

WATER QUALITY MANAGEMENT PLAN

NURSERY GROWERS ASSOCIATION LOS ANGELES COUNTY IRRIGATED LANDS GROUP

July 26, 2013

230 DOVE COURT = SANTA PAULA, CALIFORNIA 93060 = LIC. 457640 (805) 656-4677 = (805) 525-5563 = (800) 231-4677 = FAX (805) 525-2896 http://www.pwenvironmental.com = Email: info@pwenvironmental.com

WATER QUALITY MANAGEMENT PLAN

July 26, 2013

Prepared by:

PW ENVIRONMENTAL 230 Dove Court Santa Paula CA 93060 (805) 525-5563

Prepared for:

The Nursery Growers Association Los Angeles County Irrigated Lands Group Billing Address: 1589 North Main Street Orange CA 92867

CWIL Order No. R4-2010-0186

LIST OF COMMONLY USED ACRONYMS

ADC	
ABC	ABC Laboratories
ALB	Aquatic Life Benchmark
AMR	Annual Monitoring Report
BMP	Best Management Practice
CCRWQCB	Central Coast Regional Water Quality Control Board
COC	Chain of Custody; Constituent of Concern
CRG	CRG Marine Laboratories
CWH	Council for Watershed Health
CWIL	Conditional Waiver Irrigated Lands
DDD	Dichlorodiphenyldichloroethane
DDE	Dichlorodiphenyldichloroethylene
DDT	Dichlorodiphenyltrichloroethane
DO	Dissolved Oxygen
DPR	Department of Pesticide Regulations
GPS	Global Positioning System
gal/acre	Gallons per Acre
IPM	Integrated Pest Management
	Potassium, molecular formulation, fertilizer
LAILG	Los Angeles County Irrigated Lands Group
LADWP	Los Angeles Department of Water and Power
LARWQCB	Los Angeles Regional Water Quality Control Board
lb/acre	Pounds per Acre
MCL	Maximum Contaminant Level
MDL	Method Detection Limit
mg/L	Milligrams per Liter, parts per million
MRP	Method Reporting Limit
ng/l	Nanograms per Liter, parts per trillion
NGA	Nursery Growers Association
NOI	Notice of Intent
NPK	Nitrogen/Phosphorous/Potassium, fertilizer formulation
NTU	Nephelometric Turbidity Unit
OC	Organochlorinated
OP	Organophosphorus
	Phosphorous, molecular formulation, fertilizer
PBO	Piperonyl Butoxide
PGE	Pacific Gas and Electric
PUR	Pesticide Use Report
PW	PW Environmental
QA	Quality Assurance
QC	Quality Control
QAPP	Quality Assurance Project Plan
RLs	Reporting Limits
SCE	Southern California Edison
TDS	Total Dissolved Solids
TIE	Toxic Identification Evaluation
TSS	Total Suspended Solids
TUc	Toxicity Unit
USEPA	United States Environmental Protection Agency
WQB	Water Quality Benchmarks
WQMP	Water Quality Management Plan
	-

TABLE OF CONTENTS

1.0 INTRODUCTION	1
2.0 BACKGROUND	2
2.1 Program History	2
2.2 Current Sampling Program	2
2.3 Current Requirements	
3.0 ASSESSMENT OF EXISTING CONDITIONS	
3.1 Water Quality Benchmarks	13
3.2 Summary of Water Quality Benchmark Exceedances	
4.0 EVALUATION OF LIKELY WASTE SOURCES, CONSTITUENT SPECIFIC	24
4.1 General Chemistry(Including Fertilizers)	24
4.2 Pesticides	28
4.3 Toxicity	37
4.4 Field Monitoring Results	
5.0 EVALUATION OF GROUPING ATTRIBUTES VS EXCEEDANCES	
5.1 General Methodology	
5.2 Grouping Methodology	
5.3 Grouping Results, Application Intensity	
5.4 Grouping Results, Observed Runoff Conditions	
6.0 WQMP IMPLEMENTATION	
6.1 Sampling Sites	53
6.2 Site Grouping	
6.3 Grouping Timeline	
6.4 BMP Implementation Timeline	
6.5 Ongoing Training and Outreach	56
7.0 BMP IMPLEMENTATION GUIDELINES FOR GROUPS	
7.1 All Sites	
7.2 BMP Grouping	
7.3 Sampling Sites	
7.4 Large Operation Group	
7.5 Medium Operation Group	
7.6 Small Operation Group	
7.7 Petitions	
7.8 Restrictions on Sites Under a Utility Easement	
8.0 WQMP TRACKING	
9.0 BEST MANAGEMENT PRACTICES	
9.1 Water Management	
9.2 Nutrient Management	
9.3 Pesticide Management	
9.4 Sediment and Erosion Management	
9.5 Housekeeping	64
10.0 SUMMARY / GOALS	
11.0 REFERENCES	67

TABLE OF CONTENTS, continued

TABLES:

Table 1	Sampling Locations
Table 2	Sampling Timeline
Table 3	List of Constituents for Testing
Table 4	Water Quality Benchmarks, General Chemistry
Table 5	Water Quality Benchmarks, Pesticides, CWIL
Table 6	Water Quality Benchmarks, Pesticides, ALB
Table 7	Water Quality Benchmarks, Field Monitoring and Toxicity
Table 8	Water Quality Exceedances, General Chemistry
Table 9	Water Quality Exceedances, Pesticides
Table 10	Grouping Results
Table 11	Grouping Statistics, Nutrients Applied
Table 12	Grouping Statistics, Pesticides Applied
Table 13	Grouping Statistics, Nutrients Detected
Table 14	Grouping Statistics, Pesticides Detected
Table 15	Best Management Practices Suggestion Matrix

FIGURES:

Figure 1-1.5 Maps of Los Angeles County Irrigated Lands Group

GRAPHS:

Graph 1	Nitrogen Application vs. Nitrogen Sampling Results
Graph 2	OC Pesticide Concentration vs. Sediment, All Samples
Graph 3	OC Pesticide Concentration vs. Sediment, Individual Sites
Graph 4	OP Pesticide Concentration vs. Application, All Samples
Graph 5	OP Pesticide Concentration vs. Application, Individual Sites
Graph 6	Pyrethroid Pesticide Concentration vs. Application, All Samples
Graph 7	Pyrethroid Pesticide Concentration vs. Application, Individual Sites
Graph 8	Grouping, Nutrient Application Intensity
Graph 9	Grouping, Pesticide Application Intensity
Graph 10	Grouping, Nutrient Concentrations
Graph 11	Grouping, Pesticide Concentrations
Graph 12	Gnatt Chart, Anticipated Project Timeline

APPENDICES:

Appendix A	Complete List of Los Angeles County Irrigated Lands Group
Appendix B	Historical Sampling Results
Appendix C	Raw Data for Graphs and Figures
Appendix D	Chemical Use Patterns from PURs
Appendix E	Current BMPs, Sampling Sites
Appendix F	General Information Questionnaire
Appendix G	BMP Questionnaire

WATER QUALITY MANAGEMENT PLAN

NURSERY GROWERS ASSOCIATION LOS ANGELES COUNTY IRRIGATED LANDS GROUP

1.0 INTRODUCTION

The LARWQCB is a State of California Agency that regulates water quality within the Los Angeles Region. The Los Angeles Region includes coastal watersheds of Los Angeles and Ventura Counties, as well as very small portions of Santa Barbara, Kern and Orange Counties. The LAILG operates in the portion of the Los Angeles Region that is within the County of Los Angeles.

The LAILG has members within the Dominguez Channel LA/Long Beach Harbors WMA, the Los Angeles River Watershed, the San Gabriel River Watershed, the Santa Monica Bay WMA, and the eastern portion of the Santa Clara River Watershed. AMRs submitted by the LAILG reported runoff water quality that exceeded established WQBs. All five Watersheds and WMAs have impacted waterbodies that appear on the Federal 303(d) list, and listed contaminants include constituents that could be related to agricultural uses.

In the Los Angeles Region, irrigated crops are the dominant agricultural land use. Water quality impacts associated with agriculture can be primarily traced to discharges resulting from irrigation or storm water. These discharges typically contain pollutants that have been imported or introduced into the irrigation or storm water; in addition, irrigation practices can mobilize and or concentrate some pollutants. In order to mitigate these potentially polluted discharges from impacting the beneficial uses of water bodies within the Los Angeles Region, the LARWQCB adopted Order No. R4-2005-0080 on November 3, 2005, as mandated by state law and policy.

On October 7, 2010, the LARWQCB updated the previous Waiver for the Los Angeles Region (Order No. R4-2010-0186; Waiver). Under the new Waiver, water quality monitoring is to be continued throughout the Los Angeles Region. The goal of this program is to protect and improve water quality, and to attain water quality objectives in the receiving water bodies. As a condition of the Waiver, dischargers are required to implement monitoring programs to assess the impacts of discharges from irrigated lands. A MRP and QAPP, both dated April 7, 2011, were developed to outline the monitoring efforts and accepted methodology to collect and analyze runoff water samples in compliance with the new Waiver. This program was adopted in its previous form for four years.

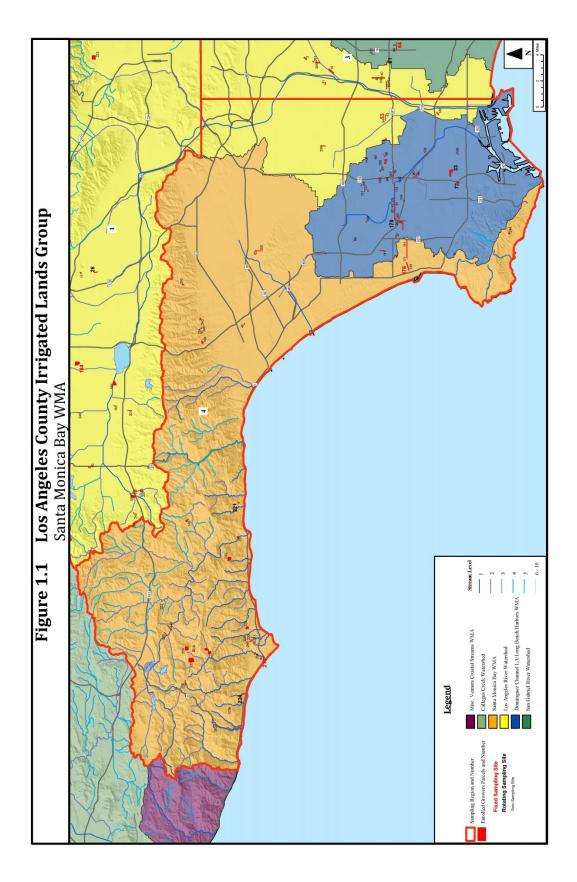
A WQMP must be developed if water quality monitoring data indicates exceedances of applicable Water Quality Benchmarks as stated in the Waiver. The purpose of this WQMP is to outline specific steps with milestones that work to attain WQBs through the use of management practices.

Page 2 NGA-LAILG – WQMP July 26, 2013

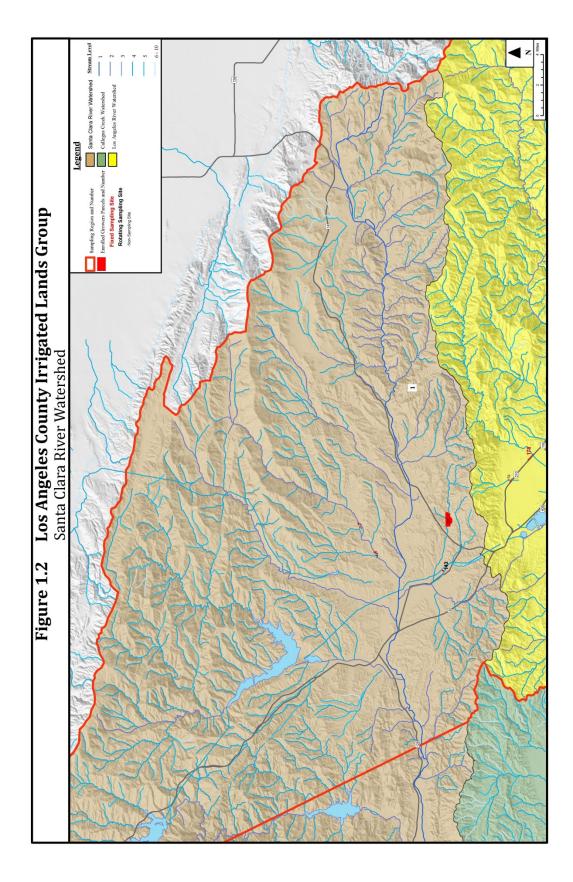
2.0 BACKGROUND

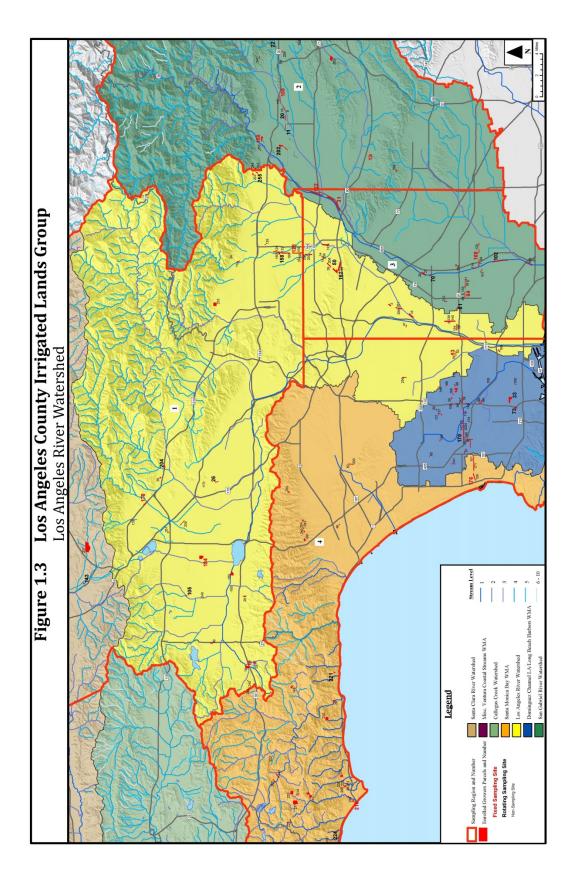
2.1 Program History

During the previous Waiver period, samples were collected from sixteen sampling locations during each sampling event; two events were conducted during the wet season and two events were conducted during the dry season each year. The program existed in this state for the entirety of the 2007 and 2008 monitoring years, and a working WQMP was submitted to the LARWQCB on July 8, 2009. The LAILG placed the program on hold after this time due to financial constraints from growers abandoning the program and a lack of enforcement being pursued by the LARWQCB. A discussion of the suspension of the LAILG can be found in the letter from the LAILG to the LARWQCB dated August 12, 2009.

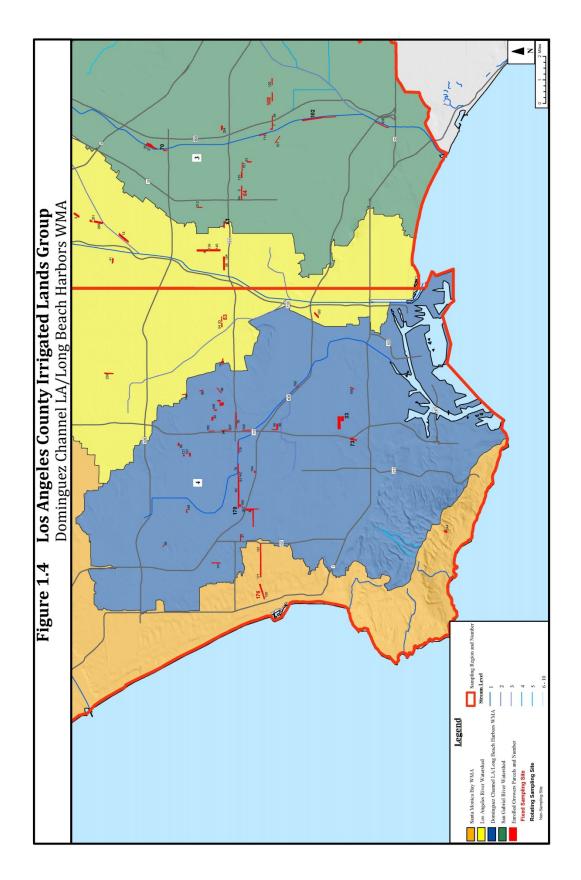

The program was reinstated briefly before the new Waiver was released, and one round of reduced sampling was conducted in March of 2011. Following the release of the new Waiver, LAILG prepared a revised MRP and QAPP to address updated requirements. The new MRP presented a reduced sampling schedule in order to offset costs associated with the lack of growers enrolling in the Waiver program. Based on exceedances detected in sampling results, an updated WQMP was required.

2.2 Current Sampling Program

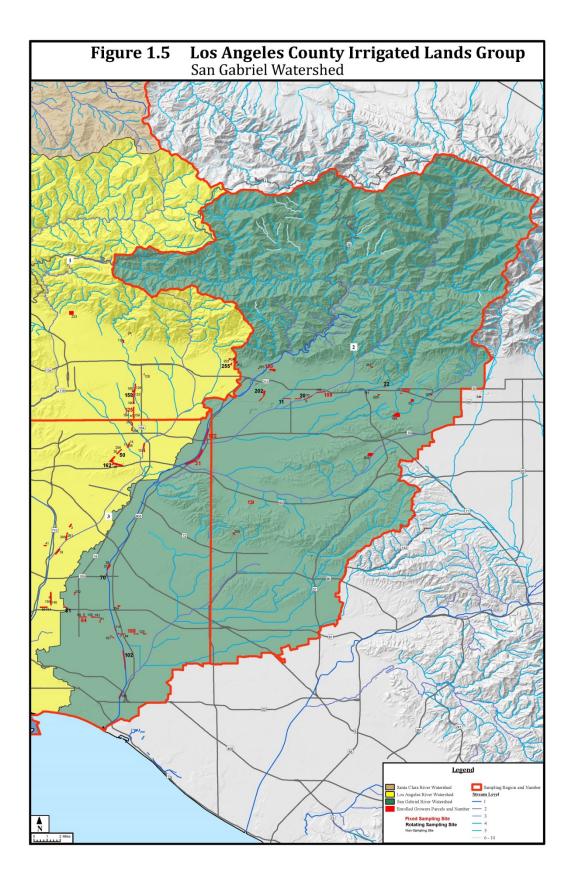

As of December 2012, the LAILG was comprised of 193 sites. A regional map showing sampling locations, group boundaries, and all growers currently associated with the LAILG is presented as Figure 1. Maps displaying enrolled growers within each watershed of the LAILG region are presented as Figures 1.1 through 1.5. A complete list of the enrolled growers in the LAILG is included in Appendix A.


As outlined in the newest version of the MRP, dated April 7, 2011, LAILG collects water quality data at 20 sampling sites throughout each year. Samples are collected from sites on a rotating schedule of five sites per monitoring event, with four events taking place each year. Fourteen of the sampling locations were previously established by LAILG and the LARWQCB during Order No. R4-2005-0080, and have historical data associated with the location. Two additional sampling sites were added due to the loss of members, totaling sixteen fixed sites. Four additional revolving sites are selected randomly for sampling on a yearly basis. A summary of historical sampling locations and current sampling locations associated with the LAILG are presented on Table 1. A complete discussion of sampling methodologies can be found in the MRP, dated April 7, 2011.

Page 3 NGA-LAILG – WQMP July 26, 2013



Page 4 NGA-LAILG – WQMP July 26, 2013



Page 6 NGA-LAILG – WQMP July 26, 2013

Page 7 NGA-LAILG – WQMP July 26, 2013

Page 8 NGA-LAILG – WQMP July 26, 2013

NAME	SITE#	APPROXIMATE GPS LOCATION	ADDRESS	ACRES IRRIGATED	CROP TYPE	
			GROUP 1			
Boething Treeland Farms, Inc.	19	N 34° 09' 51.1" W 118° 38' 20.7"	23475 Long Valley Road Woodsland Hills, CA	14.68	General Ornamentals	
Norman's Nursery	125	N 34° 05' 42.3" W 118° 04' 53.5"	8550 E Broadway San Gabriel, CA	7.00	General Ornamentals	
Ultra Greens Nursery	178	N 34° 17' 57.4" W 118° 25' 06.5"	13102 Maclay Street Sylmar, CA	8.50	General Ornamentals	
Valley Sod Farms, Inc.	184	N 34° 13' 23.1" W 118° 29' 34.5"	16405 Chase Street North Hills, CA	36.00	Sod Farms	
			GROUP 2			
Acosta Growers, Inc.	13	N 33° 59' 50.9" W 117° 56' 56.9"	16412 Wedgeworth-Drive Hacienda Heights, CA	4 .50	General Ornamentals	
Acosta Growers, Inc.	11	N 34° 06' 38.0" W 117° 54' 19.9"	669 S. Azusa Ave Azusa, CA	7.50	General Ornamentals	
Rainbow Garden Nursery	110	N 34° 07' 05.5" W 117° 52' 19.8"	N 34° 07' 05.5" 1132 S Grand Avenue 3.75		Retail / Multiple	
Colorama Wholesale Nursery	150	N 34° 08' 27.5" W 117° 55' 35.9"			Color Plants	
West Covina Wholesale	189	N 34° 06' 58.1" W 117° 47' 05.1"	N 34° 06' 58.1" 3425 Damien Ave		General Ornamentals	
			GROUP 3	· · · · · · · · · · · · · · · · · · ·		
Coiner Nursery	31	N 34° 02' 19.1" W 118° 01' 28.4"	285 San Fidel La Puente, CA	48.00	General Ornamentals	
H&H Nursery	64	N 33° 52' 07.1" W 118° 08' 32.4"	6220 Lakewood Boulevard Lakewood, CA	2.50	Retail / Multiple	
Centeno's Nursery and Landscaping	81	N 33° 52' 46.9" W 118° 09' 20.7"	6850 Paramount Blvd Long Beach , CA	3.00	General Ornamentals	
Norman's Nursery	122	N 34° 04'-12.2" ₩ 118° 00' 02.9"	12500 Ramona Blvd Baldwin Park, CA	39,93	Multiple Crop	
SY Nursery Inc.	168	N 33° 50' 59.2" W 118° 04' 36.0"	0' 59.2" 19900 S Pioneer Blvd		General Ornamentals	
			GROUP 4			
ABC Nursery, Inc.	4	N 33° 52' 55.7" W 118° 16' 06.0"	424 E. Gardena Boulevard Gardina, CA	11.51	General Ornamentals	
New West Growers	53	N 33° 52' 51.1" W 118° 12' 56.3"	3° 52' 51.1" 1601 S. Santa Fe Ave 1.70		General Ornamentals	
T-Y Nursery	176	N 33° 51' 18.7" W 118° 23' 10.9"	Between Flagler/Paulina Redondo Beach, CA	7.50	General Ornamentals	
Church Estate Vineyards	210	N 34° 01' 10.0" W 118° 49' 05.6"	6415 Busch Drive Malibu, CA	2.75	Vineyard	

Table .	1 -	· Fixed	Sampling	Locations
---------	-----	---------	----------	-----------

Page 9 NGA-LAILG – WQMP July 26, 2013

NAME	SITE#	APPROXIMATE GPS LOCATION	ADDRESS	ACRES IRRIGATED	CROP TYPE	
		1	GROUP 1			
	0(N 34° 12' 04.9"	11745 Sherman Way	4.05	Concert Organization	
Canyon Way Nursery	26	W 118º 13' 22.3"	Studio City, CA	4.25	General Ornamentals	
Live Art Plantscapes,	105	N 34° 14' 34.3"	18809 Plummer St	1.80	Greenhouse	
Inc.	105	W 118° 32' 36.1"	Northridge, CA	1.60	Greennouse	
Green Landscape	143	N 34° 23' 01.2"	22216 1/2 Placerita Canyon Rd	4.00	General Ornamentals	
Nursery	145	W 118° 31' 34.1"	Newhall, CA	4.00	Celleral Offiancinals	
Sakaida Nursery, Inc.	158	N 34° 06' 49.0"	8538-8601 Longden Ave	6.89	General Ornamentals	
Sakalda Huisery, me.	150	W 118° 04' 54.8"	San Gabriel, CA	0.07		
Worldwide Exotics Inc	204	N 34° 16' 23.8"	11157 Orcas Avenue	2.00	General Ornamentals	
Wondwide Exoties me	201	W 118° 22' 06.1"	Lake Terrace, CA	2.00	General Officiality	
			GROUP 2	-		
Brothers Nursery, Inc.	20	N 34° 06' 37.9"	Cerritos & Newburgh St	2.98	Multiple Crop	
bioincis ivuisciy, inc.	20	W 117° 53' 55.8"	Azusa, CA	2.90	тикрю стор	
Brothers Nursery, Inc.	22	N 34° 7' 24.5" -	Foothill-Blvd and Walnut Ave	1.00	Multiple Crop	
biomers nursery, me.		₩ <u>117° 48' 10.3"</u>	San Dimas, CA	1.00	минрисстор	
Coiner Nursery	32	N 34° 6' 25.9"	3000 B Street	15.00	General Ornamentals	
		W 117°46' 19.7"	La Verne, CA	15.00		
West Covina	188	N 34° 05' 38.0"	West end of Puddingstone	15.25	General Ornamentals	
Wholesale	100	W 117° 47' 31.3"	La Verne, CA	15.25		
El Nativo Growers,	202	N 34° 06' 34.8"	200 S. Peckham	7.00	General Ornamental	
Inc.	202	W 117°56' 29.8"	Azusa, CA			
Choji Matsushita 226		N 34° 06' 52.9"	724 N. Cataract Avenue	1.70	Cutflower	
		W 117°48'41.1"	San Dimas, CA			
Organicado	255	N 34° 08' 55.0"			Orchard	
		W 117°58' 24.4"	Bradbury, CA			
		1	GROUP 3	1		
Carreon Nursery 50		N 34° 03' 10.6"	7900 La Merced Road	6.00	General Ornamentals	
, -		W 118° 05' 48.5"	Rosemead, CA			
Humedo Nursery	70	N 33° 55' 00.5"	10040 Imperial Highway	2.20	General Ornamentals	
		W 118° 06' 44.3"	Downey, CA	1		
Jauregui Nursery, LLC	102	N 33° 49' 07.3"	7200 E. Wardlow Road	13.00	General Ornamentals	
		W 118° 05' 31.5"	Long Beach, CA			
San Gabriel Nursery &	162	N 34° 02' 27.4"	2015 Potrero Grande	6.00	General Ornamentals	
Florist		W 118° 06' 20.5"	Monterey Park, CA			
Lam Farms	212	N 33° 53' 34.5"	8600 Jefferson Street	1.00	Row Crop	
		W 118° 08' 49.9"	Paramount, CA			
ABC Rhubarb Farms	261	N 33° 57' 44.0"	6208 Clara Street	5.00	Row Crop	
		W 118° 09' 19.3"	Bell Gardens, CA			
		NT 220 401 00 CI	GROUP 4		T	
Color Spot Nurseries,	33	N 33° 48' 28.6"	321 W. Sepulveda Blvd	18.50	Color Plants	
Inc.		W 118° 16' 59.9"	Carson, CA		· · -	
International Plant	73	73 N 33° 47' 55.4" 24500 Vermont Ave		5.00	Color Plants	
Growers, Inc.		W 118° 17' 26.0"	Harbor City, CA			
Toro Nursery Inc.	170	N 33° 52' 15.3"	17585 Crenshaw Blvd	15.78	Color Plants	
		W 118° 19' 35.9"	Топапсе, CA 3222 Rambla Pacifico			
The Malibu Vineyard	221	N 34° 02' 36.5"		2.00	Vineyards	
-		W 118° 38' 47.5" N 34° 02' 19.6"	Malibu, CA 31499 Pacific Coast Hwy			

Table 1 - Rotating Sampling Locations

Page 10 NGA-LAILG – WQMP July 26, 2013

NAME	FORMER SITE#	ADDRESS		ACRES IRRIGATED	CROP TYPE
Carlos Soto, Jr	25	N 33° 53' 07.0" W 118° 17' 05.3"	600 W. Alondra Blvd, Gardena	3.50	General Ornamentals
Norman's Nsy- Rosemead	130	N 34° 02' 03.2" W 118° 04' 10.9"	475 Rosemead Blvd, S. El Monte	16.56	Tree
Valley Crest Tree Company	182	N 34° 18' 56.7" W 118° 28' 50.3"	16202 Yarnell St. and 16222 Filbert St, Sylmar	16.00	Tree
Valley Sod Farms, Inc.	183 N 34° 10' 45.5" W 118° 30' 05.9" 6301 Balboa Boulevard, Encino		60.00	Sod	

Table 1. Historical Sampling Locations

A total of 64 samples have been collected by LAILG from during the life of the program. The majority of the samples were collected during the first two years of the CWIL, prior to the suspension of the monitoring group. Samples were primarily from storm water runoff during the wet season; irrigated runoff from the dry season has not been encountered since 2008. This is in part due to a concerted effort by LAILG to educate growers on field conditions that were observed during sampling events, to eliminate dry season runoff A summary of the sample collection timeline is presented on Table 2.

Table 2. Sampling Timeline

	_	CWIL Order # R4-2005-0080											
		YEA	R 1 ¹		YEAR 2 ²				YEAR 3		YEAR 4		
	Dry Season Wet Sea		eason	ason Dry Season Wet Season		Dry Season	Wet Season	Dry Season	Wet Season	Total			
	Event	Event	Event	Event	Event	Event	Event	Event	Event	Event	Event	Event	
	#1	#2	#1	#2	#1	#2	#1	#2	#1	#1	#1	#1	
Number of Samples Collected	5	3	14	8	2	1	8	11	0	ns*	0	ns*	52
Total Number of Sites Visited	16	16	16	16	14	14	18	18	18	N/A	18	N/A	164

1 Wet Season sampling events took place over five storms due to localized rain patterns and a general lack of uniform storm intensity and duration.

2 Wet Season sampling events took place during two storm days where all sites were visited.

		CWIL Order # R4-2010-0186					
	Interim Sampling	Interim Sampling YEAR 1				1	
	Event ³	Event ³ Dry Seas			ison Wet Season		
	March	Event	Event	Event	Event	1	
line	2011	#1	#2	#1	#2		
Number of Samples Collected	4	0	0	4	4	12	
Total Number of Sites Visited	4	5	5	5	5	24	

3 The previous CWIL (Order R4-2005-0080) was replaced on October 7, 2010 with the adoption of a new Waiver (Order R4-2010-0186). As a good faith measure, the LAILG conducted a sampling event during the wet season between the execution of the new CWIL and the required submittal date of an MRP on April 7, 2011.

Page 11 NGA-LAILG – WQMP July 26, 2013

LAILG analyzes for the constituents listed on Table 3.

CONSTITUENT	UNITS	FIELD/LABORATORY TEST
Flow	Cubic feet per second	Field
рН	pH units	Field
Temperature	°F	Field
Dissolved Oxygen	mg/L	Field
Turbidity	NTU	Field
Total Dissolved Solids	mg/L	Laboratory
Total Suspended Solids	mg/L	Laboratory
Hardness (as)	mg/L	Laboratory
Chloride	mg/L	Laboratory
Ammonia	mg/L	Laboratory
Nitrate-Nitrogen	mg/L	Laboratory
Phosphate	mg/L	Laboratory
Sulfate	mg/L	Laboratory
Total Copper	ng/L	Laboratory
Organophosphate	ng/L	Laboratory
Organochlorines	ng/L	Laboratory
Toxaphene	ng/L	Laboratory
Pyrethroids	ng/L	Laboratory
Toxicity		Laboratory
Trash	Observations	Field

Table 3. List of Constituents for Testing

 ¹ Organophosphate Suite: Bolstar, Chlorpyrifos, Demeton, Diazinon, Dichlorvos, Dimethoate, Disulfoton, Ethoprop, Fenchlorophos, Fensulfothion, Fenthion, Malathion, Merphos, Methyl Parathion, Mevinphos, Phorate, Tetrachlorvinphos, Tokuthion, Trichloronate.
 ² Organochlorine Suite: 2.4' - DDD, 2,4' - DDE, 2,4' DDT, 4,4' -DDD, 4,4' -DDE, 4,4' -DDT, Aldrin, BHC-alpha, BHC-beta,

² Organochlorine Suite: 2.4' - DDD, 2,4' - DDE, 2,4' DDT, 4,4' -DDD, 4,4' -DDE, 4,4' -DDT, Aldrin, BHC-alpha, BHC-beta, BHC-delta, BHC-gamma, Chlordane-alpha, Chlordane-gamma, Dieldrin, Endosulfan sufate, Endosulfan-I, Endosulfan-II, Endrin, Endrin Aldehyde, Endrin Ketone.

³ Chronic Toxic Unit is the reciprocal of the sample concentration that caused no observable effect on the test organism by the end of a chronic toxicity test.

mg/l	milligrams per liter
ng/L	nanograms per liter
	degrees Fahrenheit
TUc	chronic toxic unit
NTU	nephalitic turbidity units

Page 12 NGA-LAILG – WQMP July 26, 2013

2.3 Current Requirements

Results from group wide sampling are reported to the LARWQB on a yearly basis. As reported in previous annual monitoring reports, a number of water quality benchmarks established by the CWIL and other regulatory programs (i.e. Aquatic Life Benchmarks) have been exceeded during the program at multiple sampling locations, which mandated the development of this WQMP.

This WQMP is designed to do the following:

- Summarize monitoring objectives and sample location
- Assess benchmark exceedances and impacts of waste discharges
- Identify likely waste sources and correlations between sampling conditions and water quality results
- Discuss existing BMPs
- Identify priority areas for BMP implementation
- Describe the BMP implementation plan, and explain methodology behind the plan and how it will improve water quality
- Develop a strategy and timeline for plan implementation, including tracking and effectiveness of the plan implementation

Page 13 NGA-LAILG – WQMP July 26, 2013

3.0 ASSESSMENT OF EXISTING CONDITIONS

3.1 Water Quality Benchmarks

The following tables present water quality benchmarks that apply to this program. They are derived from language included in Appendix 1 and Appendix 2 of the Waiver, along with the Water Quality Control Plan Los Angeles Region (Basin Plan) objectives, California Toxics Rule benchmarks, USEPA ALB guidelines, and CCR Title 22 maximum contamination levels for municipal water (organic chemicals).

For the purpose of analysis, benchmarks are broken into four general groups: general chemistry (including nutrients), pesticides, toxicity, and field monitoring results.

General Chemistry

General Chemistry water quality objectives for each site were obtained from the *Water Quality Control Plan, Los Angeles Region*, dated June 13, 1994. To choose the most appropriate water quality objectives for each site, all sites were assumed to drain through storm drains that ran perpendicularly to the closest blue line stream. The most relevant stream reach and related water quality objectives were chosen for each site using this assumption. Table 4 outlines the site-specific water quality objectives and associated fixed sampling sites used to evaluate general chemistry results for this report. Rotating sites are evaluated on a case-by-case basis.

Watershed/stream reach	NGA Site #	Ammonia	TDS	Sulfate	Chloride	Nitrogen	TSS	Copper (µg/L)	Phosphate	
Los Angeles River:										
Between Figueroa and Willow St.	53	a)	1,500	350	150	8	_	CCC=0.960e ^[(0.8545(in (hardness)))+(-1.702)]	-	
Above Figueroa St.	19, 105, 184	a)	950	300	150	8	_	CCC=0.960e ^[(0.8545(in (hardness)))+(-1.702)]	_	
Rio Hondo above Santa Ana Freeway	124, 162	a)	750	300	150	8	_	CCC=0.960e ^[(0.8545(in (hardness)))+(-1.702)]	_	
Pacoima Wash above Pacoima spreading grounds	178	a)	250	30	10	MUN	_	CCC=0.960e ^[(0.8545(in (hardness)))+(-1.702)]	_	
San Gabriel River:										
Between Firestone Blvd. and San Gabriel River Estuary	168, 64	a)			MUN		_	CCC=0.960e ^[(0.8545(in (hardness)))+(-1.702)]	_	
Between Ramona and Firestone Blvd.	13, 20, 31, 122, 189, 109	a)	750	300	150	8	_	CCC=0.960e ^[(0.8545(in (hardness)))+(-1.702)]	_	
Between Morris Dam and Ramona Blvd.	150	a)	450	100	100	8	-	CCC=0.960e ^[(0.8545(in (hardness)))+(-1.702)]	_	
Dominguez Channel	4, 170	a)	MUN				_	CCC=0.960e ^[(0.8545(in (hardness)))+(-1.702)]	_	
Santa Monica Bay	176, 210	a)			MUN		-	- CCC=0.960e ^[(0.8545(in (hardness)))+(-1.702)]		
USEPA Municipal Drinking Water Standa	rd	a)	500	250	400	10	—	1.3 (mg/L)	_	

Table 4. Water Quality Benchmarks, General Chemistry

* All limits are recorded for milligrams per liter (mg/L)

a) Limit varies as a factor of temperature and pH. Objectives based on corresponding field readings for WARM water (One-hour average concentration), as outlined in the Water Quality Control Plan, Los Angeles Region

MUN No site specific objectives have been established. Objectives are based on USEPA guidelines for municipal drinking water standards.

No numeric benchmarks, water quality benchmarks shall be based on the surface water and groundwater basin objectives currently contained in the Water Quality Control Plan Los Angeles Region (Basin Plan) or other applicable water quality standards established for the Los Angeles Region.

Page 14 NGA-LAILG – WQMP July 26, 2013

Pesticides

Pesticide water quality objectives were taken from the Waiver, USEPA ALB guidelines, and the California Toxics Rule. Table 5 presents pesticide benchmarks outlined in the Waiver.

CONSTITUENT	UNITS	WATER QUALITY BENCHMARK
Chlordane	µg/L	0.00059
4,4' - DDT	µg/L	0.00059
4,4' - DDD	µg/L	0.00084
DDE	µg/L	0.00059
Dieldrin	µg/L	0.00014
Toxaphene	µg/L	0.00075
Chlorpyrifos	µg/L	0.025
Diazinon	μg/L	0.10
μg/L micrograms per liter		

Table 5. Water Quality Benchmarks, Pesticides, CWIL

Table 6 presents ALB benchmarks for pesticides. Any pesticide that exceeded the value reported for acute invertebrates were considered a water quality exceedance for LAILG evaluation purposes. The guidelines for acute invertebrates were chosen because historically the most sensitive species n toxicity testing was Ceriodaphna dubia, a species of water flea. The CWIL does not directly cover benchmarks for these constituents, and does not specifically require ALB benchmarks to be considered as WQBs.

Page 15 NGA-LAILG – WQMP July 26, 2013

]	Fish	Inver	tebrates	Nonvascular Plants	Vascular Plants		er Aquatic Life teria
Pesticides	Footnote	CAS Number	Acute 1	Chronic 2	Acute 3	Chronic 4	Acute 5	Acute 6	Maximum Concentration (CMC)	Continuous Concentration (CCC)
OP Pesticides										
Azinphos Methyl	9	86-50-0	0.18	0.055	0.080	0.036	—	_		
Coumaphos	10	56-72-4	140.00	11.700	0.037	0.037	—	_	_	—
Dichlovos (DDVP)		62-73-7	79.50	5.200	0.035	0.006	14000	_		_
Dimethoate	9	60-51-5	3100	430	21.5	0.5	84	_		_
Disulfoton	9	298-04-4	19.50	4.000	1.950	0.010		_		_
Ethoprop		13194-48-4	150.00	24.000	22.000	0.800	8,400	_		_
Fenthion	8	55-38-9	415.00	7.500	2.600	0.013	400	> 2,800		_
Malathion		121-75-5	16.40	8.600	0.300	0.035	2,400			0.1
Methyl Parathion	13	298-00-0	925.00	< 10	0.490	0.250	15,000	18000		_
Naled		300-76-5	46.00	2.900	_	0.045	25	> 1,800		_
Phorate	8	298-02-2	1.18	0.340	0.300	0.210	> 1,300	_		_
Pyrethroid Pesticides										
Allethrin		584-79-2	9.500	_	1.05	_	_	—		_
Bifenthrin		82657-04-3	0.075	0.04	0.8	0.0013		_		_
Cyfluthrin		68359-37-5	0.034	0.01	0.0125	0.007				_
Cypermethrin		52315-07-8	0.195	0.14	0.21	0.069		_		
Fenpropathrin (Danitol)		64257-84-7	1.100	0.091	0.265	0.064	—	_		—
Deltamethrin		52918-63-5	0.290	0.017	0.055	0.0041	_	_	_	—
Esfenvalerate	9	66230-04-4	0.035	0.035	0.025	0.017	_		_	_
Lambda-cyhalothrin		91465-08-6	0.105	0.031	0.0035	0.002	> 310	_	—	—
Pendimethalin		40487-42-1	69	6.3	140	14.5	5.2	12.5		—
Permethrin	16	52645-53-1	0.395	0.0515	0.01	0.0014	68	—		—
Prallethrin		23031-36-9	6	3	3.1	0.325	_	_	_	_
Resmethrin		10453-86-8	0.14	0.32	1.55		_	_		—
Sumithrin		26002-80-2	7.9	1.1	2.2	0.47	_	_	_	_

Table 6. Water Quality Benchmarks, Pesticides, Aquatic Life Benchmarks

Limits Reported in ug/L

⁸ Because the underlying toxicity value is a "greater-than" value (such as >265,000), this benchmark may overestimate toxicity.

⁹ The chronic benchmark is based on the acute toxicity value (which was lower than the lowest available chronic toxicity value), and therefore may underestimate chronic

¹⁰ Although the underlying acute toxicity value is greater than or equal to the chronic toxicity value, the acute benchmark is lower than the chronic benchmark because acute and chronic toxicity values were multiplied by LOC values of 0.5 and 1, respectively.

¹³ Because the underlying toxicity value is a "less-than" value (such as <1,500), this benchmark may underestimate toxicity.

¹⁶ Toxicity values and benchmarks apply to permethrin. If monitoring data represent only the *cis* isomer of permethrin in water, comparison with benchmarks may underestimate potential toxicity.

Page 16 NGA-LAILG – WQMP July 26, 2013

Toxicity

Toxicity water quality objectives were determined as outlined in the MRP and QAPP, and through communications with ABC laboratory. Because tests are run on 100% concentration of samples (no dilution water), numerical values of TUc cannot be accurately determined. Due to the lack of TUc values, a TIE was generally run on samples that exhibited a high mortality. Chronic toxicity testing was conducted for *Pimephales promelas* (fathead minnow), *Ceriodaphnia* (water flea), and *Selenastrum capricornutum* (green algae).

Adequate sample volume was collected during sampling events so that TIE procedures could be initiated as soon as possible after toxicity was observed. TIE testing was only initiated if initial testing indicated the presence of significant toxicity in the sample. For the purpose of triggering TIE procedures, significant toxicity was defined as at least 50 percent mortality or a 50 percent reduction in growth. The 50 percent threshold is consistent with the approach recommended in guidance published by the EPA for conducting TIEs, which recommends a minimum threshold of 50 percent mortality because the probability of completing a successful TIE decreases rapidly for samples with less than this level of toxicity.

Field Monitoring

For field monitoring results, the Basin Plan for the Los Angeles Region contains narrative objectives for certain chemicals, most notably: biostimulatory substances, temperature, pH, turbidity, and Total Suspended Solids. Table 7 presents field monitoring and toxicity benchmarks, as outlined in the Los Angeles Basin Plan. These narrative objectives contain verbiage stating that the natural or ambient conditions of receiving waters are not to be altered by discharges, including some of the constituents listed above. This is problematic, as natural or ambient conditions have not been established in many receiving waters, and discharges from growing operations in the urban Los Angeles Region drain primarily to storm drains. The ultimate endpoint of these storm drains are not well mapped or established, and are comingled with discharges from a number of land use types. Due to the difficulty in ascertaining the impacts to receiving waters, it is assumed in this report that discharges do not affect the receiving water bodies in a large enough magnitude to alter natural or ambient conditions.

Page 17 NGA-LAILG – WQMP July 26, 2013

Constituent	Narrative Objective	Applicable Benchmarks					
рН	The pH of inland surface water shall not be depressed below 6.5 or raised above 8.5 as a result of waste discharges. Ambient pH levels shall not be changed by more than 0.5 pH units from natural conditions as a result of waste discharges.	$6.5 \le pH \le 8.5$ Changes to ambient receiving water conditions are not assessed; "ambient" or "natural" conditions have not been established					
Temperature	type The pH of inland surface water shall not be depressed below 6.5 or raised above 8.5 as a result of waste discharges. Ambient pH levels shall not be changed by more than 0.5 pH units from natural conditions as a result of waste discharges. erature For water designated WARM, water temperature shall not be altered by more than 5°F above natural temperature. At no time shall WARM-designated waters be raised above 80°F as a result of water discharge erature For waters designated as COLD, water temperature shall not be altered by more than 5°F above natural temperature. Shall not be altered by more than 5°F above the natural temperature. No single dissolved oxygen determintation shall be less that 5 mg/L, except when natural conditions cause lesser concentrations. The dissolved owygen content of all surface waters designated as WARM shall not be depressed below 5 mg/L as a result of waste discharge. wed Oxygen Waters shall be free of changes in turbidity that cause nuisance or adversely affect beneficial uses. Increases in natural turbidity attribute to contrallable water quality factors shall not exceed 20%. Where natural turbidity is greater than 50 NTU, increases shall not exceed 10%. type All waters shall be free of toxic substances in concentration that are toxic to, or that produce detrimental physiological responses in human, plant, animal or aquatic life. There	^e WARM: $\leq 80^{\circ}$ F Changes to ambient receiving water conditions are not assessed; "ambient" or "natural" conditions have not been established					
	For waters designated as COLD, water temperature shall not be altered by more than 5°F above the natural temperature.	COLD: No numeric benchmark. Changes to ambient receiving water conditions are not assessed; "ambient" or "natural" conditions have not been established.					
	be altered by more than 5°F above the natural temperatur No single dissolved oxygen determintation shall be less t 5 mg/L, except when natural conditions cause lesser concentrations. The dissolved owygen content of all surface waters designated as WARM shall not be depressed below 5 mg as a result of waste discharge. The dissolved owygen content of all surface waters	\geq 5 mg/L					
Dissolved Oxygen	designated as WARM shall not be depressed below 5 mg/L	WARM: \geq 5 mg/L					
	designated as COLD and SPWN shall not be depressed	below $6.5 \le pH \le 8.5$ Changes to ambient receiving water conditions are not assessed; "ambient" or "natural" conditions have not been established not be WARM: $\le 80^{\circ}$ F Changes to ambient receiving water conditions are not assessed; "ambient" or "natural" conditions have not been established all not ture. COLD: No numeric benchmark. Changes to ambient receiving water conditions have not been established. as than $\ge 5 \text{ mg/L}$ mg/L WARM: $\ge 5 \text{ mg/L}$ in No Numeric benchmarks. Changes to ambient receiving water conditions are not assessed; "ambient" or "natural" conditions have not been established. in No Numeric benchmarks. Changes to ambient receiving water conditions are not assessed; "ambient" or "natural" conditions have not been established. is than $\ge 5 \text{ mg/L}$ mg/L WARM: $\ge 5 \text{ mg/L}$ in No Numeric benchmarks. Changes to ambient receiving water conditions are not assessed; "ambient" or "natural" conditions have not been established. ses ses ations ical ree $\le 1.0 \text{ Tuc}^{[3]}$					
Turbidity	nuisance or adversely affect beneficial uses. Increases in natural turbidity attribute to contrallable water quality factors shall not exceed the following limits: Where natural turbidity is between 0 and 50 NTU, increases shall not exceed 20%. Where natural turbidity is greater than 50 NTU, increases	water conditions are not assessed; "ambient" or "natural"					
Toxicity		$\leq 1.0 \text{ Tuc}^{[3]}$					

Table 7. Water Quality Benchmarks, Field Monitoring and Toxicity

Page 18 NGA-LAILG – WQMP July 26, 2013

3.2 Summary of Water Quality Benchmark Exceedances

Water quality benchmarks, as established in section 3.1, have been exceeded throughout the life of the program. For the purpose of analysis, benchmarks are broken into four general groups: general chemistry (including nutrients), pesticides, toxicity, and field monitoring. A discussion of the exceedances follows.

3.2.1 General Chemistry

Based on laboratory analytical results, general chemistry water quality benchmarks were exceeded in samples collected at 7 of the 19 sites sampled during Year 1 under Order No. R4-2005-0080, 11 of the 33 sites sampled during Year 2 under Order No. R4-2005-0080, and 5 of the 12 sites sampled during Year 1 under Order No. R4-2010-0186. Table 8 summarizes general chemistry exceedances reported throughout the life of the program. A summary of analytical results for general chemistry constituents is included for each site in Appendix B.

Total Dissolved Solids

Laboratory results reported TDS exceedances in 21 of the 64 total samples collected throughout the life of the program.

Chloride

Laboratory results reported Chloride exceedances in 5 of the 64 total samples collected throughout the life of the program.

Sulfate

Laboratory results reported Sulfate exceedances in 8 of the 64 total samples collected throughout the life of the program.

Nutrients (Nitrate/Ammonia/Phosphorus)

Laboratory results reported Nitrogen as Nitrate exceedances in 33 of the 64 total samples collected throughout the life of the program. Laboratory results reported Nitrogen as Ammonia exceedances in 4 of the 64 total samples collected throughout the life of the program. MCLs for Phosphate have not been established.

Page 19 NGA-LAILG – WQMP July 26, 2013

						(CWIL C)rder #	R4-2005-008	0				
		YEA	AR 1			YEA	AR 2		YEA	AR 3	YEA	AR 4		% of
Constituent	Dry S	eason	Wet Season		Dry S	eason	son Wet Sea		Dry Season	Wet Season	Dry Season	Wet Season	Total	samples
	Event	Event	Event	Event	Event	Event	Event	Event	Event	Event	Event	Event		samples
	#1	#2	#1	#2	#1	#2	#1	#2	#1	#1	#1	#1		
Ammonia	1	1	0	1	0	0	1	0	ns	ns	ns	ns	4	7.7%
TDS	4	3	5	2	1	0	2	2	ns	ns	ns	ns	19	36.5%
Sulfate	0	0	1	1	0	0	2	2	ns	ns	ns	ns	6	11.5%
Chloride	1	0	2	1	0	0	0	1	ns	пs	ns	ns	5	9.6%
Nitrogen	3	3	7	2	2	1	4	8	ns	ns	ns	ns	30	57.7%
Total Number of	9	7	15	7	3	1	9	13		-		20.0	64	
Exceedances	_		15	· /	3		,	15	ns	ns	ns	ns	04	
Average # of Exceedances	1.80	2.33	1.07	0.88	1.50	1.00	1.13	1.18					1.23	
per sample	1.00	2.35	1.07	0.00	1.50	1.00	1.15	1.10	ns	ns	ns	ns	1.23	
Number of Samples	5	3	14	8	2	1	8	11					52	
Collected	3	3	14	°	2		0	11	ns	ns	ns	ns	52	

Table 8. Water Quality Exceedances, General Chemistry

ns Program suspended, no sample collected

	CWIL	Order i	80				
	Interim		YEA	R 1			
Constituents	Sampling	Dry S	eason	Wet S	eason	Total	% of samples
	March	Event Event		Event Event			
	2011	#1	#2	#1	#2		
Ammonia	0			0	0	0	0.0%
TDS	3			1	1	2	16.7%
Sulfate	0			1	1	2	16.7%
Chloride	0			0	0	0	0.0%
Nitrogen	2			2	1	3	25.0%
Total Number of Exceedances	5	0	0	4	3	7	
A verage # of Exceedances per sample	1.25			1.00	0.75	0.58	
Number of Samples Collected	4	0	0	4	4	12	
No sample collected					-		

3.2.2 Pesticides

Based on laboratory analytical results, pesticide water quality objectives, as outlined in Section 3.1, were exceeded in samples collected at 11 of the 19 sites sampled during Year 1 under Order No. R4-2005-0080, 25 of the 33 sites sampled during Year 2 under Order No. R4-2005-0080, and 6 of the 12 sites sampled during Year 1 under Order No. R4-2010-0186. Table 9 summarizes pesticide exceedances reported throughout the life of the program. A summary of analytical results for the analyzed pesticide constituents is included for each site in Appendix B.

Page 20 NGA-LAILG – WQMP July 26, 2013

OC Pesticides

Laboratory results reported the following exceedances: Chlordane in 19 of the 64 total samples collected, 4,4' DDT in 8 of the 64 total samples collected, 4,4' DDD in 9 of the 64 total samples collected, 4,4' DDE in 20 of the 64 total samples collected, Dieldrin in 1 of the 64 total samples collected, and Toxaphene in 1 of the 64 total samples collected throughout the life of the program.

OP Pesticides

Laboratory results reported the following exceedances, based on Waiver and ALB Benchmarks: Chlorpyriphos in 11 of the 64 total samples collected, Diazinon in 6 of the 64 total samples collected, and Malathion in 7 of the 64 total samples collected throughout the life of the program.

Pyrethroids

Laboratory results reported the following exceedances, based on ALB Benchmarks: Bifenthrin in 12 of the 64 total samples collected, Cyfluthrin in 18 of the 64 total samples collected, Deltamethrin in 8 of the 64 total samples collected, λ -Cyhalothrin in 12 of the 64 total samples collected, and Permethrin in 17 of the 64 total samples collected throughout the life of the program. Fenpropathrin and Fluvalinate were only included in the laboratory analytical suite during the first Waiver period. For these two pyrethroids, laboratory results reported the following exceedances, based on ALB Benchmarks: Fenpopathrin (Danitol) in 11 of the 52 total samples collected, and Fluvalinate in 7 of the 52 total samples collected.

Page 21 NGA-LAILG – WQMP July 26, 2013

	CWIL Order # R4-2005-0080													
		YEA	AR 1			YEA	AR 2		YEA	AR 3	YEA	AR 4		
Constituent	Dry S	leason	Wat S	Wet Season		Dry Sesson		eason	Dry	Wet	Dry	Wet	Total	% of
constituent	v				-				Season	Season	Season	Season	Iotai	samples
			Event							Event	Event	Event		
	#1	#2	#1	#2	#1	#2	#1	#2	#1	#1	#1	#1		
				Wa	iver Liı	nitatio	ns							
DC Pesticides														
Clordane	1	0	6	1	2	1	4	3	ns	ns	ns	ns	18	34.62%
4,4' DDT	2	2	2	1	0	0	0	0	ns	ns	ns	ns	7	13.46%
4,4' DDD	2	2	2	1	0	0	0	2	ns	ns	ns	ns	9	17.31%
4,4' DDE	2	1	5	2	0	1	2	4	ns	ns	ns	ns	17	32.69%
Dieldrin	0	0	0	0	0	0	0	0	ns	ns	ns	ns	0	0.00%
Toxaphene	0	0	0	0	0	0	0	1	ns	ns	ns	ns	1	1.92%
Waiver, OC Pesticide # of Exceedances	7	5	15	5	2	2	6	10	0	0	0	0	52	
OP Pesticides														
Chlorpyrifos	0	0	2	1	0	0	1	3	ns	ns	ns	ns	7	13.46%
Diazinon	0	0	2	1	1	0	0	1	ns	ns	ns	ns	5	9.62%
Waiver, OP Pesticide # of Exceedances	0	0	4	2	1	0	1	4	0	0	0	0	12	
				Aquat	tic Life	Guidel	ines							
OP Pesticides														
Malathion	0	0	1	1	1	0	0	2	ns	ns	ns	ns	5	9.62%
ALB, OP Pesticide # of Exceedances	0	0	1	1	1	0	0	2	0	0	0	0	5	
Pyrethroid Pesticides														
Bifenthrin	1	2	4	0	0	0	2	3	ns	ns	ns	ns	12	23.08%
Cyfluthrin	2	1	4	2	0	0	5	4	ns	ns	ns	ns	18	34.62%
Fenpropathrin (Danitol)	1	0	3	2	1	0	2	2	ns	ns	ns	ns	11	21.15%
Fluvalinate	0	1	0	0	1	0	2	3	ns	ns	ns	ns	7	13.46%
Deltamethrin	0	0	2	2	1	0	0	2	ns	ns	ns	ns	7	13.46%
Lambda-cyhalothrin	1	0	1	1	1	0	6	2	ns	ns	ns	ns	12	23.08%
Permethrin	1	1	4	0	1	0	3	4	ns	ns	ns	ns	14	26.92%
ALB, Pyrethroid Pesticide # of Exceedances	6	5	18	7	5	0	20	20	0	0	0	0	81	
Total Number of Exceedances	13	10	38	15	9	2	27	36	ns	ns	ns	ns	150	
Average # of Exceedances per sample	2.60	3.33	2.71	1.88	4.50	2.00	3.38	3.27	ns	ns	ns	ns	2.88	
Number of Samples Collected	5	3	14	8	2	1	8	11	ns	ns	ns	ns	52	

Table 9. Water Quality Exceedances, Pesticides

ni Not included in laboratory analytical suite during this Waiver period

ns Program suspended, no sample collected

Page 22 NGA-LAILG – WQMP July 26, 2013

Table 9, cont. Exceedances, Pesticides

	0	Order	# R4-2	010-018	86					
	Interim		YEA							
Constituents	Sampling	Dry S	eason	Wet S	eason	Total	% of samples			
	March	Event	Event	Event	Event					
	2011	#1	#2	#1	#2					
Waiver Limitations										
OC Pesticides										
Clordane	1			0	0	1	8.33%			
4,4' DDT	1			0	0	1	8.33%			
4,4' DDD	0			0	0	0	0.00%			
4,4' DDE	1			1	1	3	25.00%			
Dieldrin	1			0	0	1	8.33%			
Toxaphene	0			0	0	0	0.00%			
Waiver, OC Pesticide # of Exceedances	4	0	0	1	1	6				
OP Pesticides										
Chlorpyrifos	3			0	1	4	33.33%			
Diazinon	1			0	0	1	8.33%			
Waiver, OP Pesticide # of Exceedances	4	0	0	0	1	5				
Aqu	atic Life Gu	idelines	5							
OP Pesticides										
Malathion	1			0	1	2	16.67%			
ALB, OP Pesticide # of Exceedances	1	0	0	0	1	2				
Pyrethroid Pesticides	ų									
Bifenthrin	0			0	0	0	0.00%			
Cyfluthrin	0			0	0	0	0.00%			
Fenpropathrin (Danitol)	ni			ni	ni	ni	ni			
Fluvalinate	ni			ni	ni	ni	ni			
Deltamethrin	0			1	0	1	8.33%			
Lambda-cyhalothrin	0			0	0	0	0.00%			
Permethrin	2			0	1	3	25.00%			
ALB, Pyrethroid Pesticide # of Exceedances	2	0	0	1	1	4				
							1			
Total # of Exceedances	11	0	0	2	4	17				

Total # of Exceedances	11	0	0	2	4	17
Average # of Exceedances per sample	2.75			0.50	1.00	1.42
Number of Samples Collected	4	0	0	4	4	12

ni Not included in laboratory analytical suite during this Waiver period

-- No samples collected

Page 23 NGA-LAILG – WQMP July 26, 2013

3.2.3 Toxicity

Based on laboratory analytical results, toxicity was significant enough to initiate a TIE in 9 of the 17 sites sampled during Year 1 under Order No. R4-2005-0080, 10 of the 26 sites sampled during Year 2 under Order No. R4-2005-0080, and 4 of the 8 sites sampled during Year 1 under Order No. R4-2010-0186.

TIE results indicated a variety of reasons for toxicity, including non-polar organic compounds, particulate-bound toxicants, volatile compounds, organophosphates, metals, and a combination of the previously listed toxicants. Comparing TIE results to laboratory data in corresponding samples did not show a correlation between pesticide results and reported toxicity, except at NGA site #4, where elevated levels of pesticides corresponded with organophosphate and particulate bound toxicity. To date, results from TIE testing have not provided significant evidence of a prevailing issue across sites, and does not appear to correlate strongly with laboratory analytical results. A historical summary of analytical results for toxicity testing is included for each site in Appendix B.

3.2.4 Field Monitoring Results

Field Monitoring Water Quality Benchmarks are based on the surface water and groundwater basin objectives currently contained in the Basin Plan or other applicable water quality standards established for the Los Angeles Region. Field monitoring readings did not exceed Basin Plan objectives at any site sampled during the Waiver Period. A historical summary of results for field measurements is included for each site in Appendix B.

Page 24 NGA-LAILG – WQMP July 26, 2013

4.0 EVALUATION OF LIKELY WASTE SOURCES, CONSTITUENT SPECIFIC

Each sampling site was divided into basic subgroups, and laboratory analytical results and field monitoring parameters collected thus far were compared to operational practices to evaluate if there was any correlation between data from runoff results and basic site use patterns.

4.1 General Chemistry(Including Fertilizers)

Chloride

Chloride is not applied to nursery crops in any significant quantity and the likely source of the exceedances are from the water supply. Based on Los Angeles Department of Water and Power water quality reports, treated supply water in the region contains average levels of Chloride ranging from 42 mg/L to 93 mg/L (LADWP 2010). Extended use of municipal water may concentrate Chloride in soil, as plants take up the water and leave salts behind. These salts may then be flushed off the site during irrigation or during storm events. Most sites operate on the municipal water supply system, with a few sampling sites that run on well water or recycled water. Detections of Chloride were below USEPA Municipal Drinking Water Standards.

Currently, Chloride is not considered a primary constituent of concern for the program due to its widespread presence in drinking water and the relatively few exceedances observed. As Chloride is a dissolved ion, any BMPs addressed towards this constituent would involve minimizing site runoff, lowering water use at sites in order to minimize the accumulation in soils, utilizing a source of water that is lower in Chloride concentrations, or treating the water prior to application with a filtering or osmosis system.

Sulfate

Sulfate can be found in both fertilizers and pesticides, and has been reported to be applied as ammonium sulfate and magnesium sulfate at a number of sites. Generally speaking, application of fertilizers containing sulfate are lower in frequency than the primary Nitrogen-Phosphorous-Potassium fertilizers that are applied. Sulfate is also present in the water supply. Based on Los Angeles Department of Water and Power water quality reports, treated supply water in the region contains average levels of Sulfate ranging from 33 mg/L to 230 mg/L (LADWP 2010). The current recommended USEPA Municipal Drinking Water Standards is 250 mg/L of sulfate, and the secondary MCL in California for drinking water is 500 mg/L. Extended use of municipal water and overuse of fertilizers or pesticides containing sulfate may concentrate Sulfate in soil, as plants take up the water and leave salts behind. These salts may then be flushed off the site during irrigation or during storm events. Most sites operate on the municipal water supply system, with a few sampling sites that run on well water or recycled water.

Page 25 NGA-LAILG – WQMP July 26, 2013

Currently, Sulfide is not considered a primary constituent of concern for the program due to its widespread presence in drinking water and the relatively few exceedances observed. As Sulfate is a dissolved ion, any BMPs addressed towards this constituent would involve minimizing site runoff, decreasing the use of sulfate containing materials, lowering water use at sites in order to minimize the accumulation in soils, utilizing a source of water that is lower in Sulfate concentrations, or treating the water prior to application or discharge with a filtering or purification system.

Nutrients (Nitrate/Ammonia/Phosphorus)

Both primary sources of Nitrogen can be found in different types of fertilizers, and are widely applied in both dry, liquid, organic, and inorganic forms. Nitrogen as nitrate and nitrite is also present in low levels in the municipal water supply. Overuse of nitrogen may leach any unused nitrogen out of the primary growing mediums, where is can concentrate in surface soils at a site. Applying Nitrogen prior to a rain event may also leach directly from the potting mediums before it can be absorbed by plants, causing the nitrogen to leave the site in surface water runoff. Nitrogen poses a potential threat to groundwater, as it can leach through surface soils and impact underlying aquifers.

Elevated levels of nitrogen in both surface and ground water pose a number of threats to both human health and the environment. When present in surface waters in higher concentrations, it may lead to excessive aquatic plant growth, which subsequently leads to lower levels of dissolved oxygen, which may impact aquatic organisms. Nitrogen in the form of ammonianitrogen has also been shown to be toxic to aquatic life. Nitrogen that has leached to the groundwater may pose an eventual drinking water risk. Nitrite levels reduce the ability of white blood cells to carry oxygen, and elevated levels in drinking water have been linked to "blue-baby syndrome" in infants.

Phosphate can be found in different types of fertilizers, and is widely applied in both dry, liquid, organic, and inorganic forms. Although MCLs have not currently been established for phosphate, phosphate is often the limiting nutrient in aquatic environments. Excess phosphate entering surface waters can lead to algal blooms and excessive plant growth, which subsequently leads to lower levels of dissolved oxygen. This may cause eutrophication, which has a number of biological and aesthetic impacts.

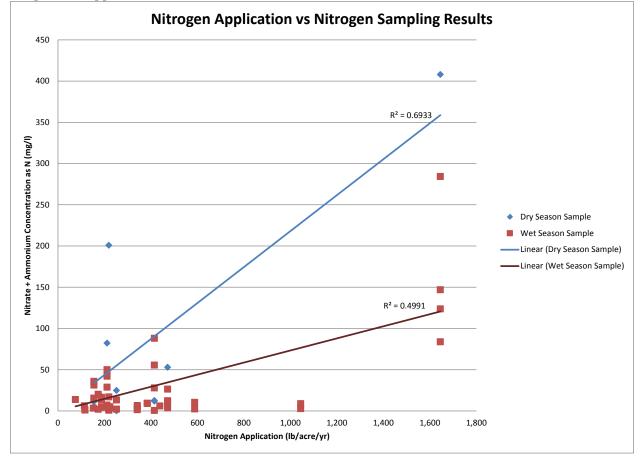
Fertilizer application practices between sites varied considerably, with most sites applying fertilizers through a combination of practices. Fertilizer was reported to be applied primarily as topdress at five of the sites, as a combination of irrigation water and soil and/or topdress at five of the sites, and as a combination of soil incorporation and topdress at six of the sites. The only site to use a general broadcast method of fertilizer are the two sod farms sampled. The vineyard sampled primarily applied fertilizer in irrigation water, with a small percentage coming from topdress, when required. LAILG did not receive information regarding fertilizer application practices at two of the sites where sample have been collected. The majority of sampling sites reported primary fertilizer application type rather than a percentage breakdown of all application types used, and thus only primary application methods were evaluated.

Page 26 NGA-LAILG – WQMP July 26, 2013

Fertilizer use for both dry and liquid fertilizer was converted to dry pounds used per acre per year for each nutrient at each site that reported the NPK values for their fertilizer use. The NPK values report nitrogen as an elemental value, but phosphorus and potassium are reported as their oxides, which are P_2O_5 and KO_2 , respectively. Values for all of the fertilizers in both soil and irrigation water had to be converted to their elemental values for comparison purposes, utilizing the following formulas:

Dry Fertilizer Used

 $Total N = F \times \%N$ $Total P = F \times \%P \times 0.436$ $Total K = F \times \%K \times 0.83$


Liquid Fertilizer Used

 $Total N = L \times D \times \%N$ $Total P = L \times D \times \%P \times 0.436$ $Total K = L \times D \times \%K \times 0.83$

F = Dry Fertilizer Applied (lbs)% N P K = Percent Reported in Fertilizer Applied L = Liquid Fertilizer Applied (gal) D = Density of Liquid $\left(\frac{lb}{gal}\right)$, assumed to be 11.65

To evaluate any correlation between the intensity of fertilizer use at site and concentrations of nutrients in samples collected from sites, total Nitrogen (ammonia, nitrate, and nitrite as N) application rates were plotted versus sampling results from the corresponding sample location. Fertilizer application data was used from the period of January 2011 to March 2012. A simple linear regression analysis was performed on the results. The raw data used for this analysis is included in Appendix C, and results are presented on Graph 1.

Page 27 NGA-LAILG – WQMP July 26, 2013

Graph 1. N Application v N Detected

Based on sampling results and reported fertilizer use, there appears to be a correlation between nitrogen application rates and reported concentrations in sampling results. With the intercept set at 0 (no nitrogen application equals no nitrogen runoff), the coefficient of determination (value) was reported at 0.69 for samples collected during irrigation events, and was reported at 0.50 for samples collected during storm events. This indicates that for irrigation samples, 69 percent of the variation in the y-axis (N Concentrations) is due to variation in the x-axis (fertilizer use), and for stormwater samples, 50 percent of the variation in the y-axis (N Concentrations) is due variation in the x-axis (fertilizer use). This does not imply that the two are directly related, but makes a relatively strong case that they may be. This trend will be monitored continually throughout the life of the program.

Currently, Nitrogen is considered a primary constituent of concern for the program, and phosphate is considered a secondary contaminant of concern. BMPs addressed towards Nitrogen, and all compounds associated with fertilization, would focus on either source BMPs, such as reducing or optimizing fertilizer use and application, or runoff BMPs. Runoff BMPs can include vegetative filter strips, reducing or eliminating runoff, and ground cover of the areas.

Page 28 NGA-LAILG – WQMP July 26, 2013

TDS

TDS is the measurement of minerals, salts, metals, cations, and anions dissolved in water. This is essentially everything present in the sample other than pure water molecules and suspended solids. It includes a number of constituents that are monitored during this program and are applied at agricultural areas, along with other minerals and salts that are not analyzed. Generally speaking, it is a broad based measurement of water quality, or purity. TDS is also present in the water supply. Based on Los Angeles Department of Water and Power water quality reports, treated supply water in the region contains average levels of TDS ranging from 226 mg/L to 590 mg/L (LADWP 2010). The current recommended USEPA Municipal Drinking Water Standards is 500 mg/L. Based on the levels reported by the Los Angeles Department of Water and Power water quality reports, pure tap water would exceed Water Quality Benchmarks in the Los Angeles Basin Plan.

Extended use of municipal water and overuse of fertilizers or pesticides may concentrate dissolvable solids in soil, as plants take up the water and leave unused minerals and salts behind. These dissolvable solids may then be flushed off the site during irrigation or during storm events. Most sites operate on the municipal water supply system, with a few sampling sites that run on well water or recycled water.

Currently, TDS is not considered a primary constituent of concern for the program due to its widespread presence in the supply water. Examples of BMPs addressed towards this constituent could involve minimizing site runoff, minimizing the application of chemicals at a site, minimizing site erosion, lowering water use at sites in order to minimize the accumulation in soils, utilizing a source of water that is lower in TDS concentrations, and treating the water prior to application or discharge with a filtering or purification system.

4.2 Pesticides

LAILG evaluated PURs for each current sampling site for the period of January 1, 2011 through March 31, 2012 (15 months). Historical data was utilized for sites that had samples previously collected, but were no longer enrolled as a sampling site for the program. From this point "chemicals" forward document. term will refer in the the to pesticides/miticides/fungicides/herbicides reported on PURs. Chemicals listed for each individual site were cross-referenced to the active ingredient, and compared to the list of laboratory analytical compounds included in the program, as outlined in the QAPP for the group. Data on the physical properties and the environmental persistence of pesticides was referenced from various databases located on-line.

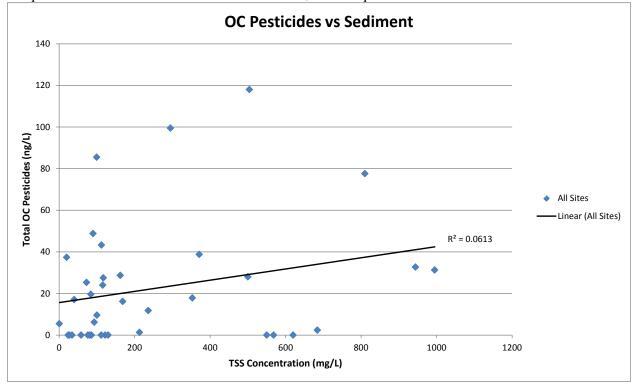
Many applied chemicals had different trade names, but utilized the same active ingredient. The active ingredients used at each site were then correlated to laboratory analytical data collected during sampling events. Although chemical use, amounts applied, and size of area treated for each site was presented in the PURs, the actual application point on each property was not specified. Generally speaking, chemicals were used on sections of each nursery, and were not applied across the whole site. As runoff generally only stemmed from a portion of each nursery,

Page 29 NGA-LAILG – WQMP July 26, 2013

it is not possible to tell if chemicals were applied in that general area or exact spot. For this reason, the chemical use pattern was evaluated as if chemicals were applied universally throughout the property, even though universal application was not generally utilized. Currently there is not a publically available database to evaluate pesticide use in the Los Angeles Region, and the evaluation of the specific amount of pesticides applied and where exactly they are applied on each property is too robust of a dataset to evaluate on a regional, or even site-by-site, basis.

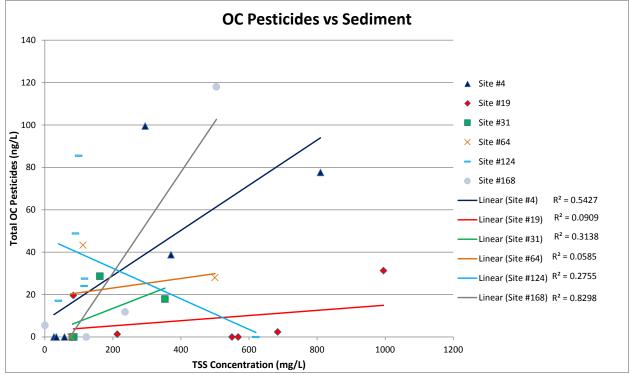
The frequency of chemical application and the number of chemicals used varied significantly between sites. The number of separate applications of any chemical reported on PURs as being used for the 15-month reporting period ranged from 0 to 486. A total of 137 different chemicals were reported as being used throughout all the sampling sites, although some chemicals utilize the same active ingredient. A summary of chemical use patterns obtained from individual PURs at each sampling site are included in Appendix D.

The majority of chemicals reported on PURs were not included in the laboratory analytical program outlined in the CWIL. Of the 137 different applied chemicals, nine active ingredients were included in the laboratory analytical program of the new CWIL: six Pyrethroid pesticides (bifenthrin, cyfluthrin, deltamethrin, λ -cyhalothrin pendimethalin, and permethrin) and three organophosphorus pesticides (chlorpyrifos, diazinon, and malathion). Seven of the nine pesticides were reported in at least one sample collected from the group in samples collected from the same period as the pesticide use reports (January 2011 – March 2012). Legacy Pesticides such as DDT and derivatives and Chlordane and derivatives were also detected during this period. The EPA has banned all these pesticides from use. In addition, the laboratory reported detections of cypermethrin, dichloran, and prallethrin in trace amounts. As these compounds were not reported as being used on PURs and were detected at low levels, they are most likely from past applications or transfers between growing yards.


LAILG evaluated PURs from individual sampling sites for possible correlation between the PURs and individual site exceedances. PURs for every site enrolled within the LAILG are not readily available, making any extrapolation of results and BMP effectiveness from individual sampling sites to the entire group as a whole difficult. Pesticide use varied month to month within each site, and only a small fraction of compounds used at sites are included in the laboratory analytical program. PURs are also limiting in the fact that while they report the amount of pesticide utilized each month, they do not present the exact areas that growers apply the pesticides, making individual site evaluation difficult. Currently, the County of Los Angeles Agricultural Commissioner does not maintain a comprehensive database with usable statistics on geographical locations of applied pesticides. Due to these obstacles and the number of variables to consider when evaluating pesticide use, evaluating pesticide application data from PURs does not appear to be feasible throughout the group as a whole. Instead, a general plan for the inclusion of pesticide BMPs, regardless of site use patterns, throughout the group appears to be more practical.

Page 30 NGA-LAILG – WQMP July 26, 2013

OC Pesticides


OC Pesticides, such as DDT and Chlordane, have been banned for any use since 1972 and 1988, respectively. Both of these compounds have elevated half-lives; DDT has been shown to have a half-life of up to 30 years, and chlordane has been shown to be persistent for over 20 years. Both substances bioaccumulate, and have earned the term "legacy pesticides" due to their persistence in the environment. All exceedances of banned legacy pesticides originated from previous land uses.

The legacy pesticide compounds have a very low solubility in water, and a high adsorption coefficient to soils. These characteristics indicate that exceedances due to Legacy Pesticides stem from soil particles with the compounds attached to them leaving the site. As such, sites that historically used these pesticides and had relatively high reported values of TSS and turbidity from site erosion were anticipated to have the largest potential to transport these compounds off site. Laboratory analytical results for OC pesticides were compared to values of turbidity and TSS in concurrent samples (Graphs 2 and 3) to evaluate if there was a preliminary correlation between the two reported values. It is not known if there were historical applications of the legacy pesticides at each location, so results were only included for sites that had reported concentrations of OC pesticides in at least one runoff sample. To date there has not been a significant correlation between the sets of data, although regressive trend lines show a positive correlation, albeit somewhat weakly, at most sites. This trend will be tracked in future sampling events.

Graph 2. OC Pesticide Concentrations vs. TSS, All Samples

Page 31 NGA-LAILG – WQMP July 26, 2013

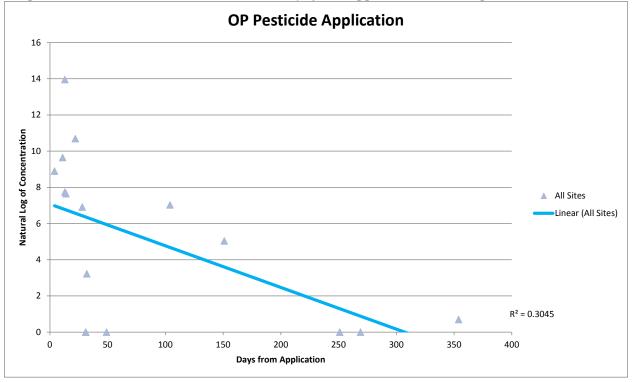
Graph 3. OC Pesticide Concentrations vs. TSS, Individual Sites

All of the remaining OC pesticides, such as aldrin, dieldrin, dicofol, and toxaphene, were only detected sparsely throughout the group. Aldrin and dieldrin were banned from most uses in 1987, and are no longer produced in the United States. Toxaphene was banned for most uses in 1982, and all registered uses in 1990. These chemicals are similar in physical properties to DDT and Chlordane, in that they break down slowly, are persistent in the environment, bind tightly to soil, and tend to bioaccumulate. BMPs directed towards reducing DDT and Chlordane detected in site runoff should reduce detections of these contaminants.

Currently, legacy pesticides are considered a primary constituent of concern for the program due to their widespread prevalence in the environment and continual detections in runoff from parcels enrolled in the program. Since none of the reported OC pesticides are still used at sampling sites in the group, BMPs will be addressed solely towards runoff water from the sites. As the OC Pesticides are primarily fixed to sediment and organic matter, reducing sediment loads from sites should also reduce OC Pesticide exceedances. Examples of BMPs addressed towards the reduction of sediment loads include: minimizing site runoff; minimizing the speed of water in channels through barriers, riffles, vegetation, etc.; minimizing site erosion through the use of stabilization plants or materials on bare ground; utilizing filtering materials or sediment reducing materials (polyacrylamides) in waterways; installing settling ponds or catch basins, when practical; and protecting stockpiled materials.

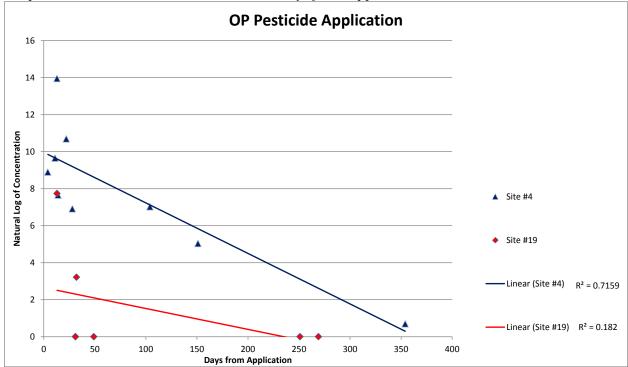
Page 32 NGA-LAILG – WQMP July 26, 2013

OP Pesticides


After the banning of a large number of OC pesticides, OP Pesticides generally begin to replace the OC Pesticides for agricultural use in the US. OP Pesticides cover a large group of chemically different pesticides with different physiochemical properties. Most are only slightly soluble in water, and break down to water-soluble byproducts through hydrolysis. They have an affinity to attach to soil particles and organic matter. They are less environmentally persistent than the OC pesticides due to their ability to biodegrade and be broken down by photolysis and chemical hydrolysis. However, they are more acutely toxic than the OC Pesticides, and can pose environmental risks to aquatic organisms if they enter waterways.

OP pesticides of concern detected in runoff samples were chlorpyrifos, diazinon, and malathion. All three of these pesticides reported detections during both Waiver periods. According to PURs, chlorpyrifos was applied at three sites, diazinon was applied at one site, and malathion was applied at seven sites during the first waiver period. During the second waiver period, chlorpyrifos was applied at three sites, diazinon was applied at one site, and malathion was applied at three sites, diazinon was applied at one site, and malathion was applied at three sites, diazinon was applied at one site, and malathion was applied at two sites.

Both diazinon and chlorpyrifos have a medium to low solubility in water, and have average halflives ranging from 14 to 28 days and 60 to 120 days in soil, respectively, depending on soil conditions and light availability (Extoxnet). Malathion is soluble in water, and has an average half-life of 1 to 25 days in soil and less than a week in water. All three compounds are reported to have a low bioaccumulation potential, but exhibit a high toxicity to aquatic organisms. In general these compounds have a higher runoff potential than pyrethroid pesticides, as they can be transported in water easier due to their high solubility and can also be transported in soil.


Only two sampling sites had a robust enough data set to compare days from reported OP pesticide applications and laboratory analytical results reported in runoff. Graph 4 plots detected concentrations for all OP pesticides in stormwater samples and the accumulated days since the last application date at all sites, and Graph 5 presents the data on a site by site basis. Laboratory analytical results were transformed to the natural log values to flatten out the graphical presentation. Raw data used for the graphical presentation is presented in Appendix C.

Page 33 NGA-LAILG – WQMP July 26, 2013

Graph 4. OP Pesticide Concentrations vs. Days from Application, All Samples

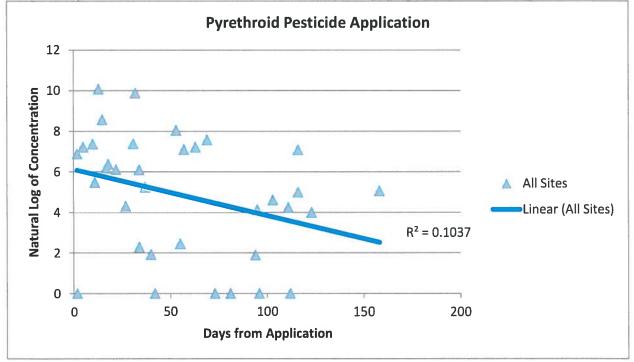
Graph 5. OP Pesticide Concentrations vs. Days from Application, Individual Sites

Page 34 NGA-LAILG – WQMP July 26, 2013

Evaluations of PURs for all combined sites only show a weak correlation between application times and laboratory analytical results for OP pesticides (Graph 4). Breaking down the data to individual sites indicates a stronger coefficient of determination between application times and laboratory analytical results at one of the sampling sites (= 0.72) with sufficient data (Graph 5), and all sites showed a downward trend. LAILG will continue to evaluate future data to determine if such a relationship exists throughout the group.

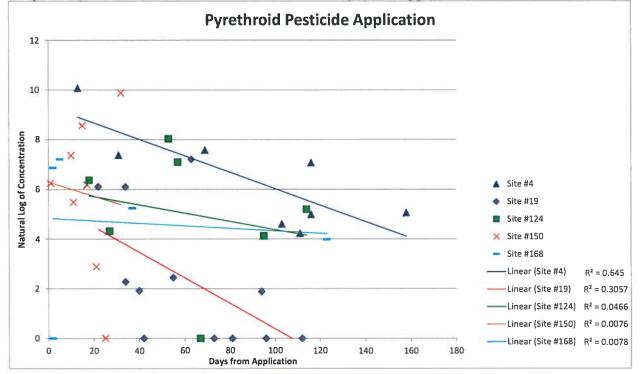
OP pesticides are a primary constituent of concern for the program due to their toxicity to aquatic and some mammalian organisms. BMPs to address exceedances are both source control and runoff control, as growers still utilize a number of these pesticides. Source control BMPs mainly involve the timing and proper application of the OP pesticides, along with eliminating their use where possible. As OC pesticides are also fixed to sediment and organic matter, reducing sediment loads from sites will also reduce OC pesticide exceedances. Examples of BMPs addressed towards the reduction of sediment loads include: minimizing site runoff; minimizing the speed of water in channels through barriers, riffles, vegetation, etc.; minimizing site erosion through the use of stabilization plants or materials on bare ground; utilizing filtering materials or sediment reducing materials (polyacrylamides) in waterways; installing settling ponds or catch basins, when practical; and protecting stockpiled materials.

Pyrethroid Pesticides


The use of pyrethroid pesticides has generally increased during the last decade, due to the decline of the use of OP pesticides, which are more acutely toxic to birds and mammals. As a whole they are considered safe to most vertebrates, as they are broken down in the body through enzymatic activity. They are highly toxic to invertebrates and aquatic organisms, but are not environmentally persistent and have short half-lives in natural conditions. Pyrethroids are marketed for use in households, as mosquito vector control, and in agriculture, and can be found in products such as Raid and in certain pet sprays and shampoos.

Pyrethroid pesticides detected in runoff samples were deltamethrin, cyfluthrin, fluvalinate, permethrin, λ -cyhalothrin, bifenthrin, and danitol. In addition, cypermethrin and prallethrin were detected in trace amounts once each; these pesticides were not reported as being used on any PURs. According to PURs, the following active ingredients were applied: deltamethrin at three sites, cyfluthrin at six sites, fluvalinate at four sites, permethrin at two sites, λ -cyhalothrin at three sites, bifenthrin at six sites, and danitol at four sites during the first waiver period. During the second waiver period, the following active ingredients were applied: deltamethrin at one site, cyfluthrin at three sites, permethrin at one site, λ -cyhalothrin at one site, bifenthrin at one site, and pendimethlin at one site during.

Page 35 NGA-LAILG – WQMP July 26, 2013


Pyrethroid pesticides as a group all have very low to no solubility in water, and have short halflives. The majority of Pyrethroid pesticides have half-lives in the order of days to weeks, although under certain conditions may have half-lives up to eight months. Pyrethroids have a high adsorption coefficient to soils. All compounds have been reported to have a low bioaccumulation potential, but exhibit high to very high toxicity to aquatic organisms. As Pyrethroid pesticides have not been shown to have a definite chronic effect on mammals and are relatively non-persistent in the environment, their high acute toxicity to aquatic organisms is the largest concern as they have the potential to adversely affect aquatic ecosystems.

Graph 6 plots detected concentrations for all Pyrethroid pesticides in stormwater samples and the accumulated days since the last application date at all sites, and Graph 7 presents the data on a site by site basis. Laboratory analytical results were transformed to the natural log values to flatten out the graphical presentation. Raw data used for the graphical presentation is presented in Appendix C.

Graph 6. Pyrethroid Pesticide Concentrations vs. Days from Application, All Samples

Page 36 NGA-LAILG – WQMP July 26, 2013

Graph 7. Pyrethroid Pesticide Concentrations vs. Days from Application, Individual Sites

Evaluations of PURs for all combined sites only show a weak correlation between application times and laboratory analytical results for Pyrethroid pesticides (Graph 6). Breaking down the data to individual sites indicates a stronger coefficient of determination between application times and laboratory analytical results at one of the sampling sites ($r^2 = 0.65$) with sufficient data (Graph 7), and all sites showed a downward trend. LAILG will continue to evaluate future data to determine if such a relationship exists throughout the group.

Several Pyrethroid pesticides have been detected at relatively high levels at sites that did not report them as being used on PURs. Currently the source of these pesticides are unknown, and additional evaluation will be conducted over the course of the program to evaluate if the compounds are associated with a source other than historical pesticide application. It is likely that the transportation of plants between nurseries is contributing to this phenomenon.

Pyrethroid Pesticides are a primary constituent of concern for the program due to their acute toxicity to aquatic organisms. BMPs to address exceedances are both source control and runoff control, as growers still utilize a number of these pesticides. Source control BMPs mainly involve the timing and proper application of the Pyrethroid Pesticides, along with eliminating and reducing their use where possible. As Pyrethroid Pesticides are also fixed to sediment and organic matter, reducing sediment loads from sites should also reduce OC Pesticide exceedances in runoff. Examples of BMPs addressed towards the reduction of sediment loads include: minimizing site runoff; minimizing the speed of water in channels through barriers, riffles, vegetation, etc.; minimizing site erosion through the use of stabilization plants or materials on bare ground; utilizing filtering materials or sediment reducing materials (polyacrylamides) in

Page 37 NGA-LAILG – WQMP July 26, 2013

waterways; installing settling ponds or catch basins, when practical; and protecting stockpiled materials.

4.3 Toxicity

TIE testing that was performed for runoff at sampling sites revealed that non-polar organics were the major source of toxicity. Non-polar organics are a class of chemical compounds that include a large number of constituents that are not covered under the laboratory testing program outlined in the CWIL, in addition to the OP, OC, and Pyrethroid pesticides. PBO addition did not reduce toxicity in samples, indicating that OP compounds did not contribute to the toxicity. However, the addition of PBO has been shown to increase the toxicity of Pyrethroid compounds (Wheeler, et. al.), which could alter results. Currently the cause of non-polar organic toxicity at sites is unknown, although Pyrethroid pesticides are suspected due to their documented high toxicity to aquatic organisms.

4.4 Field Monitoring Results

Instantaneous flow rates of runoff water during recorded irrigation and rain events varied greatly depending on individual site settings, storm intensity at the time of sampling, and the duration of the storm prior to sampling. Irrigation runoff was not consistent throughout the group, and has not been encountered since the first year of the program. This was anticipated from the beginning of the program, since it is not cost effective for growers to over water when utilizing municipal water.

Storm water runoff was encountered at least once at each of the 21 sample sites visited throughout the life of the program. The duration of storm water runoff time was not widely observed, but a number of sites could only be sampled if it was consistently raining and the ground had previously been saturated. Runoff rates varied considerably at each site and between sampling sites depending on weather conditions, and are not evaluated in this report.

Flow rates and field readings indicate that runoff water will not adversely affect the pH, temperature, or dissolved oxygen of receiving surface water from any of the sites sampled in the group. All three parameters were within acceptable ranges as outlined in the Basin Plan.

Although field readings of turbidity and TSS were relatively high in some collected samples, the relatively low flows of runoff in comparison to the watershed as a whole do not appear to be great enough to potentially impact receiving waters after dilution in storm drains. However, a goal of reducing turbidity and TSS has been set for the group as part of the WQMP, as particulate matter can also carry constituents of concern off the sites.

Historical field measurements of estimated irrigation and storm water flow rates leaving individual sampling sites are included in Appendix B.

Page 38 NGA-LAILG – WQMP July 26, 2013

5.0 EVALUATION OF GROUPING ATTRIBUTES VS EXCEEDANCES

5.1 General Methodology

LAILG collected the following information from sampling sites to evaluate growing practices verses sampling results in collected samples: water use; fertilizer use, in both amounts and formulations; pesticide use (from PURs); total owner acreage, including acreage outside of the Los Angeles Region; plant material transfer information, including shipping between facilities, to northern California, and out of state; the presence or absence of mandatory spray programs; and generalized information on company gross sales. Information on water use, fertilizer use, and pesticide use was normalized to values per acre per year for continuity across the group.

LAILG utilized grower information to evaluate the potential impact of operations based on their growing "intensity," or how much material (fertilizer, pesticides, irrigation water, etc.) is used on a per acre basis. The general hypothesis of the LAILG is that larger operations, based on sales, total company size, and shipping patterns, would show more intense fertilizer and pesticide use patterns. This level of intensity could correspond to a higher risk of contaminants leaving the property.

5.2 Grouping Methodology

In order to separate sampling sites into groups, LAILG applied a matrix to sampling sites that utilized the following information: sales, acreage, and shipping information.

LAILG utilized the total operator acreage, including acreage both inside and outside LA County and California. Larger growers tend to implement similar growing practices throughout their corporation, regardless of the size of the plot. Thus, a small, 5-acre plot of land operated by a nation-wide company will have different growing practices that a 5-acre plot of land operated by a local only supplier.

LAILG utilized the gross sales for an operator, company-wide. Generally speaking, large-scale growers are held to a higher production standard for a higher quality product. They also tend to ship and grow more products on a tighter production schedule. This leads to a more intensive use of fertilizers, pesticides, herbicides, and fungicides.

Shipping patterns were the final input. Growers that ship both to Northern California and out of California are subject to different pest spraying protocol, and have the potential for a higher use of pesticides and other chemicals. Growers that ship between their own growing locations have the potential to transfer pesticides and fertilizers between locations. This phenomenon has been shown in laboratory analytical results, where pesticides that were not applied on a property were detected in stormwater runoff.

The matrix used to separate sites into large, medium, and small intensity growers is presented on Table 10.

Page 39 NGA-LAILG – WQMP July 26, 2013

4

Acres > 100

4

\$ >\$5M

	Operating	Weight	Gross	Weight		Shipping	Total	Group	
WQMP No.	Acres	2	Revenue	2		Reach	Score	Number	,
1	4	8	4	8		3	19	1	
2	4	8	4	8		3	19	1	
3	4	8	4	8		3	19	1	
4	4	8	4	8		3	19	1	Large
5	4	8	4	8		2	18	1	
6	3	6	4	8		2	16	1	
7	4	8	4	8		1	17	1	
8	3	6	3	6		3	15	1	
9	4	8	3	6		0	14	2	
10	4	8	3	6		0	14	2	Medium
11	2	4	3	6		1	11	2	
12	2	4	2	4		2	10	2	
13	1	2	2	4		1	7	3	
14	1	2	2	4		1	7	3	Small
15	1	2	2	4		1	7	3	
16	0	0	2	4		0	4	3	
Tatal C			0			Ob in a in a l			
0 ≤ 5 Acr	Dperating Acr	<u>res</u> 0	Gross Revenue ≤ \$50k			Shipping I	iulative)		
	es ≤ 20	1	≤ \$50k \$50k < \$ ≤ \$200k	¢	1	Intra compa	,		
	cres ≤ 50	2	\$200k < \$ ≤ \$1M		1	Northern C			
	cres ≤ 100	3	\$1M < \$ ≤ \$5M		1	Interstate			

Table 10. Grouping Results

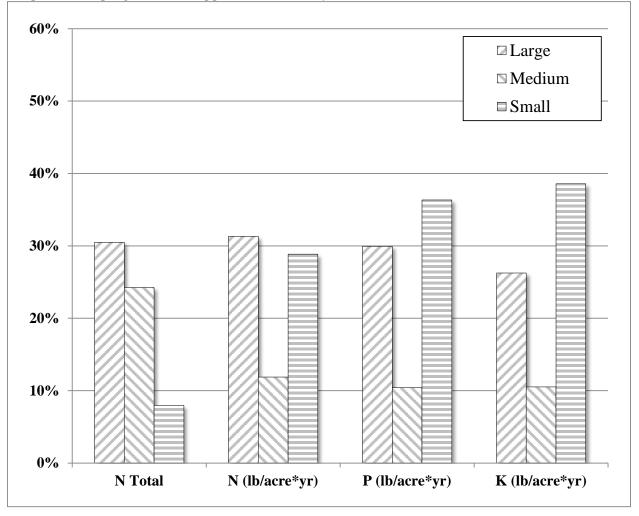
Each sampling site that reported information was given a unique WQMP identification number, separate from their original NGA identification number, to protect the anonymity of their responses. It is LAILG's stance that preserving the anonymity of growers responses to the grouping questions in publically available documents, especially in regards to company gross revenue, will foster a more accurate and complete collection of data across the group. LAILG will maintain a private database that links growers to their respective WQMP and NGA identification numbers.

Currently, growers that scored a 15 to 19 were considered large operations, growers that scored a 10 to 14 were considered medium operations, and growers that scored a 9 or below were considered small operations. This grouping methodology will be continually evaluated as information from the entire group is obtained.

None of the sampling sites are from very small, low revenue growers. It is anticipated that there will be a number of growers that will score a 0 or 1 on the above matrix, and could warrant a "micro" operation subgroup in the future. LAILG will remain in contact with the LARWQCB in regards to this future grouping, and should it appear warranted, will consider shifting or adding sampling sites in the future to obtain water quality data from sites that are grouped into this, or any future, category.

Page 40 NGA-LAILG – WQMP July 26, 2013

5.3 Grouping Results, Application Intensity


LAILG utilized the self-reported information outlined in Section 5.1 to evaluate growing practices for sampling sites operating within the group. Sampling sites were organized according to the scoring matrix above, and the self-reported values for each group were evaluated. Graphical results of the application rates for nutrients and pesticides, along with basic statistical data, is presented below.

5.3.1 Nutrients Applied

For nutrients, LAILG looked at the total pounds of each specific element applied and the pounds per acre of each element at all sampling sites that reported information. Historical data was utilized, when available. The pounds of each element were determined from fertilizer formulation and total pounds applied, as discussed in Section 4.1.

The data was averaged for each nutrient application characteristic for each size group, and was normalized to a percentage of the maximum value present throughout all of the collected data to present the graph on a single axis. For example, a y-axis results of 30 percent means that the average value for that group was 30 percent of the maximum value reported in all collected information. The normalized group averages are compared in Graph 8, and basic raw statistical data used for this graph and general evaluation purposes is presented on Table 11.

Page 41 NGA-LAILG – WQMP July 26, 2013

Graph 8. Grouping, Nutrient Application Intensity

Page 42 NGA-LAILG – WQMP July 26, 2013

N Total Ν Ρ Κ (lb/year) (lbs/Year/Acre) (lbs/Year/Acre) (lbs/Year/Acre) Mean 5864.44 Mean 425.18 Mean 65.06 Mean 194.70 Standard Error 1738.45 Standard Error 99.88 Standard Error 17.25 Standard Error 57.91 126.56 2755 00 Median 296 70 Median 39 14 Median Median Standard Deviation 6953.80 Standard Deviation 399.52 Standard Deviation 69.01 Standard Deviation 231.63 Sample Variance 48355290.40 Sample Variance 159612.98 Sample Variance 4762.05 Sample Variance 53650.76 3.26 Kurtosis 2.93 Kurtosis 5.67 Kurtosis 3 97 **Kurtosis** Skewness 1.76 Skewness 2.30 Skewness 2.00 Skewness 2.19 Range 24656.00 Range 1569.71 Range 234.89 Range 781.70 515.00 Minimum 75.29 Minimum 9.11 Minimum 18.42 Minimum Maximum 25171.00 Maximum 1645.00 Maximum 244.00 Maximum 800.12 16.00 Count 16.00 Count Count 16.00 Count 16.00 Confidence Level(95.0%) 3705.42 Confidence Level(95.0%) 212.89 Confidence Level(95.0%) 37.35 Confidence Level(95.0%) 123.38 Group 1 N Total Ν Р Κ (lbs/Year/Acre) (lbs/Year/Acre) (lbs/Year/Acre) (lb/year) Mean 7675.13 Mean 515.22 Mean 73.04 Mean 198.36 Standard Error 2948.74 Standard Error 168.94 Standard Error 25.91 Standard Error 78 59 Median 4485.00 Median 399.45 Median 47.64 Median 124.32 8340.29 Standard Deviation 477.85 Standard Deviation Standard Deviation 73.29 Standard Deviation 222.29 Sample Variance 69560377.27 Sample Variance 228336.89 Sample Variance 5371.23 Sample Variance 49413 99 **Kurtosis** 2.23 Kurtosis 6.00 Kurtosis 5.43 Kurtosis 6.73 1.60 Skewness 2.36 Skewness 2.27 Skewness Skewness 2.53 24436.00 Range 1457.66 Range 218.62 Range 676.52 Range Minimum 735.00 Minimum 187.34 Minimum 25.38 Minimum 56.89 25171.00 Maximum 1645.00 Maximum 244.00 Maximum 733.41 Maximum 8.00 Count 8.00 Count 8.00 Count 8.00 Count Confidence Level(95.0%) 61.35 Confidence Level(95.0%) 6972.65 Confidence Level(95.0%) 399.45 Confidence Level(95.0%) 185.69 Group 2 Р N Total ĸ Ν (lb/year) (lbs/Year/Acre) (lbs/Year/Acre) (lbs/Year/Acre) Mean 6102.50 Mean 195.53 Mean 25.45 Mean 79.53 Standard Error 3477.30 Standard Error 24.95 Standard Error 6.22 Standard Error 30.39 80.35 Median 4387.50 Median 188.87 Median 27.85 Median Standard Deviation 6954.60 Standard Deviation 49.90 Standard Deviation 12 45 Standard Deviation 60.78 Sample Variance 48366475.00 Sample Variance 2490.20 Sample Variance 154.97 Sample Variance 3694.65 -0.68 Kurtosis Kurtosis -1.49 Kurtosis -4.37 Kurtosis -5.26 Skewness 0.82 Skewness 0.28 Skewness -0.83 Skewness -0.03 Range 14605.00 Range 99.63 Range 27.89 Range 120.58 515.00 Minimum 152.37 Minimum Minimum 9.11 Minimum 18.42 139.00 Maximum 15120.00 Maximum 252.00 Maximum 37.00 Maximum 4.00 Count 4.00 Count 4.00 Count Count 4.00 Confidence Level(95.0%) 11066.32 Confidence Level(95.0%) 79.46 Confidence Level(95.0%) 19.85 Confidence Level(95.0%) 96.83 Group 3 N Total Ν Р κ (lbs/Year/Acre) (lbs/Year/Acre) (lbs/Year/Acre) (lb/year) 2005.00 Mean 474.76 Mean 302.55 Mean 88 71 Mean Standard Error 778.40 Standard Error 204.68 Standard Error 45.04 Standard Error 170.31 Median 1732.50 Median 389.87 Median 62.82 Median 189.42 1556.80 Standard Deviation Standard Deviation 409.36 Standard Deviation 90.08 Standard Deviation 340 63 Sample Variance 2423616.67 Sample Variance 167572.99 Sample Variance 8115.09 Sample Variance 116028.17 -2.83 Kurtosis 2.02 Kurtosis 2.05 Kurtosis Kurtosis 3.12 Skewness 0.54 Skewness 1.15 Skewness 1 42 Skewness 1 68 Range 3275.00 Range 968.71 Range 204.35 Range 768.87 640.00 Minimum 75.29 Minimum 12.42 Minimum Minimum 31.25 Maximum 3915 00 Maximum 1044.00 Maximum 216 77 Maximum 800 12 4.00 Count 4.00 Count 4.00 Count 4.00 Count Confidence Level(95.0%) 2477.21 Confidence Level(95.0%) 651.62 Confidence Level(95.0%) 156.30 Confidence Level(95.0%) 542.00

All Sites

Table 11. Grouping Statistics, Nutrients Applied

Page 43 NGA-LAILG – WQMP July 26, 2013

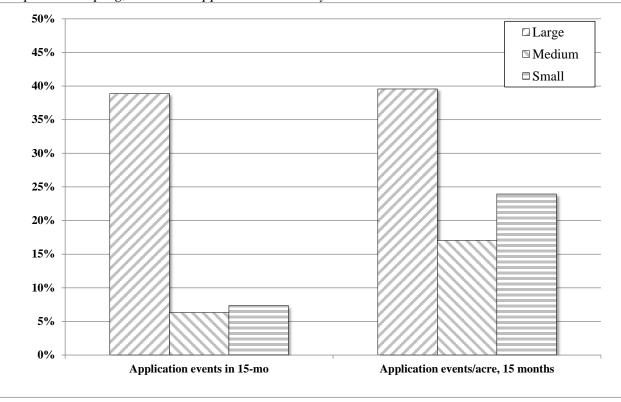
General Analysis

Currently, members grouped into large operations apply the most Nitrogen (and fertilizer in general) on a per site basis, and are higher than the medium operations on a pounds per acre basis. Preliminary results indicate that the small operation group apply more fertilizer on a per acre basis, however, this is due to one outlying nursery that applied much more than anyone else in the small grouping. This applicator has a retail nursery on the property, which could account for the higher nutrient use due to a quicker turnaround of plants at the property. As there are currently only four growers grouped into this category, this greatly skewed the average higher. LAILG anticipates that as more data comes in group-wide, these numbers will begin to flatten out, and will show large operators as a higher fertilizer intensity group in comparison with small and medium operations.

Statistical Analysis

Data acquired from the sampling sites showed a large spread of nutrient use throughout LAILG as a whole and within each of the groups, as is indicated by the large (sometimes above the mean) standard deviations for each of the analyses and the large variances in the minimum and maximum applied. The high standard errors also indicate that the sample sizes are too small at this point to state that the statistical means from the analyses are completely accurate. The collection of additional data throughout the group, as discussed in Section 6.0, should provide a larger dataset for analyzing growing practices group wide, to determine if the current grouping methodology is appropriate.

The skewness and kurtosis for both the sampling group as a whole and each separate size group indicate that the data, as currently collected, is neither distributed symmetrically or Gaussian in nature. It is currently unknown if the data will approach a normal distribution once information is collected from the group as a whole.


5.3.2 Pesticides Applied

In order to evaluate the general intensity of chemical uses at properties, LAILG looked at the number of separate application of any chemicals at a property during a fifteen month time period. This analysis does not take into account the volume or mass of chemicals applied, as this data is not readily available through any government agency in a usable format, and would be impractical to tabulate and analyze on a group wide basis. Tracking the number of pesticide applications at each member's parcel is a more reasonable alternative, and should give an acceptable, although generalized, snapshot of chemical use intensity throughout the LAILG.

The data was averaged for each chemical application characteristic for each size group, and was normalized to a percentage of the maximum value present throughout all of the collected data to present the graph on a single axis. For example, a y-axis results of 40 percent means that the average value for that group was 40 percent of the maximum value reported in all collected information. Data from historical sampling sites was not utilized, as 15-months of PURs were

Page 44 NGA-LAILG – WQMP July 26, 2013

not available for analysis. The normalized group averages are compared in Graph 9, and basic raw statistical data used for this graph and general evaluation purposes is presented on Table 12.

Graph 9. Grouping, Pesticide Application Intensity

Page 45 NGA-LAILG – WQMP July 26, 2013

Table 12. Grouping Statistics, Pesticides Applied

	All Si	ites	
Application Events		Application Events/A	cre
15 month period		15 month period	
Mara	00.04	Maaa	0.44
Mean Standard Error		Mean Standard Error	9.11 2.47
Median		Median	9.00
Standard Deviation		Standard Deviation	8.91
Sample Variance		Sample Variance	79.32
Kurtosis		Kurtosis	2.39
Skewness		Skewness	1.35
Range		Range	31.76
Minimum Maximum		Minimum Maximum	0.00 31.76
Count		Count	13.00
Confidence Level(95.0%)		Confidence Level(95.0%)	5.12
	Grou		
Application Events	5	Application Events/A	cre
15 month period		15 month period	
Mean	174.67		12.28
Standard Error		Standard Error	4.74
Median		Median	11.89
Standard Deviation		Standard Deviation	11.62
Sample Variance Kurtosis		Sample Variance Kurtosis	134.99 0.75
Skewness		Skewness	0.75
Range		Range	31.76
Minimum		Minimum	0.00
Maximum	486.00	Maximum	31.76
Count	6.00	Count	6.00
Confidence Level(95.0%)		Confidence Level(95.0%)	12.19
	<u>Grou</u>		
Application Events		Application Events/A	cre
Application Events 15 month period			cre
15 month period	3	Application Events/A 15 month period	
15 month period	26.66667	Application Events/A 15 month period Mean	5.1933
15 month period	26.66667 15.16941	Application Events/A 15 month period	5.1933 3.5062
15 month period Mean Standard Error	26.66667 15.16941 12	Application Events/A 15 month period Mean Standard Error	5.1933
15 month period Mean Standard Error Median	26.66667 15.16941 12 26.2742	Application Events/A 15 month period Mean Standard Error Median Standard Deviation	5.1933 3.5062 3.25
15 month period Mean Standard Error Median Standard Deviation	26.66667 15.16941 12 26.2742	Application Events/A 15 month period Mean Standard Error Median Standard Deviation Sample Variance	5.1933 3.5062 3.25 6.0729
15 month period Mean Standard Error Median Standard Deviation Sample Variance	26.66667 15.16941 12 26.2742 690.3333 #DIV/0!	Application Events/A 15 month period Mean Standard Error Median Standard Deviation Sample Variance	5.1933 3.5062 3.25 6.0729 36.88
15 month period Mean Standard Error Median Standard Deviation Sample Variance Kurtosis	26.66667 15.16941 12 26.2742 690.3333 #DIV/0! 1.729229	Application Events/A 15 month period Mean Standard Error Median Standard Deviation Sample Variance Kurtosis	5.1933 3.5062 3.25 6.0729 36.88 #DIV/0!
15 month period Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness	26.66667 15.16941 12 26.2742 690.3333 #DIV/0! 1.729229 46	Application Events/Au 15 month period Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness	5.1933 3.5062 3.25 6.0729 36.88 #DIV/0! 1.2926
15 month period Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range	26.66667 15.16941 12 26.2742 690.3333 #DIV/0! 1.729229 46 11	Application Events/Au 15 month period Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range	5.1933 3.5062 3.25 6.0729 36.88 #DIV/0! 1.2926 11.67
15 month period Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum	26.66667 15.16941 12 26.2742 690.3333 #DIV/0! 1.729229 46 11 57	Application Events/Au 15 month period Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum	5.1933 3.5062 3.25 6.0729 36.88 #DIV/0! 1.2926 11.67 0.33
15 month period Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum	26.66667 15.16941 12 26.2742 690.3333 #DIV/0! 1.729229 46 11 57 3 65.26872	Application Events/Au 15 month period Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Count Confidence Level(95.0%)	5.1933 3.5062 3.25 6.0729 36.88 #DIV/0! 1.2926 11.67 0.33 12
15 month period Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count	26.66667 15.16941 12 26.2742 690.3333 #DIV/0! 1.729229 46 11 57 3	Application Events/Au 15 month period Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Confidence Level(95.0%) p.3	5.1933 3.5062 3.25 6.0729 36.88 #DIV/0! 1.2926 11.67 0.33 12 3 15.086
15 month period Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Confidence Level(95.0%)	26.66667 15.16941 12 26.2742 690.3333 #DIV/0! 1.729229 46 11 57 3 65.26872 <u>Grou</u>	Application Events/Au 15 month period Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Confidence Level(95.0%) P 3 Application Events/Au	5.1933 3.5062 3.25 6.0729 36.88 #DIV/0! 1.2926 11.67 0.33 12 3 15.086
15 month period Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Confidence Level(95.0%)	26.66667 15.16941 12 26.2742 690.3333 #DIV/0! 1.729229 46 11 57 3 65.26872 <u>Grou</u>	Application Events/Au 15 month period Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Confidence Level(95.0%) p.3	5.1933 3.5062 3.25 6.0729 36.88 #DIV/0! 1.2926 11.67 0.33 12 3 15.086
15 month period Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Confidence Level(95.0%) Application Events 15 month period	26.66667 15.16941 12 26.2742 690.3333 #DIV/0! 1.729229 46 11 57 3 65.26872 <u>Grou</u>	Application Events/Au 15 month period Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Count Confidence Level(95.0%) p 3 Application Events/Au 15 month period	5.1933 3.5062 3.25 6.0729 36.88 #DIV/0! 1.2926 11.67 0.33 12 3 15.086
15 month period Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Confidence Level(95.0%) Application Events 15 month period	26.66667 15.16941 12 26.2742 690.3333 #DIV/0! 1.729229 46 11 57 3 65.26872 <u>Grou</u> 31.00	Application Events/Au 15 month period Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Confidence Level(95.0%) p3 Application Events/Au 15 month period	5.1933 3.5062 3.25 6.0729 36.88 #DIV/0! 1.2926 11.67 0.33 12 3 15.086 cre
15 month period Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Confidence Level(95.0%) Application Events 15 month period	26.66667 15.16941 12 26.2742 690.3333 #DIV/0! 1.729229 46 11 57 3 65.26872 <u>Grou</u> 31.00 8.82	Application Events/A 15 month period Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Confidence Level(95.0%) p 3 Application Events/A 15 month period	5.1933 3.5062 3.25 6.0729 36.88 #DIV/0! 1.2926 11.67 0.33 12 3 15.086 cre 7.30 2.64
15 month period Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Confidence Level(95.0%) Application Events 15 month period Mean Standard Error Median	26.66667 15.16941 12 26.2742 690.3333 #DIV/0! 1.729229 46 11 57 3 65.26872 Grou 31.00 8.82 28.00	Application Events/Au 15 month period Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Confidence Level(95.0%) p3 Application Events/Au 15 month period	5.1933 3.5062 3.25 6.0729 36.88 #DIV/0! 1.2926 11.67 0.33 12 3 15.086 cre 7.30 2.64 6.37
15 month period Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Confidence Level(95.0%) Application Events 15 month period Mean Standard Error Median Standard Deviation	26.66667 15.16941 12 26.2742 690.3333 #DIV/0! 1.729229 46 11 57 3 65.26872 Grou 31.00 8.82 28.00 17.64	Application Events/Av 15 month period Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Confidence Level(95.0%) p.3 Application Events/Av 15 month period Mean Standard Error Median Standard Deviation	5.1933 3.5062 3.25 6.0729 36.88 #DIV/0! 1.2926 11.67 0.33 12 3 15.086 cre 7.30 2.64 6.37 5.29
15 month period Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Confidence Level(95.0%) Application Events 15 month period Mean Standard Error Median	26.66667 15.16941 12 26.2742 690.3333 #DIV/0! 1.729229 46 11 57 3 65.26872 Grou 31.00 8.82 28.00 17.64 311.33	Application Events/Av 15 month period Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Confidence Level(95.0%) p.3 Application Events/Av 15 month period	5.1933 3.5062 3.25 6.0729 36.88 #DIV/0! 1.2926 11.67 0.33 12 3 15.086 cre 7.30 2.64 6.37
15 month period Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Confidence Level(95.0%) Application Events 15 month period Mean Standard Error Median Standard Deviation Sample Variance	26.66667 15.16941 12 26.2742 690.3333 #DIV/0! 1.729229 46 11 57 3 65.26872 <u>Grou</u> 3 31.00 8.82 28.00 17.64 311.33 -0.65	Application Events/Av 15 month period	5.1933 3.5062 3.25 6.0729 36.88 #DIV/0! 1.2926 11.67 0.33 12 3 15.086 cre 7.30 2.64 6.37 5.29 27.95
15 month period Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Confidence Level(95.0%) Application Events 15 month period Mean Standard Error Median Standard Deviation Sample Variance Kurtosis	26.66667 15.16941 12 26.2742 690.3333 #DIV/0! 1.729229 46 11 57 3 65.26872 <u>Grou</u> 5 31.00 8.82 28.00 17.64 311.33 -0.65 0.77	Application Events/Av 15 month period Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Confidence Level(95.0%) p3 Application Events/Av 15 month period Mean Standard Error Median Standard Deviation Sample Variance Kurtosis	5.1933 3.5062 3.25 6.0729 36.88 #DIV/0! 1.2926 11.67 0.33 12 3 15.086 cre 7.30 2.64 6.37 5.29 27.95 -1.85
15 month period Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Confidence Level(95.0%) Application Events 15 month period Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness	26.66667 15.16941 12 26.2742 690.3333 #DIV/0! 1.729229 46 11 57 3 65.26872 <u>Grou</u> 5 31.00 8.82 28.00 17.64 311.33 -0.65 0.77 40.00	Application Events/Av 15 month period Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Confidence Level(95.0%) p 3 Application Events/Av 15 month period Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness	5.1933 3.5062 3.25 6.0729 36.88 #DIV/0! 1.2926 11.67 0.33 12 3 15.086 cre 7.30 2.64 6.37 5.29 27.95 -1.85 0.67
15 month period Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Confidence Level(95.0%) Application Events 15 month period Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum	26.66667 15.16941 12 26.2742 690.3333 #DIV/0! 1.729229 46 11 57 3 65.26872 Grou 31.00 8.82 28.00 17.64 311.33 -0.65 0.77 40.00 14.00 54.00	Application Events/Au 15 month period Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Confidence Level(95.0%) p.3 Application Events/Au 15 month period Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum	5.1933 3.5062 3.25 6.0729 36.88 #DIV/0! 1.2926 11.67 0.33 12 3 15.086 cre 7.30 2.64 6.37 5.29 27.95 -1.85 0.67 11.53 2.47 14.00
15 month period Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Confidence Level(95.0%) Application Events 15 month period Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum	26.66667 15.16941 12 26.2742 690.3333 #DIV/0! 1.729229 46 111 57 3 65.26872 Grou 5 31.00 8.82 28.00 17.64 311.33 -0.65 0.77 40.00 14.00 54.00 4.00	Application Events/Av 15 month period Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Confidence Level(95.0%) p3 Application Events/Av 15 month period Mean Standard Error Median Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum	5.1933 3.5062 3.25 6.0729 36.88 #DIV/0! 1.2926 11.67 0.33 12 3 15.086 cre 7.30 2.64 6.37 5.29 27.95 -1.85 0.67 11.53 2.47

Page 46 NGA-LAILG – WQMP July 26, 2013

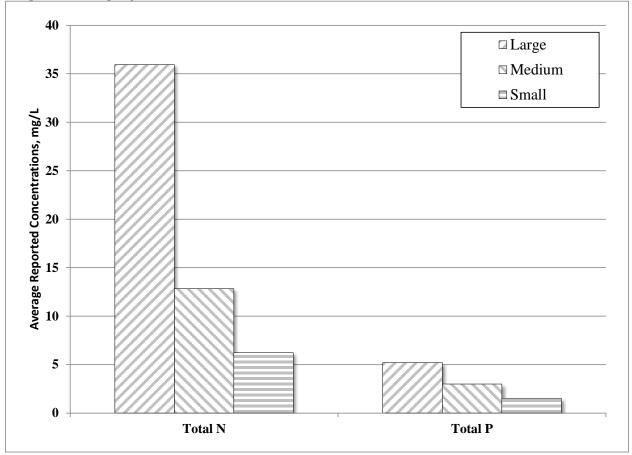
General Analysis

Currently, members grouped into large operations have the most chemical applications on a per site basis and on a chemical application per acre basis. Preliminary results indicate that growers within the small operation group have more chemical applications on a per acre basis than the medium operation group, however, this is likely due to the sod farm, which only applies chemicals sparingly on a large scale. As there are currently only three growers with information grouped into this category, this skewed the average lower. Additionally, there was one member of the large group that did not apply any pesticides. LAILG anticipates that as more data comes in group-wide, these numbers will begin to show distinct levels between the groups.

Statistical Analysis

Data acquired from the sampling sites showed a large spread of chemical application patterns within each of the groups and across LAILG as a whole, as is indicated by the large (sometimes above the mean) standard deviations for each of the analyses and the large variances in the minimum and maximum applied. The high standard errors also indicate that the sample sizes are too small at this point to state that the statistical means from the analyses are completely accurate. The collection of additional data throughout the group, as discussed in Section 6.0, should provide a larger dataset for analyzing growing practices group wide, to determine if the current grouping methodology is appropriate.

The skewness and kurtosis for both the sampling group as a whole and each separate size group indicate that the data, as currently collected, is neither distributed symmetrically or Gaussian in nature. It is currently unknown if the data will approach a normal distribution once information is collected from the group as a whole.


5.4 Grouping Results, Observed Runoff Conditions

LAILG organized data by NGA parcel regardless of sample date. From the 64 samples collected to date, 56 were collected from growers that self-reported enough information for complete grouping and comparative analysis. Of the 56 samples, extreme outliers were discarded in the analysis. In both cases, these samples reported parameters at least an order of magnitude higher than the remaining population for pesticides (2 sample results), or reported values over four standard deviations from the average for nutrients (2 samples for Nitrogen and Phosphorus). Results from the remaining samples were placed into their representative operative group, and the results from each group were averaged.

Page 47 NGA-LAILG – WQMP July 26, 2013

5.4.1 Nutrients Detected

After grouping sampling sites into their operational categories, sampling results in each of the groups was averaged for Nitrogen and Phosphorous detected in collected runoff samples. Potassium was not looked at, as it is not included in the laboratory analytical suite. The Y-axis presents the average of both dry and wet season samples collected within each group in mg/L. The group averages are compared in Graph 10, and basic raw statistical data used for this graph and general evaluation purposes is presented on Table 13.

Graph 10. Grouping, Nutrient Concentrations

Page 48 NGA-LAILG – WQMP July 26, 2013

Table 13. Grouping Statistics, Nutrients Detected All Sites

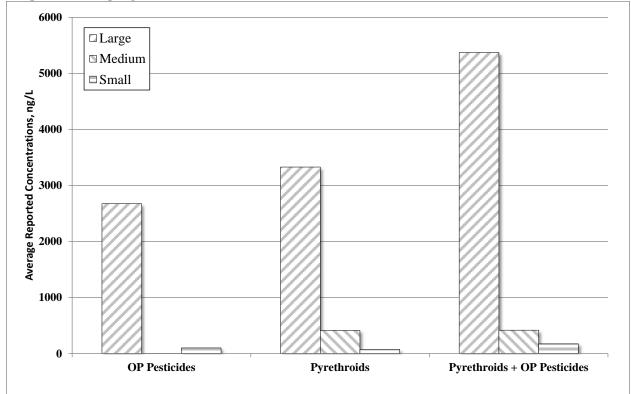
	All S	ites	
Total N Detected		Total Phosphate as P De	tected
mg/L		mg/L	
Mean		Mean	4.18
Standard Error		Standard Error	0.83
Median		Median	2.37
Standard Deviation		Standard Deviation	6.13
Sample Variance		Sample Variance	37.61
Kurtosis		Kurtosis	10.67
Skewness		Skewness	3.25
Range		Range	31.45
Minimum		Minimum	0.26
Maximum		Maximum	31.71
Count		Count	54.00
Confidence Level(95.0%)		Confidence Level(95.0%)	1.67
	<u>Grou</u>		
Total N Detected		Total Phosphate as P De	tected
mg/L		mg/L	
Mean		Mean	5.19
Standard Error		Standard Error	1.28
Median		Median	2.54
Standard Deviation		Standard Deviation	7.45
Sample Variance		Sample Variance	55.55
Kurtosis		Kurtosis	5.91
Skewness		Skewness	2.56
Range		Range	31.40
Minimum		Minimum	0.31
Maximum		Maximum	31.71
Count		Count	34.00
Confidence Level(95.0%)	16.22	Confidence Level(95.0%)	2.60
	<u>Grou</u>		
Total N Detected	<u>Grou</u>	Total Phosphate as P De	tected
Total N Detected mg/L	<u>Grou</u>		tected
mg/L		Total Phosphate as P De mg/L	
mg/L	12.81	Total Phosphate as P Dem mg/L	2.99
mg/L Mean Standard Error	12.81 3.20	Total Phosphate as P Der mg/L Mean Standard Error	2.99 0.58
mg/L Mean Standard Error Median	12.81 3.20 11.11	Total Phosphate as P Der mg/L Mean Standard Error Median	2.99 0.58 2.88
mg/L Mean Standard Error Median Standard Deviation	12.81 3.20 11.11 11.55	Total Phosphate as P Der mg/L Mean Standard Error Median Standard Deviation	2.99 0.58 2.88 2.10
mg/L Mean Standard Error Median Standard Deviation Sample Variance	12.81 3.20 11.11 11.55 133.32	Total Phosphate as P Der mg/L Mean Standard Error Median Standard Deviation Sample Variance	2.99 0.58 2.88 2.10 4.41
mg/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis	12.81 3.20 11.11 11.55 133.32 -0.19	Total Phosphate as P Der mg/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis	2.99 0.58 2.88 2.10 4.41 3.01
mg/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness	12.81 3.20 11.11 11.55 133.32 -0.19 0.93	Total Phosphate as P Der mg/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness	2.99 0.58 2.88 2.10 4.41 3.01 1.44
mg/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range	12.81 3.20 11.11 11.55 133.32 -0.19 0.93 35.72	Total Phosphate as P Der mg/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range	2.99 0.58 2.88 2.10 4.41 3.01 1.44 8.14
mg/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum	12.81 3.20 11.11 11.55 133.32 -0.19 0.93 35.72 0.17	Total Phosphate as P Der mg/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum	2.99 0.58 2.88 2.10 4.41 3.01 1.44 8.14 0.26
mg/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum	12.81 3.20 11.11 11.55 133.32 -0.19 0.93 35.72 0.17 35.89	Total Phosphate as P Den mg/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum	2.99 0.58 2.88 2.10 4.41 3.01 1.44 8.14 0.26 8.40
mg/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count	12.81 3.20 11.11 11.55 133.32 -0.19 0.93 35.72 0.17 35.89 13.00	Total Phosphate as P Der mg/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count	2.99 0.58 2.88 2.10 4.41 3.01 1.44 8.14 0.26 8.40 13.00
mg/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum	12.81 3.20 11.11 11.55 133.32 -0.19 0.93 355.72 0.17 35.89 13.00 6.98	Total Phosphate as P Den mg/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Count Confidence Level(95.0%)	2.99 0.58 2.88 2.10 4.41 3.01 1.44 8.14 0.26 8.40
mg/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Confidence Level(95.0%)	12.81 3.20 11.11 11.55 133.32 -0.19 0.93 35.72 0.17 35.89 13.00	Total Phosphate as P Den mg/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Confidence Level(95.0%) up 3	2.99 0.58 2.88 2.10 4.41 3.01 1.44 8.14 0.26 8.40 13.00 1.27
mg/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Confidence Level(95.0%)	12.81 3.20 11.11 11.55 133.32 -0.19 0.93 355.72 0.17 35.89 13.00 6.98	Total Phosphate as P Den mg/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Confidence Level(95.0%) IP 3 Total Phosphate as P Den	2.99 0.58 2.88 2.10 4.41 3.01 1.44 8.14 0.26 8.40 13.00 1.27
mg/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Confidence Level(95.0%)	12.81 3.20 11.11 11.55 133.32 -0.19 0.93 355.72 0.17 35.89 13.00 6.98	Total Phosphate as P Den mg/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Confidence Level(95.0%) up 3	2.99 0.58 2.88 2.10 4.41 3.01 1.44 8.14 0.26 8.40 13.00 1.27
mg/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Confidence Level(95.0%) Total N Detected mg/L	12.81 3.20 11.11 11.55 133.32 -0.19 0.93 35.72 0.17 35.89 13.00 6.98 Grou	Total Phosphate as P Der mg/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Confidence Level(95.0%) IP 3 Total Phosphate as P Der mg/L	2.99 0.58 2.88 2.10 4.41 3.01 1.44 8.14 0.26 8.40 13.00 1.27 tected
mg/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Confidence Level(95.0%) <u>Total N Detected mg/L</u> Mean	12.81 3.20 11.11 11.55 133.32 -0.19 0.93 35.72 0.17 35.89 13.00 6.98 Grou 6.21	Total Phosphate as P Der mg/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Confidence Level(95.0%) UP 3 Total Phosphate as P Der mg/L Mean	2.99 0.58 2.88 2.10 4.41 3.01 1.44 8.14 0.26 8.40 13.00 1.27 tected
mg/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Confidence Level(95.0%) <u>Total N Detected</u> mg/L Mean Standard Error	12.81 3.20 11.11 11.55 133.32 -0.19 0.93 35.72 0.17 35.89 13.00 6.98 Grou 6.21 1.57	Total Phosphate as P Der mg/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Count Confidence Level(95.0%) JP 3 Total Phosphate as P Der mg/L Mean Standard Error	2.99 0.58 2.88 2.10 4.41 3.01 1.44 8.14 0.26 8.40 13.00 1.27 tected 1.51 0.32
mg/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Confidence Level(95.0%) <u>Total N Detected</u> mg/L Mean Standard Error Median	12.81 3.20 11.11 11.55 133.32 -0.19 0.93 35.72 0.17 35.89 13.00 6.98 Grou 6.21 1.57 6.06	Total Phosphate as P Der mg/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Confidence Level(95.0%) <u>IP 3</u> Total Phosphate as P Der mg/L Mean Standard Error Median	2.99 0.58 2.88 2.10 4.41 3.01 1.44 8.14 0.26 8.40 13.00 1.27 <i>tected</i> 1.51 0.32 1.50
mg/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Confidence Level(95.0%) <u>Total N Detected</u> mg/L Mean Standard Error Median Standard Deviation	12.81 3.20 11.11 11.55 133.32 -0.19 0.93 35.72 0.17 35.89 13.00 6.98 Grou 6.21 1.57 6.06 4.15	Total Phosphate as P Der mg/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Confidence Level(95.0%) <u>IP 3</u> Total Phosphate as P Der mg/L Mean Standard Error Median Standard Deviation	2.99 0.58 2.88 2.10 4.41 3.01 1.44 8.14 0.26 8.40 13.00 1.27 tected 1.51 0.32 1.50 0.85
mg/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Confidence Level(95.0%) Total N Detected mg/L Mean Standard Error Median Standard Deviation Sample Variance	12.81 3.20 11.11 11.55 133.32 -0.19 0.93 35.72 0.17 35.89 13.00 6.98 Grou 6.21 1.57 6.06 4.15 17.21	Total Phosphate as P Der mg/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Confidence Level(95.0%) IP 3 Total Phosphate as P Der mg/L Mean Standard Error Median Standard Error Median Standard Deviation Sample Variance	2.99 0.58 2.88 2.10 4.41 3.01 1.44 8.14 0.26 8.40 13.00 1.27 tected 1.51 0.32 1.50 0.85 0.72
mg/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Confidence Level(95.0%) Total N Detected mg/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis	12.81 3.20 11.11 11.55 133.32 -0.19 0.93 355.72 0.17 35.89 13.00 6.98 Grou 6.21 1.57 6.06 4.15 17.21 0.93	Total Phosphate as P Der mg/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Confidence Level(95.0%) JP 3 Total Phosphate as P Der mg/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis	2.99 0.58 2.88 2.10 4.41 3.01 1.44 8.14 0.26 8.40 13.00 1.27 tected
mg/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Confidence Level(95.0%) Total N Detected mg/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness	12.81 3.20 11.11 11.55 133.32 -0.19 0.93 355.72 0.17 35.89 13.00 6.98 Grou 6.21 1.57 6.06 4.15 17.21 0.93 0.97	Total Phosphate as P Der mg/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Confidence Level(95.0%) JP 3 Total Phosphate as P Der mg/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness	2.99 0.58 2.88 2.10 4.41 3.01 1.44 8.14 0.26 8.40 13.00 1.27 tected 1.51 0.32 1.50 0.85 0.72 -0.09 0.47
mg/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Confidence Level(95.0%) Total N Detected mg/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range	12.81 3.20 11.11 11.55 133.32 -0.19 0.93 35.72 0.17 35.89 13.00 6.98 Grot 6.21 1.57 6.06 4.15 17.21 0.93 0.97 12.31	Total Phosphate as P Der mg/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Confidence Level(95.0%) IP 3 Total Phosphate as P Der mg/L Mean Standard Error Median Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range	2.99 0.58 2.88 2.10 4.41 3.01 1.44 8.14 0.26 8.40 13.00 1.27 tected 1.51 0.32 1.50 0.85 0.72 -0.09 0.47 2.54
mg/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Confidence Level(95.0%) Total N Detected mg/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum	12.81 3.20 11.11 11.55 133.32 -0.19 0.93 35.72 0.17 35.89 13.00 6.98 Grot 6.21 1.57 6.06 4.15 17.21 0.93 0.97 12.31 1.49	Total Phosphate as P Der mg/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Confidence Level(95.0%) JD 3 Total Phosphate as P Der mg/L Mean Standard Error Median Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum	2.99 0.58 2.88 2.10 4.41 3.01 1.44 8.14 0.26 8.40 13.00 1.27 tected 1.51 0.32 1.50 0.85 0.72 -0.09 0.47 2.54 0.39
mg/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Confidence Level(95.0%) Total N Detected mg/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum	12.81 3.20 11.11 11.55 133.32 -0.19 0.93 35.72 0.17 35.89 13.00 6.98 Grot 6.21 1.57 6.06 4.15 17.21 0.93 0.97 12.31 1.49 13.80	Total Phosphate as P Der mg/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Confidence Level(95.0%) ID 3 Total Phosphate as P Der mg/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum	2.99 0.58 2.88 2.10 4.41 3.01 1.44 8.14 0.26 8.40 13.00 1.27 tected 1.51 0.32 1.50 0.85 0.72 -0.09 0.47 2.54 0.39 2.93
mg/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Confidence Level(95.0%) Total N Detected mg/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum	12.81 3.20 11.11 11.55 133.32 -0.19 0.93 35.72 0.17 35.89 13.00 6.98 Grou 6.21 1.57 6.06 4.15 17.21 0.93 0.97 12.31 1.49 13.80 7.00	Total Phosphate as P Der mg/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Confidence Level(95.0%) JD 3 Total Phosphate as P Der mg/L Mean Standard Error Median Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum	2.99 0.58 2.88 2.10 4.41 3.01 1.44 8.14 0.26 8.40 13.00 1.27 tected 1.51 0.32 1.50 0.85 0.72 -0.09 0.47 2.54 0.39

Page 49 NGA-LAILG – WQMP July 26, 2013

General Analysis

There is a clear decline in the averages for nutrients detected for each group, with the large operations being the highest for both nitrogen and phosphorous. Also, the vast majority of samples collected have been from the larger members: 34 of the samples came from large operators, 13 of the samples came from medium operators, and 7 of the samples came from small operators. None of the samples collected from the small group reported concentrations of nitrogen above WQBs. The large group had the largest spread of detected concentrations, along with the highest reported values group wide.

Statistical Analysis


Data acquired from the sampling sites showed a large spread of nutrient detection pattern across the sample set, as indicated by the large (above the mean) standard deviations and the large variances in the minimum and maximum detected concentrations. Overall, the spread of detected concentrations inside each size grouping decreased. The standard errors are not as high as in the nutrient and pesticides applied evaluation, meaning the means from the sample set are beginning to become large enough to somewhat accurately predict future sampling results. Nevertheless, more sampling data is required to provide any statistical significance throughout the representative groups.

The skewness and kurtosis for the sampling group as a whole, the large operation group, and for phosphorous in the medium operation group indicate that the data, as currently collected, is neither distributed symmetrically or Gaussian in nature. Samples for nitrogen in the medium operation group and samples collected from the small operation group are somewhat evenly distributed and Gaussian, but there needs to be more data collected from these representative groups to prove any relationship.

5.4.2 Pesticides Detected

After grouping sampling sites into their operational categories, sampling results in each of the groups were averaged for pesticide detections in collected runoff samples. In order to simplify the dataset, all detections of any OP pesticides, pyrethroid pesticides, and both OP and pyrethroid pesticides were summed for each individual sample. OC pesticides were not evaluated, as there is no way to determine which sites had historical applications of these constituents, and detections should not depend on operational practices. The Y-axis presents the average of both dry and wet season samples collected within each group in ng/L. The group averages are compared in Graph 11, and basic raw statistical data used for this graph and general evaluation purposes is presented on Table 14.

Page 50 NGA-LAILG – WQMP July 26, 2013

Graph 11. Grouping, Pesticide Concentrations

Page 51 NGA-LAILG – WQMP July 26, 2013

		All Site			
Total OP Pesticides	Detected	Total Pyrethroid Pesticio	des Detected	Total OP + Phyrethroid P	Pesticides Detected
ng/L		ng/L		ng/L	
Mean	1697.97	Maan	2204.24	Maan	2400.25
Standard Error		Standard Error		Standard Error	3469.35
					1140.39
Median		Median		Median	305.00
Standard Deviation		Standard Deviation		Standard Deviation	8302.14
Sample Variance		Sample Variance		Sample Variance	68925496.15
Kurtosis		Kurtosis		Kurtosis	14.05
Skewness		Skewness		Skewness	3.53
Range	46100.00	-	26753.70	-	46209.70
Minimum		Minimum		Minimum	0.00
Maximum		Maximum		Maximum	46209.70
Count		Count		Count	53.00
Confidence Level(95.0%)	1940.60	Confidence Level(95.0%)	1543.67	Confidence Level(95.0%)	2288.35
		Group	1		
Total OP Pesticides	Detected	Total Pyrethroid Pesticio	des Detected	Total OP + Phyrethroid F	Pesticides Detected
ng/L		ng/L		ng/L	
Mean	2674.69	Mean	3327.65	Mean	5370.77
Standard Error		Standard Error		Standard Error	1758.05
Median		Median		Median	873.90
Standard Deviation		Standard Deviation		Standard Deviation	10099.20
Sample Variance		Sample Variance		Sample Variance	101993889.13
Kurtosis		Kurtosis		Kurtosis	7.89
Skewness		Skewness		Skewness	2.68
Range	46100.00		26753.70		46209.70
Range		Minimum		Minimum	40203.70
Minimum		Minimum			46209.70
Minimum		Maximum			
Maximum	46100.00	Maximum	26753.70		
Maximum Count Confidence Level(95.0%)	46100.00 34.00 3091.81	Count Confidence Level(95.0%) <u>Group</u>	34.00 2410.69 2	Count Confidence Level(95.0%)	33.00 3581.02
Maximum Count	46100.00 34.00 3091.81	Count Confidence Level(95.0%)	34.00 2410.69 2	Count	33.00 3581.02
Maximum Count Confidence Level(95.0%) Total OP Pesticides	46100.00 34.00 3091.81 Detected	Count Confidence Level(95.0%) <u>Group</u> Total Pyrethroid Pesticio	34.00 2410.69 2	Count Confidence Level(95.0%) Total OP + Phyrethroid F ng/L	33.00 3581.02
Maximum Count Confidence Level(95.0%) Total OP Pesticides ng/L	46100.00 34.00 3091.81 Detected 3.68	Count Confidence Level(95.0%) Group Total Pyrethroid Pesticie ng/L	34.00 2410.69 des Detected 413.36	Count Confidence Level(95.0%) Total OP + Phyrethroid F ng/L	33.00 3581.02 Pesticides Detected
Maximum Count Confidence Level(95.0%) Total OP Pesticides ng/L Mean	46100.00 34.00 3091.81 Detected 3.68 3.01	Count Confidence Level(95.0%) Group Total Pyrethroid Pesticit ng/L Mean	34.00 2410.69 des Detected 413.36 150.34	Count Confidence Level(95.0%) Total OP + Phyrethroid F ng/L Mean	33.00 3581.02 Pesticides Detected 417.04
Maximum Count Confidence Level(95.0%) Total OP Pesticides ng/L Mean Standard Error	46100.00 34.00 3091.81 Detected 3.68 3.01 0.00	Count Confidence Level(95.0%) Group Total Pyrethroid Pesticit ng/L Mean Standard Error	34.00 2410.69 des Detected 413.36 150.34 72.00	Count Confidence Level(95.0%) Total OP + Phyrethroid F ng/L Mean Standard Error	33.00 3581.02 Pesticides Detected 417.04 151.98
Maximum Count Confidence Level(95.0%) <i>Total OP Pesticides</i> <i>ng/L</i> Mean Standard Error Median Standard Deviation	46100.00 34.00 3091.81 Detected 3.68 3.01 0.00 10.87	Count Confidence Level(95.0%) Group Total Pyrethroid Pesticit ng/L Mean Standard Error Median Standard Deviation	34.00 2410.69 des Detected 413.36 150.34 72.00 542.05	Count Confidence Level(95.0%) Total OP + Phyrethroid F ng/L Mean Standard Error Median Standard Deviation	33.00 3581.02 Pesticides Detected 417.04 151.98 72.00
Maximum Count Confidence Level(95.0%) <i>Total OP Pesticides</i> <i>ng/L</i> Mean Standard Error Median Standard Deviation Sample Variance	46100.00 34.00 3091.81 Detected 3.68 3.01 0.00 10.87 118.06	Count Confidence Level(95.0%) Group Total Pyrethroid Pesticit ng/L Mean Standard Error Median Standard Deviation Sample Variance	34.00 2410.69 des Detected 413.36 150.34 72.00 542.05 293822.22	Count Confidence Level(95.0%) Total OP + Phyrethroid F ng/L Mean Standard Error Median Standard Deviation Sample Variance	33.00 3581.02 Pesticides Detected 417.04 151.98 72.00 547.96 300258.96
Maximum Count Confidence Level(95.0%) <i>Total OP Pesticides</i> <i>ng/L</i> Mean Standard Error Median Standard Deviation Sample Variance Kurtosis	46100.00 34.00 3091.81 Detected 3.68 3.01 0.00 10.87 118.06 11.33	Count Confidence Level(95.0%) Group Total Pyrethroid Pesticit ng/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis	34.00 2410.69 des Detected 413.36 150.34 72.00 542.05 293822.22 -0.67	Count Confidence Level(95.0%) Total OP + Phyrethroid F ng/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis	33.00 3581.02 Pesticides Detected 417.04 151.98 72.00 547.96 300258.96 -0.62
Maximum Count Confidence Level(95.0%) Total OP Pesticides ng/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness	46100.00 34.00 3091.81 Detected 3.68 3.01 0.00 10.87 118.06 11.33 3.32	Count Confidence Level(95.0%) Group Total Pyrethroid Pesticit ng/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness	34.00 2410.69 2 des Detected 413.36 150.34 72.00 542.05 293822.22 -0.67 0.99	Count Confidence Level(95.0%) Total OP + Phyrethroid F ng/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness	33.00 3581.02 Pesticides Detected 417.04 151.98 72.00 547.96 300258.96 -0.62 1.01
Maximum Count Confidence Level(95.0%) Total OP Pesticides ng/L Mean Standard Error Median Standard Deviation Standard Deviation Sample Variance Kurtosis Skewness Range	46100.00 34.00 3091.81 Detected 3.68 3.01 0.00 10.87 118.06 11.33 3.32 38.90	Count Confidence Level(95.0%) Group Total Pyrethroid Pesticit ng/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range	34.00 2410.69 2 des Detected 413.36 150.34 72.00 542.05 293822.22 -0.67 0.99 1379.10	Count Confidence Level(95.0%) Total OP + Phyrethroid F ng/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range	33.00 3581.02 Pesticides Detected 417.04 151.98 72.00 547.96 300258.96 -0.62 1.01 1414.80
Maximum Count Confidence Level(95.0%) Total OP Pesticides ng/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum	46100.00 34.00 3091.81 Detected 3.68 3.01 0.00 10.87 118.06 11.33 3.32 38.90 0.00	Count Confidence Level(95.0%) Group Total Pyrethroid Pesticit ng/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum	34.00 2410.69 2 des Detected 413.36 150.34 72.00 542.05 293822.25 -0.67 0.99 1379.10 0.00	Count Confidence Level(95.0%) Total OP + Phyrethroid P ng/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum	33.00 3581.02 Pesticides Detected 417.04 151.98 72.00 547.96 300258.96 -0.62 1.01 1414.80 0.00
Maximum Count Confidence Level(95.0%) Total OP Pesticides ng/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum	46100.00 34.00 3091.81 Detected 3.68 3.01 0.00 10.87 118.06 11.33 3.32 38.90 0.00 38.90	Count Confidence Level(95.0%) Group Total Pyrethroid Pesticit ng/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum	34.00 2410.69 2 des Detected 413.36 150.34 72.00 542.05 293822.22 -0.67 0.99 1379.10 0.00 1379.10	Count Confidence Level(95.0%) Total OP + Phyrethroid P ng/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum	33.00 3581.02 Pesticides Detected 417.04 151.98 72.00 547.96 300258.96 -0.62 1.01 1414.80 0.00 1414.80
Maximum Count Confidence Level(95.0%) Total OP Pesticides ng/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count	46100.00 34.00 3091.81 Detected 3.68 3.01 0.00 10.87 118.06 11.33 3.32 38.90 0.00 38.90 13.00	Count Confidence Level(95.0%) Group Total Pyrethroid Pesticit ng/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count	34.00 2410.69 2 des Detected 413.36 150.34 72.00 542.05 293822.22 -0.67 0.99 1379.10 0.00 1379.10 13.00	Count Confidence Level(95.0%) Total OP + Phyrethroid P ng/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count	33.00 3581.02 Pesticides Detected 417.04 151.98 72.00 547.96 300258.96 -0.62 1.01 1414.80 0.00 1414.80 13.00
Maximum Count Confidence Level(95.0%) <i>Total OP Pesticides</i> <i>ng/L</i> Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Count Confidence Level(95.0%)	46100.00 34.00 3091.81 Detected 3.68 3.01 0.00 10.87 118.06 11.33 3.32 38.90 0.00 38.90 13.00 6.57	Count Confidence Level(95.0%) Group Total Pyrethroid Pesticit ng/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum	34.00 2410.69 2 des Detected 413.36 150.34 72.00 542.05 293822.22 -0.67 0.99 1379.10 0.00 1379.10 13.00 327.56	Count Confidence Level(95.0%) Total OP + Phyrethroid P ng/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum	33.00 3581.02 Pesticides Detected 417.04 151.98 72.00 547.96 300258.96 -0.62 1.01 1414.80 0.00 1414.80
Maximum Count Confidence Level(95.0%) Total OP Pesticides ng/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Count Confidence Level(95.0%) Total OP Pesticides	46100.00 34.00 3091.81 Detected 3.68 3.01 0.00 10.87 118.06 11.33 3.32 38.90 0.00 38.90 13.00 6.57	Count Confidence Level(95.0%) Group Total Pyrethroid Pesticit ng/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Count Confidence Level(95.0%) Group Total Pyrethroid Pesticit	34.00 2410.69 2 des Detected 413.36 150.34 72.00 542.05 293822.22 -0.67 0.99 1379.10 0.00 1379.10 13.00 327.56	Count Confidence Level(95.0%) Total OP + Phyrethroid P ng/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Count Confidence Level(95.0%)	33.00 3581.02 Pesticides Detected 417.04 151.98 72.00 547.96 300258.96 -0.62 1.01 1414.80 0.00 1414.80 13.00 331.13
Maximum Count Confidence Level(95.0%) Total OP Pesticides ng/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Confidence Level(95.0%) Total OP Pesticides ng/L	46100.00 34.00 3091.81 Detected 3.68 3.01 0.00 10.87 118.06 11.33 3.32 38.90 0.00 38.90 13.00 6.57 Detected	Count Confidence Level(95.0%) Group Total Pyrethroid Pesticit ng/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Confidence Level(95.0%) Group Total Pyrethroid Pesticit ng/L	34.00 2410.69 2 des Detected 413.36 150.34 72.00 542.05 293822.22 -0.67 0.99 1379.10 0.00 1379.10 13.00 327.56 3 des Detected	Count Confidence Level(95.0%) Total OP + Phyrethroid P ng/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Confidence Level(95.0%) Total OP + Phyrethroid P ng/L	33.00 3581.02 Pesticides Detected 417.04 151.98 72.00 547.96 300258.96 -0.62 1.01 1414.80 0.00 1414.80 13.00 331.13 Pesticides Detected
Maximum Count Confidence Level(95.0%) Total OP Pesticides ng/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Confidence Level(95.0%) Total OP Pesticides ng/L Mean	46100.00 34.00 3091.81 Detected 3.68 3.01 0.00 10.87 118.06 11.33 3.32 38.90 0.00 38.90 13.00 6.57 Detected	Count Confidence Level(95.0%) Group Total Pyrethroid Pesticic ng/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Confidence Level(95.0%) Group Total Pyrethroid Pesticic ng/L Mean	34.00 2410.69 2 des Detected 413.36 150.34 72.00 542.05 293822.22 -0.67 0.99 1379.10 0.000 1379.10 13.00 327.56 3 des Detected 73.64	Count Confidence Level(95.0%) Total OP + Phyrethroid P ng/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Confidence Level(95.0%) Total OP + Phyrethroid P ng/L Mean	33.00 3581.02 Pesticides Detected 417.04 151.98 72.00 547.96 300258.96 -0.62 1.01 1414.80 0.00 1414.80 13.00 331.13 Pesticides Detected 174.09
Maximum Count Confidence Level(95.0%) Total OP Pesticides ng/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Confidence Level(95.0%) Total OP Pesticides ng/L Mean Standard Error	46100.00 34.00 3091.81 Detected 3.68 3.01 0.00 10.87 118.06 11.33 3.32 38.90 0.00 38.90 13.00 6.57 Detected 100.44 87.86	Count Confidence Level(95.0%) Total Pyrethroid Pesticit ng/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Confidence Level(95.0%) <u>Group</u> Total Pyrethroid Pesticit ng/L Mean Standard Error	34.00 2410.69 2 des Detected 413.36 150.34 72.00 542.05 293822.22 -0.67 0.99 1379.10 0.00 1379.10 13.00 327.56 3 des Detected 73.64 34.88	Count Confidence Level(95.0%) Total OP + Phyrethroid P ng/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Confidence Level(95.0%) Total OP + Phyrethroid P ng/L Mean Standard Error	33.00 3581.02 Pesticides Detected 417.04 151.98 72.00 547.96 300258.96 -0.62 1.01 1414.80 0.00 1414.80 13.00 331.13 Pesticides Detected 174.09 82.02
Maximum Count Confidence Level(95.0%) Total OP Pesticides ng/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Confidence Level(95.0%) Total OP Pesticides ng/L Mean Standard Error Median	46100.00 34.00 3091.81 Detected 3.68 3.01 0.00 10.87 118.06 11.33 3.32 38.90 0.00 38.90 0.00 38.90 0.00 38.90 0.00 5.57 Detected	Count Confidence Level(95.0%) Total Pyrethroid Pesticit ng/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Confidence Level(95.0%) <u>Group</u> Total Pyrethroid Pesticit ng/L Mean Standard Error Median	34.00 2410.69 2 des Detected 413.36 150.34 72.00 542.05 293822.22 -0.67 0.99 1379.10 0.00 1379.10 1379.10 0.327.56 3 des Detected 73.64 34.88 47.40	Count Confidence Level(95.0%) Total OP + Phyrethroid F ng/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Confidence Level(95.0%) Total OP + Phyrethroid F ng/L Mean Standard Error Median	33.00 3581.02 Pesticides Detected 417.04 151.98 72.00 547.96 300258.96 -0.62 1.01 1414.80 0.00 1414.80 13.00 331.13 Pesticides Detected 174.09 82.02 110.00
Maximum Count Confidence Level(95.0%) Total OP Pesticides ng/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Confidence Level(95.0%) Total OP Pesticides ng/L Mean Standard Error	46100.00 34.00 3091.81 Detected 3.68 3.01 0.00 10.87 118.06 11.33 3.32 38.90 0.00 38.90 13.00 6.57 Detected 100.44 87.86 0.00 232.47	Count Confidence Level(95.0%) Total Pyrethroid Pesticit ng/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Confidence Level(95.0%) <u>Group</u> Total Pyrethroid Pesticit ng/L Mean Standard Error Median Standard Deviation	34.00 2410.69 2 des Detected 413.36 150.34 72.00 542.05 293822.22 -0.67 0.99 1379.10 0.00 1379.10 1379.10 0.327.56 3 des Detected 73.64 34.88 47.40	Count Confidence Level(95.0%) Total OP + Phyrethroid P ng/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Confidence Level(95.0%) Total OP + Phyrethroid P ng/L Mean Standard Error	33.00 3581.02 Pesticides Detected 417.04 151.98 72.00 547.96 300258.96 -0.62 1.01 1414.80 0.00 1414.80 13.00 331.13 Pesticides Detected 174.09 82.02
Maximum Count Confidence Level(95.0%) Total OP Pesticides ng/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Confidence Level(95.0%) Total OP Pesticides ng/L Mean Standard Error Median	46100.00 34.00 3091.81 Detected 3.68 3.01 0.00 10.87 118.06 11.33 3.32 38.90 0.00 38.90 13.00 6.57 Detected 100.44 87.86 0.00 232.47	Count Confidence Level(95.0%) Total Pyrethroid Pesticit ng/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Confidence Level(95.0%) <u>Group</u> Total Pyrethroid Pesticit ng/L Mean Standard Error Median	34.00 2410.69 2 des Detected 413.36 150.34 72.00 542.05 293822.22 -0.67 0.99 1379.10 0.00 1379.10 13.00 327.56 3 des Detected 73.64 34.88 47.40 92.29	Count Confidence Level(95.0%) Total OP + Phyrethroid F ng/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Confidence Level(95.0%) Total OP + Phyrethroid F ng/L Mean Standard Error Median	33.00 3581.02 Pesticides Detected 417.04 151.98 72.00 547.96 300258.96 -0.62 1.01 1414.80 0.00 1414.80 13.00 331.13 Pesticides Detected 174.09 82.02 110.00
Maximum Count Confidence Level(95.0%) Total OP Pesticides ng/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Confidence Level(95.0%) Total OP Pesticides ng/L Mean Standard Error Median Standard Error Median	46100.00 34.00 3091.81 Detected 3.68 3.01 0.00 10.87 118.06 11.33 3.32 38.90 0.00 38.90 13.00 6.57 Detected 100.44 87.86 0.00 232.47 54041.59	Count Confidence Level(95.0%) Total Pyrethroid Pesticit ng/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Confidence Level(95.0%) <u>Group</u> Total Pyrethroid Pesticit ng/L Mean Standard Error Median Standard Deviation	34.00 2410.69 2 des Detected 413.36 150.34 72.00 542.05 293822.20 -0.67 0.99 1379.10 0.00 1379.10 13.00 327.56 3 des Detected 73.64 34.88 47.40 92.29 8517.29	Count Confidence Level(95.0%) Total OP + Phyrethroid F ng/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Confidence Level(95.0%) Total OP + Phyrethroid F ng/L Mean Standard Error Median Standard Error Median Standard Deviation	33.00 3581.02 Pesticides Detected 417.04 151.98 72.00 547.96 300258.96 -0.62 1.01 1414.80 0.00 1414.80 13.00 331.13 Pesticides Detected 174.09 82.02 110.00 217.00
Maximum Count Confidence Level(95.0%) Total OP Pesticides ng/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Confidence Level(95.0%) Total OP Pesticides ng/L Mean Standard Error Median Standard Deviation Sample Variance	46100.00 34.00 3091.81 Detected 3.68 3.01 0.00 10.87 118.06 11.33 3.32 38.90 0.00 38.90 13.00 6.57 Detected 100.44 87.86 0.00 232.47 54041.59 6.62	Count Confidence Level(95.0%) Total Pyrethroid Pesticit ng/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Confidence Level(95.0%) <u>Group</u> Total Pyrethroid Pesticit ng/L Mean Standard Error Median Standard Error Median Standard Deviation Sample Variance	34.00 2410.69 2 des Detected 413.36 150.34 72.00 542.05 293822.20 -0.67 0.99 1379.10 0.00 1379.10 13.00 327.56 3 des Detected 73.64 34.88 47.40 92.29 8517.29 3.44	Count Confidence Level(95.0%) Total OP + Phyrethroid F ng/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Confidence Level(95.0%) Total OP + Phyrethroid F ng/L Mean Standard Error Median Standard Deviation Sample Variance	33.00 3581.02 Pesticides Detected 417.04 151.98 72.00 547.96 300258.96 -0.62 1.01 1414.80 0.00 1414.80 13.00 331.13 Pesticides Detected 174.09 82.02 110.00 217.00 47086.97
Maximum Count Confidence Level(95.0%) Total OP Pesticides ng/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Confidence Level(95.0%) Total OP Pesticides ng/L Mean Standard Error Median Standard Error Median Standard Deviation Sample Variance Kurtosis	46100.00 34.00 3091.81 Detected 3.68 3.01 0.00 10.87 118.06 11.33 3.32 38.90 0.00 38.90 13.00 6.57 Detected 100.44 87.86 0.00 232.47 54041.59 6.62	Count Confidence Level(95.0%) Total Pyrethroid Pesticia ng/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Confidence Level(95.0%) <u>Group</u> Total Pyrethroid Pesticia ng/L Mean Standard Error Median Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness	34.00 2410.69 2 des Detected 413.36 150.34 72.00 542.05 293822.20 -0.67 0.99 1379.10 0.00 1379.10 13.00 327.56 3 des Detected 73.64 34.88 47.40 92.29 8517.29 3.44	Count Confidence Level(95.0%) Total OP + Phyrethroid F ng/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Confidence Level(95.0%) Total OP + Phyrethroid F ng/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness	33.00 3581.02 Pesticides Detected 417.04 151.98 72.00 547.96 300258.96 -0.62 1.01 1414.80 0.00 1414.80 13.00 331.13 Pesticides Detected 174.09 82.02 110.00 217.00 47086.97 3.53
Maximum Count Confidence Level(95.0%) Total OP Pesticides ng/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Confidence Level(95.0%) Total OP Pesticides ng/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness	46100.00 34.00 3091.81 Detected 3.68 3.01 0.00 10.87 118.06 11.33 3.32 38.90 0.00 38.90 13.00 6.57 Detected 100.44 87.86 0.00 232.47 54041.59 6.62 2.56 623.30	Count Confidence Level(95.0%) Total Pyrethroid Pesticia ng/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Confidence Level(95.0%) <u>Group</u> Total Pyrethroid Pesticia ng/L Mean Standard Error Median Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness	34.00 2410.69 2 des Detected 413.36 150.34 72.00 542.05 293822.22 -0.67 0.99 1379.10 0.00 1379.10 13.00 327.56 3 des Detected 73.64 34.88 47.40 92.29 8517.29 3.44 1.80 264.00	Count Confidence Level(95.0%) Total OP + Phyrethroid F ng/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Confidence Level(95.0%) Total OP + Phyrethroid F ng/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness	33.00 3581.02 Pesticides Detected 417.04 151.98 72.00 547.96 300258.96 -0.62 1.01 1414.80 0.00 1414.80 13.00 331.13 Pesticides Detected 174.09 82.02 110.00 217.00 47086.97 3.53 1.84
Maximum Count Confidence Level(95.0%) Total OP Pesticides ng/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Count Count Confidence Level(95.0%) Total OP Pesticides ng/L Mean Standard Error Median Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range	46100.00 34.00 3091.81 Detected 3.68 3.01 0.00 10.87 118.06 11.33 3.32 38.90 0.00 38.90 13.00 6.57 Detected 100.44 87.86 0.00 232.47 54041.59 6.62 2.56 623.30 0.00	Count Confidence Level(95.0%) Total Pyrethroid Pesticia ng/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Count Count Count Count Count Count Count Count Pyrethroid Pesticia ng/L Mean Standard Error Median Standard Error Median Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range	34.00 2410.69 2 des Detected 413.36 150.34 72.00 542.05 293822.22 -0.67 0.99 1379.10 0.00 1379.10 13.00 327.56 3 des Detected 73.64 34.88 47.40 92.29 8517.29 3.44 1.80 264.00 0.00	Count Confidence Level(95.0%) Total OP + Phyrethroid P ng/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Confidence Level(95.0%) Total OP + Phyrethroid P ng/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range	33.00 3581.02 Pesticides Detected 417.04 151.98 72.00 547.96 300258.96 -0.62 1.01 1414.80 0.00 1414.80 13.00 331.13 Pesticides Detected 174.09 82.02 110.00 217.00 47086.97 3.53 1.84 618.40
Maximum Count Confidence Level(95.0%) Total OP Pesticides ng/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Confidence Level(95.0%) Total OP Pesticides ng/L Mean Standard Error Median Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum	46100.00 34.00 3091.81 Detected 3.68 3.01 0.00 10.87 118.06 11.33 3.32 38.90 0.00 38.90 13.00 6.57 Detected 100.44 87.86 0.00 232.47 54041.87.86 0.00 232.47 54041.87.86 0.00 232.47 54041.30 54041.30 232.47 54041.30 54041.30 232.47	Count Confidence Level(95.0%) Total Pyrethroid Pesticia ng/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Confidence Level(95.0%) <u>Group</u> Total Pyrethroid Pesticia ng/L Mean Standard Error Median Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum	34.00 2410.69 2 des Detected 413.36 150.34 72.00 542.05 293822.22 -0.67 0.99 1379.10 0.00 1379.10 13.00 327.56 3 des Detected 73.64 34.88 47.40 92.29 8517.29 3.44 1.80 264.00 0.00 264.00	Count Confidence Level(95.0%) Total OP + Phyrethroid P ng/L Mean Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Count Confidence Level(95.0%) Total OP + Phyrethroid P ng/L Mean Standard Error Median Standard Error Median Standard Deviation Sample Variance Kurtosis Skewness Range Minimum	33.00 3581.02 Pesticides Detected 417.04 151.98 72.00 547.96 300258.96 -0.62 1.01 1414.80 0.00 1414.80 13.00 331.13 Pesticides Detected 174.09 82.02 110.00 217.00 47086.97 3.53 1.84 618.40 4.90

Table 14. Grouping Statistics, Pesticides Detected All Sites

Page 52 NGA-LAILG – WQMP July 26, 2013

General Analysis

Large operations had the most significant detections of pesticides, both in severity and frequency. Detections of the OP pesticides were quite sporadic across the sample set, with a lot of non-detect results. Pyrethroid pesticides were detected more regularly in each sampling group. Overall there was a wide variance in detections at sites, most likely due to variations in application times, application locations, and application amounts prior to site discharges.

Statistical Analysis

Data acquired from the sampling sites showed huge spread of pesticide detection patterns across the sample set, as indicated by the very large (above the mean) standard deviations and the large variances in the minimum and maximum detected concentrations. Standard errors show the same pattern. Due to the variance of pesticide application patterns, both throughout the group and site-by-site, this data set may never show any statistically significant predictions for either the mean or future sampling result predictions.

The skewness and kurtosis for both the sampling group as a whole and each separate size group indicate that the data, as currently collected, is neither distributed symmetrically or Gaussian in nature. Due to the presence of non-detections group wide, it is unlikely that the data will approach a normal distribution, even after further samples are collected.

Page 53 NGA-LAILG – WQMP July 26, 2013

6.0 WQMP IMPLEMENTATION

As outlined in Section 5 of this report, it appears that company revenue and size is a significant factor in both the potential for a grower to release pollutants and in actual elevations of contaminants in reported runoff results from sampling. LAILG will implement the WQMP on a rolling basis, with larger growers being given the first priority and a larger share of the required BMP implementation. A Gantt chart outlining estimated project timelines is presented on Graph 12. A discussion of the required BMPs for enrolled members in each grouping is presented in Section 7.

6.1 Sampling Sites

Growers enrolled as sampling sites will continue to initiate BMP as long as sampling results report exceedances. Sampling sites began to initiate BMPs as of January 1, 2009; individual BMPs historically implemented are included in Appendix E on a site-by-site basis. Future laboratory analytical and field monitoring results will continue be evaluated on an individual basis in conjunction with newly implemented BMPs to determine if they are effective in reducing or eliminating water quality issues with each site. If implemented BMPs are not improving water quality, LAILG will work with individual growers to develop and implement additional BMPs, or to improve existing BMPs. LAILG will disseminate data from the evaluation of BMP effectiveness at sampling sites to all growers enrolled in the LAILG in order to focus implementation towards BMPs that have proven to be the most effective at reducing water quality impacts. Implemented BMPs will be documented in future AMRs for the group.

6.2 Site Grouping

In order to group members into their respective groups for BMP implementation, LAILG will submit a basic information questionnaire to each grower. The questionnaire will request the following information: gross sales of company; total acreage operated by company; total fertilizer use and formulation, per parcel per year; total pesticide/herbicide/fungicide applications, per parcel per year; irrigation use per year; fertilizer application practices; and, irrigation practices. A copy of the general information questionnaire is included in Appendix F.

LAILG will sort growers into the following groups: large operation, medium operation, and small operation. Growers will be sorted into groups based on the matrix provided in Section 5.2, Table 10. Members will be made aware of their grouping following the receipt of general information questionnaires from the group. At this time, members will be given the opportunity to petition their operational grouping to the LAILG. The LAILG will consider petitions on a case-by-case basis. If required, LAILG will include the LARWQCB to resolve any disputes, and any sites that are moved from their original grouping location will be documented and explained in future reports.

Page 54 NGA-LAILG – WQMP July 26, 2013

9	Treb Namo	ţ	finith	Duration				2013															
					unt	-	Aug	9 9	st St	Nov.	26 A	len R	Feb Mar	ar Apr	v May	W Im	3	Aug	<u>.</u>	ġ	Nov	ğ	
2	WQMP Approval	6/14/13	٤τ/τι/٢	4w		_																	
2 m	BMP Implementation at Sampling Sites	6/14/13	6/14/14	52.29w																			
3 2	Submit Questionnaire to growers	7/11/13	7/24/13	2w																			
0 2	Receive Questionnaires, group growers	8/15/13	10/9/13	Bw																			1
m 🗠	Large Member BMP Implementation	10/9/13	6/17/14	ЗБW																			
- E	Medium Member BMP Implementation	10/9/13	9/9/14	48w																			
EE	Small Member BM P Implementation	10/9/13	12/31/14	64.14w				-															
5 -	LAILG Training on Water Quality Records	10/9/01	12/31/14	64.14w				-															

Graph 12. Gantt Chart, Anticipated Project Timeline

Page 55 NGA-LAILG – WQMP July 26, 2013

In addition to sorting growers into general operational groups, collected information will be utilized to sort members into subgroups of fertilizer and pesticide use intensity. This information will be utilized to direct members towards categorized BMPs that will be most beneficial to protecting water quality at their operations. LAILG will determine the proper levels for grouping members upon receiving information from all the enrolled members.

LAILG will store the collected information in a digital database. Collected data will be confidential to protect grower's anonymity. Should the collected data present trends that are different from the application intensity discussed in Section 5.3, the grouping matrix will be adjusted as necessary after discussions with the LARWQCB. Results from site grouping will be included and discussed in subsequent reports.

6.3 Grouping Timeline

Following approval of the WQMP by the LARWQCB, LAILG will submit the questionnaire forms to the group within two weeks. Members will be given three months to complete and return the forms to LAILG. LAILG will provide on-going support to assist growers with the proper completion of the questionnaire, if required. LAILG will sort and organize the information, and notify growers of their position in the group two weeks following the three month submittal date. Growers will be given a chance to petition their position in the group should they believe they are misrepresented.

6.4 BMP Implementation Timeline

Following the completion of grouping and notifying growers of their group status, LAILG will give growers placed in the large operation group an additional nine months to select and complete BMPs at each site, and to submit documentation of completion to LAILG. LAILG will provide support in selecting BMPs that are appropriate for each individual operation. The medium operation group will be given an additional twelve months, and the small operation group will be given an additional fifteen months. All Guidelines for the implementation of specific BMPs for members in each group is included on Graph 12.

Page 56 NGA-LAILG – WQMP July 26, 2013

6.5 Ongoing Training and Outreach

LAILG will implement ongoing outreach and training throughout the life of the project. As a part of project outreach, LAILG will be providing all enrolled members with a Water Quality Recordkeeping notebook prepared by the University of California Cooperative Extension. Although completion of the notebook will not be required, it will be strongly recommended that growers utilize the notebook to track practices at their sites. LAILG will provide instructions on the completion of the notebook at ongoing education classes and through ongoing outreach and support.

LAILG will also inform members of the various BMP implementation documents that are available to members free of charge, in order to assist with the proper selections of BMPs. LAILG will provide support, if required, to assist growers with information included in the documents.

As the program progresses and operations begin to implement further BMPs, LAILG will continue to attempt to conduct on-going education seminars at LAILG member properties. This will allow LAILG to lead educational tours, to give first hand examples of BMPs and demonstrate their potential uses. Hands on training on the implementation of simple BMPs will be provided during these seminars.

Page 57 NGA-LAILG – WQMP July 26, 2013

7.0 BMP IMPLEMENTATION GUIDELINES FOR GROUPS

7.1 All Sites

A number of BMPs that have been identified in guidance documents are both inexpensive and simple to implement at growing sites. These BMPs mainly revolve around simple housekeeping, operational practices, and proper employee training. Due to their ease of use for implementation, LAILG has required that the following BMPs have been implemented at all growing sites enrolled in the LAILG:

- Irrigation Management:
 - 1) Train personnel to manage spray stakes and drip system to ensure all operational discharge points are located inside pots.
 - 2) Train all employees that apply irrigation water to maintain irrigation system properly.
- Pest Management:
 - 1) Avoid application of pesticides prior to forecasted rain events.
 - 2) Train all employees to clean up spills immediately based on predetermine protocols or spill management plan.
 - 3) Train all employees on the basic principles of pesticide use and spill control.
- Nutrient Management:
 - 1) Avoid application of fertilizer prior to forecasted rain events.
 - 2) Train all employees to clean up spills immediately based on predetermine protocols or spill management plan.
- Erosion and Runoff Management:
 - 1) Inform all employees as to the location of all drainage conduits, where they drain to, and the location of stormwater and sewer system drains.
 - 2) Train all employees on the basic principles of stormwater runoff management and current regulations (including the CWIL program).
- Non-Production Areas:
 - 1) Maintain all company vehicles to prevent leaks.
 - 2) Keep wash water from vehicle cleaning on property and prevent it from entering storm drains or sewer system.
 - 3) Train all employees to clean up spills immediately and properly from vehicles.
 - 4) Maintain site and keep it free from trash and debris.
 - 5) Keep outdoor garbage containers covered.
 - 6) All outhouses need to be periodically cleaned and maintained.
 - 7) Properly dispose of hazardous waste and oil.
 - 8) Train all employees to clean up prior to forcasted rain events.
 - 9) an.

Page 58 NGA-LAILG – WQMP July 26, 2013

7.2 BMP Grouping

On the BMP Questionnaire discussed in Sections 8 and 9, a number of BMPs are suggested for growers to choose for implementation. The list is not all inclusive, but instead serves as a beginning point for analyzing BMPs throughout the group. The BMP Questionnaire was developed based on previous feedback from members, and professional input from various stakeholders. BMPs are broken into five basic categories: pesticide management, nutrient management, sediment management, water management, and housekeeping. Growers will be individually encouraged to choose BMPs from the general groupings most applicable to their operation, as discussed in Section 9.

Should growers like to implement BMPs not directly listed on the BMP Questionnaire, LAILG will determine whether the proposed BMP is extensive enough to count as an implemented BMP for their operation. This decision will be made by the LAILG steering committee, consultants, and based on peer reviewed documents and professional knowledge. If required, LAILG will include the LARWQCB to resolve any disputes.

7.3 Sampling Sites

Sampling sites have already begun BMP implementation, as discussed in Section 6.1 and included in Appendix E. Each individual grower selected initial BMPs at their sampling site based on the ability for immediate implementation at each site. LAILG will continually work with the individual growers at sampling sites to ensure that additional BMPs, if required, are selected based on exceedances reported during sampling events at sites. As there is tangible data for sampling locations, LAILG will continue to direct BMP implementation at these sites. Sampling sites will continue to implement various BMP until water quality benchmarks are met.

During the life of this program, LAILG will evaluate laboratory analytical results, field monitoring results, and site observations to determine if applied BMPs are effectively improving water quality at each sampling site. If monitoring data suggests that certain BMPs, or combinations of BMPs, are either efficient or deficient at improving water quality at the sites, LAILG will communicate these findings to the growers to help guide BMP implementation across the group as a whole. LAILG will work closely with the sampling sites to continue to design and implement BMPs until water quality benchmarks are attained.

LAILG is currently working with the CWH under the San Gabriel Nurseries, Irrigated Lands, and Open Space Water Quality Improvement Project (Grant Agreement No. 11-098-554). CWH will be implementing specific BMPs at selected growing operations in the San Gabriel Region, and evaluating concentrations of metals, pesticides, and nutrients before and after BMP implementation. LAILG will be assisting with sampling and communicating with CWH throughout the life of the grant to disseminate information to growers throughout the LAILG, in order to direct effective BMPs in a cost effective manner.

Page 59 NGA-LAILG – WQMP July 26, 2013

7.4 Large Operation Group

In addition to the BMPs being implemented at all sites enrolled in the program, growers identified as large operators will be required to begin implementation, fully implement, or significantly improve no fewer than three BMPs at each growing parcel. Should a grower operate on more than one parcel of land, operational BMPs applied company-wide will count for each parcel. All non-contiguous pieces of land will be counted as different parcels, regardless of location.

A general list of suggested BMPs will be included in the grower questionnaire (Appendix F). LAILG will provide suggestions and assistance in BMP selection based on the grower's individual operation and reported use patterns on the general information form, but individual operators will ultimately be required to select and implement BMPs of their choosing. LAILG will stress the importance of sediment control BMPs for achieving applicable water quality benchmarks, and will provide continual outreach on the success of BMPs that are implemented at other properties in the group. A more in depth discussion of BMPs implementation guidelines is presented in Section 9.

LAILG will track the implementation of BMPs as outlined in Section 8.

7.5 Medium Operation Group

In addition to the BMPs being implemented at all sites enrolled in the program, growers identified as medium operators will be required to begin implementation, fully implement, or significantly improve no fewer than two BMPs at each growing parcel. Should a grower operate on more than one parcel of land, operational BMPs applied company-wide will count for each parcel. All non-contiguous pieces of land will be counted as different parcels, regardless of location.

A general list of example BMPs will be included in the grower questionnaire (Appendix F). LAILG will provide suggestions and assistance in BMP selection based on the grower's individual operation and reported use patterns on the general information form, but individual operators will ultimately be required to select and implement BMPs of their choosing. LAILG will stress the importance of sediment control BMPs for achieving applicable water quality benchmarks, and will provide continual outreach on the success of BMPs that are implemented at other properties in the group. A more in depth discussion of BMP implementation guidelines is presented in Section 9.

LAILG will track the implementation of BMPs as outlined in Section 8.

7.6 Small Operation Group

In addition to the BMPs being implemented at all sites enrolled in the program, growers identified as small operators will be required to begin implementation, fully implement, or significantly improve no fewer than one BMP at each growing parcel. Should a grower operate

Page 60 NGA-LAILG – WQMP July 26, 2013

on more than one parcel of land, operational BMPs applied company-wide will count for each parcel. All non-contiguous pieces of land will be counted as different parcels, regardless of location.

A general list of suggested BMPs will be included in the grower questionnaire (Appendix F). LAILG will provide suggestions and assistance in BMP selection based on the grower's individual operation and reported use patterns on the general information form, but individual operators will ultimately be required to select and implement BMPs of their choosing. LAILG will stress the importance of sediment control BMPs for achieving applicable water quality benchmarks, and will provide continual outreach on the success of BMPs that are implemented at other properties in the group. A more in depth discussion of BMP implementation guidelines is presented in Section 9.

LAILG will track the implementation of BMPs as outlined in Section 8.

7.7 Petitions

Should growers believe that they are unable to meet the BMP requirements outlined in this document, LAILG will accept petitions and evaluate them on a case-by-case basis. LAILG will consider both currently implemented BMPs, the site location and layout, and financial constraints prior to determining if a less stringent BMP schedule is applicable for the petitioning site. Ultimately, the LAILG steering committee will decide if an individual site may adhere to a less stringent BMP schedule. Sites that are granted a lessor standing will be documented, and reported in future reports to the LARWQCB.

7.8 Restrictions on Sites Under a Utility Easement

Currently a large percentage of the sites enrolled in the LAILG lease their property under a utility easement. The majority of these easements are for properties that are operated under power lines owned by SCE. All structural BMPs need prior approval by SCE, and the following limitations are set on SCE owned land:

- Composting is not allowed.
- Fertilizer storage tanks are not allowed.
- Grade changes on the property are not allowed.
- Water collection and storage areas are not allowed.
- Water treatment on site is not allowed.
- Storage of flammable liquids or hazardous materials is not allowed.

These limitations present an obstruction for growers trying to reduce potential impacts from growing practices on SCE owned land. Growers who operate on SCE owned lands will be provided with a copy of *Best Management Practices: A Water Quality Field Guide for Growers, Southern California Edition*, and will be expected to adhere to guidelines set forth in this document.

Page 61 NGA-LAILG – WQMP July 26, 2013

8.0 WQMP TRACKING

LAILG developed a BMP Questionnaire for submittal to all enrolled members along with the basic information questionnaire, following the approval of this WQMP. The BMP Questionnaire was developed to track general use of current BMPs at sites, the types of growers that are implementing specific BMPs, and to track the future implementation of BMPs throughout the group. Based on feedback from members on the previous questionnaire developed for the last WQMP submitted for the group, the original questionnaire was simplified to primarily include generic and commonly implemented BMPs. LAILG anticipates this will provide the most accurate feedback from the group as a whole, and will alleviate previously encountered issues with the understanding of more complex, in-depth BMP questions. A Spanish version of the questionnaire will be made available if necessary. A copy of the questionnaire is included in Appendix F.

Answers reported on BMP Questionnaire will be utilized to develop a baseline of implemented BMPs throughout the group. Besides the BMPs listed, growers will be also able to write in BMPs that they have implemented at sites in an "other" section. Should LAILG continue to receive repeat answers that are included in the "other" section, they will be incorporated into future iterations of the questionnaire. Grower responses from the initial submittal of the BMP Questionnaire will be used to further refine the BMP Questionnaire, including a complete revision and resubmittal, if deemed necessary.

Records of the original answers to the BMP Questionnaire will be recorded into a digital database for statistical and group wide interpretation. This will allow LAILG to analyze currently implemented BMPs by crop types, grower sizes, geographical locations, etc. LAILG will resubmit the BMP Questionnaire to members after operational grouping and the timeline for BMP implementation is complete (See Graph 12). Results from the "before and after" BMP Questionnaire will be used to statistically evaluate BMP implementation and the performance of this WQMP throughout the program. This statistical analysis will allow a way to track BMP implementation in different geographical locations, types, sizes, and operational practices of growers. WQMP and BMP data collected during the program will be reported to the LARWQCB annually throughout the program. Results will be reported in a format similar to the Central Coast Regional Water Quality Control Board *Management Practice Checklist Update Summary Report*, dated June 2007.

Members will be required to verify the implementation of BMPs by providing photo documentation, written and signed documentation, or both. Representatives of the LAILG will also be conducting random visits to growers properties to verify that BMPs have been implemented as reported on the required forms. LAILG will keep records of implemented BMPs on file, and will track and report implemented BMPs to the LARWQCB during the Annual Monitoring and WQMP Implementation Report in a general manner. Should members be non-cooperative in the implementation of BMPs, as outlined in this document, they will be notified directly by LAILG to attempt to fix all non-compliance issues. Should members continue to be non-responsive after reasonable follow up and outreach by LAILG, they will be evicted from the group.

Page 62 NGA-LAILG – WQMP July 26, 2013

9.0 BEST MANAGEMENT PRACTICES

BMP practices proposed on the BMP Questionnaire were broken into five general categories, in descending order of significance: erosion and runoff management, nutrient management, pest management, irrigation management, and non-production area management (housekeeping). Data collected from the general information forms for each grower will be utilized to subgroup members into high, medium, and low use groups for nutrients, pesticides, and irrigation. LAILG will then use this data to suggest from which general category members should choose BMPs. BMPs from the erosion and runoff management category will always be suggested as the first line of intensive BMPs to be implemented, however these BMPs are often more time and resource intensive than BMPs in other subgroups and do not provide any tangible cost saving improvements to growers who implement them. Besides the erosion and runoff control category, each individual member will be directed towards implementing BMPs based on their categorization in each subgroup, as presented on the example matrix on Table 15. All BMPs listed in the non-production area management are considered basic BMPs.

Nutrients	Pesticides	Irrigation	Suggested BMP subgroup
Н	H/M/L	H/M/L	Nutrient
M/L	Н	H/M/L	Pesticide
M/L	M/L	Н	Irrigation
М	M/L	M/L	Nutrient
L	М	M/L	Pesticide
L	L	M/L	Irrigation
Н	High use desig	gnation	
М	Medium use d	lesignation	
L	Low use desig	mation	

Table 15. BMP Suggestion Matrix

9.1 Water Management

Irrigation management is essential to reduce the amount of applied water during growing operations. Many growers apply more water than necessary for plant growth in order to assure plants are not water stressed. Inefficient irrigation systems can also compound the problem, as additional water is necessary to compensate for the lack of uniform water distribution. This excess water could potentially generate runoff water that leaves the property. Irrigated runoff carries excess nutrients from plant leaching, dissolved pesticides, and excess sediment from erosion (which also carries non-soluble pesticides), all of which have the potential to end up in storm drains, and eventually surface waters.

Increasing irrigation efficiency at sites has multiple benefits for growers. Minimizing irrigation by matching watering habits to known plant requirements reduces the up-front cost associated

Page 63 NGA-LAILG – WQMP July 26, 2013

with purchasing water, and helps ensure that applied nutrients and pesticides remain in the soil. Excess leaching of water through soil growing mediums removes nutrients that could be utilized by plants, which in turn increases the amount of fertilizer that needs to be applied for plant health and can accumulate nutrients and salts in surface soils. Proper management of irrigation practices and systems has the potential to reduce contaminants from leaving the site, may eliminate irrigated runoff from growers, and in turn reduce operational costs associated with water and fertilizer use.

A suggested, but not all-inclusive list of BMPs in the water management category is included on the Questionnaire included in Appendix G.

9.2 Nutrient Management

Fertilizer application by growers is often intensive due to the generally high nitrogen demand required by ornamental plants, especially when turnover ratios of stock are high. While fertilizers are essential to stock production, inefficient fertilizer application can be a significant source of excess nitrogen and phosphorous in runoff water. Due to the elevated use of fertilizer in nursery crops, excess nitrogen is often lost to leaching. Nitrogen lost due to soil leaching has been reported to be as high as 50 percent of the total nitrogen applied (Yeager, et al, 1993). Nitrogen that is lost to irrigation leaching ends up in soil beneath the potted plants, where it may be eventually transported off site in irrigated runoff or during storm events. Providing the proper quantities of nutrients at the proper time, and reducing fertilizer leaching during irrigation events can help to alleviate this potential or existing issue.

Members who fall into the nutrient suggested subgroup will be encouraged to choose from or significantly improve upon the listed BMPs.

A suggested, but not all-inclusive list of BMPs in the nutrient management category is included on the Questionnaire included in Appendix G.

9.3 Pesticide Management

Pesticide use on nursery crops is often times more intensive than on other agricultural crops, as they are valued based on their visual appearance. Quarantine restrictions are also put in place to mitigate the potential movement of exotic pests, and these can mandate the use of potentially harmful pesticides that would not normally be used at the nursery. Compounding these issues is that many major pests attacking ornamental crops are resistant or develop resistance to one or more pesticides, causing an ever changing and growing cycle of pesticide use. Excessive pesticide use, when paired with an intensive irrigation cycle, significantly increases the likelihood of pesticides contaminating surface waters in the region. Many commonly used pesticides are known to have high toxicities to aquatic organisms, and can adversely impact aquatic ecosystems.

A suggested, but not all-inclusive list of BMPs in the pesticide management category is included on the Questionnaire included in Appendix G. Page 64 NGA-LAILG – WQMP July 26, 2013

9.4 Sediment and Erosion Management

Ideally, the goal for all growers should be to allow no sediment from irrigation water or storm water erosion to leave the site. While this may not be practical depending on the growers setting, careful evaluation of each site setting can yield significant reductions in water and sediment runoff. Rain or irrigation water loosens soil, and when the saturation point is reached, water begins to openly flow. This flow of excess water can carry enough energy to dislodge soil, which ends up as suspended sediment in the runoff. Excess sediment contributes to the clogging of pipes and ditches, disrupts aquatic life, and can carry nutrients, pesticides, and other pollutants off grower sites.

Growers that generate small amounts of runoff and sediment can often utilize less capitalintensive solutions to control erosion and runoff management, such as barrier technologies, redirecting runoff channels, and using polyacrylimides or groundcover to reduce sediment load. Larger growers that generate a substantial amount of runoff many times must consider larger scale operations, such as the capture and reuse of irrigation and storm water runoff. In general, applying proper BMPs to irrigation, fertilizer, and pesticide use reduces the amount of runoff that needs to be managed and the severity of possible runoff and sediment related impacts to waterbodies.

A suggested, but not all-inclusive list of BMPs in the sediment and erosion management category is included on the Questionnaire included in Appendix G.

9.5 Housekeeping

Basic housekeeping of non-production areas can go a long way in reducing pollution sources. Areas such as walkways, loading areas, storage areas, packing sheds, offices, parking lots, and general grounds can attribute to pollution in the form of excess sediment loads from displaced dirt and debris, fuels, and sewage from unkempt restroom areas. Proper housekeeping policies are also cheap to implement and easy to enforce.

All members will be encouraged to choose from or significantly improve upon one of the listed BMPs.

A suggested, but not all-inclusive list of BMPs in the housekeeping category is included on the Questionnaire included in Appendix G.

Page 65 NGA-LAILG – WQMP July 26, 2013

10.0 SUMMARY / GOALS

The main goals of the WQMP for LAILG are: to implement BMPs to improve water quality group-wide, to evaluate the effectiveness of BMPs with subsequent monitoring and sampling, to track efforts implemented group wide, to divide members into appropriate groups based on their potential threats to water quality, and to integrate water quality and water conservation into the growing process thru education.

Based on field monitoring and laboratory analytical results to date, discharges from LAILG sampling sites have exceeded CWIL benchmarks and/or water quality objectives set in the basin plan. Due to the exceedances, LAILG developed a WQMP, as required in the CWIL. The WQMP is designed to assess current data, and implement and track BMPs throughout the LAILG. Most of the LAILG sampling sites have already implemented BMPs based on the results of the sampling analysis. LAILG will be working directly with the sampling sites to evaluate the BMPs currently in place and to design more BMPs if necessary to improve water quality. For the members not enrolled as sampling sites, LAILG will require participants to document BMPs currently being implemented through the use of a questionnaire, and to provide proof of implementation of future required BMPs.

LAILG will group members into large operation, medium operation, and small operation groups using a basic information questionnaire to each grower. The questionnaire will request the following information: gross sales of company, in general groups; total acreage operated by fertilizer use and formulation. company: total per parcel per vear: total pesticide/herbicide/fungicide applications, per parcel per year; irrigation use per year; fertilizer application practices; and, irrigation practices. The placement of growers in each group will determine the number of BMPs required to be implement at each of their properties.

Subsequent monitoring and sampling data collected from LAILG sampling sites will be used to evaluate the effectiveness of implemented BMPs, and will be reported to the LARWQCB in future AMRs. LAILG is currently working with the CWH under the San Gabriel Nurseries, Irrigated Lands, and Open Space Water Quality Improvement Project (Grant Agreement No. 11-098-554). CWH will be implementing specific BMPs at selected growing operations in the San Gabriel Region, and evaluating concentrations of metals, pesticides, and nutrients before and after BMP implementation. LAILG will be assisting with sampling and communicating with CWH throughout the life of the grant to disseminate information to growers throughout the LAILG, in order to direct effective BMPs in a cost effective manner. Information will be provided to growers through mailers, emails, and posted on the NGA website.

Page 66 NGA-LAILG – WQMP July 26, 2013

To improve water quality, LAILG believes that all people involved in the growing process should be educated in water quality BMPs. LAILG will request that members keep guidance manuals on site and provide water quality BMP "tail gate" meetings with all staff. The "tail gate" meetings will be developed in English and Spanish, and LAILG is currently working on a slogan regarding water quality to be posted at enrolled facilities.

LAILG will also require that all discharge points be labeled at member's facilities. An understanding of where the runoff leaves the property during irrigation and storm events is crucial to developing successful BMPs.

Page 67 NGA-LAILG – WQMP July 26, 2013

11.0 REFERENCES

Extoxnet. University of California-Davis. Sep 2008 ://www.extoxnet.orst.edu/pips/ghindex.

Haver L. Darren. "Best Management Practices: A Water Quality Field Guide for Growers, Southern California Edition". 30 (2007).

Meister Ag Crop Protection Data Base. Sep 2008 http://www.meisterpro.com.

Newman, Julie, ed. Management Practices to Protect Water Quality: A Manual for Greenhouses and Growers. Ventura: University of California Cooperative Extension.

Regional Water Quality Control Board, Central Coast Region (3). Management Practice Checklist Update Summary Report 2006. June 2007

United States Environmental Protection Agency. Guidance Manual for Developing Best Management Practices (BMP). Office of Water (EN-336). Oct 1993

Water Quality Control Plan Los Angeles Region. Basin Plan for the Coastal Watershed of Los Angeles and Ventura Counties. June 1994

Wheelock, E.Craig, and et al. "Development of Toxicity Identification Evaluation Procedures for Pyrethroid Detection Using Esterase Activity" Environmental Toxicology and Chemistry. 23.11 (2004): 2699-2708

LARWQCB. 2005. Conditional Waiver of Waste Discharge Requirements for Discharges from Irrigated Lands Within the Los Angeles Region. Order No. R4-2005-0080.

Los Angeles Regional Water Quality Control Board (LARWQCB). 2010. Conditional Waiver of Waste Discharge Requirements for Discharges from Irrigated Lands Within the Los Angeles Region. Order No. R4-2010-0186.

Los Angeles Regional Water Quality Control Board (LARWQCB). 1994. Water Quality Control Plan Los Angeles Region (4), Basin Plan for the Coastal Watershed of Los Angeles and Ventura Counties.

U.S. Environmental Protection Agency. Office of Pesticides Programs' Aquatic Life Benchmarks. Pesticides: Environmental Effects, July 17, 2013. http://www.epa.gov/oppefed1/ecorisk_ders/aquatic_life_benchmark.htm. Page 68 NGA-LAILG – WQMP July 26, 2013

Wayne R. Ott. 1995. Environmental Statistics and Data Analysis. Boca Raton, Florida. CRC Press, Inc.

Myra L. Samuels and Jeffrey A. Witmer. 1989. Statistics for the Life Sciences: Second Edition. Upper Saddle River, New Jersey. Prentice-Hall, Inc.

University of California Cooperative Extension Agricultural Water Quality Research and Education San Diego County. 2011. Self Assessment: Greenhouse & Container Nurseries. San Diego, CA. Regents of the University of California. ://ucanr.edu/sites/agwaterquality/files/125548..

University of California Cooperative Extension Agricultural Water Quality Research and Education San Diego County. 2011. Ag Water Quality Record Keeping. San Diego, CA. Regents of the University of California.

://ucanr.edu/sites/agwaterquality/files/125551.

T. Yeager, R. Wright, D. Fare, C. Gilliam, J. Johnson, T. Bilderback, and R. Zondag. 1993. Six State Survey of Container Nursery Nitrate Nitrogen Runoff. Gainsville, Florida. University of Florida.

SWDIV and EFA West of Naval Facilities Engineering Command. July 1999. Handbook for Statistical Analysis of Environmental Background Data.

VeriFlora 3.0. April 2007. Certification of Sustainably Grown Cut Flowers and Potted Plants: Requirements for Growers and Handlers. Emeryville, California. Scientific Certification Systems

APPENDIX A

COMPLETE LIST OF LOS ANGELES COUNTY IRRIGATED LANDS GROUP – NURSERY GROWERS ASSOCIATION

APPENDIX B

HISTORICAL SAMPLING RESULTS

6
H
A.B.
2

SUMMARY OF SAMPLES COLLECTED - CWIL ORDER R4-2010-0186 YEAR I LOS ANGELES IRRIGATED LANDS GROUP NURSERY GROWERS ASSOCIATION **GENERAL CHEMISTRY**

								ē	General Chemistry	stry					-
Site	Sample #	Date	Ammonia	Chloride	Diss Ortho	Nitrate	Sulfate	Diss Phos	TDS	Total Ortho	Total Phos	ISS	CA Hardness, as CaCO3	Ca	Cu
NGA #4	LAILG-NGA4-5	3/21/11	69.0	10	0.31 58	1.5	8.3	0.52	011	0.31 ^{EB}	2.6	810	62	25	0.230
NGA #124	LAILG-NGA124-6	3/21/11	0.36	9.7	1 8 ^{EB}	6.7	24	1.8	240	1.8 ^{EB}	2.7	620 ^{FD}	61	24	0.045
NGA # 150	LAILG-NGA 150-5	3/21/11	3.7	28	12 ⁶⁸	120	60 ^{MS-U2}	32	1.200	12 ^{EB}	32	110	300	120	0.031
NGA #19	1.AII.G-NGA19-6	3/23/11	0.54 ^{MS-01}	110	0 86 ^{EB.MS-01}	55	250	1.1	1,200	0.86 ^{EB.MS-02}	3.4	550	440	180	0 000
Duplicate	LAILG-NGA-DUP	3/21/11	0.35	9.7	1.7 ^{EB}	6.6	24	1.8	220	1.7 ^{EB}	2.3	82	57	23	0.035
Equip Blank	LAILG-NGA-EB	3/21/11	pu	pu	2.0	pu	pu	pu	pu	2.0	pu	pu	0.37	0.15	0.0028
Field Blank	LAILG-NGA- FB	3/21/11	pu	pq	pu	pu	pu	pu	pu	pu	ри	pu	pu	pu	pu
NGA #168	LAILG-NGA168-6	3/17/12	0.89	82	ۍ ۱.1	35	470	1.7	1,100	1.1%	8.4	1200	500	200	0.110
NGA #31	LAILG-NGA31-4	3/17/12	11	55	1 () ⁰⁹	12	160	06:0	520	1.0%	2.0	81	240	95	0.027
NGA #162	LAILG-NGA162-1	3/17/12	0.16	35	0.96 ⁰	5.9	120	0.95	350	0.96 ⁰⁰	0'1	5	140	57	0.014
NGA #64	LAILG-NGA64-3	3/17/12	a.197.0	5.8	0.280	0.70	8.4	0.32	57	0.280	1.5 ^{FD}	500 ^{FD}	51	21	0.047
Duplicate	LAILG-NGA-DUP	3/17/12	09.0	5.4	0.250	1.3	8.6	0.27	46	0 25 ^{0%}	1.1	380	44	81	0.049
Equip Blank	LAILG-NGA-EB	3/17/12	pu	pu	60pu	pu	pu	pu	ри	⁶⁰ pu	pu	pu	pu	pu	0.00073
Field Blank	LAILG-NGA-FB	3/17/12	pu	pu	⁶⁰ pu	pu	pu	pu	pq	nd ⁰ "	pu	ри	pu	pu	0.00050
NGA #4	LAILG-NGA4-6	3/25/12	na*	69	1.1	17	52	0.1	320	1.1	14	34"0	100	42 ^{FD}	0.051
NGA #170	LAILG-NGA170-1	3/25/12	0.31	18	0.65	1.6	14	09.0	130	0.65	0 86	100	19	24	0.030
NGA #176	LAILG-NGA176-2	3/25/12	0.30	29	66 0	8.7	43	0.99	220	66'0	2.2	550	80	32	0.066
NGA #210	LAILG-NGA210-2	3/25/12	0.20	110	1.4	0.57	250	1.3	700	1.4	2.8 ^{MS-02}	86	270	110	0.0060
Duplicate	LAILG-NGA-DUP	3/25/12	2.2	55	1.1	17	44	1.1	290	1.1	1.3	21	61	25	0.051
Equip Blank	LAILG-NGA-EB	3/25/12	pu	pu	pu	pu	pu	pu	nd	pu	pu	pu	pu	pu	pu
Field Blank	LAILG-NGA- FB	3/25/12	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	рг	pu
	CWIL Limits								See Table 7						
	MDL		0.048	01.0	0.00022	0.020	0.10	0.0014	4.0	0.00022	0.0014	5	0.039	0.016	0.00027
	RL		0.10	0.50	0.002	0.11	0.50	0.010	10	0.002	0.010	5	0.25	0.10	0 00050

 Concentrations are reported in milligrams per later (mg/L). Results above ("WLL Limits are presented in BOLD indicate estimated concentration All other footnotes are for reference purposes, data was not deemed to be qualified as estimated by the QA Officer

 CWLL
 Conditional waiver for imgated lands, order #R4.2005.0080
 OP
 This sample was received with the EPA recommended holding time expired

 EB
 Estimated concentration, constituent detected at greater than 10% in equipment blank
 OP
 This sample was received with the EPA recommended holding time expired

 FD
 Estimated concentration, constituent detected at greater than 10% in field bank
 MS-01
 The spike recovery for this QC sample is outside of the established control limits possibly due to matrix interference

 FD
 Estimated concentration, constituent detected at greater than 10% in field bank
 MS-01
 The RPD and/or percent recovery for this QC spike sample cannot be accurately calculated due to the high concentration of analyte

 FB
 Amonia not analyzed due to sample collection via perstatire pump
 MS-02
 The RPD and/or percent recovery for this QC spike sample cannot be accurately calculated due to high concentration of analyte

 no
 harding inter expression
 MS-01
 Interest recovery for this QC spike sample cannot be accurately calculated due to high concentration of analyte

 FB
 Amonia not analyzed due to sample collection via perstatine pump
 MS-01
 Intherent in the sample

 h

TABLE 9 cont.

SUMMARY OF HISTORICAL SAMPLES COLLECTED UNDER CWIL ORDER R4-2005-0080 GENERAL CHEMISTRY NURSERY GROWERS ASSOCIATION LOS ANGELES IRRIGATED LANDS GROUP

[· · · ·				General C	Chemistry				
Site	Sample #	Date	Ammonia	Chloride	Diss Ortho	Nitrate	Sulfate	Total Diss Phos	TDS	Total Ortho	Total Phos	TSS
NGA #110	LAILG-NGA110-1	1/4/08	0.41	10.65	1.3052	2.36	18.22	1.74	162	1 81	2.033	24
NGA #189	LAILG-NGA189-1	1/4/08	0.59	7 29	0.6851	1.83	26.43	1.33	192	1.8	2.475	20
NGA #19	LAILG-NGA19-3	1/5/08	0.12	157.52	0.2125	0.44	451.78	0.96	1,030	1.26	1 173	84
NGA #124	LAILG-NGA124-3	1/5/08	15.5	28 3	0.9814	28.34 ^{QI}	57.68	1.66	378	1.66	2 228	40
NGA #183	LAILG-NGA183-4	1/5/08	0.73	5.82	1.0874	1.4	6.36	0 23	106	1.29	1.729	510
NGA #4	LAILG-NGA4-2	1/23/08	0.24	1.45	0.1891	0.6	3.87	0.15	145	0.26	1.848	27
NGA #53	LAILG-NGA53-2	1/23/08	0.31	2.19	0 6425	0.76	14.92	0.82	nd	0.68	1.993	516
NGA #64	LAILG-NGA64-1	1/23/08	0.20	3.82	0.2818	3,83	101.1	0.3	nd	0.46	0.393	76
NGA #130	LAILG-NGA130-3	1/24/08	0.15	58.12	0 264	3.64	107.65	0.26	383	0.27	0 314	16
NGA #182	LAILG-NGA182-2	1/24/08	0 17 ^{M4}	7.39	0.6085	1.91 ^{M4}	14.22	0.76	218	0.81	0 825	64
NGA #168	LAILG-NGA168-4	1/25/08	0.38	65.9	3.053	14.58	117.44	3.07	592	5.45	2.363	1126 7
NGA # 19	LAILG-NGA 19-4	8/12/08	0.03 ^{FB}	104 03	1.1877	12.65	107.33	1.75	834	1.86	15.494	213
NGA # 4	LAILG-NGA 4-3	8/13/08	0.68	350.11	11.5262	200.18	219.52	69.7 ^{FD}	2,238	13.05	31,713	371 ^{FD}
Duplicate	LAILG-NGA-DUP	8/13/08	0.71	397.47	9.0404	212	252.22	34.87 ^{FD}	2,350	12	26.483	787 ^{FD}
NGA # 31	LAILG-NGA 31-1	9/23/08	0.13 ^{FD}	82.13 ^{EB,FB}	1.562 ^{H,FD}	17.3	134.93	1.472 ^H	602	2.34 ^H	1.813 ^{H,FD}	162
Duplicate	LAILG-NGA-DUP	9/23/08	0.37 ^{FD}	82.37 ^{EB,FB}	2 629 ^{H.FD}	19.64	136.19 ^{M4}	1.84 ^H	626	2.10 ^H	0.883 ^{Н,МЭ}	127
NGA # 19	LAILG-NGA 19-5	11/26/08	0.96	115.72	1.507	26.94	126.35	1.356	748	4.69	4 884	995
NGA # 210	LAILG-NGA 210-1	11/26/08	0.11	155.92	1.892	0.92	336.78	2.185	884	3.23	3.722	542
NGA # 184	LAILG-NGA 184-1	11/26/08	0.46	31.44	0.609	3.12	17.92	0.643	206 ^{FB}	0.88	1.3	129.5
Duplicate	LAILG-NGA-DUP	11/26/08	0.48	32.51	0.616	3.1	18.68	0.65	214 ^{FB}	086	1.297	128
NGA # 124	LAILG-NGA 124-4	11/26/08	0 48	37.78	2 595	28.36	84.22	2.975	568	2 53	3.297	117
NGA # 31	LAILG-NGA 31-2	11/26/08	0.76	6.12	0.474	36	14.84	0.497	104 ^{FB}	1.63	1 94	353
NGA # 130	LAILG-NGA 130-4	11/26/08	0.68	95.81	0.228	9.17	183.82	0.652	616	0.8	1.046	97
NGA # 150	LAILG-NGA 150-3	11/26/08	32.2	65.92	31.579	114.76	258.65	49.896	2,446	37.69	48.048	45.5
NGA # 25	LAILG-NGA 25-1	11726/08	0.85	21.99	1.1712	5.31	51.95	1.338	166**	1.38	1.641	168.5
NGA # 150	LAILG-NGA 150-4	12/15/08	15.75	47 27	26.0911	268.53	125,27 ^{M4}	24.935 ^{M4}	1704 ^{EB}	2.94	24.75 ^{M4}	333 5
NGA # 124	LAILG-NGA 124-5 LAILG-NGA 189-2	12/15/08	1.68	26.51	24.4087	40.43	45.28 41.27	<u>21.115</u> 0.813	424 ^{EB} 220 ^{EB}	3.66 0.99	2.706	115.5
<u>NGA # 189</u> NGA # 110	LAILG-NGA 110-2	12/15/08	0.54	<u>31.28</u> 28.59	1,186	9.87 8.48	<u>41.27</u> 50.87	1.469	17860	1.6	1.868	93
NGA # 31	LAILG-NGA 31-3	12/15/08	4.32	36.98	3.0228	12.14	57.58	2.148	364	2.87	3,155	85.5
NGA # 184	LAILG-NGA 184-2 LAILG-NGA 130-5	12/15/08 12/15/08	0.64	27.46	0.7339	<u>441</u> 11.81	<u>33.57</u> 67.8	0.502	240 ^{EB} 258 ^{EB}	2.16	<u>2.94</u> 0.512	1,079 59 7
NGA # 130 NGA # 178	LAILG-NGA 178-1	12/15/08	0.52	85.04	2.4077	12.99	148.27	2.648	 	2.64	2 934	72 7 50
Duplicate	LAILG-NGA-DUP	12/15/08	0.79	102.32	2.3169	14.99	173.96	2.604	588	2.62	2.944	49.3
NGA # 64	LAILG-NGA 64-2	12/15/08	1.15	12 38 ^{EB}	0.4307	5.39	35.34	0.49	232 ^{EB}	0.71	0.868	112
NGA # 168	LAILG-NGA 168-5	12/15/08	0.25	53.4	1.4434	15.33	130.75	1.568	49718	2.24	2.386	236
NGA # 4	LAILG-NGA 4-4	12/15/08	0.52	8.67 ^{EB}	1.0382	2.7	15.23	0.158	238 ^{EB}	2.33	2.231	295
	CWIL Limits				. <u> </u>			able X	<u> </u>	· · · · · · · · · · · · · · · · · · ·		
	MDL		0.01	0.01	0.0075	0.01	0.01	0 016	0	0.01	0 016	0.5
l	RL		0.05	0 05	0.01	0.05	0.05	0.05	5	0.01	0.05	5

data was not deemed to be qualified as estimated by the QA Officer

CWIL.

EB

FD

Conditional waiver for irrigated lands, order #R4-2005-0080 M4 associated method blank spike or surrogat Estimated concentration, constituent detected at greater than 10% in equipment blank Estimated concentration Field Duplicate RPD >25% Estimated concentration, constituent detected at greater than 10% in field blank

- FB Estimated concentration, constituent detected at greater than 10% in field blank H Sample received and /or analyzed past the recommended holding time Q1
- M3 Detection of the analyte was difficult due to matrix interference

Spike or surrogate compound recovery was out of control due to matrix interference. The associated method blank spike or surrogate compound was in control and therefore the sample data was reported without further clarification.

Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration

TABLE 9 cont.

SUMMARY OF HISTORICAL SAMPLES COLLECTED UNDER CWIL ORDER R4-2005-0080 GENERAL CHEMISTRY NURSERY GROWERS ASSOCIATION LOS ANGELES IRRIGATED LANDS GROUP

[]	·····						General Che	mistry				
Site	Sample #	Date	Ammonia	Chloride	Diss Ortho	Nitrate	Sulfate	Total Diss Phos	TDS	Total Ortho	Total Phos	TSS
NGA #130	NGA-#130-LAILG-1	8/6/07	2.5	58.34	2.2457	50.44	43.04	2.29	1,170	2.05	2.305	6.3
NGA #183	NGA-#183-LAILG-1	8/6/07	0.04	209.97	0.2336	0.13	177.83	0.23	223	0.23	0.264	11
NGA #19	NGA-#19-LAILG-1	8/13/07	1	108.57	2.2882	10.84	118.85	2.68	772	4.62	5.09	568
NGA #124	NGA-#124-LAILG-1	8/13/07	9.8	69.23	3.5006	72,48	206.25	4.31	1,002	3.96	4.627	99.5
NGA #168	NGA-#168-LAILG-1	8/13/07	0.4	81 85	1.977	4.93	131.16	2.28	664	2.13	3.243	122
NGA BLANK	NGA LAILG-BLANK-1	8/13/07	0.04'	nd	nd	nd	nd	nd	32	nd	nd	nd
NGA FBLI	NGA-LAILG-FBLI	8/21/07	0.01	nd	nd	0.016 ¹	nd	nd	nd	nd	nd	nd
NGA EQBLI	NGA-LAILG-EQBLI	8/21/07	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA #150	NGA-#150-LAILG	9/25/07	52.4	95.9	26 84	355.6	87	22.5	2279	23	24	57
NGA #183	1LG-#183	9/26/07	13.5 ⁸	51.63	1.4457 ^B	11.35 ^B	57.38 ^B	1.64 ^B	317 ^B	2.24 ^B	0 858 ^B	28.7 ^B
NGA #183-DUP	ILGNGA-#Dup	9/26/07	29 ^B	55.3	4.193 ^B	26.77 ⁸	89.17 ⁸	4 29 ^B	434 ^B	5.66 ^B	4.488 ^B	20 ^B
NGA #EQUIP	ILGNGA-#Equip	9/26/07	nd	nd	nd	nď	nd	nd	5	nd	nd	nď
NGA #FIELD	ILGNGA-#FIELD-2	9/28/07	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
NGA #168-2	ILGNGA-#168-2	9/28/07	2.2	172.52	1.582 ^C	8.91	340.14 ^E	2.15	1,297	3.51	5.379	504
NGA #168	NGA-#168-LAILG-3	11/30/07	0.48	101.43	2.1635	30.81	245.04 ^E	2.67	951	3 13	3.548	nd
NGA #182	NGA #182-LAILG-1	12/7/07	0.4	60.71	1 7533	19.85	159.87 ^t	1.52	456	1.41	1.554	20.3
NGA #182-DUP	NGA-Duplicate	12/7/07	0.42	59.2	1.8269	19.71	118.48 ^F	1 51	552	1.56	1 523	20 7
NGA #4	NGA #4-LAILG-1	12/7/07	0.48	20.64	1.1355	4.03	20.39 ^F	0.8	186	0.77	0.829	58
NGA #130	NGA #130-LAILG-2	12/7/07	0.3	162.95	1.0247	26.16	190 ^F	0.91	830	0.74	0.94	51
NGA #150	NGA #150-LAILG-2	12/7/07	2.9	27 34	14.0243	80.89	56.59 ^F	9.43	780	8.89	9.445	40
NGA #124	NGA-#124-LAILG-2	12/7/07	4,6	33.03	3.9247	45.41	59 24 ^F	2.9	550	2.76	3 168	90
NGA #EQUIP	NGA-equip blank	12/7/07	nd	nd	nd	nd	1.13	nd	nd	nd	nd	nd
NGA #FIELD	Field Blank-2	12/18/07	nd	nd	nd	nd	nd	nd	6	nd	nd	nd
NGA #176	NGA-#176-LAILG-1	12/18/07	5.5	56 82	0.7145	3.85	293 12	0.54	680	12.21	3.447	6,168
NGA #183	LAILG-NGA#183-3	12/18/07	1.95		2.344	11.37	41.11	2.78	292	3.14	3.561	92
NGA #19	LAILG-NGA#19-2	12/18/07	1.4	162.66	11.2352	86.7	290.99	2.13	1,292	4.01	5.544	684
NGA #13	LAILG-NGA#13-1	12/18/07	1.6	5.46	0.2033	1.72	32.27	0.49	32	1.44	2.878	944
NGA #53	CWIL Limits	12/18/07	0,7	4.72	0.2973	0.49	12.51 See Table	0.57	132	0.75	1.188	124
	MDL		0.01	0.01	0.0075	0.01	0.01	0.016	0.1	0.01	0.016	0.5
	RL		0.05	0.05	0.01	0.05	0.05	0.05	5	0.01	0.05	5

Concentrations are reported in milligrams per hier (mg/L) Results above CWIL Limits are presented in BOLD Footnotes in BOLD indicate estimated concentration. All other footnotes are for reference purposes, data was not

- CWIL B Conditional waiver for irrigated lands, order #R4-2005-0080 Estimated concentration, since KPD or auplicate is 245%
- с
- Procedural blank Matrix Spike recovery out of limits E
- ESTIMATED CONCENTRATION, matrix spike does not meet acceptance criteria
- F Sulfate detected in lab blank, at 1.09 mg/L

J

Estimated concentrations, results above MDL but less than RL

SUMMARY OF SAMPLES COLLECTED - CWIL ORDER R4-2010-0186 YEAR 1 CHLORINATED PESTICIDES NURSERY GROWERS ASSOCIATION LOS ANGELES IRRIGATED LANDS GROUP

Chlorina

	_										CDIOTINATOC PESSICIOCS								
Site	Sample #	Date	2,4°-DDD	2, 4: DDE	2.4'-DDT	4.4:-DDD	4,4"-DDF	4.4.DDT	Aldını	BHC-alpha	BHC-beta	BHC-delta	BHC-gamma	Chlordane- alpha	Chlordane- gamma	Dieidrin	Endosulfan Sulfate	Endosulphan-I Endosuifan-	Endosuifan-II
NGA IM	LAILG-NGA4-5	11/12/8	2	2	R	P	17	12	£	Þ	'n	P	æ	5	8	R	Pu	P	2
NGA #124	LAILG-NGA124-6	3/21/11	72	z	2	P	P	2	R	Б	2	2	2	æ	R	33.12	pu	P	P
NGA # 150	LAILG-NGA 150-5	11/12/8	Б	2	z	2	P	ß	Я	ъ	Ъ	F	22	P	2	22	P	р	R
NGA #19	1-41LG-NGA19-6	3/23/11	ß	'n	멷	2	z	72	'n	2	Ā	Ę	Ł	ß	P	Б		Ā	Å
Duplicate	LAILG-NGA-DUP	3/21/11	P	P	2	P	pu	5	рг	pu	2	72	ų	P	Þ	22	2	P	pu
Equip Blank	LAILG-NGA-EB	11/12/2	2	Ŗ	P	2	22	ß	P	2	ъ	72	2	P	P	Ā	2	P	đ
Field Blank	LAILG NGA FB	3/21/11	멍	¥	P	2	2	P	p	2	Ā	2	24	2	pu	P	P	ри	ą
NGA #168	LAILG-NGA168-6	3/17/12	P	P	Ā	8	Z	ß	ą	2	8	5	2	22	12	2	P	за ^{рц}	Þ
NGA #31	LAILG-NGA31-4	3/17/12	pu	P	Ā	5	5	Þ	Z	ъ	Ä	Б	Б	Ę	2	2	P	nd ^{BKL}	2
NGA #162	1.AII.G-NGA162-1	3/17/12	pr	Þ	Ā	P.	ЪČ.	P	¥	P	'n	P	ß	72	R	2	ß	nditsu	S
NGA #64	LAILG-NGA64-3	3/17/12	ą	ą	Z	pu	28 ¹⁷⁹	Б	æ	P	'n	5	ą	72	P	Þ	P	NG ^{NG1}	P
Duplicate	LAILG-NGA-DUP	3/17/12	Z	2	29	P	51	g	P	þ	P	2	R	P	P	Z	g	UC ^{BSL}	pr
Equip Blank	LAILG-NGA-EB	3/17/12	Ę	P	R	pu	P	9	Б	R	Б	Б	¥	2	P	2	5	TSHIP DU	P
Field Blank	LAILG-NGA-FB	3/17/12	P	2	P	pu	2	5	2	P	5	'F	P	2	P	P	P	nd ^{ats:}	p
NGA #4	LAILG-NGA4-6	3/25/12	¥	Ŗ	멷	72	2	P	12	R	P	24	22	72	뮏	P	뉟	Ą	P
NGA #170	LAILG-NGA170-1	3/25/12	Ā	8	5	Z	9.6	Ŗ	Þ	Б	ą	Ę	Б	P	ß	2	Я	¥	ы
94 I # VDN	1.AILG-NGA176-2	3/25/12	z	8	£	ъ	2	Ŗ	5	2	ą	Þ	Б	뮏	P	22	R	P	p
NGA #210	LAILG-NGA210-2	3/25/12	z	8	ą	P	2	P	Þ	8	2	2	8	¥	R	Ъс.	P	R	pu
Duplicate	LAILG-NGA-DUP	3/25/12	ę	R	R	P	22	2	Ъ.	ß	Æ	Þ	ß	R م	ß	Ъс	2	ą	Ъ
Equip Blank	LAILG-NGA-EB	3/25/12	P	2	P	ېږ بر	pu	P	5	pu	Þ	P	P	ير بر	2	br ا	2	'n	2
Field Blank	LAILG-NGA-FB	3/25/12	Z	P	P	P	2	P	72	72	P	Ā	2	2	2	5	S.	ž	2
	CWIL LIMIS		P P	0.59	Į2	0.84	0.59	650	2	P	le I	ĮL I	E	5	E	0.14	F	2	ji
	MDI.		50	50	50	20	52	11	15	81	16	2.5	21	50	5 0	21	50	1.7	19
	RI.		50	50	50	50	50	50	50	50	5 O	\$0	50	50	50	50	50	50	50

Covervieron er report in nærogen per lev (ngl.). Realth blev CN1 Leviu er presented in BOLD. Fossoon in BOLD indrate emmad coversation. All other foanoles ar for reference parpoare, daar war wet dermel uit be qualified ar earling the CN1 Eximated coversation. All other foanoles ar for reference parpoare, daar war wet dermel uit be qualified ar earling the termed of the foanoles ar for reference parpoare. Gaar war wet dermel uit be qualified ar earling the termed of the foanoles are for reference parpoare. Gaar war wet dermel uit be qualified ar earling the termed of the foanoles are for reference parpoare. Gaar war wet dermel uit be qualified are termed coversation. All other foanoles are for reference parpoare. Gaar war wet dermel uit be qualified are termed coversation. Here, the coversation of the termed termed to are terminated termed to an are dermel to be transference of the termed termetare. The termed termetare are terminated termetare. The termetare termetare termetare termetare termetare termetare termetare. The termetare termetar

. આ કાર્યક્રાદ વરવબન્દર આ અલે વર્ષ વચ્ચાર વિભાગ વેખ દક કાર્યકાર્યકાર ક્યુંદવર 😳 વધ્યા બહા કરાયકાર બાદ બાદ બન્દર વધા બાદ વધા છે. આ એક દા

SUMMARY OF SAMPLES COLLECTED - CWIL ORDER R4-2010-0186 YEAR I CHLORIYATED PESTICIDES NURSERY GROWERS ASSOCIATION LOS ANGELES IRRIGATED LANDS GROUP

Sample 4 Sample 4 Date 4 LAILG-MGA4-2 37.111 24 LAILG-MGA4-2 37.111 50 LAILG-MGA4153 37.111 9 LAILG-MGA4153 37.111 9 LAILG-MGA4192 37.111 9 LAILG-MGA4192 37.111 9 LAILG-MGA4193 37.112 9 LAILG-MGA445 37.112 9 LAILG-MGA445 37.112								Chlorina	Chlorinated Pesticides					
LullG-NGA42:3 377/11 None 50006 1000 None	Sate	Sample #	Date	A:oclor XXXX,	Endric	Eaders & Idabuidd		Means ables	Heptachlor		-	-	trans-	[total
Lulls-No.44±3 371:11 ned				Sum of	E ROLL			neptachior	Epoxide	MC:NON:CF.IOT	MIFEX	IOXAPHENE	Nonachlo:	Chlordane
LMLG-NOAT343 371/1 red	NGA #4	LAILG-NGA#4-2	30:/11	9	P	5	7	P	Б	z	2	ρr	86	39.66
LNLG-NGA 153 371/1 No	NGA #124	LAILG-NGA#:24-3	3/21/11	2	ş	ę	P	þ	8	2	ą	pu	8	۲,
LuiceNeentry 323/11 red	NGA # 150	LAILG-NGA 153-3	3/21/11	2	Þ	P	ъ	Ę	2	2	Þ	pu	5	2
LALGG-NGA-DUP 371/11 Nd	NGA #19	1_AILG-NGA#19-2	3/23/11	72	ž	Þ	Ę	P	Б	2	Þ	pu	5	2
iAllG-NGA-EB 321/11 nd	Duplicate	1-AILG-NGA-DUP	3/21/11	P	þ	Þ	12	Ŗ	5	2	Þ	P	z	ĸ
LAILG-NGAFIE 321/11 12	Equip Blank	LAILG-NGA-EB	11/12/6	Þ	Þ	Þ	P	2	Þ	2	7	Ę	5	5
LNIG-NGA164 317:12 red	Field Blank	LAILG-NGA- FB	11/12/6	2	P	Þ	лđ	2	P	8	8	P	2	z
	NGA #168	LAILG-NGA 168-6	3/17/12	pu	P	2	3,72	2	Б	2	2	뉟	2	R
	NGA #31	LAILG-NGA31-4	3/(7/12	ы	ъ Р	Þ	ž	5	¥	2	2	Ţ	2	Ŗ
I/ILG-NGA63 377/12 red	NGA #162	LAILG-NGA162-1	3/17/12	29	Å	Pc.	3, pe	2	¥	5	æ	멑	7	8
	NGA #64	LAILG-NGA64-3	3/:7/12	P	2	2	30	뮏	¥	2	2	2	3	¥
	Duplicate	LAILG-NGA-DUP	3/17/12	22	Å	Z	3.02	P	P	2	5	8	y	P
	Equip B.ank	LAILG-NGA-EB	3/17/12	рu	P	pu	2	р	P	2	5	Б	22	ą
	Field Blank	LAILG-NGA-FB	3/17/12	ß	pu	pu	2	pu	þ	¥	5	y	rd	P
	NGA #4	LAILG-NGA4-6	3/25/12	pr 1	pu	pu	yq acc	P	P	¥	P	ğ	겉	P
	NGA #170	LAILG-NGA: 70-1	3/25/12	pu	ą	ک ر	yss ^p i	ß	P	æ	Ę	2	3	y
	NGA #176	LAUG-NGA176-2	3:25-12	ри	μ	pu	ri ^{scc}	5	밑	Y	Б	£	¥	5
LAUG-NGA-DUP 3/23/12 nd nd nd ⁴	NGA #210	LAILG-NGA2:0-2	3/25/12	P	pu	P	P	2	2	ъ	Þ	ß	¥	2
IAILG-NGA-EB 372/12 nd	Duplicate	LAILG-NGA-DUP	3/25/12	8	P	Ы	nd ⁵⁴	8	9	2	Ę	5	ų	ß
LALLG-NGA-FB 375/12 nd	Equip Blank	LAILG-NGA-EB	3/25/12	P	P	2	2	2	2	z	뮏	2	겯	7
nl nl nl nl nl nl nl nl nl 0.15 nl nl 0.15 nl nl <th< td=""><td>Field Blank</td><td>LAILG-NGA-FB</td><td>3/25/12</td><td>P</td><td>P</td><td>P</td><td>pe</td><td>2</td><td>Į2</td><td>Ŗ</td><td>Ę</td><td>Þ</td><td>Ā</td><td>ą</td></th<>	Field Blank	LAILG-NGA-FB	3/25/12	P	P	P	pe	2	Į2	Ŗ	Ę	Þ	Ā	ą
40 28 30 20 17 19 50<		CWIL Limits	_	le	2	la la	ľ	긑	2	2	I.	0.75	72	0.59
100 50 50 200 50 50 50 50 50 50 50		MDL		40	28	30	20	17	61	5.0	50	120	50	50
		RL		100	50	5 0	20.0	50	50	50	50	503	50	\$0

HOLD sporter in narograns per iner ing L). Reutin bove ("MI) Lunch are presented Conditional Detections innot a lacdi, or der 1844-1903-10380 Mendel Detections innot versich above MD) har less twa RL Reporting Limm worlder einen on detected Estimated concentation / field Depleter RP1>25%, ENC are and

85.L

Foorners in BCLD indexe entimates concentiation. All other footwars are for informer purposes, data war not dermed in Kaqualidad ta salum. The unreport records for the sample in nort do of destable bod contrait mus dar its possible sample music effect Surregar records out-do of canito innita dar sue possible mort effect. The dara war arcepted based or valid records of the mear-ing surregare

The recovery of this analytic in the BSILCS was below the control limit Sample result is surper-

SUMMARY OF HISTORICAL SAMPLES COLLECTED UNDER CWIL ORDER R4-2005-0080 CHLORINATED PESTICIDES

Sample # 1 ATEGNGATIOLI	Date	2 4 -DDD	3 4. DDF	2 41 DAYE	aaa	⊢	H	┢	┡				Chlordane.	('hlordane-				
ATLG-NGATIO-1		_	-		_	4'4-DDE 4	100.14	Aldrin B	BHC-atpha	BHC-beta	BHC-delta	BHC-gumma	adole	Canona de	cis-Nonachlor	DCPA	Dicofol	Dieldrin
	1/4/08	2	P	P	2	۶	밑	2	2	5	P	Þ	P	2	ß	ų	2	ą
LAILG-NGA189-1	1/4/08	P	P	2	22	225	Þ	z	2	2	Ę	2	Z	\$	P	Þ	5	Z
LAILG-NGA 19-3	1/5/08	P	P	2	Б	2	5.6	8	ß	2	P	P	23	2	2	P	ą	2
LAILG-NGA124-3	1/5/08	Ъ	Pu	2	5	Z	Þ	72	8	2	겯	2	2	P	P	þ	pu	3
LAILG-NGA183-4	1/5/08	P	P	pr.	12	26.5	P	R	8	2	2	2	z	P	2	ų	35	P
LAILG-NGA4-2	1/23/08	Þ	ß	P	P	Æ	Ŗ	z	2	2	뉟	P	æ	8	Z	ā	5	Б
LAILG-NGA53-2	1/23/08	5	2	P	P	Ā	بر	'n	2	2	ъ	ā	2	2	Ъ	P	2	Þ
LAILG-NGA64-1	1/23/08	þ	۶	Æ	72	P	R	z	8	z	z	Ā	R	P	2	ę	bu	P
LAILG-NGA130-3	1/24/08	Ę	2	2	72	2	P	2	3	2	R	P	3	P	P	2	pr	ą
LAILG-NGA182-2	1/24/08	ų	2	P	P	P	ß	12	8	2	۶	2	ų	5	P	5	2	ß
LAILG-NGA168-4	1/25/08	겉	22	2	2	19.2	ß	Ā	ß	۶	æ	5	12 D	P	2	2	P	2
LAILG-NGA19-4	8/12/08	P	2	2	2	2	P	멷	2	æ	P	2	1 0'	21	Z	5	P	2
LAILG-NGA 4-3	8/13/08	Æ	ĩ	8	8	P	ß	72	5	i Y	P	ā	9 20210	arton 8 6	arto L 1	2	485 70: 01 P	ž
LAILG-NGA-DUP	8/13/08	P	2	12	2	Å	8	5	P	5	y	멑	29 8 ⁷⁸	41 3 73	er [14	2	1064 3 79	5
LAILG-NGA 31-1	9/23/08	P	2	22	2	13.5	P	z	2	5	2	P	P	e.92	P	Ŗ	2	Z
LAILG-NGA-DUP	9.23/08	멷	72	2	2	13.6	Å	y	8	2	Б	5	Ę	116	12	P	8	P
LAILG-NGA 19-5	11/26/08	멷	2	2	2	24.70	8	P	8	5	2	R	75,01	61	2	P	s	P
LAILG-NGA 219-1	11/26/08	æ	2	22	2	Z	F	z	¥	æ	Þ	2	5	2	2	P	5	þr
LAILG-NGA 184-1	11/26/08	P	Þ	5	P.	z	P	Б	2	2	P	ų	ß	2	5	Þ	Б	2
LAILG-NGA-DUP	11/26/08	P	Þ	ע	P	R	2	2	'n	2	72	Þ	æ	5	2	Ŗ	5	8
LAILG-NGA 124-4	11/26/08	P	Pu	Ŗ	'n	19.3	P	12	2	F	z	5	37	28'	P	Þ	2	8
LAILG-NGA 31-2	11/26/08	P	PC	P	2	Þ	P	2	뉟	т Ч	뉟	Ā	78	63	5	ā	P	Я
LALG-NGA 130-4	11/26/08	P	Q	p	2	P	ß	2	R	P	72	ъ	P	2	2	67	뮏	P
LAILG-NGA 150-3	11/26/08	2	P	Pe	P	P	ß	2	15	5	2	2	ъ	Ā	Я	ß	2	R
LAILG-NGA 25-1	11/26/08	Z	2	2	5	PC	P	P	Þ	ъ	2	ъ	56	49'	101	22	P	2
LAILG-NGA 150-4	12/15/08	P	P	PC	Þ	pu	ß	pe	2	z	2	5	z	2	2	2	Z	2
LAILG-NGA 124-5	80/51/71	2	ę	P	10.4	pu	R	P	8	R	5	5	55	4 2'	2	63'	5	z
LAILG-NGA 189-2	12/15/38	8	P	ą	pu	2	ß	8	2	ß	ъ	ъ	Þ	5	P	72	p	5
LAII.G-NGA : 10-2	12/15/08	2	ā	멷	6.2	72	SC SC	2	ß	Þ	멷	2	Б	Б	P	'n	þ	Ŗ
LAILG-NGA 31-3	: 2/15/08	2	'n	P	P	P	ß	2	P	P	Ŗ	22	2	2	2	Z	P	2
LAILG-NGA 184-2	12/15/08	2	8	겯	8	2	P	Ŗ	P	pu	12	'n	2	4 2	P	Þ	pu	ß
LAILG-NGA 130-5	12/15/08	Å	ß	ß	P	2	Z	pu	P	뉟	ą	P	5	2	2	¥	P	8
LAILG-NGA 178-1	12/15/08	P	¥2	₹ ₂	i,	5.3 ^m	Ę	Å	P	7 7 7	pu	ъ	Þ	ß	Ę	Þ	Þ	8
1.All.G-NGA-DUP	12/15/08	2	P	ą	P	٩ ₂	z	P	P	P	2	2	2	P	2	Ę	R	2
LAILG-NGA 64-2	12/15/08	8	Ā	¥	P	43.3	5	2	ß	P	12	P	2	Þ	'n	ß	2	ß
LAILG-NGA 168-5	12/15/08	8	¥	Ā	ę	11.8	5	Я	R	ą	2	P	P	P	9	P	P	8
LAILG-NGA 44	12/15/08	۶	8	<u>8</u>	2	y	ş	P	ß	ų	Þ	P	351	34.2	65	P	Þ	Z
CWIL Limits		5	2	ĮĽ	0.59	0.59	0.83	0.13	3.9	1	7	19	â	Î	â	2	2	9.14
MDL		-	_	_	-			-		_	-	_	_	-	~	~	8	~
RL		5	~	~	, ,	-			-			ŀ	,			5		

Spirit as unregue composed recovery wa aut al control due to maine interference. The autoriand method blant spire as unregiare composed was in coread and interfore the sample data was reported without further clanfloateon. ž Concernia Ling Concernia Ling Concernia

Codinews' waver' for migaed lands reder (MC-2021). Element resonances (Fan Galacter (MD-2)%). Elementer resonances, renth (MOV H/D), but can ulter (L). Reported Jancia Reported Jancia elementaria

State recovery and RPD remort innus do not upply returning from the parameter concentuation in the annote meadorg the COS state concentrations The amount MPD was been of control. Sample in benergeneous and annihe homogeneois could not be readelly achieved using recover absorbed processors

ōö

RPD values are not accurate and not applicable because the results for R1 and/or R2 are lower than ten times the MDL

CRGs Quily Automete Program Decomete alives for bits of the target composed parametican the net inner the MLB, the boundaries respectively intend for pretation to do a varianty. This is often to do to measure rest data and a consolid emission to appear to a second and a second and and to measure and cannot be emissively to appear to a second and and and a second and and a second and and a second and a second and a second a secon

SUMMARY OF HISTONICAL SAMPLES COLLECTED UNDER CWIL ORDER R4-2005-0080 CHLORINATED PESTICIDES NURSERY GROWERS ASSOCIATION LOS ANGELES IRRIGATED LANDS GROUP

	Date	Endosulfan Sulfate	Endosulphan-I	Endosulfan-II	Endrin	Endrin Aldehyde	Endrun Ketone	Heptachlor	Heptachlor Epoxide	Methoxychlor	Kepone	Mirex	Oxychlordane	Perchane	Toxaphene	trans- Nonechlor	Total Chlordane
NGA #110 LAILG-NGA#110-1	1/4/08	2	Ę	P	Я	Ŗ	Þ	P	¥	2	2	R	Z	2	P	- -	
-	1/4/08	P	рц	2	72	2	2	P	P	ų	2	z	P	2	2	68	14.9
-	1/5/08	P	pu	12	2	Ŗ	ß	Ŗ	2	Ę	5	2	2	Ŗ	Þ	=	16.3
	1/5/08	٩	ри	P	Z	7	2	2	Ę	Ę	2	z	P	Ŗ	2	121	17.1
	1/5/08	9	P	pu	Ā	P	2	z	2	ž	2	2	2	ß	2	2	2
-	1/23/08	9	P	72	2	P	2	5	2	P	8	ß	P	8	멷	P	8
NGA #53 I.AILG-NGA#53-2	1/23/08	Þ	2	2	2	P	¥	Я	2	ß	2	5	Ę	5	2	5	8
NGA #64 LAJI.G-NGA#64-1	1/23/08	P	ų	Б	2	Ę	Ę	Б	2	P	2	5	Ę	2	P	8	12
-	1/24/08	ð	ų	ž	'n	2	Ā	Þ	2	P	2	2	P	ß	¥	P	2
NGA #182 1.AILG-NGA#182-2	1/24/08	P	P	2	y	72	z	z	5	8	2	8	P	8	2	2	2 2
NGA #168 LAILG-NGA#168-4	1/25/08	'n	P	2	P	Þ	P	2	2	2	2	2	r P	2	2 2	1 7	2 72
_	8,12,08	2	Ā	22	Ð	8	ż	P	2	2	¥	12	ъ	2	2		2
	8/13/08	Ŧp	łę	3702	ł	i g	ł	Ŗ	i,	ų	¥	2	ž	ł	Z	ar:0:11	1
Duplicate LAILG-NGA-DUP	80/51/8	Я	2	pr	P	ъ	2	8	2	¥	P	2	Ē	2	2	2700	124.4
	9/23/08	P	2	8	ß	2	Б	8	5	¥	ž	2	P	2	P	76	15.2
Duplicate LAILG-NGA-DUP	80/62/6	۶ ۲	2	2	P	2	Б	Þ	z	Ā	P	5	2	8	2	53	20.1
	11/26/08	pu	p	2	2	þ	339 4 ⁰⁰	8	2	P	P	2	P	5	¥	65:01	20.2
NGA # 210 LAILG-NGA 210-1	11/26/08	ри	P	ş	ž	ą	멑	2	2	P	ß	2	Ŗ	2	2	5	ą
-	11/26/08	24	5	Þ	Ę	2	뉟	P	ß	2	Б	2	2	Þ	8	5	8
+	11/26/08	Б	9	Pe	P	8	P	ž	2	2	2	P	2	Þ	ъ	Б	5
_	11/26/08	P	5	P	ą	5	2	p	ā	P	Þ	P	2	Ę	2	1.7	\$.2
-	: 1/26/08	22 22	P	ā	ъ	Þ	1 2	g	P	P	'n	ъ	72	P	2	38,	re.re
	11/26/08	R	b	P	Ā	ā	P	2	P	۲	p	Þ	P	2	2	ĸ	72
+	11/26/08	8	8	P	Ŗ	P	P	¥	5	P	pu	12	pu	2	ъ	5	돧
-	11/26/08	P	y	ß	R	Ŗ	ъ	ą	ş	ð.	72	Ę	2	P	2	47	16.2
+	12/15/08	P	궏	P	2	ß	5	8	2c	PC.	P	P	2	P	ş	ą	Ā
+	12/15/08	ð	Þ	P	Ā	¥	Þ	ē	Ę	P	ъ	٩	ъ	Ā	Þ	391	13.6 ¹
┥	12/15/08	s	¥	ð	P	5	ß	P	y	P	R	P	pu	R	p	12	7
	12/15/08	8	P	8	Z	y	ß	뮏	y	R	ß	2	5	Б	Ŗ	22	ß
NGA # 31 LAILG-NGA 31-3	: 2/15/08	P	ß	2	ъ	5	'n	2	P	P	P	Þ	ъ	Ę	'n	22	2
-+	12/15/08	2	2	P	Я	ą	Б	22	Ъ	Þ	P	72	Z	P	2	2	17
+	12/15/08	P	P	P	Ā	ą	Ŗ	2	F	pu	pu	ъ	2	2	72	2	P
	12/15/08	P	į	1 0	P	P	ъ	ą	P	ŧ,	겯	2	æ	P	2	ß	.A
_	12/15/08	2	P	P	2	đ	2	8	2	7	æ	Þ	12	2	Þ	7	¥
┥	12/15/08	Þ	2	ş	2	ß	Ъ	2	¥	Z	ъ	P	P	ß	9999	12	2
_	12/15/08	£	Ŗ	P	Ŗ	9	Pe	ъ	Þ	Ā	P	2	72	2	¥	5	8
NGA #4 LAILG-NGA 4-4	12/15/08	8	ž	Ş	2	12	8	P	2	pu	'n	5	5	¥	8	23.7	99.5
CWIL Limits		Lr.	5.6	5.6	8	Ē	۔ اد	0.21	5	-	72	 7	â	7	2	ļ.	0.57
MDI.		-	-		-	-	-	-	-	-	-	-	-	~	0	-	
RL		5	~	~	~	,							I				

erioni se reported in versymmer per ine (eg.) Raufita above CWTL. Emits are prepared in BOLD. Routidate enimierie construction of other formotion are for inferrete prepare, data was not derived for a qualified as qualified as qualified as qualified as qualified are marged and wave for marged and wave for intervent (per enviro) and the source of the s

Contern

มี มี มี

RPD veloce se cos socranes and more applicable frequencing for fraulity for K1 and/or K2 and or frances men inte NDD. CKG3 Quality Assessment Pagera Decrement dows for 314 of the large compounds prasma due the transmission com NDD, to be acalled by specified secryments including processes and/or accurately. This is a often due to readout arrea

SUMMARY OF HISTORICAL SAMPLES COLLECTED UNDER CWIL, ORDER R4-2005-0080 CHLORINATED PESTICIDES NURSERY GROWERS ASSOCIATION LOS ANGELES IRRIGATED LANDS GROUP

		;									Chlonnated Pesticides	sticides							
aic	a arduna e	LARIC	2,4-DDD	2, 4 - DDE	2.4-DDT	4.4'-DDD	4.4-DDE	4.4'DDT	Aidra	BHC-alpha	BHC-beta	BHC-delta	BHC-gamma	Chlordane- ainha	Chlordane-	cis-Nonachior	DCPA	Dicofol	Dieldrin
NGA #130	NGA#130-LA1LG-1	8/6/07	R	P	æ	22.8	34.7	191	'n	ž	Þ	Z	2	P	P	8	P	68.1	2
NGA #183	NGA-#1:83-LAILG-1	816/07	Ŗ	P	Z	ą	'n	<u>ק</u>		2	P	P	R	2	Å	2	8	P	P
NGA #19	NGA-#19-LAILG-1	\$V13/07	P	Pu	22	y	P	Þ	멷	2	z	5	2	2	Þ	ъ	8	P	2
NGA #124	NGA-#124-LAILG-1	8/13/07	P	ß	¥.	22.5	153	13.7	Ŗ	12	Ä	5	PC	72	P	121	2	ž	P
NGA #168	NGA-#168-LAILG-1	8/13/07	рс	P	ų	2	Ŗ	p:	ş	2	2	pu	8	P	2	P	2	ž	2
NGA BLANK	NGA LAILG BLANK I	\$V13/07	8	P	P	P	2	ष्ट	2	12	ß	Þ	P	5	2	2	5	2	2
NGA FBLI	NGA-LAILG-FBUI	8/21/07	P	P	Б	2	5	Þ	2	P	y	ų	Ę	2	2	¥	2	2	2
NGA EQBLI	NGA-LAILG-EQBLI	8/21/07	ы	pu	æ	2	5	2	Б	Ę	P	8	Þ	2	8	P	2	P	8
NGA #150	NGA#150-LAILG	9/25/07	pu	ę	2	æ	5	ي م	2	P	¥	Ŗ	P	2	5	¥	2	2	2
NGA #183	II.G-#183	92607	25"	P	318	90.3	113.8	51.18.0	P	P	P	Ę	ž	2	2	¥	12		2
NGA #: \$3-DUP	ILGNGA-#Dup	9/26/07	a pe	ą	1 0	64.5	70.2	4 . 9 7	멑	Þ	Þ	R	Ę	2	5	2	2	2	2
NGA #EQUIP	ILGNGA-fequip	9/26/07	pu	P	p	ā	ā	P	P	2	2	Ā	P	5	2	2	2	8	8
NGA #FIELD	II.GNGA-#FIELD-2	9/28/07	Pe	2	Þ	z	Þ	P	8	2	Ŗ	Ā	8	8	2	P	'n	2	2
NGA #168-2	ILGNGA-#168-2	9/28/07	P	2	173	16.7	Þ	а л	8	12	5	P	2	8	12	12	2 72	î î	2
NGA #168	NGA-#168-LAILG-3	11/30/07	2	P	2	2	27	يرب	2	z	۶	Þ	2	-4		! -	1	: 2	; 7
NGA #182	NGA #182-1.AILG-1	LOILD:	8	ą	P	2	Þ	Þ	5	8	Z	2	P	18	2	Ē	2	2	1
NGA #182-DUP	NGA-Duplicate	12/107	P	pu	8	£	2	P	8	¥	5	P	2	8	Σ	1	ł	2	2
NGA #4	NGA 44-LAILG-1	12/7/07	pu	P	2	5	y	P	뮏	P	8	2	8	8	1	2	1	2 2	2 2
NGA #130	NGA #130-LAILG-2	רמתכו	2	7	ų	Z	¥	2	2	Ŗ	z	8	2	Y	2	2	2	2	2
NGA #150	NGA #150-LAILG-2	12/7/07	Z	2	P	Ę	5	ъ	35.2	5	2	P	2	2	2	2	1	2 2	2
NGA #124	NGA-#124-LAILG-2	12/7/07	22	pu	ß	6.0	177	2	2	Б	Þ	Ę	P		10	2	P	63.71	Y
NGA #EQUIP	NGA-equip blank	12/1/07	ų	P	ā	72	2	P	2	Þ	5	ß	ß	5	2	2	Я	12	P
NGA #FIELD	Field Blenk-2	12/18/07	pu	P	P	Þ	y	P	'n	P	æ	2	8	Z	ş	P	2	2	2
NGA #176	I.AILG-NGA#176-1	12/18/07	2	2	P	2	멷	ъ	ş	2	pu	2	P	Б	ž	Þ	ų	5	2
NGA #183	LAILG-NGA#183-3	12/18/07	368	57	20.6	224.8	344.6	73.5	P	2	5	72	'n	5	z	P	Ē	515	8
NGA #19	LAILG-NGA#19-2	12/18/07	P	P	2	Б	8	2	22	P	2	8	P	Þ	P	8	2	y	2
NGA #13	LAILG-NGA#13-1	12/18/07	Ę	ß	P	pu	32.7	2	Þ	PL	8	2	2	87	19.2	96:	2	ų	Z
NGA #53	LAILG-NGA#53-1	12/18/07	P	2	R	P	Б	pu	'n	P	Z	P	Z	8	Þ	¥	ъ	ž	P
	CWIL Limits		72	ਵ	lc	0.59	0.59	0.83	0.13	3.9	14	Ŀ	6	Ŧ	÷	â	7	2	0.14
	MDI.		-	-	-	-	-	-	-	-	-	-		_	-	-	~	8	
	RL		S	~	5	\$	5	2	\$	\$	\$	~	~	~	~	~	0	8	2
Constitutions are tenorised as a	dis constants on list (not). Bouch above (Nill) in	T III Constant			101 -														

Concentration are reported in canophene per line (ap(1). Reader devil Unit are precision BOLD indicate rest mand concentration. All other concents are for reference perpense, data was not derived to be qualified as earn. All Conditional server for imaged used, notes of AL-2003-3000. All D. Precedon Limit. Component of the children are real children are precision. BOLD indicate rest mand concentration. All other concents are for reference perpense, data was not derived to be qualified as earn. CNIL Conditional server for imaged used, notes of AL-2003-3000. PL. Reporting Limit Component and the children are precision. All other concents are for reference to an in the concents are for reference perpense, data was not derived to be qualified as earn. The component for imaged used, notes are precision and an and accented of the formation. The concents are are children and and an and incident and the concents are of imaged as earning Limit and the formation. The concents are are and a children and and an and and an and and and an an and accented of the formation. The concents the net and AUC is the formation and an an an and an an an an an and accented and and and and and and and an an and accented and a children are are and and an an an and accented and a children are are and a children and an an and accented and a children and an an and accented and a children and an an and accented and a children and accented an and a children and accented an and accented and a children and accented and accented and accented and accented and a children and accented and a children and accented accented and accented and accented acce

SUMMARY OF HISTORICAL SAMPLES COLLECTED UNDER CWIL ORDER R4-2005-0080 CHLORINATED PESTICIDES NURSERY GROWERS ASSOCIATION LOS ANGELES IRBUGATED LANDS GROUP

																		ſ
Site	Sampie #	Date	Endosulfan Sulfate	Endosuiphan-I	Endosulfar-11	Endrin	Endrin Aktehyde	Endrin Ketone	Heptachlor	Heptachior Epoxide	Methoxychlor	Kepone	Mirex	Onychlordane	Perthane	Toxaphene	trans- Nonachlor	Total
NGA #130	NGA-#130-1_A1LG-1	8/6/07	pu	Þ	ž	Z	P	ž	Z	2	2	2	2	ş	2	z	P	p
NGA #183	NGA-#183-LA1LG-1	8/6/07	br	P	P	Ā	Þ	P	ß	2	2	5	2	z	2	R	2	2
NGA #19	NGA-#19-1.AILG-1	8/13/07	5	nđ	Þ	Ę	2	2	2	2	2	5	5	Þ	2	R	P	2
NGA #124	NGA#124-LAILG-1	8/13/07	ą	P	P	Ŗ	R	R	ß	2	Þ	2	2	Y	Ā	Б	219	7
NGA M168	NGA-#168-LAILG-1	8/13/07	ß	12	P	Ā	<u>م</u>	2	2	ß	Þ	2	z	뉟	z	2	8	2
NGA BLANK	NGA LAILG-BLANK-1	8/13/07	2	2	P	ß	ð	2	2	2	Z	P	P	Ę	P	ß	5	2
NGA FBLI	NGA-LALG-FBL	\$21/07	P	2ª	P	2	ē	ъ	ž	2	2	Þ	P	Z	2	2	ß	8
NGA EQBLI	NGA-LALIG-EQBLI	8/21/07	pu	P	P	8	ъ	2	궏	P	2	Þ	5	멷	2	8	8	8
NGA #150	NGA#150-LAILG	9/25/07	ų	ų	Z	2	2	2	'n	ž	2	ą	5	م	2	2	8	8
NGA #183	ILG-#183	9/26/07	pr pr	Ŗ	Ŗ	12	2	2	2	Þ	2	5	'n	°9	2	8	8	P
NGA #183-DUP	ILGNGA-#D-p	9/26/07	PC	ų	P	¥	ß	z	2	2	8	5	Ŗ	32	2	2	5	2
NGA #EQUIP	ILGNGA-#Equip	9/26/07	R	Б	P	5	P	ž	2	ъ	P	'n	2	5	8	P	8	2
NGA #FIELD	ILGNGA #FIELD-2	9/28/07	P	2	12	2	Ŗ	ъ	8	ß	2	5	Ę	8	2	P	P	2
NGA #168-2	ILGNGA+168-2	9/28/07	P	P	Ą	8	2	2	ß	ß	Þ	5	2	ą.	5	5	2	8
NGA #168	NGA-#168-LAILG-3	: 1/30/07	ų	22	2	2	2	2	2	Б	ير. يور	2	2	5	2	22	17	5.6
NGA #182	NGA#182-LAILG-1	12/7/07	'n	22	ų	72	8	8	8	2	2	뉟	2	2	2	2	5	Ę
NGA #182-DUP	NGA-Duplicate	12/7/07	Ā	P	ъ	5	8	ъ	ß	2	Þ	B	2	2	8	Þ	5	8
NGA #4	NGA #4-LAILG-1	12/7/07	Ā	ž	ą	2	8	5	P	ų	ъ	ß	Þ	٤	ъ	2	¥	ъ
NGA #130	NGA #130-1_A11.G-2	12/1/07	ą	ß	Z	p	2	Þ	Pd	ð	Þ	z	ß	Ā	ų	z	뮏	ę
NGA #150	NGA #150-LAILG-2	12/107	P	ß	Ę	B	72	ß	Ы	P	2	P	5	Ā	2	2	P	ą
NGA #124	NGA#124-LAILG-2	12/10/	P	ð	P	2	72	s	R	22	Þ	Ą	Þ	Ā	2	2	5	11.4
NGA REQUIP	NGA-equip blank	12/7/07	P	Z	8	8	5	ß	P	P	Þ	P	Ā	Б	5	8	2	pu
NGA	Field Blank-2	12/18/07	P	2	ð	P	۶	ß	Þ	됟	2	2	P	8	æ	ъ	12	ъ
NGA #176	LAILG-NGA#176-1	12/18/07	2	2	Þ	Ā	ę	Þ	pu	P	P	عر عر	ß	P	2	P	z	72
NGA #183	LAILG-NGAN183-3	12/18/07	2	Ą	'n	2	pu	9	Þ	5	8	vع	P	2	72	2	y	2
NGA #19	LAILG-NGA#19-2	:2/18/07	ß	Þ	z	ъ	2	æ	2	ß	2	nd ^c	ų	p	P	2	24'	<u>بر</u>
NGA #13	I.AILG-NGA#13-1	12/18/07	72	P	ą	ъ	ß	12	2	nd	P	يتور	P	P	2	ß	- 3.	110.9
NGA #53	LAILG-NGA#53-1	12/18/07	5	2	p	ų	ş	P	'n	hd	P	μç	Þ	8	Þ	2	P	Z
	CWIL Limits		7	5.6	5.6	*	7	7	12.0	0.1	ln [n	μ	[r	•	7	25	î	0.57
	MDL		-	-	-	-	-	-			-	-		-	s S	10	-	-
	FL.		∽	٢	S	S	- -	٢	5	\$	2	~	s	~	2	50	~	\$
Concentrations are report	Concertrations are reported in nanograms per like (ng/L). Rewits above (W1L Limits are presented in BOLD Footnotes in BOLD	Huits above ("WTL L.	imits are presented at 801.	D Footnotes in BOLL) undicate estimated concentration. All other footnotes are for reference purposes, data was not deemed to be qualified as estim	NUTREALING ALL OF	her foomotes are fo	or reference purp	KORTS, data wes noi c	deemed to be quelif	ied es catan							
the state																		

Method Derction Limits Reporting Limits not deneted not insted not unstyred

54460-

Conditional, varioure for impacta lands, order 814-3005-0001 Component of total information, professional and the CVNL limitscond for a second resonance. Rettor of industrial and and a statistication and the second resonance of the second profession for the second profession for the second profession. Estimated concentration, rights blow 400, bot least bab. All.

Deficient Option Opti
Ind ^{QCC} Ind In
MO ² MO
سوالهدی سوالهدی سوالهدی
9 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
82 95 55 25 25 25
ncourse in ad
2

SUMMARY OF SAMPLES COLLECTED - CWIL ORDER R4-2010-0186 YEAR 1 ORGANOPHORUS PESTICIDES NURSERY GROWERS ASSOCIATION LOS ANGELES IRRIGATED LANDS GROUP

Fortholine Methylon		Date 14008 114008 11508 11508 11508 11508 112008 112008 81208 81208 81208 81208 81208 112008 112008 112008 112008 112008	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Chikerpynfras 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35	┝╾╊╎╌┦╿╍┊┥┥┥┥┥┥┥┥	┝━━╋━╋━┼╴╀╼┼═╂═╊╼╋╼┽═╉╶╂┲╌┼═╂╶┼═╊				┠┈╋╌┼╼┼━┽	rphos Fenselfor d nd nd nd			Merphos	Methyl Parathon Rd	Mevingtos nd nd nd	2 Ed at	Temchlon is Block Rd Rd	Tokuthion ad ad	Trichlorona
Allo Allo <th< th=""><th></th><th>1004): 1004): 1005(1) 1005(1) 1005(1) 1005(1) 1005(1) 1005(1) 1005(1) 1005(1) 1005(1) 1005(1) 1005(1) 1005(1) 1006(1)0</th><th>8 5 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9</th><th>8 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</th><th></th><th>544 544 544 544 544 544 544 544</th><th><u> </u></th><th>▋┤┤┤┤</th><th>╏┼┼┼</th><th>╏╌┤╌┤</th><th>╏╴┦╶┤╶┤</th><th>┠┼┼</th><th></th><th>833</th><th>22</th><th>2 2 2</th><th>72 72</th><th>8 2 2 Z</th><th>꽃 ᇩ բ</th><th>5</th></th<>		1004): 1004): 1005(1) 1005(1) 1005(1) 1005(1) 1005(1) 1005(1) 1005(1) 1005(1) 1005(1) 1005(1) 1005(1) 1005(1) 1006(1)0	8 5 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	8 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		544 544 544 544 544 544 544 544	<u> </u>	▋┤┤┤┤	╏┼┼┼	╏╌┤╌┤	╏╴┦╶┤╶┤	┠┼┼		833	22	2 2 2	72 72	8 2 2 Z	꽃 ᇩ բ	5
ALME LALCE-ACMENT 1000		14/05 15/05/	<u>5</u> 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	8 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	│ 	м ла 2.212.1 2.212.1 м м м м л 1.246.6 м м м м м м м м м м м м м м м м м м	22222¥		┝┼╌┼		┥┥┥	$\left \right $		1	2	3 2	2	2 2 2	2 2	<u>,</u>
MIGMANINA 1054 No		1508 1508 1508 1508 1508 1708 1708 1708 1708 1708 1708 1708 17	8 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	84 151.6 151.6 151.6 150.1 150.1	╄╴ ╿╺┋╺┥╺┥╺┥╺┥╺┥╺┥╺┥	а ла 2,2,2,1,2,1 2,2,2,1,2,1 2,2,2,4,2,1 2,2,4,6,1 2,3,6,6,0,2,1 2,3,6,6,0,1 2,3,6,6,0,1 2,3,6,6,0,1 2,3,6,6,0,1 2,3,6,1,1 2,4,6,1,1 2,5,6,1,1,1 2,5,6,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1	55233 7		$\left \cdot \right $	$\left \right $		┝		,		12		Ŗ	2	2
Anth Mutchekolysy 1930 End		1508 1508 15108 15	x x x x x x x x x x x x x x x x x x x	130.1 130.1 130.1 130.1 130.1 130.1		2,211,21 2,211,21 2,211,21 2,211,21 2,212 2,215	צצצצ	\vdash	┢	ļ				2	5		z			
Cold Lindenkontist 1566 Mod		1002(1 1002(1) 1000(2)	3 5 5 5 8 8 2 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	151.1 151.6 151.5	╶┤╶┨╶┨╶┥╶┥╶┥╺╿╺╿┥╹	2.212.1 2.212.1 nd nd nd nd nd nd nd nd nd nd nd nd nd	2 3 2					╞	-	2	P	P	Z	P	2	ġ
ALMONOMAT 17301 Not 1311 Not Not </td <td></td> <td>800.001 800.0000 800.0000000000</td> <td>2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</td> <td>151.6 ad ad ad t 130.1</td> <td>┝╺┥╺┧╺┥╺┊╶┊╺┥╹</td> <td>2.2.12.1 nd nd nd nd nd nd nd nd nd nd nd nd nd</td> <td>2 2</td> <td></td> <td>-</td> <td>\vdash</td> <td></td> <td><u>-</u></td> <td></td> <td>5</td> <td>말</td> <td>2</td> <td>¥</td> <td>pa</td> <td>Ē</td> <td>Þ</td>		800.001 800.0000 800.0000000000	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	151.6 ad ad ad t 130.1	┝ ╺┥╺┧╺┥╺┊╶┊╺┥╹	2.2.12.1 nd nd nd nd nd nd nd nd nd nd nd nd nd	2 2		-	\vdash		<u>-</u>		5	말	2	¥	pa	Ē	Þ
Constr Lundsciencity 1/2010 num		800.EC1 90.252 8	<u>8</u> 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	8 명 명 명 명 명 명 명 명 명 명 명 명 명 명 명 명 명 명 명	<u>╶┤╶┤╶┤╶┤╶┤╶┤</u> ╝ <mark>┊</mark> ┤╶┤╶┤╶┤	ма ма 1133666 в ма 1133666 в ма ла ла ла ла ла ла ла ла ла ла ла ла ла	¥	-	┝	-	-			2	밑	Z	2	P	2	P
Constraint Constra		123.08 12	<u> </u>	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	╶┼╌┊╎┼╌┊┥╩┊┝┥┝┼┝	04 14 15 15 15 15 15 15 15 15 15 15 15 15 15			\vdash		-	$\left \right $	-	2	멑	2	z	P	2	P
ATTO MATCO		174005 172005 172005 172005 172005 172005 172005 1720	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		╶┤┧╌┤┤╩┞┝┼┝┼┝┝	ы ма ма ма ма ма ма ма ма ма ма ма ма ма	z		-			┝	-	P	밑	z	ų	P	5	P
Anitely Luncescanates 132 red		17.2408 17.2508 8.1208 8.1208 8.1308 9.2308 9.2308 11.2608 11.2608 11.2608 11.2608	<u> </u>	22 22 32 22 22 22 22 22 22 22 22 22 22 2	└ ╽╌╎┤╝╎┝┤┝╎╴	nd nd 13586.6 13586.6 13586.6 13586.6 132.6 132.6 132.6 132.6 132.6 132.6 122.7 127.7 17.7 1	¥			-	-	\vdash	-	5	P	2	P	P	P	2
Alteriel		8/12/05 8/12/05 8/12/05 8/12/05 8/12/05 9/23/05 9/23/05 11/26/05 11/26/05 11/26/05 11/26/05	22222222222	전 전 3월 2월 2월 2월 2월 28 (E) (E) (E) (E) (E) (E) (E) (E) (E) (E)	┟╌┼┤╩┞┼╌┼┼┼╴	nd nd 13586.8 ¹⁰ nd nd nd nd	¥	-	┝		-	╞	╞	2	P	F	7	1	2	1
ACC ID MAXIMAN S120 Not MAX MAX <th< td=""><td>┠═╏╵╴╡╶╏┈╏╶┥╶┨┈╡┈╡╸╡╸╡╸╡╸╡╸╡╸</td><td>8/12/05 8/12/05 8/11/05 8/12/05 8/10/0</td><td>2 1 2 2 2 2 2 2 2</td><td>22 25 25 25 25 25 25 25 25 25 25 25 25 2</td><td></td><td>nd 1558.9⁰⁰ 0.02.0 1558.6¹⁰ 1558.6 1 1558.6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td><td>Ę</td><td>┢</td><td>┝</td><td>╞</td><td>╞</td><td>┝</td><td></td><td>2</td><td>2</td><td>F</td><td>1</td><td>1</td><td>2 7</td><td>2</td></th<>	┠ ═╏╵╴╡╶╏┈╏╶┥╶┨┈╡┈╡╸╡╸╡╸╡╸╡╸╡╸	8/12/05 8/12/05 8/11/05 8/12/05 8/10/0	2 1 2 2 2 2 2 2 2	22 25 25 25 25 25 25 25 25 25 25 25 25 2		nd 1558.9 ⁰⁰ 0.02.0 1558.6 ¹⁰ 1558.6 1 1558.6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Ę	┢	┝	╞	╞	┝		2	2	F	1	1	2 7	2
Control Multicational B113 Multicational	╽╌╷┥╶╽┈╽╶╷┥╼┥╼┥╼┥╸╽╍┥┥┥	80/13/2 80/12/2 80/12/2 80/12/2 80/22/11 80/32/11 80/32/11 80/32/11	1, 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	┼╩┠┼┼┼┼┼	13586.9 ^{01 QLTT} 13586.8 ¹⁸ nd nd 32.6	7	╀	╞	-	╀	╀	╀	2		2	2	2	2 7	
Clickley Intended (No. No.	┽┈╂┅╏╴┼╍╂╼┽╼┿╼╂╍╍┽╼┿	80/3/2/11 80/2/2 80/2/11 80/2/11 80/3/11 80/3/11 80/3/11	2 2 2 2 2 2 2	pu pu Du U.OE(13586.8 ¹⁸ nd 32.6	ł	+	+	+-	╀	+	ŀ	2 1	2	2 1	- 1	2 1	2 1	2
Analy is indicatively is provide indicatively sprong indicatively is provided indicatively indicatidatively indidatively indicatively indicatively indidatively indi	┼┈┼╶┼╌┽─┼─┼╾┼╾┽╾┽	9.23/08 9.23/08 9.23/08 11/26/08 11/26/08 11/26/08 11/26/08	2 2 2 2 2	2 2 2 C	2 2 2 2 2	5 P P 2	2 2	╀	+	+	╉		-		2	2	2	2	2	2
Witten Luttice/Kin/Lip 77100 Min	-+ +-+-+-+-+-+-+++++++	923/08 923/08 923/08 90/02/11 90/02/11 90/02/11 90/02/11	2 2 2 2 2	2 2 2	말말말맞	2 2 2 2	<u>,</u>	+	╉	+	+	+	-	¥	5	P	P	p	ş	P
Market Constraint Yante Market Mark	-+-+-+-+-+-+-+-+	9.2506 11/26/08 11/26/08 11/26/08 11/26/08	2 2 2 2	201	일 같 않	ខ ខ្លួ	2	+	+	-	+	+	-	y	Ę	uq	2	P	P	P
Answers Answers <t< td=""><td>╾╉╼┽═┿═╋═┽═┿═╋</td><td>11/26/08 12/26/08 12/26/08 11/26/08</td><td>2 2 2</td><td>1.91</td><td>고 고</td><td>2 2 2</td><td>5</td><td>+</td><td>+</td><td>-</td><td>-</td><td>+</td><td>_</td><td>5</td><td>ş</td><td>22</td><td>P</td><td>P</td><td>- pu</td><td>pu</td></t<>	╾╉╼┽═┿═╋═┽═┿═╋	11/26/08 12/26/08 12/26/08 11/26/08	2 2 2	1.91	고 고	2 2 2	5	+	+	-	-	+	_	5	ş	22	P	P	- pu	pu
Marketion Marketion <t< td=""><td></td><td>80.9211 80.9211 80.9211 80.9211</td><td>밑밑</td><td></td><td>Ŗ</td><td>2</td><td>z</td><td>-</td><td>-</td><td></td><td>_</td><td>_</td><td>_</td><td>P</td><td>P</td><td>2</td><td>P</td><td>P</td><td>P</td><td>þ</td></t<>		80.9211 80.9211 80.9211 80.9211	밑밑		Ŗ	2	z	-	-		_	_	_	P	P	2	P	P	P	þ
AF 14 LULG-NGA 1141 11/2668 Ind Not Ind Not		1:76/08	2	P		2	¥	_	-			_	_	¥	P	pu	p	P	z	2
upplicate LLLG-SNGADUP 1/2008 nci		11/26/08	!	8	2	8	Pu	-	_	_		_	_	72	Z	pr	2	2	ß	2
AF 124 LALG-NGA 124 11/2600 Ind	╺╶┼─┼─╋	11/26/08	8	y	ß	pa	pa	_					_	R	8	P	ş	8	z	P
Alto 11 Lul G-MAD <		11/26/08	y	pu	Pe -	2	Pa	-		_	_	-		P	P	2	¥	3	P	2
A * 110 I.M.GModel 11d Matc. Model 11d <	-+		겉	P	þ	8	2	-					_	5	P	8	¥	Ā	5	P
Are 1910 LULG-MCA 190: 11/2600 Ind red ind red red </td <td></td> <td>11/26/08</td> <td>P</td> <td>8</td> <td>P</td> <td>pa</td> <td>P</td> <td>-</td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td>8</td> <td>5</td> <td>2</td> <td>밑</td> <td>P</td> <td>5</td> <td>R</td>		11/26/08	P	8	P	pa	P	-				-	-	8	5	2	밑	P	5	R
AF 31 LuliG-MAX3151 11/2668 Ind noit	-	11/26/08	P	ş	8	Pu	Pt	_			-	-		z	5	P	Ę	P	2	Pe
A F 10 LMLG-NGA 154 15.219 (e) red 91 red	-+	11/26/08	y	ş	8	pa	þ		_	-		-	-	R	2	pu	멷	12	2	P
A # 1/3 Lunc.Not 1/3 1/2 1/2 Lunc.Not 1/3 1/2 </td <td></td> <td>12/15/CB</td> <td>y</td> <td>90.2</td> <td>¥</td> <td>pd.</td> <td>2</td> <td></td> <td></td> <td> -</td> <td>-</td> <td> -</td> <td>-</td> <td>P</td> <td>5</td> <td>2</td> <td>ş</td> <td>2</td> <td>2</td> <td>2</td>		12/15/CB	y	90.2	¥	pd.	2			-	-	-	-	P	5	2	ş	2	2	2
A 119 LULG-NGA 108-2 121/306 nd nd<		12/15/08	P	21	pa	98.5	R	-	_					Pe	P	2	2	8	¥	2
A 110 LULG-MAC110-3 13/15/06 Ind Mod	-+	12/15/08	P	pu	pe	ри	pu		-		-	┢		5	Ę	P	¥	8	P	R
AF (1) LULG-MCA 31:3 121/3068 red etc red	-+	12/15/08	P	ß	P	3 5 2	pr		-			┝		8	5	2	뮏	8	5	2
A # 14 LALG-NGA 142: 17:15/08 ind ind <td>-+</td> <td>12/15/08</td> <td>5</td> <td>4.5</td> <td>8</td> <td>pu</td> <td>pu</td> <td></td> <td></td> <td>_</td> <td>-</td> <td>-</td> <td>_</td> <td>8</td> <td>5</td> <td>19</td> <td>P</td> <td>P</td> <td>P</td> <td>z</td>	-+	12/15/08	5	4.5	8	pu	pu			_	-	-	_	8	5	19	P	P	P	z
A 1313 L-MI-G-MCA 1395 12:15/08 M Md Nd	-+	12/15/08	¥	ą	ą	2	2	_	-		-	-		뮡	2	Pe	P	P	Þ	P
A 1713 LALG-NGA 1124 121/15/06 Ind	-+-	12/:5/08	z	p	F	B	Я	-		_	_			P	P	P	P	72	2	P
Pricere LALLG-MAG LPP 12/15/06 Ind	_	12/15/06	P	P	ħ	z	Z	-	_		_		_	٩	P	2	Ş	i,	2	æ
Arrisket Livit-Workski 2 12/15/06 Ind Ind <td>-+-</td> <td>12/15/06</td> <td>Ŗ</td> <td>P</td> <td>2</td> <td>¥</td> <td>P</td> <td>-+</td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td>P</td> <td>ł</td> <td></td> <td>2</td> <td>P</td> <td>2</td> <td>5</td>	-+-	12/15/06	Ŗ	P	2	¥	P	-+	_					P	ł		2	P	2	5
Arrisk Ind.Chr. Not. 18(3): 1:21/309 bid	-	12/15/08	2	8	8	P	ъ	+	+	_	_			5	P	P	۶	ß	R	2
Current control Current co	-+-	12/15/08	8	¥	¥	2	5	_	4	-	_	-	_	z	5	Pu	ž	2	pu	2
Letter Limits ni 25 ni 100 ni ni ⁽¹⁾ ni ⁽¹⁾ ni ⁽¹⁾ ni ⁽¹⁾ ni ACUL 2 1 1 2 3 3 1 2 1 ACUL 2 1 1 2 3 3 1 2 1 ACUL 2 1 2 3 3 1 2 1 2 ACUL 4 2 1 2 4 3 1 2 4 ACUL 2 4 2 3 3 1 2 4 ACUL 4 2 4 2 4 3 4 ACUL 4 2 3 3 1 2 4 ACUL 4 2 4 2 4 3 4 ACUL 4 2 4 2 4 4 4 ACUL <	1	12/15/08	2	590.9	2	<u>.</u>	2			_	-	_	_	Z	2	pu	P	P	P	ğ
MCUL 2 1 1 2 3 3 1 1 2 1 R1 1 2 2 4 5 5 5 2 4 R1 2 2 4 5 5 5 2 4 R1 2 2 4 5 2 4 5 2 R1 2 2 4 5 2 4 5 4 R1 2 2 4 5 2 4 5 4 R1 2 2 4 5 2 4 5 4 R1 2 4 5 2 4 5 4 R1 2 4 5 2 4 5 4 R1 2 4 5 4 5 4 5 R1 2 4 5 4 5 4 5 4 R1 2 4 5 4 5 4 5 4 R1 2 4 5 4 5 4 5 4 R1 2 4 5 4 </td <td></td> <td>Ì</td> <td>2</td> <td>\$</td> <td>2</td> <td>8</td> <td>7</td> <td>_</td> <td>-</td> <td>_</td> <td>_</td> <td>╡</td> <td></td> <td>7</td> <td>(I) (W</td> <td>le [</td> <td>(c) ID</td> <td>E]</td> <td>E</td> <td>ľ</td>		Ì	2	\$	2	8	7	_	-	_	_	╡		7	(I) (W	le [(c) ID	E]	E	ľ
R1. 4 2 2 4 6 5 2 4 2 2 4 response in terport in terport in terport in terport in terport 1 2 4 5 5 4 response in terport 1 2 2 4 6 5 2 4 2 4 response in termost 1 1 1 1 1 1 1 1 1 response in termost 1 1 1 1 1 1 1 1 1 1 response in termost 1 1 1 1 1 1 1 1 1 1 response in termost 1 1 1 1 1 1 1 1 1 1 response in termost 1 <	MOL		~	-	-	2	~	ŕ	-	~				-	-		•	~		-
russon er reporte ar kongrue par ler (ogf.). Rundu ohort C'hull und e Arth guddong are pozned in Khol Frenoen in BOLD indekan erstanned resonninka. All oho fransen underen papaga dar su er feneral ha Codesand surer fer megnet (and, eder RA 2004) Hered Career Reported Lane Reported Lane Reported Lane	RI.		-	~	~	~		\$	2 2	-	2	-	•	~	2	16	12	•	\$	~
Concernations: Francis manufactures, events for ATA-2018 Mile Spate or interporter manueres na au el creana due te manu menderese. The accounter method basis polition of Medical Concernations Reported Lana Intered Concernation Fred Depictere APD 21% Concernation of the method for Langue dual na manufactor and under Landouteres of the method for the method for the method for the method	Ститькова их пропос и яшодным ра За	r (ugʻi) Ranis r	bort CWI, Limi	u or ALB guideling a		N.D. Feetinger in B	IOLD Indexes		ém. Al: chei face	out an for the	or the property of the second	No: depend to b								
Approval Linner Linners concrust Field Dapican JUD 2:1% of her		eć lands, order PR4	100-534	2		puise or sumagne con	mpound money	NE OU OF CONCIDENT	the to mark shering	the store	ere method blank spilu	1 e 0:	Spike nocoven, med k	UD corres limes	insu (detriou oj	of (son Cre pursuant	cancentration is 0	te tangie example.	g the spike cono	otte: on
		Concernance of	ļ		2			NUTLAT LA LAN		without further cla	of cabo									
												õ	The constraints RPD area	or of control of	aris a bronze	and stands have				

TABLE 11, cont

SUMMARY OF HISTORICAL SAMPLES COLLECTED UNDER CWIL ORDER R4-2005-0080 ORGANOPHOSPHORUS PESTICIDES NURSERY GROWERS ASSOCIATION LOS ANGELES IRRUGATED LANDS GROUP

TABLE 11, cont

SUMMARY OF HISTORICAL SAMPLES COLLECTED UNDER CWIL ORDER R4-2005-0080 ORGANOPHORIS FESTICIDES NURSERY GROWERS ASSOCIATION LOS ANGELES IRRIGATED LANDS GROUP

imates. All other focondet art for neisenco Cercourteinou ar reported in Nongerra per laver (ngf.). Realina alson ("Part). Larras art presented in BOLD" Footenan in BOLD neucour conneued CVIL Constanted insure fra imgened anda, ever First 2005-000 December Main Marin Schu Dapatean FIVD on of Lanes and and alson. ឪ្

י לנונו אש אמו להכידכל וכ לא קארו הכל א כרו א

SUMMARY OF SAMPLES COLLECTED - CWIL ORDER R4 2010-0186 YEAR 1 PYRETHROID PESTICIDES NURSERY GROWERS ASSOCIATION LOS ANGELES IRRIGATED LANDS GROUP

Niction Niction Sinction		Date							Pyrethroid Pesticides	sstickdes							Sama's
31111 64 23 64 64 64 64 64 64 74 64 74			Allethrun	Bifenthrin	Cyfluthran	C) permethun	Deltamethran	Dichloran	Esfenvalera:e	Fervalcrate	ICyhalothum	Pendimethalin	Permethrun	Prallethrin	Sumithra	Telfuthrin	Notes
3 32(1) 10 84 10 78 ¹⁰ <td>LAILG-NGA4-5</td> <td>3/1/11</td> <td>Ā</td> <td>ជ</td> <td>P:</td> <td>Þ</td> <td>2</td> <td>5</td> <td>P</td> <td>2</td> <td>2</td> <td>7</td> <td>110051</td> <td>7</td> <td>7</td> <td></td> <td>Į</td>	LAILG-NGA4-5	3/1/11	Ā	ជ	P:	Þ	2	5	P	2	2	7	110051	7	7		Į
3 32/11 M 480 ⁴¹ M M 480 ⁴¹ M M M 480 ⁴¹ M M	LAILG-NGA124-6	3/21/11	2	88	F	e. 92	12	2	ş	! 7	2		M a	8 1	2	2	3
3(2)(1) nd nd </td <td>LAILG-NGA 150-5</td> <td>11/12/6</td> <td>P</td> <td>480^{KI}</td> <td>Ę</td> <td>2</td> <td>E</td> <td>2</td> <td>1</td> <td>2</td> <td>ş Ş</td> <td></td> <td>2</td> <td>2 1</td> <td>2</td> <td>2 ·</td> <td></td>	LAILG-NGA 150-5	11/12/6	P	480 ^{KI}	Ę	2	E	2	1	2	ş Ş		2	2 1	2	2 ·	
0 12111 10 74 10 74 10 74 10 1	1-AILG-NGA 19-6	3/23/11	뮏	P	5	5	5	E	2	2	2 7	a o	,	2 1	2		
	LAILG-NGA-DUP	11/12/6	2	77	8	57	2	8	2	2 2	2 2	,, 11	2 7	2 7	2	2 1	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	LAILG-NGA-EB	3/21/11	P	pu	¥	z	2	8	F	2	? ?	; 7	2	2	2		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	LAILG-NGA- FB	3/21/11	Z	5	멷	8	Я	5	2	2	2 2	2 7	8 7	2 7	8 1	5	
	LAILG-NGA168-6	3/17/12	믿	3	2	ş	2	10-52 Pu	7	1	2	2	2 7	2 7	2	2	1
	LAILG-NGA31-4	3:17/12	R	29	5	Þ	8	13-SB	2	2	2 2	• #	2 7	2 7	2 7	2 7	3
	LAILG-NGA162-1	3/17/12	22	=	8	2	230	nd ^{es.co}	2	8	2 2	8 2	2 2	2 7	2 7	2 1	8 3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ILG-NGA64-3	3/17/12	Ą	ß	Þ	5	'n	0-Sabo	2	2	2	2	2 7	2 7	2 7	8 1	*
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	LAILG-NGA-DUP	3/17/12	P	Þ	z	5	2	(0.581	5	! 7	1	: ;	2	2	2	2	7
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	VILG-NGA-EB	3/17/12	Б	5	2	P	P	10 M	2 2	ş 7	2	2	2 1	2	2	2	3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	JI.G-NGA- FB	3:17/12	2	P	8	P	Σ	2	2	2 7	2 7	2	2	2	<u>ء</u>	2	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	AILG-NGA4-6	3/25/12	10-54 ^{Ju}	- 0 -	2	2		2	2	2	2	2	2	2	ž	¥	S4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	I C. NCA 120 1	-115UE	19-58.		2	2	2	2	Þ	P	ā	nd and	8	P	2	10 -6 8-5-0	3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11 C NO 4126 2	21/07/0	2 2	80	2	ę	Ā	P	ā	P	Ā	11 10-51	Ld ^{BS-0)}	pu	Þ	nd ^{85.00}	3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	I C NC ASTO S	21/27/2	5	, , , ,	2	5 5	ß	P	B	ā	Ŗ	35840	nd ^{ns-ec}	P	P	nd ⁸⁵⁻⁰¹	3
3/25/12 md ^{40/4} 12 md	11 C 11 C 1 C 1 C 1	71/67/6	2	P	Ā	5	2	8	P	P	P	2 7 ⁸⁵⁻⁶¹	Undate of	2	Z	ndaSeu	3
J25/12 md ²⁰ -0 rd	NTG-NGA-DUP	3/25/12	nd ^{ia} ta	~	2	Ä	P	2	2	뉟	Þ	4785-00	1308540	2	5	a se pu	s.
325/12 nd ^{64,50} rid nd	ALLG-NGA-EB	3/12	a angeu	8	2	Z	P	P	2	R	ž	Dd ^{as-sa} Du	nd ⁵⁵ en	y	P	10-58	3
ni ni<	NLG-NGA-FB	3/25/12	nd ^{RS-43}	P	þ	Я	¥	2	¥	Z	2	10-58h	0-58-50	q	1	(3-54)	
085 079 083 066 19 080 098 098 12 050 50 22 24 20 20 20 20 20 20 20 20 20 09 20 07 0 00 07 0	VIL Limits		12	10	Ē	72	7	7	2	72	Ē	1	6	2 7	2		
	MDL		58.0	67.0	0 83	0 66	6[080	860	86.0	2	0 5 0	¢,		-		
	RI.		2.0	2.0	20	20	20	20	20	50	20	2.0			: =	5	

sola is BOLD indicate estimated concentration AI other footneers are for reference purposes, data was not deemed to be quairified at carm iner (rg/L). Results above CW31, Limits are nerogens per

EI Se BS-L A-Dis A-Dis Conditional server for ingenet leads, odden 18.4.2003-0230 Estimated concernitions. Field Sublicate (RP3) >55% and district Marketined And districted Marketined for his sources on the CM21, the US EPA has use request rife benchmark for his sourcesticant. Serv. Fight 8 รัย*ะ* รอ

The concertation indicated for this subtration are similar shore the substation singe. The substation recovers for this semale reacted station area to possible substation in effect. The AUD station exceeded the CC cance limits, however, how proceed incomes successing for the CC batch were accepted based on the percent recoverts and or othe acceptance CC data

The receivery of the analyse in the BSLCS was before all counds tradie is access. The receivers of data stackers the BSLCS was acceded limit. The summain reaching teach are sociated BSLCS and us NS and MSD that meen BS calore Low receivers on BS and table received in BSL Moviewed LL co-that are accessed to receive and are samples were new ND or veloped vers had require

Name Desc Control Desc	į								Å	Prrethroid Pesticide	ŗ					ſ
Machine Justication <	910	a and mes	Uate	Atlethun	Bifenthrin	Cyfluthrin	Cypermethein	Danitol	Deltamethrun	Esfenvalerate	Fenvalerate	Floval:nate	L-Cyhalothrin	Permethrin	Prallethrin	Resmethrun
Matrix	NGA #110	LAILG-NGA110-1	1/4/08	Ą	P	P	P	ß	'n	P	Z	Z	P	2	2	2
Matrix Line No. No	NGA #189	LAILG-NGA189-1	1/4/08	2	P	5	P	P	ĸ	2	P	2	P	2	2	2
Mach 1 Underweiten 1050 etc 1070 644 641	NGA #19	LAILG-NGA19-3	1/5/08	2	ß	P	5	68	8	8	'n	2	2	ā	2	2
Martin Underweitig 1000 etc etc etc	NGA #124	LAILG-NGA 124-3	80/S/1	ş	5815	8	P	1,207 20	\$ 99	2	멷	55	2	멷	z	2
MARINE Unicondustry 10301 etc 1111 111	NGA #183	LAILG-NGA 183-4	1/5/08	P	ş	ß	5	¥	Þ	P	3	2	ž	Ā	P	2
Microli Lunckowing Cold	NGA #1	LAILG-NGA4-2	1/23/08	Ā	P	:58	2	1,178 40	1571	pu	2	136	24.5	ž	Pu	2
Michole Undeficients	NGA #53	LAILG-NGA53-2	1/23/08	Z	nd	P	8	P	Ą	P	2	2	ž	2	2	P
Montring Data Montring Montring <th< td=""><td>NGA #64</td><td>LAUG-NGA64-1</td><td>1/23/08</td><td>2</td><td>30.2</td><td>151</td><td>8</td><td>12</td><td>8</td><td>PE</td><td>2</td><td>Z</td><td>P</td><td>5</td><td>P</td><td>8</td></th<>	NGA #64	LAUG-NGA64-1	1/23/08	2	30.2	151	8	12	8	PE	2	Z	P	5	P	8
Action Control Control <th< td=""><td>NGA #130</td><td>LAILG-NGA130-3</td><td>1/24/08</td><td>pu</td><td>1434</td><td>42</td><td>S</td><td>33.2</td><td>P</td><td>8</td><td>P P</td><td>**</td><td>2</td><td>P</td><td>2</td><td>2</td></th<>	NGA #130	LAILG-NGA130-3	1/24/08	pu	1434	42	S	33.2	P	8	P P	**	2	P	2	2
CMC/101 CMC/01014	NGA #182	LAILG-NGA182-2	1/24/08	2	P	Ŗ	5	8	P	ā	P	2	Σ	2	2 2	2 7
Control Contro Control Control <th< td=""><td>NGA #168</td><td>LAILG-NGA168-4</td><td>1/25/08</td><td>Ę</td><td>1879</td><td>18</td><td>2</td><td>P</td><td>P</td><td>P</td><td>2</td><td>2</td><td>2</td><td>5 2</td><td>2</td><td>2 3</td></th<>	NGA #168	LAILG-NGA168-4	1/25/08	Ę	1879	18	2	P	P	P	2	2	2	5 2	2	2 3
Motta Multication Multication <th< td=""><td>NGA # 19</td><td>1.A11.G-NGA19-4</td><td>8/12/08</td><td>Z</td><td>P</td><td>5</td><td>3</td><td>23</td><td>2</td><td>멷</td><td>5</td><td>86</td><td>2</td><td>1</td><td>2 2</td><td>2</td></th<>	NGA # 19	1.A11.G-NGA19-4	8/12/08	Z	P	5	3	23	2	멷	5	86	2	1	2 2	2
Distance Unition (1) (1)	NGA # 4	1.AILG-NGA 4-3	80/61/8	į	43 8M4 02.07	e pu	i,	23,704 601 02.08	147 344 02.57	ł	2	0110 TAKE C	ert9 901	41-0-10 L 83 E	1	2
Control Contro Control Control <th< td=""><td>Duplicate</td><td>LAILG-NGA-DUP</td><td>8/13/08</td><td>ą</td><td>305.57</td><td>4 97</td><td>Ę</td><td>77368 5 PB</td><td>305.9"</td><td>2</td><td>2</td><td>1419617</td><td>17 478</td><td>61 4 202 I</td><td>2 2</td><td>2 3</td></th<>	Duplicate	LAILG-NGA-DUP	8/13/08	ą	305.57	4 97	Ę	77368 5 PB	305.9"	2	2	1419617	17 478	61 4 202 I	2 2	2 3
Displace Lundle-Gold, Displace Sold	NGA # 3:	LAILG-NGA 31-1	9/23/08	ри	Z	¢3	5	219	2	8	ų	2	14		3 2	2 2
Control Control <t< td=""><td>Duplicate</td><td>1.AILG-NGA-DUP</td><td>9/23/08</td><td>P</td><td>Ŗ</td><td>63</td><td>Б</td><td>63.6</td><td>P</td><td>Γ</td><td>z</td><td>Б</td><td>26</td><td>2</td><td>2</td><td>2</td></t<>	Duplicate	1.AILG-NGA-DUP	9/23/08	P	Ŗ	63	Б	63.6	P	Γ	z	Б	26	2	2	2
(60.710) MUC-MGA (10) (1)700 MC (3)	NGA # 19	LAILG-NGA 19-5	11/26/08	Nd ^{k4}	34 9 44	1, X	#2 1	1,813 444	٦. چ	1	3 3/3440128	274 a M4	10.24-7	10THE CY	2	e st
(67.118) 100.664 10	NGA # 210	LAUG-NGA 210-1	11/26/08	22	1345	15.6	233	929	Б		3	5	761	2	2	2 2
Diplicate LullGMGA1017 11/GMGA 11/GMGA112 11/GMG112 11/G	NGA # 184	LALG-NGA 184-1	11/26/08	뮏	P	Æ	ß	2	P	Γ	Ę	P	1	2	2	2
(6) (A) (A) (A) (B) (A) (A) (B) (A) (B) (B)	Duplicate	LAILG-NGA-DUP	11/26/08	P	Z	ą	ъ	5	2	20	n 60	2	60"	r P	2	2
$ \begin{array}{{ $	NGA # 124	LAILG-NGA 124-4	11/26/08	P	4,4201	650.2	Б	1216	26.6	-60	10, 10	2,309.8	205	2	2	2
GM 180 LMIG-MAX 1304 117-001 Rd 803 Rd 101 Rd 700 21 ^m 109K2 700 710 GA 131 LMIG-MAX 1304 117-001 Rd 801 701 101 701 700	NGA #31	LAILG-NGA 31-2	11/26/08	9	33.9	23.6	Б	382 1	2	8	436	Ŗ	1637	8	12	2
(GA 15) LMLG-KGA 1593 11/2663 ind 601 73 64 72 64 72/37 10/97 760 ind 64 GA 18) LMLG-KGA 1594 11/2680 ind 801 73 1 ind 80 760 ind 80 760 ind 80 760 ind 80 76 <td>NGA # 130</td> <td>LAILG-NGA 130-4</td> <td>11/26/08</td> <td>2</td> <td>4075</td> <td>R</td> <td>2</td> <td>180.5</td> <td>2</td> <td>Æ</td> <td>15,10</td> <td>C 02</td> <td>212</td> <td>1.0%2</td> <td>2</td> <td>2</td>	NGA # 130	LAILG-NGA 130-4	11/26/08	2	4075	R	2	180.5	2	Æ	15,10	C 02	212	1.0%2	2	2
NGK # 25 LUIG-NGA 351 11/2606 nod 2014 123 0 714 nod nod 667 nod 667 nod nod <td>NGA # 150</td> <td>LAILG-NGA : 50-3</td> <td>11/26/08</td> <td>pu</td> <td>8.0313</td> <td>겯</td> <td>y</td> <td>P</td> <td>2</td> <td>32</td> <td>64</td> <td>2,238.7</td> <td>26 01</td> <td>780.0</td> <td>12</td> <td>2</td>	NGA # 150	LAILG-NGA : 50-3	11/26/08	pu	8.0313	겯	y	P	2	32	64	2,238.7	2 6 01	780.0	12	2
(GA 15) LMLG-N(A) 1964 NC 8,2014 6,41 NC 6,642 NC 2,116.6 NC GA 18 12 LMLG-N(A) 1345 12/1508 NC 17,802 200 NC 12/15 12/15 NC 12/16 12/16	NGA # 25	LAILG-NGA 25-1	11/26/08	Pr Pr	P	30.1	12.3	0 7).EB	P	z	Þ	2	89.67	72	8	1
	NGA # 150	LALG-NGA 150-4	12/15/08	2	82,902 4	6 63	519	34.1	ų	48	63	6.642.4	2	21166	2	2 2
IOD Matter Lull CNCAL 1832 12/15/06 Iod	NGA # 124	1.A11.G-NGA 124-5	12/15/08	P	17.280.2	2201	2	346.4	95.7	د ۶٬	14,0	1 234 8	1000	1 83	1 2	2 2
GGA #10 LMLC-MGA 1192 121508 rid	NGA # 189	LAILG-NGA 189-2	12/15/08	Þ	Z	뉟	ų	14 0	5	2	1 0.	4 4 45	2	1	5 2	2
	NGA # 110	LAILG-NGA 110-2	12/15/08	PI:	55.2	z	z	P	Ę	2	05128	11 5 11	2	1 2	2 7	2 2
IGA # 14 I.ALIG-NGA 1942 1215/06 Ind 262 Ind Ind 05' 20 ^{IIII} Ind 20 ^{IIIII} Ind 20 ^{IIIII} Ind 20 ^{IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII}	NGA # 31	LAILG-NGA 31-3	12/15/08	ß	P	2	2	48.5	P	2	19160	z	328.7	2	2	2
IGA # 130 LAILG-MGA 1055 121508 nd 101.6 nd 28 nd 210.7 nd <	NGA # 184	LAILG-NGA 184-2	12/15/08	pu	262	ų	R	Z	2	05'	2 0 ¹³	5	2057	Ę	2	2
	NGA # 130	LAILG-NGA 130-5	12/15/08	R	1018	Ŗ	¥	35.6	¥	8	뮏	28.8	ž	210.7	Å	Ę
Depinder MAIG-NGA-DUP 1215/08 nd nd 11 ¹ nd 00 ¹ 12 ¹ nd	NGA # 178	LALLG-NGA 178-1	30/51/2;	P	وم	Я	Z	14'	_{ن0} ور	0.8'	101 101	â	1 7)48.58	R	ł	i,
With the state of the	Duplicate	LAILG-NGA-DUP	12/15/08	Ā	R	2	z		8	96'	1 1;1	3 C ^{EBJTE}	ъ	P	P	P
No. Nucl. Vert. III (2) No. 1/3/32 3/3 No. No. </td <td></td> <td>LAILG-NGA 64-2</td> <td>12/15/08</td> <td>2</td> <td>813</td> <td>2</td> <td>Þ</td> <td>269</td> <td>ą</td> <td>-8</td> <td>¥</td> <td>'n</td> <td>ž</td> <td>P</td> <td>2</td> <td>Ŗ</td>		LAILG-NGA 64-2	12/15/08	2	813	2	Þ	269	ą	-8	¥	'n	ž	P	2	Ŗ
CVA. F LAULU-MGA 44 12/15/06 nd 3115 1336 931375 4233 356 nd 13,87 c45 82,44 nd CW1L Limits n1 CW1L Limits 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 RUL 2 2 2 2 2 2 2 2 2 Rutures unterprotein in nogrammige inter (w13). Revine an presenteir at BOLD Features in BOLD Bacteristies. All Objecters, data was represended as presented in species. At a set of consolidation and constrained intervention. For displaced as presented in species. At a set of consolidation and constrained intervention. For displaced as presented intervention. Reviewed and Reviewed as presented as	10% = 10%	LAILG-NGA 168-5	12/15/08	ß	1,333.2	319	2	0.8	Å	P	ą	9 3 ^{tere}	07:00	2	Я	¥
CML LITTIS N N1 N1 <td>NGARA</td> <td>LAILG-NGA 4-4</td> <td>12/15/08</td> <td>72</td> <td>3115</td> <td>1315</td> <td>1336</td> <td>93,1375</td> <td>452.3</td> <td>36</td> <td>P</td> <td>1.547</td> <td>445</td> <td>\$24.4</td> <td>P</td> <td>¥</td>	NGARA	LAILG-NGA 4-4	12/15/08	72	3115	1315	1336	93,1375	452.3	36	P	1.547	445	\$24.4	P	¥
MDL 05 05 05 05 05 05 05 05 05 5 RL 2 2 2 2 2 2 2 2 5 5 International annel for magnitum partier (reg). Themas presenting in the regulation of the spatial partier (reg). The spatial partier (reg). 2 2 2 2 2 5 International annel for magnitum partier (reg). Themas presenting in the regulation of the spatial partier (reg). The spatial partier (reg). The spatial partier (reg) with partier (reg)			Ī	2	2	5	7	ਟ	7	L.	72	Ē	2	e Te	2	7
RL 2 2 2 2 2 2 2 2 2 2 2 Unroust or reports in rangement and for all operating and the rest of the relevance of the relevanc		MDL		05	0.5	0.5	0\$	05	05	05	0.5	05	05	s	05	ľ.
urecos ar reports a navganar pa inte (rg1). Reuta akore CNL Lunta ar presente a BOLD Featereria a BOLD addeter entantes de recente auropas econosti ar for reference, quie vai ne dernecti o le qualifida at entan Constructione entendence entendence entendence entendence entendence entendence entendence entendence. The seconder mental biol spice compande van in Example entendence entender entendence entende Example entendence entende Example entendence entendence entendementence entendence entendencentence entendence entendence ent		z.		2	2	~	7	2	~	2	2	20	7	8	~	22
Conditional warw for impart lands, order R4: 2003-0000 Me Suits ou surriges compound records war out forced dare to matta interference. The second for the plate or surriges compound war an Example communities, constrained descript a grant than 10% in requirement blaik. (1) the constrained of the matta interference. The second for galation of the matta interference in the second of the galation of the matta interference. The second for galation of the matta interference in the second for galation of the matta interference in the second for galation of the matta interference in the second for galation of the matta interference in the second for galation of the s	Concentrations are repor-	ted in nanogranis per litter (ng.1.) Re		nus are presented m	BOLD Feetneter	1	imated concentr	sties. All other footne	1	purpotes, data was c	io: dremed to be qu	Unfeed as entime			1	
Excande concentration, concentration detacted as grater than 10% in requipment Navia Excande concentration, Field Daylicare RPD-2:94, 00 10% in the operation of Field Daylicare RPD-2:94, 00 RPD values are not used in supplicible because the result for R1 action to detacted not detacted concentration : readly above ADL has below RL.		Canditional waves for impased land		2 2		•		Spike or surrogars come temple dans was reporte.	nd recovery was rethout further cl	ארו מל כמרגרסו לער גם אל בשנומה		The associated	thad blenk spike or sur	w purcet compound w	to in control and th	arefore the
os inadi nos ducensed Elementad concernations incluitadore MDL han below RL		Estimated concentration, constituent Estimated concentration Field Dup		an 10% n cqupmen	n blank	50		Spike recovery and RPE) control lumits do no	t apply trauting from	The parameter con	contration in the ser	while exceeding the Non	ès concentration		
		not listed not detected				J		CPD values are not accu		le because the result	a for R1 and/or R2	any could not be real are lower than ter to	mes the MDL	wine laboratory pra-	C VI	
		Estimated concentration, results abo	re MDL but below RL	.,												

SUMMARY OF HISTORICAL SAMPLES COLLECTED UNDER CWIL ORDER R4-2005-0080 PYRETHROID PESTICIDES NURSERY GROWERS ASSOCIATION LOS ANGELES IRRIGATED LANDS GROUP

cont.	
12,	
TABLE	

SUMMARY OF HISTORICAL SAMPLES COLLECTED UNDER CWIL ORDER R4-2005-0080 PYRETHROID PESTICIDES NURSERY GROWERS ASSOCIATION LOS ANGELES IRRIGATED LANDS GROUP

Stre	Samula I	in t						£	Pyrethroid Pesticides	,					
	a avinac	1/410	Allethrin	Bifenthrin	Cyfluthrm	Cypermethrun	Danitol	Deltamethrun	Esfenvalerate	Fenvalerate	Flovalmate	L-Cyhalothrm	Permethrin	Pratterhon	Premethrin
NGA #130	NGA#130-LAILG-1	8/6/07	2	P	Я	R	2	ž	ş	2	ž	1			vesilient
NGA #183	NGA-#183-LAILG-1	8/6/07	2	21,	Z	2	2	2	2	2 2	2 7	2 7	2	2.	2
NGA #19	NGA-#19-LAILG-1	8/13/07	ā	13.7'	24.2'	¥	465.5	2	2	2 3		2 7	2	2 ·	2
NGA #124	NGA#124-LAILG-1	8/13/07	z	62.2	8	8	74.7	ž	5 2	2			, 144 , 1	2	R
NGA #168	NGA-#168-LAILG-1	10/51/8	2	1348.2	19.8'	2	7	2 2	2 7	2 7	2	2	2	2	¥.
NGA BLANK	NGA LAILG-BLANK-1	8/:3/07	Þ	P	2	2 2	2	2		2	5		2	z	뮏
NGA FBLI	NGA-LAILG-FBLI	\$21/07	2	8	1	2 7	2 7	2 7	8	5	2	z	P	P	P
NGA RQBLI	NGA-LAILG-EOBLI	\$21/07	2	2 2	2 7	2 7	8 1	5.	2	2	5	P	P	P	ð
NGA #150	NGA#IS0-LAILG	9/25/07	2	3 3/4 01	201		2	2	2	P	2	2	8	5	P
NGA #183	11 G.4183	00,400	2 7	007-12-		2	ž	5	5	P	5152	ß	5,208.8	τ ρ	Þ
NGA CIER DI 10		10.0214	2	g .	ų	y	2	P	Z	P	5	P	P	2	2
NGA VEOLID		10/07/4	8	¥	ş	8	2	P	P	P	ų	P	5	2	P
		9/26/07	2	z	P	Ъ	P	P	2	P	2	2	ą	P	5
	ILGNGA #FIELD-2	9/28/07	Ŗ	ß	Ā	P	P2	P	ā	臣	z	Ā	2	R	8
NGA #168-2	ILGNGA-#158-2	9/28/07	Ŕ	964	5	5	ß	Б	뮏	2	12	F	Σ	2	1
NGA #168	NGA-#168-LAILG-3	11/30/07	Z	'n	14	161	4631	P	2	8	2	2	2 1	2 2	2
NGA #182	NGA #182-LAILG-1	12/7/07	pr	ą	P	5	5	2	2	F	Σ	1	2	2 7	!
NGA #182-DUP	NGA-Duplicate	12/101	2	2	P	2	P	2	1	1	2	2 7	2		2
NGA #4	NGA #4-LAILG-1	12/107	Þ	107	30.6	2	1 040 5	! 9	2	2	2	2	2	8	2
NGA #130	NGA #130-LAILG-2	12/1/01	2	9446	14.7	1	2 22	6 7	2 7	2		351	Þ	2	2
NGA #150	NGA #150-LAILG-2	12/7/07	P	1 566 7	1	2 7		2	2	2	335	2	3273	2	2
NGA #124	NGA-1124-LAILG-2	12/7/07	ł	3 083 4	21	2 7	2	2	2	ş	179	P	2378	ą	2
NGA #EOUIP	NGA-eoun blank	12/0/17	2 2			2	cive.	180.3	ş	£	32.3	- -	60	ę	24
NGA #FIELD	Freid Blank-2	12/18/07	2 2	2 2	2 2	2 2	2 7	8	P .	ā	2	P	R	Þ	P
NGA #176	NGA-#176-LAILG-1	12/18/07	P	870.5	2	2	2	2 7	8	5	Σ	2	2	P	P
NGA #183	LAILG-NGAM183-3	12/18/07	Ţ	Ŧ	2 7	2		2	2	2	P	2	Z	Ā	뤈
NGA #19	LAILG-NGAN19-2	12/16/07	2	2		2 7	2	8.	2	2	ð	Þ	ß	P	2
NGA #13	LABG-NGA#13-1	12/18/07	2	! 1	- 	2	C Átt	2	8	8	66	뮏	1,346.4	¥	en.
NGA #53	I ATT G. NGAWST. 1	10001/01	! 7	2	2	2	2	Б	p	2	P	ß	P	P	5
	CWII 1 1mm	10/01/71	2	•	2	¥	Z	2	ß	17 T	P	P	ð	35	2
		Ī	=	2	5	2	2	2	12	L L	E	72	72	2	7
	MUL		02	05	05	05	05	0.5	0.5	05	0.5	0.5	05	50	05
	τ <mark>ν</mark>		2	2	2	7	7	2	~	2	~	, ,	^	- -	
												·	·	-	4

Concentrations are reported in newsymmer per inter(ngc). Results above VerLiLInnus are presented in BOLD Inductor estimated concentration. All other factories are for efference proposed, data was not derived to be qualified to carrier. VerLi Conditional verser for imigrad levels, onder ante:2005-0000 C.V.I. Conditional verser for imigrad verses, data was not derived in BOLD Footioner on BOLD inductor estimated concentration in the foreference proposed data was not derived to be qualified to carrier C.V.I. Conditional verser for imigrad verses, data was not derived to be qualified to carrier T. Samated scoremation multitude MOL has been RL.

SUMMARY OF SAMPLES COLLECTED - CWIL ORDER R4-2010-0186 YEAR I LOS ANGELES IRRIGATED LANDS GROUP NURSERY GROWERS ASSOCIATION TOXICITY RESULTS

			Ceriod	Ceriodaphnia	Fathcad Minnow	Ainnow	Sclenastrum		115
Site	Sample #	Date	Survival	Reproduction	Survival	Growth	Growth	Date	Result
NGA #4	LAILG-NGA4-5	3/21/11	0.00%	Y	15.00%	Y	Y	3/27/12	Non-polar organics and organophosphates
NGA #124	LAILG-NGA124-6	3/21/11	%00'06	z	100.00%	Z	z		
NGA # 150	LAILG-NGA 150-5	3/21/11	%00.001	z	100.00%	z	Y	3/27/12	Organophosphates
NGA #19	LAILG-NGA19-6	3/23/11	100.00%	٢	0.00%	γ	Y	3/27/12	TIE was initiated, did not show an observed effect
NGA #168	LAILG-NGA168-6	3/17/12	100.00%	z	95.00%	v	z		
NGA #31	LAILG-NGA31-4	3/17/12	20:00%	Y	%00 06	z	Y	3/24/12	Non-polar organic compounds and metals
NGA #162	LAILG-NGA162-1	3/17/12	%00.001	z	96.67%	Z	z		
NGA #64	I.AILG-NGA64-3	3/17/12	%00'06	V	00.00%	z	z		

significantly different from control group no significant diffence between control group partial toxicity Toxicity high enough to exhibit effects, but not significant enough to minate a succesful THE (Typically needs a TUC of greater than 2) not required

ኯዾዺጞ

SUMMARY OF HISTORICAL SAMPLES COLLECTED UNDER CWIL ORDER R4-2005-0080 NURSERY GROWERS ASSOCIATION LOS ANGELES IRRIGATED LANDS GROUP **TOXICITY RESULTS**

			Ceriodaphnia	aphnia	Fathcad Minnow	linnow	Sclcnastrum		TIE
Site	Sample #	Date	Survival	Reproduction	Survival	Growth	Growth	Date	Result
NGA #110	LAILG-NGA110-1	1/4/08	%00'06	z	80.00%	z	z		
NGA #189	LAILG-NGA189-1	1/4/08	100.00%	z	%29`16	z	γ		
NGA #19	LAILG-NGA19-3	1/5/08	ALLE.	TIE initiated based in	ted based in results from sample LAILG-NGA#19-2	s LAILG-NGA	19-2	1/8/08	TIE was initiated, did not show an observed effect
NGA #124	LAILG-NGA124-3	1/5/08	TIE	nitiated based in n	TIE initiated based in results from sample NGA #124-LAILG-2	NGA #124-LA.	11G-2	80/8/1	TIE was initiated, did not show an observed effect
NGA #4	LAILG-NGA4-2	1/23/08	ILIE.	initiated based in	TIE initiated based in results from sample NGA #4-LAILG-1	e NGA #4-LAII	.G-1	1/24/08	Non-polar organic compounds
NGA #53	LAILG-NGA53-2	1/23/08	TIE	TIE initiated based in r	ed based in results from sample NGA #53-LAII.G-1	NGA #53-LAL	1-0-1	1/24/08	TIE was initiated, did not show an observed effect
NGA #64	LAILG-NGA64-1	1/23/08	100.00%	X	%29`16	z	z		
NGA #182	LAILG-NGA182-2	1/23/08	TIE	TIE initiated based in r	ed based in results from sample NGA #182-LAILG-	NGA #182-1.A.	1-9/11	1/24/08	TIE was initiated, did not show an observed effect
NGA #19	1.AII.G-NGA 19-4	8/12/08	%00`06	z	NR		NR		
NGA # 4	LAILG-NGA 4-3	8/13/08	0.00%	Y	NR		NR	8/26/08	Non-polar organics and particulate-bound toxicants
NGA#31	LAILG-NGA 31-1	9/23/08	20.00%	Y	NR		NR		
NGA # 19	LAILG-NGA19-5	11/26/08	20:00%	Y	NR		NR	-	
NGA#210	LAILG-NGA 210-1	11/26/08	%00:06	Ь	98.33%	N	N		
NGA # 184	LAILG-NGA 184-1	11/26/08	80.00%	Ч	100.00%	Ņ	Ż		
NGA # 124	LAILG-NGA 124-4	11/26/08	0.00%	۲.	NR		NR	12/9/08	Volatile compounds
NGA #31	LAILG-NGA 31-2	11/26/08	%00'08	z	98.33%	z	4		
NGA # 130	LAILG-NGA 130-4	11/26/08	z	NR NR	NR		z		
NGA # 150	LAILG-NGA 150-3	11/26/08	N	NR	NR		ત		
NGA # 25	LAILG-NGA 25-1	11/26/08	80.00%	Y	%00.001	N	N		
NGA # 124	LAILG-NGA 124-5	12/15/08	0.00%	Å	NR		NR	12/16/08	TIE was initiated, did not show an observed effect
NGA # 189	LAILG-NGA 189-2	12/15/08	N	NR	NR		Y	1/15/09	Particulate Bound toxicants and OP compounds
NGA # 110	LAILG-NGA 110-2	12/15/08	%00 06	z	NR		NR		
NGA # 178	LAILG-NGA 178-1	12/15/08	%00.001	z	%00.001	Z	z		
NGA # 64	LAILG-NGA 64-2	12/15/08	%00:06	d	NK		NR		
NGA # 168	LAILG-NGA 168-5	12/15/08	%00.06	Р	NR		NK		
NGA#4	1.AILG-NGA 4-4	12/15/08	0.00%	٢	NR		NR	12/16/08	Metals copper cadmum zink manganese lead and nickle

significantly different from control group no significant differe between control group partial touctity Toxicity high enough to exhibit effects, but not significant enough to initiate a succesful TIE (Typically needs a TUc of greater than 2) not required

~ X a X

SUMMARY OF HISTORICAL SAMPLES COLLECTED UNDER CWIL ORDER R4-2005-0080 LOS ANGELES IRRIGATED LANDS GROUP NURSERY GROWERS ASSOCIATION TOXICITY RESULTS

			Ceriodaphnia	aphnia	Fathead Minnow	Ainnow	Selenastrum		TIE
Site	Sample #	Date	Survival	Reproduction	Survival	Growth	Growth	Date	Result
NGA #130	NGA-#130-LAILG-1	8/6/07	100.00%	z	93.33%	z	Y		ns
NGA #183	NGA#183-LAILG-1	8/6/07	100:00%	z	93.33%	N	Z		
01# VON	NGA-#19-1.All.G-1	8/13/07	80.00%	z	98.30%	Z	Z		
NGA #124	NGA-#124-1.AILG-1	8/13/07	100.00%	v	98.30%	v	N		
NGA #168	NGA-#168-LAILG-1	8/13/07	0.00%	Y	98.30%	N	Y	9/28/08	1 00% survival
NGA #150	NGA-#150-LAILG	9/25/07	0.00%	Y	98.33%	N	Y		ns
NGA #168	NGA#168-LAILG-3	11/30/07	100.00%	Z	100.00%	z	N		
NGA #182	NGA #182-LAILG-1	12/7/07	0.00%	Y	98.33%	N	Y		l
NGA#4	NGA #4-LAILG-1	12/1/07	%00 .0	Y	40.00%	γ	Y		IP
NGA #130	NGA #130-LAILG-2	12/7/07	%00 001	Z.	98.33%	Ņ	Z		
NGA #150	NGA #150-LAILG-2	12/7/07	100.00%	z	98 33%	z	Y		IP
NGA #124	NGA-#124-LAILG-2	12/7/07	0.00%	Y	100.00%	z	Y		IP
NGA #176	NGA-#176-LAILG-1	12/18/07	%00.001	v	100.00%	N	N		
NGA #183	1.All.G-NGA#183-3	12/18/07	100.00%	Z.	100.00%	N	z		
NGA #19	I.AII.G-NGA#19-2	12/18/07	50.00%	Y	100.00%	N	z		IP
NGA #13	LAILG-NGA#13-1	12/18/07	10.00%	Y	21.67%	Y	Z		dl
NGA #53	LAILG-NGA#53-1	12/18/07	100.00%	z	81.67%	Z	z		

Significantly different from control group No significant differec between control group not enough runoff for follow up sample In progress

≻ Z 2 8

SUMMARY OF SAMPLES COLLECTED - CWIL ORDER R4-2010-0186 YEAR 1 LOS ANGELES IRRIGATED LANDS GROUP NURSERY GROWERS ASSOCIATION FIELD MONITORING RESULTS

Turbidity (NTU)	85	181	197	54.9	49.7	16.8	34.7	33.7	38.0	666	666	666	220	174	181	352	623	179	3.3	1.6	1.2	>800	>800	>800	44.9	35.7	42.9
Dissolved Oxygen (mg/L)	na*	na*	na*	na*	na*	na*	na*	na*	na*	na*	na*	na*	9.33	8.77	8.51	10.48	10.58	10.43	10.67	10.33	9.93	10.68	10.05	9.62	8.52	8.58	8.89
E.C. (uS)	43	25	25	292	282	268	1170	1127	1163	1.32	50.1	1.19	9.99	6.66	98.6	14.3	9.4	4.2	66.2	62.9	66.1	84.5	85.9	82.2	43.7	39.3	37.1
Hd	9.81	9.64	9.29	7.89	7.82	7.87	6.70	6.61	6.59	8.88	8.83	8.87	7.73	7.75	7.95	5.5	4.9	5.2	6.94	7.24	7.46	6.1	6.8	7.1	5.63	5.74	5.89
Temperature (°C)	11.0	11.1	11.2	10.4	10.5	10.5	15.4	16.0	15.9	13.9	14.2	12.6	13.83	13.63	13.44	14.7	14.5	14.5	13.37	13.42	13.32	13.78	13.83	13.77	16.21	16.31	15.95
Flow (ft/s)	0.01	0.01	0.01	6	11	13	4	4	5	ши	nm	шu	0.88	0.84	0.94	1.3	1.2	1.3	um	mn	шu	0.71	0.52	0.71	due to access	a uue to access	
*Approximate Flow Cross Section (ft ²)		0.1250			ш			0.0185			E.			0.6042			0.0833			 Wu			0.0556		No flow measurements due to access	restrictions	
Time (24hr)	10:40	10:44	10:50	08:00	08:05	08:10	10:47	10:49	10:50	16:58	17:00	17:02	14:30	14:34	14:38	09:50	09:53	09:58	13:00	13:02	13:05	11:15	11:18	11:21			12:54
Sample Type Time		Bucket			Bucket		1	Bucket			Grab			Grab			Grab		4	Grab		k	Grab		4	- dund	
Date		3/21/11			3/21/11			3/21/11			3/23/11			3/17/12			3/17/12			3/17/12			3/17/12			3/25/12	
Sample ID		LAII.G-NGA#4-5			LAILG-NGA#124-6		,	LAILG-NGA#150-5			LAILG-NGA#19-6			LAILG-NGA#31-4			LAILG-NGA#64-3			LAILG-NGA#162-1			LAILG-NGA#168-6			LAILG-NGA#4-6	
Site		NGA #4			NGA #124			NGA #150		(NGA #19			NGA #31			NGA #64			NGA #162	_		NGA #168			NGA #4	

Runoff streams were assumed to have a parabolic shape unless field measurements indicated otherwise. The cross sectional area of a parabola is 2.3*width*depth. feet per second mg/l. NTU Nephelometric Turbidity Units degrees celeius NTU Net analyzed, DM meter was not functioning properly at the time of field sampling

SUMMARY OF SAMPLES COLLECTED - CWIL ORDER R4-2010-0186 YEAR 1 LOS ANGELES IRRIGATED LANDS GROUP NURSERY GROWERS ASSOCIATION FIELD MONITORING RESULTS

Site	Sample ID	Date	Sample Type Time	Time (24hr)	*Approximate Flow Cross Section (ft ²)	Flow (ft/s)	Tempcrature (°C)	Hd	E.C. (uS)	Dissolved Oxygen (mg/L)	Turbidity (NTU)
			┝ ━╌- Ⅰ	14:35		mu	13.81	6.18	25.8	10.59	512
0/1#VON	I TAILG-NGA#170-1	3/25/12	Grab	14:37	mu	nm	13.98	6.32	22.1	10.23	452
				14:40		ши	13.73	6.27	19.8	10.31	446
				15:15	.	mn	13.17	6.49	39.7	10.69	>800
9/1# VON	LAILG-NGA#176-2	3/25/12	Grab	15:17	шu	mu	13.16	6.63	38.4	10.41	>800
				15:21		ши	12.73	6.44	40.2	10.69	>800
				17:45		ши	13.21	7.22	0.129	10.55	5.8
017# 200	1./11LU-NUA#21U-2	21/27/5	Grab	17:47	E.	nm	13.35	7.75	0.130	10.40	3.8
				17:50		шu	13.88	7.93	0.133	10.24	5.5

Runoff streams were assumed to have a parabolic shape unless field measurements indicated otherwise. The cross sectional area of a parabola is 2/3*width*depth. feet per second mg1. MTU Nephelometric Turbidity Units microstemens nu not monitored not monitored to the monitored monitored

۰. ۳

SUMMARY OF SAMPLES COLLECTED - YEAR 2 LOS ANGELES IRRIGATED LANDS GROUP NURSERY GROWERS ASSOCIATION FIELD MONITORING RESULTS

Site	Sample ID	Date	Time (24hr)	*Approximate Flow Cross Section (ft ²)	Flow (ft/s)	Temperature (°C)	Hd	E.C. (uS)	Dissolved Oxygen (mg/L)	Turbidity (NTU)
			9:40		0.70	16.1	7.35	253	7.32	25.9
NGA #110	LAILG-NGA#110-1	1/4/08	9:42	0.33	0.70	16.9	7.29	259	7.89	25.6
			9:45		0.70	16.8	7.38	310	9.00	29.1
			10:27		1.60	13.8	7.40	178	7.10	152.0
NGA #189	I.AILG-NGA#189-1	1/4/08	10:30	0.11	1.60	14.2	7.81	180	7.10	153.0
			10:33		1.60	14.0	6.99	179	7.11	156.0
			E		0.5	10.8	8.20	159	10.84	0
NGA #19	LAILG-NGA#19-3	1/6/08	щ	0.0035	0.5	10.1	8.22	160	11.16	0
			uu		0.5	10.0	8.22	160	11.03	0
			9:15		0.75	12.9	7.68	818	10.32	85
NGA #124	LAILG-NGA#124-3	1/5/08	9:17	0.33	0.7	12.4	7.65	823	10.5	69
			9:18		0.71	12.4	7.63	819	10.47	66
			5:50		1	12.1	8.34	152	10.33	3
NGA #183	LAILG-NGA#183-4	1/5/08	5:54	2.67	-	12.1	7.9	137	10.18	0
			5:58		1	11.9	7.79	128	10.15	0
			8:16		0.33	12.1	6.59	53.1	8.35	23.6
NGA #4	LAILG-NGA#4-2	1/23/08	8:18	0.014	0.33	12.8	6.5	53	8.9	19.7
			8:20		0.33	13	6.57	53.7	7.8	20.4
			7:46		1.6	11.9	6.61	82.9	8.32	250
NGA #53	LAILG-NGA#53-2	1/23/08	7:48	0.11	1.6	12.6	6.65	86.2	7.77	232
			7:50		1.6	13	6.73	86.8	7.58	227
			6:40		шu	12.8	6.59	181	7.42	81.5
NGA #64	LAILG-NGA#64-1	1/23/08	6:42	uu	ши	12.5	6.66	123	8.7	85.9
			6:44		82	12.7	6.62	121	7.87	2
			13:20		ши	12.5	6.94	622	6.75	0.14
NGA #130	LAILG-NGA#130-3	1/24/08	13:22	0.44	шu	12.9	7.1	605	6.75	0.11
			13:25		uu	13.2	7.13	603	6.69	0.58
+ ft/s	were assumed	to have a parabolic shape unl mg/L	ess field measurement milligrams per liter	ess field messurements indicated otherwise. The cross sectional area of a parabola is 2/3*width*depth. militgrams per liter	e cross sectional ar	a of a parabola is 2/3*w	idth*depth.			
ំ ដ	degrees celcius microsiemens	5	Nephelometric Turbidity Units	udity Units						

SUMMARY OF SAMPLES COLLECTED - YEAR 2 LOS ANGELES IRRIGATED LANDS GROUP NURSERY GROWERS ASSOCIATION FIELD MONITORING RESULTS

Site	Sample ID	Date	Time (24hr)	*Approximate Flow Cross Section (ft ²)	Flow (ft/s)	Temperature (°C)	Hq	E.C. (uS)	Dissolved Oxygen (mg/L)	Turbidity (NTU)
			16:00		1.33	11.2	7.08	137	7.52	6.9
NGA #182	LAILG-NGA#182-2	1/24/08	16:05	0.220	1.33	10.9	6.94	137	8	10.7
			16:08		1.33	10.8	6:99	137	79.T	7.7
			11:58		шu	14.9	7.83	832	8.98	168
NGA #168	LAILG-NGA#168-4	1/25/08	12:00	0.165	_ wa	15	7.93	830	8.31	162
			12:02		шu	15.1	7.95	829	9.23	155
			8:32		0.67	21.1	8.07	1039	63.0	203.0
NGA #19	LAILG NGA 19-4	8/12/08	8:34	0.007	0.89	21.3	7.87	1083	60.3	239.0
			8:36		0.58	22.7	7.93	1567	49.4	145.0
			12:21		0.10	34.7	7.03	2.25	54.4	156.0
NGA #4	LAILG NGA 4-3	8/13/08	12:43	0.003	0.08	33.6	7.21	2.31	77.5	125.0
			12:47		0.06	33.7	7.05	2.39	58.5	121.0
			17:00		0.60	28.0	7.46	892	108.1	39.6
NGA #31	LAILG NGA 31-1	9/23/08	17:02	0.056	0.75	27.6	7.93	743	116.0	36.0
			17:03		1.00	26.8	8.03	805	115.3	31.7
		-	4:30		0.84	14.1	7.24	342	11.0	96.0
NGA #184	LAILG NGA 184-1	11/26/08	4:32	0.208	0.89	14.1	7.19	319	11.2	98.1
			4:35		1.25	14.0	7.22	315	10.6	88.3
			5:50		1.56	16.2	7.02	405	39.0	32.0
NGA #25	LALG NGA 25-1	11/26/08	6:00	0.222	1.53	16.5	7.00	396	50.9	26.0
			6:15		1.59	16.3	6.83	68£	48.5	33.0
			6:30		0.36	14.0	7.79	0.780	10.58	94.0
NGA #124	LAILG NGA 124-4	11/26/08	6:35	0.065	0.44	14.0	7.72	0.779	10.47	93.0
			6:40		0.48	14.0	7.73	0.779	10.61	95.0
			8:25		0.103	16.2	6.05	3.59	76.6	10.15
NGA #150	LAILG NGA 150-3	11/26/08	8:28	0.088	0.108	16.1	6.07	3.59	9.91	13.80
			8:32		0.100	16.1	6.07	3.58	9.90	9.80
+ €° ℃ Su	Runoff streams were assumed to have a parabolic shape un feet per second mg/L degrees celcius NTU microsiemens nm		ess field measurements indicated milligrams per liter Nepbelometric Turbidity Units not monitored	ess field messurements indicated otherwise. The cross sectional area of a parabola is 2.3*width*depth milligrams per liter Nepbelometric Turbidity Units not monitored	e cross sectional are	a of a parabola is 2/3*wid	th*depth.			

SUMMARY OF SAMPLES COLLECTED - YEAR 2 LOS ANGELES IRRIGATED LANDS GROUP NURSERY GROWERS ASSOCIATION FIELD MONITORING RESULTS

į	-			*Approximate		Temperature		ц С	Dissolved	Turbidity
Site	Sample ID	Date	Time (24hr)	Flow Cross Section (ft ²)	Flow (ft/s)	(c)	Hď	(rS)	Oxygen (mg/L)	(NTU)
			11:30		0.82	15.4	7.04	706	10.5	264
NGA #19	LALLG NGA 19-5	11/26/08	11.32	0.013	0.87	15.4	7.88	684	11.9	221
			11:33		1.33	15.4	7.09	535	10.0	203
			9:30		0.47 gpm	15	8.05	0.87	8.95	205
NGA #130	LAILG NGA 130-4	11/26/08	9:35	0.007	0.46 gpm	15	8.04	0.86	8.71	214
			9:40		0.48 gpm	15	8.02	0.83	7.56	213
			12:07		4.64	17.3	8.20	0.18	7.80	666
NGA #31	LAILG NGA 31-2	11/26/08	12:12	0.148	4.98	17.3	8.17	0.58	7.83	666
			12:17		4.54	17.2	8.10	0.16	7.39	531
<u> </u>			9:00		0.980	16.5	7.85	11.51	8.02	16.80
NGA #210	LAILG NGA 210-1	11/26/08	9:02	0.013	0.793	16.3	7.31	8.30	9.01	6.43
			9:04		0.925	15.6	8.37	5.75	8.59	4.08
<u>.</u>			14:10		0.29	11.9	6.12	2.25	0.71	27.6
NGA #150	LAILG-NGA 150-4	12/15/08	14:13	0.042	0.32	11.7	6.12	2.25	0.75	139.0
			14:17		0.24	11.6	6.12	2.26	0.75	153.0
			17:20		0.78	11.0	7.17	559	2.34	162
NGA #124	LAILG-NGA 124-5	12/15/08	17:24	0.024	0.89	10.4	7.23	554	2.51	143
			17:29		0.83	10.4	7.25	S41	2.56	160
			11:00		•	9.1	7.08	4.14	0.16	68.0
NGA #189	LAILG-NGA 189-2	12/15/08	11:05		۰	8.9	7.23	3.79	0.19	67.3
			11:07		•	8.8	7.25	3.87	0.20	67.0
			13:05		0	11.0	6.85	442	0.40	23.8
NGA # 110	LAILG-NGA 110-2	12/15/08	13:12	600.0	0	10.7	7.27	406	0.42	25.2
			13:15		0	10.8	7.45	439	0.42	25.1
			13:00		1.17	14.8	7.17	439	4.80	230
NGA #31	LAILG-NGA 31-3	12/15/08	13:01	0.115	1.42	15.1	7.13	511	4.60	211
			13:02		1.17	15.2	6.98	436	4.80	225
•	Runoff streams were assumed	Runoff streams were assumed to have a parabolic shape unle	ss field mersurements	ess field measurements indicated otherwise. The errors sectional area of a narrhola is 2/34 width4 feash	cross sectional area	t of a narahola is 2/3*wid	tth*densh			
gal/min ft/s	gallous per minute fect per second		milligrams per liter Nenhelometric Turbi	dity I Inits						
ື Su	degrees celcius microsiemens		data not collected							
3										

SUMMARY OF SAMPLES COLLECTED - YEAR 2 LOS ANGELES IRRIGATED LANDS GROUP NURSERY GROWERS ASSOCIATION FIELD MONITORING RESULTS

<u><u><u>a</u></u></u>					*Approximate		Tomacation		C F	Dissolved	
LAILG-NGA 184-2 12/15/08 16:15 LAILG-NGA 184-2 12/15/08 16:16 LAILG-NGA 130-5 12/15/08 13:48 LAILG-NGA 178-1 12/15/08 9:45 LAILG-NGA 178-1 12/15/08 9:48 LAILG-NGA 178-1 12/15/08 9:51 LAILG-NGA 168-5 12/15/08 9:51 LAILG-NGA 168-5 12/15/08 9:50 LAILG-NGA 168-5 12/15/08 9:50	Site	Sample ID	Date	Time (24hr)	Flow Cross	Flow (ft/s)		μd	ی ز. بند	Oxygen	
LAILG-NGA 184-2 12/15/08 LAILG-NGA 130-5 12/15/08 LAILG-NGA 178-1 12/15/08 LAILG-NGA 64-2 12/15/08 LAILG-NGA 168-5 12/15/08					Section (ft ²)		(0)		(cn)	(mg/L)	(NIN)
LAILG-NGA 184-2 12/15/08 LAILG-NGA 130-5 12/15/08 LAILG-NGA 178-1 12/15/08 LAILG-NGA 64-2 12/15/08 LAILG-NGA 168-5 12/15/08				16:15		0.195	14.0	6.57	281	4.9	110
LAILG-NGA 130-5 12/15/08 LAILG-NGA 178-1 12/15/08 LAILG-NGA 64-2 12/15/08 LAILG-NGA 168-5 12/15/08		LAILG-NGA 184-2	12/15/08	16:16	0.027	0.195	14.3	6.89	310	8.0	130.5
LAILG-NGA 130-5 12/15/08 LAILG-NGA 178-1 12/15/08 LAILG-NGA 64-2 12/15/08 LAILG-NGA 168-5 12/15/08				16:18		0.183	14.2	6.65	211	5.6	350
LAILG-NGA 130-5 12/15/08 LAILG-NGA 178-1 12/15/08 LAILG-NGA 64-2 12/15/08 LAILG-NGA 168-5 12/15/08	<u></u>			13:45		66 gpm	14.2	6.91	450	4.8	100
LAILG-NGA 178-1 12/15/08 LAILG-NGA 64-2 12/15/08 LAILG-NGA 168-5 12/15/08		LAILG-NGA 130-5	12/15/08	13:48	0.000	59.5 gpm	14.3	6.89	501	4.6	109
LAILG-NGA 178-1 12/15/08 LAILG-NGA 64-2 12/15/08 LAILG-NGA 168-5 12/15/08				13:49		53.2 gpm	15.0	6.72	311	4.7	98
LAILG-NGA 178-1 12/15/08 LAILG-NGA 64-2 12/15/08 LAILG-NGA 168-5 12/15/08				9:45		0.97	15.1	7.15	771	5.0	75
LAILG-NGA 64-2 12/15/08 LAILG-NGA 168-5 12/15/08		LAILG-NGA 178-1	12/15/08	9:48	0.002	0.98	15.0	7.16	702	4.9	101
LAILG-NGA 64-2 12/15/08 LAILG-NGA 168-5 12/15/08				9:51		1.19	15.2	7.23	735	4.7	100
LAILG-NGA 64-2 12/15/08 LAILG-NGA 168-5 12/15/08				12:05		. **	17.0	6.64	291	6.4	29
LAILG-NGA 168-5 12/15/08		LAILG-NGA 64-2	12/15/08	12:17	•	**	17.2	6.64	264	6.1	16
LAILG-NGA 168-5 12/15/08				12:25		**	17.1	6.66	260	6.0	21
LAILG-NGA 168-5 12/15/08				9:50		2.02	12.4	6.38	7.36	6.5	431
10:00		LAILG-NGA 168-5	12/15/08	9:55	0.005	1.68	12.0	6.64	7.30	6.3	433
				10:00		1.47	12.0	6.70	7.28	6.4	431
1				14:10		0.26	16.0	6.61	143.5	6.7	130
NGA #4 LAILG-NGA 4-4 12/15/08 14:15	3 A #4	LAILG-NGA 4-4	12/15/08	14:15	0.083	0.31	15.9	6.64	145.8	6.5	130
14:25				14:25		0.30	15.9	6.53	146.0	6.1	131

e Bal/min R/s US

SUMMARY OF SAMPLES COLLECTED - YEAR 1 FIELD MONITORING RESULTS NURSERY GROWERS ASSOCIATION LOS ANGELES IRRIGATED LANDS GROUP

Site	Sample ID	Date	Time (24hr)	*Approximate Flow Cross Section (ft ²)	Flow	Temperature (°C)	Hq	E.C. (uS)	Dissolved Oxygen (mg/L)	Turbidity (NTU)
			12:15	na		27.0	7.71	1331	6.12	38
NGA #130	NGA-#130-LAILG-1	8/6/07	12:20	DA	-4.25 gal/min	26.7	7.82	1315	6.51	42
			12:25	П.В.		26.6	7.84	1312	6.48	37
			13:45		3.79 ft/s	34.1	8.00	403	8.41	72
NGA #183	NGA-#183-LAULG-1	8/6/07	13:50	0.36	3.56 ft/s	34.0	8.04	399	8.43	83
			13:55		3.19 ft/s	34.2	8.01	398	8.12	82
<u></u>			12:50		0.74 ft/s	35.1	8.67	848	9.43	563
NGA #19	NGA-#19-LAILG-1	8/13/07	12:53	0.15	0.71' ft/s	35.0	8.69	833	9.81	492
			12:56		0.67 ft/s	35.0	8.70	834	9.78	522
			10:38	D.B.	75 100 2-1	28.9	7.75	1112	6.13	118
NGA #124	NGA-#124-LAILG-1	8/13/07	10:41	D.B.		28.9	7.70	1086	6.29	131
			10:45	DB		28.9	7.67	1001	6.26	114
			7:35	па	< 0.08 ft/s	20.6	8.48	894	5.53	958
NGA #168	NGA-#168-LAILG-1	8/13/07	7:40	DB	< 0.08 ft/s	20.7	8.83	790	5.62	666
			7:45	ЪВ	< 0.08 ft/s	20.7	8.91	788	5.59	978
			9:10		0.33 ft/s	21.3	6.51	2450	5.93	=
NGA #150	NGA-#150-LAILG	9/25/07	9:16	0.016	0.35 ft/s	21.4	6.71	2650	6.10	126
			9:20		0.32 A/s	21.8	6.69	2680	5.98	72
			11:30		0.30 A/s	23.5	6.38	823	6.25	47
NGA #183	LAILG-NGA#183-2	9/26/07	11:33	0.42	0.33 ft/s	23.6	6.50	737	6.14	45
			11:36		0.33 ft/s	23.9	6.64	735	6.08	47
	Runoff streams were assumed to have a parabolic shape un	to have a parabolic shape unle	ss field measurement	less field measurements indicated otherwise. The cross sectional area of a parabola is 2/3*width*depth	cross sectional are	a of a parabola is 2/3*wid	th*depth.			

milligrams per liter Nephelometric Turbidity units Jan Jan gallons per minute feet per second degrees celeius microsiemens

> gal/min ft/s uS

SUMMARY OF SAMPLES COLLECTED - YEAR 1 LOS ANGELES IRRIGATED LANDS GROUP NURSERY GROWERS ASSOCIATION FIELD MONITORING RESULTS

Site	Sample ID	Date	Time (24hr)	*Approximate Flow Cross Section (ft ²)	Flow	Temperature (°C)	Hq	E.C. (uS)	Dissolved Oxygen (mg/L)	Turbidity (NTU)
			8:30		< 0.08 ft/s	20.9	7.76	798	5.98	666
NGA #168-2	LAILG-NGA-#168-2	9/28/07	8:35	0.0003	< 0.08 ft/s	21.1	7.79	790	6.21	666
			8:40		< 0.08 ft/s	21.1	7.99	787	6.27	666
			15:30		< 0.08 ft/s	14.4	7.97	1200	10.03	68
NGA #168	NGA-#168-LAILG-3	11/30/07	15:08	0.002	< 0.08 ft/s	14.2	8.00	1200	10.17	104
			15:11		< 0.08 ft/s	14.1	8.00	1200	10.15	100
			6:42		1.50 ft/s	11.6	7.64	720	8.10	11
NGA #182	NGA #182-LAILG-1	12/7/07	6:44	0.006	1.50 ft/s	11.6	7.59	740	8.20	11
			6:46		1.50 ft/s	11.5	7.56	740	8.10	11
			7:45		0.60 ft/s	14.1	7.15	281	뛾	80
NGA #4	NGA #4-LAILG-1	12/7/07	7:57	0.046	0.60 ft/s	13.9	7.11	286	ų	41
			8:00		0.60 ft/s	13.9	7.14	279	E	41
			8:10	ца		14.7	6.22	1280	Ħ	60
NGA #130	NGA #130-LAILG-2	12/7/07	8:12	EI I	~4.25 gal/min	14.9	6.20	1285	8	59
			8:15	ពរ		15.0	6.24	1291	툍	59
			6:42		3.7 ft/s	13.0	5.97	861	10.28	17
NGA #150	0GA #150-LAILG-2	12/7/07	6:47	0.46	4.2 Ĥ/s	12.9	6.21	839	10.10	18
			6:52		4.5 ft/s	12.9	6.37	836	66.6	18
			6:00	A	1.50 ft/s	13.3	5.90	753	8	4
NGA #124	NGA-#124-LALLG-2	12/1/07	6:02	60.0	1.50 ft/s	13.3	5.92	758	E	4
			6:04		1.50 ft/s	13.3	5.91	759	H	4
+ paal/min ft/s °C uS	Runoff streams were assume gallons per minute fect per second degrees celcius microsiemens	Runoff streams were assumed to have a parabolic shape unless field measurements indicated otherwise. The cross sectional area of a parabola is 2/3*width*depth feet per second NTU Nethelometric Turbidity units degrees celcius microsiemens microsiemens	ss field m easureme nts indicated oth milligrams per liter Neohelometric Turbiditv units	indicated otherwise. The er biditv units	cross sectional area	of a parabola is 2/3*wid	th+dcpth.			

SUMMARY OF SAMPLES COLLECTED - YEAR 1 LOS ANGELES IRRIGATED LANDS GROUP NURSERY GROWERS ASSOCIATION FIELD MONITORING RESULTS

·						-	T	T		<u></u>		<u> </u>	_		
Turbidity (NTU)	툅	uu	E	158	148	164	895	910	906	240	233	234	шu	틥	8
Dissolved Oxygen (mg/L)	10.10	10.70	10.30	10.94	10.98	10.97	10.29	10.30	10.31	10.18	10.25	10.10	10.41	10.50	10.32
E.C. (uS)	1362	1364	1360	855	849	844	912	921	911	225	198	171	260	270	270
Ηd	6.60	6.70	6.90	6.60	6.70	6.80	6.70	6.80	6.50	6.58	6.37	6.29	6.60	6.90	7.10
Temperature (°C)	15.7	15.6	15.8	11.5	11.7	11.7	11.7	11.9	12.0	18.6	18.5	18.6	13.7	13.3	13.8
Flow		~ 1 gal/min		0.11 ft/s	0.12 ft/s	0.12 ft/s		~ 1.3 gal/min		2.26 ft/s	2.18 ft/s	2.49 ft/s		~ 1.5 gal/min	
*Approximate Flow Cross Section (ft ²)	ц	na	na		1.38		na	na	118		0.014		DB	na	gu
Time (24hr)	16:34	16:36	16:38	20:55	20:59	21:05	21:37	21:38	21:39	6:45	6:48	6:50	18:15	18:18	18:20
Date		12/18/07			12/18/07			12/18/07			12/18/07			12/18/07	
Sample ID		NGA-#176-LAILG-1			LAILG-NGA#183-3			LAILG-NGA#19-2			LAILG-NGA#13-1			LAILG-NGA#53-1	
Site		NGA #176			NGA #183			NGA #19			NGA #13		_	NGA #53	

Runoff streams were assumed to have a parabolic stape unless field measurements indicated otherwise. The cross sectional area of a parabola is 2/3*width*depth. gallons per minute mg/L milligrams per liter feet per second NTU Neohelometric Turbidity units degrees celcius microsiemens microsiemens

* Ral/min RVs °C uS

APPENDIX C

RAW STATISTICAL DATA

	Q		Acreage			ê		(e		(in the second s		ted		I Phosphate detected					
	Group	(I)	cre	s)		N (lbs/Year/Acre)		s/Year/Acre))		ear/Acre)		detected	be	spha	-				
#		Type		(sql)		ar//	ed	ar//	eq	ar//	eq		Deetected	hos etec	Detected				
WQMP	Intensity	Ц Ц	Irrigated	Total	Total	≺eĭ	N Applied	≺e;	Applied	≺eï	Applied	Z	eete	e e	etec				
ğ	Iter	Crop	riga	Ĕ	Ĕ	 ps/	l ≱	ps/	AF	bs/Y	AF	Total		Total as P		TDS	TDS	ISS	TSS
5	<u> </u>	M	<u>–</u> 14.68	Z 6090.00	Z 24%	Z = 414.91	Z 25%	∟ ≞ 64.52	<u>م</u> 26%	⊻	⊻ 17%	⊢ 11.84	Z 6%	о Е 8 5.09	<u>م</u> 16%	⊢ 772	⊢ 38%	⊢ 568	⊢ 23%
1	1	M	14.68	6090.00	24%	414.91	25%	64.52 64.52	26%	129.11	17%	88.1	44%	5.544	17%	1,292	56% 64%	568 684	23%
1	1	M	14.68	6090.00	24%	414.91	25%	64.52	26%	129.11	17%	0.56	0%	1.173	4%	1,030	51%	84	3%
1	1	M	14.68	6090.00	24%	414.91	25%	64.52	26%	129.11	17%	12.68	6%	15.494	49%	834	41%	213	9%
1	1	M	14.68	6090.00	24%	414.91	25%	64.52	26%	129.11	17%	27.9	14%	4.884	15%	748	37%	995	40%
1	1	М	14.68	6090.00	24%	414.91	25%	64.52	26%	129.11	17%	55.54	28%	3.4	11%	1,200	60%	550	22%
2	1	М	62.00	14425.00	57%	187.34	11%	28.42	12%	56.89	8%	17.43	9%	1.813	6%	602	30%	162	7%
2	1	М	62.00	14425.00	57%	187.34	11%	28.42	12%	56.89	8%	4.36	2%	1.94	6%	104	5%	353	14%
2	1	М	62.00	14425.00	57%	187.34	11%	28.42	12%	56.89	8%	16.46	8%	3.155	10%	364	18%	85.5	3%
2	1	М	62.00	14425.00	57%	187.34	11%	28.42	12%	56.89	8%	13.1	7%	2.0	6%	520	26%	81	3%
5	1	С	15.30	25171.00	100%	1645.00	100%	244.00	100%	733.41	97%			24	76%	2279	100%	57	2%
5	1	С	15.30	25171.00	100%	1645.00	100%	244.00	100%	733.41	97%	83.79	42%	9.445	30%	780	39%	40	2%
5	1	С	15.30	25171.00	100%	1645.00	100%	244.00	100%	733.41	97%	146.96	73%			2,446	100%	45.5	2%
5	1	С	15.30	25171.00	100%	1645.00	100%	244.00	100%	733.41	97%	400 7	000/	24.75	78%	1,704	85%	333.5	13%
5	1	С	15.30	25171.00	100%	1645.00	100%	244.00	100%	733.41	97%	123.7	62%	4 007	4 50/	1,200	60%	110	4%
3 3	1	M M	8.32 8.32	1760.00 1760.00	7% 7%	211.54 211.54	13% 13%	25.38 25.38	10% 10%	95.77 95.77	13% 13%	82.28 50.01	41% 25%	4.627 3.168	15% 10%	1,002 550	50% 27%	99.5 90	4% 4%
3	1	M	8.32	1760.00	7%	211.54	13%	25.38	10%	95.77 95.77	13%	43.84	23%	2.228	7%	378	19%	90 40	4% 2%
3	1	M	8.32	1760.00	7%	211.54	13%	25.38	10%	95.77	13%	28.84	14%	3.297	10%	568	28%	117	2 % 5%
3	1	M	8.32	1760.00	7%	211.54	13%	25.38	10%	95.77	13%	42.11	21%	2.706	9%	424	20%	115.5	5%
3	1	M	8.32	1760.00	7%	211.54	13%	25.38	10%	95.77	13%	7.06	4%	2.700	9%	240	12%	620	25%
4	1	GO	16.56	7820	31%	472.00	29%	54.00	22%	204.00	27%	52.94	26%	2.305	7%	1,170	58%	6.3	0%
4	1	GO	16.56	7820	31%	472.00	29%	54.00	22%	204.00	27%	26.46	13%	0.94	3%	830	41%	51	2%
4	1	GO	16.56	7820	31%	472.00	29%	54.00	22%	204.00	27%	3.79	2%	0.314	1%	383	19%	16	1%
4	1	GO	16.56	7820	31%	472.00	29%	54.00	22%	204.00	27%	9.85	5%	1.046	3%	616	31%	97	4%
4	1	GO	16.56	7820	31%	472.00	29%	54.00	22%	204.00	27%	12.33	6%	0.512	2%	258	13%	59.7	2%
7	1	GO	7.50	2880.00	11%	384.00	23%	28.16	12%	119.52	16%	9.35	5%	3.447	11%	680	34%	6,168	100%
7	1	GO	7.50	2880.00	11%	384.00	23%	28.16	12%	119.52	16%	9	4%	2.2	7%	220	11%	550	22%
6	1	GO	1.25	735.00	3%	588.00	36%	98.56	40%	183.26	24%	2.42	1%	2.475	8%	192	10%	20	1%
6	1	GO	1.25	735.00	3%	588.00	36%	98.56	40%	183.26	24%	10.41	5%	1.261	4%	220	11%	111.3	4%
8	1	GO	11.51	2520	10%	218.94	13%	41.29	17%	64.90	9%	3.22	2%	2.231	7%	238	12%	295	12%
8	1	GO	11.51	2520	10%	218.94	13%	41.29	17%	64.90	9%	200.86	100%	31.713	100%	2,238	100%	371	15%
8	1	GO	11.51	2520	10%	218.94	13%	41.29	17%	64.90	9%	4.51	2%	0.829	3%	186	9%	58	2%
8 8	1	GO GO	11.51 11.51	2520 2520	10% 10%	218.94 218.94	13% 13%	41.29 41.29	17% 17%	64.90 64.90	9% 9%	0.84 2.19	0% 1%	1.848 2.6	6% 8%	145 110	7% 5%	27 810	1% 33%
8	1	GO	11.51	2520	10%	218.94	13%	41.29	17%	64.90	9% 9%	2.19	8%	2.0 1.4	4%	320	16%	34	33% 1%
11	2	GO	3.38	515.00	2%	152.37	9%	9.11	4%	18.42	2%	3.32	2%	2.878	478 9%	32	2%	944	38%
12	2	GO	4.75	735.00	3%	154.74	9%	22.69	9%	36.69	5%	5.33	3%	3.243	10%	664	33%	122	5%
12	2	GO	4.75	735.00	3%	154.74	9%	22.69	9%	36.69	5%	11.11	6%	5.379	17%	1,297	64%	504	20%
12	2	GO	4.75	735.00	3%	154.74	9%	22.69	9%	36.69	5%	31.29	16%	3.548	11%	951	47%	0.5	0%
12	2	GO	4.75	735.00	3%	154.74	9%	22.69	9%	36.69	5%	14.96	7%	2.363	7%	592	29%	1126.7	45%
12	2	GO	4.75	735.00	3%	154.74	9%	22.69	9%	36.69	5%	15.58	8%	2.386	8%	492	24%	236	9%
12	2	GO	4.75	735.00	3%	154.74	9%	22.69	9%	36.69	5%	35.89	18%	8.4	26%	1,100	55%	1200	48%
9	2	S	60.00	15120.00	60%	252.00	15%	37.00	15%	139.00	18%	0.17	0%	0.264	1%	223	11%	11	0%
9	2	S	60.00	15120.00	60%	252.00	15%	37.00	15%	139.00	18%	24.85	12%	0.858	3%	317	16%	28.7	1%
9	2	S	60.00	15120.00	60%	252.00	15%	37.00	15%	139.00	18%	13.32	7%	3.561	11%	292	14%	92	4%
9	2	S	60.00	15120.00	60%	252.00	15%	37.00	15%	139.00	18%	2.13	1%	1.729	5%	106	5%	510	21%
10	2	S	36.00	8040.00	32%	223.00	14%	33.00	14%	124.00	16%	3.58	2%	1.3	4%	206	10%	129.5	5%
10	2	S	36.00	8040.00	32%	223.00	14%	33.00	14%	124.00	16%	5.05	3%	2.94	9%	240	12%	1,079	43%
16	3	RM	2.50	835.00	3%	341.40	21%	82.63	34%	163.84	22%	4.03	2%	0.393	1%	0.1	0%	76	3%
16	3	RM	2.50	835.00	3%	341.40	21%	82.63	34%	163.84	22%	6.54	3%	0.868	3%	232	12%	112	5%
16	3	RM	2.50	835.00	3%	341.40	21%	82.63	34%	163.84	22%	1.49	1%	1.5	5% 6%	57	3%	500	20%
13 13	3	RM PM	3.75	3915.00	16% 16%	1044.00	63% 63%	216.77	89% 80%	800.12	100%	2.77	1%	2.033	6% 6%	162	8% 16%	24	1% 4%
13 14	ა 2	RM GO	3.75 6.00	3915.00 2630.00	16% 10%	1044.00 438.33	63% 27%	216.77 43.01	89% 18%	800.12 215.00	100% 28%	8.79 6.06	4% 3%	1.868	6% 3%	328 350	16% 17%	93 5	4% 0%
14 15	3	GO GO	6.00 8.50	2630.00 640.00	3%	438.33 75.29	27% 5%	43.01 12.42	18% 5%	215.00 31.25	28% 4%	6.06 13.8	3% 7%	1.0 2.934	3% 9%	350 462	23%	э 72.7	0% 3%
10	5	00	0.00	0-+0.00	570	10.20	0 /0	12.72	0/0	01.20	4 /0	10.0	170	2.004	570	402	2070	12.1	570

Outlier data, not included in alanylsis

# 0	ty Group	Total DDT and Derivatives (ng/L)		Total OP Pesticides (ng/L)	Pesticides	Total sum of all detected Pyrethroids (ng/L)	Pyrethroids	Total Pyrethroids and OP Pesticides (ng/L)	Pyrethroids and OP Pesticides	Application events in 15-mo	Application Rate	Application events in 15- mo/acre	Application Rate	Chlordane	Chlordane
WQMP	Intensity	otal I erive	DDT	otal (Total sur detected Pyrethro	rreth	Total Py and OP Pesticid	o Pe	plic	plic	Applicatic events in mo/acre	plic	Total ((ng/L)	lord
≥ 1	<u>트</u> 1			Р Ч ,	e O W										
1	1	0 0	0% 0%	0 2306	0% 12%	0 1814	0% 11%	0 4120	0% 17%	248 248	59% 59%	16.89 16.89	55% 55%	0 2.4	0% 5%
1	1	5.6	2%	0	0%	7	0%	7	0%	248	59%	16.89	55%	14	31%
1	1	0	0%	0	0%	92	1%	92	0%	248	59%	16.89	55%	1.3	3%
1 1	1 1	24.7 0	9% 0%	163 25	1% 0%	2236 29	14% 0%	2399 54	10% 0%	248 248	59% 59%	16.89 16.89	55% 55%	6.6 0	15% 0%
2	1	13.5	5%	25	0%	29 79	0%	54 79	0%	76	18%	1.23	4%	15.2	34%
2	1	0	0%	0	0%	460	3%	460	2%	76	18%	1.23	4%	17.9	40%
2	1	0	0%	3478	18%	53	0%	3531	15%	76	18%	1.23	4%	0	0%
2 5	1	0 0	0% 0%	0 0	0% 0%	36 25304	0% 100%	36 25304	0% 100%	76 486	18% 100%	1.23 31.76	4% 100%	0 0	0% 0%
5	1	0	0%	0	0%	1822	100 %	1822	8%	486	100%	31.76	100%	0	0%
5	1	0	0%	0	0%	11071	68%	11071	46%	486	100%	31.76	100%	0	0%
5	1	0	0%							486	100%	31.76	100%	0	0%
5 3	1	0 51.5	0% 18%	33 0	0% 0%	528 137	3% 1%	561 137	2% 1%	486 93	100% 22%	31.76 11.18	100% 37%	0 34	0% 75%
3	1	37.4	13%	0	0%	3704	23%	3704	15%	93	22%	11.18	37%	11.4	25%
3	1	0	0%	0	0%	1899	12%	1899	8%	93	22%	11.18	37%	17.1	38%
3	1	19.3	7%	0	0%	7536	46%	7536	31%	93	22%	11.18	37%	8.2	18%
3 3	1	10.4 0	4% 0%	205 10	1% 0%	19281 170	100% 1%	19486 180	81% 1%	93 93	22% 22%	11.18 11.18	37% 37%	13.6 0	30% 0%
3 4	1	0	0%	0	0%	0	0%	0	0%	93	22 /0	11.10	51 /0	0	0%
4	1	73.6	26%	0	0%	1393	9%	1393	6%					0	0%
4	1	0	0%	0	0%	185	1%	185	1%					0	0%
4 4	1	0 0	0% 0%	0 85	0% 0%	1758 377	11% 2%	1758 462	7% 2%					0 0	0% 0%
4 7	1	0	0%	0	0%	874	2 % 5%	874	2% 4%					0	0%
7	1	0	0%	0	0%	305	2%	305	1%					0	0%
6	1	22.5	8%	0	0%	0	0%	0	0%	0	0%	0.00	0%	14.9	33%
6 8	1	0 0	0% 0%	27	0%	6	0%	33	0%	0 145	0% 34%	0.00 145	0% 34%	0 99.5	0% 100%
8	1	0	0%	0	0%	26754	100%		0%	145	34%	145	34%	38.8	86%
8	1	0	0%	1298	7%	2108	13%	3405	14%	145	34%	12.60	41%	0	0%
8	1	0	0%	17819	92%	1389	9%	19209	80%	145	34%	12.60	41%	0	0%
8 8	1	38 0	13% 0%	19300 46100	100% 100%	1625 110	10% 1%	20925 46210	87% 100%	145 145	34% 34%	12.60 12.60	41% 41%	39.6 0	87% 0%
0 11	2	32.7	12%	40100	0%	874	5%	874	4%	145	34%	3.25	11%	0	0%
12	2	0	0%	0	0%	1379	9%	1379	6%	57	14%	12.00	39%	0	0%
12	2	118	42%	0	0%	964	6%	964	4%	57	14%	12.00	39%	0	0%
12 12	2 2	2.7 19.2	1% 7%	9 0	0% 0%	466 188	3% 1%	475 188	2% 1%	57 57	14% 14%	12.00 12.00	39% 39%	2.8 0	6% 0%
12	2	19.2	4%	39	0%	1376	8%	1415	6%	57	14%	12.00	39%	0	0%
12	2	0	0%	0	0%	72	0%	72	0%	57	14%	12.00	39%	0	0%
9	2	0	0%	0	0%	21	0%	21	0%					0	0%
9	2	312	100%	0	0%	0	0% 0%	0	0%					0 0	0%
9 9	2 2	705.8 38.5	100% 14%	0 0	0% 0%	0 0	0%	0 0	0% 0%					0	0% 0%
10	2	0	0%	0	0%	3	0%	3	0%	12	3%	0.33	1%	0 0	0%
10	2	22	8%	0	0%	31	0%	31	0%	12	3%	0.33	1%	4.2	9%
16	3	0	0%	0	0%	47	0%	47	0%	35	8%	14.00	46%	0	0%
16 16	3 3	43.3 28	15% 10%	0 0	0% 0%	110 22	1% 0%	110 22	0% 0%	35 35	8% 8%	14.00 14.00	46% 46%	0 0	0% 0%
13	3	20	0%	623	3%	0	0%	623	3%	14	3%	3.73	40 <i>%</i> 12%	0	0%
13	3	6.2	2%	80	0%	67	0%	147	1%	14	3%	3.73	12%	0	0%
14	3	0	0%	0	0%	264	2%	264	1%	54	13%	9.00	30%	0	0%
15	3	25.3	9%	0	0%	5	0%	5	0%	21	5%	2.47	8%	0	0%

APPENDIX D

CHEMICAL USE, PURs

SUMMARY OF PESTICIDE USE REPORT - 2011-2012 NURSERY GROWERS ASSOCIATION LOS ANGELES IRRIGATED LANDS GROUP

		ACTIVE INGREDIENT	Iprodione	Acephate	Streptomyces lydicus	Diffubenzuron Imapacloprid	Imapacloprid	Anti-Bacterial Fenpyroximate	Fosetyl Aluminum	Ancymidol Abamectin	Azadirachtin	Azadirachtin	Daminozide Propoconazole	Prodiamine	T riadimefon Bifonthrin	Buenurun Propylene glycol (1,2-Propanediol)	Paclobutrazol	Surfactant Flumiovazin	Copper Salt	Bacillus subtilis	Copper Hydroxide	Iprodione Thiophanate-methyl	Trifloxystrobin	Spinosad	Glyphosate	Chlormequat	Culoromatour Metaldehyde	Cyfluthrin	Fenhexamid	Deltamethrin	Diazinon Coenchein	Pyriproxyfen	Mancozeb	Chlorpyrifos Chlorpyrifos	Myclobutanil	Pymetrozine S. Kinomene	o-Nunoprene 6-Benzyladenine, Gibberellic Acid	Fenamidone	L niametrioxam Ethephaon	Bifenazate	Mancozeb Aluminum tris	Phosphorus	Isoxaben	Glyphosate	Glyphosate Diphacinone	Azoxystrobin	Hexythiazox America	Capsaicin	Imidacloprid	I prodione Fenamiphos	Dicofol ^{C1} mhosa te	Glyphosate Copper Hydroxide	Spirotetramat	Malathion
OWNER/TENANT	NGA tio # To	TRADE NAME (pesticides used)	26/36 Abamaaat.	Acephate	Actinovate	Adept Admire	Admire Pro	Agrymicin Akari SSC	Aliette	A-Rest Avid	Azatin	Azatrol Ro	uə Banner Maxx	Barricade	Bayleton, Strike Riforette	Bond May	Bonzi	Break Thru, Silicone Broadston, c.	Camelot	Cease	Champ 2, Kocide	Chipco Cleary, Systec 1998	2	Conserve	Contractione Credit 41	Cycocel Daronal.	Deadline, Snail It	Decathlon, Discuss, Tempo	Decree	Deltaguard	Diazinon Ag 500 Diazinon Ag 500	Distance	Dithane	Dursban 50, Lorsban	Eagle	Endeavor Enstar	Fascination	Fenstop	r ngsup Floral	Floranite	Fore 80WP Fosetyl-AL 80 With a	Fosphite		Glystar, Kleen-up Pro, Round Up	Glystar Gopher Getter	Heritage	Hexygon	Honcho Phuss Hot Sauce	Imidadoprid 2F	I prodione 2SE Javelin	Kelthane	Kleenup Pro Kocide	Kontos L1-mo	Malathion
ABC Nursery, Inc.	4 D		2	6						3											5	1 1		3		1	0				11 5	5 1		3		1	1				1					2	2		1		3		2	2
Acosta Growers Inc.	13 SC	Ĵ																						1	2																													
Boething Treeland Farms, Inc.	19 LA	A	5	;				11					5	7		8		2 1	1 4			5				3	3 2				3	3		3						2			7		2	7	1	13 6	:	3				;
C Soto Jr	25 D																																																				i	
Coiner Nursery	31 SC	Ĵ		7					2				2	12											5								2											7		2						2		
G Hernandez-New Westgrowers	53 LA	A																																																				
H&H Nursery of Lakewood	64 SC	3								5			3		4																		2																					
M Downard-Rainbow Garden Nursery	110 SC	3											2									3													3											1								
Norman's Nsy-Broadway South	125 LA	A			:	3			2	6											4	1		10				4								1	1					7												
Norman's Nsy-Rosemead	130 LA	A																																																				
R Wilson-Colorama Wholesale Nursery	150 SC	3	1	L	4	11	5		15	15 14	6	1	15 2		1	15	15	7	6	14	7	10 15	9	14		2 1	1	1	2					1	2	6 1	1 2	14 1	5 9	1		9		10	2	14			,	7 14	5	5		
San Gabriel Nursery & Florist	162							1		1			1	10			1													1		1												1		2	3				2			
SY Nursery Inc.	168 SC	3										3			2	2					2						3														6			8					6				цТ	
T-Y Nursery-Yard #6	176 SN	4																																																				
Ultra Greens Nursery							2																																					13										
Valley Crest Tree Company	182 LA	A																																																				
Valley Sod Farms, Inc.	183 LA	A	1																						3																													
West Covina Wholesale-Damien	189 SC	3																																																				
		TOTAL	1 1	3 13	4	3 11	7	11 1	19	15 29	6	3 1	16 14	29	4 1	7 8	16	2 8	3 10	14	18	11 25	9	27	2 8	2 1	4 5	5	2	1	11 8	8 2	4	1 6	5	6 3	3 2	14 1	5 9	3	1 6	16	7	39	2 2	28	5 1	13 6	7 1	10 14	5 5	5 2	2	5 2

* D - Domingeuz Channel; LA - Los Angeles River; SC - Santa Clara; SG - San Gabriel; SM - Santa Monica

Active ingredient included in Laboratory Analytical Program

SUMMARY OF PESTICIDE USE REPORT - 2011-2012 NURSERY GROWERS ASSOCIATION LOS ANGELES IRRIGATED LANDS GROUP

			Mancozeb Imidacloprid	Fluvalinate	Fludioxonil	Metalaxyl-M	Methiocarb	Fatty Acids NEEMIX 4.5	Foam Suppresant	Acephate	Pyridalyl	Hydrogen Dioxide Diphacinone	Novaluron	Pendimethlin	Benzalkonium chloride	Copper Sulfate	Malathion	Propiconazole	Propiconazole	Imidacloprid	Pyrethrins	ryreturus Ammonium salts of polvaervlie, hvdi	Diphacinone	Isopropylamine	Diquat Dibromide	Chlorothalonil, Metalaxyl-M Dinitroomiling	Glyphosate	Oxyfluorfen, Oryzalin	Fenarimol	Dinotefuran	Halosulfuron-methyl Carbaryl	Acequinocyl	Isoxaben, Trifluralin	Gliocladium virens GL-21	Horticultural Oil	Dimethomorph	Triadimefon	Metalaxyl-M	Spinosad	Uniconazole Dometric Oil		Oryzalin	thrin	Danitol (Fenpropathrin)	Permethrin	Triftumizole	Etridiazole	Glyphosate L-Cyhalothrin, Tetramethrin,	Piperonyl Butoxide Triclopyr	Oxyfluorfen	Horticultural Oil	Bifenthrin Fenbutatin-oxide	Polyether	Bifenthrin	Bacteria				
OWNER/TENANT	NGA #	Location	Marathon Maret	Mavrik	Medalikon	Mefenoxam	Mesurol	M-Pede Veemiv 4 €	No Foam	Orthene		OXIDATE PCQ	Pedestal	Pendulum	Physan 20	luyton Pin-Doo	Prentox	Procon-Z	Propicona zole	PROVADO 1.6	PyGanic Pvreth_r	Duest C	eucat Ramik	kanger Pro	Reward	Riomil Bravo Ronston	Round Un	Rout	Rubigan	Safari	sempra, Sandea Sevin	Shuttle O	Snapshot	Soligard 12 G	Spray Oil 415 Spreed	Stature	Strike	Subdue M _{aXX,} Mefenoxam	Success	Sumagic	Sureguard	Surflan	Falstar, Upstar	l'ame	rempo Fengard	Ferraguard	Ferrazole	^r ouchdown Primera	Turflow, Turflow	Two OX E-Pro	Ultrafine Oil	^U p-Star SC Vendex	Widespread	Wisdom	Kentari	Total Cher Applicati	ione	otal Applications of Chemicals Tested For	3
ABC Nursery, Inc.	4	D	13	3 2	1		6	3		3																	2		10	4	13	-										2			10	1	-					4 2				146		31	
Acosta Growers Inc.	13	SG																									4															4										1				11		0	1
Boething Treeland Farms, Inc.	19	LA	12	2 5	7		5		6	2		1			:	11					1	1 15	5 15			2	2			9		2	3			7	2	11						3 1	L			1	10				14			248		17	1
C Soto Jr	25	D																																																			\square			0		0	1
Coiner Nursery	31	SG	8	;			1			2								2						2						1	10)			4															5						76		0	1
G Hernandez-New Westgrowers	53	LA																																																						0		0	
H&H Nursery of Lakewood	64	SG															3										9													4	1	5														35		3	
M Downard-Rainbow Garden Nurser	y 110	SG	1 1																																			3																		14		0	
Norman's Nsy-Broadway South	125	LA		2	8					2														7	12						1		9					7						1				4				1			1	93		4	
Norman's Nsy-Rosemead	130	LA																																																						0		0	
R Wilson-Colorama Wholesale Nursery	150	SG	15	5 7	11			2			6	8	3			4				12	1					2				14						15		14	9	7				3		10	11								14	486		17	
San Gabriel Nursery & Florist				3	1		2																				9	2						1			3						1	2							6					54		2	
SY Nursery Inc.	168	SG				3			9						1				3														1								7									\perp				3		57		5	
T-Y Nursery-Yard #6	176	SM																																																						0		0	
Ultra Greens Nursery																														2	4																			\perp						21		0	
Valley Crest Tree Company	182	LA																													2																			\perp						2		0	
Valley Sod Farms, Inc.	183	LA												2		1	L														2																		3	·						12		3	
West Covina Wholesale-Damien	189	SG																																																\perp						0		0	
	TO	TAL	1 49	9 19	28	3	14	3 2	15	9	6	8 1	3	2	1	15 1	1 3	2	3	12	1 1	1 15	5 15	9	12	2 2	2 24	2	10	30	4 28	2	13	1	4	15	5	35	9	7 4	1 7	11	1	9 1	10	11	11	4 1	10 3	3 5	6	6 2	14	3	15	1255			

* D - Domingeuz Channel; LA - Los Angeles River; SC - Santa Clara; SG - San Gabriel; SM - Santa Monica

Active ingredient included in Laboratory Analytical Program

137

APPENDIX E

CURRENT BMPs, SAMPLING SITES

					Historically	Implemer	nted BMPs	, Samplin	g Sites		
NGA #	Water Co	nservation		Sedimate Contr	rol	Filtration	General Housekeeping	Pesticide and N	utrient Storage	Pesticide and Fertilizer Applicaiton	Training
	Drip Irrigation	Retention Ponds	Sweeping BMP	Gravel	Straw Waddles/Sand Bags	Silt Screening	Drain Maintenance	Coverage of Pesticide storage areas	Coverage of Nutrient/soil storage areas		
4	Use of a "water wand" nozzle to help minimize overspraying		Street sweeper used on weekly basis and at least one day prior to forecasted rain events		Sandbags were placed around dirt areas near the sidewalk & drain		Planted Equisetum in dirt areas near sidewalk & drain				
13			Parking area and driveways are swept on a weekly basis & prior to forecasted rain events	Gravel has been applied to dirt roads and driveways	Sand bags placed near discharge points to reduce sedimate discharge			Spray rig is covered during rain events		Hand application of fertilizer into each container No application of herbicides or pesticides a week prioir to forecasted rain event	
19					Sand bags with pass-through PVC piping placed along dirt drainage channels located onsite, straw waddles around culverts	Silt screen placed along fence adjacent to stormwater drainage channel	Sand bags and straw waddles places around drains with metal grating				
31	Drip irrigation implemented on 45% of site	All runoff directed to holding pond. Water from holding pond used for dust supression.									All employees are trained on water conservation techniques and have stressed not overwatering. Have dedicated two employees to trouble shoot leaking valves or inderperforming sprinkler heads
64	100% hand watering										
110	Implemented drip where possible, maintenance of irrigation system and eliminated excess watering, plants organized by water needs		Sod delivery area swept regularly	Weed clothe on slopes, mulch and gravel on walkways	Straw waddles placed at the end of beds and adjacent to sidewalks				Fertilizers are stored in covered containers	liquid fertilizer, Spray program EC testing performed weekly so fertilizer is c	All workers trained to keep space clean of trash, soil and fertilizer. Regular inspections for for pest and disease problems
124	100% drip irrigation and is monitored monthly		Loading area is swept daily		Sand bags and straw waddles placed aroung perimeter of property and soil piles			Spray tank is kept in enclosed shed		Granular fertilizer is applied every other month, liquid fertilizer is applied quarterly	
150	All watering is done by hand, drip or flood benches	All water irrigation and stormwater runoff is routed to a large retention and filtration pono onsite. Water is purified and reused for irrigation	1				Pots are new and sterile, work areas are clean and tools are sanitized			Increase amounts of slow release fertilizer in lieu of liquid fertilizer, pre -plant fertilizer is incorporated in all soil mixes trained personnel identifies pest problems, stcky traps used to identify pest pressure. Anemometer is used for drift management. Reduce the frequency of Pyrethoid insecticides.	
162					Straw waddles placed around discharge points and where necessary						
168	Combination of drip, sprinklers and hand watering. Maintenance of drip system monthly				Maintenance of sand bags & screens are monthly			Spray truck is parked under canopy when not in use			
176	All perimeter areas of the property are all on drip irrigation, and is monitored weekly		Sweep all driveways & blacktops on a weekly basis. Larger areas are cleaned with a street sweeper and prior to a forecasted rain event.		Perimeter of property is lined with straw waddles and sand bags where necessary		All catch basins and gutters are cleaned & maintained twice per month and/or prior to a forecasted rain event	Soil piles are surrounded by straw waddles			
178	75% drip & 25% hand watering										
189	100% drip irrigation before 9:00AM			Placed gravel on dirt walkways adjacent to street			Constructed a small berm between plants & fence at perimeter of property			Pesticides are not sprayed	

APPENDIX F

GENERAL INFORMATION QUESTIONNAIRE

LA ILG WQMP General Operational Questionnaire

Company:	 Facility:	
Filled out by:	 Title:	
Email:	 Phone	

Instructions

Please fill out one questionnaire for *EACH FACILITY* that you have enrolled in the LA ILG

Part I: General Company

1	How would you characterize you definition.	How would you characterize your crop? Circle ONE- choose your *primary* crop definition.				
	Color / Bedding Plant	Vineyard				
	Orchard	Box Tree & Shrub				
	Greenhouse	Farm / Row Crop				
	Retail w/Production					

2.	What is your total company yearly Gross sales? CIRCLE ONE.
	Less than \$50,000 per year
	Between \$50,000 and \$200,000 per year
	Between \$200,000 - \$1,000,000 per year
	Between \$1,000,000 - \$5,000,000 per year
	Over \$5,000,000 per year

3.	Please tell us how many TOTAL ACRES you have within your company. That is ALL facilities in the entire country, please!
	acres

4. _____ How many facilities does your company operate? All facilities in the US, please.

5	Do you ship out of state?
	YES
	NO

6	Do you move material between facilities if you have more than one?
	YES
	NO

7.	Do you ship material (either sales or intracompany transfer) north of Santa Barbara County?
	YES
	NO

Part II: General Pesticide

9		What methods do you use to apply pesticides? Please break down into percentages?
_	%	Spray
_	%	Drench or Sprench
	_%	Other

Part III: General Fertilizer

Г

10.	Reviewing your Fertilizer application records, please list all formulations (solid and liquid) applied during designated time period. We will calculate total Nitrogen (N) and total Phosphorus (P) from this information. Use one line for each formulation *If you do not wish to supply your formulations and would prefer to calculate pounds of N and P on your own, please see attached fertilizer worksheet.*							
		Attach extra sheets if needed	1					
	SOLID or LIQUID Formulations	N-P-K	QTY applied Pounds (Solid) or Gallons (Liquid)					
Ex.	solid	<u>17 8 8</u>	2000 lbs					
Ex.	liquid	<u> 10 - 10 - 10 </u>	1000 gallons					

11.		What methods do you use to apply fertilizer? Please break out into percentages.
	%	Topdress
	%	Liquid Feed as needed w/Dosatron
	%	Fertigation
	%	Soil Incorporation
	%	Broadcast

٦

Part IV: General Irrigation

12.		What methods of irrigation do you use? Please breakdown your methods by percentage
	%	Drip
	%	Overhead Sprinkler
	%	Handwater
	%	Furrow

13.		e for the year- What was your volume of water applied? r supply this figure may be in gallons or CF, etc Please ure!
	We applied	(Unit of measure)

14.	Do you recycle water in your facility
	YES
	NO

15.	Do you use reclaimed water
	YES
	NO

16.		From where do you get your water? Please provide percentages
	%	City/Municipal
	%	Water District
	%	Well

THANK YOU! PLEASE RETURN WITH YOUR BMP QUESTIONNAIRE TO THE LA ILG PROJECT MANAGER

APPENDIX G

BMP QUESTIONNAIRE

WQMP QUESTIONNAIRE LA Irrigated Lands Group – BMPs (Best Management Practices) for Water Quality Company Name: Facility location:

1. Please circle the pesticide use/storage BMPs you currently have in place in your facility. Circle all that apply. Indicate whether it is completed for your entire facility or partially complete.

	Complete	or	Partial		Complete	or	Partial
IPM Program	С		Р	IPM Manager	С		Р
Covered Storage area for your materials AND equipment	с		Р	Spill Kits - checked and restocked regularly	с		Р
Sticky card monitoring	С		Р	Using newer, less environmentally persistent chemistry	С		Р
Regular scouting for pest issues	С		Р	Regular weed control	С		Р
Dust control	С		Р	Spot Spraying	С		Р
Using non-chemical means for pest control. ex. Biologicals, Exclusion,	с		Р	Conduct monthly tailgate meeting on pesticide management and water quality issues	с		Р
	С		Р		С		Р
	с		Р		С		Р

2. Please circle the nutrient use/storage BMPs you currently use in your facility. Circle all that apply. Indicate whether it is completed for your entire facility or partially complete.

	Complete	or	Partial		Complete	or	Partial
Regular Soil and Tissue sampling	С		Ρ	pH and EC monitoring	С		Р
Trained personnel making fertilizer decisions	С		Р	Source Water sampling to determine existing nutrient content	С		Р
Covered Storage Area for your materials AND equipment	С		Р	Spill Kits - checked and restocked regularly	С		Р
Pulse Irrigation for liquid fertilizers	С		Р	Controlled release fertilizers to match crop production schedules	С	r	Р
Conduct monthly tailgate meeting on nutrient management and water quality issues	с		Р		с		Р
	С		Р		С		Р
	С		Р		С		Р
	С		Р		С		Р

3. Please circle the sediment control BMPs you currently employ in your facility. Circle all that apply. Indicate whether it is completed for your entire facility or partially complete.

	Complete	or	Partial		Complete	or	Partial
Graveled roads	С		Ρ	Groundcover in production blocks	С		Р
Filter Socks	С		Ρ	Water Diversion to funnel water to one area for collection	С		Р
Covered Trash Collection areas	С		Ρ	Tarp over soil piles. Compost and/or planting	С		Р
Water truck for dust control	С		Р	Silt Fencing and/or Sandbagging	С		Р
Canning areas away from water drainage channels	С		Р	Runoff Collection pond and/or area	С		Р
Hillsides are covered or planted	С		Ρ	Gopher and/or Ground Squirrel Control	С		Р
Polyacrylimide (PAM)	С		Р	Filters/traps around all exit drains	С		Р
No till farming	С		Р	Windbreaks to prevent wind erosion	С		Р
Conduct monthly tailgate meeting on sediment control and water quality issues	С		Ρ				

WQMP QUESTIONNAIRE LA Irrigated Lands Group – BMPs (Best Management Practices) for Water Quality Company Name: Facility location:

4. Please circle the water management BMPs you currently use in your facililty. Circle all that apply. Indicate whether it is completed for your entire facility or partially complete.

	Complete	or	Partial		Complete	or	Partial
Drip Irrigation	С		Р	Soil Moisture Monitoring	С		Р
Weather Station	С		Р	Automated Irrigation	С		Р
Regular training for your Irrigation personnel	С		Р	Irrigation Equipment Inspections	С		Р
Shut off valves on all hoses	С		Р	Crop location with crops with similar water needs	с		Р
Different Irrigation Zones	С		Р	Yearly irrigation audits	С		Р
Conduct monthly tailgate meeting on water management and water quality issues	С		Р		с		Р
	С		Р		С		Р
	С		Р		С		Р

5. Please circle the housekeeping BMPs you currently use in your facility. Circle all that apply. Indicate whether it is completed for your entire facility or partially complete.

	Complete	or	Partial		Complete	or	Partial
Regular trash collection	С		Р	Weed control	С		Р
Covering of maintenance and storage areas prior to rain	С		Р	Sweeping all paved areas on site prior to rain event	С		Р
Washing used containers before replanting	С		Р	Sanitization of production areas between crops	С		Р
Conduct monthly tailgate meeting on housekeeping and water quality issues	С		Ρ		С		Р
	С		Ρ		С		Р
	С		Р		С		Р
	С		Р		С		Р
	С		Р		С		Р