## Stressor Modeling for Management Alternative #4

Jason May, Larry Brown, Ian Waite USGS

## Why are we using Alternative #4?

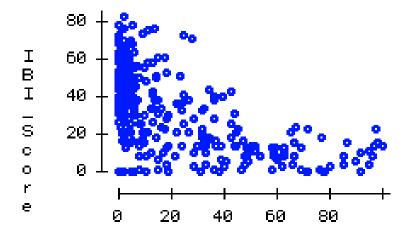
- What is alternative 4?: biological expectation based on a single-variable, continuous stressor gradient as opposed to defining 'bins'
- We took your advice to:

'keep it simple and see if it can be communicated'

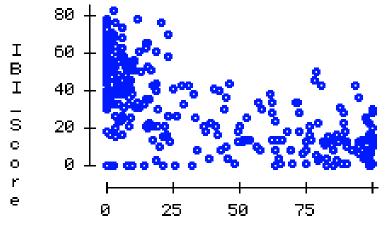
Modeling Techniques and Steps Initial exploratory modeling techniques Used MLR, CART, Random Forest

## Modeling Steps for Pilot Study

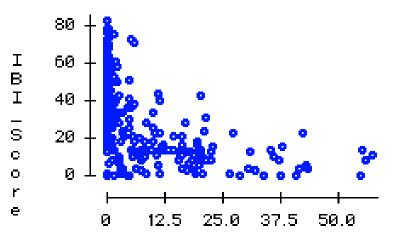
1)Random Forest for identifying "best" variables


- > NOT developing a predictive model
- 2) Keeping it simple: Linear regression
  - Determined top 5 single variable (stressor) models based on adj. R2 and AIC
- 3)Quantile regression for defining upper bound of biological expectation for final selected stressor

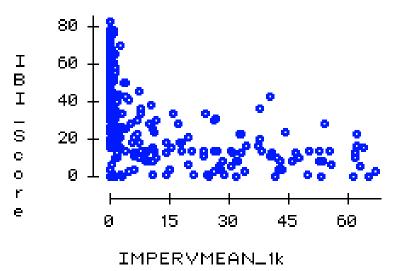
## Data Inventory:


-All sites within SMC region (206-Dev/107-Val=313)
-Within Xeric Biome (118-Dev/70-Val=178)
-Within Mountain Biome (89-Dev/46-Val=135)
-Pilot watershed:

Ventura River n= 16 sites were excluded from our model development and validation

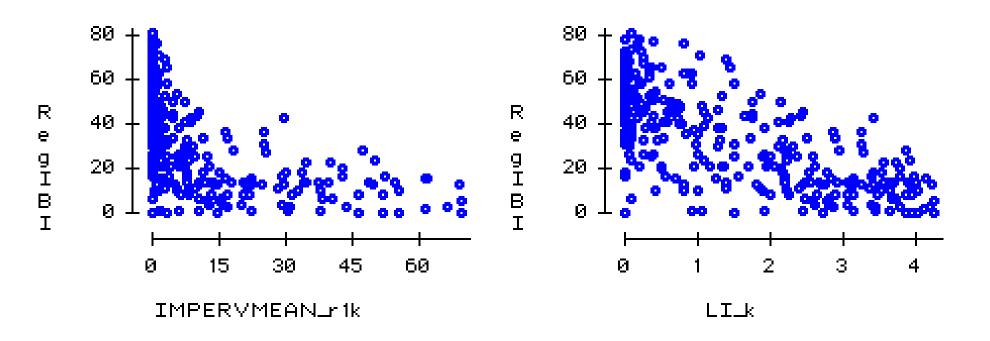

## **Examples of Important Stressors for SMC**




AgUrb21\_WS



AgUrb21\_1k




IMPERVMEAN\_WS



### Example of Transformation of data-% Impervious Area r1k

Untransformed
 LN(x+1) Transformed



Helps with the fitting of linear models

## All sites top 1-variable models

| Variable               | Adjusted R2 |               |
|------------------------|-------------|---------------|
| URBAN_r5k_ln(x+1)      | 0.5429      | 1675.3        |
| URBAN_1k_ln(x+1)       | 0.5325      | <b>1682.3</b> |
| AgUrb21_r1k            | 0.5261      | 1682.1        |
| IMPERVMEAN_r5k_ln(x+1) | 0.5241      | 1687.9        |
| IMPERVMEAN_r1k_ln(x+1) | 0.5167      | 1692.75       |
| ***                    |             |               |
| AgUrb21_r1k_ln(x+1)    | 0.4534      | 1731.28       |
| ***                    |             |               |
| CODE_21_r1k_ln(x+1)    | 0.1461      | 1870.9        |
| ***                    |             |               |
| Ag_WS_LN1              | 0.1024      | 1886.5        |
| ***                    |             |               |
| Canal Pipe Dist 100k   | 0.06902     | 1897.9        |
| * * *                  |             |               |
| DamDensL_WS            | 0.06531     | 1899.2        |
| ***                    |             |               |
| GRAZING_WS_LN1         | 0.02892     | 1911.1        |
| ***                    |             |               |
| GravelMinesDensL_r5k   | 0.006512    | 1918.3        |

Urbanization Signal

**General disturbance** 

**New Vegetation** 

AG Land use

Hydro-infrastructure

Grazing

Gravel mining

LRB9

### Comparison of top models across regions within SMC

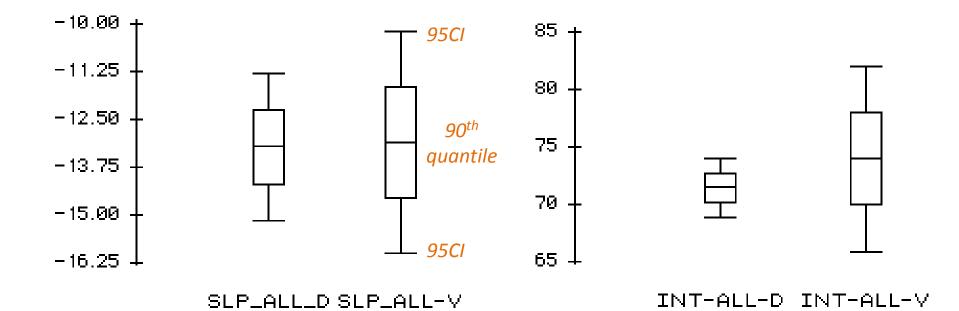
| All data               |             |         |                                             |
|------------------------|-------------|---------|---------------------------------------------|
| Variable               | Adjusted R2 | AIC     |                                             |
| URBAN_r5k_ln(x+1)      | 0.5429      | 1675.3  |                                             |
| IMPERVMEAN_r1k_ln(x+1) | 0.5167      | 1692.75 |                                             |
| Xeric data             |             |         | Xeric biome signal dominants the All        |
| URBAN_r5k_ln(x+1)      | 0.5362      | 893.99  | model                                       |
| IMPERVMEAN_r1k_ln(x+1) | 0.4363      | 928.7   |                                             |
| Mountain data          |             |         | Mountain biome has poor models              |
| IMPERVMEAN_r1k_ln(x+1) | 0.1676      | 747.18  | % Impervious was the to<br>1 variable model |
| URBAN_r5k_ln(x+1)      | 0.0663      | 762.68  |                                             |

Slide 8

LRB9 There is a space between the ls in "All" Larry Brown, 10/6/2011



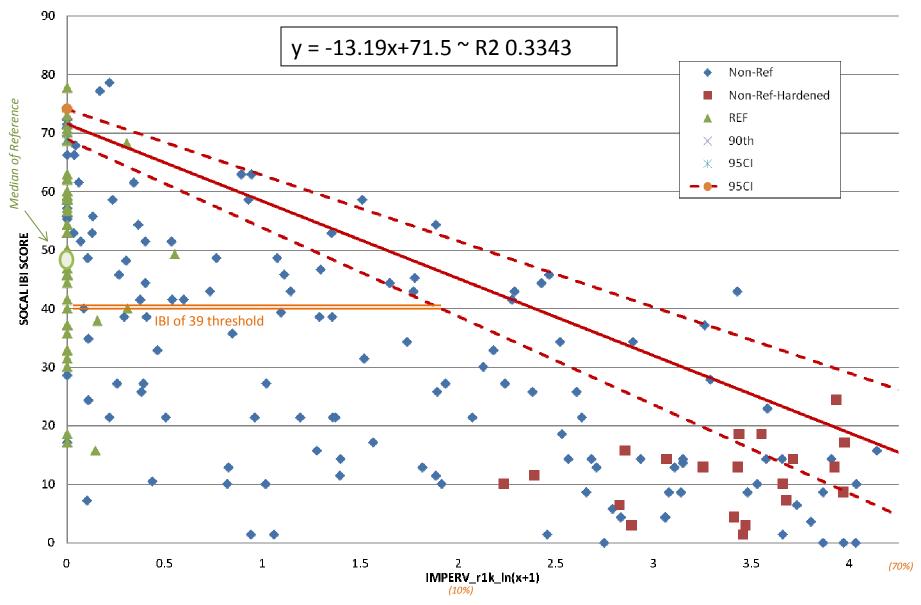
- Ran models of SOCAL IBI vs % urban land use and % impervious area at various scales(ie. r1k, r5k etc)
- Confidence intervals determined by bootstrapping 1000 times
- Modeled the 50<sup>th</sup>, 75<sup>th</sup>, 80<sup>th</sup>, 90<sup>th</sup>, 95<sup>th</sup> and 99<sup>th</sup> quantiles
- For pilot project purposes we only present 90<sup>th</sup> quantile models for IBI Score versus % Urban Land & % Impervious area in the Riparian 1,5k
- 90<sup>th</sup> quantile selected because:
  - Allows for uncertainty in fitting the upper bound of the distribution of the data but doesn't set the threshold too low
  - The 90<sup>th</sup> quantile has been used in other studies but it is a subjective decision and you could select other quantiles


LRB10 Maybe it goes without saying that you have to justify your choice of quantile. I did not add text to that effect but maybe there should be? Up to Ken. Larry Brown, 10/6/2011

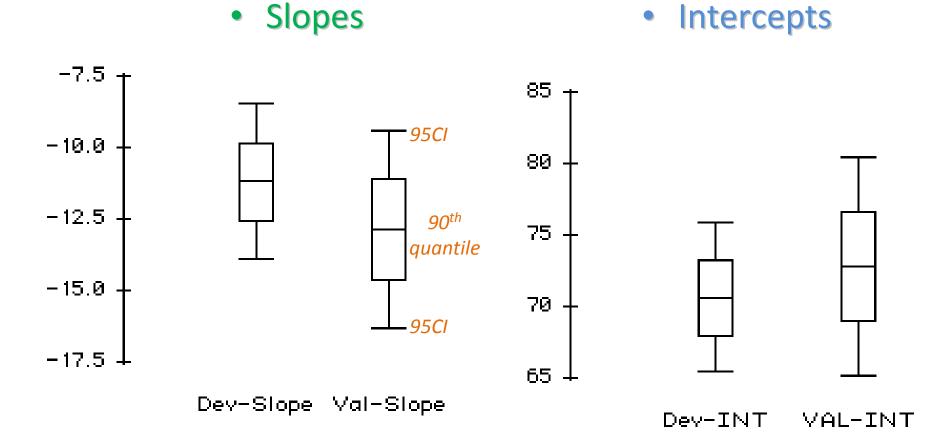


# Validation of 90<sup>th</sup> Quantile Model for % Impervious area\_r1k based on bootstrapping with 1000 iterations

• Slopes


• Intercepts




### LRB11 I just cleaned this up a bit Larry Brown, 10/6/2011

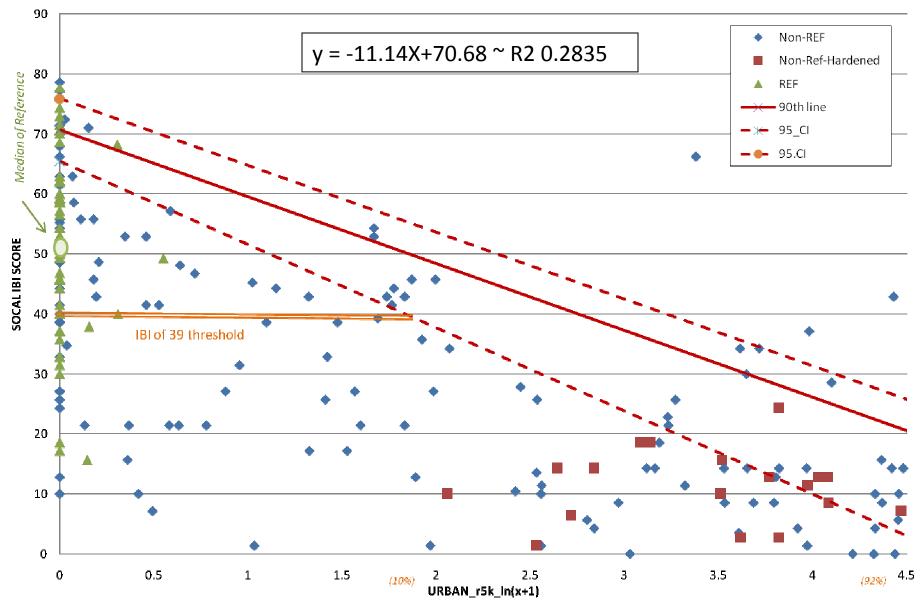
### Quantile regression example for 90<sup>th</sup> quantile

IBI Score vs. % Impervious r1k



Validation of 90<sup>th</sup> Quantile Model for % URBAN\_r5k based on bootstrapping with 1000 iterations




LRB12

Slide 12

### LRB12 Just cleaned this up a bit Larry Brown, 10/6/2011

### Quantile regression example for 90<sup>th</sup> quantile

### All Development Data Set (n= 206) IBI vs. URBAN\_r5k\_ln(x+1)



# Concluding thoughts on modeling I

- We were able to establish effective models of a continuous stressor gradient to inform management option #4
- Future efforts will likely include non-linear models
- The simple linear models may well be sufficient for the task

# **Closing Modeling considerations**

- One single stressor may not be appropriate for the whole study area?
- May need to break up management/regulatory strategy by biomes (xeric/mountain)
  - The poor models in the mountains suggest that the landscapescale variables available do not capture the important stressors
  - Mountain biome sites may require more detailed investigations for management/regulation