed antidegradation analysis. I'll go
16	into what's going to go into that.
17	Also, if we can see that that potentially there
18	may be some mortality involved in that change in water quality
19	or biological communities or some changes to growth or
20	reproductive impairment, those also would cause us to request
21	a a complex antidegradation analysis.
22	I wish I could tell you that there's, you know, four
23	or five steps to getting an antidegradation analysis done by
24	the discharger. Not the case. We see many of these and
25	there's no, you know, set pattern or cookbook way of doing

1	these. Some of them will be very detailed. Some of them not.
2	And we go through that (inaudible) process with staff will
3	go through that with discharger.
4	The other thing we're trying to see in these analyses
5	is what's the impact not only to water quality, but, again, the
6	social-economic impacts. If we are to require greater controls
7	on that discharge, what's the the effect economically and
8	also socially?
9	So to those four factors that I talked about, the
10	first one, beneficial uses, obviously when you look at the
11	Basin Plan, that's that's where we're going to go to. We
12	know that there are 22 beneficial uses of the Basin Plan. Out
13	of the 345 sub-basins and basins in the region, 344 of them
14	have the municipal beneficial use. The one in Searles Valley
15	does not.
16	Not to say, though, other beneficial uses wouldn't
17	apply: industrial or potentially agricultural. If fact, many
18	of those do. If you look through the Basin Plan, many of them
19	apply.
20	So we're looking to see what are the beneficial uses
21	that could be impacted. Okay. Once we've got an understanding
22	of that, we're also looking at the environmental data that
23	are are available to us.
24	In this case, this is a this is a map produced by
25	Mojave Water Agency, and this is their service area here in

1	red. And the dots it doesn't you don't need to see the
2	actual numbers next to dots or whatnot, but the dots just
3	indicate areas that where there are low and high TDS.
4	There's a source for us. There's a repository of
5	information just like the U.S. Geological Survey. And this
6	this is a good case scenario because I'll tell you Mojave Water
7	Agency has some great data. And, in fact, they're working on
8	that Salt/Nutrient Management Plan along with Victor Valley
9	Water Reformation Authority to to help us understand our
10	loading to the basin.
11	But what you can do with the data are produce maps
12	like this. And then the beauty of a map like this that helps
13	staff is that when you look at these you know, this this
14	color coding of sub-basins within Mojave Water Agency's area,
15	well, you can see that the dark green, those are good areas
16	areas where there's good water quality. Very high water
17	quality, 100 to 300 TDS. As in contrast to these areas where
18	it's red, where you can see that we've got TDS as high as 900
19	to 1100. All right.
20	But that helps us to understand for that particular
21	proposed discharge, we're changing the discharge where it
22	occurs in the basin, they help us to understand if we need to
23	be concerned about additional self-loading and perhaps putting
24	greater controls on that discharge so that we don't have a

- 25 problem and see a basin go from yellow, like this one here,
 - HCR

into the red zone.

1

So those are -- those are great tools for us. Don't always have those when we're -- when we're getting a report of waste discharge. But we've got to go back to the discharger to get those data gaps and fill those data gaps to help us to get a better picture.

We'll talk about assimilative capacity. Well, what is that? Well, that's the ability of the water body to take and to project sources as well as natural and taking those -those constituents, I'll say, not sources, but anthropogenic and natural constituents into -- into its water body and still being able to meet those beneficial uses. All right?

I have a graphical depiction here that will kind of help cement what I'm saying in words and to orientate you to what we're looking at here. This y-axis, A to B, is just say a concentration of a constituent -- could be anything: a TDS, nitrate, whatever -- from A to B increasing as we go up.

So we know that in an aquifer, background water quality is, say, here. So anything -- any discharge that causes a change in water quality above background up to the water quality objective of beneficial use standard will be a degradation. Anything above that would be a pollution that would need to be remediated, low or high.

24 So our assimilative capacity then would be what's 25 ever in that -- that zone between Background Water Quality and

1	the Beneficial Use Standard. If we allow a discharge somewhere
2	in that that zone, then what's left is everything from the
3	point where the discharge the the concentration in the
4	aquifer after the discharge up to the Beneficial Use Standard.
5	And here's an example of that. So if you will turn
6	to Enclosure 2, you'll see what I'm talking about here with the
7	relationship to
8	UNIDENTIFIED PERSON: What page is that; do you know
9	the
10	MR. PUMPHREY: 4-15 or 15.
11	MR. PLAZIAK: Yes, 4-15.
12	In fact and I'll be talking off of page 417 4-
13	17. And you're going to see in there where we did an actual
14	calculation. This is for the Apple Valley Sub-Regional Plant.
15	The Victor Valley Wastewater Reformation Authority brought
16	or requested a permit from you earlier this year. All right?
17	So how did this work in the analysis? We looked at
18	the fact that oops the sub-regional plant could discharge
19	an effluent of quality of about 8 milligrams per liter. And
20	we're talking about nitrate here in this this particular
21	example. And the background water quality is 3.4.
22	So you can see the result in the degradation
23	represented by the red point right there after the discharge is
24	predicted to be 6.5 milligram per liter. So that leaves us
25	with 3.5 milligram per liter in nitrate. That's the

1	assimilative capacity. So that's what's left for any other
2	discharger that comes in and wants to use the beneficial use
3	or use assimilative capacity for their discharge. All right?
4	When we went through this analysis with them, we
5	looked at technology. They used a membrane bioreactor to treat
6	the the nitrate. We also noted that the degradation was
7	limited to a half mile from the discharge point, and they did a
8	column mixing zone type of analysis where they looked at a
9	mixing zone of about 50 feet deep and out to half a mile. And
10	this is this is what they concluded, that water quality out
11	to that half a mile radius would be degraded up to 6.5.
12	And certainly when you look at the fact that nitrate
13	increased from 3.4 to 6.5, well, that's a doubling. That's a
14	hundred percent increase. Why did we allow that? Well, I
15	think the analysis that we did will show that this was in the
16	best interest of the people of the state. It did as you can
17	see on here, the degradation was limited to a localized area,
18	for one.
19	Two, there were no known or foreseeable uses of that
20	assimilative capacity within a half mile zone anticipated. And
21	when you look at the fact that treating that water, putting
22	putting it to not only the membrane bioreactor but sending it
23	through reverse osmosis would in fact double the cost to
24	not not just to the to VVWRA but also to the rate payers.
25	They were going to see their rates go up from \$11.00 to 22.00.

1 All right?

Those are the kinds of analyses that went into the recommendation to allow that -- that degradation at that level. That's how we looked at that for the Apple Valley Sub-Regional Plant. The other thing too, I'll mention, this is for a plant that was going to take treated water that's going to be used for recycled water purposes.

8 So there's a -- there's a -- when they're not using 9 the recycled water, they don't have any users, in other words, 10 for the recycled water, they had to have a place to store it. 11 But ultimately over time, there'll be more users of the water 12 so there'll be less impact into the water quality. This --13 this really represents a worst-case scenario.

If you look at Enclosure 1 -- and I'm moving 14 backwards. I apologize from going from three to two to one, 15 but Enclosure 1, Bates stamped 4-7 -- at the Hesperia Plant --16 17 this, again, a sub-regional plant is a WDR that we brought before you back in the early part of this year for a similar 18 19 discharge like in Apple Valley, except in Hesperia -- the point 20 I want to make here was our TDS discussion. Here the effluent water quality is 370. Background is about 275. All right? 21 22 And so the resulting water quality was going to be 354.

Now, the point I want to make is that TDS has a
three-part standard. It's a secondary MCL or secondary
standard because TDS is not a-- is not a primary pollutant.

Primary pollutant being one that will cause health effects.
This is a secondary one that has a taste and odor concern. All
right? If you get above 1000 milligrams per liter, the water
becomes malodorous. It's not very palatable and it's not good
for it to be consumed or to be sold. So that's the basis of
the three-part standard.
The point here is and the challenge for staff is
with a three-point standard and if you were to go and look
at our WDRs over time, we've never put in a numerical number
thou shalt meet this effluent limit for TDS. We've said for
the receiving water the receiving shall not exceed the water
quality objectives. All right? Well, which one of these three
is it: 500, 1000, or 1500?
What we've done what staff have done over the
years and this has been something it's just the way we've
done business, and this is what I wanted to get in front of the
Board so you get an understanding how we looked at or view the
world from our regulatory standpoint.
When we get a report of waste discharge asking to
degrade water quality, if the receiving water's background
water quality is less than 500, we generally apply that 500 is
the standard to which we're going to require controls be
applied to the discharge so the discharger has to meet that,
and their effluent quality will be such that it will not
exceed the receiving water will not exceed 500. Okay?

And in this case, with the -- the same kind of conditions existed in Hesperia as they did for Apple Valley as far as the type of treatment. It was MBR treatment. They did not use reverse osmosis. They could have. They could have brought that down even more than 354 down to below 300 if they used reverse osmosis.

7 But, again, the rates would have doubled in that It was still protective of water quality, and there 8 case. still is assimilative capacity between 354 to 500, so there's 9 146 milligrams per liter of TDS here. All right? So that's --10 11 that's how we came to that conclusion in that particular case. And you can see more of the details that are in the enclosure. 12 But the point I wanted to bring up is that that's -- that's how 13 we maintain high quality water in places where the TDS is less 14 15 than 500 generally. That's our rationale.

In areas where the TDS is less than 1000 -- well, this model kind of represents that. If we have TDS that's say 600 milligram per liter and its background water quality, we're going to require that discharge -- the effluent limits that we'll impose on that will ensure that the receiving water will never exceed a thousand. Okay? So that's how we'll apply it in that case.

Likewise, if the receiving water is actually above a thousand, then we're going to use 1500 as that -- that level. Okay? So this is -- this is the rationale that we take when

we're looking at the environmental factors, beneficial uses,
 and then the treatment, treatment and controls.

And on that subject of treatment and controls, what do we mean by "Best Practicable Treatment or Control"? And, generally, that's the level of treatment or control that is achievable in using best efforts.

7 What are "best efforts"? Well, that's the quality of the supply of water available to a discharger. Historic 8 effluent quality that the discharger has ever been able to 9 achieve in the past. Like in the case of VVWRA, when we went 10 through that process of a -- of a permit that Brogan (phonetic) 11 was bringing up to you, that we had looked at their ability to 12 achieve, I think it was, less than six milligram per liter for 13 nitrate, so we wanted them to -- to keep to that. All Right? 14 And that was going to cause a significant problem for them when 15 they increase their flows. All right? So -- but we were 16 17 looking at the historic effluent quality.

We also want to look at other dischargers under similar conditions. What are the technologies that they're using? And what are the levels that they're achieving in their effluent and any other good thing that looks like the discharger is taking to try to get their -- their effluence -or their effluent limits -- effluent -- effluent quality down to a lower level, to a better quality?

25

So those are some things that go into that and any

1	other measures that might be necessary. So technology and
2	performance and cost are those things that that they're
3	going to bring up.
4	When we looked at the fourth factor, socio-economic
5	issues, this is one of the challenge the most challenging
6	for staff to go through. We're geologists. We're engineers.
7	We're environmental scientists. We are not economists.
8	So the challenge is is to go through and read the
9	report of waste discharge or an antidegradation analysis that
10	comes with that report of waste discharge or subsequently and
11	understand what do they mean when they say 200 and some odd
12	jobs are lost in the community? How do we verify that? How do
13	we know? What's the metric that they're using when they make
14	that assessment? And where are their assumptions?
15	So those are those are some significant challenges
16	on there. But it's not only what's the what's the cost to
17	the discharger? And the cost to the discharger cannot be the
18	sole reason on a socio-economic factor for allowing the
19	discharge to have a poorer water quality. We've got to be a
20	direct correlation or direct demonstration by the discharger
21	that it's also an impact to the community. It's got to be in
22	there.
23	So you can see in this case here, if the discharge
24	you know, due to the type of industry we're talking about
25	whether it's a bottle, you know, plant discharging salts or

1	it's some other you know, it's a wastewater treatment plant,
2	if there's an increase in employment from that, that's got to
3	be factored in there, or increase in production because now
4	they've got the the capacity to do that with a a a
5	lower cost cost to run their overhead.
6	You know, so does that say does the increase in
7	in treatment in capacity for a wastewater treatment now allowed
8	for greater development, more houses that come into a
9	neighborhood? That kind of thing. All right?
10	So what I kind of close on this was some of these
11	challenges. And I talked about the economic and social
12	development challenges where the analyses are a challenge for
13	us to come before you and ask for you to adopt a permit.
14	A recommendation that I would make and hope that it
15	can be taken to the State Board as well is that we know that
16	there are resources at State Board that can do economic
17	evaluations. The problem is there are not very many. I think
18	there's one individual up there that does those to support
19	enforcement actions.
20	But I really do think that, you know, when we start
21	to see more and more of these types of analyses come through
22	and we're requesting these I can tell you back in the day,
23	we didn't do that as much. We're doing that just to have a
24	better understanding of what's the loading going onto the
25	basin. So we're going to need some assessment for I should

1	say we're going to need some support for those economic
2	assessments so we can we because it takes the burden off
3	the staff, which don't have the skillsets. We don't have those
4	skillsets. We've got to put those in the right right area.
5	The other thing is I will say is another challenge is
6	the sub-basin-wide understanding of baseline water quality.
7	Now, what Mojave Water Agency is doing is great in helping us
8	out. They have a huge network. They work in partnership with
9	U.S. Geological Survey, but there are other basins that don't
10	have that luxury.
11	I'll tell you, though, that at least in the
12	the in the southern part of the region and I I believe
13	it's the same case in the north, the work that that staff is
14	doing integrating in with the IRWMPs and helping them and
15	giving them guidance and helping them understand perspective is
16	gaining traction for us to help them at least understand how we
17	look at TDS, how we look at some of these various constituents
18	as they're developing their models and they're developing an
19	appreciation for salt loading in the basins. I think that's a
20	good thing, and we're going to have to do that.
21	But data is what we need in order to make those
22	decisions, which is very difficult for staff to tell the
23	discharger that, you know, incur another two or three million
24	dollars in treatment costs and you don't have data to back up
25	why. That's important. And do we see an actual problem of

salt loading in that particular segment in the basin? So data
 are -- are very important to us.

3 I talked about the application of three-part taste and odor water quality objective. As you can see, there's some 4 ambiguity. There are going to be cases where the water quality 5 is below, say, 500 and the discharger wants to go over that 500 6 7 mark, and they're asking us to give them that ability to degrade the water and use up the assimilative capacity and 8 now -- now to use the 1000 milligram per liter level as -- as 9 the new benchmark. 10

You know, and that's a -- that's a stand that we've 11 tried to not -- we've tried not to allow that type of situation 12 to happen because you realize that we are in closed basins. We 13 have salt that's going to continue to load. How do we -- how 14 do we address that? What's the -- what's the -- the way we're 15 going to have the -- the -- the information to make those 16 17 decisions with the discharger to get to a -- to a much better control on that discharge? All right? That's -- that's a 18 19 challenge for us. Particularly that three-part objective.

And, lastly, and very importantly, the long-term cumulative effects. We produce -- or I should say we work through permits with a discharger for a particular case, but what we need really is to be able to look at the long term and see how these are -- are cumulatively coming together.

25

And I think one of the tools that we're going to

1	continue to work with on are the IRWMPs and those efforts
2	because there are agencies like the Mojave Water Agency in
3	particular in the Mojave watershed, we're seeing them develop a
4	gross approximation for each basin using the Stella Model.
5	I think that's good because we can take those gross
6	approximations and then have an understanding of which basins
7	are really more vulnerable to a loading, and use that as a way
8	or trigger, if you will, to require greater controls on the
9	discharge; and while other ones, we might not.
10	But those efforts that are going on with the
11	Salt/Nutrient Management Planning from the IRWMPs is very
12	important to that effort. And, you know, policies like the
13	State Board's recycled water policy, I think are are also
14	helping us out in that regard as well.
15	So that's that's a generally, that's it as far
16	as we make the sausage before we bring it to you, and I hope
17	that you got an appreciation for some of the challenges that
18	we've got and particularly when we're dealing with TDS and that
19	staff is trying to keep those discharges to again, to
20	maintain a high water quality below 500. And we do that not
21	only for a new discharge but also what we're we're
22	evaluating or developing cleanup strategies as well.
23	I'll entertain any questions that you may have.
24	MR. PUMPHREY: Thank you very much.
25	Mr. Sandel, any questions or comments?

1	MR. SANDEL: Yes. Yes, I do. I I first of all, I
2	appreciate the the great difficulty in dealing with these
3	issues. This is this is this is tough stuff because it
4	has direct implication of cost to the customer of water
5	treatment, what your monthly bills look like. It's hard.
6	I think that I I completely disagree with the idea
7	that we take this thousand and 1500 as the as the it's
8	one thing to say that at 500 where we have a high quality
9	water. Once you get past 500, it's not good quality water.
10	You get to 1500, it's really not good quality water. So to
11	allow it to go up a step 500 to be the next to be considered
12	that whole range as part of the assimilative capacity seems to
13	be an error in judgment that we would always be trying to push
14	that number down. And the higher the background is the more
15	resistant we should be to allow it to increase at all is the
16	way I would look at that.
17	Secondly, I think that when we're looking at rate
18	changes to the to the local rate payers, that we should be
19	looking at something more than just a percent of increase to
20	them. We should be looking at what comparable districts all
21	over the state are paying.
22	We know that in some cases rates are artificially
23	low, but other people are paying four and five, ten times more
24	than what these people are paying. And so to say that it went
25	from 10.00 to \$22.00, that's really you know, that's not

1 good, but maybe somebody else is paying 60.00, you know, for a 2 comparable system. So we should be making our comparisons more 3 wide ranging, I think.

4	And then lastly and this is not necessarily under
5	our control, but it's something that I think that we could
6	promulgate and work with Mojave Water Agency and others. And
7	that is, we're only looking at one side here. We should be
8	looking at the quality of the drinking water. We could improve
9	the quality of drinking water by RO, for example, and resulting
10	change in the output to the treatment plants would be less TDS.
11	That's another way to deal to deal with this issue. Instead
12	of treating the sewage, treat the drinking water. It might be
13	more cost effective. We ought to think about that as part of
14	the overall equation.
15	MR. PLAZIAK: I I appreciate those comments because
16	that that helps us have a better understanding of where we
17	draw the lanes in the road.
18	MR. PUMPHREY: Anything else, Mr. Sandel?
19	MR. SANDEL: No. Thank you.
20	MR. PUMPHREY: Mr. Dyas?
21	MR. DYAS: Yes. Thank you.
22	I agree with Mr. Sandel. We should be very reluctant
23	to raise allowable limits of TDS in groundwater 500 to 1000.
24	I'd like to keep the water as low TDS as possible.
25	Also, I have a question about Slide 14. By the way,

1	these are great graphics in helping us understand the complex
2	subject.
3	And what I'd like to know is for this particular
4	example, what safeguards do we have that would prevent an
5	individual discharger from consuming all of the remaining
б	assimilative capacity per basin?
7	MR. PLAZIAK: All right. Well, for a basin, I'm going
8	to I'm let's put this in perspective because I think
9	that, you know, when we talk about basins, we're talking large
10	areas. In this case, in this analysis, we found that the
11	assimilative capacity was going to be 3.5 millgram per liter
12	per nitrate within a half a mile of the discharge. So that's a
13	localized discharge and localized degradation in the basin,
14	which is, you know, quite expansive when we look at it.
15	This shows the the essentially, this is your
16	the sweet zone, the sweet spot, as people refer to it in our
17	watershed where it's the watershed where the water's coming
18	from, the headwaters up at Lake Arrowhead down into Hesperia.
19	Very, very good quality water. So this discharge here is only
20	going to affect a very small part of that whole basin.
21	But to answer your question about how do we ensure
22	that is that is, in fact, what's going to happen, that's
23	where the monitoring requirements that we put into that WDR
24	will ensure that we'll be able to see that they are, in fact,
25	complying with that.

1	MR. DYAS: What what I'm really concerned about is
2	allowing what's remaining of the assimilative capacity to be
3	taken up by one discharger. In other words, when we have
4	multiple dischargers in a region the basin, sub-basin to
5	be equitable, should we consider developing a TMDL for salts?
6	MR. PLAZIAK: Yeah, probably. We we need to be looking
7	at site specific water quality objectives, I think.
8	MS. NIEMEYER: Well, the Salt/Nutrient Management Plan in
9	part are addressing some of those issues because you're looking
10	at not only an individual discharger and not only discharging
11	their waste but also activities on the land too.
12	MR. DYAS: Uh-huh.
13	MS. NIEMEYER: So you're trying to account for all of
14	those things. So it is kind of like a TMDL for salts.
15	MR. DYAS: Okay. Thank you.
16	MR. PUMPHREY: Dr. Horne?
17	DR. HORNE: I was afraid you were going to say that. I
18	have random disjointed thoughts. I'm just going to say them as
19	they come to me.
20	First of all, I want to say I completely agree with
21	Mr. Sandel's comment about once the groundwater basin is above
22	500 TDS, that it's, I think, wrong thinking to allow the
23	groundwater basin to go up to the next level. I think that
24	trying to keep those levels as low as possible is a better
25	policy.

1	On Slide No. 8 could we go there? And before I go
2	on with my comments, I also want to say I agree with
3	Mr. Sandel's comment about looking at what other districts are
4	doing in terms of comp what their comparable rates are. I'm
5	intrigued by his comment about improving drinking water. It's
6	an interesting idea. And I was also had the same question
7	that Mr. Dyas had about when there's multiple dischargers in
8	the same basin.
9	But as to this slide, my I'm curious when you do
10	this analysis, how are you talking to what people are doing
11	in other regions, or is there guidance from the State Board? I
12	mean or or do you make it up as you go?
13	MR. PLAZIAK: She's on to me now.
14	No. Well all right. As far as the
15	antidegradation analyses go?
16	DR. HORNE: Yes.
17	MR. PLAZIAK: All right.
18	DR. HORNE: I mean in terms of, you know, how you how
19	you think through this. Is there is it is this the
20	Victorville office's approach, or are you also looking at what
21	they're doing in Santa Ana? Or
22	MR. PLAZIAK: Well, we're on the back stoop with some
23	cigars thinking about it. Actually, what we did in a
24	serious way we've and the guidance is out there. Just to
25	let you know, the State Board actually has formed a working

Γ

1	group to look into 68-16 and to see if there's some changes
2	that can be made or revisions or if some clarification can be
3	provided to the regulated community.
4	So that's ongoing, and I think they've already had a
5	couple listening session, and I think there's another one in a
6	couple of weeks.
7	DR. HORNE: That's great.
8	MR. PLAZIAK: That is great because the guidance that we
9	do have, we have the Atwater memo. There was an Office of
10	Chief Council that came out in 1987.
11	DR. HORNE: Right.
12	MR. PLAZIAK: That's one. And then after that we had the
13	Administrative Procedures Update, APU 90-004. That was another
14	thing that provided us a little bit more guidance on when is an
15	antidegradation analysis really required and what should go in
16	it.
17	And then in 1995, February of `95, the State Board
18	put out a question-and-answer memo that kind of explained
19	68-16. So those are the three documents that we rely on within
20	the State.
21	And the the Federal Government also has it in
22	40CFR. I think it's Section 131. So those are references for
23	us to go to. And the fact that I can tell you those number, I
24	would tell you staff, I know, has referred to those and will
25	continue to do that to understand what needs to happen.

1	But we do need some some clarity in some of the
2	things that we're you know, 68-16 just like some of the
3	definitions I went through before. What is a you know, best
4	interest of the people of the state that maximum benefit the
5	people of the state? That that does need a little bit of
6	clarification. Even more specificity to help us with those
7	kinds of analyses. Because we can we can do in the simple
8	antidegradation analysis, we can do that all day long. We can
9	look at the environmental factors. We can look at the
10	beneficial uses.
11	I mean you start going to the complex or detailed
12	analysis, that's when you're you're looking at not only the
13	treatment, the best practicable treatment and control, but
14	you're looking at those socio-economic factors. That's the
15	challenge for us.
16	DR. HORNE: And another quick question about this slide.
17	Does the analysis does your analysis change depending on
18	whether the water basin is adjudicated or not? How does that
19	affect your analysis?
20	MR. PLAZIAK: Not really. I mean we're you know, the
21	antidegradation anal antidegradation analysis is constituent
22	specific. We're looking at each of those constituents. We're
23	looking at the basin or Basin Plan's beneficial uses and
24	we're we're looking at those in context to each other to see
25	what's the threat to the beneficial uses. So whether it's

1	adjudicated or not I mean I think it will have an impact
2	tangentially, but not in the direct analysis on discharge.
3	DR. HORNE: Okay. Next slide would be No. 13.
4	Okay. My brain works in terms of time, I'm afraid.
5	So what time frame are we talking about? Are we talking 20
6	years? a hundred years? in terms of or maybe we should go
7	to the next slide after that. Maybe my question will be
8	clearer with 14.
9	MR. PLAZIAK: Well, yeah, in this case and then Jay
10	Cass, you can correct me if I'm wrong. There you are. I mean,
11	that's that is the predicted water quality after the
12	discharge in that aquifer. So
13	DR. HORNE: Over what time period?
14	MR. PLAZIAK: Well, I I would I I can't tell you
15	if it's months or years, but I think it's it's not decades.
16	We're expecting once the water starts to go in into the
17	(inaudible), that we're going to see this type of degradation.
18	Now, we're looking out to the half mile in a month? a week? a
19	year? I I can't tell you that. But the time scale is not
20	the decadal. It's probably on the order of of years based
21	on the aquifer characteristics. Some aquifers have good
22	transmissivity. So it might happen quicker. Others aquifers,
23	not so much.
24	Is that
25	DR. HORNE: Mr. Cass is sitting behind you.

1	MR. PLAZIAK: Snuck in behind me.
2	Is that
3	MR. CASS: Mike, if I could add to that, in doing this
4	analysis, we're looking at the discharge. So as long as there
5	is a discharge, that would be the degree of degradation. If
6	the discharge I guess two things. When would we go from
7	ground zero baseline up to that level of degradation? We don't
8	factor that very well because using the models we have, they're
9	a mixing model that assumes a more uniform discharge than will
10	really occur.
11	And, secondly, if the discharge was stopped
12	DR. HORNE: Uniform in time or uniform in space?
13	MR. CASS: Typically, a mixing model is set up to be more
14	of an instantaneous mixing model. That's just a computer model
15	where it looks at what's coming in naturally, what might be
16	coming in from the discharge, and what would the net effect be?
17	So there's not really a temporal element in that
18	consideration.
19	And then, of course, if the discharge were to stop,
20	how long would the degradation remain? We don't have a good
21	handle on that because for our wastewater plants, typically we
22	assume that we're going to be continuing that discharge for a
23	long time.
24	DR. HORNE: I guess I'm confused because I mean all
25	right these are for these two enclosures were for

1	treatment plants; right?
2	MR. PLAZIAK: Yes. Well, they're for sub-regional plants.
3	DR. HORNE: Plants. Which are
4	MR. PLAZIAK: Yeah.
5	DR. HORNE: operating over some period of time.
6	MR. PLAZIAK: They are going to operate over a period of
7	time. I can't really tell you, though, if it's going to be,
8	like I said, one or two years. There's a and we could if
9	you'd like the details, we can probably get back with you on
10	it, but
11	DR. HORNE: I think (inaudible).
12	MR. PLAZIAK: I think your comment, though, is kind of in
13	general.
14	MS. KEMPER: No. She's talking about the sub-regional
15	I just want to I think what I think I can help this
16	because I can see Amy's brain taxing over this because in
17	general, you're right about wastewater. That's what Jay's
18	talking about. You know, every day people flush. The flows
19	don't change that much.
20	These two examples that Mike has shared with the sub-
21	regionals, the plants are there. They're going to treat a set
22	volume of water every day. You know, million gallons per day.
23	That's what they're designed to treat. That's what they're
24	going to treat. And a million gallons are going to come into
25	that plant. A million gallons are going to leave. But when it

1	leaves the plant, it's supposed to go in a purple pipe and be
2	used for water recycling. Okay?
3	DR HORNE: Except it's not.
4	MS. KEMPER: Well, except the plants don't exist yet and
5	no one is using the water. But the day those plants begin
6	operating, the hope is there are people who will be using that
7	water than not.
8	So the point the point this is a different
9	scenario. Okay? So when we talk about the modeling and the
10	temporal nature, is that on a day-to-day basis, the plant is
11	going to produce a million gallons per day. On a day-to-day
12	basis, different amounts are going to get used on plant and the
13	remainder is going to get percolated in these ponds. So the
14	modeling that was done assumed that the whole million gallons
15	per day would percolate into the groundwater every day for the
16	next 35 years. Okay? So that
17	DR. HORNE: Oh, 35 years. (Inaudible.)
18	MS. KEMPER: Okay. Okay. So let's just say the point
19	being that the modeling just looks at it like it's operating
20	every day that way. Every single day, 365 days a year. But
21	the reality, we hope, is going to be that there's only going to
22	be a few months out of the year where stuff is percolating or
23	maybe portions of that million gallons.
24	So that's why that's why you're getting you
25	know, that's why you're a little confused in terms of what's

1	going on because it's confusing. And none of us know what's
2	really going to happen. This is the worst case. We permitted
3	it knowing that if they had no users of this water, this water
4	could be percolated and would have this kind of impact at that
5	location on an ongoing basis. So that's the
6	DR. HORNE: I mean 35 years I think was the answer I was
7	looking for. You did make it up?
8	MS. KEMPER: Well, Amy, it's not based on a period of
9	time.
10	DR. HORNE: Well, I don't understand. It's a facility
11	that's supposed that's built to run for a certain period of
12	time.
13	MS. KEMPER: Right. And most plants are built for that
14	type of lifespan, and they may continue to run for 50 to a
15	hundred years with some additional engineering improvements
16	along the way. So that's just a typical engineering
17	assumption, 35 years. Okay?
18	DR. HORNE: I I don't understand
19	MS. KEMPER: The point being that the modeling is that the
20	groundwater continues to be replenished. So that analysis of
21	degradation going for about a half a mile away from the plant
22	is based on the fact that there's water there.
23	It's just like a river. You know, it's different
24	than a river, but it's just like at a surface water where
25	you're going to have an ongoing discharge, and there's an

1	assumption that there's going to continue to be fresh water
2	mixing with that. And so, in other words, the pollution at the
3	site of the degradation should not get worse over time because
4	of dilution within the aquifer, within the groundwater basin.
5	So even though, yes, there is an ongoing load of
6	salt, it's not really going to be measureable. And maybe over
7	hundreds of years, you would see a long-term, you know, maybe
8	extension of degradation. But the modeling looks the same over
9	a pretty short time frame
10	DR. HORNE: Define the second law of thermodynamics
11	(inaudible).
12	MS. KEMPER: not a geologic time frame.
13	MR. PLAZIAK: This is why it is important, though. On
14	the on the opposite end of this is that we do have good
15	monitoring, not just what you're going to see at the plant
16	itself, but that network that I was talking about that other
17	agencies are working through.
18	And we're looking at the basin in general just like
19	the Stella Model is looking at with Mojave Water Agency's
20	different sub-basins to see whether or not some of those colors
21	are starting to change, you know. And and and they're
22	taking into account the large inputs into those basins. In
23	fact, I think these these plants are incorporated into those
24	model calculations.
25	DR. HORNE: Okay. I think we've covered some of my other

1	concerns. Again, the issue about the TDS above 500, I mean I
2	think we have to think bigger than impacts on human health. We
3	have to think in terms of opportunity costs in other economic
4	activities that might go on in these areas if the good high
5	water quality is maintained.
6	And I know that that sounds very hypothetical, but, I
7	mean, maybe there's some crops that could be grown if it stays
8	below 500 but not if it goes above. Maybe there's high-tech
9	engineering plants that can be built here if it stays below 500
10	but not if it goes above. I mean it's there there are
11	other there are other economic factors and opportunities.
12	Humans are I'll get on my soapbox now. Humans
13	are are are very inventive people people species
14	and as long as we as long as we don't as long as there is
15	a resource here that can be used, people will figure out a way
16	to use it.
17	MR. PLAZIAK: Uh-huh.
18	DR. HORNE: The problem is when the resource becomes
19	unusable as in Easter Island in the book "Collapse," if anybody
20	read it. So I mean that's I think my concern is, you know,
21	maintaining the water quality at a level but that keeps options
22	open in the future for different types of economic activities
23	than what we are seeing here at this minute.
24	I'm sure the in economics we always talked about
25	buggy whips manufacturers. They're the what we always hold

1	up. And I'm sure the buggy whip manufacturers were pretty
2	upset when buggy whips were going out of business, but, you
3	know, they moved on. They found something else to do,
4	hopefully.
5	Okay. What else do I have to say?
6	Okay. When it comes to I'm I'm looking now at
7	Slide No. 20. With these public interest factors and I
8	appreciate the difficulty in looking at at these kinds of
9	issues. I thought it was very useful the way when we were
10	looking at the TMDL for Tahoe, that the scientists the UC
11	Davis scientists coded everything in terms of the degree of
12	confidence they had about the number.
13	So there was some numbers and a lot a lot of
14	the numbers you're dealing with are numbers that come out of
15	models and so the same was true for them. But they they
16	color coded them depending on whether they were really
17	confident or not about the numbers that they had. And and I
18	think it might be helpful to go through that kind of exercise
19	with with when you're looking at this kind of
20	antidegradation. I mean you are going to find that you have
21	the greatest confidence around the numbers that you derive in
22	your area of specialization. Right?
23	I worked a lot of the economic kinds of numbers, and
24	I don't particularly have a lot of confidence in those numbers
25	because, as I just said, people are very creative and

1	innovative and come up with new technologies, new products, new
2	processes that we don't even know about right now and that make
3	the future different than what we see.
4	And a lot of these economic analyses tools are very
5	static, and I'm not sure that it's you know, I appreciate
б	your wanting to have more help on that area. I'm not sure you
7	would the information you would get would be more reliable
8	without I mean I'm not sure it's worth the effort really to
9	put a lot of money into that. And really it might be better to
10	really work hard on the areas where you have expertise and
11	then, you know, find some other some other ways to
12	address are you required to do an economic analysis? Is
13	that
14	MR. PLAZIAK: In a complex
15	DR. HORNE: Yes.
16	MR. PLAZIAK: analysis, yes.
17	DR. HORNE: You are?
18	MR. PLAZIAK: Uh-huh.
19	MS. NIEMEYER: I would also just point out like in in
20	waste discharge requirements, we're required to consider
21	economic considerations.
22	DR. HORNE: Yeah.
23	MS. NIEMEYER: But so it doesn't necessarily mean a
24	an you know, an analysis, but it's a general requirement.
25	But we have to have some way of considering those issues

1	especially if we're getting evidence from the discharger that's
2	giving us numbers and giving us impacts related to what what
3	we're requiring. We have to at least a way to truth it.
4	DR. HORNE: Right. Well, I mean so one interesting
5	exercise that maybe some master student would like to do is to
6	do a retroactive study when people have come in and said, "This
7	is going to have this kind of economic impact," and to see
8	whether it really did.
9	I mean now you begin to see the problem with economic
10	analyses; right? I mean it's this requires more thought,
11	obviously. But it's I I just hesitate to encourage you
12	to put a lot of energy in in, you know, in down that
13	route without thinking more carefully about exactly what we
14	would get for that. Okay.
15	MR. PLAZIAK: I think I can actually answer a question you
16	had earlier at least one of just we'll use a dairy
17	analogy for this. And this is about this not a discharge
18	permit that we're issuing. This is about where do we go with
19	cleanup and what we're requiring through enforcement actions,
20	which we're dealing with the dairies.
21	But in the case of some of the dairies where we've
22	got water quality that's up in the two thousands, three
23	thousands right? what we're currently working on for our
24	dairy strategy is source control. And by that I mean we're
25	working through applying those the wastewater, wash water

to the crops at agronomic rates. That's a disposal technique.
That's what they're using.
In cases, though, where they don't have enough
aridable land, they've got to use surface impoundments or
something that will prevent that water from percolating.
That's a strategy that we're approaching right now so that
eventually over time as we apply source control, we should see
the concentrations drop not just below 1500, but the goal would
be to be below a thousand. Ultimately, we'd like to see it
even lower than that.
But we've got to you know, we've got to look at
the practicality of where can where can we get that number?
That number hasn't been developed yet. We're just working on
source control. But I can tell you that we are working through
this, and we are cognizant of the fact that we we don't want
to just derive a solution that gets us right at the line at
1500 or at any other MCL.
We've got to go, obviously, in context to 68-16.
What's the best interest of the people of the state and how do
we maintain the highest water quality. That is that is an
example of what we're doing in terms of the dairies.
MR. PUMPHREY: Mr. Jardine, questions or comments?
MR. JARDINE: Just a few brief comments. I do agree with
Mr. Sandel regarding maintaining of 500 TDS. And also I share
with Mr. Dyas the multiple dischargers, though we may have many

1	in the basin. And I'll keep it short and simple. Thank you.
2	MR. PUMPHREY: Ms. Cox?
3	MS. COX: Thank you.
4	Well, I think all the the comments prior to mine
5	help amplify what an exceptionally complex discussion this is
6	and truly can't be solved in a short dialogue. I think it's
7	important to note when assimilative capacity is discussed, that
8	it's in a localized context and on a case-by-case basis, that
9	assimilative capacity is going to vary from project to project
10	particularly depending upon the geology and the hydrogeology of
11	the area.
12	It's good to note on that one Slide No. 14 that that
13	is indeed a worst-case scenario. I was wondering that when you
14	showed it of how that was determined to be the case. And it's
15	good to know that in all probability the end result will be
16	significantly better than that.
17	I do know that using my my body of expertise,
18	which is this watershed area and it's an adjudicated basin,
19	that most of the municipalities have been very impressive in
20	putting in purple pipe so that when these sub-regionals do get
21	filled, they will truly go to beneficial use.
22	I think it's also important to note that, you know,
23	we're dealing with the MCLs, a maximum contaminate level for
24	nitrates as well the secondary maximum contaminate level which
25	only deals with aesthetics you know, smell, odor, visible

1	occlusions in the water whereas the MCLs deal with health
2	risk. And these, of course, are established by EPA and
3	Cal/EPA.
4	So there is already standards in place that all of
5	the water purveyors must deal with, and there's I think a a
6	broad understanding of the effects of these different
7	constituents. So I think there's a great deal of buy-in by the
8	stakeholders to embrace the objectives that are looking to be
9	achieved. And I think truly the beneficial uses will vary just
10	as the assimilative capacity will by region.
11	In our region down here, we get five inches of
12	rainfall per year. So any amount of water, even if it is
13	slightly degraded, even if it has TDS, is appreciated and
14	better than no water at all. There have been arid regions in
15	our area thinking of the eastern desert that have
16	actually undergone moratoriums because of the lack of water
17	resources. So there is truly an understanding in the southern
18	Mohaten (phonetic) region of the value of water.
19	There is also, I believe, and acceptance of slightly
20	degraded groundwater quality or even discharge from wastewater
21	facilities with the understanding that the beautiful aquifers
22	that we have here will purify the water and as they are pumped
23	out to be delivered by the purveyors, the purveyors then will
24	adhere to the water quality requirements that have been issued
25	by EPA and CAL/EPA as far as the MCLs and the SMCLs. So I know

1 in our region, it is truly a water cycle. It is used. It is recharged. It is purified by the aquifer, and it is used 2 3 again. So I think understanding the vast differences in the 4 region within Mohaten that I think more work is definitely 5 I think stakeholder input -- because when you look at 6 needed. 7 the extreme diversity in this region, there are truly different needs, different desires, a willingness to accept some water 8 quality changes in some areas versus the -- the desire to 9 embrace only pristine and nondegradated water supplies. 10 I just think a further -- further dialogue for all of 11 us is certainly a good thing for us to look at in the future 12 because it all has economic impacts however you look at it. 13 Thank you. 14

MR. PUMPHREY: I just had a couple quick things. I kind of shared Mr. Dyas's concern about the wiggle room in the assimilative capacity. And -- and I sort of -- I'm --I'm kind of reassured by the fact that -- or the notion that these are -- are localized or could be considered in many cases to be somewhat localized impacts.

But on the other hand, when I see the phrase, "known or" -- I'm concerned about, I guess, the -- the sense in which you think that all of the impacts to assimilative capacity are actually known. Because if you think that the -- the pond contains -- is this big but there are impacts to that -- to

1	that volume that are not known, they you're you're
2	you're you may be pushing the available capacity closer
3	than than people might realize.
4	So I'm I would hope that at least as we look at
5	these on a case-to-case basis, that some consideration is given
6	as to the certainty that you have that all of the known
7	impacts or all of the impacts are known and there might not
8	be something lurking out there.
9	The other the other question I had was the comment
10	was made that, you know, the groundwater is going to continue
11	to be replenished. That may or may not be true to the same
12	extent as has been the case historically. And so I would
13	imagine that your analysis would have to take into
14	consideration what kind of changes in the availability of
15	replenishment may be may accompany climate change or
16	different hydrology cycles or things of that nature.
17	Lastly, I I would I I understand Dr. Horne's
18	concern about the economic analysis and the ability of people
19	to to do it. The problem that I have is that the economic
20	analysis is usually the analysis that the the proposed
21	discharger falls back on to say, you know, yeah, we're going to
22	have consequences here but they certainly should be allowable
23	because the world is going to end unless we're allowed to go
24	forward, in the worst-case scenario. So I we're we are
25	obligated to to deal with that.

1	And in order to protect the analysis of the other
2	factors, we have to be able to make a robust analysis of those
3	arguments if only to make a a a a solid record for our
4	own decisions. So I I appreciate the fact that obviously
5	resources may be needed to help do that.
6	And so my last question was going to be other than
7	looking straight at the State Board member and saying,
8	"Resources are going to be needed to help us to accomplish
9	that," is there anything else that the Board can do or that you
10	would recommend that the Board consider doing in order to make
11	this task more manageable or to help you secure the resources
12	that are needed to do it?
13	MR. PLAZIAK: It just started. You you just all of
14	you just gave staff some guidance whether it was, you know,
15	direct, but you gave us a perspective on how you see things. I
16	hope this isn't the last time we have this dialogue.
17	I think this has been helpful for staff. So that
18	helps us to understand where you kind of see the lines being
19	drawn so that we can better inform the dischargers what's going
20	to work and what's not going to work. What's going to be
21	acceptable, in other words, to the Board in your proposed
22	discharge and what's not. Those things are are they're
23	priceless for staff to have that kind of perspective so that we
24	can we can navigate much more efficiently and faster and
25	more accurately with the discharger.

1	As far as the economic piece, I don't know what the
2	Board can do in that realm. I mean other than lobby for us in
3	other places higher up to say, you know, those that is
4	that's that's a gap that we have. It's a skillset that
5	that needs to be there. It's not in our current (inaudible)
6	organization, at least not at the regional boards. So we
7	should look at some ways that we can solve that data gap or
8	that skillset gap.
9	MR. PUMPHREY: Thank you very much. This has really been
10	fascinating.
11	MR. PLAZIAK: Thank you.
12	MR. PUMPHREY: It's been really informative to us, and I
13	appreciate the effort going into it. Thank you.
14	MS. KOUYOUMDJIAN: (Inaudible.)
15	MR. PUMPHREY: Yes. Please do.
16	MS. KOUYOUMDJIAN: I just wanted to say again, same as
17	Mike so eloquently said, our thanks to the Board for
18	(inaudible) our staff this guidance. This really is very
19	valuable to us as we move forward as these permits come before
20	us. And, again, as Mike said, we'll be back for more of this.
21	It also helped inform us as we as we participate
22	in a state-wide discussions on antidegradation policy to better
23	understand what is important to the Regional Board and your
24	thoughts and guidance as we move forward on that.
25	And, lastly, on the economic analysis, it is a

1	struggle. I know all state agencies, particularly
2	environmental agencies are struggling with this issue because
3	more and more are being asked to do this when we consider
4	regulatory actions.
5	The Air Board, probably the most, has been asked this
6	question because there's no perfect economic model. They're
7	very difficult. And they do not consider the avoided costs or
8	the benefits to the public health from having drink clean
9	drinking water, less visits to the hospitals, other things like
10	this that are not quantified in economic analyses but equally
11	as important for us.
12	So it is something we're struggling with and I,
13	again, thank the Board for this guidance for us as we move
14	forward to help see if we can effectuate some of these changes.
15	MR. PUMPHREY: Thank you. That's our last agenda item for
16	this portion of the meeting.
17	(Conclusion of Recorded Material.)
18	-000-
19	
20	
21	
22	
23	
24	
25	

