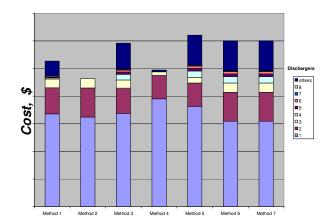
TMDL Economic Allocation Model BRIEFING

John J. Marano, Ph.D. Consultant to National Energy Technology Laboratory

Dominguez Channel/LA & LB TMDL Technical Advisory Committee Meeting June 28, 2006



The TMDL Economic Allocation Model *What could it be used for ?*

• Estimate total cost of implementing TMDLs

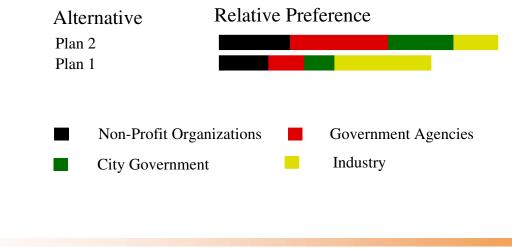
- As with all cost estimates, accuracy is related to level of project definition
- Estimate distribution of costs to various sources and/or responsible parties
 - Examine economic impact of various approaches to allocation
 - how to achieve low cost solutions
 - input to LLNL Stakeholder Model ("fairness" is a judgment)

The TMDL Economic Allocation Model *What could it be used for ?*

- Sensitivity Analysis
 - Estimate incremental costs to achieve various levels of TMDL compliance

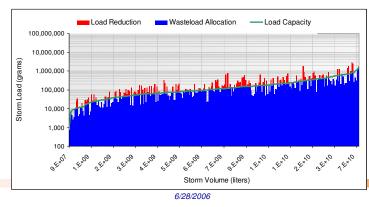
?TMDL = ?WLA + ?LA + ?MOS

-?\$s for ?benefit


• Might be able to examine schedule & effectiveness issues

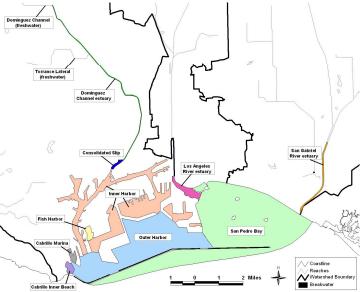
The TMDL Economic Allocation Model *What it can't or shouldn't be used for ?*

- Not hydrology model but cost estimating tool
 - Economics not physical / chemical / biological sciences
- Does not address what TMDLs should be set at
 - Allocation loads not TMDL targets
- Does not quantify Stakeholder values
 - That's the Stakeholder Model

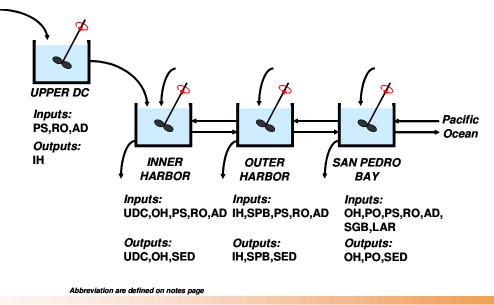


• Data driven model

-What, How Much, When, Where, How To, Cost To

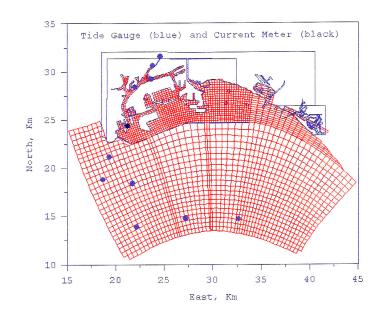

- Identify pollutant & TMDL target value
 - e.g. heavy metal, µg/l max, kg/year max
 - can examine both weight or concentration based targets
- Dry or wet weather, rain event
 - can examine various averages

- Data driven model
 - What, How Much, When, Where, How To, Cost To
- Identify location of TMDLs
 - Water Body aggregation
 - least flexibility once model is set up



• Identify sources/sinks for WB

- Aggregation of sources


- e.g. discrete individual point (probably large)
- e.g aggregates non-point, all permit holders of a certain type, land-use aggregates, atm deposition

6/28/2006

- Identify total flow and loadings for sources
 - from hydrology data and linkage analysis
 - aggregate these data

• Data driven model

-What, How Much, When, Where, How To, Cost To

- Identify options for reducing loadings
 - e.g. BMPs, technologies, etc.
- Estimate cost & effectiveness
 - Existing or similar technology, best/worst cases
 - Literature data
 - Stakeholder/others estimates (interviews)
 - Vendor quotes

Points of Contact

John Marano

Consultant to National Energy Technology Laboratory 1065 South Lake Dr. Gibsonia, PA 15044 4724-625-5466 <u>marano@zoominternet.net</u>

Jeffery Stewart / Tom Baginski

Project Engineer: Systems and Decision Sciences Section 7000 East Avenue L-644 Lawrence Livermore National Laboratory Livermore, CA 94550 925-422-3752 stewart28@llnl.gov

