Amendment to the Water Quality Control Plan – Los Angeles Region to incorporate the Los Angeles River and Tributaries Metals TMDL

Adopted by the California Regional Water Quality Control Board, Los Angeles Region on June 2, 2005.

Amendments:

Table of ContentsAdd:

Chapter 7. Total Maximum Daily Loads (TMDLs) Summaries 7-13 Los Angeles River and Tributaries Metals TMDL

List of Figures, Tables and Inserts Add:

Chapter 7. Total Maximum Daily Loads (TMDLs) Tables

7-13 Los Angeles River and Tributaries Metals TMDL

Table 7-13.1 Los Angeles River and Tributaries Metals TMDL: ElementsTable 7-13.2 Los Angeles River and Tributaries Metals TMDL: Implementation ScheduleTable 7-13.3 Los Angeles River and Tributaries Metals TMDL: Jurisdictional Groups

Chapter 7. Total Maximum Daily Loads (TMDLs) Summaries, Section 7-13 (Los Angeles River and Tributaries Metals TMDL)

Add:

This TMDL was adopted by

The Regional Water Quality Control Board on June 2, 2005.

This TMDL was approved by:

The State Water Resources Control Board on October 20, 2005. The Office of Administrative Law on December 9, 2005. The U.S. Environmental Protection Agency on December 22, 2005.

The following table includes the key elements of this TMDL.

Element	Key Findings and Regulatory Provisions
Problem Statement	Segments of the Los Angeles River and its tributaries are on the Clean Water Act section 303(d) list of impaired waterbodies for copper, cadmium, lead, zinc, aluminum and selenium. The metals subject to this TMDL are toxic pollutants, and the existing water quality objectives for the metals reflect national policy that the discharge of toxic pollutants in toxic amounts be prohibited. When one of the metals subject to this TMDL is present at levels exceeding the existing numeric objectives, then the receiving water is toxic. The beneficial uses impaired by metals in the Los Angeles River and its tributaries are those associated with aquatic life and water supply, including wildlife habitat, rare, threatened or endangered species, warm freshwater habitat, wetlands, and groundwater recharge. TMDLs are developed for reaches on the 303(d) list and for reaches where recent data indicate additional impairments. Addressing the impairing metals throughout the Los Angeles River watershed will ensure that the metals do not contribute to an impairment elsewhere in the watershed. Metals allocations are therefore developed for upstream reaches and tributaries that drain to impaired reaches.
	These TMDLs address wet- and dry-weather discharges of copper, lead, zinc and selenium and wet-weather discharges of cadmium. Impairments related to cadmium only occur during wet weather. Impairments related to selenium are confined to Reach 6 and its tributaries. Dry-weather impairments related to zinc only occur in Rio Hondo Reach 1. The aluminum listing was based on water quality objectives set to support the municipal water supply beneficial use (MUN). MUN is a conditional use in the Los Angeles River watershed. The United States Environmental Protection Agency (USEPA) has determined that TMDLs are not required for impairments of conditional uses.
<i>Numeric Target</i> (Interpretation of the numeric water quality objective, used to calculate the waste load allocations)	Numeric water quality targets are based on the numeric water quality criteria established by the California Toxics Rule (CTR). The targets are expressed in terms of total recoverable metals. There are separate targets for dry and wet weather because hardness values and flow conditions in the Los Angeles River and tributaries vary between dry and wet weather. The dry-weather targets apply to days when the maximum daily flow in the River is less than 500 cfs. The wet-weather targets apply to days when the maximum daily flow in the River is equal to or greater than 500 cfs.
	The dry-weather targets for copper and lead are based on chronic CTR criteria. The dry-weather targets for zinc are based on acute CTR criteria. Copper, lead and zinc targets are dependent on hardness to adjust for site specific conditions and conversion factors to convert between dissolved and total recoverable metals. Copper and lead targets are based on 50 th percentile hardness values. Zinc targets are based on 10 th percentile hardness values. Site-specific copper conversion factors are applied immediately downstream of the Tillman and LA-Glendale

 Table 7-13.1 Los Angeles River and Tributaries Metals TMDL: Elements

Element	Key Findings and	Regul	atory]	Provisio	ns		
		water reclamation plants (WRP). CTR default conversion factors are					
	used for copper, le						
	for selenium is ind	epende	nt of h	ardness	or conve	ersion fac	ctors.
		Dry-w	eather	convers	sion fac	tors:	
	Default			man WI			Glendale WRP
	Copper 0.96			0.7	'4		0.80
	Lead 0.79						
	Zinc 0.61						
	Dry-weather num	eric ta	rgets (µg total	recove	rable me	etals/L)
			Cu	Pb	Zn	Se	
	Reach 5, 6						
	and Bell Creek		30	19		5	
	Reach 4		26	10			
	Reach 3						
	above LA-Glendal						
	WRP and Verdugo		23	12			
	Reach 3 below						
	LA-Glendale WRF)	26	12			
	Burbank Western						
	Channel (above W	RP)	26	14			
	Burbank Western		10	0.1			
	Channel (below W	RP)	19	9.1			
	Reach 2		22	11			
	and Arroyo Seco		22	11			
	Reach 1		23	12			
	Compton Creek	1	19	8.9	101		
	Rio Hondo Reach	1	13	5.0	131		
	Monrovia Canyon			8.2			
	The wet-weather t						
	on acute CTR crite						
	water collected at						
	copper, lead and						
	values to total rec						
	CTR default conve			~ ~			
	target for selenium	15 11106	epender	nt of nar	uness of	convers	ion factors.
		Wet-w	eather	convers	sion fac	tors:	
	Cadmium	0.9					
	Copper	0.0					
	Lead	0.8					
	Zinc	0.0	51				
	Wet-weather 1	Wet-weather numeric targets (µg total recoverable metals/L)					e metals/L)
	Cc		Cu	Pb	Zn	Se	
	3.1	_	17	62	159	5	

Element	Key Findings and Regulatory Provisions
Source Analysis	There are significant differences in the sources of metals loadings during dry weather and wet weather. During dry weather, most of the metals loadings are in the dissolved form. The three major publicly owned treatment works (POTWs) that discharge to the river (Tillman WRP, LA-Glendale WRP, and Burbank WRP) constitute the majority of the flow and metals loadings during dry weather. The storm drains also contribute a large percentage of the loadings during dry weather because although their flows are typically low, concentrations of metals in urban runoff may be quite high. The remaining portion of the dry weather flow and metals loadings represents a combination of tributary flows, groundwater discharge, and flows from other permitted NPDES discharges within the watershed.
	During wet weather, most of the metals loadings are in the particulate form and are associated with wet-weather storm water flow. On an annual basis, storm water contributes about 40% of the cadmium loading, 80% of the copper loading, 95% of the lead loading and 90% of the zinc loading. This storm water flow is permitted through two municipal separate storm sewer system (MS4) permits, a separate Caltrans MS4 permit, a general construction storm water permit and a general industrial storm water permit.
	Nonpoint sources of metals may include tributaries that drain the open space areas of the watershed. Direct atmospheric deposition of metals on the river is also a small source. Indirect atmospheric deposition on the land surface that is washed off during storms is a larger source, which is accounted for in the estimates of storm water loadings.
	The sources of selenium appear to be related to natural levels of selenium in soils in the upper watershed. Separate studies are underway to evaluate whether selenium levels represent a "natural condition" for this watershed.
Loading Capacity	Dry Weather
	Dry-weather TMDLs are developed for the following pollutant waterbody combinations (allocations are developed for upstream reaches and tributaries to meet TMDLs in downstream reaches):
	• Copper for the Los Angeles River Reaches 1, 2, 3, 4, and 5, Burbank Channel, Compton Creek, Tujunga Wash, Rio Hondo Reach 1.
	• Lead for the Los Angeles River Reaches 1, 2, 3, 4, and 5, Burbank Channel, Rio Hondo Reach 1, Compton Creek, Monrovia Canyon Creek.
	• Zinc for Rio Hondo Reach 1.
	• Selenium for Reach 6, Aliso Creek, Dry Canyon Creek, McCoy Canyon Creek.
	For dry weather, loading capacities are equal to reach-specific numeric targets multiplied by reach-specific critical dry-weather flows.

Element	Key Findings and Regulatory Provisions					
	Summing the critical flows for each reach and tributary, the critical					
	flow for the entire river is 203 cfs, which is equal to the combined					
	design flow of the three POTWs (169 cfs) plus the median flow from					
	the storm drains and tributaries (34 cfs). The median storm drain and					
	tributary flow is equal to the median flow at Wardlow (145 cfs) minus					
	the existing median POTW flow (111 cfs). The dry-weather loading					
	capacities for each impaired reach include the critical flows for					
	upstream reaches. T	•	•	· ·		
	includes flows from			•	U	
	capacity for Reach 3			-	-	
	weather loading capa	-			-	
	Dry-weather l		-			
		Critical	Cu	Pb	Zn	
		Flow (cfs)	(kg/day)	(kg/day)	(kg/day)	
	LA River Reach 5	8.74	0.65	0.39		
	LA River Reach 4	129.13	8.1	3.2		
	LA River Reach 3	39.14	2.3	1.01		
	LA River Reach 2	4.44	0.16	0.084		
	LA River Reach 1	2.58	0.14	0.075		
	Tujunga Wash	0.15	0.007	0.0035		
	Burbank Channel	17.3	0.80	0.39	0.16	
	Rio Hondo Reach 1	0.50	0.015	0.0061	0.16	
	Compton Creek	0.90	0.041	0.020		
	No dry-weather loading capacities are calculated for lead in Monrovia Canyon Creek or selenium in Reach 6 or its tributaries. Concentration- based allocations are assigned for these metals in these reaches.					
	Wet Weather					
	Wet-weather TMDLs are calculated for cadmium, copper, lead, and zinc in Reach 1. Allocations are developed for all upstream reaches and tributaries to meet these TMDLs.					
	Wet-weather loading capacities are calculated by multiplying daily storm volumes by the wet-weather numeric target for each metal. The resulting curves identify the load allowance for a given flow.					
	Wet-weather loading capacity (total recoverable metals)					
	Metal Load	l Duration Cu	rve (kg/da	y)		
	Cadmium Daily	y storm volume	e x 3.1 μg/L			
		y storm volume				
	LeadDaily storm volume x 62 μg/LZincDaily storm volume x 159 μg/L					
Load Allocations (for nonpoint	Dry Weather					
sources)	Dry-weather nonpoin lead apply to open sp				~ ~	

Element	Key Findings and R	Regulatory Pr	ovisions			
	Dry-weather open sp for the upper portion	Dry-weather open space load allocations are equal to the critical flow for the upper portion of tributaries that drain open space, multiplied by the numeric targets for these tributaries.				
	Open space d	Open space dry-weather LAs (total recoverable metals)				
	Crit	ical Flow	Cu (kg/day)	Pb (kg/day)		
	Tujunga Wash0.1Arroyo Seco0.3		0.0056 0.018	0.0028 0.009		
	Load allocations for obtained from previo and 10 kg/year for zi based on their length the total length of atmospheric loading	bus studies (3 l inc.) Loads are h. The ratio of the river is m	cg/year for copp allocated to each the length of e aultiplied by the	er, 2 kg/year for lead ch reach and tributary each river segment to		
	Direct air deposition	n dry-weathe	r LAs (total rec	overable metals)		
		Cu (kg/day)	Pb (kg/day)) Zn(kg/day)		
	LA River Reach 6	3.3×10^{-4}	2.2×10^{-4}			
	LA River Reach 5	3.6×10^{-4}	2.4×10^{-4}			
	LA River Reach 4	8.1x10 ⁻⁴	5.4×10^{-4}			
	LA River Reach 3	6.04×10^{-4}	4.03×10^{-4}			
	LA River Reach 2	1.4×10^{-3}	9.5×10^{-4}			
	LA River Reach 1	4.4×10^{-4}	2.96×10^{-4}			
	Bell Creek	2.98×10^{-4}	1.99×10^{-4}			
	Tujunga Wash	7.4×10^{-4}	4.9×10^{-4}			
	Verdugo Wash	$4.7 \mathrm{x} 10^{-4}$	3.2×10^{-4}			
	Burbank Channel	7.1×10^{-4}	4.7×10^{-4}			
	Arroyo Seco	7.3×10^{-4}	4.9×10^{-4}			
	Rio Hondo Reach 1 Compton Creek	6.4x10 ⁻⁴ 6.5x10 ⁻⁴	4.2x10 ⁻⁴ 4.3x10 ⁻⁴	2.1×10^{-3}		
	A dry-weather conce dry-weather numeric Creek. The load all source or group of no	c target (8.2 location is no onpoint source	µg/L) applies t t assigned to a s.	o Monrovia Canyon particular nonpoint		
	A dry-weather concu to the dry-weather n its tributaries. The nonpoint source or g	umeric target load allocation	(5 μg/L) is assi on is not assig	gned to Reach 6 and		
	Wet Weather					
	metals loading from	open space (j	predicted by the	equal to the percent wet-weather model) e ratio of open space		

Element	Key Findings and Regulatory Provisions
	located outside the storm drain system to the total open space area. There is no load allocation for cadmium because open space is not believed to be a source of the wet-weather cadmium impairment in Reach 1.
	Wet-weather open space LAs (total recoverable metals)
	Metal Load Allocation (kg/day)
	Copper $2.6 \times 10^{-10} \mu g / L/day x daily storm volume(L)$ Lead $2.4 \times 10^{-10} \mu g / L/day x daily storm volume(L)$ Zinc $1.4 \times 10^{-9} \mu g / L/day x daily storm volume(L)$
	Wet-weather load allocations for direct atmospheric deposition are equal to the percent area of the watershed comprised by surface water (0.2%) multiplied by the total loading capacity.
	Wet-weather direct air deposition LAs (total recoverable metals)
	Metal Load Allocation (kg/day) Codmission C 2 = 10 ⁻¹⁰ cm/d (day)
	Cadmium $6.2x10^{-10} \ \mu g / L/day \ x \ daily \ storm \ volume(L)$ Copper $3.4x10^{-10} \ \mu g / L/day \ x \ daily \ storm \ volume(L)$ Lead $1.2x10^{-10} \ \mu g / L/day \ x \ daily \ storm \ volume(L)$ Zinc $3.2x10^{-9} \ \mu g / L/day \ x \ daily \ storm \ volume(L)$
Waste Load Allocations (for	 A wet-weather concentration-based load allocation for selenium equal to the dry-weather numeric target (5 μg/L) is assigned to Reach 6 and its tributaries. The load allocation is not assigned to a particular nonpoint source or group of nonpoint sources. Dry Weather
point sources)	Dry-weather point source waste load allocations (WLAs) apply to the three POTWs (Tillman, Glendale, and Burbank). A grouped waste load allocation applies to the storm water permitees (Los Angeles County MS4, Long Beach MS4, Caltrans, General Industrial and General Construction), which is calculated by subtracting load allocations (and waste load allocations for reaches with POTWs) from the total loading capacity. Concentration-based waste load allocations are developed for other point sources in the watershed.
	Mass- and concentration-based waste load allocations for Tillman, Los Angeles-Glendale and Burbank WRPs are developed to meet the dry- weather targets for copper and lead in Reach 4, Reach 3 and the Burbank Western Channel, respectively.

Element	Key Findings and Regula	Key Findings and Regulatory Provisions			
	POTW dry-weath	POTW dry-weather WLAs (total recoverable metals):			
		Cu	Pb		
	Tillman				
	Concentration-based (µg/L	.) 26	10		
	Mass-based (kg/day)	7.8	3.03		
	Glendale				
	Concentration-based (µg/L	.) 26	12		
	Mass-based (kg/day)	2.0	0.88		
	Burbank		0.00		
	Concentration-based (µg/L	.) 19	9.1		
	Mass-based (kg/day)	0.64	0.31		
	Dry-weather waste load al				A
	drain flows (critical flows	s minus me	dian POT	W flows m	inus median
	open space flows) multipl	ied by reac	h-specific	numeric ta	rgets, minus
	the contribution from direct	et air deposi	tion.		-
		-			matala)
	Storm water dry-wes			coverable	
	Ci	ritical Flow		Pb	Zn
		(cfs)	(kg/day)	(kg/day)	(kg/day)
	LA River Reach 6	7.20	0.53	0.33	
	LA River Reach 5	0.75	0.05	0.03	
	LA River Reach 4	5.13	0.32	0.12	
	LA River Reach 3	4.84	0.06	0.03	
	LA River Reach 2	3.86	0.13	0.07	
	LA River Reach 1	2.58	0.14	0.07	
	Bell Creek	0.79	0.06	0.04	
	Tujunga Wash	0.03	0.001	0.0002	
	Burbank Channel	3.3	0.15	0.07	
	Verdugo Wash	3.3	0.18	0.10	
	Arroyo Seco	0.25	0.10	0.01	
	Rio Hondo Reach 1	0.23	0.01	0.006	0.16
	Compton Creek	0.90	0.01	0.000	0.10
	A zero waste load allo construction storm water p waste load allocations are a Other NPDES Permits Concentration-based dry-v other NPDES permits* the the following table.	bermittees d shared by th weather wa	uring dry ne MS4 per ste load a	weather. The second sec	he remaining d Caltrans. apply to the
	* "Other NPDES permits" non-storm water NDPES p Tillman, LA-Glendale, and	ermits, and	major per	-	-

Element	Key Findings and Reg	ulatory]	Provisions	5		
	Other dry-weathe	Other dry-weather WLAs (µg total recoverable metals/L)				
		Cu	Pb	Zn	Se	
	Reach 5, 6					
	and Bell Creek	30	19		5	
	Reach 4	26	10			
	Reach 3					
	above LA-Glendale					
	WRP and Verdugo	23	12			
	Reach 3 below					
	LA-Glendale WRP	26	12			
	Burbank Western					
	Channel(above WRP)	26	14			
	Burbank Western					
	Channel (below WRP)	19	9.1			
	Reach 2					
	and Arroyo Seco	22	11			
	Reach 1	23	12			
	Compton Creek	19	8.9			
	Rio Hondo Reach 1	13	5.0	131		

Wet Weather

During wet-weather, POTW allocations are based on dry-weather instream numeric targets because the POTWs exert the greatest influence over in-stream water quality during dry weather. During wet weather, the concentration-based dry-weather waste load allocations apply but the mass-based dry-weather allocations do not apply when influent flows exceed the design capacity of the treatment plants. Additionally, the POTWs are assigned reach-specific allocations for cadmium and zinc based on dry weather targets to meet the wet-weather TMDLs in Reach 1.

POTW wet-weather WLAs (total recoverable metals):

	Cu	Pb	Zn
4.7	26	10	212
1.4	7.8	3.03	64
5.3	26	12	253
0.40	2.0	0.88	19
4.5	19	9.1	212
0.15	0.64	0.31	7.3
	1.4 5.3 0.40 4.5	1.4 7.8 5.3 26 0.40 2.0 4.5 19	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Element	Key Findings an	d Regulatory Provisions
		ste load allocations for the grouped storm water
		qual to the total loading capacity minus the load
	*	en space and direct air deposition and the waste load
		e POTWs. Wet-weather waste load allocations for the
		ter permittees apply to all reaches and tributaries.
	8 <u>F</u>	
	Storm water	wet-weather WLAs (total recoverable metals):
	Metal	Waste Load Allocation (kg/day)
	Cadmium	3.1×10^{-9} x daily volume(L) – 1.95
	Copper	1.7×10^{-8} x daily volume (L) – 10
	Lead	6.2×10^{-8} x daily volume (L) – 4.2
	Zinc	$1.6 \times 10^{-7} \text{ x daily volume (L)} - 90$
	The combined s	storm water waste load allocation is apportioned
	between the differ	rent storm water categories by their percent area of the
		ershed served by storm drains.
	MS4 wet	-weather WLAs (total recoverable metals):
	Metal	Waste Load Allocation (kg/day)
	Cadmium	$2.8 \times 10^{-9} \text{ x daily volume}(L) - 1.8$
	Copper	1.5×10^{-8} x daily volume (L) = 9.5
	Lead	$5.6 \times 10^{-8} \text{ x daily volume (L)} = 3.85$
	Zinc	1.4×10^{-7} x daily volume (L) – 3.65
		•
		et-weather WLAs (total recoverable metals):
	Metal	Waste Load Allocation (kg/day)
	Cadmium	5.3×10^{-11} x daily volume(L) – 0.03
	Copper	2.9×10^{-10} x daily volume (L) – 0.2
	Lead	1.06×10^{-9} x daily volume (L) – 0.07
	Zinc	2.7×10^{-9} x daily volume (L) – 1.6
	General Indust	rial wet-weather WLAs (total recoverable metals):
	Metal	Waste Load Allocation (kg/day)
	Cadmium	$1.6 \times 10^{-10} \text{ x daily volume}(L) - 0.11$
	Copper	8.8×10^{-10} x daily volume (L) – 0.5
	Lead	3.3×10^{-9} x daily volume (L) – 0.22
	Zinc	8.3×10^{-9} x daily volume (L) – 4.8
	General Constru	action wet-weather WLAs (total recoverable metals):
	Metal	Waste Load Allocation (kg/day)
	Cadmium	5.9×10^{-11} x daily volume(L) – 0.04
	Copper	3.2×10^{-10} x daily volume (L) – 0.2
	Lead	$1.2 \times 10^{-9} \text{ x daily volume (L)} - 0.08$
	Zinc	$3.01 \times 10^{-9} \times daily \text{ volume (L)} - 4.8$
	construction store	ter permittee under the general industrial and m water permits will receive individual waste load re based on the total acres of their facility.

Element	Key Findings and Regulatory Provisions						
	Individual General Construction or Industrial Permittees WL						
	(total recoverable metals):						
	Metal Waste Load Allocation (g/day/acre)						
	Cadmium $7.6x10^{-12}$ x daily volume(L) - $4.8x10^{-6}$ Copper $4.2x10^{-11}$ x daily volume (L) - $2.6x10^{-5}$ Lead $1.5x10^{-10}$ x daily volume (L) - $1.04x10^{-10}$ Zinc $3.9x10^{-10}$ x daily volume (L) - $2.2x10^{-4}$						
	Other NPDES Permits Concentration-based wet-weather waste load allocations apply to the other NPDES permits* that discharge to all reaches of the Los Angel River and its tributaries.						
	Wet-weather WLAs for other permits (total recoverable metals))					
	Cadmium (µg /L) Copper (µg /L) Lead (µg /L) Zinc (µg /L))					
	3.1 17 62 159						
Margin of Safety	 * "Other NPDES permits" refers to minor NPDES permits, generation non-storm water NDPES permits, and major permits other than the Tillman, LA-Glendale, and Burbank POTWs. There is an implicit margin of safety that stems from the use of the statement of						
	conservative values for the translation from total recoverable to the dissolved fraction during the dry and wet periods. In addition, the TMDL includes a margin of safety by evaluating wet-weather conditions separately from dry-weather conditions, which is in effect assigning allocations for two distinct critical conditions. Furthermore the use of the wet-weather model to calculate load allocations for oper space can be applied to the margin of safety because it tends to overestimate loads from open spaces, thus reducing the available waste load allocations to the permitted discharges.						
Implementation	The regulatory mechanisms used to implement the TMDL will inclu- the Los Angeles County Municipal Storm Water NPDES Perm (MS4), the City of Long Beach MS4, the Caltrans storm water perm major NPDES permits, minor NPDES permits, general NPDE permits, general industrial storm water NPDES permits, and gener construction storm water NPDES permits. Nonpoint sources will regulated through the authority contained in sections 13263 and 1320 of the Water Code, in conformance with the State Water Resourc Control Board's Nonpoint Source Implementation and Enforceme Policy (May 2004). Each NPDES permit assigned a WLA shall reopened or amended at reissuance, in accordance with applicable law to incorporate the applicable WLAs as a permit requirement. The Regional Board shall reconsider this TMDL in five years after the	nit nit, ES ral be 69 ces ent be vs, he					
	effective date of the TMDL based on additional data obtained fro special studies. Table 7-13-2 presents the implementation schedule f the responsible permittees.						

Element	Key Findings and Regulatory Provisions
	Non storm water NPDES permits (including POTWs, other major,
	minor, and general permits):
	Permit writers may translate applicable waste load allocations into effluent limits for the major, minor and general NPDES permits by applying the effluent limitation procedures in Section 1.4 of the State Water Resources Control Board's Policy for Implementation of Toxics Standards for Inland Surface Waters, Enclosed Bays, and Estuaries of California (2000) or other applicable engineering practices authorized under federal regulations. Compliance schedules may be established in individual NPDES permits, allowing up to 5 years within a permit cycle to achieve compliance. Compliance schedules may not be established in general NPDES permits. A discharger that can not comply immediately with effluent limitations specified to implement waste load allocations will be required to apply for an individual permit in order to demonstrate the need for a compliance schedule.
	If a POTW demonstrates that advanced treatment (necessitating long design and construction timeframes) will be required to meet final waste load allocations, the Regional Board will consider extending the implementation schedule to allow the POTW up to 10 years from the effective date of the TMDL to achieve compliance with the final WLAs.
	Permittees that hold individual NPDES permits and solely discharge storm water may be allowed (at Regional Board discretion) compliance schedules up to 10 years from the effective date of the TMDL to achieve compliance with final WLAs.
	General industrial storm water permits:
	The Regional Board will develop a watershed-specific general industrial storm water permit to incorporate waste load allocations.
	Dry-weather implementation
	Non-storm water flows authorized by Order No. 97-03 DWQ, or any successor order, are exempt from the dry-weather waste load allocation equal to zero. Instead, these authorized non-storm water flows shall meet the reach-specific concentration-based waste load allocations assigned to the "other NPDES permits". The dry-weather waste load allocation equal to zero applies to unauthorized non-storm water flows, which are prohibited by Order No. 97-03 DWQ.
	It is anticipated that the dry-weather waste load allocations will be implemented by requiring improved best management practices (BMPs) to eliminate the discharge of non-storm water flows. However, permit writers must provide adequate justification and documentation to demonstrate that specified BMPs are expected to result in attainment of the numeric waste load allocations.

Element	Key Findings and Regulatory Provisions
	Wet-weather implementation
	General industrial storm water permittees are allowed interim wet- weather concentration-based waste load allocations based on benchmarks contained in EPA's Storm Water Multi-sector General Permit for Industrial Activities. The interim waste load allocations apply to all industry sectors and apply for a period not to exceed ten years from the effective date of the TMDL.
	Interim wet-weather WLAs for general industrial storm water permittees (total recoverable metals)*
	$\frac{1}{Cd (\mu g/L)} \frac{1}{Cu (\mu g/L)} \frac{1}$
	$\frac{15.9}{15.9} = \frac{63.6}{81.6} = \frac{81.6}{117}$
	*Based on USEPA benchmarks for industrial storm water sector
	In the first five years from the effective date of the TMDL, interim waste load allocations will not be interpreted as enforceable permit conditions. If monitoring demonstrates that interim waste load allocations are being exceeded, the permittee shall evaluate existing and potential BMPs, including structural BMPs, and implement any necessary BMP improvements. It is anticipated that monitoring results and any necessary BMP improvements would occur as part of an annual reporting process. After five years from the effective date of the TMDL, interim waste load allocations shall be translated into enforceable permit conditions. Compliance with permit conditions may be demonstrated through the installation, maintenance, and monitoring of Regional Board-approved BMPs. If this method of compliance is chosen, permit writers must provide adequate justification and documentation to demonstrate that BMPs are expected to result in attainment of interim waste load allocations.
	The general industrial storm water permits shall achieve final wet- weather waste load allocations no later than 10 years from the effective date of the TMDL, which shall be expressed as NPDES water quality- based effluent limitations. Effluent limitations may be expressed as permit conditions, such as the installation, maintenance, and monitoring of Regional Board-approved BMPs if adequate justification and documentation demonstrate that BMPs are expected to result in attainment of waste load allocations.
	General construction storm water permits:
	Waste load allocations will be incorporated into the State Board general permit upon renewal or into a watershed-specific general permit developed by the Regional Board.
	Dry-weather implementation
	Non-storm water flows authorized by the General Permit for Storm Water Discharges Associated with Construction Activity (Water Quality Order No. 99-08 DWQ), or any successor order, are exempt from the dry-weather waste load allocation equal to zero as long as they

Element	Key Findings and Regulatory Provisions
	comply with the provisions of sections C.3.and A.9 of the Order No. 99-08 DWQ, which state that these authorized non-storm discharges shall be (1) infeasible to eliminate (2) comply with BMPs as described in the Storm Water Pollution Prevention Plan prepared by the permittee, and (3) not cause or contribute to a violation of water quality standards, or comparable provisions in any successor order. Unauthorized non-storm water flows are already prohibited by Order No. 99-08 DWQ.
	Wet-weather implementation
	Within seven years of the effective date of the TMDL, the construction industry will submit the results of BMP effectiveness studies to determine BMPs that will achieve compliance with the final waste load allocations assigned to construction storm water permittees. Regional Board staff will bring the recommended BMPs before the Regional Board for consideration within eight years of the effective date of the TMDL. General construction storm water permittees will be considered in compliance with final waste load allocations if they implement these Regional Board approved BMPs. All permittees must implement the approved BMPs within nine years of the effective date of the TMDL. If no effectiveness studies are conducted and no BMPs are approved by the Regional Board within eight years of the effective date of the TMDL, each general construction storm water permit holder will be subject to site-specific BMPs and monitoring requirements to demonstrate compliance with final waste load allocations.
	MS4 and Caltrans permits
	Applicable CTR limits are being met most of the time during dry weather, with episodic exceedances. Due to the expense of obtaining accurate flow measurements required for calculating loads, concentration-based permit limits may apply during dry weather. These concentration-based limits would be equal to dry-weather reach- specific numeric targets.
	Each municipality and permittee will be required to meet the storm water waste load allocations shared by the two MS4s and Caltrans permittees at the designated TMDL effectiveness monitoring points. A phased implementation approach, using a combination of non-structural and structural BMPs may be used to achieve compliance with the waste load allocations. The administrative record and the fact sheets for the MS4 and Caltrans storm water permits must provide reasonable assurance that the BMPs selected will be sufficient to implement the waste load allocations.
	The implementation schedule for the MS4 and Caltrans permittees consists of a phased approach. The watershed is divided into five jurisdictional groups based on the subwatersheds of the tributaries that drain to each reach of the river, as presented in Table 7-13-3. Each

Element	Key Findings and Regulatory Provisions		
	jurisdictional group shall achieve compliance in prescribed percentages of its subwatershed(s), with total compliance to be achieved within 22 years. Jurisdictional groups can be reorganized or subdivided upon approval by the Executive Officer.		
Seasonal Variations and Critical Conditions	Seasonal variations are addressed by developing separate waste load allocations for dry weather and wet weather.		
	For dry weather, critical flows for each reach are established from the long-term flow records (1988-2000) generated by stream gages located throughout the watershed and in selected reaches. The median dry-weather urban runoff plus the combined design capacity of the three major POTWs is selected as the critical flow since most of the flow is from effluent which results in a relatively stable dry-weather flow condition. In areas where there are no flow records, an area-weighted approach is used to assign flows to these reaches.		
	Wet-weather allocations are developed using the load-duration curve concept. The total wet-weather waste load allocation for wet weather varies by storm. Given this variability in storm water flows, no justification was found for selecting a particular sized storm as the critical condition.		
Compliance Monitoring and Special Studies	Effective monitoring will be necessary to assess the condition of the Los Angeles River and its tributaries and to assess the on-going effectiveness of efforts by dischargers to reduce metals loading to the Los Angeles River. Special studies may also be appropriate to provide further information about new data, new or alternative sources, and revised scientific assumptions. Below the Regional Board identifies the various goals of monitoring efforts and studies. The programs, reports, and studies will be developed in response to subsequent orders issued by the Executive Officer.		
	Ambient Monitoring		
	An ambient monitoring program is necessary to assess water quality throughout the Los Angeles River and its tributaries and the progress being made to remove the metals impairments. The MS4 and Caltrans storm water NPDES permittees in each jurisdictional group are jointly responsible for implementing the ambient monitoring program. The responsible agencies shall sample for total recoverable metals, dissolved metals, including cadmium and zinc, and hardness once per month at each ambient monitoring location at least until the TMDL is re-considered at year 5. The reported detection limits shall be below the hardness adjusted CTR criteria. Eight ambient monitoring points currently exist in the Los Angeles River and its tributaries as part of the City of Los Angeles Watershed Monitoring Program. These monitoring points could be used to assess water quality.		

Element	Key Findings and Regulatory Provisions		
	Ambient		
	Monitoring Points	Reaches and Tributaries	
	White Oak	LA River 6, Aliso Creek, McCoy Creek, Bell Creek	
	Avenue	Li raver o, raiso creek, meeoy creek, ben creek	
	Sepulveda Boulevard	LA River 5, Bull Creek	
	Tujunga LA River 4, Tujunga Wash Avenue		
	Colorado LA River 3, Burbank Western Channel, Verdugo Wash Boulevard		
	Figueroa Street	LA River 3, Arroyo Seco	
	Washington LA River 2 Boulevard		
	Rosecrans	LA River 2, Rio Hondo (gage just above Rio Hondo)	
	AvenueWillowLA River 1, Compton Creek (gage at Wardlow)Street		
	TMDL Effectiveness Monitoring		
	The MS4 and Caltrans storm water NPDES permittees in each jurisdictional group are jointly responsible for assessing progress in reducing pollutant loads to achieve the TMDL. Each jurisdictional group is required to submit for approval by the Executive Officer a coordinated monitoring plan that will demonstrate the effectiveness of the phased implementation schedule for this TMDL (See Table 7-13.2), which requires attainment of the applicable waste load allocations in prescribed percentages of each subwatershed over a 22-year period. The monitoring locations specified for the ambient monitoring program may be used as effectiveness monitoring locations.		
	The MS4 and Caltrans storm water NPDES permittees will be found to be effectively meeting dry-weather waste load allocations if the in- stream pollutant concentration or load at the first downstream monitoring location is equal to or less than the corresponding concentration- or load-based waste load allocation. Alternatively, effectiveness of the TMDL may be assessed at the storm drain outlet based on the waste load allocation for the receiving water. For storm drains that discharge to other storm drains, the waste load allocation will be based on the waste load allocation for the ultimate receiving water for that storm drain system. The MS4 and Caltrans storm water NPDES permittees will be found to be effectively meeting wet-weather waste load allocations if the loading at the downstream monitoring location is equal to or less then the wet-weather waste load allocation.		
	The general industrial storm water permit shall contain a model monitoring and reporting program to evaluate BMP effectiveness. A permittee enrolled under the general permit shall have the choice of conducting individual monitoring based on the model program or participating in a group monitoring effort. MS4 permittees are		

Element	Key Findings and Regulatory Provisions		
	encouraged to take the lead in group monitoring efforts for industrial facilities within their jurisdiction because compliance with waste load allocations by these facilities will in many cases translate to reductions in metals loads to the MS4 system.		
	The Tillman, LA-Glendale, and Burbank POTWs, and the remaining permitted discharges in the watershed will have effluent monitoring requirements to ensure compliance with waste load allocations.		
	Special Studies		
	The implementation schedule (see Table 7-13.2) allows time for special studies that may serve to refine the estimate of loading capacity, waste load and/or load allocations, and other studies that may serve to optimize implementation efforts. The Regional Board will re-consider the TMDL in the fifth year after the effective date in light of the findings of these studies. Studies may include:		
	• Refined flow estimates for the Los Angeles River mainstem and tributaries where there presently are no flow gages and for improved gaging of low-flow conditions.		
	• Water quality measurements, including a better assessment of hardness, water chemistry data (e.g., total suspended solids and organic carbon) that may refine the use of metals partitioning coefficients.		
	• Effects studies designed to evaluate site-specific toxic effects of metals on the Los Angeles River and its tributaries.		
	• Source studies designed to characterize loadings from background or natural sources		
	• Review of water quality modeling assumptions including the relationship between metals and total suspended solids as expressed in the potency factors and buildup and washoff and transport coefficients.		
	• Evaluation of aerial deposition and sources of aerial deposition.		
	• POTWs that are unable to demonstrate compliance with final waste load allocations must conduct source reduction audits within two years of the effective date of the TMDL.		
	• POTWs that will be requesting the Regional Board to extend their implementation schedule to allow for the installation of advanced treatment must prepare work plans, with time schedules to allow for the installation advanced treatment. The work plan must be submitted within four years from the effective date of the TMDL.		

 Table 7-13.2 Los Angeles River and Tributaries Metals TMDL: Implementation Schedule

Date	Action	
Effective date of TMDL	Regional Board permit writers shall incorporate waste load allocations into NPDES permits. Waste load allocations will be implemented through NPDES permit limits in accordance with the implementation schedule contained herein, at the time of permit issuance, renewal, or re-opener.	
4 years after effective date of the TMDL	Responsible jurisdictions and agencies shall provide to the Regional Board results of the special studies. POTWs that will be requesting the Regional Board to extend their implementation schedule to allow for the installation of advanced treatment must submit work plans.	
5 years after effective date of the TMDLs	The Regional Board shall reconsider this TMDL to re-evaluate the waste load allocations and the implementation schedule.	
	NPDES PERMITS (INCLUDING POTWS, OTHER MAJOR, /INOR, AND GENERAL PERMITS)	
Upon permit issuance, renewal, or re-opener	The non-storm water NPDES permits shall achieve waste load allocations, which shall be expressed as NPDES water quality-based effluent limitations specified in accordance with federal regulations and state policy on water quality control. Compliance schedules may allow up to 5 years in individual NPDES permits to meet permit requirements. Compliance schedules may not be established in general NPDES permits. If a POTW demonstrates that advanced treatment will be required to meet final waste load allocations, the Regional Board will consider extending the implementation schedule to allow the POTW up to 10 years from the effective date of the TMDL to achieve compliance with the final WLAs. Permittees that hold individual NPDES permits and solely discharge storm water may be allowed (at Regional Board discretion) compliance schedules up to 10 years from the effective date of the TMDL to achieve compliance with final WLAs.	
GENERA	L INDUSTRIAL STORM WATER PERMITS	
Upon permit issuance, renewal, or re-opener	The general industrial storm water permitees shall achieve dry- weather waste load allocations, which shall be expressed as NPDES water quality-based effluent limitations specified in accordance with federal regulations and state policy on water quality control. Effluent limitations may be expressed as permit conditions, such as the installation, maintenance, and monitoring of Regional Board- approved BMPs. Permittees shall begin to install and test BMPs to meet the interim wet-weather WLAs. BMP effectiveness monitoring will be implemented to determine progress in achieving interim wet- weather waste load allocations.	

Date	Action	
5 years after effective date of the TMDLs	The general industrial storm water permits shall achieve interim wet- weather waste load allocations, which shall be expressed as NPDES water quality-based effluent limitations. Effluent limitations may be expressed as permit conditions, such as the installation, maintenance, and monitoring of Regional Board-approved BMPs. Permittees shall begin an iterative BMP process including BMP effectiveness monitoring to achieve compliance with final waste load allocations.	
10 years after the effective date of TMDL	The general industrial storm water permits shall achieve final wet- weather waste load allocations, which shall be expressed as NPDES water quality-based effluent limitations. Effluent limitations may be expressed as permit conditions, such as the installation, maintenance, and monitoring of Regional Board-approved BMPs.	
GENERAL	CONSTRUCTION STORM WATER PERMITS	
Upon permit issuance, renewal, or re-opener	Non-storm water flows not authorized by Order No. 99-08 DWQ, or any successor order, shall achieve dry-weather waste load allocations of zero. Waste load allocations shall be expressed as NPDES water quality-based effluent limitations specified in accordance with federal regulations and state policy on water quality control. Effluent limitations may be expressed as permit conditions, such as the installation, maintenance, and monitoring of Regional Board-approved BMPs.	
Seven years from the effective date of the TMDL	The construction industry will submit the results of wet-weather BMP effectiveness studies to the Regional Board for consideration. In the event that no effectiveness studies are conducted and no BMPs are approved, permittees shall be subject to site-specific BMPs and monitoring to demonstrate BMP effectiveness.	
Eight years from the effective date of the TMDL	The Regional Board will consider results of the wet-weather BMP effectiveness studies and consider approval of BMPs no later than eight years from the effective date of the TMDL.	
Nine years from the effective date of the TMDL	All general construction storm water permittees shall implement Regional Board-approved BMPs.	
MS4 AND CALTRANS STORM WATER PERMITS		
15 months after the effective date of the TMDL	In response to an order issued by the Executive Officer, each jurisdictional group must submit a coordinated monitoring plan, to be approved by the Executive Officer, which includes both TMDL effectiveness monitoring and ambient monitoring. Once the coordinated monitoring plan is approved by the Executive Officer ambient monitoring shall commence within 6 months.	

Date	Action	
48 months after effective date of TMDL (Draft Report)54 months after effective date of TMDL (Final Report)	Each jurisdictional group shall provide a written report to the Regional Board outlining the how the subwatersheds within the jurisdictional group will achieve compliance with the waste load allocations. The report shall include implementation methods, an implementation schedule, proposed milestones, and any applicable revisions to the TMDL effectiveness monitoring plan.	
6 years after effective date of the TMDL	For Each jurisdictional group shall demonstrate that 50% of the group total drainage area served by the storm drain system is effective meeting the dry-weather waste load allocations and 25% of the group's total drainage area served by the storm drain system effectively meeting the wet-weather waste load allocations.	
14 years after effective date of the TMDL	Each jurisdictional group shall demonstrate that 75% of the group's total drainage area served by the storm drain system is effectively meeting the dry-weather WLAs.	
18 years after effective date of the TMDL	Each jurisdictional group shall demonstrate that 100% of the group's total drainage area served by the storm drain system is effectively meeting the dry-weather WLAs and 50% of the group's total drainage area served by the storm drain system is effectively meeting the wet-weather WLAs.	
22 years after effective date of the TMDL	F Each jurisdictional group shall demonstrate that 100% of the group's total drainage area served by the storm drain system is effectively meeting both the dry-weather and wet-weather WLAs.	

Jurisdictional Group	Responsible Jurisdictions & Agencies		Subwatershed(s)
1	Carson County of Los Angeles City of Los Angeles Compton Huntington Park Long Beach Lynwood Signal Hill Southgate Vernon		Los Angeles River Reach 1 and Compton Creek
2	Alhambra Arcadia Bell Bell Gardens Bradbury Carson Commerce Compton County of Los Angeles Cudahy Downey Duarte El Monte Glendale Huntington Park Irwindale La Canada Flintridge	Long Beach City of Los Angeles Lynwood Maywood Monrovia Montebello Monterey Park Paramount Pasadena Pico Rivera Rosemead San Gabriel San Marino Sierra Madre South El Monte South El Monte South Pasadena Southgate Temple City Vernon	Los Angeles River Reach 2, Rio Hondo, Arroyo Seco, and all contributing sub watersheds
3	City of Los Angeles County of Los Angeles Burbank Glendale La Canada Flintridge Pasadena		Los Angeles River Reach 3, Verdugo Wash, Burbank Western Channel
4-5	Burbank Glendale City of Los Angeles County of Los Angeles San Fernando		Los Angeles River Reach 4, Reach 5, Tujunga Wash, and all contributing subwatersheds
6	Calabasas City of Los Angeles County of Los Angeles Hidden Hills		Los Angeles River Reach 6, Bell Creek, and all contributing subwatersheds

Table 7-13.3 Los Angeles River and Tributaries Metals TMDL: Jurisdictional Groups