Scoring Biological Integrity the California Stream Condition Index (CSCI)

- Scoring Tool Enhancements
 - Update to O/E component
 - Integrating predictive MMI techniques
 - Our recommendations
- Setting Thresholds
- Statewide and Regional Extent Estimates

*Andy Rehn, DFG-ABL *Raphael Mazor, SCCWRP +DFG-ABL Larry Brown, USGS Jason May, USGS David Herbst, SNARL Peter Ode, DFG-WPCL/ABL Ken Schiff, SCCWRP David Gillett, SCCWRP Eric Stein, SCCWRP Betty Fetscher, SCCWRP Kevin Lunde, SF Water Board

******* Scientific Review Panel

How do we convert a list of species into a condition score?

Qualities of a good scoring tool

Technical Qualities

- precise
- accurate
- responsive

Regulatory Qualities

- universally applicable
- easy to relate to ecological condition
- easy to compare to a standard

Two common approaches for quantifying biotic condition

Species loss indices (e.g., O/E indices)

Ecological structure indices (e.g., multimetric indices including IBIs)

Scoring Tools Rely on Reference Sites to Establish Expected Conditions

- 485 reference sites used to develop scoring models
- Excellent coverage of CA's natural stream diversity

Species Loss Index (O/E) Compare number of observed ("O") taxa to number of expected ("E") taxa

- **Step 1.** Cluster reference sites based on biological similarity
- **Step 2.** Identify natural gradients that best explain clusters (=predictors)
- **Step 3.** Use predictor values at test sites to predict species expected to be observed

O/E Update

- April index performed well and science panel liked it
- Reference pool adjustments:
 - added sites to target under-represented areas
 - dropped sites based on stakeholder feedback
- Created new model

Final Model (Random Forests, 10 clusters, 4 predictors):

- Average Monthly Temperature (2000-2009)
- Average Monthly Precipitation (2000-2009)
- Log Watershed Area
- Site Elevation

Performance was very similar to our April O/E index

Multi-metric Indices (MMIs)

Species list is converted into metrics representing diversity, ecosystem function, and sensitivity to stress

Why develop an MMI?

- Science panel recommended exploring MMI
- MMIs have useful qualities
 - Measure ecological attributes other than species loss
 - Very responsive to stress
 - May work well where species-specific predictions are tricky
- New techniques available (see Hawkins and Vander Laan presentation at 2011 CABW)
 - Adds site-specific adjustments to traditional MMIs

Building a predictive MMI (pMMI)

follows methods of Hawkins and Vander Laan

- **Step 1.** Calculate lots of metrics at reference and stressed sites
- *Step 2. Create models that adjust metric values to account for major natural sources of metric variation
- **Step 3.** Select metrics based on ability to discriminate reference from stressed sites
- **Step 4.** Score metrics (after Cao et al. 2007) and assemble into composite pMMI

Step 1. Calculate metrics at reference sites and stressed sites

• Sample Information:

- 1520 sites had "adequate" samples (i.e., >450 bugs)
- 514 are reference (same definition as O/E)
- 175 are highly stressed

Calculate Metrics

- Used SWAMP's new bioassessment reporting module
- Subsample to 500 organisms, calculate at SAFIT Level 1 (midges to family)

• Use 80% for model development, 20% to validate

Metrics: the usual suspects

Class	Abundance-based	# Taxa	% Taxa
Taxonomic	% EPT	EPT taxa	% EPT taxa
	[not considered]	Coleoptera taxa	% Coleoptera taxa
	[not considered]	Diptera taxa	% Diptera taxa
	% Chironomidae	[NA]	[NA]
	[not considered]	Non-insect taxa	% Non-insect taxa
	Shannon Diversity	Taxonomic richness	
FFG	% Collectors	Collector taxa	% Collector taxa
	% Predators	Predator taxa	% Predator taxa
	% Scrapers	Scraper taxa	% Scraper taxa
	% Shredders	Shredder taxa	% Shredder taxa
Tolerance	% Intolerant	Intolerant taxa	% Intolerant taxa
	% Tolerant	Tolerant taxa	% Tolerant taxa
	Weighted tolerance value		

Step 2. Adjust metric values to account for influence of natural gradients

- Models allow us to predict site-specific reference expectation for each metric
- Most influential gradients:
 - Latitude • Longitude • Elevation Range Site Elevation • Hydraulic Precipitation
 - Temperature
 - log Watershed Area

- Soil Erodability
- Soil Bulk Density
- Soil Permeability
- Conductivity

- MgO Mean
- Surfur Mean
- SumAve Phos
- CaO Mean
- Mean Phosphorus
- Mean Nitrogen

Step 3. Select most responsive metrics

 Select metrics with the best ability to discriminate reference from stressed (i.e., highest t-value)

• Avoid selecting redundant metrics

Step 4. Score metrics and assemble into composite pMMI (*follows Cao et al. 2007*)

- Score each metric by comparing observed value to reference expectation
- Sum 10 metrics and adjust scale to be equivalent to O/E (divide score by mean of reference)

Final Metrics

Metric	Mod v Null	% explained by RF model	t	Response	
Collector taxa	Modeled	11	13.2	Decrease	
Coleoptera taxa	Modeled	40	17.6	Decrease	
Diptera taxa	Null	7	13.5	Decrease	
Intolerant taxa	Modeled	53	32.2	Decrease	
Predator taxa	Modeled	11	13.6	Decrease	
Scraper taxa	Modeled	38	20.0	Decrease	
Shredder taxa	Modeled	42	19.1	Decrease	
% Non-Insect Taxa	Modeled	15	18.1	Increase	
Shannon diversity	Modeled	16	10.7	Decrease	
Tolerance value	Modeled	32	12.4	Increase	

Comparing Performance of 3 Scoring Tools

- Species Loss Index (O/E)
- 2. Ecological Structure Index (pMMI)
- Combined Index ("hybrid")

Measuring Performance

All evaluations used a common dataset

Class	Property	Measure	O/E	pMMI	Hybrid
Precision	Variance of reference sites	SD	0.19	0.15	0.14
Sensitivity/	Discrimination	t-test	9.5	17.6	15.3
Responsiveness	Variance explained by stress	Random forest model	25%	56%	49%
Accuracy/ Piac	Variance explained by natural gradients (ref sites)	Random forest model	-7%	-9%	-8%
Accuracy/ bias	Difference among PSA regions (ref sites)	ANOVA	1.0	1.8	1.2
Replicability	Within-site variability	Mean within- site SD	0.10	0.10	0.08

Statewide Consistency

Distribution of reference scores by PSA region

Responsiveness to stress

pMMI and O/E have general agreement, but tell us somewhat different things

Both pMMI and O/E have desirable qualities

- pMMI is precise and very responsive to stress (but it was designed to be)
- % species loss is an intuitive, meaningful measure of condition
- Both are accurate and applicable throughout state
- Potential for complementarity is great -- we explored a few options (see Science Panel)

We recommend a combined index

 Retains some of the better qualities of both indices, tempers weaknesses

 Can be disaggregated into component MMI and O/E (i.e., you don't lose information by combining)

• Implementation is easier with a single score

California Stream Condition Index (CSCI)

Part A: Ecological Structure Component (pMMI) Part B: Taxonomic Loss Component (O/E)

CSCI is a simple average of the two scores

Options for setting thresholds

- Statistical criteria
 - Standard deviation
 - %-ile of reference distribution
- Ecological criteria
 - Acceptable species loss or change in community structure

We recommend statistically defined thresholds

- Widely accepted practice
- Setting objective ecological benchmarks is complex
- No technical objections from the science panel

0.75

0.86

95% and 85% confidence that site is not equivalent to reference

0.73 0.77

95% confidence that the 95% threshold is where we think it is

Extent of stream length by region

What's next? Explore limits of tool Automate calculations Document, document, document

Sources of variation in O/E scores

