Los Angeles and Long Beach Harbors and San Pedro Bay Modeling

Long Beach, CA January 31, 2006

Presentation Outline

- Background
- Overview of Modeling
- Model Development
- Model and Data Coverage
- Some Preliminary Hydrodynamic Results
- Schedule for Remaining Task
- Discussion

Background

- Modeling Tools Are Being Developed to Support TMDL Implementation in Los Angeles Harbor, Dominguez Channel, LA River, and San Gabriel River
- Multiple Model Applications to Different Regions by Different Groups
- Model Applications Integrated by Use of Same Modeling Software System and Coordinated Data Sharing

303D Listings

					Fecal
Management Area	Metals	Pesticides	PCBS	PAHs	Coliform
Ballona Creek	V	V	V		1
Ballona Creek Estuary	V	1	\checkmark	\checkmark	V
Cabrillo Beach		V	V		1
Dominguez Channel	1	\checkmark	1	\checkmark	1
Long Beach Harbor Main Channel		V	V	V	
Los Angeles Fish Harbor		\checkmark	1	~	
Consolidated Slip	V	\checkmark	V	\checkmark	
Los Angeles Inner Harbor		\checkmark	~	\checkmark	
Los Angeles Harbor Main Channel	\checkmark	~	\checkmark	\checkmark	
Los Angeles Harbor SW Slip		~	~		
Los Angeles River Estuary	\checkmark	~	\checkmark		
Los Angeles River ¹	1				1
Los Cerritos Channel	\checkmark	1			~
Marina del Rey Harbor	V	V	V		1

Integration of Multiple Modeling Studies

- Dominguez Channel and Estuary Everest
- Los Angeles Harbor Tetra Tech
- San Gabriel River Estuary SCCWRP
- Everest and Tetra Tech Models Cover All of LA and LB Harbors and Near Shore Region of San Pedro Bay

Integration of Multiple Modeling Studies

- Tetra Tech Model Will Receive Loadings from Everest Dominguez Channel Model
- Tetra Tech Model Can Provide Boundary Conditions for SCCWRP San Gabriel Estuary Model and Receive Loadings
- Since Models Are Based On Same Software System, They Can Be Collapsed Into Single Application if Required.

Modeling Process

- Model Selection
 - EFDC for All Receiving Water Applications
- Data Assembly and Evaluation
- Collection of Additional Field Data as Required
- Model Configuration or Setup
- Model Calibration
- Model Review
- Scenario Simulations to Support TMDL Implementation

Modeling System Components

- Watershed Model Provides Non-Point Source Load to Water Body
- Hydrodynamics- Provides Physics to Describe the Movement of Contaminants
- Eutrophication Model Describes the Carbon, Nitrogen and Phosphorous Cycles and the Impact of Nutrients
- Sediment Transport Model Movement of Particulate Material Including Deposition and Resuspension
- Contaminant Transport and Fate Model Describes Transport and Fate of Metals and Organic Compounds Having Tendency to Adsorb to Sediments

San Pedro Bay Watersheds

EFDC Modeling System

- Public Domain, Open Source Code
- Maintained by Tetra Tech with Support from US EPA
- More than 100 Applications Worldwide
- 3-D Hydrodynamics with Coupled Salinity and Temperature Transport
- Directly Coupled Water Quality-Eutrophication Component
- Sediment-Contaminant Transport and Fate Components
- Extensive Pre and Post Processing

EFDC Harbor Applications

- Hampton Roads, Virginia Channel Deepening, Shoreline Modification
- Cape Fear, Wilmington, NC NPDES
- Charleston Harbor TMDL
- Savannah River TMDL, Channel Deepening
- St. Johns River TMDL and NOAA Ports System
- Mobile Bay TMDL
- San Diego Bay TMDL
- Portland, OR Contaminated Sediment Superfund
- Elliott Bay, Seattle Contaminated Sediment

Development of the LA and LB Harbors and San Pedro Bay Model

- Model Spatial Coverage and Grid
- Data Coverage
- Calibration Approach
- Preliminary Results

- Multi-Domain with Focused Resolution
- Allows Sub-Sets of Grid to Run Separately
- Base Configuration Has 2140 Horizontal Cells
- Fine Version with 8640 Horizontal Cells to Study Localized Problems

East, Km

Preliminary Bathymetry

æ

Hydrodynamic Data Coverage and Hydrodynamic Calibration

- Limited Direct Physical Data
 - Tide Gauges
 - Current Meters
- Salinity Monitoring Data
- Calibration to Tide Gauge and Salinity Observations After High Flow EventsPreliminary Results

NOAA Ports System Data Stations

Salinity Monitoring Stations, LA Harbor

River Flows During a Salinity Transport Calibration Period

Salinity: Dec 04-Jan 05

Sediment and Contaminant Transport Modeling Approach

- Major Problem Is Initialization of Bed Conditions
- Sediment Physical Properties
 - Sediment Size and Type
 - Void Ratio or Water Content
 - Surface or Profile Data
- Resuspension Potential
 - Site Specific or Literature Values
- Prop Wash and Wake Effects

Sediment and Contaminant Transport Modeling Approach

- Contaminant Properties in Bed
 Initial Contaminant Levels
 - Particulate Dissolved Organic Carbon
 Levels Desirable with respect to
 Hydrophobic Organics
 - Site Specific or Literature Values for Partition Coefficients

Sediment and Contaminant Transport Modeling Approach

- Initialize Water Column Concentrations from Monitoring Data
- Contaminant Loading Estimates
- Calibration to Water Column and Bed Monitoring Data

Status and Schedule

- Hydrodynamic Model Currently Nearing Calibration
 - Complete by 31 March '06
- Sediment and Contaminant Transport and Fate Model
 - Preliminary Model Setup in Progress
 - Calibration Completed During Fall '06
- Calibration to Water Column and Bed Monitoring Data

Questions and Discussion

