Refining Terminology

April 6, 2011

At Our Last Meeting

- Large number of terms with definitions
 Provided some excellent feedback
- Controllable versus Uncontrollable was the primary term of confusion
 - Different stakeholders had different perceptions of what was "uncontrollable"
- Important to the Science Team
 - Different technical directions depending on definition

Goal For Today

- Agree on our common understanding
- Identify where we have some confusion
- Stakeholders provide some directed feedback
 - Assist the Science Team in defining optimal approaches
 - For consideration by the Science Advisory Group

Common Understanding

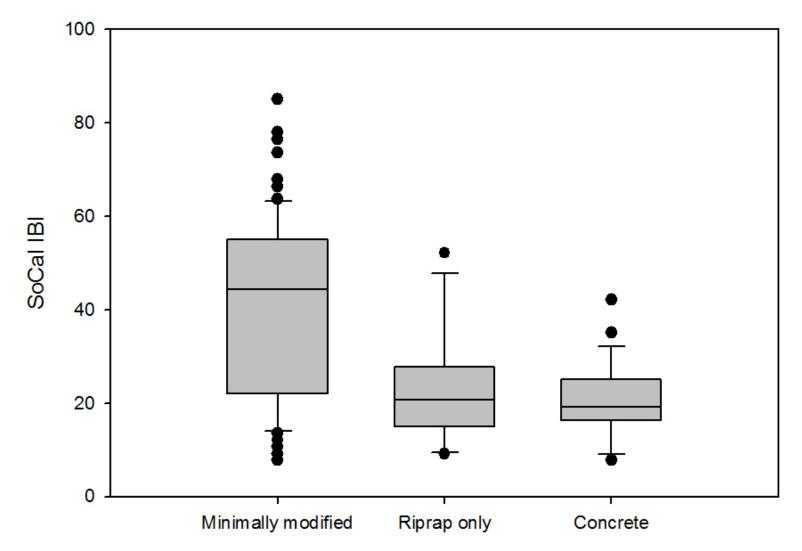
- Reference condition is a good thing
 - Conceptual agreement on how reference is defined
- Some sites are never going to reach reference condition
 - Even restoration is infeasible
- Likely a different biological expectation for these modified streams

Areas of Uncertainty

- What metrics are used to classify streams as modified?
- What should our biological expectation be for these modified streams?
- How to assign these expectations to actual streams?

Interplay Between Expectations and Classifications

- Biological expectation
 - Minimally disturbed assemblage at reference sites
 - Best attainable assemblage at modified sites
- Stream class
 - Categorization of expectations
- Classification
 - Extrapolation of expectation to unmonitored reaches


How Do You Move From Expectation To Classification?

- Two basic options
- Empirical
 - Relies on local data
- Modeled
 - Utilizes remotely sensed data

Empirical Methodology

- Gather as much data as possible
- A priori selection of stream classes
- Put data into classes and examine distribution
- Use existing data distribution to select thresholds within a class
- Apply thresholds to all streams of that type

Example Empirical Approach using *a priori* Stream Classification From the Southern Cal (SMC) Region (N=116)

Pros and Cons of Empirical Approach

- Relatively straightforward approach
- *A priori* selection completely a policy decision
 - Independent of biological information
- Can use independent local information for assigning stream class metrics
 - observable, unconfounded information
- Data may be unavailable
 - For creating stream classes of existing data
 - for extrapolation to unmonitored reaches
- Expectations [Thresholds] within a class will be arbitrary
 - Automatically assumes xx% noncompliance

How Do You Move From Expectation To Classification?

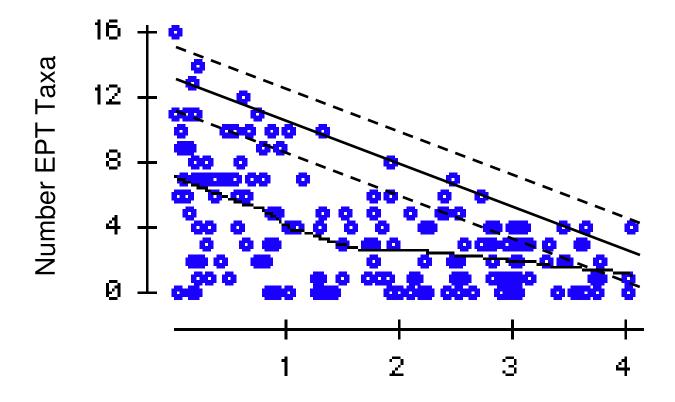
- Two basic options
- Empirical
 - Relies on local data
- Modeled
 - Utilizes remotely sensed data

Modeling Approach

- Gather as much data as possible
- Determine which metrics biology responds to most
 A variety of models to explore
- Establish thresholds based on optimized relationships between stressors and biological responses
 - Can account for uncertainty
- Use predictions to assign stream classes

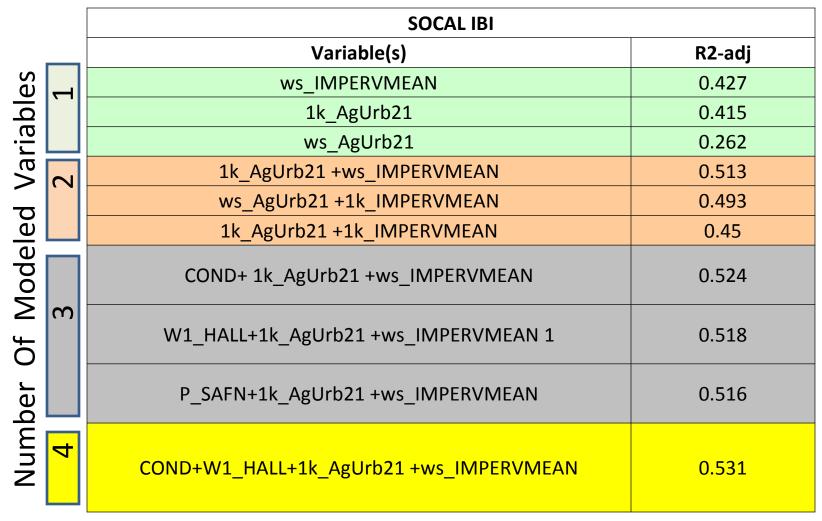
Types of Models We're Exploring

- Regression models
 - Correlation, General Linear Regression
 - Multiple Linear Regression
 - Quantile Regression
- Multivariate models
 - Principle components analysis (PCA)
 - Nonmetric multidimensional scaling (NMS)
- Regression trees
 - Classification and regression trees (CART)
 - Boosted regression trees (BRT)


Southern Cal (SMC)-Xeric: Correlation of Biotic Indicators (Spearman's)

	O_E_0	O_E_05	IBI_Score	ЕРТ	pINTOL	pNONINS	pTOL	pTOLtaxa
O_E_0	1							
O_E_05	0.846	1						
IBI_Score	0.788	0.628	1					
ЕРТ	0.807	0.685	0.717	1				
pINTOL	0.679	0.55	0.702	0.766	1			
pNONINS	-0.349	-0.275	-0.744	-0.527	-0.396	1		
pTOL	0.089	0.085	-0.202	-0.094	-0.078	0.381	1	
pTOLtaxa	-0.191	-0.198	-0.600	-0.415	-0.383	0.651	0.512	1

SMC-Xeric Example Modeling Metrics


Point (PNT)	<u>1km watershed (1k)</u>	Entire Catchment (WS)	
COND	1k_AgUrb21	ws_DamDensArea	
NTL	1k_FOREST	ws_GRAZING	
Elevation	1k_IMPERVMEAN	ws_MinesDens	
P_SAFN	1k_Pipe24k	ws_ROW_CROPS	
W1_HALL	1k_ROW_CROPS	ws_WETLANDS	
InvasiveInvertDist	1k_WETLANDS	ws_AgUrb21	
РРТ	1k_CanalPipe24kPer	ws_FOREST	
TEMP	1k_GravelMinesDens	ws_IMPERVMEAN	
	1k_MinesDens	ws_PopDens2000	
	1k_PopDens2000	ws_SHRUB	
	1k_SHRUB	ws_CanalPipe24kPe	
	1k_DamDensArea	ws_GravelMinesDen	
	1k_GRAZING	ws_LAKES	
	1k_PASTURE	ws_RDDENSC1234	
	1k_RDDENSC1234		

Linear Regression

Log_e Watershed Mean Impervious Cover

SMC-Xeric Example Multiple Linear Regression

N= 186, All variables log transformed

Summary of Pros and Cons

Empirical	Modeled	
Needs a lot of data	Needs a lot of data	
A priori selection of classes	Uses model to independently select metrics	
Can use local unambiguous metrics	Requires landscape metrics possibly confounded by local issues	
Uses population based estimators	Uses modeled predictions accounting for uncertainty	
Difficult to impossible to extrapolate	Uses GIS to extrapolate	

Next Steps

- Analyze issues and options discussed today
- Apply to our Pilot Study Regions to assess viability
- Get feedback from the Science Advisory Group in April for modifications and improvements