Cyanobacteria in the Eel River

Keith Bouma-Gregson, UC Berkeley NCRWQCB CyanoHAB Workshop February 24, 2016

The Eel River

Power, Bouma-Gregson, et al. 2015, Copeia

Algae fuels aquatic summer food webs

Baxter et al. 2005, FW Bio.

Algae kill dogs in the Eel river

Journal of Veterinary Diagnostic Investigation

> Diagnosis of Anatoxin-a Poisoning in Dogs from North America Birgit Puschner, Brent Hoff and Elizabeth R. Tor *J VET Diagn Invest* 2008 20: 89 DOI: 10.1177/104063870802000119

Power, Bouma-Gregson, et al. 2015, Copeia

Cyanotoxins in wadeable

microcystins detected

strear

microcystins not detected

Fetscher et al. 2015, Harmful Algae, Fig. 3

What is the temporal and spatial distribution of cyanobacteria in the Eel River?

Monitoring sites:

- Visited weekly June Sep. 2013 and 2014
- Collected algal samples
- Measured cyanotoxin concentrations (SPATT)

Eel River Recovery Project

www.eelriverrecovery.org

Data Collection

Eel River Recovery Project

Toxic Algae Factsheet Eel River Recovery Project

CANOBACTERIA OR BLUE GREEN ALGAE CAN CAUSE EEL RIVER TOXICITY

- Cyanobacteria or blue green algae are photosynthetic bacteria that are found in aquatic environments. They are a very diverse group of organisms that are distributed throughout the world.
- Individual cyanobacteria cells can only be seen under a microscope, but cyanobacteria can form colonies that are visible to the naked eye.
- Cyanobacteria are usually present in freshwater systems, and under certain environmental conditions cyanobacteria "bloom" (or rapidly reproduce) and become the dominant organism in an area. Cyanobacterial blooms have negative ecological and public health effects.
- Blue-green algae that produce cyanotoxins were not documented in the Eel River before 2001.

HOW TO IDENTIFY CANOBACTERIA IN THE EEL RIVER

- Cyanobacteria are dark green or brown/orange algae that grow on the bottom of the river
- They often grow on top of other types of filamentous algae, creating dark green patches on the
 other algae and form "spires" or finger-like shapes (Figure 1).
- Cyanobacteria can detach from the bottom and float on the surface as dark green gelatinous balls which can then accumulate at the edge of the river (Figure 2).

Figure 1. Cyanobacteria (dark green) growing on other algae and forming distinctive "spires." (Images: K. Bouma-Gregson

Cyanobacteria and Cyanotoxins in the Eel River, 2013 – 2014

Keith Bouma-Gregson, University of California, Berkeley Patrick Higgins, Eel River Recovery Project March 19, 2015 www.eelriverrecovery.org

2015 cyanotoxin monitoring by ERRP and Round Valley Tribes

Cyanobacteria in the Eel

Benthic mats, not planktonic soups

Toxic algae found in Eel River in Mendocino County

Toxic Blue Green Algae, pictured here, has been found in the Eel River. At least one dog has reportedly di after swimming in the river and ingesting the cyanobacteria. Combuted

ly Ukiah Daily Journal staff

STED: 09/24/15, 2:26 PM PDT UPDATED: ON 09/24/2015

Observed common cyano. taxa

Anabaena spp.: slow water, fragile, on algae

Observed common cyano. taxa

Phormidium spp.: fast water, robust, on rocks

Cyanobacteria in the Eel

SPATT Samplers

<u>Solid</u> Phase Adsorption Toxin Tracking (SPATT)

- Captures temporal and spatial variability
- Multiple toxins detected
- Low limit of detection
- Easy to deploy and analyze
- Difficult to compare to regulatory limits

Prof. Raphael Kudela UCSC, oceandatacenter.ucsc.edu Lane et al. 2010. *Limnology and Oceanography: Methods* 8(1):645-660 Kudela 2011. *Harmful Algae* 11:117-125

SPATT Samplers

SPATT Results

Higher ATX levels than MCY levels

SPATT 2015 Map

SPATT 2015: Presence/Absence

N= 47

ATX: 77% positive

MCY: 87% positive

Mat Cyanotoxins

More frequent ATX production than MCY production 2014

2015 Mat and H₂O Samples

Cyanobacterial Mats

H₂O Samples

Conceptual model

Lessons Learned: Ecology

- Widespread occurrence of cyanobacterial mats, however less abundant in the Lower Eel.
- Different habitats for Anabaena versus Phormidium
- Growth probably driven by warmer temperatures.
- Anatoxin-a more common than microcystin.

Lessons Learned: Monitoring

- Main public safety threat is ingestion of actual cells, rather than only water.
- SPATT sampling can be conducted by citizen groups.
- Digital micro-photographs are helpful for sharing information.
- Regulatory metrics and sampling methods will be different for rivers & streams, versus lakes and open water.

Acknowledgements

Funding:

EPA STAR Fellowship NSF Eel River Critical Zone Observatory UC Mathias Graduate Research Grant NorCal SETAC Summer Student Grant

People:

Dr. ME Power, Dr. RM Kudela, Dr. JC Finlay, K Hayashi, and Eel River Recovery Project Volunteers

Lab Members: Hiromi Uno, Phil Georgakakos, Gina Hervey, Caroline Ribet, Jeanine Porzio, Ari Nuri, Aditi Narawayan, Natalie Soto, Wes Cooperman, and Anika Bratt

Questions?

Keith Bouma-Gregson

kbg@berkeley.edu