

ALAMITOS BAY MARINA BASINS 2 AND 3 MAINTENANCE DREDGING

Prepared for

City of Long Beach
Department of Parks, Recreation, and Marine
2760 Studebaker Road
Long Beach, California 90815

Prepared by

Anchor QEA, LLC 27201 Puerta Real, Suite 350 Mission Viejo, California 92691

May 2014

TABLE OF CONTENTS

1	IN	TRO:	DUCTION	1
	1.1	Pre	roject Summary	1
	1.2	То	otal Volume Approved Under Alamitos Bay Permits	2
	1.3	Oł	bjectives of the Sediment Investigation	3
2	M	ETHO	ODS	4
	2.1	Sa	ampling Program for Sediment Core Collection and Handling	4
	2.2		hysical and Chemical Analyses	
	2.	2.1	Sediment	
	2.	2.2	Tissue Residues	5
	2.3	Bio	iological Testing	7
3	RF	SUL	TS	9
	3.1		ample Collection and Handling	
	3.2		hysical and Chemical Analyses of Sediment	
	3.	2.1	Reference and Composite Sediment	
		3.2.1		
		3.2.1	1.2 Basin 2	18
		3.2.1	1.3 Basin 3	18
	3.	2.2	Additional Analysis of PCBs	19
	3.3	Bio	iological Testing	24
	3.	3.1	Solid Phase Testing	24
		3.3.1	1.1 Amphipod Mortality Bioassay	24
		3.3.1	1.2 Polychaete Mortality Bioassay	24
	3.	3.2	Suspended Particulate Phase Testing	25
		3.3.2	2.1 Bivalve Larval Development Bioassay	25
		3.3.2	2.2 Mysid Shrimp Bioassay	27
		3.3.2	2.3 Juvenile Fish Bioassay	28
	3.	3.3	Bioaccumulation Potential Testing	30
		3.3.3		
		3.3.3	,	
	3.4	Pr	rediction of Water Column Toxicity During Disposal	31

3.4.1	Results of STFATE Modeling	33
3.5 Cł	nemical Analysis of Tissue Residues	
3.5.1	Comparison of Tissue Burdens to U.S. Food and Drug Administration Action	n
	Levels	35
3.5.2	Comparison of Tissue Burdens to Reference Sediment Tissue Burdens	35
3.5.2	2.1 Macoma nasuta	46
3.5.2	2.2 Nereis virens	47
3.5.3	Comparison of Tissue Burdens to Environmental Residue Effects Database.	48
3.6 Qı	aality Assurance/Quality Control	48
3.6.1	Physical and Chemical Analyses of Sediment	48
3.6.2	Chemical Analysis of Tissue Residues	49
3.6.3	Biological Testing	50
4 DISCUS	SSION	52
5 CONCI	LUSIONS	53
	ENCES	
		5 1
List of Tal	oles	
Table 1	Proposed Maintenance Dredging Volumes	2
Table 2	Total Project Maintenance Dredge Volumes Summary	
Table 3	Summary of Analysis Performed on Basins 2 and 3 Tissue Samples	
Table 4	Summary of Biological Testing Performed on Alamitos Basins 2 and 3	
	Sediment Samples	7
Table 5	Station Coordinates, Mudline Elevations, Estimated Penetration, and	
	Retrieved Core Lengths for Each Sampling Station	10
Table 6	Sediment Physical and Chemical Results for Composite Sediment Sample	
	from Basins 2 and 3	
Table 7	Sediment PCB Results for Individual Stations within Basins 2 and 3	
Table 8	Sediment PCB Re-Analysis of Composite Samples from Basins 2 and 3	21
Table 9	Summary of Solid Phase Test Results Using Ampelisca abdita	
Table 10	Summary of Solid Phase Test Results Using Neanthes arenaceodentata	25

Table 11	Summary of Suspended Particulate Phase Test Results Using Mytilus	
	galloprovincialis	26
Table 12	Summary of Suspended Particulate Phase Test Results Using Americamysis	
	bahia	28
Table 13	Summary of Suspended Particulate Phase Test Results Using Menidia	
	beryllina	29
Table 14	Summary of Bioaccumulation Potential Test Results Using ${\it Macoma\ nasuta}$	30
Table 15	Summary of Bioaccumulation Potential Test Results Using Nereis virens	31
Table 16	STFATE Model Input Parameters	32
Table 17	STFATE Modeling Results	34
Table 18	Results of Chemical Analyses of <i>Macoma nasuta</i> Tissue Residues	36
Table 19	Results of Chemical Analyses of <i>Nereis virens</i> Tissue Residues	38
Table 20	Summary of Statistically Elevated <i>Macoma nasuta</i> Tissue Residues	40
Table 21	Summary of Statistically Elevated <i>Nereis virens</i> Tissue Residues	43

List of Figures

Figure 1	Vicinity Map
Figure 2	Overview of Work at Alamitos Bay Marina
Figure 3	Basin 2 Dredge Units and Core Sampling Locations
Figure 4	Basin 3 Dredge Units and Core Sampling Locations
Figure 5	Total PCB Concentrations within Basin 2
Figure 6	Total PCB Concentrations within Basin 3

List of Appendices

Appendix A	Field Logs and Core Photographs
Appendix B	Chemistry Laboratory Reports
Appendix C	Biological Laboratory Report
Appendix D	STFATE Modeling
Appendix E	Statistical Analyses of Tissue Concentrations
Appendix F	Data Validation Reports

LIST OF ACRONYMS AND ABBREVIATIONS

°C degrees Celsius

μg/kg microgram per kilogram

ASTM American Society for Testing and Materials
Calscience Environmental Laboratories, Inc.

City City of Long Beach

cy cubic yard

BMP best management practice
BP bioaccumulation potential

DDT dichlorodiphenyltrichloroethane

DU dredge unit

EC₅₀ median effective concentration

EET effluent elutriate test

ERED Environmental Residue-Effects Database

ERL effects range low

ERM effects range median

FDA U.S. Food and Drug Administration

ITM Evaluation of Dredged Material Proposed for Discharge in Waters

of the U.S. – Testing Manual

LC50 median lethal concentration LCS laboratory control sample

LCSD laboratory control sample duplicate
LPC limiting permissible concentration

MDL method detection limit
mg/kg milligram per kilogram
mg/L milligram per liter
MLLW mean low lower water

MS matrix spike

MSD matrix spike duplicate

OTM Evaluation for Dredged Material Proposed for Ocean Disposal –

Testing Manual

PAH polycyclic aromatic hydrocarbon

PCB polychlorinated biphenyl

Port of Long Beach

QA/QC quality assurance/quality control

RPD relative percent difference

RL reporting limit

SAP Sampling and Analysis Plan: Alamitos Bay Marina Basins 2 and 3

Maintenance Dredging

SAR Sampling and Analysis Report

SCCWRP Southern California Coastal Water Research Project

SP solid phase

SPP suspended particulate phase

TOC total organic carbon

USEPA U.S. Environmental Protection Agency

1 INTRODUCTION

As part of the Alamitos Bay Marina rehabilitation project, the City of Long Beach (City) is conducting overall maintenance and reconstruction of Alamitos Bay Marina, located in Long Beach, California (Figure 1). The overall reconstruction of Alamitos Bay Marina is a multiphase, multi-year effort. While the entire rehabilitation project includes dredging Basins 1 through 7, this Sampling and Analysis Report (SAR) focuses solely on Basins 2 and 3 (Figure 2). The City proposes maintenance dredging within Basins 2 and 3 to restore the original design depths. Dredging is needed to improve navigation, ensure boater safety, provide adequate access for the boating public, and allow for associated improvements in marine facilities, including changes in slip layouts and designs. Proposed dredged material was previously characterized and permitted for ocean disposal at LA-2, the U.S. Environmental Protection Agency (USEPA)-designated offshore disposal site (Weston 2007a, 2007b). Dredging permits have been renewed, and the City would now like to implement the planned program at Basins 2 and 3. Data from the previous investigation are not recent enough for the previous suitability determination to remain valid; therefore, a re-evaluation is required to confirm suitability for ocean disposal. A Tier I evaluation with confirmatory physical and chemical analyses was performed to demonstrate that sediment chemical characteristics in the proposed dredge areas are similar to the previous investigation and, therefore, are still suitable for ocean disposal. After a review of current chemical concentrations and a consultation with the USEPA, the material was determined to be different enough to require a new suitability evaluation. A full Tier III evaluation for ocean disposal was performed to determine suitability for placement at LA-2. This SAR summarizes the sediment sampling event, provides data results, and proposes recommendations for suitability determinations.

1.1 Project Summary

Maintenance dredging is planned within Basins 2 and 3 to a depth of -10 feet mean lower low water (MLLW), plus 2 feet of overdepth allowance (1 foot paid and 1 foot unpaid). The total volume of material proposed for dredging is estimated to be 148,000 cubic yards (cy), consisting of 69,900 cy above project depth and 78,100 cy of allowable overdepth. Table 1 summarizes the proposed maintenance dredging volumes for each basin. Dredged material volume estimates for Basins 2 and 3 are based on condition surveys completed by Gahagan &

Bryant Associates, Inc., in February and December 2013, respectively. Four dredge units (DUs) were identified for the purpose of sampling and analysis activities, which include two DUs for each basin (ABM-B2-DU1, ABM-B2-DU2, ABM-B3-DU1, and ABM-B3-DU2). Existing bathymetric conditions and DU boundaries for Basins 2 and 3 are presented in Figures 3 and 4, respectively.

Table 1
Proposed Maintenance Dredging Volumes

Dredge Unit	Project Depth (feet MLLW)	Estimated Volume to Project Depth (cy)	2 Feet of Allowable Overdepth Volume (cy)	Total Volume (cy)
Basin 2	L		· · · · · · · · · · · · · · · · · · ·	· · · · · ·
ABM-B2-DU1	-10	25,100	21,200	46,300
ABM-B2-DU2	-10	23,900	26,100	50,000
Totals for Basin 2	-	49,000	47,300	96,300
Basin 3				
ABM-B3-DU1	-10	9,000	12,850	21,850
ABM-B3-DU2	-10	11,900	17,950	29,850
Totals for Basin 3	-	20,900	30,800	51,700
Totals for Basins 2 and 3	-	69,900	78,100	148,000

Notes:

cy= cubic yard

DU = dredge unit

MLLW = mean lower low water

1.2 Total Volume Approved Under Alamitos Bay Permits

The estimated dredge volume of Basin 2 exceeds the permitted volume of 89,900 cy by 6,400 cy. This sampling program was designed to characterize the full volume of 96,300 cy; however, the volume dredged will not exceed the permitted volume of 89,900 cy. The estimated dredge volume of Basin 3 is less than the permitted volume of 55,900 cy by 4,200 cy. Table 2 includes a compilation of total project volumes, either completed or planned on the project. Data for completed basins, combined with estimated volumes for Basins 2 and 3 indicate that the City is approximately 33,197 cy below the total permitted

volume, assuming all material is removed from Basin 3 and the total permitted volume is removed from Basin 2.

Table 2

Total Project Maintenance Dredge Volumes Summary

Basin	Completion/Planned Date	Permitted Dredge Volume (cy)	Completed/Planned Dredge Volume (cy)
4	Completed Fall 2011	65,300	42,565
1	Completed Summer 2012	74,800	69,690
5	Completed Winter 2013	3,870	2,718
2	Planned Fall 2014	89,900	< 89,9001
3	Planned Fall 2014	55,900	~ 51,700
7	TBD	< 2,100	
6 N/S	TBD	< 16,350	
	•	308,220	
	Total	275,023	
		33,197	

Notes

cy = cubic yard

TBD = to be determined

1.3 Objectives of the Sediment Investigation

The purpose of this sediment investigation was to reconfirm the suitability of the proposed dredged material for ocean disposal. Confirmatory physical and chemical analyses indicated that conditions were not similar to the previous evaluation; therefore, a full Tier III evaluation was performed to determine suitability. If suitable, dredged material will be placed at LA-2. Testing for ocean disposal included physical, chemical, and biological analyses in accordance with guidelines specified in the *Evaluation for Dredged Material Proposed for Ocean Disposal – Testing Manual* (OTM; USEPA/USACE 1991) and the *Evaluation of Dredged Material Proposed for Discharge in Waters of the U.S. – Inland Testing Manual* (ITM; USEPA/USACE 1998).

¹ Estimated volume based on 2013 bathymetry is 96,300 cy; however, actual volume dredged will not exceed permitted volume.

2 METHODS

This section presents a summary of methods and procedures used to characterize sediments from Basins 2 and 3.

2.1 Sampling Program for Sediment Core Collection and Handling

All sample collection, handling, and processing procedures were implemented in accordance with the *Sampling and Analysis Plan: Alamitos Bay Marina Basins 2 and 3 Maintenance Dredging* (SAP; Anchor QEA 2014). Sediment cores were collected using an electrically powered vibracore at 22 stations (Figures 3 and 4). Sampling was performed from a barge equipped with a tripod, moonpool, and winch for sample collection. The vibracore was deployed and recovered through the moonpool. The sampling program was designed to evaluate proposed dredged material to a depth of -10 feet MLLW, plus 2 feet of allowable overdepth.

Sediment cores were processed on the vessel in accordance with Table 6 of the SAP (Anchor QEA 2014). Four composite sediment samples (B2-DU1-COMP, B2-DU2-COMP, B3-DU1-COMP, and B3-DU2-COMP) were created for physical, chemical, and biological analyses. Sediments from each station to the project depth plus overdepth, as well as the z layer (-12 to -12.5 feet MLLW), were archived for potential analysis. Samples were stored in coolers with ice and picked up by Calscience Environmental Laboratories, Inc. (Calscience), located in Garden Grove, California. Proper chain-of-custody procedures were followed.

Reference material was collected by Seaventures Inc., at the LA-2 reference site using a pipe dredge. Site water was collected from Basins 2 and 3 in low-density polyethylene cubitainers.

2.2 Physical and Chemical Analyses

2.2.1 Sediment

Composite sediment samples and reference material were submitted for analysis of total solids, grain size, ammonia, sulfides, total organic carbon (TOC), metals, polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides, polychlorinated biphenyl (PCB) congeners,

organotins, and pyrethroids. Based on the presence of elevated total PCB concentrations in composite samples, individual core samples from each station were submitted for analysis of PCB congeners. PCBs included the Southern California Coastal Water Research Project (SCCWRP) list of 41 congeners used for the Bight '08 Regional Monitoring Program (Schiff et al. 2011), which is the same list used by USEPA for dredge material evaluations in Southern California. Analytical methods, target method detection limits (MDLs), and reporting limits (RLs) are presented in the SAP (Anchor QEA 2014). Results of chemical analyses were compared to effects range low (ERL) and effects range median (ERM) values developed by Long et al. (1995) to aid in data interpretation with the biological tests.

2.2.2 Tissue Residues

Chemical analysis of tissue residues was conducted to determine the bioaccumulation of sediment contaminants. Based on results of sediment chemistry, a subset of chemicals was approved for analysis by USEPA. Tissue samples were analyzed for lipids, mercury, dichlorodiphenyltrichoroethanes (DDTs), chlordane, and PCBs (Table 3). Composite samples from each replicate were analyzed separately. Analytical methods and target MDLs and RLs for tissues (reported in wet weight) are presented in the SAP (Anchor QEA 2014).

Table 3
Summary of Analysis Performed on Basins 2 and 3 Tissue Samples

Sample	Tissue Analysis
Time Zero (T ₀)	Lipids, Mercury, DDTs, Chlordane, PCBs
LA2-REF	Lipids, Mercury, DDTs, Chlordane, PCBs
B2-DU1-COMP	Lipids, Mercury, DDTs, PCBs
B2-DU2-COMP	Lipids, Mercury, DDTs, PCBs
B3-DU1-COMP	Lipids, Mercury, DDTs, Chlordane, PCBs
B3-DU2-COMP	Lipids, Mercury, DDTs, Chlordane, PCBs

Notes:

DDTs = dichlorodiphenyltrichoroethanes

PCBs = polychlorinated biphenyls

Results of chemical analysis of tissue residues were initially compared against applicable Food and Drug Administration (FDA) action levels for poisonous or deleterious substances in fish and shellfish for human food, when such levels have been set. In the absence of action levels, or if tissue contaminant concentrations were less than action levels, results were statistically compared to tissue concentrations of organisms exposed to reference sediment in accordance with Appendix D of the ITM (USEPA/USACE 1998). Tissue organic chemical concentrations were normalized to lipid concentrations prior to analysis. Data were log-transformed and assessed for normality using the Shapiro-Wilk test or Kolmogorov's D test. Homogeneity of variance was assessed using Levene's test. Log-normally distributed data were evaluated using analysis of variance and Dunnett's multiple comparison tests (if applicable). Non-normally distributed data were assessed using the non-parametric Wilcoxon/Kruskal-Wallis tests and non-parametric Steel multiple comparisons test (if applicable).

No statistical analysis was performed on chemistry data if both project area data and reference data were non-detects or if the mean concentration of the project area sample was less than the mean concentration in the reference sample. For situations in which more than one replicate from the project area was non-detect, estimated data values were calculated based on a symmetrical breakdown of the data range and in such a way that the mean of the estimates centered around a value one-half of the detection limit. This statistical manipulation of data was required to generate means and variances needed to compare project area data to reference data. This data analysis procedure is one of three recommended approaches described in Appendix D of the ITM (USEPA/USACE 1998).

If tissue concentrations of organisms exposed to test sediment were statistically elevated compared to organisms exposed to reference sediment, a weight-of-evidence approach was used. This approach included a comparison to residue-effects values provided in the Environmental Residue-Effects Database (ERED; USACE/USEPA 2010) to determine whether toxic effects could be expected at concentrations measured in tissue of exposed organisms.

2.3 Biological Testing

Biological testing was conducted to determine suitability of proposed dredged material for ocean disposal at LA-2. Testing included two solid phase (SP) tests, three suspended particulate phase (SPP) tests, and two bioaccumulation potential (BP) tests, as specified in Table 4. All testing was performed by Nautilus Environmental in San Diego, California. Four composite samples and reference material were submitted for testing. Control samples were tested with each species to evaluate test acceptability. All testing was performed in accordance with OTM (USEPA/USACE 1991) and ITM (USEPA/USACE 1998) guidelines. Test methods, conditions, and acceptability criteria are presented in the SAP (Anchor QEA 2014).

Table 4
Summary of Biological Testing Performed on Alamitos Basins 2 and 3 Sediment Samples

Test	Or	ganism	Reference		Reference	
Type	Туре	Taxon	Sediment	Control Material	Toxicant Test	
CD	Amphipod Ampelisca abdita		LA-2	Native or clean sediment	Cadmium and ammonia	
SP	Polychaete Neanthes arenaceodentata		LA-2	Native or clean sediment	Cadmium	
	Bivalve larvae	Mytilus galloprovincialis	N/A	Dilution water	Ammonia	
SPP	Juvenile fish	Menidia beryllina	N/A	Dilution water	Copper	
	Mysid shrimp	Americamysis bahia	N/A	Dilution water	Copper	
BP	Bivalve	Macoma nasuta	LA-2	Native or clean sediment	N/A	
RP	Polychaete	Nereis virens	LA-2	Native or clean sediment	N/A	

Notes:

BP = bioaccumulation potential

N/A = not applicable

SP = solid phase

SPP = suspended particulate phase

Interstitial ammonia concentrations were measured on project sediments prior to testing. The ammonia concentration in B3-DU1-COMP (32.0 milligrams per liter [mg/L]) exceeded the recommended threshold for *Ampelisca abdita* (30 mg/L; USEPA/USACE 1998). Test sediment was purged to reduce ammonia concentrations prior to testing by performing daily seawater exchanges per ITM guidance. The test was initiated following this acclimation process when interstitial ammonia concentrations met the recommended threshold. In addition, a water-only ammonia reference toxicant test was conducted concurrently with the amphipod test to evaluate the contribution of elevated ammonia concentrations on test organism survival. An ammonia reference toxicant test was also run concurrently with the bivalve larval development bioassay due to the sensitivity of *Mytilus galloprovincialis* to elevated ammonia concentrations.

3 RESULTS

3.1 Sample Collection and Handling

Sediment cores were collected between February 3 and 6, 2014. Cores were collected from 22 stations using a vibracore (Figures 3 and 4). Two cores were required from each station to obtain sufficient volume for analysis.

Sediment cores were collected to the target core length, unless refusal was encountered. If refusal was encountered prior to the target sampling depth, the station was moved slightly, and collection was attempted again. Multiple stations were slightly moved due to limited access (e.g., docked vessels). Within Basin 2, all cores were collected to the target sampling depth. Within Basin 3, all cores were collected to the target sampling depth, except for B3-DU1-04 and B3-DU1-05. At both stations, refusal was encountered due to substantial shells. Station locations were slightly moved, and refusal was encountered again. After multiple attempts, the two longest cores from each station were retained for analysis. Z-layer depths were not achieved; therefore, the bottom 0.5 foot of each core was archived. Station coordinates, mudline elevation, estimated penetration, and retrieved core lengths for each station are summarized in Table 5. Field logs and photographs are provided in Appendix A.

3.2 Physical and Chemical Analyses of Sediment

Reference and composite sediment samples were analyzed for the physical and chemical parameters specified in in Table 7 of the SAP (Anchor QEA 2014). Based on composite results, individual core samples were submitted for analysis of PCB congeners. Results of physical and chemical analyses of sediment samples are presented below. MDLs, RLs, and raw data for the analyses are presented in the laboratory reports in Appendix B.

3.2.1 Reference and Composite Sediment

Results of physical and chemical analyses of reference and composite sediment samples from Basins 2 and 3 are presented in Table 6. All results are expressed in dry weight unless otherwise indicated.

Table 5
Station Coordinates, Mudline Elevations, Estimated Penetration, and Retrieved Core Lengths for Each Sampling Station

Chabian ID	Attornat	1 - 4:4 - 4 - 1	1 1 - 1	Mudline Elevation	Estimated Penetration	Retrieved Core Length	Core Length Analyzed	Core Length Archived for Z Layer	G
Station ID	Attempt	Latitude ¹	Longitude ¹	(feet MLLW)	(feet)	(feet)	(feet)	(feet)	Comments
B2-DU1-01	1	33° 45.013'	118° 06.653'	-7.7	6.0	4.8	4.3	0.5	
B2-DU1-01	2	33° 45.013'	118° 06.653'	-7.7	6.0	4.3	4.3	0.0	
B2-DU1-02	1	33° 45.069'	118° 06.718'	-7.7	7.0	5.6	4.3	0.5	
B2-DU1-02	2	33° 45.069'	118° 06.718'	-7.7	6.0	4.3	4.3	0.0	
B2-DU1-03	1	33° 45.062'	118° 06.652'	-7.6	7.3	6.3	4.4	0.5	
B2-DU1-03	2	33° 45.062'	118° 06.652'	-7.6	6.1	4.7	4.4	0.0	
B2-DU1-04	1	33° 45.059'	118° 06.600'	-7.7	6.2	5.3	4.3	0.5	
B2-DU1-04	2	33° 45.059'	118° 06.600'	-7.7	6.8	5.3	4.3	0.0	
B2-DU1-05	1	33° 45.081'	118° 06.630'	-6.5	7.3	6.0	5.5	0.5	Refusal
B2-DU1-05	2	33° 45.081'	118° 06.630'	-6.5	7.2	5.5	5.5	0.0	
B2-DU2-01	1	33° 45.083'	118° 06.595'	-7.4	6.9	5.6	4.6	0.5	Refusal
B2-DU2-01	2	33° 45.083'	118° 06.595'	-7.4	6.5	4.8	4.6	0.0	
B2-DU2-02	1	33° 45.116'	118° 06.581'	-7.4	7.0	5.1	4.6	0.5	
B2-DU2-02	2	33° 45.116'	118° 06.581'	-7.4	6.7	4.6	4.6	0.0	
B2-DU2-03	1	33° 45.137'	118° 06.550'	-8.5	6.3	3.5	3.5	0.0	
B2-DU2-03	2	33° 45.137'	118° 06.550'	-8.5	4.2	2.0	0.0	0.0	Refusal
B2-DU2-03	3	33° 45.138'	118° 06.552'	-8.8	6.2	4.2	3.2	0.5	Moved due to refusal on Attempt 2.
B2-DU2-04	1	33° 45.198'	118° 06.587'	-8.1	6.5	5.0	3.9	0.5	
B2-DU2-04	2	33° 45.198'	118° 06.587'	-8.1	6.0	4.3	3.9	0.0	
B2-DU2-05	1	33° 45.137'	118° 06.470'	-5.4	2.5	3	0.0	0.0	Moved due to docked vessel; refusal

Station ID	Attempt	Latitude ¹	Longitude ¹	Mudline Elevation (feet MLLW)	Estimated Penetration (feet)	Retrieved Core Length (feet)	Core Length Analyzed (feet)	Core Length Archived for Z Layer (feet)	Comments
B2-DU2-05	2	33° 45.140'	118° 06.476'	-6.4	3.7	3	0.0	0.0	Moved due to refusal on Attempt 1; refusal
B2-DU2-05	3	33° 45.145'	118° 06.478'	-8.0	6.1	5.0	4.0	0.5	Moved due to refusal on Attempt 2; refusal
B2-DU2-05	4	33° 45.145'	118° 06.478'	-8.0	6.2	4.0	4.0	0.0	
B3-DU1-01	1	33° 45.380'	118° 06.735'	-8.8	5.4	4.7	3.2	0.5	
B3-DU1-01	2	33° 45.380'	118° 06.735'	-8.8	5.2	4.2	3.2	0.0	
B3-DU1-02	1	33° 45.358'	118° 06.710'	-8.7	5.7	4.1	3.3	0.5	Refusal
B3-DU1-02	2	33° 45.358'	118° 06.710'	-8.7	5.4	4.0	3.3	0.0	
B3-DU1-03	1	33° 45.304'	118° 06.748'	-9.4	5.2	4.3	2.6	0.5	Moved due to docked vessels
B3-DU1-03	2	33° 45.304'	118° 06.748'	-9.4	4.7	3.6	2.6	0.0	
B3-DU1-04	1	33° 45.281'	118° 06.742'	-5.8	4.9	3.3	3.3	Not Collected ²	Moved due to docked vessels; refusal
B3-DU1-04	2	33° 45.283'	118° 06.742'	-7.8	4.2	3.0	3.0	0.0	Moved due to refusal on Attempt 1; refusal
B3-DU1-04	3	33° 45.285'	118° 06.738'	-7.7	3.7	1.5	0.0	0.0	Moved due to refusal on Attempt 2; refusal
B3-DU1-05	1	33° 45.273'	118° 06.714'	-6.9	6.3	5.0	5.0	Not Collected ²	Moved due to docked vessels; refusal
B3-DU1-05	2	33° 45.273'	118° 06.714'	-6.9	6.2	3.6	0.0	0.0	Refusal
B3-DU1-05	3	33° 45.273'	118° 06.715'	-6.8	6.4	4.5	4.5	0.0	Moved due to refusal on Attempt 2; refusal
B3-DU1-06	1	33° 45.279'	118° 06.671'	-8.9	5.6	4.6	3.1	0.5	Moved due to docked vessels; refusal
B3-DU1-06	2	33° 45.279'	118° 06.671'	-8.9	5.1	4.0	3.1	0.0	

Station ID	Attempt	Latitude ¹	Longitude ¹	Mudline Elevation (feet MLLW)	Estimated Penetration (feet)	Retrieved Core Length (feet)	Core Length Analyzed (feet)	Core Length Archived for Z Layer (feet)	Comments
B3-DU1-07	1	33° 45.255'	118° 06.670'	-8.2	6.5	5.0	3.8	0.5	Moved due to docked vessels
B3-DU1-07	2	33° 45.255'	118° 06.670'	-8.2	5.8	4.2	3.8	0.0	
B3-DU2-01	1	33° 45.261'	118° 06.635'	-6.8	7.0	5.6	5.2	0.4	Moved due to docked vessel; refusal
B3-DU2-01	2	33° 45.261'	118° 06.635'	-6.8	6.9	5.0	5.0	0.0	Refusal
B3-DU2-02	1	33° 45.229'	118° 06.644'	-7.8	3.5	3	0.0	0.0	Moved due to docked vessel; refusal
B3-DU2-02	2	33° 45.231'	118° 06.645'	-9.0	5.9	4.0	3.0	0.5	Moved due to refusal on Attempt 1
B3-DU2-02	3	33° 45.231'	118° 06.645'	-9.0	5.0	3.6	3.0	0.0	
B3-DU2-03	1	33° 45.246'	118° 06.587'	-8.0	6.6	4.8	4.0	0.5	
B3-DU2-03	2	33° 45.246'	118° 06.587'	-8.0	6.1	4.6	4.0	0.0	
B3-DU2-04	1	33° 45.203'	118° 06.632'	-7.7	6.8	5.3	4.3	0.5	Refusal
B3-DU2-04	2	33° 45.203'	118° 06.632'	-7.7	6.3	4.2	4.2	0.0	
B3-DU2-05	1	33° 45.208'	118° 06.598'	-8.4	2.4	3	0.0	0.0	Moved due to limited access; refusal
B3-DU2-05	2	33° 45.210'	118° 06.593'	-8.3	6.3	4.8	3.7	0.5	Moved due to refusal on Attempt 1
B3-DU2-05	3	33° 45.210'	118° 06.593'	-8.3	5.7	3.7	3.7	0.0	

- 1 California State Plane, Zone 7, North American Datum (NAD) 27
- 2 Z-layer depth not achieved. Bottom 0.5 foot of core archived.
- 3 Sample discarded due to insufficient length; retrieved core length not recorded.

MLLW = mean lower low water

Table 6
Sediment Physical and Chemical Results for Composite Sediment Samples from Basins 2 and 3

	ERL	ERM	B2-DU1-COMP	B2-DU2-COMP	B3-DU1-COMP	B3-DU2-COMP	LA2-REF
Conventional Parameters	•	•				•	
Total Sulfides (mg/kg)			4.1	31	2.0	3.9	0.99
Ammonia (as N) (mg/kg)			7.0	6.9	6.6	4.4	3.6
Total organic carbon (%)			1.3	1.1	1.6	1.3	0.68
Total solids (%)			60.4	64.5	59.3	63.8	70.5
Grain Size (%)		•					
Clay (less than 0.00391mm)			17.49	14.95	16.55	15.42	4.59
Silt (0.00391 to 0.0625mm)			68.43	59.66	59.06	56.06	21.90
Very Fine Sand (0.0625 to 0.125mm)			11.10	17.02	15.89	14.99	48.20
Fine Sand (0.125 to 0.25mm)			2.98	7.98	7.82	10.19	25.20
Medium Sand (0.25 to 0.5mm)			< 0.01	0.40	0.68	3.01	0.10
Coarse Sand (0.5 to 1mm)			< 0.01	< 0.01	< 0.01	0.33	< 0.01
Very Coarse Sand (1 to 2mm)			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Gravel (greater than 2mm)			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Total Silt and Clay (0 to 0.0625mm)			85.91	74.61	75.61	71.48	26.49
Metals (mg/kg)							
Arsenic	8.2	70	7.85	6.53	5.67	6.08	3.06 B
Cadmium	1.2	9.6	1.08	0.886	0.995	0.902	0.186
Chromium	81	370	37.0	31.0	31.4	34.2	22.1
Copper	34	270	82.7	53.4	81.8	84.2	9.91
Lead	46.7	218	64.4	46.4	53.2	56.5	5.63
Nickel	20.9	51.6	25.5	21.3	22.0	22.8	11.7
Selenium			0.468	0.390	0.430	0.350	0.275
Silver	1	3.7	0.387	0.267	0.434	0.352	0.0541 J
Zinc	150	410	186	136	185	168	48.7
Mercury	0.15	0.71	0.568	0.321	0.239	0.284	0.0158 J
Organotins (μg/kg)	-	•	-		-	-	
Monobutyltin			< 1.1	< 1	< 1.1	< 1.0	< 0.93
Dibutyltin			29	24	17	15	< 0.93
Tributyltin			< 0.95	< 0.89	< 0.97	< 0.90	< 0.82
Tetrabutyltin			< 1.3	< 1.2	< 1.3	< 1.2	< 1.1
Total Butyltins (ND = 0)			29	24	17	15	< 1.1

Table 6
Sediment Physical and Chemical Results for Composite Sediment Samples from Basins 2 and 3

	ERL	ERM	B2-DU1-COMP	B2-DU2-COMP	B3-DU1-COMP	B3-DU2-COMP	LA2-REF
PAH (μg/kg)							
Acenaphthene	16	500	< 3.0	< 2.8	< 3.0	< 2.8	< 2.5
Acenaphthylene	44	640	5.1 J	3.5 J	4.5 J	4.2 J	< 2.1
Anthracene	85.3	1100	9.3 J	7.1 J	8.4 J	7.4 J	< 1.1
Benzo (a) Anthracene	261	1600	31	27	32	26	< 2.2
Benzo (a) Pyrene	430	1600	49	41	49	41	< 1.4
Benzo (b) Fluoranthene			52	46	66	56	< 1.4
Benzo (g,h,i) Perylene			64	48	74	60	2.5 J
Benzo (k) Fluoranthene			46	35	43	42	< 2
Chrysene	384	2800	45	39	53	41	1.7 J
Dibenz (a,h) Anthracene	63.4	260	12 J	8.4 J	12 J	10 J	< 1.5
Fluoranthene	600	5100	50	51	52	44	1.7 J
Fluorene	19	540	3.3 J	2.5 J	3.9 J	3.2 J	< 2.1
Indeno (1,2,3-c,d) Pyrene			56	43	60	49	< 1.5
2-Methylnaphthalene	70	670	7.1 J	4.9 J	8.6 J	7.3 J	< 2.5
1-Methylnaphthalene			< 3.3	< 3.1	3.6 J	< 3.2	< 2.8
Naphthalene	160	2100	7.1 J	6.3 J	8.6 J	9.2 J	< 4.2
Phenanthrene	240	1500	34	27	23	22	1.9 J
Pyrene	665	2600	57	54	66	51	2.2 J
Total HMW PAHs (ND = 0)	1700	9600	462	392	507	420	8.1
Total LMW PAHs (ND = 0)	552	3160	65.9	51.3	60.6	53.3	1.9
Total PAHs (ND = 0)	4022	44792	527.9	443.7	567.6	473.3	10
esticides (µg/kg)							
2,4'-DDD			< 0.56	< 0.53	< 0.57	< 0.53	< 0.48
2,4'-DDE			7.2	8.3	2.2	6.6	< 0.43
2,4'-DDT			< 0.5	< 0.47	< 0.51	< 0.47	< 0.43
4,4'-DDD	2	20	< 0.52	< 0.49	< 0.53	< 0.50	0.65 J
4,4'-DDT	1	7	< 0.55	< 0.52	< 0.56	< 0.52	< 0.47
4,4'-DDE	2.2	27	28	29	14	40	8.3
Total DDTs (ND = 0)	1.58	46.1	35.2	37.3	16.2	46.6	8.95
Alpha Chlordane			< 0.53	< 0.50	< 0.54	< 0.50	< 0.45
Gamma Chlordane			< 0.52	< 0.49	< 0.54	0.80 J	< 0.45

Table 6
Sediment Physical and Chemical Results for Composite Sediment Samples from Basins 2 and 3

	ERL	ERM	B2-DU1-COMP	B2-DU2-COMP	B3-DU1-COMP	B3-DU2-COMP	LA2-REF
Cis-nonachlor			< 0.49	< 0.46	2.9	5.8	< 0.42
Oxychlordane			< 0.46	< 0.44	< 0.47	< 0.44	< 0.40
Trans-nonachlor			< 0.48	< 0.45	< 0.49	< 0.45	< 0.41
Total Chlordanes (ND = 0)	0.5	6	< 0.53	< 0.50	2.9	6.6	< 0.45
Aldrin			< 0.52	< 0.49	< 0.53	< 0.49	< 0.45
alpha-BHC			< 0.54	< 0.50	< 0.55	< 0.51	< 0.46
beta-BHC			< 0.44	< 0.41	< 0.45	< 0.41	< 0.37
delta-BHC			< 0.42	< 0.4	< 0.43	< 0.40	< 0.36
gamma-BHC (Lindane)			< 0.57	< 0.54	< 0.58	< 0.54	< 0.49
Dieldrin	0.02	8	< 0.54	< 0.51	< 0.56	< 0.52	< 0.47
Endosulfan sulfate			< 0.56	< 0.52	< 0.57	< 0.53	< 0.48
Endosulfan-alpha (I)			0.69 J	0.64 J	< 0.44	< 0.41	< 0.37
Endosulfan-beta (II)			< 0.46	< 0.43	< 0.47	< 0.44	< 0.4
Endrin			< 0.59	< 0.56	< 0.60	< 0.56	< 0.51
Endrin aldehyde			< 0.40	< 0.38	< 0.41	< 0.38	< 0.35
Endrin ketone			< 0.57	< 0.54	< 0.59	< 0.54	< 0.49
Heptachlor			< 0.53	< 0.50	< 0.54	< 0.50	< 0.46
Heptachlor epoxide			< 0.59	< 0.55	< 0.60	< 0.56	< 0.50
Methoxychlor			< 0.54	< 0.50	< 0.55	< 0.51	< 0.46
Toxaphene			< 10	< 9.8	< 11	< 9.9	< 9.0
Pyrethroid Pesticide (μg/kg)							
Bifenthrin			0.50 J	0.47 J	0.30 J	0.21 J	0.23 BJ
Cyfluthrin			< 0.14	< 0.13	< 0.14	< 0.13	< 0.12
Cypermethrin			< 0.11	< 0.11	< 0.12	< 0.11	< 0.097
Deltamethrin/Tralomethrin			< 0.35	< 0.32	< 0.35	< 0.33	< 0.30
Fenpropathrin			< 0.06	< 0.056	< 0.061	< 0.057	< 0.051
Fenvalerate/Esfenvalerate			< 0.059	< 0.055	< 0.060	< 0.056	< 0.050
lambda-Cyhalothrin			< 0.072	< 0.067	< 0.073	< 0.068	< 0.062
Permethrin (cis/trans)			2.4	2.4	1.2 J	1.3 J	0.45 J
PCB Congeners (μg/kg)							
PCB018			1.4	1.8	1.6	5.8	< 0.22
PCB028			2.7	2.2	1.6	5.1	< 0.14

Table 6
Sediment Physical and Chemical Results for Composite Sediment Samples from Basins 2 and 3

	ERL ER	RM B2-DU1-COMP	B2-DU2-COMP	B3-DU1-COMP	B3-DU2-COMP	LA2-REF
PCB037		0.68 J	0.79	0.58 J	1.0	< 0.19
PCB044		3.4	2.9	2.2	5.6	< 0.19
PCB049		3	4.8	3.7	10	< 0.17
PCB052		4.7	6.3	4.2	12	< 0.14
PCB066		5.5	4.3	4.5	8	< 0.13
PCB070		3.7	3.4	3.3	6.3	< 0.12
PCB074		2	1.5	1.4	2.7	< 0.13
PCB077		0.69 J	0.75 J	0.61 J	0.93	< 0.14
PCB081		< 0.2	< 0.19	< 0.21	< 0.19	< 0.17
PCB087		1.8	1.5	1.2	2.3	< 0.14
PCB099		4.9	5.9	5.9	8.6	0.12 J
PCB101		8.1	9.5	7.7	13	0.21 J
PCB105		2.6	2.2	2.0	3.2	< 0.15
PCB110		6.7	6.4	7.3	10	0.15 J
PCB114		3.4	1.7	< 0.17	0.35 J	0.21 J
PCB118		7.4	6.3	7.4	10	< 0.19
PCB119		< 0.14	< 0.13	0.67 J	1.0	< 0.12
PCB123		< 0.15	< 0.13	< 0.15	< 0.14	< 0.12
PCB126		< 0.23	< 0.21	< 0.23	< 0.22	< 0.20
PCB128		1.8	1.3	1.3	2.1	< 0.15
PCB138/158		8.6	8.0	7.5	11	< 0.29
PCB149		5.6	7.6	5.6	8.0	0.15 J
PCB151		1.4	2.0	1.3	2.0	< 0.15
PCB153		9.1	9.2	8.7	13	0.2 J
PCB156		1.1	0.92	1.0	1.4	< 0.14
PCB157		1.2	0.78	< 0.16	< 0.15	< 0.14
PCB167		< 0.17	< 0.15	0.27 J	< 0.16	< 0.14
PCB168		< 0.14	< 0.13	< 0.14	< 0.13	< 0.12
PCB169		< 0.14	< 0.13	< 0.14	< 0.13	< 0.12
PCB170		2.6	2.3 1.8 3.1		3.1	< 0.13
PCB177		0.88	1.7	0.69 J	1.1	< 0.17
PCB180		3.9	3.9	3.2	4.8	< 0.087

Table 6
Sediment Physical and Chemical Results for Composite Sediment Samples from Basins 2 and 3

	ERL	ERM	B2-DU1-COMP	B2-DU2-COMP	B3-DU1-COMP	B3-DU2-COMP	LA2-REF
PCB183			1.1	1.1	0.86	1.4	< 0.16
PCB187			2.6	5.3	2.2	3.7	< 0.15
PCB189			< 0.14	< 0.13	< 0.14	< 0.13	< 0.12
PCB194			1.1	1.3	1.2	1.8	< 0.14
PCB201			0.18 J	0.29 J	0.14 J	0.21 J	< 0.081
PCB206			1.0	1.2	0.61 J	1.5	< 0.12
Total PCB Congeners (ND = 0)	22.7	180	104.83	109.13	92.23	160.99	1.04

= detected concentration is greater than ERL

= detected concentration is greater than ERM

Bold = detected result

μg/kg = micrograms per kilogram

BHC = benzene hexachloride

DDD = dichlorodiphenyldichloroethane

DDE = dichlorodiphenyldichloroethylene

DDT = dichlorodiphenyltrichloroethane

ERL = effects range low

ERM = effects range median

HMW PAHs = high-molecular-weight polycyclic aromatic hydrocarbons

J = indicates an estimated value

LMW PAHs = low-molecular-weight polycyclic aromatic hydrocarbons

mg/kg = milligrams per kilogram

mm = millimeters

ND = not detected

PAH = polycyclic aromatic hydrocarbon

PCB = polychlorinated biphenyl

3.2.1.1 LA-2 Reference

Grain size of reference sediment consisted primarily of sand, totaling 73.5 percent. TOC was measured at a concentration of 0.7 percent.

Metals, PAHs, pesticides, pyrethroids, and PCBs were detected in reference sediment. All metal, PAH, and PCB concentrations were less than corresponding ERL and ERM values. DDTs were the only pesticides detected in the reference sediment with total DDT concentrations exceeding the corresponding ERL value. Two pyrethroids (bifenthrin and permethrin) were estimated at low concentrations between the MDL and RL. It should be noted that bifenthrin was detected in the method blank, and therefore, results may be biased high. Organotins were not detected in reference sediment.

3.2.1.2 Basin 2

Grain size of sediment from Basin 2 consisted primarily of fines (silt and clay), ranging from 74.6 to 85.9 percent. TOC was measured at concentrations ranging from 1.1 to 1.3 percent.

Metals, organotins, PAHs, pesticides, pyrethroids, and PCBs were detected in sediment from Basin 2. Copper, lead, mercury, nickel, and zinc concentrations exceeded corresponding ERL values in at least one composite sample. Dibutyltin was the only organotin detected. Several PAHs were detected; however, all concentrations, including total PAHs, were less than corresponding ERL and ERM values. DDTs and endosulfan-alpha were the only pesticides detected. One DDT derivative (4,4'-DDE) exceeded the corresponding ERM value, while total DDT concentrations exceeded the corresponding ERL value. Two pyrethroids (bifenthrin and permethrin) were estimated at low concentrations between the MDL and RL. Several PCB congeners were detected. Total PCB concentrations exceeded the corresponding ERL value.

3.2.1.3 Basin 3

Grain size of sediment from Basin 3 consisted primarily of fines (silt and clay), ranging from 71.5 to 75.6 percent. TOC was measured at concentrations ranging from 1.3 to 1.6 percent.

Metals, organotins, PAHs, pesticides, pyrethroids, and PCBs were detected in sediment from Basin 3. Copper, lead, mercury, nickel, and zinc concentrations exceeded corresponding ERL values. Dibutyltin was the only organotin detected. Several PAHs were detected; however, all concentrations, including total PAH, were less than corresponding ERL and ERM values. DDTs and chlordanes were the only pesticides detected. Total DDT and total chlordane concentrations exceeded corresponding ERL values in B3-DU1-COMP, and exceeded corresponding ERM values in B3-DU2-COMP. Several PCB congeners were detected. Total PCB concentrations exceeded the corresponding ERL value.

3.2.2 Additional Analysis of PCBs

Due to elevated PCBs in composite sediment samples, additional analysis of PCBs was performed. Archived samples from individual stations were analyzed for PCBs, as recommended by USEPA to further delineate the areas where elevated concentrations exist. Sediment PCB results for the individual stations within Basins 2 and 3 are presented in Table 7.

Within Basin 2, total PCB concentrations ranged from 15.28 to 118.18 micrograms per kilogram ($\mu g/kg$). All concentrations were greater than the corresponding ERL value, except for B2-DU2-04. Within Basin 3, total PCB concentrations ranged from 5.22 to 86.77 $\mu g/kg$. All concentrations were greater than the corresponding ERL value, except for B3-DU1-03, B3-DU1-04, B3-DU1-05, and B3-DU2-02. All total PCB concentrations were less than those in the composite samples, except for B2-DU2-05 (118.18 $\mu g/kg$). Additionally, a high degree of variance did occur among the cores.

Concentrations were substantially lower than composite samples; therefore, composite samples were re-analyzed for PCBs, as recommended by USEPA, to confirm the initial results. PCB re-analysis of composite samples from Basins 2 and 3 are presented in Table 8. Results of the re-analysis confirmed previous results. All total PCB concentrations were greater than ERL or ERM values.

Table 7
Sediment PCB Results for Individual Stations within Basins 2 and 3

	ERL	ERM	B2-DU1-01	B2-DU1-02	B2-DU1-03	B2-DU1-04	B2-DU1-05	B2-DU2-01	B2-DU2-02	B2-DU2-03	B2-DU2-04	B2-DU2-05	B3-DU1-01	B3-DU1-02	B3-DU1-03	B3-DU1-04	B3-DU1-05	B3-DU1-06	B3-DU1-07	B3-DU2-01	B3-DU2-02	B3-DU2-03	B3-DU2-04	B3-DU2-0
Conventional Parameters																								
Total solids (%)			52.3	60.5	65.6	63.5	65.7	66.8	67.4	61.4	66.4	62.3	58.6	58.5	54.4	52.4	47.5	66.7	59.6	60.0	60.5	57.2	52.9	59.4
PCB Congeners (μg/kg)																								
PCB018			0.34 J	1.3	0.58 J	0.77 J	0.68 J	0.70 J	0.32 J	0.41 J	< 0.24	2.7	0.48 J	0.45 J	< 0.29	0.34 J	< 0.33	6.2	1.3	1.6	< 0.26	2.3	0.33 J	0.36 J
PCB028			0.77 J	1.9	1.1	1.2	0.92	1.1	0.44 J	0.83	0.31 J	1.1	0.68 J	0.54 J	< 0.18	0.24 J	< 0.21	3.5	0.82 J	1.1	0.40 J	1.7	0.53 J	0.69 J
PCB037			< 0.25	11	0.27 J	0.31 J	0.22 J	0.20 J	< 0.20	0.31 J	< 0.20	1.0	0.28 J	< 0.23	< 0.24	< 0.24	< 0.27	0.57 J	< 0.22	0.22 J	< 0.21	0.57 J	< 0.24	< 0.22
PCB044			0.94 J	3.0	1.6	1.8	1.5	2.1	0.94	0.90	0.45 J	1.9	1.1	0.92	< 0.24	0.35 J	< 0.27	2.4	1.1	1.0	0.48 J	1.5	1.1	0.9
PCB049			1.0	2.2	1.6	1.5	1.5	2.1	1.0	1.5	0.45 J	5.9	1.5	1.2	0.23 J	< 0.22	< 0.25	5.2	1.4	1.3	0.55 J	4.1	1.1	0.92
PCB052			1.4	4.1	2.2	2.5	2.1	2.6	1.3	1.8	0.69 J	6.9	2.0	1.7	0.28 J	0.47 J	0.25 J	6.9	1.9	2.2	1.0	4.8	1.9	1.3
PCB066			1.5	3.9	2.3	2.8	1.9	2.6	1.2	1.4	0.65 J	3.8	2.0	1.5	0.27 J	0.33 J	0.19 J	4.2	1.4	1.4	0.78 J	2.6	1.2	1.4
PCB070			1.1	3.0	1.7	2.0	1.5	2.0	0.91	1.2	0.44 J	3.2	1.6	1.4	0.28 J	0.37 J	0.21 J	3.1	1.1	1.1	0.58 J	2.3	1.2	1.1
PCB074			0.57 J	1.6	0.86	1.1	0.69 J	0.98	0.50 J	0.48 J	0.25 J	1.3	0.67 J	0.59 J	< 0.17	0.21 J	< 0.20	1.7	0.49 J	0.46 J	0.29 J	0.81 J	0.58 J	0.49 J
PCB077			0.21 J	< 0.16	< 0.15	0.38 J	0.30 J	< 0.14	< 0.15	< 0.16	< 0.15	0.99	< 0.16	< 0.17	< 0.18	< 0.18	< 0.20	0.35 J	< 0.16	< 0.16	< 0.16	0.53 J	0.31 J	< 0.16
PCB081			< 0.23	< 0.20	< 0.19	< 0.19	< 0.18	< 0.18	< 0.18	< 0.20	< 0.18	< 0.19	< 0.20	< 0.21	< 0.23	< 0.23	< 0.25	< 0.18	< 0.20	< 0.20	< 0.20	< 0.22	< 0.23	< 0.20
PCB087			0.46 J	1.2	0.99	1.2	0.65 J	1.1	0.74 J	0.40 J	0.27 J	1.1	1.1	0.86 J	< 0.19	0.19 J	< 0.21	0.83	0.40 J	0.69 J	0.21 J	0.89 J	0.74 J	0.50 J
PCB099			1.5	3.1	1.9	2.4	1.7	2.5	1.4	1.4	0.56 J	8.1	2.4	1.9	0.33 J	0.20 J	0.22 J	2.9	1.1	1.2	0.87	4.5	1.4	1.3
PCB101			2.3	5.3	3.8	4.6	3.2	4.7	2.6	2.1	1.0	12	4.0	3.4	0.62 J	0.46 J	0.44 J	4.5	1.9	2.3	1.2	6.4	3.0	2.2
PCB105			0.75 J	1.7	1.5	1.9	1.2	1.5	1.1	0.77 J	0.35 J	1.8	1.5	1.0	0.26 J	0.37 J	< 0.22	1.4	0.58 J	0.89	0.33 J	1.3	1.0	0.65 J
PCB110			2.0	4.4	3.3	3.9	2.7	4.0	2.3	2.1	0.82	6.3	3.8	2.9	0.5 J	< 0.19	0.41 J	3.5	1.6	2.1	0.93	4.4	2.5	1.8
PCB114			0.73 J	1.8	1.9	2.4	1.4	1.7	1.6	1.1	0.84	1.1	1.2	0.55 J	0.43 J	0.34 J	1.2	1.9	0.81 J	0.88	0.56 J	1.1	1.3	1.1
PCB118			2.0	4.5	3.5	4.3	2.7	4.1	2.2	1.8	1.0	6.4	3.8	2.9	0.56 J	0.50 J	0.42 J	3.9	1.6	2.1	1.0	4.6	2.5	2.2
PCB119			< 0.16	0.30 J	< 0.13	0.28 J	< 0.13	0.29 J	< 0.13	0.24 J	< 0.13	0.71 J	0.30 J	< 0.15	< 0.16	< 0.16	< 0.18	0.19 J	< 0.14	< 0.14	< 0.14	0.51 J	< 0.16	< 0.14
PCB123			< 0.17	< 0.14	< 0.13	< 0.14	< 0.13	< 0.13	< 0.13	< 0.14	< 0.13	< 0.14	< 0.15	< 0.15	< 0.16	< 0.16	< 0.18	< 0.13	< 0.14	< 0.14	< 0.14	< 0.15	< 0.16	< 0.15
PCB126			< 0.26	< 0.23	< 0.21	< 0.22	< 0.21	< 0.20	< 0.21	< 0.22	< 0.21	< 0.22	< 0.23	< 0.24	< 0.26	< 0.26	< 0.29	< 0.20	< 0.23	< 0.23	< 0.23	< 0.25	< 0.26	< 0.23
PCB128			0.48 J	1.2	0.87	1.2	0.63 J	1.1	0.65 J	0.33 J	0.37 J	1.1	1.0	0.63 J	< 0.19	< 0.19	< 0.21	0.73 J	0.39 J	0.35 J	0.24 J	0.86 J	0.69 J	0.57 J
PCB138/158			2.3	4.5	4.2	5.2	3.4	5.1	3.0	2.1	1.4 J	8.6	5.0	3.4	0.73 J	0.61 J	0.62 J	3.2	1.7	2.5	1.0 J	5.6	3.0	2.4
PCB149			1.4	3.2	2.6	3.2	2.1	3.1	1.9	1.6	0.97	9.4	3.2	2.4	0.47 J	0.34 J	0.43 J	2.1	1.1	1.5	0.79 J	5.2	1.8	1.4
PCB151			0.33 J	0.77 J	0.65 J	0.87	0.54 J	0.76	0.50 J	0.48 J	0.27 J	2.9	0.79 J	0.62 J	< 0.19	< 0.19	< 0.22	0.51 J	0.27 J	0.42 J	0.23 J	1.3	0.50 J	0.42 J
PCB153			2.5	4.7	4.1	5.3	3.3	5.1	2.9	1.9	1.4	11	5.0	3.4	0.75 J	0.62 J	0.56 J	3.5	1.8	2.4	1.2	6.7	2.7	2.3
PCB156			0.22 J	0.60 J	0.55 J	0.75 J	0.44 J	0.78	0.37 J	< 0.16	0.23 J	0.73 J	0.57 J	0.47 J	< 0.18	< 0.18	< 0.20	0.49 J	0.26 J	0.44 J	< 0.16	0.64 J	0.35 J	0.49 J
PCB157			0.30 J	0.51 J	0.56 J	0.95	0.38 J	0.67 J	0.46 J	0.34 J	< 0.14	0.51 J	0.45 J	< 0.16	< 0.18	< 0.18	< 0.20	0.43 J	0.27 J	0.38 J	< 0.16	0.40 J	0.32 J	0.54 J
PCB167			< 0.19	0.19 J	< 0.15	< 0.16	< 0.15	0.18 J	< 0.15	< 0.16	< 0.15	< 0.16	< 0.17	< 0.17	< 0.18	< 0.19	< 0.21	< 0.15	< 0.16	< 0.16	< 0.16	< 0.18	< 0.19	< 0.17
PCB168			< 0.16	< 0.14	< 0.13	< 0.14	< 0.13	< 0.13	< 0.13	< 0.14	< 0.13	< 0.14	< 0.14	< 0.15	< 0.16	< 0.16	< 0.18	< 0.13	< 0.14	< 0.14	< 0.14	< 0.15	< 0.16	< 0.14
PCB169			< 0.15	< 0.13	< 0.13	0.51 J	0.18 J	< 0.12	< 0.12	< 0.13	< 0.12	0.34 J	0.24 J	0.20 J	< 0.15	< 0.15	< 0.17	< 0.12	< 0.13	< 0.13	< 0.13	0.56 J	< 0.15	< 0.14
PCB170			0.54 J	1.0	1.2	1.2	0.83	1.1	0.60 J	0.53 J	0.50 J	1.8	1.3	0.83 J	< 0.17	0.25 J	< 0.19	0.69 J	0.43 J	0.69 J	0.24 J	2.2	0.67 J	0.43 J
PCB177			< 0.23	0.49 J	0.47 J	0.57 J	0.37 J	0.63 J	0.30 J	0.22 J	0.21 J	1.3	0.58 J	0.35 J	< 0.23	< 0.23	< 0.26	0.30 J	< 0.20	0.21 J	< 0.20	1.7	< 0.23	< 0.21
PCB180			1.0	1.9	2.1	2.4	1.5	2.1	1.3	0.85	0.88	4.5	2.4	1.7	0.29 J	0.43 J	0.27 J	1.4	0.82 J	1.1	0.42 J	5.2	0.94	0.9
PCB183			0.26 J	0.45 J	0.52 J	0.62 J	0.40 J	0.51 J	< 0.17	0.28 J	0.21 J	1.3	0.61 J	0.47 J	< 0.21	< 0.21	< 0.23	0.40 J	< 0.18	0.30 J	< 0.18	0.93	0.24 J	0.32 J
PCB187	1 1		0.66 J	1.2	1.3	1.7	0.98	1.4	0.86	0.75 J	0.55 J	6.0	1.6	1.1	0.22 J	0.27 J	< 0.22	0.96	0.57 J	0.69 J	0.38 J	4.9	0.7 J	0.73 J
PCB189	1 1		< 0.16	< 0.14	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.14	< 0.13	< 0.14	< 0.14	< 0.15	< 0.16	< 0.16	< 0.18	< 0.13	< 0.14	< 0.14	< 0.14	0.19 J	< 0.16	< 0.14
PCB194			< 0.18	0.52 J	0.84	0.59 J	0.60 J	0.86	0.46 J	< 0.16	0.21 J	1.3	0.81 J	0.64 J	< 0.18	< 0.18	< 0.20	0.50 J	0.29 J	< 0.16	< 0.16	3.6	< 0.18	0.44 J
PCB201	1 1		< 0.11	< 0.094	< 0.088	< 0.090	< 0.085	< 0.084	< 0.085	< 0.092	< 0.085	0.32 J	< 0.095	< 0.098	< 0.11	< 0.11	< 0.12	< 0.084	< 0.094	< 0.094	< 0.093	0.38 J	< 0.11	< 0.095
PCB206	1 1		0.45 J	0.43 J	1.0	0.63 J	0.43 J	0.52 J	0.34 J	< 0.13	< 0.12	0.78 J	0.47 J	< 0.14	< 0.15	< 0.15	< 0.17	< 0.12	< 0.14	< 0.14	< 0.14	1.5	< 0.15	< 0.14
Total PCB Congeners	1																							
(ND = 0)	22.7	180	28.01	75.96	50.06	61.03	40.94	58.18	32.19	28.12	15.28	118.18	52.43	38.02	6.22	6.89	5.22	68.45	25.40	31.52	13.68	86.77	32.60	27.85

= detected concentration is greater than ERL

= detected concentration is greater than ERM

Bold = detected result

μg/kg = micrograms per kilogram

ERL = effects range low

ERM = effects range median

J = indicates an estimated value?

ND = not detected

PCB = polychlorinated biphenyl

Table 8
Sediment PCB Re-Analysis of Composite Samples from Basins 2 and 3

			B2-DU	J1-COMP	B2-DU	2-COMP	B3-DU	J1-COMP	B3-DU	12-COMP
PCB Congeners (μg/kg)	ERL	ERM	Original Results	Re-analysis	Original Results	Re-analysis	Original Results	Re-analysis	Original Results	Re-analysis
PCB018			1.4	1.2	1.8	1.1	1.6	1.8	5.8	4.4
PCB028			2.7	2.1	2.2	1.4	1.6	2.7	5.1	4.1
PCB037			0.68 J	0.53 J	0.79	0.46 J	0.58 J	0.58 J	1.0	1.0
PCB044			3.4	3.1	2.9	2.1	2.2	3.2	5.6	6.3
PCB049			3.0	3.3	4.8	2.7	3.7	4.3	10	8.9
PCB052			4.7	3.8	6.3	3.5	4.2	6.8	12	11
PCB066			5.5	4.5	4.3	2.7	4.5	5.7	8.0	7.2
PCB070			3.7	2.9	3.4	2.0	3.3	4.3	6.3	6.4
PCB074			2.0	1.5	1.5	1.0	1.4	2.2	2.7	3.1
PCB077			0.69 J	0.44 J	0.75 J	0.52 J	0.61 J	0.94	0.93	1.7
PCB081			< 0.20	< 0.20	< 0.19	< 0.19	< 0.21	< 0.20	< 0.19	< 0.19
PCB087			1.8	1.3	1.5	1.0	1.2	2.2	2.3	3.8
PCB099			4.9	4.0	5.9	3.1	5.9	6.4	8.6	11
PCB101			8.1	6.8	9.5	5.9	7.7	10	13	16
PCB105			2.6	2.2	2.2	1.5	2.0	3.5	3.2	4.8
PCB110			6.7	5.4	6.4	4.5	7.3	8.8	10	12
PCB114			3.4	3.6	1.7	1.8	< 0.17	< 0.17	0.35 J	1.7
PCB118			7.4	5.7	6.3	4.3	7.4	10	10	13
PCB119			< 0.14	< 0.14	< 0.13	< 0.14	0.67 J	0.77 J	1.0	1.3

			B2-DU	J1-COMP	B2-DU	2-COMP	B3-DU	J1-COMP	B3-DU2-COMP		
PCB Congeners (μg/kg)	ERL	ERM	Original Results	Re-analysis	Original Results	Re-analysis	Original Results	Re-analysis	Original Results	Re-analysis	
PCB123			< 0.15	< 0.14	< 0.13	< 0.14	< 0.15	< 0.15	< 0.14	< 0.14	
PCB126			< 0.23	< 0.23	< 0.21	< 0.22	< 0.23	< 0.23	< 0.22	< 0.22	
PCB128			1.8	0.98	1.3	0.7 J	1.3	2.0	2.1	2.2	
PCB138/158			8.6	6.9	8.0	5.6	7.5	12	11	17	
PCB149			5.6	4.2	7.6	4.2	5.6	7.3	8.0	13	
PCB151			1.4	1.1	2.0	1.2	1.3	1.9	2.0	3.8	
PCB153			9.1	6.8	9.2	6.7	8.7	12	13	18	
PCB156			1.1	0.96	0.92	0.78	1.0	1.8	1.4	2.1	
PCB157			1.2	0.93	0.78	0.95	< 0.16	< 0.16	< 0.15	< 0.15	
PCB167			< 0.17	< 0.16	< 0.15	< 0.16	0.27 J	0.66 J	< 0.16	< 0.16	
PCB168			< 0.14	< 0.14	< 0.13	< 0.13	< 0.14	< 0.14	< 0.13	< 0.13	
PCB169			< 0.14	< 0.13	< 0.13	< 0.13	< 0.14	< 0.14	< 0.13	< 0.13	
PCB170			2.6	2.1	2.3	2.8	1.8	2.0	3.1	5.5	
PCB177			0.88	0.8 J	1.7	0.92	0.69 J	1.4	1.1	4.1	
PCB180			3.9	2.9	3.9	4.6	3.2	4.8	4.8	9.2	
PCB183			1.1	0.74 J	1.1	1.1	0.86	1.5	1.4	2.5	
PCB187			2.6	2.0	5.3	2.6	2.2	3.4	3.7	8.6	
PCB189			< 0.14	< 0.14	< 0.13	< 0.13	< 0.14	< 0.14	< 0.13	< 0.13	
PCB194			1.1	0.95	1.3	2.2	1.2	1.9	1.8	2.3	
PCB201			0.18 J	0.16 J	0.29 J	0.24 J	0.14 J	0.25 J	0.21 J	0.44 J	
PCB206			1.0	0.76 J	1.2	0.96	0.61 J	0.56 J	1.5	1.2	

			B2-DU1-COMP		B2-DU	B2-DU2-COMP		J1-COMP	B3-DU2-COMP		
PCB Congeners (μg/kg)	ERL	ERM	Original Results	Re-analysis	Original Results	Re-analysis	Original Results	Re-analysis	Original Results	Re-analysis	
Total PCB Congeners (ND = 0)	22.7	180	104.83	84.65	109.13	75.13	92.23	127.66	160.99	207.64	

= detected concentration is greater than ERL

= detected concentration is greater than ERM

Bold = detected result

*For totals, zeros were used for non-detect samples for summing. If all samples were non-detect, the highest method detection limit of all samples was used as the total result.

< = less than listed method detection limit μg/kg = micrograms per kilogram

ERL = effects range low

ERM = effects range median

J = indicates an estimated value

ND = non-detect

PCB = polychlorinated biphenyl

3.3 Biological Testing

Biological test results for Basins 2 and 3 sediments are presented in this section. The laboratory report, including detailed results and raw data, is provided in Appendix C.

3.3.1 Solid Phase Testing

3.3.1.1 Amphipod Mortality Bioassay

Results of the 10-day amphipod SP test are summarized in Table 9. Mean survival in the control was 98 percent, which met control acceptability criterion. Mean survival in LA2-REF sediment was also 98 percent. Survival results in Basins 2 and 3 sediments were compared to survival in the reference sediment to determine suitability for ocean disposal. Survival in test sediments ranged from 95 to 98 percent, which is within 20 percent of the reference indicating sediments from Basins 2 and 3 are not acutely toxic to *A. abdita* and meet limiting permissible concentration (LPC) requirements for ocean disposal.

Table 9
Summary of Solid Phase Test Results Using Ampelisca abdita

Treatment	Mean Survival (%)	Standard Deviation (%)	Meets LPC for Ocean Disposal
Control	98	2.7	N/A
LA2-REF	98	4.5	N/A
B2-DU1-COMP	95	8.7	Yes
B2-DU2-COMP	96	4.2	Yes
B3-DU1-COMP	98	2.7	Yes
B3-DU2-COMP	98	4.5	Yes

Notes:

LPC = limiting permissible concentration

N/A = not applicable

3.3.1.2 Polychaete Mortality Bioassay

Results of the 10-day polychaete SP test are summarized in Table 10. Mean survival in the control was 100 percent, which met control acceptability criterion. Mean survival in LA2-REF sediment was 96 percent. Mean survival in Basins 2 and 3 samples were compared to reference survival to determine suitability for ocean disposal. Survival in test sediments

ranged from 88 to 100 percent, which is within 10 percent of the reference indicating that sediments from Basins 2 and 3 are not acutely toxic to *Neanthes arenaceodentata* and meet LPC requirements for ocean disposal.

Table 10
Summary of Solid Phase Test Results Using Neanthes arenaceodentata

Treatment	Mean Survival (%)	Standard Deviation (%)	Meets LPC for Ocean Disposal
Control	100	0	N/A
LA2-REF	96	8.9	N/A
B2-DU1-COMP	92	11	Yes
B2-DU2-COMP	100	0	Yes
B3-DU1-COMP	96	8.9	Yes
B3-DU2-COMP	88	18	Yes

Notes:

LPC = limiting permissible concentration

N/A = not applicable

3.3.2 Suspended Particulate Phase Testing

3.3.2.1 Bivalve Larval Development Bioassay

Results for the 48-hour bivalve larval SPP test are summarized in Table 11. Mean normal development in the controls ranged from 97.6 to 97.9 percent, which met control acceptability criterion. Mean survival in the controls ranged from 92.7 to 97.0 percent, which met control acceptability criterion. Mean normal development in the site water controls ranged from 98.7 to 99.3 percent. Mean survival in the site water controls ranged from 97.1 to 98.8 percent. Mean normal development in the test elutriates ranged from 0 to 98.8 percent. Mean survival in the test elutriates ranged from 78.3 to 99.2 percent. For samples B2-DU1-COMP, B2-DU2-COMP, and B3-DU2-COMP, normal development and survival was greater than 50 percent; therefore, the median effective concentration (EC50) and median lethal concentration (LC50), respectively, were assumed to be greater than 100 percent. Based on these results, sediments from these DUs are not toxic to bivalve larvae and meet LPC requirements for ocean disposal. For B3-DU1-COMP, the survival was greater than 50 percent; therefore, the LC50 was assumed to be greater than 100 percent. The EC50 for development was calculated to be 22.6 percent. To determine the need for best

management practices (BMPs) during disposal operations, the EC50 value for B3-DU1-COMP was used in the water column toxicity mixing model (i.e., STFATE). Results of STFATE modeling are presented separately in Section 3.4.

As described in Section 2.3, an ammonia reference toxicant test was run concurrently with the bivalve larval development bioassay due to the sensitivity of *M. galloprovincialis* to elevated ammonia concentrations. The EC₅₀ in the ammonia reference toxicant test was 5.8 mg/L. The ammonia concentration in the 100 percent elutriate of B3-DU1-COMP was 14.5 mg/L, indicating that ammonia likely contributed to the observed toxicity in this sample.

Table 11
Summary of Suspended Particulate Phase Test Results Using Mytilus galloprovincialis

Sample ID	Treatment (%)	Mean Normal Development (%)	Standard Deviation (%)	EC ₅₀ (%)	Mean Survival (%)	Standard Deviation (%)	LC ₅₀ (%)	Meets LPC for Ocean Disposal
Control	N/A	97.6	0.6	N/A	92.7	4.9	N/A	N/A
Site water control	N/A	98.7	0.5	N/A	97.1	2.8	N/A	N/A
	1	98.6	0.7		94.6	4.0		
B2-DU1-	10	98.7	0.7	. 100	91.2	6.4	. 100	Vaa
СОМР	50	98.5	0.4	> 100	90.1	4.8	> 100	Yes
	100	95.7	2.3		86.3	4.2		
Control	N/A	97.6	0.6	N/A	92.7	4.9	N/A	N/A
Site water control	N/A	98.7	0.5	N/A	97.1	2.8	N/A	N/A
	1	98.7	1.2		96.3	8.2		
B2-DU2-	10	97.2	1.5	. 100	98.1	4.0	. 100	Vaa
СОМР	50	97.6	1.4	> 100	91.3	6.2	> 100	Yes
	100	97.2	0.6		89.6	6.1		
Control	N/A	97.9	0.5	N/A	97.0	3.0	N/A	N/A
Site water control	N/A	99.3	0.5	N/A	98.8	1.7	N/A	N/A

Sample ID	Treatment (%)	Mean Normal Development (%)	Standard Deviation (%)	EC ₅₀	Mean Survival (%)	Standard Deviation (%)	LC ₅₀ (%)	Meets LPC for Ocean Disposal
-	1	98.8	1.2	22.6	99.1	1.9	> 100	Requires further assessment ¹
B3-DU1-	3-DU1- 10 98.4	98.4	0.9		99.2	1.7		
СОМР	50	0.7	0.5		89.9	6.1		
	100	0	0		97.4	2.9		
Control	N/A	97.9	0.5	N/A	97.0	3.0	N/A	N/A
Site water control	N/A	99.3	0.5	N/A	98.8	1.7	N/A	N/A
B3-DU2- COMP	1	98.8	1.2	> 100	97.7	2.9	> 100	Yes
	10	98.1	1.1		99.1	1.2		
	50	97.4	1.4		95.4	5.0		
	100	93.0	1.3		92.6	3.3		

Bold = Value is significantly less than the control (P < 0.05).

 EC_{50} = median effective concentration

 LC_{50} = median lethal concentration

LPC = limiting permissible concentration

N/A = not applicable

3.3.2.2 Mysid Shrimp Bioassay

Results for the 96-hour mysid shrimp SPP test are summarized in Table 12. Mean survival in the controls was 98 percent, which met control acceptability criterion. Mean survival in the site water controls ranged from 98 to 100 percent. Mean survival in the test elutriates ranged from 96 to 100 percent. For each sample, survival was greater than 50 percent; therefore, the LC50 was assumed to be greater than 100 percent. Based on these results, sediments from Basins 2 and 3 are not toxic to *Americamysis bahia* and meet LPC requirements for ocean disposal.

¹ STFATE modeling was required to estimate whether disposal of sediment at the LA-2 disposal site would negatively impact aquatic life.

Table 12
Summary of Suspended Particulate Phase Test Results Using Americamysis bahia

	Treatment	Mean Survival	Standard		Meets LPC for
Sample ID	(%)	(%)	Deviation (%)	EC ₅₀ (%)	Ocean Disposal
Control	N/A	98	4.5	N/A	N/A
Site water control	N/A	98	4.5	N/A	N/A
	10	96	5.5	> 100	Yes
B2-DU1-COMP	50	100	0		
	100	96	5.5		
Control	N/A	98	4.5	N/A	N/A
Site water control	N/A	98	4.5	N/A	N/A
B2-DU2-COMP	10	98	4.5	> 100	Yes
	50	100	0		
	100	98	4.5		
Control	N/A	98	4.5	N/A	N/A
Site water control	N/A	100	0	N/A	N/A
	10	96	5.5	> 100	Yes
B3-DU1-COMP	50	98	4.5		
	100	98	4.5		
Control	N/A	98	4.5	N/A	N/A
Site water control	N/A	100	0	N/A	N/A
	10	100	0		Yes
B3-DU2-COMP	50	98	4.5	> 100	
	100	100	0		

 EC_{50} = median effective concentration

LPC = limiting permissible concentration

N/A = not applicable

3.3.2.3 Juvenile Fish Bioassay

Test results for the 96-hour juvenile fish SPP test are presented in Table 13. Mean survival in the controls ranged from 96 to 100 percent, which met control acceptability criterion. Mean survival in the site water controls was 98 percent. Mean survival in the test elutriates ranged from 84 to 100 percent. For each sample, survival was greater than 50 percent; therefore, the LC50 was assumed to be greater than 100 percent. Based on these results,

sediments from Basins 2 and 3 are not toxic to *Menidia beryllina* and meet LPC requirements for ocean disposal.

Table 13
Summary of Suspended Particulate Phase Test Results Using *Menidia beryllina*

Sample ID	Treatment (%)	Mean Survival (%)	Standard Deviation (%)	EC ₅₀ (%)	Meets LPC for Ocean Disposal	
Control	N/A	96	5.5	N/A	N/A	
Site water control	N/A	98	5.0	N/A	N/A	
	10	100	0			
B2-DU1-COMP	50	100	0	> 100	Yes	
	100	98	4.5			
Control	N/A	96	5.5	N/A	N/A	
Site water control	N/A	98	5.0	N/A	N/A	
	10	100	0		Yes	
B2-DU2-COMP	50	100	0	> 100		
	100	100	0			
Control	N/A	100	0	N/A	N/A	
Site water control	N/A	98	5.0	N/A	N/A	
	10	96	5.0			
B3-DU1-COMP	50	86	11	> 100	Yes	
	100	84	15			
Control	N/A	100	0	N/A	N/A	
Site water control	N/A	98	5.0	N/A	N/A	
	10	94	5.8			
B3-DU2-COMP	50	96	5.5	> 100	Yes	
	100	100	0			

Notes:

Bold = Value is significantly less than the control (P < 0.05).

 EC_{50} = median effective concentration

LPC = limiting permissible concentration

N/A = not applicable

3.3.3 Bioaccumulation Potential Testing

Test results for the 28-day BP tests are presented below. Following the 28-day exposure, organisms were placed into clean seawater for 24 hours to allow organisms to depurate the test sediment. After this purging process, tissues were shipped frozen to Calscience for chemical analysis. Tissue chemistry results are presented separately in Section 3.5.

3.3.3.1 Bivalve Bioaccumulation Test

Test results for the 28-day bivalve BP test are presented in Table 14. Mean survival in the control and reference sediments were 99.3 and 95.9 percent, respectively. Mean survival in Basins 2 and 3 samples ranged from 95.2 to 97.9 percent. Sufficient tissue mass was available at test completion for chemical analysis.

Table 14
Summary of Bioaccumulation Potential Test Results Using *Macoma nasuta*

Treatment	Mean Survival (%)	Standard Deviation (%)		
Control	99.3	1.5		
LA2-REF	95.9	4.5		
B2-DU1-COMP	97.9	4.6		
B2-DU2-COMP	97.2	1.5		
B3-DU1-COMP	95.2	1.9		
B3-DU2-COMP	97.9	3.1		

3.3.3.2 Polychaete Bioaccumulation Test

Test results for the 28-day polychaete BP test are presented in Table 15. Mean survival in the control and reference sediment was 92.7 and 96.4 percent, respectively. Mean survival in Basins 2 and 3 samples ranged from 90.9 to 98.2 percent. Sufficient tissue mass was available at test completion for chemical analysis.

Table 15
Summary of Bioaccumulation Potential Test Results Using *Nereis virens*

Treatment	Mean Survival (%)	Standard Deviation (%)
Control	92.7	4.1
LA2-REF	96.4	5.0
B2-DU1-COMP	90.9	6.4
B2-DU2-COMP	98.2	4.1
B3-DU1-COMP	92.7	7.6
B3-DU2-COMP	94.5	5.0

3.4 Prediction of Water Column Toxicity During Disposal

STFATE is a data modeling tool used to evaluate the potential need for BMPs during disposal operations to prevent exposure that may cause toxic responses to sensitive organisms. The model simulates the movement of disposed material through the water column to the ocean bottom and then as it becomes re-suspended by the current. The model uses 0.01 of the LC50 or EC50 value to determine compliance with the LPC. The EC50 value of B3-DU1-COMP in the bivalve test was calculated to be 22.6 percent. Therefore, the toxicity criterion, or LPC, used in the model was 0.226 percent. The guidance states that the concentration of dredged material must be less than 0.01 times the LC50 or EC50 after 4 hours within the disposal site and at all times outside the disposal site.

The input parameters for LA-2 are listed in Table 16; complete results are included in Appendix D. Physical characteristics of sediment from B3-DU1-COMP were used as inputs to the model. Site-specific input parameters used were derived from the *Draft Environmental Impact Statement: Proposed Site Designation of the LA-3 Ocean Dredged Material Disposal Site off Newport Bay, Orange County, California* (USEPA/USACE 2004).

Table 16
STFATE Model Input Parameters

Parameter	Units	LA-2 Ocean Disposal Site Value
Site Description		·
Number of Grid Points (left to right + x direction)	-	36
Number of Grid Points (top to bottom + z direction)	-	36
Grid Spacing (left to right)	feet	400
Grid Spacing (top to bottom)	feet	400
Variable Water Depth within Disposal Boundary	feet	360-1,115
Roughness Height at Bottom of Disposal Site	feet	0.005 ¹
Bottom Slope (x-direction)	deg.	0
Bottom Slope (z-direction)	deg.	-7
Number of Points in Density Profile	-	3
Density at Point One (depth = 0 feet)	g/cc	1.0248
Density at Point Two (depth = 350 feet)	g/cc	1.0262
Density at Point Three (depth = 740 feet)	g/cc	1.0273
Velocity		
Type of Velocity Profile	-	Single depth average velocity
X-Direction Velocity (depth = 0 feet)	feet/sec	0.500
Z-Direction Velocity (depth = 0 feet)	feet/sec	0.500
Disposal Operation		
Disposal Point Top of Grid	feet	5,000
Disposal Point Left Edge of Grid	feet	5,000
Dumping Over Depression	-	0
Solid Fraction Volume Concentration	-	Gravel = 0.0, Sand = 0.145, Silt = 0.350, Clay = 0.098
Volume of Each Layer	су	4,800
Length of Disposal Vessel Bin	feet	200
Width of Disposal Vessel Bin	feet	50
Pre-disposal Draft	feet	15
Post-disposal Draft	feet	2
Duration	sec	14,400
Long-term Time Step for Diffusion	sec	900
Time to Empty Vessel	sec	30

Parameter	Units	LA-2 Ocean Disposal Site Value
Location of Upper Left Corner of Disposal Site (distance from top edge)	feet	2,000
Location of Upper Left Corner of Disposal Site (distance from left edge)	feet	2,000
Location of Lower Right Corner of Disposal Site (distance from top edge)	feet	8,000
Location of Lower Right Corner of Disposal Site (distance from left edge)	feet	8,000
Coefficients		
Settling Coefficient	-	0.000 ¹
Apparent Mass Coefficient	-	1.000 ¹
Drag Coefficient	-	0.500 ¹
Form Drag for Collapsing Cloud	-	0.500 ¹
Skin Friction for Collapsing Cloud	-	0.010 ¹
Drag for an Ellipsoidal Wedge	-	0.100 ¹
Drag for a Plate	-	1.000 ¹
Friction Between Cloud and Bottom	-	0.010 ¹
4/3 Law Horizontal Diffusion Dissipation Factor	-	0.001
Unstratified Water Vertical Diffusion Coefficient	-	0.0250 ¹
Cloud/Ambient Density Gradient Ratio	-	0.250 ¹
Turbulent Thermal Entrainment	-	0.235 ¹
Entrainment in Collapse	-	0.100 ¹
Stripping Factor		0.003 ¹

1 Model default value.

cy = cubic yards

deg. = degree

feet/sec = feet per second

g/cc = grams per cubic centimeter

sec = seconds

3.4.1 Results of STFATE Modeling

STFATE modeling results predicted that the maximum concentration of dredged material would be less than 0.01 of the LC_{50} (i.e., less than 0.226 percent) after 4 hours within the disposal site (Table 17). After 4 hours, the maximum concentration within the disposal boundary was 0.022 percent. In addition, the model predicted that the maximum

concentration of dredged material outside the disposal site boundaries was never greater than 0.226 percent (Table 17). The maximum concentration observed outside the disposal site was 0.078 percent. Based on STFATE modeling results, sediment from B3-DU1-COMP meets the LPC requirements for ocean disposal.

Table 17
STFATE Modeling Results

Site	Time (hours)	Depth (feet)	Maximum Concentration (%)	Dilution (%)	STFATE Summary Result
	Ma	ximum Concent	ration After 4 Hours wit	thin Disposal Site	
	4	0	0.396E-39	2.53E+41	Toxicity criteria for
LA-2	4	500	0.396E-39	2.53E+41	the disposal site
LA-Z	4	676	0.216E-01	4.63E+03	were not violated;
	4	1,000	0.396E-39	2.53E+41	LPC met
		Maximum Conc	entration Outside Dispo	osal Boundary	
	1	0	0.297E-38	3.37E+40	Toxicity criteria for
	2	500	0.297E-38	3.37E+40	the disposal site
LA-2	4	676	0.780E-01	1.28E+03	were not violated;
	4	1,000	0.297E-38	3.37E+40	LPC met

Note:

LPC = limiting permissible concentration

3.5 Chemical Analysis of Tissue Residues

Sediment bioaccumulation tests were conducted using *Macoma nasuta* and *Nereis virens*. Chemical analysis of tissue residues was conducted to determine the bioaccumulation potential of sediment contaminants. Based on results of sediment chemistry, a subset of chemicals was selected for analysis that included mercury, DDTs, chlordane, and PCBs (see Table 1). The data evaluation consisted of comparing tissue burdens to the following:

- FDA action levels
- Reference sediment tissue burdens
- ERED (USACE/USEPA 2010)

Results of chemical analysis of bivalve and polychaete tissue residues are presented in Tables 18 and 19, respectively. All results are expressed in wet weight. MDLs, RLs, and raw data for the analyses are provided in Appendix B.

3.5.1 Comparison of Tissue Burdens to U.S. Food and Drug Administration Action Levels

A comparison of FDA action levels for poisonous or deleterious substances in fish and shellfish for human food is presented in Tables 18 and 19. The FDA action level for mercury is 1 milligram per kilogram (mg/kg) of methyl mercury. Methyl mercury is only a fraction of the total mercury concentration. All concentrations of mercury in tissues exposed to Basins 2 and 3 sediments were less than this action level. The FDA action level for DDT and DDE (individually or in combination) is 5,000 μ g/kg. All DDT concentrations in tissues exposed to Basins 2 and 3 sediments were less than this action level. The FDA action level for chlordane is 300 μ g/kg. All chlordane concentrations in tissues exposed to Basins 2 and 3 sediments were less than this action level. The FDA does not have an action level for PCBs. Total PCB concentrations were compared to the FDA tolerance level of 2,000 μ g/kg. All PCBs concentrations in tissues exposed to Basins 2 and 3 sediments were less than this tolerance level. FDA actions levels were not exceeded; therefore, results were also compared to tissue concentrations of organisms exposed to reference sediment.

3.5.2 Comparison of Tissue Burdens to Reference Sediment Tissue Burdens

Bioaccumulation data were analyzed by statistically comparing chemical concentrations in tissues of organisms exposed to project material to tissues of organisms exposed to reference sediment (Appendix E). Organic chemical concentrations were normalized to lipid concentrations, and all data were log-transformed prior to analysis. Results of statistical analysis are presented in Tables 20 and 21.

Table 18
Results of Chemical Analyses of *Macoma nasuta* Tissue Residues

									Result	s of Ch	emical	Analys	es of <i>M</i>	lacoma	nasuta	Tissue	Residu	ues											
	FDA			Zero						B2-DU1-	B2-DU1-	B2-DU1-	B2-DU1-	B2-DU1-	B2-DU2-	B2-DU2-	B2-DU2-	B2-DU2-	B2-DU2-	B3-DU1-	B3-DU1-	B3-DU1-	B3-DU1-	B3-DU1-	B3-DU2-	B3-DU2-	B3-DU2-	B3-DU2-	B3-DU2-
	Action	Zero Time	Zero Time	Time	LA2 REF	LA2 REF	LA2 REF	LA2 REF	LA2 REF	COMP	COMP	COMP	COMP	COMP	COMP	COMP	COMP	COMP	COMP	COMP	COMP	COMP	COMP	COMP	COMP	COMP	COMP	COMP	COMP
	Level	Rep A	Rep B	Rep C	Rep A	Rep B	Rep C	Rep D	Rep E	Rep A	Rep B	Rep C	Rep D	Rep E	Rep A	Rep B	Rep C	Rep D	Rep E	Rep A	Rep B	Rep C	Rep D	Rep E	Rep A	Rep B	Rep C	Rep D	Rep E
Conventional Parameters																													
% Lipids		0.37	0.24	0.25	0.26	0.18	0.28	0.24	0.29	0.55	0.35	0.39	0.45	0.53	0.53	0.31	0.57	0.24	0.38	0.3	0.6	0.59	0.46	0.33	0.44	0.44	0.44	0.32	0.62
Metals (mg/kg)																			_										
Mercury	13	0.00913 J	0.00882 J	0.00922	0.00988	0.00966	0.0111	0.0105	0.00964	0.0104	0.0143	0.0138	0.0149	0.0117	0.00919 J	0.00988	0.0101	0.0116	0.0109	0.0105	0.00907 J	0.011	0.0103	0.00817 J	0.0134	0.012	0.0129	0.00943	0.0101
Pesticides (μg/kg)				_	,							_							,	,		,				,			
2,4'-DDD	4	< 0.4	< 0.4	< 0.41	< 0.4	< 0.41	< 0.4	< 0.41	< 0.4	< 0.4	< 0.41	< 0.4	< 0.41	< 0.41	< 0.4	< 0.4	< 0.4	< 0.41	< 0.41	< 0.4	< 0.4	< 0.41	< 0.4	< 0.4	< 0.4	< 0.41	< 0.4	< 0.4	< 0.4
2,4'-DDE	5000 ⁴	< 0.18	< 0.19	< 0.19	< 0.18	< 0.19	< 0.18	< 0.19	< 0.19	< 0.18	< 0.19	< 0.19	< 0.19	< 0.19	< 0.18	< 0.18	< 0.19	< 0.19	< 0.19	< 0.18	< 0.19	< 0.19	< 0.18	< 0.19	< 0.18	< 0.19	< 0.18	< 0.18	< 0.19
2,4'-DDT	5000 ⁴	< 0.3	< 0.31	< 0.31	< 0.3	< 0.31	< 0.3	< 0.31	< 0.31	< 0.3	< 0.31	< 0.31	< 0.31	< 0.31	< 0.3	< 0.3	< 0.31	< 0.31	< 0.31	< 0.3	< 0.31	< 0.31	< 0.3	< 0.31	< 0.3	< 0.31	< 0.3	< 0.3	< 0.31
4,4'-DDD	4	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18
4,4'-DDT	5000 ⁴	< 0.38	< 0.38	< 0.39	< 0.38	< 0.39	< 0.38	< 0.39	< 0.39	< 0.38	< 0.39	< 0.38	< 0.39	< 0.39	< 0.38	< 0.38	< 0.38	< 0.39	< 0.39	< 0.38	< 0.38	< 0.39	< 0.38	< 0.38	< 0.38	< 0.39	< 0.38	< 0.38	< 0.38
4,4'-DDE	50004	< 0.25	< 0.25	< 0.25	4.1	2.9	4.1	3.5	6.2	13	7.5	9.2	10	13	13	9.8	14	9	11	8.9	17	14	11	8.4	15	16	14	13	17
Total DDTs (ND = 0) ¹	5000 ⁴	< 0.4	< 0.4	< 0.41	4.1	2.9	4.1	3.5	6.2	13	7.5	9.2	10	13	13	9.8	14	9	11	8.9	17	14	11	8.4	15	16	14	13	17
Alpha Chlordane		< 0.25	< 0.25	< 0.25	< 0.25	< 0.25 < 0.21	< 0.25	< 0.25	< 0.25 < 0.21							-		-		< 0.25	< 0.25	< 0.25 < 0.21	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25 < 0.21	< 0.25 < 0.21
Gamma Chlordane Cis-nonachlor		< 0.21 < 0.42	< 0.21 < 0.42	< 0.21	< 0.21	< 0.21	< 0.21 < 0.42	< 0.21	< 0.42							+		+		< 0.21 0.6 J	< 0.21 0.99 J	1.1	< 0.21 0.82 J	< 0.21 0.61 J	< 0.21 1.7	< 0.21 1.4	< 0.21	1	1.1
Oxychlordane		< 0.22	< 0.22	< 0.22	< 0.22	< 0.22	< 0.22	< 0.22	< 0.42											< 0.22	< 0.22	< 0.22	< 0.22	< 0.22	< 0.22	< 0.22	< 0.22	< 0.22	< 0.22
Trans-nonachlor		< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3											< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Total Chlordanes (ND = 0) ²	300	< 0.42	< 0.42	< 0.42	< 0.42	< 0.42	< 0.42	< 0.42	< 0.42											0.6 J	0.99 J	1.1	0.82 J	0.61 J	1.7	1.4	1	1	1.1
PCB Congeners (µg/kg)	!	•		Į.			!		!		!		!			•	•	•				!	-						-
PCB018		< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	0.39 J	0.36 J	< 0.13	< 0.13	0.46 J	0.34 J	0.54	0.2 J	< 0.13	0.52	0.99	0.68	0.3 J	0.25 J	0.58	0.58	0.68	0.4 J	0.9
PCB028		< 0.096	< 0.096	< 0.097	< 0.096	< 0.097	< 0.096	< 0.097	< 0.097	0.78	0.46 J	0.46 J	0.56	0.77	0.7	0.58	0.72	0.44 J	0.48 J	0.78	1.4	1	0.78	0.53	1.4	1.3	1.4	1	1.5
PCB037		< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	0.2 J	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11
PCB044		< 0.064	< 0.064	< 0.064		< 0.064	< 0.064	< 0.064	< 0.064	< 0.064	< 0.064	< 0.064	0.32 J	0.2 J	0.25 J	0.27 J	0.35 J	0.29 J	0.24 J	0.28 J	0.71	0.43 J	0.31 J	0.28 J	0.41 J	0.4 J	0.45 J	0.32 J	0.37 J
PCB049 PCB052		< 0.11 < 0.057	< 0.11 < 0.057	< 0.11	< 0.11	< 0.11	< 0.11 < 0.057	< 0.11	< 0.11 < 0.058	0.87 1.2	0.45 J 0.58	0.43 J 0.78	0.66 0.72	0.77 1.1	1.5 1.8	1.3	2.1	0.98 1.2	1.6 1.8	0.8 1.1	1.7 2.1	1.4 1.9	1.1	0.75 0.91	2.3	2.4	2.2	1.7 1.8	2.4
PCB056		< 0.092	< 0.093	< 0.093		< 0.093	< 0.037	< 0.038	< 0.038	0.58	0.36 J	0.78 0.28 J	0.72 0.46 J	0.67	0.36 J	0.35 J	0.43 J	0.24 J	< 0.093	0.33 J	1	0.77	0.35 J	0.24 J	0.7	0.45 J	0.58	0.26 J	0.64
PCB066		< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	1.4	0.81	0.81	1	1.3	1.2	1.1	1.4	0.82	1.1	0.85	2	1.3	0.98	0.76	1.7	1.7	1.6	1.3	1.6
PCB070		< 0.082	< 0.082	< 0.082	< 0.082	< 0.082	< 0.082	< 0.082	< 0.082	0.97	0.51	0.61	0.73	0.88	0.97	0.9	1.1	0.68	0.8	0.7	1.5	1.1	0.9	0.65	1.3	1.4	1.2	1	1.3
PCB074		< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	0.65	0.34 J	0.35 J	0.39 J	0.58	0.52	0.48 J	0.61	0.32 J	0.43 J	0.38 J	0.88	0.68	0.48 J	0.38 J	0.72	0.66	0.6	0.53	0.66
PCB077		< 0.14	< 0.14	< 0.14	< 0.14	< 0.14	< 0.14	< 0.14	< 0.14	< 0.14	< 0.14	< 0.14	< 0.14	< 0.14	< 0.14	< 0.14	0.45 J	< 0.14	0.28 J	< 0.14	0.26 J	< 0.14	< 0.14	< 0.14	< 0.14	< 0.14	< 0.14	< 0.14	< 0.14
PCB081		< 0.081	< 0.082	< 0.082		< 0.082	< 0.081	< 0.082	< 0.082	< 0.081	< 0.082	< 0.082	< 0.082	< 0.082	< 0.081	< 0.081	< 0.082	< 0.082	< 0.082	< 0.081	< 0.082	< 0.082	< 0.081	< 0.082	< 0.081	< 0.082	< 0.081	< 0.081	< 0.082
PCB087 PCB099		< 0.13 < 0.073	< 0.13 < 0.074	< 0.13	< 0.13	< 0.13 < 0.074	< 0.13	< 0.13	< 0.13 < 0.074	0.46 J 1.2	0.3 J 0.72	0.27 J	0.34 J 0.92	< 0.13 1.2	< 0.13	0.29 J 1.8	0.51 2.4	< 0.13	0.33 J 1.8	< 0.13 0.7	0.53 1.4	< 0.13 1.1	< 0.13 0.8	< 0.13 0.7	0.47 J 1.7	0.47 J 1.9	< 0.13 1.8	0.36 J 1.4	0.41 J 1.9
PCB101		< 0.065	< 0.065	< 0.074	1	< 0.074	< 0.073	< 0.074	< 0.074	1.8	1.1	0.81 1.1	1.3	1.8	2.7	2.4	3.3	1.7	2.6	1.1	2.1	1.7	1.3	1.1	2.3	2.6	2.3	1.9	2.5
PCB105		< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	0.52	0.38 J	0.33 J	0.33 J	0.49 J	0.47 J	0.45 J	0.53	0.32 J	0.38 J	0.35 J	0.56	0.59	0.44 J	0.3 J	0.44 J	0.49 J	0.35 J	0.36 J	0.45 J
PCB110		< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	1.6	0.86	1	1.1	1.6	1.7	1.7	1.8	0.98	1.4	0.86	1.7	1.6	1.1	0.89	1.8	1.9	1.7	1.4	1.8
PCB114		< 0.093	< 0.094	< 0.094	< 0.093	< 0.094	< 0.093	< 0.094	< 0.094	< 0.093	< 0.094	< 0.094	< 0.094	< 0.094	< 0.093	< 0.093	< 0.094	< 0.094	< 0.094	< 0.093	< 0.094	< 0.094	< 0.093	< 0.094	< 0.093	< 0.094	< 0.093	< 0.093	< 0.094
PCB118		< 0.15	< 0.15	< 0.15		+	< 0.15	< 0.15	< 0.15	1.5	0.97	1.1	1.2	1.7	1.7	1.5	2	1.1	1.5	0.99	2	1.7	1.2	0.98	1.8	1.9	1.9	1.4	2
PCB119		< 0.063	< 0.064	< 0.064		< 0.064		< 0.064		< 0.063	< 0.064		< 0.064		0.2 J	0.21 J	0.29 J		0.21 J	< 0.063	< 0.064	< 0.064	< 0.063	< 0.064	0.17 J	0.26 J	< 0.063	0.18 J	0.22 J
PCB123 PCB126		< 0.16	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16
PCB128		< 0.23 < 0.11	< 0.23 < 0.11	< 0.23	< 0.23	< 0.23	< 0.23 < 0.11	< 0.23	< 0.23 < 0.11	< 0.23 0.25 J	< 0.23	< 0.23	< 0.23 0.27 J	< 0.23 0.26 J	< 0.23 0.24 J	< 0.23 0.25 J	< 0.23 0.26 J	< 0.23	< 0.23	< 0.23 < 0.11	< 0.23 0.3 J	< 0.23	< 0.23	< 0.23 < 0.11	< 0.23 0.23 J	< 0.23 < 0.11	< 0.23 < 0.11	< 0.23 0.21 J	< 0.23 0.17 J
PCB138/158		< 0.29	< 0.29	< 0.29		< 0.29	< 0.29	< 0.29	< 0.29	1.3	0.76 J	0.81 J	0.97 J	1.4	1.4	1.5	1.7	0.89 J	1.3	0.69 J	1.4	1.3	0.87 J	0.7 J	1.2	1.3	1.2	1.1	1.3
PCB149		< 0.22	< 0.22	< 0.22	< 0.22	< 0.22	< 0.22	< 0.22	< 0.22	0.88	0.54	0.55	0.67	0.99	1.4	1.4	1.9	0.9	1.4	0.47 J	0.92	0.85	0.63	0.47 J	1.1	1.2	1.1	0.9	1.2
PCB151		< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	0.22 J	< 0.15	0.22 J	0.19 J	0.3 J	0.41 J	0.47 J	0.57	0.3 J	0.47 J	< 0.15	0.36 J	0.41 J	0.2 J	< 0.15	0.3 J	0.36 J	0.35 J	0.27 J	0.35 J
PCB153		< 0.072	< 0.072	< 0.073	< 0.072	< 0.073	< 0.072	< 0.073	< 0.073	1.5	0.9	0.95	1.1	1.4	1.9	2	2.4	1.2	1.8	0.76	1.5	1.3	1	0.77	1.5	1.7	1.6	1.4	1.7
PCB156		< 0.23	< 0.23	< 0.23	< 0.23	< 0.23	< 0.23	< 0.23	< 0.23	< 0.23	< 0.23	< 0.23	< 0.23	< 0.23	< 0.23	< 0.23	< 0.23	< 0.23	< 0.23	< 0.23	< 0.23	< 0.23	< 0.23	< 0.23	< 0.23	< 0.23	< 0.23	< 0.23	< 0.23
PCB157		< 0.14	< 0.14	< 0.14	< 0.14	< 0.14	< 0.14	< 0.14	< 0.14	< 0.14	< 0.14	< 0.14	< 0.14	< 0.14	< 0.14	< 0.14	< 0.14	< 0.14	< 0.14	< 0.14	< 0.14	< 0.14	< 0.14	< 0.14	< 0.14	< 0.14	< 0.14	< 0.14	< 0.14
PCB167 PCB168		< 0.12 < 0.095	< 0.12 < 0.096	< 0.12		< 0.12	< 0.12	< 0.12	< 0.12 < 0.096	< 0.12	< 0.12 < 0.096	< 0.12	< 0.12	l	< 0.12 < 0.095	< 0.12		1	< 0.12	< 0.12	< 0.12 < 0.096	< 0.12 < 0.096	< 0.12 < 0.095	< 0.12 < 0.096	< 0.12 < 0.095	< 0.12	< 0.12	< 0.12 < 0.095	< 0.12 < 0.096
PCB169		< 0.095	< 0.096	< 0.096	< 0.18	< 0.18	< 0.095 < 0.18	< 0.096 < 0.18	< 0.096	< 0.095	< 0.096	< 0.096	< 0.096 < 0.18	< 0.096	< 0.095	< 0.095 < 0.18	< 0.096 < 0.18	< 0.096 < 0.18	< 0.18	< 0.095 < 0.18	< 0.096	< 0.096	< 0.095	< 0.096	< 0.095	< 0.096	< 0.095 < 0.18	< 0.095	< 0.096
PCB170		< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18
PCB177		< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
PCB180		< 0.16	< 0.16	< 0.16		< 0.16	< 0.16	< 0.16	< 0.16	0.3 J	0.26 J	< 0.16	0.21 J	0.31 J	0.36 J	0.41 J	0.44 J	0.27 J	0.39 J	< 0.16	0.33 J	0.35 J	< 0.16	< 0.16	0.32 J	0.32 J	0.35 J	0.26 J	0.32 J
PCB183		< 0.099	< 0.099	< 0.1	< 0.099	< 0.1	< 0.099	< 0.1	< 0.1	< 0.099	< 0.1	< 0.099	< 0.1	< 0.1	< 0.099	0.15 J	0.16 J	< 0.1	< 0.1	< 0.099	< 0.099	< 0.1	< 0.099	< 0.099	< 0.099	< 0.1	< 0.099	< 0.099	< 0.099
PCB187		< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	0.27 J	0.17 J	0.16 J	0.19 J	0.28 J	0.39 J	0.42 J	0.58	0.25 J	0.47 J	< 0.13	0.34 J	0.25 J	< 0.13	< 0.13	0.23 J	0.29 J	0.41 J	0.29 J	0.39 J

Table 18
Results of Chemical Analyses of *Macoma nasuta* Tissue Residues

	FDA			Zero						B2-DU1-	B2-DU1-	B2-DU1-	B2-DU1-	B2-DU1-	B2-DU2-	B2-DU2-	B2-DU2-	B2-DU2-	B2-DU2-	B3-DU1-	B3-DU1-	B3-DU1-	B3-DU1-	B3-DU1-	B3-DU2-	B3-DU2-	B3-DU2-	B3-DU2-	B3-DU2-
	Action	Zero Time	Zero Time	Time	LA2 REF	СОМР	COMP	COMP	СОМР	СОМР	COMP	COMP	СОМР	COMP	СОМР	COMP													
	Level	Rep A	Rep B	Rep C	Rep A	Rep B	Rep C	Rep D	Rep E	Rep A	Rep B	Rep C	Rep D	Rep E	Rep A	Rep B	Rep C	Rep D	Rep E	Rep A	Rep B	Rep C	Rep D	Rep E	Rep A	Rep B	Rep C	Rep D	Rep E
PCB189		< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17
PCB194		< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17
PCB201		< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13
PCB206		< 0.23	< 0.23	< 0.23	< 0.23	< 0.23	< 0.23	< 0.23	< 0.23	< 0.23	< 0.23	< 0.23	< 0.23	< 0.23	< 0.23	< 0.23	< 0.23	< 0.23	< 0.23	< 0.23	< 0.23	< 0.23	< 0.23	< 0.23	< 0.23	< 0.23	< 0.23	< 0.23	< 0.23
Total PCB Congeners (ND = 0)	2000 ⁵	< 0.29	< 0.29	< 0.29	< 0.29	< 0.29	< 0.29	< 0.29	< 0.29	18.25	10.86	11.55	13.63	18	22.63	22.07	28.84	14.28	20.78	11.66	26.18	20.61	13.94	10.66	25.07	26.08	23.87	19.74	26.68

For totals, zeroes were used for non-detect samples for summing. If all samples were non-detect, the highest method detection limit of all samples was used as the total result.

- 1 Total DDTs are the sum of: 4,4'-DDD, 4,4'-DDE, 4,4'-DDT, 2,4'-DDD, 2,4'-DDE, and 2,4'-DDT.
- 2 Total Chlordanes are the sum of Alpha Chlordane and Gamma Chlordane.
- 3 Action level for methyl mercury.
- 4 Action level for DDT and DDE (individually or in combination).
- 5 Tolerance level for PCBs. No action level.

Bold = detected result

- < = less than listed method detection limit
- = results not reported or not applicable

μg/kg = microgram per kilogram

 ${\tt DDD = dichlorodiphenyldichloroethane}$

DDE = dichlorodiphenyldichloroethylene

DDT = dichlorodiphenyltrichloroethane

FDA = U.S. Food and Drug Administration
J = indicates an estimated value

mg/kg = milligrams per kilogram

ND = not detected

PCB = polychlorinated biphenyl

Table 19
Results of Chemical Analyses of *Nereis virens* Tissue Residues

									ne:	suits oi	Chemi	cai Ana	iyses o	Nereis	vireiis	iissue	Residu	es											
	FDA	Zero	Zero	Zero						B2-DU1-	B2-DU1-	B2-DU1-	B2-DU1-	B2-DU1-	B2-DU2-	B2-DU2-	B2-DU2-	B2-DU2-	B2-DU2-	B3-DU1-	B3-DU1-	B3-DU1-	B3-DU1-	B3-DU1-	B3-DU2-	B3-DU2-	B3-DU2-	B3-DU2-	B3-DU2-
	Action	Time	Time	Time	LA2 REF	LA2 REF	LA2 REF	LA2 REF	LA2 REF	COMP	СОМР	СОМР	СОМР	СОМР	СОМР	СОМР	СОМР	СОМР	СОМР	СОМР	СОМР	СОМР	СОМР	СОМР	СОМР	СОМР	СОМР	СОМР	СОМР
	Level	Rep A	Rep B	Rep C	Rep A	Rep B	Rep C	Rep D	Rep E	Rep A	Rep B	Rep C	Rep D	Rep E	Rep A	Rep B	Rep C	Rep D	Rep E	Rep A	Rep B	Rep C	Rep D	Rep E	Rep A	Rep B	Rep C	Rep D	Rep E
Conventional Parameters	•			•	•	•	•	•			•		•	•	•		•	•	•	•	•	•	•		•	•	•		
% Lipids		0.59	0.51	1.2	0.99	0.98	1	0.73	0.64	0.53	0.81	0.87	0.86	0.74	0.67	0.8	0.93	0.8	0.95	0.94	0.85	0.92	0.76	0.87	0.81	0.73	0.73	0.72	0.87
Metals (mg/kg)	•	•			•		•		•		•		•	•	•		•	•	•	•		•	•	•		•	•		
Mercury	13	0.0426	0.0442	0.028	0.0247	0.0209	0.0202	0.025	0.0237	0.0374	0.039	0.036	0.0387	0.0389	0.0339	0.0339	0.0293	0.0244	0.0171	0.0311	0.0401	0.0331	0.0209	0.0184	0.024	0.0217	0.0178	0.0169	0.0209
Pesticides (μg/kg)																													
2,4'-DDD		< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.41	< 0.4	< 0.4	< 0.4	< 0.41	< 0.4	< 0.4	< 0.41	< 0.41	< 0.4	< 0.4	< 0.4	< 0.41	< 0.41	< 0.4	< 0.4	< 0.41	< 0.4	< 0.41
2,4'-DDE	5000 ⁴	< 0.19	< 0.18	< 0.18	< 0.18	< 0.18	< 0.19	< 0.18	< 0.19	< 0.18	< 0.19	< 0.19	< 0.18	< 0.18	< 0.19	< 0.18	< 0.18	< 0.19	< 0.19	< 0.19	< 0.18	< 0.18	< 0.19	< 0.19	< 0.18	< 0.18	< 0.19	< 0.18	< 0.19
2,4'-DDT	5000 ⁴	< 0.31	< 0.3	< 0.3	< 0.3	< 0.3	< 0.31	< 0.3	< 0.31	< 0.3	< 0.31	< 0.31	< 0.3	< 0.3	< 0.31	< 0.3	< 0.3	< 0.31	< 0.31	< 0.31	< 0.3	< 0.3	< 0.31	< 0.31	< 0.3	< 0.3	< 0.31	< 0.3	< 0.31
4,4'-DDD		< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18
4,4'-DDT	5000 ⁴	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.39	< 0.38	< 0.38	< 0.38	< 0.39	< 0.38	< 0.38	< 0.39	< 0.39	< 0.38	< 0.38	< 0.38	< 0.39	< 0.39	< 0.38	< 0.38	< 0.39	< 0.38	< 0.39
4,4'-DDE	5000 ⁴	< 0.25	< 0.25	< 0.25	1.1	0.63 J	0.87 J	1	0.57 J	0.86 J	1.3	1.6	1.6	1.5	0.76 J	1.9	1.8	1		2.3	2.2	0.89 J	1.2	1.9	2.1	2.4	2.3	1.7	1.2
Total DDTs (ND = 0) ¹	5000 ⁴	< 0.4	< 0.4	< 0.4	1.1	0.63 J	0.87 J	1	0.57 J	0.86 J	1.3	1.6	1.6	1.5	0.76 J	1.9	1.8	1	< 0.41	2.3	2.2	0.89 J	1.2	1.9	2.1	2.4	2.3	1.7	1.2
Alpha Chlordane		< 0.25	< 0.24	< 0.24	< 0.24	< 0.24	< 0.25	< 0.25	< 0.25											< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25
Gamma Chlordane		< 0.21	< 0.21	< 0.21	< 0.21	< 0.21	< 0.21	< 0.21	< 0.21											< 0.21	< 0.21	< 0.21	< 0.21	< 0.21	< 0.21	< 0.21	< 0.21	< 0.21	< 0.21
Cis-nonachlor		< 0.42	< 0.41	1.8	1.8	1.7	1.3	0.77 J	0.79 J											< 0.42	< 0.42	< 0.42	< 0.42	< 0.42	< 0.42	< 0.42	< 0.42	< 0.42	< 0.42
Oxychlordane		0.26 J	0.27 J	< 0.22	< 0.22	< 0.22	< 0.22	< 0.22	< 0.22											< 0.22	< 0.22	< 0.22	< 0.22	< 0.22	< 0.22	< 0.22	< 0.22	< 0.22	< 0.22
Trans-nonachlor		< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3											< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Total Chlordanes (ND = 0) ²	300	0.26 J	0.27 J	1.8	1.8	1.7	1.3	0.77 J	0.79 J											< 0.42	< 0.42	< 0.42	< 0.42	< 0.42	< 0.42	< 0.42	< 0.42	< 0.42	< 0.42
PCB Congeners (μg/kg)	•				•		•	•			•		•	•			•	•	•	•	•	•	•		•	•	•		
PCB018		< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	0.28 J	0.4 J	0.46 J	0.33 J	0.41 J	0.46 J	0.47 J	0.66	0.56	1.4	1.5	0.94	0.64	0.84	0.75	1	1.1	1.5	0.7	1
PCB028		< 0.096	< 0.095	< 0.095	< 0.095	< 0.095	< 0.096	< 0.096	< 0.096	0.29 J	0.37 J	0.4 J	0.26 J	0.46 J	0.32 J	0.36 J	0.45 J	0.43 J	0.94	0.85	0.61	0.42 J	0.61	0.5	0.81	0.93	1.7	0.67	0.86
PCB037		< 0.11	< 0.1	< 0.1	< 0.1	< 0.1	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	0.52	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11
PCB044		< 0.064	< 0.063	< 0.063	< 0.063	< 0.063	< 0.064	< 0.064	< 0.064	0.28 J	0.3 J	0.56	0.4 J	0.33 J	0.25 J	0.26 J	0.44 J	0.34 J	0.95	0.62	0.53	0.31 J	0.41 J	0.42 J	0.48 J	0.49 J	0.5 J	0.37 J	0.36 J
PCB049		< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	0.23 J	0.39 J	0.43 J	0.34 J	0.5 J	0.58	0.75	1.1	0.75	1.6	0.76	0.63	0.52	0.55	0.59	1.1	1.4	1.9	0.96	1.2
PCB052		< 0.057	< 0.057	< 0.057	< 0.057	< 0.057	< 0.057	< 0.057	< 0.057	0.71	1.2	1.1	1	1.1	1.2	1.8	2.8	1.9	3.1	2.1	1.6	1.4	1.4	1.6	2.6	2.8	4.3	2.1	2.8
PCB056		< 0.093	< 0.092	< 0.092	< 0.092	< 0.092	< 0.093	< 0.092	< 0.093	< 0.092	< 0.093	0.25 J	< 0.092	< 0.092	< 0.093	< 0.092	< 0.092	< 0.093	1.1	0.27 J	0.28 J	0.22 J	< 0.093	< 0.093	< 0.092	< 0.092	0.17 J	< 0.092	< 0.093
PCB066		< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	0.48 J	0.67	0.74	0.47 J	0.71	0.52	0.53	0.82	0.63	1.6	0.89	0.71	0.61	0.62	0.67	0.91	0.98	1.3	0.76	1.1
PCB070		< 0.082	< 0.081	< 0.081	< 0.081	< 0.081	< 0.082	< 0.082	< 0.082	0.21 J	0.19 J	0.3 J	0.16 J	0.18 J	0.23 J	0.19 J	0.28 J	0.28 J	1	0.36 J	0.32 J	0.2 J	0.16 J	0.3 J	0.27 J	0.37 J	0.37 J	0.26 J	0.27 J
PCB074		< 0.15	< 0.14	< 0.14	< 0.14	< 0.14	< 0.15	< 0.15	< 0.15	0.16 J	0.15 J	0.23 J	< 0.15	0.26 J	0.17 J	0.17 J	0.26 J	0.24 J	0.65	0.29 J	0.27 J	0.2 J	0.23 J	< 0.15	0.23 J	0.31 J	0.38 J	0.22 J	0.28 J
PCB077		< 0.14	< 0.14	< 0.14	< 0.14	< 0.14	< 0.14	< 0.14	< 0.14	< 0.14	< 0.14	< 0.14	< 0.14	< 0.14	< 0.14	< 0.14	< 0.14	< 0.14	< 0.14	< 0.14	< 0.14	< 0.14	< 0.14	< 0.14	< 0.14	< 0.14	< 0.14	< 0.14	< 0.14
PCB081		< 0.082	< 0.081	< 0.081	< 0.081	< 0.081	< 0.082	< 0.081	< 0.082	< 0.081	< 0.082	< 0.082	< 0.081	< 0.081	< 0.082	< 0.081	< 0.081	< 0.082	< 0.082	< 0.082	< 0.081	< 0.081	< 0.082	< 0.082	< 0.081	< 0.081	< 0.082	< 0.081	< 0.082
PCB087		< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13
PCB099		< 0.074	< 0.073	0.29 J	0.28 J	0.32 J	0.26 J	0.19 J	0.22 J	0.59	0.8	0.69	0.63	0.82	0.77	1.1	1.6	1.2	1.9	0.94	0.75	0.71	0.73	0.85	1.3	1.4	1.8	1.1	1.3
PCB101		< 0.065	< 0.064	0.61	0.57	0.49 J	0.48 J	0.31 J	0.43 J	0.98	1.4	1.3	1.3	1.5	0.22.1	1.9	2.8	0.201	0.52	0.40 1	1.3	1.2	0.40	0.4 J	2.2 0.43 J	2.2	2.6	1.8	0.20.1
PCB105 PCB110		< 0.13	< 0.13	< 0.13 0.32 J	< 0.13 0.31 J	< 0.13	< 0.13	< 0.13 0.22 J	0.25 J < 0.2	0.38 J 0.56	0.46 J 0.85	0.36 J 0.92	0.41 J 0.82	0.5	0.33 J 0.73	0.35 J 0.82	0.43 J 1.3	0.38 J 0.99	0.52 1.4	0.48 J 1.1	0.44 J 0.92	0.38 J 0.84	0.49 J 0.97	0.43	1.1	0.55 1.2	0.5 J 1.1	0.45 J 1.1	0.39 J 1.2
PCB110		< 0.094	< 0.093	< 0.093	1	< 0.093	< 0.094	< 0.093	< 0.094	< 0.093	< 0.094	< 0.094	< 0.093	< 0.093	< 0.094	< 0.093	< 0.093	< 0.094	< 0.094	< 0.094	< 0.093	< 0.093	< 0.094	< 0.094	< 0.093	< 0.093	< 0.094	< 0.093	< 0.094
PCB114		< 0.15	< 0.15	0.47 J	0.5 J	0.43 J	0.39 J	0.22 J	0.33 J	0.56	0.9	0.85	0.62	0.92	0.68	0.69	1.1	0.91	1.3	1.1	0.94	0.8	0.73	1	1.1	1.2	1.3	1.1	1.1
PCB119		< 0.064	< 0.063	< 0.063	+	< 0.063	< 0.064	< 0.063	< 0.064	< 0.063	< 0.064	< 0.064	< 0.063	< 0.063	< 0.064	< 0.063	< 0.063	< 0.064	< 0.064	< 0.064	< 0.063	-	< 0.064	< 0.064	< 0.063	< 0.063	< 0.064	< 0.063	< 0.064
PCB123		< 0.16	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16
PCB126		< 0.23	< 0.23	< 0.23		< 0.23	< 0.23	< 0.23	< 0.23	< 0.23	< 0.23	< 0.23	< 0.23	< 0.23		< 0.23	< 0.23	< 0.23	< 0.23	< 0.23	< 0.23		< 0.23	< 0.23	< 0.23	< 0.23	< 0.23	< 0.23	< 0.23
PCB128		< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	0.23 J	< 0.11	< 0.11	< 0.11	< 0.11	0.22 J	0.26 J	< 0.11	< 0.11	< 0.11	< 0.11	0.27 J	< 0.11	0.18 J	< 0.11	< 0.11
PCB138/158		0.3 J	< 0.29	1.1	1.3	1.2	1.2	0.66 J	0.95 J	0.87 J	1.4	1.2	1.3	1.5	1.2	1.2	1.8	1.7	2.1	1.6	1.4	1.3	1.4	1.7	1.8	1.8	1.6	1.5	1.7
PCB149		< 0.22	< 0.22	0.66	0.83	0.89	0.71	0.48 J	0.61	0.58	0.88	0.94	0.87	1	0.91	1.2	1.7	1.5	2.1	1.1	0.91	0.96	0.99	1.1	1.4	1.5	1.3	1.3	1.3
PCB151		< 0.15	< 0.15	0.2 J	0.27 J	0.27 J	0.21 J	0.16 J	0.24 J	0.15 J	0.33 J	0.25 J	0.26 J	0.68	0.3 J	0.39 J	0.62	0.5 J	0.71	0.35 J	0.38 J	0.32 J	0.29 J	0.39 J	0.48 J	0.44 J	0.51	0.39 J	0.35 J
PCB153		0.44 J	0.38 J	1.3	1.8	1.9	1.6	0.96	1.4	1	1.7	1.6	1.7	1.7	1.4	1.7	2.4	2.4	3.2	2	1.7	1.8	1.9	2.3	2.5	2.5	2.4	2.2	2.4
PCB156		< 0.23	< 0.23	< 0.23	< 0.23	< 0.23	< 0.23	< 0.23	< 0.23	< 0.23	< 0.23	< 0.23	< 0.23	< 0.23	< 0.23	< 0.23	< 0.23	< 0.23	< 0.23	< 0.23	< 0.23	< 0.23	< 0.23	< 0.23	< 0.23	< 0.23	< 0.23	< 0.23	< 0.23
PCB157		< 0.14	< 0.14	< 0.14	< 0.14	< 0.14	< 0.14	< 0.14	< 0.14	< 0.14	< 0.14	< 0.14	< 0.14	< 0.14	< 0.14	< 0.14	< 0.14	< 0.14	< 0.14	< 0.14	< 0.14	< 0.14	< 0.14	< 0.14	< 0.14	< 0.14	< 0.14	< 0.14	< 0.14
PCB167		< 0.12	< 0.12	< 0.12	< 0.12	< 0.12	< 0.12	< 0.12	< 0.12	< 0.12	< 0.12	< 0.12	< 0.12	< 0.12	< 0.12	< 0.12	< 0.12	< 0.12	< 0.12	< 0.12	< 0.12	< 0.12	< 0.12	< 0.12	< 0.12	< 0.12	< 0.12	< 0.12	< 0.12
PCB168		< 0.096	< 0.095	< 0.095	< 0.095	< 0.095	< 0.096	< 0.095	< 0.096	< 0.095	< 0.096	< 0.096	< 0.095	< 0.095	< 0.096	< 0.095	< 0.095	< 0.096	< 0.096	< 0.096	< 0.095	< 0.095	< 0.096	< 0.096	< 0.095	< 0.095	< 0.096	< 0.095	< 0.096
PCB169		< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18
PCB170		< 0.23	< 0.23	0.28 J	0.35 J	0.31 J	0.31 J	< 0.23	0.26 J	< 0.23	0.26 J	0.32 J	0.24 J	0.31 J	< 0.23	0.24 J	0.35 J	0.51	0.52	0.31 J	0.25 J	0.28 J	0.3 J	0.45 J	0.39 J	0.34 J	0.31 J	0.32 J	0.37 J
PCB177		< 0.2	< 0.19	< 0.19	0.22 J	0.25 J	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	0.2 J	< 0.2	< 0.2	< 0.2	0.31 J	0.27 J	< 0.2	< 0.2	< 0.2	< 0.2	0.22 J	0.2 J	0.21 J	0.21 J	< 0.2	0.21 J

Table 19
Results of Chemical Analyses of *Nereis virens* Tissue Residues

	FDA Action Level	Zero Time Rep A	Zero Time Rep B	Zero Time Rep C	LA2 REF Rep A	LA2 REF Rep B	LA2 REF Rep C	LA2 REF Rep D		_	B2-DU1- COMP Rep B	B2-DU1- COMP Rep C	B2-DU1- COMP Rep D	B2-DU1- COMP Rep E	_	B2-DU2- COMP Rep B	B2-DU2- COMP Rep C	B2-DU2- COMP Rep D	СОМР	B3-DU1- COMP Rep A		B3-DU1- COMP Rep C	B3-DU1- COMP Rep D	B3-DU1- COMP Rep E	B3-DU2- COMP Rep A	B3-DU2- COMP Rep B		B3-DU2- COMP Rep D	СОМР
PCB180		0.21 J	< 0.16	0.67	0.99	0.91	0.83	0.5	0.63	0.36 J	0.56	0.62	0.61	0.61	0.47 J	0.54	0.86	1.1	1.1	0.62	0.55	0.67	0.71	0.87	0.91	0.87	0.7	0.73	0.85
PCB183		< 0.099	< 0.098	0.19 J	0.25 J	0.28 J	0.22 J	0.16 J	0.18 J	< 0.099	0.22 J	0.22 J	0.19 J	0.25 J	0.18 J	0.2 J	0.28 J	0.33 J	0.38 J	0.24 J	0.22 J	0.27 J	0.21 J	0.31 J	0.24 J	0.3 J	0.27 J	0.26 J	0.27 J
PCB187		0.21 J	< 0.13	0.54	0.74	0.74	0.69	0.46 J	0.6	0.3 J	0.52	0.53	0.53	0.55	0.48 J	0.59	0.93	1.3	1.2	0.6	0.56	0.72	0.64	0.78	0.76	0.85	0.68	0.67	0.74
PCB189		< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17
PCB194		< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	0.25 J	0.32 J	0.26 J	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17
PCB201		< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13	< 0.13
PCB206		< 0.23	< 0.23	0.29 J	0.42 J	0.36 J	0.37 J	0.28 J	0.29 J	< 0.23	0.25 J	0.25 J	0.26 J	0.26 J	< 0.23	< 0.23	0.28 J	0.35 J	0.37 J	0.23 J	< 0.23	0.37 J	0.34 J	0.29 J	0.31 J	0.33 J	0.31 J	0.29 J	0.31 J
Total PCB Congeners (ND = 0)	2000 ⁵	1.16	0.38 J	6.92	8.83	8.35	7.27	4.6	6.39	8.97	14.2	14.52	12.7	15.98	12.68	15.45	23.51	20.93	33.41	20.17	16.21	15.14	15.72	17.93	22.79	24.07	27.89	19.25	22.36

For totals, zeroes were used for non-detect samples for summing. If all samples were non-detect, the highest method detection limit of all samples was used as the total result.

- 1 Total DDTs are the sum of: 4,4'-DDD, 4,4'-DDE, 4,4'-DDT, 2,4'-DDD, 2,4'-DDE, and 2,4'-DDT.
- 2 Total Chlordanes are the sum of Alpha Chlordane and Gamma Chlordane.
- 3 Action level for methyl mercury.
- 4 Action level for DDT and DDE (individually or in combination).
- 5 Tolerance level for PCBs. No action level.

Bold = detected result

- < = less than listed method detection limit
- = results not reported or not applicable

μg/kg = micrograms per kilogram

DDD = dichlorodiphenyldichloroethane

DDE = dichlorodiphenyldichloroethylene DDT = dichlorodiphenyltrichloroethane

FDA = U.S. Food and Drug Administration

J = indicates an estimated value

mg/kg = milligrams per kilogram

ND = not detected

PCB = polychlorinated biphenyl

Table 20 Summary of Statistically Elevated Macoma nasuta Tissue Residues

				Day 0 Mean	Reference Mean	Project Area Mean			
Project Area	Analyte	Units	MDL ¹	Tissue Concentration	Tissue Concentration	Tissue Concentration	p value	Project Area Mean: Reference Mean Ratio	Comparison to Relevant Environmental Residue-Effects Database Values
,	Mercury	mg/kg	0.0037	0.0091	0.0102	0.0130	0.0163	1.28	NOED: 8.4 mg/kg for mortality of the mussel <i>Mytilus edulis</i> .
	4,4'-DDE	μg/kg	0.51	0.125 U	4.16	10.5	0.0024	2.53	LC ₅₀ : 110,400 µg/kg for mortality of the freshwater amphipod <i>Hyalella azteca</i> .
									No data in the ERED for total DDTs. The lowest relevant NOED for DDT derivatives was 510
	Total DDTs (ND = 0)	μg/kg	0.41	0.202 U	4.16	10.5	0.0024	2.53	μg/kg for reproduction of Chinook salmon (<i>Oncorhynchus tshawytscha</i>).
	PCB028	μg/kg	0.097	0.048 U	0.048 U	0.606	0.0421	12.5	No relevant effects in the ERED.
	PCB052	μg/kg	0.058	0.029 U	0.029 U	0.876	0.0421	30.4	NOED: 54,000 μg/kg for mortality of the freshwater amphipod Hyalella azteca.
	PCB056	μg/kg	0.093	0.046 U	0.046 U	0.47	0.0421	10.2	-
	PCB066	μg/kg	0.13	0.065 U	0.065 U	1.06	0.0421	16.4	-
	PCB070	μg/kg	0.082	0.041 U	0.041 U	0.74	0.0421	18.0	-
	PCB074	μg/kg	0.15	0.075 U	0.075 U	0.462	0.0421	6.16	-
	PCB099	μg/kg	0.074	0.037 U	0.037 U	0.97	0.0421	26.4	-
B2-DU1-COMP	PCB101	μg/kg	0.065	0.033 U	0.033 U	1.42	0.0421	43.7	No relevant effects in the ERED for this species. NOED 1,115,000 µg/kg for mortality, growth, and reproduction of the fathead minnow (Pimephales promelas).
	PCB105	μg/kg	0.13	0.065 U	0.065 U	0.41	0.0421	6.31	No relevant species in the ERED.
	PCB110	μg/kg	0.2	0.1 U	0.1 U	1.23	0.0421	12.3	-
	PCB118	μg/kg	0.15	0.075 U	0.075 U	1.29	0.0421	17.3	NOED: 3,260 μg/kg for mortality of the starfish (Asterias rubens).
	PCB138/158	μg/kg	0.29	0.145 U	0.145 U	1.05	0.0421	7.23	No relevant effects in the ERED for this species. NOED for PCB 138: 946,000 μg/kg for mortality, growth, and reproduction of the fathead minnow (<i>Pimephales promelas</i>).
	PCB149	μg/kg	0.22	0.11 U	0.11 U	0.726	0.0421	6.60	-
	PCB153	μg/kg	0.073	0.036 U	0.036 U	1.17	0.0421	32.2	LOED: 126,310 μg/kg for mortality of the oligochaete (Lumbriculus variegatu s).
	PCB187	μg/kg	0.13	0.065 U	0.065 U	0.214	0.0421	3.29	-
	Total PCB Congeners (ND = 0)	μg/kg	0.13	0.145 U	0.145 U	14.5	0.0421	99.7	NOED: 1,700 μg/kg for mortality and growth of the clam Macoma nasuta.
	4,4'-DDE	μg/kg	0.51	0.125 U	4.16	11.4	<0.0001	2.73	LC ₅₀ : 110,400 μg/kg for mortality of the freshwater amphipod <i>Hyalella azteca</i> .
	Total DDTs (ND = 0)	μg/kg	0.41	0.202 U	4.16	11.4	<0.0001	2.73	No data in the ERED for total DDTs. The lowest relevant NOED for DDT derivatives was 510 µg/kg for reproduction of Chinook salmon (<i>Oncorhynchus tshawytscha</i>).
	PCB028	μg/kg	0.097	0.048 U	0.048 U	0.584	0.0413	12.1	No relevant effects in the ERED.
	PCB044	μg/kg	0.064	0.032 U	0.032 U	0.28	0.0421	8.75	-
	PCB052	μg/kg	0.058	0.029 U	0.029 U	1.78	0.0421	61.8	NOED: 54,000 μg/kg for mortality of the freshwater amphipod Hyalella azteca.
	PCB066	μg/kg	0.13	0.065 U	0.065 U	1.12	0.0421	17.3	-
	PCB070	μg/kg	0.082	0.041 U	0.041 U	0.89	0.0421	21.7	-
	PCB074	μg/kg	0.15	0.075 U	0.075 U	0.472	0.0421	6.29	-
	PCB099	μg/kg	0.074	0.037 U	0.037 U	1.84	0.0421	50.0	-
B2-DU2-COMP	PCB101	μg/kg	0.065	0.033 U	0.033 U	2.54	0.0421	78.2	No relevant effects in the ERED for this species. NOED: 1,115,000 μg/kg for mortality, growth, and reproduction of the fathead minnow (<i>Pimephales promelas</i>).
	PCB105	μg/kg	0.13	0.065 U	0.065 U	0.43	0.0421	6.62	No relevant species in the ERED.
	PCB110	μg/kg	0.2	0.1 U	0.1 U	1.52	0.0421	15.2	-
	PCB118	μg/kg	0.15	0.075 U	0.075 U	1.56	0.0421	20.8	NOED: 3,260 μg/kg for mortality of the starfish (Asterias rubens).
	PCB119	μg/kg	0.064	0.031 U	0.031 U	0.188	0.0143	5.92	-
	PCB138/158	μg/kg	0.29	0.145 U	0.145 U	1.36	0.0421	9.37	No relevant effects in the ERED for this species. NOED for PCB 138: 946,000 µg/kg for mortality, growth, and reproduction of the fathead minnow (<i>Pimephales promelas</i>).
	PCB149	μg/kg	0.22	0.11 U	0.11 U	1.4	0.0421	12.7	-
	PCB151	μg/kg	0.15	0.075 U	0.075 U	0.444	<0.0001	5.92	-
	PCB153	μg/kg	0.073	0.036 U	0.036 U	1.86	0.0421	51.2	LOED: 126,310 μg/kg for mortality of the oligochaete (Lumbriculus variegatu s).

Table 20 Summary of Statistically Elevated Macoma nasuta Tissue Residues

	<u> </u>				,	,	1	a nasuta Tissue Resid	
Project Area	Analyte	Units	MDL ¹	Day 0 Mean Tissue Concentration	Reference Mean Tissue Concentration	Project Area Mean Tissue Concentration	p value	Project Area Mean: Reference Mean Ratio	
D2 DU2 COMB	PCB180	μg/kg	0.16	0.08 U	0.08 U	0.374	0.0005	4.68	No relevant effects in the ERED for this species. NOED: 1,210,000 µg/kg for mortality, growth, and reproduction of the fathead minnow (<i>Pimephales promelas</i>).
B2-DU2-COMP	PCB187	μg/kg	0.13	0.065 U	0.065 U	0.422	0.0421	6.49	-
	Total PCB Congeners (ND = 0)	μg/kg	0.13	0.145 U	0.145 U	21.7	0.0421	150	NOED: 1,700 μg/kg for mortality and growth of the clam Macoma nasuta.
	4,4'-DDE	μg/kg	1.3	0.125 U	4.16	11.9	<0.0001	2.85	LC ₅₀ : 110,400 μg/kg for mortality of the freshwater amphipod Hyalella azteca.
	Total DDTs (ND = 0)	μg/kg	0.41	0.202 U	4.16	11.9	<0.0001	2.85	No data in the ERED for total DDTs. The lowest relevant NOED for DDT derivatives was 510 µg/kg for reproduction of Chinook salmon (<i>Oncorhynchus tshawytscha</i>).
	Cis-nonachlor	μg/kg	0.42	0.21 U	0.21 U	0.824	0.0002	3.92	T T T T T T T T T T T T T T T T T T T
	Total Chlordanes (ND = 0)	μg/kg	0.25	0.21 U	0.21 U	0.824	0.0002	3.92	NOED: 22 μg/kg for growth of the eastern oyster (<i>Crassostrea virginica</i>).
	PCB018	μg/kg	0.13	0.065 U	0.065 U	0.548	0.0421	8.43	-
	PCB028	μg/kg	0.097	0.048 U	0.048 U	0.898	0.0421	18.6	No relevant effects in the ERED.
	PCB044	μg/kg	0.064	0.032 U	0.032 U	0.402	0.0421	12.6	-
	PCB052	μg/kg	0.058	0.029 U	0.029 U	1.442	0.0421	50.1	NOED: 54,000 μg/kg for mortality of the freshwater amphipod Hyalella azteca.
	PCB056	μg/kg	0.093	0.046 U	0.046 U	0.538	0.0421	11.6	-
	PCB066	μg/kg	0.13	0.065 U	0.065 U	1.18	0.0421	18.1	-
	PCB070	μg/kg	0.082	0.041 U	0.041 U	0.97	0.0421	23.7	-
B3-DU1-COMP	PCB074	μg/kg	0.15	0.075 U	0.075 U	0.56	0.0421	7.47	-
	PCB099	μg/kg	0.074	0.037 U	0.037 U	0.94	0.0413	25.5	-
	PCB101	μg/kg	0.065	0.033 U	0.033 U	1.46	0.0421	44.9	No relevant effects in the ERED for this species. NOED: 1,115,000 µg/kg for mortality, growth, and reproduction of the fathead minnow (<i>Pimephales promelas</i>).
	PCB105	μg/kg	0.13	0.065 U	0.065 U	0.448	0.0421	6.89	No relevant species in the ERED.
	PCB110	μg/kg	0.2	0.1 U	0.1 U	1.23	0.0421	12.3	-
	PCB118	μg/kg	0.15	0.075 U	0.075 U	1.37	0.0421	18.3	NOED: 3,260 µg/kg for mortality of the starfish (Asterias rubens).
	PCB138/158	μg/kg	0.29	0.145 U	0.145 U	0.992	0.0421	6.84	No relevant effects in the ERED for this species. NOED for PCB 138: 946,000 μg/kg for mortality, growth, and reproduction of the fathead minnow (<i>Pimephales promelas</i>).
	PCB149	μg/kg	0.22	0.11 U	0.11 U	0.668	0.0421	6.07	-
	PCB153	μg/kg	0.073	0.036 U	0.036 U	1.07	0.0421	29.4	LOED: 126,310 μg/kg for mortality of the oligochaete (Lumbriculus variegatu s).
	Total PCB Congeners (ND = 0)	μg/kg	0.13	0.145 U	0.145 U	16.6	0.0421	115	NOED: 1,700 μg/kg for mortality and growth of the clam Macoma nasuta.
	4,4'-DDE	μg/kg	1.3	0.125 U	4.16	15	<0.0001	3.61	LC ₅₀ : 110,400 μg/kg for mortality of the freshwater amphipod <i>Hyalella azteca</i> .
	Total DDTs (ND = 0)	μg/kg	0.41	0.202 U	4.16	15	<0.0001	3.61	No data in the ERED for total DDTs. The lowest relevant NOED for DDT derivatives was 510 µg/kg for reproduction of Chinook salmon (<i>Oncorhynchus tshawytscha</i>).
	Cis-nonachlor	μg/kg	0.42	0.21 U	0.21 U	1.24	<0.0001	5.90	-
	Total Chlordanes (ND = 0)	μg/kg	0.25	0.21 U	0.21 U	1.24	<0.0001	5.90	NOED: 22 μg/kg for growth of the eastern oyster (<i>Crassostrea virginica</i>).
	PCB018	μg/kg	0.13	0.065 U	0.065 U	0.628	0.0413	9.66	
B3-DU2-COMP	PCB028	μg/kg	0.097	0.048 U	0.048 U	1.32	0.0413	27.3	No relevant effects in the ERED.
B3-DUZ-CUIVIP	PCB044	μg/kg	0.064	0.032 U	0.032 U	0.39	0.0421	12.2	-
	PCB052	μg/kg	0.058	0.029 U	0.029 U	2.28	0.0421	79.2	NOED: 54,000 μg/kg for mortality of the freshwater amphipod Hyalella azteca.
	PCB056	μg/kg	0.093	0.046 U	0.046 U	0.526	0.0421	11.4	-
	PCB066	μg/kg	0.13	0.065 U	0.065 U	1.58	0.0413	24.3	
	PCB070	μg/kg	0.082	0.041 U	0.041 U	1.24	0.0421	30.2	-
	PCB074	μg/kg	0.15	0.075 U	0.075 U	0.634	0.0421	8.45	-
	PCB099	μg/kg	0.074	0.037 U	0.037 U	1.74	0.0421	47.3	-

Table 20
Summary of Statistically Elevated Macoma nasuta Tissue Residues

Project Area	Analyte	Units	MDL ¹	Day 0 Mean Tissue Concentration	Reference Mean Tissue Concentration	Project Area Mean Tissue Concentration	p value	Project Area Mean: Reference Mean Ratio	Comparison to Relevant Environmental Residue-Effects Database Values
	PCB101	μg/kg	0.065	0.033 U	0.033 U	2.32	0.0413	71.4	No relevant effects in the ERED for this species. NOED: 1,115,000 µg/kg for mortality, growth, and reproduction of the fathead minnow (<i>Pimephales promelas</i>).
	PCB105	μg/kg	0.13	0.065 U	0.065 U	0.418	0.0421	6.43	No relevant species in the ERED.
	PCB110	μg/kg	0.2	0.1 U	0.1 U	1.72	0.0421	17.2	-
	PCB118	μg/kg	0.15	0.075 U	0.075 U	1.8	0.0413	24.0	NOED: 3,260 μg/kg for mortality of the starfish (Asterias rubens).
	PCB119	μg/kg	0.064	0.032 U	0.032 U	0.172	0.0486	5.42	
B3-DU2-COMP	PCB138/158	μg/kg	0.29	0.145 U	0.145 U	1.22	0.0413	8.41	No relevant effects in the ERED for this species. NOED for PCB 138: 946,000 μg/kg for mortality, growth, and reproduction of the fathead minnow (<i>Pimephales promelas</i>).
	PCB149	μg/kg	0.22	0.11 U	0.11 U	1.1	0.0413	10.0	-
	PCB151	μg/kg	0.15	0.075 U	0.075 U	0.326	0.0014	4.35	-
	PCB153	μg/kg	0.073	0.036 U	0.036 U	1.58	0.0421	43.5	LOED: 126,310 μg/kg for mortality of the oligochaete (Lumbriculus variegatus).
	PCB180	μg/kg	0.16	0.08 U	0.08 U	0.314	0.0101	3.93	No relevant effects in the ERED for this species. NOED: 1,210,000 μ g/kg for mortality, growth, and reproduction of the fathead minnow (<i>Pimephales promelas</i>).
	PCB187	μg/kg	0.13	0.065 U	0.065 U	0.322	0.0421	4.95	-
	Total PCB Congeners (ND = 0)	μg/kg	0.13	0.145 U	0.145 U	24.3	0.0421	168	NOED: 1,700 μg/kg for mortality and growth of the clam <i>Macoma nasuta</i> .

- 1 If MDL differed between samples, maximum MDL presented.
- 2 Organics were normalized to percent lipids prior to statistical analysis.
- 3 All data were log-transformed prior to statistical analysis.

μg/kg = micrograms per kilogram

DDD = dichlorodiphenyldichloroethane

DDE = dichlorodiphenyldichloroethylene

DDT = dichlorodiphenyltrichloroethane

ERED = Environmental Residue Effects Database

LC₅₀ = median lethal concentration

LOED = lowest observed effect dose

mg/kg = milligrams per kilogram

MDL = method detection limit

ND = not detected

NOED = no observed effect dose

PCB = polychlorinated biphenyl

U = non-detect; half the detection limit shown

Table 21
Summary of Statistically Elevated Nereis virens Tissue Residues

		1	1	2.22	•	,		s virens rissue Residu	
				Day 0 Mean	Reference Mean	Project Area Mean			
		l	1	Tissue	Tissue	Tissue	١.	Project Area Mean:	
Project Area	Analyte	Units	MDL ¹	Concentration	Concentration	Concentration	'	Reference Mean Ratio	Comparison to Relevant Environmental Residue-Effects Database Values
	Mercury	mg/kg	0.0037	0.0383	0.0229	0.0380	0.0330	1.66	NOED: 8.4 mg/kg for mortality of the mussel <i>Mytilus edulis</i> .
	4,4'-DDE	μg/kg	0.25	0.125 U	0.834	1.37	0.0167	1.65	LOED: 178,400 μg/kg for growth of the oligochaete <i>Lumbriculus variegatus</i> .
	PCB018	μg/kg	0.13	0.065 U	0.065 U	0.376	0.0421	5.78	-
	PCB028	μg/kg	0.097	0.048 U	0.048 U	0.356	0.0421	7.45	No relevant effects in the ERED.
	PCB044	μg/kg	0.064	0.032 U	0.032 U	0.374	0.0421	11.8	-
	PCB049	μg/kg	0.11	0.055 U	0.055 U	0.378	0.0421	6.87	-
	PCB052	μg/kg	0.058	0.029 U	0.029 U	1.02	0.0421	35.9	NOED: 54,000 μg/kg for mortality of the freshwater amphipod Hyalella azteca.
	PCB066	μg/kg	0.13	0.065 U	0.065 U	0.614	0.0421	9.45	-
	PCB070	μg/kg	0.082	0.041 U	0.041 U	0.208	0.0421	5.10	-
B2-DU1-COMP	PCB099	μg/kg	0.074	0.121	0.254	0.706	<0.0001	2.78	-
	PCB101	μg/kg	0.065	0.225	0.456	1.30	0.0421	2.84	No relevant effects in the ERED for this species. NOED: 1,115,000 μg/kg for mortality,
		<u> </u>							growth, and reproduction of the fathead minnow (Pimephales promelas).
	PCB105	μg/kg	0.13	0.065 U	0.102	0.422	0.0421	4.14	No relevant species in the ERED.
	PCB110	μg/kg	0.2	0.173	0.166	0.83	0.0421	5.00	-
	PCB118	μg/kg	0.15	0.207	0.374	0.77	<0.0001	2.06	NOED: 3,260 μg/kg for mortality of the starfish (<i>Asterias rubens</i>).
	PCB138/158	μg/kg	0.29	0.515	1.06	1.25	0.0096	1.18	No relevant effects in the ERED for this species. NOED for PCB 138: 946,000 $\mu g/kg$ for
	•	<u> </u>							mortality, growth, and reproduction of the fathead minnow (Pimephales promelas).
	PCB149	μg/kg	0.22	0.293	0.704	0.854	0.0047	1.21	-
	Total PCB Congeners (ND = 0)	μg/kg	0.13	2.82	7.09	13.3	<0.0001	1.87	NOED: 127 μg/kg for growth of the white sea urchin (Lytochinus pictus).
	PCB018	μg/kg	0.13	0.065 U	0.065 U	0.71	0.0421	10.9	-
	PCB028	μg/kg	0.097	0.048 U	0.048 U	0.5	0.0421	10.5	No relevant effects in the ERED.
	PCB044	μg/kg	0.064	0.032 U	0.032 U	0.448	0.0421	14.1	-
	PCB049	μg/kg	0.11	0.055 U	0.055 U	0.956	0.0413	17.4	-
	PCB052	μg/kg	0.058	0.029 U	0.029 U	2.16	0.0421	75.8	NOED: 54,000 μg/kg for mortality of the freshwater amphipod Hyalella azteca.
	PCB066	μg/kg	0.13	0.065 U	0.065 U	0.82	0.0421	12.6	-
	PCB070	μg/kg	0.082	0.041 U	0.041 U	0.396	0.0421	9.71	-
	PCB099	μg/kg	0.074	0.121	0.254	1.31	<0.0001	5.17	-
	PCB101	μσ/kσ	0.065	0.225	0.456	2.24	0.0421	4.91	No relevant effects in the ERED for this species. NOED: 1,115,000 μg/kg for mortality,
B2-DU2-COMP									growth, and reproduction of the fathead minnow (Pimephales promelas).
52 502 COIVII	PCB105	μg/kg	0.13	0.065 U	0.102	0.402	0.0421	3.94	No relevant species in the ERED.
	PCB110	μg/kg	0.2	0.173	0.166	1.05	0.0421	6.31	-
	PCB118	μg/kg	0.15	0.207	0.374	0.936	<0.0001	2.50	NOED: 3,260 μg/kg for mortality of the starfish (Asterias rubens).
	PCB138/158	μg/kg	0.29	0.515	1.06	1.6	0.0003	1.51	No relevant effects in the ERED for this species. NOED for PCB 138: 946,000 μg/kg for
	•	<u> </u>							mortality, growth, and reproduction of the fathead minnow (Pimephales promelas).
	PCB149	μg/kg	0.22	0.293	0.704	1.48	<0.0001	2.11	
	PCB151	μg/kg	0.15	0.117	0.23	0.504	0.001	2.19	
	PCB153	μg/kg	0.073	0.707	1.53	2.22	0.002	1.45	LOED: 126,310 μg/kg for mortality of the oligochaete <i>Lumbriculus variegatus</i> .
	PCB194	μg/kg	0.17	0.085 U	0.085 U	0.2	0.0357	2.35	
	Total PCB Congeners (ND = 0)	μg/kg	0.13	2.82	7.088	21.2	<0.0001	2.99	NOED: 127 μg/kg for growth of the white sea urchin (<i>Lytochinus pictus</i>).
	4,4'-DDE	μg/kg	0.25	0.125 U	0.834	1.70	0.0119	2.04	LOED: 178,400 μg/kg for growth of the oligochaete <i>Lumbriculus variegatus</i> .
	PCB018	μg/kg	0.13	0.065 U	0.065 U	0.934	0.0421	14.4	-
B3-DU1-COMP	PCB028	μg/kg	0.097	0.048 U	0.048 U	0.598	0.0421	12.5	No relevant effects in the ERED.
	PCB044	μg/kg	0.064	0.032 U	0.032 U	0.458	0.0421	14.4	-
	PCB049	μg/kg	0.11	0.055 U	0.055 U	0.61	0.0421	11.1	

Table 21
Summary of Statistically Elevated Nereis virens Tissue Residues

Summary of Statistically Elevated Nerels Virens Tissue Residues									
Project Area	Analyte	Units	MDL ¹	Day 0 Mean Tissue Concentration	Reference Mean Tissue Concentration	Project Area Mean Tissue Concentration	p value	Project Area Mean: Reference Mean Ratio	Comparison to Relevant Environmental Residue-Effects Database Values
B3-DU1-COMP	PCB052	μg/kg	0.058	0.029 U	0.029 U	1.62	0.0421	56.8	NOED: 54,000 μg/kg for mortality of the freshwater amphipod Hyalella azteca.
	PCB066	μg/kg	0.13	0.065 U	0.065 U	0.7	0.0421	10.8	-
	PCB070	μg/kg	0.082	0.041 U	0.041 U	0.268	0.0421	6.57	-
	PCB099	μg/kg	0.074	0.121	0.254	0.796	<0.0001	3.13	-
	PCB101	μg/kg	0.065	0.225	0.456	1.36	0.0421	2.98	No relevant effects in the ERED for this species. NOED: 1,115,000 μg/kg for mortality, growth, and reproduction of the fathead minnow (<i>Pimephales promelas</i>).
	PCB105	μg/kg	0.13	0.065 U	0.102	0.438	0.0421	4.29	No relevant species in the ERED.
	PCB110	μg/kg	0.2	0.173	0.166	0.954	0.0421	5.75	-
	PCB118	μg/kg	0.15	0.207	0.374	0.914	<0.0001	2.44	NOED: 3,260 μg/kg for mortality of the starfish (Asterias rubens).
	PCB138/158	μg/kg	0.29	0.515	1.06	1.48	0.004	1.39	No relevant effects in the ERED for this species. NOED for PCB 138: 946,000 μg/kg for mortality, growth, and reproduction of the fathead minnow (<i>Pimephales promelas</i>).
	PCB149	μg/kg	0.22	0.2933	0.704	1.01	0.0016	1.44	-
	Total PCB Congeners (ND = 0)	μg/kg	0.13	2.82	7.09	17.0	<0.0001	2.40	NOED: 127 μg/kg for growth of the white sea urchin (Lytochinus pictus).
B3-DU2-COMP	4,4'-DDE	μg/kg	0.25	0.125 U	0.834	1.94	0.0005	2.33	LOED: 178,400 μg/kg for growth of the oligochaete Lumbriculus variegatus.
	Total DDTs (ND = 0)	μg/kg	0.41	0.2 U	0.834	1.94	0.0251	2.33	No data in the ERED for total DDTs. The lowest relevant NOED for DDT derivatives was 510 µg/kg for reproduction of Chinook salmon (<i>Oncorhynchus tshawytscha</i>).
	PCB018	μg/kg	0.13	0.065 U	0.065 U	1.06	0.0421	16.3	-
	PCB028	μg/kg	0.097	0.048 U	0.048 U	0.994	0.0421	20.8	No relevant effects in the ERED.
	PCB044	μg/kg	0.064	0.032 U	0.032 U	0.44	0.0421	13.8	-
	PCB049	μg/kg	0.11	0.055 U	0.055 U	1.31	0.0421	23.9	-
	PCB052	μg/kg	0.058	0.029 U	0.029 U	2.92	0.0421	102	NOED: 54,000 μg/kg for mortality of the freshwater amphipod Hyalella azteca.
	PCB066	μg/kg	0.13	0.065 U	0.065 U	1.01	0.0421	15.5	-
	PCB070	μg/kg	0.082	0.041 U	0.041 U	0.308	0.0413	7.55	-
	PCB099	μg/kg	0.074	0.121	0.254	1.38	<0.0001	5.43	-
	PCB101	μg/kg	0.065	0.225	0.456	2.16	0.0421	4.74	No relevant effects in the ERED for this species. NOED: 1,115,000 μg/kg for mortality, growth, and reproduction of the fathead minnow (<i>Pimephales promelas</i>).
	PCB105	μg/kg	0.13	0.065 U	0.102	0.464	0.0421	4.55	No relevant species in the ERED.
	PCB110	μg/kg	0.2	0.173	0.166	1.14	0.0421	6.87	-
	PCB118	μg/kg	0.15	0.207	0.374	1.16	<0.0001	3.10	NOED: 3,260 μg/kg for mortality of the starfish (Asterias rubens).
	PCB138/158	μg/kg	0.29	0.515	1.06	1.68	<0.0001	1.58	No relevant effects in the ERED for this species. NOED for PCB 138: 946,000 µg/kg for mortality, growth, and reproduction of the fathead minnow (<i>Pimephales promelas</i>).
	PCB149	μg/kg	0.22	0.293	0.704	1.36	<0.0001	1.93	-
	PCB151	μg/kg	0.15	0.117	0.23	0.434	0.0018	1.89	-
	PCB153	μg/kg	0.073	0.707	1.53	2.4	<0.0001	1.57	LOED: 126,310 μg/kg for mortality of the oligochaete Lumbriculus variegatus.
	PCB183	μg/kg	0.1	0.096	0.218	0.268	0.0147	1.23	-
	Total PCB Congeners (ND = 0)	μg/kg	0.13	2.82	7.09	23.3	<0.0001	3.28	NOED: 127 μg/kg for growth of the white sea urchin (Lytochinus pictus).

- 1 If MDL differed between samples, maximum MDL presented.
- 2 Organics were normalized to percent lipids prior to statistical analysis.
- 3 All data was log-transformed prior to statistical analysis.

μg/kg = micrograms per kilogram

DDD = dichlorodiphenyldichloroethane

DDE = dichlorodiphenyldichloroethylene

DDT = dichlorodiphenyltrichloroethane

ERED = Environmental Residue Effects Database

LC₅₀ = median lethal dose

LOED = lowest observed effect dose

mg/kg = milligrams per kilogram

MDL = method detection limit

ND = not detected

NOED = no observed effect dose

PCB = polychlorinated biphenyl

U = non-detect; half the detection limit shown

3.5.2.1 Macoma nasuta

Mercury, one DDT derivative (4,4'-DDE), total DDT, several PCB congeners, and total PCB were statistically elevated in *M. nasuta* tissue samples exposed to B2-DU1-COMP sediment (Table 20). The magnitudes of exceedances were low for mercury and DDTs, with mean concentrations ranging from 1.28 to 2.53 times greater than the reference. For PCB congeners, all reference samples were non-detect; therefore, the magnitudes of exceedances were slightly higher. Mean concentrations of PCB congeners ranged from 3.29 to 43.7 times greater than the reference, while the mean concentration of total PCB was 99.7 times greater than the reference.

One DDT derivative (4,4'-DDE), total DDT, several PCB congeners, and total PCB were statistically elevated in M. nasuta tissue samples exposed to B2-DU2-COMP sediment (Table 20). The magnitudes of exceedances were low for DDTs, with mean concentrations 2.73 times greater than the reference. For PCB congeners, all reference samples were non-detect; therefore, the magnitudes of exceedances were slightly higher. Mean concentrations of PCB congeners ranged from 4.68 to 78.2 times greater than the reference, while the mean concentration of total PCB was 150 times greater than the reference.

One DDT derivative (4,4'-DDE), total DDTs, cis-nonachlor, total chlordanes, several PCB congeners, and total PCBs were statistically elevated in *M. nasuta* tissue samples exposed to B3-DU1-COMP sediment (Table 20). The magnitudes of exceedances were low for DDTs and chlordanes, with mean concentrations ranging from 2.85 to 3.92 times greater than the reference. For PCB congeners, all reference samples were non-detect; therefore, the magnitudes of exceedances were slightly higher. Mean concentrations of PCB congeners ranged from 6.07 to 50.1 times greater than the reference, while the mean concentration of total PCBs was 115 times greater than the reference.

One DDT derivative (4,4'-DDE), total DDT, cis-nonachlor, total chlordanes, several PCB congeners, and total PCB were statistically elevated in *M. nasuta* tissue samples exposed to B3-DU2-COMP sediment (Table 20). The magnitudes of exceedances were low for DDTs and chlordanes, with mean concentrations ranging from 3.61 to 5.90 times greater than the reference. For PCB congeners, all reference samples were non-detect; therefore, the magnitudes of exceedances were slightly higher. Mean concentrations of PCB congeners

ranged from 3.93 to 79.2 times greater than the reference, while the mean concentration of total PCB was 168 times greater than the reference.

3.5.2.2 Nereis virens

Mercury, one DDT derivative (4,4'-DDE), several PCB congeners, and total PCBs were statistically elevated in *N. virens* tissue samples exposed to B2-DU1-COMP sediment (Table 21). The magnitudes of exceedances were low for mercury and 4,4'-DDE, with mean concentrations 1.66 and 1.65 times greater than the reference, respectively. Mean concentrations of PCB congeners were slightly higher, ranging from 1.18 to 35.9 times greater than the reference; however, the mean concentration of total PCB was only 1.89 times greater than the reference.

Several PCB congeners and total PCBs were statistically elevated in *N. virens* tissue samples exposed to B2-DU2-COMP sediment (Table 21). Mean concentrations of PCB congeners ranged from 1.45 to 75.8 times greater than the reference. The mean concentration of total PCBs was only 2.99 times greater than the reference.

One DDT derivative (4,4'-DDE), several PCB congeners, and total PCB were statistically elevated in *N. virens* tissue samples exposed to B3-DU1-COMP sediment (Table 21). The magnitude of exceedance was low for 4,4'-DDE, with a mean concentration 2.04 times greater than the reference. Mean concentrations of PCB congeners were slightly higher, ranging from 1.39 to 56.8 times greater than the reference; however, the mean concentration of total PCB was only 2.40 times greater than the reference.

One DDT derivative (4,4'-DDE), total DDTs, several PCB congeners, and total PCBs were statistically elevated in *N. virens* tissue samples exposed to B3-DU2-COMP sediment (Table 21). The magnitudes of exceedances were low for DDTs, with mean concentrations 2.33 times greater than the reference. Mean concentrations of PCB congeners were slightly higher, ranging from 1.23 to 102 times greater than the reference; however, the mean concentration of total PCBs was only 3.28 times greater than the reference.

3.5.3 Comparison of Tissue Burdens to Environmental Residue Effects Database

Statistically elevated tissue concentrations were compared to residue-effects values provided in the ERED (USACE/USEPA 2010). The cited ERED values were based on the lowest effect level of relevant species and endpoints. The comparison to tissue residue effects data is presented in Tables 20 and 21. All concentrations were less than ERED values.

3.6 Quality Assurance/Quality Control

A review of analytical results was conducted to evaluate the laboratory's performance in meeting quality assurance/quality control (QA/QC) guidelines outlined in the SAP (Anchor QEA 2014).

3.6.1 Physical and Chemical Analyses of Sediment

The data validation report prepared by Anchor QEA for physical and chemical analyses of sediment is presented in Appendix F. All samples were analyzed within the appropriate holding times. Generally, QA/QC sample results were within the project-specified and laboratory control limits, with the following exceptions:

- The method blank for LA2-REF contained bifenthrin and arsenic. The sample concentration of bifenthrin was less than 5 times the concentration in the blank, and therefore, the associated result may be biased high. The sample concentration of arsenic was greater than 5 times the method blank concentration, and therefore, data are not expected to be affected.
- Surrogate recoveries for the pesticide surrogate 2,4,5,6-tetrachloro-m-xylene in B3-DU1-COMP and the PCB surrogate 2-fluorobiphenyl in B2-DU1-03 and B2-DU2-01 were outside the laboratory control limits. Detected results may be biased high.
- The laboratory control sample/laboratory control sample duplicate (LCS/LCSD)
 recovery values associated with B2-DU1-COMP and B2-DU2-COMP for
 fenvalerate/esfenvalerate exceeded the project control. This compound was not
 detected in associated samples so data are not expected to be affected. The LCS/LCSD
 relative percent difference (RPD) values associated with analysis of individual stations
 exceeded the control limits for PCB066, PCB077, PCB101, PCB105, PCB118, and

- PCB153. Detected results may be estimated.
- The matrix spike/matrix spike duplicate (MS/MSD) percent recovery values in B2-DU1-COMP exceeded the control limit for deltamethrin/tralomethrin and fenvalerate/esfenvalerate. These compounds were not detected in the parent sample, and therefore, data are not expected to be affected.
- Zinc recoveries were not reported in the MS/MSD or post-digestion spike in B2-DU1-COMP because the sample concentration was significantly (4 times) higher than the concentration of the spike. Data are not expected to be affected.
- The MSD percent recovery value in B2-DU1-COMP exceeded the control limit for 4,4'-DDD. The parent sample result was below detection, and therefore, data are not expected to be affected.
- The MS and/or MSD percent recovery values in LA2-REF exceeded the control limit for of cyfluthrin, cypermethrin, deltamethrin/tralomethrin, and fenvalerate/esfenvalerate. These compounds were not detected in the parent sample, and therefore, data are not expected to be affected.
- The MS/MSD RPD value in LA2-REF exceeded the control limit for methoxychlor. Sample results may be estimated.
- The MS percent recovery value in LA2-REF was less than the control limit and the MSD percent recovery value was less than 10 percent for tetrabutyltin. In addition, the RPD value exceeded the control limit. Sample results may be biased low.
- The MS/MSD percent recovery values in LA2-REF exceeded the control limit for tributyltin. Parent sample results were below detection, and therefore, data are not expected to be affected.

Results of this assessment concluded that data were acceptable as reported.

3.6.2 Chemical Analysis of Tissue Residues

The data validation report prepared by Anchor QEA for chemical analysis of tissue residues is presented in Appendix F. All samples were analyzed within the appropriate holding times. Generally, QA/QC sample results were within the project-specified and laboratory control limits, with the following exceptions:

• Surrogate recoveries for the pesticide surrogate dibutylchlorendate in *N. virens* tissue

- samples Zero Time Rep A and Zero Time Rep B were outside the laboratory control limits. Detected results may be biased low.
- The MS/MSD percent recovery values in *N. virens* tissue sample B2-DU2-COMP Rep D exceeded the control limit for alpha-chlordane. This compound was not detected in the parent sample, and therefore, data are not expected to be affected.
- The MS percent recovery value in *M. nasuta* tissue sample LA2-REF Rep E was below 10 percent, and the MSD percent recovery value was less than the control limit for 4,4'-DDE. Sample results may be biased low.
- The MSD percent recovery value and MS/MSD RPD value in *M. nasuta* tissue sample B2-DU1-COMP Rep A exceeded the control limit for 4,4'-DDD. Sample results may be biased low.
- The MS did not recover, the MSD percent recovery value was below 10 percent, and the MS/MSD RPD value exceeded the control limit value in *M. nasuta* tissue sample B2-DU1-COMP Rep A for 4'4-DDE. Sample results may be biased low.

Results of this assessment concluded that data were acceptable as reported.

3.6.3 Biological Testing

Biological testing of Basins 2 and 3 sediments incorporated standard QA/QC procedures, consistent with OTM (USEPA/USACE 1991) and ITM (USEPA/USACE 1998) guidelines.

Sediments were stored at 4 degrees Celsius (°C) plus or minus 2°C and used within the 8-week holding period. All test organism responses within the negative (laboratory) controls met acceptability criterion.

Water quality was measured prior to and during testing. All water quality conditions were within the appropriate limits, with minor exceptions. On Days 7 and 8, temperatures in the *N. arenaceodentata* test slightly exceeded the recommended range of 20°C plus or minus 1°C. Corrective actions were taken and temperatures returned within the desired range. On Day 2, dissolved oxygen concentrations in the *M. beryllina* test approached 4 mg/L; therefore, test chambers were aerated to prevent further decline. In the *M. beryllina* and *A. bahia* tests, salinity concentrations were slightly outside the recommended range. In the *M.*

galloprovincialis test, temperatures were slightly below the recommended range of 16°C plus or minus 1°C; however, concentrations were within the recommended range for SPP tests provided in the OTM (USEPA/USACE 1991). These minor water quality deviations are not believed to affect the overall test results. Raw water quality data are provided in Appendix C.

As discussed in Section 2.3, interstitial ammonia concentrations were measured on project sediments prior to testing. The ammonia concentration in B3-DU1-COMP was above the recommended threshold for *A. abdita* in the ITM (USEPA/USACE 1998). Test sediment was purged to reduce ammonia concentrations prior to testing. In addition, ammonia reference toxicant tests were run for *A. abdita* and *M. galloprovincialis* to evaluate the contribution of ammonia to toxicity.

Reference toxicant test data are provided in Appendix C. All reference toxicant tests LC50 and/or EC50 for each test species were within two standard deviations of the laboratory mean, indicating that sensitivity of test organisms was normal, with one exception. The LC50 of the ammonia reference toxicant test performed on *A. abdita* was outside this range. It should be noted that this test was performed to evaluate the effect of ammonia on test organisms. These results indicate that this batch of test organisms may be less sensitive to ammonia than those previously tested by the laboratory. The standard reference toxicant test using cadmium indicated that sensitivity of this test organism was normal.

As described in Section 3.2.1, the EC₅₀ in the ammonia reference toxicant test for *M. galloprovincialis* was 5.8 mg/L. The ammonia concentration in the 100 percent elutriate of B3-DU1-COMP was 14.5 mg/L, indicating ammonia likely contributed to the abnormal development of *M. galloprovincialis* in this sample.

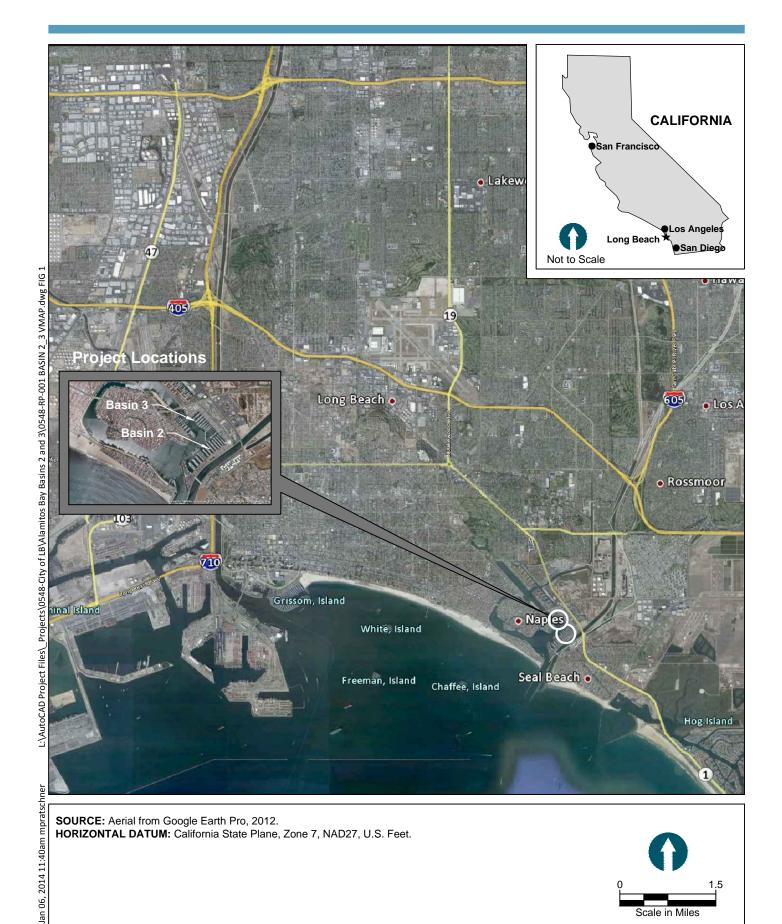
4 DISCUSSION

A Tier I evaluation with confirmatory chemistry was initially performed on sediment from Basins 2 and 3 to demonstrate that the results of the 2007 sediment characterization study for ocean disposal suitability were still relevant to the sites' current condition. Chemical analysis of sediment indicated that conditions at the sites have changed, and PCB concentrations in composite samples were at levels that required further evaluation (92.23 to $160.99~\mu g/kg$). Following discussion with USEPA, it was determined that individual cores would be chemically analyzed to further refine the contamination boundary, and full Tier III testing for ocean disposal would be performed. SP testing indicated that sediments were not acutely toxic to benthic organisms. SPP testing and STFATE modeling indicated that sediments do not pose a toxicity risk to water column organisms. BP testing and tissue chemistry indicated low bioaccumulation potential, with concentrations less than FDA action levels and those that have been shown to cause toxicity. These results indicate that sediments within Basins 2 and 3, except for areas with elevated PCBs, meet LPC requirements for ocean disposal.

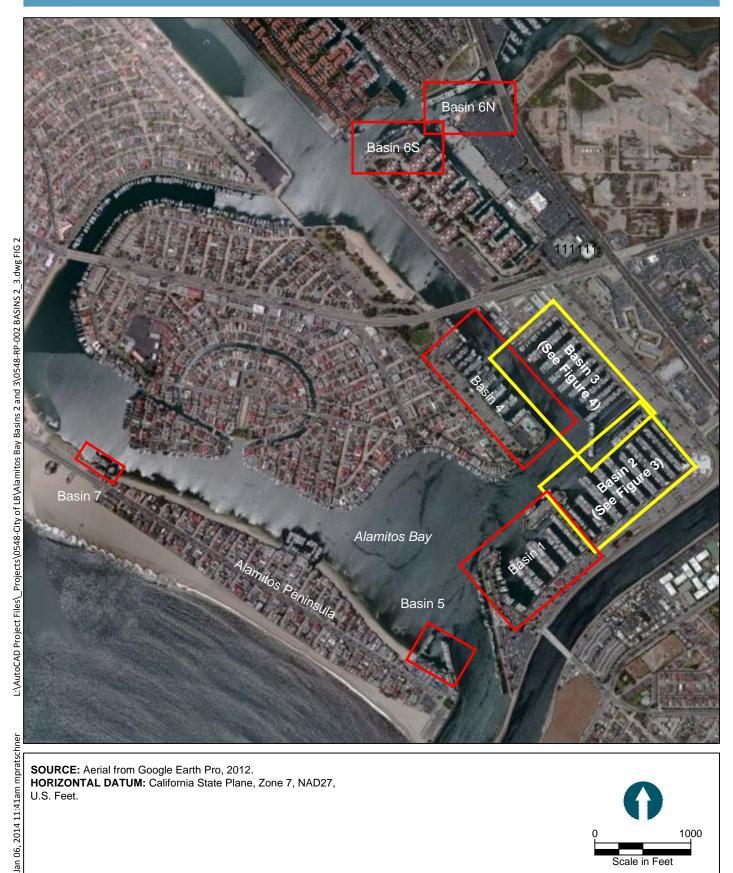
PCB results for individual stations within Basins 2 and 3 are shown in Figures 5 and 6, respectively. PCB concentrations at the individual stations were substantially lower than composite samples and showed a high degree of variability. Total PCB concentrations ranged from 5.22 to 118.18 μ g/kg, with average concentrations for each DU ranging from 28.95 to 52.36 μ g/kg. Based on recent Dredged Material Management Team suitability determinations (e.g., Los Angeles River Estuary project on April 23, 2014), areas with total PCB concentrations greater than 100 μ g/kg were determined to be unsuitable for ocean disposal at LA-2 for large dredge volumes. The total PCB concentration from one station (B2-DU2-05) within Basin 2 was above this threshold. The area represented by this station is limited to the shoal along the eastern wharf face of Basin 2, extending north approximately half way to B2-DU2-04 (Figure 5). The total volume of this area, including 2 feet of allowable overdepth, is 1,776 cy.

5 CONCLUSIONS

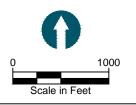
Physical, chemical, and biological analyses were conducted to evaluate the suitability of proposed dredge material from Basins 2 and 3 for placement at LA-2. This assessment finds the following:

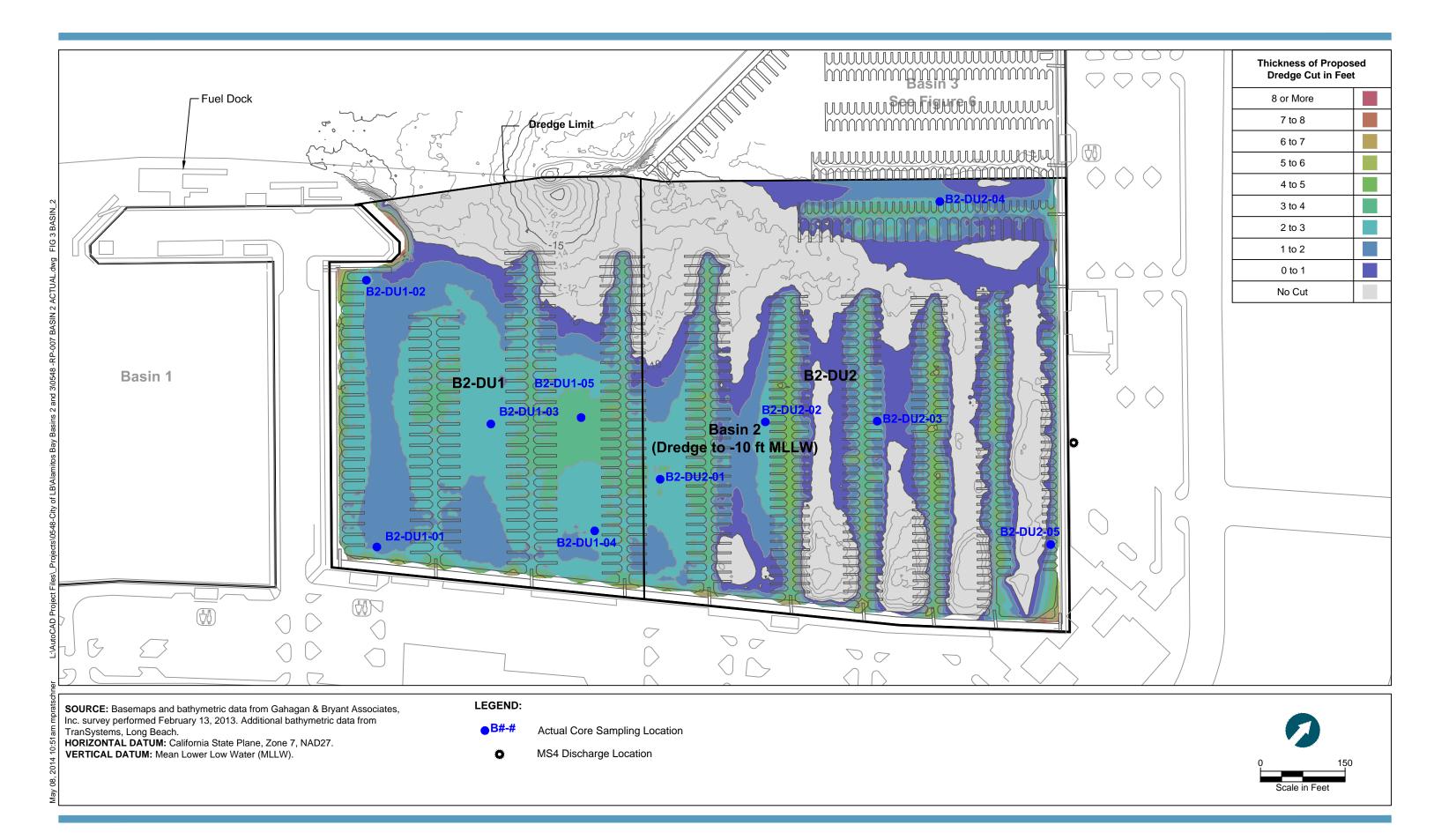

- All concentrations of contaminants were less than values of concern, with the possible exception of PCBs in a portion of the project.
- Further chemical characterization showed one area of potential concern with elevated PCB concentrations greater than 100 μg/kg.
- Biological testing in conjunction with STFATE modeling indicated no effects to aquatic organisms.
- Tissue chemistry showed low bioaccumulation potential with concentrations less than FDA action levels and those that have been shown to cause toxicity.

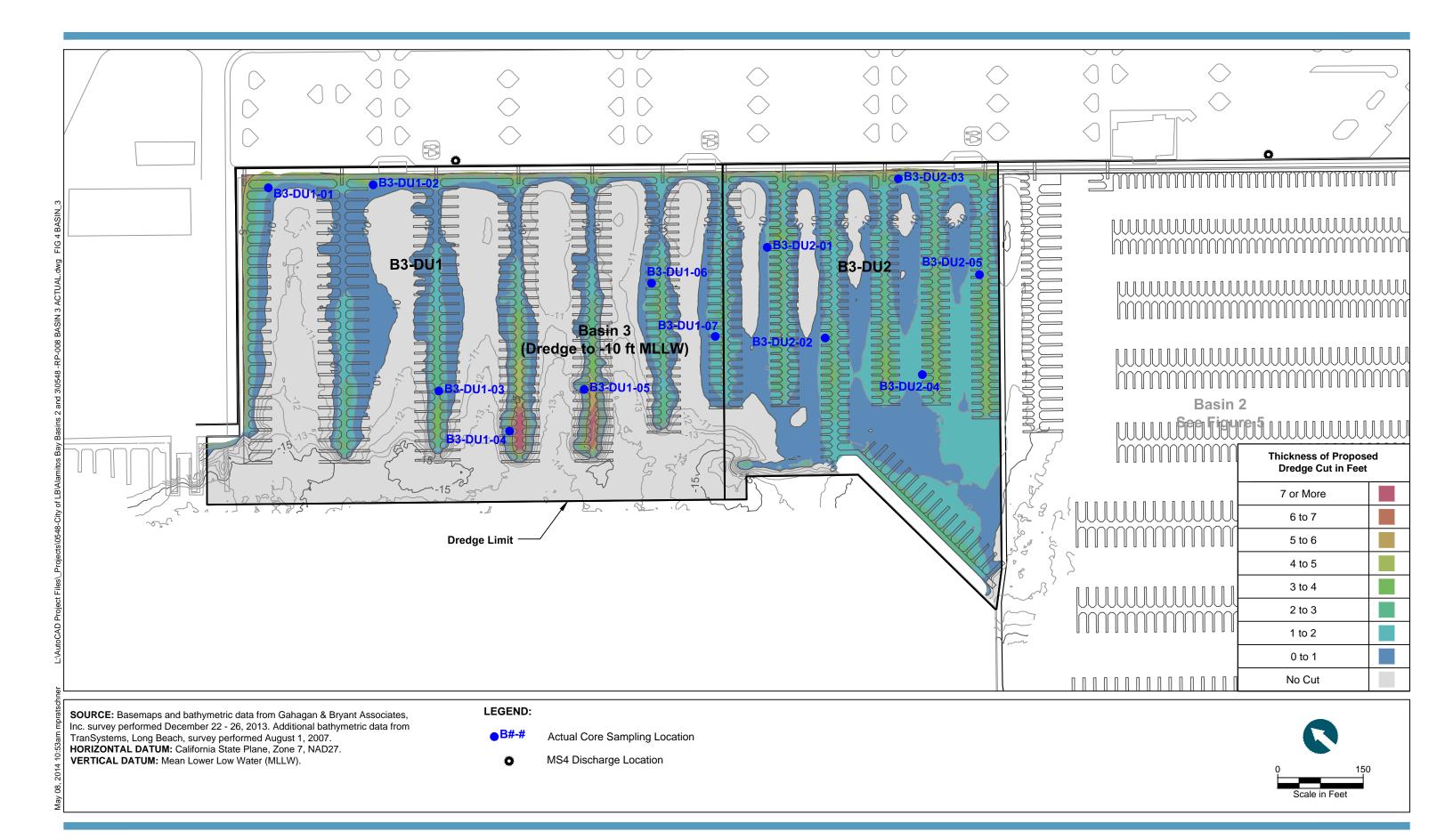
Based on these results, it is recommended that the proposed dredge material from Basins 2 and 3 be considered suitable for placement at LA-2. One area has the potential of not being dredged if found unsuitable for ocean disposal (1,776 cy of material within Basin 2 shown in Figure 5).

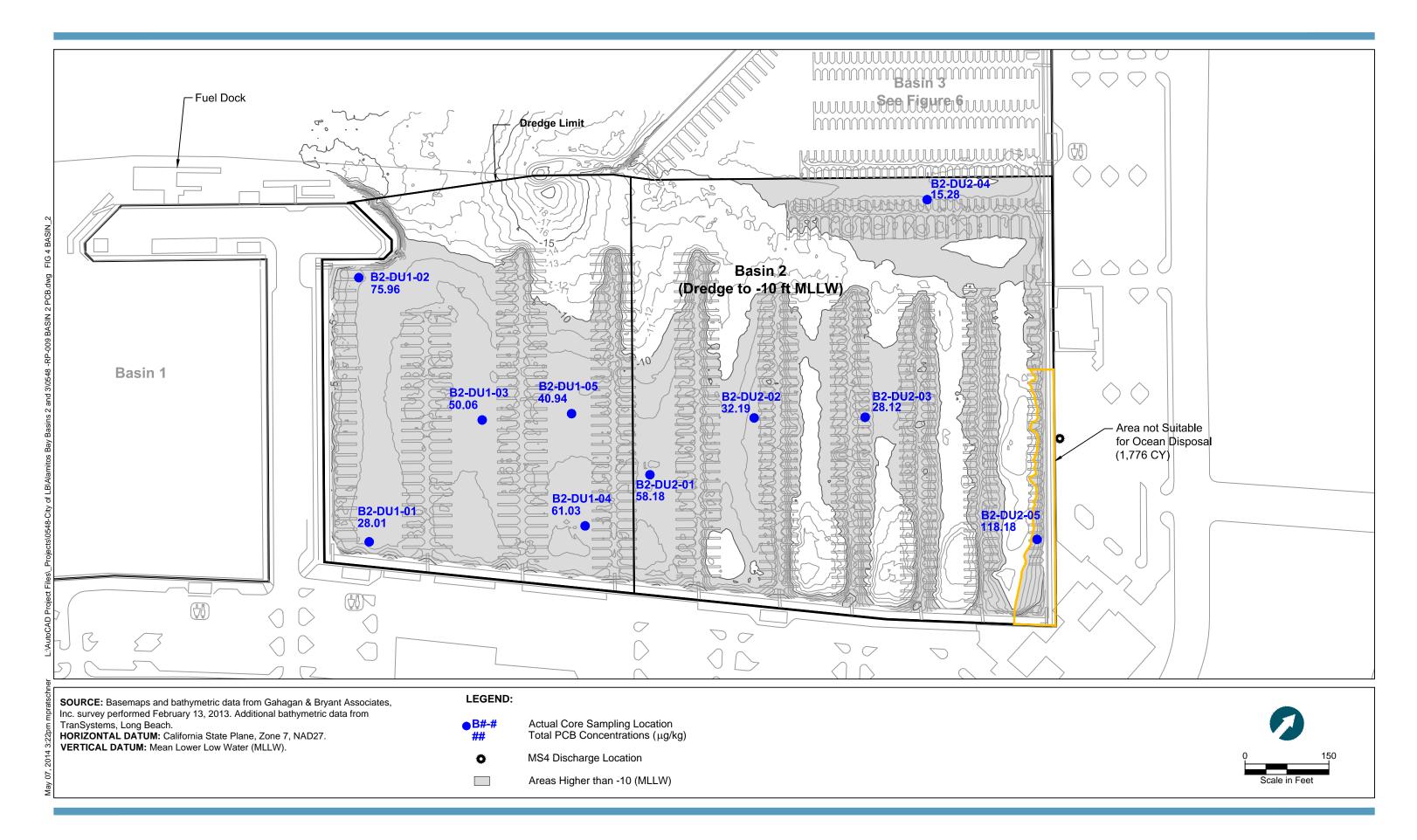

6 REFERENCES

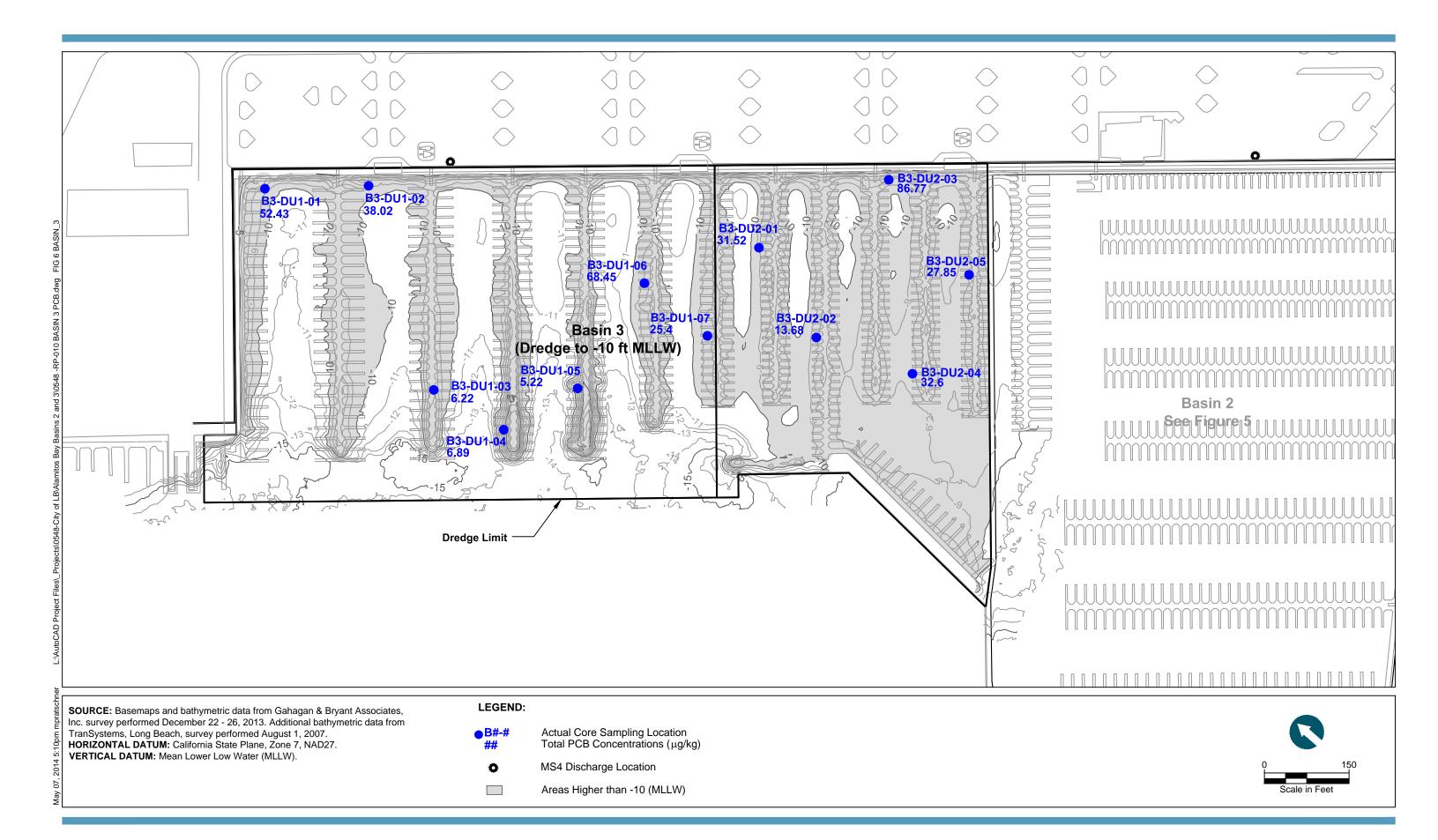
- Anchor QEA, LLC, 2014. Sampling and Analysis Plan: Alamitos Bay Marina Basins 2 and 3 Maintenance Dredging. Prepared for the City of Long Beach. January 2014.
- Long, E.R., D.D. MacDonald, S.L. Smith, and F.D. Calder, 1995. Incidence of Adverse Biological Effects within Ranges of Chemical Concentrations in Marine and Estuarine Sediments. *Environmental Management* 19:81-97.
- Schiff, K., R. Gosset, K. Ritter, L. Tiefenthaler, N. Dodder, W. Lao, and K. Maruya, 2011. Southern California Bight 2008 Regional Monitoring Program: III. Sediment Chemistry. Southern California Coast Water Research Project, Costa Mesa, California.
- USEPA/USACE (U.S. Environmental Protection Agency and U.S. Army Corps of Engineers), 2010. Environmental Residue-Effects Database. Available from: http://www.wes.army.mil/el/ered/index.html.
- USEPA/USACE, 1991. Evaluation of Dredged Material Proposed for Ocean Disposal Testing Manual. USEPA 503/8-91/001. USEPA, Office of Water (4504F).
- USEPA/USACE, 1998. Evaluation of Dredged Material Proposed for Discharge in Waters of the U.S. Testing Manual: Inland Testing Manual (ITM). USEPA-823-B-94-002. USEPA, Office of Water (4305).
- USEPA/USACE, 2004. Draft Environmental Impact Statement: Proposed Site Designation of the LA-3 Ocean Dredged Material Disposal Site off Newport Bay, Orange County, California. December 2004.
- Weston (Weston Solutions, Inc.), 2007a. Results of a Tier III Sediment Characterization Performed with Samples from Alamitos Bay Marina, Long Beach, California. Prepared for City of Long Beach and TranSystems Corporation. July 2007.
- Weston, 2007b. *Follow-up Testing to the 2007 Alamitos Bay Marina Sediment Suitability Study.* Prepared for TranSystems Corporation. October 2007.


FIGURES




SOURCE: Aerial from Google Earth Pro, 2012. **HORIZONTAL DATUM:** California State Plane, Zone 7, NAD27, U.S. Feet.





APPENDIX A FIELD LOGS AND CORE PHOTOGRAPHS

APPENDIX B CHEMISTRY LABORATORY REPORTS

APPENDIX C BIOLOGICAL LABORATORY REPORT

APPENDIX D STFATE MODELING

APPENDIX E STATISTICAL ANALYSES OF TISSUE CONCENTRATIONS

APPENDIX F DATA VALIDATION REPORTS