SAN DILGO REGIONAL U.S. NAVY'S COMMENTS AND EVIDENTIARY SUBMISSION WATER QUALITY Tentative Cleanup and Abatement Order No. R9-2011-0001 CONTROL BOARD May 26, 2011

Designated party: U.S. Navy Represented by: Nate Cushman U.S. Navy Office of General Counsel 1220 Pacific Highway San Diego, CA 92132 (619)532-2511 nate.cushman@navy.mil

I certify that this electropic submittal is a true and accurate copy of the submitted originals.

låte Eushman

U.S. NAVY'S COMMENTS AND EVIDENTIARY SUBMISSION

Tentative Cleanup and Abatement Order No. R9-2011-0001

May 26, 2011

Designated party: U.S. Navy

Represented by: Nate Cushman U.S. Navy Office of General Counsel 1220 Pacific Highway San Diego, CA 92132

> (619)532-2511 nate.cushman@navy.mil

Contents

Section

Page

1	Introduction			1-1
2	Bacl	kgroun	nd	
-	2.1		Description	
		2.1.1	Naval Base San Diego	
		2.1.2	San Diego Bay	
	2.2		llation Restoration Program	
	2.3		ging History	
3		-	of Potential Releases from IRP Sites	
3	5.1		Site 1, Former Ship Repair Basins	
	J.1	3.1.1	Description	
		3.1.2	Historical Operations	
		3.1.2	Chemicals Identified	
		3.1.3	Remedial Actions Taken	
		3.1.5	Regulatory Status	
		3.1.6	Potential for Release to San Diego Bay	
		3.1.7	Dredging History	
	3.2		bite 2, Mole Pier	
	5.2	3.2.1	Description	
		3.2.2	Historical Operations	
		3.2.3	Chemicals Identified	
		3.2.4	Remedial Actions Taken	
		3.2.5	Regulatory Status	
		3.2.6	Potential for Release to San Diego Bay	
		3.2.7	Dredging History	
	3.3		Site 3, Salvage Yard	
	0.0	3.3.1	Description	
		3.3.2	Historical Operations	
		3.3.3	Chemicals Identified	
		3.3.4	Remedial Actions Taken	
		3.3.5	Regulatory Status	
		3.3.6	Potential for Release to San Diego Bay	3-9
		3.3.7	Dredging History	3-10
	3.4		Site 4, DPDO Storage Yard	
	J. 4	3.4.1	Description	
		0.4.1		

	3.4.2	Historical Operations	. 3-10
	3.4.3	Chemicals Identified	
	3.4.4	Remedial Actions Taken	
	3.4.5	Regulatory Status	
	3.4.6	Potential for Release to San Diego Bay	
	3.4.7	Dredging History	
3.5	IRP Si	ite 7, Former Sewage Treatment Plant	3-12
	3.5.1	Description	
	3.5.2	Historical Operations	
	3.5.3	Chemicals Identified	
	3.5.4	Remedial Actions Taken	
	3.5.5	Regulatory Status	
	3.5.6	Potential for Release to San Diego Bay	
	3.5.7	Dredging History	
3.6		te 8, Firefighting Training Facility	
010	3.6.1	Description	
	3.6.2	Historical Operations	
	3.6.3	Chemicals Identified	
	3.6.4	Remedial Actions Taken	
	3.6.5	Regulatory Status	
	3.6.6	Potential for Release to San Diego Bay	
	3.6.7	Dredging History	
3.7		te 9, PCB Storage Facility	
	3.7.1	Description	
	3.7.2	Historical Operations	
	3.7.3	Chemicals Identified	
	3.7.4	Remedial Actions Taken	
	3.7.5	Regulatory Status	
	3.7.6	Potential for Release to San Diego Bay	
	3.7.7	Dredging History	
3.8		te 10, Original Rice King Restaurant Site	
	3.8.1	Description	
	3.8.2	Historical Operations	
	3.8.3	Chemicals Identified	
	3.8.4		
	3.8.5	Regulatory Status	
	3.8.6	Potential for Release to San Diego Bay	
	3.8.7	Dredging History	
3.9		te 12, Brinser Street Parking Area	
	3.9.1	Description	
	3.9.2	Historical Operations	3-19
	3.9.3	Chemicals Identified	
	3.9.4	Remedial Actions Taken	
	3.9.5	Regulatory Status	
	3.9.6	Potential for Release to San Diego Bay	
	3.9.7	Dredging History	

Sum		nd Conclusions	
	5.3.3	Modeling Results	
	5.3.2		
	5.3.1		
5.3	Resusp		
	5.2.2		
	5.2.1		
5.2	Resust		
	5.1.3		
	5.1.2		
~··	-		
	Resust	pension Zones at NBSD	
Fval	nation	of Sediment Resuspension and Transport	5-1
			4-7
4.3			
4.2			
	4.1.6		
4.1			
		-	
3.11			
		4	
3.10			
	 3.11 Eval 4.2 4.3 Eval 5.1 5.2 	$\begin{array}{c} 3.10.1\\ 3.10.2\\ 3.10.3\\ 3.10.3\\ 3.10.4\\ 3.10.5\\ 3.10.6\\ 3.10.7\\ 3.11 \ \text{IRP Site}\\ \hline \textbf{Evaluation} \\ \textbf{4.1} \ \text{Surfac}\\ \textbf{4.1} \ \text{Surfac}\\ \textbf{4.1.1}\\ \textbf{4.1.2}\\ \textbf{4.1.3}\\ \textbf{4.1.4}\\ \textbf{4.1.5}\\ \textbf{4.1.6}\\ \textbf{4.2} \ \text{Comp}\\ \textbf{4.3} \ \text{Other}\\ \textbf{5.1} \ \text{Resusp}\\ \hline \textbf{5.1.1}\\ \textbf{5.1.2}\\ \textbf{5.1.3}\\ \textbf{5.2} \ \text{Resusp}\\ \hline \textbf{5.2.1}\\ \textbf{5.2.1}\\ \textbf{5.2.2}\\ \textbf{5.3.1}\\ \textbf{5.3.1}\\ \textbf{5.3.2}\\ \end{array}$	 4.1.1 Copper

Appendices

- A Historical Document Review
- B Apportionment Report
- C Regulatory Agency Site Closure Concurrence Documents
- D Surface Sediment Chemistry Analytical Data

- E Supporting Information for Calculation of Surface-Weighted Average Concentrations
- F Composite Sediment Chemistry Analytical Data

Tables

- 2-1 Summary of IRP Sites Identified in the Shipyard Sediment Site Tentative Cleanup and Abatement Order and City of San Diego Complaint
- 3-1 Summary of Evaluation of Potential Releases from IRP Sites and Transport to San Diego Bay
- 4-1 Summary of Data Sets Used in Sediment Chemistry Data Evaluation
- 4-2 Summary of Surface-Weighted Average Concentrations of Contaminants of Concern in Sediment
- 4-3 Comparison of Contaminant Concentrations in Surface Sediment and Composite Sediment Samples
- 5-1 Area Estimates for Naval Base San Diego Resuspension Source Zones and Pier Area
- 5-2 Grain Size Data, Average Particle Size Distributions, and Loadings for Naval Base San Diego Resuspension Zones
- 5-3 Bulk Density of Surface Sediments in the Shipyard Sediment Site Proposed Remediation Footprint
- 5-4 Average Erosion Rates as a Function of Shear Stress and Depth for Cores from the Bremerton Naval Complex
- 5-5 Sediment Resuspension Mass Loading Values Measured During 1996 Field Surveys
- 5-6 Physical Parameters Required for Propeller Wash Model
- 5-7 Model Resuspension and Erosion Results for a Single Ship Movement
- 5-8 Sediment Particle Sizes and Stokes Settling Velocities Used for TRIM Modeling
- 5-9 Annual Net Deposition to the Shipyard Sediment Site Proposed Remediation Footprint from Each Naval Base San Diego Resuspension Source Zone
- 5-10 Annual Sediment Accumulation Rates at the Shipyard Sediment Site Proposed Remediation Footprint from Each Naval Base San Diego Resuspension Source Zone

Figures

- 1-1 Naval Base San Diego and Shipyard Sediment Site Location Map
- 2-1 Dredged Areas Adjacent to Naval Base San Diego
- 3-1 Conceptual Model for Evaluating Potential Releases from IRP Sites
- 3-2 Conceptual Site Model of IRP Site 1
- 3-3 Timeline for IRP Site 1

- 3-4 Conceptual Site Model of IRP Site 2
- 3-5 Timeline for IRP Site 2
- 3-6 Conceptual Site Model of IRP Site 3
- 3-7 Timeline for IRP Site 3
- 3-8 Conceptual Site Model of IRP Site 4
- 3-9 Timeline for IRP Site 4
- 3-10 Conceptual Site Model of IRP Site 7
- 3-11 Timeline for IRP Site 7
- 3-12 Conceptual Site Model of IRP Site 8
- 3-13 Timeline for IRP Site 8
- 3-14 Conceptual Site Model of IRP Site 9
- 3-15 Timeline for IRP Site 9
- 3-16 Conceptual Site Model of IRP Site 10
- 3-17 Timeline for IRP Site 10
- 3-18 Conceptual Site Model of IRP Site 12
- 3-19 Timeline for IRP Site 12
- 3-20 Conceptual Site Model of IRP Site 13
- 3-21 Timeline for IRP Site 13
- 4-1 Conceptual Diagram of Chemical Concentration Gradients
- 4-2 Sample Locations Included in Surface Sediment Contaminant Data Analysis
- 4-3 Polygons for Calculation of Surface Weighted Average Concentrations
- 4-4 Sample Locations Included in Composite Sediment Contaminant Data Analysis
- 4-5 Concentrations of Copper in Surface Sediment, 1992–2009
- 4-6 Concentrations of Mercury in Surface Sediment, 1992–2009
- 4-7 Concentrations of Tributyltin (TBT) in Surface Sediment, 1988-2009
- 4-8 Concentrations of High Molecular Weight Polynuclear Aromatic Hydrocarbons (HPAHs) in Surface Sediment, 1992–2009
- 4-9 Concentrations of Total Polychlorinated Biphenyls (PCBs) in Surface Sediment, 1992–2008
- 4-10 Concentrations of Arsenic in Surface Sediment, 1992-2009
- 4-11 Concentrations of Cadmium in Surface Sediment, 1992-2009
- 4-12 Concentrations of Lead in Surface Sediment, 1992-2009
- 4-13 Concentrations of Zinc in Surface Sediment, 1992-2009

- 5-1 Resuspension Source Zones at Naval Base San Diego
- 5-2 Modeled Contours of Sediment Bed Velocities
- 5-3 Modeled Contours of Bottom Shear Stress
- 5-4 Modeled Contours of Bottom Scour Depth
- 5-5 Spatial Relationship of Naval Base San Diego to Proposed Remediation Footprint
- 5-6 Typical 24-hour Tides at Naval Base San Diego

U.S. Navy Comment No. 1

The RWQCB's allegation that significant contaminants from Naval Base San Diego migrated to the Shipyard Sediment Site, either through discharges to Chollas Creek, resuspension of sediments through propeller wash, or via tidal currents is unfounded.

The TCAO alleges that the U.S. Navy "caused or permitted the discharge of waste to the Shipyard Sediment Site resulting in the accumulation of waste in the marine Sediment" due to historical activities at specific Installation Restoration Program (IRP) sites at Naval Base San Diego that may have resulted in the discharge of contaminants to San Diego Bay, and through resuspension of contaminated sediments due to propeller wash during ship movements at Naval Base San Diego (NBSD), with subsequent transport to other parts of San Diego Bay, including the Shipyard Sediment Site, by tidal currents as well as through Navy discharges to Chollas Creek.

Citations: TCAO Paragraph 10, DTR Finding 10 (including but not limited to Findings 10.1, 10.3, 10.4.1, 10.5, 10.6, 10.7, 10.8, 10.9, 10.10.

The U.S. Navy maintains that these claims are based on the largely unsubstantiated assumptions that (1) Shipyard Sediment Site contaminants of concern (COCs) were released from specific IRP sites and transported to San Diego Bay, (2) sediments in San Diego Bay adjacent to the IRP sites were contaminated to levels sufficient to act as a potential source to the Shipyard Sediment Site, and (3) contaminated sediments in San Diego Bay adjacent to the IRP sites were subsequently resuspended by propeller wash associated with ship movements, transported by tidal currents to the Shipyard Sediment Site, and redeposited within the Shipyard Sediment Site. The analyses presented in this submission utilize the best available data and modeling capabilities to develop multiple lines of evidence to scientifically assess these claims. These lines of evidence were developed by evaluating historical information related to potential transport of COCs from the IRP sites to San Diego Bay, analyzing COC concentration data for bay sediment Site is consistent with the presence of two distinct, localized sources of PCBs. If these PCBs were derived from activities at NBSD, the signatures would be similar. The spatial distribution of PCBs at the Shipyard Sediment Site is consistent with the presence of two different sources, with concentrations found at the north end of the site higher than those at the south end.

A modeling simulation was performed specifically to evaluate the claim that sediments adjacent to IRP sites may have been resuspended by propeller wash, transported to the Shipyard Sediment Site by tidal currents, and redeposited within the Shipyard Sediment Site. The modeling results indicate that net deposition to the Shipyard Sediment Site proposed remediation footprint due to resuspension and transport from areas adjacent to IRP sites at NBSD was between 0.17 percent and 0.37 percent of the total annual deposition, an amount that is negligible in the overall deposition of sediments at the Shipyard Sediment Site. Collectively, these lines of evidence indicate that the overall contribution of IRP sites to contamination at the Shipyard Sediment Site is negligible.

Likewise, the Navy's contribution to contaminant loading in Chollas Creek is negligible as demonstrated by the small relative portion of the Chollas Creek contaminant loading to the Bay that can be attributed to the Navy stormwater discharges, the portion of the solids loading from the Creek that is likely deposited at the shipyard sediment site, the observed spatial gradients of contamination in the area, and the relative chemical signatures of bottom sediments in the area.

U.S. Navy Comment No. 2

The RWQCB's allegation that historical Navy operations at the 28th Street Mole Pier contributed to the contamination at the Shipyard Sediment Site is unfounded, and the Navy's 2004 comment submission on this subject incorrectly assumed that shipyard operations were part of the Navy leasehold.

Citations: TCAO Paragraph 10, DTR Finding 10 (including but not limited to Findings10.4.2, 10.6, 10.10).

This comment provides a chronological history of activities at the property in the area of the 28th Street Mole Pier, located on the eastern shoreline of San Diego Bay in San Diego, California. The property is currently leased by the National Steel and Shipbuilding Company (NASSCO). No documentation was found to support the allegation of Navy industrial use of the area currently leased by NASSCO. Navy use in this area appears to have been limited to temporary housing in two areas during the 1940s and operation of small landings, first on the north side of the 28th Street Mole Pier (near its western terminus) and later on the south side near the base (eastern end) of the pier. A summary of the Navy's use of the 28th Street pier is given below, with a comprehensive review provided in Appendix A to this comment submission.

TEMPORARY HOUSING EAST OF 28TH STREET MOLE PIER

East of the 28th Street Mole Pier, in an area east of 28th Street and south of Belt Street, temporary officers quarters were used by the Navy on leased City of San Diego property from approximately 1941 through 1946, in the area known as Parcel 1. During approximately 1941 and 1942 a Temporary Defense Housing Camp occupied a parcel located southwest of the intersection of Belt Street and 28th Street. Industrial development in both these areas appears to have taken place after Navy use had ended.

28TH STREET SHORE BOAT LANDING FACILITY

The Navy operated a 28th Street Shore Boat Landing facility on the north side of the 28th Street Mole Pier from approximately 1939 through 1956. This facility, located near the western terminus of the 28th Street Mole Pier, consisted of a storage room, a waiting room, and a finger pier and floating docks used by ship launches to ferry sailors to and from Navy ships moored in San Diego Bay (Navy 2004). Non-Navy industrial activities on 28th Street Mole Pier during this time period included a shipbuilding and maintenance facility located partly on a wooden wharf extending along the north face of the 28th Street Mole Pier and partly on the shore north of the base (eastern end) of the pier. By 1946, Lynch Shipbuilding Company was operating the facility, and by 1956, National Marine Terminal Incorporated was operating it. Industrial operations shown for this facility include machine, woodworking, pattern, electric, and welding shops; a foundry; and a mold loft.

SMALL CRAFT LANDING, SOUTHERN END OF 28TH STREET

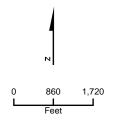

In 1956, a permit was granted to the Navy for use of a parcel located east of the 28th Street Mole Pier, at the southern end of 28th Street, apparently as a replacement for the loss of the Shore Boat Landing facility on the north side of the 28th Street Mole Pier. A small landing can be seen in this area in aerial photos from 1964, 1974, and 1978. No other Navy activities were seen in this parcel. Industrial development of the parcel appears to have occurred after Navy use had ended.

Acronyms and Abbreviations

Apportionment Report	Summary Analysis of Potential Navy Source Contributions to the Shipyard Cleanup and Abatement Order Study Area for a Scientific Assessment of the Navy's Apportionment of Liability (SPAWAR, 2010)
AST	aboveground storage tank
BAE	BAE Systems San Diego Ship Repair Inc.
BEI	Bechtel Environmental, Inc.
bgs	below ground surface
BNI	Bechtel National, Inc.
BOWTS	bilge and oily wastewater treatment system
CAO	Tentative Cleanup and Abatement Order No. R9-2011-0001
ССММА	Coastal Contaminant Migration Monitoring Assessment
CDU	Consolidated Divers Unit
CERCLA	Comprehensive Environmental Response, Compensation and Liability Act
COC	contaminant of concern
Cogen	Cogeneration
Complaint	City of San Diego Complaint for Environmental Cost Recovery and Contribution, Injunctive Relief, Declaratory Relief, and Damages
COPC	chemical of potential concern
CSM	conceptual site model
CST	collection, storage and transfer
DDDC	Defense Distribution Depot Center
DLA	Defense Logistics Agency
DPDO	Defense Property Disposal Office
DRMO	Defense Reutilization and Marketing Office
DTR	Draft Technical Report for Tentative Cleanup and Abatement Order No. R9-2011-0001 for the Shipyard Sediment Site, San Diego Bay (RWQCB, 2010b)

DTSC	California Environmental Protection Agency Department of Toxic Substances Control
ERI	Extended Remedial Investigation
FFSRA	Federal Facilities Site Remediation Agreement
FS	Feasibility Study
FWEC	Foster Wheeler Environmental Corporation
GIS	geographic information system
HAZMART	Hazardous Material Recycling Area
HPAH	high molecular weight polynuclear aromatic hydrocarbon
IAS	Initial Assessment Study
IRP	Installation Restoration Program
IT	International Technology Corporation
JEG	Jacobs Engineering Group
JP	jet propellant
µg/kg	micrograms per kilogram
mg/kg	milligrams per kilogram
MILCON	military construction
MLLW	mean lower low water
MPE	multiphase extraction
NAS	Naval Air Station
NASSCO	National Steel and Shipbuilding Company
NAVSTA	Naval Station
Navy	United States Department of the Navy
NEESA	Naval Energy and Environmental Support Activity
NEX	Navy Exchange
NSBD	Naval Base San Diego
NSC	Naval Supply Center
OHM	OHM Remediation Services Corp.
Pa	pascal
РАН	polynuclear aromatic hydrocarbon

РСВ	polychlorinated biphenyl
POL	petroleum, oils, and lubricants
PRISM	pathway ranking for in place sediment management
PSII	Professional Services Industries, Inc.
PWC	Public Works Center
RAP	Remedial Action Plan
RCRA	Resource Conservation and Recovery Act
RI	Remedial Investigation
ROD	Record of Decision
RWQCB	California Regional Water Quality Control Board, San Diego Region
SCCWRP	Southern California Coastal Water Research Project
SCS&T	Southern California Soil and Testing, Inc.
SPAWAR	Space and Naval Warfare Systems Center
SVOC	semivolatile organic compound
SWAC	surface-weighted average concentration
SWMU	solid waste management unit
TBT	tributyltin
TCRA	time critical removal action
TMDL	total maximum daily load
TPH	total petroleum hydrocarbon(s)
TRIM	tidal residual intertidal mudflat
USEPA	United States Environmental Protection Agency
USS	United States ship
UST	underground storage tank
VOC	volatile organic compound
VU	vessel unit


ONIA\PROJECTS\US_NAVY\388185_NBSD\GIS\SHIPYARDSEDIMENTSITE\MAPFILES\NBSD_SD_RESPONSEREPORT_FIG1_1_VICINITY.MXD_SWOLFSKI 6/9/2010 11:15:09

VICINITY MAP

LEGEND

- Naval Base San Diego
- Shipyard Leasehold Areas, 2004
- IRP Sites Identified in the Tentative Cleanup and Abatement Order
- Freeways
 - Watercourses

FIGURE 1-1 Naval Base San Diego and Shipyard Sediment Site Location Map Response to Shipyard Sediment Site Tentative Cleanup and Abatement Order and City of San Diego Complaint United States Naval Base San Diego, California

This page intentionally left blank.

SECTION 2 Background

Background information regarding NBSD, San Diego Bay, and the IRP is provided below. The dredging history of San Diego Bay adjacent to NBSD and the Shipyard Sediment Site is also summarized.

2.1 Site Description

2.1.1 Naval Base San Diego

NBSD occupies approximately 1,029 acres of land and 326 acres of water along the eastern shore of San Diego Bay and straddles the boundary between the cities of San Diego and National City. In 1919, an initial parcel of property consisting of 77 acres of dry land and 21 acres of marshlands and tidal flats was obtained from the City of San Diego. In 1921, this parcel was established as a destroyer base for the upkeep and preservation of 39 decommissioned World War I destroyers. From the late 1930s to the late 1940s, the base was expanded through a succession of land-acquisition and facility-development programs. These included the Naval Supply Center, training and waterfront facilities, a boat shop, a dry dock, and fleet exchange and administrative facilities.

In 1943, the installation became the Naval Repair Base and was composed of four separate commands: the Fleet Training Center, Public Works Center (PWC), the Shore Intermediate Maintenance Activity, and the Defense Depot, reflecting the activity's growing industrial capacity. During World War II, more than 5,000 ships were serviced, including more than 2,100 that were dry-docked. The eastern portion of the base was largely developed during the 1940s and included housing quarters and torpedo storehouses that have since been demolished. By 1945, approximately 28,000 personnel were on duty at the Naval Repair Base. In 1946, the base was designated "Naval Station San Diego" with a primary mission to provide logistical support, including repair and dry-docking, to locally based units of the 19th Fleet. In 2006, the base was renamed "Naval Base San Diego" while maintaining its primary mission.

NBSD currently provides personnel and logistic support services to over 50 major tenant commands. Approximately 35,000 military personnel are assigned to the base. This population requires a variety of industrial facilities to support ship, ground-vehicle, and base maintenance operations. Most of NBSD's IRP sites were functionally involved in base operation or support activities.

2.1.2 San Diego Bay

San Diego Bay is a semi-enclosed, crescent-shaped water body that is aligned in a northwest-southeast direction. The bay is connected to the Pacific Ocean by a narrow channel at Point Loma. NBSD and the Shipyard Sediment Site are in the south part of the bay, which is relatively shallow (i.e., less than 15 feet deep) except in areas that have been dredged to maintain navigable depths. Currents in the bay are driven primarily by tides,

with velocities in the range of 0.3 to 0.6 feet per second (10 to 20 cm/sec) in the southern portions of the bay (Wang et al., 1998). Hydrodynamic modeling in the vicinity of NBSD indicates that bottom shear stresses due to tidal circulation are below levels needed to cause erosion (Chadwick et al., 1999).

2.2 Installation Restoration Program

The NBSD IRP has implemented a number of multi-million-dollar cleanups since the mid-1990s. The California Environmental Protection Agency Department of Toxic Substances Control (DTSC), the RWQCB, and the Navy finalized a legally binding Federal Facilities Site Remediation Agreement (FFSRA) for NBSD on 30 June 2007. The FFSRA provides a framework and schedules for managing the investigations and cleanups performed at NBSD. The Navy has worked closely with its regulatory agency partners to investigate, clean up, and close sites, both prior to and following the signing of the FFSRA. To date, over \$552 million has been spent on investigations and cleanups. The strong track record of Navy and regulatory agency cooperation demonstrates the progress that the Navy has made in remediating and closing IRP sites.

The 10 IRP sites that are specifically identified in the CAO as potential sources of contamination to the Shipyard Sediment Site are listed in Table 2-1 and shown on Figure 1-1. The Complaint cites nine of these IRP sites, but excludes IRP Site 7, the Former Sewage Treatment Plant that was owned and operated by the City of San Diego, and was never operated or managed by the Navy. The IRP sites identified in the CAO and Complaint are between 1.3 and 2.1 miles from the Shipyard Sediment Site (Figure 1-1). Five of the sites are in the remedial investigation/feasibility study (RI/FS) phase of the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) process. Five of the sites have been closed with no further action required and with DTSC and/or RWQCB concurrence. Closure documentation for these sites is provided in Appendix C. Each of the IRP sites is described in more detail in Section 3.

2.3 Dredging History

In south San Diego Bay, the main navigational channel is on the east side of the Bay (Figure 2-1). The main channel and the piers, berths, and approaches to NBSD and the Shipyard Sediment Site are periodically dredged to maintain navigable depths. Prior to 1950, the primary purpose of dredging at NBSD was to create deep water for ship operations. After 1950, the majority of dredging was performed to maintain, deepen, or widen channels, harbors, and berths (Navy, 2001). Operational depths adjacent to NBSD are -37 feet mean lower low water (MLLW) for the main channel, -30 to -50 feet MLLW for approach corridors and piers, and -20 feet MLLW for the Paleta and Chollas Creek channels. A map of the footprints for the dredging events is presented in Figure 2-1.

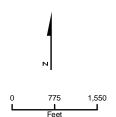
TABLE 2-1

Summary of IRP Sites Identified in the Shipyard Sediment Site Tentative Cleanup and Abatement Order and City of San Diego Complaint *Response to Shipyard Sediment Site Tentative Cleanup and Abatement Order and City of San Diego Complaint United States Naval Base San Diego, California*

IRP Site	CERCLA Phase	Regulatory Agency Concurrence
IRP Site 1—Former Ship Repair Basins	RI/FS	IRP Site 1 Draft FS for Basins 3 and 4 is currently under review by regulatory agencies. Basins 1 and 2 have received DTSC concurrence for no further action.
IRP Site 2—Mole Pier	RI/FS	N/A
IRP Site 3—Salvage Yard	RI/FS	N/A
IRP Site 4—Defense Property Disposal Office Storage Yard	RI/FS	N/A
IRP Site 7—Former (City of San Diego) Sewage Treatment Plant	Closed with ROD	RWQCB and DTSC
IRP Site 8—Firefighting Training Facility	Closed; non-CERCLA	RWQCB and DTSC
IRP Site 9—PCB Storage Facility	Closed	RWQCB and DTSC
IRP Site 10—Original Rice King Restaurant Site	RI/FS	N/A
IRP Site 12—Brinser Street Parking Area	Closed with ROD	RWQCB and DTSC
IRP Site 13—Dry Dock Sandblast Area	Closed in PA/SI Phase	RWQCB and DTSC

Notes:

CERCLA – Comprehensive Environmental Response, Compensation and Liability Act; DTSC – California Department of Toxic Substances and Control; IRP – Installation Restoration Program; FS – Feasibility Study; N/A – not applicable; PA/SI – Preliminary Assessment/Site Inspection; ROD – Record of Decision; RI – Remedial Investigation; RWQCB – California Regional Water Quality Control Board, San Diego Region. This page intentionally left blank.



\\ICONIA\PROJECTS\US_NAVY\388185_NBSD\GIS\SHIPYARDSEDIMENTSITE\MAPFILES\NBSD_SD_RESPONSEREPORT_FIG2_1_DREDGING.MXD_SWOLFSKI 6/23/2010 16:11:26

LEGEND

- Dredging Areas Post 1990
 - Known San Diego Bay Dredging Post 1950
 - IRP Sites Identified in the Tentative Cleanup and Abatement Order
- Shipyard Sediment Site Proposed Remediation Footprint
- United States Naval Base San Diego Boundary
- - -Watercourses

FIGURE 2-1 Dredged Areas Adjacent to Naval Base San Diego

Response to Shipyard Sediment Site Tentative Cleanup and Abatement Order and City of San Diego Complaint United States Naval Base San Diego, California This page intentionally left blank.

Evaluation of Potential Releases from IRP Sites

In this section, the potential for the release of COCs from the IRP sites identified in the CAO and subsequent transport to San Diego Bay are evaluated. A generalized conceptual model for this transport pathway evaluation is 1. This diagram also indicates the report section in which each element of the model is discussed. Conceptually, COCs released at an IRP site as a consequence of historical site activities could be discharged directly to San Diego Bay or could cause soil or groundwater contamination within the site. Potential pathways for the transport of contaminated soil to the bay include surface runoff (conveyed either in overland flow or via a storm drain system) and windblown transport. Dissolved phase COCs could be transported to the bay via groundwater discharge. Each of these pathways is evaluated for each of the IRP sites identified in the CAO and the Complaint. Only the COCs identified for the Shipyard Sediment Site are considered in this evaluation.

Management actions such as improved environmental practices and site remediation have reduced or eliminated the release and transport of COCs over time. In addition, periodic dredging in San Diego Bay adjacent to the IRP sites would have reduced the likelihood of potential impacts from historical releases from IRP sites as well as the availability of COCs for potential resuspension and transport.

3.1 IRP Site 1, Former Ship Repair Basins

3.1.1 Description

IRP Site 1, the Former Ship Repair Basins, is located south of Paleta Creek, approximately 2.0 miles south of the Shipyard Sediment Site. The site consists of the following two subareas, as shown in Figure 3-2:

- Basins 1 and 2
- Basins 3 and 4

Basins 1 and 2 are bounded by Kidd Street on the east and a quay wall on the west, and between 10th Street to the north and 11th Street to the south. A 30 June 1946 base condition map indicates that these two basins were "discontinued" and not in use at that time. The depths of Basins 1 and 2 are approximately 28 feet below ground surface (bgs). Basins 1 and 2 formerly opened to San Diego Bay in the vicinity of Pier 10.

Basins 3 and 4 are located south of Basins 1 and 2 and are bounded by 11th Street to the north, Kidd Street to the east, 12th Street to the south, and a quay wall to the west that separates the basins from San Diego Bay. The walls of Basins 3 and 4 consist of steel sheet piling, and the quay wall consists of steel sheet pile and concrete. The basins are unlined at the bottom (NEESA, 1986). The depths of Basins 3 and 4 are also about 28 feet bgs. Basins 3 and 4 formerly discharged to San Diego Bay between Piers 10 and 12.

Basins 1 and 2 are currently paved with asphalt and concrete. A parking lot and Womble Street cover the western half of the basins, and a parking area covers the eastern third of the basins. The base bilge and oily wastewater treatment system (BOWTS) is located over the central portion of former Basins 1 and 2. Basins 3 and 4 are paved with asphalt, and two parking lots cover this area. Building 3149, the Fitting Out and Supply Support Assistance Center Warehouse, overlies the extreme eastern portion of former Basin 3. The parking lots include roadways, curbs, storm drains, lighting, and underground utilities. No surface expression of any of the four former ship repair basins is apparent.

3.1.2 Historical Operations

A timeline of activities at IRP Site 1 is shown in Figure 3-3. The basins were used to construct concrete barges from the early 1940s to the end of World War II. There is no evidence that the basins were ever used to repair ships (BEI, 2008a). Basins 1 and 2 were filled in by 1946 with material consistent with hydraulic fill dredged from San Diego Bay. As part of the IRP Site 1 RI, 14 borings were advanced within former Basins 1 and 2 (BEI, 2008a). Buried debris or waste was not encountered in any boring. The abandonment of Basins 1 and 2 in 1946 immediately following World War II and the results of soil and groundwater chemical analyses performed during the RI indicate that former Basins 1 and 2 were not used as waste disposal basins.

From 1945 to about 1972, Basins 3 and 4 were used as informal, unrestricted disposal sites for both hazardous and nonhazardous solid wastes (NEESA, 1986). Materials that were disposed of in Basins 3 and 4 included demolition debris and rubble, solid waste, scrap metals, lubricants, and oils from decommissioned ships as well as undocumented wastes from other facilities at NBSD. Records indicate Basins 3 and 4 (combined) received approximately 5,000 gallons of oils and sludges. Aerial photographs indicate that by 1972, the basins had been paved over for use as parking areas.

3.1.3 Chemicals Identified

The following chemicals have been reported in soil and/or groundwater at IRP Site 1 Basins 3 and 4 (BEI, 2008a):

- Semivolatile organic compounds (SVOCs), including polynuclear aromatic hydrocarbons (PAHs) (e.g., benzo[a]pyrene and dibenz[a,h]anthracene)
- Metals, including copper, mercury, arsenic, cadmium, lead, and zinc
- Polychlorinated biphenyls (PCBs)

These chemicals are associated with historical waste disposal activities in Basins 3 and 4 and not concrete barge construction activities performed in the 1940s.

3.1.4 Remedial Actions Taken

Between 29 April and 29 August 1997, OHM Remediation Services Corp. (OHM) performed a time critical removal action (TCRA) at Basin 4 based on the results of a screening-level human health risk assessment (HHRA) (OHM, 1998a). In accordance with an approved TCRA memorandum dated February 1997 (Navy, 1997), soil was removed to mitigate potential risks to human health and the environment. The excavation activity removed contaminated soil within Basin 4 to a depth of 10 feet bgs, approximately the depth of groundwater at the site. Approximately 16,000 tons of soil containing PAHs, PCBs, and metals at concentrations above state hazardous waste levels and 1,200 tons of nonhazardous contaminated soil were excavated from Basin 4 and transported offsite (OHM, 1998a).

3.1.5 Regulatory Status

The IRP Site 1 RI was conducted from 2003 through 2006. The Final RI recommended no further action for Basins 1 and 2, and development of an FS of remedial alternatives for Basins 3 and 4 (BEI, 2008a). DTSC concurred with the no further action recommendation for Basins 1 and 2. The IRP Site 1 Draft FS for Basins 3 and 4 (BEI, 2008b) is currently in review.

3.1.6 Potential for Release to San Diego Bay

A CSM of the potential contaminant transport pathways from IRP Site 1 to San Diego Bay is provided in Figure 3-2. There are two potential transport pathways from Basins 3 and 4 to the bay: direct discharge during historical operations at the basins and groundwater discharge from the basins to the bay.

Direct discharge of seawater from the basins to the bay took place only during the operation of the basins from the early 1940s to about 1945 or 1946. During this time, water would have been discharged from the basins as part of dewatering during construction and when the completed barge was sent out into the bay. Any COCs associated with barge construction that may have been present in the basins would have been discharged with the water. This mechanism of discharge ceased in approximately 1945, with the end of barge construction, and prior to the use of the Basins 3 and 4 for disposal.

Groundwater transport is a potential pathway from Basins 3 and 4 to San Diego Bay. A groundwater study conducted as part of the RI identified three water-bearing zones underlying IRP Site 1, with intermediate-depth and deep water-bearing zones having the greatest degree of hydraulic communication with San Diego Bay. A net westerly groundwater gradient was identified toward the bay from the shallow, unconfined water-bearing zone. Therefore, groundwater from these two upper units could discharge to San Diego Bay.

In 2005–2006, a coastal contaminant migration study was conducted offshore as part of the RI (BEI, 2008a). The objectives of the study were to determine whether the groundwater pathway from IRP Site 1 to San Diego Bay was complete, and if so, to delineate the nature and extent of any contaminated groundwater discharge. Sediment pore water samples were collected in potential zones of groundwater discharge identified in the study and analyzed for volatile organic compounds (VOCs). In particular, trihalomethanes had been reported in groundwater at IRP Site 1 within 100 feet of San Diego Bay. No trihalomethanes were detected in the offshore pore water samples collected during the study, demonstrating that VOC-impacted groundwater is not reaching San Diego Bay at concentrations above detection limits. Based on the results of the coastal contaminant migration study, groundwater transport of chemicals of concern was determined to be an incomplete pathway for the transport of contaminants from IRP Site 1 to the bay.

Based on this evaluation, direct discharge to San Diego Bay from Basins 1 through 4 when they were active in the 1940s is the pathway with the greatest potential for transport of contaminants to San Diego Bay. These contaminants would have been related to barge construction and not to subsequent disposal activities in Basins 3 and 4. Any contaminants discharged from the basins would have affected sediments in the vicinity of Piers 10 and 12.

3.1.7 Dredging History

Multiple dredging projects (1971 and 2002-2003, as shown on Figure 3-2) have removed sediment from the immediate vicinity of IRP Site 1 since the basins were closed off from the bay in the late 1940s. These dredging projects removed sediment that had accumulated over a period of decades.

3.2 IRP Site 2, Mole Pier

3.2.1 Description

IRP Site 2, the Mole Pier, is an approximately 23-acre triangular area bounded by 7th Street and San Diego Bay (Paleta Creek Channel) to the north, Mole Road to the south, and Cummings Road to the east (Figure 3-4). A quay wall separates the site from the bay. IRP Site 2 is approximately 1.8 miles south of the Shipyard Sediment Site. Ground surfaces at IRP Site 2 are generally flat with an elevation of approximately 10 to 14 feet MLLW. The site is currently used for industrial purposes and is primarily paved, with asphalt or concrete, although several areas are unpaved. Surface runoff from IRP Site 2 drains into San Diego Bay.

Because of its large size, complex history, and current activities, IRP Site 2 was divided into seven subsites, 2A through 2G (Figure 3-4). The western portion of the site, the majority of IRP Subsite 2A, is currently a parking lot surrounded by areas of landscaping. The remaining area of Subsite 2A is occupied by a welding yard, two office buildings, volleyball courts, and landscaping. IRP Subsite 2B was previously used by the Navy Hazardous Materials Recycling Area (HAZMART), which distributed paints, oil, and cleaning products used on ships. Subsite 2B is currently paved. Subsite 2C encompasses the area of the former east ball field. The surface of the western portion of Subsite 2C is gravel, while the surface of the eastern side is bare soil. The subsite is currently paved and fenced, and functions as an equipment storage area. Subsite 2D covers the northeast portion of Mole Pier and includes Building 3141 (Navy office space) and several parking lots. Subsite 2D is about 70 percent paved. Subsite 2E covers the northeast portion of IRP Site 2 and contains several parking lots and Building 3141, which is used as Navy office space. An active solid-waste recycling facility is operating on IRP Subsites 2E and 2F. Subsite 2F covers the southeast corner of IRP Site 2 and includes the recycling yard and a parking lot. Subsite 2G is composed of two major areas, the Wharf Builder's Yard and the former west ball field. The Wharf Builder's Yard is the northern portion of the subsite, located along Seventh Street. IRP Subsite 2G has been used as an equipment laydown area for buoys, anchor chain, beams, and similar material but has no current operations (BEI, 2008c). Subsite 2G is currently paved.

3.2.2 Historical Operations

A timeline of activities at IRP Site 2 is shown in Figure 3-5. IRP Site 2 is located on land that was created between 1941 and 1942 using hydraulically emplaced dredged fill material

from San Diego Bay (NEESA, 1986). Past and present activities at each of the seven IRP Site 2 subsites are described below.

Subsite 2A

Subsite 2A extends east from the western border of IRP Site 2 about 750 feet and includes the former footprint of Solid Waste Management Unit (SWMU) 5, the former PWC Paint Shop (Building 3224); SWMU 6, the Paint Shop Sandblast Grit Area; and the former footprint of SWMU 11, the former Consolidated Divers Unit (CDU). In addition, SWMU 1, the former Hazardous Waste Collection, Storage and Transfer (CST) Facility (Building 3275), was located in the northeast corner of Subsite 2A. From approximately 1945 to 1972, Subsite 2A was used for the disposal and open burning of various types of demolition debris and hazardous materials, including pilings, asphalt, and lumber. Gasoline, motor oil, and diesel were used to burn the combustible refuse and debris. An estimated 540,000 gallons of petroleum-based materials were transported to the site for disposal (IT, 1992).

Subsite 2B

Subsite 2B housed the hazardous materials reutilization area until early 2006. Subsite 2B is within the area used in the late 1970s for the storage, scraping, and painting of brows (gangplanks) and platforms. The historical use of the eastern and southeastern portion of Mole Pier for storage, scraping, and painting of brows and platforms was reported in the Final RI (BEI, 2008c).

Subsite 2C

At Subsite 2C, heavy equipment being returned from Vietnam in the mid- to late-1970s was reported to have been decontaminated in the general area of the ball fields by being sprayed with diesel fuel prior to being rinsed in Paleta Creek. In addition, Subsite 2C is within the area formerly used for the storage, scraping, and painting of brows and platforms. Materials possibly used during these activities include paint, paint thinner, lacquer, red lead, and zinc chromate.

Subsite 2D

Historically, storage, scraping, and painting of brows and platforms might have been conducted within Subsite 2D. Materials possibly used during these activities include paint, paint thinner, lacquer, red lead, and zinc chromate (BEI, 2008c).

Subsite 2E

Subsite 2E is within the area used in the late 1970s for the storage, scraping, and painting of brows and platforms. Materials possibly used during these activities include paint, paint thinner, lacquer, red lead, and zinc chromate (BEI, 2008c).

Subsite 2F

Subsite 2F is the principal area identified as having been used for storing, scraping, and painting of brows and platforms in the late 1970s. Materials possibly used during these activities include paint, paint thinner, lacquer, red lead, and zinc chromate (BEI, 2008c).

Subsite 2G

Pretreated wooden piles were stored directly on the ground within the Wharf Builder's Yard at Subsite 2G until about 1994, when the piles were moved onto a slab. Preservatives potentially used on the piles include copper arsenate and creosote. It is possible that paint thinner or solvents were used at this location to remove the creosote from saws and equipment (BEI, 2008c).

3.2.3 Chemicals Identified

The following chemicals have been reported in soil and/or groundwater at IRP Site 2 (BEI, 2008c):

- Metals, including copper, mercury, arsenic, cadmium, lead, and zinc (although copper, arsenic, and lead were not identified as chemicals of potential concern [COPC] in the sitewide human health risk assessment [BEI, 2008c])
- SVOCs, including PAHs (e.g., benzo[a]pyrene)
- PCBs

3.2.4 Remedial Actions Taken

Four of the seven IRP Site 2 subsites (2A, 2B, 2C, and 2G) have undergone soil removal actions. Soil within Subsite 2G, the former Wharf Builder's Yard, was the subject of a non-CERCLA cleanup action performed under Petroleum Exclusion Regulations (FWEC, 1998). Soil within this area was excavated to approximately 10 feet bgs, treated using low-temperature thermal desorption technology, and backfilled in the excavation. About 2,000 cubic yards of hydraulic-fluid-impacted soil from Building 132 (the automotive maintenance facility) was also thermally treated and placed at this subsite. Approximately 4,000 cubic yards of the thermally treated soil also was spread over the surface of Subsites 2C and 2G.

Subsite 2A underwent a soil removal action performed by Foster Wheeler Environmental Corporation (FWEC) and the Navy PWC between 2000 and 2003 with excavation depths from 10 to 15 feet bgs (FWEC, 2003). The excavation limits exceeded 70 percent of the subsite. A total of 123,470 tons of soil was removed. Of the total soil removed, 106,594 tons was disposed as California hazardous waste, 14,190 tons as nonhazardous waste, 1,418 tons as Resource Conservation and Recovery Act (RCRA) waste, and 1,268 tons as low-level radiation waste.

A TCRA was conducted in 2007 and 2008 at Subsites 2B, 2C and 2G in which the upper 3 to 4 feet of soil was removed, and clean fill material imported to bring the subsites back to their original grade (TTEC, 2008). Over 45,000 cubic yards of soil were excavated and disposed of. The excavated area was backfilled with clean soil and repaved.

3.2.5 Regulatory Status

The RI for Site 2 was completed in 2008 (BEI, 2008c). The RI recommended an FS to evaluate remedial alternatives for IRP Site 2.

3.2.6 Potential for Release to San Diego Bay

A CSM of the potential contaminant transport pathways from IRP Site 2 to San Diego Bay is provided in Figure 3-4. There are three mechanisms by which contaminants from IRP Site 2 could have reached San Diego Bay: direct discharges, transport of particulates from unpaved areas of Site 2, and discharge of contaminants in groundwater from the site to the bay. These mechanisms may have been active historically, but they are largely precluded by current site conditions.

Direct releases to the bay were likely limited, as site history does not indicate significant maritime activities at IRP Site 2. In the middle to late 1970s, heavy equipment returning from Vietnam was reported to have been decontaminated in the general area of the ball fields (Subsites 2C and 2G) by being sprayed with diesel fuel prior to being rinsed in Paleta Creek (NEESA, 1986). This activity would have resulted in direct releases of contaminants to the bay.

Historical discharge of particulates from unpaved areas of the site via surface runoff and windblown transport may have occurred, but has likely been gradually reduced as the site has been increasingly paved. The site is now almost completely paved, with the few remaining unpaved areas mostly covered with other materials such as gravel that inhibit the movement of particulates.

The historical discharge of groundwater from IRP Site 2 to the bay was possible. Until retrofitted in 2003, the quay wall at the boundary of the site with Paleta Creek Channel was designed to be hydraulically leaky, allowing communication between the bay and shallow site groundwater through a series of grout holes. This communication with shallow groundwater was cut off in 2003 when interlocked welded sheet piles were driven outboard of the existing concrete pile, and a cementitious fill poured into the resulting void.

The current potential for discharge of groundwater to the bay is low. Based on the tidal influence study described in the IRP Site 2 Final RI Report (BEI, 2008c), shallow groundwater is not currently in hydraulic communication with the Paleta Creek Channel. The deeper groundwater does appear to be in communication with the bay and Paleta Creek Channel, although the net mean gradient appears to be onshore. The average direction of groundwater flow, when calculated over multiple tidal cycles, is from San Diego Bay toward land, in a southeasterly direction. This results in the net transport of water from San Diego Bay to deeper groundwater at IRP Site 2, rather than the net transport of deeper groundwater to San Diego Bay. Analytical data for samples from six deep wells, including four located adjacent to the quay wall, indicate minimal contamination of deeper groundwater. Therefore, the current potential for contaminated groundwater to discharge to the bay is negligible.

3.2.7 Dredging History

Substantial sediment offshore of IRP Site 2 in the Paleta Creek Channel was dredged in 1971, as shown on Figure 3-4. Additional material near the mouth of Paleta Creek was removed by dredging in 1993. Multiple dredging events were also performed in the main navigational channel and approaches to the piers between 1955 and 1985.

3.3 IRP Site 3, Salvage Yard

3.3.1 Description

IRP Site 3 is located in the south-central portion of NBSD and measures approximately 1,050 feet by 300 feet (Figure 3-6). Paleta Creek, which is walled with concrete in this area, borders the site to the south-southeast. PWC maintenance and repair shops are located northwest of IRP Site 3. Harbor Drive and Cummings Road border the site to the northeast and southwest, respectively. IRP Site 4, the Defense Property Disposal Office (DPDO) Storage Yard, is located east and southeast of IRP Site 3 on the other side of Harbor Drive. IRP Site 3 is approximately 2.0 miles from the Shipyard Sediment Site.

Both the northern and the southern portions of IRP Site 3 are currently used as parking lots that are covered with asphalt pavement. The two portions of the site are divided by a fence. The northern portion of IRP Site 3 is used as the PWC security parking lot. Several natural gas dispenser islands are present west of and within the PWC security parking lot. The southern area provides long-term parking for the Forces Afloat and short-term parking for Defense Distribution San Diego personnel.

3.3.2 Historical Operations

A timeline of activities at IRP Site 3 is shown in Figure 3-7. The Salvage Yard, operated by the Defense Reutilization and Marketing Office (DRMO), received and disposed of a variety of waste material from 1943 to 1975 (NEESA, 1986). After 1975, the site received only relatively clean or waste-free metal for conversion to scrap (IT, 1988). DRMO was tasked with receiving, selling, donating, and disposing of excess Navy materials. Excess materials from other San Diego naval installations, including the Point Loma Complex and the former Naval Air Station (NAS) Miramar, were also transported to the Salvage Yard for incineration, sale to outside bidders, and reuse by other Department of Defense organizations.

Historical information indicates that items and materials handled by the salvage operation included transformers containing PCBs, mercury, electrolytes from old batteries, drummed petroleum wastes, solvents and thinners, refuse, demolition debris, infectious wastes from the medical and dental clinics, and spoiled food items from incoming Navy vessels. An estimated 100 to 200 drums per month of waste lubricating oil, lubricants, solvents, and acid/alkaline solutions were brought to the site for handling (NEESA, 1986).

Drummed waste material was reportedly placed in an unpaved area near the dual incinerators in the southern portion of the site. Liquid waste was incinerated or drained onto the ground, and the drums were auctioned off along with drums filled with liquid waste that could be recycled (e.g., waste motor oil) (NEESA, 1986).

Material that could not be sold, reused, or donated by DRMO was designated for burning in one of the two dual incinerators located in the north-central portion of IRP Site 3. A third unit, a classified-document incinerator, was located north of the fence line at the northern end of IRP Site 3. Ash residues from the incinerators were taken off the base for disposal by PWC (NEESA, 1986). All equipment, including incinerators previously located onsite, has been removed.

3.3.3 Chemicals Identified

The following chemicals have been reported in soil and/or groundwater at IRP Site 3 (BEI, 2008d):

- Metals, including copper, mercury, arsenic, cadmium, lead, and zinc (although copper in soil was not reported at a concentration above the background level for NBSD [BNI, 1996])
- PCBs
- SVOCs, including PAHs

3.3.4 Remedial Actions Taken

After the salvage yard operation at IRP Site 3 was discontinued in 1975, several investigations were conducted that identified COCs in soil. In response, four soil removal actions, three non-CERCLA (initiated during construction activities) and one CERCLA, were conducted at IRP Site 3 as follows:

- During decommissioning activities in 1976, the top 8 inches of PCB-contaminated soil was removed in an area approximately 200 by 150 feet in the vicinity of the former dual incinerators.
- In 1993, approximately 180 cubic yards of soil was excavated as part of underground storage tank (UST) removal activities in the northern area of the site.
- In 1997, approximately 21,000 cubic yards of soil containing PCBs and lead in the southern portion of IRP Site 3 was excavated as part of a TCRA under CERCLA (OHM, 1998b). Confirmation sampling was performed across the northern and southern areas of the site after the TCRA.
- In 2000, a localized area (approximately 10 feet by 10 feet) of soil was removed as part of construction activities in the southern area.

3.3.5 Regulatory Status

An extended RI (ERI) for IRP Site 3 was completed in 2008 (BEI, 2008d). The ERI recommended an FS to address localized soil contaminants located under asphalt paving. The Draft FS (BEI, 2008e) recommended hot-spot soil removal at nine locations to complete remedial efforts at the site.

3.3.6 Potential for Release to San Diego Bay

A CSM of the potential contaminant transport pathways from IRP Site 3 to San Diego Bay is provided in Figure 3-6. There are two mechanisms by which contaminants from the site could have reached the bay: discharge of particulates from unpaved areas of Site 3 via surface runoff and windblown transport, and discharge of contaminants in groundwater from the site to the bay. The first mechanism may have been active historically but is precluded by current site conditions. Discharge of particulate contaminants to the bay may have occurred from 1943, when site operations began, until 1997, when the surface of IRP Site 3 was repaved with asphalt. This paving has since remained in relatively good condition. The protective asphalt cover minimizes surface water infiltration and windblown transport of fugitive dust.

The potential for discharge of contaminated groundwater from IRP Site 3 to the bay is low. Results of a 72-hour tidal influence study performed as part of the ERI indicated that the confined to semiconfined groundwater underlying IRP Site 3 is in hydraulic communication with San Diego Bay (BEI, 2008d). The study also revealed that Paleta Creek is a losing stream, losing water to the shallow water-bearing zone. Net groundwater flow in both the shallow and deeper water-bearing zones is away from the creek. In addition, IRP Site 3 groundwater is not reported to be impacted by organic contaminants above aquatic screening criteria.

3.3.7 Dredging History

Substantial sediment offshore of IRP Site 3 in the Paleta Creek Channel was removed in 1971, as shown on Figure 3-6. Additional material near the mouth of Paleta Creek was removed by dredging in 1993. Multiple dredging events were also performed in the main navigational channel and approaches to the piers between 1955 and 1985.

3.4 IRP Site 4, DPDO Storage Yard

3.4.1 Description

IRP Site 4 is a roughly rectangular parcel that lies east of Harbor Drive and north of Paleta Creek (Figure 3-8). The site is bounded by Atchison, Topeka, and Santa Fe Railroad tracks and Harbor Drive on the west, the San Diego Trolley line on the east, a City of San Diego sewage pump station on the north, and Paleta Creek on the south. The northern portion of the site is a materials-recycling area paved with either concrete or asphalt. Three warehouses were located on the northern area of IRP Site 4. The largest warehouse, still present, stores nonhazardous materials associated with recycling activities. Two additional warehouses, which have been removed from the site, were formerly located in an unpaved area near the center of the site and were used to store batteries (Warehouse 250) and high-value scrap such as brass and copper (Warehouse 249). The former warehouses and materials-recycling areas are enclosed by a fence. The southern portion of the site, which is occupied by the Defense Logistics Agency (DLA), is unpaved and fenced and used for boat storage.

3.4.2 Historical Operations

A timeline of activities at IRP Site 4 is shown in Figure 3-9. The site was a Naval Supply Center (NSC) storage yard from 1943 to 1975; from 1975 to 1981, the site served as a DPDO storage yard. Since 1981, the southern subarea has been used mainly to store landing craft. In 1975, the northern area of the site was almost completely paved. Before then, the surface was reported to have been oiled regularly as a dust-control measure. The Initial Assessment Study (IAS) Report noted that an estimated 35,000 to 75,000 gallons of oil was spread on the site (NEESA, 1986). This oil consisted of various waste petroleum, oils, and lubricants (POLs). In addition, containers of electrical insulating oils were stored at the site during the 1970s. Some of the containers reportedly leaked, but no estimated quantities are available. The IAS Report also noted that some of the material that leaked from containers used for

insulating oils may have been mixed with the POLs. Drummed material containing paints, lubrication oils, and PD-680 solvent was stored at the site.

3.4.3 Chemicals Identified

The following chemicals have been reported in soil and/or groundwater at IRP Site 4 (BEI, 2008f):

- Metals, including copper, mercury, arsenic, cadmium, lead, and zinc (although copper in soil was not identified as a COPC in the human health risk assessment [BEI, 2008f])
- SVOCs, including PAHs (e.g., benzo[a]pyrene)
- PCBs

3.4.4 Remedial Actions Taken

No remedial actions have been performed at IRP Site 4.

3.4.5 Regulatory Status

The final RI report for IRP Site 4 was issued in 2008 (BEI, 2008f). The RI recommended no further action for this site.

3.4.6 Potential for Release to San Diego Bay

A CSM of the potential contaminant transport pathways from IRP Site 4 to San Diego Bay is provided in Figure 3-8. There are two mechanisms by which contaminants from the site could have reached the bay: (1) discharge of particulates from unpaved areas of IRP Site 4, and (2) discharge of contaminants in groundwater from the site to the bay. The first mechanism may have occurred historically and is still feasible in the unpaved southern portion of IRP Site 4. The southern area is almost entirely unpaved, and particulate contaminants from surface soil in this area have the potential to reach the bay due to windblown transport or overland runoff into Paleta Creek during storm events. The current potential for discharge of particulate contamination to San Diego Bay is low in the northern area of the site, which is nearly entirely paved, and has been since at least 1975. This paving precludes migration of particulates from this area.

The potential for the transport of contaminants to San Diego Bay from IRP Site 4 via groundwater transport is low. Surface water in Paleta Creek is not in direct hydraulic communication with the groundwater underlying IRP Site 4, eliminating the groundwater-to-surface-water pathway (BEI, 2008f).

Space and Naval Warfare Systems Center San Diego (SPAWAR) conducted the Coastal Contaminant Migration Monitoring Assessment (CCMMA), which consisted of the installation of multiple Trident Probe monitoring points to collect conductivity and temperature data in the bed of Paleta Creek and the drainage ditch adjacent to and west of IRP Site 4 (BEI, 2008f). The objectives of the CCMMA were to (1) delineate groundwater discharge locations, if any, to the creek bed; (2) quantify rates of advective flow between surface water and groundwater in Paleta Creek and the drainage ditch; (3) evaluate tidal response in shallow groundwater, deeper groundwater, and the creek and ditch; and (4) characterize vertical and horizontal hydraulic gradients at the site.

The CCMMA concluded that the shallow water-bearing zone is hydraulically separate from the deep water-bearing zone at IRP Site 4; both surface water features (Paleta Creek and the drainage ditch west of the site) are losing water to shallow groundwater at IRP Site 4, and therefore any IRP Site 4-related chemicals that may be present in groundwater are not discharging to Paleta Creek.

3.4.7 Dredging History

Substantial sediment offshore of IRP Site 4 was removed in 1971 in the dredging of Paleta Creek Channel, as shown in Figure 3-8. Additional material near the mouth of Paleta Creek was removed by dredging in 1993. Multiple dredging events were also performed in the main navigational channel and approaches to the piers between 1955 and 1985.

3.5 IRP Site 7, Former Sewage Treatment Plant

3.5.1 Description

IRP Site 7 is an irregularly shaped parcel bounded on the north by PWC facilities, on the south by Vesta Street, on the east by Harbor Drive, and on the west by Knowlton Williams Road (Figure 3-10). The site is approximately 1,250 feet long and 600 feet wide at the widest point, tapering to about 250 feet wide along the south end. The area of the site encompasses approximately 10.5 acres and does not include the San Diego Gas and Electric substation near the southeast corner of the site. The site is approximately 850 feet east of San Diego Bay and 1.2 miles south of the Shipyard Sediment Site.

3.5.2 Historical Operations

A timeline of activities at IRP Site 7 is shown in Figure 3-11. The site was originally developed as a municipal sewage treatment plant (Harbor Drive Sewer Plant). The facility was constructed between 1948 and 1951 and was owned and operated by the City of San Diego from 1951 through 1963. Available drawings indicate that the sewage treatment plant consisted of maintenance and administrative buildings, digesters, clarifiers, elutriation tanks (used to "wash" undesired substances from sludge that interfered with the subsequent chemical conditioning or filtration of the sludge), sludge storage buildings, a detritor building, and other associated facilities. Effluent from the plant was discharged into San Diego Bay near Pier 5 (Figure 3-10). The plant was decommissioned in 1963, when the Point Loma sewage treatment facility became operational, and demolished in 1977.

Aerial photographs indicate that the electrical substation near the southeast corner of the site was constructed between 1963 and 1972. The substation is currently operated by San Diego Gas and Electric and is not under Navy jurisdiction. The treatment plant was demolished in 1978, and the site remained vacant, with the exception of a small building temporarily located east of Building 118 and the substation until 1983, when the southern portion of the site was graded.

The Navy acquired IRP Site 7 in 1984. By 1985, the entire site had been graded for parking. The parking area was paved with asphalt in November 1994.

3.5.3 Chemicals Identified

The following chemicals have been reported in soil and/or groundwater at IRP Site 7 (BEI, 2002):

- Metals, including copper, mercury, arsenic, cadmium, lead, and zinc (although copper in soil was not reported above the background level at NBSD [BNI, 1996], and arsenic in soil was not identified as a COPC in the human health risk assessment [BEI, 2002])
- SVOCs, including PAHs (e.g., benzo[a]pyrene)
- PCBs

3.5.4 Remedial Actions Taken

No remedial actions have been performed at IRP Site 7.

3.5.5 Regulatory Status

In December 2004, the Remedial Action Plan/Record of Decision (RAP/ROD) for IRP Site 7 was issued (Navy, 2004a). Regulatory agency concurrence with the decision to close the site with no further action under CERCLA was formalized with the signing of the RAP/ROD. The RWQCB's concurrence with no further action at IRP Site 7 is documented in Appendix C.

3.5.6 Potential for Release to San Diego Bay

A CSM of the potential contaminant transport pathways from IRP Site 7 to San Diego Bay is provided in Figure 3-10. There are three mechanisms by which contaminants from the site may have reached the bay: direct discharge to the bay, discharge of particulates from unpaved areas of Site 7 via surface runoff and windblown transport, and discharge of contaminants in groundwater from the site to the bay.

Historical direct discharge of waste from IRP Site 7 to the bay is well documented. The City of San Diego intentionally discharged untreated sewage to San Diego Bay near the current terminus of Pier 5 from at least 1935 to 1951 (prior to plant construction), and primary treated sewage from 1951 to 1963 at the same location. Documentation in the Administrative Record indicates the City of San Diego discharged contaminants from IRP Site 7 through two discharge pipes to San Diego Bay near the terminus of NBSD Pier 5. Further, from at least 1935 until 1951, those same discharge pipes were used to discharge City of San Diego raw sewage to San Diego Bay near the current terminus of Pier 5. The direct discharge of waste to the bay ceased in 1963 when the plant was decommissioned, and City of San Diego sewage treatment shifted to the Point Loma sewage treatment facility.

There are no known analytical data for the untreated or primary treated sewage from the City of San Diego Sewage Treatment Plant. However, a recent report from the USEPA indicates that arsenic, copper, lead, mercury, zinc, and cadmium were reported in 100 percent of surveyed sewage sludge samples, and that the high molecular weight polynuclear aromatic hydrocarbon (HPAH), benzo(a)pyrene, was reported in 77.1 percent of the samples (USEPA, 2009).

The historical potential for discharge of particulate contamination to San Diego Bay sediments via surface runoff and windblown transport from the site is low. Although the site was not completely paved until 1994, it is at its closest over 850 feet east of the shoreline, reducing the likelihood of significant discharge from windblown or overland transport.

The potential for discharge of contaminated groundwater from IRP Site 7 to the bay is low, as the transport pathways for groundwater between IRP Site 7 and San Diego Bay were determined to be incomplete (BEI, 2002).

3.5.7 Dredging History

Substantial sediment between IRP Site 7 and the Shipyard Sediment Site was removed in 1971 in dredging of the midpier area, as shown in Figure 3-10. Additional material farther out into the channel offshore of NBSD was removed in multiple dredging events conducted between 1955 and 1993. These dredging projects have removed sediment that accumulated over decades, including material likely discharged from the plant prior to 1963.

3.6 IRP Site 8, Firefighting Training Facility

3.6.1 Description

IRP Site 8 is in the western portion of NBSD near Pier 8, approximately 1.5 miles south of the Shipyard Sediment Site (Figure 3-12). The site is bounded by the Brinser Street Parking Area (IRP Site 12) to the north, Siefert Place to the east, and Southall Street to the south. To the west, the site is bounded by Brinser Street and San Diego Bay. The site extends approximately 1,000 feet northwest to southeast and is approximately 250 feet wide. The site is currently used as a parking lot and contains the electrical switch station "J" (Building 3485). IRP Site 8 is relatively flat and completely paved.

3.6.2 Historical Operations

A timeline of activities at IRP Site 8 is shown in Figure 3-13. The site was used for firefighting-training exercises between the late 1940s and 1996. Before 1972, training fires were set in the open on two concrete pads (flight decks). From 1972 to 1996, all training fires were set in enclosed structures equipped with pollution-control equipment to reduce air emissions. The aboveground structures, tanks, and USTs at IRP Site 8 were demolished and removed in 1996.

Petroleum-hydrocarbon materials used at the firefighting-training facility included jet propellant grade 5 (JP-5) fuel and gasoline for setting the training fires. The JP-5 and gasoline were stored in a 28,000-gallon vaulted aboveground storage tank (AST) (former AST 13, also known as "Tank FFS-15") located at the northern end of the site. The JP-5 was transferred from former AST 13 to the flight deck in Building 3196 at the south end of the site through an underground pipeline that extended the length of the site. The northern portion of the underground pipeline associated with former AST 13 leaked and was repaired on two occasions, most recently in 1987. Quench water generated from each firefighting exercise was directed into a series of underground concrete tanks in the southwest portion of the site where oil-water separation, removal of particulates, and reclamation took place.

3.6.3 Chemicals Identified

Fuel-related petroleum products (i.e., JP-5, gasoline, and diesel fuel) have been reported in soil and/or groundwater at IRP Site 8. Fuel-related constituents are not COCs for the Shipyard Sediment Site.

3.6.4 Remedial Actions Taken

Two free-product plumes were identified at IRP Site 8. In 1993, Jacobs Engineering Group (JEG) was directed to initiate emergency free-product recovery in the northern portion of the site after an 8-inch layer of product seeped into a 9-foot-deep construction excavation. JEG constructed three intercept trenches and installed product-recovery skimmers in two of the trenches. Product-recovery rates of 20 to 82 gallons per day were obtained in July 1993 (JEG, 1994). Approximately 3,000 gallons of free product were recovered during the system's 2 years of operation. The JEG product-recovery system was subsequently removed from IRP Site 8, and no surface expression of the system remains.

Free product was also found on the water table at the southwest corner of the site. In 1997, FWEC began operating a multiphase extraction (MPE) system comprising 31 extraction wells at IRP Site 8. Remediation was conducted on both the northern and southern plumes. The extraction wells were completed at depths of approximately 20 feet bgs. Free-phase petroleum product, contaminated groundwater, and vapor-phase hydrocarbons extracted by applying vacuum to the extraction wells were transferred by underground piping to the aboveground MPE system.

The MPE system at IRP Site 8 was operated and maintained by FWEC from November 1997 to early 2000, at which time PWC took over. PWC operated and maintained the MPE system until May 2001, when the Sanitation District discharge permit expired and the system was shut down. During operation, the MPE system recovered approximately 15,000 gallons of free product and extracted and treated approximately 2,400,000 gallons of contaminated groundwater from both plumes at the site (PWC, 2001a).

In January and February of 2002, PWC excavated a portion of the southern plume. Soil, capillary fringe material, water, and free product were removed from the site. The excavation has been backfilled and paved.

3.6.5 Regulatory Status

In March 2004, IRP Site 8 was closed with concurrence from the RWQCB that no further action was required. The RWQCB concurrence letter is provided in Appendix C.

3.6.6 Potential for Release to San Diego Bay

A CSM of the potential contaminant transport pathways from IRP Site 8 to San Diego Bay is provided in Figure 3-12. There are three mechanisms by which contaminants from the site may have reached the bay: direct discharge to the bay, discharge of particulates from unpaved areas of Site 8, and discharge of contaminants in groundwater from the site to the bay.

Historical direct discharge to the bay during fire training was possible, but it has not been reported. A system of underground tanks existed to capture quench water generated during training, thus reducing the chance for accidental discharge to the bay.

Historical discharge of particulate contaminants to the bay from unpaved areas of the site is unlikely. Review of Station Condition Maps of Destroyer Base San Diego show the area of IRP Site 8 as almost entirely paved as early as 1943, the date of the first map on which the "fire fighting school" appears (PWC, 1943; Drawing No. 9494). The current potential for discharge of particulate contamination to San Diego Bay sediments is low because the site is completely paved.

Historical discharge to the bay of fuel-related contaminants in site groundwater is possible, but has not been reported. The potential for discharge of contaminated site groundwater to the bay is considered low following the removal actions described below.

3.6.7 Dredging History

Substantial sediment immediately offshore of IRP Site 8 was removed in 1971 and again in 1993, as shown in Figure 3-12. These two dredging activities likely removed sediment that may have been influenced by IRP Site 8 activities prior to 1971. Additional material farther out into the channel offshore of NBSD was removed in multiple dredging events conducted between 1955 and 1993.

3.7 IRP Site 9, PCB Storage Facility

3.7.1 Description

IRP Site 9 is located approximately 1,200 feet southeast of Paleta Creek, approximately 1,000 feet east of San Diego Bay and 2.0 miles south of the Shipyard Sediment Site (Figure 3-14). The site (also known as SWMU 2) is an irregularly shaped parcel bounded on the north by the ship-to-shore storage yard, on the south by Civic Center Drive, on the east by Atchison, Topeka, and Santa Fe Railroad tracks, and on the west by the high-voltage electrical shop. The site is approximately 1.1 acres, measuring approximately 250 feet long and 180 feet wide at the west side, tapering to about 140 feet wide along the east side. The site has been paved and is used for parking and equipment storage.

3.7.2 Historical Operations

A timeline of activities at IRP Site 9 is shown in Figure 3-15. The facility is reported to have been in continuous use for approximately 30 years. It was used primarily for maintenance of electrical equipment, including draining of transformer fluids and storage of fluids containing PCBs. Transformers historically have been transported, repaired, and stored on soil, gravel, asphalt, and concrete surfaces at various locations throughout the yard. Until the late 1980s, no attempt was made to contain fluids or to segregate PCB-containing fluids from other fluids used in the yard.

The facility was operated by PWC as a hazardous waste storage facility under the authority of a RCRA permit issued jointly by the U.S. Environmental Protection Agency (USEPA) Region 9 and DTSC. The Part B Permit Application Closure Plan (Closure Plan), submitted

in April 1991 and approved by DTSC on 30 June 1993, defined the objectives for closing the facility and the specific actions to be executed for closure.

3.7.3 Chemicals Identified

The following class of chemical has been reported at IRP Site 9:

• PCBs

3.7.4 Remedial Actions Taken

A removal action was completed in 1994 to clean PCB-contaminated structures and soils at IRP Site 9. As part of the removal, three structures at the north end of the site (Building A and two concrete pads) were decontaminated and demolished. In addition, asphalt/concrete that covers approximately one third of the surface area of the site was deemed contaminated and handled as hazardous waste. After the asphalt/concrete was removed, PCB-contaminated soils were excavated. The excavations extended outside the boundaries of IRP Site 9 and in some places to a depth of 4 feet. In addition, PCB-contaminated sediment was removed from the storm drain inlet in the southeast corner of the site (IT, 1995). This storm drain was cleaned using a Hydroblaster and pneumatic pumps. The water generated during this cleanup was transported to the industrial waste treatment plant located at NAS North Island. Solids and sludge removed were temporarily stored on plastic sheeting, dewatered, and incorporated with the containerized soils in roll-off bins.

3.7.5 Regulatory Status

IRP Site 9 is closed. Upon review of the Closure Certification Report (IT, 1995), DTSC's Facility Permitting Branch issued a letter of acceptance for the SWMU 2 Closure Reports in 1995. On 14 November 1997, DTSC's Office of Military Facilities issued a no further action concurrence letter to the Navy, certifying that the site had been closed in accordance with the DTSC-approved Closure Plan (DTSC, 1997). A copy of the closure letter is presented in Appendix C.

3.7.6 Potential for Release to San Diego Bay

A CSM of the potential contaminant transport pathways from IRP Site 9 to San Diego Bay is provided in Figure 3-14. Because of the long distance from IRP Site 9 to the bay (approximately 1,200 feet southeast of Paleta Creek and approximately 1,000 feet east of San Diego Bay), historical discharge of contaminated soil particles to Paleta Creek from storm drain outfalls prior to installation of pavement is likely the only potential mechanism for the transport of site contaminants to the bay. IRP Site 9 is currently paved with asphalt and used as a parking lot and contractor staging area, and there are no current transport pathways from the site to Paleta Creek or San Diego Bay.

3.7.7 Dredging History

Substantial sediment west of IRP Site 9 was removed in 1971, as shown in Figure 3-14. Additional material near the mouth of Paleta Creek was removed by dredging in 1993. Multiple dredging events were also performed in the main navigational channel and approaches to the piers between 1955 and 1985.

3.8 IRP Site 10, Original Rice King Restaurant Site

3.8.1 Description

IRP Site 10 is located in the midpier area, approximately 400 feet east of San Diego Bay and 1.4 miles south of the Shipyard Sediment Site (Figure 3-16). The site is an L-shaped area of approximately 5 acres bounded by Vesta Street to the north, Cummings Road to the east, Woden Street to the south, and Ward Road to the west. To the northeast, the site is bounded by the Navy Exchange (NEX) and several restaurants (all in Building 3301). Building 321, formerly located in the southeast portion of the site, was demolished in 1997. Building 3239 (a racquetball court recreation facility), the only structure within the site boundary, is located in the northwest portion of the site. Site topography is relatively flat with a maximum elevation of about 12 feet MLLW. Currently, most of the site is used as a vehicle parking lot, with the exception of the enclosed racquetball court, and is covered with asphalt pavement.

3.8.2 Historical Operations

A timeline of activities at IRP Site 10 is shown in Figure 3-17. Aerial photographs, historical information, and several environmental investigations indicate that the site was used as an unpaved storage yard for metal finishing, preservation, and packaging at Building 321 before the mid-1970s. Operations conducted in this area from 1955 until 1994 included use of solvents and corrosives for cleaning metal materials. In 1994, PWC removed two machinery bays, one 500-gallon concrete sump, two floor drains, and two storm drain flow diverters from the area of Building 321 (PWC, 1995). All were discovered during a UST investigation designed to locate a UST rumored to be present at the site. Previous investigations uncovered construction debris (SCS&T, 1989) and debris containing asbestos (PSII, 1992).

3.8.3 Chemicals Identified

The following chemicals have been reported in soil and/or groundwater at IRP Site 10 (BEI, 2008g):

- Metals, including copper, mercury, arsenic, cadmium, lead, zinc, and TBT
- SVOCs, including PAHs
- PCBs

3.8.4 Remedial Actions Taken

No remedial actions have been taken at IRP Site 10.

3.8.5 Regulatory Status

IRP Site 10 is presently at the RI stage of the CERCLA process. The Draft RI was completed in 2008 (BEI, 2008g).

3.8.6 Potential for Release to San Diego Bay

A CSM of the potential contaminant transport pathways from IRP Site 10 to San Diego Bay is provided in Figure 3-16. Because the site is located over 400 feet from the San Diego Bay,

direct discharge to the bay and migration of contaminated groundwater to the bay are both considered unlikely.

There is a potential for historical releases to the bay from particulate transport by surface water via the storm drain system. The potential for historical discharge from the thenunpaved site by this mechanism is mitigated by the distance from the site to the bay. The site has been paved since the mid 1970s.

The current potential for discharge is low. The site's paved asphalt and concrete surface acts as an effective barrier to migration of contaminated soil, making surface water runoff and fugitive dust emissions unlikely.

3.8.7 Dredging History

Substantial sediment in San Diego Bay west of IRP Site 10 was removed in 1971 as shown on Figure 3-16. Additional material farther out into the channel offshore of NBSD was removed in multiple dredging events conducted between 1955 and 1993.

3.9 IRP Site 12, Brinser Street Parking Area

3.9.1 Description

IRP Site 12 is located on the western portion of NBSD, near Pier 7, and extends approximately 750 feet in a north-south direction and 550 feet in an east-west direction (Figure 3-18). The site is adjacent to San Diego Bay and approximately 1.4 miles south of the Shipyard Sediment Site. It is bounded to the north by Woden Street and a paved parking lot. The Firefighting Training Facility (IRP Site 8) borders the site to the south, and Building 3304 borders the site to the east. To the west, the site is bounded by Brinser Street and San Diego Bay (BNI, 1998).

IRP Site 12 is completely paved with asphalt. A chain-link fence divides the site into eastern and western portions. The western portion is used for parking and equipment staging; the eastern portion serves as a shipping and receiving area for the Defense Distribution Depot Center (DDDC) warehouse (BNI, 1998).

3.9.2 Historical Operations

A timeline of activities at IRP Site 12 is shown in Figure 3-19. The site was part of an area used for construction of floating dry docks and barges during World War II. Early site history is documented in a series of site photographs taken during 1942 and 1943 (BNI, 1998). These historical photographs indicate the presence of two shallow creosote dip ponds for treating lumber at two locations on the site. The area of IRP Site 12 has been used as a staging area for military equipment, automobile parking, and shipping and receiving since 1966 (BNI, 1998).

3.9.3 Chemicals Identified

The following chemicals have been reported in soil and/or groundwater at IRP Site 12 (Navy, 1996):

- Metals, including copper, mercury, arsenic, cadmium, lead, and zinc (although copper, lead, and arsenic in soil were detected at concentrations below NBSD background concentrations [BNI, 1996])
- SVOCs including PAHs

3.9.4 Remedial Actions Taken

During previous investigations at IRP Site 12, principally to assess soil conditions before proposed military construction (MILCON) projects, elevated concentrations of PAHs possibly associated with creosote were discovered. A TCRA Memorandum/Removal Action Work Plan was prepared to document the Navy's decision to perform a removal action (Navy, 1996). The removal action was performed by OHM between 03 June and 31 July 1996. Approximately 2,828 cubic yards (5,090 tons) of PAH-impacted soil was excavated to an average depth of 4 feet bgs and a maximum depth of 9.5 feet bgs. This soil was transported offsite (OHM, 1997), and both excavations were backfilled with clean fill. After the removal action, no further action was recommended for IRP Site 12.

3.9.5 Regulatory Status

The site is closed, and no further action under CERCLA is required. The Navy documented the IRP Site 12 closure in a RAP/ROD, which was issued in December 2004 (Navy, 2004a). Regulatory agency concurrence with this decision was formalized with the signing of the RAP/ROD (Appendix C).

3.9.6 Potential for Release to San Diego Bay

A CSM of the potential contaminant transport pathways from IRP Site 12 to San Diego Bay is provided in Figure 3-18. There are three mechanisms by which contaminants from the site may have reached the bay: direct discharge to the bay, discharge of particulates from unpaved areas of Site 12, and discharge of contaminants in groundwater from the site to the bay.

Historical direct discharge to the bay was possible, particularly between 1942 and 1944, but has not been reported. The tarry creosote in the dip ponds would have been heavier than water, and as product, would have tended to remain in the depressed pond areas, reducing the chance for accidental discharge of significant product to the bay. The potential for direct discharge to the bay ended with the cessation of lumber treatment n the 1940s.

Historical discharge of contaminated particulates to the bay from unpaved areas of the site is also possible. Review of Station Condition Maps of Destroyer Base San Diego show the area of IRP Site 12 as partially paved in 1944 and entirely paved in 1945 (PWC, 1945; Drawing No. 9491, Part 2). The site's paved asphalt and concrete surface acts as an effective barrier to migration of contaminated soil, making surface water runoff and fugitive dust emissions unlikely.

Historical discharge of site groundwater to the bay is possible, based on the proximity of the site to the bay; however, the low mobility of the creosote, and high molecular weight of the PAHs in general, mitigates the risk of significant discharge by this mechanism. In addition the presence of the NBSD quay wall between the land and the bay has effectively removed the groundwater-bay pathway.

3.9.7 Dredging History

Substantial sediment offshore of IRP Site 12 was removed in 1971 as shown on Figure 3-18. Additional material farther out into the channel offshore of NBSD was removed in multiple dredging events conducted between 1955 and 1993.

3.10 IRP Site 13, Dry Dock Sandblast Grit Area

3.10.1 Description

IRP Site 13 is located in the western-central portion of NBSD, immediately east of Piers 5 and 6 and approximately 1.3 miles south of the Shipyard Sediment Site (Figure 3-20). The site is south and southeast of the dry dock, within the PWC ship maintenance/repair yard and the Sithe Energies/San Diego Gas and Electric Cogeneration (cogen) Plant. The site is bounded on the north by Building 84 (restrooms) and the dry dock and concrete apron, on the south by an alley and parking lot, on the east by Surface Navy Road, and on the west by a parking lot beyond Building 408 (storage shed).

The majority of the perimeter of the PWC ship maintenance/repair yard and the cogen plant is bounded by either a brick wall or chain-link fence. IRP Site 13 includes much of the PWC ship maintenance/repair yard and all of the steam and electricity cogen plant. On the basis of a review of maps and aerial photographs, much of the site appears to have been paved from the early 1940s until construction of the eastern (or older) portion of the cogen plant in 1973. The condition of the asphalt appeared to range from good to worn in the reviewed photographs (PWC, 1999).

The cogen plant currently occupies much of the site. Open areas west and southwest of the cogen plant continue to be used for contractor equipment laydown during ship maintenance activities. Tented sandblasting and related ship maintenance activities currently occur in the dry dock, located northwest of the site.

3.10.2 Historical Operations

A timeline of activities at IRP Site 13 is shown in Figure 3-21. The Navy's PWC ship maintenance/repair yard is (and has historically been) used for the overhaul and maintenance of ships, repair of ship components, and contractor equipment storage. Operations inside the yard are industrial and include sandblasting and painting of ship components. The cogen plant generates steam and electricity. The steam is used exclusively on NBSD, and electricity is routed off NBSD. Structures inside the facility's boundaries include boilers, turbines, ASTs, generators, and other features associated with the generation of steam and electricity.

Sandblasting operations at IRP Site 13 were probably initiated in 1942 with the completion of the ship dry dock (located north of the site). Copper abrasive-blast material (grit) was used in the dry dock to remove paint from hulls of Navy vessels. Ship repair/maintenance operations at the dry dock were conducted by government contractors from 1942 until 1983, when PWC assumed operations. According to cogen plant personnel, sandblast operations in the dry dock emitted windborne dust that traveled southeasterly (the prevailing wind direction) from the dry dock and settled on the concrete apron adjacent to the dock on portions of the cogen plant (PWC, 1999). Sandblasting of small ship parts also occurred on the ground in the vicinity of the railcar shelter and silo. Used grit was reportedly accumulated and collected for recycling.

By 1985 to 1986, PWC used curtains near the eastern end of the dry dock to limit spreading of grit south and southeast of the dock. Untented sandblasting operations reportedly took place at the dock until 1993. At this time, sandblasting operations within the dry dock were conducted under completely tented conditions to eliminate the dispersion of sandblast grit.

3.10.3 Chemicals Identified

The following class of chemical has been reported at IRP Site 13 (BEI, 2006):

• Metals, including copper, mercury, arsenic, cadmium, lead, zinc, and TBT (although arsenic in soil was not identified as a COPC in the human health risk assessment [BEI, 2006])

3.10.4 Remedial Actions Taken

In early October 1992, PWC removed visible surface contamination consisting of overlying dark gray grit and dust to approximately 4 inches below grade in the northeastern portion of the cogen plant property. The exact limits of the excavation are not known. Eighty-nine 5-gallon containers of mixed gravel, soil, and blast media were generated during removal activities (PWC, 1999). In addition, a non-CERCLA cleanout of the sandblast grit vault was conducted by PWC, described in the Tank Closure Report for Underground Vault at IRP Site 13 (PWC, 2005).

3.10.5 Regulatory Status

IRP Site 13 is closed. In March 2007, DTSC concurred with the Navy's recommendation of closure with no further action. A copy of the DTSC concurrence letter is provided in Appendix C.

3.10.6 Potential for Release to San Diego Bay

A CSM of the potential contaminant transport pathways from IRP Site 13 to San Diego Bay is provided in Figure 3-20. Surface water runoff to the bay is the most likely historical transport pathway. Releases of used sandblast grit may have occurred to surface soil, and surface water runoff and windblown transport are probably the most likely mechanisms of discharge to the bay.

Significant discharge to the bay of site contaminants groundwater is considered unlikely, both at present and historically. The reinforced steel and concrete quay wall between IRP Site 13 and San Diego Bay acts as a barrier to groundwater flow to the bay.

The current potential for discharge from IRP Site 13 to the bay is low. Most of the site is paved or covered with equipment. Unpaved areas have been adequately characterized. Two excavations were conducted to reduce metals concentrations in unpaved areas of the site. Ongoing sediment sampling related to National Pollutant Discharge Elimination System (NPDES) permitting for operation of the Navy dry dock located adjacent to IRP Site 13

provides data that indicate that activities in the vicinity of IRP Site 13 are not discharging metals to bay sediment.

3.10.7 Dredging History

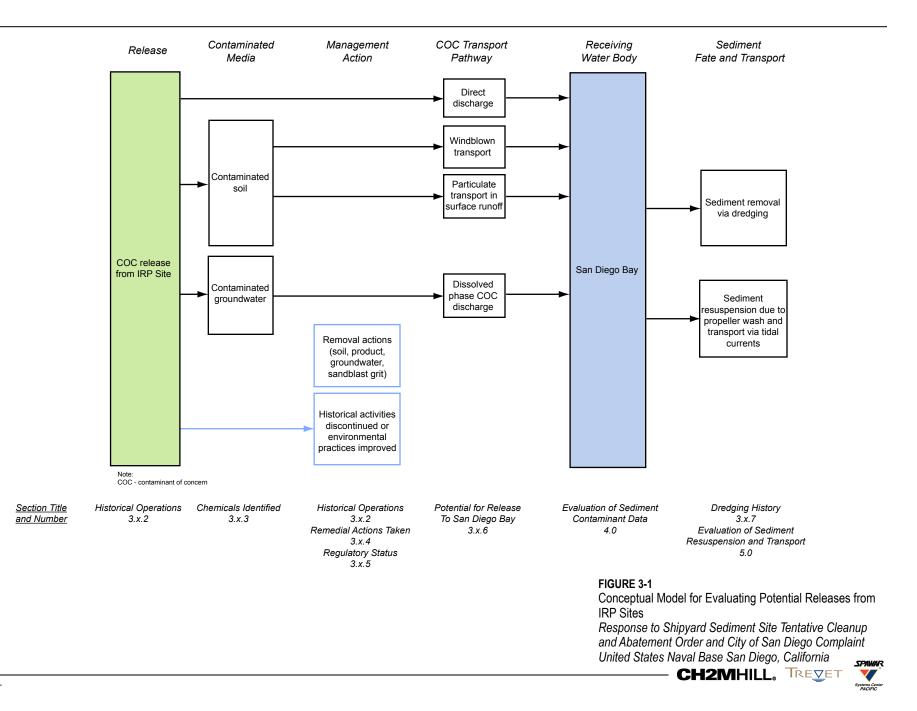
Substantial sediment immediately offshore of IRP Site 13 was removed in 1971 as shown on Figure 3-20. Additional material farther out into the channel offshore of NBSD was removed in multiple dredging events conducted between 1955 and 1993.

3.11 IRP Site Summary

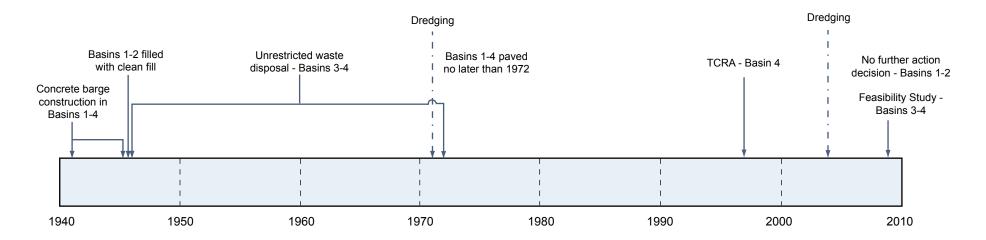
A summary of the evaluation of the potential transport of COCs from IRP sites to San Diego Bay is presented in Table 3-1. This evaluation indicates that historical and current COC transport pathways from IRP sites 8, 9, 10, and 12 to San Diego Bay were insignificant. Historical transport pathways to the bay from six of the IRP sites were possible. Direct discharges from IRP Site 1 to San Diego Bay may have occurred when the basins were used to construct concrete ships in the 1940s. Historical transport of particulates via surface runoff and windblown transport from IRP Sites 2, 3, and 4 to San Diego Bay may have occurred. COCs in untreated and treated sewage were discharged from IRP Site 7 to San Diego Bay via two outfalls near Pier 5 from 1935 to 1963, when the former sewage treatment plant was operated by the City of San Diego. Sandblast grit from IRP Site 13 may have been transported to San Diego Bay via surface runoff and wind before sandblasting operations were tented in 1993. COC transport pathways to the bay from these sites have been reduced or eliminated over time due to cessation or modification of site activities, improved environmental practices, and remedial actions. An analysis of the dredging history adjacent to the IRP sites indicates that sediments were periodically removed from the pier areas and main channel between NBSD and the Shipyard Sediment Site, reducing the likelihood of potential impacts from historical releases and the availability of COCs for potential resuspension and transport.

This page intentionally left blank.

TABLE 3-1 Summary of Evaluation of Potential Releases from IRP Sites and Transport to San Diego Bay Response to Shipyard Sediment Site Tentative Cleanup and Abatement Order and City of San Diego Complaint United States Naval Base San Diego, California


IRP Site	Shipyard Sediment Site COCs Present at Site	Site Remediated or Closed	Potential Pathways to San Diego Bay for COCs	Adjacent Sediments Dredged
IRP Site 1—Former Ship Repair Basins	Cu, Hg, As, Cd, Pb, Zn, PAHs, PCBs	Basins 1 and 2 closed Removal action at Basin 4	Historical direct discharge ^a	1971, 2002–2003
IRP Site 2—Mole Pier	Cu, Hg, As, Cd, Pb, Zn, PAHs, PCBs	Soil removal actions	Historical direct discharge, historical and current particulate transport, historical groundwater discharge	1971; 1993 in mouth of Paleta Creek
IRP Site 3—Salvage Yard	Cu, Hg, As, Cd, Pb, Zn, PAHs, PCBs	Soil removal actions	Historical particulate transport	1971; 1993 in mouth of Paleta Creek
IRP Site 4—DPDO Storage Yard	Cu, Hg, As, Cd, Pb, Zn, PAHs, PCBs	No remedial actions No further action recommended	Historical and current particulate transport	1971; 1993 in mouth of Paleta Creek
IRP Site 7—Former Sewage Treatment Plant	Cu, Hg, As, Cd, Pb, Zn, PAHs, PCBs	Closed	Historical direct discharge	1971; additional dredging to west, 1955–1993
IRP Site 8—Former Firefighting Training Facility	None (fuel-related constituents only)	Soil and product removal actions Closed	Historical direct discharge and groundwater discharge	1971, 1993
IRP Site 9—PCB Storage Facility	PCBs	Removal action Closed	Historical particulate transport	1971; 1993 in mouth of Paleta Creek
IRP Site 10—Original Rice King Restaurant Site	Cu, Hg, As, Cd, Pb, Zn, TBT, PAHs, PCBs	None RI in progress	Negligible historical particulate transport	1971; additional dredging to west, 1955–1993
IRP Site 12—Brinser Street Parking Area	Cu, Hg, As, Cd, Pb, Zn, PAHs	Removal action Closed	Historical direct discharge and particulate transport	1971; additional dredging to west, 1955–1993
IRP Site 13—Dry Dock Sandblast Grit Area	Cu, Hg, As, Cd, Pb, Zn, TBT	Grit removal actions Closed	Historical particulate discharge	1971; additional dredging to west, 1955–1993

Notes:

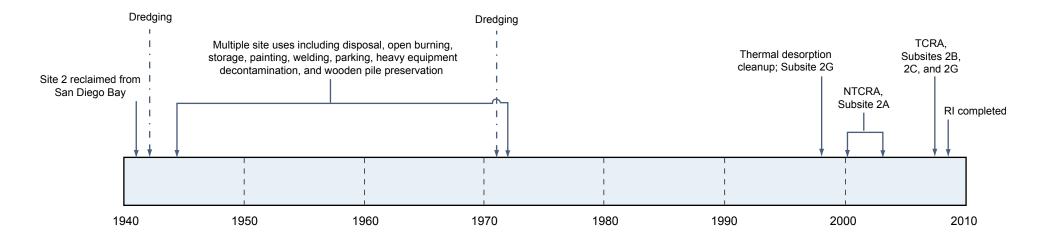

COC – contaminant of concern; Cu – copper; Hg – mercury; Cd – cadmium; Pb – lead; Zn – zinc; TBT – tributyltin; PAH – polynuclear aromatic hydrocarbon; PCB – polychlorinated biphenyl; RI – remedial investigation.

^aCOCs from ship repair basin discharges in the 1940s would be associated with concrete barge construction and not disposal activities that occurred later in Basins 3 and 4.

This page intentionally left blank.

IRP Site 1, Former Ship Repair Basins Timeline

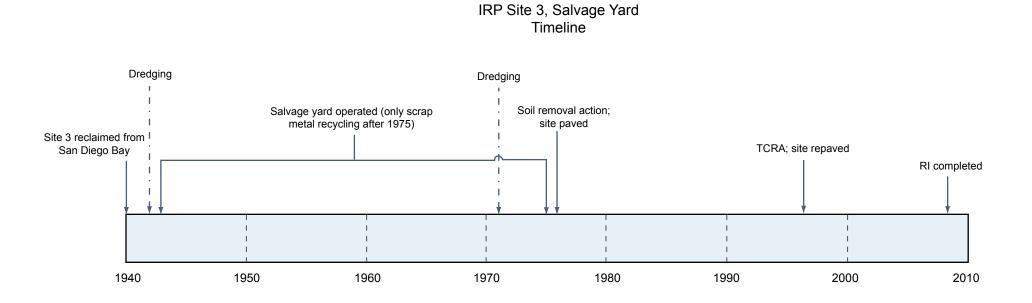
TCRA - Time Critical Removal Action


FIGURE 3-3 Timeline for IRP Site 1 Response to Shipyard Sediment Site Tentative Cleanup and Abatement Order and City of San Diego Complaint United States Naval Base San Diego, California

[\]ICONIA\PROJECTS\US_NAVY\388185_NBSD\GIS\SHIPYARDSEDIMENTSITE\MAPFILES\CSM_MAPS\NBSD_SD_RESPONSEREPORT_FIG3_4_SITE2.MXD_SWOLFSKI 6/22/2010 13:08:20

IRP Site 2, Mole Pier Timeline

TCRA - Time Critical Removal Action NTCRA - Non-time Critical Removal Action RI - Remedial Investigation


> FIGURE 3-5 Timeline for IRP Site 2 Response to Shipyard Sediment Site Tentative Cleanup and Abatement Order and City of San Diego Complaint United States Naval Base San Diego, California

stems Cer PACIFIC



^{\\}ICONIA\PROJECT\$\US_NAVY\388185_NBSD\GIS\SHIPYARDSEDIMENTSITE\MAPFILE\$\CSM_MAPS\NBSD_SD_RESPONSEREPORT_FIG3_6_SITE3.MXD_SWOLFSKI 6/22/2010 12:59:19

TCRA - Time Critical Removal Action RI - Remedial Investigation

> FIGURE 3-7 Timeline for IRP Site 3 Response to Shipyard Sediment Site Tentative Cleanup and Abatement Order and City of San Diego Complaint United States Naval Base San Diego, California

^{\\}ICONIA\PROJECTS\US_NAVY\388185_NBSD\GIS\SHIPYARDSEDIMENTSITE\MAPFILES\CSM_MAPS\NBSD_SD_RESPONSEREPORT_FIG3_8_SITE4.MXD_SWOLFSKI 6/22/2010 13:00:48

Timeline Dredging Dredging Northern portion Naval Supply Center Storage Yard; oil used for dust suppression of site paved Southern area used for boat RI completed DPDO and landing craft storage Site 4 reclaimed Storage Yard from marshlands Т 1990 1940 1950 1960 1970 1980 2000 2010

IRP Site 4, DPDO Storage Yard

DPDO - Defense Property Disposal Office RI - Remedial Investigation

> FIGURE 3-9 Timeline for IRP Site 4 Response to Shipyard Sediment Site Tentative Cleanup and Abatement Order and City of San Diego Complaint United States Naval Base San Diego, California

erstems Cer PACIFIC

ES052010221453ATL

City of San Diego City of San Diego constructs STP City of San Diego City of San Diego City of San Diego constructs STP City of San Diego operates STP City of San Diego City of San Diego Operates STP City of San Diego City of San Diego Operates STP City of San Diego Operates

1970

IRP Site 7, Former Sewer Treatment Plant

1980

1990

STP - Sewage Treatment Plant

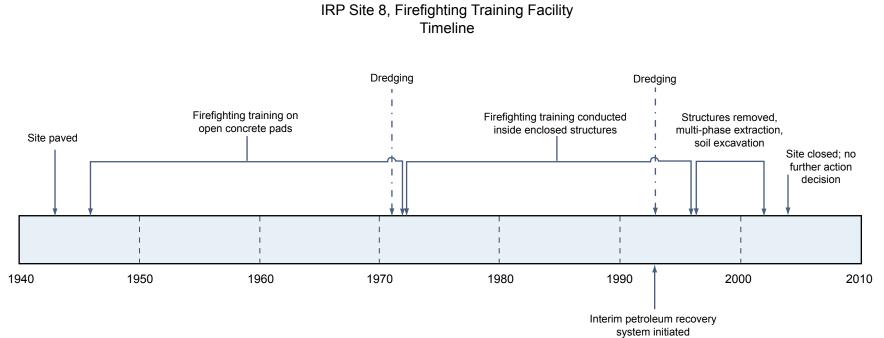
1950

1960

FIGURE 3-11 Timeline for IRP Site 7 Response to Shipyard Sediment Site Tentative Cleanup and Abatement Order and City of San Diego Complaint United States Naval Base San Diego, California

2000

2010


PACIFIC

1940

^{\\}ICONIA\PROJECTS\US_NAVY\388185_NBSD\GIS\SHIPYARDSEDIMENTSITE\MAPFILES\CSM_MAPS\NBSD_SD_RESPONSEREPORT_FIG3_12_SITE8.MXD_SWOLFSKI 6/22/2010 13:27:14

system mitated

FIGURE 3-13 Timeline for IRP Site 8 Response to Shipyard Sediment Site Tentative Cleanup and Abatement Order and City of San Diego Complaint United States Naval Base San Diego, California

IRP Site 9, PCB Storage Facility Timeline

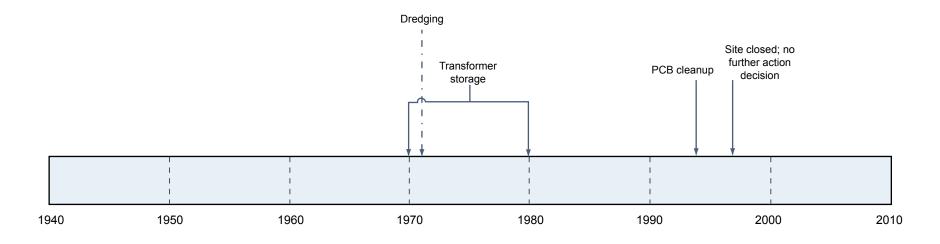
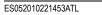



FIGURE 3-15 Timeline for IRP Site 9 Response to Shipyard Sediment Site Tentative Cleanup and Abatement Order and City of San Diego Complaint United States Naval Base San Diego, California

CH2MHILL, TREŢET

/ /

[\]ICONIA\PROJECTS\US_NAVY\388185_NBSD\GIS\SHIPYARDSEDIMENTSITE\MAPFILES\CSM_MAPS\NBSD_SD_RESPONSEREPORT_FIG3_16_SITE10.MXD_SWOLFSKI 6/22/2010 13:33:03

Timeline Dredging Dredging Metal finishing, preservation and packaging at Building 321 Building 321 demolished Site Draft RI Unpaved storage paved Site filled and graded 1940 1950 1960 1970 1980 1990 2000 2010

IRP Site 10, Original Rice King Restaurant

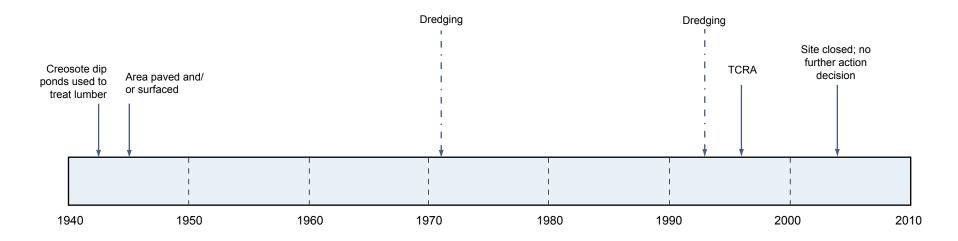

RI - Remedial Investigation

FIGURE 3-17 Timeline for IRP Site 10 Response to Shipyard Sediment Site Tentative Cleanup and Abatement Order and City of San Diego Complaint United States Naval Base San Diego, California


IRP Site 12, Brinser Street Parking Area Timeline

TCRA - Time Critical Removal Action

FIGURE 3-19 Timeline for IRP Site 12 Response to Shipyard Sediment Site Tentative Cleanup and Abatement Order and City of San Diego Complaint United States Naval Base San Diego, California

IRP Site 13, Dry Dock Sandblast Grit Area Timeline

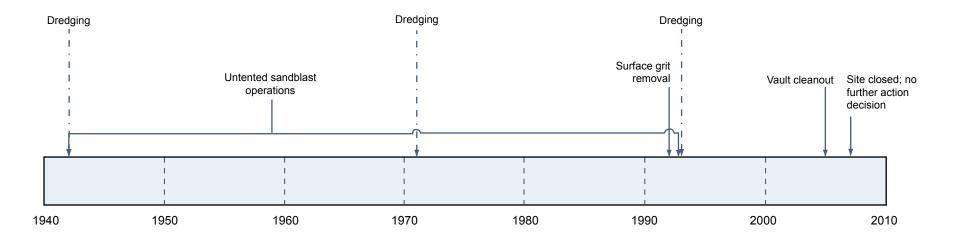


FIGURE 3-21 Timeline for IRP Site 13 Response to Shipyard Sediment Site Tentative Cleanup and Abatement Order and City of San Diego Complaint United States Naval Base San Diego, California

CH2MHILL, TREŢET

PACIFIC

ES052010221453ATL

This page intentionally left blank.

Evaluation of Sediment Contaminant Data

Based on the IRP site evaluation presented in Section 3, three areas of San Diego Bay adjacent to NBSD have been identified where a COC transport pathway may have existed from an IRP site to the bay:

- Paleta Creek Channel and Mouth—based on historical pathways to this area from IRP Sites 2, 3, and 4.
- Vicinity of Piers 10 and 12, south of Paleta Creek—this area may have received direct discharges from IRP Site 1, the former ship repair basins, when they were active in the 1940s.
- Graving dock area in the vicinity of Piers 5 and 6—this area received direct discharges from IRP Site 7, the former sewage treatment plant, and a historical pathway from IRP Site 13 to this area may have existed.

Analytical data for sediment samples collected from San Diego Bay adjacent to NBSD and the Shipyard Sediment Site were compiled and reviewed to assess potential influences from the IRP sites to the three areas identified above and to determine whether the COC concentrations and distribution patterns in sediment are consistent with potential transport from NBSD to the Shipyard Sediment Site.

The sediment contaminant data evaluation focused on the primary and secondary COCs for the Shipyard Sediment Site that were identified in the DTR (RWQCB, 2010b). Alternative cleanup levels were developed for the following primary COCs: copper, mercury, HPAHs, total PCB congeners, and tributyltin (TBT). The secondary COCs are arsenic, cadmium, lead, and zinc. All of these COCs tend to adsorb to fine-grained sediment particles and organic matter that accumulate in relatively low-energy areas of a water body and tend to persist in the aquatic environment for a long period of time. In low-energy hydrodynamic environments such as the nearshore areas at NBSD and the Shipyard Sediment Site, COC concentrations in sediment tend to be highest closest to the source. Sediments may be periodically resuspended and gradually dispersed, resulting in a contaminant concentration gradient away from the source. As noted in Section 2.1.2, the low tidal-current velocities adjacent to NBSD are insufficient to erode the sediment bed, and ship movements are believed to be the primary mechanism for resuspending sediment.

Conceptual diagrams of chemical concentration gradients in sediment are shown in Figure 4-1. If a single source area is present (i.e., Figures 4-1a and 4-1b), then chemical concentrations in sediment will decrease with increasing distance from the source area. If two source areas are present at adjacent sites (i.e., Figure 4-1c), then chemical concentrations will decrease with increasing distance from each site, and an area of relatively lower concentrations will be present between the sites. COC concentration gradients at NBSD and the Shipyard Sediment Site were compared to these generalized models.

Because contamination that can be attributed to historical releases from IRP sites is difficult to differentiate from contamination from other potential sources, overall COC distribution patterns in sediments in the three areas adjacent to the IRP sites were evaluated without regard to a specific source. For this evaluation, sediment chemistry data from multiple studies performed from the late 1980s through 2009 were compiled. The data sets included in the evaluation are listed in Table 4-1, and the sample locations are shown in Figure 4-2. The analytical data used in the evaluation are provided in Appendix D. Because of a paucity of subsurface sediment core data for areas adjacent to IRP sites, the evaluation focused on surface sediment samples representing depth intervals ranging from 2 cm to 10 cm. COC distribution maps in surface sediment were prepared for each of the primary and secondary COCs. In addition, SWACs for each COC in the three areas adjacent to IRP sites and in the proposed remediation footprint defined in the CAO for the Shipyard Sediment Site were calculated and compared. Thiessen polygons were constructed for each of the nine primary and secondary COC data sets using a geographic information system (GIS). Thiessen polygons are polygons whose boundaries define the area closest to each point relative to all other points. The boundaries of the three areas adjacent to IRP sites (Paleta Creek channel and mouth, Piers 10 and 12, and Piers 5 and 6) and the proposed remediation footprint at the Shipyard Sediment Site were superimposed on the polygons, and the corresponding area and COC concentration of each polygon or partial polygon within the area was determined. The SWAC for each area was then calculated using the following equation:

SWAC = $\sum A_i / A_t \times C_i$

Where

 A_i = area of the polygon or partial polygon A_t = total area C_i = COC concentration of the sample within the polygon

A map showing the Thiessen polygons and areas for which SWACs were calculated for one COC (copper) is shown in Figure 4-3. Additional maps of the Thiessen polygons constructed for the remaining COCs are provided in Appendix E.

Because of the lack of detailed sediment core data for NBSD, surface sediment chemistry data were also compared to data collected for dredged material characterization studies in the three areas adjacent to IRP sites to assess whether COC concentrations at depth appear to be substantially different than surface concentrations. For dredging characterization studies, composite sediment samples representing the volume of sediment proposed for dredging are tested to help determine suitable disposal options. In some cases, a composite sample is collected from a single location, from the sediment surface to the specified dredge depth. In other cases, sediments from multiple cores collected to the specified dredge depth are combined to form a composite that represents an area targeted for dredging. The data sets used for this comparison are identified in Table 4-1, and the composite sediment sample location are shown in Figure 4-4. The composite sediment data used in this evaluation are provided in Appendix F.

In addition to COC distribution mapping and calculation of SWACs, additional lines of evidence that are presented in the Apportionment Report (Appendix B) to evaluate the

potential for transport of COCs from NBSD to the Shipyard Sediment Site are also summarized in this section.

4.1 Surface Sediment Adjacent to IRP Sites

The distributions and concentrations of the primary and secondary COCs identified for the Shipyard Sediment Site in each of the three areas adjacent to IRP sites at NBSD are described below.

4.1.1 Copper

Figure 4-5 depicts the concentrations of copper in surface sediment samples collected between 1992 and 2009 in the vicinity of NBSD and the Shipyard Sediment Site. Copper concentrations do not show a discernable gradient in the Paleta Creek channel and mouth area. Copper concentrations between Piers 10 and 12 and Piers 5 and 6 are higher near the shoreline (generally between 251 and 500 mg/kg) and decrease with increasing distance from the shoreline (less than 250 mg/kg), indicative of an onshore or nearshore source of copper. Overall, copper concentrations decrease with increasing distance from the shoreline at both NBSD and the Shipyard Sediment Site and are lower between the two sites, which is consistent with the two-source area pattern shown in Figure 4-1c.

Table 4-2 is a comparison of SWACs within each of the three areas adjacent to IRP sites at NBSD, within the entire Shipyard Sediment Site (i.e., the preremedy SWACs), and within the Shipyard Sediment Site proposed remediation footprint. Background levels for San Diego Bay as defined in the DTR are also shown. For copper, the SWACs within the three areas adjacent to IRP sites are similar to or higher than the overall (preremedy) copper SWAC for the Shipyard Sediment Site, but lower than the SWAC for the proposed remediation footprint. The relatively high SWAC in the proposed remediation footprint compared to the SWACs in the areas adjacent to IRP sites , in conjunction with the observed concentration gradients, indicate that the elevated copper concentrations within the proposed remediation footprint are derived from local sources (i.e., industrial activities immediately adjacent to the Shipyard Sediment Site).

4.1.2 Mercury

Figure 4-6 depicts the concentrations of mercury in surface sediment samples collected between 1992 and 2008 in the vicinity of NBSD and the San Diego Shipyard Sediment Site. Mercury concentrations in the Paleta Creek channel and mouth area are generally less than 0.71 mg/kg, and no concentration gradients are apparent. Mercury concentrations are generally higher (between 0.71 and 1 mg/kg) between Piers 10 and 12 and Piers 5 and 6 than in the Paleta Creek channel and mouth area. Concentrations are variable, and discernable gradients are not present within the three areas adjacent to IRP sites, although overall concentrations are lower (less than 0.71 mg/kg) in the main channel to the west relative to the pier areas. Mercury concentrations decrease with increasing distance from the shoreline at the Shipyard Sediment Site, and concentrations are lower between NBSD and the Shipyard Sediment Site, which is consistent with the two-source area pattern shown in Figure 4-1c.

The SWAC for the Paleta Creek channel and mouth area is lower than the SWAC for the entire Shipyard Sediment Site, whereas the SWACs for Piers 5 and 6 and Piers 10 and 12 are similar to or higher than the Shipyard Sediment Site SWAC (Table 4-2). The SWACS within all three areas adjacent to the IRP sites at NBSD are lower than the SWAC for the Shipyard Sediment Site proposed remediation footprint. These SWACs, in conjunction with the lack of an overall concentration gradient from NBSD to the Shipyard Sediment Site, indicate that the elevated mercury concentrations within the Shipyard Sediment Site proposed remediation footprint are derived from localized sources.

4.1.3 Tributyltin

The distribution of TBT in surface sediments adjacent to NBSD and the Shipyard Sediment Site is shown in Figure 4-7. This map shows that TBT concentrations overall are substantially lower adjacent to NBSD compared to the Shipyard Sediment Site. This distribution pattern is consistent with the single-source area model shown in Figure 4-1a. TBT was historically released to San Diego Bay sediment as a result of (1) passive leaching of TBT-containing antifouling paints; (2) discharge from shipyards and boatyards performing hull maintenance activities, including paint removal; and (3) in-water hull-cleaning activities of vessels throughout San Diego Bay. TBT was introduced into the marine environment in the 1960s as a biocide in marine paints. By the 1980s, TBT was in use on approximately 90 percent of commercial, ocean-going vessels in the U.S., including San Diego Bay. However, the Navy painted less than 5 percent of its fleet with TBT-containing paint (Navy and USEPA, 1997). Only two vessels with TBT-containing paint, the United States Ship (USS) *Meyerkord* and the USS *Marvin Shields*, were home ported in San Diego (R. Fransham, personal communication, 18 March 2010). As such, only limited TBT release from Navy vessels occurred at NBSD.

Because the paint was not applied at NBSD and was used only on wetted hull surfaces, its use and/or disposal did not routinely occur at the IRP sites. This has been confirmed by significant sampling at IRP Sites 1, 2, 4, 10, and 13. Soil sampling and analysis of 71 soil samples at IRP Site 1 during the IRP Site 1 RI indicated that all 71 samples contained nondetectable concentrations of TBT (BEI, 2008a). Soil sampling and analysis of 233 soil samples at IRP Site 2 during the IRP Site 2 RI indicated that only 5 of 233 samples contained detectable concentrations of TBT, with a maximum concentration of 5.5 μ g/kg (BEI, 2008c). Soil sampling and analysis at IRP Site 4 during the IRP Site 4 RI indicated that TBT was not detected in any of the 28 soil samples analyzed for TBT (BEI, 2008f). TBT was detected in 7 of 72 IRP Site 10 soil samples with a maximum concentration of 1.7 μ g/kg (BEI, 2008g), and in 18 of 84 soil samples from IRP Site 13 (BEI, 2006). These soil sample results indicate that the IRP sites are not significant source areas for TBT.

The SWACs for TBT presented in Table 4-2 indicate that concentrations in sediment adjacent to the Shipyard Sediment Site are substantially higher than those measured in the three areas adjacent to IRP sites at NBSD. The minimal use of TBT-containing paints by the Navy and the relatively low concentrations of TBT in sediments adjacent to NBSD compared to the Shipyard Sediment Site indicate that NBSD is not a source of TBT to the Shipyard Sediment Site.

4.1.4 High Molecular Weight PAHs

Figure 4-8 depicts the concentrations of HPAHs in surface sediment samples collected between 1995 and 2009 in the vicinity of NBSD and the Shipyard Sediment Site. HPAH concentrations in the Paleta Creek channel and mouth area are variable, and no concentration gradient that would indicate a specific source of PAHs is apparent. Between Piers 5 and 6 and Piers 10 and 12, HPAH concentrations appear to decrease with increasing distance from the shoreline, although few samples have been collected between Piers 5 and 6.

The distribution of HPAHs at the Shipyard Sediment Site appears significantly different between the southern (NASSCO leasehold) portion of the site and the northern (BAE leasehold) portion of the site. All sediment samples containing in excess of $6,000 \ \mu g/kg$ HPAH within the proposed remediation footprint are located in the northern portion of the footprint, indicating that the HPAHs are associated with a localized source to the north.

Overall, HPAH concentrations are relatively higher closer the shorelines of NBSD and the Shipyard Sediment Site, and are relatively lower (i.e., less than 2,000 μ g/kg) between the two sites, which is consistent with the two-source area model shown in Figure 4-1c.

The SWACs presented in Table 4-2 indicate that concentrations in the Paleta Creek channel and mouth area and between Piers 10 and 12 are generally similar to those at the Shipyard Sediment Site overall, but are lower than the SWAC in the Shipyard Sediment Site proposed remediation footprint. The SWAC between Piers 5 and 6 is higher, although it is based on multiple samples collected within the same area near the shoreline.

The lack of an HPAH concentration gradient from NBSD to the Shipyard Sediment Site and the relatively lower HPAH concentrations in sediment in two of the three areas adjacent to IRP sites at NBSD relative to those in the Shipyard Sediment Site proposed remediation footprint indicate that the IRP sites are not a source of HPAH to the Shipyard Sediment Site.

4.1.5 Total PCB Congeners

Figure 4-9 depicts the concentrations of total PCB congeners in surface sediment samples collected between 1992 and 2008 in the vicinity of NBSD and the Shipyard Sediment Site. As with the other COCs, PCB concentrations within the Paleta Creek channel and mouth area are variable and do not show a concentration gradient indicative of a specific PCB source. PCB concentrations between Piers 10 and 12 decrease with increasing distance from the shoreline. PCB concentrations between Piers 5 and 6 also are variable, with no well-defined concentration gradient. As with HPAHs, PCB concentrations within the northern portion of the Shipyard Sediment Site proposed remediation footprint are substantially higher than those in the southern portion of the footprint, suggesting a localized source of PCBs.

Overall, total PCB congener concentrations are relatively higher closer the shorelines of NBSD and the Shipyard Sediment Site, and relatively lower (i.e., less than 200 μ g/kg) between the two sites, which is consistent with the two-source area model shown in Figure 4-1c.

The SWACs for PCBs in each of the three areas adjacent to the IRP sites are lower than both the overall SWAC for the Shipyard Sediment Site and the SWAC for the proposed remediation footprint. The lower overall concentrations in areas adjacent to the IRP sites compared to the Shipyard Sediment Site as well as the absence of a concentration gradient from north to south indicate that the IRP sites are not the source of PCBs to the Shipyard Sediment Site.

4.1.6 Secondary Contaminants of Concern

Figures 4-10 through 4-13 show the distributions of arsenic, cadmium, lead, and zinc, respectively, in surface sediment samples collected between 1992 and 2009 adjacent to NBSD and the Shipyard Sediment Site. The same general distribution patterns are apparent for all of these COCs. In the areas adjacent to the IRP sites (Piers 5 and 6, Paleta Creek channel and mouth, and Piers 10 and 12), concentrations are generally higher within the channel or pier heads than in the main channel to the west, but no strong concentration gradients that would suggest a specific source are apparent within the areas. Overall, concentrations decrease with increasing distance from the shoreline at both NBSD and the Shipyard Sediment Site, and relatively lower concentrations are found between the two sites, which is consistent with the two-source area model shown in Figure 4-1c. The SWACs for the Shipyard Sediment Site proposed remediation footprint (Table 4-2). The SWAC for cadmium in the Paleta Creek channel and mouth area is lower than the SWACs for the proposed remediation footprint at the Shipyard Sediment Site, but the SWACs for Piers 5 and 6 and Piers 10 and 12 are slightly higher.

Based on the absence of concentration gradients from NBSD to the Shipyard Sediment Site and the relatively lower concentrations of arsenic, lead, and zinc in sediments adjacent to the IRP sites relative to those in the Shipyard Sediment Site, the IRP sites are unlikely to be the source of these COCs at the Shipyard Sediment Site.

4.2 Composite Sediment Data

The SWAC for each COC in the three areas adjacent to IRP sites was also compared to the average COC concentration in composite sediment samples collected in the same area to provide a general indication of whether historical contamination levels were substantially higher than recent levels. The average concentrations in surface and composite sediment samples from the same area are presented in Table 4-3. Minimal data were available for the Piers 5 and 6 area and for total PCB congener concentrations at depth. Nevertheless, the available data provide a general indication of historical COC concentrations relative to surface concentrations over the past 20 years.

For the Piers 5 and 6 area, only mercury data were available. The average mercury concentration in sediments at depth is similar to the surface concentration. In the Paleta Creek area, subsurface concentrations are slightly higher (i.e., by less than a factor of 1.5) for copper, mercury, HPAH, and zinc and approximately the same for arsenic. The average concentrations of cadmium and lead are more than two times higher at depth. In the Piers 10 and 12 area, average COC concentrations at depth appear to be lower than average concentrations at the surface. Based on these results, there is no evidence that substantially higher COC concentrations were historically present in the three areas adjacent to IRP sites.

4.3 Other Comparisons of Sediment Data from NBSD and the Shipyard Sediment Site

In the Apportionment Report (Appendix B), the Navy evaluated several lines of evidence based on sediment chemistry data to assess the potential transport of contaminants from NBSD to the Shipyard Sediment Site (i.e., Pathway 3; releases directly from operations within NBSD into San Diego Bay, with subsequent transport to and dispersion to other parts of the bay, including the Shipyard Sediment Site). These lines of evidence indicate the following:

- Spatial patterns and gradients of TBT, PCBs, copper, and mercury in sediment are not consistent with transport from the NBSD area to the Shipyard Sediment Site area. Concentrations in sediments at both NBSD and the Shipyard Sediment Site decrease with increasing distance from the shoreline, with lower concentrations present in the main channel relative to the nearshore areas. These observations are consistent with the analysis presented in Section 4.1 of this report, which is based on a larger data set.
- TBT concentrations are at least an order of magnitude higher at the Shipyard Sediment Site than at NBSD. This observation is also corroborated by the information presented in Section 4.1 of this report.
- Chemical fingerprints in sediment samples indicate clear differences in signatures in sediments adjacent to NBSD and those adjacent to the Shipyard Sediment Site, as follows:
 - Arsenic, cadmium, copper, lead, zinc, and PCBs are significantly correlated with TBT in sediments at the Shipyard Sediment Site. This co-occurrence suggests that these contaminants are derived from the same source. TBT is a Shipyard Sediment Sitespecific contaminant, and concentrations are an order of magnitude lower at NBSD.
 - Principal component analysis of PCB congener data differentiated two different sources of PCBs at the Shipyard Sediment Site, one at the northern end and one at the southern end. This difference in signature is consistent with the spatial distribution of PCBs at the Shipyard Sediment Site (i.e., substantially higher PCB concentrations at the northern end of the site, consistent with a localized source) (Figure 4-9).

These lines of evidence are presented in detail in Appendix B.

This page intentionally left blank.

TABLE 4-1 Summary of Data Sets Used in Sediment Chemistry Data Evaluation Response to Shipyard Sediment Site Tentative Cleanup and Abatement Order and City of San Diego Complaint United States Naval Base San Diego, California

5								
Project Name	Sample Collection Dates	Sample Depth Interval (cm)	Reference	Metals	HPAHs	PCB Aroclors	PCB Congeners	Butyltins
Surface Sediment Samples								
Bay Protection and Toxic Cleanup Program	1992–1996	0–2	CWRCB et al., 1996 and 1998	Х	Х	—	Х	Х
Draft Final Survey Report April/May, Support of Task A Environmental Impact Statement—U.S. Naval Station	1994	0–2	SAIC, 1995	Х	NA ^a	NA ^a	_	—
Mouth of Chollas and Paleta Creeks	2001	0–2	SCCWRP and Navy, 2005	Х	Х	—	Х	—
NAVSTA TMDL	2008	0–2	Report in progress	Х	х	—	Х	Х
PRISM 2002	2002	0–2	SPAWAR, 2006a	Х	х	_	_	_
PWC Graving Dock Naval Station NPDES Data	1993–2009	0–7	Provided by NAVFAC SW	Х	Х	Х	_	Х
Sediment Quality Characterization Naval Station San Diego	1995–1997	0–10	Chadwick et al., 1999	Х	Х	—	Х	—
Shipyard Sediment Site	2001–2002	0–2	Exponent, 2003	Х	Х	Х	Х	Х
Studies Supporting an Environmental Risk Assessment of San Diego Bay	1993	0–6	Anderson, 1994	х	Х	Х	_	_
U.S. Navy Statutory Monitoring of Tributyltin in Selected Harbors	1986–1992	0–2	MESO, 1995	_	—	—	_	Х
Upstream Paleta Creek	2004	assume 0–2	SPAWAR, 2006b	Х	Х	_	Х	_

TABLE 4-1 Summary of Data Sets Used in Sediment Chemistry Data Evaluation Response to Shipyard Sediment Site Tentative Cleanup and Abatement Order and City of San Diego Complaint

United States Naval Base San Diego, California

Project Name	Sample Collection Dates	Sample Depth Interval (cm)	Reference	Metals	HPAHs	PCB Aroclors	PCB Congeners	Butyltins
Composite Sediment Samples ^b								
Sediment Chemistry Results for NAVSTA San Diego	1992	NA	Navy, 1994	Х	Х	Х	_	Х
Sediment Characterization Study Pier and Berthing Areas	1993	Variable; up to 277 cm	Navy, 1994	Hg only	—	—	—	—
2004 Paleta Creek Sediment Characterization Study	2004	Variable; up to 305 cm	Navy, 2004b	Х	Х	Х	_	Х
P-326 Preliminary Sediment Characterization Study	1997	Variable; up to 229 cm ^c	Navy, 2000	Х	х	—	_	—
P-326 2000 Study	2000	Variable; up to 305 cm	Navy, 2000	Х	х	х	_	Х
P-327 Phase I Study	2005	Variable; up to 259 cm	Navy, 2005	Х	х	х	_	Х
P-327 Phase II Study	2005	Variable; up to 305 cm	Navy, 2006	Х	х	х	_	Х
P-327 Phase III Study	2008	Variable; up to 320 cm	Navy, 2009	Х	х	Х	Х	Х

Notes:

HPAH – high-molecular-weight polynuclear aromatic hydrocarbons; NA – not available; NAVFAC SW – Naval Facilities Engineering Command Southwest Division; NAVSTA – Naval Station; NPDES – National Pollutant Discharge Elimination System; PCB – polychlorinated biphenyl; PRISM – pathway ranking for in place sediment management; PWC – Public Works Center; TMDL – total maximum daily load.

^a PAH and PCB Aroclor data provided in report but not in database; constituents were infrequently detected and no detection limit information is available.

^b Only data for samples within the Pier 5-6, Paleta Creek mouth, and Pier 10-12 areas were included in the analysis.

^c Based on core locations 30 through 42.

TABLE 4-2Summary of Surface-Weighted Average Concentrations of Contaminants of Concern in SedimentResponse to Shipyard Sediment Site Tentative Cleanup and Abatement Order and City of San Diego ComplaintUnited States Naval Base San Diego, California

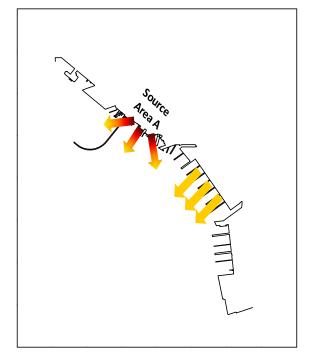
		Surface-Weighted Average Concentration								
Contaminant of Concern	Piers 5–6	Paleta Creek	Piers 10-12	Shipyard Sediment Site Preremedy ^a	Shipyard Sediment Site Proposed Remediation Footprint	Background ^a				
Copper (mg/kg)	263	149	256	187	424	121				
Mercury (mg/kg)	0.76	0.50	1.06	0.75	1.30	0.57				
TBT (µg/kg)	13	95	51	162	545	22				
HPAHs (µg/kg)	9,148	2,845	4,507	3,509	7,530	663				
Total PCBs (µg/kg)	213	179	210	308	1,033	84				
Arsenic (mg/kg)	12.1	8.1	8.3	9.4	16.7	7.5				
Cadmium (mg/kg)	0.71	0.39	0.75	0.28	0.60	0.33				
Lead (mg/kg)	86	62	70	73	122	53				
Zinc (mg/kg)	315	242	301	252	556	192				

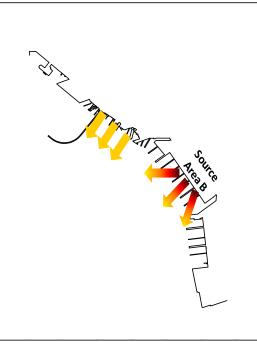
Note:

^a Draft Technical Report (RWQCB, 2010b).

TABLE 4-3 Comparison of Contaminant Concentrations in Surface Sediment and Composite Sediment Samples *Response to Shipyard Sediment Site Tentative Cleanup and Abatement Order and City of San Diego Complaint* United States Naval Base San Diego, California

	Piers 5–6		Paleta	a Creek	Piers 10–12		
Contaminant of Concern	SWAC	Composite Average	SWAC	Composite Average	SWAC	Composite Average	
Copper (mg/kg)	263	NA	149	168	256	73	
Mercury (mg/kg)	0.76	0.69	0.50	0.64	1.06	0.40	
TBT (µg/kg)	13	NA ^a	95	NA ^b	51	NA ^c	
HPAHs (µg/kg)	9,148	NA ^a	2,845	3,686	4,507	482	
Total PCBs (µg/kg)	213	NA ^a	179	NA	210	99 ^d	
Arsenic (mg/kg)	12.1	NA ^a	8.1	7.4	8.3	4.0	
Cadmium (mg/kg)	0.71	NA ^a	0.39	1.6	0.75	0.57	
Lead (mg/kg)	86	NA ^a	62	132	70	24	
Zinc (mg/kg)	315	NA ^a	242	352	301	147	


Notes:


SWAC - surface weighted average concentration; NA - not available; TBT - tributyltin; HPAH - high-molecular-weight polynuclear aromatic hydrocarbon; PCB – polychlorinated biphenyl.

^a No data available.

^b Not calculated due to low frequency of detection (32 percent). ^c Not calculated due to low frequency of detection (15 percent).

^d Based on two composite samples; one PCB congener detected in one sample and seven PCB congeners detected in the other sample.

A. Chemical concentration gradient – Source Area A

B. Chemical concentration gradient – Source Area B

C. Chemical concentration gradients – Source Areas A and B

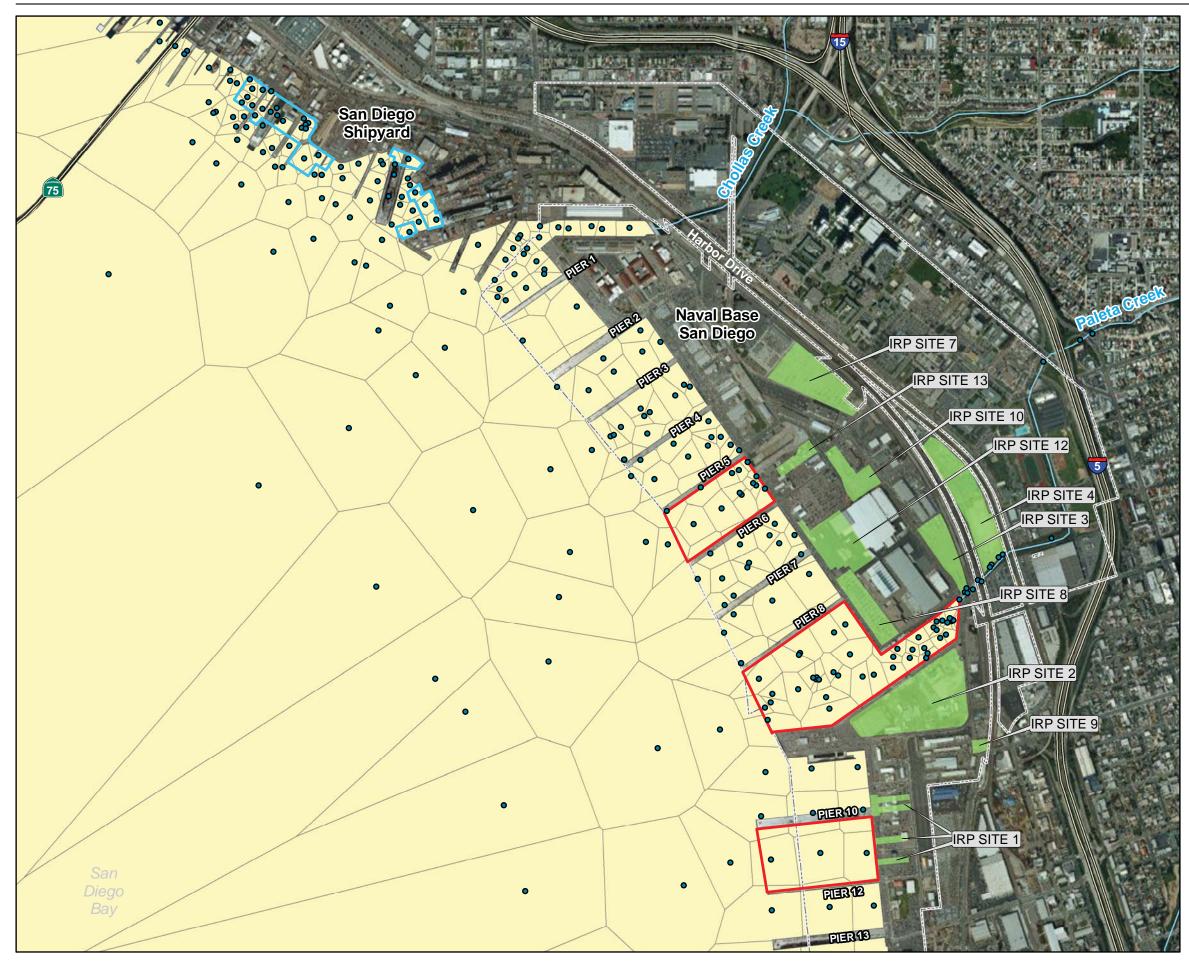
Explanation: Source a reasare onshore or near shore local sources of contamination. The color of the arrow represents the chemical concentration in sediment; red represents a relatively high concentration, orange a moderate concentration, and yellow a relatively low concentration. The direction of the arrow represents the direction of the chemical concentration gradient.

FIGURE 4-1 Conceptual Diagram of Chemical Concentration Gradients Response to Shipyard Sediment Site Tentative Cleanup and Abatement Order and City of San Diego Complaint United States Naval Base San Diego, California

NNIA\PROJECTS\US_NAVY\388185_NBSD\GIS\SHIPYARDSEDIMENTSITE\MAPFILES\NBSD_SD_RESPONSEREPORT_FIG4_2_SAMPLEPOINTS.MXD_SWOLFSKI 6/22/2010 14:14:5:

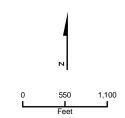
LEGEND

San Diego Bay Sample Locations


- Bay Protection and Toxic Cleanup Program
- Draft Final Survey Report, Support of Task A -Environmental Impact Statement; Naval Base San Diego
- NASSCO and Southwest Marine Detailed Sediment Investigation
- NAVSTA TMDL 2008
- PWC Graving Dock NPDES Permit
- Paleta Creek Sediment Investigation
- Pathway Ranking for In-place Sediment Management (PRISM)
- Sediment Assessment Study for the Mouths of Chollas and Paleta Creeks
- Sediment Quality Characterization; Naval Base San Diego
- Studies Supporting an Environmental Risk Assessment of San Diego Bay
- U.S. Navy Statutory Monitoring of Tributyltin in Selected Harbors
- Shipyard Leasehold Areas, 2004
- United States Naval Base San Diego
- IRP Sites Identified in the Tentative Cleanup and Abatement Order
- Freeways
 - Watercourses

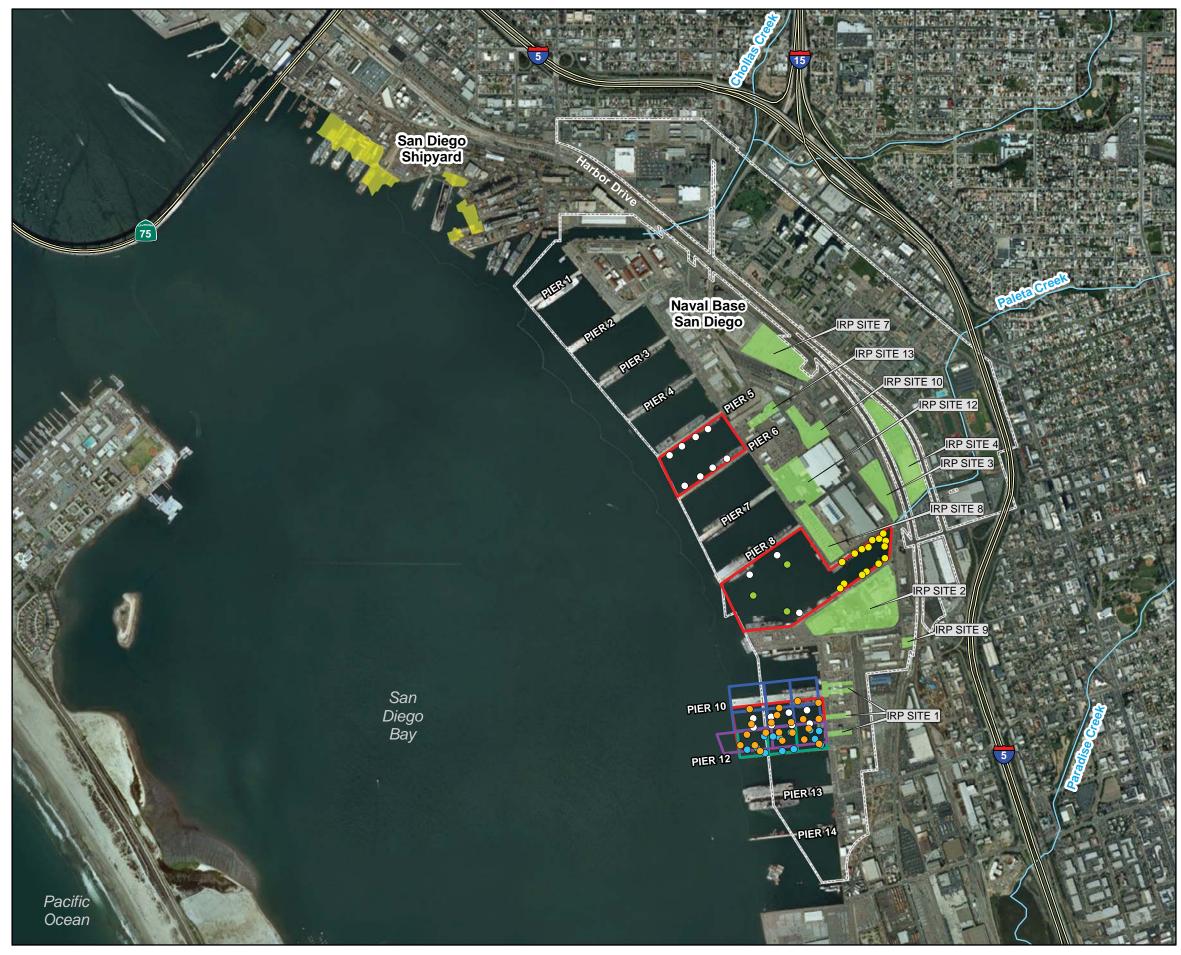
Tre<u>v</u>et

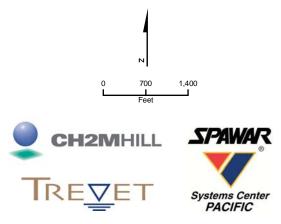
FIGURE 4-2 Sample Locations Included in Surface Sediment Contaminant Data Analysis

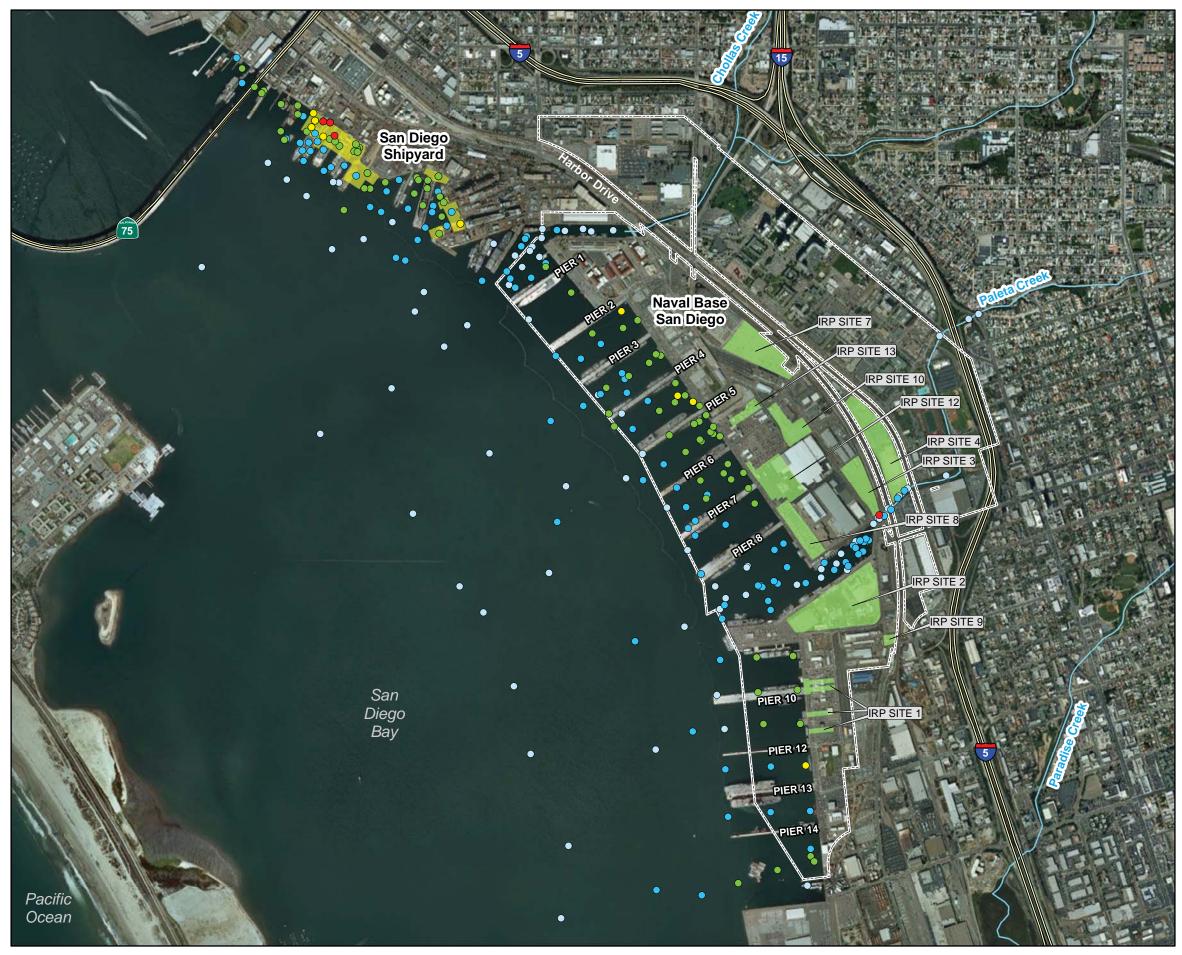


\\ICONIA\PROJECTS\US_NAVY\388185_NBSD\GIS\SHIPYARDSEDIMENTSITE\MAPFILES\NBSD_SD_RESPONSEREPORT_FIG4_3_THIESSEN.MXD_SWOLFSKI 6/22/2010 14:35:58

LEGEND


- Representative Sample Points
- Representative Thiessen Polygon Dataset
- Naval Base San Diego Areas of Interest Near IRP Sites
- Shipyard Sediment Site Proposed Remediation Footprint
- Freeways
 - Watercourses

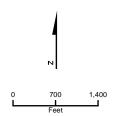

FIGURE 4-3 Polygons for Calculation of Surface Weighted Average Concentrations Response to Shipyard Sediment Site Tentative Cleanup and Abatement Order and City of San Diego Complaint United States Naval Base San Diego, California



LEGEND

- 2004 Paleta Creek Sediment Characterization Study
- P-326 1997 Preliminary Sediment Characterization Study
- P-327 Pier 12 Phase I Study
- Sediment Characterization Study Pier and 0 Berthing Areas
- Sediment Chemistry Results for Naval Base San Diego
- P-326 2000 Study Composite Area
- P-327 Pier 12 Phase I Study Composite Area
- P-327 Pier 12 Phase II and Phase III Study Composite Area
- Naval Base San Diego Areas of Interest Near IRP Sites
- IRP Sites Identified in the Tentative Cleanup and Abatement Order
- Shipyard Sediment Site Proposed Remediation Footprint
- United States Naval Base San Diego Boundary
- Watercourses

FIGURE 4-4 Sample Locations Included in Composite Sediment Contaminant Data Analysis Response to Shipyard Sediment Site Tentative Cleanup and Abatement Order and City of San Diego Complaint United States Naval Base San Diego, California


\\ICONIA\PROJECTS\US_NAVY\388185_NBSD\GIS\SHIPYARDSEDIMENTSITE\MAPFILES\NBSD_SD_RESPONSEREPORT_FIG4_5_COPPER.MXD_SWOLFSKI 6/22/2010 15:10:47

LEGEND

Copper Concentration (mg/kg dry weight)

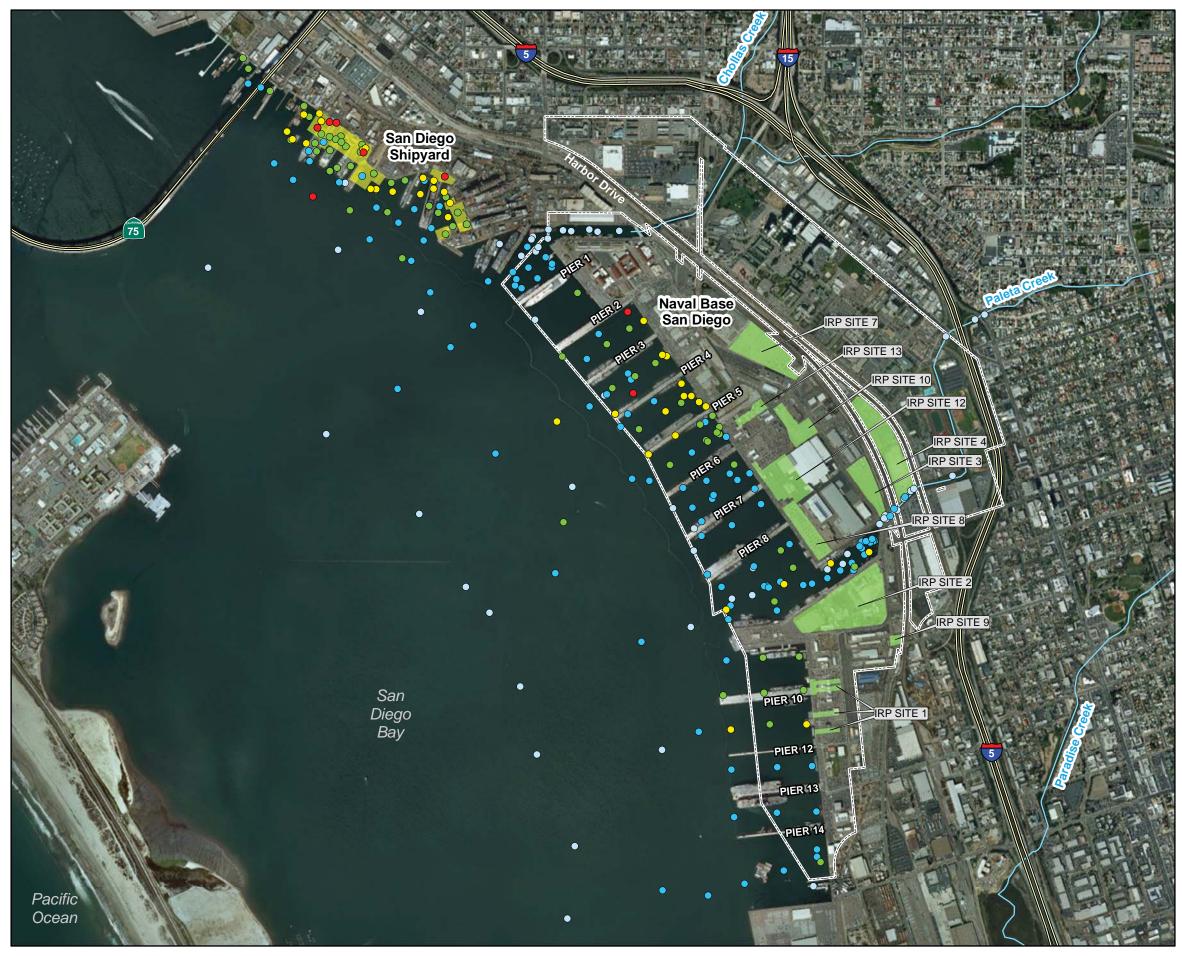
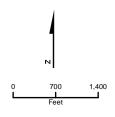

- 0-125
- 126-250
- 251-500
- 501-750
- >750
- IRP Sites Identified in the Tentative Cleanup and Abatement Order
- Shipyard Sediment Site Proposed Remediation Footprint
- United States Naval Base San Diego Boundary
- - -Watercourses

FIGURE 4-5 Concentrations of Copper in Surface Sediment, 1992-2009


NIA\PROJECTS\US_NAVY\388185_NBSD\GIS\SHIPYARDSEDIMENTSITE\MAPFILES\NBSD_SD_RESPONSEREPORT_FIG4_6_MERCURY.MXD_SWOLFSKI 6/22/2010 16:03:36

LEGEND

Mercury Concentration (mg/kg dry weight)

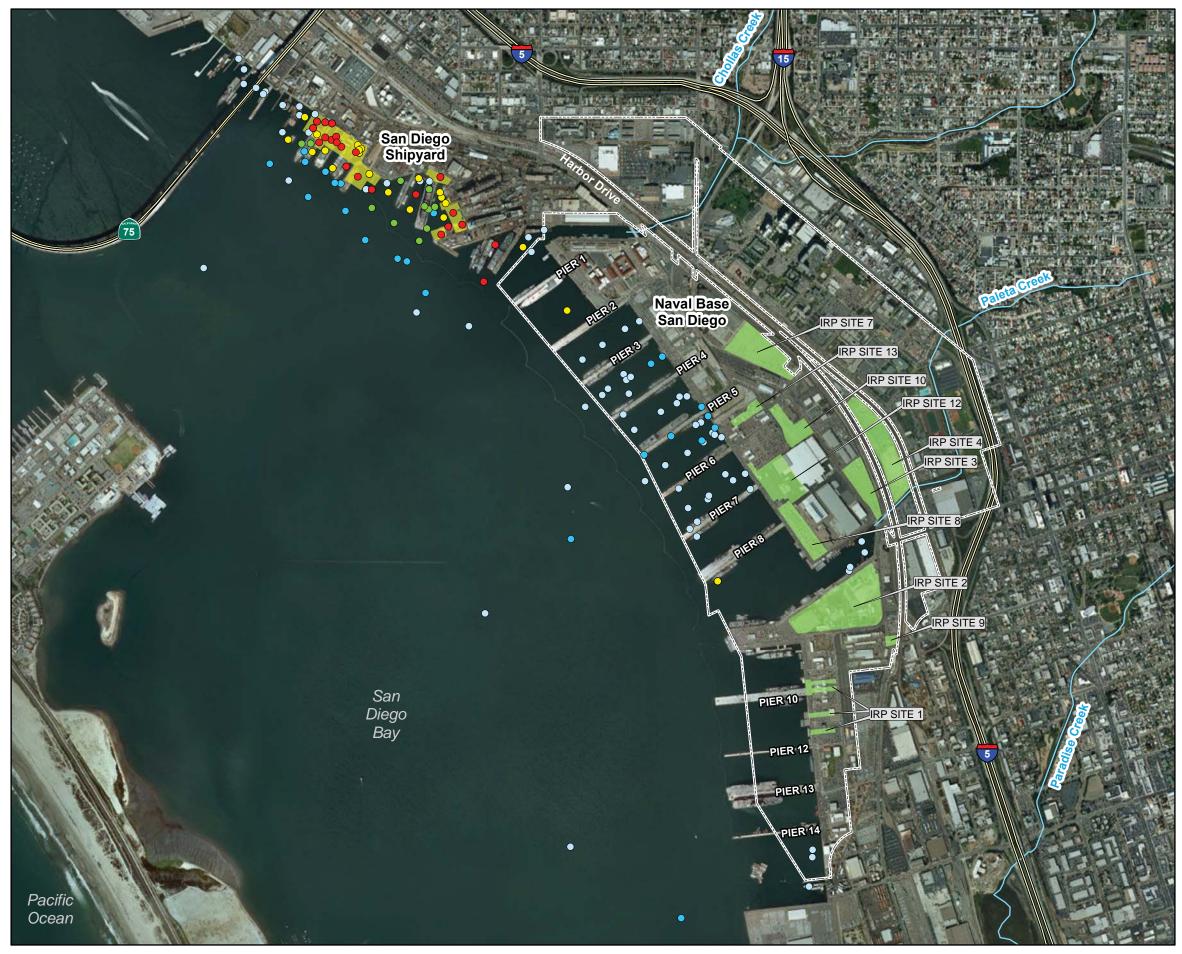
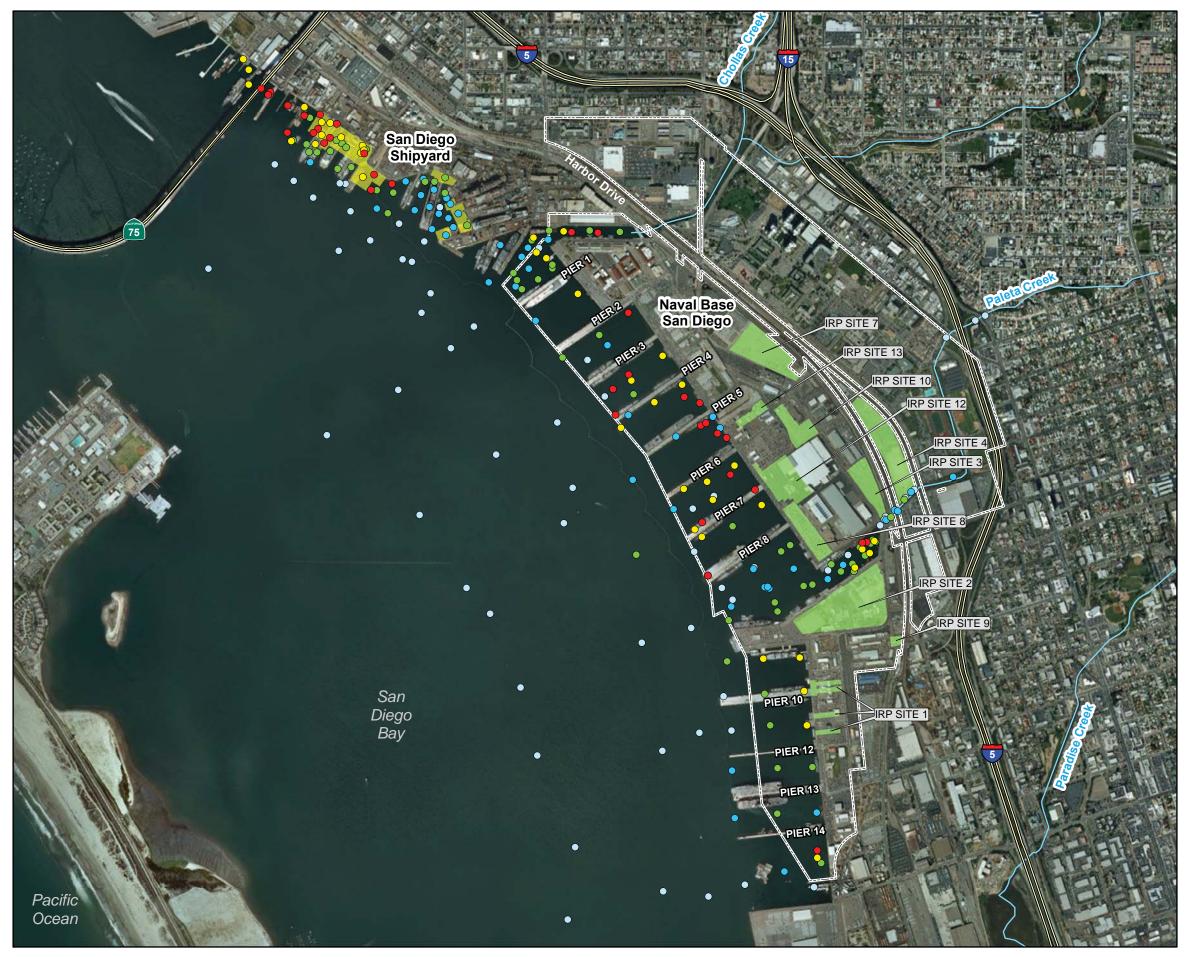

- 0 0.3
 0.31 0.7
- 0.31 0.7
 0.71 1.0
- 0.71 1.0
 1.1 2.0
- >2.0
- IRP Sites Identified in the Tentative Cleanup and Abatement Order
- Shipyard Sediment Site Proposed Remediation Footprint
- United States Naval Base San Diego Boundary
- - -Watercourses

FIGURE 4-6 Concentrations of Mercury in Surface Sediment, 1992-2009

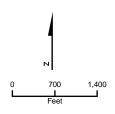
\\ICONIA\PROJECTS\US_NAVY\388185_NBSD\GIS\SHIPYARDSEDIMENTSITE\MAPFILES\NBSD_SD_RESPONSEREPORT_FIG4_7_TBT.MXD_SWOLFSKI 6/22/2010 16:11:35

LEGEND


Tributyltin (TBT) Concentration (µg/kg dry weight) ○ 0 - 20

- 21 50
- 51 100
- 101 200
- >200
- IRP Sites Identified in the Tentative Cleanup and Abatement Order
- Shipyard Sediment Site Proposed Remediation Footprint
- United States Naval Base San Diego Boundary
- - -Watercourses

FIGURE 4-7 Concentrations of Tributyltin (TBT) in Surface Sediment, 1988-2009 Response to Shipyard Sediment Site Tentative Cleanup and Abatement Order and City of San Diego Complaint United States Naval Base San Diego, California


NIA\PROJECTS\US_NAVY\388185_NBSD\GIS\SHIPYARDSEDIMENTSITE\MAPFILES\NBSD_SD_RESPONSEREPORT_FIG4_8_HPAH.MXD_SWOLFSKI 6/22/2010 16:15:31

LEGEND

HPAH Concentration (µg/kg dry weight)

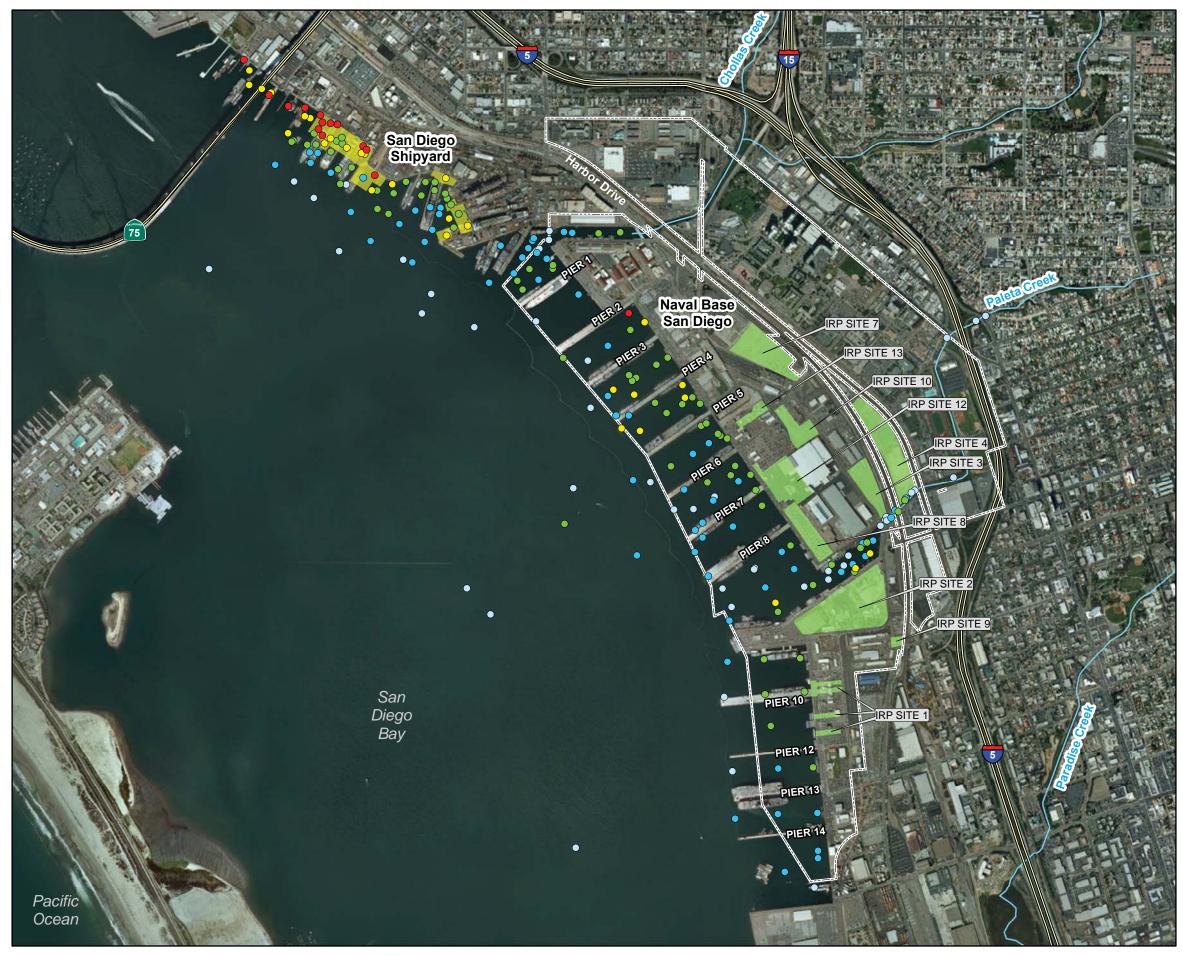
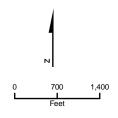

- 0 1,000
- 1,001 2,000
- 2,001 6,000
- 6,001 10,000
- >10,000
- IRP Sites Identified in the Tentative Cleanup and Abatement Order
- Shipyard Sediment Site Proposed Remediation Footprint
- United States Naval Base San Diego Boundary
- Freeways
 - Watercourses

FIGURE 4-8 Concentrations of High Molecular Weight Polynuclear Aromatic Compounds (HPAH) in Surface Sediment, 1992-2009


VIA'PROJECTS\US_NAVY\388185_NBSD\GIS\SHIPYARDSEDIMENTSITE\MAPFILES\NBSD_SD_REPONSEREPORT_FIG4_9_PCB.MXD_SWOLFSKI 6/22/2010 16:31:50

LEGEND

PCB Concentration (µg/kg dry weight)

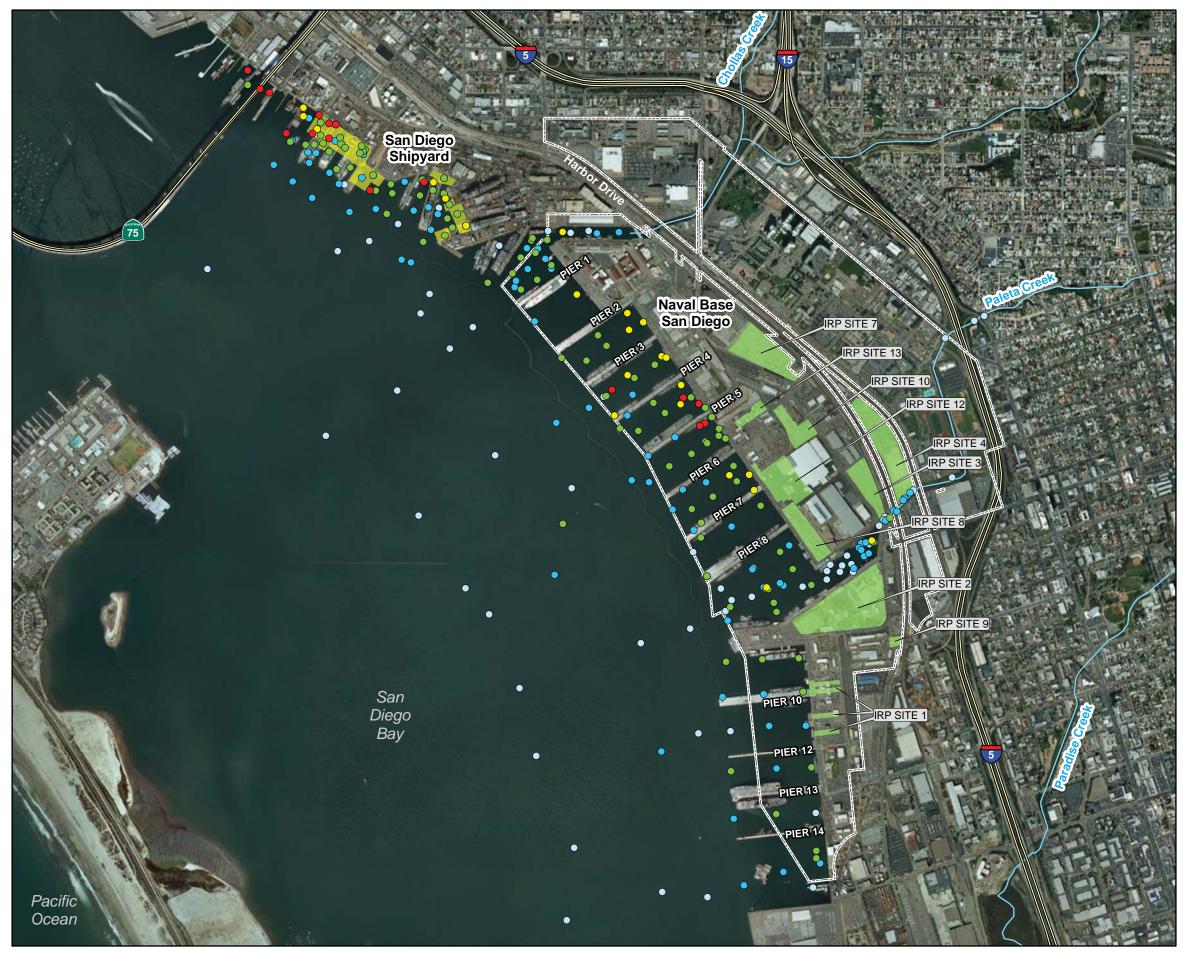
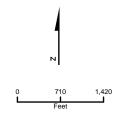

- 0 100
- 101 200
- 201 500
- 501 1,000
- >1,000
- IRP Sites Identified in the Tentative Cleanup and Abatement Order
- Shipyard Sediment Site Proposed Remediation Footprint
- United States Naval Base San Diego Boundary
- - -Watercourses

FIGURE 4-9 Concentrations of Total Polychlorinated Biphenyls (PCBs) in Surface Sediment, 1992-2008


IA\PROJECTS\US_NAVY\388185_NBSD\GIS\SHIPYARDSEDIMENTSITE\MAPFILES\NBSD_SD_RESPONSEREPORT_FIG4_10_ARSENIC.MXD_SWOLFSKI 6/22/2010 16:38:30

LEGEND

Arsenic Concentration (mg/kg dry weight)

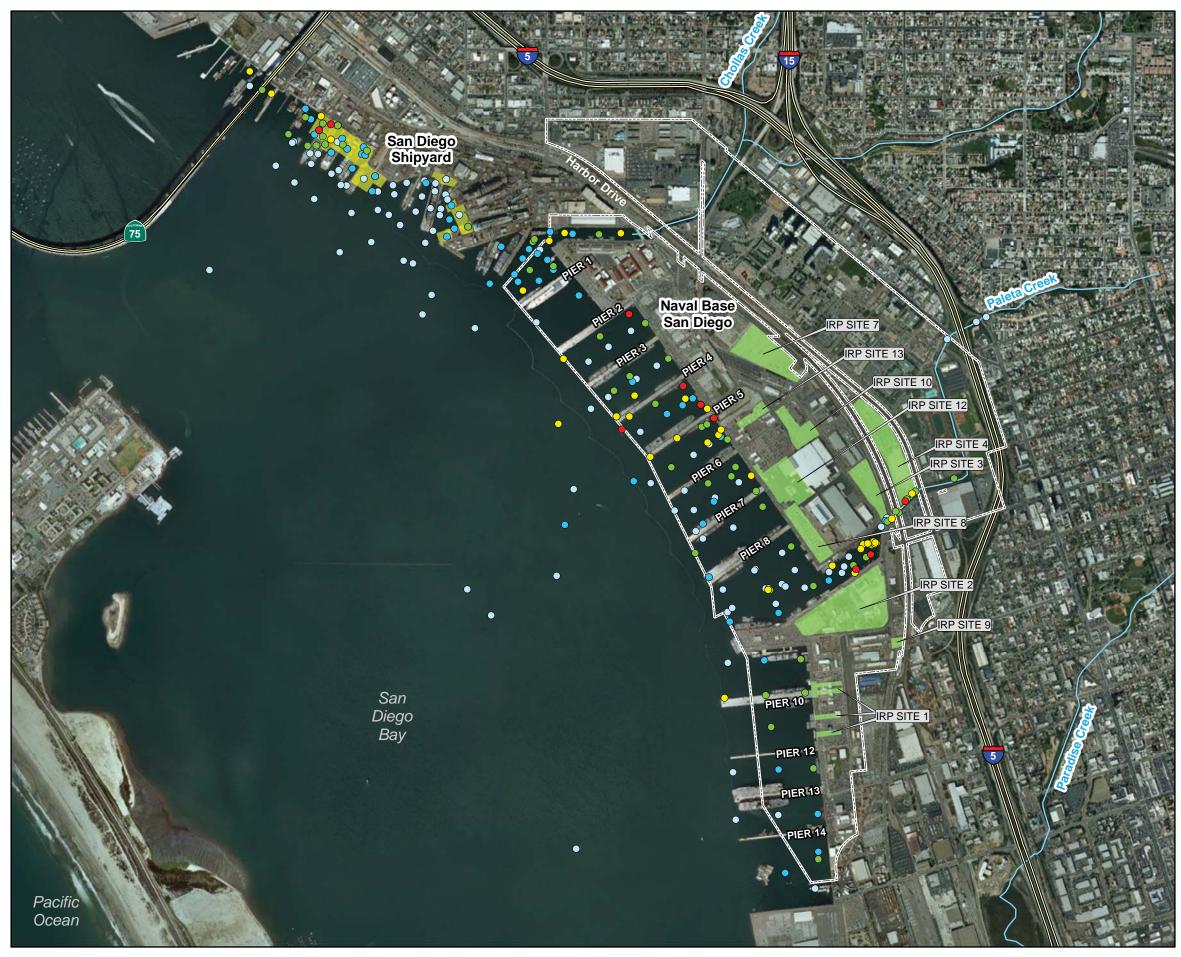
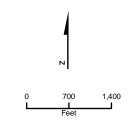

- 0-7
- 7.1 10
- 10.1 15
 15.1 20
- 0
- >20
- IRP Sites Identified in the Tentative Cleanup and Abatement Order
- Shipyard Sediment Site Proposed Remediation Footprint
- United States Naval Base San Diego Boundary
- - -Watercourses

FIGURE 4-10 Concentrations of Arsenic in Surface Sediment, 1992-2009

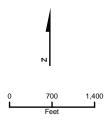

IA\PROJECTS\US_NAVY\388185_NBSD\GIS\SHIPYARDSEDIMENTSITE\MAPFILES\NBSD_SD_RESPONSEREPORT_FIG4_11_CADMIUM.MXD_SWOLFSKI 6/22/2010 16:40:4

LEGEND

Cadmium Concentration (mg/kg dry weight)

- 0 0.33
- 0.34 0.5
- 0.51 1.0
 1.1 2.0
- 1.1 2
 >2.0
- >2.0
- IRP Sites Identified in the Tentative Cleanup and Abatement Order
- Shipyard Sediment Site Proposed Remediation Footprint
- United States Naval Base San Diego Boundary
- - -Watercourses

FIGURE 4-11 Concentrations of Cadmium in Surface Sediment, 1992-2009


IIA\PROJECTS\US_NAVY\388185_NBSD\GIS\SHIPYARDSEDIMENTSITE\MAPFILES\NBSD_SD_RESPONSEREPORT_FIG4_12_LEAD.MXD_SWOLFSKI 6/22/2010 16:52:15

LEGEND

Lead Concentration (mg/kg dry weight)

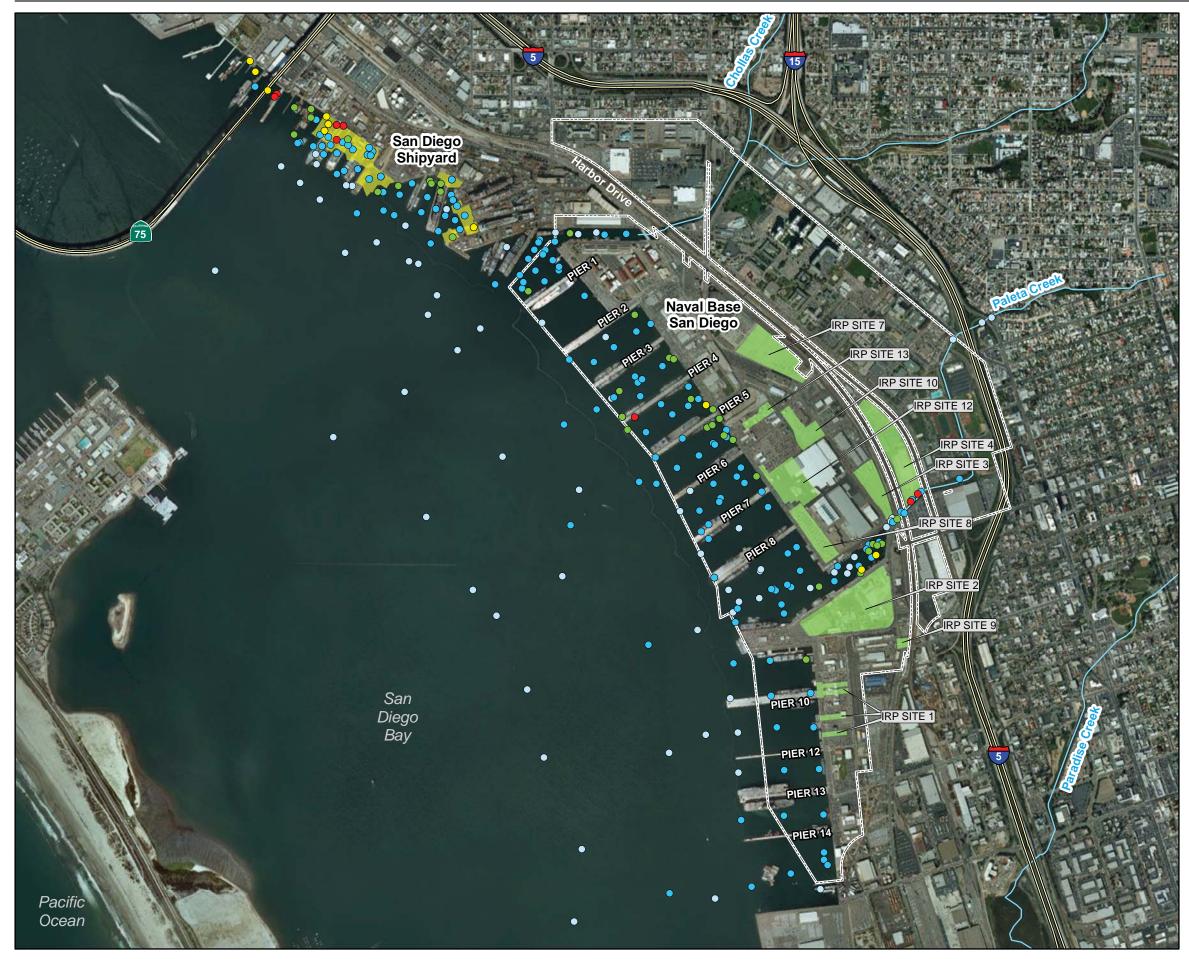
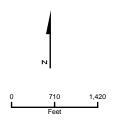

- 0 50
- 51 75
- 76 100
- 101 200
- >200
- IRP Sites Identified in the Tentative Cleanup and Abatement Order
- Shipyard Sediment Site Proposed Remediation Footprint
- United States Naval Base San Diego Boundary
- - -Watercourses

FIGURE 4-12 Concentrations of Lead in Surface Sediment, 1992-2009


)NIA/PROJECTS/US_NAVY/388185_NBSD/GIS/SHIPYARDSEDIMENTSITE/MAPFILES/NBSD_SD_RESPONSEREPORT_FIG4_13_ZINC.MXD_SWOLFSKI 6/22/2010 17:05:18

LEGEND

Zinc Concentration (mg/kg dry weight)

- 0 200
- 201 400
- 401 600
- 601 800
- >800
- IRP Sites Identified in the Tentative Cleanup and Abatement Order
- Shipyard Sediment Site Proposed Remediation Footprint
- United States Naval Base San Diego Boundary
- - -Watercourses

FIGURE 4-13 Concentrations of Zinc in Surface Sediment, 1992-2009

This page intentionally left blank.

Evaluation of Sediment Resuspension and Transport

In this section, resuspension of sediments by propeller wash in areas potentially influenced by releases from IRP sites and transport by tidal currents to the Shipyard Sediment Site are evaluated. The conceptual model for the transport is that propeller scour events would occur in certain sediment regions adjacent to IRP sites during ship docking and un-docking events. Each of these events would resuspend a certain amount of sediment (the resuspension source term) due to movements of ships and tug boats. This resuspended sediment would then be subject to tidal transport and redeposition in other areas of the bay, including the Shipyard Sediment Site, based on the settling characteristics of the sediment.

A modeling simulation was performed to estimate the magnitude of sediment resuspension and transport from these specific areas at NBSD to the Shipyard Sediment Site. The modeling was conducted using the Navy's high resolution Tidal, Residual, Intertidal Mudflat (TRIM) hydrodynamic and sediment transport model. The same validated model (Lo et al., 1999) has been used for a number of fate and transport studies, including sewage spills near the entrance of the bay and the south bay, copper discharge from the Convention Center dewatering facility, migration of contaminated sediments resuspended by propeller wash (Wang et al., 2009) and copper concentrations in the bay (Chadwick et al., 2008). Key elements of the modeling effort include the following:

- Identifying potential source areas at NBSD based on potential transport pathways from IRP sites to San Diego Bay
- Characterizing sediment conditions (i.e., particle size, critical shear stress, density) in the potential source areas based on available measurements
- Estimating and verifying propeller wash resuspension loads based on direct measurements and propeller scour modeling
- Determining the frequency of resuspension events in the potential source areas
- Directly modeling the tidal transport from these potential source areas to the Shipyard Sediment Site

The outcome of the modeling quantified the transport and subsequent deposition at the Shipyard Sediment Site in terms of net deposition (kg yr⁻¹) and as a sediment accumulation rate (cm yr⁻¹). Analysis and modeling methods and results are described in detail below.

5.1 Resuspension Zones at NBSD

5.1.1 Areas of Resuspension

The IRP site evaluation in Section 3 identified three zones in San Diego Bay adjacent to NBSD that may have had a pathway of COC release from NBSD IRP sites. The three resuspension source zones include the pier area at the mouth of Paleta Creek, the pier area adjacent to the Graving Dock (between Piers 5 and 6), and the area between Piers 10 and 12 (Figure 5-1). Because the exact area of deposition of COCs from IRP sites is unknown, the entire area within the pier heads in each zone was identified as potentially subject to COC deposition and resuspension. A GIS analysis was used to calculate the relative areas of each resuspension source zone to the total NBSD pier area. The three source zones represent 30 percent of the total NBSD area within the pier heads as follows: Graving Dock zone (6 percent), the Paleta Creek mouth zone (16 percent), and the Pier 10-Pier 12 zone (8 percent) (Table 5-1).

5.1.2 Sediment Particle Size Distribution

The size of sediment particles is a critical characteristic in determining how far they are transported before they settle back to the seafloor following a resuspension event. Thus, it is important to characterize and model the resuspended sediment based on the general distribution of sediments in each zone. The particle size distribution characterizing each source zone was obtained from historical data sets. Grain size data were compiled for the Paleta Creek mouth source zone from the Chollas Creek and Paleta Creek TMDL study (SCCWRP and Navy, 2005), for the Graving Dock source zone from the NBSD TMDL study (in progress), and for the Pier 10-Pier 12 source zone from the Naval Station (NAVSTA) San Diego sediment quality characterization study (Chadwick et al., 1999). Grain size results in terms of percent gravel, sand, silt, and clay for all stations in each of the three zones were used to calculate an average particle size distribution (Table 5-2). Ranges for the size fractions in the three zones were 0–1.75 percent gravel, 23-45 percent sand, 25–50 percent silt, and 26–43 percent clay.

5.1.3 Sediment Bed Characteristics

Critical shear stress, erosion rate, bulk density, and bed roughness are important sediment characteristics for propeller scour modeling. Critical shear stress and bulk density of the sediments at NBSD were measured in the Paleta Creek mouth area during the Pathway Ranking for In-place Sediment Management (PRISM) study conducted in 2002 (SPAWAR, 2006a). The bulk density of the particles determined during the study was 0.4 g cm⁻³, which is comparable to the average bulk density of sediments in the Shipyard Sediment Site proposed remediation footprint (Table 5-3). An in situ flume called the Sea Carousel developed by the Virginia Institute of Marine Science was used to measure surficial sediment critical shear stress at two sites in the Paleta Creek mouth area. Resuspension was evaluated under the application of increasing shear stress produced in the flume. The average critical shear stress for sediment erosion was determined to be 0.17 pascals (Pa).

Bed roughness for the target areas was estimated to be 230 μ m, which is on the order of the D₉₀ (the grain diameter at which 90 percent of the sample is finer) of the sediment bed. This value is recommended by Kamphuis (1974) and others as a good initial assumption of bed

roughness. In addition, erosion rate analysis was conducted by SPAWAR on sediment cores obtained from two stations located in the Bremerton Naval Complex pier areas most likely impacted by propeller wash during ship operations (Blake et al., 2007). Although from a different region, these data provide guidance on erosion rates deeper into the sediment bed for similar silty Pacific Coast estuarine sediments that may be disturbed by shipping operations in comparable water depths (~ 10–12 m). Table 5-4 shows the average erosion rates for the cores collected at each location as a function of shear stress and depth. These sediment properties were used in a propeller scour model as a means of verifying field data for the propeller-wash resuspension source term.

5.2 Resuspension Source Term

5.2.1 Field Measurements

Sediment resuspension as a result of propeller-wash scour during ship movements was measured during four field surveys conducted in 1996 (Chadwick et al., 1999). Resuspension of sediment was measured during five tug-assisted ship docking/undocking events from piers at NBSD. Optical sensor data and discrete water samples analyzed for suspended solids were collected before, during, and after the ship undocking events to quantify the amount of material resuspended during each movement. Because multiple tugs are used to move ships to or from piers, docking events were normalized to a vessel unit (VU) so that calculations of daily or annual mass loading for all of NBSD could be calculated from historical vessel traffic information.

The results showed that total mass loading within the pier areas ranged from 2.1×10^3 kg to 9.0×10^3 kg per ship movement event, with an average of $5.5 \pm 2.6 \times 10^3$ kg (Table 5-5). The average mass of resuspended sediment during a single ship movement was $1.2 \pm 0.5 \times 10^3$ kg/VU. A total daily mass loading value for all of NBSD was calculated based on historical records showing an average of 17.6 tug-assisted ship movements per day within the facility during the January and February 1996 time frame (Chadwick et al., 1999). The total daily mass loading from ship resuspension within the pier areas of NBSD ranged from 9.2×10^3 kg to 31.6×10^3 kg, with an average of $20.5 \pm 8.8 \times 10^3$ kg (Table 5-5). Daily mass loading for each resuspension zone was calculated by multiplying the average daily mass loading for all of NBSD by the percent of NBSD area each zone represents (Table 5-1). The mass loading was 3.3×10^3 , 1.2×10^3 , and 1.6×10^3 kg d⁻¹ for the Paleta Creek mouth, Graving Dock, and Pier 10-Pier 12 zones, respectively. The combined daily loading was 6.1×10^3 kg.

5.2.2 Source Term Verification

Verification of data from the field survey results were compared to results of a propellerwash model (Maynord, 2000). The maximum propeller wash velocities predicted for a typical ship movement by the Maynord model were used in conjunction with flume erosion rate and critical shear stress data for sediments collected in the mouth of Paleta Creek near the piers. Additional erosion data from piers at Bremerton Naval Complex were used to supplement the limited data available for Paleta Creek and demonstrate that those sediment stability conditions are generally representative of pier areas at Navy facilities. Predictions of maximum velocities from propeller wash were used in conjunction with the sediment data to determine total resuspended sediment mass (i.e., the resuspension source term). Results of the model were then compared to the direct measurements of resuspended sediment mass in the Paleta Creek region described above to validate the estimates developed from the field measurements. Variability in measured sediment erosion data from the mouth of Paleta Creek was also used to define upper and lower limits of sediment resuspension.

The bottom velocity due to propeller wash was estimated following the formulation outlined in Maynord (2000). Several physical parameters describing the ship, propeller, and operating environment are required for this analysis. Table 5-6 includes the specifications for a typical Pacific coast deepwater port commercial tug that were used for the parameters that were not readily available from the Navy. The tug is assumed to have a Kort nozzle propeller common in modern tugs. Figure 5-2 shows the modeled velocities at the sediment bed as a function of distance from the stern of the tug. The maximum velocities at the bed are approximately 0.7 m s⁻¹, and they drop to approximately half that within 100 m of the stern. The velocities decrease much faster in the cross-stream direction. The velocity calculations are used in the following sections to calculate sediment resuspension.

Available sediment bed characteristic data described in previous sections were used to model the resuspension source term using the propeller velocities calculated from the Maynord model. Using the predicted velocities, the bed shear stress, τ_b , exerted on the sediment bed during ship operations was calculated. These shear stresses were applied to the sediment bed using the erosion rates from Table 5-4 to determine the mass of sediment resuspended during tug operations. The procedure for calculating shear stresses and estimating bed roughness is covered in more detail in the *User's Guide for Assessing Sediment Transport at Navy Facilities* (Blake et al., 2007). It was assumed that a ship movement operation lasts for approximately 15 minutes, which is within the 10- to 30-minute range reported in previous studies (SPAWAR, 2006a).

The model predicted velocities and shear for the assumed event conditions. Figures 5-3 and 5-4 show the resulting shear stress and scour patterns resulting from the propeller scour model calculations. The maximum shear stress, coincident with the maximum velocity, is 0.85 Pa and results in a maximum scour of 1.0 cm of sediment. These values are within a reasonable range expected at the site based on observed mixed layers during the PRISM studies. Modeled resuspension for a single large tractor tug movement event was approximately 1,422 kg (Table 5-7). Analyzing the erosion coefficients presented in the PRISM report (SPAWAR, 2006a) yields a variability of 25 percent in erosion properties at the locations measured (Table 5-7). Because the resuspended mass and the depth of scour are directly proportional to the erosion coefficient, they can also be expected to fall within a range of about 25 percent variation (Table 5-7). Given an average of 4.6 VU for each resuspension event, this corresponds to a per-event loading of approximately 6,541 kg, which is consistent with the field average of 5,464 kg given the range of variability in the field results. The good correspondence between the field results and the modeling analysis indicate that the estimated source term for resuspension at NBSD is reliable.

5.3 Resuspended Sediment Transport Modeling

5.3.1 Transport Model

The two-dimensional vertically averaged hydrodynamic model TRIM, modified to include a sediment transport module (Cheng et al., 1993; Wang et al., 1998), was used to quantify the potential transport and subsequent deposition of resuspended sediments from each of the three NBSD zones to the proposed remediation footprint location within the Shipyard Sediment Site (Figure 5-5). TRIM model results have been validated against measurement data collected on multiple projects (Wang et al., 1998; Wang et al., 2009; Chadwick et al., 2008).

Near NBSD, tidal currents move predominantly back and forth (northwest and southeast) along the axis of the channel, although there are always asymmetries in the flows that will result in some level of residual (net) transport. The model results incorporate the full spatial and temporal variation of tidal flows throughout the region over the entire time period evaluated, and thus account for all tidally induced flow conditions and capture the relevant transport processes. Particles that are resuspended will travel with the current flow at the time they are resuspended. The model uses multiple time intervals during each day to ensure it captures a realistic long-term condition of ships moving under all tide stages.

5.3.2 Model Simulations

TRIM model runs were performed using the average daily mass loads calculated for resuspended sediments due to ship movements within each of the three source zones at NBSD (Table 5-5). The daily loads were divided into the four grain size classes (gravel, sand, silt, and clay) based on the average percentages measured in each zone (Table 5-2). Assuming that particles were spherical, sediment settling velocities were calculated following Stokes law for silt, fine sand, and coarse sand (Table 5-8). By Stokes law, the settling velocity for clay was estimated to be in the range of 10⁻² to 10⁻³ mm s⁻¹ if each particle is assumed to exist singly. For this study, a settling velocity of 0.15 mm s⁻¹ was used for clay after Ziegler (1995).

Model simulations of the transport and deposition of the resuspended sediments from each of the three NBSD source zones were performed based on assumed releases under nine different tidal stages that represent the full tidal cycle (Figure 5-6). The initial resuspension was assumed to occur only within each source zone and continue for 15 minutes. The nine unique tidal stages account for the fact that ship movements can occur during any stage of the tide. The nine tidal stages in three source zones resulted in a total of 27 modeling scenarios. Only tidal currents were considered for sediment transport, as wind-induced currents and wind-waves are believed to be weak and relatively unimportant in the study area (Wang et al., 1998). The model spatial resolution was 50 × 50 m.

Transport was simulated for eight days, by which time the large majority (~90 percent for clay, ~100 percent for silt, fine sand and coarse sand) of the initially suspended solids had settled to the bottom. Specific 50×50 m model grid cells that correspond to the four Shipyard Sediment Site proposed remediation footprint locations (Figure 5-5) were identified to evaluate the net sediment deposition at the Shipyard Sediment Site. One model grid cell (2,500 m²) was assigned to each of the Shipyard Sediment Site proposed

remediation footprint areas, except for location 1, which had two grid cells to account for its larger area. Net deposition in kg d⁻¹ was then modeled and computed for each grid cell and corrected for the actual area of the proposed remediation footprint location (e.g., Location 3 deposition was corrected by a factor 0.76 (1,897 m² actual/ 2,500 m² cell).

5.3.3 Modeling Results

The minimum, maximum, and total net deposition of resuspended sediments generated from the nine tidal stage scenarios from each of the three NBSD source zones to the four locations making up the Shipyard Sediment Site proposed remediation footprint were calculated and are shown in Table 5-9. Annual deposition for the proposed remediation footprint was estimated to be 112 kg yr⁻¹. As would be expected, the largest contribution came from the Graving Dock source zone, which is closest to the Shipyard Sediment Site. Relative contributions were 49, 36, and 15 percent, respectively, from the Graving Dock, Paleta Creek mouth, and Pier 10–Pier 12 source zones.

Annual accumulation rates (cm yr⁻¹) in the Shipyard Sediment Site proposed remediation footprint were computed from the annual deposition rates (kg yr⁻¹) using the bulk density value of 0.4 g cm⁻³ (SPAWAR, 2006a) as described above. These rates are shown in Table 5-10. Accumulation rates in the proposed remediation footprint area based on resuspension from the individual NBSD source zones ranged from 5.5×10^{-4} to 1.7×10^{-3} cm yr⁻¹. The sediment accumulation rate at the proposed remediation footprint based on total contributions from the three NBSD source zones was 3.4×10^{-3} cm yr⁻¹.

The accumulation rate due to sediment resuspension from NBSD was compared to the total annual sediment accumulation at the Shipyard Sediment Site. Total accumulation rates were estimated at 0.92 cm yr⁻¹ (Peng et al., 2003) and 2.0 cm yr⁻¹ (RWQCB, 2010b). Net deposition to the Shipyard Sediment Site proposed remediation footprint due to resuspension and transport from NBSD was therefore between 0.17 percent and 0.37 percent of the total annual deposition, an amount that is negligible in the overall deposition of sediments at the Shipyard Sediment Site.

Area Estimates for Naval Base San Diego Resuspension Source Zones and Pier Area Response to Shipyard Sediment Site Tentative Cleanup and Abatement Order and City of San Diego Complaint United States Naval Base San Diego, California

Location	Area (m²)	Percent of Total
Paleta Creek Mouth	222,572	16
Graving Dock	85,346	6
Pier 10–12	114,408	8
Total of Three Source Zones	422,326	30
NBSD Pier Area	1,428,722	—

Grain Size Data, Average Particle Size Distributions, and Loadings for Naval Base San Diego Resuspension Zones Response to Shipyard Sediment Site Tentative Cleanup and Abatement Order and City of San Diego Complaint United States Naval Base San Diego, California

		Paleta Cre	ek Mouth			Graving Dock Area				Pier 10-	12 Area			
Station	% Gravel	% Sand	% Silt	% Clay	Station	% Gravel	% Sand	% Silt	% Clay	Station	% Gravel	% Sand	% Silt	% Clay
P01	9.91	58.35	15.70	16.04	NS21	0.03	27.43	27.67	44.87	NSB-R2-9S	0.00	35.15	41.48	23.37
P02	0.76	30.95	29.78	38.52	NS22	0.00	14.06	32.45	53.49	NSB-R2-10S	0.00	27.66	40.22	32.12
P03	0.95	60.65	15.63	22.77	NS23	0.18	33.82	25.50	40.50	NSB-R2-11S	0.00	43.96	34.42	21.63
P04	0.17	25.26	33.49	41.07	NS24	1.02	32.88	27.11	39.99	NSB-R2-13S	0.00	13.64	57.57	28.79
P05	0.00	21.25	34.69	44.06	NS25	1.66	42.37	21.90	34.07	NSB-R2-14S	0.00	18.10	57.40	24.50
P06	0.35	26.04	32.88	40.72						NSB-R2-15S	0.00	13.48	60.96	25.56
P07	0.00	20.85	37.03	42.11						NSB-R2-16S	0.00	8.62	61.03	30.34
P08	0.92	61.56	17.64	19.89										
P09	7.77	60.61	26.05	5.56										
P10	2.35	56.92	21.43	19.30										
P11	1.44	53.54	19.87	25.15										
P12	0.48	50.37	26.34	22.81										
P13	2.76	72.49	12.46	12.29										
P14	0.07	51.10	26.77	22.06										
P15	0.57	43.40	25.50	30.52										
P16	0.25	34.10	37.28	28.36										
P17	1.07	43.24	27.70	27.99										
Average	1.75	45.33	25.90	27.01		0.58	30.11	26.93	42.58		0.00	22.94	50.44	26.62
St. Dev.	2.80	16.19	7.79	11.24		0.73	10.45	3.82	7.21		0.00	13.02	11.28	3.87
Loading (kg/day)	56	1,446	826	861		7	368	329	521		0	376	827	436

DRAFT RESPONSE TO SHIPYARD SEDIMENT SITE TENTATIVE CAO AND CITY OF SAN DIEGO COMPLAINT, NBSD, DECEMBER 2010 N62470-08-D-1000, CTO FZN1; DCN CH2M-1000-FZN1-0002 ES111110054058SCO

Bulk Density of Surface Sediments in the Shipyard Sediment Site Proposed Remediation Footprint Response to Shipyard Sediment Site Tentative Cleanup and Abatement Order and City of San Diego Complaint United States Naval Base San Diego, California

Station	Rep 1	Rep 2	Rep 3	Rep 4	Average	Bulk Density (g cm ⁻³)
NA06	36.8	17.9	37.9		30.9	0.38
NA09	29.4	—	—	_	29.4	0.36
NA15	37.8	—	—	_	37.8	0.49
NA17	33.6	16.8	50.0	_	33.5	0.42
NA19	33.3	—	—	_	33.3	0.42
SW01	55.4	43.2	50.9	50.6	50.0	0.73
SW02	38.2	34.6	37.9	32.2	35.7	0.46
SW04	45.8	33.1	36.4	_	38.4	0.51
SW05	47.8	_	_	_	47.8	0.68
SW08	30.8	26.5	24.5	_	27.3	0.33
SW09	41.4	_	_	_	41.4	0.56
SW10	54.4	_	_	_	54.4	0.82
SW13	32.2	_	_	_	32.2	0.40
SW14	38.2	_	_	_	38.2	0.50
SW16	43.2	_	_	_	43.2	0.59
SW17	32.6	—	—	_	32.6	0.41
SW20	41.3	—	—	_	41.3	0.56
SW21	39.5	_	_	_	39.5	0.52
SW22	34.3	_	_	_	34.3	0.44
SW23	33.9	_	_	_	33.9	0.43
SW24	45.4	40.6	49.5	_	45.2	0.63
SW27	35.0	_	_	_	35.0	0.45
SW28	34.4	33.8	35.4	_	34.5	0.44
Average Bul	k Density (g cr	m ⁻³)				0.50

Average Erosion Rates as a Function of Shear Stress and Depth for Cores from the Bremerton Naval Complex Response to Shipyard Sediment Site Tentative Cleanup and Abatement Order and City of San Diego Complaint United States Naval Base San Diego, California

	Rate (cm/s)							
Interval (cm)	0.2 Pa	0.4 Pa	0.8 Pa	1.6 Pa	3.2 Pa			
Core SI-03								
0–3.75	0.00E+00	7.92E-05	9.29E-04	5.51E-03	1.88E-02			
3.75–	0.00E+00	0.00E+00	7.78E-04	2.61E-03	5.61E-03			
Core SI-04								
0–6	1.38E-04	5.04E-04	1.42E-03	6.90E-03	2.99E-02			
6-	0.00E+00	5.42E-05	4.54E-04	2.18E-03	1.13E-02			

Source: Blake et al. (2007).

TABLE 5-5Sediment Resuspension Mass Loading Values Measured During 1996 Field SurveysResponse to Shipyard Sediment Site Tentative Cleanup and Abatement Order and City of San Diego ComplaintUnited States Naval Base San Diego, California

Ship Movement Survey	Number of Tugs	Vessel Units for the Ship Movement (VU)	Total Mass Resuspended During Ship Movement (kg)	Total Mass Resuspended per VU (kg/VU)	Average VU per Day at NBSD (VU/day)	Total Daily Resuspension at NBSD (kg/day)	Paleta Creek Mouth Loading (kg/day)	Graving Dock Pier Area Loading (kg/day)	Pier 10-12 Area Loading (kg/day)
Wak 7	2	4	5,260	1,315	17.55	23,078	3,595	1,379	1,848
Wak 8	3	5	6,930	1,386	17.55	24,324	3,789	1,453	1,948
Wak 9	2	4	2,100	525	17.55	9,214	1,435	550	738
Wak 10a	3	5	9,000	1,800	17.55	31,590	4,921	1,887	2,530
Wak 10b	3	5	4,030	806	17.55	14,145	2,204	845	1,133
Average	3	5	5,464	1,166	_	20,470	3,189	1,223	1,639
St. Dev.	1	1	2,649	503	_	8,832	1,376	528	707

Notes:

From Chadwick, et al. (1999).

Loading values at Paleta Creek Mouth, Graving Dock, and Pier 10–12 source zones are based on a percentages of total daily resuspension at Naval Base San Diego using values in Table 5-1.

TABLE 5-6Physical Parameters Required for Propeller Wash ModelResponse to Shipyard Sediment Site Tentative Cleanup and Abatement Order andCity of San Diego ComplaintUnited States Naval Base San Diego, California

Parameter	Description	Value
L _{tb}	Length of ship, m	30.48
ds	Ship draft, m	3.75
L _{set}	Distance from stern to propeller, m	3.05
$W_{ ho}$	Distance between twin prop., m	4.57
Dp	Propeller diameter, m	3.05
δ_p	Propeller axis depth, m	2.44
Power	Total ship power, hp (kW)	2,000–3,000 (1,491–2,237)
Н	Water depth, m	10.5
Va	Ambient channel velocity, m/s	0
V_g	Ship speed relative to ground, m/s	0
$ ho_w$	Density of seawater, kg/m ³	1026
K _t	Propeller thrust coefficient	0.05

TABLE 5-7

Model Resuspension and Erosion Results for a Single Ship Movement Response to Shipyard Sediment Site Tentative Cleanup and Abatement Order and City of San Diego Complaint United States Naval Base San Diego, California

Parameter	Average Value	Lower Bound	Upper Bound	
Resuspension (kg)	1,422	1,066	1,777	
Maximum Scour (cm)	1.00	0.75	1.25	

Sediment Particle Sizes and Stokes Settling Velocities Used for TRIM Modeling Response to Shipyard Sediment Site Tentative Cleanup and Abatement Order and City of San Diego Complaint United States Naval Base San Diego, California

		Size			
	Phi		Stokes Settling Velocities (mm s ⁻¹)	Settling Velocity in TRIM (mm s⁻¹)	
Clay	>10	<2	<0.5 x 10 ⁻³	0.15	
Silt	4–9	2–63	0.002–2.2	0.5	
Fine sand	2–4	63–250	2.2–34.0	5.0	
Coarse sand	0–2	250-1,000	>34.0	20	

TABLE 5-9

Annual Net Deposition to the Shipyard Sediment Site Proposed Remediation Footprint from Each Naval Base San Diego Resuspension Source Zone

Response to Shipyard Sediment Site Tentative Cleanup and Abatement Order and City of San Diego Complaint United States Naval Base San Diego, California

		Net Deposition (kg yr ⁻¹)			
	Source Zone 1 (Graving Dock)	Source Zone 2 (Paleta)	Source Zone 3 (Piers 10–12)	Total of NBSD Source Zones	
Min.	5.5	4.5	2.0		
Max.	14.3	10.6	4.8	_	
Total	55.2	40.1	16.7	112	

Note:

Minimum, maximum, and total deposition values were calculated for the four Shipyard Sediment Site proposed remediation footprint areas.

TABLE 5-10

Annual Sediment Accumulation Rates at the Shipyard Sediment Site Proposed Remediation Footprint from Each Naval Base San Diego Resuspension Source Zone

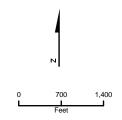
Response to Shipyard Sediment Site Tentative Cleanup and Abatement Order and City of San Diego Complaint United States Naval Base San Diego, California

	SY Remediation	Fraction of Total Annual Deposition at SY Sediment Site (%)				
	Source Zone 1 (Graving Dock)	Source Zone 2 (Paleta)	Source Zone 3 (Piers 10–12)	Contribution of All NBSD Source Zones	Based on 0.92 cm yr ⁻¹	Based on 2.0 cm yr ⁻¹
Min.	1.6E-03	1.0E-03	3.5E-04	_	_	_
Max.	1.9E-03	1.5E-03	7.0E-04	_	_	_
Ave.	1.7E-03	1.3E-03	5.5E-04	3.4E-03	0.37	0.17

Notes:

Minimum, maximum, and average sedimentation rates were calculated for the four Shipyard Sediment Site proposed remediation footprint areas. Fractional deposition rates at the Shipyard Sediment Site are based on annual rates described by Peng et al. (2003) and RWQCB (2010b).

\\CONIA\PROJECTS\US_NAVY\388185_NBSD\GIS\SHIPYARDSEDIMENTSITE\MAPFILES\NBSD_SD_RESPONSEREPORT_FIG5_1_RESUSPENSION.MXD_SWOLFSKI 6/9/2010 13:44:49


LEGEND

Naval Base San Diego Pier Areas

- Resuspension Source Zone Other Pier Area
- IRP Sites Identified in the Tentative Cleanup and Abatement Order
- Shipyard Sediment Site Proposed Remediation Footprint
- United States Naval Base San Diego Boundary
- - Watercourses

Note:

The NBSD Pier Areas show three resuspension source zones (green) based on potential transport pathways from IRP sites to San Diego Bay

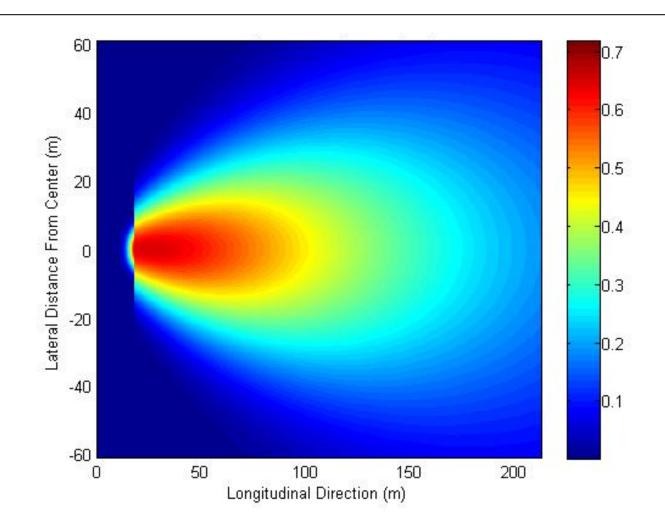
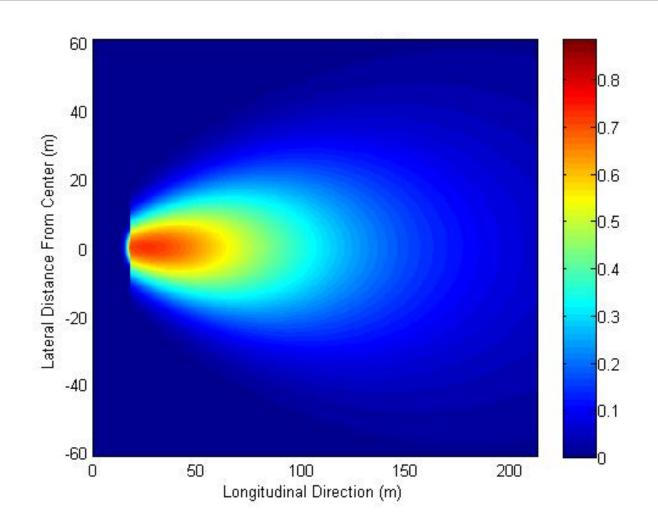
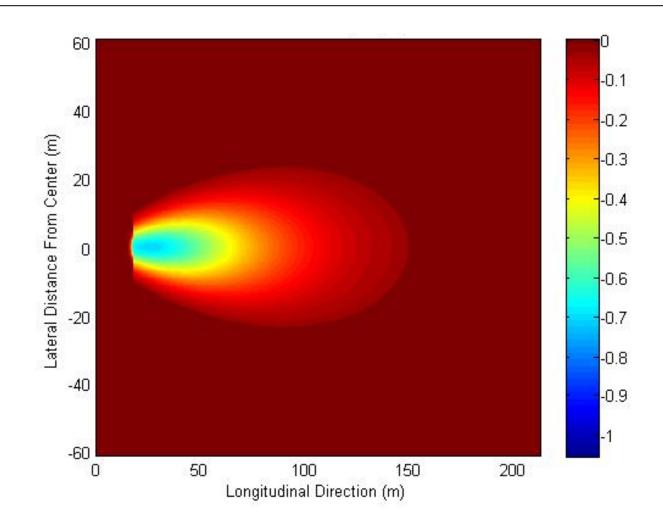


FIGURE 5-1 Resuspension Source Zones at Naval Base San Diego


Base San Diego Response to Shipyard Sediment Site Tentative Cleanup and Abatement Order and City of San Diego Complaint *United States Naval Base San Diego, California*

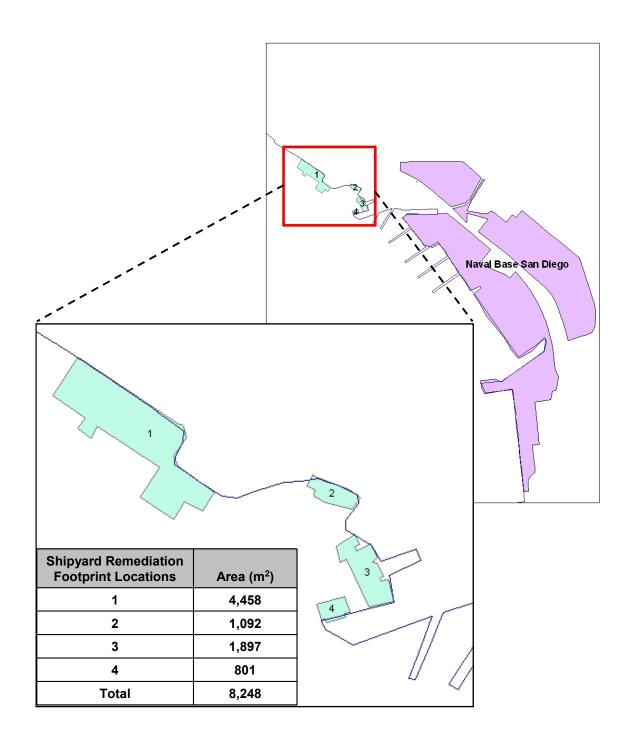
Note: Modeled contours of velocities at the sediment bed as a function of distance from the stern of the tug. Contour units are in meters per second (m/s).

FIGURE 5-2 Modeled Contours of Sediment Bed Velocities Response to Shipyard Sediment Site Tentative Cleanup and Abatement Order and City of San Diego Complaint United States Naval Base San Diego, California



Note: Modeled contours of bottom shear stress as a function of distance from the stern of the tug. Contour units are in Pascals (Pa).

FIGURE 5-3 Modeled Contours of Bottom Shear Stress Response to Shipyard Sediment Site Tentative Cleanup and Abatement Order and City of San Diego Complaint United States Naval Base San Diego, California


stems Ce PACIFIC

Note: Modeled contours of bottom scour depth as a function of distance from the stern of the tug. Contour interval is in cm.

FIGURE 5-4 Modeled Contours of Bottom Scour Depth Response to Shipyard Sediment Site Tentative Cleanup and Abatement Order and City of San Diego Complaint United States Naval Base San Diego, California

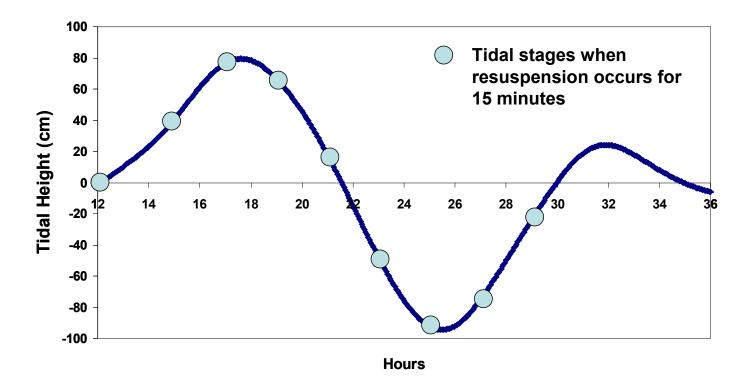


FIGURE 5-5

Spatial Relationship of Naval Base San Diego to Proposed Remediation Footprint Response to Shipyard Sediment Site Tentative Cleanup and Abatement Order and City of San Diego Complaint United States Naval Base San Diego, California

Tides and Tidal Stages for Resuspension

Note: Typical 24-hour tides showing the nine tidal stages when TRIM model runs were initiated.

FIGURE 5-6 Typical 24-hour Tides at Naval Base San Diego Response to Shipyard Sediment Site Tentative Cleanup and Abatement Order and City of San Diego Complaint United States Naval Base San Diego, California

Summary and Conclusions

The CAO and Complaint claim that historical activities at specific IRP sites at NBSD resulted in the discharge of contaminants to San Diego Bay, and that these contaminants were subsequently resuspended by ship movements, transported by tidal currents, and redeposited at the Shipyard Sediment Site, resulting in "the accumulation of waste in the marine sediment" (RWQCB, 2010a). The scientific lines of evidence developed in this report to assess these claims indicate the following:

- Ten IRP sites were identified in the CAO; nine of these sites were also identified in the Complaint. The potential for historical releases from four of the sites (IRP Sites 8, 9, 10, and 12) to San Diego Bay is low, and it is unlikely that these sites ever had a detectable impact on bay sediments. Historical transport pathways from six of the sites (IRP Sites 1, 2, 3, 4, 7, and 13) did exist or may have existed, although there is little direct evidence in bay sediments that is indicative of releases from these sites. Discharges to the bay from these sites would have declined over time due to cessation of site activities, improved environmental practices, and completion of remedial actions. Five of the sites (IRP Sites 7, 8, 9, 12, and 13) have been closed with no further action, with regulatory agency concurrence.
- Multiple dredging events from the 1940s through 2003 have removed sediments that accumulated in three areas of San Diego Bay adjacent to the IRP sites and in the main navigational channel between NBSD and the Shipyard Sediment Site, reducing the likelihood of potential impacts of any historical releases from IRP sites as well as the availability of COCs for potential resuspension and transport.
- At NBSD, COC concentrations in surface sediment in the three areas adjacent to the IRP sites tend to be higher closer to shore and lower outside the pier heads and in the main channel. At the Shipyard Sediment Site, COC concentrations in surface sediment also decrease with increasing distance from the shoreline. These concentration gradient patterns are consistent with the presence of separate, localized source areas at NBSD and the Shipyard Sediment Site and are not consistent with the transport of COCs from NBSD to the Shipyard Sediment Site. There are no reasonable physical or chemical mechanisms that can scientifically explain these chemical gradient patterns other than the existence of localized source areas at each site.
- Average COC concentrations in the three areas of San Diego Bay adjacent to the IRP sites are lower than average concentrations within the proposed remediation footprint at the Shipyard Sediment Site. In addition, COC concentrations in subsurface sediments adjacent to the IRP sites do not appear to be substantially higher than those in surface sediments. Based on the existing data reviewed for the site, there are no reasonable physical or chemical mechanisms that can scientifically explain higher chemical concentrations at a distant site that exceed the original source concentration.

- Because of its prevalent use as an antifouling coating on commercial ships and its lack of use on Navy ships, TBT is a strong, site-specific indicator of Shipyard Sediment Site releases. TBT concentrations in sediments adjacent to NBSD are about an order of magnitude lower than concentrations found at the Shipyard Sediment Site. Other Shipyard Sediment Site COCs, including arsenic, cadmium, copper, lead, zinc, and PCBs, are significantly correlated with TBT in sediments at the Shipyard Sediment Site. This correlation is consistent with co-occurring sources within the Shipyard Sediment Site Site and inconsistent with a significant source from NBSD.
- PCB fingerprinting of sediments at the Shipyard Sediment Site is consistent with the presence of two distinct, localized sources of PCBs. If these PCBs were derived from activities at NBSD, the signatures would be similar. The spatial distribution of PCBs at the Shipyard Sediment Site is consistent with the presence of two different sources, with concentrations found at the north end of the site higher than those at the south end.
- A modeling simulation was performed specifically to evaluate the claim that sediments adjacent to IRP sites may have been resuspended by propeller wash, transported to the Shipyard Sediment Site by tidal currents, and redeposited within the Shipyard Sediment Site. The modeling results indicate that net deposition to the Shipyard Sediment Site proposed remediation footprint due to resuspension and transport from areas adjacent to IRP sites at NBSD was between 0.17 percent and 0.37 percent of the total annual deposition, an amount that is negligible in the overall deposition of sediments at the Shipyard Sediment Site.

Collectively, these lines of evidence indicate that the overall contribution of IRP sites to contamination at the Shipyard Sediment Site is negligible.

- Anderson, J. 1994. Studies Supporting an Environmental Risk Assessment of San Diego Bay. Final Report. Submitted to Ken Richter, Environmental Sciences Division, Naval Command, Control and Ocean Surveillance Center. San Diego, CA.
- Bechtel Environmental, Inc. (BEI). 2001. Final Preliminary Assessment of Munitions in San Diego Bay Primary Ship Channels and U.S.S. *Stennis* Beach Replenishment Areas. October.
- Bechtel Environmental, Inc. (BEI). 2002. Final Remedial Investigation Report, IR Site 7, Naval Station San Diego, California. September.
- Bechtel Environmental, Inc. (BEI). 2006. Final Removal Site Evaluation Report, IR Site 13, Naval Station San Diego (Naval Base San Diego), California. September.
- Bechtel Environmental, Inc. (BEI). 2008a. Final Remedial Investigation Report, IRP Site 1, Former Ship Repair Basins, Naval Base San Diego, San Diego, California. March.
- Bechtel Environmental, Inc. (BEI). 2008b. Draft Feasibility Study Report of Potential Remedial Action Alternatives, IRP Site 1, Former Ship Repair Basins 3 and 4, Naval Base San Diego, San Diego, California. July.
- Bechtel Environmental, Inc. (BEI). 2008c. Final Remedial Investigation Report, IRP Site 2, Naval Base San Diego, San Diego, California. March.
- Bechtel Environmental, Inc. (BEI). 2008d. Draft Extended Remedial Investigation Report, IR Site 3, Naval Base San Diego, California. June.
- Bechtel Environmental, Inc. (BEI). 2008e. Draft Focused Feasibility Study Report for Soil at IR Site 3 Former Salvage Yard, Naval Base San Diego, California. July.
- Bechtel Environmental, Inc. (BEI). 2008f. Final Remedial Investigation Report, IRP Site 4, Naval Base San Diego, San Diego, California. June.
- Bechtel Environmental, Inc. (BEI). 2008g. Draft Remedial Investigation Report, IRP Site 10, Original Rice King Restaurant Site, Naval Base San Diego, San Diego, California. April.
- Bechtel National, Inc. (BNI). 1996. Final Background Study Report, Naval Station San Diego, California. September.
- Bechtel National, Inc. (BNI). 1998. Final Expanded Site Inspection Report, IR Site 12, Brinser Street Parking Area, Naval Station San Diego, California. April.
- Blake, A.C., D.B. Chadwick, P.J. White and C.J. Jones. 2007. User's Guide for Assessing Sediment Transport at Navy Facilities. *Technical Report 1960*. Space and Naval Warfare Systems Center San Diego. September.

- California Environmental Protection Agency, Department of Toxic Substances Control (DTSC). 1997. No further action letter for IR Site 9, Naval Station San Diego, San Diego County, California. 14 November.
- California Regional Water Quality Control Board, San Diego Region (RWQCB). 2010a. Tentative Cleanup and Abatement Order (CAO) No. R9-2011-0001.
- California Regional Water Quality Control Board, San Diego Region (RWQCB). 2010b. Draft Technical Report for Tentative Cleanup and Abatement Order No. R9-2011-0001 for the Shipyard Sediment Site, San Diego Bay.
- California State Water Resources Control Board, National Oceanographic and Atmospheric Administration, California Department of Fish and Game, Moss Landing Marine Laboratory, and University of California Santa Cruz. 1996. Chemistry, Toxicity and Benthic Community Conditions in Sediments of the San Diego Bay Region. Final Report. September.
- California State Water Resources Control Board, National Oceanographic and Atmospheric Administration, California Department of Fish and Game, Moss Landing Marine Laboratory, and University of California Santa Cruz. 1998. Chemistry, Toxicity and Benthic Community Conditions in Sediments of the San Diego Bay Region. Final Addendum Report. September.
- Chadwick D.B., G. Key, D. Sutton, L. Skinner, J. Germano and R. Cheng. 1999. Sediment Quality Characterization, Naval Station San Diego. *Technical Report* 1777. SPAWAR Systems Center San Diego.
- Chadwick, D.B., I. Rivera-Duarte, G. Rosen, P.F. Wang, R.C. Santore, A.C. Ryan, P.R. Paquin, S.D. Hafner, and W. Choi. 2008. Demonstration of an Integrated Compliance Model for Predicting Copper Fate and Effects in DoD Harbors. SSC Technical Report 1973. ESTCP Project ER-0523.
- Cheng, R.T., V. Casulli, and J.W. Gartner. 1993. Tidal Residual, Intertidal Mudflat (TRIM) Model and its Applications to San Francisco Bay, California. *Estuarine, Coastal and Shelf Science*. Vol. 36. pp. 235–280.
- Exponent. 2003. NASSCO and Southwest Marine Detailed Sediment Investigation. Prepared for NASSCO and Southwest Marine, San Diego, CA. October.
- Foster Wheeler Environmental Corporation (FWEC). 1998. Final Project Closure Report, Removal Action, Installation Restoration Site 2, Mole Pier Disposal Area, Naval Station, San Diego, California. 12 May.
- Foster Wheeler Environmental Corporation (FWEC). 2003. Final Project Closure Report for the Non-Time-Critical Removal Action, Rev. 0. Installation Restoration Program Subsite 2A. Naval Station San Diego, California. 14 March.
- International Technology Corporation (IT). 1988. Verification Step Investigation Report, Naval Station Salvage Yard, Naval Station San Diego, California. February.

- International Technology Corporation (IT). 1992. Final Site Inspection Report for San Diego Naval Station (Sites 2, 3, 4, 7, and 8), Hazardous Waste Remedial Actions Program, San Diego, California. 17 September.
- International Technology Corporation (IT). 1995. Closure Certification Report for IR Site 9, Naval Station San Diego, California. 26 January.
- Jacobs Engineering Group Inc. (JEG). 1994. Preliminary Site Assessment and Emergency Removal of Free Floating Product for Site 8, Naval Station San Diego, California. 28 January.
- Kamphuis, J. W., 1974, Determination of Sand Roughness for Fixed Beds. *Journal of Hydraulic Research*. Vol. 12, no. 2. pp. 193–202.
- Lo, Jen-Men, P.F. Wang and Khaled Al-Salem. 1999. Applications of the Tidal Residual, Intertidal Mudflat (TRIM) model to the Arabian Gulf. Paper presented at Third International Symposium on Echohydraulics. Salt Lake City, Utah.
- Marine Environmental Support Office, Naval Command, Control and Ocean Surveillance Center (MESO). 1995. U.S. Navy Statutory Monitoring of Tributyltin in Selected U.S. Harbors, Final Report. March.
- Maynord, S. T. 2000. Physical Forces near Commercial Tows. Interim report for the Upper Mississippi River-Illinois Waterway System Navigation Study. Env. Report 19. U.S. Army Corps of Engineers Research and Development Center, Vicksburg, MS.
- Naval Energy and Environmental Support Activity (NEESA). 1986. Initial Assessment Study of Naval Station San Diego, California. Environmental Restoration Department. May.
- OHM Remediation Services Corporation (OHM). 1997a. Final Removal Site Evaluation for Site 3, Naval Station San Diego, California. 20 October.
- OHM Remediation Services Corporation (OHM). 1997b. Project Closure Report for Site 12, Naval Station San Diego, California.
- OHM Remediation Services Corporation (OHM). 1998a. Final Project Closure Report for TCRA at South Basin Site 1, Naval Station San Diego, California. June.
- OHM Remediation Services Corporation (OHM). 1998b. Project Closure Report for Time-Critical Removal Action at Site 3, Naval Station San Diego, California. 28 March.
- Peng et al. 2003 "Significance of Sediment Resuspension and Tidal Exchange to Reduction of Polychlorinated Biphenyl Mass in San Diego Bay."
- Professional Services Industries, Inc. (PSII). 1992. Steam-Line Trenching Investigation for Site 10 – Original Rice King Restaurant, Naval Station San Diego, California.
- Science Applications International Corporation (SAIC). 1995. Final Survey Report, April/May and September/October 1994 Marine Sampling and Analysis in Support of Task A Environmental Impact Statement, U.S. Naval Station, San Diego, California. July.

- Southern California Coastal Water Research Project (SCCWRP) and Department of Navy. 2005. Sediment Assessment Study for the Mouths of Chollas and Paleta Creek, San Diego, Phase I Final Report, May 2005. Submitted to the San Diego Regional Water Quality Control Board.
- Southern California Soil and Testing, Inc. (SCS&T). 1989. Geotechnical Investigation for Site 10 Original Rice King Restaurant, Naval Station San Diego, California.
- Space and Naval Warfare Systems Center San Diego (SPAWAR). 2006a. Pathway Ranking for In-place Sediment Management (CU1209), SERDP Final Report, pp. 315.
- Space and Naval Warfare Systems Center San Diego (SPAWAR). 2006b. Paleta Creek Sediment Investigation Data Report (Rev. 4). Final. Prepared for Naval Facilities Engineering Command Southwest Division. May.
- Space and Naval Warfare Systems Center San Diego (SPAWAR). 2010. Summary Analysis of Potential Navy Source Contributions to the Shipyard Cleanup and Abatement Order Study Area for a Scientific Assessment of the Navy's Apportionment of Liability, San Diego, California.
- Tetra Tech EC. 2008. Draft Project Closure Report for the Time Critical Removal Action, Subsites 2B, 2C, and 2G. May.
- United States Department of the Navy (Navy). 1994. Sediment Characterization Study, Pier and Berthing Areas, U.S. Naval Station, San Diego, California. 13 May.
- United States Department of the Navy (Navy). 1996. Time-Critical Removal Action Memorandum for IR Site 12, Naval Station San Diego, California. 05 June.
- United States Department of the Navy (Navy). 1997. Time-Critical Removal Action Memorandum/Remedial Action Plan–IR Site 1, Naval Station San Diego. February.
- United States Department of the Navy (Navy). 2000. Final Report, Dredged Material Testing, Deep-Draft Power-Intensive (DDPI) Ship Berthing/Logistics/Maintenance Pier. *MILCON Project P-326*. U.S. Naval Station, San Diego, California. August.
- United States Department of the Navy (Navy). 2001. Dredging and Disposal Long-Term Management Strategy (LTMS) Navy Region Southwest. November.
- United States Department of the Navy (Navy). 2004a. Final Remedial Action Plan/Record of Decision, No Action IRP Sites 5, 7, 11, and 12, Naval Station San Diego, California. December.
- United States Department of the Navy (Navy). 2004b. Draft Report, 7th Street Channel— Paleta Creek, Naval Station San Diego Sediment Characterization Study. August.
- United States Department of the Navy (Navy). 2005. Pier 12 Sediment Characterization Study. *MILCON Project P-327*. U.S. Naval Station, San Diego, California. August.

- United States Department of the Navy (Navy). 2006. Final Report, Pier 12 Sediment Characterization Study, Phase II. *MILCON Project P-327*. U.S. Naval Station, San Diego, California. Volume I Technical Report, and Volume II Technical Appendices. April.
- United States Department of the Navy (Navy). 2009. Report, Confirmatory Phase III Sampling and Testing for the Pier 12 Sediment Characterization Study (P-327), Naval Station San Diego, California. February.
- United States Department of the Navy and United States Environmental Protection Agency (Navy and USEPA). 1997. Navy Program to Monitor Ecological Effects of Organotin. A Report to Congress as Required Under the National Defense Authorization Act for Fiscal Year 1997 (Section 333). Prepared by the U.S. Navy Naval Command, Control and Ocean Surveillance Center and U.S. Environmental Protection Agency Office of Prevention, Pesticides and Toxic Substances and Office of Water. September.
- United States Environmental Protection Agency (USEPA). 2009. Targeted National Sewage Sludge Survey, Statistical Analysis Report. *EPA-822-R-08-018*. April (Revised).
- United States Navy Public Work Center (PWC). 1943. PWC Drawing No. 9494. Map of Destroyer Base, Naval Operating Base, San Diego, California, Showing Conditions on June 30, 1943.
- United States Navy Public Work Center (PWC). 1945. PWC Drawing No. 9491, part 2. Map of Naval Repair Base, Naval Operating Base, San Diego, California, Showing Conditions on June 30, 1945.
- United States Navy Public Work Center (PWC). 1995. Underground Storage Tank Removals at Building 321, Naval Station San Diego, California. 17 November.
- United States Navy Public Work Center (PWC). 1999. Preliminary Final Removal Site Evaluation for Site 13 – Dry Dock Sandblast Grit, Naval Station San Diego, California. April.
- United States Navy Public Work Center (PWC). 2001a. Final Site Assessment and Remediation System Operation Report and Excavation Work Plan, Former Fire Fighter Training Facility, Site 8, Naval Station San Diego, California. 05 November.
- United States Navy Public Work Center (PWC). 2001b. Preliminary Final Removal Site Evaluation Workplan Addendum for IRP Site 13, Sandblast Grit Area, Naval Station San Diego, California. January.
- United States Navy Public Work Center (PWC). 2005. Tank Closure Report for Underground Vault IR Site 13. Naval Station San Diego, California. June.
- Wang, P.F., D. Chadwick, and Woo-Hee Choi. 2009. "Sediment Transport in Pearl Harbor, HI Phase II Modeling Study," Draft Final SSC-PAC Report to NAVFAC-PAC.

- Wang, P.F., R.T. Cheng, K. Richter, E.S. Gross, D. Sutton, and J.W. Gartner. 1998. "Modeling Tidal Hydrodynamics of San Diego Bay, California." *Journal of the American Water Resources Association*. Vol. 34, No. 5. pp. 1123-1140.
- Ziegler C.K., and S.N. Bradley. 1995. "Long-term Simulation of Fine-Grained Sediment Transport in Large Reservoir," J. Hydraulic Engineering ASCE, Vol. 121, No. 11.

Appendix A

HISTORICAL DOCUMENT REVIEW

NASSCO PROPERTY INCLUDING THE 28TH STREET SHORE BOAT LANDING SAN DIEGO, CALIFORNIA

EXECUTIVE SUMMARY

This technical report provides a chronological history of activities at the property in the area of the 28th Street Mole Pier, located on the eastern shoreline of San Diego Bay in San Diego, California. The property is currently leased by the National Steel and Shipbuilding Company (NASSCO). The report focuses on Navy activities in this area, in particular any industrial activities that may have had potential impact to bay sediments.

Documents reviewed for this report include the following:

- Thirty-five Navy Public Works Station Condition and Master Development Plan maps from the years 1932 through 1951
- Twenty-one historical aerial photographs from the years 1936 through 2002
- Sanborn Fire Insurance maps from the years 1921, 1949, and 1956
- Available lease records
- United States Army Corps of Engineers reports, Port Series No. 13 for 1924, and Port Series No. 27 for years 1946, 1956, and 1978
- A 1969 U.S. Navy Real Estate Summary Map
- A 1939–1940 Harbor Commission Report map
- A 2004 Navy Technical Report on Historic Navy Activities at NASSCO Shipyard

Based on the review, Navy activities in this area took place at three locations: temporary housing on parcels east of the 28th Street Mole Pier, the 28th Street Shore Boat Landing facility, and a second small craft landing on a parcel at the southern end of 28th Street.

TEMPORARY HOUSING EAST OF 28^{TH} STREET MOLE PIER

East of the 28th Street Mole Pier, in an area east of 28th Street and south of Belt Street, temporary officers quarters were used by the Navy on leased City of San Diego property from approximately 1941 through 1946, in the area known as Parcel 1. During approximately 1941 and 1942 a Temporary Defense Housing Camp occupied a parcel located southwest of the intersection of Belt Street and 28th Street. Industrial development in both these areas appears to have taken place after Navy use had ended.

$\mathbf{28}^{\text{TH}}$ STREET SHORE BOAT LANDING FACILITY

The Navy operated a 28th Street Shore Boat Landing facility on the north side of the 28th Street Mole Pier from approximately 1939 through 1956. This facility, located near the western terminus

of the 28th Street Mole Pier, consisted of a storage room, a waiting room, and a finger pier and floating docks used by ship launches to ferry sailors to and from Navy ships moored in San Diego Bay (Navy 2004). Non-Navy industrial activities on 28th Street Mole Pier during this time period included a shipbuilding and maintenance facility located partly on a wooden wharf extending along the north face of the 28th Street Mole Pier and partly on the shore north of the base (eastern end) of the pier. By 1946, Lynch Shipbuilding Company was operating the facility, and by 1956, National Marine Terminal Incorporated was operating it. Industrial operations shown for this facility include machine, woodworking, pattern, electric, and welding shops; a foundry; and a mold loft.

SMALL CRAFT LANDING, SOUTHERN END OF 28TH STREET

In 1956, a permit was granted to the Navy for use of a parcel located east of the 28th Street Mole Pier, at the southern end of 28th Street, apparently as a replacement for the loss of the Shore Boat Landing facility on the north side of the 28th Street Mole Pier. A small landing can be seen in this area in aerial photographs from 1964, 1974, and 1978. No other Navy activities were seen in this parcel. The industrial development of the parcel appears to have taken place after Navy use had ended.

CONCLUSION

No documentation was found during the review to support Navy industrial use of the area currently leased by NASSCO. Navy use in this area appears to have been limited to temporary housing in two areas during the 1940s and operation of small landings, first on the north side of the 28th Street Mole Pier (near its western terminus) and later on the south side near the base (eastern end) of the pier.

EXECUTIVE SUMMARYES-1							
ABBREVIATIONS AND ACRONYMSvii							
1.0	INTH 1.1 1.2	PURP	CTION OSE AND OBJECTIVE E OF SERVICES	1-1			
2.0	SITE	DESC	RIPTION	2-1			
3.0	CHR 3.1		OGY OF LAND USE AT THE 28 th STREET PIER AREA RE 1930 1921 Map – Sanborn Fire Insurance Map 1924 Report – War Department Corps of Engineers, U.S. Army – The Po	3-1			
	3.2		of Los Angeles, Long Beach, San Diego, and San Luis Obispo, Californi O 1939 1932 Navy Station Condition Map – Map of Destroyer Base, Naval Operating Base, San Diego, CA, Revised Development Plan Dated	a3-1 3-1			
		3.2.2 3.2.3	 11-7-1932 Navy Station Condition Maps, 1933 through 1939 1936 Report – Corps of Engineers, U.S. Army – The Ports of San Diego and San Luis Obispo, California 	3-2			
		3.2.4 3.2.5 3.2.6	 1936 Photograph – Historical Aerial Photograph Dated 11-3-1936 1937 Photograph – Historical Aerial Photograph Dated 3-28-1937 1939 Map – From a 1939 to 1940 Harbor Commission Report 	3-3 3-3			
	3.3	1940 T 3.3.1 3.3.2 3.3.3 3.3.4	 CO 1949 1940 Photograph – Historical Aerial Photograph Dated 3-8-1940 1941 Photographs – Historical Aerial Photographs Both Dated 1-12-194 1941 Navy Station Condition Maps Navy Station Condition Maps 1942 through 1946 	3-4 13-4 3-4			
		3.3.5 3.3.6 3.3.7	1945 Photograph – Historical Aerial Photograph Dated April 1945 Navy Station Condition Maps 1947 Through 1949 1946 Report – Corps of Engineers, United States Army –The Port of San Diego, California	3-6 3-6			
	3.4	3.3.8 3.3.9 1950 T	1949 Map – Sanborn Fire Insurance Map 1949 Photographs – Two Historical Aerial Photographs Dated 2-16-49	3-6 3-7			
		3.4.1 3.4.2 3.4.3 3.4.4 3.4.5	 1950 Photographs – Two Historical Aerial Photographs Dated 10-29-50. Navy Station Condition Maps 1950 and 1951 1953 Photograph – Historical Aerial Photograph Dated 3-31-53. 1956 Photograph – Historical Aerial Photograph	3-8 3-8 3-8 3-9			
ECSD-3	211-0003		list Review.doc i Pre-Draft Historical Doct				

(Continued)

		3.4.6	1956 Report - Corps of Engineers, United States Army - The Port of San	
			Diego, California	
		3.4.7	1958 Photograph – Historical Aerial Photograph Dated 3-1-58	3-10
		3.4.8	1959 Photograph – Historical Aerial Photograph Dated 11-6-59	
	3.5	1960 A	AND LATER	3-10
		3.5.1	1960 Photograph – Historical Aerial Photograph Dated 9-3-60	3-10
		3.5.2	1964 Photograph – Historical Aerial Photograph 1964	3-11
		3.5.3	1974 Photograph – Historical Aerial Photograph 1974	3-11
		3.5.4	1978 Report - Corps of Engineers, United States Army - The Port of San	1
			Diego, California	3-11
		3.5.5	1981 Photograph – Historical Aerial Photograph Dated November 1981	3-11
		3.5.6	1989 Photograph – Historical Aerial Photograph 1989	
		3.5.7	1999 Photograph – Historical Aerial Photograph December 1999	
		3.5.8	2002 Photograph – Historical Aerial Photograph 2002	
4.0	REV		F PROPERTY RECORDS FOR THE 28th STREET PIER AREA	4-1
	4.1		PERMIT – CITY OF SAN DIEGO PERMIT FOR THE 28 TH STREET	
			E BOAT LANDING DATED MAY 19, 1938 (BY REFERENCE FROM	
			NAVY TECHNICAL REPORT)	
	4.2		DRAWING – CITY OF SAN DIEGO HARBOR DEPARTMENT LEASE	
		TO M	ARTINOLICH SHIPBUILDING, DRAWING 93B	4-1
	4.3		DRAWING – CITY OF SAN DIEGO HARBOR DEPARTMENT LEASE	
			HE U.S. DEPARTMENT OF AGRICULTURE FARM SECURITY	
		ADMI	INISTRATION, DRAWING 144-B-1	4-1
	4.4		DRAWING – CITY OF SAN DIEGO HARBOR DEPARTMENT LEASE	
			HE U.S. DEPARTMENT OF AGRICULTURE FARM SECURITY	
		ADMI	INISTRATION, DRAWING 144-B-5	4-2
	4.5	1955 I	DRAWING – CITY OF SAN DIEGO HARBOR DEPARTMENT LEASE	
		TO TH	HE NATIONAL STEEL AND SHIPBUILDING CORP, DRAWING 434-E	34-2
	4.6	1956 I	DRAWING – CITY OF SAN DIEGO HARBOR DEPARTMENT, U.S.	
		NAVY	Y PERMIT, DECEMBER 19, 1956, DRAWING NO. 453-B	4-2
	4.7		MAP – U.S. NAVY REAL ESTATE SUMMARY MAP, COMPILATION	
			AN DIEGO AND NATIONAL CITY PORTIONS, DATED 7-28-69	
5.0	SUN	4MARY	Y AND CONCLUSIONS	5-1
	D ==			
6.0	REF	ERENC	CES	6-1

(Continued)

FIGURES

- Figure 1-1 Regional Location Map
- Figure 1-2 Site Location Map
- Figure 3-1 1921 Map, Sanborn Fire Insurance Map
- Figure 3-2 1924 Table, U.S. Army War Department Corps of Engineers Report
- Figure 3-3 1932 Map, Destroyer Base, San Diego, Revised Development Plan
- Figure 3-4 1933 Map, Destroyer Base, San Diego
- Figure 3-5 1933 Map, Destroyer Base, San Diego
- Figure 3-6 1933 Map, Destroyer Base, San Diego
- Figure 3-7 1934 Map, Destroyer Base, San Diego
- Figure 3-8 1934 Map, Destroyer Base, San Diego
- Figure 3-9 1934 Map, Destroyer Base, San Diego, Revised Development Plan
- Figure 3-10 1935 Map, Destroyer Base, San Diego
- Figure 3-11 1936 Map, Destroyer Base, San Diego
- Figure 3-12 1936 Map, Destroyer Base, San Diego, Revised Development Plan
- Figure 3-13 1937 Map, Destroyer Base, San Diego
- Figure 3-14 1937 Map, Destroyer Base, San Diego, Revised Development Plan
- Figure 3-15 1938 Map, Destroyer Base, San Diego, Revised Development Plan
- Figure 3-16 1938 Map, Destroyer Base, San Diego, Revised Development Plan
- Figure 3-17 1939 Map, Destroyer Base, San Diego, Revised Development Plan
- Figure 3-18 1939 Map, Suggested Additions to Destroyer Base Properties
- Figure 3-19 1936 Map, U.S. Army Corps of Engineers Report
- Figure 3-20 1936 Aerial Photograph, Oblique View North dated 11-3-1936
- Figure 3-21 1937 Aerial Photograph, Vertical View, dated 3-28-1937
- Figure 3-22 1939 Map, Detail of a 1930–1940 Harbor Commission Report Map
- Figure 3-23 1940 Aerial Photograph, Oblique View North, dated 3-8-1940
- Figure 3-24 1941 Aerial Photograph, Oblique View North, dated 1-12-1941
- Figure 3-25 1941 Aerial Photograph, Oblique View South, dated 1-12-1941

(Continued)

- Figure 3-26 1941 Map, Destroyer Base, San Diego
- Figure 3-27 1941 Map, Destroyer Base, San Diego, Master Development Plan
- Figure 3-28 1942 Map, Destroyer Base, San Diego
- Figure 3-29 1942 Map, Destroyer Base, San Diego, Master Development Plan
- Figure 3-30 1942 Map, Destroyer Base, San Diego, Master Development Plan
- Figure 3-31 1942 Map, Destroyer Base, San Diego, Master Development Plan, Paving and Grading
- Figure 3-32 1942 Map, Destroyer Base, San Diego, Master Development Plan
- Figure 3-33 1943 Map, Destroyer Base, San Diego
- Figure 3-34 1943 Map, Destroyer Base, San Diego, Master Development Plan
- Figure 3-35 1943 Map, Destroyer Base, San Diego, Master Development Plan
- Figure 3-36 1944 Map, U.S. Naval Repair Base, San Diego, Master Development Plan, showing conditions on April 1, 1944
- Figure 3-37 1944 Map, U.S. Naval Repair Base, San Diego, Master Development Plan, showing proposed conditions as of December 1, 1944
- Figure 3-38 1944 Map, U.S. Naval Repair Base, San Diego
- Figure 3-39 1945 Map, U.S. Naval Repair Base, San Diego
- Figure 3-40 1946 Map, U.S. Naval Repair Base, San Diego
- Figure 3-41 1945 Photograph, Aerial Photograph, Vertical View, dated April 1945
- Figure 3-42 1947 Map, U.S. Naval Station, San Diego
- Figure 3-43 1948 Map, U.S. Naval Station, San Diego
- Figure 3-44 1949 Map, U.S. Naval Station, San Diego
- Figure 3-45 1946 Map, U.S. Army Corps of Engineers Report
- Figure 3-46 1946 Table, U.S. Army Corps of Engineers Report
- Figure 3-47 1946 Table, U.S. Army Corps of Engineers Report
- Figure 3-48 1949 Map, Sanborn Fire Insurance Map
- Figure 3-49 1949 Map, Sanborn Fire Insurance Map, detail
- Figure 3-50 1949 Photograph, Aerial Photograph, Vertical View, dated 2-16-1949
- Figure 3-51 1950 Photograph, Aerial Photograph, Vertical View, dated 10-29-1950
- Figure 3-52 1950 Map, U.S. Naval Station, San Diego

(Continued)

- Figure 3-53 1951 Map, U.S. Naval Station, San Diego
- Figure 3-54 1953 Photograph, Aerial Photograph, Vertical View, dated 3-31-1953
- Figure 3-55 1956 Photograph, Aerial Photograph, Oblique View, dated 1956
- Figure 3-56 1956 Map, Sanborn Fire Insurance Map
- Figure 3-57 1956 Map, Sanborn Fire Insurance Map, detail 1
- Figure 3-58 1956 Map, Sanborn Fire Insurance Map, detail 2
- Figure 3-59 1956 Table, U.S. Army Corps of Engineers Report
- Figure 3-60 1956 Photograph, U.S. Army Corps of Engineers Report
- Figure 3-61 1958 Photograph, Aerial Photograph, Vertical View, dated 3-1-1958
- Figure 3-62 1959 Photograph, Aerial Photograph, Oblique View, dated 11-6-1959
- Figure 3-63 1960 Photograph, Aerial Photograph, Vertical View, dated 9-3-1960
- Figure 3-64 1964 Photograph, Aerial Photograph, Vertical View, dated 1964
- Figure 3-65 1974 Photograph, Aerial Photograph, Vertical View, dated 1974
- Figure 3-66 1978 Photograph, U.S. Army Corps of Engineers Report
- Figure 3-67 1981 Photograph, Aerial Photograph, Vertical View, November 1981
- Figure 3-68 1989 Photograph, Aerial Photograph, Vertical View, dated 1989
- Figure 3-69 1999 Photograph, Aerial Photograph, Vertical View, December 1999
- Figure 3-70 2002 Photograph, Aerial Photograph, Vertical View, dated 2002

APPENDICES

Appendix AChemical Analysis DataAppendix BScreening-Level Human Health Risk AssessmentAppendix CComplete Map Images (on CD only)

This page intentionally left blank.

ABBREVIATIONS AND ACRONYMS

ATSFAtchison, Topeka and Santa FeNASSCONational Steel and Shipbuilding CompanyNBSDNaval Base San Diego

This page intentionally left blank.

1.0 INTRODUCTION

This technical report provides a chronological history of activities at the property in the area of the 28th Street Mole Pier, located on the eastern shoreline of San Diego Bay (Figure 1-1). The property is currently leased by the National Steel and Shipbuilding Company (NASSCO) in San Diego, California (Figure 1-2), including the former 28th Street Shore Boat Landing area. This report was prepared by Tetra Tech EC, Inc., on behalf of the United States Department of the Navy, Naval Facilities Engineering Command Southwest, under Contract No. N62473-07-D-3211, Contract Task Order No. 0003.

1.1 PURPOSE AND OBJECTIVE

The purpose of this historical review was to identify operational activities that have occurred on the 28th Street Mole Pier property since its construction in 1936 and subsequent operation, particularly industrial activities, if any, that may have had potential impact on bay sediments. This information will be used to support the Navy's evaluation of historical activities at the NASSCO 28th Street Mole Pier property, particularly the Navy's use of the former 28th Street Shore Boat Landing area on the north side of the 28th Street Mole Pier from 1938 to 1956.

1.2 SCOPE OF SERVICES

The scope of services for this report included review of the following documents:

- Navy Public Works Station Condition and Master Development Plan maps for Naval Base San Diego (NBSD), formerly known as Naval Station San Diego
- Historical aerial photographs
- Sanborn Fire Insurance maps
- Lease records found for the area
- United States Army Corps of Engineers reports
- The 2004 Navy Technical Report on Historic Navy Activities at NASSCO Shipyard (Navy 2004)
- Other maps and records as available

This page intentionally left blank.

2.0 SITE DESCRIPTION

The 28th Street Mole Pier is located on the eastern shore of San Diego Bay, south of the Coronado Bay Bridge (Figure 1-2). Reclaimed from San Diego Bay in 1936 using hydraulically placed fill, the mole pier is currently owned by the San Diego Unified Port District, and occupied by NASSCO for the purpose of shipbuilding and repair. The NASSCO property encompasses approximately 127 acres, of which approximately 80 acres are land and 47 acres are offshore. The land portion is bounded to the south by Chollas Creek and to the east by Harbor Drive, and extends to the north to a line parallel to and approximately 50 feet north of Berth XII.

2-1

This page intentionally left blank.

3.0 CHRONOLOGY OF LAND USE AT THE 28TH STREET PIER AREA

The following sections present and discuss the history of land use in the 28th Street Mole Pier area currently occupied by the NASSCO shipyard.

3.1 BEFORE 1930

Prior to 1930, the 28th Street Mole Pier and the area currently occupied by NASSCO were submerged portions of San Diego Bay and had not yet been created by infill.

3.1.1 1921 Map – Sanborn Fire Insurance Map

The 28th Street Mole Pier and associated land had not yet been created by infill. A pier is shown extending approximately 720 feet into the bay from the foot of 28th Street, near the present day intersection with Harbor Drive (Figure 3-1). There is a platform at the end of the pier with a building identified as the San Diego Yacht Club. Several smaller buildings are shown near the base of the pier including a carpenters shop and an ammunition storage area. The National City Branch of the Atchison, Topeka and Santa Fe (ATSF) Railway closely parallels the shoreline in the area of 28th Street.

3.1.2 1924 Report – War Department Corps of Engineers, U.S. Army – The Ports of Los Angeles, Long Beach, San Diego, and San Luis Obispo, California

The 28th Street Mole Pier and associated land had not yet been created by infill. The map shows a pier identified as California Naval Reserve Pier extending into the bay from the foot of 28th Street. The tabular inventory of piers, wharves, and docks (Figure 3-2) shows the California Naval Reserve Pier to be owned by the State of California and operated by the San Diego Yacht Club.

3.2 1930 TO 1939

The 28th Street Mole Pier and associated land were created using hydraulically placed fill during the period 1936 to 1937. By early 1937, Chollas Creek west of the railroad tracks had been straightened and channelized. In 1938 the Navy was granted a permit for the use of the 28th Street Shore Boat Landing, located on the northern side of the 28th Street Mole Pier, near its western terminus.

3.2.1 1932 Navy Station Condition Map – Map of Destroyer Base, Naval Operating Base, San Diego, CA, Revised Development Plan Dated 11-7-1932

Chollas Creek had not yet been channelized. The map shows a proposed exchange of a triangular Navy parcel located on the north side of Chollas Creek in the general area later used for Temporary Officers Quarters, for a triangular City of San Diego parcel on the south side of Chollas Creek, located west of the Navy parcel (Figure 3-3). The Navy parcel appeared to fall between the high water line and Chollas Creek. The parcel south of Chollas Creek appears to be the parcel shown on the 1969 U.S. Navy Real Estate Summary Map as discussed in Section 4.

3.2.2 Navy Station Condition Maps, 1933 through 1939

Fifteen station condition maps covering this time period were reviewed (Figures 3-4 through 3-18). Six of the maps are additionally marked as Revised Development Plan maps. The maps from 1933 through 1937 show Chollas Creek as not yet channelized, and the area that would later become 28th Street Mole Pier is not shown. The northern side of the government property boundary is shown about 100 feet south of Chollas Creek, and running from Station 300 along the U.S. Bulkhead Line in San Diego Bay eastward approximately 1,750 feet along the Chollas Creek drainage. This property line indicates that the Navy property boundary associated with Destroyer Base San Diego (now known as NBSD) was located south and east of the current location of the 28th Street Mole Pier. The 1936 station condition map shows several non-Navy parcels hatched in color. One of those parcels is located north of Chollas Creek, in the area later acquired in the 1940 Grant Deed from the City of San Diego; however, the parcel is not labeled and no explanation of the hatching is shown. This parcel is located adjacent to and east of the 28th Street Mole Pier.

The 1938 and 1939 Revised Development Plan maps show the quay wall and dredging of Chollas Creek to minus 20 feet as future developments. The area north of Chollas Creek that will become the 1940 Grant Deed parcel is shown as proposed government expansion, and in the 1939 map as "15.2 acres being deeded to Govt. by the City of San Diego." The area north and west of Chollas Creek is labeled as 28th Street Recreational Area and Municipal Tidelands. The area that will later become 28th Street Mole Pier is not shown.

The 1939 map of Suggested Additions to Destroyer Base Properties shows the proposed quay wall and dredging of Chollas Creek to minus 20 feet as future developments (Figure 3-18). The area north of Chollas Creek that will become the 1940 Grant Deed parcel is shown surrounded by proposed future property lines. The area north and west of Chollas Creek is labeled as 28th Street Recreational Area and Municipal Tidelands. The 28th Street Mole Pier is shown extending into San Diego Bay, rounded at the end, and labeled Recreational Pier. Structures that will later be known as 28th Street Shore Boat Landing are shown on the north side of the pier near its western terminus, and are labeled as U.S. Destroyer Stores Landing.

3.2.3 1936 Report – Corps of Engineers, U.S. Army – The Ports of San Diego and San Luis Obispo, California

The 28th Street Mole Pier and associated land is depicted as not yet having been created by infill (Figure 3-19). The pier at the foot of 28th Street shown in the 1924 report is not shown in this report.

3.2.4 1936 Photograph – Historical Aerial Photograph Dated 11-3-1936

The 1936 photograph is an oblique view facing north along San Diego Bay (Figure 3-20). Chollas Creek west of the ATSF railroad tracks appears to have been straightened and channelized. Fill material in the shape of the 28th Street Mole Pier can be seen extending into the bay, and a suction dredge and piping can be seen in the photograph placing hydraulic fill. A lagoon area in the process of infill can be seen north of Chollas Creek and east of the 28th Street Mole Pier within the area currently occupied by NASSCO. No structures or development are visible in the area of newly made land.

3.2.5 1937 Photograph – Historical Aerial Photograph Dated 3-28-1937

The 1937 photograph is a vertical view showing the area of the 28th Street Mole Pier (Figure 3-21). Chollas Creek west of the ATSF railroad tracks appears to have been straightened and channelized. The lagoon area seen in the 1936 photograph is no longer present, with a smaller darkened area possibly indicating vegetation or an area of tidal inundation. No structures or development are visible in the area of newly made land with the possible exception of a small building or trailer visible about halfway out the northern side of the newly created mole pier.

3.2.6 1939 Map – From a 1939 to 1940 Harbor Commission Report

This 1939 map shows proposed and ongoing dredge and fill projects in San Diego Bay for fiscal year July 1, 1938 to June 30, 1939 (Figure 3-22). The area of the 28th Street Mole Pier is shown as reclamation currently under construction, and the areas to the sides of the pier and outboard of the pier are shown as dredging currently under construction, with a dredging depth shown of minus 26 feet. The 28th Street Mole Pier itself is not named on the map, but the area of the pier is shown as the 28th Street Recreational Area.

3.3 1940 TO 1949

As early as 1940, the pier is tree-lined, and the 28th Street Shore Boat Landing facility can be seen on the northern side of the mole pier near its western terminus. By 1945 a wharf later identified as Lynch Shipyard Wharf No. 1 can be seen running along the north side of the 28th Street Mole Pier, from the base of the pier out almost to the 28th Street Shore Boat Landing facility. By 1946 the Lynch Shipbuilding Company is in operation with facilities for the construction and repair of wood and steel vessels. Shops and mills for this purpose can be seen both on Lynch Shipyard Wharf No. 1, and north of the base of the 28th Street Mole Pier.

During approximately 1941 and 1942, a Temporary Defense Housing Camp occupied a parcel located southwest of the intersection of Belt Street and 28th Street. East of 28th Street and south of Belt Street, temporary officers quarters were in use by the Navy on leased City of San Diego property from approximately 1941 through 1946.

3.3.1 1940 Photograph – Historical Aerial Photograph Dated 3-8-1940

The 1940 photograph is an oblique view facing north along San Diego Bay (Figure 3-23). The shoreline to the north and south of the area of the 28th Street Mole Pier appears to have been dredged and straightened. Most of the pier and the extension of 28th Street southwest of the ATSF railroad tracks are tree-lined. Buildings can be seen in the area of the 28th Street Shore Boat Landing on the northern side of the mole pier near its western terminus. A smaller pier on pilings can be seen extending out into the bay about 100 feet north of the mole pier. A building can be seen near the base of the smaller pier, just north of the extension of 28th Street. The triangular area east of the mole pier, south of 28th Street, west of the ATSF railroad, and north of Chollas Creek appears to be completely filled in. This area appears to be used for open staging and handling of goods, with no structures noted.

3.3.2 1941 Photographs – Historical Aerial Photographs Both Dated 1-12-1941

The 1941 photographs show oblique views along San Diego Bay, with one photograph facing north (Figure 3-24) and one facing south (Figure 3-25). As in the 1940 photograph, these photographs show the tree-lined pier and extension of 28th Street. The 28th Street Shore Boat Landing Facility can be seen. No buildings yet appear in the triangular area east of the pier, south of 28th Street, west of the railroad, and north of Chollas Creek.

3.3.3 1941 Navy Station Condition Maps

The 1941 station condition map shows the government property boundary now including the 1940 Grant Deed Parcel from the City of San Diego, east of the 28th Street Mole Pier and north of Chollas Creek (Figure 3-26). A building approximately 700 by 150 feet is shown on this parcel and identified as a Boat Storage Building; however, the building may at this time be a proposed rather than an existing structure.

The 1941 Master Development Plan (Figure 3-27) shows the 28th Street Mole Pier labeled as the City Recreational Pier (Temporary Parking). The 28th Street Shore Boat Landing buildings are shown on the north side of the pier near its terminus but are unlabeled. A proposed expansion of 28th Street Mole Pier to the south is shown. An area west of 28th Street and several hundred feet north of the pier is labeled as Temporary Defense Housing Camp.

Within the triangular area bounded by 28th Street, Belt Street, and Chollas Creek, the Boat Storage Building identified above can be seen, and north of that a number of proposed buildings are shown, labeled as Temporary Officers Quarters. As discussed later in Section 4, an April 1, 1941, tidelands lease agreement between the U.S. Department of Agriculture Farm Security Administration and the Harbor Department-City of San Diego shows the Temporary Officers Quarters described above as located primarily on Parcel 1, an M-shaped 4.898-acre parcel north of the 1940 Grant Deed parcel containing the Boat Storage Building. The Temporary Defense Housing Camp was located on Parcel 2 of the same lease, a 5.442-acre parcel located southwest of the intersection of Belt Street

and 28th Street. The 1949 drawing of this lease, Lease 144-B-1, is discussed in Section 4 and provided in Appendix B. Based on these lease drawings, there are four parcels within the triangle of land bounded by 28th Street, Belt Street, and Chollas Creek:

- The 1940 Grant Deed parcel along Chollas Creek that remains Navy property
- An unlabeled parcel north of the Grant Deed parcel
- Parcel 1 north of the unlabeled parcel
- A smaller unlabeled parcel north of Parcel 1 near the intersection of 28th Street and Belt Street

The area shown for the planned development of the Temporary Officers Quarters appears to extend into the parcels north and south of Parcel 1.

3.3.4 Navy Station Condition Maps 1942 through 1946

Thirteen station condition maps covering this time period were reviewed (Figures 3-28 through 3-40). Eight of the maps are additionally marked as Master Development Plan maps. The maps from years 1942 through 1946 show the 28th Street Pier as variously labeled City Recreational Pier, 28th Street Municipal Recreational Pier, 28th Street Mole Pier, and 28th Street Municipal Mole Pier. The 28th Street Shore Boat Landing facility is typically shown, although it is unlabeled. A structure and several piers are typically shown near the base of the mole pier and north along the shore; some of the maps label this area as Lynch Shipbuilding Co. One of the 1942 Master Development Plan maps shows the area west of 28th Street and several hundred feet north of the pier as Temporary Defense Housing Camp, as also shown on the 1941 Master Development Plan map.

The ten housing units in the area of Parcel 1 east of the 28th Street Mole Pier are typically shown on the maps. The housing is variously labeled as Present Defense Housing Dormitories, Barracks, Temporary Officers Quarters, and Officers Dormitories. Some maps show a tennis court near the northern boundary of Parcel 1. Several of the maps from 1942 and 1943 show the government property boundary as encompassing the entire triangular area bounded by 28th Street, Belt Street, and Chollas Creek. The 28th Street Mole Pier is not shown as within the government property boundary. The 1946 map shows the housing area as Under Naval Cognizance. Maps from 1944 through 1946 show a fence along the south boundary of the housing area, delineating a parcel south of the housing area and north of the 1940 Grant Deed parcel. While this parcel is unlabeled, a 1944 Master Development Plan map showing proposed conditions as of December 1, 1944 (Figure 3-37), shows a planned paint shop and a propeller shop in the parcel with notations that these shops were part of planned Navy Public Works expenditures. Subsequent Navy maps do not show buildings in this area, and it is not known whether the buildings shown in this area in the 1945 aerial photograph are the planned paint and propeller shops (see Section 3.3.5).

3.3.5 1945 Photograph – Historical Aerial Photograph Dated April 1945

The 1945 photograph is a vertical view of the 28th Street Mole Pier (Figure 3-41). Most of the pier and the extension of 28th Street southwest of the ATSF railroad tracks are tree-lined. The 28th Street Shore Boat Landing is visible on the northern side of the mole pier near its western terminus. A wharf can be seen running along the north side of the 28th Street Mole Pier, from the base of the pier almost out to the 28th Street Shore Boat Landing facility. Industrial development can be seen at the base of the pier and to the north along the shoreline, with a number of buildings visible. Several of the smaller structures appear to be on the wharf itself.

The Temporary Officers Quarters buildings shown in the 1942 through 1946 Master Development Plan maps can be seen in the area of Parcel 1, north of the 1940 Grant Deed parcel containing the Boat Building. Several smaller rectangular buildings are also visible in the area between Parcel 1 and the 1940 Grant Deed parcel.

3.3.6 Navy Station Condition Maps 1947 Through 1949

Three station condition maps covering this time period were reviewed (Figures 3-42 through 3-44). The maps show the 28th Street Pier as rounded at its western terminus and labeled as 28th Street Municipal Mole Pier. The 28th Street Shore Boat Landing facility is shown but is unlabeled. A structure and several piers are shown near the base of the mole pier and north along the shore, and some of the maps label this area as Lynch Shipbuilding Co.

Within the triangular area bounded by 28th Street, Belt Street, and Chollas Creek, the maps show the parcels north of the 1940 Grant Deed parcel as empty, and apparently outside the government property line.

3.3.7 1946 Report – Corps of Engineers, United States Army –The Port of San Diego, California

The wharf along the north side of 28th Street Mole Pier is shown on the map (Figure 3-45). The tabular inventory of piers, wharves, and docks (Figure 3-46) identifies the wharf as Lynch Shipyard Wharf No. 1, owned and operated by the Lynch Shipbuilding Co. The wharf is described as a 30-foot-wide shore wharf of open timber piling with timber deck, extending 630 feet along the stone bulkhead of the 28th Street Mole Pier, with several small shop buildings along the wharf. The tabular inventory of marine repair plants (Figure 3-47) describes the Lynch Shipbuilding Co. as located along the north side of 28th Street, and including "machine, woodworking, pattern, electric, and welding shops; foundry; and mold loft."

3.3.8 1949 Map – Sanborn Fire Insurance Map

The 28th Street Mole Pier is shown on page 112 of the map. An area labeled as U.S. Naval Landing Station is shown along the north side of the 28th Street Mole Pier, near its western terminus (Figure

3-48). Structures labeled as storage and waiting room appear to be part of this facility, as well as several floats.

The shops shown along the north side and at the base of the pier appear to be associated with the Lynch Shipbuilding Company (Figure 3-49). This assessment is based both on the size and orientation of labels on the Sanborn map, and on the facility description and the length of the wharf face described as owned and operated by Lynch Shipbuilding at this location in the 1946 U.S. Army Corps of Engineers Report. The electrical shop, pipe shop, and one of the welding areas are shown as located on Lynch Shipyard Wharf No. 1 itself, while the boat way, overhead crane, mold loft, welding building, battery shop, machine shop, planing mill, naval stores building, carpentry and mill work building, and other buildings and shops are shown in the Lynch Shipbuilding area near the base of the pier, north of the pier but south of the Peoples Fish Packing Corp. fish cannery.

3.3.9 1949 Photographs – Two Historical Aerial Photographs Dated 2-16-49

The 1949 photographs show vertical views of the 28th Street Mole Pier (Figure 3-50). The pier and the extension of 28th Street southwest of the ATSF railroad tracks continue to be tree-lined. The 28th Street Shore Boat Landing is visible on the northern side of the mole pier near its western terminus. No other buildings are visible on the 28th Street Mole Pier itself. Lynch Shipbuilding Wharf No. 1 can be seen running along the north side of the 28th Street Mole Pier, and the electrical shop building shown in the 1949 Sanborn map can be seen on the wharf. Other Lynch Shipbuilding structures shown in the 1949 Sanborn map can also be seen in the photograph, including the mold loft, planing mill, foundry, and fuel oil tanks, and the carpenters, battery, machine, and paint shops. Industrial development can be seen north of the base of the pier and to the north along the shoreline, with a number of buildings visible.

In the area of Parcel 1, east of the 28th Street Mole Pier, the Temporary Officers Quarters buildings seen in the 1945 aerial photograph appear to have been removed; however, disturbed soil and in some cases the outline of the buildings can be seen in their former locations. A rectangular building can be seen near the northern boundary of Parcel 1. No buildings appear to be present on the parcel between Parcel 1 and the 1940 Grant Deed parcel.

3.4 1950 TO 1959

In 1950 the western end of the 28th Street Mole Pier is extended and straightened, a project that appears to be complete by 1953. The 28th Street Shore Boat Landing appears to have been removed sometime between 1953 and 1956. By 1953 the parcels formerly used as temporary housing are being redeveloped as industrial property. By 1956 the Lynch Shipbuilding Company facility has become National Marine Terminal Ship Building, and the western terminus of the pier is in use by the City of San Diego Harbor Department for the receipt and shipping of cargo.

3.4.1 1950 Photographs – Two Historical Aerial Photographs Dated 10-29-50

The 1950 photographs show paired vertical views of the 28th Street Mole Pier (Figure 3-51). The pier and the extension of 28th Street southwest of the railroad tracks continue to be tree-lined. The 28th Street Shore Boat Landing is visible on the northern side of the mole pier near its western terminus. A large mound of what appears to be dredge spoils can be seen near the western terminus of the pier, and a suction dredge and piping can be seen in the photograph delivering hydraulic fill to extend and straighten the western terminus of the pier. The Lynch Shipbuilding structures and shops seen in the 1949 photographs can also be seen in the photograph, both on the wooden wharf on the north side of the 28th Street Mole Pier and along the shoreline north of the base of the pier.

In Parcel 1, the former area of the Temporary Officers Quarters buildings remains empty. A second rectangular building is now visible between the northern boundary of Parcel 1 and the intersection of Belt Street and 28th Street. Two rectangular buildings can now be seen in the area between Parcel 1 and the 1940 Grant Deed parcel.

3.4.2 Navy Station Condition Maps 1950 and 1951

Two station condition maps covering this time period were reviewed (Figures 3-52 and 3-53). The maps typically show conditions as described for Navy station condition maps from 1947 through 1949. The 28th Street Pier is rounded at its western terminus and labeled as 28th Street Municipal Mole Pier. The 28th Street Shore Boat Landing facility is shown but is unlabeled. A structure and several piers are typically shown near the base of the mole pier and north along the shore, and the area is labeled as Lynch Shipbuilding Co.

Within the triangular area bounded by 28th Street, Belt Street, and Chollas Creek, the maps show the parcels north of the 1940 Grant Deed parcel as empty and apparently outside the government property line.

3.4.3 1953 Photograph – Historical Aerial Photograph Dated 3-31-53

The 1953 photograph is a vertical view of the 28th Street Mole Pier (Figure 3-54). The trees are gone from the south and west sides of the pier. The 28th Street Shore Boat Landing is visible on the northern side of the mole pier near its western terminus. The extension and straightening of the western terminus of the pier appears to be complete. The 28th Street Mole Pier appears to be used for parking or staging equipment. The shipbuilding activities previously noted on the wooden wharf on the north side of the 28th Street Mole Pier, and along the shoreline north of the base of the pier, appear to be continuing.

Parcel 1 and the parcels north and south of it appear to be industrial, with vehicles, equipment, and several rectangular buildings not seen in the1950 photographs of this area. Within the triangular area bounded by the 1940 Grant Deed parcel, Belt Street, and 28th Street, the activities appear to be

separated into rectangular yards rather than following the boundaries between Parcel 1 and adjacent parcels.

3.4.4 1956 Photograph – Historical Aerial Photograph

The 1956 photograph is an oblique view of San Diego Bay looking south (Figure 3-55). The 28th Street Shore Boat Landing is not visible on this photograph; however, that area of the photograph is indistinct. Activities in the shipbuilding and Parcel 1 areas are similar to those noted in the 1953 photograph.

3.4.5 1956 Map – Sanborn Fire Insurance Map

The base map appears to be the same base map as the 1949 Sanborn map above; however, the structures and labeling have been updated. The end of the pier is shown as rounded, and an area labeled as U.S. Naval Landing Station is shown along the north side of the 28th Street Mole Pier, near its western terminus (Figures 3-56, 3-57, and 3-58). The area shown as the Lynch Shipbuilding Co. on the 1949 Sanborn map is now labeled Ship Building, with a smaller label indicating National Marine Terminal Ship Building. The electrical and pipe shops shown by the 1949 Sanborn map on the wharf fronting the north side of the 28th Street Mole Pier are not shown on this 1956 map.

Along the shore area north of the pier, the mold loft, battery and machine shops, planing mill, carpenters and millworks shops, and several storage areas are shown as for the 1949 map; however, the pattern shop, foundry, welding building, paint building, and fuel oil tanks shown on the 1949 map are no longer shown as present. A building or area labeled "sand blast" is shown at the inside elbow of South 28th Street where it turns to meet the pier. The fish cannery shown on the 1949 map as the Peoples Fish Packing Corp. is now shown as the Westgate California Tuna Packing Corporation.

3.4.6 1956 Report – Corps of Engineers, United States Army – The Port of San Diego, California

The map was missing from the report copy reviewed at the City of San Diego Public Library. The tabular inventory of piers, wharves, and docks (Figure 3-59) identifies the wharf along the north side of the 28th Street Mole Pier as National Marine Terminal Pier No. 1, owned by the National Steel and Shipbuilding Corp., and operated by National Marine Terminal Inc. The wharf is described as 30 feet wide by 540 feet long and used for mooring vessels for outfitting and repair, and for fueling small craft. Metered pumps are noted as available on the wharf for fueling purposes. The tabular inventory of marine repair plants does not mention National Marine Terminal Inc.

The 28th Street Pier is entered in the table of piers, wharves, and docks as owned and operated by the City of San Diego Harbor Department for the receipt of lumber and steel, and the receipt and

shipping of general cargo. The 28th Street Pier is described as 270 feet along the face, and located at the outer end of 28th Street Pier at the end of 28th Street.

A photograph in the report shows the 28th Street Pier (Figure 3-60). The western terminus of the pier has been extended and straightened as seen in the 1953 photograph. The U.S. Naval Landing Station facility appears to have been removed, and the area near the western terminus of the pier is being used for the staging and handling of goods.

3.4.7 1958 Photograph – Historical Aerial Photograph Dated 3-1-58

The 1958 photograph is a vertical view of the 28th Street Mole Pier (Figure 3-61). The western terminus of the 28th Street Mole Pier falls outside the photograph. Activities in the shipbuilding and Parcel 1 areas appear similar to those noted in the 1953 and 1956 photographs.

3.4.8 1959 Photograph – Historical Aerial Photograph Dated 11-6-59

The 1959 photograph is an oblique view of San Diego Bay looking northwest (Figure 3-62). A structure is visible in the area of the 28th Street Shore Boat Landing; however, a vessel is present and the shape of the structure cannot be discerned. Activities in the shipbuilding and Parcel 1 areas are similar to those noted in the 1953, 1956, and 1958 photographs.

3.5 1960 AND LATER

Navy activities in both the 28th Street Shore Boat Landing area and the Parcel 1 area appear to have ceased by this time, and both the 28th Street Mole Pier area and the triangular area associated with Parcel 1 are in industrial use. By 1974 a pier extension can be seen extending from the south side of the mole pier. By 1978 a second pier extension can be seen extending from the south side of the mole pier. Also by 1978, much of the area of the former Lynch Shipbuilding Company, both on the wharf on the north side of the pier, as well as the shore area just north of the pier, have been replaced by a graving dock. This configuration and industrial use appear to continue through the 2002 aerial photograph, the last document reviewed.

3.5.1 1960 Photograph – Historical Aerial Photograph Dated 9-3-60

The 1960 photograph is a vertical view of San Diego Bay showing the 28th Street Mole Pier (Figure 3-63). The shape of the pier appears unchanged from the previous photograph. Activities in the shipbuilding and Parcel 1 areas are similar to those in the previous photograph. In the area of the 1956 lease parcel at the south end of 28th Street, a landing similar in size and shape to the landing previously seen at the 28th Street Shore Boat Landing area can be seen extending south into the bay. A building and parking area can be seen adjacent to the landing.

3.5.2 1964 Photograph – Historical Aerial Photograph 1964

The 1964 photograph is a vertical view of San Diego Bay showing the 28th Street Mole Pier (Figure 3-64). The structures observed in the 1964 photograph appear similar to those observed in the 1960 photograph.

3.5.3 1974 Photograph – Historical Aerial Photograph 1974

The 1974 photograph is a vertical view of San Diego Bay showing the 28th Street Mole Pier (Figure 3-65). A pier extension projects from the south side of the mole pier. Activities in the shipbuilding and Parcel 1 areas are similar to those in the previous photograph, with increased industrial development seen in both areas. The small landing and building noted in the 1960 photograph are still present.

3.5.4 1978 Report – Corps of Engineers, United States Army – The Port of San Diego, California

In this report an aerial photograph was used rather than a map to identify the piers, wharves, and docks inventoried (Figure 3-66). A second pier extension is now seen projecting from the south side of the mole pier, to the east of the extension noted in the 1974 photograph. The 28th Street Mole Pier and the two pier extensions on the south side of the mole pier are identified as owned by the San Diego Unified Port District and operated by the National Steel and Shipbuilding Company Inc.

The area of a graving dock on the north side of the mole pier can be seen in the photograph, with the pier now noticeably narrower at its base than near its terminus. Based on an overlay of the 1953 aerial photograph and the later 2002 aerial photograph, the area of this graving dock appears to extend over the majority of the area of the shops previously operated by the Lynch Shipbuilding Company, and later National Marine Terminal Ship Building.

3.5.5 1981 Photograph – Historical Aerial Photograph Dated November 1981

The 1981 photograph is a vertical view of San Diego Bay showing the 28th Street Mole Pier (Figure 3-67). The graving dock and pier extensions seen in the photograph from the 1978 U.S. Army Corps of Engineers report can also be seen in this photograph. The shipbuilding and Parcel 1 areas appear to continue in industrial use. In the area of the 1956 Navy lease parcel, the moorings and landing noted in the 1964 and 1974 photographs are no longer seen.

3.5.6 1989 Photograph – Historical Aerial Photograph 1989

The 1989 photograph is a vertical view of San Diego Bay showing the 28th Street Mole Pier (Figure 3-68). The shipbuilding and Parcel 1 areas appear to continue in industrial use.

3.5.7 1999 Photograph – Historical Aerial Photograph December 1999

The 1999 photograph is a vertical view of San Diego Bay showing the 28th Street Mole Pier (Figure 3-69). The shipbuilding and Parcel 1 areas appear to continue in industrial use.

3.5.8 2002 Photograph – Historical Aerial Photograph 2002

The 2002 photograph is a vertical view of San Diego Bay showing the 28th Street Mole Pier (Figure 3-70). The shipbuilding and Parcel 1 areas appear to continue in industrial use.

4.0 REVIEW OF PROPERTY RECORDS FOR THE 28TH STREET PIER AREA

The following sections present and discuss the property records reviewed for the 28th Street Mole Pier area currently occupied by the NASSCO shipyard. Appendix B contains copies of property records and drawings reviewed, including those discussed below.

4.1 1938 PERMIT – CITY OF SAN DIEGO PERMIT FOR THE 28TH STREET SHORE BOAT LANDING DATED MAY 19, 1938 (BY REFERENCE FROM 2004 NAVY TECHNICAL REPORT)

The 2004 Navy Technical Report states that this permit is referenced in a February 27, 1956, letter from the Port of San Diego to the Honorable Mayor and City Council, and is for the use of the 28th Street Shore Boat Landing. Copies of the letter and permit were not reviewed during the preparation of this report.

4.2 1940 DRAWING – CITY OF SAN DIEGO HARBOR DEPARTMENT LEASE TO MARTINOLICH SHIPBUILDING, DRAWING 93B

This drawing shows a rectangular parcel adjacent to the north side of the 28th Street Mole Pier (labeled Recreational Pier) to be leased to the Martinolich Shipbuilding Company. The Parcel is shown as 318,750 square feet (7.3 acres). Two smaller piers north of the mole pier are shown as within the parcel, as well as a building adjacent to the north side of the base of the pier. By 1951 the approximate footprint of this lease is shown on City of San Diego Harbor Department Drawing 86-B-8 as National Marine Terminal Inc.

4.3 1941 DRAWING – CITY OF SAN DIEGO HARBOR DEPARTMENT LEASE TO THE U.S. DEPARTMENT OF AGRICULTURE FARM SECURITY ADMINISTRATION, DRAWING 144-B-1

This drawing dated April 1, 1941, shows two parcels for lease to the U.S. Department of Agriculture Farm Security Administration, labeled Parcel 1 and Parcel 2. Parcel 1 is an M-shaped 4.898-acre parcel located east of the extension of 28th Street, southwest of Belt Street, and north of the 1940 Grant Deed parcel that fronts the north side of Chollas Creek. Parcel 2 of the same lease is shown as a 5.442-acre parcel located southwest of the intersection of Belt Street and 28th Street. Based on the lease drawing there are four parcels within the triangle of land bounded by 28th Street, Belt Street, and Chollas Creek: the 1940 Grant Deed parcel along Chollas Creek, an unlabeled parcel north of the Grant Deed parcel, Parcel 1 north of the unlabeled parcel, and a smaller unlabeled parcel north of Parcel 1 near the intersection of 28th Street and Belt Street.

4.4 1942 DRAWING – CITY OF SAN DIEGO HARBOR DEPARTMENT LEASE TO THE U.S. DEPARTMENT OF AGRICULTURE FARM SECURITY ADMINISTRATION, DRAWING 144-B-5

This drawing, revised January 6, 1942, shows an additional parcel for lease to the U.S. Department of Agriculture Farm Security Administration, labeled Parcel 3. Parcel 3 is a 7.445-acre parcel located west of the extension of Parcel 2, and north and east of the 1940 Martinolich lease parcel.

4.5 1955 DRAWING – CITY OF SAN DIEGO HARBOR DEPARTMENT LEASE TO THE NATIONAL STEEL AND SHIPBUILDING CORP, DRAWING 434-B

This drawing shows a parcel for lease to the National Steel and Shipbuilding Corporation, shown as a parking lot. The parcel covers most of the area of the 28th Street Mole Pier, with the exception of a strip 50 feet wide by 1,493 feet long extending from the base of the pier westward along its north side. A structure is shown near the western end of the unlabeled strip, in the approximate location of the 28th Street Shore Boat Landing facility. The parcel north of the pier is shown as pertaining to National Marine Terminal Incorporated. Drawing 576-B is an August 28, 1958, revision of Drawing 434-B. The building shown on Drawing 434-B in the location of the 28th Street Shore Boat Facility is no longer shown in this drawing.

4.6 1956 DRAWING – CITY OF SAN DIEGO HARBOR DEPARTMENT, U.S. NAVY PERMIT, DECEMBER 19, 1956, DRAWING NO. 453-B

This drawing identifies a 24,653-square-foot (0.6-acre) permit area at the south end of the extension of 28th Street. Assumed to be 1956, the date of this drawing is indistinct and may instead be 1955. The permit area itself is shown in San Diego Bay, adjacent to the southern terminus of the extension of 28th Street. An expanded view is shown of Parcel No. 1, located onshore at the southern terminus of 28th Street, adjacent to the shaded permit area. A building is shown in Parcel 1 with restrooms, a café, and waiting rooms for officers and enlisted personnel. The 2004 Navy Technical Report states "based on a Harbor Department letter dated February 27, 1956, this 1956 lease appeared to be a replacement for a lease granted May 19, 1938, which was likely the lease for the 28th Street Shore Boat Landing." Based on the review of this document during preparation of this report, Drawing 453-B shows a Navy permit rather than a lease.

The large parcel on the 28th Street Mole Pier is shown as National Steel and Shipbuilding Incorporated, as in Drawing 434-B. The text is barely legible, but the narrow parcel along the north side of the pier appears to be labeled as National Marine Terminal, Inc.

4.7 1969 MAP – U.S. NAVY REAL ESTATE SUMMARY MAP, COMPILATION OF SAN DIEGO AND NATIONAL CITY PORTIONS, DATED 7-28-69

The rectangular parcel containing the Boat Storage Building (later Building 78) is shown as a 14.51 acre parcel acquired by Grant Deed from the City of San Diego on July 17, 1940, and recorded April 30, 1943, on page 12 of Book 1499 in the San Diego County Office of Records. The parcel is

located adjacent to and east of the 28th Street Mole Pier, and north of Chollas Creek. Several small 0.02- to 0.14-acre parcels adjacent to the ATSF railroad easement on the eastern side of the 1940 Grant Deed parcel were also shown as acquired at later dates.

In addition, a 6.1-acre parcel located on the south side of Chollas Creek is shown as received as a Grant Deed from the City of San Diego on December 1, 1930, and recorded March 21, 1932. The acquisition is noted as an exchange rather than a donation or a judgment, and was likely exchanged for a Navy parcel in the area of Parcel 1, as shown proposed on the 1932 map.

This page intentionally left blank.

5.0 SUMMARY AND CONCLUSIONS

Based on this historical document review, Navy activities within the area currently occupied by NASSCO took place at three locations:

- Temporary housing on parcels east of the 28th Street Mole Pier
- The 28th Street Shore Boat Landing facility
- A second small boat landing on a parcel at the southern end of 28th Street

East of the 28th Street Mole Pier, in an area east of 28th Street and south of Belt Street, temporary officers quarters were used by the Navy on leased City of San Diego property from approximately 1941 through 1946, in the area known as Parcel 1. During approximately 1941 and 1942 a Temporary Defense Housing Camp occupied a parcel located southwest of the intersection of Belt Street and 28th Street. Industrial development in both these areas appears to have taken place after Navy use had ended.

The Navy operated a 28th Street Shore Boat Landing facility on the north side of the 28th Street Mole Pier from approximately 1939 through 1956. This facility consisted of a storage room, a waiting room, and a finger pier and floating docks used by ship launches to ferry sailors to and from Navy ships moored in San Diego Bay (Navy 2004). Non-Navy industrial activities on 28th Street Mole Pier during this time period included a shipbuilding and maintenance facility located partly on a wooden wharf extending along the north face of the 28th Street Mole Pier, and partly on the shore north of the base of the pier. By 1946, Lynch Shipbuilding Company was operating the facility, and by 1956, National Marine Terminal Incorporated was operating it. Industrial operations at this facility include machine, woodworking, pattern, electric, and welding shops; a foundry; and a mold loft. The 2004 Navy Technical Report (Navy 2004) had previously associated many of the activities in the shipbuilding area with the Navy operated 28th Street Shore Boat Landing facility. However, this review indicates that these facilities were operated by the Lynch Shipbuilding Company and later by National Marine Terminal Incorporated.

In 1956 a permit was issued to the Navy for a parcel east of the 28th Street Mole Pier, at the southern end of 28th Street, possibly intended as a replacement for the loss of the 28th Street Shore Boat Landing facility on the north side of the 28th Street Mole Pier. A small landing can be seen in this area in aerial photographs from 1964, 1974, and 1978. No other Navy activities were seen in this parcel. The industrial development of the parcel appears to have taken place after Navy use had ended.

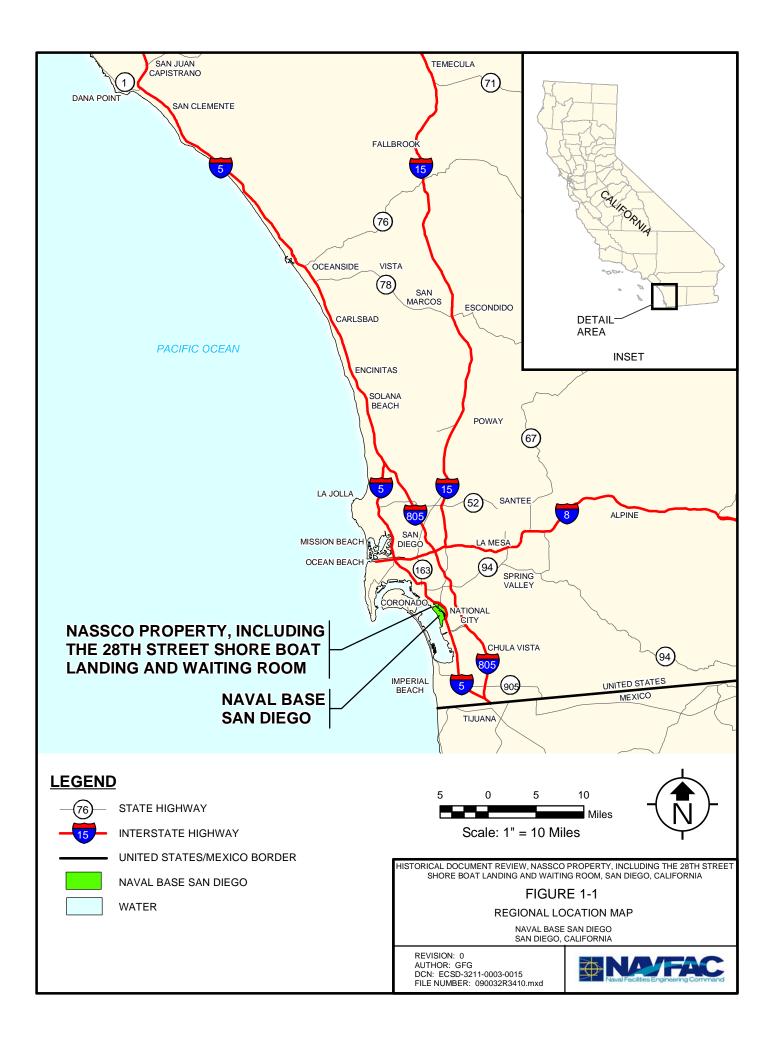
The Navy real estate department shows no record of owning or leasing property in the area currently occupied by NASSCO (Thomas Phelps, personal communication 2008). This may be in part because the two parcels used for small boat landings were used under permits rather than

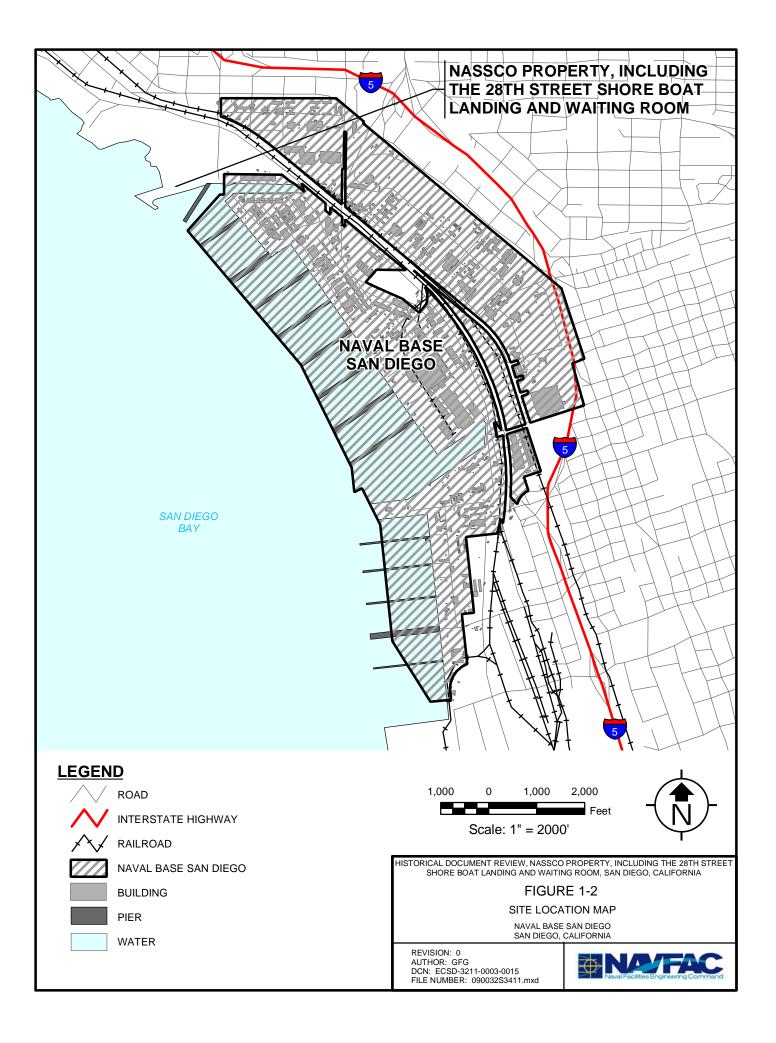
leases, and the parcels used for temporary housing in the 1940s appear to have been leased by the U.S. Department of Agriculture Farm Security Administration rather than by the Navy.

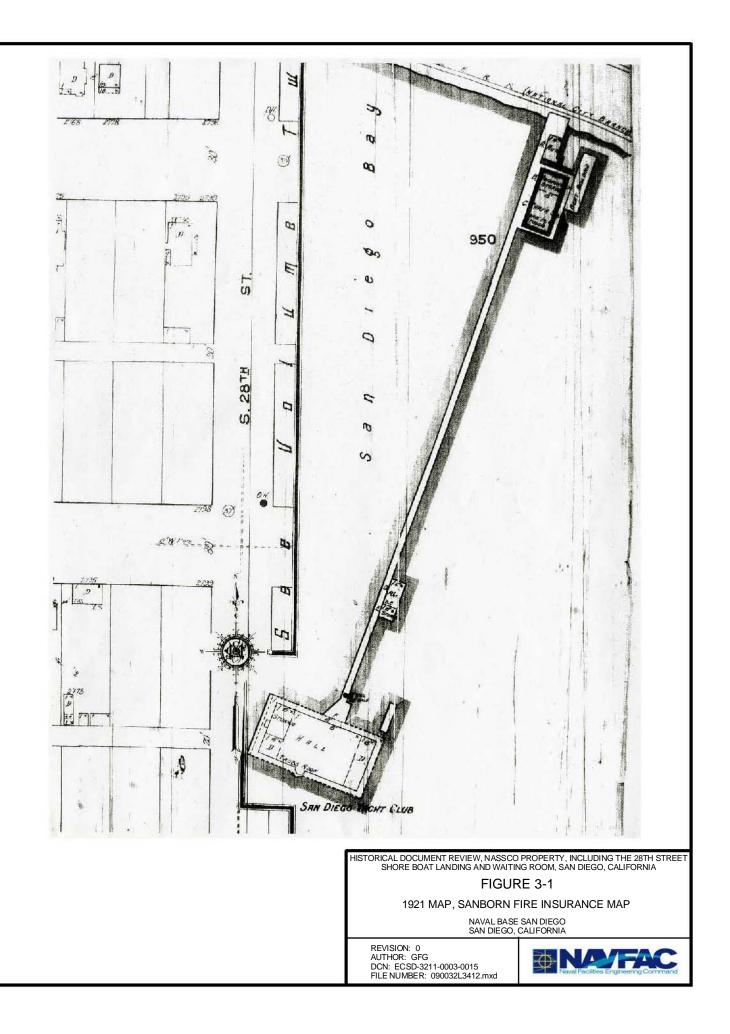
No documentation was found during the review to support Navy industrial use of the area currently leased by NASSCO. Navy use in this area appears to have been limited to temporary housing in two areas during the 1940s, and operation of small landings first on the north side of the 28th Street Mole Pier and later on the south side near the base (eastern end) of the pier.

6.0 **REFERENCES**

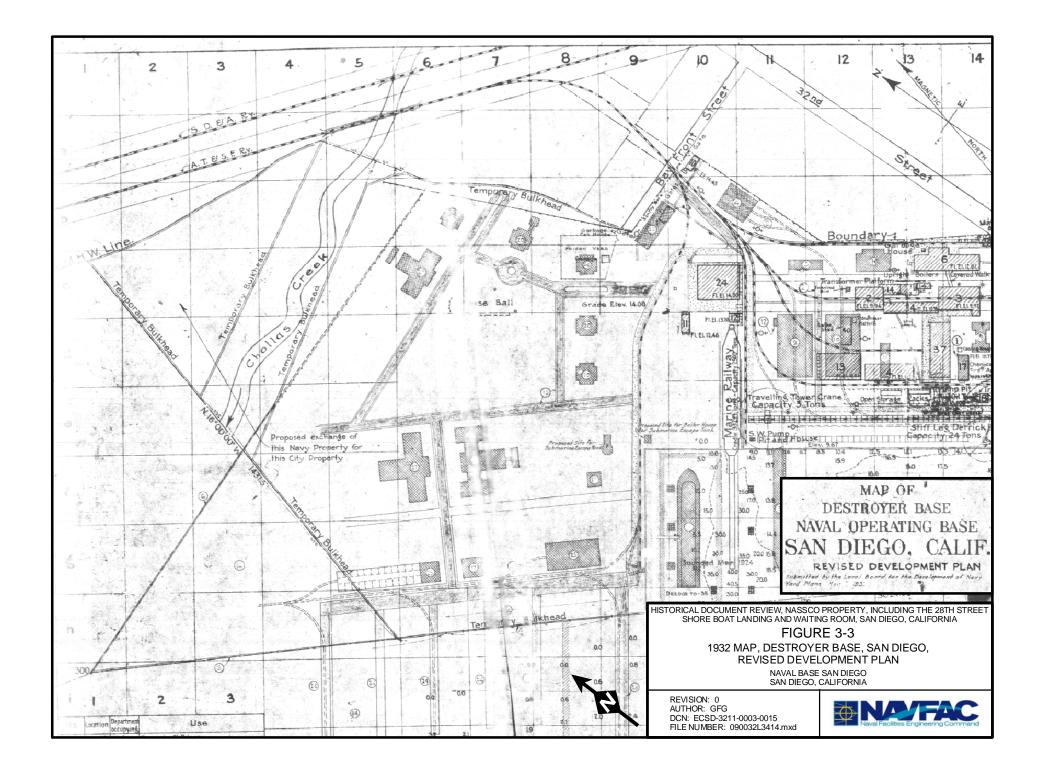
Phelps, Thomas. 2008. Email from Thomas Phelps, NAVFAC Southwest Real Estate Department, to Darren Belton, NAVFAC Southwest. October 22.

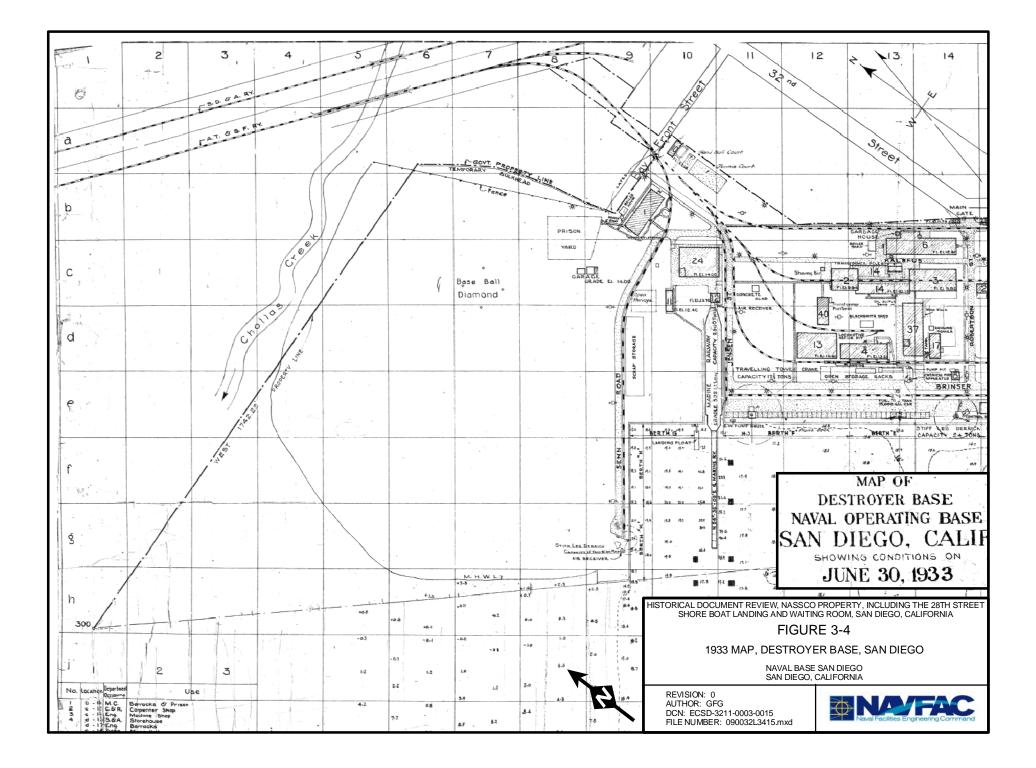

U.S. Navy. 2004. Technical Report on Historic Navy Activities at NASSCO Shipyard.

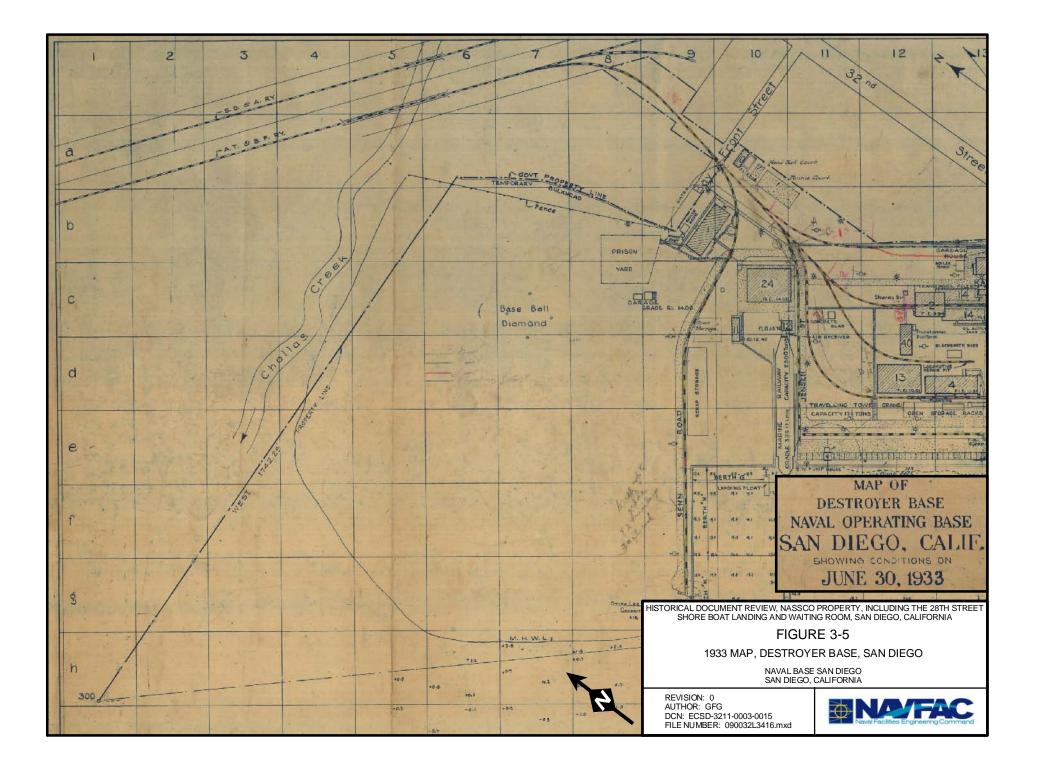

This page intentionally left blank.

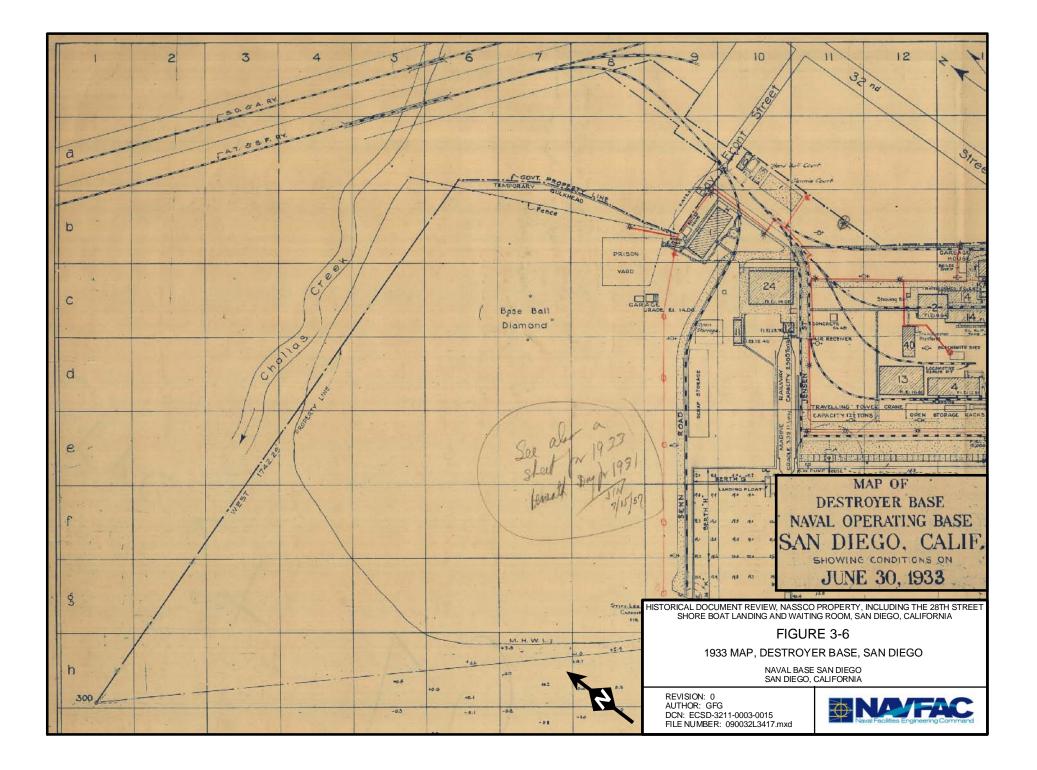

FIGURES

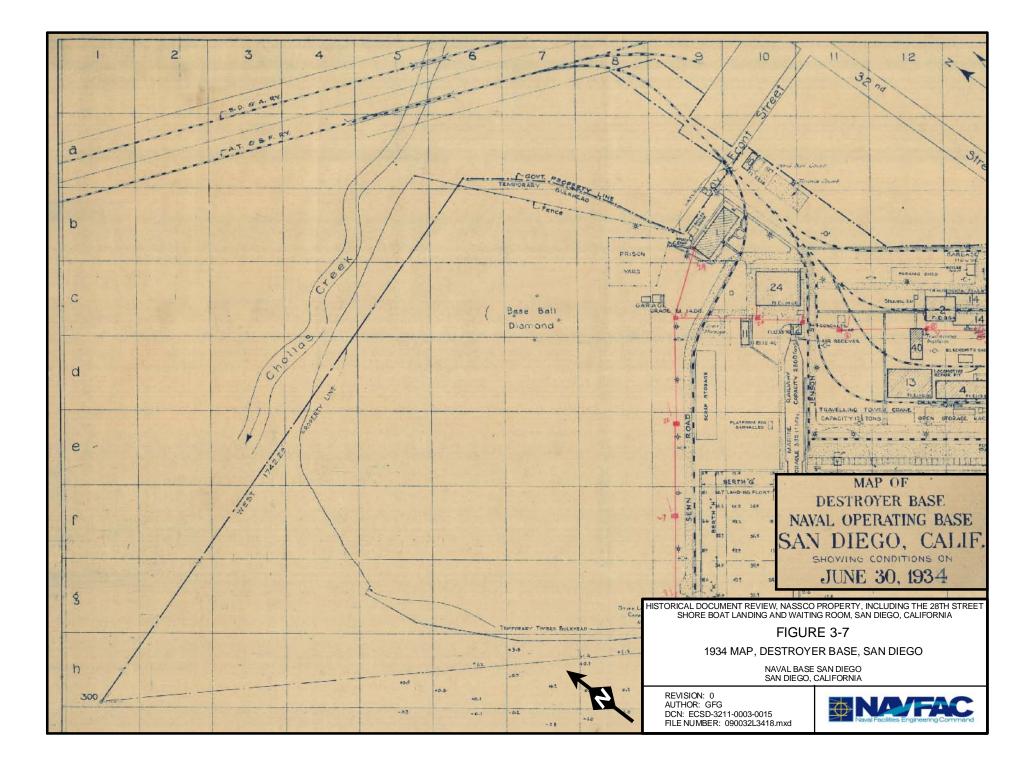
ECSD-3211-0003-0015 PrDr Hist Review.doc

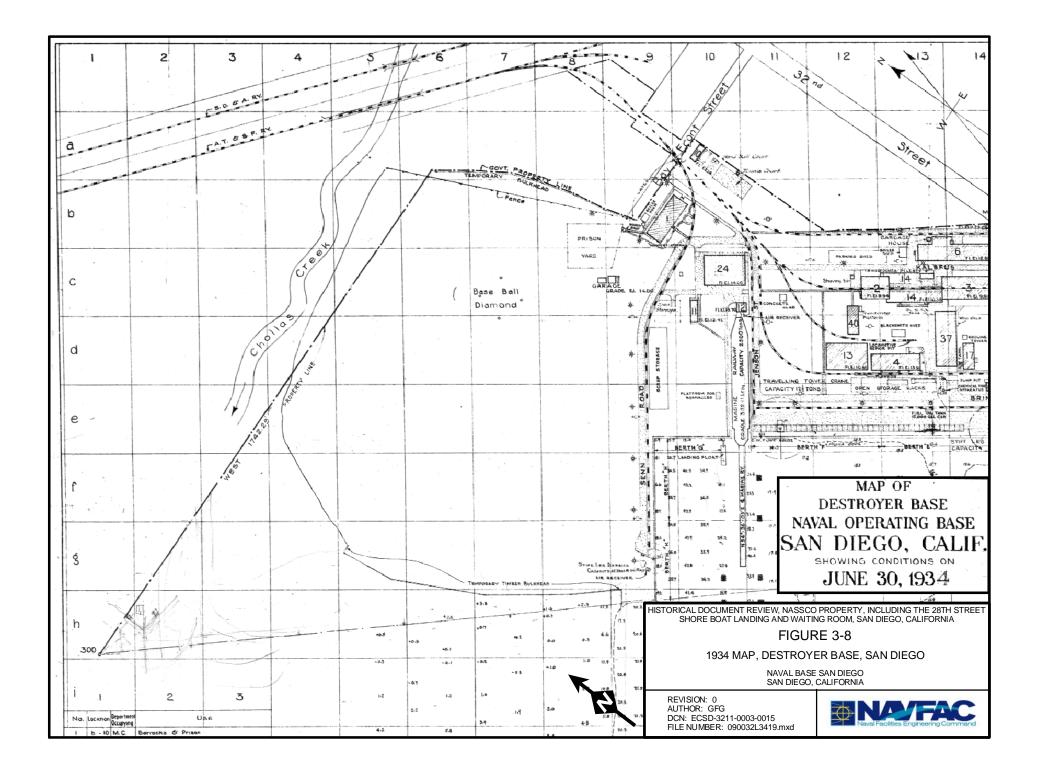

This page intentionally left blank.

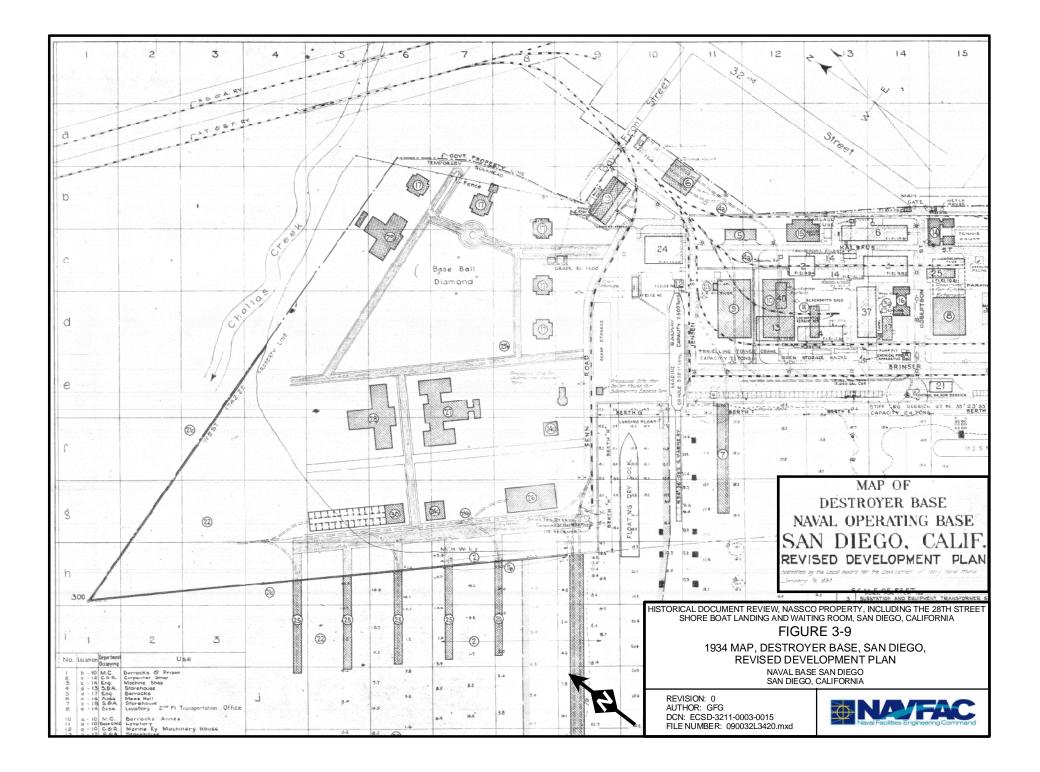


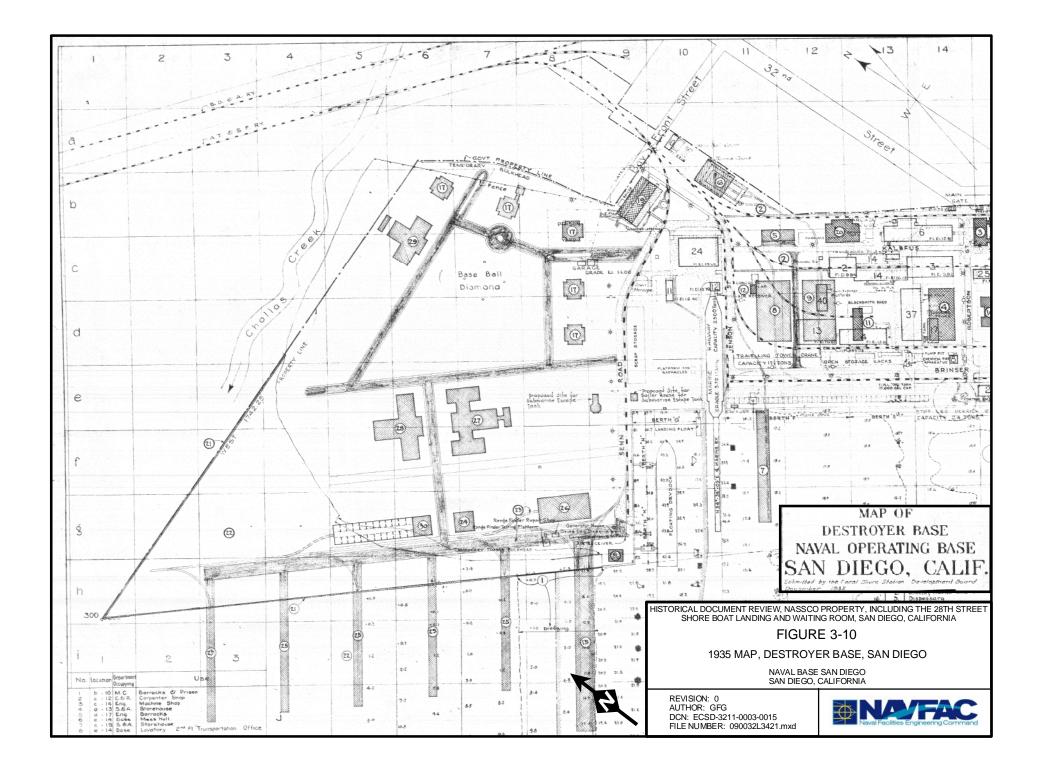


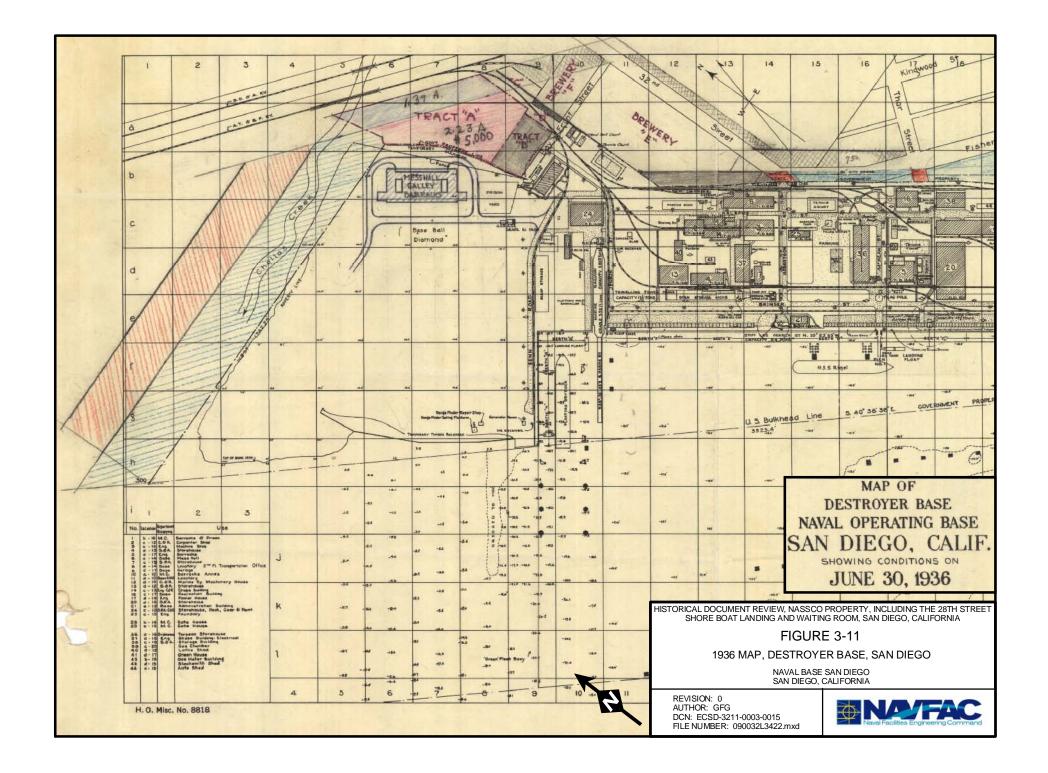


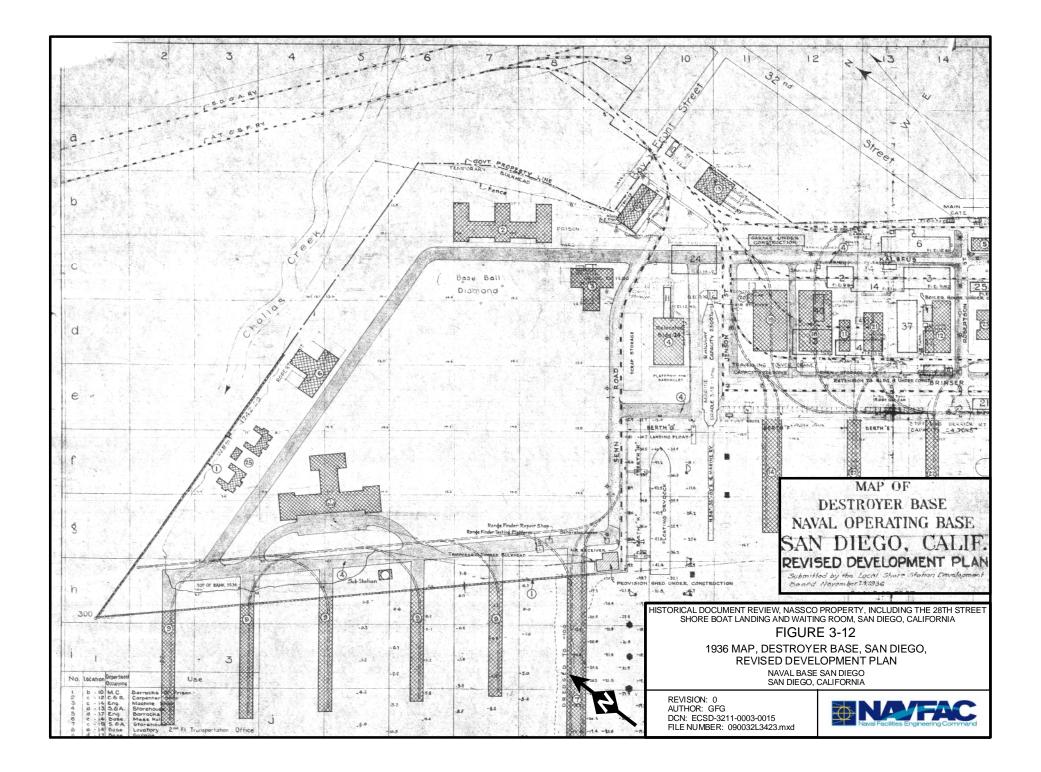

low water Berthing space available Capacity per square foot. Lighted or unlighted Depth of water at mean lower low water Transit sheds Mechanical handling facili- ties. Railway facilities: Name of railway con- necting. Tracks on open wharf Water supply Fire protection Electric current.	None 1 fixed convey 1 fixed hoist ton, reach 8 None City supply 8 portable che	or, operated by ele , electrically open feet, outside; 6 1-to mical extinguishes urrent; 110 volts for	1: setricity, inside ated, capacity on hand cars.	fo pounds Lighted None 1 fixed convey 1 fixed hoist ton, reach 6 i None City supply 4 2-inch fire p enishers.	or, electrically op electrically oper electrically oper eet, outside: 5 1-t	erated, outside ated, capacity on hand cars.	 Shore end 21 fe None. 1 steam locometons, reach 5 50 flat cars, 2 Atchison, Tope & Arizona R Four 3,200 feet City supply: 2- gallons per h Six 2-inch fire p 	otive; 1 Brown 1) feet, operated b)-ton capacity.)ka & Santa Fe R y. long; surface. inch main; rate	noist, capacity 15 y steam, outside; y, and San Diego of delivery, 18,009 ose.	HEGO, CALIF.
	Ban Diego Marine Construction Co. Pier.			- Standard Oil Co. Pjer.			38 California Naval Reserve Pier.			d contrained
CONTRACTOR OF THE ADDRESS OF THE OWNER OF THE ADDRESS OF THE OWNER OWNER OF THE OWNER OWN				Near foot of Schley Street Standard Oil Co do Used as oil receiving and bunkering station Wharf with long approach: timber deck on con- crete jacketed wooden piles.						
	Lower side.	Upper side.	Face.	Lower side.	Upper side.	Face.	Lower side.	Upper side.	Face.	THE
Description: Dimensions Width of apron. Deck above mean lower low water Berthing space available Capacity per square foot Lighted or unlighted	Feet. 630 Open wharf 9 100 30 pounds	Feet. 630	Feet. 7	Feet. 25	Feet. 25	Feet. 200	Feet. 60 5 12 60	Feet. 60 7 12 60	Feet. 120 5 12 120	IE PORT OF
Depth of water, mean lower low water	5	5		Lighted		23	100 pounds. Lighted.	8	11	SAN
Mechanical handling facili- ties. Railway facilities. Water supply. Fire protection	Push cars, capacity { ton each			Propenness nanoling fuel oil, refined and naphtha products. None			None. Do. Do. City supply; 2-inch main; rate of delivery, 18,000 gallons per hour. 12-inch fire plug, 100 feet of hose, and 12 portable chemical extinguishers. Alternating current, 110 volts for lights.			DIEGO, CALIF.
						SH	ORE BOAT LANDIN	G AND WAITING R FIGURE U.S. ARMY V	VAR DEPARTM ERS REPORT	CALIFO

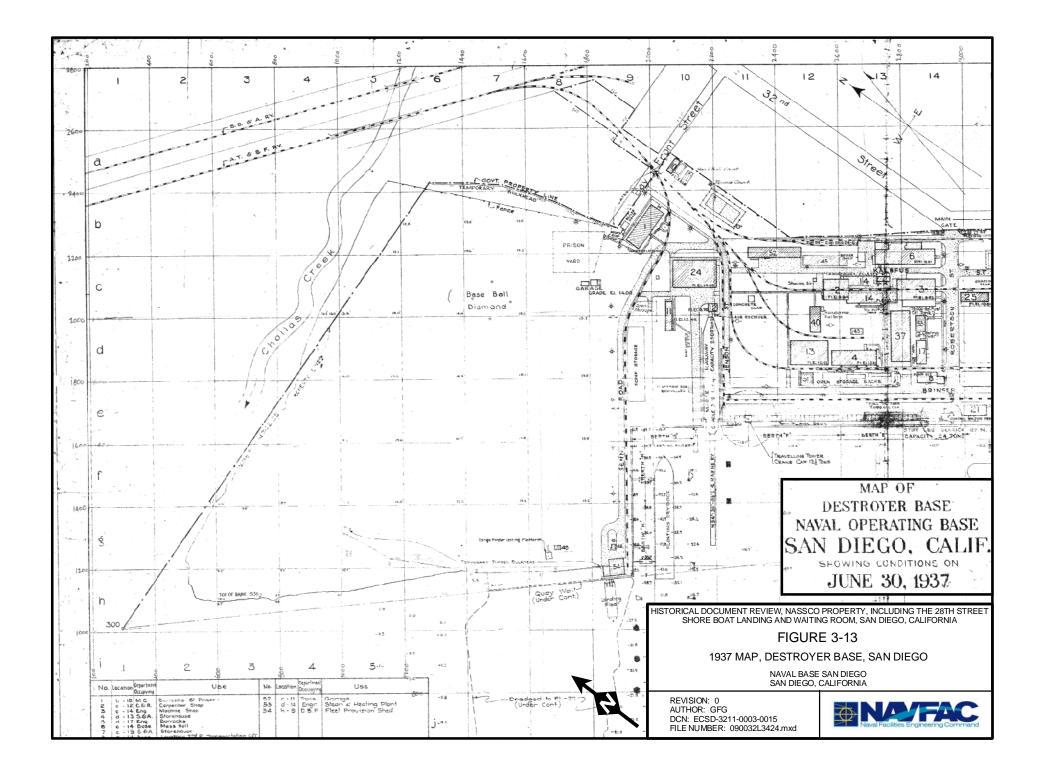


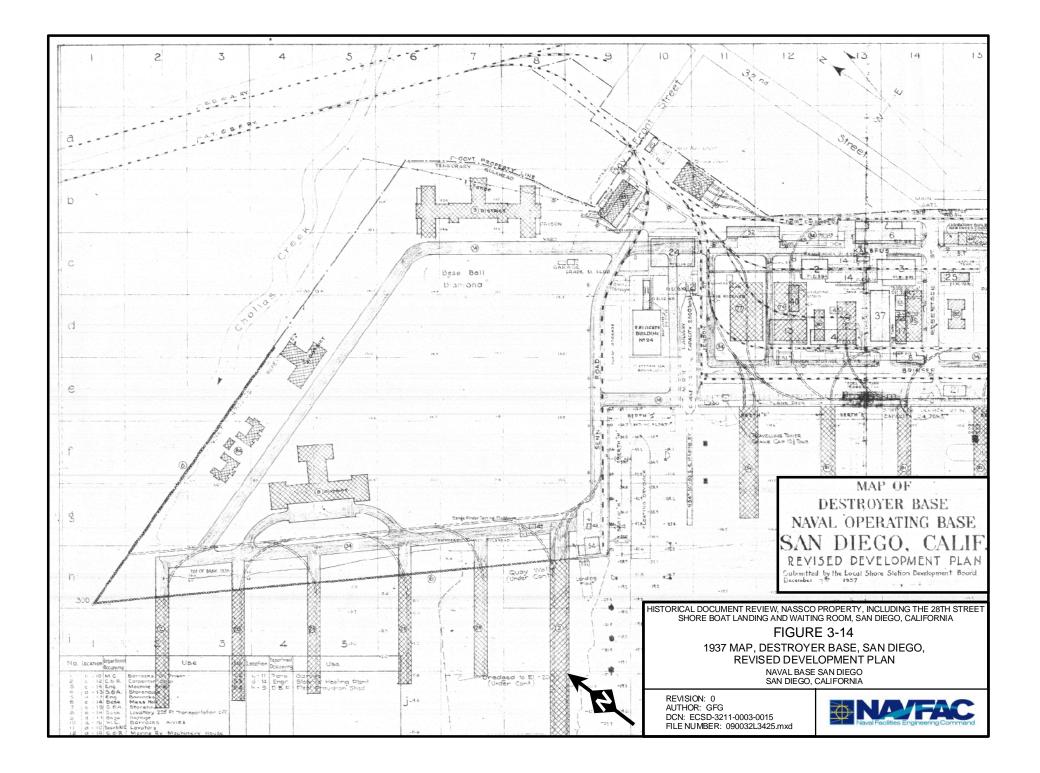


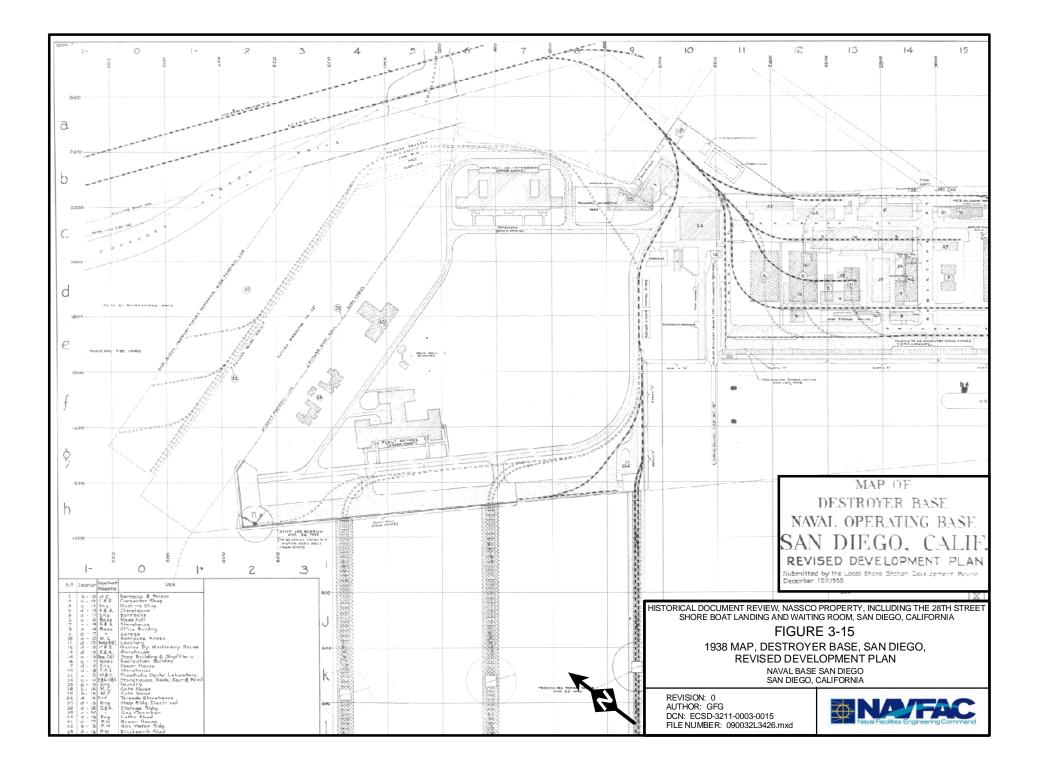


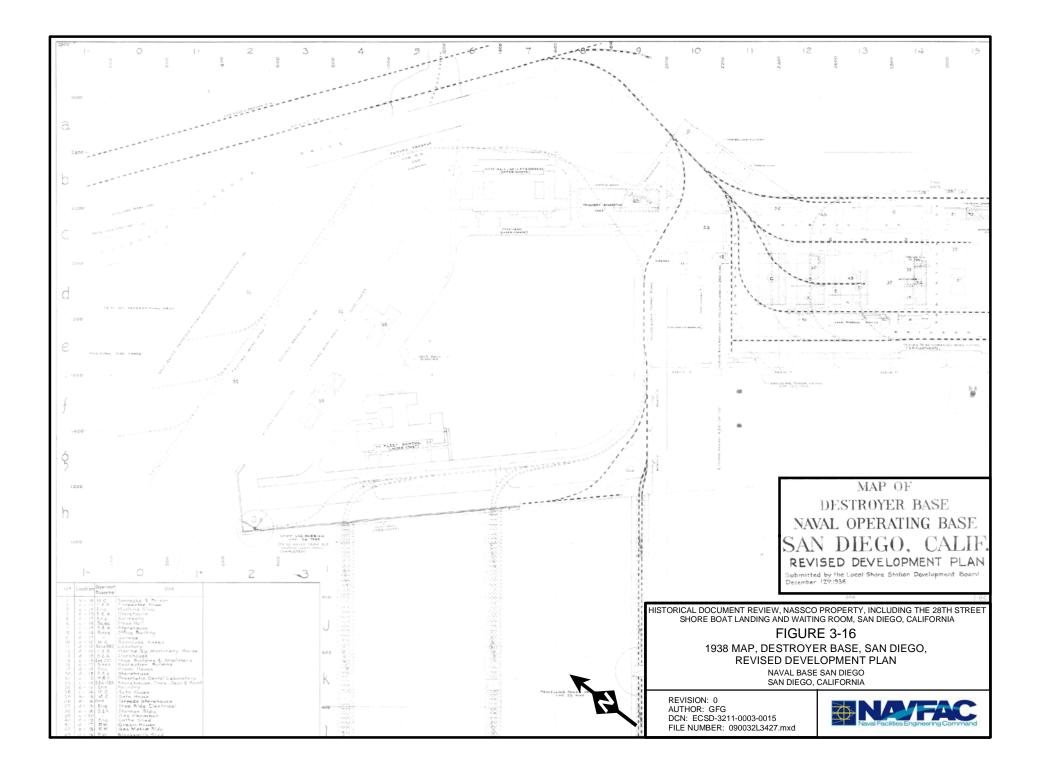


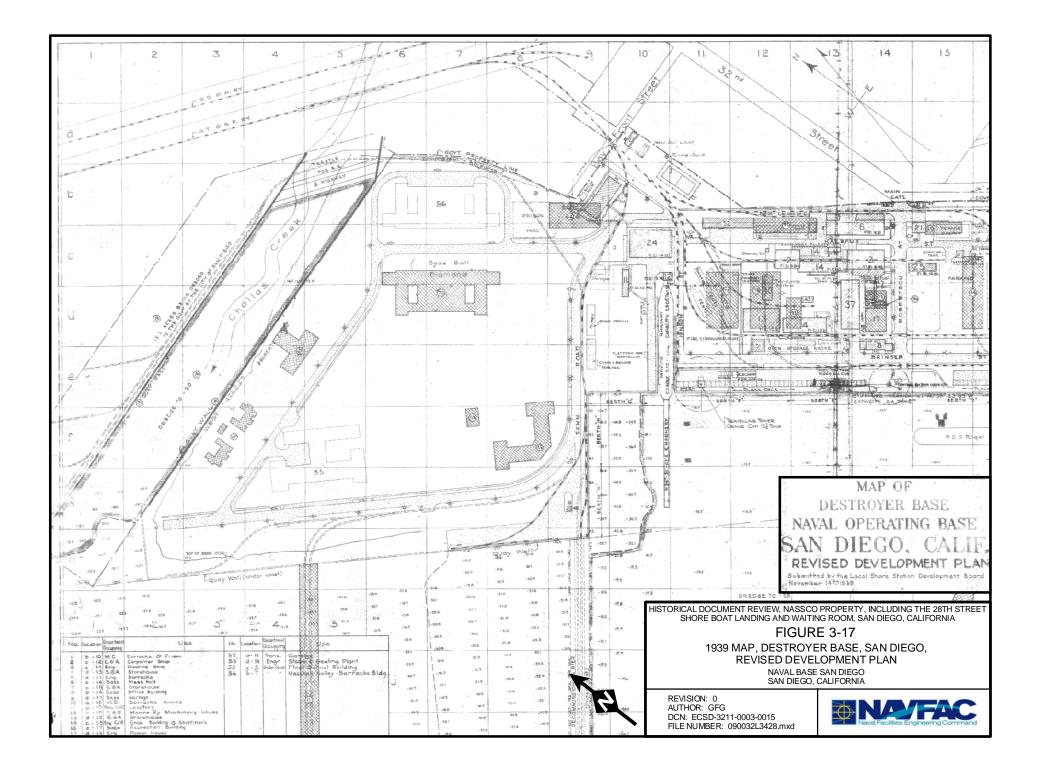


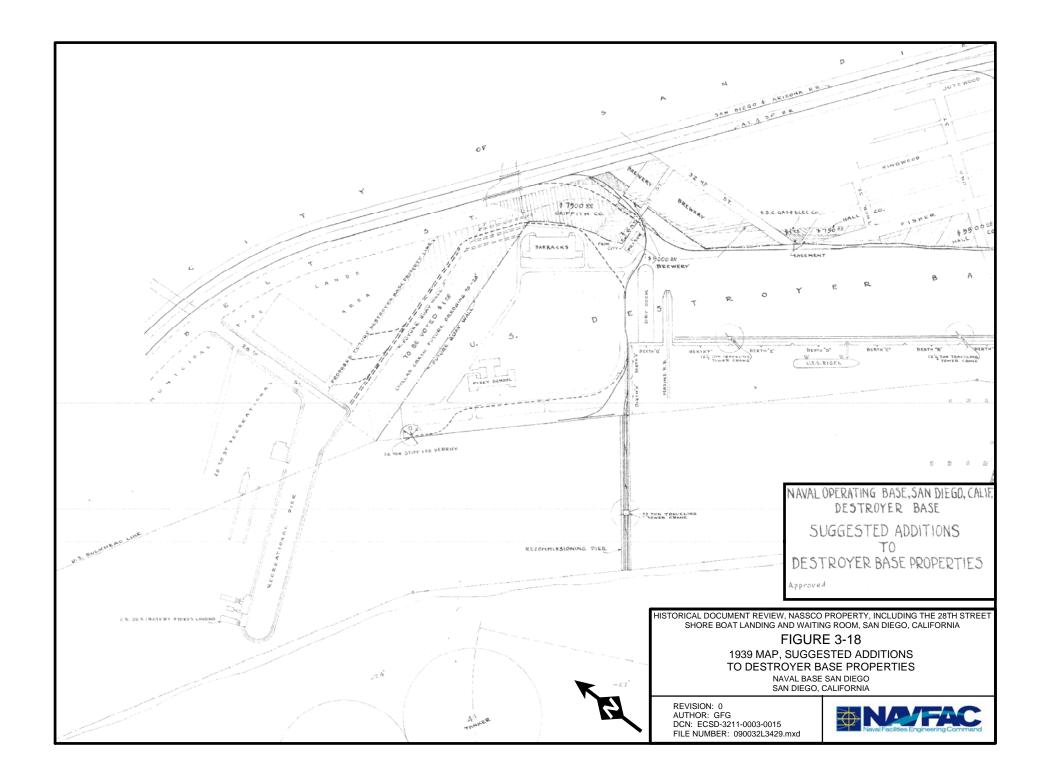


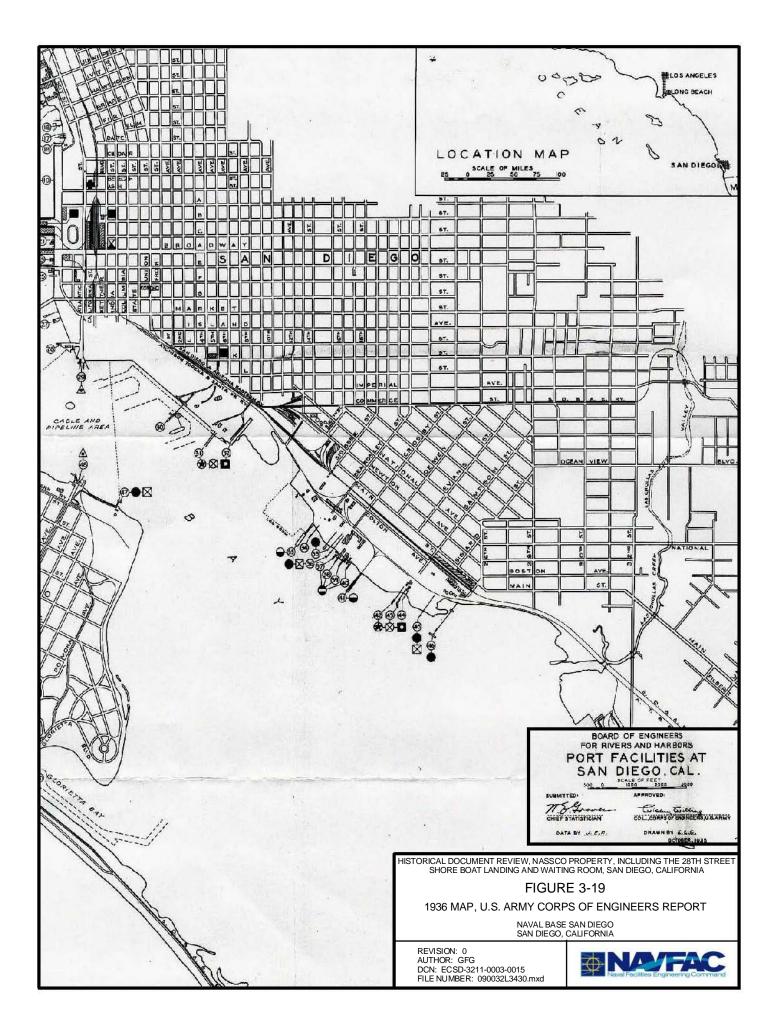




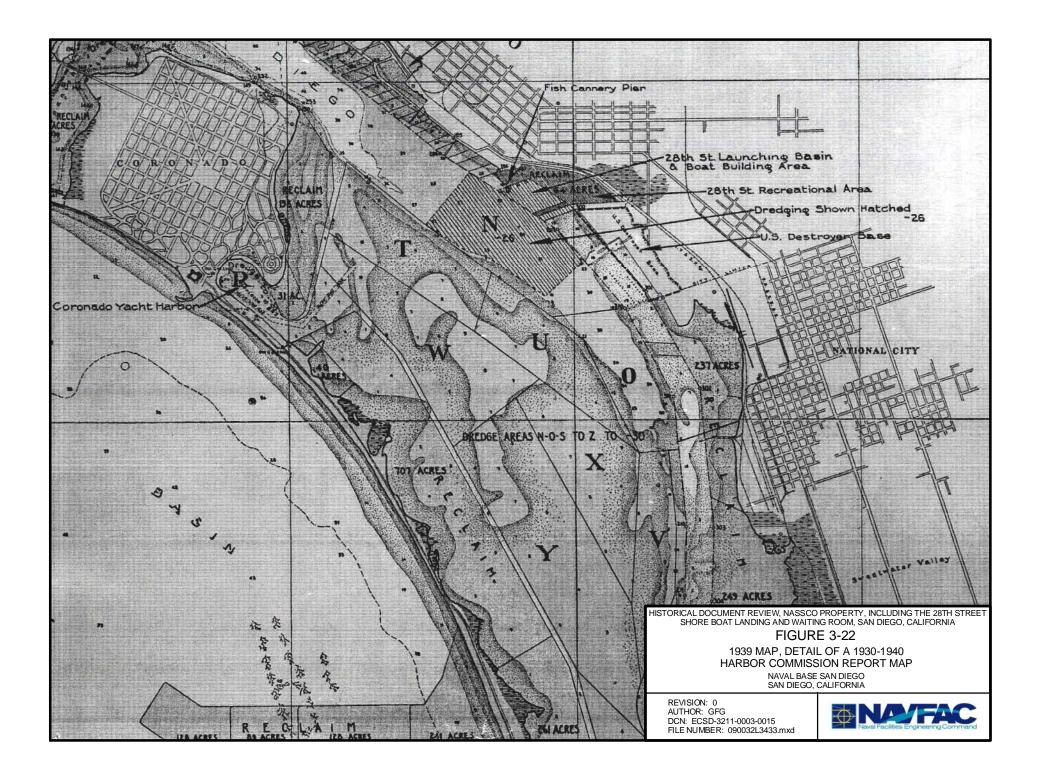


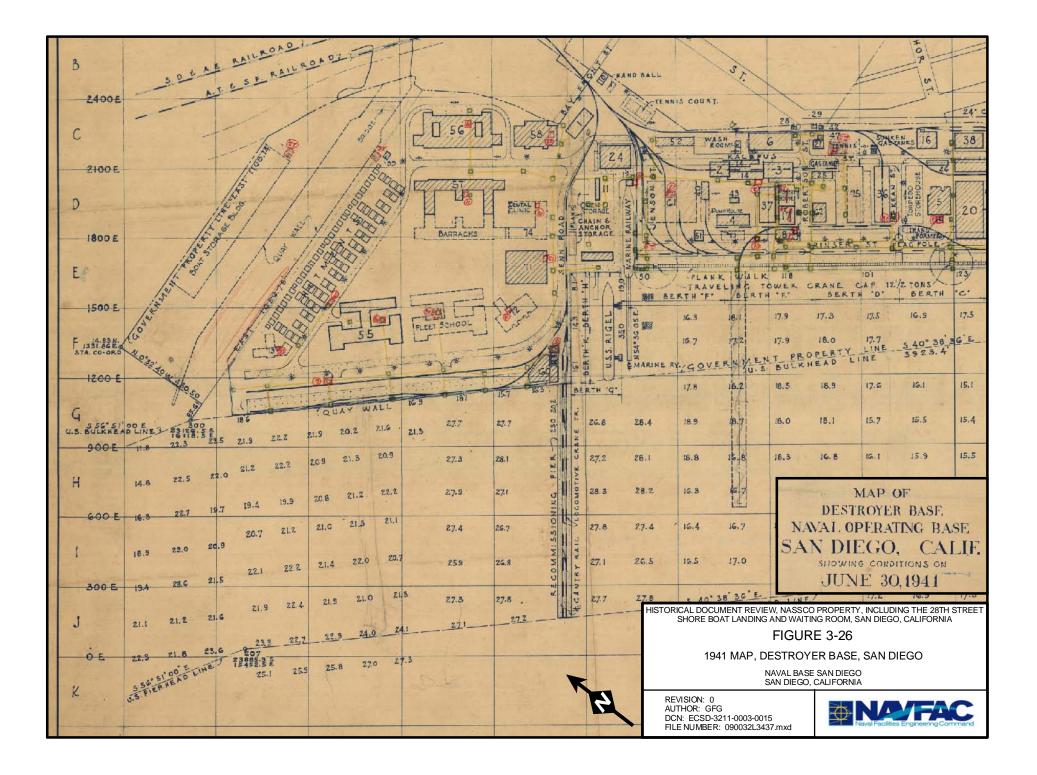


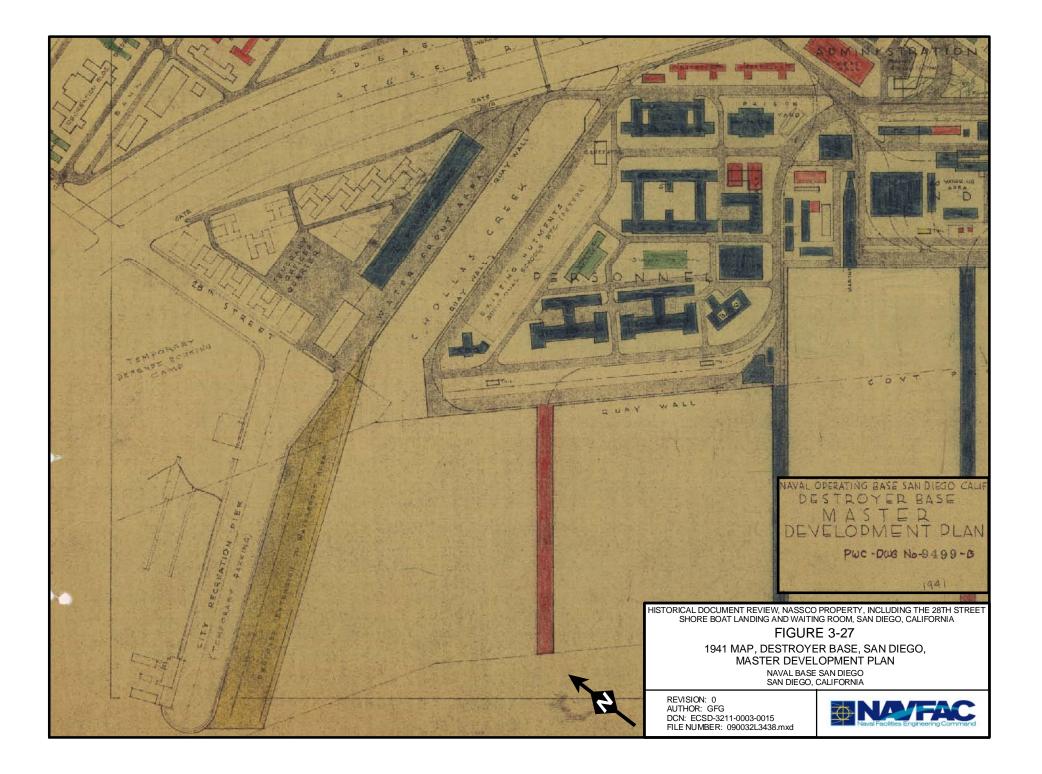


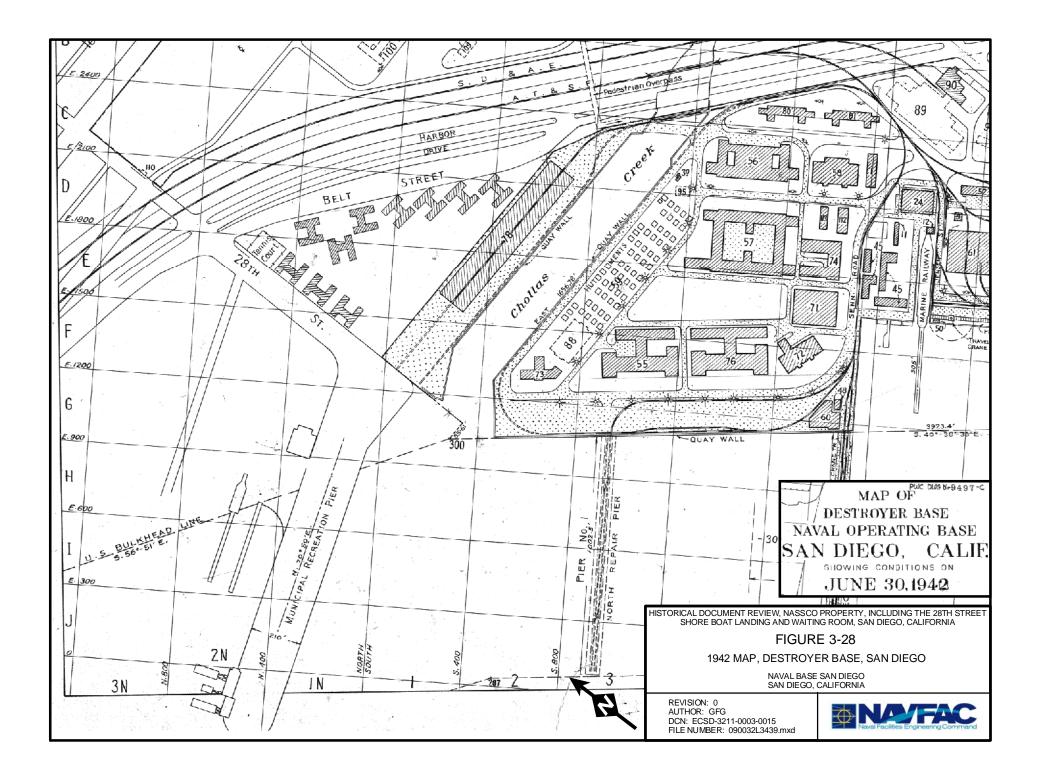


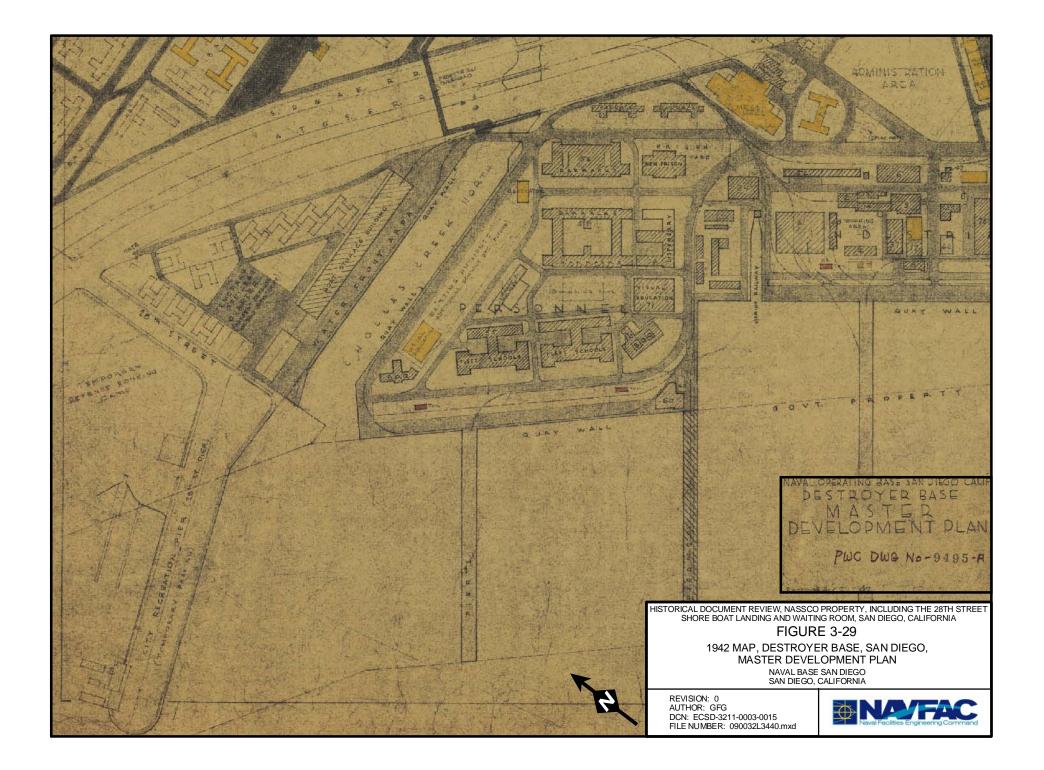


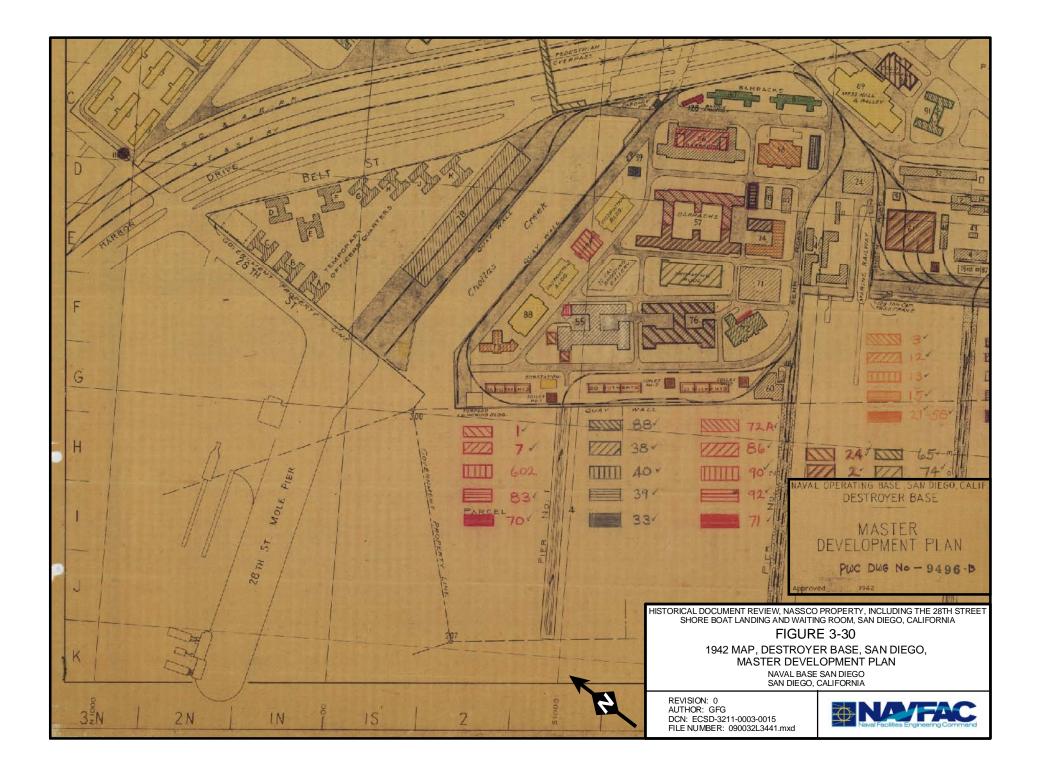


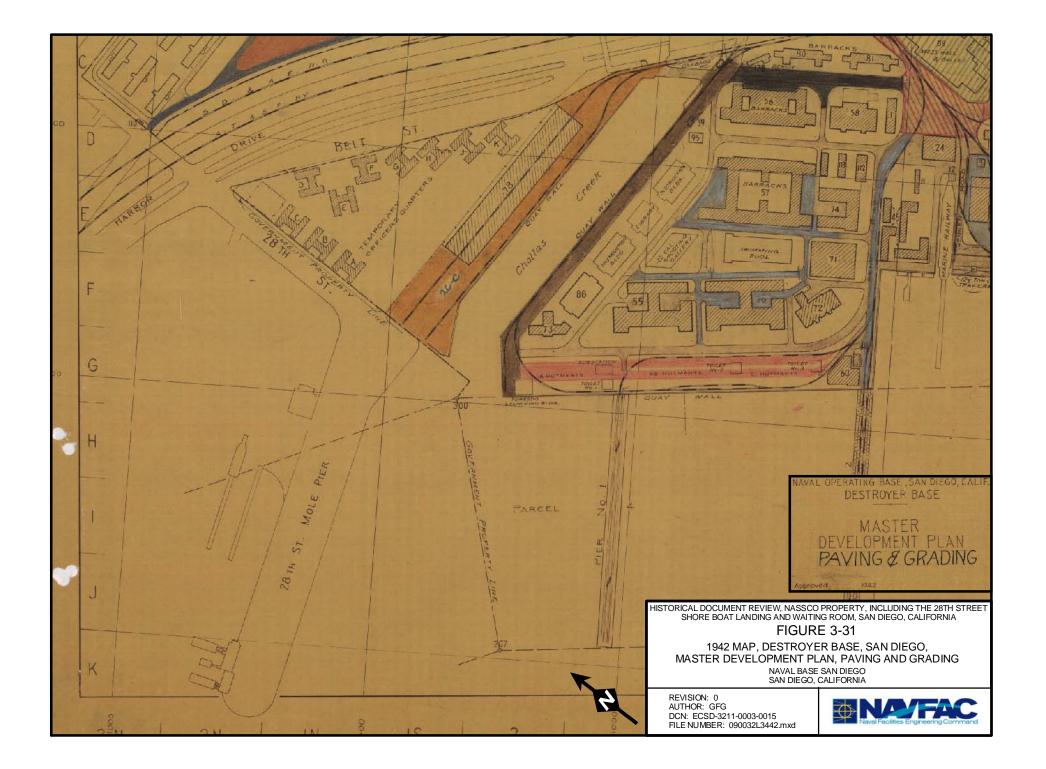


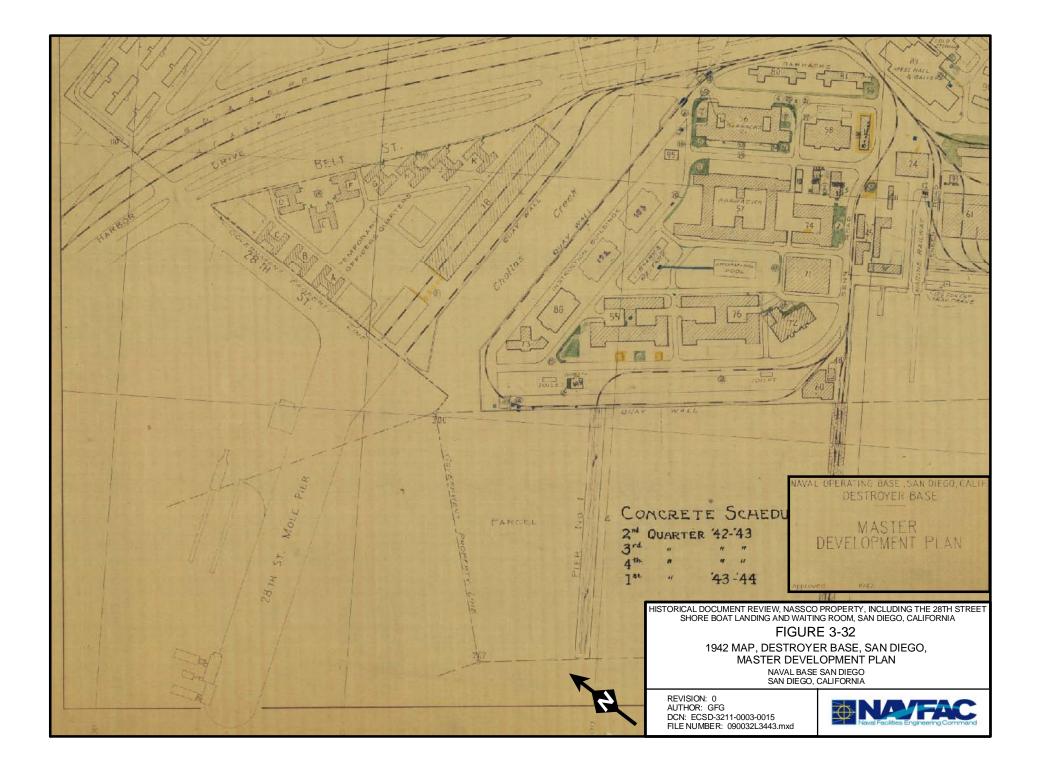


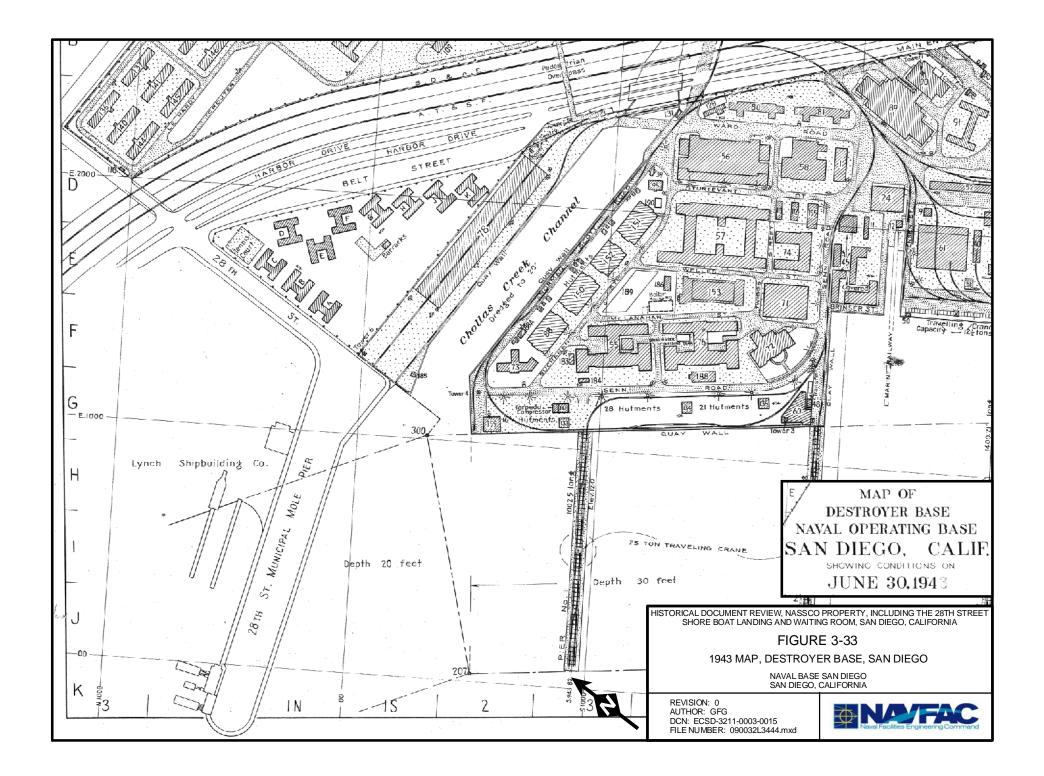


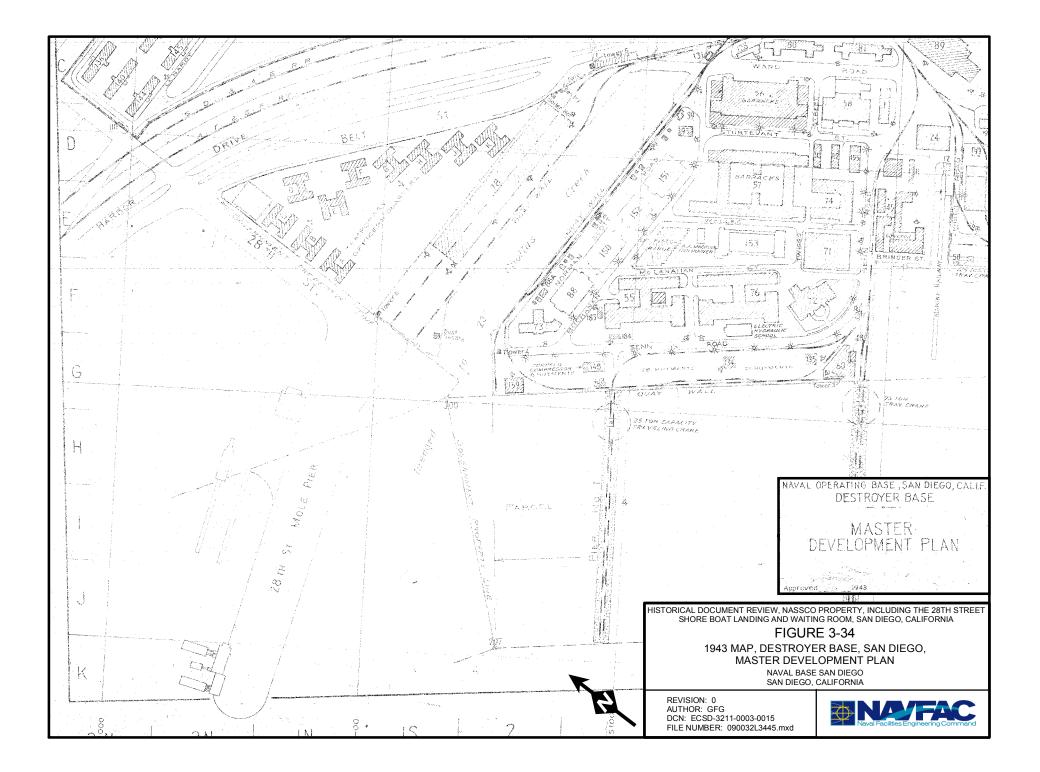


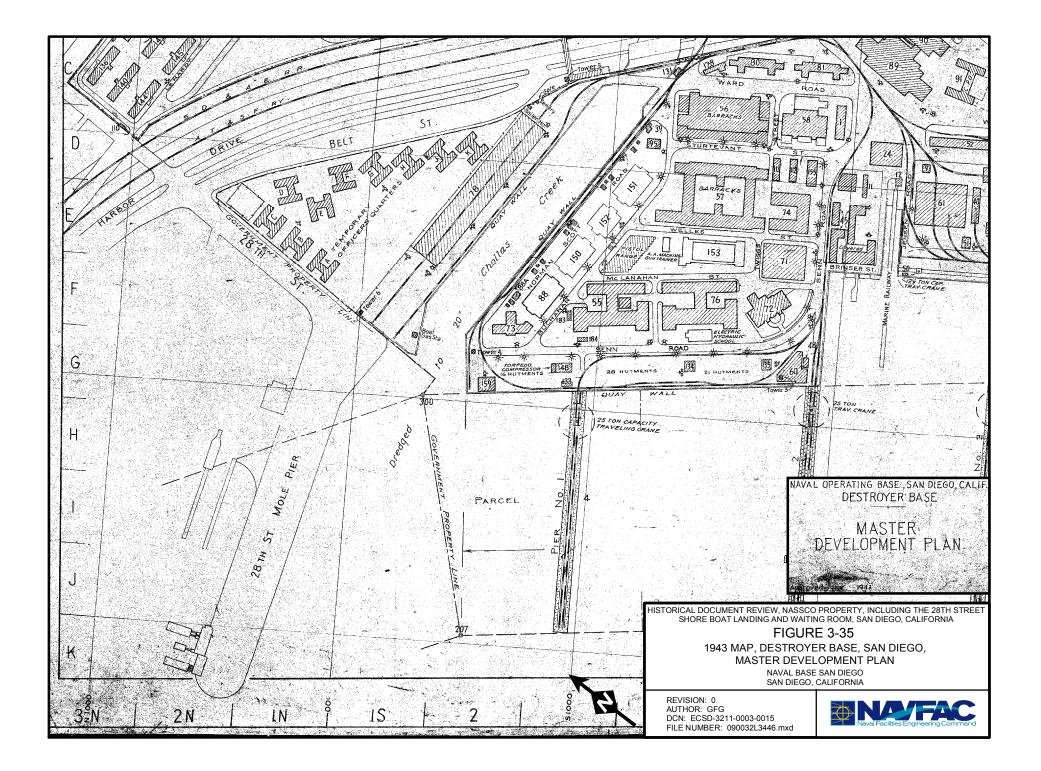


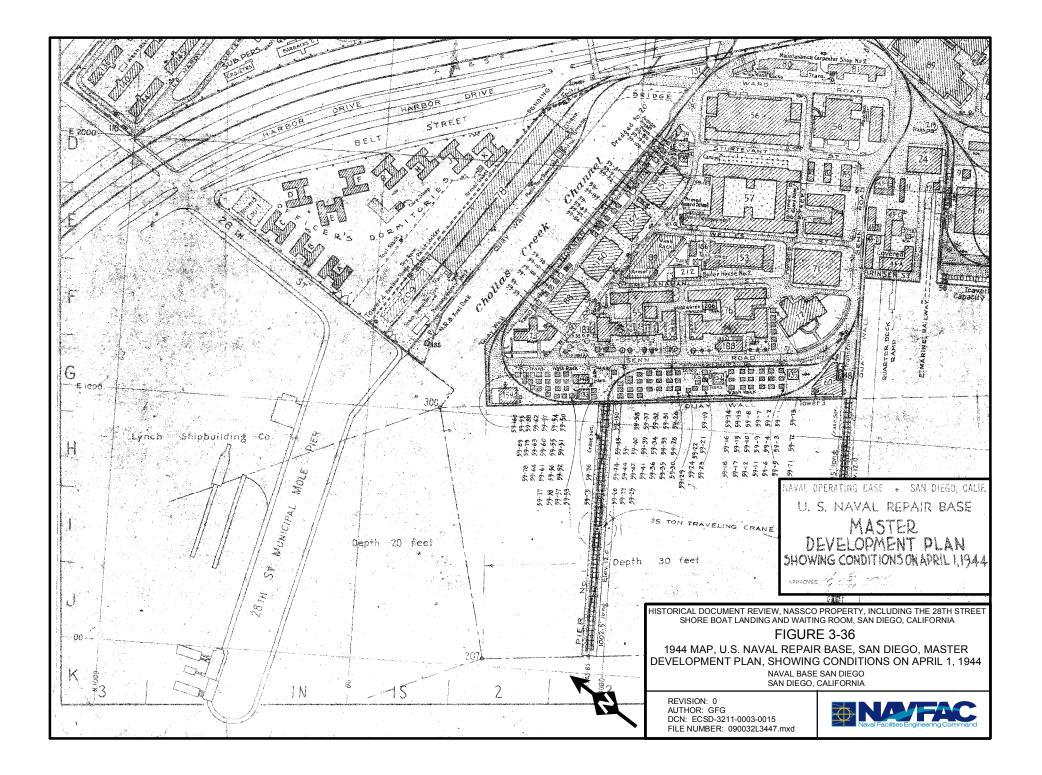


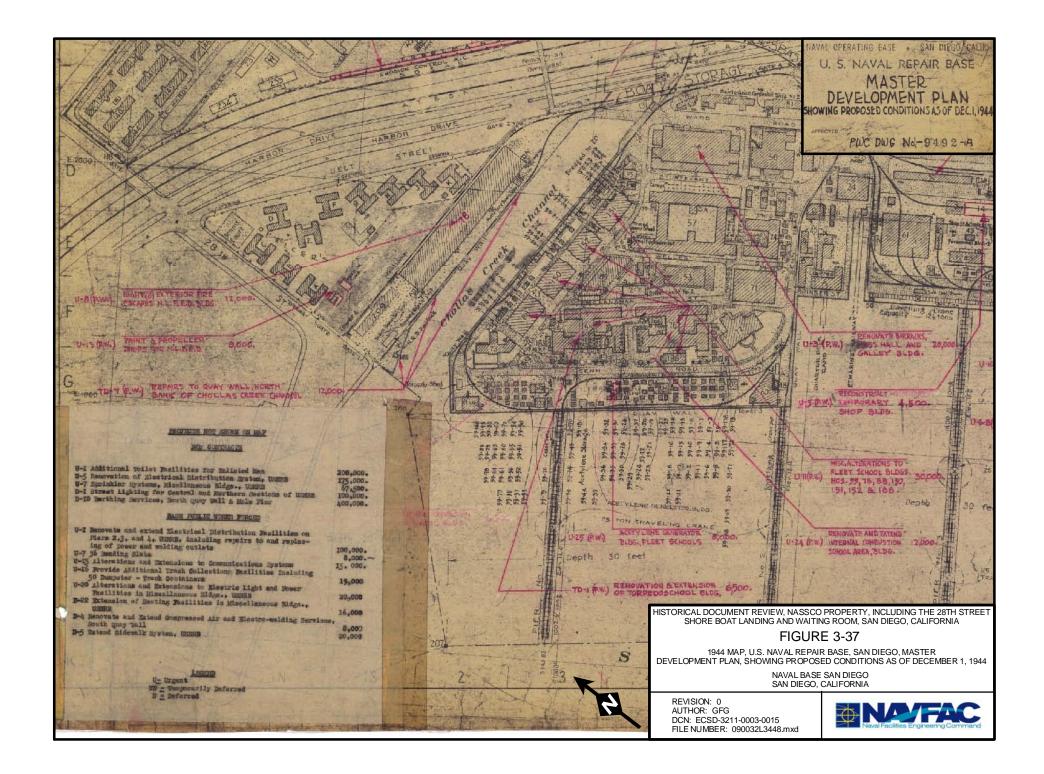


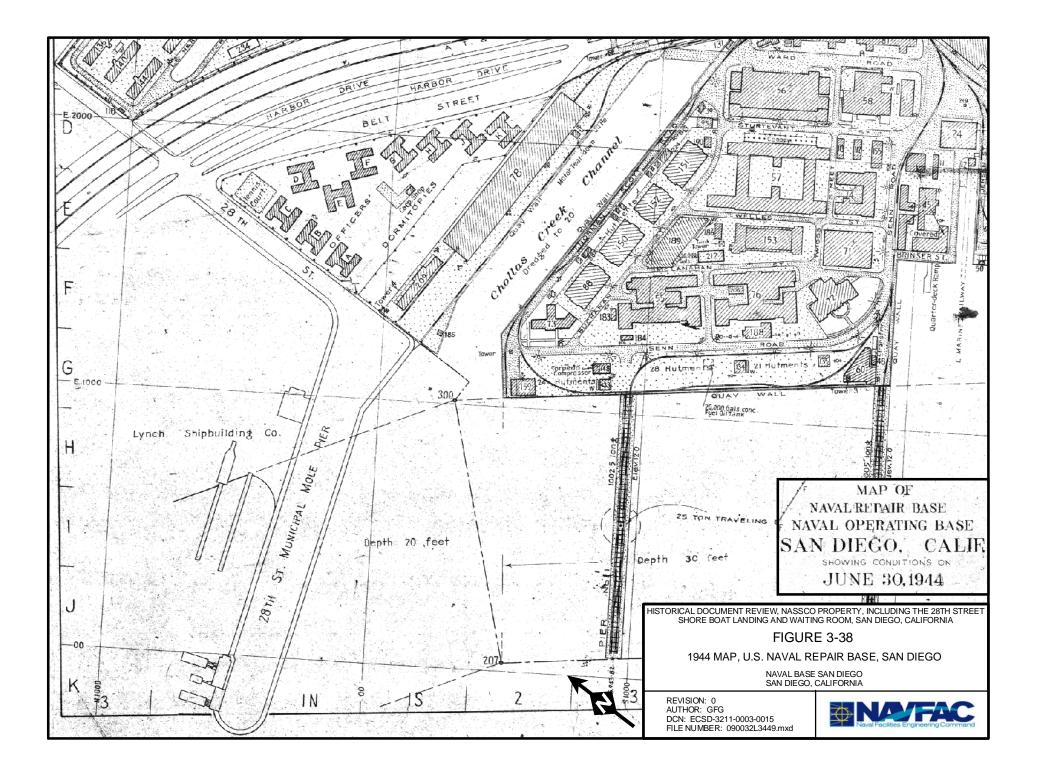


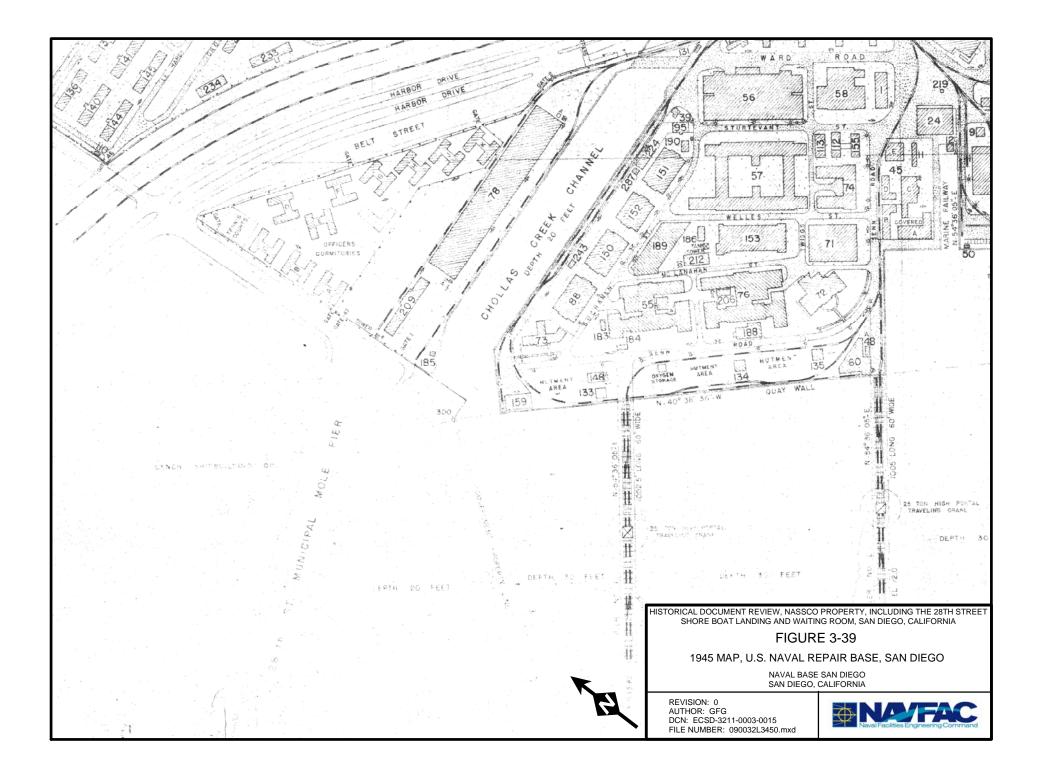


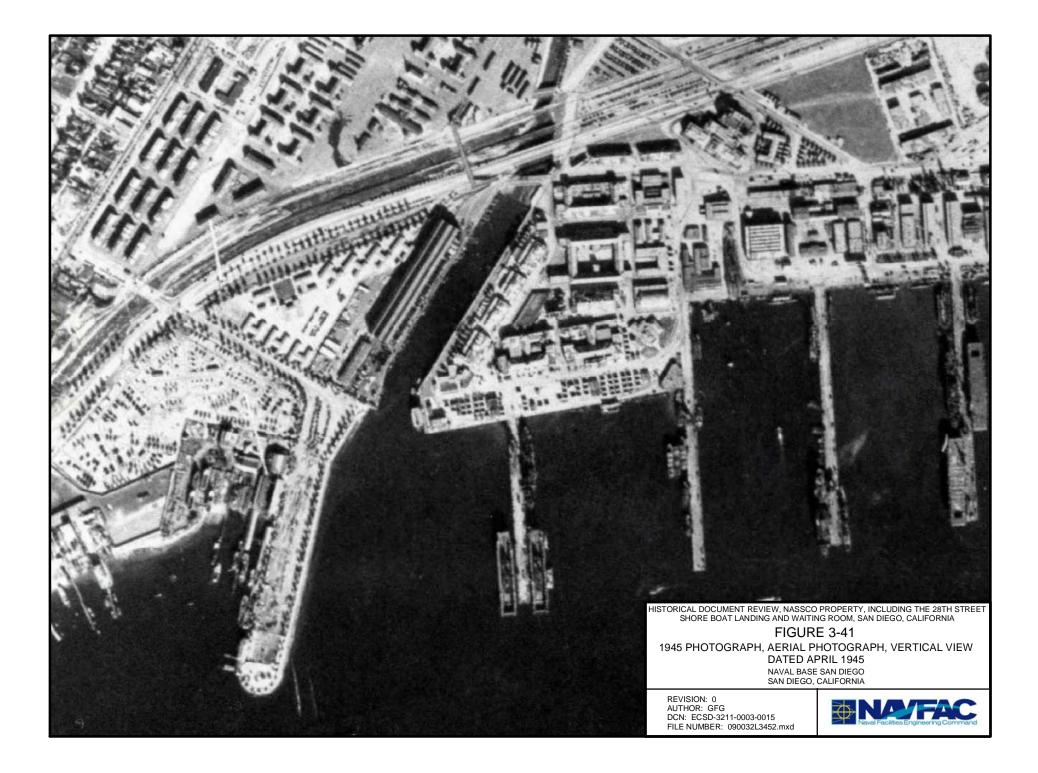


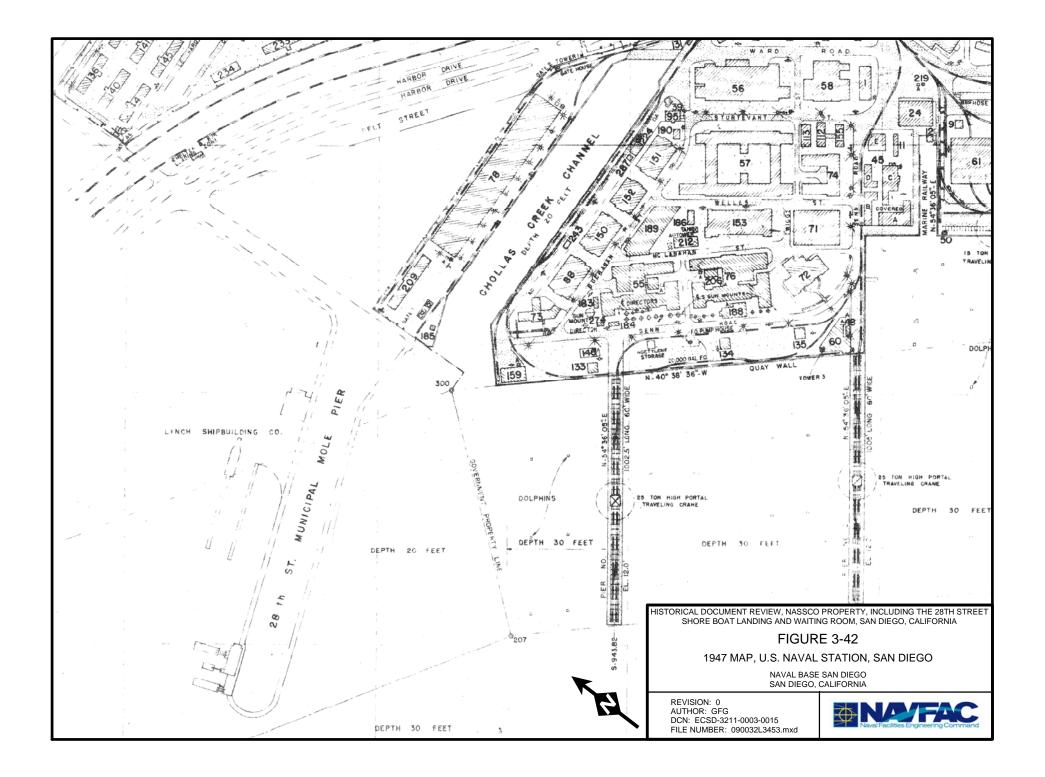


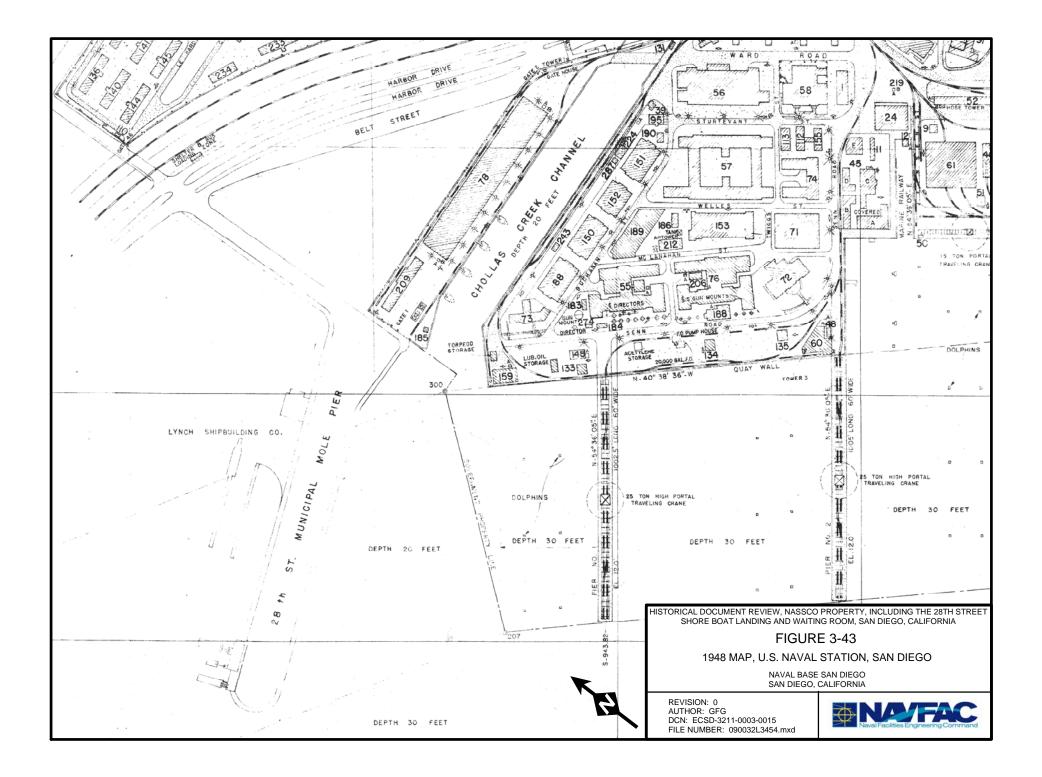


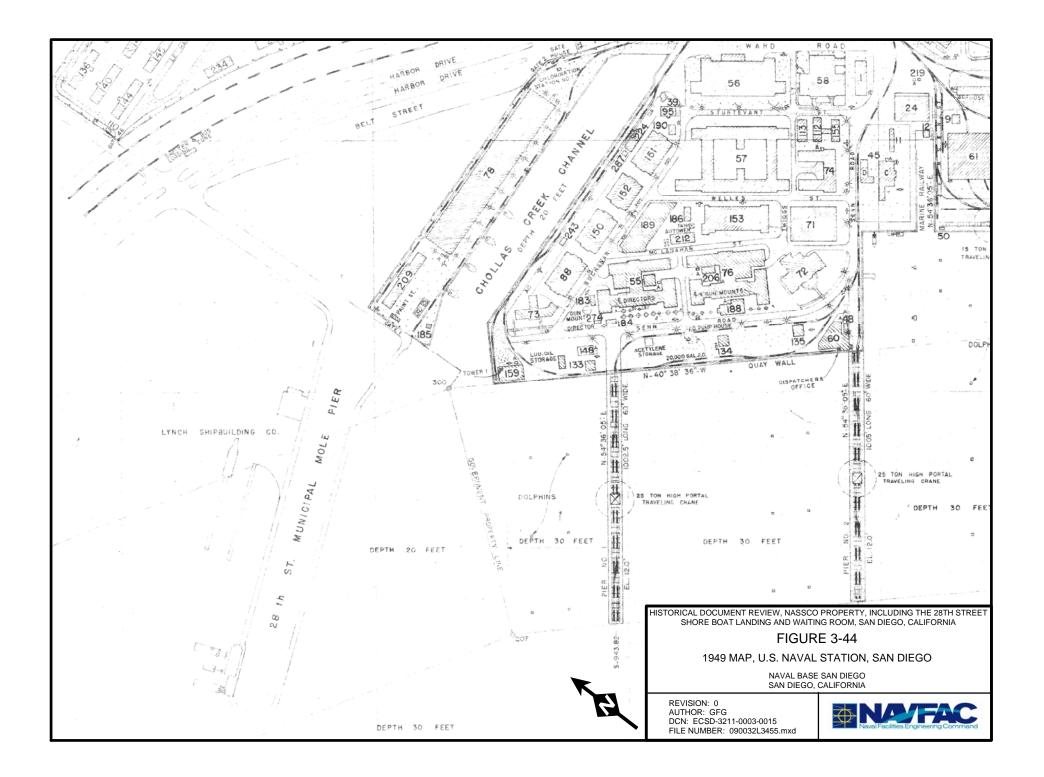


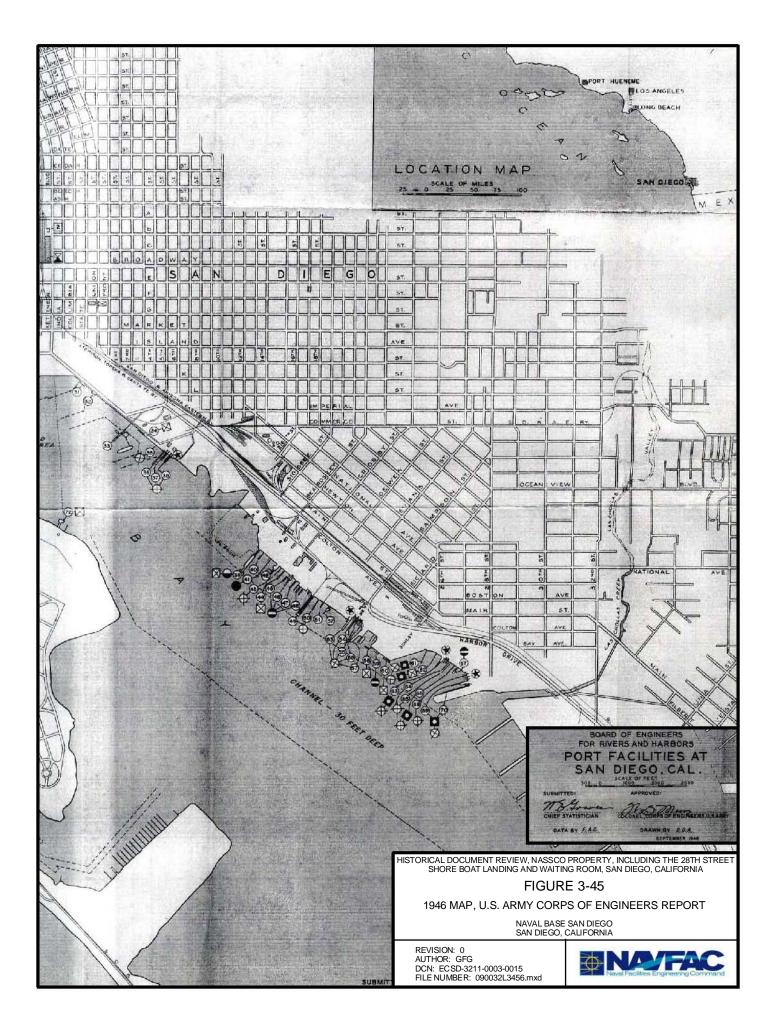












REFERENCE NUMBER ON WAP	fi7 Demplos Dist fin, Dier.			PORT 540 Etc 64 Agran Briggard Flur Sc. 3.			69 Lynon Shippard Fiar No. 2,		
LOCATION ON WATER FRONT	Forgles Fish Co. Fier. Fort of 28th Street, adjecent to			About 230 feet north of 28th Street			About 10) feet north of 28th Street		
	National Iron Works Pier Bo, 1.			Kole.			Kole.		
OWNED BY	Feoples Fish Co.			Lynch Shipbollding Co.			Lynch Shipbuilding Co.		
OPERATED BY	do,			do,			40.		
PURPOSE FOR WHICH USED	Receipt of fish and mooring of fish- ing vessels.			Reribing vessels avaiting repair.			Berthing vasuels for repoir and out fitting.		
TYPE OF CONSTRUCTION	Open timber pile, timber deck pier projecting from manonry bulkhead with solid fill.		Open timber pile, timber deck.			Open timber pile, timber		deck.	
	Yace	Forthwest	South side	Tace	Borth elde	South side	Table	Aurth side	South ald
DESCRIPTION :	(feet)	elde(feet)	(fret)	(fest)	(feet)	(feet)	(feet)	(feet)	(feet)
DEPTH OF MATER, B.1.1.V.	36	175 25-0	75+100	5	370	370 25-0	15+40 25	430	230+200
BERTHING SPACE AVAILABLE	. 35	75	75	0	100	200	0	290	230
WIDTH OF APRON	Part open.		1	Open pier.			Open.	Open and 15.	Outer 230g
DECK ABOVE m.1.1.w.	15			11			11		Sec.
CAPACITY PCS SQUARE FOOT (LBS.) LIGHTED OR UNLIGHTED	Lighted.		Contraction of the	Unlighted.		17132.1	- Lighted.		Proto and
TRANSIT SHEDS :	None,	and the second second	1.111111	None.			Nond,		122231
TYPE OF CONSTRUCTION		1.		C ALL			12.5	Contraction in	-
LENGTH AND WIDTH (FT.)			1.1.1.1.1.1.1	10000		1.1.1.5	-		1
TOTAL FLOOR AREA FOR CARBO (SQ.FL) RUMBER OF FLOORS			12 12 12 12	1000	1	12 114 12	-	10000	1
REIGHT BETWEEK FLOORS (FT.)	12011			11223		1012151	1.1.1.1.1.1	111111	12.2
ALLOWABLE LOAD PER SQ. FT. (LBS.) LIGHTED BR URLIGHTED	122					1.1.11	1999		1
NECHANICAL HANDLING FACILITIES	Tertinal and	hortental di	tab untrasters	Yese	11000		Fons,	and singless	111
CALL CALL CALL CALL CALL CALL CALL CALL		* for unloading			1000011	2011		1111	Control 1
		time to conner							1072
Filmer in the second	-					1.1.1.2.		A PARTY	100
9.00	the second second			1000		-		11111	1
and the second state of the second			Chie Harris	1953.	Constant of	a substant	1. Carlo	11111	120
							12200		
	1000	1 1 2 7 1	1 Partie			1011			1
RAILWAY CONNECTIONS:	Son+.			None.			None.	11111122	Contra de
a state of the sta					10411211		1.1.1.1.		12
	-			11112					-
	1.12		11.11.11.11			Constant in	123	Sales and	The last
			-			114	122	- ton al ton	1.
		1000		1.7.7	1 77 1 1				100
WATER SUPPLY	-	1.	131103	Boze,			dity servi		- Contract
(available to seessia)	1977				25531				56.74
	-		-	-				1	a line to the
FIRE PROTECTION	Portable ext	inguishers.		None.	1000	1.111		111771	1011
(other that sits service)					1.5.10	1 2 1			1020
ELECTAIC CURRENT	Contraction of			No.	1	2111	-		1000
(available in seemals)	-			Mone.	1	1 miles			C Contra
	5.67	A				822		1.22.4	
REMARKS	laner 100 fe	at of play is	24 feet wide	Marine rails	vag No. 2 alas	og south side	Marine rei	lway on north a	ilde, Mach1
	and the second s			Larger rollway is proposed for anoth wife,			step and other buildings at inner a Fisr equipped with compressed mir,		
						10 30 7	water, and	electric lines	. Trucks
and the state of the	1	-	-	Stort	10 11 11	ALC: NO	have a stee	to coar.	A Designed
and a support of	180	C. C. C. C.	1000	1 1 1 1 1 1		11111	in the state	1.1.1	- Het-
	1.111					I - A Park and a	1 100		1000
								100	
and the second s							1		
	-						1		
1 million									
to a standard to the Galaxy Come	No. of Concession, Name	A CONTRACTOR OF	CONTRACTOR OF	LUC INT	The local division of the	In the second	AND DESIGNATION.		and the second
			the second second second			COLUMN # 2111 @			THE PARTY OF
	The State of State	a ce racija							1.1

The residence and the second second			S, WHARV			ORT_Sac ≥+	EF, Galif.		_	
REFERENCE NUMBER ON MAP	TO			n Baat bet 2			T2 Datus C61 De. Wharf.			
NAME	Lynch Bhipyard Wharf So. 1.				Notel del Coronato Somihouse Latting.			Vatas Oli De, Wharf,		
LOCATION ON WATER FRONT	Along north side of 25th Street Mole.			Oleristia Bey, Coronado,			Foot of Avenue "A", Coronado,			
OWNED BY	Lynch Shipbuilding Co.			Rotel del Coronado.			Umion Oil Co. of California.			
OPERATED BY	da,			do.			40.			
PURPOSE FOR WHICH USED	Serthing vessels for repair and ont-			Barthing recreational graft,			Receipt of petrologe products and bunkering rescels.			
			-							
TYPE OF CONSTRUCTION	Shore wharf of open timber piling with timber deck along stone bulk-		Open timber pile wharf, timber dock and landing floats. Approach 100 by			Open timbe	r pile, L-head k and 140- by	wharf with		
		h Street Mole		and landing 10 fest.	floats, App	LOWGD TOO PA	proach.	a and fech gh	TP-1001 MD-	
						-	000			
AND STOLEN OF STOLEN	Tace	West side	T	Tace	Terthwest	Southeast	Face	Zast aids	West alde	
DESCRIPTION :	(feet)	(feet)		(feet)	eide (ft.)	side (ft.)	(feet)	(feet)	(feet)	
DINER SI OR S	630	30		75	75	75	100	¥5 20-0	60 20-0	
DEPTH OF WATER , m.1.1.w.	25-0	25		9	1	-	20	45	20-0	
BERTHING SPACE AVAILABLE WIDTH OF APRON	430 Pert open.	0	1.1.1.1.2	7loats, Open (on flo	(ata).	1111111	Fart open.	*7	w	
WIDTH OF APRON DECK ABOVE M.1.1.V.	12			10		1	B S		the state	
CAPACITY PER SQUARE FOOT (LBS.)	-			10			8 250			
LIBRITED OR UNLIGHTED	Part lighte	id.		Lighted, None,			Lighted. Mone.			
TRANSIT SHEDS:	None: erver	el small sho	p buildings							
TYPE OF CONSTRUCTION	along wharf		1.1.1		1181.00	1997 - 1992 - 1993 - 19	1.1.1.5 (1.1.1)	5. K. 1923	108.01	
LENGTH AND WIDTH (FT.)		5.5		1				No. N		
TOTAL FLOOR AREA FOR CARDO (50.FL)							A STATE OF	11 P		
NUMBER OF FLOORS			1010-211		11					
REIBET BETWILE FLOORS (FT.) ALLONABLE LOAD FER SO. FT. (185.)							11752	-		
Libertes de UALILATES							1.1.1			
MECHANICAL HANDLING FACILITIES	literi fran	stiff-lag a	lestric der-	The hand-pre-	erated derrid	a with H-foot	One unrigo	ed must and bo	on derrick.	
The second s			0 Aura and 75-							
			boat 75 feet							
	Free built end, Elipyard exilpent scattable for use on all piers, in- eluses mobile crames, tractor crame on persmatic tires, gasoline-powered suto craps with 35-foot boom and hard					_	-	_	110	
Contraction of the second second				a mer				and the second s		
				North Party						
The state of the s							1			
	rubber tire		-tow site sArd	12510500	201010	1.			Contraction of the	
		12.1	1	1 2 2 4 1 3			1 States	235	112215-134	
RAILWAY CONNECTIONS:	None.		No. top . so can o	Sone.			None,			
							10.16		St. 12.03	
	S.7 (25-13-	States 1	Sector Color	1			1.45			
		1.1.1.1.1.1.1		1. 122	1.1.1.2.1		11.00		- 1 - + -	
11812 1855 C			1. 1. 1. 1.	1.			1000		- notice	
	-	11111		in the second		1	1			
Sector Constant	11000			1001			1111		-	
WATER SUPPLY	ALC: NOT		-	Citer and			A Zulash -	star plas 7114	12.00	
(Available to reset[s)	City service			City service			A g-lass w	ster plps line		
				1	1	1	1	1011 C	(1 m m m m m m m m m m m m m m m m m m m	
	2.11	and the first state of the	in the second			A	101511	10000		
FIRE PROTECTION	Portable so	a matile sign	ipnest,	Portable en	tingulatera,		Purtable e	atingstehers.		
fethar than sity service?	1972 VI.						1	Provide la	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
and a state of the second	-		and the second	1 million	-					
ELECTRIC CURRENT	*			499m.			7.: uitlets on wharf for extension cords,			
Brenn and			1.12.4			and the second second	Die beiten		agh pipelines	
	water and	and with some	te. Trucks		int of berlid	es wharf.			hogis, militas,	
REWARKS	hare access	to wharf.			Constant (Constant)				mearing petro	
NENGHAS:		CONTRACTOR OF		1			Lein prota	ets. Tracks b	tave full acce	
MEMORKS:				1.		1.1.1.1	to wharf.	Two essil she	de on wherf.	
PENGRAS:	131			1.5.5	Ser Line	1.000	and the state		Contraction of the	
		-								
								_		
									1.6	
					/ NASSO				UE 20TU	
								LUDING T DIEGO, CA		
				ANDING A	ND WAIT	ING ROOI	M, SÁN C			
				ANDING A	ND WAIT		M, SÁN C			
	HISTO	SHORE	E BOAT LA	NDING A		ING ROOF	M, SÁN D 6	NEGO, CA	LIFORNIA	
	HISTO	SHORE	E BOAT LA	NDING A		ING ROOF	M, SÁN D 6	NEGO, CA	LIFORNIA	
	HISTO	SHORE	E BOAT LA	NDING A		ING ROOF	M, SÁN D 6	NEGO, CA	LIFORNIA	
	HISTO	SHORE	E BOAT LA	NDING A I I.S. ARI	ND WAIT	ING ROOF	M, SÁN E 6 ENGII	NEGO, CA	THE 28TH S LIFORNIA REPOR	

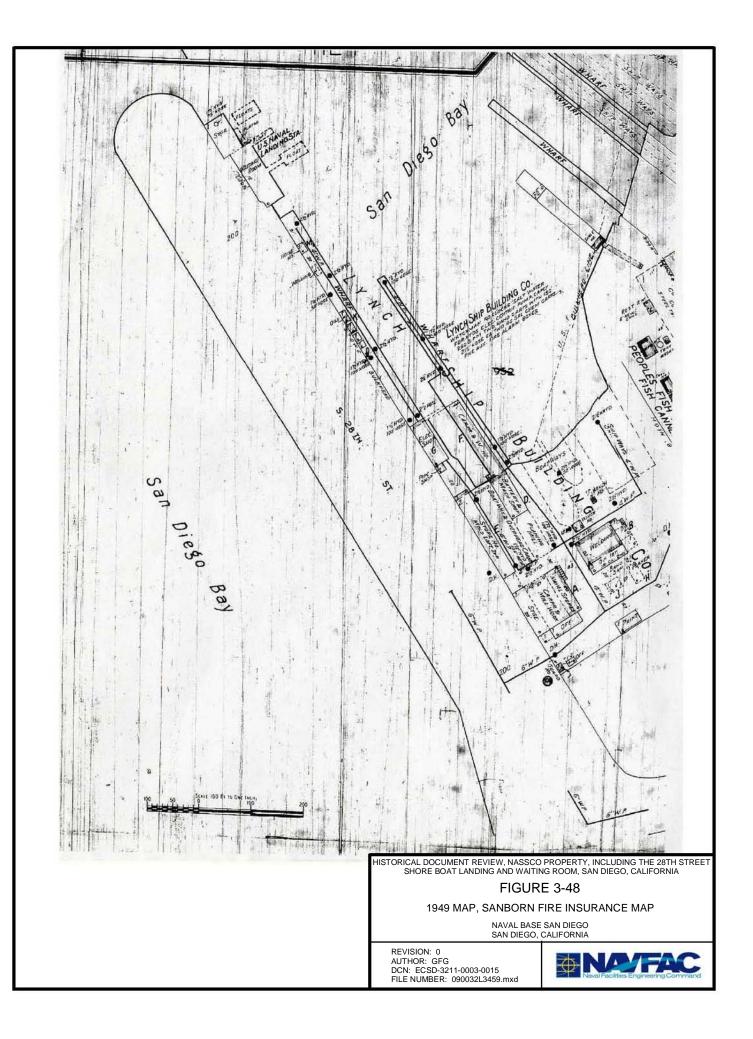
REVISION: 0 AUTHOR: GFG DCN: ECSD-3211-0003-0015 FILE NUMBER: 090032L3457.mxd

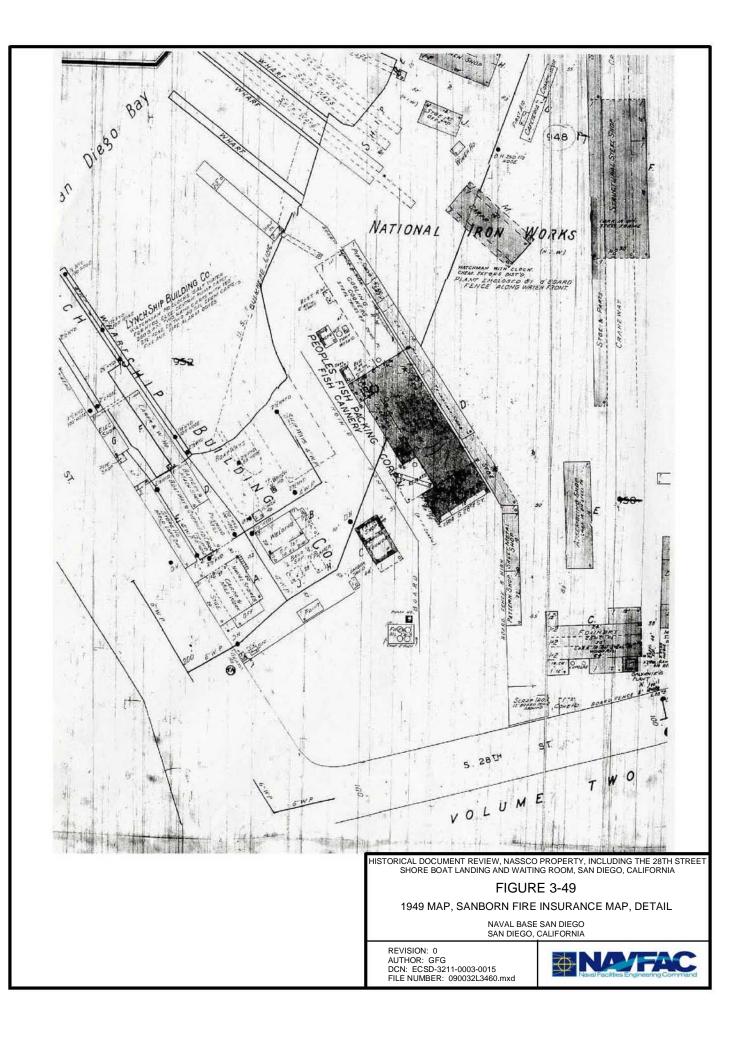
52

TAHE OF PLANT	Lynch Shipbuilding Co.	Martinolich Shipbuilding Co.	National Iron Works.
LOCATION	North side 25th Street.	Between foot of Schley Street and	Toot of 26th, 27th, and 28th Street
		26th Street extended.	at a could street
OWNED BY	Lynch Shipbuilding Co.	Martinolich Shipbuilding Co.	National Iron Works.
OPERATED BY	do.	do.	do.
Address	Foot of 25th Street.	2465 Belt Street.	Harbor Drive and 28th Street, 1
REPAIR EQUIPHENT	Machine, wood working, pattern, pipe,	General hull and engine repair	Machine, carpenter, structural
1.2.01 A	electric and welding shops; foundry	equipment.	steel, fabrication, pattern.
	and mold loft.	One marine railway.	sheet metal, pipe, electrical.
	Two marine railways.		blacksaith, and layout shops;
			foundry and galvanising plant,
			Special deck fittings for tons
			fishing boats.
			Five marine railways.
NATURE OF REPAIRS UNDERTAKEN	Construction and repair of wood and	Repair of hulls, engines, and deck	Construction and repair of large
1855	steel vessels. Handles deck equip-	fittings of wood and steel vessels.	wood and metal tuna fishing boat
	ment, pumps, electric fittings,		
	canvas work, and rigging.		
LARGEST SHAFTS PRODUCED	18 inches by 24 feet.	To data.	24 inches by 22 feet.
LARGEST CASTINGS PRODUCED	Iron - 3 tons; bronse - 1800 pounde.	None.	Iron - 10 tons; alusinus - 1500 pounds; brunse - 1 ton; brais- 1/2 ton.
CAPACITY	Vessels up to 150 fest on ways; any	Vessels 156 by 40 feet, of 1000 tons	
·	size according to draft in water.	capacity.	any size in water.
STOCK WATERIAL CARRIED	Large stock of general material.	Small general stock,	Average stock all shippard maker ial and special fivilings, firm furni and plate steel and jumb
NEMARKS	Building ways available in addition to two marine ways.	At Bat. No. 61.	At Baf. Nos. 62-66.
	At Ref. Hos. 68-70.		

NAME OF PLANT	San Diego Marine Construction Co.	Shepherd Diesel Marine.	Standard Iron Morks.
LOCATION	Foot of Sampson Street,	Between foot of Deway and Byans Streets extended.	Harbor Drive at Beardsley Street.
OWNED BY	San Diego Marine Construction Co.	Shepherd Tractor & Equipment Co.	Standard Iron Works.
OPERATED SY	do-	Shepherd Diesel Marine Division	do
Address	. Joot of Sampson Street.	2043 Main Street.	Harbor Drive at Beardsley Streets,
REPAIR EQUIPHENT	Machine, welding, blacksmith, elec- tric and boat shops; portable	Machine shop: repair shop with mono- rail hoist for vessels' engines.	Machine and structural shops; form
	electric and gas-velding units.		equipment.
	. 1,000-ton floating drydock and 8	A	
	marine railways.		
, ,			
NATURE OF REPAIRS UNDERTAKEN	Construction and repair of wood and	Installation and repair of Diesel	Retubing and maintenance of boiler
	metal vessels; repair of Diesel,	engines,	repair of engines and power
	gasoline, and steam engines; sorap-		plants,
2 B	ing, cleaning, and painting.		
		and an	
LARGEST SHAFTS PRODUCED	S inches by 25 feet.	So data.	2D inches by 22 feet.
LARGEST CASTINGS PRODUCED	Hone	Jona	Iron and brass up to 7 tons.
CAPACITY	Vessels up to 1,000 tens,	•	•
STOCK MATERIAL CARRIED	•	-	•

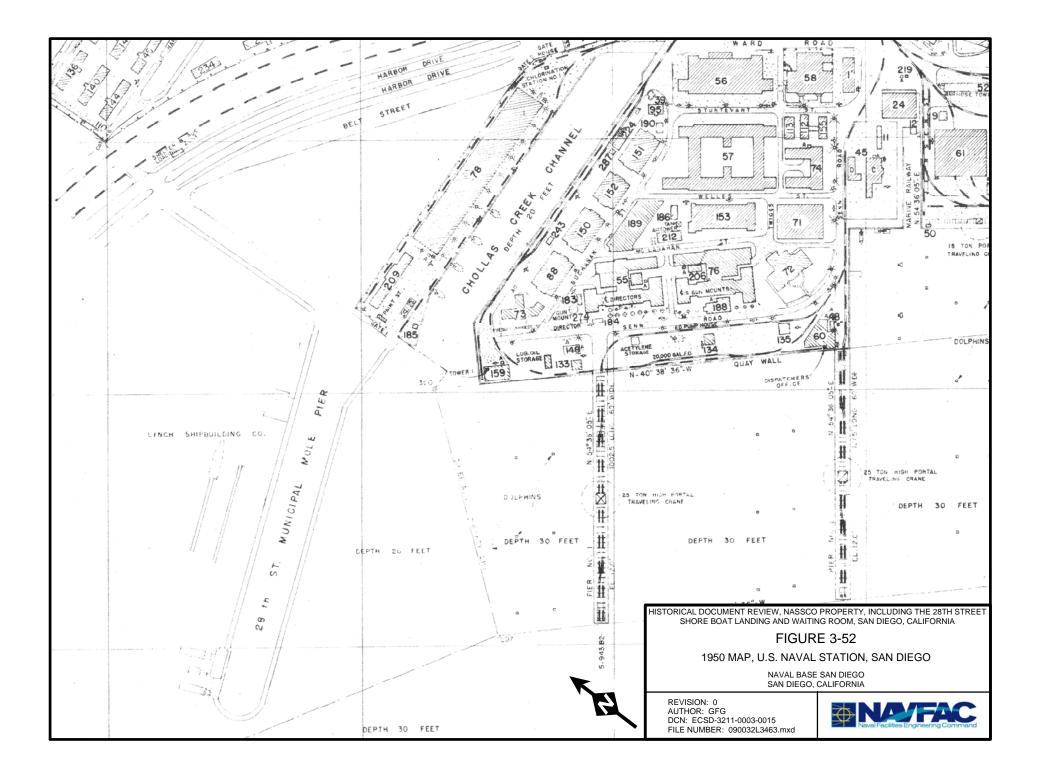
HISTORICAL DOCUMENT REVIEW, NASSCO PROPERTY, INCLUDING THE 28TH STREET SHORE BOAT LANDING AND WAITING ROOM, SAN DIEGO, CALIFORNIA

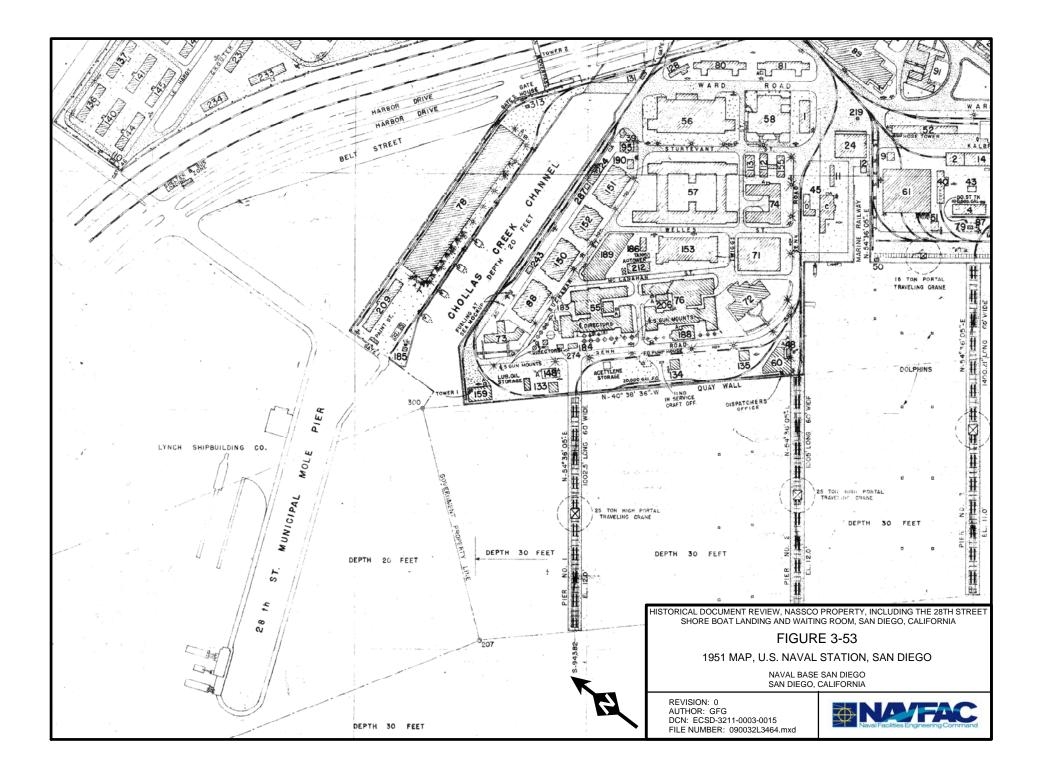

FIGURE 3-47

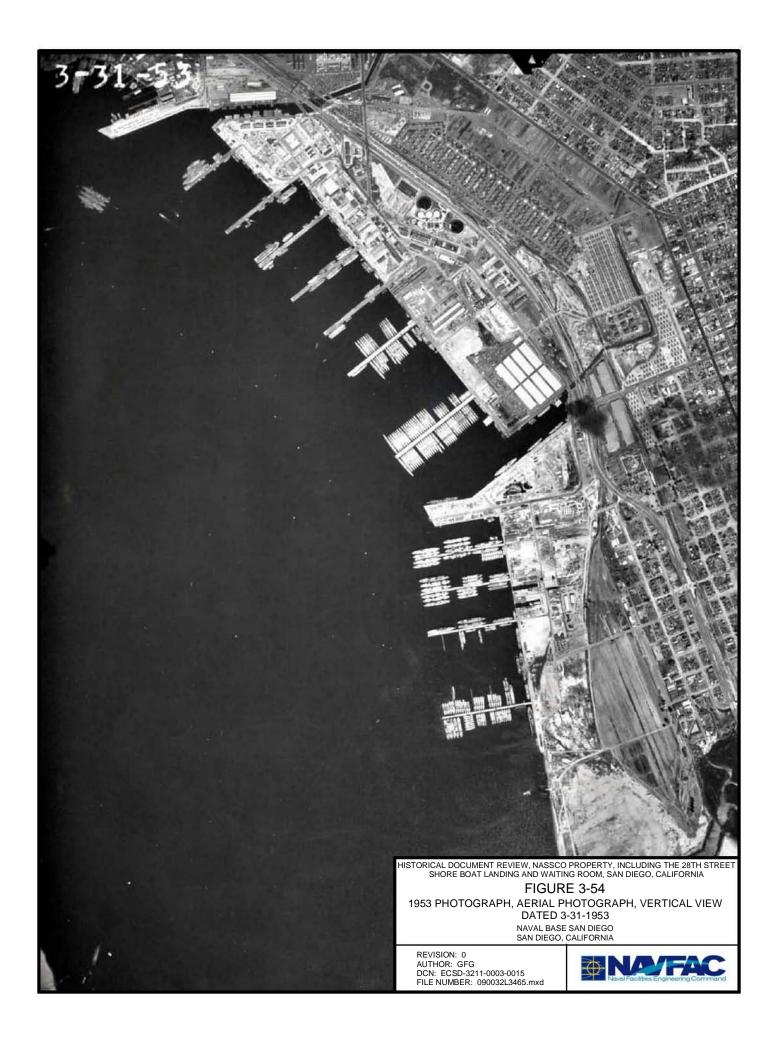

1946 TABLE, U.S. ARMY CORPS OF ENGINEERS REPORT

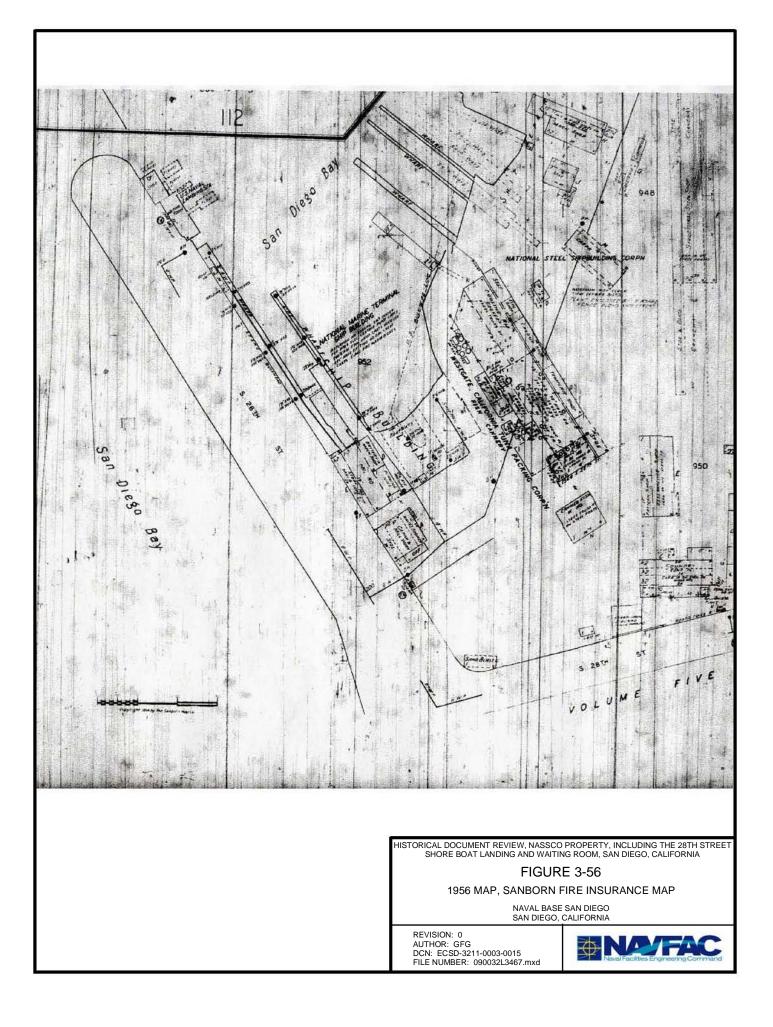
NAVAL BASE SAN DIEGO SAN DIEGO, CALIFORNIA

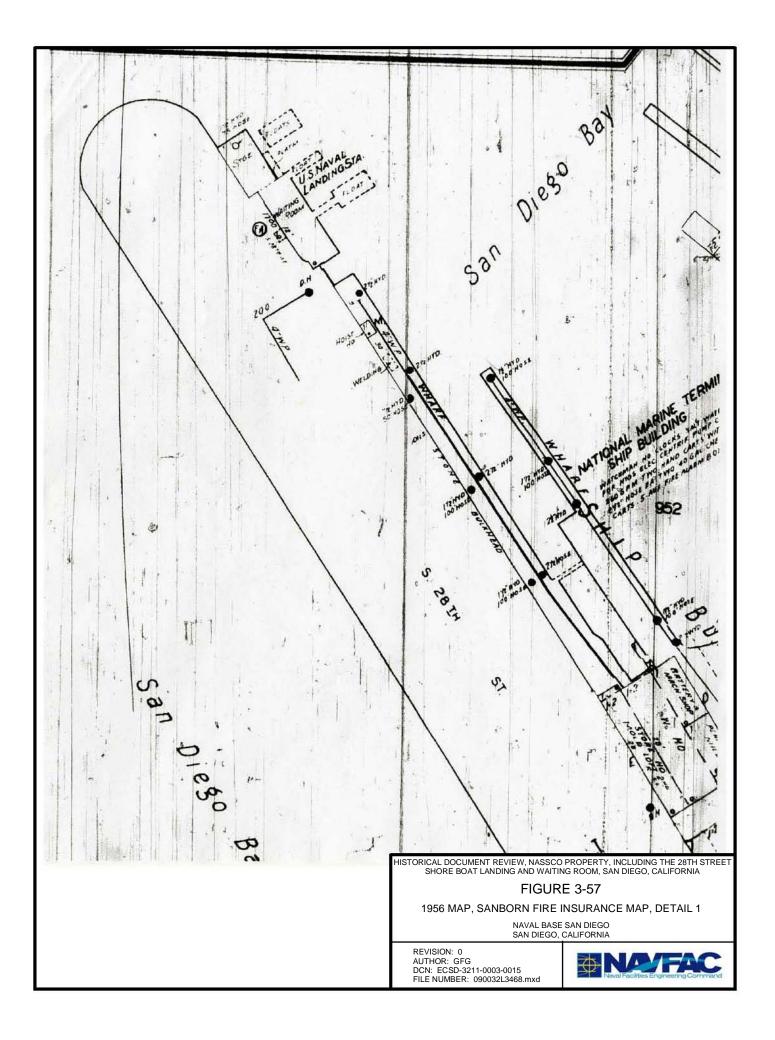
REVISION: 0 AUTHOR: GFG DCN: ECSD-3211-0003-0015 FILE NUMBER: 090032L3458.mxd

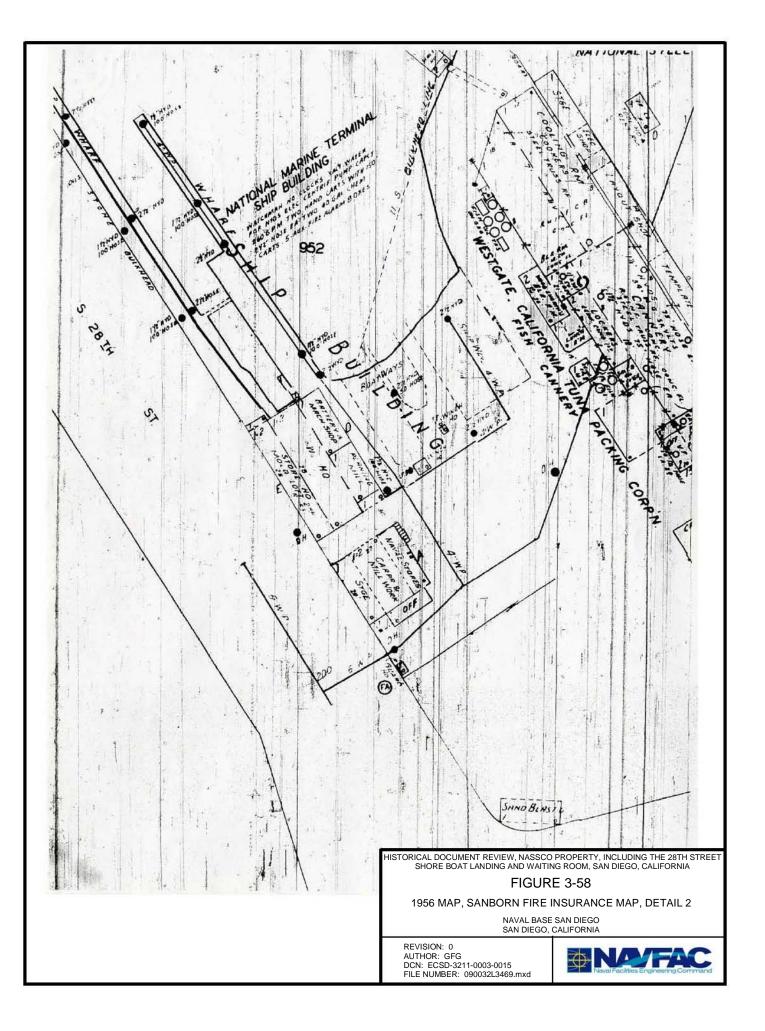


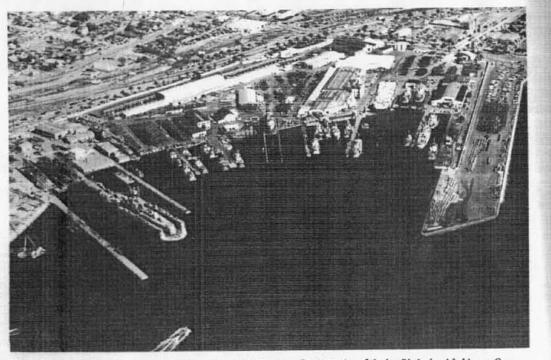











72

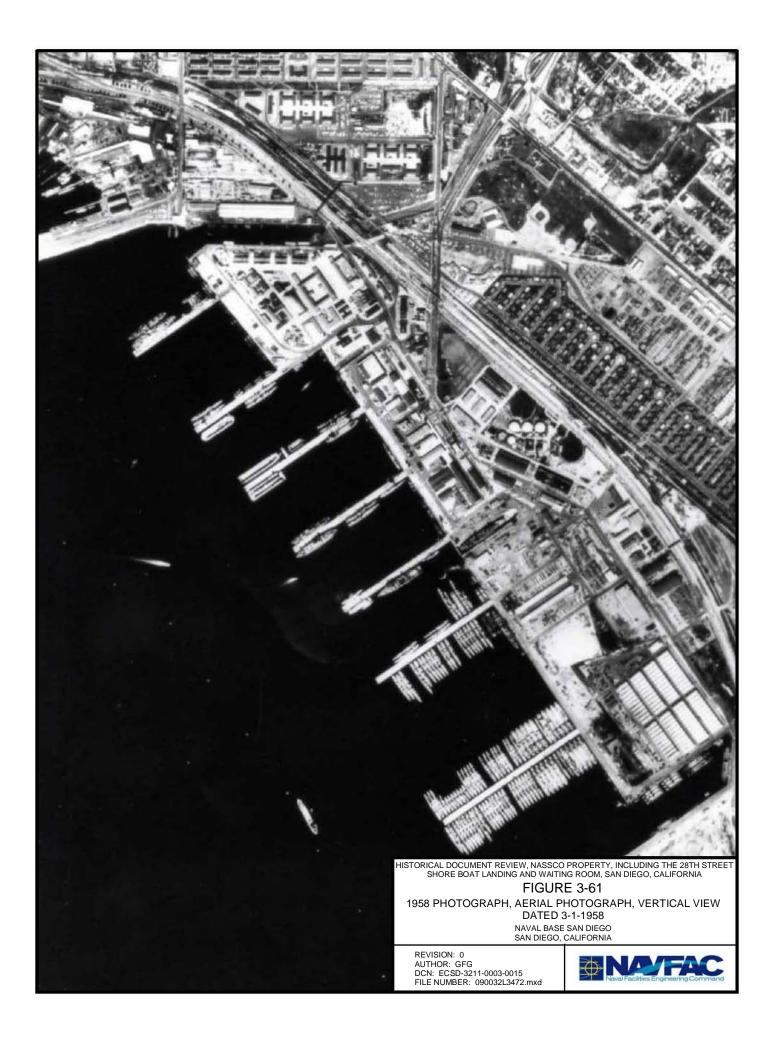
PIERS, WHARVES, AND DOCKS

REFERENCE NUMBER ON MAP	79		ck Code No. 57			k Code No. 572			k Code No. 2
NAME	National M	arine Termina	1, Pier No. 1.	28th Street	Pier.	14472	Johnson Wes	tern Constru	ctors Wharf.
LOCATION ON WATERFRONT	Northeast : northwest	side of San I side of 25th	Diego Bay on Street Pier.	er end of 2	Northeast side of San Diego Bay, out- er end of 28th Street Pier at foot of 28th Street.		approximate	ide of San D sly 2.0 mile North Island	s south of
OWNED BY	National S	teel and Ship	building Corp.	City of San	City of San Diego.		Johnson Western Constructors.		
OPERATED BY	National M.	arine Termina	1, Inc.	City of San	Diego, Harbo	or Department.	-	do.	
FURPOSE FOR WEICH USED	Mooring ve repair; f	ssels for out woling small	fitting and craft.	and shipsen	Receipt of lumber and steel; receipt and shipment of general cargo in foreign and domestic trade.		Mooring com ment.	pany-owned f	loating equip
TYPE OF CONSTRUCTION	timber pi	lkhead, solid le, timber-de extension.	fill with ocked, asphalt-	Concrete bul mooring dol		solid fill; se with face.	Timber pile dolphins in	, tinber dec n line with	k; mooring face.
DESCRIPTION	Face (feet)	West side (feet)		Face (feet)			Face (feet)	North sid (feet)	e South side (feet)
Dimensions	540	30		270 30-28			85	60	60
Depth Alongside at W.L.L.W. Usable Bertbing Space	16 540	16		1325 w/dolphi	ns		300 w/dolph	ins	-
Width of Apron Neight of Deck Above M.L.L.W. Load Capacity per Sq.Ft.(Lbs.) Lighted or Unlighted	30 12 -			Open. 12-10 600 Lighted.			Open. 14-12		1226
TRANSIT SHEDS	Lighted. None.			None.			None .		
Number and Type of Construction Length and Width (feet) Reight Inside (feet)									
Floor Area for Cargo (Sq.Ft.) Load Capacity per Sq.Ft. (Lbs.) Cargo Doors									
							000 10 10		
MECHANICAL MANDLING FACILITIES	Use of cranes described under Ref. No. 70.		-	-		One 10-ton pneumatic, stiff-leg derrick with 80-foot boom.			
1.11							1		
RAILWAY COMMECTIONS	Nose.			None.				Arizona Eas ear of prope	
HIGHWAY CONNECTIONS	Via 28th S asphalt, Drive (ar	75 feet wide	ch and access) , from Harbor	, Same as Ref.	. No. 79.		al and art	Strand Boule crial), asph 75 feet wide	alt and
WATER SUPPLY (Available to Vessels)	Through sm	all line.		-	5		-		1.14
ELECTRIC CURRENT (Available to Vessels)	cycle; A.	C., 220 volt	le-phase, 60- ts, 3-phase,	-			•		
FIRE PROTECTION (Other than City)	60-cycle. Hand extin	guishers and	watchmen.	-	12.2021.202		-		1
REMARKS	fueling p Wharf equi line.	pped with com parking lot 1		age in reat face and to Masonry bull along south	o open stora thead with se	fild fill pier for a	Open privat contractor	e storage in s supplies a	rear for nd equipment
				HISTODICAL					
						REVIEW, NASS	TING ROOM, S		
							RE 3-59		
				1956	I ABLE, U.		SE SAN DIEGO	C	5 REPORT
				REVISI	ON: 0 PR: GFG	SAN DIEG			

B Street Pier in center and portion of Embarcadero Municipal Wharf in upper center and left.

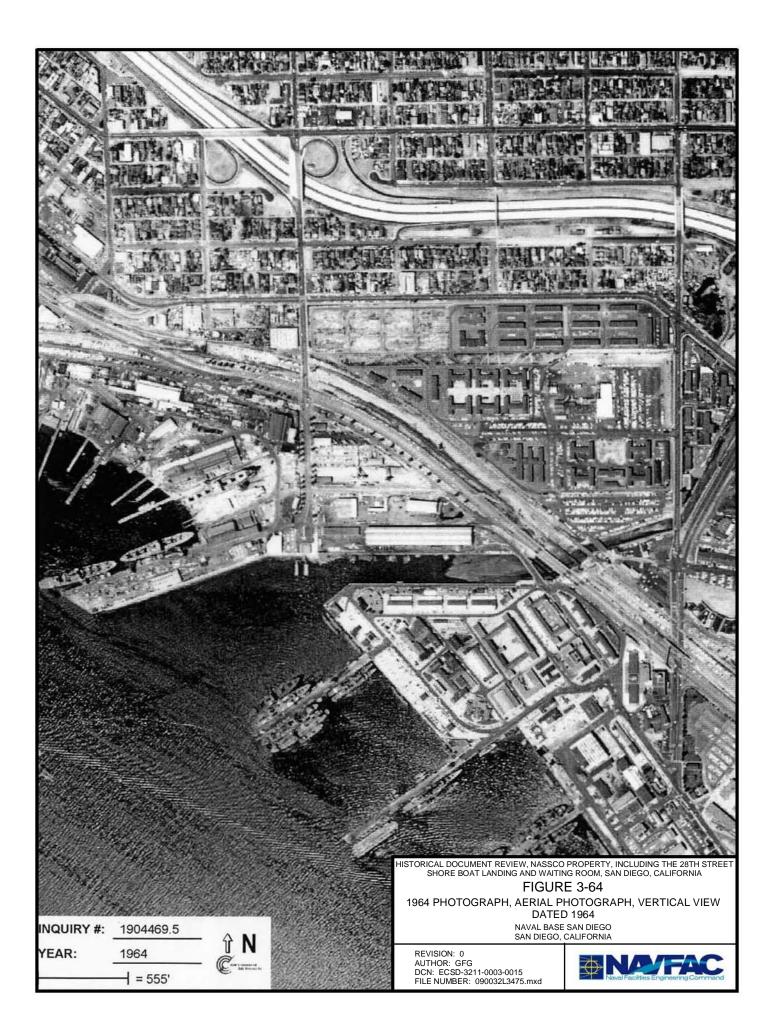
View showing marine repair facilities of Martinolich Shipbuilding Co. on left and National Steel and Shipbuilding Corp. in center and right; 28th Street Pier on far right.

> HISTORICAL DOCUMENT REVIEW, NASSCO PROPERTY, INCLUDING THE 28TH STREET SHORE BOAT LANDING AND WAITING ROOM, SAN DIEGO, CALIFORNIA

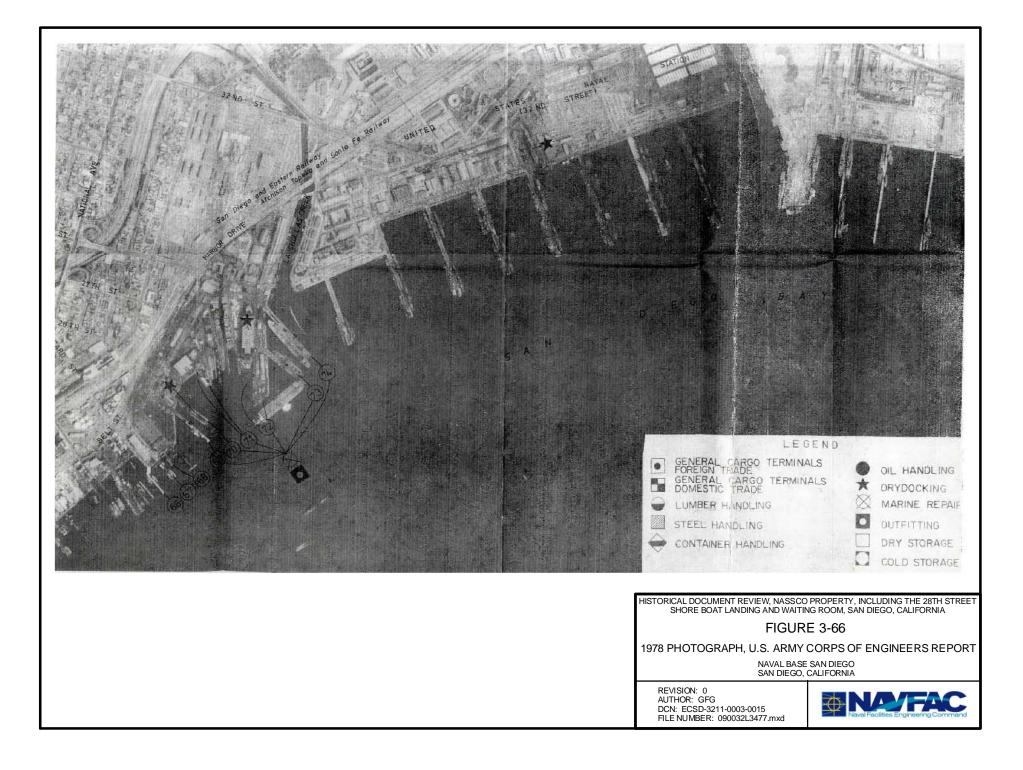

> > FIGURE 3-60

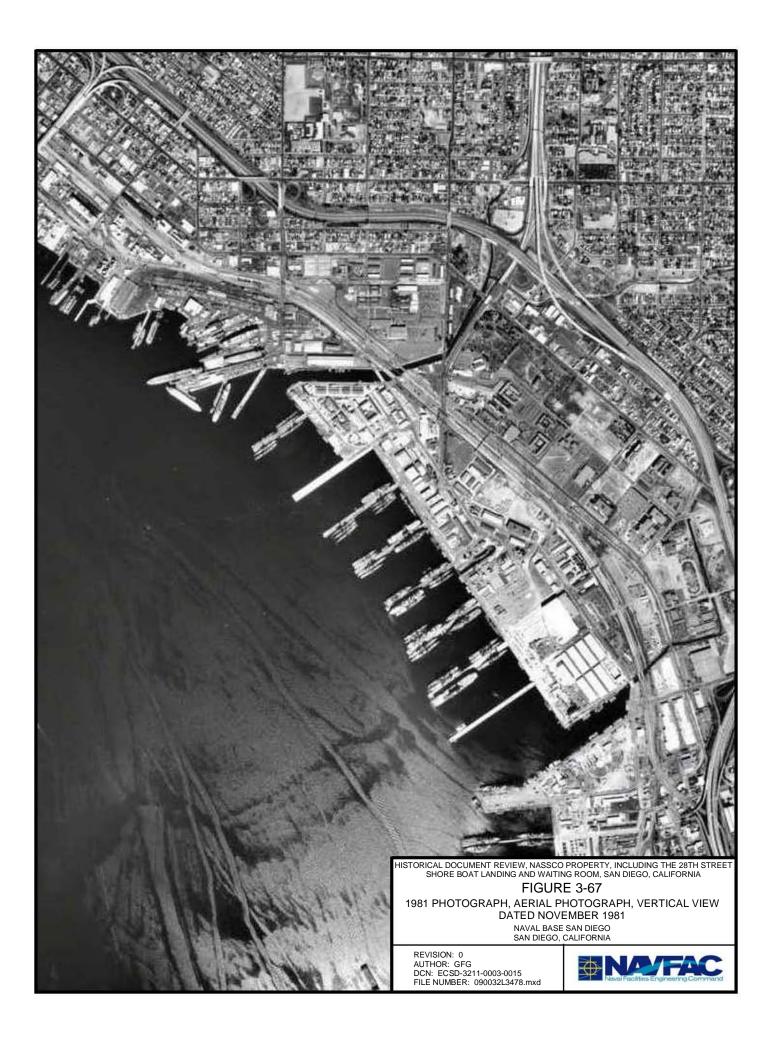
1956 PHOTOGRAPH, U.S. ARMY CORPS OF ENGINEERS REPORT

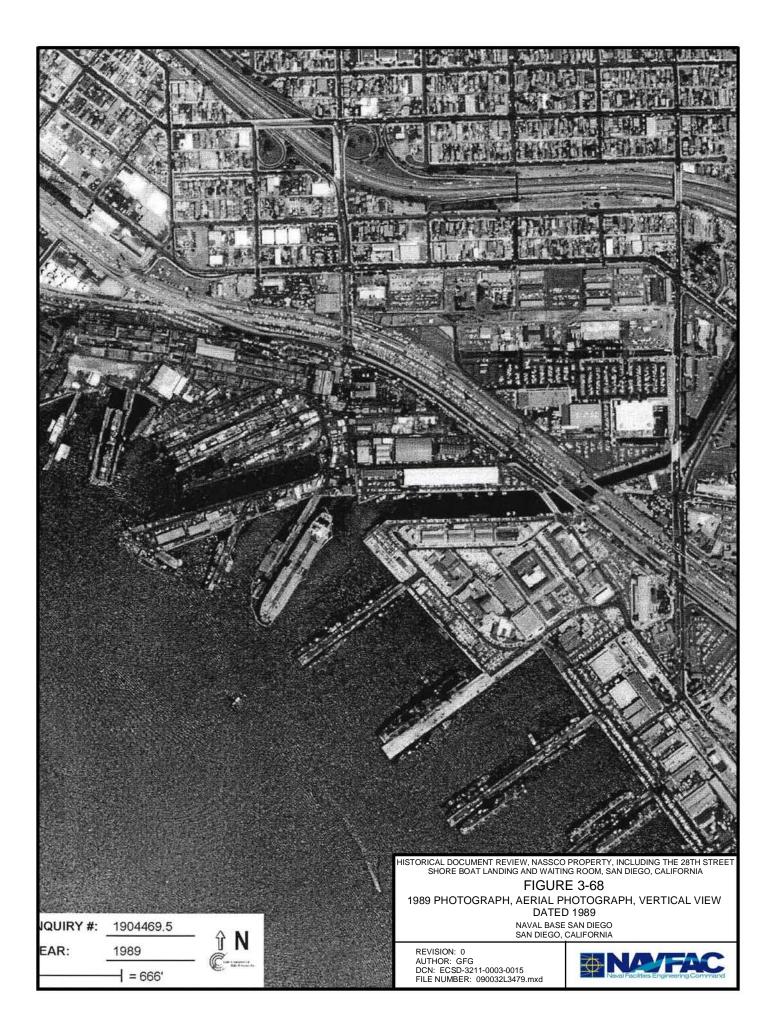
NAVAL BASE SAN DIEGO SAN DIEGO, CALIFORNIA

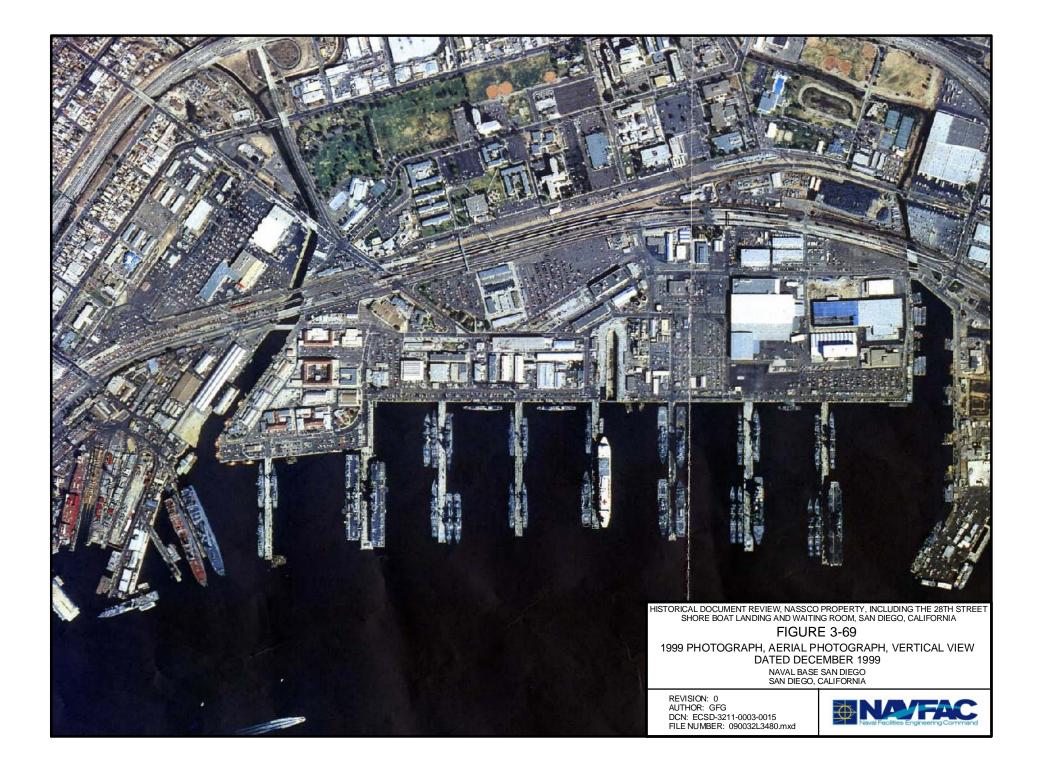

REVISION: 0 AUTHOR: GFG DCN: ECSD-3211-0003-0015 FILE NUMBER: 090032L3471.mxd

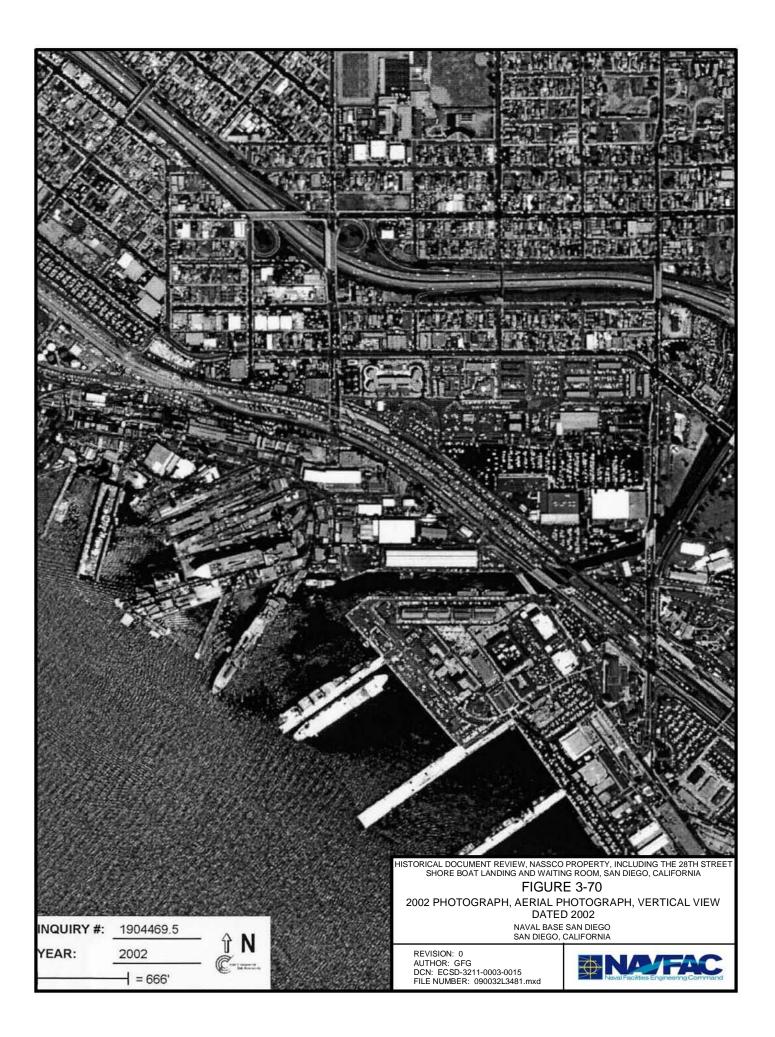












APPENDIX A

EDR REPORT(S)

ECSD-3211-0003-0015 PrDr Hist Review.doc

This page intentionally left blank.

NASSCO Property

2798 Harbor Drive San Diego, CA 92113

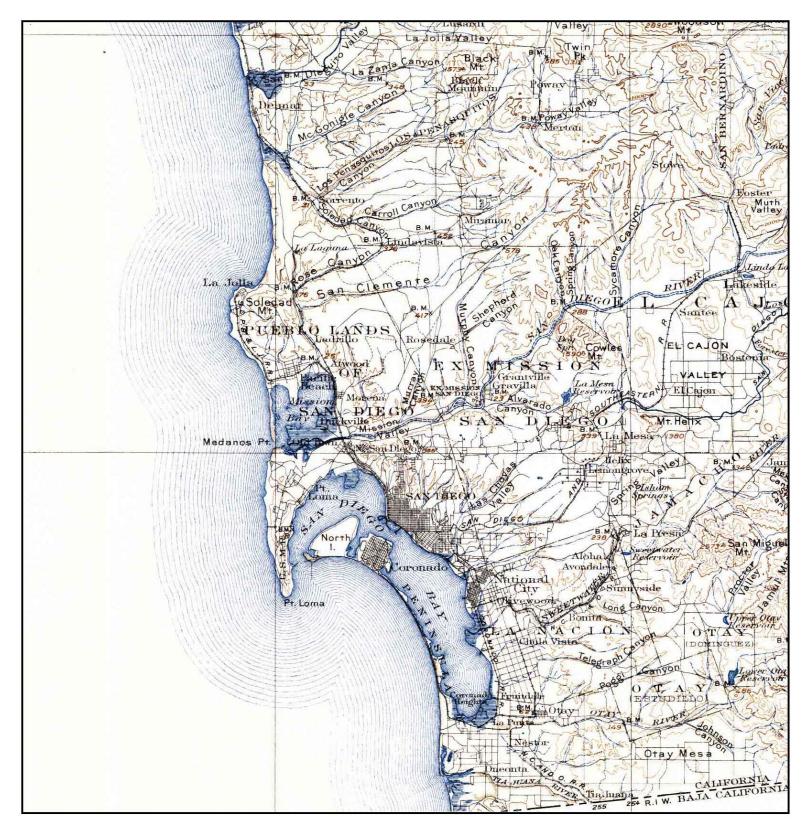
Inquiry Number: 2345259.4 October 23, 2008

The EDR Historical Topographic Map Report

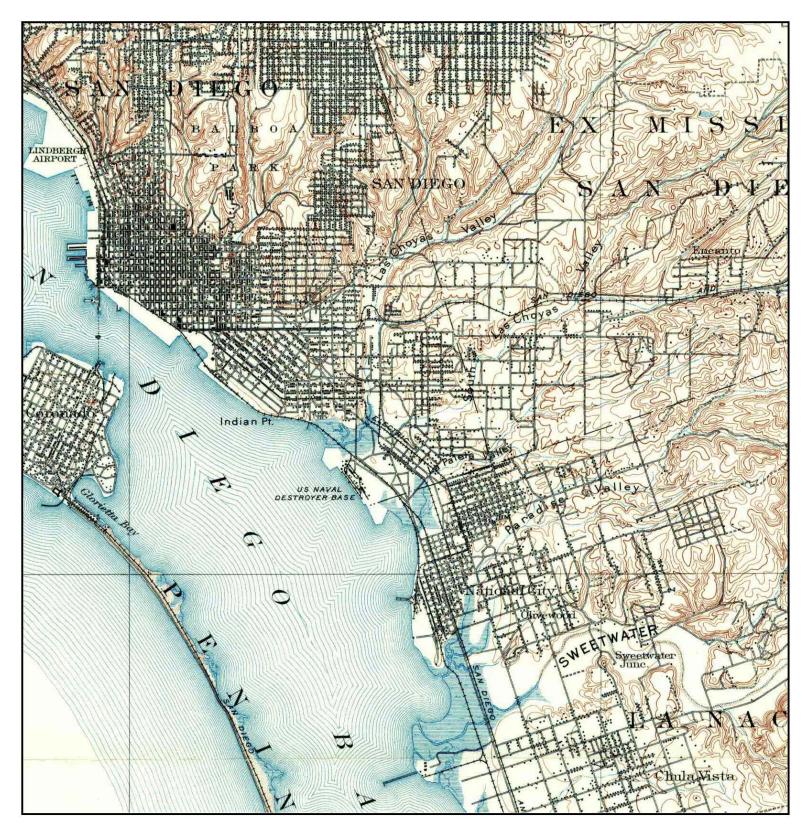
440 Wheelers Farms Road Milford, CT 06461 800.352.0050 www.edrnet.com

EDR Historical Topographic Map Report

Environmental Data Resources, Inc.s (EDR) Historical Topographic Map Report is designed to assist professionals in evaluating potential liability on a target property resulting from past activities. EDRs Historical Topographic Map Report includes a search of a collection of public and private color historical topographic maps, dating back to the early 1900s.

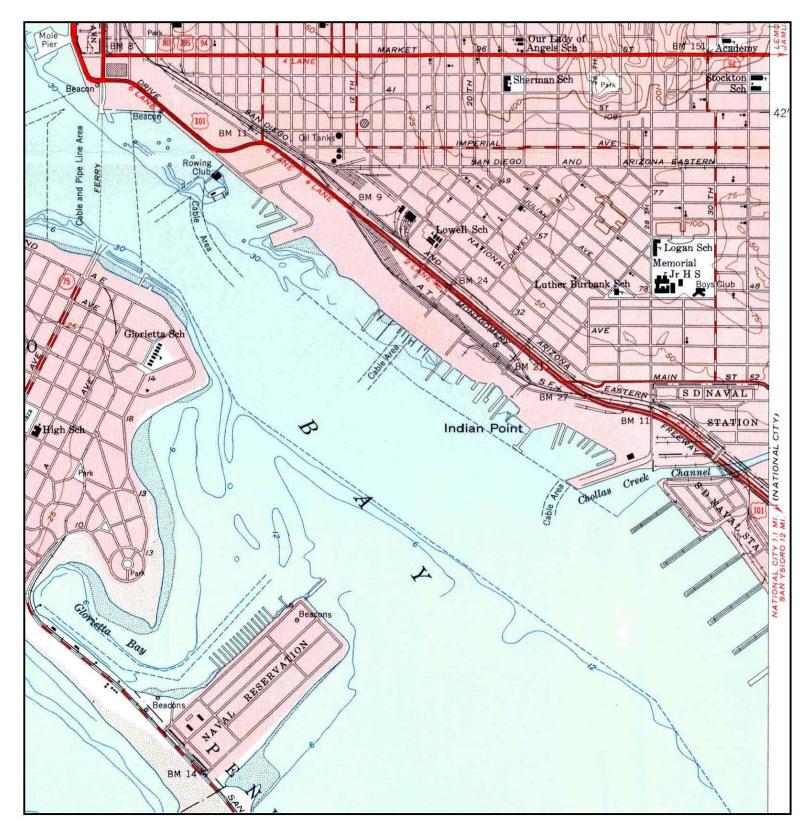

Thank you for your business. Please contact EDR at 1-800-352-0050 with any questions or comments.

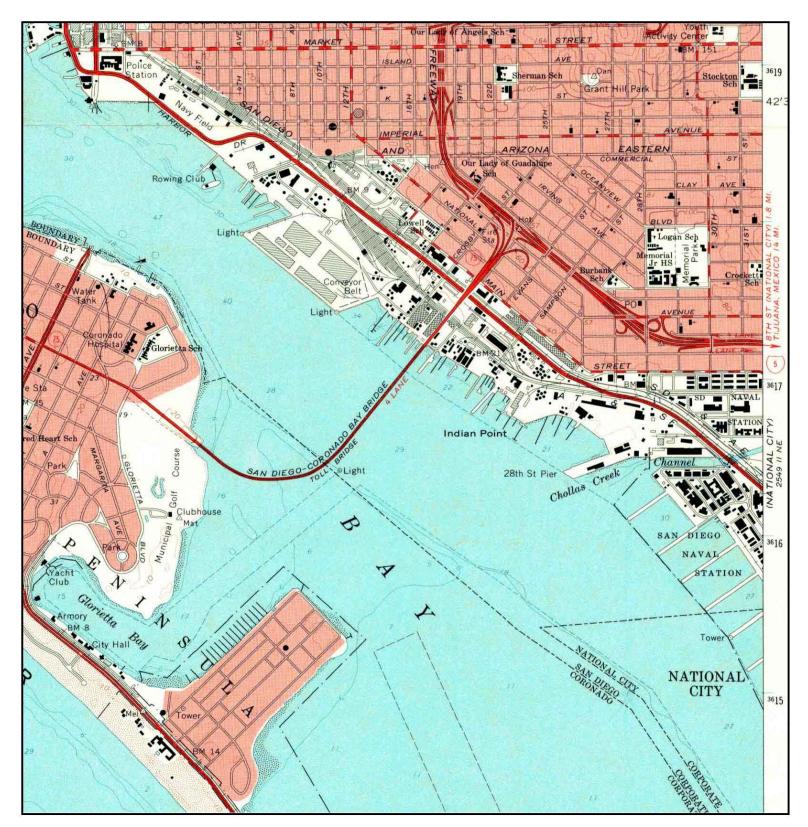
Disclaimer - Copyright and Trademark Notice

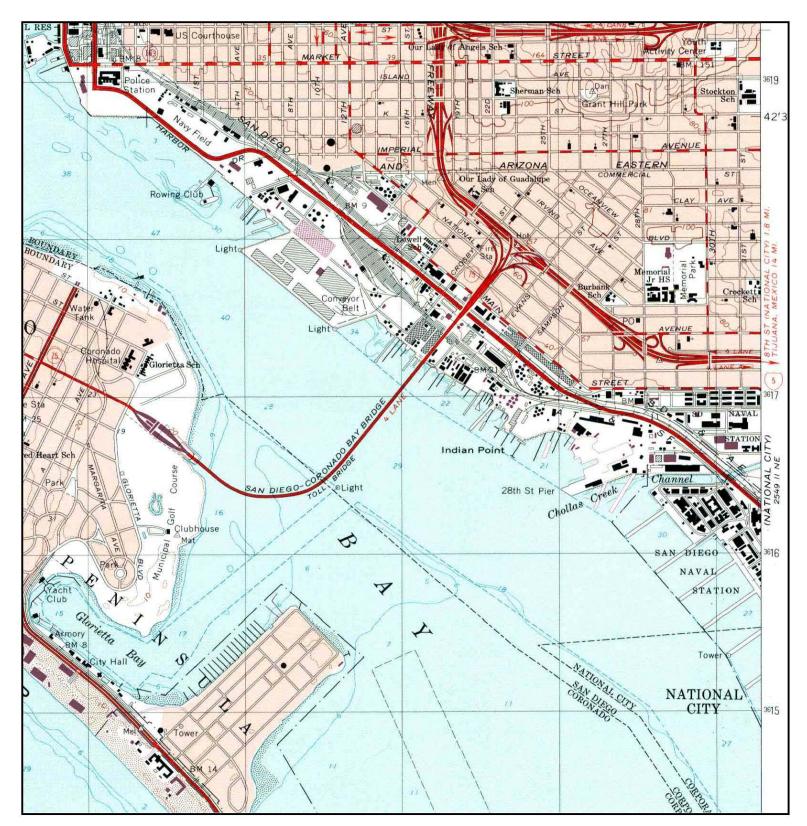

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. **NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OF DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT.** Purchaser accepts this Report AS IS. Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only a Phase I Environmental Site Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice.

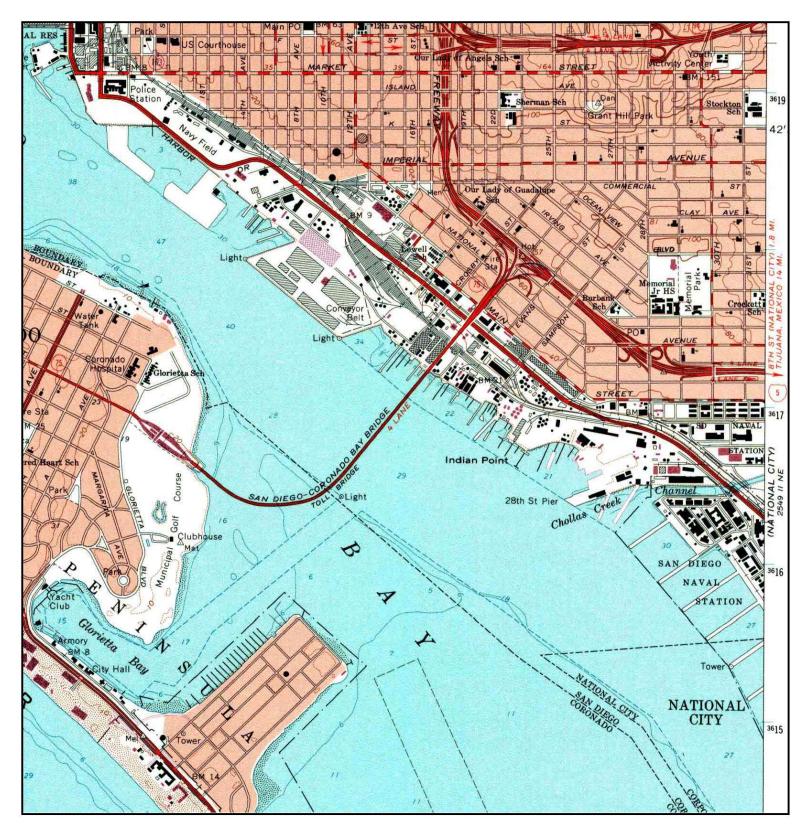
Copyright 2008 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

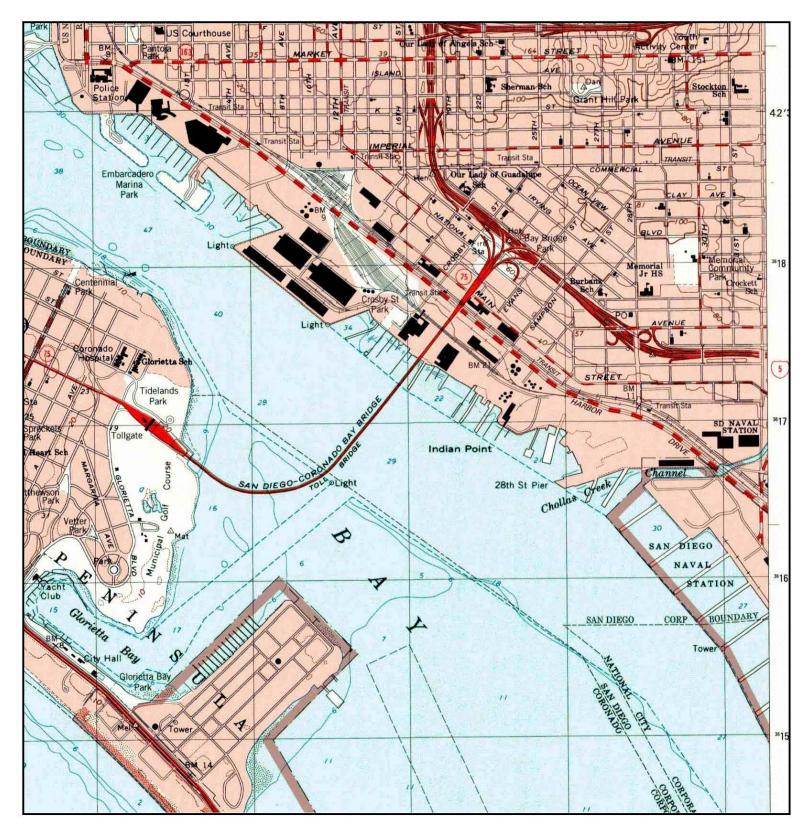
EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.


z	TARGET QU NAME: MAP YEAR: SERIES: SCALE:	SOUTHERN CA SHEET 2	ADDRESS:	NASSCO Property 2798 Harbor Drive San Diego, CA 92113 32.6911 / 117.134	CLIENT: CONTACT: INQUIRY#: RESEARCH I	Tetra Tech EC, Inc. Ulrika Messer 2345259.4 DATE: 10/23/2008
	00/122.	1.200000				


TARGET QUAD SITE NAME: NASSCO Property CLIENT: Tetra Tech EC, Inc. Ν SAN DIEGO ADDRESS: 2798 Harbor Drive NAME: CONTACT: Ulrika Messer MAP YEAR: 1930 San Diego, CA 92113 INQUIRY#: 2345259.4 RESEARCH DATE: 10/23/2008 32.6911 / 117.134 LAT/LONG: SERIES: 15 SCALE: 1:62500


	TARGET QUAD NAME: POINT LOMA MAP YEAR: 1942 SERIES: 7.5 SCALE: 1:31680	SITE NAME: ADDRESS: LAT/LONG:	NASSCO Property 2798 Harbor Drive San Diego, CA 92113 32.6911 / 117.134	CLIENT: Tetra Tech EC, Inc. CONTACT: Ulrika Messer INQUIRY#: 2345259.4 RESEARCH DATE: 10/23/2008
--	--	-------------------------------------	--	---


N A	TARGET QUAD NAME: POINT LOMA MAP YEAR: 1953 SERIES: 7.5 SCALE: 1:24000		San Diego, CA 92113	CLIENT: CONTACT: INQUIRY#: RESEARCH	Tetra Tech EC, Inc. Ulrika Messer 2345259.4 DATE: 10/23/2008
-----	--	--	---------------------	--	---


№	TARGET QUAD NAME: POINT LOMA MAP YEAR: 1967 SERIES: 7.5 SCALE: 1:24000	SITE NAME: NASSCO Property ADDRESS: 2798 Harbor Drive San Diego, CA 92113 LAT/LONG: 32.6911 / 117.134	CLIENT: Tetra Tech EC, Inc. CONTACT: Ulrika Messer INQUIRY#: 2345259.4 RESEARCH DATE: 10/23/2008
----------	--	--	---

TARGET QUAD NAME: POINT LOMA MAP YEAR: 1975 PHOTOREVISED FROM:1967 SERIES: 7.5 SCALE: 1:24000	SITE NAME: NASSCO Property ADDRESS: 2798 Harbor Drive San Diego, CA 92113 LAT/LONG: 32.6911 / 117.134	CLIENT: Tetra Tech EC, Inc. CONTACT: Ulrika Messer INQUIRY#: 2345259.4 RESEARCH DATE: 10/23/2008
SCALE: 1:24000		

N	TARGET QUAD NAME: POINT LOM/		NASSCO Property 2798 Harbor Drive	CLIENT: Tetra Tech EC, Inc. CONTACT: Ulrika Messer
	MAP YEAR: 1994 REVISED FROM:1967 SERIES: 7.5 SCALE: 1:24000	LAT/LONG:	San Diego, CA 92113 32.6911 / 117.134	INQUIRY#: 2345259.4 RESEARCH DATE: 10/23/2008

N A	TARGET QUAD NAME: POINT LOMA MAP YEAR: 1996	SITE NAME: NASSCO Property ADDRESS: 2798 Harbor Drive San Diego, CA 92113 LAT/LONG: 32.6911 / 117.134 CLIENT: Tetra Tech CONTACT: Ulrika Mess INQUIRY#: 2345259.4 RESEARCH DATE: 10/23	ser
	SERIES: 7.5 SCALE: 1:24000		#2000

NASSCO Property

2798 Harbor Drive San Diego, CA 92113

Inquiry Number: 2345259.5 October 23, 2008

The EDR Aerial Photo Decade Package

440 Wheelers Farms Road Milford, CT 06461 800.352.0050 www.edrnet.com

EDR Aerial Photo Decade Package

Environmental Data Resources, Inc. (EDR) Aerial Photo Decade Package is a screening tool designed to assist environmental professionals in evaluating potential liability on a target property resulting from past activities. EDRs professional researchers provide digitally reproduced historical aerial photographs, and when available, provide one photo per decade.

When delivered electronically by EDR, the aerial photo images included with this report are for ONE TIME USE ONLY. Further reproduction of these aerial photo images is prohibited without permission from EDR. For more information contact your EDR Account Executive.

Thank you for your business. Please contact EDR at 1-800-352-0050 with any questions or comments.

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OF DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report AS IS. Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only a Phase I Environmental Site Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice.

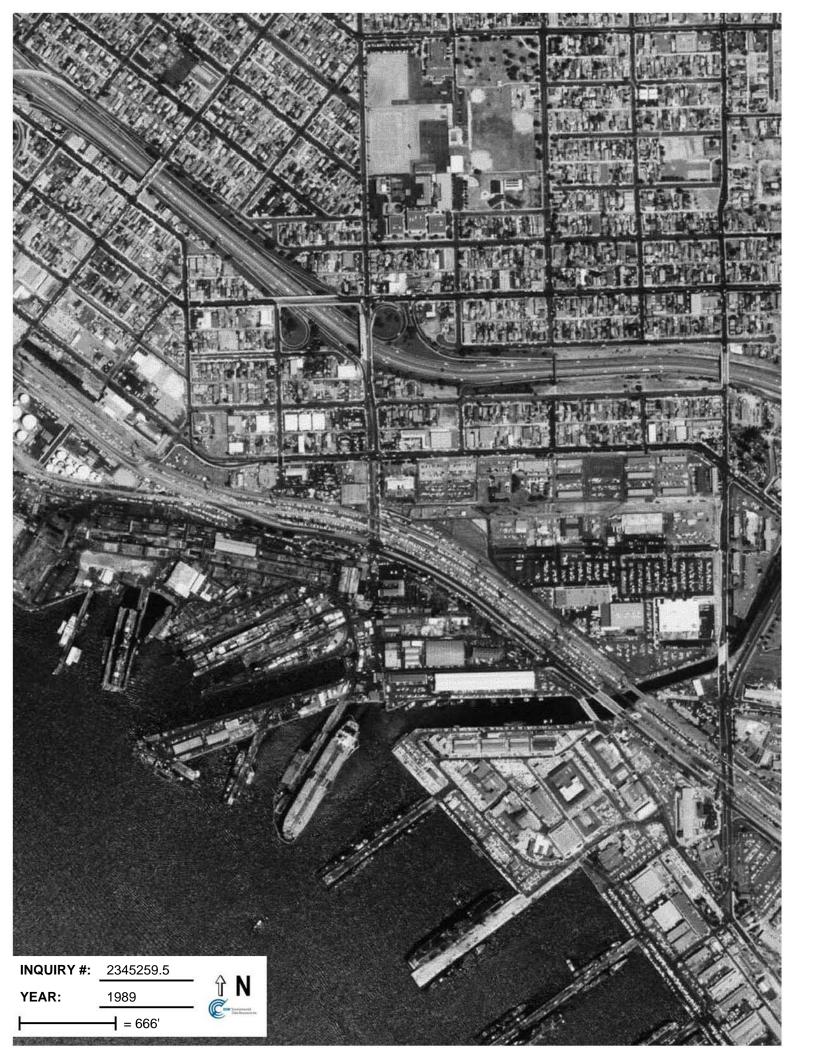
Copyright 2008 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

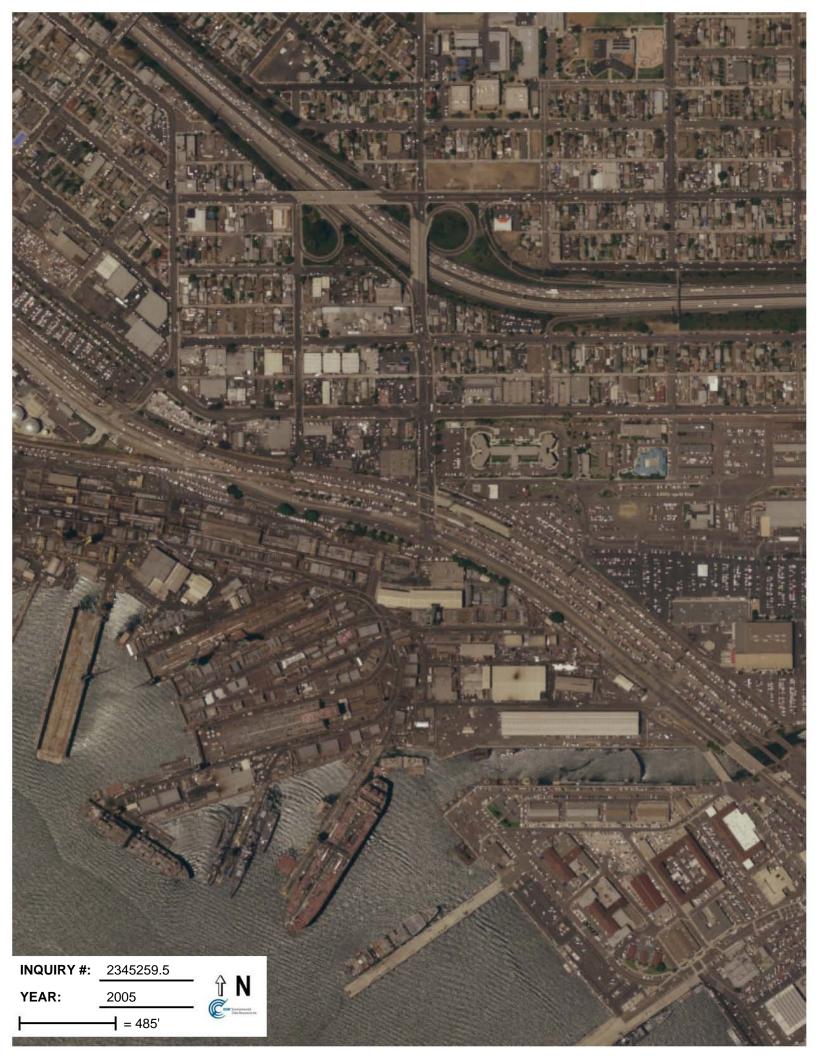
Date EDR Searched Historical Sources:

Aerial Photography October 23, 2008

Target Property:


2798 Harbor Drive San Diego, CA 92113

<u>Year</u>	Scale	Details	<u>Source</u>
1953	Aerial Photograph. Scale: 1"=555'	Flight Year: 1953	Park
1963	Aerial Photograph. Scale: 1"=555'	Flight Year: 1963	Cartwright
1974	Aerial Photograph. Scale: 1"=600'	Flight Year: 1974	AMI
1989	Aerial Photograph. Scale: 1"=666'	Flight Year: 1989	USGS
1994	Aerial Photograph. Scale: 1"=666'	Flight Year: 1994	USGS
2002	Aerial Photograph. Scale: 1"=666'	Flight Year: 2002	USGS
2005	Aerial Photograph. Scale: 1"=485'	Flight Year: 2005	EDR



NASSCO Property

2798 Harbor Drive San Diego, CA 92113

Inquiry Number: 2345259.3s October 23, 2008

Certified Sanborn® Map Report

440 Wheelers Farms Road Milford, CT 06461 800.352.0050 www.edrnet.com

Certified Sanborn® Map Report

Site Name: NASSCO Property 2798 Harbor Drive San Diego, CA 92113	Client Name: Tetra Tech EC, Inc. 1230 Columbia San Diego, CA 92101	EDR [®] Environmental Data Resources Inc
EDR Inquiry # 2345259.3s	Contact: Ulrika Messer	

The complete Sanborn Library collection has been searched by EDR, and fire insurance maps covering the target property location provided by Tetra Tech EC, Inc. were identified for the years listed below. The certified Sanborn Library search results in this report can be authenticated by visiting www.edrnet.com/sanborn and entering the certification number. Only Environmental Data Resources Inc. (EDR) is authorized to grant rights for commercial reproduction of maps by Sanborn Library LLC, the copyright holder for the collection.

Certified Sanborn Results:

Site Name: Address: City, State, Zi Cross Street:	NASSCO Property 2798 Harbor Drive p: San Diego, CA 92113
P.O. # Project: Certification #	NA NA # DD9A-446A-8CFC
Maps Identifie	ed - Number of maps indicated within "()"
1971 (1) 19	56 (1)
1970 (1) 19	50 (1)

1970	(1)	1950	(1)
1965	(1)	1921	(1)
1962	(1)		
1960	(1)		
1959	(1)		

Total Maps: 9

Limited Permission To Make Copies

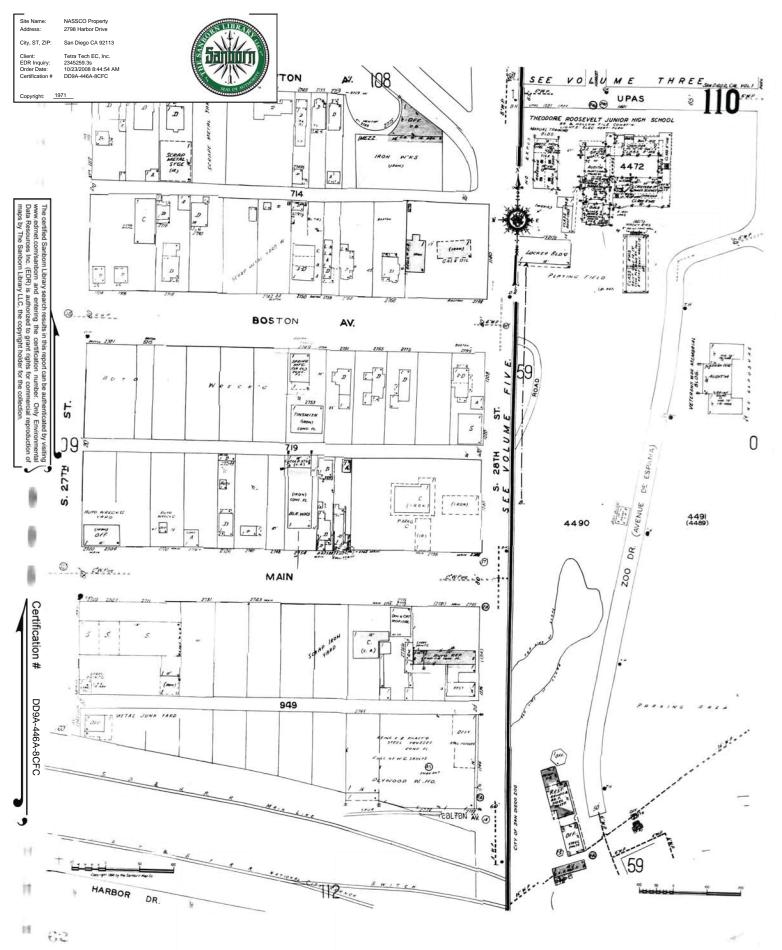
Tetra Tech EC, Inc. (the client) is permitted to make up to THREE photocopies of this Sanborn Map transmittal and each fire insurance map accompanying this report solely for the limited use of its customer. No one other than the client is authorized to make copies. Upon request made directly to an EDR Account Executive, the client may be permitted to make a limited number of additional photocopies. This permission is conditioned upon compliance by the client, its customer and their agents with EDR's copyright policy; a copy of which is available upon request.

Disclaimer - Copyright and Trademark notice

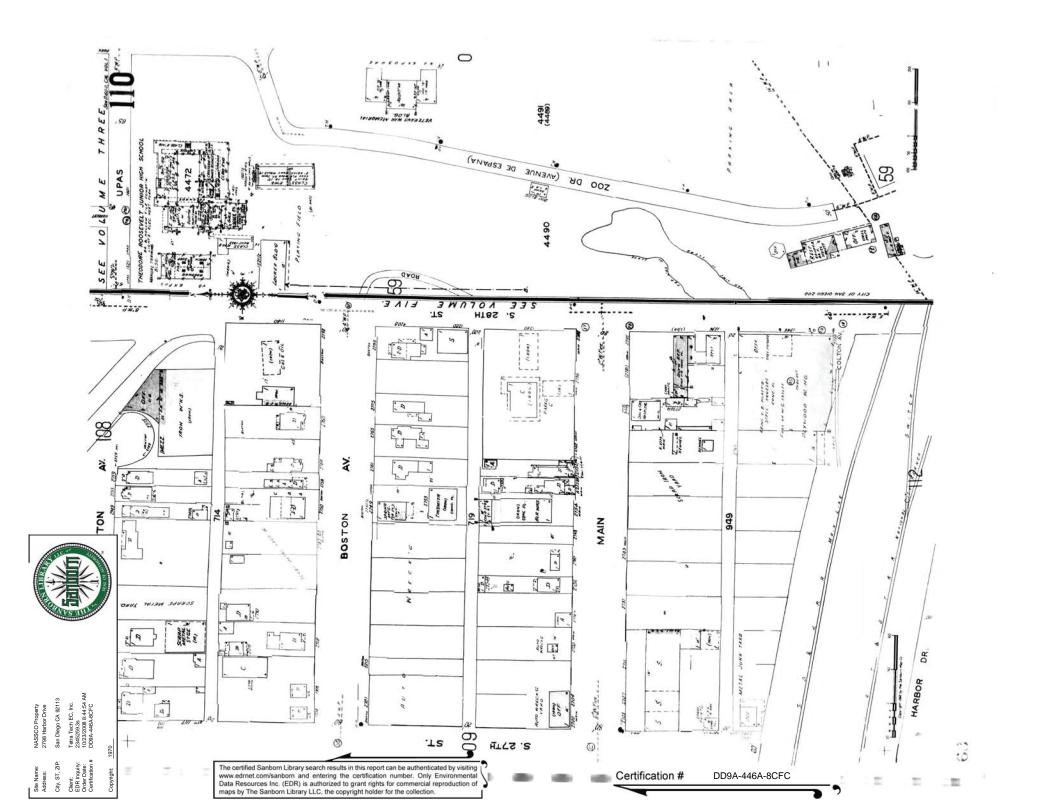
This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OF DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report "AS IS". Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only a Phase I Environmental Site Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice.

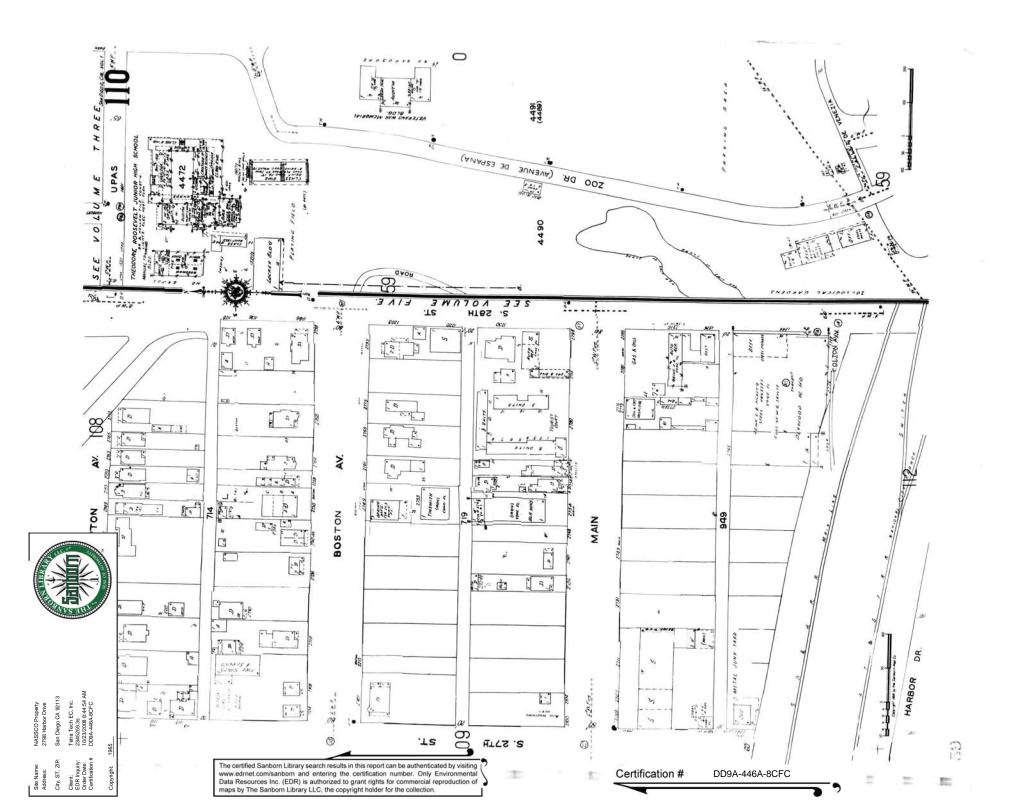
Copyright 2008 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

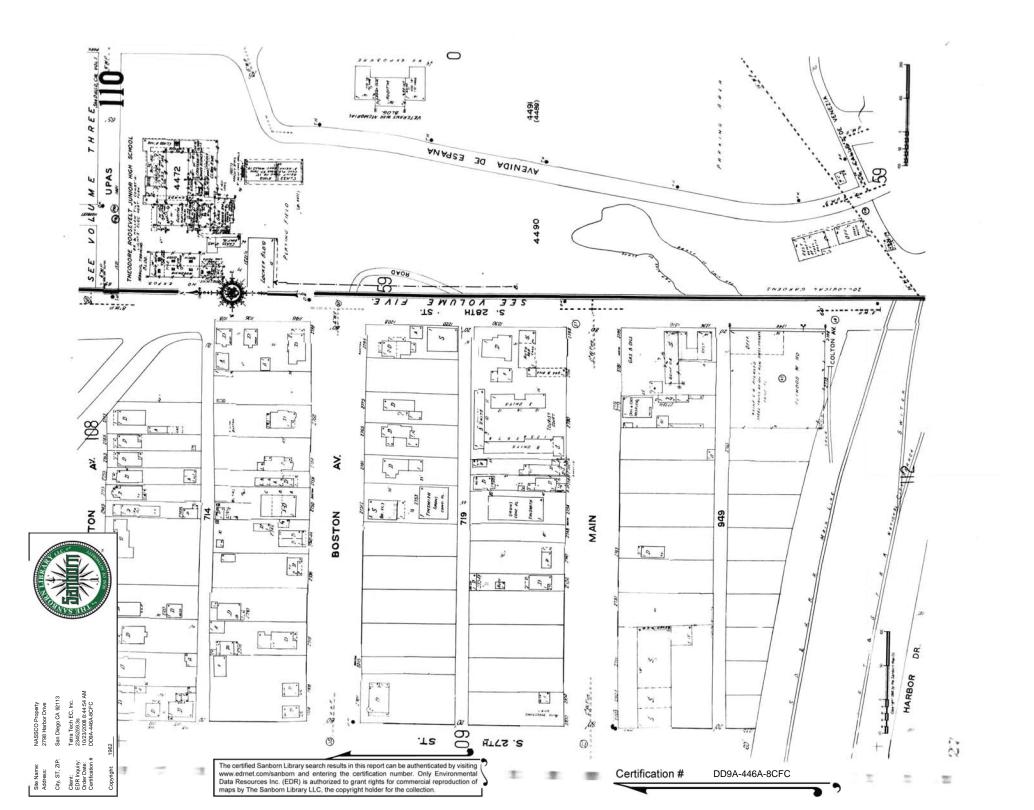
EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

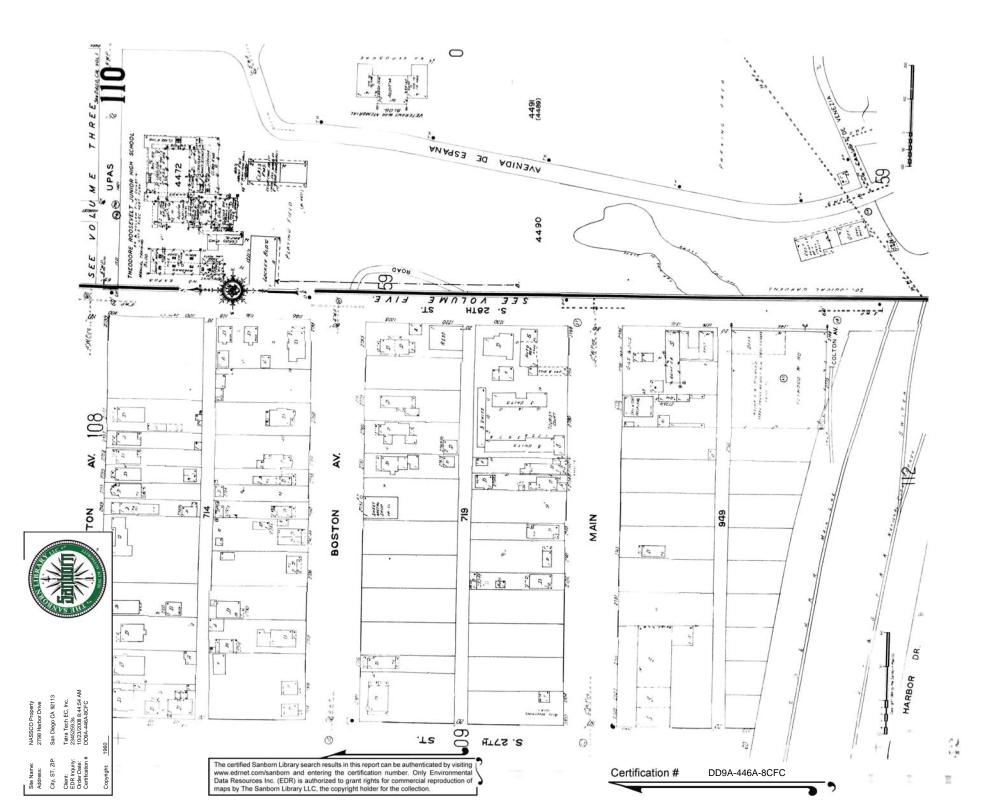

Library of Congress University Publications of America EDR Private Collection

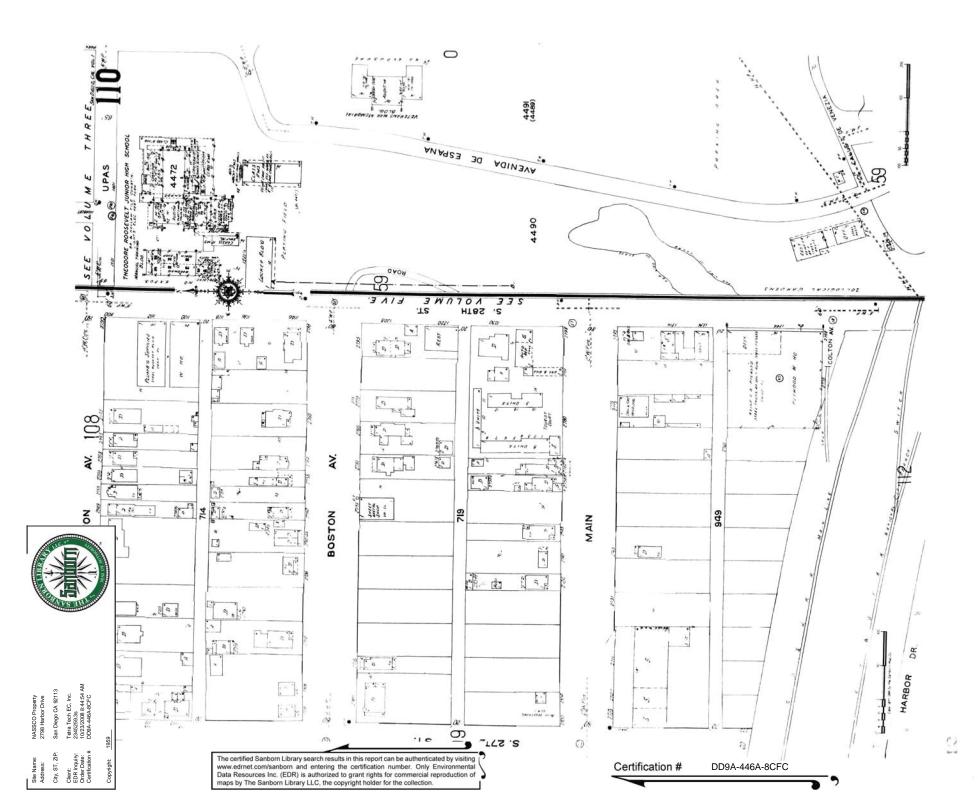
cities and towns. Collections searched:

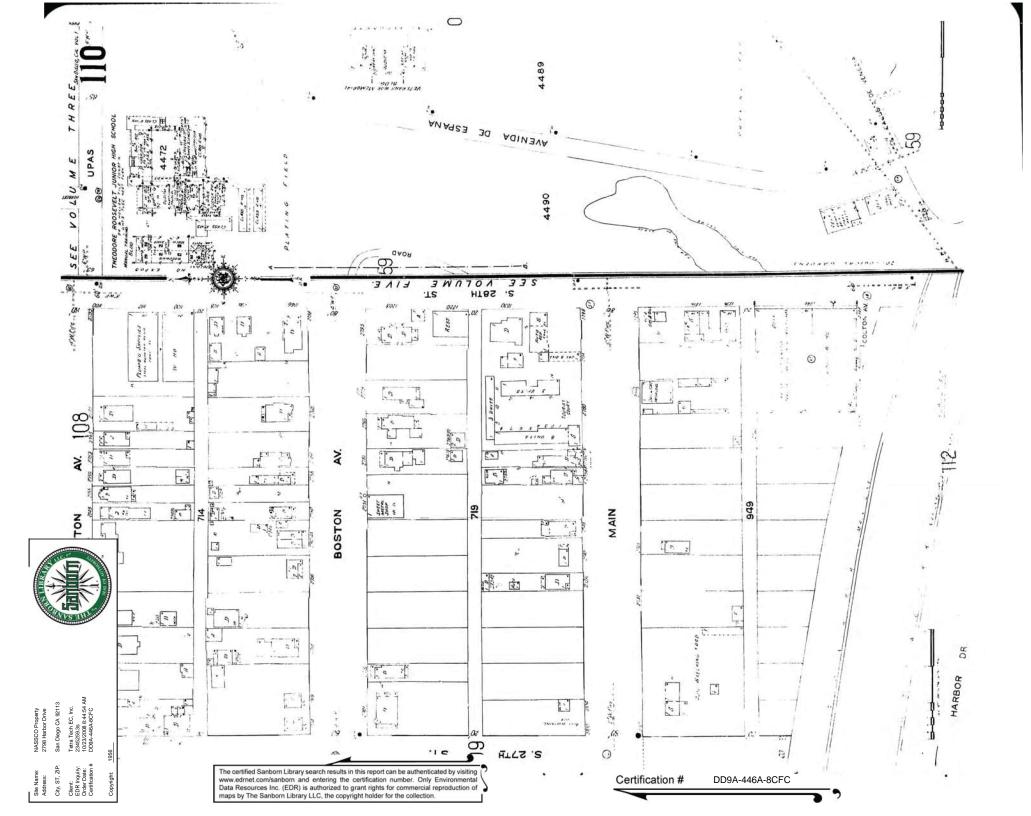

Sanborn® Library search results Certification # DD9A-446A-8CFC

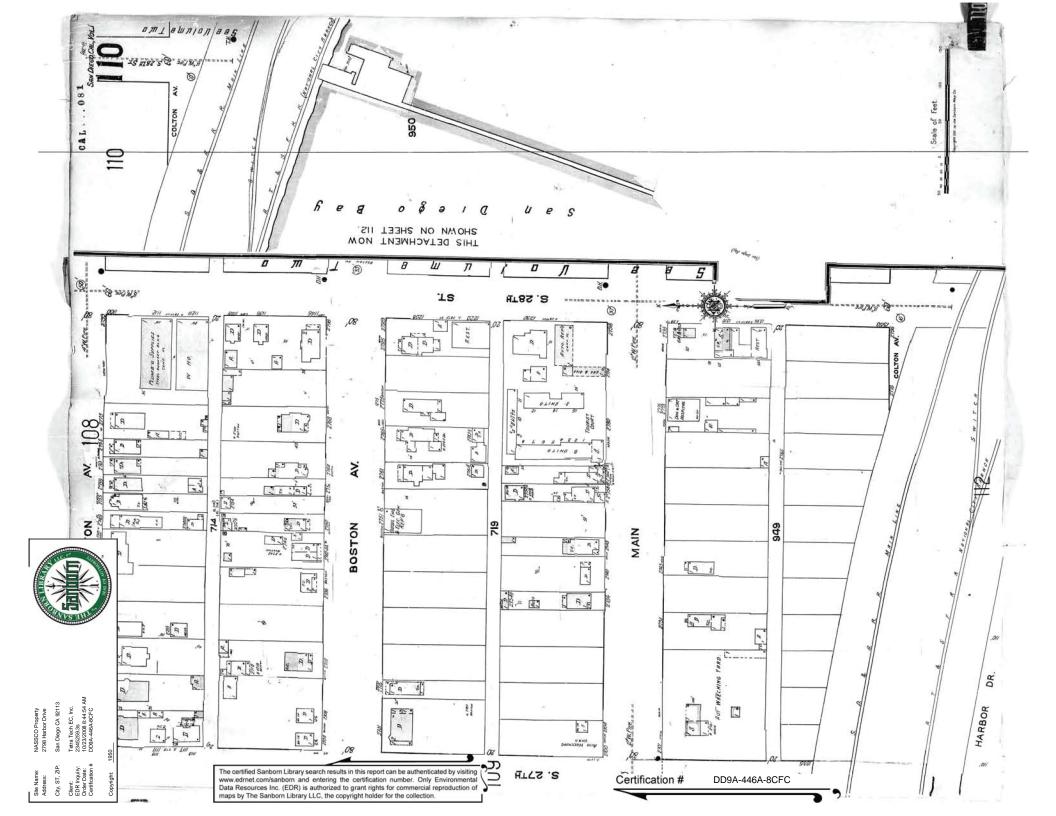

The Sanborn Library includes more than 1.2 million Sanborn fire insurance maps, which track historical property usage in approximately 12,000 American

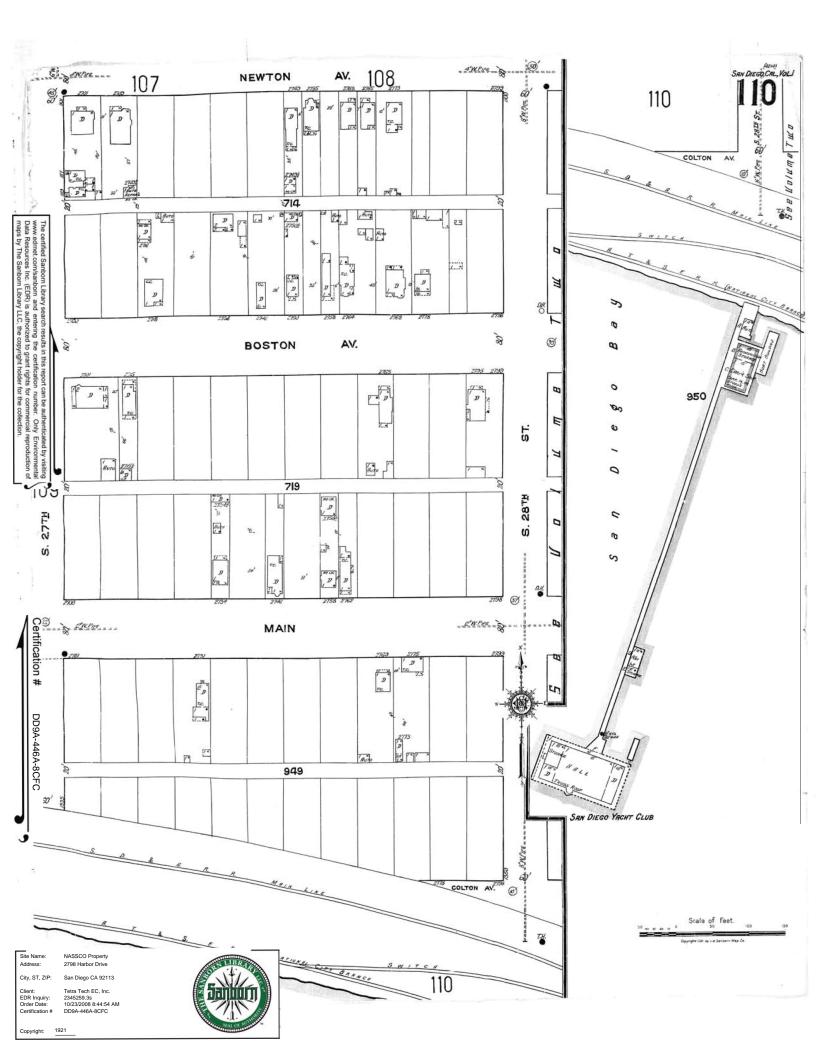

10/23/08




r.







The EDR Environmental LienSearch[™] Report

2798 HARBOR DR SAN DIEGO SAN DIEGO, CA 92113-3650

Project Number: 2345259.7S

The Standard in Environmental Risk Information

440 Wheelers Farm Road Milford, Connecticut 06461

Nationwide Customer Service

 Telephone:
 1-800-352-0050

 Fax:
 1-800-231-6802

 Internet:
 www.edrnet.com

Index Date: 10/14/2008

The EDR Environmental LienSearch Report provides results from a search of available current land title records for environmental cleanup liens and other activity and use limitations, such as engineering controls and institutional controls.

A network of professional, trained researchers, following established procedures, uses client supplied address information to:

- search for parcel information and/or legal description;
- search for ownership information;
- research official land title documents recorded at jurisdictional agencies such as recorders' offices, registries of deeds, county clerks' offices, etc.;
- access a copy of the deed;
- search for environmental encumbering instrument(s) associated with the deed;
- provide a copy of any environmental encumbrance(s) based upon a review of key words in the instrument(s) (title, parties involved, and description); and
- provide a copy of the deed or cite documents reviewed.

Thank you for your business. Please contact EDR at 1-800-352-0050 with any questions or comments.

Disclaimer - Copyright and Trademark Notice

This report was prepared for the use of Environmental Data Resources, Inc., and Tetra Tech EC, Inc., exclusively. This report is neither a guarantee of title, a commitment to insure, or a policy of title insurance. **NO WARRANTY, EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WTH THIS REPORT.** Environmental Data Resources, Inc. (EDR) and Tetra Tech EC, Inc. specifically disclaim the making of any such warranties, including without limitation, merchantability or fitness for a particular use or purpose. The information contained in this report is retrieved as it is recorded from the various agencies that make it available. The total liability is limited to the fee paid for this report.

Copyright 2006 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

EDR and its logos are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

TARGET PROPERTY INFORMATION

ADDRESS

CLIENT REF	2345259.7S
Site Address	2798 HARBOUR DR.
Site CSZ	San Diego, CA 92113-3650

RESEARCH SOURCE

Sources:

San Diego County

DEED INFORMATION

Type of Deed:	Abstract of Lease Amendment
Title is vested in:	Natioinal Steel and Shipbuilding Company
Title received from:	San Diego Unified Port District
Deed Dated:	12/06/1994
Deed Recorded:	12/13/1994
Instrument No.:	1994-0711050

LEGAL DESCRIPTION

Description:	Description: Parcel 1: true point of beginning of parcel no. 1, containing 3,446,322 square feet or 79.12			
Docomption	acres of tideland area and being more fully described in Instrument No. 1994-0711050 in the			
	Deed records of san Diego county, California. Parcel 2: Containing 1,112,046 square feet or 25.53 acres of water covered area and being more fully described in Instrument No. 1994-0711050 in the Deed records of san Diego county,			
	California. Parcel 3: containing 764,703 square feet or 17.56 acres of water covered area and being more fully described in Instrument No. 1994-0711050 in the Deed records of san Diego county,			
	California. Parcel 4: containing 179,000 square feet or 4.02 acres of water covered area and being more fully described in Instrument No. 1994-0711050 in the Deed records of san Diego county, California.			
Assessor's Parcel Number:	7600240601			
ENVIRONMENTAL LIEN				
Environmental Lien:	Found 🗌 Not Found 🔀			
If yes:				
1 st Party:				
2 nd Party:				
Dated:				
Recorded:				
Book:				
Page:				
Comments:				

OTHER ACTIVITY AND USE LIMITATIONS (AULs)

Other AUL's:

Not Found

Found

Copy of Deed and any instruments.

Becording Requested by and mail to: Pierriet Clerk Sau Diego Dalfied Fort District -P.G. Pox 488 Sau Diego, GA 92112 -0711050 oz;zz pn No Document Fas GFTC1AL LEDISUS SM DISUD COUNTY RECORDER SM TICLE GREGORY SETTING CRUITY RECORDER FEEST A. Recordation for Seculit of District 8.60 ABSTRACT OF DEARS AND DEEXT C. ABSTRACT OF LEASE AMENDMENT NO. 1: This is the fight paragraph and abstract of Lease Amendment No. 1, dated <u>Decement (AM 1984</u>, between SAN DISCO WIFIED PORT DISTRICT, Leaser, and RATIONAL STELL AND SHIPPOTEDING COMPANY, Lease, conserving the premises described in muchibits "A" and "B", attached harato and by this reference Bade a part hereof, For good and adequate consideration, Lessor lesses the presides to Lesses, and Lesses hires them from Lessor for the term and on the provisions contained in Lesse dated Cotaber 21, 1993, remortal by the San plage County Recorder's Office as No. 77-338163, and this Lesse Amendment No. 1, including, without limitation, provisions prohibiting assignment, subleasing, and anounbering the lesschold without the express written concent of Lessor in each instance, all as more specifically set forth in said Lesse and wild Amendment, which are incorporated in this abstract by this reference. The term is fifty (50) years beginning January 1, 1991, and ending on December 31, 2040. This Lease Amendment No. 1 shall become effective as of December 1, 1994. This abstract is not a complete summary of the Lease Ascadment, Provisions in the abstract shall not be used in interpreting the Lease Ascadment provisions. In the event of conflict between the abstract and other parts of the Lease Ameriment, the other parts shall control. Execution hereof constitutes execution of the Lease Ameridment itself. APPROVED as to form and legality SAN DIRGO UNIFIED PORT DISTRICT DEO 8 ,1994 General Tort Director DONALD & HALLMAN, JR Port Attorney NATIONAL STERL AND SHIPBUILDING COMPANY W. Lutter, Jr. Stach Behior Vice Provident, Marketing ā. ≽¥ By_

Salaha Banya a mang prakilika da para manifika da ka balaha sa sa

JOSEPH D. PATELLO Port Attorney

N 44 264

- Hora

714101

16

. . .

and Business Affairs

. 2 82187

÷ •

Kenne

.

•

(FOR USE BY SAN DIEGO UNIFIED PORT DISTRICT)

STATE OF CALIFORNIA) COUNTY OF SAM DIB40)

ùnd dr ... 🦿 🖯

On <u>December 13th, 1994</u> before so, <u>Timuthy A, Devel, Hotery Public</u>, personally appeared <u>Densid E, Hillson, Jr.</u>, personally known to be (en.proved to us on the basis of satisfestery evidence) to be the person(s) whose name(s) is/are subscribed to the within instrument and acknowledged to me that he/she/they executed the mane in his/hes/thois authorized capacity(ies), and that by his/her/theissignature(s) on the instrument the person(s), or the entity upon behalf of which the person(s) acted, executed the instrument.

WITNESS by hand and official seal.

Jul Øignature

32187

17

17

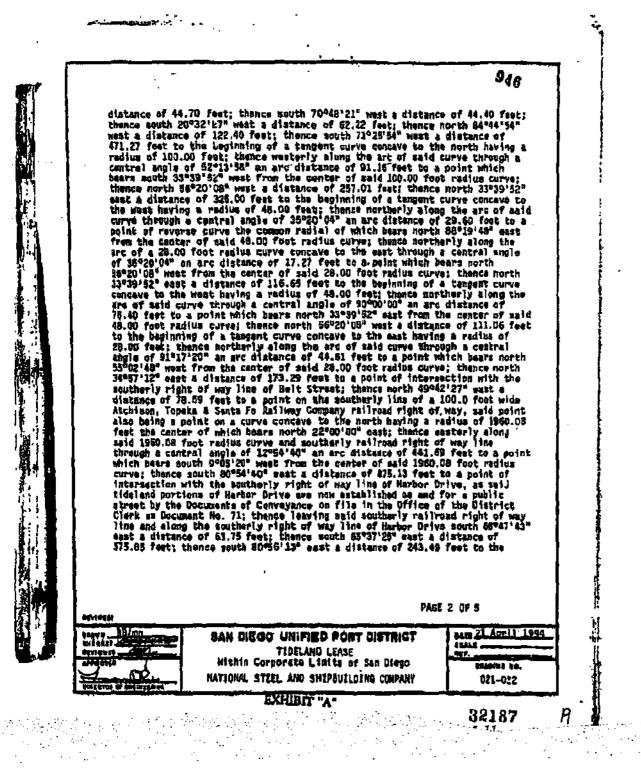
n s tr

ted bestehlten be

PARCEL NO. 1

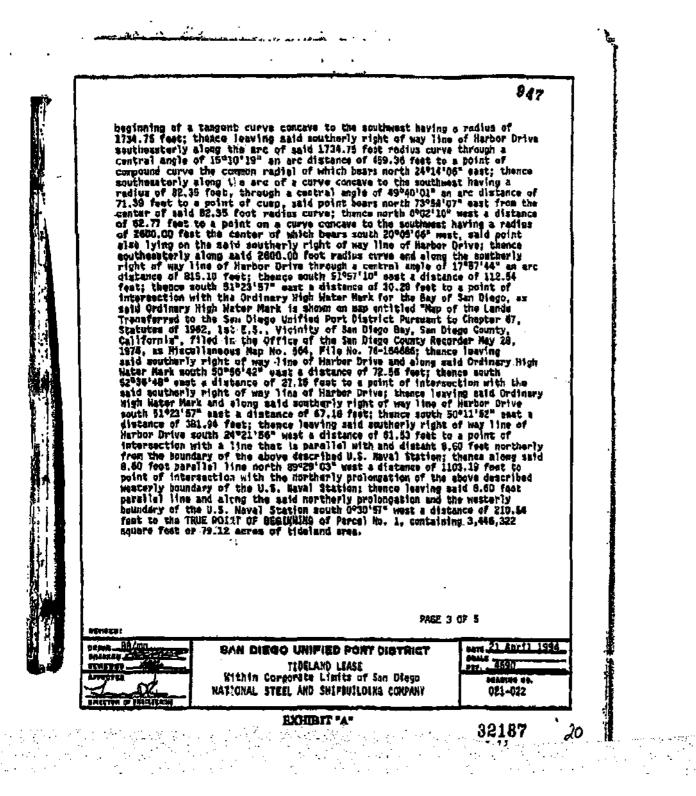
PARCEL ED. 1 Community at Harbor Line Station No. 472 on the U.S. Bulkbead Line, as said U.S. Bulkbead Line is non established for the Bay of San Diego, and delineated on man entitied "Herbor Lines, San Diego Bay, California, File No. (D.O. Serjes) 420," approved by the Secretary of the Army, spril 29, 1993 and filed in the Office of the District Engineer, Los Angeles, California, Said point also being on the westerly boundary of an area commonly known as the Usited States Maxel Station, as said property is described in the grants to the United States of America by the City of Ian Diege by deeds datwo decamber 1, 1350, recorded March 21, 1352, is Rouk 200, page 177 of Officia Records, and dated May 10, 1949, recorded Arril 30, 1943, in Boak 1459, page 12 D.R., and dated May 10, 1949, recorded Arril 30, 1943, in Boak 1459, page 12 D.R., and dated May 10, 1949, recorded October 7, 1949, in Boak 1459, page 120, R., and filed in the Office of the County Recorder, San Diego County, California; thenes along maid U.S. Newal Station boundary south 65°22'03° east a distance of 37.80 feet; thence north 0°30'37" seat a distance of 728.55 feet to the Thus Pollet OF SCEINKING of Parcel No. 1; thence leaving said U.S. Neval Station boundary morth 85°29'03° west a distance of 728.55 feet to the Thus Pollet OF SCEINKING of Parcel Ho. 1; thence leaving said U.S. Pierhead Line rorth 56°30'26' west a distance of 20.76 feet; thence anorth 10°21.57 mes south Gravita ad distance of 23.76 feet; thence anorth 10°21 feet west a distance of 21.80 feet; thence north 10°21.50 mest a distance of 22.80 feet; thence north 10°21.50 mest a distance of 33.90 feet; thence north 16°03.00 feet; thence north 10°21.57 mest a distance of 33.10 rest a distance of 30.70 feet; thence north 10°21.57 mest a distance of 30.70 feet; thence morth 10°21.50 feet; thence anorth 23°25'07' west a distance of 117.00 feet; thence morth 10°21.57 mest a distance of 30.70 feet; thence morth 11°51.595 mest a distance of 33.10 rest a distance

PAGE 1 OF 5 HTT 21 ADELL 1996 EAN DIEGO UNIFIED PORT DISTRICT 194L4 4590 TIDELAND LEASE ****** Within Corporate Limits of San Diego -----NATIONAL STEEL AND SHIPBUILDING COMPANY 021-022 EXCLUSIVE 32187 II L


945

۰.-

.


¥

. . .



• ..

÷ ...

• ;

5.0 1910

5.0

PARCEL NO. 3

.

.

17^{††}

4

. .

. . .

TRANSPIE, NH. 3 Beginning at the True Point of Beginning of the above described Parcel Ng. 1, said point also being the TRUE POINT OF BEGINKING of Parcel No. 3, and lying on the above described westerly beindary south 0°30°57° mest a distance of 228.56 feet; there north E9°23'03° west a distance of 07.80 feet to Herbor Line Station No. 472 on the above described U.6, Bulkheed Line; thence continuing along said U.S. Naval Station boundary south 0°30°57° mest a distance of 1010.16 feet to Harbor Line Station No. 479 on the above described U.S. Pierhead Line; there loaving said U.S. Naval Station boundary and along said U.S. Pierhead Line sorth 50°20'02° exet a distance of 1018.74 feet to s point of intermetion with the most southerly line of the above described Parcel No. 1; thence leaving and U.S. Pierhead Line above described Parcel No. 1; thence leaving and U.S. Pierhead Line above described Parcel No. 1; thence leaving and U.S. Pierhead Line above described Parcel No. 1; thence leaving and U.S. Pierhead Line above described Parcel No. 1; thence leaving and U.S. Pierhead Line above described Parcel No. 1; thence leaving and U.S. Pierhead Line above fact above south 89°30'26° east a distance of 300.07 feet; thence south 56°35'56° east a distance of 25.90 feet; thence south 65°32'59° evet a distance of 13.80 feet; thence south 60°37'30° east a distance of 27.47 feet; thence south 69°29'03° east a distance of 7.24 feet to the TAUE POINT OF BEGINNING of Percel No. 3, containing 366,703 square feet or 17.56 acres of water covered area. ares.

.

1 ...

- i - i

PANCEL NO. 4

Beginning at Point "B" as described in the above Parcel No. 2, said Point "B" lying on the above described U.S. Pierhead Line morth 56°20'08" west and distant 1483.40 feet from Harbor Line Station No. 479, said Point "B" also being the TRUE POINT OF SEGIMMING of Percel No. 4; thence along the said U.S. Pierhead Line north 56°20'08" west a distance of 500.00 feet to a point of intermetics with said Percel No. 2, thence leaving said U.S. Pierhead Line and along said Percel No. 2 morth 71°15'36" west a distance of 500.00 feet; thence south 56°20'06" est a distance of 500.00 feet; thence south 71°15'38" west a distance of 441.73 feet to the TRUE POINT OF BEGINNING of Parcel No. 4, containing 175,000 agains feet of 4.02 acres of water covered area.

The above described areas are those defineated on Drawing No. Q21-G22, Sheets 1, 2, and 3, dated 21 April 1994, and wade a part of this agreement.

1

PAGE & OF E

32187 2

• ···

.

.

849

Dentes BE/mm Cheseis Antonio Company Artidoves Califying a changement	BAN DIEGO UNIFIED PORT DISTRICT TIDELAND LEASE Hithin Corporate Limits of Sen Diego NATIONAL STEEL AND SHIPOVILDING COMPANY	6418 21 April 1994 8544 4890 859- 4890 941918 64. 921-022	
	EXHIBIT "A-	32187	22

EXHIBIT "A"

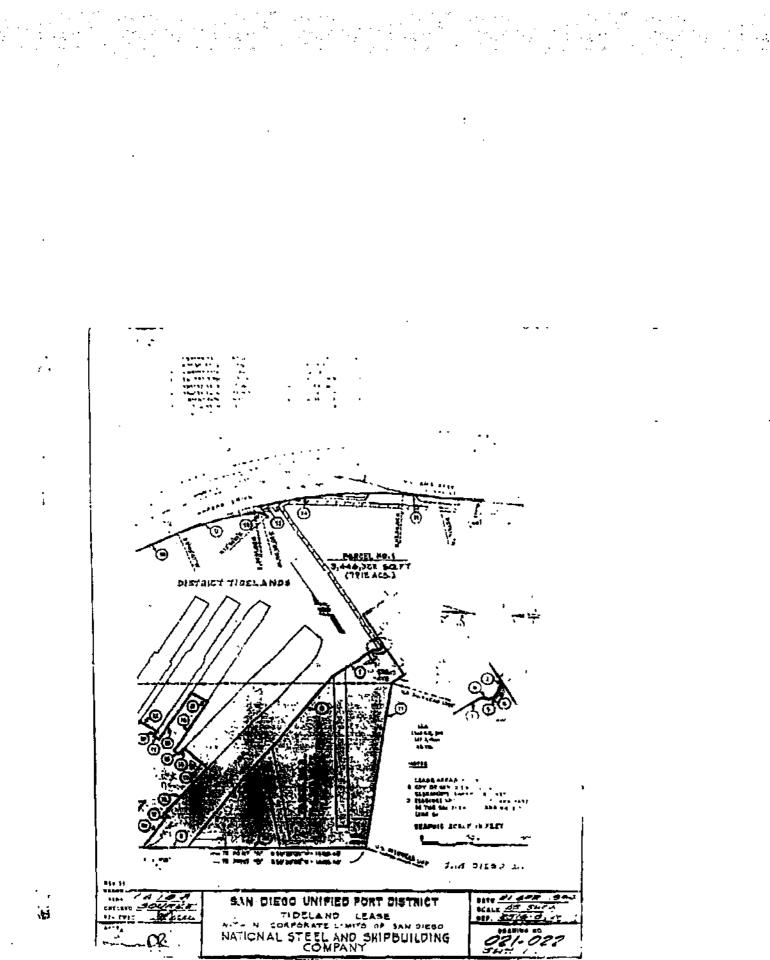
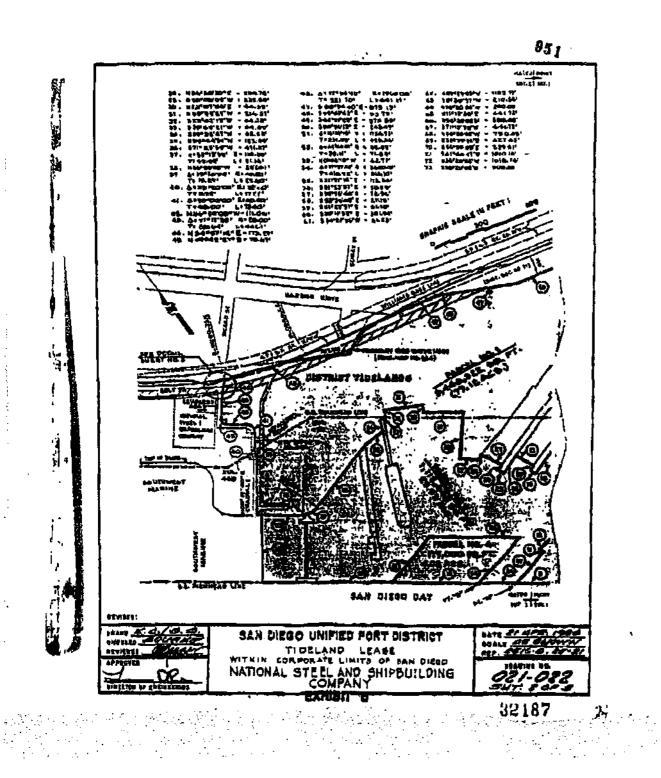
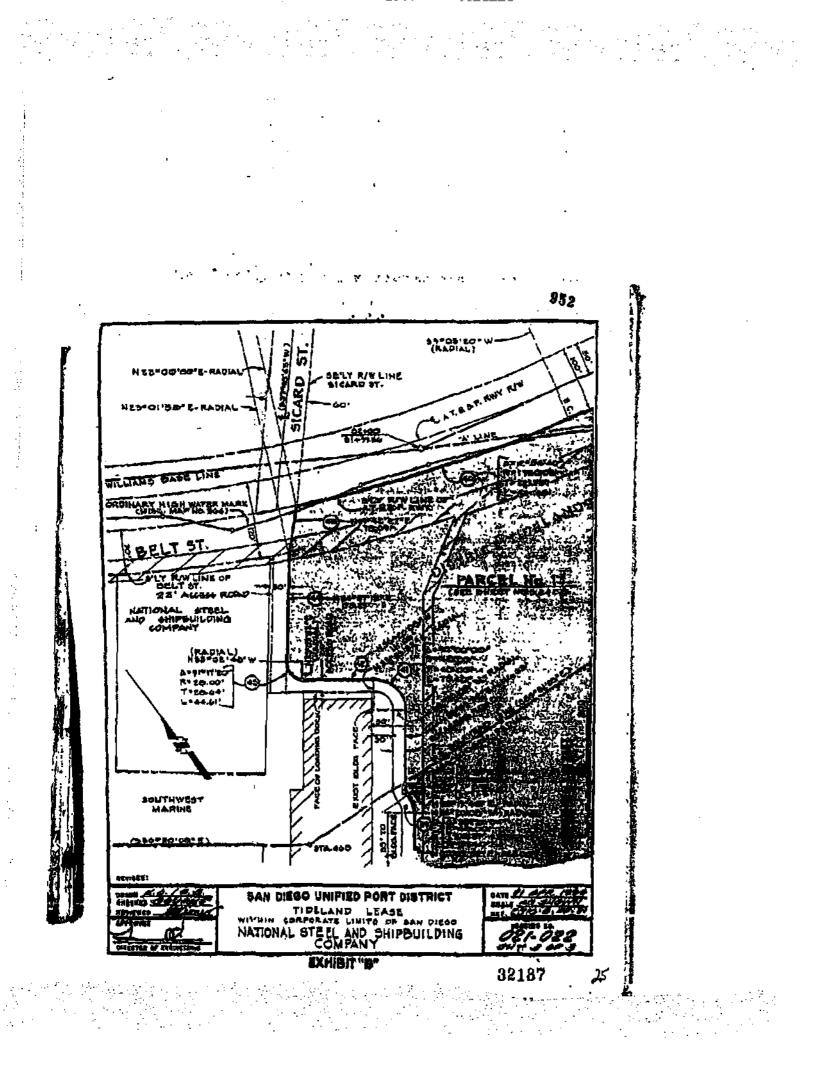



EXHIBIT "B"

• . • .;

•


:

12

1

.

ł

HAMPLES OF REAL PROPERTY INCROVENENTS

ŧ53

32187

적일**187**.....

26

- New buildings, or persenant structures, or alterations, or additions to existing buildings or persanent structures.
- Fill, wherfs, or bridges over existing water area, or dredging of existing land area.
- 3. Piers, docks, of inclined building ways, or improvements or upgrades of such facilities to facilitate berthing of shipe, such as permenent fundars, mooring bitts, dredging (in excass of maintenance dredging), structural upgrades, browing and boarding towar systems, and utility facilities, (such as fresh water and salt water, steam, air, gas, elactric power, and savage connections).
- 4. New graving dock(s) or improvements to existing graving docks; which would include items winitar to those listed in No. 3 above, plus improvements to pumping system, periodic major eventsus of the caleson, and major preservation systems for graving dock walks.
- Improvements and upgrades of facilities on place to facilitate connections from and operation of floating dry dock.
- 6. Improvements and upgrades of persanent utility systems (such as alsotrical distribution, gas distribution, compressed air systems, water, fire mains, and sevage systems).
- 7. Flatens (a structure which is a special work station built on engineersd, level reinforded concrete foundations to facilitate the weld-assembly of sajor ship structural assemblies) with various special outfitting items such as pin jigging surning jigs and streight ribs.
- 2. Roads, paving, curbs, orane rails and foundations, fixed conveyor systems, and other feeder systems for transportation of materials.
- 9. Ground cover as ordered by Lessor.

.

10. Other permanent improvements, fixtures, and equipment, which can be fully depresisted within the term of this games.

This list is not avaluative or exhaustive of those improvements which quality for dredit under Peragraph 4(a) of this Lease, but is for example only. Items listed are not approved for construction. Any proposed construction must be submitted as required by Lease provisions.

EXHIBIT "C"

NASSCO Property

2798 Harbor Drive San Diego, CA 92113

Inquiry Number: 2345259.6 October 22, 2008

The EDR-City Directory Abstract

440 Wheelers Farms Road Milford, CT 06461 800.352.0050 www.edrnet.com

EDR City Directory Abstract

Environmental Data Resources, Inc.'s (EDR) City Directory Abstract is a screening report designed to assist environmental professionals in evaluating potential liability on a target property resulting from past activities. EDR's City Directory Abstract includes a search and abstract of available city directory data. For each address, the directory lists the name of the corresponding occupant at five year intervals.

> *Thank you for your business.* Please contact EDR at 1-800-352-0050 with any questions or comments.

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OR DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report "AS IS". Any analyses, estimates, ratings, environmental risk levels or risk codes provide in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as provided in this Report are provided for illustrative purposes only, and are environmental risk for any property. Only a Phase I Environmental Site Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice.

Copyright 2008 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc. or its affiliates is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

SUMMARY

• City Directories:

Business directories including city, cross reference and telephone directories were reviewed, if available, at approximately five year intervals for the years spanning 1903 through 2006. (These years are not necessarily inclusive.) A summary of the information obtained is provided in the text of this report.

This report compiles information by geocoding the subject properties (that is, plotting the latitude and longitude for such subject properties and obtaining data concerning properties within 1/8th of a mile of the subject properties). There is no warranty or guarantee that geocoding will report or list all properties within the specified radius of the subject properties and any such warranty or guarantee is expressly disclaimed. Accordingly, some properties within the aforementioned radius and the information concerning those properties may not be referenced in this report.

Date EDR Searched Historical Sources: October 22, 2008

Target Property:

2798 Harbor Drive San Diego, CA 92113

<u>Year</u>	<u>Uses</u>	Source
1903	Address Not Listed in Research Source	San Diego Directory Co.
1907	Address Not Listed in Research Source	San Diego Directory Co.
1921	Address Not Listed in Research Source	San Diego Directory Co. Inc.
1927	Address Not Listed in Research Source	San Diego Directory Co.
1933	Address Not Listed in Research Source	San Diego Directory Co.
1938	Address Not Listed in Research Source	San Diego Directory Co.
1940	Address Not Listed in Research Source	Southern California Telephone Co.
1943	Address Not Listed in Research Source	San Diego Directory Co.
1945	Address Not Listed in Research Source	Southern California Telephone Co.
1948	Address Not Listed in Research Source	San Diego Directory Co.
1950	Address Not Listed in Research Source	The Pacific Telephone & Telegraph Co.
1952	Address Not Listed in Research Source	R. L. Polk & Co. of California
1955	Address Not Listed in Research Source	The Pacific Telephone Telegraph Co.
1956	Address Not Listed in Research Source	R. L. Polk & Co.
1960	Address Not Listed in Research Source	R. L. Polk & Co.
1961	Address Not Listed in Research Source	R. L. Polk & Co.

<u>Year</u>	<u>Uses</u>	<u>Source</u>
1962	Address Not Listed in Research Source	Community Directory Co.
1965	Address Not Listed in Research Source	Luskey Brothers & Co., Inc.
1966	Address Not Listed in Research Source	R. L. Polk & Co.
1970	Address Not Listed in Research Source	John M. Ducy
1971	Address Not Listed in Research Source	Community Directory Co.
1975	Address Not Listed in Research Source	R. L. Polk & Co.
1976	Address Not Listed in Research Source	Luskey Brothers & Co., Inc.
1980	Address Not Listed in Research Source	Pacific Telephone
1984	Address Not Listed in Research Source	R. L. Polk & Co.
1985	Address Not Listed in Research Source	R. L. Polk & Co.
1989	Address Not Listed in Research Source	PACIFIC BELL
1991	Address Not Listed in Research Source	Pacific Bell White Pages
1992	Address Not Listed in Research Source	Pacific Bell White Pages
1995	Address Not Listed in Research Source	Pacific Bell White Pages
2000	Address Not Listed in Research Source	Haines & Company
2006	**HARBOR DR** PROTECTION INC (2798) NASSCO (2798) NATL STEEL AND (2798) SIPCO SURFACE (2798) AB\$ AMERICAS (2798) IMIALLC (2798)	Haines Company, Inc.

Adjoining Properties

SURROUNDING

Multiple Addresses San Diego, CA 92113

<u>Year</u><u>Uses</u>

1903	Address Not Listed in Research Source
1907	Address Not Listed in Research Source
1921	**MAIN** SERRANA SIMON LAB R (2775) SERRANA ESPIRON ROSA LAB H (2775) WHITE GEO ELECTR R REAR (2775) LIONES ALONZO CONTRAS LAB H REAR (2775) SERRANA EMMA R (2775) SERRANA JOHN LAB R (2775)
1927	**MAIN** MERTADA GREGORIO (2769) ORTIZ SIMON (2775) MUNOZ JUAN (2777) S 28TH (2777) SAVAGE TIRE CO (2801) SCHLEY (2801) MURPHY E J (2812)
1933	** MAIN** KREUZLGER M W VET SURG (2773) NOEL A B GAS STA (2795) NELSON CHAS (2812)
1938	Address Not Listed in Research Source
1940	Address Not Listed in Research Source
1943	Address Not Listed in Research Source
1945	Address Not Listed in Research Source
1948	Address Not Listed in Research Source
1950	Address Not Listed in Research Source
1952	Address Not Listed in Research Source

<u>Source</u>
San Diego Directory Co.

San Diego Directory Co.

San Diego Directory Co. Inc.

San Diego Directory Co.

San Diego Directory Co.

San Diego Directory Co.

Southern California Telephone Co.

San Diego Directory Co.

Southern California Telephone Co.

San Diego Directory Co.

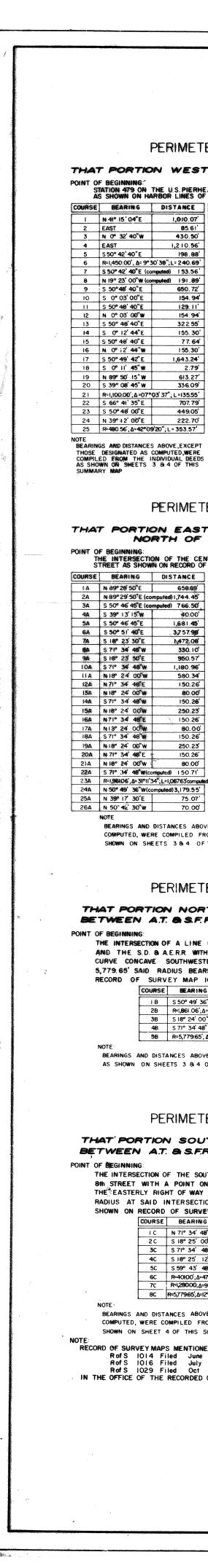
The Pacific Telephone & Telegraph Co.

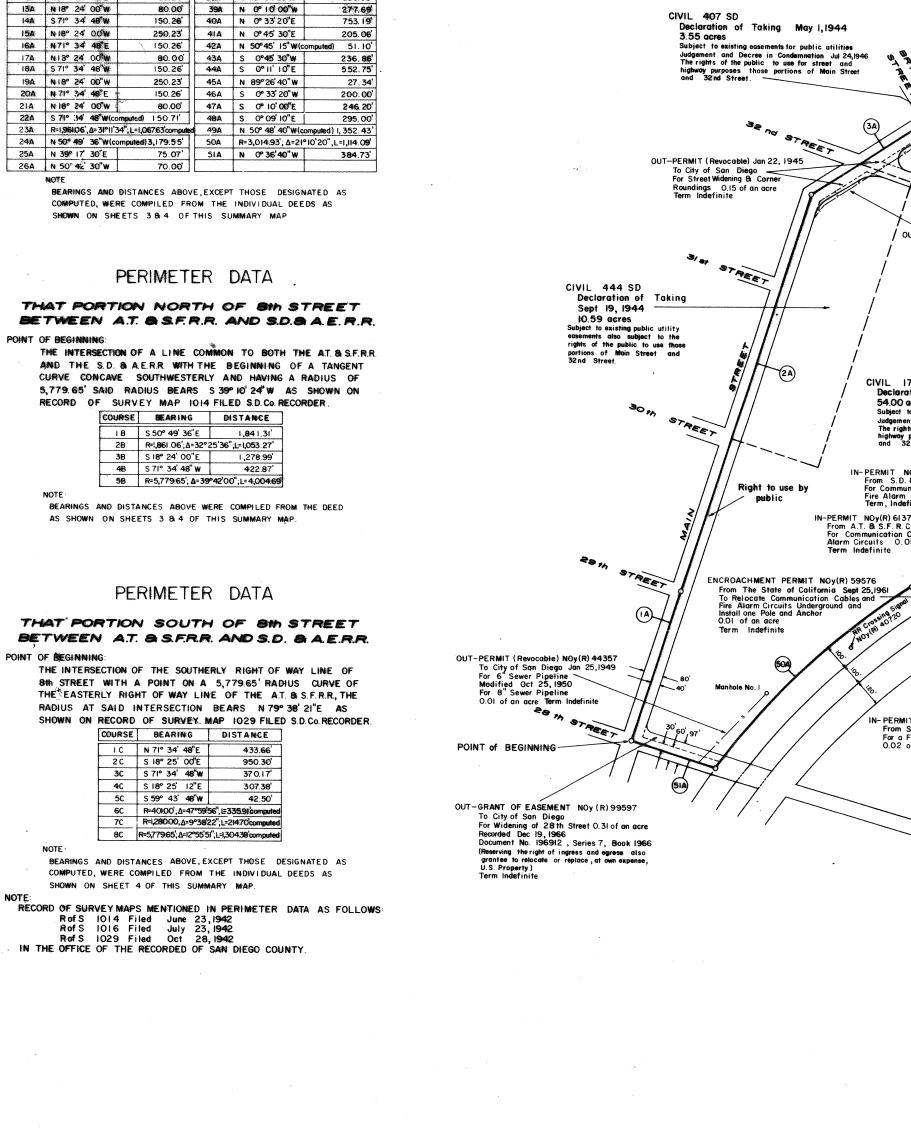
R. L. Polk & Co. of California

<u>Year</u> <u>Uses</u>

<u>Source</u>

1955	*** 20711 07**	The Pacific Telephone Telegraph Co.
1900	<u>**S 28TH ST**</u> JOES AUTO SERV (1316)	The racine relephone relegiaph co.
	BLANCO JOE JOES AUTO SERV (1316)	
	UNITED STATES PLYWOOD CORP (1346)	
1956	Address Not Listed in Research Source	R. L. Polk & Co.
1960	<u>**S 28TH ST**</u>	R. L. Polk & Co.
	FLOYD & RAYS AUTO SERV (1316)	
	UNITED STATES PLYWOOD CORP (1346)	
1961	Address Not Listed in Research Source	R. L. Polk & Co.
1962	Address Not Listed in Research Source	Community Directory Co.
1965	Address Not Listed in Research Source	Luskey Brothers & Co., Inc.
1966	Address Not Listed in Research Source	R. L. Polk & Co.
1970	<u>**S 28TH ST**</u>	John M. Ducy
	CLUB TWENTY EIGHT TAVERN (1336)	
	UNITED STATES PLYWOOD CHAMPION PAPERS INC LBR (1346)	
	WELOWOOD STRUCTURES PRE FAB ROOF STRUCTURES (1346)	
1971	Address Not Listed in Research Source	Community Directory Co.
1975	Address Not Listed in Research Source	R. L. Polk & Co.
1976	Address Not Listed in Research Source	Luskey Brothers & Co., Inc.
1000		
1980	**S 28TH ST**	Pacific Telephone
	CLUB TWENTY EIGHT TAVERN (1336)	
	<u>**MAIN ST**</u>	Pacific Telephone
	MAIN STREET SMALL ANIMAL HOSPITAL (2773)	
	LION AUTO BODY & PAINTING BODY REPR & PAINT (2795)	
	ME DONALDS (2796) TWEEDS SHELL SERVICE (2804)	
	KEARNEY MESA USED CARS USED CAR SIS (2820)	
	ANDYS AUTO WRECKING & REPAIR (2820)	
1984	Address Not Listed in Research Source	R. L. Polk & Co.


<u>Year</u>	<u>Uses</u>	<u>Source</u>
1985	Address Not Listed in Research Source	R. L. Polk & Co.
1989	Address Not Listed in Research Source	PACIFIC BELL
1991	Address Not Listed in Research Source	Pacific Bell White Pages
1992	<u>**MAIN**</u>	Pacific Bell White Pages
	TUGEND ROBERT K DVM MAIN STREET SMALL ANIMAL HOSPITAL (2773)	
	STADTMORE DONNA DVM MAIN STREET SMALL ANIMAL HOSPITAL (2773)	
	KELLY MICHAEL J DVM MAIN STREET SMALL ANIMAL HOSPITAL (2773)	
	MULLIGAN THOMAS W DVM MAIN STREET SMAL ANIMAL HOSPITAL (2773)	
	TUGGEY DAMLAN (2773)	
	SAN DIEGO (2796)	
1995	Address Not Listed in Research Source	Pacific Bell White Pages
2000	Address Not Listed in Research Source	Haines & Company
2006	<u>**S 28TH ST**</u>	Haines Company, Inc.
	ALLSERVICES (1346)	
	AUTO STORAGE (1346)	
	MAIN ST	Haines Company, Inc.
	DVM NIEMIEC BROOK (2773)	
	DVM TUGEND ROBERT K (2773)	
	DVM MAIN ST SMALL (2773)	
	KELLY MICHAEL J (2773)	
	DVM VCAMAIN ST (2773)	
	ANIML MULLIGAN THOMAS (2773)	
	ANIMAL HSPTL WALKER AMY DVM (2773)	
	EL POLLO LOCO (2795)	
	DIEGO (2795)	
	POLESTAR SAND (2795)	
	MCDONALDS (2796)	


APPENDIX B

PROPERTY RECORDS

ECSD-3211-0003-0015 PrDr Hist Review.doc

This page intentionally left blank.

1.	TH OF		and the second	E.R.R. AN
TIQ WA	N OF THE CEN I ON RECORD OF	SURVEY	es of 20th Sti Map 1016 filed	REET AND MAI
	DISTANCE	COURSE	BEARING	DISTANCE
Т	658.69	27A	R=325.39, A=25° 3	2'32"; L=145.06'
com	puted) 1,744.45	28A	R=370.39, A=25° 3	2'32"; L=165. 1 2'
con	puted) 766.50	29A	N 50º 42' 30"W	1 67 .98
	40.00	30A	N 0° 03' 15" W	58.19
	1,681.45	31A	S 50° 42' 30" E	204.87
T	37 57.98	32A	R= 325.39'; 4= 25"	32'32"; L= 145.06
	1,472.08	33A	R=370.39', A=25°	32'32"; L= 165.1 2'
1	330.10	34A	S 50° 42' 30"E	54.00'
	950.57	35A	R= 16.00'; A=90°C	0'00"; L= 25.13'
	1,180.96	36A	N 39º 17'30'E	209.11
¥	580.34	37A	N 0° 03' 15"W	200.48
	150.26	38A	N 73° 54' 25"W	656.30
1	80.00	39A	N 0º 10'00"W	277.69
	150.2 6	40A	N 0° 33' 20"E	753. 19
F	250.23	41A	N 0º 45' 30"E	205.06
	150.26	42A	N 50°45' 15"W(d	computed) 51.10
1	80.00	43A	S 0°45 30"W	236.86
1	150.26	444	S 0° 11' 10"E	5 52. 75
1	250.23	45A	N 89°26'40"W	27.34
	150.26	46A	S 0° 33' 20" W	200.00'
1	80.00	47A	S 0º 10' 00"E	246.20
(con	nputed) 150.71'	48A	S 0º 09' 10"E	295.00
	*	1 000	an man and and well-	

PERIMETER DATA

1,010.07	26	R=5,679.65,Δ=34	5108', L=3,421.81	
85.61	27	N 37° 53' 30" W	209.88	
430.50	28	S62° 55' 32" W	30.31	
1,210.56	29	R=5,559.65 , #= 3"	0'02"; L= 307.33'	
198.88	30	N 71º 34' 48"E	146.54	
'30'38";L= 240.69'	31	S 2º 42' 27'E	217.17	
omputed) 153.56'	32	R=5,679,65', A= 13°45'50", L=1,364440'		
omputed) 191.89	33	S 5° 40' 45" W	247.07	
650.72	34	S 83º 24' 28'W (c	omputed) 8.78	
154. 94'	35	N 18º 25' 12" W(c	omputed) 82.28'	
129.11	36	S 71º 34' 12" Wto		
154.94	37	S 2º 14 16 W 10		
322.55	38	S 97 58 30" W (c	computed) 32.94	
155.30	39	S 10º 04' 15"W	216.76	
77.64	40	S 8 3º 2 4' 28" W	667.11	
155.30	41	S 6° 3 5' 32"E	1,593.72	
1,643.24	42	S 83° 24' 28"W	255.81	
2.79	43	S 6° 35' 32" E	1,047.40	
613.27	44	R=564.18; 4= 74°	24'15", L=732.64'	
336.09	45	S 6º 35' 32"E	160.57	
°03' 37"; L=135.55'	46	S 83° 24' 28"W	428.73	
707.79	47	N 32° 44' 04"W	1,494.94	
449.05	48	N 6° 35' 32"W	2,440.12	
222.70	49	N 26° 56' 01" Wilco	mouted) 847.12	
9'20"; L= 353.57' 50		S 63º 03' 59"W(c	omputed) 176.54'	
	51	N 6º 35' 32"Wto	omputed) 507.86'	
S ABOVE, EXCEPT	52	N 26° 56' 01"W(c	omputed) 2,401.49	
COMPUTED, WERE	53	N 40° 38' 36"W(co	mputed) 3,657.08'	
INDIVIDUAL DEEDS	•••••••			

	PERIMET	FR [ΔΤΔ	
		4		
	N WEST	T OF	HARBOR	
ų		UP-		
	THE 11 C DECDUS		ECTADI ICHEI	-
į	THE U.S. PIERHE ARBOR LINES OF	SAN DI	EGO BAY SEP	7 8,1959
	DISTANCE	COURSE		DISTANCE
2	1,010.07	26	R=5.67965'.A= 34	31'08':1=3.421 81'
	85.61	27	N 37° 53' 30" W	209.86
ĺ	430.50	28	S62° 55' 32" W	30.31
	1,210.56	29	R=5,559.65 , #= 3*	0'02" : L= 307.33'
	198.88	30	N 71º 34' 48"E	146.54
	30'38";L= 240.69'	31	S 2º 42' 27'E	217.17
-	mputed) 53.56'	32	R=5,679.65', A= 13°	the second s
-	mputed) i 91.89'	33	S 5° 40' 45" W	247.07
	650.72	34	S 83º 24' 28'W (c	computed) 8.71
	154.94	35	N 18º 25' 12" W(c	
	129.11	36	S 71º 34' 12" Wit	cmputed) 24.54
	154.94	37	S 2º 14 16 W	
	322.55	38	S 97 58 30" W (omputed) 32.9
	155.30	39	S 10º 04' 15"W	216.7
	77.64	40	S 8 3° 2 4' 28" W	667.11
	1 55.30	41	S 6° 3 5' 32"E	1,593.72
	1,643.24	42	S 83° 24' 28"W	255.8
	2.79	43	S 6° 35' 32" E	1,047.4
	613.27	44	R=564.18; A= 74°	24' 15", L=732.64

FEDERAL JURISDICTION LAND AREA DATE STATE APPLICABLE ACQUIRED IN BY ACRES USA ACTION STATUTE
 ACQUINED
 IN
 BY
 CUMMINSSION
 STATE
 DEGREE

 BY
 ACRES
 USA
 ACTION
 STATE
 DEGREE

 BED
 STATUTE
 STATUTE
 STATUTE
 EXCLUSIVE

 BED
 STATE
 DEGREE
 B8.10
 NA
 NA
 SEC 34
 EXCLUSIVE

 DEED
 I.09
 NA
 NA
 NA
 SEC 34
 EXCLUSIVE

 BH308/PB22
 I.09
 NA
 NA
 SEC 34
 EXCLUSIVE

 BH308/PB22
 I.09
 NA
 NA
 SEC 34
 EXCLUSIVE

 DEED
 SEC 34
 FOLITICAL CODE
 EXCLUSIVE

 DEED
 I2-3-40 0.R
 I36.29
 NA
 NA
 SEC 34
 POLITICAL CODE
 EXCLUSIVE

 DEED
 I2-3-40 0.R
 I36.29
 NA
 NA
 SEC 34
 POLITICAL CODE
 EXCLUSIVE

 DEED
 I2-3-40 0.R
 I36.29
 NA
 NA
 SEC 34
 POLITICAL CODE
 PARTIAL

 CIVIL
 16.68
 I2-30-42
 I-4-43
 SE CIVIL 143.66 PROPRIETORIAL ONLY 5.30 PROPRIETORIAL ONLY 248 80.38 PROPRIETORIAL ON LY

PROPRIETORIAL ON LY

PROPRIETORIAL ONLY

PROPRIETORIAL ONLY

PROPRIETORIAL ONLY

AL 3.55

CIVIL 10.59

1-9-41 O.R 6 1.40 Bki199,Pg6

DEED 5-22-53 0.14 8k56i6,Pg360

North Contraction

CITY OF

OUT-GRANT OF EASEMENT AUG 9,1949 To The City of San Diego For Wabash Freeway 3.82 acres Recorded Sept 1,1949; Book 3306; Page 448 O.R. San Diego Co. Term, Indefinite

Right to use by

OUT-PERMIT (Revocable) NOy(R) 46148 May 7,1946 To San Diego Gas &Electric Co. For Power Lines & Poles 0.02 of an acre Term Indefinite

CIVIL 174 SD Declaration of Taking Aug 18, 1942 54.00 acres Subject to existing easements for public utilities Judgement and Decree in Condemnation Jul 24, 1946 The rights of the public to use for street and highway purposes those portions of Main Street and 32nd Street.

IN-PERMIT NOy(R) 61408 From S.D. & A.E. R.Co. Nov 1,1961 For Communication Cable and Fire Alarm Circuits Term, Indefinite 0.01 of an acre

IN-PERMIT (Revocable) Oct 19,1944 From San Diego Unified Port District For a Fence and Appurtenances 0.02 of an acre Term Indefinite

IN-PERMIT NOy(R) 61379 From A.T. & S.F. R. Co. Nov 1,1961 For Communication Cable and Fire – Alarm Circuits 0.01 of an acre Term Indefinite

SAN DIEGO

T-GRANT OF EASEMENT NOY (R) 69430

CIVIL 179 SD

42.14 acres

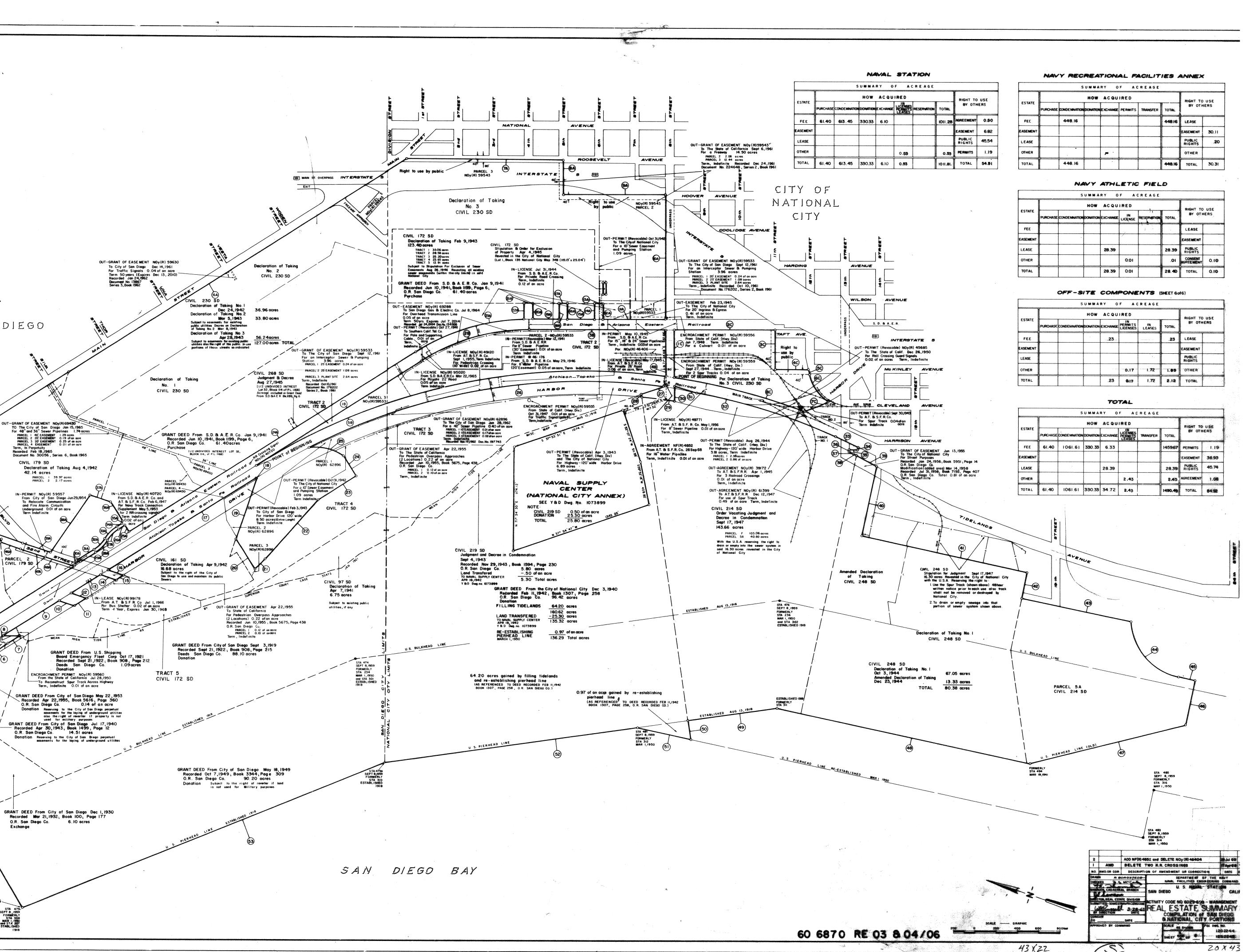
ABCEL 2 20 EASEMENT 0.29 of an are PARCEL 20 EASEMENT 0.29 of an are PARCEL 20 EASEMENT 0.29 of an are PARCEL 20 EASEMENT 0.20 of an are PARCEL 30 EASEMENT 0.20 of an are

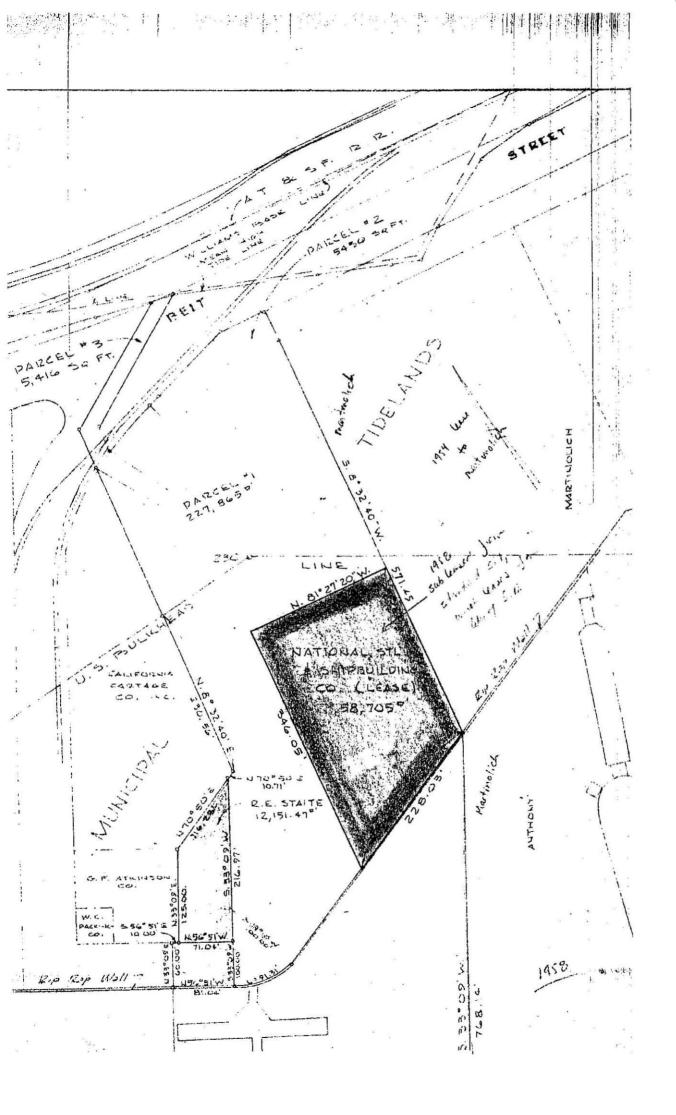
Recorded Feb 18,1965 Document No. 30056, Series 6, Book 1965

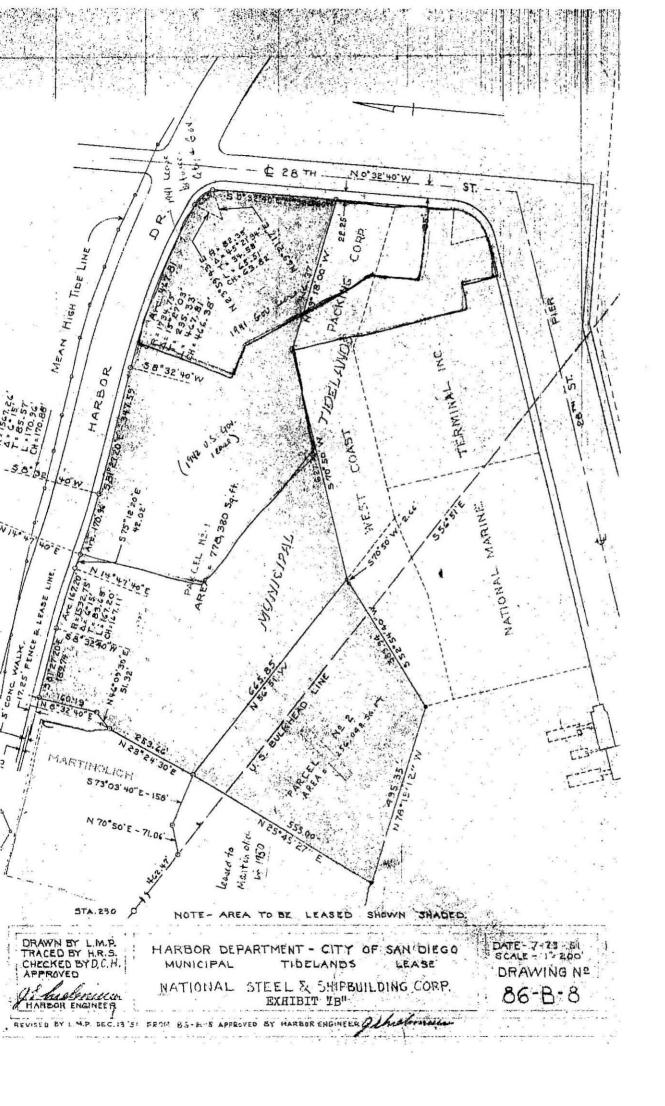
PARCEL I 39.97 ocres PARCEL 2 2.17 ocres

IN-PERMIT NOy(R) 59557 From City of San Diego Jun 29,19 To Relocate Communication and Fire Alarm Circuits Underground 0.01 of on acre Term Indefinite

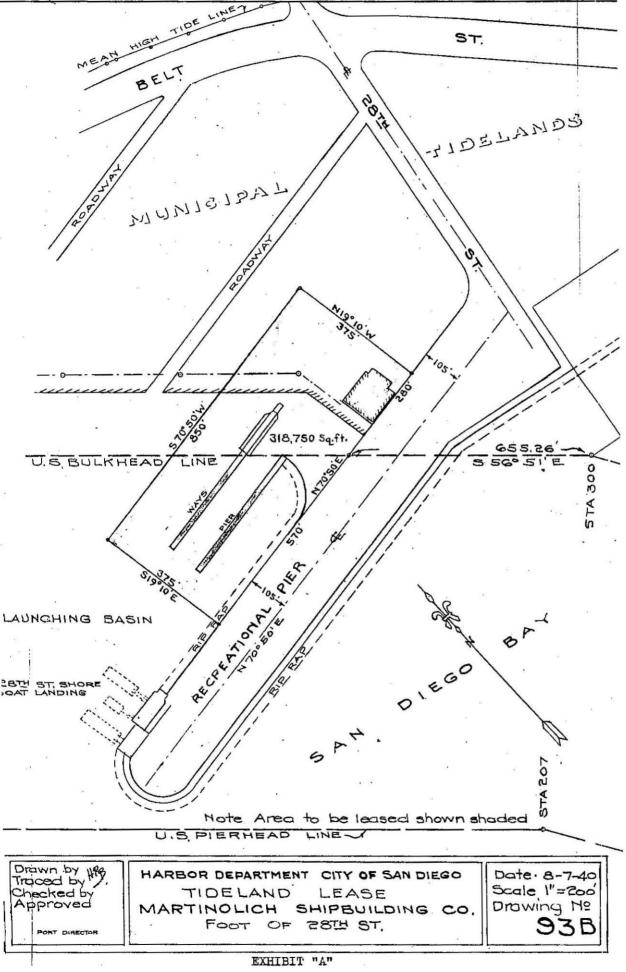
Declaration of Taking Aug 4,1942

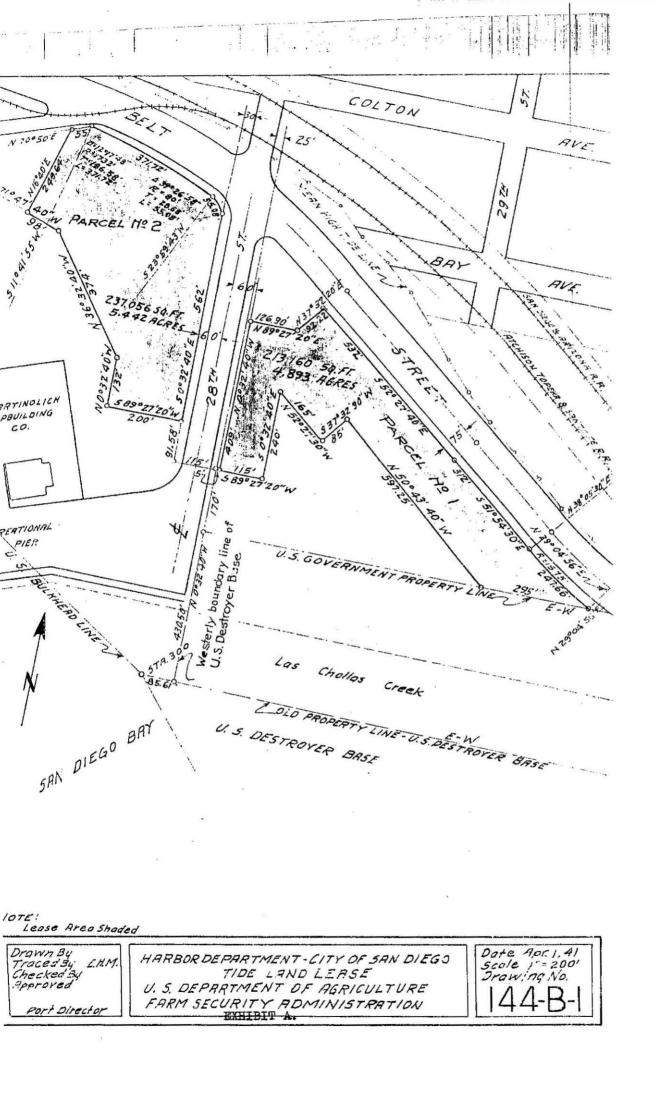

MEAN HIGH

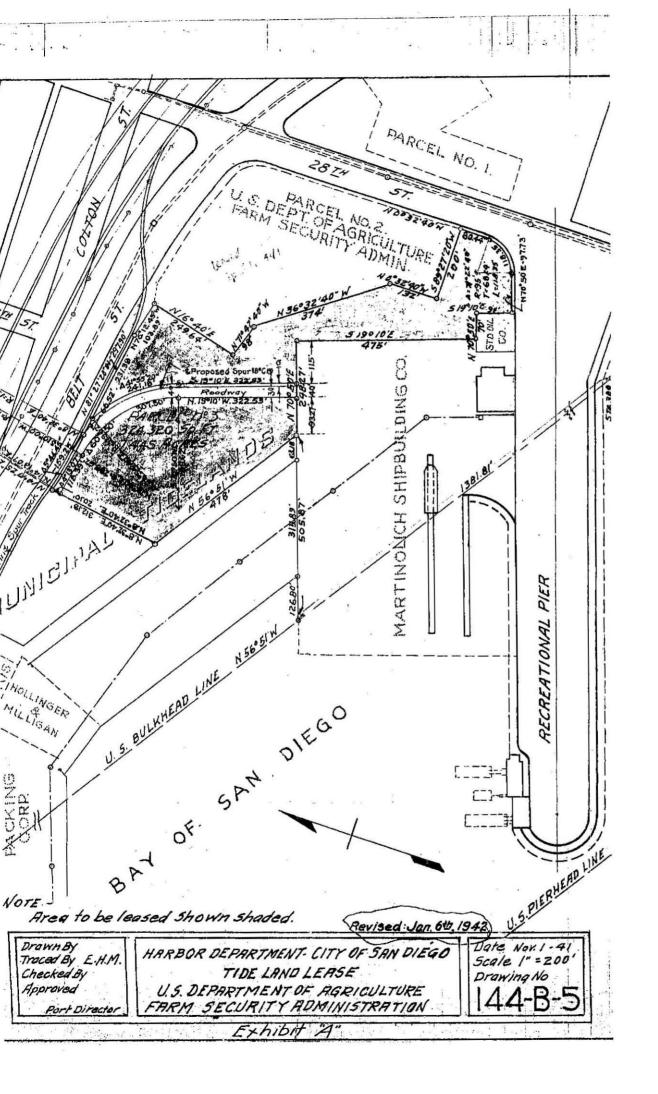

ENCROACHMENT PERMIT NOy(R) 59560 From the State of California Jul 28,1950

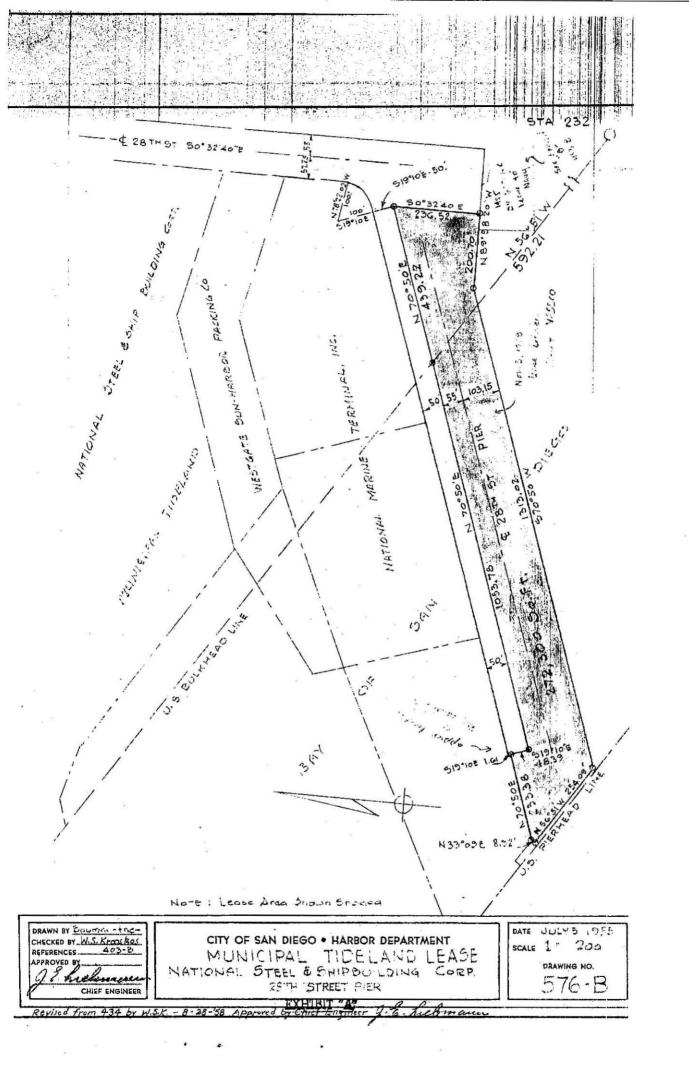

O.R. San Diego Co. 6.10 acres

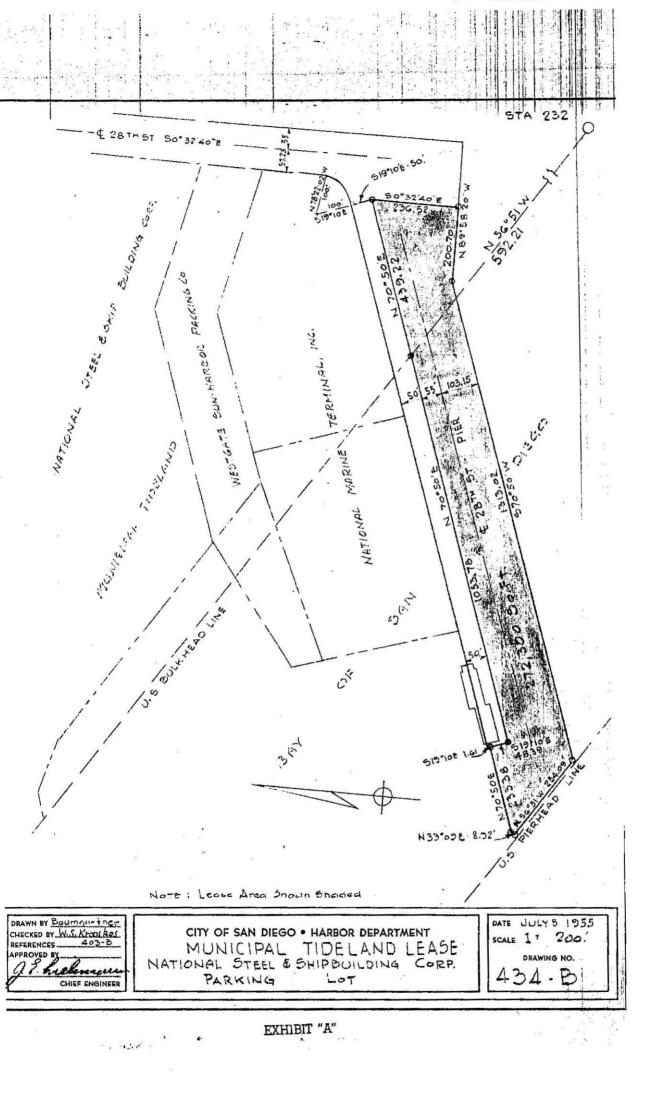
Exchange

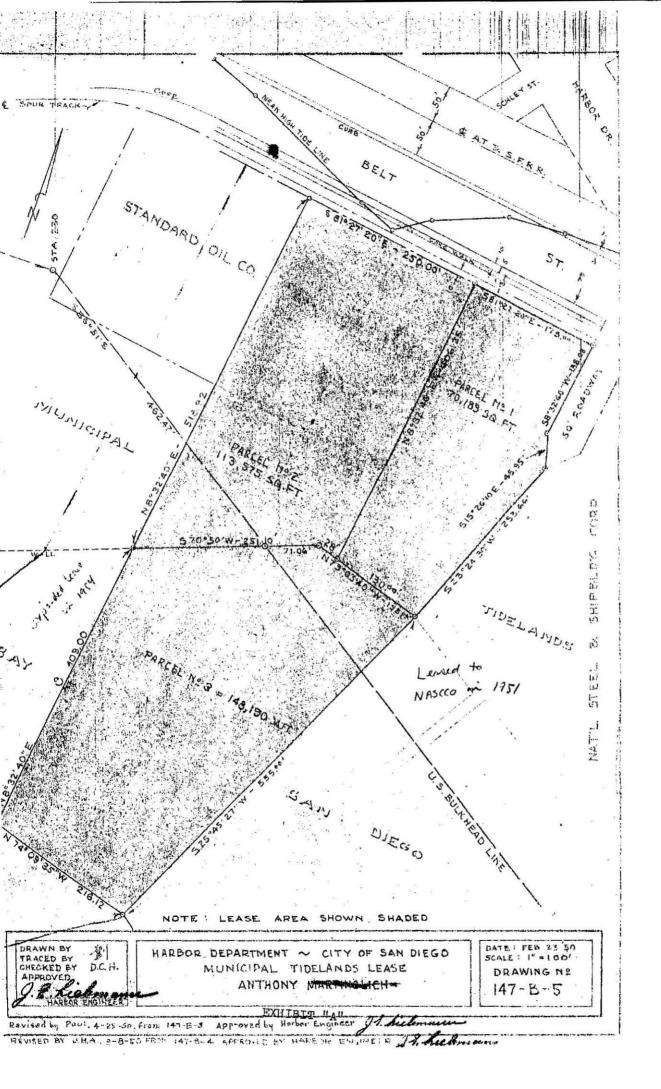

POINT of BEGINNING

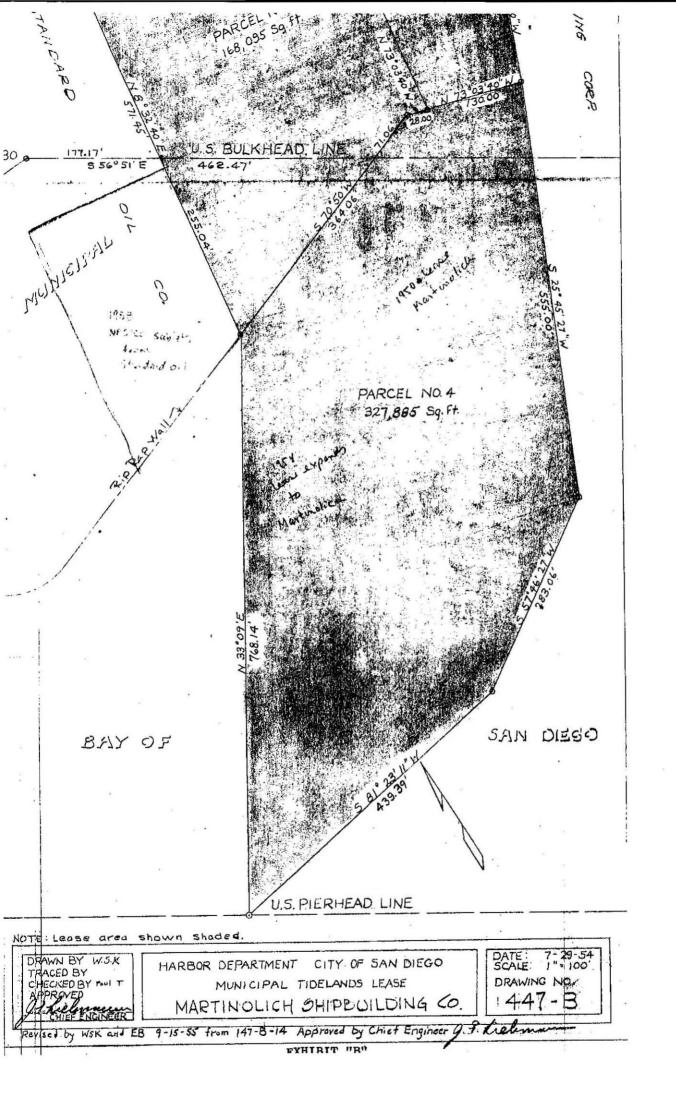


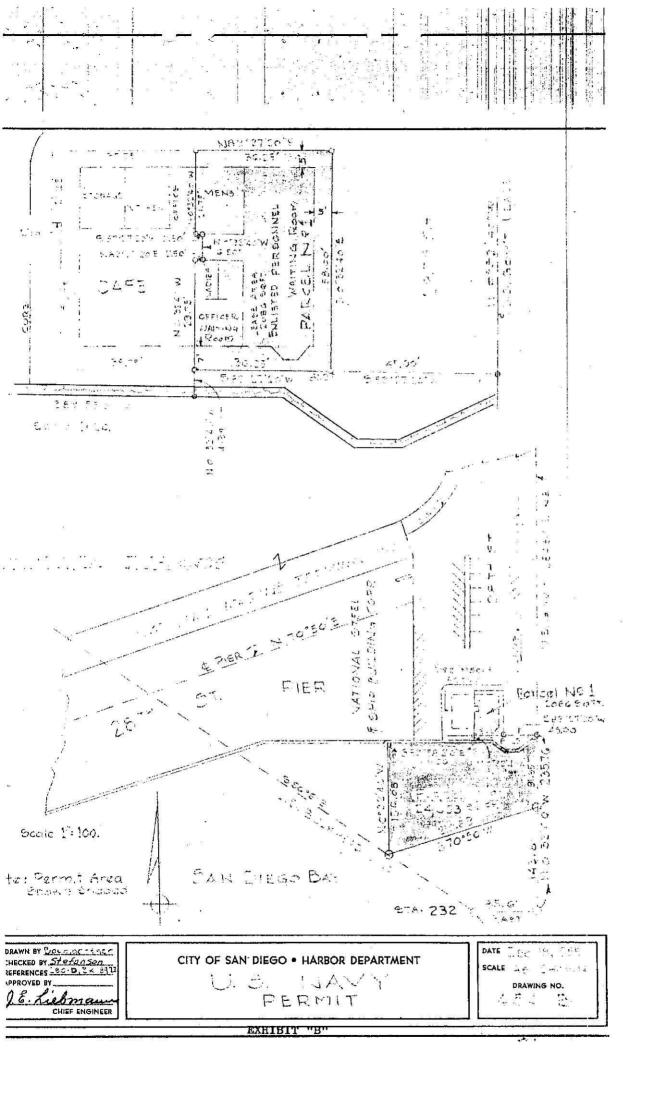





* ₁₁


.1





Appendix B Apportionment Report

TABLE OF CONTENTS

	Page
LIST OF FIGURES	ii
LIST OF TABLES	iv
LIST OF ACRONYMS AND ABBREVIATIONS	v
EXECUTIVE SUMMARY	vi
INTRODUCTION	1
CONCEPTUAL SITE MODEL	4
POTENTIAL SOURCE PATHWAY 1: DIRECT HISTORICAL RELEASE FROM 28 TH STREET LANDING AREA	5
DESCRIPTION OF HISTORICAL NAVY OPERATIONS AT THE 28TH STREET LANDING STAT	TION5
CAO ASSERTION	11
NAVY TECHNICAL ASSESSMENT AND CONCLUSION	11
APPORTIONMENT CALCULATION FOR THE 28 TH STREET NAVAL LANDING STATION	12
POTENTIAL SOURCE PATHWAY 2: RELEASE TO CHOLLAS CREEK WITH SUBSEQUENT TRANSPORT TO SHIPYARD CAO SITE	15
LOADING FROM THE NAVY'S STORM DRAIN SYSTEM	16
TRANSPORT	17
Spatial Gradients	20
POTENTIAL SOURCE PATHWAY 3: RELEASE FROM NAVAL BASE WITH	
SUBSEQUENT RESUSPENSION BY SHIPS AND TRANSPORT BY TIDE	23
STORMWATER LOADING	24
DISCUSSION AND CONCLUSIONS	
REFERENCES	42

LIST OF FIGURES

- Figure 1. Location and boundaries of the Shipyard Sediment Site (SY); the red line indicates the site boundary; Chollas Creek Channel is immediately north of U.S. Naval Station.
- Figure 2. Conceptual site model for the CAO area of interest.
- Figure 3. Aerial photograph from 1956 showing the location of the Navy operated 28th Street Shore Boat Landing Station.
- Figure 4. Conceptual site model of contaminant input and fate for potential source Pathway 1 at the Shipyard area.
- Figure 5. Location of the Naval Landing Station relative to the commercial boatyard maintenance and fabrication facilities operated by Lynch Ship Building Company (ca 1949 modified from Figure 3-48 in Tetra Tech 2008).
- Figure 6. (A) Actual sediment core contaminant profiles for Station NA17; (B) Expected core profiles at NA17 if the 28th Street Naval Landing Station represented a primary source of contamination.
- Figure 7. Conceptual site model of contaminant input and fate for potential source Pathway 2 at the Chollas Creek mouth area.
- Figure 8. Relative contribution (percentage) of Navy stormwater discharges to the contaminant mass loading from Chollas Creek (Katz *et al.* 2001)
- Figure 9. Spreading of stormwater-derived particles from Chollas Creek (based on relative beam attenuation data) following a storm event in 2000 (Katz *et al.* 2001).
- Figure 10. Dispersion of suspended particles (total suspended solids) from Chollas Creek discharges following a storm event (Katz *et al.* 2001).
- Figure 11. Model-predicted distribution footprint for particles discharged from Chollas Creek following the February 28, 2006 storm event.
- Figure 12. Example of the differences in the metal signatures (cadmium and zinc) in sediments from Chollas Creek mouth, SY, and Reference sites (derived from data in Exponent 2001 and SCCWRP 2005).
- Figure 13. Conceptual site model contaminant input and fate for potential source Pathway 3 at the Naval Base San Diego area.
- Figure 14. Stormwater plume (salinity) mapping results at Naval Base San Diego; lower salinity water is associated with stormwater runoff and creek discharges; the "after" plot shows influence of additional rainfall.

LIST OF FIGURES (Continued)

- Figure 15. Spatial gradients in sediment TBT concentrations.
- Figure 16. Spatial gradients in sediment PCB concentrations.
- Figure 17. Spatial gradients in sediment copper concentrations.
- Figure 18. Spatial gradients in sediment mercury concentrations.
- Figure 19. Box plots illustrating spatial trends in surface contaminant distributions along the Pathway 3 transect.
- Figure 20. Box plots illustrating spatial trends in surface contaminant concentrations normalized to sediment fines along the Pathway 3 transect.
- Figure 21. Spatial trends in (A) sediment grain size and contaminant concentrations along specific transects in the Shipyard, (B) Chollas Creek mouth, and (C) Naval Base San Diego.
- Figure 22. Sampling transects at the Shipyard, Chollas Creek and Naval Base San Diego.
- Figure 23. Results from principal component analyses of PCB congener data illustrating the primary sources of PCBs associated with the Southern and Northern SY Areas.

LIST OF TABLES

- Table 1.Potential contributions from Navy operations via Pathway 1 based on size and
duration of site operations.
- Table 2.
 Model-predicted particle trapping efficiencies for Chollas Creek following two storm events.
- Table 3. Average CoC concentrations in SY and NBSD sediments and corresponding background and CAO alternative cleanup levels; the background and alternative cleanup levels are from the CAO; metal concentrations are mg/kg; TBT, PCB and PCB concentrations are μg/kg.
- Table 4.
 Correlation coefficients (R²) between individual CoCs in the Shipyard and NBSD sediments.

LIST OF ACRONYMS AND ABBREVIATIONS

CAO	Cleanup and Abatement Order
CoC	Contaminants of Concern
CSM	Conceptual Site Model
EPA	Environmental Protection Agency
IMO	International Maritime Organization
PAH	Polycyclic Aromatic Hydrocarbons
PCA	Principal Components Analysis
PCB	Polychlorinated Biphenyls
PRP	Potentially Responsible Party
NBSD	Naval Base San Diego
NLS	Naval Landing Station
RWQCB	Regional Water Quality Control Board
SCCWRP	Southern California Coastal Water Research Project
SY	Shipyard Sediment Site
TBT	Tributyltin
TMDL	Total Maximum Daily Load
TSS	Total Suspended Solids
UNDS	Uniform National Discharge Standards

EXECUTIVE SUMMARY

The San Diego Regional Water Control Board (RWQCB) named the U.S. Navy as a responsible party in the Shipyard Cleanup and Abatement Order (CAO). The CAO addresses contaminated bay sediments at the "Shipyard Sediment Site" which corresponds to the leaseholds of commercial shipbuilding facilities operated by NASSCO and BAE. The RWQCB identified three potential pathways for contaminant releases from Navy facilities/operations to contribute to the sediment contamination at the Shipyard Sediment Site (SY): (1) releases to the Bay from the former Navy 28th Street Landing Station that was operated by the Navy from 1938 to 1956; (2) stormwater discharges from Naval Base San Diego (NBSD) into Chollas Creek with subsequent transport and accumulation of contaminants in bottom sediment within the site footprint; and (3) discharges/releases from NBSD directly into San Diego Bay with subsequent transport and accumulation of contaminants in bottom sediment within the site footprint. This report evaluates these three pathways and estimates the potential contributions of Navy sources (apportionment) to the SY.

A recent comprehensive review of historical documents by the Navy indicates that the 28th Street Landing Station consisted solely of a storage room, waiting room, and finger pier that were used by ship launches to ferry sailors to and from Navy ships moored in San Diego Bay. The records also suggest that no industrial activities occurred at this facility. Specific information on the types and quantities of contaminants possibly released as a result of Navy activities at this facility and transported to the SY via Pathway 1 is unavailable. Consequently, the maximum potential magnitude of contaminant inputs from this Navy source was estimated by assuming that the quantity of contaminants was proportional to the size of the facility and duration of operation in comparison to the size and duration of the adjacent commercial shipbuilding operations. This calculation is extremely conservative because it implies that discharges from the Navy shuttle boat operations were comparable to those associated with ship building and maintenance, and that inputs from all other sources were negligible. Even with this highly conservative analysis, the total Navy contaminant contribution to the SY from this pathway is estimated to be less than 0.2% of the total contaminant loading. Given the small area of use, limited level of activity, limited period of operation, absence of contamination at depth in the nearest sediment core profile, co-association of contaminants with the shipvard marker compound (tributyltin) in sediments, and unlikely utilization or release of several of these contaminants with known operations, the potential release to the SY from this Navy source is considered to be negligible for all practical purposes.

the only area that is potentially influenced by Creek discharges is in the triangular region to the south of the 28th Street Pier. Within this region, the only station that indicated potential impact (i.e., sediment contaminant levels above Bay background) was Station NA22. Parties have agreed that the region represented by Station NA22 should be included in the Mouth of Chollas Creek Total Maximum Daily Load (TMDL) and removed from the CAO assessment. Consequently, the areas of the SY that are thought to be influenced by Chollas Creek discharges have already been incorporated into the TMDL and removed from the CAO. In addition, the Navy's contribution to contaminant loading at the SY via Pathway 2 is negligible as demonstrated by the small relative portion of the Chollas Creek contaminant loading to the Bay

that can be attributed to the Navy stormwater discharges, the portion of the solids loading from the Creek that is likely deposited at the SY, the observed spatial gradients of contamination in the area, and the relative chemical signatures of bottom sediments in the area. Existing data indicate that Navy's stormwater discharges contribute only a small fraction of any of the contaminants of concern to the total Chollas Creek watershed contaminant load. Further, modeling studies indicate that a large fraction of the particles discharging from Chollas Creek are trapped in the mouth area and are not dispersed into the Bay. The fraction of particles discharged from Chollas Creek that settle in the SY is less than 1% of the total particle loading, with the majority of settling occurring in the region south of the 28th Street Pier (NA22). In addition, the chemical signature of the sediments in the Creek mouth area is clearly distinctive from the SY area sediments, which indicates different contaminant sources. Overall, the Navy's contribution to contaminant inputs via this pathway is estimated to be less than 0.08%, and the areas of concern have already been incorporated into the Mouth of Chollas Creek TMDL where the Navy is an active participant in the assessment and implementation.

Pathway 3 was evaluated by interpreting spatial patterns in sediment contaminant concentrations as an indicator of contaminant sources and transport directions. Differences in the ratios of individual contaminants are used as an indicator of the chemical signatures or fingerprints of different input sources. CAO contaminants of concern consistently exhibit similar spatial gradients, with highest concentrations within the SY footprint and decreasing concentrations in the direction of NBSD. This infers transport and/or dispersion in the direction of NBSD, which is opposite of the pattern required to support Pathway 3.

Further, concentrations of TBT, which was a biocide used in anti-fouling paints on the hulls of commercial and recreational vessels but rarely on military vessels, are strongly correlated with concentrations of several other metals (arsenic, copper, lead, and zinc), which suggests similar SY input sources and environmental fate. The relationship between TBT and several metals represents the major proportion (56%) of the variance in the sediment contaminant data. The remaining variance in the dataset is related to differences in sediment grain size (11%) and patterns in total organic carbon, mercury, polychlorinated biphenyls (PCBs) (18%), and polycyclic aromatic hydrocarbons (PAHs) (6%). This does not imply that the SY did not contribute to loadings for mercury, PCBs, or PAHs. Instead, the loadings for these contaminants likely reflect inputs from a number of upland and in-bay sources, including the SY. The exact apportionment of the non-shipyard contributions cannot be determined accurately from the existing information.

Given that the spatial patterns and gradients of sediment contaminants are not consistent with transport from the NBSD area to the SY area, contamination at the SY clearly co-occurs with TBT which is a shipyard-specific contaminant, and chemical fingerprints indicate clear differences between NBSD and the SY, the potential contribution to the SY from Pathway 3 is considered to be negligible for all practical purposes.

This page is intentionally left blank.

INTRODUCTION

The Regional Water Quality Control Board, San Diego Region (RWQCB) issued a Tentative Cleanup and Abatement Order (CAO; No. R9-2005-0126) for a portion of San Diego Bay referred to as the "Shipyard Sediment Site." The Site comprises approximately 103 acres of San Diego Bay and adjoining shoreline between Sampson and 28th Streets within the NASSCO and BAE leaseholds. The outline of the Shipyard Sediment Site (SY) is shown in Figure 1. The RWQCB issued the CAO because the Site is on the Clean Water Act Section 303(d) list of water quality limited segments due to the presence of elevated copper, mercury, zinc, polycyclic aromatic hydrocarbon (PAH), and polychlorinated biphenyl (PCB) concentrations in Bay sediments. According to the CAO, the presence of elevated concentrations of these sediment contaminants is causing an impairment to various beneficial uses, including aquatic life beneficial use, aquatic-dependent wildlife beneficial use, and human health beneficial use.

Sediments are repositories or sinks for many chemical contaminants released to coastal water bodies because contaminants typically have a strong affinity for particles, which have a tendency to settle and accumulate on the seafloor. Typical contaminants include industrial chemicals, pesticides and herbicides, petroleum residues, metals, and anti-fouling paint residues. Many of these are persistent and not easily degraded in the marine environment. Management and cleanup of contaminated sediments represent significant issues for ports and harbors throughout the U.S.

There are multiple sources of contaminants to San Diego Bay in the region of the SY, including past SY activities, stormdrain discharges, non-point (watershed) inputs from Chollas Creek, surface water runoff from the roadway between the SY properties, fill material added to the shoreline, and accidental releases from ships (Exponent 2001). These inputs are discussed below in the Conceptual Site Model section.

The CAO names NASSCO and BAE, as well as the Navy and other entities, as responsible parties based on the contention that they "have each caused or permitted the discharge of waste to the SY resulting in the accumulation of waste in the marine sediment." In particular, the RWQCB identified the Navy as a potentially responsible party based on their conclusion that:

"...the U.S. Navy has caused or permitted the discharge of waste to Chollas Creek and San Diego Bay in a manner causing the creation of pollution or nuisance conditions, that has contributed to both the levels of pollutants and the pollution and nuisance conditions found at the Shipyard Sediment Site through the pollutant transport pathways ..."

Summary Analysis Navy Apportionment and Liability

Figure 1. Location and boundaries of the Shipyard Sediment Site (SY); the red line indicates the site boundary; Chollas Creek Channel is immediately north of U.S. Naval Station.

The three main pollutant transport pathways from Navy sources to the SY, identified in the CAO, are:

Pathway 1: Releases directly to the site from Navy activities associated with historical operations at the 28th Street Shore Boat Landing Station;

Pathway 2: Releases of stormwater into Chollas Creek from the Navy owned and operated municipal separate storm sewer system, with subsequent transport to and dispersion in San Diego Bay, including the SY; and

Pathway 3: Releases directly from operations within NBSD into San Diego Bay, with subsequent transport and dispersion to other parts of the Bay, including the SY.

The contributions from these sources and pathways to the existing and historical contaminant loading at the SY have not been determined empirically; instead the CAO justifies the existence and importance of these pathways based on the following:

- The types of pollutants present at elevated concentrations in the SY (selected metals, petroleum hydrocarbons, and synthetic organic compounds) can also be present in current or historical discharges from Navy operations;
- Navy activities that could generate and/or discharge contaminants have occurred in proximity to the SY;
- Past Navy discharges have violated waste discharge requirements; and
- Historical information/documentation was insufficient to demonstrate that Navy activities did not contribute contaminants directly or indirectly to the Site.

While it is likely that past and present Navy operations have discharged contaminants to San Diego Bay, the information needed to accurately characterize the composition and magnitude (*i.e.*, mass) of Navy contributions to the SY, as well as concurrent inputs from all other potential sources, is limited. Further, there are a number of significant technical issues related to distinguishing the inputs from multiple local and regional sources:

- Historical discharge records for all possible sources are incomplete or nonexistent;
- There are multiple potential input sources with similar chemical characteristics (*i.e.*, input sources do not have unique chemical markers, with the possible exception of organotin (TBT) as a marker of SY inputs as discussed below);
- Input histories, as recorded by sediment core geochronologies, may have been disturbed by dredging, prop wash, etc.

Nevertheless, because of the potential magnitude of the cleanup required to respond to the CAO, the Navy presents in this document an independent assessment of these contaminant pathways to determine whether they are tenable and, if so, the possible magnitude of the source. To accomplish this goal, the Navy carefully compiled and reviewed historical information and evaluated multiple lines of evidence using standard, scientifically-accepted tools to develop an

estimate of the Navy's potential contribution (apportionment) to contaminant loads in the SY sediments.

CONCEPTUAL SITE MODEL

A Conceptual Site Model (CSM) for the CAO area of interest, shown schematically in Figure 2, is included to provide a context for understanding the three proposed contaminant transport pathways described in the CAO. The main areas included in the CSM are represented by the SY (yellow), Chollas Creek (green) and NBSD (light blue). Loadings to the general region of the SY include upland sources (purple arrows), stormwater discharges (light blue arrows), creek discharges (yellow arrows), and local waterside activities and other inputs from shallows to the south (gray arrows).

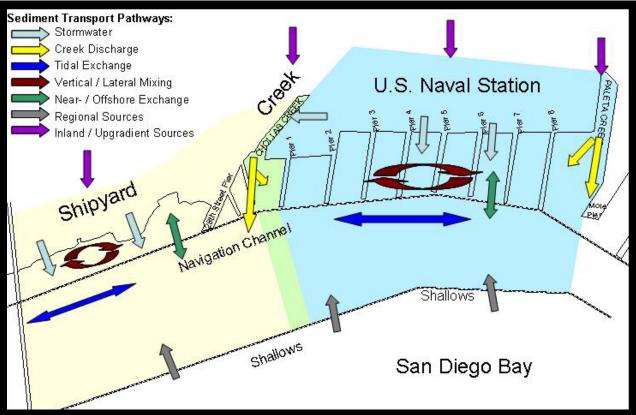


Figure 2. Conceptual site model for the CAO area of interest.

The primary contaminants of concern (CoCs) addressed by the CAO have strong affinities for particles. Consequently, the fate of CoCs released into San Diego Bay is largely regulated by processes affecting the transport and eventual deposition of particles in the bottom sediments. Particles that settle to the bottom are subject to resuspension by natural processes, such as wave or current induced turbulence, or from human activities such as dredging and propeller scour; the processes affecting resuspension and settling of particles are indicated in the CSM by the red arrows. Once in suspension, particles may be transported by tidal currents to other areas of the Bay, including the navigation channel (green, downward arrows), before settling back to the bay

floor. In this manner, particles with chemical contaminants may accumulate in areas that are removed from their input source (indicated by the green upward arrows). As discussed below for the various pathway analyses, the resulting spatial gradients in contaminant concentrations provide important information for understanding inputs and dispersion that are a fundamental basis for apportionment.

The following sections evaluate the processes and address the potential magnitude of the Navy's contribution to the SY by each of the three pathways identified in the CAO.

POTENTIAL SOURCE PATHWAY 1: DIRECT HISTORICAL RELEASE FROM 28TH STREET LANDING AREA

The CAO Source Pathway 1 is based on historical contaminant loadings from the Navy's operation of a boat landing facility on the 28th Street Mole Pier into San Diego Bay. The precise location of this Naval Landing Station (NLS) within the overall CAO area of interest, as well as a breakdown of individual structures making up the facility, is shown in an aerial photograph from 1956 in Figure 3. The CAO assumes that the Navy performed small boat maintenance operations at this site and, therefore, discharges to the Bay would have been similar to those associated with the commercial shipbuilding operations in the immediate vicinity of the same Mole Pier. Consequently, the maximum potential magnitude of contaminant inputs from this Navy source was estimated by assuming that the quantity of contaminants was proportional to the size of the facility and duration of operations. However, as discussed below, this assumption is based on tenuous and circumstantial evidence. The CAO also uses contaminant concentration data from sediment cores collected as part of the extensive Shipyard Study (Exponent 2001) near the 28th Street Pier to support the claim that Navy operations contributed to contaminant loading at the SY. This argument is also tenuous for reasons discussed below.

A detailed CSM for Source Pathway 1 focusing on potential contaminant inputs and pathways in the immediate vicinity of the 28th Street Mole Pier is provided in Figure 4. This model emphasizes the relative magnitude of inputs from the Navy's boat landing facility compared to inputs from other, concurrent shipbuilding and commercial operations on or adjacent to the pier. This relationship, both spatially and temporally, is the basis for the apportionment calculation discussed below. However, it is recognized that the SY was also subject to inputs from other local point and non-point sources, including stormdrain discharges and releases from wastewater holding ponds.

DESCRIPTION OF HISTORICAL NAVY OPERATIONS AT THE 28TH STREET LANDING STATION

The Navy operated the 28th Street Shore Boat NLS from 1938 to 1956. The facility covered an area of approximately 1 acre at the south end of the 28th Street Mole Pier in the present NASSCO leasehold (Figure 3). Based on initial information obtained by the RWQCB from the Navy (U.S. Navy 2004), the CAO concluded that in addition to the landing station, the Navy also operated a facility that functioned as a small boatyard and, therefore, likely used and discharged cleaning solvents, abrasives, and other chemicals for paint removal, metal plating, surface finishing and painting. Based on interpretations of old maps and photos, the Navy initially

concluded that the boatyard activities were associated with maintaining ship launches (U.S. Navy 2004). This interpretation was conveyed to the RWQCB.

However, information compiled recently by the Navy (Tetra Tech 2008), and summarized below, indicates that the Navy's 28th Street facility consisted solely of a storage room, waiting room, and finger pier at the south end of the main 28th Street Mole Pier that were used by the Navy to support ship launches ferrying sailors to and from Navy ships moored in San Diego Bay. These structures are shown in the ca 1949 Sanborn Insurance Map (Figure 5). This map also indicates that the maintenance buildings located partly on a wooden wharf extending along the north face of the 28th Street Mole Pier, including the "Naval Store" at the base of the pier, were operated by the Lynch Ship Building Co. and were not part of the NLS.

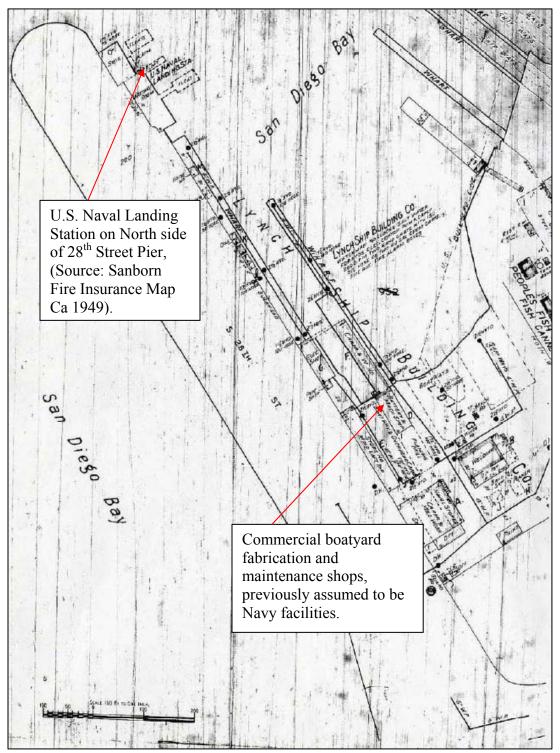

Figure 3. Aerial photograph from 1956 showing the location of the Navy operated 28th Street Shore Boat Landing Station.

Figure 4. Conceptual site model of contaminant input and fate for potential source Pathway 1 at the Shipyard area.

Figure 5. Location of the Naval Landing Station relative to the commercial boatyard maintenance and fabrication facilities operated by Lynch Ship Building Company (Ca 1949 modified from Figure 3-48 in Tetra Tech 2008).

The 1946 County of San Diego Fire Insurance map from the Navy Technical Report of 2004 denotes "Navy building" at the southern end of 28th Street. However, aerial photos from 1952 through 1956 do not show a building at the mapped location of this "Navy building" or any indication that there was ever a structure erected in the area. Thus, the information based on maps and photos is circumstantial, and there is no proof of ownership. Nevertheless, on balance, the information indicates that these buildings were not Navy maintenance facilities, and there is no evidence that the Navy operated a maintenance facility at or near this location.

While some industrial facilities existed at or near the base of the pier, they were operated by the Lynch Shipbuilding Company and National Marine Terminal Incorporated. The commercial shipbuilding structures for these companies included a shipbuilding and maintenance facility located partly on a wooden wharf extending along the north face of the 28th Street Mole Pier and partly on the shore north of the base of the pier. The record of the Lynch Shipbuilding Company occupying the area is extensive:

- A 1940 oblique aerial photograph shows both the Navy's 28th Street facility at the end of the pier and a Lynch Shipbuilding Company structure at the foot of the pier (Figure 3-23 of Tetra Tech 2008).
- In 1942, the Lynch Shipbuilding Company was operating on the north face of the 28th Street Mole Pier and had constructed and delivered six Navy coastal transports in 1942 and six Navy rescue tugs.
- In 1943, the Lynch Shipbuilding Company appears on a Map of Destroyer Base (Figure 3-33 in Tetra Tech 2008) at the 28th Street Mole Pier location. In 1946, the Lynch Shipbuilding Company occupied 630 feet of the pier along the north side of the 28th Street Mole Pier according to a 1946 U.S. Army Corps table (Figure 3-46 of Tetra Tech 2008).
- A 1949 Sanborn Insurance Map (Figure 5) shows the Lynch Shipbuilding Company occupying the location described in the 1946 U.S. Army Corps table, while a 1956 Sanborn Insurance Map (Figure 3-60 of Tetra Tech 2008) denotes National Marine Terminal Shipbuilding in the same location.
- A 1956 U.S. Army Corps table (Figure 3-63 of Tetra Tech 2008) lists National Marine Terminal Incorporated as the occupant, with industrial operations that included machine, woodworking, pattern, electric, and welding shops, a foundry, and a mold loft.

Furthermore, aerial photos from 1940, 1941, 1945, 1949, 1951, and 1953 (reference aerials) show that most of the 28th Street Mole Pier was used for parking, and the only structures present were the NLS and the shipbuilding structures along the north face of the pier. A 1956 U.S. Army Corps aerial photograph shows that the Navy finger pier and floating docks at 28th Street Mole Pier had been removed. These records support the conclusion that industrial activities along the Mole Pier were related only to the commercial shipbuilding activities of Lynch Shipbuilding Company, and later National Marine Terminal Incorporated.

CAO ASSERTION

There are no historical discharge records for the time period in which the Navy operated the 28th Street NLS to support or refute the nature of any contamination that might have been discharged and deposited at the SY (U.S. Navy 2004 and Tetra Tech 2008). The CAO Technical Support Document (RWQCB 2008) noted that sediment cores collected during the shipyard investigation (Exponent 2001) at two locations near the historical NLS site contained elevated contaminant concentrations within strata that could have been deposited at the time the NLS was operational. The CAO also states that the types of contaminants in the sediments "are associated with the characteristics of the waste the U.S. Navy operations generated at the 28th Street Shore Boat Landing Station site."

NAVY TECHNICAL ASSESSMENT AND CONCLUSION

As mentioned previously, the available information indicates that the Navy did not operate a boat maintenance facility at this location. Furthermore, the sediment core data do not support the CAO pathway for two reasons. First, the core layers which the RWQCB (2008) concluded were deposited at the time the NLS was operational, and contain elevated levels of contaminants of concern, also contain TBT which is a synthetic compound that was not used until after the NLS was closed. Therefore, core strata containing measurable TBT can not be considered representative of possible NLS inputs. Second, the contaminant profiles in the sediment cores collected near the old NLS facility indicate that the magnitude of the historical inputs is minor in comparison with the magnitude of recent inputs (*i.e.*, since the NLS was closed).

The vertical distributions of contaminants in undisturbed cores can provide a temporal history or geochronology of contaminant loadings. For example, contaminants in deeper, buried sediments reflect depositional events that occurred historically, whereas surface (*i.e.*, 0-2 cm) concentrations are expected to reflect recent loadings. The historical trends are important for apportionment assessments because Navy activities in the SY occurred over a discrete period of time (1938-1956). If the Navy operations at the NLS represented a significant source for contaminant loadings, then concentrations in the deeper portions of the cores, which were deposited at the time the NLS was active, would be noticeably elevated. Alternatively, increased contaminant concentrations in sediments deposited after 1956, and outside of the NLS operational period, must have been from non-Navy sources.

There are few direct measurements of sediment deposition rates in San Diego Bay. Peng *et al.* (2003) used radiometric methods (Pb-210) to measure a sedimentation rate of about 1 cm/yr, and Chadwick *et al.* 2006 reported deposition rates of approximately 1.3 cm/yr based on both radioisotope data and sediment trap collections in the vicinity of Paleta Creek. The RWQCB (2008) estimated a sediment deposition rate at the SY of 2 cm/yr based on the appearance of measurable TBT in the 2-4 ft depth interval of sediment cores.

TBT is a synthetic compound that was developed for anti-fouling coatings on boat hulls in the late 1960s, and not commonly used until the late 1970s and early 1980s. The only significant use of TBT by the Navy was on the hulls of two test vessels from about 1984-1990. Because the NLS was closed in 1956, approximately 20 years before TBT appeared in the environment,

sediment core strata that contain measurable quantities of TBT can not be considered representative of inputs from the NLS.

The sediment core data collected during the shipyard investigation (Exponent 2001) show that TBT levels throughout the SY are substantially higher in the more-recently deposited (shallower depth intervals) sediments than in the deep, historically-deposited sediments. In general, TBT concentrations in the >6 ft strata are very low, whereas there is a noticeable increase in TBT concentrations between the > 6 ft interval and the 4-6 ft interval which likely corresponds to the timing of initial TBT use in the shipyard, no more than 40 years ago. Therefore, contaminants deposited in the SY at the time the NLS was operational are likely reflected in the >6 ft sediment strata.

An evaluation of the vertical contaminant profile for Station NA17, which is the sampling station closest to the historical location of the NLS, supports the conclusion that the NLS was not a significant local source of contamination. The Station NA17 core data are provided in Figure 6A. These data show that concentrations of copper, mercury, TBT, total PAHs, and total PCBs are highest approximately 1 ft below the sediment surface and decrease with depth, reaching levels that approximate Bay background at core depths less than 5 ft. These profiles indicate that the contaminant loadings were much higher during recent periods compared with historical loadings.

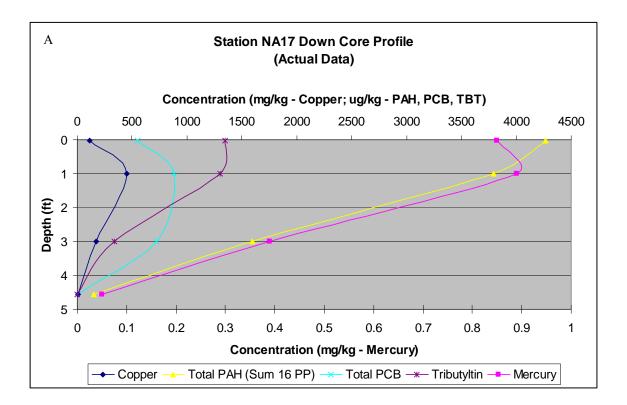
These measured contaminant profiles are the mirror image of patterns that would be expected if the historical loadings, including inputs from the NLS, were significant. For example, significant loadings from NLS operations would have resulted in high CoC concentrations within the deepest core strata. A hypothetical vertical contaminant profile showing such a pattern is provided in Figure 6B. This plot was generated by assuming the same depth-integrated concentration for each CoC over the entire depth of the core as in Figure 6A, but rearranging the existing data to have the greatest concentrations appear at depth. The fact that the actual vertical profile for the Station NA17 core does not follow this hypothetical trend indicates that the most substantial contaminant loadings in the vicinity of the historical NLS location occurred after the Navy had ceased operations there.

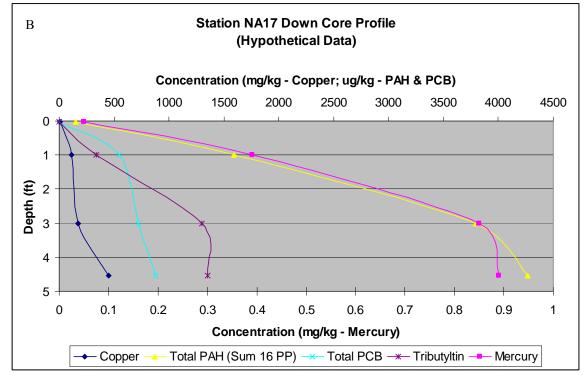
APPORTIONMENT CALCULATION FOR THE 28th Street Naval Landing Station

In the absence of quantitative input data, contaminant loading from the Navy's leasehold at the 28th Street Mole Pier was calculated assuming that loadings were proportional to the relative size of the facility and the time period of the operation compared with the BAE (Southwest Marine) and NASSCO operations. This approach is an extremely conservative evaluation because it assumes that the types of contaminants associated with Navy shuttle operations were proportional to the size (acreage) of the facility. Additionally, this approach ignores potential contributions from other (non-shipyard) sources.

Realistically, discharges or releases to the Bay from shuttle boat operations occurring at the NLS likely consisted of infrequent, small fuel leaks or spills, flaking of rust and paint chips from vessel hulls, or trash disposal, which could have contributed petroleum hydrocarbons and metals

(copper, lead, and zinc), although at much lower loadings than those associated with ship building and maintenance operations. It is also unlikely that Navy shuttle boats would be a source for PCBs to the Bay. Even though PCBs had been manufactured since 1927 and banned in 1979, there are few, if any, components of small craft that were likely to contain PCBs and, therefore, do not represent a potential input source to the Bay (CACI 2004). Nor are they a possible source of TBT which came into use 20 years after the NLS ceased operations.


The Navy's maximum potential contaminant contributions via Pathway 1 were calculated by multiplying the area (acres) and time (years) of operation for both the NLS and the boat/ship maintenance and construction operations that occurred at the site. For example, the Navy facility covered an area of 1 acre and was operated for 18 years, resulting in an 18 acre-year contribution. The two shipyard properties had contributions of 2,162 and 5,680 acre-years, respectively. Thus, the Navy's maximum possible contribution to contaminant loading at the SY is estimated as 18/(2,162+5,680+18) or $\sim 0.2\%$. The results are compiled in Table 1 below.


Given the small area of use, limited level of activity, limited period of operation, absence of contamination at depth in the nearest core profile, co-association of contaminants with TBT, and unlikely utilization or release of several of these contaminants with known operations, the potential release to the CAO site from this source is likely to be much smaller than 0.2% and is considered to be negligible for all practical purposes.

Facility	Start of Site Operations	End of Site Operations	Years Operational	Acres	Acre- Years	Percentage of Total
BAE	1914	2008	94	23	2162	27
NASSCO	1937	2008	71	80	5680	72
Navy	1938	1956	18	1.0	18	0.2

Table 1. Potential contributions from Navy operations via Pathway 1 based on size and duration of site operations.

Figure 6. (A) Actual sediment core contaminant profiles for Station NA17; (B) Expected core profiles at NA17 if the 28th Street Naval Landing Station represented a primary source of contamination.

POTENTIAL SOURCE PATHWAY 2: RELEASE TO CHOLLAS CREEK WITH SUBSEQUENT TRANSPORT TO SHIPYARD CAO SITE

CAO Source Pathway 2 involves contaminant inputs from Navy storm drain discharges into Chollas Creek that are eventually deposited within the SY. Conceptually, this pathway involves a two part process: (1) stormwater is discharged from Navy-operated storm drains to Chollas Creek, and (2) Creek flows empty into San Diego Bay and suspended particles with contaminants are subsequently dispersed by currents to the SY footprint where a portion of the contaminant load settles and accumulates in bottom sediments. The CAO claims that the stormwater discharges from these outfalls have "... caused or permitted the discharge of pollutants commonly found in urban runoff to Chollas Creek and San Diego Bay, including excessive concentrations of copper, lead, and zinc in violation of waste discharge requirements."

It can also be demonstrated, as discussed below, using a combination of historical stormwater and creek discharge data, numerical modeling of creek discharges and outflow dispersions, and chemical fingerprinting that the potential magnitude from the Navy stormwater discharges into Chollas Creek to contaminant loading at the SY is negligible.

A detailed CSM for Source Pathway 2 focusing on input sources and fate pathways in the Chollas Creek area is provided in Figure 7. The primary contaminant pathways in this region are stormwater discharges to the creek and subsequent creek discharges to the bay. Secondary inputs include leaching from historic non-Navy vessel traffic as well as direct deposition from other shipbuilding and industrial operations at the 28th Street Mole Pier.

Figure 7. Conceptual site model of contaminant input and fate for potential source Pathway 2 at the Chollas Creek mouth area.

LOADING FROM THE NAVY'S STORM DRAIN SYSTEM

The historical record of discharges from the Navy-operated storm drains into Chollas Creek is incomplete. However, monitoring data collected from these storm drains in 2001, simultaneously with the City's and Department of Pesticide Regulation's mass loading stations upstream on the creek (Katz *et al.* 2001), indicated that the outfalls contribute only a small fraction of the overall watershed loading for the target CAO contaminants of concern. Indeed, the Navy contributions to the Chollas Creek watershed loadings are less than 8% for all of the CoCs. As shown in Figure 8, from the 2001 data, the Navy stormdrain discharges contribute less than 1% to the total loads for mercury and total PCBs, less than 5% to the total PAHs, and less

than 8% to the copper and zinc loadings. TBT has not been monitored, but there are no known significant sources to stormwater runoff. By comparison, the RWQCB's (2008) Technical Support document for the CAO states that the Navy's stormwater discharges contributes 5% of the copper, 2% of the lead, and 4% of the zinc annual loadings associated with the Chollas Creek discharges to the Bay.

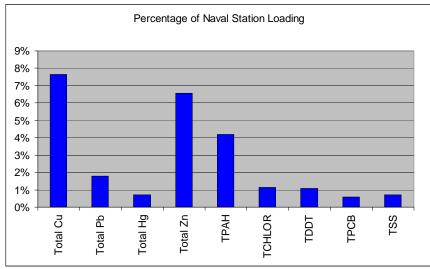
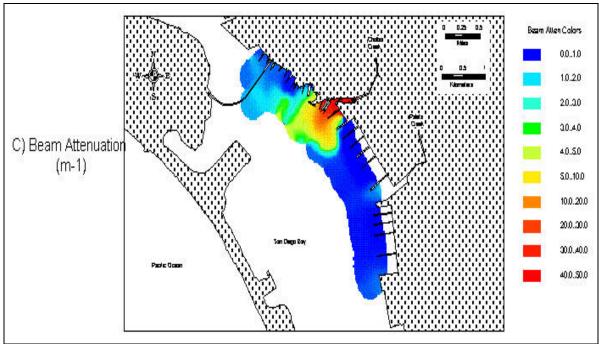
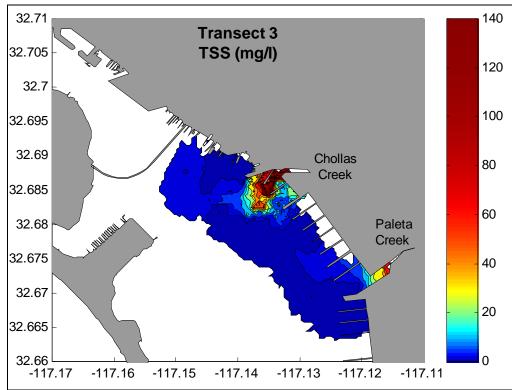


Figure 8. Relative contribution (percentage) of Navy stormwater discharges to the contaminant mass loading from Chollas Creek (Katz *et al.* 2001).


TRANSPORT

As mentioned, Source Pathway 2 requires a transport process capable of carrying contaminants discharged from the Navy outfalls into Chollas Creek and then to the SY. A number of studies and numerical modeling efforts have been conducted to characterize the hydrodynamic mixing processes and sediment deposition patterns near the mouth of Chollas Creek. Most of these efforts have focused on creek discharges following storm events.

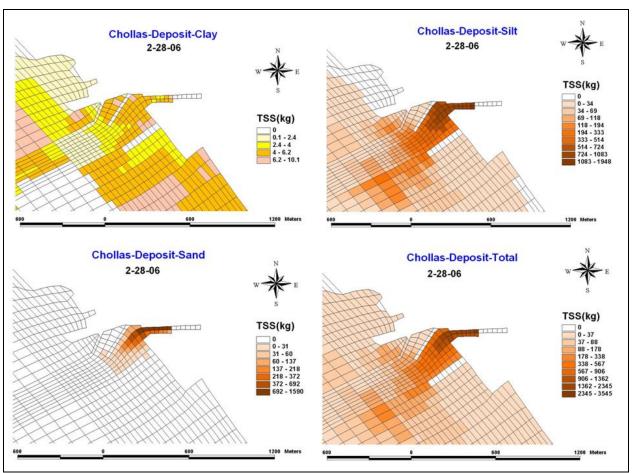

The Navy and SCCWRP conducted a joint watershed mass loading and hydrodynamic fate modeling project for the RWQCB Mouth of Chollas Creek TMDL assessment (Chadwick *et al.* 2007 and Schiff *et al.* 2007). These studies show that a large portion of the solids loading from the creek discharge is deposited within the creek mouth area (described below). The material exiting the creek mouth consists primarily of finer grained (small diameter), clay-sized particles that are transported out into the main stem of the Bay where they are broadly dispersed by currents (Schiff *et al.* 2007).

These discharge patterns are consistent with the results obtained by storm water studies conducted by the Navy and SCCWRP in 2001 and 2000, respectively (Katz *et al.* 2001 and Schiff *et al.* 2001). Both studies show that while low salinity storm water can extend well past the Chollas Creek Channel, a large portion (roughly 90%) of the particles remained close to shore and within the pier heads near the mouth of the Creek (Figures 9 and 10).

Figure 9. Spreading of stormwater-derived particles from Chollas Creek (based on relative beam attenuation data) following a storm event in 2000 (Katz *et al.* 2001).

Figure 10. Dispersion of suspended particles (total suspended solids) from Chollas Creek discharges following a storm event (Katz *et al.* 2001).

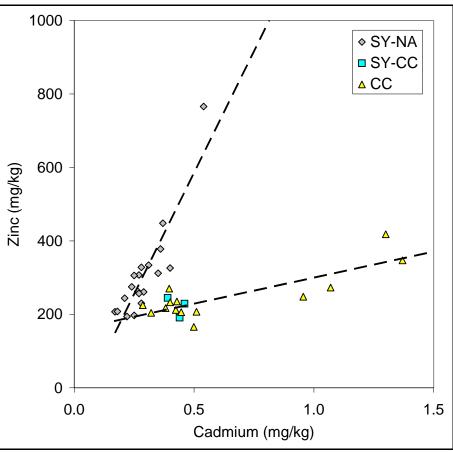
Trapping efficiency describes the amount of sediment and particulate contaminants that are retained near the mouth of the creek and shoreward end of Chollas Channel relative to particles that are exported to the Bay. As mentioned, the trapping efficiency of particles varies as a function of particle size, where larger particles are selectively retained and smaller particles are kept in suspension and transported into the Bay. The trapping efficiency of different grain size components following two representative storm events are listed in Table 2. Based on numerical modeling results, the average trapping efficiencies at the Chollas Creek mouth were approximately 43 to 75% and 99% for silt and sand fractions, respectively, and about 0.2% for the clay fraction.


Sensitivity analysis indicated considerable variability in trapping efficiencies based on differences in stormwater flows that are related to storm magnitude and duration. Regardless, the modeling results showed that on average about 54% of the total particle loadings were exported to the Bay (~46% trapping efficiency) from Chollas Creek. Most of the material discharged to the Bay consists of clay-sized particles. This is important to transport analysis because smaller particles contain proportionally higher contaminant loads. Therefore, contaminant loading from the creek to the SY is affected by dispersion and fate of the smaller suspended particles.

The modeled distribution footprints for different particle size classes, and for total particle loads, from Chollas Creek are shown in Figure 11. Based on these results, 1% or less of the total particle loading from Chollas Creek is predicted to settle within the SY (Table 2), and this portion is predominantly in the triangular region to the south of 28th Street Pier. Consequently, if the Navy stormwater discharges represent between less than 1% and 8% of the mass loadings of individual contaminants from the creek, and less than 1% of the particle loadings from the creek are deposited within the SY footprint, then the estimated Navy contribution to contaminant loadings to the SY via this pathway would be less than 0.08%, assuming that contaminants are distributed equally among the different particle sizes.

	Storm	Units	Chollas Creek					
	Event		Clay	Silt	Sand	Total		
Total	2/28/2006	(kg)	32,970	46,158	30,772	109,900		
Loading	3/11/2006	(kg)	9,095	13,759	466	23,320		
Trapped in Mouth	2/28/2006	(kg)	66	19,848	30,464	50,378		
	2/28/2000	(%)	0.2%	43%	99%	46%		
	3/11/2006	(kg)	18	10,319	462	10,799		
		(%)	0.2%	75%	99%	46%		
Deposited in Shipyard Site	2/28/2006	(kg)	66	1,015	0	1,081		
		(%)	0.2%	2.2%	0%	1%		
	3/11/2006	(kg)	27	138	0	164		
		(%)	0.3%	1.0%	0%	0.7%		

Table 2. Model-predicted particle trapping efficiencies for Chollas Creek discharges following two storm events.


Figure 11. Model-predicted distribution footprint for particles discharged from Chollas Creek following the February 28, 2006 storm event.

SPATIAL GRADIENTS

The importance of contaminant inputs from Chollas Creek discharges relative to inputs from other sources can also be illustrated by spatial gradients in contaminant concentrations in bottom sediments. In general, spatial trends in sediment contaminant concentrations are primarily controlled by the source concentration and the depositional nature of the environment. Concentrations typically decline with distance from the source due to dilution, although localized changes in depositional conditions, such as quiescent conditions caused by reduced circulation (*e.g.*, between piers), promote settlement of the "fine" (silt/clay) particles which carry a proportionally higher contaminant mass, resulting in localized regions of elevated sediment contaminants. Conversely, bottom sediments comprising coarser grained particles, such as sands, typically have proportionally lower contaminant concentrations. Within the Chollas Creek Channel, sediment contaminant gradients generally decrease with distance away from the mouth (spatial gradients are discussed in greater detail under Pathway 3). This spatial pattern does not support the assertion that contamination from the Creek is impacting sediments at the SY.

Another way to evaluate the importance of creek discharges to SY contaminant loadings is to compare the chemical signatures of bottom sediments along the presumed "transport pathway." Figure 12 compares the ratios of two metals (cadmium and zinc) for the creek mouth sediments (SCCWRP 2005) to those in the SY sediments (Exponent 2001). If the Chollas Creek sediments represented a quantitatively important component of the SY sediments, one would expect that all data points would fall along a single trendline. However, this figure clearly shows two distinct trendlines. The trendline associated with the Chollas Creek sediments reflects the higher cadmium concentrations relative to zinc concentrations, which likely reflects the dominant stormwater loading source for cadmium. The trendline associated with the SY sediments reflects the higher creek mouth sediments (and their initial upstream creek source) and SY sediments are consistent with the small creek loadings to the SY, as predicted by the dispersion model, and indicate that contributions from the Chollas Creek discharges, including the Navy stormwater discharges to the Creek, are not a significant source of contaminants to the SY.

Figure 12. Example of the differences in the metal signatures (cadmium and zinc) in sediments from Chollas Creek Mouth, SY, and Reference sites (derived from data in Exponent 2001 and SCCWRP 2005).

The CAO Tech Report (RWQCB 2008) also identifies "leaching from U.S. Navy ship hull antifouling paint and cathodic protection systems [as] continuous sources of copper and zinc to San Diego Bay waters at the mouth of Chollas Creek." In fact, leaching rates of zinc from anodes were found to be about half the leaching rates of copper from hull paint (Boxall 2000). Similar to most other discharges originating on Navy/Armed Forces vessels, leachates from hull paints are regulated by the Uniform National Discharge Standards (UNDS) as an amendment of the Clean Water Act developed jointly with the U.S. Environmental Protection Agency (EPA). The purpose of the UNDS program is to provide a comprehensive system for regulating discharges incidental to the normal operation of an Armed Forces vessel.

Copper and zinc are primarily solubilized from the hull paints and anodes. Release rates for copper from antifouling hull paints are typically higher for pleasure craft (averaging $8.2 \ \mu g/cm^2/day$) than for Navy vessels ($3.8 \ \mu g/cm^2/day$), likely due to the greater frequency of hull cleaning and re-painting on pleasure craft (Valkirs 2003). These release rates, determined using an on-the-hull dome system, are believed to be far more environmentally realistic than standard laboratory release rates. However, the specific release rates also depend on a number of factors, including the composition and age of the paint, presence of an established biofilm on the vessel hull that serves to moderate the release of copper, and water temperature (Valkirs 2003; Zirino and Seligman 2002). Nevertheless, information needed to calculate a total mass loading of copper and zinc from Navy vessels in the Chollas Creek Channel is not available.

In the dissolved state (*i.e.*, not attached to suspended particles), metals are subject to dispersion by currents to other areas of the Bay. Ionic copper, identified as the most toxic and bioavailable fraction, rapidly forms organic and inorganic complexes, thus becoming less available and less toxic to sensitive single cell and larval planktonic organisms and over time partitioning to the sediments. Eventually, all metals partition onto particulates and then settle and accumulate in bottom sediments. Recent studies (Deheyn and Latz 2006) determined that the concentrations of metals associated with suspended particulates are similar throughout the Bay, whereas sediment metal concentrations typically increase from the mouth to the back of the Bay. The spatial pattern in the sediment metal concentrations are attributable to circulation patterns and the longer residence time of waters in the back of the Bay, which contributes to a higher deposition rate for particulate metals (Chadwick *et al.* 2004).

The average copper concentration in the Chollas Creek sediments is nearly one-third of that of the SY (121 vs 322 mg/kg) and the average zinc concentration in the Chollas Creek sediments is nearly half the mean zinc concentration for the SY (247 vs 437 mg/kg). These differences in copper and zinc concentrations suggest that leachate from Navy vessels in the Chollas Creek region is not a significant source for copper and zinc in the SY sediments. Thus, overall for Pathway 2, given the small contribution of Navy sources to the Chollas Creek, the small fraction of the discharged particles that deposit to the SY area, lack of spatial gradient from the Creek toward the site, and clear differences in chemical signature, the potential release to the CAO site from this source is likely to be smaller than 0.08% and is considered to be negligible for all practical purposes.

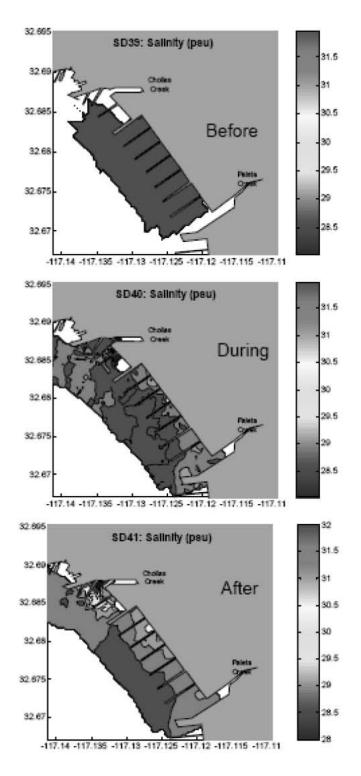
POTENTIAL SOURCE PATHWAY 3: RELEASE FROM NAVAL BASE WITH SUBSEQUENT RESUSPENSION BY SHIPS AND TRANSPORT BY TIDE

The CAO Source Pathway 3 involves contaminant inputs from Navy operations at NBSD via storm drain or other discharges directly to the Bay with subsequent dispersion and transport into the SY footprint. Similar to Pathway 2, this pathway involves a two part process: (1) discharges or releases into the Bay within NBSD; and (2) resuspension and transport of sediment-associated contaminants to the SY. The Navy evaluated this pathway by assessing results from stormwater discharge studies; spatial patterns in sediment contaminant concentrations; sediment contaminant signatures as an indicator of source contributions; and co-occurrence of contamination with known shipyard-specific releases of TBT.

A detailed CSM for Source Pathway 3 focusing on potential contaminant inputs and fate in the NBSD area is provided in Figure 13. This model shows that the NBSD region is primarily influenced by surface runoff from the Navy base as well as discharges from Paleta Creek, adjacent stormdrains and other non-point sources. Secondary inputs also include ship hull leachates from historic Navy and commercial vessel traffic. The areas adjacent to the piers are subject to both vertical and lateral mixing caused by propeller scouring from Navy vessels, commercial vessels and tugboats.

Figure 13. Conceptual site model of contaminant input and fate for potential source Pathway 3 at the Naval Base San Diego area.

STORMWATER LOADING


The Navy conducted extensive studies of the behavior and fate of stormwater discharges within NBSD (Katz *et al.* 2006). These studies involved real-time mapping of low salinity plumes (as a surrogate for stormwater plumes) before, during, and after storm events. Representative results of this plume mapping are shown in Figure 14. The patterns demonstrate that the stormwater plumes from NBSD are limited spatially to areas along the immediate shoreline and inside the pier heads. This contrasts with plumes from the creek discharges which disperse into the main axis of the Bay.

Because sediments are a repository, or sink, for contaminants, it is reasonable to expect that contaminant inputs to the Bay from stormwater discharges at NBSD would be reflected in the spatial patterns in sediment contaminant concentrations relative to the discharge points (*e.g.*, stormwater outfalls). Further, if disturbances such as resuspension due to prop wash, with subsequent transport, were a significant source of contaminants to areas outside of the NBSD property (*e.g.*, the SY) as required for Pathway 3, it would be reasonable to expect gradients of decreasing CoC concentrations from NBSD to the SY.

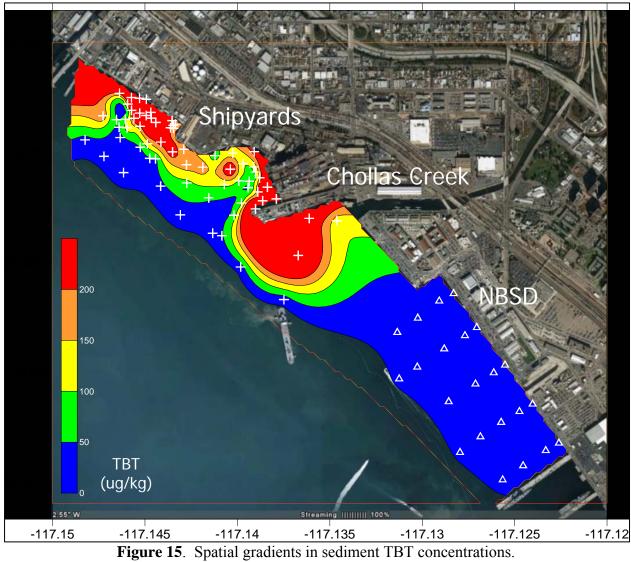

However, spatial patterns of sediment CoCs (Figures 15 through 18; TBT, PCBs, copper, and mercury, respectively) do not show evidence of localized inputs from NBSD or gradients of decreasing concentrations leading from NBSD to the SY. In particular, the spatial pattern for TBT in bay sediments (Figure 15) shows highly elevated concentrations within the SY, with gradients of decreasing concentrations in the direction of the NBSD. This gradient is the inverse of the pattern expected if NBSD was a source of TBT to the SY. Spatial patterns for copper concentrations (143 to 328 mg/kg) throughout larger portions of the NBSD. Patterns for sediment PCB and mercury concentrations also show elevated levels within the northern portion of the SY, with concentrations decreasing with distance from the SY shoreline. The exception to this pattern is associated with elevated concentrations of PCBs (>600 μ g/kg) and mercury (>1.5 mg/kg) in the nearshore area between Piers 2 and 3 at NBSD (see Figures 16 and 18, respectively). Nevertheless, none of the CoCs exhibit concentration gradients which support migration of contaminants from NBSD to the SY via Pathway 3.

Figure 14. Stormwater plume (salinity) mapping results at Naval Base San Diego; lower salinity water is associated with stormwater runoff and creek discharges; the "after" plot shows influence of additional rainfall.

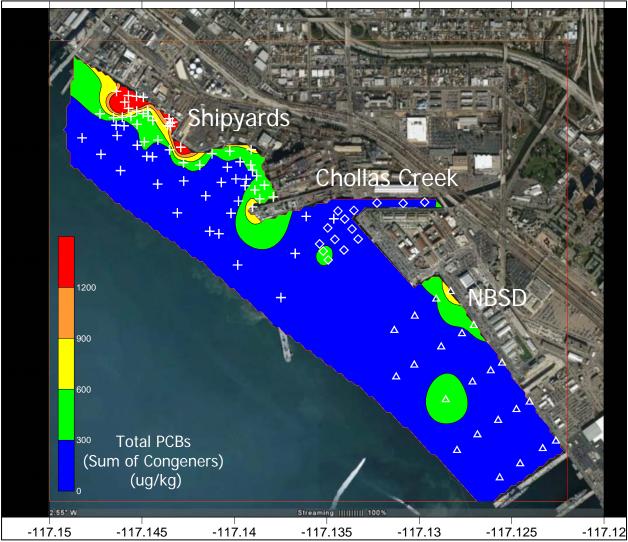


Figure 16. Spatial gradients in sediment PCB concentrations.

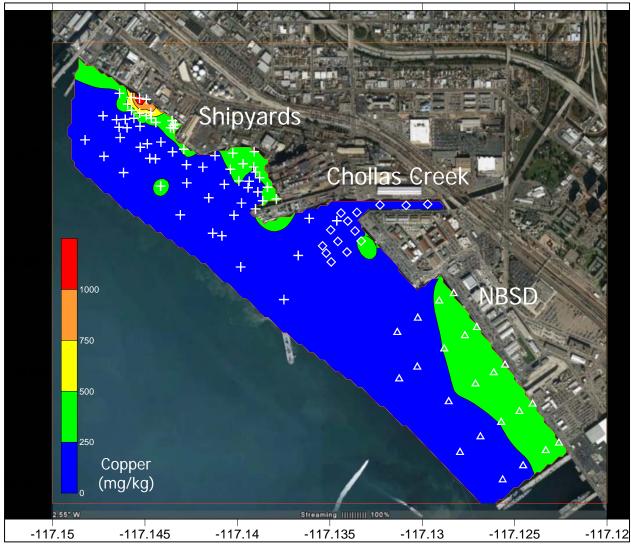
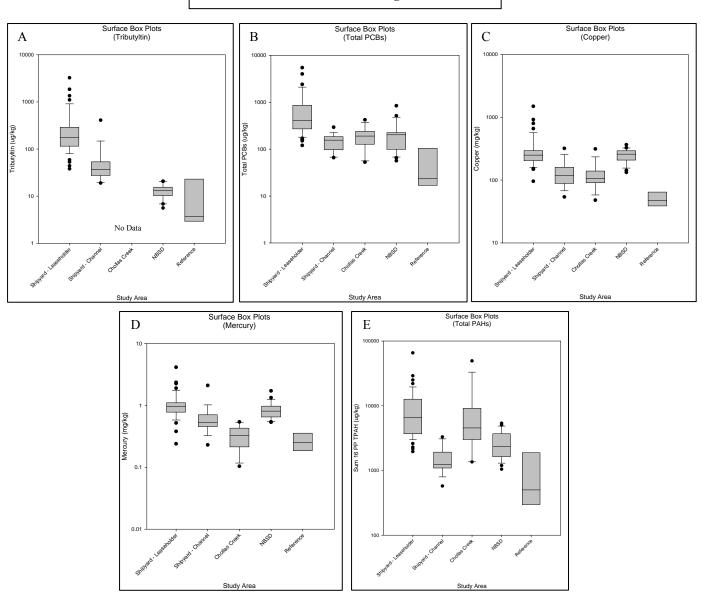


Figure 17. Spatial gradients in sediment copper concentrations.

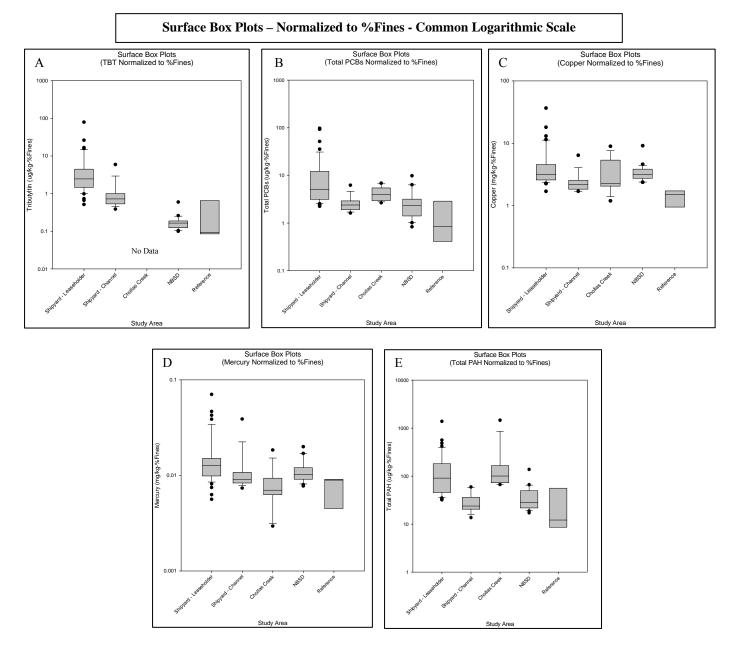
Figure 18. Spatial gradients in sediment mercury concentrations.

The relative differences in the magnitude of CoC concentrations between the SY and NBSD are also illustrated in Figure 19, which depict the distributions of TBT, PCBs, copper, mercury, and PAH concentrations. The plots of TBT indicate that concentrations in SY sediment are at least an order of magnitude higher than those at NBSD, and the NBSD concentrations are most similar to reference area concentrations. The spatial patterns for copper and mercury are generally similar, although concentrations for NBSD sediments are comparable to those at the SY. However, because the concentrations do not exhibit a continuous gradient, similar to that of TBT, it can be concluded that neither Chollas Creek nor NBSD are significant sources of these contaminants to SY sediments.


To demonstrate that these patterns are not the result of variability in sediment grain size, the data for each location were normalized to the fines content of the sediment and re-plotted in Figure 20. This normalization step was taken to separate concentration trends due to loading from trends related to depositional patterns. The trends in the normalized data remain similar in

that the SY generally has the highest contaminant concentrations, and the channel region has uniformly lower concentrations than the SY (Figures 20A-E). The spatial patterns suggest that deposition from Chollas Creek may contribute PAHs to adjacent SY channel and NBSD regions (Figure 20E), though not preferentially to either area. Conversely, local elevation of non-normalized copper concentrations, seen in Figure 19C, is not observed in the normalized concentrations shown in Figure 20C, indicating that depositional characteristics, not source loading is mainly responsible for the observed trends in copper. Thus, the spatial trends in the normalized contaminant concentrations again support the conclusion that nearby regional sources are unlikely contributors of contaminants to SY sediments.

A spatial gradient analysis of sediment contaminants for the SY is shown in Figure 21A. Along the SY transect shown in Figure 22, concentrations decline from inshore to offshore, indicating that chemicals are originating from inshore areas. Note that the offshore end of the transect taken at the leaseholder boundary exhibits concentrations returning back to reference area levels. Gradients for PCB, copper, mercury, and TBT concentrations in NBSD sediments (Figure 21C) decrease steadily with distance from shore, diluting down to reference area concentrations at the channel end of the gradient. The linear rates of decline apparent from the slopes of the lines indicate that dilution forces apply equally for all chemicals. Additionally, the fines content of the sediment is relatively constant across the gradient, suggesting that settlement is occurring uniformly over the area. Because contaminant concentrations offshore of both the NBSD and the SY are the same, the results demonstrate that the NBSD is not a net source to the SY, or vice versa.



Surface Box Plots – Common Logarithmic Scale

Figure 19. Box plots illustrating spatial trends in surface contaminant distributions along the Pathway 3 transect. The boxes represent 75% of the data distribution, and the vertical bars represent 90% of the data; horizontal lines in the boxes represent the mean value.

Figure 20. Box plots illustrating spatial trends in surface contaminant concentrations normalized to sediment fines along the Pathway 3 transect.

Summary Analysis Navy Apportionment and Liability

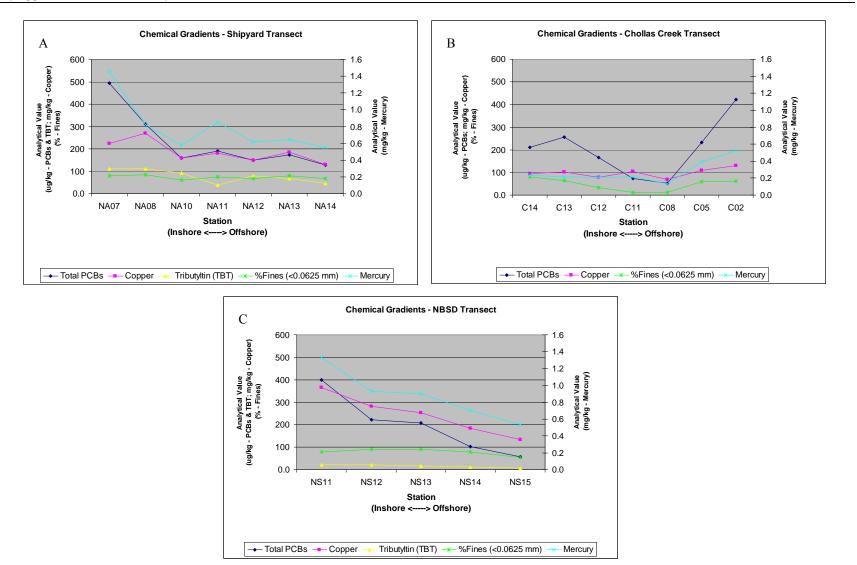


Figure 21. Spatial trends in sediment grain size and contaminant concentrations along specific transects in (A) SY, (B) Chollas Creek mouth, and (C) Naval Base San Diego.

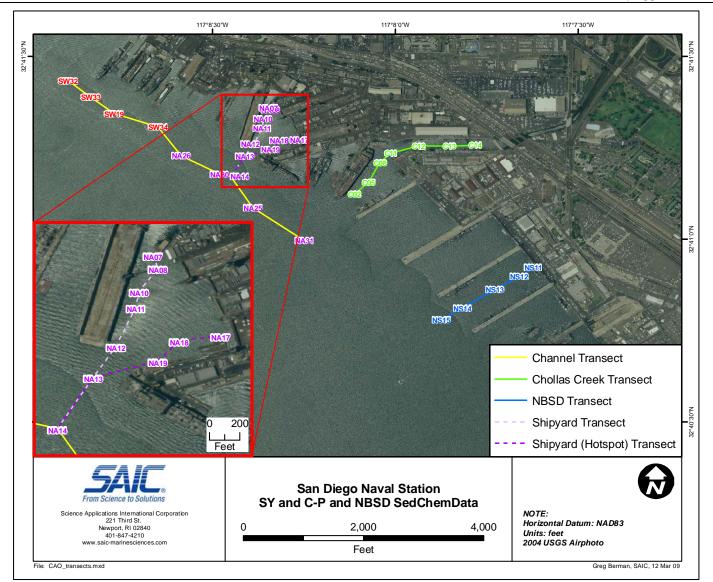


Figure 22. Sampling transects at the SY, Chollas Creek mouth, and Naval Base San Diego.

In total, none of the CoC patterns show elevated concentrations at the NBSD with decreasing concentration gradients in the direction of the SY. Instead, the CoC patterns reflect the predominant influence of SY discharges, and do not support the claim that CAO Source Pathway 3 currently or historically contributes significantly to contaminant loading at the SY.

The Navy also applied chemical fingerprinting techniques to distinguish and quantify possible input sources from Pathway 3. Chemical fingerprinting is an analytical tool used in environmental forensics that relies on differences in the compositional patterns of source inputs to apportion contributions to reservoirs such as bottom sediments or groundwater.

An important aspect of this analysis is the expectation that synthetic organotin compounds (*i.e.*, TBT) in SY sediments are from past SY sources and diffuse inputs from commercial and recreational boats within the Bay, whereas the contributions from Navy sources and pathways identified in the CAO were negligible. This is reasonable because the Navy did not implement fleet wide use of TBT-based antifouling paints on their ships. The minor exception is that between about 1984 and 1990 the Navy conducted limited studies to evaluate the efficacy and environmental risk of TBT antifouling coatings, and two test ships with TBT antifouling coatings were berthed at NBSD between deployments. However, during that time period, most commercial ocean-going vessels and pleasure craft were using TBT-based hull paints, and assessments of TBT loading found that pleasure craft were by far the biggest contributor to the total loadings to the water column in San Diego Bay. TBT antifouling coatings were banned in California in 1987 and nationally in 1988 for craft less than 25 m in length, and through the International Maritime Organization (IMO), ocean-going vessels were prohibited from being coated after 2003 and had to remove or over-coat TBT paint with a non-organotin coating by January 2008.

TBT has a high sediment/water partitioning coefficient (approximately 25,000) that favors eventual accumulation in sediments. Another important aspect of this analysis is the expectation that the environmental fate of many CoCs is similar to that of TBT. This is because most of the metal and organic CoCs have strong affinities for sediments (high partitioning coefficients), particularly finer grained sediments with a high organic carbon content. The exception is that PAHs have a comparatively lower affinity for sediments, and remobilization from sediments to the overlying water column has been shown to be important in the vicinity of the SY (Sabin *et al.* 2008).

Average TBT concentrations in the SY sediments (280 μ g/kg) are 20 times higher than those in sediments adjacent to Naval Base (13 μ g/kg) (Table 3). The background concentration and Alternative Cleanup Levels for TBT identified in the CAO are 22 μ g/kg and 110 μ g/kg, respectively (Table 3). While TBT residues are detected in sediments within the NBSD, the average value for NBSD sediments is comparable to the average background concentration. TBT residues in the NBSD sediments potentially result from dispersion of inputs from the SY properties by local currents and/or wind dispersion of particulate TBT from past spray painting and sand blasting operations at the SY properties. Because of the IMO ban on applying TBT, which came into effect in 2003, there likely has been an increase in removal of TBT coatings which may result in increased TBT loading in the form of paint dust and chips generated in the

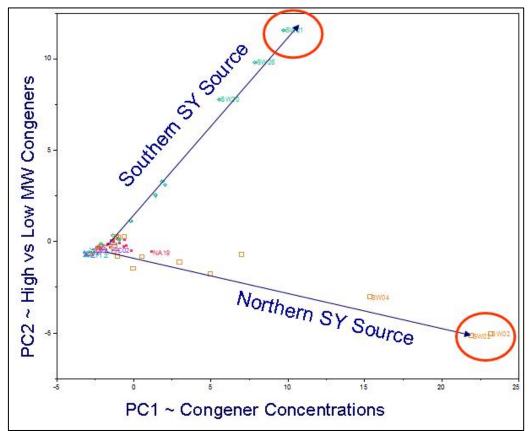
removal process. Regardless, these values support the expectation that the loading of TBT from Navy sources at NBSD is negligible.

Table 3. Average CoC concentrations in SY and NBSD sediments and corresponding background and CAO alternative cleanup levels; the background and alternative cleanup levels are from the CAO; metal concentrations are mg/kg; TBT, PCB and PCB concentrations are μg/kg.

CoC	Ave SY	Ave NBSD	Background	CAO Alternative Cleanup
Arsenic (As)	13	13	7.5	10
Copper (Cu)	287	254	121	200
Lead (Pb)	96	74	53	90
Mercury Hg)	0.92	0.85	0.57	0.7
Zinc (Zn)	394	315	192	300
TBT	280	13	22	110
PCBs	620	217	84	420
PAHs	7,765	2,741	1,907	None

Using data from the Shipyard Study (Exponent 2001), the relationships between individual CoCs in the SY sediments were investigated by correlation analyses. The results of the analyses, shown in Table 4, indicate that concentrations of all of the CoCs, with the exception of mercury and PAHs, are significantly correlated with TBT concentrations. The R² value is referred to as the coefficient of determination, and it corresponds to the magnitude of the variation of the dependent variable (non-TBT CoCs) that is explained by the variation in the independent variable (TBT). Variations in TBT concentrations explain the majority of the variation in concentrations of most SY contaminants, which implies that TBT and the other highly correlated CoCs were probably derived from the same source, or similar source materials, and that SY sources contributed the majority of the loadings to the SY sediments. Contaminants with lower correlations may derive in part from other sources or may have been released at different times, but there is no indication in the spatial patterns that these contaminants originated from the Navy.

	As	Cd	Cu	Hg	Pb	Zn	PAH	PCB	TBT
As	-	0.68**	0.88**	0.12	0.93**	0.99**	0.15	0.55**	0.83**
Cd		-	0.69**	0.46*	0.76**	0.69**	0.26	0.84**	0.84**
Cu			-	0.34*	0.94**	0.90**	0.22	0.64**	0.91**
Hg				-	0.36*	0.12	0.27	0.63**	0.17
Pb					-	0.93**	0.24	0.70**	0.86**
Zn						-	0.14	0.55**	0.84**
PAH							-	0.32*	0.18
PCB								-	0.50**
TBT									-


Table 4. Correlation coefficients (R²) between individual CoCs in the Shipyard and NBSD sediments.

*statistically significant at p<0.05; **statistically significant at p<0.01

Given that historical use and releases of TBT from NBSD were negligible, and TBT concentrations in NBSD sediments are at background levels for the Bay, it is reasonable to conclude that loadings of TBT from Navy sources also were negligible. Further, given that variations in TBT concentrations explain approximately 70-80% of the variations in some of the other CoCs (*e.g.*, arsenic, copper, lead, zinc) it is reasonable to conclude that sources other than the Navy were primarily responsible for these loadings to the SY.

Results of principal component analysis (PCA) of PCB congener data for the SY, Chollas Creek, and NBSD sediments are shown in Figure 23. PCA is an analytical tool for evaluating compositional patterns within large and complex data sets, and can reveal relationships among parameters and sampling locations that provide insight into contaminant sources and sinks, such as spatial patterns which might be related to input sources or transport pathways. Factor scores give the positions of the samples in coordinates of the principal components, and the magnitude of scores corresponds to the extent to which individual sites reflect these attributes (*i.e.*, elevated concentrations of metals with high loadings) and the amount of information for that site explained by the factor.

Figure 23. Results from principal component analyses of PCB congener data illustrating the primary sources of PCBs associated with the Southern and Northern SY Areas.

The distributions of the factor scores for principal components 1 and 2 (PC1 and PC2) illustrate the two main source areas (SW02 and SW21) in the inner portion of the SY. These results are consistent with the spatial pattern for sediment PCBs, shown in Figure 16. The northern SY source has been attributed in part to historical discharges in the vicinity of the MS4 storm drain SW4 and wastewater ponds, while the southern source has been attributed to shipyard activities and storm water discharges to the SY (RWQCB 2008).

Thus, overall for Pathway 3, given that stormwater releases at NBSD have been demonstrated to have a very limited spatial extent that would not reach the SY area, spatial patterns and gradients of chemicals in sediment are not consistent with transport from the NBSD area to the SY area, contamination at the SY clearly co-occurs with TBT which is a shipyard-specific contaminant that is not present at NBSD above background levels, and chemical fingerprints indicate clear differences in chemical signature between NBSD and the SY, the potential release to the SY from this Navy source is considered to be negligible for all practical purposes.

DISCUSSION AND CONCLUSIONS

Based on the information described above, the Navy concludes that none of the three pathways described in the CAO represent significant sources of contaminants to the SY.

Pathway 1. Existing information indicates that the Navy did not operate a ship maintenance facility at the 28th Street Landing facility. Instead, the Navy operated a shuttle boat facility for a period of 18 years between 1938 and 1956. The types and amounts of contaminants associated with this type of facility would have been much different from those associated with a commercial shipbuilding/maintenance operation. Using the extremely conservative assumptions that the Navy operated a ship maintenance facility, and that any discharges to the Bay from Navy operations were proportional to those of the SY operations on both an aerial coverage and duration basis, the Navy's contributions to contaminant inputs via this pathway would have been $\sim 0.2\%$ of the total loading associated with the NLS and two SY operations and is therefore considered to be negligible.

Pathway 2. Empirical information and computer modeling results indicate that the Navy's stormwater discharges represent between less than 1% and 8% of contaminant loading from the creek, and 1% of the particles discharged from the Creek are deposited in the SY, the estimated contribution from Navy sources to contaminant loading in the SY footprint would be less than 0.08%.

Pathway 3. Empirical information and computer modeling results indicate that direct loadings from NBSD into the Bay are minimal, not dispersed widely beyond the NBSD piers, and generally insufficient to affect sediment quality at the SY. While there are no empirical data to determine how much sediment contaminants from NBSD contribute to those in the SY sediments, assessments of spatial gradients indicate that contaminant dispersion and transport from NBSD to the SY is negligible.

The relative importance of contributions from the SY sources, associated with the TBT-arseniccopper-lead-zinc fingerprint patterns, to the overall variance in the sediment contaminant data are further illustrated using PCA. The first four principal components of the PCA account for 92% of the total variance of the dataset. Principal components 1 and 2 (PC1 and PC2) explain 56% and 18%, respectively, of the variance, while PC3 and PC4 combined account for 17% of the variance. All other factors explain less than 5% of the variance and were not retained for further evaluation. The highest PC1 loadings were for TBT, arsenic, copper, lead, and zinc. High factor loadings imply that these CoCs contributed to and strongly influenced the principal component. The highest factor scores for PC1 correspond primarily to samples from portions of the SY close to the bulkheads between the piers. The highest loadings for PC2 were for TOC, PCBs, and mercury, while the highest loadings for PC3 and PC4 were for fines (silt and clay component of the grain size) and for PAHs, respectively. The highest factor scores for PC2 correspond to many of the same SY samples with high scores for PC1, suggesting similar input sources.

The PCA results reinforce the importance of the TBT-arsenic-copper-lead-zinc fingerprint to the overall sediment contaminant pattern, as reflected by the high proportion (56%) of the overall variance explained by PC1. PC3 reflects the spatial patterns in sediment grain size and explains

11% of the variance in the data. Because anthropogenic influences typically do not affect sediment grain size, this component reflects natural sediment deposition and accumulation patterns. PC2 and PC4 reflect different spatial distributions for PCBs, mercury, and PAHs, which might be attributable to other input sources or to environmental behavior that is different from those of the PC1 elements. For example, dissolution of PAHs from sediments to overlying water is important to the fate of PAHs in this portion of San Diego Bay (Sabin *et al.* 2008). Nevertheless, the distribution of PAHs explains less than 10% of the overall variance. Additionally, the high factor scores for PC2 associated with SY samples implies that SY sources were at least partially responsible for inputs of PCBs and mercury.

These results suggest that approximately 60% of the variance in the sediment contaminant data is attributable to SY inputs, and 10% is attributable to natural grain size patterns. The remaining variance is likely due to contributions from multiple local and watershed sources. Data to apportion the Navy's contribution to the residual variance do not exist.

In conclusion, based on information summarized above for the individual pathways, the overall contribution from Navy sources to the SY is considered to be negligible.

REFERENCES

Boxall, A.B.A., S.D. Comber, A.U. Conrad, J. Howcroft, and N. Zaman. 2000. Inputs, Monitoring and Fate Modelling of Antifouling Biocides in UK Estuaries. *Marine Pollution Bulletin.* 40: 898-905.

CACI. 2004. Final Report. Polychlorinated biphenyls (PCB) Source Term Estimates for ex-ORISKANY (CVA 34). Rev. 4. Prepared for Program Executive Office (Ships) Navy Inactive Ships Program (PMS 333), Washington, DC. Prepared by CACI International Inc. and Subsidiary Companies (L. Thomas Pape, Consultant).

Chadwick D.B., G. Key, D. Sutton, L. Skinner, J. Germano, and R. Cheng. 1999. Sediment Quality Characterization, Naval Station San Diego. SPAWAR Systems Center San Diego. Technical Report 1777.

Chadwick, D.B., A. Zirino, H.S. Richardson, C.N. Katz, and A.C. Blake. 2004. Modeling the mass balance and fate of copper in San Diego Bay. *Limnol. Oceanogr.* 49:355-366.

Chadwick, D.B., V. Kirtay, A.Blake, E. Arias, B. Davidson, and S.E. Apitz. 2006. Pathway Ranking for In-Place Sediment Management (CU1209). SERDP Final Report. 20 June.

Chadwick, B., P.F. Wang, W. Choi, and E. Arias. 2007. Modeling Sediment Depositions From Switzer, Chollas and Paleta Creek, San Diego Bay - Final Draft, Environmental Sciences Branch, SPAWAR Systems Center San Diego. Submitted to the San Diego Regional Water Quality Control Board.

Deheyn, D.D. and M. I. Latz. 2006. Bioavailability of metals along a contamination gradient in San Diego Bay (California, USA). *Chemosphere*. 63: 818–834.

Exponent. 2001. NASSCO and Southwest Marine Detailed Sediment Investigation Phase I Report, 2001. Submitted to the San Diego Regional Water Quality Control Board.

Fairey, R., C. Bretz, S. Lamerdin, J. Hunt, B. Anderson, S. Tudor, C. Wilson, F. LaCaro, M. Stephensen, M. Puckett, E. Long. 1996. Chemistry, Toxicity and Benthic Community Conditions in Sediments of the San Diego Bay Region, State Water Resources Control Board, Sacramento, CA. 169 pp.

Johnson, H.D., J.G. Grovhoug, and A.O. Valkirs. 1998. Copper loading to U.S. Navy harbors. Space and Naval Warfare Systems Center San Diego Technical Document 3052.

Katz, C.N., A. Carlson-Blake, and D.B. Chadwick. 2001. Spatial and Temporal Evolution of Storm Water Plumes Impacting San Diego Bay. Poster Presentation at Estuarine Research Federation Annual Meeting, St. Pete Beach, FL, November 2001. Submitted to the San Diego Regional Water Quality Control Board.

Katz, C., G. Rosen, and E. Arias. 2006. Storm Water Toxicity Evaluation Conducted at Naval Station San Diego, Naval Submarine Base San Diego, Naval Amphibious Base Coronado, and Naval Air Station North Island. SSC-SD Technical Report 1938. Submitted to the San Diego Regional Water Quality Control Board. 151 pp.

Peng, J. E.Y. Zeng, T-L Ku, and S Luo. 2003. Significance of sediment resuspension and tidal exchange to reduction of polychlorinated biphenyl mass in San Diego Bay, California. Page 101-109 in S.B. Weisberg and D. Elmore (eds.), Southern California Coastal Water Research Project 2001-02 Biennial Report. Southern California Coastal Water Research Project, Westminster, CA.

RWQCB Cleanup and Abatement Order R9-2005-0126, June 2008.

Sabin, L.D., K.A. Maruya, W. Lao, D.W. Diehl, D. Tsukada, K.D. Stolzenbach, and K.C. Schiff. 2008. Exchange of polycyclic aromatic hydrocarbons between the atmosphere, water, and sediment in southern California embayments. Page 51-64 in S. Weisberg and K. Miller (eds.), Southern California Coastal Water Research Project 2001-02 Biennial Report. Southern California Coastal Water Research Project, Westminster, CA.

SCCWRP and Navy. 2005. Sediment Assessment Study for the Mouths of Chollas and Paleta Creek, San Diego, Phase I Final Report, May 2005. Submittied to the San Diego Regional Water Quality Control Board.

Schiff, K.C., S.M. Bay, and D.W. Diehl. 2001. Stormwater toxicity in Chollas Creek and San Diego Bay. Southern California Coastal Water Research Project. Westminster, CA. SCCWRP Technical Report 340, March 2001, pp. 58.

Schiff, K.C., S.M. Bay, and D.W. Diehl. 2003. Stormwater toxicity in Chollas Creek and San Diego Bay, California. In Southern California Coastal Water Research Project Biennial Report. 2001-2002. Southern California Coastal Water Research Project Authority. May.

Schiff, K.C. and S. Carter. 2007. Monitoring and modeling of Chollas, Paleta, and Switzer Creeks. Southern California Coastal Water Research Project. Costa Mesa, CA. Submitted to the San Diego Regional Water Quality Control Board.

Tetra Tech. 2008. DRAFT 28th Street Navy Landing Facility Historical Review.

U.S. Navy. 2004. Navy Technical Report: Historical Navy Activities at National Steel and Shipbuilding Company, 15 July 2004 (Ser N45JIW.jl/0231). Submitted to the San Diego Regional Water Quality Control Board.

Valkirs, A.O., P.F. Seligman, E. Haslbeck, and J.S. Caso. 2003. Measurement of copper release rates from antifouling paint under laboratory and in situ conditions: Implications for loading estimation to marine water bodies. *Mar. Pollut. Bull.* 46: 763–779.

Zirino, A. and P.F. Seligman (Eds.). 2002. Copper Chemistry, Toxicity, and Bioavailability and its Relationship to Regulation in the Marine Environment - Office of Naval Research Second Workshop Report. SSC San Diego TD 3140, August.

This page intentionally left blank.

Appendix C Regulatory Agency Site Closure Concurrence Documents

This page intentionally left blank.

DECLARATION

SITE NAMES AND LOCATION

Naval Station San Diego

Installation Restoration Program (IRP) sites:

- 5 Admiral Baker Golf Course Landscaping-Debris Landfill
- 7 Former Sewage Treatment Plant
- 11 French Drain
- 12 Brinser Street Parking Area

San Diego, California 92136

STATEMENT OF BASIS AND PURPOSE

This No Action Remedial Action Plan (RAP)/Record of Decision (ROD) presents the selected remedy of no action for IRP Sites 5 and 11, Naval Station San Diego, San Diego, California, where investigation has shown no evidence of contamination. It also presents the selected remedy of no further action for IRP Sites 7 and 12, Naval Station San Diego, San Diego, San Diego, California.

This document has been prepared in accordance with California Health & Safety Code Section (§) 25356.1 and current United States Environmental Protection Agency guidance (U.S. EPA 1999a). The selected remedy was chosen in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA), as amended by the Superfund Amendments and Reauthorization Act of 1986 and, to the extent practicable, the National Oil and Hazardous Substances Pollution Contingency Plan (NCP, Title 40 *Code of Federal Regulations* § 300 et seq.). The decisions for the sites are based on information contained in the administrative record. A site-specific administrative record index for each site is included as Attachment B.

The state of California (through the California Environmental Protection Agency Department of Toxic Substances Control [DTSC] and California Regional Water Quality Control Board [RWQCB] San Diego Region) concurs with the selected remedy at IRP Sites 5, 7, 11, and 12. DTSC is the state regulatory agency overseeing IRP activities, and RWQCB San Diego Region is the delegated authority for water quality issues under the IRP and Underground Storage Tanks Program. IRP Sites 5, 7, 11, and 12 are included in the IRP but are not listed on the National Priorities List. Therefore, the Department of the Navy (DON) determined that a No Action Remedial Action Plan was an appropriate decision document, stating the final remedy of no action and leading to the closure of these sites (California Health & Safety Code § 25356.1). The DON is selecting the no action remedy pursuant to the authority delegated to it by the President of the United States in Executive Order Number (Exec. Order No.) 12580.

ASSESSMENT OF THE SITES

On the basis of site histories, visual inspections, field investigations, and laboratory analyses, the DON, as the lead agency, has determined that IRP Sites 5 and 11 do not contain hazardous materials. Therefore, it follows that there is no threat to human health and the environment at IRP Sites 5 and 11. Results of investigations of these sites verify that chemicals of concern (COCs) have not been released to the soil and/or groundwater. Therefore, no CERCLA response action is required to protect public health or welfare or the environment at these sites.

On the basis of site history, visual inspections, field investigations, a thorough assessment of potential human-health and ecological risks at both sites, and a removal action at IRP Site 12, the DON, as the lead agency, has determined that no remedial action is required to protect public health or welfare or the environment at IRP Sites 7 and 12. A human-health risk assessment of IRP Site 7 shows that risk to human health from COCs is within the NCP's generally acceptable risk range, and the contaminants present in groundwater do not present an unacceptable risk to the environment. A human-health and ecological risk assessment of IRP Site 12 shows that risk to human health or the environment from COCs is within the acceptable range.

STATUTORY DETERMINATIONS

The selected remedy for IRP Sites 5, 7, 11, and 12 is no action. In selecting the no action remedy for these sites, the DON has determined that the existing condition of the sites is protective of human health and the environment and complies with federal and state requirements. Because this remedy will not result in hazardous substances, pollutants, or contaminants remaining on-site above levels that allow for unlimited use and unrestricted exposure, a five-year review will not be required.

ROD DATA CERTIFICATION CHECKLIST

The Decision Summary includes the following information for IRP Sites 7 and 12:

- COCs and their respective concentrations (Section 5)
- baseline risks represented by the COCs (Section 7)

The Decision Summary includes the following information for IRP Sites 5, 7, 11, and 12:

- current and reasonably anticipated future land-use assumptions and current and potential future beneficial uses of groundwater used in the baseline risk assessment and this RAP/ROD (Section 6)
- key factors that led to selecting the remedy (Section 8)

Additional information can be found in the administrative record files for these sites.

Signature:

Derek B. Kemp, Captain Commanding Officer, Naval Station San Diego United States Department of the Navy Lead Foderal Agency

Signature:

Mr. John E. Scandura, Chief Southern California Operations Office of Military Facilities Department of Toxic Substances Control

Signature:

Mr. John H. Robertus Executive Officer California Regional Water Quality Control Board San Diego Region

Date: **2**2

Date: 11/13/04

Date: 12/1/04

Final RAP/ROD - IRP Sites 5, 7, 11, and 12, Naval Station San Diego

This page intentionally left blank.

California Regional Water Quality Control Board

San Diego Region

Terry Tamminen Secretary for Environmental Protection

9174 Sky Park Court, Suite 100, San Diego, California 92123-4340 (858) 467-2952 • Fax (858) 571-6972 http://www.swrcb.ca.gov/rwqcb9

Arnold Schwarzenegger Governor

March 15, 2004

In reply refer to: SMU:30-0089.05.WALSL

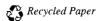
Navy Region Southwest Assistant Chief of Staff for Environmental Code N4512 33000 Nixie Way, Bldg. 50, Suite 326 San Diego, CA 92147-5110 Attn: Ms. Theresa Morley

Dear Ms. Morley:

SUBJECT: NO FURTHER ACTION INSTALLATION RESTORATION SITE 8 - FORMER FIRE FIGHTING TRAINING FACILITY NAVAL STATION SAN DIEGO

This letter confirms the completion of a site investigation and remedial action for the installation restoration site located at the above described location. Thank you for your cooperation throughout this investigation. Your willingness and promptness in responding to our inquiries concerning the site are greatly appreciated.

Based on the information in the above-referenced file and with the provision that the information provided to this agency was accurate and representative of site conditions, no further action related to the release is required. If you have any questions please contact me at (858) 467-2987 or John Anderson at (858) 467-2975.


Respectfully,

COHN H. ROBERTUS Executive Officer

JHR:jpa:law:cv ltr closure sum.doc

Attachment: Case Closure Summary

California Environmental Protection Agency

Case Closure Summary

INSTALLATION RESTORATION (IR) PROGRAM

I. CASE INFORMATION

DATE: March 15, 2004 Site Name: Installation Restoration Site 8 Site Address: Naval Station San Diego **Responsible Party Name:** Navy Region Southwest **RP Phone Number:** 619-524-6399 Responsible Party Address: 33000 Nixie Way, Bldg 50, San Diego, CA 92147 Current Land Use: Parking Lot RWOCB File Number: 30-0089.05:walsl Local Case: NA RWQCB Staff: Laurie Walsh Basin Uses: None Beneficial Use Basin Basin Number: Pueblo San Diego HU 980.00

II. RELEASE AND SITE CHARACTERIZATION INFORMATION

Description of the unauthorized release (cause, release date, source[s]):

Between the late 1940's and 1996, the site was used for fire fighter training exercises by igniting jet fuel (JP-4 and JP-5), diesel, unleaded gasoline, and oil and grease on two open air concrete pads. Later, these exercises were conducted in enclosed structures. Leaking USTs (14 USTs were present at the site), various fuel lines, and spraying of fuels into open areas at the site from these exercises caused releases to the subsurface throughout this time period. These training exercises ceased in 1996 and the site was demolished in 1997.

Contaminant[s] identified and amount leaked:

An estimated 14,000 to 30,000 gallons of 60% JP-5, 10 to 15% bunker fuel range petroleum hydrocarbons (C₁₉ - C_{40} , 10 to 15% diesel range petroleum hydrocarbons, and less than 3% light gasoline free-product were calculated to be floating on the site water table from the site releases.

Description of the soil/geology: The site is located entirely on fill overlying bay and intertidal mudflat sediments. Geologic materials consist primarily of hydraulic fill composed of fine to medium-grained sands interbedded with thin silt and thin clay layers. The hydraulic fill, approximately 13 to 20 feet thick, occurs above and below a wood deck (part of the quay wall support structure) that occurs at an elevation of 0 feet MLLW or approximately 12 feet below ground surface (bgs) along the Quay Wall. A clay layer, 1¹/₂ to 2 feet thick, occurs across the site at approximately -2.5 to-5.0 feet below MLLW and may represent the original (pre-fill) bay bottom. All fuel-saturated soil occurred in the sandy portions of the hydraulic fill at an elevation of 4 to 0 feet above MLLW, or 8 to 12 feet in depth along the quay wall.

Is soil contamination completely delineated (to what levels)? Yes. TPH as gasoline (not detected [ND]<10 milligrams per kilogram [mg/kg]), TPH as diesel (ND< 10 mg/kg), Benzene (ND<0.05 mg/kg), Toluene (ND<0.05 mg/kg), ethylbenzene (ND<0.05 mg/kg), total xylenes (ND<0.15 mg/kg), and naphthalene (ND<0.010 mg/kg).

Aerial extent? NORTHERN PLUME: 300 feet long along bay front (NW-SE direction) by 160 feet wide (NE direction). SOUTHERN PLUME: 300 feet long along bay front (NW-SE direction) by 280 feet wide (NE direction).

Vertical extent? NORTHERN PLUME: Depth of 10 to 13 feet below ground surface (bgs) inland and 8 to 10 feet bgs along the Quay wall. SOUTHERN PLUME: 8 to12 feet bgs.

Est. Volume of contaminated soil left on site and concentration:

NORTHERN PLUME: Approximately, 3,200 cubic yards of petroleum impacted soil with TPH as JP-5 concentration < 21,200 mg/kg and TPH as diesel of ND<10 mg/kg.

SOUTHERN PLUME: Approximately 5,900 cubic yards of petroleum impacted soil with estimated maximum concentrations of TPH as gasoline < 4,200 mg/kg, TPH as diesel concentrations < 48,000 mg/kg. Benzene <3 mg/kg, Toluene <12 mg/kg), ethylbenzene <14 mg/kg), total xylenes <30 mg/kg, and naphthalene <55 mg/kg.

Is groundwater contamination completely delineated (to what levels)? Yes. Both Northern and Southern Plumes: TPH as gasoline (ND<500 micrograms per liter [μ g/L]), TPH as diesel (ND<500 μ g/L), Benzene (ND<0.5 μ g/L), Toluene (ND<0.5 μ g/L), ethylbenzene (ND<0.5 μ g/L), total xylenes (ND<1.5 μ g/L), methyl tert-butyl ether (MTBE) (ND<0.5 μ g/L), tert-amyl methyl ether (TAME) (ND<1 μ g/L), tert-butyl alcohol (TBA) (ND<5 μ g/L), naphthalene (ND<0.10 μ g/L), and total polynuclear aromatics (PNAs) (ND<15 μ g/L).

Number of monitoring wells: 10
Seasonal or tidal fluctuation: Yes, tidal
Gradient: Variable based upon tidal pressure.
Average of 1.7×10^{-3} feet per foot.

Is groundwater or surface water impacted? Yes, groundwater has been impacted.

Is groundwater contamination contained on site? Yes.

Nearest receptor (Inland Surface Water, Bay, Drinking Water Wells, etc.): San Diego Bay is located 5 feet from the site.

III. MAXIMUM DOCUMENTED CONTAMINANT CONCENTRATION

Contaminant	Soil (mg/kg) initial	Soil (mg/kg) current	USEPA Soil Residential PRGs (mg/kg)	Water (ug/l) Initial	RWQCB Interim Guidance ug/L	Water (ug/l) current
TPH-diesel	20,000	48,000 ¹	NE	965,000	NE	16,000
TPH-gasoline	490	4,200 ¹	NE	44,000	NE	ND<500
TPH-JP5	58,963 ²	48,000 ³	NE	190,000	NE	ND<500
Benzene	0.089	31	0.60	907	400	230
Toluene	0.48	121	520	800	5,000	0.7
Ethlybenzene	0.46	14 ¹	8.9	1,093	430	1.6
Xylene (total)	0.39	30 ¹	270	3629	10,000	ND<1.5
Naphthalene	1.16	55 ¹	56	12,200	2,350	110
PNAs	2.4	22 ¹	NE	2,388	300	55
MTBE	NA	ND	62	NA	NE	5.7

ND: Non Detect

NA: Not Applicable

NE: Not Established

¹Current soil concentrations are higher than the initial concentrations due to the large number samples collected from the excavation within the contamination zone (which could be seen clearly) as opposed to the site assessment data (soil initial value) where the location of the highest contamination was unknown.

² The initial TPH soil concentrations had to be converted from soil sample results presented as percent "fuel saturation" (43.3% fuel saturation). Calculation equation 5-4, Ch. 5, Page 5-47 of 2002 San Diego County SAM Manual.

rwqcb-d.doc

³ This concentration represents the maximum concentration of TPH as JP-5 of both the northern and southern plume. TPH as JP-5 concentration in soil post removal action for the northern plume is < 21,200 mg/kg. TPH as JP-5 concentration in soil post removal action for the southern plume is < 48,000 mg/kg.

Material	Amount (include	Action (treatment	Concentration	Date
	units)	or disposal)	(mg/kg)	
Soil	10,350 cubic yards	Recycling at Calendaria Environmental, Anza CA	TPH as gasoline (4,200 mg/kg), TPH as diesel (48,000 mg/kg), Benzene (3 mg/kg), Toluene (12 mg/kg), ethylbenzene (14 mg/kg), total xylenes (30 mg/kg), naphthalene (55 mg/kg),	1/28/02 to 3/15/03
Groundwater	Approximately 2,400,000 gallons 27,000 gallons	Navy Public Works Treatment Center	TPH as diesel (ND<0.5 mg/L), TPH as gasoline (0.9 mg/L), TPH as JP-5 (ND<0.5 mg/L), Benzene (60 ug/L), toluene (ND<0.5 ug/L), ethylbenzene (14 ug/L), total xylene (2 ug/L), PNAs (14	1997-2000 1/28/02 to
			ug/L).	3/15/03
Free Product	Approximately		60% JP-5	
Free Proauci	15,000 gallons		15% bunker fuel	1997-2000
		Navy Public Works	15% diesel range	
	300 gallons	Treatment Center	<3% light gasoline – 15,000 gallons	1/28/02 to 3/15/03
	51 gallons		Diesel Range organics – 300 & 51 gallons.	11/2003
Barrel(s)	NA	NA	NA	NA
Tank(s)	1,500 gallon steel, diesel, FFS-12 (Bldg 171)	Tank recycled at NAVY DRMO scrap rnetal yard. Permit AT3183	NA	Removed 1/04/1995 by PWC
	1,500 gallon steel, diesel, FFS-12 (Bldg 171)	Tank recycled at NAVY DRMO scrap metal yard. Permit AT3165	NA	Removed 2/13/1995 by PWC

IV. TREATMENT AND DISPOSAL OF AFFECTED MATERIAL

San Diego Regional Water Quality Control Board **IR Site 8 Former Firefighter Training Facility** Naval Station San Diego

	1,800 gallon steel, JP-5 fuel, Bidg 3196	Tank recycled at Pacific Steel and Disposal. H#01447-019	NA	Removed 7/25/1996 by Pacific Treatment
	900 gallon, steel, diesel, Bldg 171	Tank recycled at NAVY DRMO scrap metal yard. Permit AT3885	NA	Removed 7/31/1997 by PWC
Piping	NA	NA	NA	1996

V. CLOSURE

Does completed corrective action protect beneficial uses per the RWQCB Basin Plan? Yes, Adequate information has been submitted by the consultant to demonstrate that existing site conditions are protective of human health and the environment. A removal action was conducted to depths below 10 feet, greatly reducing the potential for exposure of site contaminants to human and ecological receptors. Free product was removed to the extent practicable and concentrations of contaminants remaining insitu are below the criteria established for Cleanup of Low Risk Fuel Sites (Regional Board Interim Guidance 1996) that lie within 1,000 feet of San Diego Bay.

Should corrective action be reviewed if land use changes? Yes.

Monitoring wells decommissioned? 29	Number decommissioned:	Number retained:
(by mid Feb 04)		8 (TBD)
Enforcement actions taken None		

Enforcement actions taken: None

Enforcement actions rescinded: None

VI. Signature of Reviewer

Date: March 15, 2004

Laurie Walsh Water Resource Control Engineer

VII. Signature of Senior Staff

luderson____ Date: March 15, 2004

John/P. Anderson Senior Engineering Geologist

This page intentionally left blank.

PETE WILSON, Governor

STATE OF CALIFORNIA - ENVIRONMENTAL PROTECTION AGENCY

 Region 4

 245 West Broadway, Suite 350

 Long Beach, CA 90802-4444

 Voice:
 (310) 590-4890

 Fax:
 (310) 590-4870

July 17, 1995

Mr. Marty Wurbs Navy Public Works Center Box 368113 2730 Mckean Street, Suite 1 San Diego, California 92136-5294

Dear Mr. Wurbs:

CLOSURE PLANS: NAVY PUBLIC WORKS CENTER, NAVAL STATION, SAN DIEGO, CALIFORNIA 92136 (EPA ID NO. CA6170024289)

The California Department of Toxic Substances Control (DTSC) has reviewed the closure certification report for the PCB Container Storage area, dated January 1995. The DTSC has also reviewed the closure certification report for Building 3275, dated February 1994, with additional reports dated May 19, 1995 and June 23, 1995. Based on these reports, closure for the PCB Container Storage area and Building 3275 has been implemented in accordance with the closure plans approved by DTSC on June 30, 1993, and the reports are hereby accepted. This acceptance is not a certification that the subject facility does not pose an environmental or public health threat.

DTSC acknowledges that you have closed the waste management units in accordance with the closure plans approved by DTSC on June 30, 1993. However, this acknowledgment does not release you from any liabilities associated with past hazardous waste management practices which occurred at your facility. Pursuant to the Health and Safety Code, Section 25817, DTSC may issue an order requiring corrective action if DTSC determines that there has been a release of hazardous waste or constituents into the environment from any solid waste management units at your facility. The solid waste management units are any units or areas at a hazardous waste facility from which hazardous constituents might migrate, irrespective of whether the units or areas were intended for the management of wastes.

If you have any questions, please call Mr. Robert Romero at (310) 590-4890.

Sincerely, *Juss Standhu*, P.E., Chief Facility Permitting Branch

cc: See next page

Mr Marty Wurbs July 17, 1995 Page 2

cc: Mr. Scott Simpson, Chief
 Statewide Compliance Division
 Department of Toxic Substances Control
 245 West Broadway, Suite 350
 Long Beach, California 90802

Ms. Carmen Santos Permits Section Hazardous Waste Management Division (H-3-2) U.S. Environmental Protection Agency, Region IX 75 Hawthorne Street San Francisco, California 94105

Ms. Jane Ortiz Chief of Hazardous Materials County of San Diego Dept. of Environmental Health Services P.O. Box 85261 San Diego, California 92138-5261

Mr. Richard J. Sommerville Air Pollution Control Officer San Diego County Air Pollution Control District 9150 Chesapeake Drive San Diego, California 92123

Ms. Lauren M. Wasserman, Director County of San Diego Department of Planning and Land Use 5201 Ruffin Road, Suite B San Diego, California 92123-1666

Mr. Arthur L. Coe, Executive Officer California Regional Water Quality Control Board 9771 Clairemont Mesa Boulevard, Suite B San Diego, California 92124-1331

Mr. Ernest Freeman, Director City of San Diego Planning Department City Administration Building 202 C Street San Diego, California 92101 Mr Marty Wurbs July 17, 1995 Page 3

.

٢

Mr. Chuck Pryatel, Division Manager San Diego County Environmental Health Services Site Assessment and Mitigation Division P.O. Box 85261 San Diego, California 92138-5261 This page intentionally left blank.

Department of Toxic Substances Control

Agency Secretary Cal/EPA

Maureen F. Gorsen, Director 5796 Corporate Avenue Cypress, California 90630

March 15, 2007

Commanding Officer Naval Base San Diego Attention: Mr. Edward K Dias, ROPME.ED Naval Facilities Engineering Command Southwest 1220 Pacific Highway San Diego, California 92132-5190

FINAL REMOVAL SITE EVALUATION REPORT, INSTALLATION RESTORATION SITE 13. NAVAL BASE SAN DIEGO

Dear Mr. Dias:

Sincerely

The Department of Toxic Substances Control (DTSC) has completed the review of the subject document which DTSC received on September 14, 2006. DTSC also reviewed and subsequent revisions dated January 2007 and finds that the document is now complete.

The findings of the human and ecological risk assessment are that the current site conditions are suitable for the current and planned future use of the site, as stated in the report. DTSC concurs with the Navy's proposal of no further response action under the Comprehensive Environmental Response, Compensation, and Liability Act for the site.

Thank you for providing DTSC with the opportunity to work with you on this project. Should you have any questions, please contact Mr. Douglas Bautista at (714) 484 5442.

John E. Scandura, Branch Chief Office of Military Facilities Southern California Operations Branch

CC: See next page.

Arnold Schwarzenegger Governor

Mr. Edward K Dias March 15, 2007 Page 2

cc: Commanding Officer Naval Base San Diego Attention: Darren Belton, ROPME.DB Naval Facilities Engineering Command Southwest 1220 Pacific Highway San Diego, California 92132-5190

> Ms. Laurie Walsh California Regional Water Quality Control Board, San Diego Region 9 9174 Sky Park Court, Suite 100 San Diego, California 92123

Mr. Pete Bishop 275 Las Flores Drive Chula Vista, California 91910-2914

Ms. Rita McIntyre 30 J Street Chula Vista, California 91920

Mr. Jerry McNutt 522 Tallow Court Chula Vista, California 91911-5636

Mr. Gene Mullaly 6869 Belle Glade Avenue San Diego, California 92119

Mr. Craig Woempner 3816 Birch Street San Diego, California 92113

Appendix D Surface Sediment Chemistry Analytical Data

This page intentionally left blank.

PROJECT_NAME	SITE_NAME	SAMPLE_ID	X_COORDINATE	Y_COORDINATE	SAMPLE_DATE	SAMPLE_MEDIUM	TYPE	MEASUREMENT_METHOD	PARAMETER_NAME	PROPERTY	QUANTITY UNIT	QUALIFIER
Bay Protection and Toxic Cleanup Program	90006		-117.13417	32.68667	04-Aug-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Aluminum (Al)	Dry weight	55000 mg/kg	
Bay Protection and Toxic Cleanup Program	90006		-117.13417	32.68667	04-Aug-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Arsenic (As)	Dry weight	12 mg/kg	
Bay Protection and Toxic Cleanup Program	90006		-117.13417	32.68667	04-Aug-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Cadmium (Cd)	Dry weight	0.5 mg/kg	
Bay Protection and Toxic Cleanup Program	90006		-117.13417	32.68667	04-Aug-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Copper (Cu)	Dry weight	120 mg/kg	
Bay Protection and Toxic Cleanup Program	90006		-117.13417	32.68667	04-Aug-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Iron (Fe)	Dry weight	41000 mg/kg	
Bay Protection and Toxic Cleanup Program	90006		-117.13417	32.68667	04-Aug-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Lead (Pb)	Dry weight	71.8 mg/kg	
Bay Protection and Toxic Cleanup Program	90006		-117.13417	32.68667	04-Aug-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Mercury (Hg)	Dry weight	0.082 mg/kg	
Bay Protection and Toxic Cleanup Program	90006		-117.13417	32.68667	04-Aug-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Zinc (Zn)	Dry weight	240 mg/kg	
Bay Protection and Toxic Cleanup Program	90007		-117.12917	32.68117	17-Aug-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Aluminum (Al)	Dry weight	39000 mg/kg	
Bay Protection and Toxic Cleanup Program	90007		-117.12889	32.68028	10-Nov-92	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Aluminum (Al)	Dry weight	57000 mg/kg	
Bay Protection and Toxic Cleanup Program	90007		-117.12902	32.68090	3-Dec-96	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Aluminum (Al)	Dry weight	99600 mg/kg	
Bay Protection and Toxic Cleanup Program	90007		-117.12889	32.68028	10-Nov-92	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Arsenic (As)	Dry weight	9.8 mg/kg	
Bay Protection and Toxic Cleanup Program	90007		-117.12917	32.68117	17-Aug-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Arsenic (As)	Dry weight	17 mg/kg	
Bay Protection and Toxic Cleanup Program	90007		-117.12902	32.68090	3-Dec-96	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Cadmium (Cd)	Dry weight	0.45 mg/kg	
Bay Protection and Toxic Cleanup Program	90007		-117.12917	32.68117	17-Aug-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Cadmium (Cd)	Dry weight	0.52 mg/kg	
Bay Protection and Toxic Cleanup Program	90007		-117.12889	32.68028	10-Nov-92	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Cadmium (Cd)	Dry weight	1.1 mg/kg	
Bay Protection and Toxic Cleanup Program	90007		-117.12902	32.68090	3-Dec-96	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Copper (Cu)	Dry weight	207 mg/kg	
Bay Protection and Toxic Cleanup Program	90007		-117.12889	32.68028	10-Nov-92	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Copper (Cu)	Dry weight	220 mg/kg	
Bay Protection and Toxic Cleanup Program	90007 90007		-117.12917	32.68117	17-Aug-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Copper (Cu)	Dry weight	240 mg/kg	
Bay Protection and Toxic Cleanup Program	90007		-117.12917	32.68117	17-Aug-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Iron (Fe)	Dry weight	43000 mg/kg	
Bay Protection and Toxic Cleanup Program Bay Protection and Toxic Cleanup Program	90007		-117.12902 -117.12889	32.68090 32.68028	3-Dec-96 10-Nov-92	Sediment Sediment	Discrete Sample Discrete Sample	Evans&Hanson,1993Mod Evans&Hanson,1993Mod	Iron (Fe) Iron (Fe)	Dry weight	45000 mg/kg 57000 mg/kg	
Bay Protection and Toxic Cleanup Program	90007		-117.12889	32.68090	3-Dec-96	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Lead (Pb)	Dry weight Dry weight		
Bay Protection and Toxic Cleanup Program	90007		-117.12902	32.68090	17-Aug-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Lead (Pb)	Dry weight	46 mg/kg 79.1 mg/kg	
Bay Protection and Toxic Cleanup Program	90007		-117.12889	32.68028	10-Nov-92	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Lead (Pb)	Dry weight	83.6 mg/kg	
Bay Protection and Toxic Cleanup Program	90007		-117.12003	32.68117	17-Aug-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Mercury (Hg)	Dry weight	0.591 mg/kg	
Bay Protection and Toxic Cleanup Program	90007		-117.12902	32.68090	3-Dec-96	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Mercury (Hg)	Dry weight	0.60 mg/kg	
Bay Protection and Toxic Cleanup Program	90007		-117.12889	32.68028	10-Nov-92	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Mercury (Hg)	Dry weight	3.3 mg/kg	
Bay Protection and Toxic Cleanup Program	90007		-117.12003	32.68117	17-Aug-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Zinc (Zn)	Dry weight	300 mg/kg	
Bay Protection and Toxic Cleanup Program	90007		-117.12902	32.68090	3-Dec-96	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Zinc (Zn)	Dry weight	308 mg/kg	
Bay Protection and Toxic Cleanup Program	90007		-117.12889	32.68028	10-Nov-92	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Zinc (Zn)	Dry weight	340 mg/kg	
Bay Protection and Toxic Cleanup Program	90008		-117.12517	32.67383	17-Aug-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Aluminum (Al)	Dry weight	37000 mg/kg	
Bay Protection and Toxic Cleanup Program	90008		-117.12460	32.67552	3-Dec-96	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Aluminum (Al)	Dry weight	39100 mg/kg	
Bay Protection and Toxic Cleanup Program	90008		-117.12556	32.67417	10-Nov-92	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Aluminum (Al)	Dry weight	57000 mg/kg	
Bay Protection and Toxic Cleanup Program	90008		-117.12556	32.67417	10-Nov-92	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Arsenic (As)	Dry weight	8.9 mg/kg	
Bay Protection and Toxic Cleanup Program	90008		-117.12517	32.67383	17-Aug-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Arsenic (As)	Dry weight	11 mg/kg	
Bay Protection and Toxic Cleanup Program	90008		-117.12517	32.67383	17-Aug-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Cadmium (Cd)	Dry weight	0.25 mg/kg	
Bay Protection and Toxic Cleanup Program	90008		-117.12556	32.67417	10-Nov-92	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Cadmium (Cd)	Dry weight	0.29 mg/kg	
Bay Protection and Toxic Cleanup Program	90008		-117.12460	32.67552	3-Dec-96	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Cadmium (Cd)	Dry weight	0.40 mg/kg	
Bay Protection and Toxic Cleanup Program	90008		-117.12517	32.67383	17-Aug-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Copper (Cu)	Dry weight	180 mg/kg	
Bay Protection and Toxic Cleanup Program	90008		-117.12556	32.67417	10-Nov-92	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Copper (Cu)	Dry weight	190 mg/kg	
Bay Protection and Toxic Cleanup Program	90008		-117.12460	32.67552	3-Dec-96	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Copper (Cu)	Dry weight	261 mg/kg	
Bay Protection and Toxic Cleanup Program	90008		-117.12517	32.67383	17-Aug-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Iron (Fe)	Dry weight	41000 mg/kg	
Bay Protection and Toxic Cleanup Program	90008		-117.12556	32.67417	10-Nov-92	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Iron (Fe)	Dry weight	48000 mg/kg	ļ
Bay Protection and Toxic Cleanup Program	90008		-117.12460	32.67552	3-Dec-96	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Iron (Fe)	Dry weight	49500 mg/kg	L
Bay Protection and Toxic Cleanup Program	90008		-117.12460	32.67552	3-Dec-96	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Lead (Pb)	Dry weight	37 mg/kg	1
Bay Protection and Toxic Cleanup Program	90008		-117.12517	32.67383	17-Aug-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Lead (Pb)	Dry weight	39.7 mg/kg	<u> </u>
Bay Protection and Toxic Cleanup Program	90008		-117.12556	32.67417	10-Nov-92	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Lead (Pb)	Dry weight	63.8 mg/kg	<u> </u>
Bay Protection and Toxic Cleanup Program	90008		-117.12556	32.67417	10-Nov-92	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Mercury (Hg)	Dry weight	0.17 mg/kg	
Bay Protection and Toxic Cleanup Program	90008 90008		-117.12517	32.67383	17-Aug-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Mercury (Hg)	Dry weight	0.481 mg/kg	<u> </u>
Bay Protection and Toxic Cleanup Program			-117.12460	32.67552	3-Dec-96	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Mercury (Hg)	Dry weight	0.52 mg/kg	
Bay Protection and Toxic Cleanup Program	90008 90008		-117.12517	32.67383	17-Aug-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Zinc (Zn)	Dry weight	220 mg/kg	+
Bay Protection and Toxic Cleanup Program Bay Protection and Toxic Cleanup Program	90008		-117.12556 -117.12460	32.67417 32.67552	10-Nov-92 3-Dec-96	Sediment Sediment	Discrete Sample	Evans&Hanson,1993Mod Evans&Hanson,1993Mod	Zinc (Zn) Zinc (Zn)	Dry weight Dry weight	240 mg/kg	<u> </u>
	90008		-117.12460 -117.11694	32.67552	3-Dec-96 10-Nov-92	Sediment	Discrete Sample Discrete Sample	Evans&Hanson,1993Mod Evans&Hanson,1993Mod	Aluminum (Al)	Dry weight Dry weight	321 mg/kg 48000 mg/kg	<u> </u>
Bay Protection and Toxic Cleanup Program Bay Protection and Toxic Cleanup Program	90009		-117.11694 -117.11700	32.67250	10-Nov-92 17-Aug-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod Evans&Hanson,1993Mod	Aluminum (Al)	Dry weight	48000 mg/kg 62000 mg/kg	<u> </u>
Bay Protection and Toxic Cleanup Program Bay Protection and Toxic Cleanup Program	90009		-117.11700	32.67233	17-Aug-93 17-Aug-93	Sediment	Discrete Sample	Evans&Hanson, 1993Mod Evans&Hanson, 1993Mod	Arsenic (As)	, ,	4.3 mg/kg	<u> </u>
Bay Protection and Toxic Cleanup Program Bay Protection and Toxic Cleanup Program	90009		-117.11694	32.67250	10-Nov-92	Sediment	Discrete Sample	Evans&Hanson, 1993Mod	Arsenic (As) Arsenic (As)	Dry weight Dry weight	4.3 mg/kg 7.3 mg/kg	<u> </u>
Bay Protection and Toxic Cleanup Program Bay Protection and Toxic Cleanup Program	90009		-117.11694	32.67233	17-Aug-93	Sediment	Discrete Sample	Evans&Hanson, 1993Mod Evans&Hanson, 1993Mod	Cadmium (Cd)	Dry weight	1.5 mg/kg	<u> </u>
Bay Protection and Toxic Cleanup Program	90009		-117.11694	32.67250	10-Nov-92	Sediment	Discrete Sample	Evans&Hanson, 1993Mod	Cadmium (Cd)	Dry weight	3.16 mg/kg	<u> </u>
Bay Protection and Toxic Cleanup Program	90009		-117.11700	32.67233	17-Aug-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Copper (Cu)	Dry weight	100 mg/kg	<u> </u>
Bay Protection and Toxic Cleanup Program	90009		-117.11694	32.67250	10-Nov-92	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Copper (Cu)	Dry weight	180 mg/kg	<u> </u>
bay i recessori and roxic oleanap i regram	00000	1	117.11034	52.07230	101107 52	Countern	La conorte oumple		000 (00)	ery worgin	i ioojing/kg	L

IABLE D-1 Inorganic Parameters in Surface Sediment Response to Shipyard Sediment Site Tentative Cleanup and Abatement Order and City of San Diego Complaint United States Naval Base San Diego, California

PROJECT_NAME	SITE_NAME	SAMPLE_ID	X_COORDINATE	Y_COORDINATE	SAMPLE_DATE	SAMPLE_MEDIUM	TYPE	MEASUREMENT_METHOD	PARAMETER_NAME	PROPERTY	QUANTITY UNIT	QUALIFIER
Bay Protection and Toxic Cleanup Program	90009		-117.11700	32.67233	17-Aug-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Iron (Fe)	Dry weight	33000 mg/kg	
Bay Protection and Toxic Cleanup Program	90009		-117.11694	32.67250	10-Nov-92	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Iron (Fe)	Dry weight	54000 mg/kg	
Bay Protection and Toxic Cleanup Program	90009		-117.11700	32.67233	17-Aug-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Lead (Pb)	Dry weight	91.2 mg/kg	
Bay Protection and Toxic Cleanup Program	90009		-117.11694	32.67250	10-Nov-92	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Lead (Pb)	Dry weight	220 mg/kg	
Bay Protection and Toxic Cleanup Program	90009		-117.11700	32.67233	17-Aug-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Mercury (Hg)	Dry weight	0.344 mg/kg	
Bay Protection and Toxic Cleanup Program	90009		-117.11694	32.67250	10-Nov-92	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Mercury (Hg)	Dry weight	0.838 mg/kg	
Bay Protection and Toxic Cleanup Program	90009		-117.11700	32.67233	17-Aug-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Zinc (Zn)	Dry weight	520 mg/kg	_
Bay Protection and Toxic Cleanup Program	90009		-117.11694	32.67250	10-Nov-92	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Zinc (Zn)	Dry weight	630 mg/kg	_
Bay Protection and Toxic Cleanup Program	90010		-117.11900	32.65800	17-Aug-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Aluminum (Al)	Dry weight	53000 mg/kg	
Bay Protection and Toxic Cleanup Program	90010		-117.11900	32.65800	17-Aug-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Arsenic (As)	Dry weight	5.7 mg/kg	
Bay Protection and Toxic Cleanup Program	90010		-117.11900	32.65800	17-Aug-93		Discrete Sample	Evans&Hanson,1993Mod	Cadmium (Cd)	Dry weight	0.2 mg/kg	
Bay Protection and Toxic Cleanup Program	90010		-117.11900	32.65800	17-Aug-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Copper (Cu)	Dry weight	110 mg/kg	
Bay Protection and Toxic Cleanup Program	90010		-117.11900	32.65800	17-Aug-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Iron (Fe)	Dry weight	48000 mg/kg	
Bay Protection and Toxic Cleanup Program	90010		-117.11900	32.65800	17-Aug-93		Discrete Sample	Evans&Hanson,1993Mod	Lead (Pb)	Dry weight	21.4 mg/kg	
Bay Protection and Toxic Cleanup Program	90010		-117.11900	32.65800	17-Aug-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Mercury (Hg)	Dry weight	0.101 mg/kg	
Bay Protection and Toxic Cleanup Program	90010	Dur 1	-117.11900	32.65800	17-Aug-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Zinc (Zn)	Dry weight	150 mg/kg	
Bay Protection and Toxic Cleanup Program	90020 90020	Rep 1	-117.14757 -117.14667	32.69200 32.69278	01-Mar-94 26-Jan-93	Sediment Sediment	Discrete Sample	Evans&Hanson,1993Mod Evans&Hanson,1993Mod	Aluminum (Al) Aluminum (Al)	Dry weight	31100 mg/kg	
Bay Protection and Toxic Cleanup Program Bay Protection and Toxic Cleanup Program	90020		-117.14667 -117.14757	32.69278	26-Jan-93 3-Dec-96	Sediment	Discrete Sample Discrete Sample	Evans&Hanson,1993Mod Evans&Hanson,1993Mod	Aluminum (Al) Aluminum (Al)	Dry weight Dry weight	78000 mg/kg 121000 mg/kg	+
Bay Protection and Toxic Cleanup Program Bay Protection and Toxic Cleanup Program	90020		-117.14757 -117.14667	32.69323	3-Dec-96 26-Jan-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod Evans&Hanson,1993Mod	Aluminum (Al) Arsenic (As)	Dry weight Dry weight	121000 mg/kg 16 mg/kg	+
Bay Protection and Toxic Cleanup Program Bay Protection and Toxic Cleanup Program	90020	Rep 1	-117.14667	32.69278	26-Jan-93 01-Mar-94	Sediment	Discrete Sample	Evans&Hanson, 1993Mod Evans&Hanson, 1993Mod	Arsenic (As) Arsenic (As)	Dry weight Dry weight	23.4 mg/kg	+
Bay Protection and Toxic Cleanup Program Bay Protection and Toxic Cleanup Program	90020	IVED 1	-117.14757	32.69200	3-Dec-96	Sediment	Discrete Sample	Evans&Hanson, 1993Mod Evans&Hanson, 1993Mod	Cadmium (Cd)	Dry weight	0.55 mg/kg	+
Bay Protection and Toxic Cleanup Program	90020	Rep 1	-117.14757	32.69200	01-Mar-94	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Cadmium (Cd)	Dry weight	0.647 mg/kg	
Bay Protection and Toxic Cleanup Program	90020	itop i	-117.14667	32.69278	26-Jan-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Cadmium (Cd)	Dry weight	0.76 mg/kg	-
Bay Protection and Toxic Cleanup Program	90020		-117.14757	32.69323	3-Dec-96	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Copper (Cu)	Dry weight	296 mg/kg	
Bay Protection and Toxic Cleanup Program	90020	Rep 1	-117.14757	32.69200	01-Mar-94	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Copper (Cu)	Dry weight	361 mg/kg	-
Bay Protection and Toxic Cleanup Program	90020	100	-117.14667	32.69278	26-Jan-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Copper (Cu)	Dry weight	370 mg/kg	
Bay Protection and Toxic Cleanup Program	90020	Rep 1	-117.14757	32.69200	01-Mar-94		Discrete Sample	Evans&Hanson,1993Mod	Iron (Fe)	Dry weight	49500 mg/kg	
Bay Protection and Toxic Cleanup Program	90020	i i i i i i i i i i i i i i i i i i i	-117.14757	32.69323	3-Dec-96	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Iron (Fe)	Dry weight	54100 mg/kg	-
Bay Protection and Toxic Cleanup Program	90020		-117.14667	32.69278	26-Jan-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Iron (Fe)	Dry weight	72000 mg/kg	
Bay Protection and Toxic Cleanup Program	90020	Rep 1	-117.14757	32.69200	01-Mar-94		Discrete Sample	Evans&Hanson,1993Mod	Lead (Pb)	Dry weight	48.2 mg/kg	-
Bay Protection and Toxic Cleanup Program	90020		-117.14757	32.69323	3-Dec-96	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Lead (Pb)	Dry weight	89 mg/kg	
Bay Protection and Toxic Cleanup Program	90020		-117.14667	32.69278	26-Jan-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Lead (Pb)	Dry weight	150 mg/kg	
Bay Protection and Toxic Cleanup Program	90020		-117.14667	32.69278	26-Jan-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Mercury (Hg)	Dry weight	1.07 mg/kg	
Bay Protection and Toxic Cleanup Program	90020		-117.14757	32.69323	3-Dec-96	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Mercury (Hg)	Dry weight	1.17 mg/kg	
Bay Protection and Toxic Cleanup Program	90020	Rep 1	-117.14757	32.69200	01-Mar-94	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Mercury (Hg)	Dry weight	1.23 mg/kg	
Bay Protection and Toxic Cleanup Program	90020	Rep 1	-117.14757	32.69200	01-Mar-94	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Zinc (Zn)	Dry weight	434 mg/kg	
Bay Protection and Toxic Cleanup Program	90020		-117.14757	32.69323	3-Dec-96	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Zinc (Zn)	Dry weight	542 mg/kg	
Bay Protection and Toxic Cleanup Program	90020		-117.14667	32.69278	26-Jan-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Zinc (Zn)	Dry weight	550 mg/kg	
Bay Protection and Toxic Cleanup Program	90021		-117.14617	32.69200	04-Aug-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Aluminum (Al)	Dry weight	46000 mg/kg	_
Bay Protection and Toxic Cleanup Program	90021		-117.14617	32.69200	04-Aug-93		Discrete Sample	Evans&Hanson,1993Mod	Arsenic (As)	Dry weight	24 mg/kg	
Bay Protection and Toxic Cleanup Program	90021		-117.14617	32.69200	04-Aug-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Cadmium (Cd)	Dry weight	0.38 mg/kg	
Bay Protection and Toxic Cleanup Program	90021		-117.14617	32.69200	04-Aug-93		Discrete Sample	Evans&Hanson,1993Mod	Copper (Cu)	Dry weight	290 mg/kg	
Bay Protection and Toxic Cleanup Program	90021		-117.14617	32.69200	04-Aug-93		Discrete Sample	Evans&Hanson,1993Mod	Iron (Fe)	Dry weight	50000 mg/kg	
Bay Protection and Toxic Cleanup Program	90021		-117.14617	32.69200	04-Aug-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Lead (Pb)	Dry weight	70.2 mg/kg	+
Bay Protection and Toxic Cleanup Program	90021		-117.14617	32.69200	04-Aug-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Mercury (Hg)	Dry weight	0.893 mg/kg	I
Bay Protection and Toxic Cleanup Program	90021		-117.14617	32.69200	04-Aug-93		Discrete Sample	Evans&Hanson,1993Mod	Zinc (Zn)	Dry weight	340 mg/kg	+
Bay Protection and Toxic Cleanup Program	90022 90022	Bop 1	-117.12500	32.67900 32.67889	04-Aug-93 01-Mar-94	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Aluminum (Al)	Dry weight	40000 mg/kg	+
Bay Protection and Toxic Cleanup Program Bay Protection and Toxic Cleanup Program	90022	Rep 1	-117.12528 -117.12389	32.67889	10-Nov-92	Sediment Sediment	Discrete Sample Discrete Sample	Evans&Hanson,1993Mod Evans&Hanson,1993Mod	Aluminum (Al) Aluminum (Al)	Dry weight Dry weight	48800 mg/kg	+
Bay Protection and Toxic Cleanup Program Bay Protection and Toxic Cleanup Program	90022		-117.12389 -117.12438	32.67833	10-Nov-92 3-Dec-96	Sediment		Evans&Hanson,1993Mod Evans&Hanson,1993Mod		, ,	57000 mg/kg 93700 mg/kg	+
Bay Protection and Toxic Cleanup Program Bay Protection and Toxic Cleanup Program	90022	-	-117.12438 -117.12389	32.67853	3-Dec-96 10-Nov-92	Sediment	Discrete Sample Discrete Sample	Evans&Hanson,1993Mod Evans&Hanson,1993Mod	Aluminum (Al) Arsenic (As)	Dry weight Dry weight		+
Bay Protection and Toxic Cleanup Program Bay Protection and Toxic Cleanup Program	90022	-	-117.12389	32.67833	04-Aug-93	Sediment	Discrete Sample	Evans&Hanson, 1993Mod Evans&Hanson, 1993Mod	Arsenic (As) Arsenic (As)	Dry weight	15 mg/kg 24 mg/kg	+
Bay Protection and Toxic Cleanup Program Bay Protection and Toxic Cleanup Program	90022	Rep 1	-117.12500	32.67889	04-Aug-93 01-Mar-94	Sediment	Discrete Sample	Evans&Hanson, 1993Mod	Arsenic (As) Arsenic (As)	Dry weight	24 mg/kg 24.1 mg/kg	+
Bay Protection and Toxic Cleanup Program	90022		-117.12320	32.67833	10-Nov-92		Discrete Sample	Evans&Hanson,1993Mod	Cadmium (Cd)	Dry weight	0.73 mg/kg	+
Bay Protection and Toxic Cleanup Program	90022	Rep 1	-117.12528	32.67889	01-Mar-94		Discrete Sample	Evans&Hanson,1993Mod	Cadmium (Cd)	Dry weight	0.741 mg/kg	+
Bay Protection and Toxic Cleanup Program	90022		-117.12520	32.67900	04-Aug-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Cadmium (Cd)	Dry weight	0.9 mg/kg	+
Bay Protection and Toxic Cleanup Program	90022		-117.12300	32.67853	3-Dec-96	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Cadmium (Cd)	Dry weight	1.06 mg/kg	+1
Bay Protection and Toxic Cleanup Program	90022		-117.12438	32.67853	3-Dec-96	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Copper (Cu)	Dry weight	333 mg/kg	+
Bay Protection and Toxic Cleanup Program	90022		-117.12500	32.67900	04-Aug-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Copper (Cu)	Dry weight	340 mg/kg	1
Bay Protection and Toxic Cleanup Program	90022	Rep 1	-117.12528	32.67889	01-Mar-94		Discrete Sample	Evans&Hanson,1993Mod	Copper (Cu)	Dry weight	418 mg/kg	
Bay Protection and Toxic Cleanup Program	90022		-117.12389	32.67833	10-Nov-92		Discrete Sample	Evans&Hanson,1993Mod	Copper (Cu)	Dry weight	420 mg/kg	
									/			

IABLE D-1 Inorganic Parameters in Surface Sediment Response to Shipyard Sediment Site Tentative Cleanup and Abatement Order and City of San Diego Complaint United States Naval Base San Diego, California

PROJECT NAME	SITE NAME	SAMPLE ID X COORDINATE	Y COORDINATE	SAMPLE DATE	SAMPLE MEDIUM	TYPE	MEASUREMENT METHOD	PARAMETER NAME	PROPERTY	QUANTITY UNIT	QUALIFIER
Bay Protection and Toxic Cleanup Program	90022	-117.12438	32.67853	3-Dec-96	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Iron (Fe)	Dry weight	49600 mg/kg	
Bay Protection and Toxic Cleanup Program	90022	Rep 1 -117.12528	32.67889	01-Mar-94	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Iron (Fe)	Dry weight	50100 mg/kg	
Bay Protection and Toxic Cleanup Program	90022	-117.12389	32.67833	10-Nov-92	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Iron (Fe)	Dry weight	57000 mg/kg	
Bay Protection and Toxic Cleanup Program	90022	-117.12500	32.67900	04-Aug-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Iron (Fe)	Dry weight	57000 mg/kg	
Bay Protection and Toxic Cleanup Program	90022	Rep 1 -117.12528	32.67889	01-Mar-94	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Lead (Pb)	Dry weight	46.6 mg/kg	
Bay Protection and Toxic Cleanup Program	90022	-117.12438	32.67853	3-Dec-96	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Lead (Pb)	Dry weight	58 mg/kg	
Bay Protection and Toxic Cleanup Program	90022	-117.12500	32.67900	04-Aug-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Lead (Pb)	Dry weight	75.5 mg/kg	
Bay Protection and Toxic Cleanup Program	90022	-117.12389	32.67833	10-Nov-92	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Lead (Pb)	Dry weight	100 mg/kg	
Bay Protection and Toxic Cleanup Program	90022	-117.12389	32.67833	10-Nov-92	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Mercury (Hg)	Dry weight	0.487 mg/kg	
Bay Protection and Toxic Cleanup Program	90022	-117.12500	32.67900	04-Aug-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Mercury (Hg)	Dry weight	0.615 mg/kg	
Bay Protection and Toxic Cleanup Program	90022	Rep 1 -117.12528	32.67889	01-Mar-94	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Mercury (Hg)	Dry weight	0.883 mg/kg	
Bay Protection and Toxic Cleanup Program	90022	-117.12438	32.67853	3-Dec-96	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Mercury (Hg)	Dry weight	0.99 mg/kg	
Bay Protection and Toxic Cleanup Program	90022	Rep 1 -117.12528	32.67889	01-Mar-94	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Zinc (Zn)	Dry weight	409 mg/kg	
Bay Protection and Toxic Cleanup Program	90022	-117.12389	32.67833	10-Nov-92	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Zinc (Zn)	Dry weight	420 mg/kg	
Bay Protection and Toxic Cleanup Program	90022	-117.12438	32.67853	3-Dec-96	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Zinc (Zn)	Dry weight	432 mg/kg	
Bay Protection and Toxic Cleanup Program	90022	-117.12500	32.67900	04-Aug-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Zinc (Zn)	Dry weight	450 mg/kg	
Bay Protection and Toxic Cleanup Program	90030	-117.14194	32.68972	26-Jan-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Aluminum (Al)	Dry weight	62000 mg/kg	
Bay Protection and Toxic Cleanup Program	90030	Rep 1 -117.14306	32.68944	15-Mar-94	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Aluminum (Al)	Dry weight	70400 mg/kg	<u> </u>
Bay Protection and Toxic Cleanup Program	90030	-117.14194	32.68972	26-Jan-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Arsenic (As)	Dry weight	15 mg/kg	<u> </u>
Bay Protection and Toxic Cleanup Program	90030	Rep 1 -117.14306	32.68944	15-Mar-94	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Arsenic (As)	Dry weight	23.9 mg/kg	
Bay Protection and Toxic Cleanup Program	90030	-117.14194	32.68972	26-Jan-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Cadmium (Cd)	Dry weight	0.26 mg/kg	
Bay Protection and Toxic Cleanup Program	90030	Rep 1 -117.14306	32.68944	15-Mar-94	Sediment Sediment	Discrete Sample	Evans&Hanson,1993Mod	Cadmium (Cd)	Dry weight	0.452 mg/kg	<u> </u>
Bay Protection and Toxic Cleanup Program Bay Protection and Toxic Cleanup Program	90030 90030	-117.14194 Rep 1 -117.14306	32.68972 32.68944	26-Jan-93 15-Mar-94	Sediment	Discrete Sample	Evans&Hanson,1993Mod Evans&Hanson,1993Mod	Copper (Cu) Copper (Cu)	Dry weight Dry weight	380 mg/kg 383 mg/kg	+
Bay Protection and Toxic Cleanup Program Bay Protection and Toxic Cleanup Program	90030	Rep 1 -117.14306	32.68944	15-Mar-94	Sediment	Discrete Sample	Evans&Hanson, 1993Mod Evans&Hanson, 1993Mod				
Bay Protection and Toxic Cleanup Program Bay Protection and Toxic Cleanup Program	90030	-117.14306 -117.14194	32.68944	26-Jan-93	Sediment	Discrete Sample Discrete Sample	Evans&Hanson, 1993Mod Evans&Hanson, 1993Mod	Iron (Fe) Iron (Fe)	Dry weight Dry weight	56000 mg/kg 88000 mg/kg	
Bay Protection and Toxic Cleanup Program Bay Protection and Toxic Cleanup Program	90030	Rep 1 -117.14194	32.68972	26-Jan-93 15-Mar-94	Sediment	Discrete Sample	Evans&Hanson, 1993Mod Evans&Hanson, 1993Mod	Lead (Pb)	Dry weight	81.8 mg/kg	
Bay Protection and Toxic Cleanup Program	90030	-117.14306	32.68944	26-Jan-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Lead (Pb)	Dry weight	120 mg/kg	
Bay Protection and Toxic Cleanup Program	90030	-117.14194	32.68972	26-Jan-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Mercury (Hg)	Dry weight	0.98 mg/kg	
Bay Protection and Toxic Cleanup Program	90030	Rep 1 -117.14394	32.68944	15-Mar-94	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Mercury (Hg)	Dry weight	1.13 mg/kg	
Bay Protection and Toxic Cleanup Program	90030	-117.14194	32.68972	26-Jan-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Zinc (Zn)	Dry weight	460 mg/kg	
Bay Protection and Toxic Cleanup Program	90030	Rep 1 -117.14306	32.68944	15-Mar-94	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Zinc (Zn)	Dry weight	487 mg/kg	
Bay Protection and Toxic Cleanup Program	93178	Rep 1 -117.14967	32.69483	02-Mar-94	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Aluminum (Al)	Dry weight	45800 mg/kg	
Bay Protection and Toxic Cleanup Program	93178	-117.14967	32.69417	26-May-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Aluminum (Al)	Dry weight	64000 mg/kg	
Bay Protection and Toxic Cleanup Program	93178	-117.14997	32.69532	3-Dec-96	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Aluminum (Al)	Dry weight	97600 mg/kg	
Bay Protection and Toxic Cleanup Program	93178	-117.14967	32.69417	26-May-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Arsenic (As)	Dry weight	14.87 mg/kg	
Bay Protection and Toxic Cleanup Program	93178	Rep 1 -117.14967	32.69483	02-Mar-94	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Arsenic (As)	Dry weight	20.3 mg/kg	
Bay Protection and Toxic Cleanup Program	93178	-117.14967	32.69417	26-May-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Cadmium (Cd)	Dry weight	0.256 mg/kg	
Bay Protection and Toxic Cleanup Program	93178	Rep 1 -117.14967	32.69483	02-Mar-94	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Cadmium (Cd)	Dry weight	1.66 mg/kg	
Bay Protection and Toxic Cleanup Program	93178	-117.14997	32.69532	3-Dec-96	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Cadmium (Cd)	Dry weight	2.53 mg/kg	
Bay Protection and Toxic Cleanup Program	93178	-117.14967	32.69417	26-May-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Copper (Cu)	Dry weight	142 mg/kg	
Bay Protection and Toxic Cleanup Program	93178	-117.14997	32.69532	3-Dec-96	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Copper (Cu)	Dry weight	244 mg/kg	
Bay Protection and Toxic Cleanup Program	93178	Rep 1 -117.14967	32.69483	02-Mar-94	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Copper (Cu)	Dry weight	260 mg/kg	
Bay Protection and Toxic Cleanup Program	93178	-117.14967	32.69417	26-May-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Iron (Fe)	Dry weight	35800 mg/kg	
Bay Protection and Toxic Cleanup Program	93178	-117.14997	32.69532	3-Dec-96	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Iron (Fe)	Dry weight	36800 mg/kg	
Bay Protection and Toxic Cleanup Program	93178	Rep 1 -117.14967	32.69483	02-Mar-94	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Iron (Fe)	Dry weight	38200 mg/kg	
Bay Protection and Toxic Cleanup Program	93178	-117.14967	32.69417	26-May-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Lead (Pb)	Dry weight	64.2 mg/kg	
Bay Protection and Toxic Cleanup Program	93178	Rep 1 -117.14967	32.69483	02-Mar-94	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Lead (Pb)	Dry weight	99.4 mg/kg	
Bay Protection and Toxic Cleanup Program	93178	-117.14997	32.69532	3-Dec-96	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Lead (Pb)	Dry weight	127 mg/kg	ļ
Bay Protection and Toxic Cleanup Program	93178	-117.14967	32.69417	26-May-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Mercury (Hg)	Dry weight	0.507 mg/kg	ļ]
Bay Protection and Toxic Cleanup Program	93178	Rep 1 -117.14967	32.69483	02-Mar-94	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Mercury (Hg)	Dry weight	0.829 mg/kg	ļ
Bay Protection and Toxic Cleanup Program	93178	-117.14997	32.69532	3-Dec-96	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Mercury (Hg)	Dry weight	0.92 mg/kg	<u> </u>
Bay Protection and Toxic Cleanup Program	93178	-117.14967	32.69417	26-May-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Zinc (Zn)	Dry weight	207 mg/kg	<u> </u>]
Bay Protection and Toxic Cleanup Program	93178	Rep 1 -117.14967	32.69483	02-Mar-94	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Zinc (Zn)	Dry weight	730 mg/kg	<u> </u>
Bay Protection and Toxic Cleanup Program	93178	-117.14997	32.69532	3-Dec-96	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Zinc (Zn)	Dry weight	749 mg/kg	∔]
Bay Protection and Toxic Cleanup Program	93179	Rep 1 -117.14900	32.69400	02-Mar-94	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Aluminum (Al)	Dry weight	58900 mg/kg	<u> </u>
Bay Protection and Toxic Cleanup Program	93179	-117.14850	32.69383	26-May-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Aluminum (Al)	Dry weight	81400 mg/kg	<u> </u>
Bay Protection and Toxic Cleanup Program	93179	-117.14862	32.69372	3-Dec-96	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Aluminum (Al)	Dry weight	135000 mg/kg	
Bay Protection and Toxic Cleanup Program	93179	Rep 1 -117.14900	32.69400	02-Mar-94	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Arsenic (As)	Dry weight	31.9 mg/kg	∔]
Bay Protection and Toxic Cleanup Program	93179	-117.14850	32.69383	26-May-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Arsenic (As)	Dry weight	33.92 mg/kg	<u> </u>
Bay Protection and Toxic Cleanup Program	93179 93179	Rep 1 -117.14900	32.69400	02-Mar-94	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Cadmium (Cd)	Dry weight	0.822 mg/kg	<u> </u>
Bay Protection and Toxic Cleanup Program	93179	-117.14862	32.69372	3-Dec-96	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Cadmium (Cd)	Dry weight	0.97 mg/kg	

IABLE D-1 Inorganic Parameters in Surface Sediment Response to Shipyard Sediment Site Tentative Cleanup and Abatement Order and City of San Diego Complaint United States Naval Base San Diego, California

BDA Process of Tax Carene ProgramBT PIPT CHUCBY 2000BY 2000SeriesDerivative	PROJECT_NAME	SITE_NAME	SAMPLE_ID X_COORDI	ATE Y_COORDINATI	E SAMPLE_DATE	SAMPLE_MEDIUM	TYPE	MEASUREMENT_METHOD	PARAMETER_NAME	PROPERTY	QUANTITY UNIT	QUALIFIER
Dynamics and Euclosuphysica U117 P 111111100 21 9820 31-06-00 Schward Deem Barge Fundamentary (SC) Dynamic and SC (SC) <thdynamic (sc)<="" and="" sc="" th=""></thdynamic>	Bay Protection and Toxic Cleanup Program	93179	-117.1	850 32.6938	3 26-May-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Cadmium (Cd)	Dry weight	1.58 mg/kg	
Dip Network Dip Network <thdip network<="" th=""> <thdip network<="" th=""></thdip></thdip>	Bay Protection and Toxic Cleanup Program	93179	-117.1	850 32.6938	3 26-May-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Copper (Cu)	Dry weight	360 mg/kg	
Dip Network Take Career Take Career Takes Bit Network Takes Dens Support Fund Support	Bay Protection and Toxic Cleanup Program	93179	-117.1	862 32.6937	2 3-Dec-96	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Copper (Cu)	Dry weight	369 mg/kg	
Bur Production Tools (Decay Fragment)(D)	Bay Protection and Toxic Cleanup Program	93179	Rep 1 -117.1	900 32.6940	0 02-Mar-94	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Copper (Cu)	Dry weight		
Part Product of Units During Program Dirit Link Product of Use During Program Dirit Product of Use During Program <td>Bay Protection and Toxic Cleanup Program</td> <td></td> <td></td> <td></td> <td></td> <td>Sediment</td> <td>Discrete Sample</td> <td>Evans&Hanson,1993Mod</td> <td>Iron (Fe)</td> <td>Dry weight</td> <td>49700 mg/kg</td> <td></td>	Bay Protection and Toxic Cleanup Program					Sediment	Discrete Sample	Evans&Hanson,1993Mod	Iron (Fe)	Dry weight	49700 mg/kg	
No.Productoral Sub Canado Pagan No.1 117.1460 32.000 64/47-4 Control State Dorder State <td>Bay Protection and Toxic Cleanup Program</td> <td></td> <td></td> <td></td> <td>0 02-Mar-94</td> <td>Sediment</td> <td>Discrete Sample</td> <td>Evans&Hanson,1993Mod</td> <td>Iron (Fe)</td> <td>Dry weight</td> <td>52500 mg/kg</td> <td></td>	Bay Protection and Toxic Cleanup Program				0 02-Mar-94	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Iron (Fe)	Dry weight	52500 mg/kg	
No.Production of these Change Program Diff No.Production of these Program Diff										· · ·		
By Protects and Since ProgramBy Product and Since ProgramBorde BarrelBorde BarrelBorde Words Words WildelsBorde WordsBorde Words <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
Der Neutron vol Zuscherung Augen Die // Product of Subschame Augen Die methoden Subschame Augen												
Dep Networks and Tax Chemp. Pagent Diry										, ,		
Day Decision and Taxo Classup Pagam Dirac Attra (200) Set 400000 and Taxo Classup Pagam Dirac Sample												
by Processor of "soc Classup Program 917 Part 11/1168 22.0050 62.405 Borden Soc Town Socal Soc To									, (),			+
No. No. 1.17.1460 20.818 79.449 Oncest Samp Fuestbartsmin (2004) Car (2014) Op weight 1.11.1460 By Patterion and Toxic Chasup Program 0181 Rep 1 1.17.14607 20.89717 3.04.04 Scherel Sampt Scherel Consolitations (1904) Ammun Aph Oy weight 1.05.01 By Patterion and Toxic Chasup Program 3181 Rep 1 1.17.14607 32.88812 3.04.04 Scherel Sampt Scherel Scherel Sampt Scherel Sampt Scherel Scherel Sampt Sc									, (),	, ,		
Bit Production of Tool Classing Program Bit PT International Tool Classing Program Productional Tool Program												
Bits Bits Bits Application of Tool Cherup Program Bits Application of Tool Cherup Program Application												
Big Peterson and True Clearup Program Big Mark Big Peterson and True Clearup Program Big Mark Big Peterson and True Clearup Program										, ,		
Bit Protection and Track Classing Program Bit Products Products Bit Products												
Bigs Pactedican and Taul Chemp. Physican Still Part 17.1.407 S2.8883 Colume Control Status Contro Status Control Status Control									. ,			+
Bay Petersion and Tasic Cheanup Pagname S1111 Petersion and Tasic Cheanup Pagname S1111 Petersion and Tasic Cheanup Pagname S1111 Petersion and Tasic Cheanup Pagname S111 S111 S111 S111 S111 S111 S111 S111												+
Bay Perceion and Toxic Cleanue Pagnam 63111 Pag 1 11714017 2.24880 62.44474 Beinterie Decreate Sample Central Mances 0.18800 Cantaum Coll Dy vegint 30.27 Page Page Bay Percision and Toxic Cleanue Pagnam 0111 1 1171.1807 2.0080 2.0081<										, ,		+
Bay Pacticut and Toxic Cleanup Program 0151 9 111 20.0000 0.0000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0000000 0.0000000 0.00000000 0.0000000000 0.00000000000 0.00000000000000000 0.00000000000000000000000000000000000												
Bitery Protection and Toxic Channes Program 03111 Prof117.13807 32.08887 24.Mary 33 Bearmet Discrete Sample Constructions (Construct Program) Discrete Sample Constructions (Construct Program) <thdiscruction (construct="" program)<="" th=""> Discrete Sampl</thdiscruction>												+
By Protection and Toxic Clearup Program 0311 Hep 1 +117.14017 32.0898 02-March Descrimes Descrim Descrimes Descrime												
By Protection and Tox Cleanup, Program 33181 Period -117.13987 32.6888 0.2448r/34 Sentimet Discrite Sample Fransk-Marcon, 1930.000 Tirp (rp) Dy, weight 68.00, m/s/g By Protection and Tox Cleanup, Program 33181 Re -117.13007 32.68888 0.2448r/48 Discrite Sample Evends-Marcon, 1930.000 March 44 Discrite Sample D												
Bip Protection and Toxo Clamup Program 93161 Period 94.17.1407 32.86880 0.548874 Sectimet Discures Sample Fernes/Attract Clamup Program 97.98 43.3 mp/g Bip Protection and Toxo Clamup Program 93181 Rep 1 1.17.1407 32.88880 26489430 Sectimet Discrete Sample Evend-Matroaccin 1993000 Mercury (%g) Dy weight 1.28.17.1407 32.88880 26489430 Sectimet Discrete Sample Evend-Matroaccin 1993000 Mercury (%g) Dy weight 4.49.17.0407 32.88880 2648943 Sectimet Discrete Sample Evend-Matroaccin 1993000 Zirc (Zir) Dy weight 4.49.17.0407 32.88880 2648943 Sectimet Discrete Sample Evend-Matroaccin 1993000 Zirc (Zir) Dy weight 4.53.00.001 Discrete Sample Evend-Matroaccin 1993000 Zirc (Zir) Dy weight 4.53.00.001 Discrete Sample Evend-Matroaccin 1993000 Zirc (Zir) Dy weight 4.53.00.001 Discrete Sample Evend-Matroaccin 1993000 Zirc (Zir) Dy weight 4.53.00.001 Discrete Sample Evend-Matroaccin 1993000 Zirc (Zir) <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>, ,</td> <td></td> <td></td>										, ,		
By: Disc: -117.1989 Job 20888 ZeMay 3 Softmert Discret Sample Foundational Concert Sample Softmert Discret Sample Foundational Concert Sample Softmert Discret Sample Foundational Concert Sample Softmert Discret Sample Evenashtence, 1983Mod Mecury, (Hg) Dy weight 1.28/mptg Big: Protection and Toxic Champ. Program 93181 Rep 1 -117.1197 32.68883 Column 4 Discret Sample Evenashtence, 1983Mod Discret Sample Evenashtence, 1983Mod </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>· · ·</td> <td></td> <td></td>										· · ·		
Bay Protection and Toxic Clasury Program 8181 Pert 1/17.1367 32.8888 20M.yd Socients Amount Discrete Sample ExanxAl-Hancon.1993.Md Mercury (hg) Dy weight 1.28 Ing/kg Bay Protection and Toxic Cleanury Program 5181 e117.1367 32.8888 20M.yd Socients Amount Socients					3 26-May-93	Sediment						
Bay Protection and Toxic Cleanup Program 93181 Paper 117.13697 22.8883 20.Mar/s44 Section Discrete Sample Canacity Attanson, 1939Mod Zinc (Zn) Dy wight 443 mydy Bay Protection and Toxic Cleanup Program 33184 117.12617 22.8883 20.Mar/s43 Sectimet Discrete Sample Evand-Marson, 1939Mod Aurnin (M) Dy weight 4335 Protection and Toxic Cleanup Program 33184 117.12217 22.8817 22.Mar/s43 Sectimet Discrete Sample Evand-Marson, 1939Mod Aurnin (M) Dy weight 23.8 Protection and Toxic Cleanup Program 33184 117.12217 22.8817 22.Mar/s43 Sectimet Discrete Sample Evand-Marson, 1939Mod Capper (L) Dy weight 53.8 Protection and Toxic Cleanup Program 33184 117.12217 22.8817 22.Mar/s43 Sectimet Discrete Sample Evand-Marson, 1939Mod Lead (P) Dy weight 63.8 Protection and Toxic Cleanup Program 33184 117.12217 22.8817 22.Mar/s43 Sectimet Discrete Sample Evand-Marson, 1939Mod Marson (A) Dy weight	Bay Protection and Toxic Cleanup Program	93181	Rep 1 -117.1					Evans&Hanson,1993Mod				
Bay Protection and Toxic Cleanup Program 03151 117.1307 22.0807 22.4May33 Sadiment Discrete Sample EvanakHrann, 1930Md Zin(n) Dy veckpit 438.mp/tg Bay Protection and Toxic Cleanup Program 03164 117.12617 32.26017 25.4May33 Sadiment Discrete Sample EvanakHrann, 1930Md Cannuc (A) Dy veckpit 12.26 mp/tg Bay Protection and Toxic Cleanup Program 03164 117.12617 32.26017 25.4May33 Sadiment Discrete Sample EvanakHrann, 1930Md Cannuc (A) Dy veckpit 12.00 mp/tg Bay Protection and Toxic Cleanup Program 03164 117.12617 32.26017 25.4May33 Sadiment Discrete Sample EvanakHrann, 1930Md Ion (P) Dy veckpit 63.80 mp/tg Bay Protection and Toxic Cleanup Program 03164 117.12617 32.26017 25.4May33 Sadiment Discrete Sample EvanakHrann, 1930Md Ion (P) Dy veckpit 10.00 mp/tg Bay Protection and Toxic Cleanup Program 03164 117.12617 32.26017 24.May33 Sadiment Discrete Sample EvanakHrann,	Bay Protection and Toxic Cleanup Program	93181	-117.1	32.6898	3 26-May-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Mercury (Hg)	Dry weight	1.28 mg/kg	
Bay Protection and Toxic Cleanup, Program 93184	Bay Protection and Toxic Cleanup Program	93181	Rep 1 -117.1	017 32.6898	3 02-Mar-94	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Zinc (Zn)	Dry weight	443 mg/kg	
Bay Protection and Toxic Clasup, Program 33184 -1117.12617 32.84077 28.Mayr 30. Sediment Discrites Sample EvanakHancon.1933Mod Assenic (A) Dy weight 32.05 m/g tag Bay Protection and Toxic Clasup, Program 33184 -1117.12617 32.8017 28.Mayr 30. Sediment Discrites Sample EvanakHancon.1933Mod Cooper (Ci) Dy weight 53.11 m/g tag Bay Protection and Toxic Clasup, Program 33184 -1117.12617 32.8017 28.Mayr 30. Sediment Discrites Sample EvanakHancon.1933Mod Load (Pt) Dy weight 45.31 m/g tag Bay Protection and Toxic Clasup, Program 33144 -1117.12617 32.8017 28.Mayr 33. Sediment Discrites Sample EvanakHancon.1983Mod Lead (Pt) Dy weight 45.31 m/g tag Bay Protection and Toxic Clasup, Program 33140 -1117.12617 32.8017 24.Mayr 33. Sediment Discrites Sample EvanakHancon.1983Mod Aircin (Ai) Dy weight 45.01 m/g tag Bay Protection and Toxic Clasup, Program 33210 -117.14667 32.8917 04.Augr 33. Sediment <	Bay Protection and Toxic Cleanup Program	93181	-117.1	967 32.6898	3 26-May-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Zinc (Zn)	Dry weight	483 mg/kg	
Bay Protection and Toxic Clearup Program 93144 -117.12617 22.84077 28.489/93 Sediment Discrete Sample EvanaRHanson, 1993Mdd Copy (Cu) Dyr weight 128.11 Bay Protection and Toxic Clearup Program 93144 -117.12617 22.84077 28.489/93 Sediment Discrete Sample EvanaRHanson, 1993Mdd Icon (Fe) Dyr weight 58.25 Bay Protection and Toxic Clearup Program 93144 -117.12617 22.84077 28.489/93 Sediment Discrete Sample EvanaRHanson, 1993Mdd Icon (Fe) Dyr weight 88.5 Singlig Bay Protection and Toxic Clearup Program 93144 -117.12617 22.84071 28.489/93 Sediment Discrete Sample EvanaRHanson, 1993Mdd Ammung Mice Discrete Sample <td< td=""><td>Bay Protection and Toxic Cleanup Program</td><td>93184</td><td>-117.1</td><td></td><td></td><td>Sediment</td><td>Discrete Sample</td><td>Evans&Hanson,1993Mod</td><td>Aluminum (Al)</td><td>Dry weight</td><td>85300 mg/kg</td><td></td></td<>	Bay Protection and Toxic Cleanup Program	93184	-117.1			Sediment	Discrete Sample	Evans&Hanson,1993Mod	Aluminum (Al)	Dry weight	85300 mg/kg	
Bay Protection and Toxic Cleanup Program 83144 -117.12617 32.8017 28.May-33 Bediment Discrete Sample EvansAthanson,1930Md Cooper (C) Dy weight 5321 mg/kg Bay Protection and Toxic Cleanup Program 33144 -117.12617 32.8017 28.May-33 Sediment Discrete Sample EvansAthanson,1930Md Lead (Pb) Dy weight 8.53 mg/kg Bay Protection and Toxic Cleanup Program 33144 -117.12617 32.8017 28.May-33 Sediment Discrete Sample EvansAthanson,1930Md Mercury (H) Dy weight 41600 mg/kg Bay Protection and Toxic Cleanup Program 33210 -117.14667 32.8817 O4.Aug-33 Sediment Discrete Sample EvansAthanson,1930Md Aluminum (A) Dy weight 41600 mg/kg Bay Protection and Toxic Cleanup Program 3210 -117.14667 32.8817 O4.Aug-33 Sediment Discrete Sample EvansAthanson,1930Md Aluminum (A) Dy weight 4300 mg/kg Aluminum (A) Dy weight 440 mg/kg Aluminum (A) Dy weight 4300 mg/kg Aluminum (A) Dy weight 4310 mg/kg<						Sediment	Discrete Sample			Dry weight		
Bay Protection and Toxic Cleanup Program 93184 - 117.12617 32.68017 26 May-93 Sediment Discrete Sample EvansAHanson.1933Mod Iron (Fe) Dy weight 69200 my/sg Bay Protection and Toxic Cleanup Program 93184 -117.12617 32.68017 26 May-83 Sediment Discrete Sample EvansAHanson.1933Mod Ikoro (Fe) Dy weight 1.66 my/sg Bay Protection and Toxic Cleanup Program 9314 -117.12617 32.68017 26 May-83 Sediment Discrete Sample EvansAHanson.1933Mod Ikoro (Fe) Dy weight 4.66 my/sg Bay Protection and Toxic Cleanup Program 93210 -117.14667 32.6817 04 -Aug-93 Sediment Discrete Sample EvansAHanson.1933Mod Cach (C) Dy weight 4.60 my/sg Bay Protection and Toxic Cleanup Program 95210 -117.14667 32.6817 04 -Aug-93 Sediment Discrete Sample EvansAHanson.1933Mod Cooper (C) Dy weight 4.60 my/sg Bay Protection and Toxic Cleanup Program 93210 -117.14667 32.68177 04 -Aug-93 Sediment Discrete Sample <t< td=""><td>Bay Protection and Toxic Cleanup Program</td><td></td><td></td><td></td><td></td><td>Sediment</td><td>Discrete Sample</td><td>Evans&Hanson,1993Mod</td><td>Cadmium (Cd)</td><td>Dry weight</td><td></td><td></td></t<>	Bay Protection and Toxic Cleanup Program					Sediment	Discrete Sample	Evans&Hanson,1993Mod	Cadmium (Cd)	Dry weight		
Bay Protection and Toxic Cleamup Program 93184 -117.12817 32.88017 26-May-38 Sediment Discrete Sample EvansAHanson, 1993Mod Lead (Pb) Dry weight 56.3 mg/kg Bay Protection and Toxic Cleamup Program 93164 -117.12617 32.88017 26-May-38 Sediment Discrete Sample EvansAHanson, 1993Mod Zinc (Zin Dy weight 569 mg/kg Bay Protection and Toxic Cleanup Program 93210 -117.14667 32.28317 04-Aug-93 Sediment Discrete Sample EvansAHanson, 1993Mod Areanic (As) Dy weight 181 mg/kg -117.14667 Bay Protection and Toxic Cleanup Program 93210 -117.14667 32.69317 04-Aug-93 Sediment Discrete Sample EvansAHanson, 1993Mod Areanic (As) Dy weight 0.498 mg/kg -117.14667 Bay Protection and Toxic Cleanup Program 93210 -117.14667 32.69317 04-Aug-93 Sediment Discrete Sample EvansAHanson, 1993Mod Areanic (As) 0.979 weight 0.721 mg/kg							Discrete Sample					
Bay Protection and Toxic Clearup Program 93184 1-117.12617 32.88017 26-Map-93 Sediment Discrete Sample EvnasAHanson.1993Mod Mercuy (Hg) Dy weight 1.68 Bay Protection and Toxic Clearup Program 93210 -117.12617 32.68017 26-Map-83 Sediment Discrete Sample EvansAHanson.1993Mod Zinc (Zn) Dry weight 1680 Bay Protection and Toxic Clearup Program 93210 -117.14667 32.69317 04-Aup-93 Sediment Discrete Sample EvansAHanson.1993Mod Areain (Ca) Dry weight 180 Mercuy (Hg) Dry weight 180 Mercuy (Hg) Dry weight 180 Mercuy (Hg) Dry weight 14000 Instruct 32.00 -117.14667 32.69317 04-Aug-93 Sediment Discrete Sample EvansAHanson.1993Mod Copper (Cu) Dry weight 32.00 177.14667 32.69317 04-Aug-93 Sediment Discrete Sample EvansAHanson.1993Mod Log (Ly) Dry weight 32.00 Mercuy (Hg) Dry weight 32.00 177.14667 32.69317 04-Aug-93 Sediment												
Bay Protection and Toxic Cleanup Program 93184 -117.14677 32.84017 26.Map/33 Sedment Discrete Sample Evans&Hanson,1993Mod Zhr, Zhr, Zhr, Zhr, Zhr, Zhr, Zhr, Zhr,										, ,		
Bay Protection and Toxic Cleanup Program 93210 -117.14667 32.8937 04.Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Auminum (A) Dry weight 41000 mg/kg Bay Protection and Toxic Cleanup Program 93210 -117.14667 32.69317 04.Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Assert (Assoc) Dry weight 18 mg/kg Bay Protection and Toxic Cleanup Program 93210 -117.14667 32.69317 04.Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Corper (Cu) Dry weight 320 mg/kg Bay Protection and Toxic Cleanup Program 93210 -117.14667 32.69317 04.Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Lead (Pb) Dry weight 320 mg/kg Bay Protection and Toxic Cleanup Program 93210 -117.14667 32.69317 04.Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Lead (Pb) Dry weight 4500 mg/kg Bay Protection and Toxic Cleanup Program 93210 -117.14667 32.69317 04.Aug-93 Sediment Discrete Sample									, (),	, ,		
Bay Protection and Toxic Cleanup Program 93210 -117.14667 32.69317 04-Aug-93 Sediment Discrete Sample Evans&Hanson, 1993Mod Acencic (As) Dry weight 15! mg/kg Bay Protection and Toxic Cleanup Program 93210 -117.14667 32.68317 04-Aug-93 Sediment Discrete Sample Evans&Hanson, 1993Mod Coapper (Cu) Dry weight 320 Bay Protection and Toxic Cleanup Program 93210 -117.14667 32.69317 04-Aug-93 Sediment Discrete Sample Evans&Hanson, 1993Mod Icon (Fe) Dry weight 320 Bay Protection and Toxic Cleanup Program 93210 -117.14667 32.69317 04-Aug-93 Sediment Discrete Sample Evans&Hanson, 1993Mod Mercury (Hp) Dry weight 85.1 Bay Protection and Toxic Cleanup Program 93210 -117.14667 32.68317 04-Aug-93 Sediment Discrete Sample Evans&Hanson, 1993Mod Mercury (Hp) Dry weight 460 mg/kg Bay Protection and Toxic Cleanup Program 93210 -117.14667 32.68328 04-Aug-93 Sediment Discrete Sample Ev												
Bay Protection and Toxic Cleanup Program 93210 -117.14667 32.69317 04-Aug-93 Sadiment Discrete Sample Evans&Hanson,1993Mod Cadmium (Cd) Dry weight 32.0 Bay Protection and Toxic Cleanup Program 93210 -117.14667 32.69317 04-Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Coppr (Cu) Dry weight 3200 mg/kg Bay Protection and Toxic Cleanup Program 93210 -117.14667 32.69317 04-Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Lead (Pb) Dry weight 35.0 Bay Protection and Toxic Cleanup Program 93210 -117.14667 32.69317 04-Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Lead (Pb) Dry weight 0.721 mg/kg Bay Protection and Toxic Cleanup Program 93210 -117.14667 32.69317 04-Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Alminum (A) Dry weight 0.721 mg/kg Bay Protection and Toxic Cleanup Program 93211 -117.14667									. ,			
Bay Protection and Toxic Cleanup Program 93210 -117.14667 32.69317 04-Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Copper (Cu) Dry weight 3200 mg/kg Bay Protection and Toxic Cleanup Program 93210 -117.14667 32.69317 04-Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Icon (Fe) Dry weight 37000 mg/kg Bay Protection and Toxic Cleanup Program 93210 -117.14667 32.69317 04-Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Icon (Fe) Dry weight 80.712 Bay Protection and Toxic Cleanup Program 93210 -117.14667 32.69317 04-Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Marcury (Hg) Dry weight 400 mg/kg Bay Protection and Toxic Cleanup Program 93211 -117.14667 32.69283 04-Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Alurnium (A) Dry weight 47000 mg/kg Bay Protection and Toxic Cleanup Program 93211 -117.14683 32.69283 04-Aug-93 Sediment Discrete					°					, ,	00	+
Bay Protection and Toxic Cleanup Program 93210 -117.14667 32.69317 04-Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Iron (Fe) Dry weight 37000 mg/kg Bay Protection and Toxic Cleanup Program 93210 -117.14667 32.69317 04-Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Lead (Pb) Dry weight 85.1 mg/kg Bay Protection and Toxic Cleanup Program 93210 -117.14667 32.69317 04-Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Lead (Pb) Dry weight 85.1 mg/kg Bay Protection and Toxic Cleanup Program 93210 -117.14667 32.69283 04-Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Airo (Zh) Dry weight 460 mg/kg Bay Protection and Toxic Cleanup Program 93211 -117.14583 32.69283 04-Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Aaron (A) Dry weight 12.8 mg/kg Bay Protection and Toxic Cleanup Program 93211 -117.14583 32.69283 04-Aug-93 Sediment Discrete Sample <												+
Bay Protection and Toxic Cleanup Program93210-117.1466732.6931704-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModLead (Pb)Dry weight85.1mg/kgBay Protection and Toxic Cleanup Program93210-117.1466732.6931704-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModMercury (Hg)Dry weight0.721mg/kgBay Protection and Toxic Cleanup Program93210-117.1466732.6931704-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModAluminum (A)Dry weight47000mg/kgBay Protection and Toxic Cleanup Program93211-117.1458332.6928304-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModAluminum (A)Dry weight47000mg/kgBay Protection and Toxic Cleanup Program93211-117.1458332.6928304-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModAsenic (As)Dry weight1.2mg/kgBay Protection and Toxic Cleanup Program93211-117.1458332.6928304-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModCopper (Cu)Dry weight1.2mg/kgBay Protection and Toxic Cleanup Program93211-117.1458332.6928304-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModCopper (Cu)Dry weight4000mg/kgBay Protection and Toxic Cleanup Program93211-117.1458332.6928304-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModIca (Pb												+
Bay Protection and Toxic Cleanup Program 93210 -117.14667 32.69317 04-Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Mercury (Hg) Dry weight 0.721 mg/kg Bay Protection and Toxic Cleanup Program 93210 -117.14667 32.69317 04-Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Zinc (Zn) Dry weight 460 mg/kg Bay Protection and Toxic Cleanup Program 93211 -117.14563 32.69283 04-Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Arsenic (As) Dry weight 47000 mg/kg Bay Protection and Toxic Cleanup Program 93211 -117.14583 32.69283 04-Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Arsenic (As) Dry weight 460 mg/kg Bay Protection and Toxic Cleanup Program 93211 -117.14583 32.69283 04-Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Corper (Cu) Dry weight 460 mg/kg Bay Protection and Toxic Cleanup Program 93211 -117.14583 32.69283 <td></td> <td></td> <td></td> <td></td> <td>°</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>+</td>					°							+
Bay Protection and Toxic Cleanup Program93210-117.1466732.6931704-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModZinc (Zn)Dry weight460 mg/kgBay Protection and Toxic Cleanup Program93211-117.1468332.6928304-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModAluminum (Al)Dry weight47000 mg/kgBay Protection and Toxic Cleanup Program93211-117.1458332.6928304-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModCadmium (Cd)Dry weight28 mg/kgBay Protection and Toxic Cleanup Program93211-117.1458332.6928304-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModCadmium (Cd)Dry weight28 mg/kgBay Protection and Toxic Cleanup Program93211-117.1458332.6928304-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModCoper (Cu)Dry weight4000 mg/kgBay Protection and Toxic Cleanup Program93211-117.1458332.6928304-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModIron (Fe)Dry weight4000 mg/kgBay Protection and Toxic Cleanup Program93211-117.1458332.6928304-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModIron (Fe)Dry weight110Bay Protection and Toxic Cleanup Program93211-117.1458332.6928304-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModIron (Fe)Dry weight1.1mg/kgBay Pro					°							+
Bay Protection and Toxic Cleanup Program93211-117.1458332.6928304-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModAluminum (Al)Dry weight47000mg/kgBay Protection and Toxic Cleanup Program93211-117.1458332.6928304-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModArsenic (As)Dry weight28mg/kgBay Protection and Toxic Cleanup Program93211-117.1458332.6928304-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModCodmium (Cd)Dry weight12mg/kgBay Protection and Toxic Cleanup Program93211-117.1458332.6928304-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModCodmium (Cd)Dry weight40000mg/kgBay Protection and Toxic Cleanup Program93211-117.1458332.6928304-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModIron (Fe)Dry weight40000mg/kgBay Protection and Toxic Cleanup Program93211-117.1458332.6928304-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModLead (Pb)Dry weight140mg/kgBay Protection and Toxic Cleanup Program93211-117.1458332.6928304-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModLead (Pb)Dry weight140mg/kgBay Protection and Toxic Cleanup Program93212-117.1458332.6928304-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModLead (Pb) <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>, (),</td> <td>, ,</td> <td></td> <td>+</td>									, (),	, ,		+
Bay Protection and Toxic Cleanup Program93211-117.1458332.6928304-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModArsenic (As)Dry weight28 mg/kgBay Protection and Toxic Cleanup Program93211-117.1458332.6928304-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModCadmium (Cd)Dry weight1.2 mg/kgBay Protection and Toxic Cleanup Program93211-117.1458332.6928304-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModCodper (Cu)Dry weight660 mg/kgBay Protection and Toxic Cleanup Program93211-117.1458332.6928304-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModIron (Fe)Dry weight4400 mg/kgBay Protection and Toxic Cleanup Program93211-117.1458332.6928304-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModIcon (Fe)Dry weight140 mg/kgBay Protection and Toxic Cleanup Program93211-117.1458332.6928304-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModIcon (Fe)Dry weight140 mg/kgBay Protection and Toxic Cleanup Program93212-117.1458332.6928304-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModIcon (Ch)Dry weight140 mg/kgBay Protection and Toxic Cleanup Program93212-117.1458332.6928304-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModAlcminum (Al)Dry weight740 mg/kgBay Protec										, ,		+
Bay Protection and Toxic Cleanup Program93211-117.1458332.6928304-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModCadmium (Cd)Dry weight1.2 mg/kg1.2 mg/kgBay Protection and Toxic Cleanup Program93211-117.1458332.6928304-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModCoper (Cu)Dry weight660 mg/kgBay Protection and Toxic Cleanup Program93211-117.1458332.6928304-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModLead (Pb)Dry weight1400 mg/kgBay Protection and Toxic Cleanup Program93211-117.1458332.6928304-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModLead (Pb)Dry weight1.11 mg/kgBay Protection and Toxic Cleanup Program93211-117.1458332.6928304-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModKerury (Hg)Dry weight1.11 mg/kgBay Protection and Toxic Cleanup Program93212-117.1458332.6926704-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModZinc (Zn)Dry weight7.00 mg/kg-11Bay Protection and Toxic Cleanup Program93212-117.1458332.6926704-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModAlumium (A)Dry weight5.00 mg/kg-11Bay Protection and Toxic Cleanup Program93212-117.135032.6876704-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModAlumium (A)Dry												+
Bay Protection and Toxic Cleanup Program93211-117.1458332.6928304-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModCopper (Cu)Dry weight660mg/kgBay Protection and Toxic Cleanup Program93211-117.1458332.6928304-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModIron (Fe)Dry weight49000mg/kgBay Protection and Toxic Cleanup Program93211-117.1458332.6928304-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModLead (Pb)Dry weight1.10mg/kgBay Protection and Toxic Cleanup Program93211-117.1458332.6928304-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModLead (Pb)Dry weight1.11mg/kgBay Protection and Toxic Cleanup Program93211-117.1458332.6928304-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModLead (Pb)Dry weight1.11mg/kgBay Protection and Toxic Cleanup Program93212-117.1458332.6928304-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModZinc (Zn)Dry weight1.11mg/kgBay Protection and Toxic Cleanup Program93212-117.1335032.6876704-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModAluminum (Al)Dry weight6.7mg/kgBay Protection and Toxic Cleanup Program93212-117.1335032.6876704-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModArsenic (As)<												+
Bay Protection and Toxic Cleanup Program93211-117.1458332.6928304-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModIron (Fe)Dry weight49000mg/kgBay Protection and Toxic Cleanup Program93211-117.1458332.6928304-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModLead (Pb)Dry weight140mg/kgBay Protection and Toxic Cleanup Program93211-117.1458332.6928304-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModLead (Pb)Dry weight114mg/kgBay Protection and Toxic Cleanup Program93212-117.1458332.6928304-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModMercury (Hg)Dry weight1.1mg/kgBay Protection and Toxic Cleanup Program93212-117.135032.6876704-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModAluminum (Al)Dry weight5800mg/kgBay Protection and Toxic Cleanup Program93212-117.1335032.6876704-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModAluminum (Al)Dry weight6.7mg/kgBay Protection and Toxic Cleanup Program93212-117.1335032.6876704-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModArsenic (As)Dry weight6.7mg/kgBay Protection and Toxic Cleanup Program93212-117.1335032.6876704-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModCadmium (Cd) </td <td></td> <td>+</td>												+
Bay Protection and Toxic Cleanup Program 93211 -117.14583 32.69283 04-Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Lead (Pb) Dry weight 140 mg/kg Bay Protection and Toxic Cleanup Program 93211 -117.14583 32.69283 04-Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Mercury (Hg) Dry weight 1.11 mg/kg Bay Protection and Toxic Cleanup Program 93211 -117.14583 32.69283 04-Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Mercury (Hg) Dry weight 7.40 mg/kg Bay Protection and Toxic Cleanup Program 93212 -117.1350 32.69767 04-Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Aluminum (Al) Dry weight 5600 mg/kg Bay Protection and Toxic Cleanup Program 93212 -117.13350 32.68767 04-Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Aluminum (Al) Dry weight 6.7 mg/kg Bay Protection and Toxic Cleanup Program 93212 -117.13350 32.68767 04-Aug-93 Sediment Discrete Sample <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>, ,</td> <td></td> <td>+</td>										, ,		+
Bay Protection and Toxic Cleanup Program 93211 -117.14583 32.69283 04-Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Mercury (Hg) Dry weight 1.1 mg/kg Bay Protection and Toxic Cleanup Program 93211 -117.14583 32.69283 04-Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Zinc (Zn) Dry weight 7.40 mg/kg Bay Protection and Toxic Cleanup Program 93212 -117.13350 32.68767 04-Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Aluminum (Al) Dry weight 60.7 mg/kg Bay Protection and Toxic Cleanup Program 93212 -117.13350 32.68767 04-Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Arsenic (As) Dry weight 60.7 mg/kg Bay Protection and Toxic Cleanup Program 93212 -117.13350 32.68767 04-Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Arsenic (As) Dry weight 50.7 mg/kg Bay Protection and Toxic Cleanup Program 93212 -117.13350 32.68767 <td></td> <td>+</td>												+
Bay Protection and Toxic Cleanup Program 93211 -117.14583 32.69283 04-Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Zinc (Zn) Dry weight 740 mg/kg Bay Protection and Toxic Cleanup Program 93212 -117.13350 32.68767 04-Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Aluminum (Al) Dry weight 58000 mg/kg Bay Protection and Toxic Cleanup Program 93212 -117.13350 32.68767 04-Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Aluminum (Al) Dry weight 6.7 mg/kg Bay Protection and Toxic Cleanup Program 93212 -117.13350 32.68767 04-Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Arsnic (As) Dry weight 6.7 mg/kg Bay Protection and Toxic Cleanup Program 93212 -117.13350 32.68767 04-Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Cadmium (Cd) Dry weight 6.38 mg/kg Bay Protection and Toxic Cleanup Program 93212 -117.13350 32.68767					Ū.					, ,		+
Bay Protection and Toxic Cleanup Program 93212 -117.13350 32.68767 04-Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Aluminum (Al) Dry weight 58000 mg/kg Bay Protection and Toxic Cleanup Program 93212 -117.13350 32.68767 04-Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Arsnic (As) Dry weight 6.7 mg/kg Bay Protection and Toxic Cleanup Program 93212 -117.13350 32.68767 04-Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Arsnic (As) Dry weight 6.3 mg/kg Bay Protection and Toxic Cleanup Program 93212 -117.13350 32.68767 04-Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Comput (Cd) Dry weight 6.3 mg/kg Bay Protection and Toxic Cleanup Program 93212 -117.13350 32.68767 04-Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Copper (Cu) Dry weight 5.3 mg/kg Bay Protection and Toxic Cleanup Program 93212 -117.13350 32.68767 04-Aug-93 Sediment Discrete Sample												+
Bay Protection and Toxic Cleanup Program 93212 -117.13350 32.68767 04-Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Arsenic (As) Dry weight 6.7 mg/kg Bay Protection and Toxic Cleanup Program 93212 -117.13350 32.68767 04-Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Cadmium (Cd) Dry weight 6.3 mg/kg Bay Protection and Toxic Cleanup Program 93212 -117.13350 32.68767 04-Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Copper (Cu) Dry weight 6.3 mg/kg Bay Protection and Toxic Cleanup Program 93212 -117.13350 32.68767 04-Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Copper (Cu) Dry weight 5.3 mg/kg Bay Protection and Toxic Cleanup Program 93212 -117.13360 32.68767 04-Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Fron (Fe) Dry weight 5.3 mg/kg					°							
Bay Protection and Toxic Cleanup Program 93212 -117.13350 32.68767 04-Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Cadmium (Cd) Dry weight 0.38 mg/kg Bay Protection and Toxic Cleanup Program 93212 -117.13350 32.68767 04-Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Copper (Cu) Dry weight 53 mg/kg Bay Protection and Toxic Cleanup Program 93212 -117.13350 32.68767 04-Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Copper (Cu) Dry weight 53 mg/kg Bay Protection and Toxic Cleanup Program 93212 -117.13350 32.68767 04-Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Iron (Fe) Dry weight 31000 mg/kg										· · ·		
Bay Protection and Toxic Cleanup Program 93212 -117.13350 32.68767 04-Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Copper (Cu) Dry weight 53 mg/kg Bay Protection and Toxic Cleanup Program 93212 -117.13350 32.68767 04-Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Iron (Fe) Dry weight 31000 mg/kg					°							
Bay Protection and Toxic Cleanup Program 93212 -117.13350 32.68767 04-Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Iron (Fe) Dry weight 31000 mg/kg					°							
	Bay Protection and Toxic Cleanup Program	93212				Sediment	Discrete Sample	Evans&Hanson,1993Mod	Iron (Fe)	Dry weight	31000 mg/kg	
	Bay Protection and Toxic Cleanup Program	93212	-117.1	350 32.6876	7 04-Aug-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Lead (Pb)	Dry weight	55.4 mg/kg	

IABLE D-1 Inorganic Parameters in Surface Sediment Response to Shipyard Sediment Site Tentative Cleanup and Abatement Order and City of San Diego Complaint United States Naval Base San Diego, California

Bit Product of Tuc Carue PageSpitProduct of Tuc Carue PageProduct of Tuc Carue PageProduc	PROJECT_NAME	SITE_NAME	SAMPLE_ID X_COORDINATE	Y_COORDINATE	SAMPLE_DATE	SAMPLE_MEDIUM	TYPE	MEASUREMENT_METHOD	PARAMETER_NAME	PROPERTY	QUANTITY	UNIT	QUALIFIER
	Bay Protection and Toxic Cleanup Program	93212	-117.13350	32.68767	04-Aug-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Mercury (Hg)	Dry weight	0.041	mg/kg	
Bit Production Tool Charup ProgramDirit Dirit	Bay Protection and Toxic Cleanup Program	93212	-117.13350	32.68767	04-Aug-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Zinc (Zn)	Dry weight	180	mg/kg	
Imp. Processor Data Chernel Seguet Object Density Server Server Server Server Server Operation of the server se	Bay Protection and Toxic Cleanup Program	93213	-117.13433	32.68733	04-Aug-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Aluminum (Al)	Dry weight			
Instructure Bit Dist -111 (198) 32.0071 M-base Sender ward Constructure Co					ů	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Arsenic (As)	Dry weight			
Imp Processor Sint Change Page Sint P -177 348 Display Display Processor Sint Change Page Non-Field Page Non-Field Page Non-Fiel													
Dynamic and Trait Chang, Program BUT 117:1340 Dirac Latter Constrain Product and Trait Chang, Program BUT But and trait Constrain Product and Trait Chang, Program BUT BUT BUT But and trait Constrain Product and Trait Constrain						Sediment	Discrete Sample	Evans&Hanson,1993Mod	Copper (Cu)	Dry weight			
By Person of Tes Cases Progen B20 I-17-243 B.200 Bernes Street Bernes Stret Bernes Street Bernes Stret <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>, °</td> <td></td> <td></td> <td></td>										, °			
By Process of Sing ProgramBit Process of Sing ProgramBonds Program	, , , , , , , , , , , , , , , , , , , ,									, ,			
Bit Network of Year Classer PaymentBit NetworkBit Network Year Actional PaymentBit Network Year Actional Payment													
Sp. Phatticks and Fase Classop Program Bit 4 117 (1517) 32.67460 Akugha Becking and Classop Space (a)	· · · · · · · · · · · · · · · · · · ·												
By Pecketon val Tax Chana Pagan Q114 P117 1071 X 20763 Advaga Bonnet Barnet, Branch, Branch, Statuto,	, , , , , , , , , , , , , , , , , , , ,				ů					, ,		0 0	
Dep Product and Total Change Program Option O					-				. ,				
by Protection and Totac Genum Pagnam92/14													
By Protection of Toxic Census Program BS(14 -117 (1597) SS 7450 H-44g-03 Software Discuss Exprop Freedbartsmin (1980ka Metry (19) Discuss Exprop By Protection of Toxic Census Program BS15 -117 (1597) SS 7450 H-44g-03 Software Discuss Exprop Discus Exprop Dis													
Bits Production and Take Chanap Program Dirit I Protection and Take Chanap Program Direct International Take Program Direct International Tak													
Bay Pectedian of Toxic Catalor, Program 0514 117 (1287) 32.4780 14.4.9.28 Solder Discoss Sarrog Franket-Mission, 1980.00 Program Solder Progra					-							0 0	
Bay Personant Bit 10 111/12017 32.2700 44.4ug38 Selemet Sump Constructures, 1000000 Alternant, 10000000 Alternant, 10000000													
Bits Part 17.1037 12.27800 04-Ag23 Sedmer Descets Sample Foundarbance, 100MA Martie (A) Dy weight 10 (mg/ng Bits Protection and Toos Cleane, Program 5215 -117.1537 52.4760 04-Ag23 Sedmer Descets Sample Foundarbance, 100MA Dance Sample													<u> </u>
Bay Photocols and Tools Cleanup Program B215 International Theory Selective and Tools Cleanup Program Casturul C(2) Dy weight C22 pright Bay Photocols and Tools Cleanup Program 6215 -117 (1597 52,7670 64.4ap.98 Selective Simple console Simple													<u> </u>
Bay Petersion and Took Clearup Program S2215 International Took Clearup Program S2215 International Took Clearup Program S2216 International Took Clearup Program S2221					-								
Bay Protection and Tous Chemung Program 52215 International Construction Boores Barring Securation Boores Barring Boores	, , , , , , , , , , , , , , , , , , , ,				ů					, ,		0 0	
Bay Petersion and Toxic Cleanup Program 6215 117.2017 32.6700 04-Aug/80 Sedement Decreme Sample Fanad-Hannon, 1980Mod Land P(h) Dry weight 30.3 mp/sg Bay Petersion and Toxic Cleanup Program 9221 117.2817 32.6700 04-Aug/80 Sedement Decrees Sample Evand-Hannon, 1980Mod 2/c C/3 Dry weight 3020 mp/sg Bay Petersion and Toxic Cleanup Program 9223 117.3000 32.6800 17-Aug/80 Sedement Docrees Sample Evand-Hannon, 1980Mod Annorus (A) Dry weight 220 mp/sg Bay Petersion and Toxic Cleanup Program 9223 117.1300 32.6800 17-Aug/80 Sedement Docrees Sample Evand-Hannon, 1980Mod Annorus (A) Dory weight 200 mp/sg Bay Petersion and Toxic Cleanup Program 9223 117.1300 32.6800 17-Aug/80 Sedement Docrees Sample Evand-Hannon, 1980Mod Annorus (A) Dory weight 420 mp/sg Sedement Docrees Sample Evand-Hannon, 1980Mod Annorus (A) Dy weight 420 mp/sg Sedement Docree Sample Evand-Hannon, 1980Mod<	, , , , , , , , , , , , , , , , , , , ,	93215	-117.12617	32.67600	ů	Sediment	Discrete Sample	Evans&Hanson,1993Mod		, ,			
By Protection and Toxi Cleanury Program S215 International Program S216 International Program S226 International Program S216 S216 S216 S216 <	Bay Protection and Toxic Cleanup Program	93215	-117.12617	32.67600		Sediment	Discrete Sample	Evans&Hanson,1993Mod	Lead (Pb)				
By Protection and Toxi Channep Program 92.23 -117.1300 32.68056 17.4xg/30 Selemines Discrete Sample Consolitation, 1993/Add Ammun, 1/A Dy weight 42000/mg/a By Protection and Toxic Channep Program 92.23 -117.1300 32.66056 17.4xg/30 Belminest Discrete Sample RemakBrance, 1993/Add Dy weight 4000 mg/a By Protection and Toxic Channep Program 92.23 -117.1300 32.66056 17.4xg/30 Belminest Discrete Sample RemakBrance, 1993/Add Dy weight 4000 mg/a By Protection and Toxic Channep Program 92.23 -117.1300 32.66066 17.4xg/30 Belminest Discrete Sample Sciends Armon, 1993/Add Lask Armon, 19	Bay Protection and Toxic Cleanup Program	93215	-117.12617	32.67600	04-Aug-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Mercury (Hg)	Dry weight	0.324	mg/kg	
Bay Protection and Toxic Classup, Program 9222 11711200 32.08600 T.Aug.93 Sentimet Durcetts Sample EvandAttaunon, 1093Mod Assamic (Al) Dy veslight 32.7 Bay Protection and Toxic Classup, Program 9223 -11711300 32.08600 T.Aug.93 Sedment Durcetts Sample EvandAttaunon, 1093Mod Copper (Cu) Dy veslight 4000 mg/kg Bay Protection and Toxic Classup, Program 9223 -11711300 32.08600 T.Aug.93 Sedment Durcetts Sample EvandAttaunon, 1093Mod Leaf (Pi) Dy veslight 46.06 mg/kg Bay Protection and Toxic Classup, Program 9223 -117113000 32.08600 T.Aug.93 Sedment Durcetts Sample EvandAttaunon, 1093Mod Zire, T/Aig Directts Sample EvandAttaunon, 1093Mod Zire, T/Aig Directts Sample EvandAttaunon, 1093Mod Zire, T/Aig Bir Protection and Toxic Classup, Program 8223 -117.1201 32.0733 T.Aug.93 Sedment Discretts Sample EvandAttaunon, 1093Mod Areance (Al) Dis veslight Al20 Bir Protection and Toxic Classup, Program 8224 -117.1201	Bay Protection and Toxic Cleanup Program	93215	-117.12617	32.67600	04-Aug-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Zinc (Zn)	Dry weight	200	mg/kg	
Bay Protection and Toxic Cleanup Program 9223 +117.1300 32.88050 17.Aug.93 Selfment Dacetel Sample EvansAhnanon, 1993MAd Computer Value	Bay Protection and Toxic Cleanup Program			32.68050	17-Aug-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Aluminum (Al)	Dry weight	46000	mg/kg	
Bay Protection and Toxic Cleanup Program 9223 -117.1300 32.88050 17.Aug.98 Selfment Discrete Sample EvenskHanson, 1993Md Coper (Gu) Dry weight 400 (Paig) Bay Protection and Toxic Cleanup Program 9323 -117.13000 32.88050 17.Aug.98 Selfment Discrete Sample EvenskHanson, 1993Md Lead (Pb) Dry weight 68.8 Protection and Toxic Cleanup Program 6322.3 -117.13000 32.88050 17.Aug.98 Selfment Discrete Sample EvenskHanson, 1993Md Lead (Pb) Dry weight 430 (Paig) Bay Protection and Toxic Cleanup Program 6322.4 -117.12171 22.6733 17.Aug.98 Selfment Discrete Sample EvenskHanson, 1993Md Atomic (A) Dry weight 420 (Paig) Bay Protection and Toxic Cleanup Program 6322.4 -117.12171 22.6733 17.Aug.98 Selfment Discrete Sample EvenskHanson, 1993Md Atomic (A) Dry weight 12 (Paig) Big Protection and Toxic Cleanup Program 6322.4 -117.12171 22.6733 17.Aug.98 Selfment Discrete Sample EvenskHanson, 1993Md Atomic (A)													
Bay Protection and Toxic Cleanup Program 93223 117.1300 2.8.2680 17.4.392 Bediment Discrite Sample Evane-Misranon, 1938Add Iron, Foj Dy wight 6.8.8 Bay Protection and Toxic Cleanup Program 3223 117.1300 32.8860 17.4.393 Bediment Discrite Sample Evane-Misranon, 1938Add Mercay (Hg) Dy weight 4.80 Protection and Toxic Cleanup Program 322.4 117.1217 32.8753 17.4.393 Bediment Discrite Sample Evane-Misranon, 1938Add Americ (Au) Dy weight 4.70 Protection and Toxic Cleanup Program 322.4 117.1217 32.8753 17.4.393 Bediment Discrite Sample Evane-Misranon, 1938Add Americ (Au) Dy weight 17.8 Protection and Toxic Cleanup Program 322.4 117.1217 32.8733 17.4.393 Bediment Discrite Sample Evane-Misranon, 1938Add Caderina (Dia) Dy weight 4.200 Protection and Toxic Cleanup Program 322.4 117.1217 32.8733 17.4.393 Bediment Discrite Sample Evane-Misranon, 1938Add Macranon, 1938Add Macranon, 1938Add Macranon,	· · · · · · · · · · · · · · · · · · ·								. ,				
Bay Protection and Toxic Clamup Program 9223 -1117.1300 32.8050 17.4.09.93 Sedment Discrete Sample EvandAtamon, 1993Mod Merc P(b) Dy weight 68.5.mp/dg Bay Protection and Toxic Clamup Program 9223 -1117.1300 32.8050 17.4.09.93 Sedment Discrete Sample EvandAtamon, 1993Mod Merc 2(a) Dy weight 42.0 mp/dg Bay Protection and Toxic Clamup Program 9324 -1117.1397 32.6733 17.4.09.93 Sedment Discrete Sample EvandAtamon, 1993Mod Anen: (A) Dy weight 7.5.mg/dg Bay Protection and Toxic Clamup Program 9324 -1117.12917 32.6733 17.4.09.93 Sedment Discrete Sample EvandAtamon, 1993Mod Candum (C) Dy weight 4100.mg/dg Bay Protection and Toxic Clamup Program 9324 -1117.12917 32.6733 17.4.09.93 Sedment Discrete Sample EvandAtamon, 1993Mod More (P) Dy weight 4.50.mg/dg Bay Protection and Toxic Clamup Program 9324 -1117.12917 32.6733 17.4.09.43 Sedment Discrete Sample EvandAtamon, 1993M													
By Protection and Touk: Cleanup Program 9223 117.1300 32.86000 17.4ug-38 Bedment Discrete Sample EvocakHasson.1993Mod Mercury (hg) Dy weight 4.9.89 Bay Protection and Tock: Cleanup Program 9224 117.1300 32.84000 17.4ug-38 Bedment Discrete Sample EvocakHasson.1993Mod Almmunu (A) Dy weight 7.700 mg/dg Bay Protection and Tock: Cleanup Program 9224 117.12917 32.8733 17.4ug-38 Bedment Discrete Sample EvocakHasson.1993Mod Anamic (A) Dy weight 112 mg/dg Bay Protection and Tock: Cheanup Program 9224 117.12917 32.8733 17.4ug-38 Bedment Discrete Sample EvocakHasson.1993Mod Control (C) Dy weight 112 mg/dg Bay Protection and Tock: Cheanup Program 9324 117.12917 32.8733 17.4ug-38 Bedment Discrete Sample EvocakHasson.1993Mod Land (H) Discrete Sample					-								
Byr Drection and Toxic Cleanup Program 93224 -117.1300 92.80800 177.Aug-38 Sediment Discrite Sample EvansAHrancon 1998Mod Aum (A)I Dry weight 77.000 mg/hg Biry Protection and Toxic Cleanup Program 93224 -1177.12917 92.87933 177.Aug-38 Sediment Discrite Sample EvansAHrancon 1998Mod Amm(A)I Dry weight 77.Bug/hg Biry Protection and Toxic Cleanup Program 93224 -1177.12917 92.87933 177.Aug-38 Sediment Discrite Sample EvansAHrancon 1998Mod Computed 101 mg/hg Biry Protection and Toxic Cleanup Program 93224 -1177.12917 92.87933 177.Aug-38 Sediment Discrite Sample EvansAHrancon 1998Mod Land (Ph) Dry weight 42500 mg/hg Biry Protection and Toxic Cleanup Program 93224 -1177.12917 92.87933 177.Aug-38 Sediment Discrite Sample EvansAHrancon 1998Mod Land (Ph) Dry weight 1600 mg/hg Biry Protection and Toxic Cleanup Program 93224 -1177.12917 92.27933 177.Aug-38 Sediment Discrite Sample EvansAHran													
By: Production and Toxic Cleanup, Program 93224 1-117.1297 32.29733 17-Aug-93 Bediment Discrete Sample EvansAHanson.1993Md Aluminum (A) Dy weight 7.5 mg/sq Bay: Production and Toxic Cleanup, Program 93224 1-117.12917 32.67933 17-Aug-93 Bediment Discrete Sample EvansAHanson.1993Md Cadmium (C) Dy weight 1.7 mg/sq Bay: Production and Toxic Cleanup, Program 93224 1-117.12917 32.67933 17-Aug-93 Bediment Discrete Sample EvansAHanson.1993Md Long (P) Dy weight 4500 mg/sq Bay: Production and Toxic Cleanup, Program 93224 1-117.12917 32.67933 17-Aug-93 Sediment Discrete Sample EvansAHanson.1993Md Long (P) Dy weight 4250 mg/sq Bay: Production and Toxic Cleanup. Program 93224 1-117.12917 32.67933 17-Aug-93 Sediment Discrete Sample EvansAHanson.1993Md Amoru (P) Dy weight 43700 mg/sq Bay: Production and Toxic Cleanup. Program 93225 1-117.1233<	, , , , , , , , , , , , , , , , , , , ,								, (0,				
Bay Protection and Toxic Clearup Program 9224 -117.12917 32.6733 17.Aug-93 Bedment Diccete Sample VersakHanson.1993Md Cadmim (c) Dy weight 7.110m/pkg Bay Protection and Toxic Clearup Program 3224 -117.12917 32.6733 17.Aug-93 Bedment Diccete Sample VersakHanson.1993Md Copmim (C) Dy weight 12.0m/pkg Bay Protection and Toxic Clearup Program 3224 -117.12917 32.6733 17.Aug-93 Bedment Diccrete Sample VersakHanson.1993Md Lead (P) Dy weight 4050 mp/kg Bay Protection and Toxic Clearup Program 3224 -117.12917 32.6793 17.Aug-93 Bedment Diccrete Sample VersakHanson.1993Md Mercur (M) Dy weight 4050 mp/kg Bay Protection and Toxic Clearup Program 3225 -117.1223 32.6760 17.Aug-93 Bedment Diccrete Sample VersakHanson.1993Md Ameria (K) Dy weight 4060 mp/kg Bay Protection and Toxic Clearup Program 6322 -117.1223 32.6760 17.Aug-93 Bedment Diccrete Sample VersakHanson.1993Md													
Bay Protection and Toxic Cleanup Program 33224 Image: cleanup Program 3224 Image: cleanup Program State Stat													
Bay Protection and Toxic Cleanup Program 9224 -117.1221 32.67933 17-Aug-93 Sediment Discrete Sample E-vansAHanson,1993Mod Copper (Cu) Dy weight 110 mg/g Bay Protection and Toxic Cleanup Program 9324 -117.12917 32.67933 17-Aug-93 Sediment Discrete Sample E-vansAHanson,1993Mod Hearu (Ph) Dy weight 4.250 mg/g Bay Protection and Toxic Cleanup Program 9324 -117.12917 32.6733 17-Aug-93 Sediment Discrete Sample E-vansAHanson,1993Mod Lecu (Ph) Dy weight 1600 mg/g Bay Protection and Toxic Cleanup Program 93225 -117.12233 32.67600 17-Aug-93 Sediment Discrete Sample E-vansAHanson,1993Mod Auminu (A) Dy weight 0.160 mg/g -160 mg/g -171.1223 32.67600 17-Aug-93 Sediment Discrete Sample E-vansAHanson,1993Mod Auminu (A) Dy weight 0.7 mg/g -160 mg/g -171.1223 32.67600 17-Aug-93 Sediment Discrete Sample E-vansAHanson,1993Mod										, ,			
Bay Protection and Toxic Cleanup Program 93224 117.12917 32.67933 17.Aug-93 Sedment Discrete Sample EvansAthanson.1993Mod Load (Pb) Dry weight 45000 mg/s Bay Protection and Toxic Cleanup Program 93224 -117.12917 32.67933 17.Aug-93 Sedment Discrete Sample EvansAthanson.1993Mod Amer(Pb) Dry weight 0.450 mg/s Bay Protection and Toxic Cleanup Program 93224 -117.12917 32.67933 17.Aug-93 Sedment Discrete Sample EvansAthanson.1993Mod Amer(A) Dry weight 0.451 mg/s Bay Protection and Toxic Cleanup Program 93225 -117.12233 32.67600 17.Aug-93 Sedment Discrete Sample EvansAthanson.1993Mod Ameri(A) Dry weight 0.700 mg/s Bay Protection and Toxic Cleanup Program 9325 -117.12233 32.67600 17.Aug-93 Sedment Discrete Sample EvansAthanson.1993Mod Ameri(A) Dry weight 0.70 mg/s Bay Protection and Toxic Cleanup Program 9325 -117.12233 32.67600 17.Aug-93 Sedment Discrete Sample													
Bay Protection and Toxic Cleanup Program Sta24 Image: Cleanup Program Sta25	, , , , , , , , , , , , , , , , , , , ,												
Bay Protection and Toxic Cleanup Program 93224 117.12917 32.67933 17.Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Mercury (Hg) Dry weight 0.4630 mg/kg Bay Protection and Toxic Cleanup Program 93225 -117.1223 32.67600 17.Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Alminum (A) Dry weight 37000 mg/kg Bay Protection and Toxic Cleanup Program 93225 -117.1223 32.67600 17.Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Adminum (A) Dry weight 37000 mg/kg Bay Protection and Toxic Cleanup Program 93225 -117.1223 32.67600 17.Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Cadminu (Ca) Dry weight 320 mg/kg Bay Protection and Toxic Cleanup Program 93225 -117.1223 32.67600 17.Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Lead (Pb) Dry weight 45000 mg/kg Bay Protection and Toxic Cleanup Program 93225 -117.12233 32.67600 17.Aug-93 Sediment Discrete Sample													
Bay Protection and Toxic Cleanup Program 93225 -117.1223 32.67600 17.Aug-93 Sediment Discrete Sample Evans&Hanson,1933Mod Aluminum (Al) Dry weight 16 mg/kg Bay Protection and Toxic Cleanup Program 93225 -117.1223 32.67600 17.Aug-93 Sediment Discrete Sample Evans&Hanson,1933Mod Arsenic (As) Dry weight 0.7 mg/kg Bay Protection and Toxic Cleanup Program 93225 -117.12233 32.67600 17.Aug-93 Sediment Discrete Sample Evans&Hanson,1933Mod Coper (Cu) Dry weight 3.30 mg/kg Bay Protection and Toxic Cleanup Program 93225 -117.12233 32.67600 17.Aug-93 Sediment Discrete Sample Evans&Hanson,1933Mod Load (Pb) Dry weight 5.1 mg/kg Bay Protection and Toxic Cleanup Program 93225 -117.1223 32.67600 17.Aug-93 Sediment Discrete Sample Evans&Hanson,1933Mod Load (Pb) Dry weight 0.45 mg/kg Bay Protection and Toxic Cleanup Program 93225 -117.12233 32.67607 17.Aug-93 Sediment Discrete Sample		93224	-117.12917	32.67933		Sediment		Evans&Hanson,1993Mod					
Bay Protection and Toxic Cleanup Program 93225 -117.1223 32.67600 17.Aug-93 Sediment Discrete Sample Evans&Hanson, 1993Mod Carbonic Cleanup Mogram Dry weight 16 mg/kg Bay Protection and Toxic Cleanup Program 93225 -117.1223 32.67600 17.Aug-93 Sediment Discrete Sample Evans&Hanson, 1993Mod Copper (Cu) Dry weight 0.7 mg/kg Bay Protection and Toxic Cleanup Program 93225 -117.1223 32.67600 17.Aug-93 Sediment Discrete Sample Evans&Hanson, 1993Mod Copper (Cu) Dry weight 45000 mg/kg Bay Protection and Toxic Cleanup Program 93225 -117.1223 32.67600 17.Aug-93 Sediment Discrete Sample Evans&Hanson, 1993Mod Lead (Pb) Dry weight 6.4500 mg/kg Bay Protection and Toxic Cleanup Program 93225 -117.1223 32.67600 17.Aug-93 Sediment Discrete Sample Evans&Hanson, 1993Mod Mercur (Pl) Dry weight 6.451 mg/kg Bay Protection and Toxic Cleanup Program 93226 -117.12267 32.	Bay Protection and Toxic Cleanup Program	93224	-117.12917	32.67933	17-Aug-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Zinc (Zn)	Dry weight	1600	mg/kg	
Bay Protection and Toxic Cleanup Program 93225 1-117.1223 32.67600 17.Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Codmium (Cd) Dry weight 0.7 mg/kg Bay Protection and Toxic Cleanup Program 93225 117.12233 32.67600 17.Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Cooper (Cu) Dry weight 320 mg/kg Bay Protection and Toxic Cleanup Program 93225 117.12233 32.67600 17.Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Lead (Pb) Dry weight 51 mg/kg Bay Protection and Toxic Cleanup Program 93225 117.12233 32.67600 17.Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Lead (Pb) Dry weight 61 mg/kg Bay Protection and Toxic Cleanup Program 93226 117.12237 32.67600 17.Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Aluminum (A) Dry weight 64000 mg/kg Bay Protection and Toxic Cleanup Program 93226 117.12367 32.67667 17.Aug-93 Sediment Discrete Sample	Bay Protection and Toxic Cleanup Program	93225	-117.12233	32.67600	17-Aug-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Aluminum (Al)	Dry weight	37000	mg/kg	
Bay Protection and Toxic Cleanup Program 93225 -117.12233 32.67600 17-Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Copper (Cu) Dr/ weight 320 mg/g Bay Protection and Toxic Cleanup Program 93225 -117.12233 32.67600 17-Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Lead (Pb) Dry weight 45000 [mg/g Bay Protection and Toxic Cleanup Program 93225 -117.12233 32.67600 17-Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Lead (Pb) Dry weight 0.445 [mg/g Bay Protection and Toxic Cleanup Program 93225 -117.12233 32.67600 17-Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Mercury (Hg) Dry weight 0.445 [mg/g Bay Protection and Toxic Cleanup Program 93226 -117.12237 32.67667 17-Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Anumunum (A) Dry weight 0.60 [mg/g Bay Protection and Toxic Cleanup Program 93226 -117.12367 32.67667 17-Aug-93 Sediment Disc										Dry weight			
Bay Protection and Toxic Cleanup Program 93225 -117.12233 32.67600 17-Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Iron (Fe) Dry weight 45000 mg/kg Bay Protection and Toxic Cleanup Program 93225 -117.12233 32.67600 17-Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Lead (Pb) Dry weight 51 mg/kg Bay Protection and Toxic Cleanup Program 93225 -117.12233 32.67600 17-Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Lead (Pb) Dry weight 64 mg/kg Bay Protection and Toxic Cleanup Program 93226 -117.12367 32.67600 17-Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Aluminum (Al) Dry weight 46000 mg/kg Bay Protection and Toxic Cleanup Program 93226 -117.12367 32.67667 17-Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Aluminum (Al) Dry weight 46000 mg/kg 10 Bay Protection and Toxic Cleanup Program 93226 -117.12367 32.67667 17-Au					Ŭ							0 0	L
Bay Protection and Toxic Cleanup Program93225-117.122332.6760017-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModLead (Pb)Dry weight51 mg/kgBay Protection and Toxic Cleanup Program93225-117.122332.6760017-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModMercury (Hg)Dry weight0.4345 mg/kgBay Protection and Toxic Cleanup Program93226-117.123332.6760017-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModAluminum (Al)Dry weight4000 mg/kgBay Protection and Toxic Cleanup Program93226-117.1236732.6766717-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModAluminum (Al)Dry weight4060 mg/kgBay Protection and Toxic Cleanup Program93226-117.1236732.6766717-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModAsenic (As)Dry weight4060 mg/kgBay Protection and Toxic Cleanup Program93226-117.1236732.6766717-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModCadmium (Cd)Dry weight4060 mg/kgBay Protection and Toxic Cleanup Program93226-117.1236732.6766717-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModCopper (Cu)Dry weight4000 mg/kgBay Protection and Toxic Cleanup Program93226-117.1236732.6766717-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModIcon (Fe)Dry weight4000 mg/kg <td< td=""><td></td><td></td><td></td><td></td><td>ů</td><td></td><td></td><td></td><td></td><td>, ,</td><td></td><td>0 0</td><td></td></td<>					ů					, ,		0 0	
Bay Protection and Toxic Cleanup Program93225-117.1223332.6760017-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModMercury (Hg)Dry weight0.445mg/kgBay Protection and Toxic Cleanup Program93225-117.1223332.6760017-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModZinc (Zn)Dry weight300mg/kgBay Protection and Toxic Cleanup Program93226-117.1236732.6766717-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModAluminum (Al)Dry weight4600mg/kgBay Protection and Toxic Cleanup Program93226-117.1236732.6766717-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModArsenic (As)Dry weight0.65mg/kgBay Protection and Toxic Cleanup Program93226-117.1236732.6766717-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModCadmium (Cd)Dry weight0.65mg/kgBay Protection and Toxic Cleanup Program93226-117.1236732.6766717-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModCopper (Cu)Dry weight4000mg/kgBay Protection and Toxic Cleanup Program93226-117.1236732.6766717-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModLead (Pb)Dry weight4900mg/kgBay Protection and Toxic Cleanup Program93226-117.1236732.6766717-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModIcon (Fe													L
Bay Protection and Toxic Cleanup Program93225-117.1223332.6760017-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModZinc (Zn)Dry weight330mg/kgBay Protection and Toxic Cleanup Program93226-117.1236732.6766717-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModAluminum (Al)Dry weight46000mg/kgBay Protection and Toxic Cleanup Program93226-117.1236732.6766717-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModAluminum (Al)Dry weight46000mg/kgBay Protection and Toxic Cleanup Program93226-117.1236732.6766717-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModCadmium (Cd)Dry weight0.616mg/kgBay Protection and Toxic Cleanup Program93226-117.1236732.6766717-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModCopper (Cu)Dry weight310mg/kgBay Protection and Toxic Cleanup Program93226-117.1236732.6766717-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModIron (Fe)Dry weight49000mg/kgBay Protection and Toxic Cleanup Program93226-117.1236732.6766717-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModIron (Fe)Dry weight4900mg/kgBay Protection and Toxic Cleanup Program93226-117.1236732.6766717-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModIron (Fe										, ,			
Bay Protection and Toxic Cleanup Program93226-117.1236732.6766717-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModAluminum (Al)Dry weight46000 mg/kgBay Protection and Toxic Cleanup Program93226-117.1236732.6766717-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModArsenic (As)Dry weight1.66 mg/kgBay Protection and Toxic Cleanup Program93226-117.1236732.6766717-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModCadmium (Cd)Dry weight3.05 mg/kgBay Protection and Toxic Cleanup Program93226-117.1236732.6766717-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModCopper (Cu)Dry weight3.05 mg/kgBay Protection and Toxic Cleanup Program93226-117.1236732.6766717-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModIron (Fe)Dry weight49000 mg/kgBay Protection and Toxic Cleanup Program93226-117.1236732.6766717-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModIron (Fe)Dry weight49000 mg/kgBay Protection and Toxic Cleanup Program93226-117.1236732.6766717-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModIron (Fe)Dry weight49000 mg/kgBay Protection and Toxic Cleanup Program93226-117.1236732.6766717-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModIron (Fe)Dry weight4.0400 mg/kg													<u> </u>
Bay Protection and Toxic Cleanup Program93226-117.1236732.6766717-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModArsenic (As)Dry weight16 mg/kgBay Protection and Toxic Cleanup Program93226-117.1236732.6766717-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModCadmium (Cd)Dry weight0.65 mg/kgBay Protection and Toxic Cleanup Program93226-117.1236732.6766717-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModCopper (Cu)Dry weight4.910 mg/kgBay Protection and Toxic Cleanup Program93226-117.1236732.6766717-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModLead (Pb)Dry weight4.900 mg/kgBay Protection and Toxic Cleanup Program93226-117.1236732.6766717-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModLead (Pb)Dry weight4.900 mg/kgBay Protection and Toxic Cleanup Program93226-117.1236732.6766717-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModLead (Pb)Dry weight0.453 mg/kgBay Protection and Toxic Cleanup Program93226-117.1236732.6766717-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModLead (Pb)Dry weight0.453 mg/kgBay Protection and Toxic Cleanup Program93226-117.1236732.6766717-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModZinc (2n)Dry weight0.453 mg/kgBa													<u> </u>
Bay Protection and Toxic Cleanup Program93226-117.1236732.6766717-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModCadmium (Cd)Dry weight0.65mg/kgBay Protection and Toxic Cleanup Program93226-117.1236732.6766717-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModCopper (Cu)Dry weight310mg/kgBay Protection and Toxic Cleanup Program93226-117.1236732.6766717-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModIron (Fe)Dry weight4900mg/kgBay Protection and Toxic Cleanup Program93226-117.1236732.6766717-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModLead (Pb)Dry weight492.00mg/kgBay Protection and Toxic Cleanup Program93226-117.1236732.6766717-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModLead (Pb)Dry weight0.453mg/kgBay Protection and Toxic Cleanup Program93226-117.1236732.6766717-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModKercury (Hg)Dry weight0.453mg/kgBay Protection and Toxic Cleanup Program93226-117.1236732.6766717-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModZinc (Zn)Diry weight0.453mg/kgBay Protection and Toxic Cleanup Program93227-117.1163332.6736717-Aug-93SedimentDiscrete SampleEvans&Hanson,1993ModZinc (Zn)<					ů.					, v			────
Bay Protection and Toxic Cleanup Program 93226 -117.12367 32.67667 17-Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Copper (Cu) Dry weight 310 mg/kg Bay Protection and Toxic Cleanup Program 93226 -117.12367 32.67667 17-Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Iron (Fe) Dry weight 49000 mg/kg Bay Protection and Toxic Cleanup Program 93226 -117.12367 32.67667 17-Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Lead (Pb) Dry weight 49000 mg/kg Bay Protection and Toxic Cleanup Program 93226 -117.12367 32.67667 17-Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Lead (Pb) Dry weight 0.495.2 mg/kg Bay Protection and Toxic Cleanup Program 93226 -117.12367 32.67667 17-Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Kercury (Hg) Dry weight 0.495.2 mg/kg Bay Protection and Toxic Cleanup Program 93227 -117.11633 32.67667 17-Aug-93 Sediment Discrete Sample <td></td> <td><u> </u></td>													<u> </u>
Bay Protection and Toxic Cleanup Program 93226 -117.12367 32.67667 17-Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Iron (Fe) Dry weight 49000 mg/kg Bay Protection and Toxic Cleanup Program 93226 -117.12367 32.67667 17-Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Lead (Pb) Dry weight 59.2 mg/kg Bay Protection and Toxic Cleanup Program 93226 -117.12367 32.67667 17-Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Lead (Pb) Dry weight 59.2 mg/kg Bay Protection and Toxic Cleanup Program 93226 -117.12367 32.67667 17-Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Mercury (Hg) Dry weight 50.2 mg/kg - Bay Protection and Toxic Cleanup Program 93226 -117.12367 32.67667 17-Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Mercury (Hg) Dry weight 320 mg/kg - Bay Protection and Toxic Cleanup Program 93227 -117.11633 32.67367 17-Aug-93 Sediment <td></td> <td>├───┤</td>													├─── ┤
Bay Protection and Toxic Cleanup Program 93226 -117.12367 32.67667 17-Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Lead (Pb) Dry weight 59.2 mg/kg Bay Protection and Toxic Cleanup Program 93226 -117.12367 32.67667 17-Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Mecruy (Hg) Dry weight 0.453 mg/kg Bay Protection and Toxic Cleanup Program 93226 -117.12367 32.67667 17-Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Zinc (Zn) Dry weight 0.453 mg/kg 0.453 mg/kg Bay Protection and Toxic Cleanup Program 93226 -117.11633 32.67367 17-Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Zinc (Zn) Dry weight 4300 mg/kg 0.453 mg/kg Bay Protection and Toxic Cleanup Program 93227 -117.11633 32.67367 17-Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Aluminum (Al) Dry weight 4500 mg/kg 9.80 mg/kg													<u> </u>
Bay Protection and Toxic Cleanup Program 93226 -117.12367 32.67667 17-Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Mercury (Hg) Dry weight 0.453 mg/kg Bay Protection and Toxic Cleanup Program 93226 -117.12367 32.67667 17-Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Zinc (Zn) Dry weight 3.20 mg/kg Bay Protection and Toxic Cleanup Program 93227 -117.11633 32.67367 17-Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Aluminum (Al) Dry weight 4.00 mg/kg Bay Protection and Toxic Cleanup Program 93227 -117.11633 32.67367 17-Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Aluminum (Al) Dry weight 4.00 mg/kg Bay Protection and Toxic Cleanup Program 93227 -117.11633 32.67367 17-Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Aluminum (Al) Dry weight 4.98 mg/kg Bay Protection and Toxic Cleanup Program 93227 -117.11633 32.67367 17-Aug-93 Sediment Discrete Sampl					ů.					, v			<u> </u>
Bay Protection and Toxic Cleanup Program 93226 -117.12367 32.67667 17-Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Zinc (Zn) Dry weight 320 mg/kg Bay Protection and Toxic Cleanup Program 93227 -117.11633 32.67367 17-Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Aluminum (Al) Dry weight 45000 mg/kg Bay Protection and Toxic Cleanup Program 93227 -117.11633 32.67367 17-Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Aluminum (Al) Dry weight 45000 mg/kg - Bay Protection and Toxic Cleanup Program 93227 -117.11633 32.67367 17-Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Aluminum (Al) Dry weight 49.8 mg/kg Bay Protection and Toxic Cleanup Program 93227 -117.11633 32.67367 17-Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Cadmium (Cd) Dry weight 4.8 mg/kg					-								<u> </u>
Bay Protection and Toxic Cleanup Program 93227 -117.11633 32.67367 17-Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Aluminum (Al) Dry weight 45000 mg/kg Bay Protection and Toxic Cleanup Program 93227 -117.11633 32.67367 17-Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Aluminum (Al) Dry weight 45000 mg/kg Bay Protection and Toxic Cleanup Program 93227 -117.11633 32.67367 17-Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Arsenic (As) Dry weight 9.8 mg/kg Bay Protection and Toxic Cleanup Program 93227 -117.11633 32.67367 17-Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Cadmium (Cd) Dry weight 1.4 mg/kg					ů.								
Bay Protection and Toxic Cleanup Program 93227 -117.11633 32.67367 17-Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Arsenic (As) Dry weight 9.8 mg/kg Bay Protection and Toxic Cleanup Program 93227 -117.11633 32.67367 17-Aug-93 Sediment Discrete Sample Evans&Hanson,1993Mod Cadmium (Cd) Dry weight 1.4 mg/kg													
Bay Protection and Toxic Cleanup Program 93227 -117.11633 32.67367 17-Aug-93 Sediment Discrete Sample Evans&Hanson, 1993Mod Cadmium (Cd) Dry weight 1.4 mg/kg													
	Bay Protection and Toxic Cleanup Program	93227	-117.11633	32.67367	17-Aug-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Cadmium (Cd)	Dry weight	1.4	mg/kg	
	Bay Protection and Toxic Cleanup Program	93227	-117.11633	32.67367	17-Aug-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Copper (Cu)	Dry weight	160	mg/kg	

PROJECT_NAME	SITE_NAME	SAMPLE_ID	X_COORDINATE	Y_COORDINATE	SAMPLE_DATE	SAMPLE_MEDIUM	TYPE	MEASUREMENT_METHOD	PARAMETER_NAME	PROPERTY	QUANTITY UNIT	QUALIFIER
Bay Protection and Toxic Cleanup Program	93227		-117.11633	32.67367	17-Aug-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Iron (Fe)	Dry weight	40000 mg/kg	
Bay Protection and Toxic Cleanup Program	93227		-117.11633	32.67367	17-Aug-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Lead (Pb)	Dry weight	85.5 mg/kg	
Bay Protection and Toxic Cleanup Program	93227		-117.11633	32.67367	17-Aug-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Mercury (Hg)	Dry weight	0.461 mg/kg	
Bay Protection and Toxic Cleanup Program	93227		-117.11633	32.67367	17-Aug-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Zinc (Zn)	Dry weight	420 mg/kg	
Bay Protection and Toxic Cleanup Program	93228		-117.11617	32.67317	17-Aug-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Aluminum (Al)	Dry weight	48000 mg/kg	
Bay Protection and Toxic Cleanup Program	93228		-117.11617	32.67317	17-Aug-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Arsenic (As)	Dry weight	8.2 mg/kg	
Bay Protection and Toxic Cleanup Program	93228		-117.11617	32.67317	17-Aug-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Cadmium (Cd)	Dry weight	3.07 mg/kg	
Bay Protection and Toxic Cleanup Program	93228		-117.11617	32.67317	17-Aug-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Copper (Cu)	Dry weight	150 mg/kg	
Bay Protection and Toxic Cleanup Program	93228		-117.11617	32.67317	17-Aug-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Iron (Fe)	Dry weight	48000 mg/kg	
Bay Protection and Toxic Cleanup Program	93228		-117.11617	32.67317	17-Aug-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Lead (Pb)	Dry weight	210 mg/kg	
Bay Protection and Toxic Cleanup Program	93228		-117.11617	32.67317	17-Aug-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Mercury (Hg)	Dry weight	1.54 mg/kg	
Bay Protection and Toxic Cleanup Program	93228		-117.11617	32.67317	17-Aug-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Zinc (Zn)	Dry weight	700 mg/kg	
Bay Protection and Toxic Cleanup Program	93229		-117.11883	32.65967	17-Aug-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Aluminum (Al)	Dry weight	44000 mg/kg	
Bay Protection and Toxic Cleanup Program	93229		-117.11883	32.65967	17-Aug-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Arsenic (As)	Dry weight	12 mg/kg	
Bay Protection and Toxic Cleanup Program	93229		-117.11883	32.65967	17-Aug-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Cadmium (Cd)	Dry weight	0.49 mg/kg	
Bay Protection and Toxic Cleanup Program	93229		-117.11883	32.65967	17-Aug-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Copper (Cu)	Dry weight	250 mg/kg	
Bay Protection and Toxic Cleanup Program	93229		-117.11883	32.65967	17-Aug-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Iron (Fe)	Dry weight	51000 mg/kg	
Bay Protection and Toxic Cleanup Program	93229		-117.11883	32.65967	17-Aug-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Lead (Pb)	Dry weight	45.1 mg/kg	
Bay Protection and Toxic Cleanup Program	93229		-117.11883	32.65967	17-Aug-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Mercury (Hg)	Dry weight	0.331 mg/kg	
Bay Protection and Toxic Cleanup Program	93229		-117.11883	32.65967	17-Aug-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Zinc (Zn)	Dry weight	290 mg/kg	
Bay Protection and Toxic Cleanup Program	93230		-117.11883	32.65933	17-Aug-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Aluminum (Al)	Dry weight	46000 mg/kg	
Bay Protection and Toxic Cleanup Program	93230		-117.11883	32.65933	17-Aug-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Arsenic (As)	Dry weight	12 mg/kg	
Bay Protection and Toxic Cleanup Program	93230		-117.11883	32.65933	17-Aug-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Cadmium (Cd)	Dry weight	0.64 mg/kg	
Bay Protection and Toxic Cleanup Program	93230		-117.11883	32.65933	17-Aug-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Copper (Cu)	Dry weight	300 mg/kg	
Bay Protection and Toxic Cleanup Program	93230		-117.11883	32.65933	17-Aug-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Iron (Fe)	Dry weight	48000 mg/kg	
Bay Protection and Toxic Cleanup Program	93230		-117.11883	32.65933	17-Aug-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Lead (Pb)	Dry weight	37.6 mg/kg	
Bay Protection and Toxic Cleanup Program	93230		-117.11883	32.65933	17-Aug-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Mercury (Hg)	Dry weight	0.655 mg/kg	
Bay Protection and Toxic Cleanup Program	93230		-117.11883	32.65933	17-Aug-93	Sediment	Discrete Sample	Evans&Hanson,1993Mod	Zinc (Zn)	Dry weight	260 mg/kg	
Draft Final Survey Report April/May, Support of Task A Environmental Impact Statement-US Naval Station	Station 21		-117.12381	32.67051	27-Apr-94	Sediment	Discrete Sample	None specified	Arsenic (As)	Concentration	0.6 mg/kg	
Draft Final Survey Report April/May, Support of Task A												
Environmental Impact Statement-US Naval Station	Station 21		-117.12381	32.67051	27-Apr-94	Sediment	Discrete Sample	None specified	Cadmium (Cd)	Concentration	0.04 mg/kg	
Draft Final Survey Report April/May, Support of Task A Environmental Impact Statement-US Naval Station	Station 21		-117.12381	32.67051	27-Apr-94	Sediment	Discrete Sample	None specified	Copper (Cu)	Concentration	10 mg/kg	
Draft Final Survey Report April/May, Support of Task A Environmental Impact Statement-US Naval Station	Station 21		-117.12381	32.67051	27-Apr-94	Sediment	Discrete Sample	None specified	Lead (Pb)	Concentration	4.2 mg/kg	
Draft Final Survey Report April/May, Support of Task A	Otation 21		117.12001	02.07001	21 /101 54	ocument	Discrete Gample	None specifica		Concentration	4.2 mg/ng	-
Environmental Impact Statement-US Naval Station	Station 21		-117.12381	32.67051	27-Apr-94	Sediment	Discrete Sample	None specified	Mercury (Hg)	Concentration	0.02 mg/kg	
Draft Final Survey Report April/May, Support of Task A Environmental Impact Statement-US Naval Station	Station 21		-117.12381	32.67051	27-Apr-94	Sediment	Discrete Sample	None specified	Zinc (Zn)	Concentration	20 mg/kg	
Draft Final Survey Report April/May, Support of Task A												
Environmental Impact Statement-US Naval Station	Station 22		-117.12241	32.67117	27-Apr-94	Sediment	Discrete Sample	None specified	Arsenic (As)	Concentration	1.1 mg/kg	
Draft Final Survey Report April/May, Support of Task A												
Environmental Impact Statement-US Naval Station	Station 22		-117.12241	32.67117	27-Apr-94	Sediment	Discrete Sample	None specified	Cadmium (Cd)	Concentration	ND mg/kg	ļ
Draft Final Survey Report April/May, Support of Task A Environmental Impact Statement-US Naval Station	Station 22		-117.12241	32.67117	27-Apr-94	Sediment	Discrete Sample	None specified	Copper (Cu)	Concentration	24 mg/kg	
Draft Final Survey Report April/May, Support of Task A					1						35	
Environmental Impact Statement-US Naval Station	Station 22		-117.12241	32.67117	27-Apr-94	Sediment	Discrete Sample	None specified	Lead (Pb)	Concentration	6.1 mg/kg	
Draft Final Survey Report April/May, Support of Task A Environmental Impact Statement-US Naval Station	Station 22		-117.12241	32.67117	27-Apr-94	Sediment	Discrete Sample	None specified	Mercury (Hg)	Concentration	0.05 mg/kg	
Draft Final Survey Report April/May, Support of Task A					•			•				
Environmental Impact Statement-US Naval Station Draft Final Survey Report April/May, Support of Task A	Station 22		-117.12241	32.67117	27-Apr-94	Sediment	Discrete Sample	None specified	Zinc (Zn)	Concentration	49 mg/kg	
Environmental Impact Statement-US Naval Station	Station 23		-117.12092	32.67179	27-Apr-94	Sediment	Discrete Sample	None specified	Arsenic (As)	Concentration	7.6 mg/kg	
Draft Final Survey Report April/May, Support of Task A Environmental Impact Statement-US Naval Station	Station 23		-117.12092	32.67179	27-Apr-94	Sediment	Discrete Sample	None specified	Cadmium (Cd)	Concentration	0.17 mg/kg	
Draft Final Survey Report April/May, Support of Task A Environmental Impact Statement-US Naval Station	Station 23		-117.12092	32.67179	27-Apr-94	Sediment	Discrete Sample	None specified	Copper (Cu)	Concentration	203 mg/kg	
Draft Final Survey Report April/May, Support of Task A Environmental Impact Statement-US Naval Station	Station 23		-117.12092	32.67179	27-Apr-94	Sediment	Discrete Sample	None specified	Lead (Pb)	Concentration	79 mg/kg]
Draft Final Survey Report April/May, Support of Task A Environmental Impact Statement-US Naval Station	Station 23		-117.12092	32.67179	27-Apr-94	Sediment	Discrete Sample	None specified	Mercury (Hg)	Concentration	0.69 mg/kg	
Draft Final Survey Report April/May, Support of Task A Environmental Impact Statement-US Naval Station	Station 23		-117.12092	32.67179	27-Apr-94	Sediment	Discrete Sample	None specified	Zinc (Zn)	Concentration	235 mg/kg	
Environmental impact of atomony of havar of atom	0.000120	I	111.12032	02.01113	21 Api 34	Southont	sissible oumple	none specifica	1	100110011100011	200 mg/kg	

IABLE D-1 Inorganic Parameters in Surface Sediment Response to Shipyard Sediment Site Tentative Cleanup and Abatement Order and City of San Diego Complaint United States Naval Base San Diego, California

PROJECT_NAME	SITE_NAME	SAMPLE_ID	X_COORDINATE	Y_COORDINATE	SAMPLE_DATE	SAMPLE_MEDIUM	TYPE	MEASUREMENT_METHOD	PARAMETER_NAME	PROPERTY	QUANTITY UNIT	QUALIFIER
Draft Final Survey Report April/May, Support of Task A												
Environmental Impact Statement-US Naval Station	Station 24		-117.12072	32.67168	27-Apr-94	Sediment	Discrete Sample	None specified	Arsenic (As)	Concentration	7.4 mg/kg	
Draft Final Survey Report April/May, Support of Task A												
Environmental Impact Statement-US Naval Station	Station 24		-117.12072	32.67168	27-Apr-94	Sediment	Discrete Sample	None specified	Cadmium (Cd)	Concentration	0.19 mg/kg	
Draft Final Survey Report April/May, Support of Task A												
Environmental Impact Statement-US Naval Station	Station 24		-117.12072	32.67168	27-Apr-94	Sediment	Discrete Sample	None specified	Copper (Cu)	Concentration	199 mg/kg	
Draft Final Survey Report April/May, Support of Task A												
Environmental Impact Statement-US Naval Station	Station 24		-117.12072	32.67168	27-Apr-94	Sediment	Discrete Sample	None specified	Lead (Pb)	Concentration	95 mg/kg	
Draft Final Survey Report April/May, Support of Task A	Chatian 04		447 40070	22.074.00	07 4 04	Cadimont	Discosts Comolo	Nana analifad	Manager (11a)	Constantion	4.44	
Environmental Impact Statement-US Naval Station	Station 24		-117.12072	32.67168	27-Apr-94	Sediment	Discrete Sample	None specified	Mercury (Hg)	Concentration	1.11 mg/kg	
Draft Final Survey Report April/May, Support of Task A	Station 24		-117.12072	32.67168	27-Apr-94	Sediment	Discrete Semple	None appoified	Zinc (Zn)	Concentration	222 malka	
Environmental Impact Statement-US Naval Station Mouth of Chollas Creek	Station 24 C01		-117.12072	32.68573	27-Apr-94 2001	Sediment	Discrete Sample	None specified	Aluminum (Al)	Dry weight	232 mg/kg 73800 mg/kg	
Mouth of Chollas Creek	C01		-117.13539	32.68573	2001				Arsenic (As)		11.8 mg/kg	
Mouth of Chollas Creek	C01		-117.13539	32.68573	2001				Cadmium (Cd)	Dry weight Dry weight	0.43 mg/kg	
Mouth of Chollas Creek	C01		-117.13539	32.68573	2001				Copper (Cu)			
Mouth of Chollas Creek	C01		-117.13539	32.68573	2001					Dry weight	139 mg/kg 41000 mg/kg	
	C01				2001				Iron (Fe)	Dry weight		
Mouth of Chollas Creek Mouth of Chollas Creek	C01		-117.13539	32.68573	2001				Lead (Pb)	Dry weight	77.3 mg/kg	
	C01		-117.13539	32.68573					Mercury (Hg)	Dry weight	0.42 mg/kg	
Mouth of Chollas Creek			-117.13539	32.68573	2001				Zinc (Zn)	Dry weight	235 mg/kg	
Mouth of Chollas Creek Mouth of Chollas Creek	C02 C02		-117.13520	32.68540 32.68540	2001 2001				Aluminum (Al)	Dry weight	73000 mg/kg	+
	C02 C02		-117.13520						Arsenic (As)	Dry weight	9.4 mg/kg	
Mouth of Chollas Creek			-117.13520	32.68540	2001				Cadmium (Cd)	Dry weight	0.42 mg/kg	
Mouth of Chollas Creek	C02		-117.13520	32.68540	2001				Copper (Cu)	Dry weight	130 mg/kg	
Mouth of Chollas Creek	C02		-117.13520	32.68540	2001				Iron (Fe)	Dry weight	38400 mg/kg	
Mouth of Chollas Creek	C02		-117.13520	32.68540	2001				Lead (Pb)	Dry weight	73.7 mg/kg	
Mouth of Chollas Creek	C02		-117.13520	32.68540	2001				Mercury (Hg)	Dry weight	0.53 mg/kg	
Mouth of Chollas Creek	C02		-117.13520	32.68540	2001				Zinc (Zn)	Dry weight	212 mg/kg	
Mouth of Chollas Creek	C03		-117.13493	32.68500	2001				Aluminum (Al)	Dry weight	74300 mg/kg	
Mouth of Chollas Creek	C03		-117.13493	32.68500	2001				Arsenic (As)	Dry weight	11.4 mg/kg	
Mouth of Chollas Creek	C03		-117.13493	32.68500	2001				Cadmium (Cd)	Dry weight	1.30 mg/kg	
Mouth of Chollas Creek	C03		-117.13493	32.68500	2001				Copper (Cu)	Dry weight	155 mg/kg	
Mouth of Chollas Creek	C03		-117.13493	32.68500	2001				Iron (Fe)	Dry weight	40700 mg/kg	
Mouth of Chollas Creek	C03		-117.13493	32.68500	2001				Lead (Pb)	Dry weight	148 mg/kg	
Mouth of Chollas Creek	C03		-117.13493	32.68500	2001				Mercury (Hg)	Dry weight	0.54 mg/kg	
Mouth of Chollas Creek	C03		-117.13493	32.68500	2001				Zinc (Zn)	Dry weight	418 mg/kg	
Mouth of Chollas Creek	C04		-117.13495	32.68646	2001				Aluminum (Al)	Dry weight	69400 mg/kg	
Mouth of Chollas Creek	C04		-117.13495	32.68646	2001				Arsenic (As)	Dry weight	14.9 mg/kg	
Mouth of Chollas Creek	C04		-117.13495	32.68646	2001				Cadmium (Cd)	Dry weight	0.40 mg/kg	
Mouth of Chollas Creek	C04		-117.13495	32.68646	2001				Copper (Cu)	Dry weight	97.4 mg/kg	
Mouth of Chollas Creek	C04		-117.13495	32.68646	2001				Iron (Fe)	Dry weight	33800 mg/kg	
Mouth of Chollas Creek	C04		-117.13495	32.68646	2001				Lead (Pb)	Dry weight	67.7 mg/kg	
Mouth of Chollas Creek	C04		-117.13495	32.68646	2001				Mercury (Hg)	Dry weight	0.27 mg/kg	
Mouth of Chollas Creek	C04		-117.13495	32.68646	2001				Zinc (Zn)	Dry weight	270 mg/kg	+
Mouth of Chollas Creek	C05		-117.13456	32.68594	2001				Aluminum (Al)	Dry weight	75600 mg/kg	4
Mouth of Chollas Creek	C05		-117.13456	32.68594	2001				Arsenic (As)	Dry weight	8.9 mg/kg	+
Mouth of Chollas Creek	C05		-117.13456	32.68594	2001				Cadmium (Cd)	Dry weight	0.51 mg/kg	<u> </u>
Mouth of Chollas Creek	C05		-117.13456	32.68594	2001				Copper (Cu)	Dry weight	108 mg/kg	+
Mouth of Chollas Creek	C05		-117.13456	32.68594	2001				Iron (Fe)	Dry weight	39000 mg/kg	<u> </u>
Mouth of Chollas Creek	C05		-117.13456	32.68594	2001				Lead (Pb)	Dry weight	73.3 mg/kg	+
Mouth of Chollas Creek	C05		-117.13456	32.68594	2001				Mercury (Hg)	Dry weight	0.40 mg/kg	<u> </u>
Mouth of Chollas Creek	C05		-117.13456	32.68594	2001				Zinc (Zn)	Dry weight	207 mg/kg	<u> </u>
Mouth of Chollas Creek	C06		-117.13407	32.68545	2001				Aluminum (Al)	Dry weight	72300 mg/kg	<u> </u>
Mouth of Chollas Creek	C06		-117.13407	32.68545	2001				Arsenic (As)	Dry weight	10.1 mg/kg	<u> </u>
Mouth of Chollas Creek	C06		-117.13407	32.68545	2001				Cadmium (Cd)	Dry weight	0.40 mg/kg	<u> </u>
Mouth of Chollas Creek	C06		-117.13407	32.68545	2001				Copper (Cu)	Dry weight	141 mg/kg	<u> </u>
Mouth of Chollas Creek	C06		-117.13407	32.68545	2001		1		Iron (Fe)	Dry weight	40300 mg/kg	
Mouth of Chollas Creek	C06		-117.13407	32.68545	2001				Lead (Pb)	Dry weight	78.4 mg/kg	I
Mouth of Chollas Creek	C06		-117.13407	32.68545	2001		1		Mercury (Hg)	Dry weight	0.43 mg/kg	I
Mouth of Chollas Creek	C06		-117.13407	32.68545	2001		1		Zinc (Zn)	Dry weight	233 mg/kg	+
Mouth of Chollas Creek	C07		-117.13439	32.68723	2001				Aluminum (Al)	Dry weight	62500 mg/kg	+
Mouth of Chollas Creek	C07		-117.13439	32.68723	2001				Arsenic (As)	Dry weight	10.9 mg/kg	4
Mouth of Chollas Creek	C07		-117.13439	32.68723	2001				Cadmium (Cd)	Dry weight	0.29 mg/kg	

Mon P Golas GradeOTIP 107 [30]3 J 2007OTIP 100 [30]9 100 [30]Mon P Golas GradeOTIP 1715033 20472201IP 100 [30]Or 1041	PROJECT_NAME	SITE_NAME	SAMPLE_ID	X_COORDINATE	Y_COORDINATE	SAMPLE_DATE	SAMPLE_MEDIUM	TYPE	MEASUREMENT_METHOD	PARAMETER_NAME	PROPERTY	QUANTITY UNIT	QUALIFIER
Name of ConstraintOpenAppend <td>Mouth of Chollas Creek</td> <td>C07</td> <td></td> <td>-117.13439</td> <td>32.68723</td> <td>2001</td> <td></td> <td></td> <td></td> <td>Copper (Cu)</td> <td>Dry weight</td> <td>47.9 mg/kg</td> <td></td>	Mouth of Chollas Creek	C07		-117.13439	32.68723	2001				Copper (Cu)	Dry weight	47.9 mg/kg	
Name decompositionName	Mouth of Chollas Creek	C07		-117.13439	32.68723	2001				Iron (Fe)	Dry weight	21900 mg/kg	
Name of ControlName of Contr	Mouth of Chollas Creek	C07		-117.13439	32.68723	2001				Lead (Pb)	Dry weight		
Name of constraintsDescriptionD	Mouth of Chollas Creek			-117.13439	32.68723	2001				Mercury (Hg)			
Name Control C	Mouth of Chollas Creek	C07		-117.13439	32.68723	2001				Zinc (Zn)			
Nahof characterizationAnd and and and and and and and and and a	Mouth of Chollas Creek											60800 mg/kg	
No. I of constructionCons	Mouth of Chollas Creek	C08		-117,13403	32.68686					Arsenic (As)			
Main d'Alle GalePirePi												0.32 mg/kg	
Mach de la constructureMarte de la const													
black strandSint BSint B <t< td=""><td>Mouth of Chollas Creek</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Mouth of Chollas Creek												
Mach of Divis CodeMart of Divis CodeAnd To TransAnd BasileAnd To TransAnd To Trans											, ,		
Nach de NachNach de NachNach de NachNach de NachNach de NachNach de NachNach de Nach<													
Mach of Chair ControlOrigin (1)Table (1) <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>													
Mach of Units CreakOriginalAnswer (A in ProgramOriginalMach of Units CreakOriginal													
Mon & Deba DeckOppOppInterpretainOpport <td></td>													
Non of Chalac Cash0.08-117.13883.28.8442.01Congr ChiDy self117 (199)3.28.8442.01Ind ref 30Dy self3.78.90 (20)Non of Chalac Cash0.09-117.13833.28.8442.01-108.70CashDy self3.78.90 (20)Non of Chalac Cash0.00-117.13833.28.8442.01-108.70Dy self3.78.90 (20)-108.70 (20)Non of Chalac Cash0.00-117.13833.28.8452.01-108.70Dy self3.78.90 (20)-108.70 (20)Non of Chalac Cash0.10-117.13833.28.8452.01-108.70 (20)Dy self3.78.90 (20)-108.70 (
Mont of Chain Condex D06 117 1354 32 8441 2011 Number of Chain Condex Divergit at Strength at Str													
Non-J oblig-LockOD117.138832.86842001Non-Sec (Single-Single													
Mond of Choles CendeColorNormaryColorNormaryNorm													<u>+</u>
Main d cohia CashaOsinOsinOsinDer kajDer kaj <td></td>													
Nach of Chair CeresF19<													
Nach of Colus Conde1011173020.00820.01Ameria (A)Numeria (A) <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>													
Mach of Collas CredeCitoImage of Array and Array an													
Nach of Coluis Ceek Clope -117.3330 32.8856 2011 Inn Feb Opy engit 3740 hpg/s Nach of Coluis Ceek Clope -117.3330 32.8856 2011 Inn Feb Opy engit 723 hpg/s Nach of Coluis Ceek Clope -117.3330 32.8856 2011 Inn Feb Opy engit 723 hpg/s Nach of Coluis Ceek Clope -117.3330 32.8856 2011 Inn Feb Opy engit 723 hpg/s Nach of Coluis Ceek Clope -117.3330 32.8856 2011 Inn Feb Opy engit 723 hpg/s Nach of Coluis Ceek Clope -117.3330 32.8878 2011 Inn Feb Opy engit 733 hpg/s Nach of Coluis Ceek Clope -117.3330 32.8878 2011 Inn Feb Opy engit 733 hpg/s Nach of Coluis Ceek Clope -117.3331 32.8878 2011 Inn Feb Opy engit 723 hpg/s Nach of Coluis Ceek Clope -117.3321 32.8878 2011 Annon (A) Neigh													
Mach of Cholas GreekCindInt 17.333332.8688201Int <td></td>													
Moden d'oblais Greak O'no -117 1330 32.0 6696 2011 C Land (Pb) Dy weight T2.0 mpla Moden d'Oblais Greak O'no -117 1330 32.0 6695 2011 C Zir (C) Dy weight 62.1 mpla Moden d'Oblais Greak O'no -117 1330 32.0 6695 2011 C Zir (C) Dy weight 61.0 mpla Moden d'Oblais Greak O'no -117 1335 32.0 6872 2011 C Ammun (M) Dy weight 61.3 mpla Moden d'Oblais Greak O'no -117 1335 32.0 6872 2011 C Cardina (D) Dy weight 13.1 mpla Moden d'Oblais Greak O'no -117 1335 32.0 6872 2011 C Cardina (D) Dy weight 10.1 mpla Moden d'Oblais Greak O'no -117 1335 32.0 6872 2011 C Ammun (M) Dy weight 07.2 mpla Moden d'Oblais Greak O'no -117 1335 32.0 6870 2011 C Ammun (M) Dy weight 0.2 mpla Din													
Nach of Chollas Creek C10 11711330 32.68895 2001 Nerm of Velas Dyne gyne													
Mean d robules CreekC10													
Math. Hothigs Creek. C11 C117133S 32.88728 2001 Call Attrimum (A) Dy weight 648400 mp/dg Mach. Hothigs Creek. C11 -117133S 32.88728 2001 Cadmam (Ca) Dy weight 101 mp/dg Mach. Hothigs Creek. C11 -117133S 32.88728 2001 Cagnam (Ca) Dy weight 104 Inf (Mag) Mach. Hothigs Creek. C11 -117133S 32.88728 2001 Lad (Ph) Dy weight 34000 mp/dg Mach. Hothigs Creek. C11 -117133S 32.88728 2001 Lad (Ph) Dy weight 34000 mp/dg Mach. Hothigs Creek. C11 -117133S 32.88728 2001 Lad (Ph) Dy weight 34000 mp/dg Mach. Hothigs Creek. C11 -117133S 32.88789 2001 Lad (Ph) Dy weight 34000 mp/dg Mach. Hothigs Creek. C12 -117132S 32.88790 2001 Lad (Ph) Dy weight 36000 mp/dg Mach. Hothigs Creek. C12 -117132S 32.88790 2001 <td></td>													
Mach a Challas GreekC11													
Math and Chollas Cerek Ch1 Int 71335 20.872 2001 Compart Color Dy wight 1.07/ms/a Math and Chollas Cerek Ch1 Int 71335 20.8772 2001 Int 71335 20.8770 20.9784 Int 71336 20.8770 20.9784 Int 71336													
Mouh of cholas Ceek C11	Mouth of Chollas Creek					2001				Arsenic (As)	Dry weight		
Mount Ocholas Creek C11 C1171333 32.6878 2001 C Ion (Pi) Dywelin 3400 Polin Mount Ocholas Creek C14 C14 C4773 S2.6878 2001 C Arcor (Pi) Dywelin C22 Polin Mount Ocholas Creek C14 C1471333 S2.6878 2001 C Arcor (Pi) Dywelin C22 Polin Mount Ocholas Creek C12 C C1171323 S2.6878 2001 C Arcor (Pi) Dywelin C22 Polin Mount Ocholas Creek C12 C C1171322 S2.6870 2001 C Arcor (Pi) Dywelin C5.6 Polin Dywelin C	Mouth of Chollas Creek	C11		-117.13353	32.68726	2001				Cadmium (Cd)	Dry weight		
Modu & Chollas Ceek Ch1 117.1353 32.8776 2001 Lead (Pb) Dry weight 96.91 Modu & Chollas Ceek Ch1 117.1353 32.8776 2001 Meru Yolg) Dry weight 62.21 mg/hg Modu & Chollas Ceek Ch2 117.1353 32.8776 2001 Ammun (A) Dry weight 62.21 mg/hg Modu & Chollas Ceek C12 117.1322 32.8776 2001 Ammun (A) Dry weight 68.900 68.900 Modu & Chollas Ceek C12 117.1322 32.8776 2001 C Amsenic (A) Dry weight 65.900 99.900 Modu & Chollas Ceek C12 117.1322 32.8776 2001 C Copper (Cu) Dry weight 65.900 99.900	Mouth of Chollas Creek	C11		-117.13353	32.68726	2001				Copper (Cu)	Dry weight	104 mg/kg	
Mouth of Chollas Creek Off Intr. 1338 32.867.8 2001 On Mercury (hg) Myrup (hg)	Mouth of Chollas Creek	C11		-117.13353	32.68726	2001				Iron (Fe)	Dry weight	34000 mg/kg	
Mouth of Chollas Creek C11 C11133S 32.8878 2001 C D Develp1 273 mg/ng Develp1 273 mg/	Mouth of Chollas Creek	C11		-117.13353	32.68726	2001				Lead (Pb)	Dry weight	96.1 mg/kg	
Mouth of Chollas Greek C12 1-17.1322 32.68760 2001 Attemistic Attemistic Op yeeight 6680 mg/kg Mouth of Chollas Greek C12 1-117.1322 32.68760 2001 Cartinum (Ca) Dry weight 0.50 mg/kg Mouth of Chollas Greek C12 1-117.1322 32.68760 2001 Cartinum (Ca) Dry weight 0.50 mg/kg Mouth of Chollas Greek C12 1-117.1322 32.68760 2001 Dry weight 0.50 mg/kg Mouth of Chollas Greek C12 1-117.1322 32.68760 2001 Dry weight 0.72 mg/kg Mouth of Chollas Greek C12 1-117.1322 32.68760 2001 Dry weight 0.72 mg/kg Mouth of Chollas Greek C12 1-117.1322 32.68760 2001 Dry weight 0.74 mg/kg Mouth of Chollas Greek C13 1-117.1328 32.68760 2001 Dry weight 0.78 Mg/kg Mouth of Chollas Greek C13 1-117.1308 32.68760 2001 Dry weight 0.89 Mg/kg <t< td=""><td>Mouth of Chollas Creek</td><td></td><td></td><td>-117.13353</td><td>32.68726</td><td>2001</td><td></td><td></td><td></td><td>Mercury (Hg)</td><td>Dry weight</td><td>0.22 mg/kg</td><td></td></t<>	Mouth of Chollas Creek			-117.13353	32.68726	2001				Mercury (Hg)	Dry weight	0.22 mg/kg	
Mouth of Chollas Creek C12 C17.1322 S2.6870 C01 C Arsenic (AS) Dyweight G.S.B. mykg Mouth of Chollas Creek C12 C17.1322 S2.8870 C01 C Copper (C) Dyweight O.S.D. mykg Mouth of Chollas Creek C12 C17.1322 S2.8870 C01 C Copper (C) Dyweight O.S.D. mykg Mouth of Chollas Creek C12 C 117.1322 S2.8870 C01 C Lead (Pb) Dyweight O.S.D. mykg Mouth of Chollas Creek C12 C 117.1322 S2.8870 C01 C Arecru (HR) Dyweight O.S.D. mykg Mouth of Chollas Creek C12 C 117.1328 S2.8870 C01 C Arecru (HR) Dyweight O.S.D. mykg Mouth of Chollas Creek C13 C 117.1308 S2.8758 C01 C Arecru (A) Dyweight Assen (A) D.S.D. mykg Mouth of Chollas Creek C13 C 117.1308 S2.8758 C01	Mouth of Chollas Creek	C11		-117.13353	32.68726	2001				Zinc (Zn)	Dry weight	273 mg/kg	
Mouth of Chollas Creek C12 C17.1322 S2.6870 C01 C Arsenic (AS) Dyweight G.S.B. mykg Mouth of Chollas Creek C12 C17.1322 S2.8870 C01 C Copper (C) Dyweight O.S.D. mykg Mouth of Chollas Creek C12 C17.1322 S2.8870 C01 C Copper (C) Dyweight O.S.D. mykg Mouth of Chollas Creek C12 C 117.1322 S2.8870 C01 C Lead (Pb) Dyweight O.S.D. mykg Mouth of Chollas Creek C12 C 117.1322 S2.8870 C01 C Arecru (HR) Dyweight O.S.D. mykg Mouth of Chollas Creek C12 C 117.1328 S2.8870 C01 C Arecru (HR) Dyweight O.S.D. mykg Mouth of Chollas Creek C13 C 117.1308 S2.8758 C01 C Arecru (A) Dyweight Assen (A) D.S.D. mykg Mouth of Chollas Creek C13 C 117.1308 S2.8758 C01	Mouth of Chollas Creek	C12		-117.13229	32.68760	2001				Aluminum (Al)	Dry weight	69900 mg/kg	
Mouth of chollas Creek C12 117.1322 32.8876 2001 Cardium (Ca) Dy weight 0.50 mp/kg Mouth of Chollas Creek C12 117.1322 32.8876 2001 Constraints Copper (Cu) Dy weight 0.50 mp/kg Mouth of Chollas Creek C12 117.1322 32.8876 2001 Constraints Copper (Cu) Dy weight 0.50 mp/kg Mouth of Chollas Creek C12 117.1322 32.8876 2001 Constraints Cardium (Ca) Dy weight 0.50 mp/kg Constraints Mouth of Chollas Creek C12 117.1328 32.8876 2001 Constraints Cardium (Ca) Dy weight 0.50 mp/kg Constraints Mouth of Chollas Creek C13 117.1308 32.88758 2001 Constraints Cardium (Ca) Dy weight 8.9 mp/kg Mouth of Chollas Creek Mouth of Chollas Creek C13 117.1308 32.88758 2001 Constraints Constraints 0.9 mg/kg 0.9 mg/kg 0.9 mg/kg 0.9 mg/kg 0.9 mg/kg 0.9 mg/kg <th< td=""><td>Mouth of Chollas Creek</td><td>C12</td><td></td><td>-117.13229</td><td>32.68760</td><td>2001</td><td></td><td></td><td></td><td>Arsenic (As)</td><td>Dry weight</td><td></td><td></td></th<>	Mouth of Chollas Creek	C12		-117.13229	32.68760	2001				Arsenic (As)	Dry weight		
Mouth of Chollas Creek C12 -117.13229 32.8870 2001 Incn (Fe) Dry weight 39900 mg/kg Mouth of Chollas Creek C12 -117.13229 32.68760 2001 Mercury (Hg) Dry weight 0.21 mg/kg Mouth of Chollas Creek C12 -117.13229 32.68760 2001 Mercury (Hg) Dry weight 0.21 mg/kg Mouth of Chollas Creek C13 -117.13229 32.68760 2001 Muth of Chollas Creek Dry weight 0.91 mg/kg Mouth of Chollas Creek C13 -117.13088 32.68758 2001 Muth of Chollas Creek Dry weight 0.99 mg/kg Mouth of Chollas Creek C13 -117.13088 32.68758 2001 Muth of Chollas Creek Dry weight 0.96 mg/kg Mouth of Chollas Creek C13 -117.13088 32.68758 2001 Capper (Cu) Dry weight 9.96 mg/kg Mouth of Chollas Creek C13 -117.13088 32.68758 2001 Lead (Pb) Dry weight 87.2 mg/kg Mouth of Chollas Creek C13 -117.1	Mouth of Chollas Creek	C12			32.68760	2001				Cadmium (Cd)	Dry weight	0.50 mg/kg	
Mouth of Chollas Creek C12 -117.13229 32.68760 2001 Image: Constraint of Con	Mouth of Chollas Creek	C12		-117.13229	32.68760	2001				Copper (Cu)	Dry weight	78.5 mg/kg	
Mouth of Chollas Creek C12 Intrinsizial 32.8870 2001 Intrinsizial Science Scien	Mouth of Chollas Creek	C12				2001							
Mouth of Chollas Creek C12 117.13229 32.68760 2001 Mercury (Hg) Dry weight 0.21 mg/kg Mouth of Chollas Creek C13 117.13229 32.68760 2001 Zno	Mouth of Chollas Creek	C12		-117,13229	32.68760	2001							
Mouth of Chollas Creek C12 (11,1322) 32,687.60 2001 (11,1322) 32,687.60 2001 (11,1322) (11,1322) (11,1328) (Mouth of Chollas Creek	C12		-117.13229	32.68760	2001				Mercury (Hg)	Dry weight	0.21 mg/kg	
Mouth of Chollas Creek C13 -117.1308 32.88758 2001 Aluminum (Al) Dry weight 73400 ng/kg Mouth of Chollas Creek C13 -117.1308 32.88758 2001 Common (Challas Creek Dry weight 8.9 ng/kg Mouth of Chollas Creek C13 -117.1308 32.88758 2001 Common (Challas Creek Dry weight 8.9 ng/kg Mouth of Chollas Creek C13 -117.1308 32.88758 2001 Common (Challas Creek Dry weight 9.9 ng/kg Mouth of Chollas Creek C13 -117.1308 32.88758 2001 Common (Challas Creek Dry weight 87.2 ng/kg Mouth of Chollas Creek C13 -117.1308 32.88758 2001 Mecrory (Hg) Dry weight 87.2 ng/kg Mouth of Chollas Creek C13 -117.1308 32.88758 2001 Mecrory (Hg) Dry weight 9.22 ng/kg Mouth of Chollas Creek C13 -117.1308 32.88758 2001 Mecrory (Hg) Dry weight	Mouth of Chollas Creek				32.68760	2001							
Mouth of Chollas Creek C13 -117.13088 32.68758 2001 Arsenic (As) Dry weight 8.9 mg/kg Mouth of Chollas Creek C13 -117.13088 32.68758 2001 Cadmium (Cd) Dry weight 0.96 mg/kg Mouth of Chollas Creek C13 -117.13088 32.68758 2001 Copper (Cu) Dry weight 0.96 mg/kg Mouth of Chollas Creek C13 -117.13088 32.68758 2001 Image: Copper (Cu) Dry weight 0.96 mg/kg Mouth of Chollas Creek C13 -117.13088 32.68758 2001 Image: Copper (Cu) Dry weight 0.87.2 mg/kg Mouth of Chollas Creek C13 -117.13088 32.68758 2001 Image: Copper Cu) Dry weight 0.22 mg/kg Mouth of Chollas Creek C13 -117.13088 32.68758 2001 Image: Copper Cu) Dry weight 0.22 mg/kg Mouth of Chollas Creek C14 -117.12971 32.68763 2001 Image: Copper Cu) Dry weight 9.4 mg/kg Mouth of Chollas Creek C14	Mouth of Chollas Creek												
Mouth of Chollas Creek C13 -117.13088 32.68758 2001 Cadmium (Cd) Dry weight 0.96 mg/kg Mouth of Chollas Creek C13 -117.13088 32.68758 2001 Iron (Fe) Dry weight 103 mg/kg Mouth of Chollas Creek C13 -117.13088 32.68758 2001 Iron (Fe) Dry weight 3950 mg/kg Mouth of Chollas Creek C13 -117.13088 32.68758 2001 Iron (Fe) Dry weight 3950 mg/kg Mouth of Chollas Creek C13 -117.13088 32.68758 2001 Iron (Fe) Dry weight 3950 mg/kg Mouth of Chollas Creek C13 -117.13088 32.68758 2001 Iron (Fe) Dry weight 0.22 mg/kg Mouth of Chollas Creek C14 -117.1308 32.68768 2001 Iron (Fe) Dry weight 0.22 mg/kg Mouth of Chollas Creek C14 -117.12971 32.68763 2001 Iron (Fe) Dry weight 9.4 mg/kg Mouth of Chollas Creek C14 -117.12971 32.68763	Mouth of Chollas Creek							1					
Mouth of Chollas Creek C13 -117.1308 32.68758 2001 Copper (Cu) Dry weight 103 mg/kg Mouth of Chollas Creek C13 -117.13088 32.68758 2001 Inon (Fe) Dry weight 39500 mg/kg Mouth of Chollas Creek C13 -117.13088 32.68758 2001 Lead (Pb) Dry weight 6.27.gm/kg Mouth of Chollas Creek C13 -117.13088 32.68758 2001 Mercury (Hg) Dry weight 6.27.gm/kg Mouth of Chollas Creek C13 -117.13088 32.68758 2001 Mercury (Hg) Dry weight 6.27.gm/kg Mouth of Chollas Creek C13 -117.13088 32.68758 2001 Mercury (Hg) Dry weight 6.27.gm/kg Mouth of Chollas Creek C14 -117.12971 32.68763 2001 Mercury (Hg) Dry weight 9.4.gm/kg Mouth of Chollas Creek C14 -117.12971 32.68763 2001 Cadmicm (Cd) Dry weight 9.4.gm/kg Mouth of Chollas Creek C14 -117.12971 32.68763								1					
Mouth of Chollas Creek C13 -117.1308 32.68758 2001 Iron (Fe) Dry weight 39500 mg/g Mouth of Chollas Creek C13 -117.1308 32.68758 2001 Lead (Pb) Dry weight 87.2 mg/kg Mouth of Chollas Creek C13 -117.1308 32.68758 2001 Mercury (Hg) Dry weight 87.2 mg/kg Mouth of Chollas Creek C13 -117.1308 32.68758 2001 Mercury (Hg) Dry weight 24.8 mg/kg Mouth of Chollas Creek C14 -117.12971 32.68763 2001 Aluminum (Al) Dry weight 71700 mg/kg Mouth of Chollas Creek C14 -117.12971 32.68763 2001 Aluminum (Al) Dry weight 9.4 mg/kg Mouth of Chollas Creek C14 -117.12971 32.68763 2001 Arsenic (As) Dry weight 9.4 mg/kg Mouth of Chollas Creek C14 -117.12971 32.68763 2001 Cadminu (Cd) Dry weight 9.4 mg/kg Mouth of Chollas Creek C14 -117.12971								1					1
Mouth of Chollas Creek C13 -117.13088 32.68758 2001 Lead (Pb) Dry weight 87.2 mg/kg Mouth of Chollas Creek C13 -117.13088 32.68758 2001 Mercury (Hg) Dry weight 0.22 mg/kg Mouth of Chollas Creek C13 -117.13088 32.68758 2001 Mercury (Hg) Dry weight 0.22 mg/kg Mouth of Chollas Creek C14 -117.13088 32.68768 2001 Alurnium (Al) Dry weight 248 mg/kg Mouth of Chollas Creek C14 -117.12971 32.68763 2001 Alurnium (Al) Dry weight 9.4 mg/kg Mouth of Chollas Creek C14 -117.12971 32.68763 2001 Cadmium (Cd) Dry weight 9.4 mg/kg Mouth of Chollas Creek C14 -117.12971 32.68763 2001 Cadmium (Cd) Dry weight 9.4 mg/kg Mouth of Chollas Creek C14 -117.12971 32.68763 2001 Cadmium (Cd) Dry weight 9.4 mg/kg Mouth of Chollas Creek C14 -117.12971 32.6								1					+ 1
Mouth of Chollas Creek C13 -117.1308 32.68758 2001 Mercury (Hg) Dry weight 0.22 mg/kg Mouth of Chollas Creek C13 -117.13088 32.68758 2001 Zinc (Zn) Dry weight 248 mg/kg Mouth of Chollas Creek C14 -117.12971 32.68763 2001 Aurnium (Al) Dry weight 71700 mg/kg Mouth of Chollas Creek C14 -117.12971 32.68763 2001 Arsenic (As) Dry weight 9.4 mg/kg Mouth of Chollas Creek C14 -117.12971 32.68763 2001 Cadmium (Cd) Dry weight 9.4 mg/kg Mouth of Chollas Creek C14 -117.12971 32.68763 2001 Cadmium (Cd) Dry weight 9.4 mg/kg Mouth of Chollas Creek C14 -117.12971 32.68763 2001 Cadmium (Cd) Dry weight 9.4 mg/kg Mouth of Chollas Creek C14 -117.12971 32.68763 2001 Copper (Cu) Dry weight 94.9 mg/kg Mouth of Chollas Creek C14 -117.12971 32.6876													<u> </u>
Mouth of Chollas Creek C13 -117.1308 32.68758 2001 Zinc (Zn) Dry weight 248 [mg/kg] Mouth of Chollas Creek C14 -117.12971 32.68763 2001 Auminum (A) Dry weight 71700 [mg/kg] Mouth of Chollas Creek C14 -117.12971 32.68763 2001 Arsenic (As) Dry weight 9.4 [mg/kg] Mouth of Chollas Creek C14 -117.12971 32.68763 2001 Cadmium (Cd) Dry weight 9.4 [mg/kg] Mouth of Chollas Creek C14 -117.12971 32.68763 2001 Cadmium (Cd) Dry weight 9.4 [mg/kg] Mouth of Chollas Creek C14 -117.12971 32.68763 2001 Cadmium (Cd) Dry weight 9.4 [mg/kg] Mouth of Chollas Creek C14 -117.12971 32.68763 2001 Copper (Cu) Dry weight 94.9 [mg/kg] Mouth of Chollas Creek C14 -117.12971 32.68763 2001 Iron (Fe) Dry weight 41900 [mg/kg] Mouth of Chollas Creek C14 -117.12971													
Mouth of Chollas Creek C14 -117.12971 32.68763 2001 Aluminum (Al) Dry weight 71700 mg/kg Mouth of Chollas Creek C14 -117.12971 32.68763 2001 Arsenic (As) Dry weight 9.4 mg/kg Mouth of Chollas Creek C14 -117.12971 32.68763 2001 Cadmiun (Cd) Dry weight 9.4 mg/kg Mouth of Chollas Creek C14 -117.12971 32.68763 2001 Cadmiun (Cd) Dry weight 9.4 mg/kg Mouth of Chollas Creek C14 -117.12971 32.68763 2001 Copper (Cu) Dry weight 9.4 mg/kg Mouth of Chollas Creek C14 -117.12971 32.68763 2001 Copper (Cu) Dry weight 41900 mg/kg Mouth of Chollas Creek C14 -117.12971 32.68763 2001 Lead (Pb) Dry weight 41900 mg/kg Mouth of Chollas Creek C14 -117.12971 32.68763 2001 Lead (Pb) Dry weight 103 mg													+
Mouth of Chollas Creek C14 -117.12971 32.68763 2001 Arsenic (As) Dry weight 9.4 mg/kg Mouth of Chollas Creek C14 -117.12971 32.68763 2001 Cadmium (Cd) Dry weight 1.37 mg/kg Mouth of Chollas Creek C14 -117.12971 32.68763 2001 Copper (Cu) Dry weight 9.4.9 mg/kg Mouth of Chollas Creek C14 -117.12971 32.68763 2001 Copper (Cu) Dry weight 94.9 mg/kg Mouth of Chollas Creek C14 -117.12971 32.68763 2001 Iron (Fe) Dry weight 41900 mg/kg Mouth of Chollas Creek C14 -117.12971 32.68763 2001 Lead (Pb) Dry weight 103 mg/kg Mouth of Chollas Creek C14 -117.12971 32.68763 2001 Mercury (Hg) Dry weight 0.03 mg/kg Mouth of Chollas Creek C14 -117.12971 32.68763 2001 Mercury (Hg) Dry weight 0.03 mg/kg Mouth of Chollas Creek C14 -117.12971 32.687													+
Mouth of Chollas Creek C14 -117.12971 32.68763 2001 Cadmium (Cd) Dry weight 1.37 mg/kg Mouth of Chollas Creek C14 -117.12971 32.68763 2001 Copper (Cu) Dry weight 94.9 mg/kg Mouth of Chollas Creek C14 -117.12971 32.68763 2001 Iron (Fe) Dry weight 41900 mg/kg Mouth of Chollas Creek C14 -117.12971 32.68763 2001 Iron (Fe) Dry weight 41900 mg/kg Mouth of Chollas Creek C14 -117.12971 32.68763 2001 Iron (Fe) Dry weight 4100 mg/kg Mouth of Chollas Creek C14 -117.12971 32.68763 2001 Iron (Fe) Dry weight 0.21 mg/kg Mouth of Chollas Creek C14 -117.12971 32.68763 2001 Iron (Fe) Dry weight 0.24 mg/kg Mouth of Chollas Creek C14 -117.12971 32.68763 2001 Iron (Cn) Dry weight 0.24 mg/kg Mouth of Chollas Creek C14 -117.12971 32.68763													+
Mouth of Chollas Creek C14 -117.12971 32.68763 2001 Copper (Cu) Dry weight 94.9 mg/kg Mouth of Chollas Creek C14 -117.12971 32.68763 2001 Iron (Fe) Dry weight 41900 mg/kg Mouth of Chollas Creek C14 -117.12971 32.68763 2001 Lead (Pb) Dry weight 41900 mg/kg Mouth of Chollas Creek C14 -117.12971 32.68763 2001 Lead (Pb) Dry weight 0.03 mg/kg Mouth of Chollas Creek C14 -117.12971 32.68763 2001 Mercury (Hg) Dry weight 0.04 mg/kg Mouth of Chollas Creek C14 -117.12971 32.68763 2001 Mercury (Hg) Dry weight 0.24 mg/kg - Mouth of Chollas Creek C14 -117.12971 32.68763 2001 Mercury (Hg) Dry weight 347 mg/kg Mouth of Chollas Creek C14 -117.12971 32.68763 2001 Zinc (Zn) Dry weight 347													+
Mouth of Chollas Creek C14 -117.12971 32.68763 2001 Iron (Fe) Dry weight 41900 mg/kg Mouth of Chollas Creek C14 -117.12971 32.68763 2001 Lead (Pb) Dry weight 103 mg/kg Mouth of Chollas Creek C14 -117.12971 32.68763 2001 Mercury (Hg) Dry weight 0.24 mg/kg Mouth of Chollas Creek C14 -117.12971 32.68763 2001 Mercury (Hg) Dry weight 0.24 mg/kg Wouth of Chollas Creek C14 -117.12971 32.68763 2001 Zinc (Zn) Dry weight 0.34 mg/kg		-											
Mouth of Chollas Creek C14 -117.1297 32.68763 2001 Lead (Pb) Dry weight 103 mg/kg Mouth of Chollas Creek C14 -117.1297 32.68763 2001 Mercury (Hg) Dry weight 0.24 mg/kg Mouth of Chollas Creek C14 -117.1297 32.68763 2001 Zinc (Zn) Dry weight 347 mg/kg											, v		
Mouth of Chollas Creek C14 -117.1297 32.68763 2001 Mercury (Hg) Dry weight 0.24 mg/kg Mouth of Chollas Creek C14 -117.12971 32.68763 2001 Zinc (Zn) Dry weight 347 mg/kg													<u> </u>
Mouth of Chollas Creek C14 -117.12971 32.68763 2001 Zinc (Zn) Dry weight 347 mg/kg		-											
Mouth of Paleta Creek P01 -117.12407 32.67153 2001 Aluminum (AI) Dry weight 66300 mg/kg													
	Mouth of Paleta Creek	P01		-117.12407	32.67153	2001				Aluminum (Al)	Dry weight	66300 mg/kg	

PROJECT NAME	SITE NAME	SAMPLE ID	X COORDINATE	Y COORDINATE	SAMPLE DATE	SAMPLE MEDIUM	TYPE	MEASUREMENT METHOD	PARAMETER NAME	PROPERTY	QUANTITY UNIT	QUALIFIER
Mouth of Paleta Creek	P01		-117,12407	32.67153	2001				Arsenic (As)	Dry weight	6.7 mg/kg	
Mouth of Paleta Creek	P01		-117.12407	32.67153					Cadmium (Cd)	Dry weight	0.14 mg/kg	&
Mouth of Paleta Creek	P01		-117.12407	32.67153	2001				Copper (Cu)	Dry weight	80.2 mg/kg	
Mouth of Paleta Creek	P01		-117.12407	32.67153					Iron (Fe)	Dry weight	31000 mg/kg	
Mouth of Paleta Creek	P01		-117.12407	32.67153	2001				Lead (Pb)	Dry weight	33.7 mg/kg	
Mouth of Paleta Creek	P01		-117.12407	32.67153	2001				Mercury (Hg)	Dry weight	0.38 mg/kg	
Mouth of Paleta Creek	P01		-117.12407	32.67153	2001				Zinc (Zn)	Dry weight	162 mg/kg	
Mouth of Paleta Creek	P02		-117.12357	32.67069	2001				Aluminum (Al)	Dry weight	81000 mg/kg	
Mouth of Paleta Creek	P02		-117.12357	32.67069	2001				Arsenic (As)	Dry weight	10.2 mg/kg	
Mouth of Paleta Creek	P02		-117.12357	32.67069	2001				Cadmium (Cd)	Dry weight	0.17 mg/kg	
Mouth of Paleta Creek	P02		-117.12357	32.67069	2001				Copper (Cu)	Dry weight	170 mg/kg	
Mouth of Paleta Creek	P02		-117.12357	32.67069	2001				Iron (Fe)	Dry weight	48800 mg/kg	
Mouth of Paleta Creek	P02		-117.12357	32.67069					Lead (Pb)	Dry weight	55.2 mg/kg	
Mouth of Paleta Creek	P02		-117.12357	32.67069	2001				Mercury (Hg)	Dry weight	0.63 mg/kg	
Mouth of Paleta Creek	P02		-117.12357	32.67069	2001				Zinc (Zn)	Dry weight	261 mg/kg	
Mouth of Paleta Creek	P03		-117.12234	32.67247	2001				Aluminum (Al)	Dry weight	71000 mg/kg	
Mouth of Paleta Creek	P03		-117.12234	32.67247	2001				Arsenic (As)	Dry weight	6.8 mg/kg	
Mouth of Paleta Creek	P03		-117.12234	32.67247	2001				Cadmium (Cd)	Dry weight	0.01 mg/kg	U
Mouth of Paleta Creek	P03		-117.12234	32.67247	2001				Copper (Cu)	Dry weight	98.1 mg/kg	
Mouth of Paleta Creek	P03		-117.12234	32.67247	2001				Iron (Fe)	Dry weight	33800 mg/kg	
Mouth of Paleta Creek	P03		-117.12234	32.67247	2001				Lead (Pb)	Dry weight	36.1 mg/kg	
Mouth of Paleta Creek	P03		-117.12234	32.67247	2001				Mercury (Hg)	Dry weight	0.35 mg/kg	
Mouth of Paleta Creek	P03		-117.12234	32.67247	2001				Zinc (Zn)	Dry weight	165 mg/kg	
Mouth of Paleta Creek	P04		-117.12177	32.67158	2001				Aluminum (Al)	Dry weight	83300 mg/kg	
Mouth of Paleta Creek	P04		-117.12177	32.67158	2001				Arsenic (As)	Dry weight	10.0 mg/kg	
Mouth of Paleta Creek	P04		-117.12177	32.67158	2001				Cadmium (Cd)	Dry weight	0.07 mg/kg	J
Mouth of Paleta Creek	P04		-117.12177	32.67158	2001				Copper (Cu)	Dry weight	203 mg/kg	
Mouth of Paleta Creek	P04		-117.12177	32.67158	2001				Iron (Fe)	Dry weight	53400 mg/kg	
Mouth of Paleta Creek	P04		-117.12177	32.67158	2001				Lead (Pb)	Dry weight	64.1 mg/kg	
Mouth of Paleta Creek	P04		-117.12177	32.67158	2001				Mercury (Hg)	Dry weight	0.65 mg/kg	
Mouth of Paleta Creek	P04		-117.12177	32.67158	2001				Zinc (Zn)	Dry weight	274 mg/kg	
Mouth of Paleta Creek	P05		-117.12123	32.67089	2001				Aluminum (Al)	Dry weight	83400 mg/kg	
Mouth of Paleta Creek	P05		-117.12123	32.67089	2001				Arsenic (As)	Dry weight	10.9 mg/kg	
Mouth of Paleta Creek	P05		-117.12123	32.67089	2001				Cadmium (Cd)	Dry weight	0.10 mg/kg	
Mouth of Paleta Creek	P05		-117.12123	32.67089	2001				Copper (Cu)	Dry weight	227 mg/kg	
Mouth of Paleta Creek	P05		-117.12123	32.67089	2001				Iron (Fe)	Dry weight	56300 mg/kg	
Mouth of Paleta Creek	P05		-117.12123	32.67089	2001				Lead (Pb)	Dry weight	72.8 mg/kg	
Mouth of Paleta Creek	P05		-117.12123	32.67089	2001				Mercury (Hg)	Dry weight	0.71 mg/kg	
Mouth of Paleta Creek	P05		-117.12123	32.67089	2001				Zinc (Zn)	Dry weight	294 mg/kg	
Mouth of Paleta Creek	P06		-117.12091	32.67321	2001				Aluminum (Al)	Dry weight	80500 mg/kg	
Mouth of Paleta Creek	P06		-117.12091	32.67321	2001				Arsenic (As)	Dry weight	11.3 mg/kg	
Mouth of Paleta Creek	P06		-117.12091	32.67321	2001				Cadmium (Cd)	Dry weight	0.18 mg/kg	
Mouth of Paleta Creek	P06		-117.12091	32.67321	2001				Copper (Cu)	Dry weight	247 mg/kg	
Mouth of Paleta Creek	P06		-117.12091	32.67321	2001				Iron (Fe)	Dry weight	52100 mg/kg	
Mouth of Paleta Creek	P06		-117.12091	32.67321	2001				Lead (Pb)	Dry weight	68.3 mg/kg	
Mouth of Paleta Creek	P06		-117.12091	32.67321	2001				Mercury (Hg)	Dry weight	0.72 mg/kg	
Mouth of Paleta Creek	P06		-117.12091	32.67321	2001				Zinc (Zn)	Dry weight	287 mg/kg	
Mouth of Paleta Creek	P07		-117.12023	32.67243	2001				Aluminum (Al)	Dry weight	81400 mg/kg	
Mouth of Paleta Creek	P07		-117.12023	32.67243					Arsenic (As)	Dry weight	11.3 mg/kg	
Mouth of Paleta Creek	P07		-117.12023	32.67243					Cadmium (Cd)	Dry weight	0.13 mg/kg	
Mouth of Paleta Creek	P07		-117.12023	32.67243					Copper (Cu)	Dry weight	237 mg/kg	
Mouth of Paleta Creek	P07		-117.12023	32.67243	2001				Iron (Fe)	Dry weight	54100 mg/kg	
Mouth of Paleta Creek	P07		-117.12023	32.67243	2001				Lead (Pb)	Dry weight	73 mg/kg	
Mouth of Paleta Creek	P07		-117.12023	32.67243	2001				Mercury (Hg)	Dry weight	0.76 mg/kg	
Mouth of Paleta Creek	P07		-117.12023	32.67243	2001				Zinc (Zn)	Dry weight	288 mg/kg	
Mouth of Paleta Creek	P08		-117.11969	32.67164	2001				Aluminum (Al)	Dry weight	76200 mg/kg	
Mouth of Paleta Creek	P08		-117.11969	32.67164	2001				Arsenic (As)	Dry weight	6.0 mg/kg	
Mouth of Paleta Creek	P08		-117.11969	32.67164	2001				Cadmium (Cd)	Dry weight	0.09 mg/kg	
Mouth of Paleta Creek	P08		-117.11969	32.67164	2001				Copper (Cu)	Dry weight	106 mg/kg	
Mouth of Paleta Creek	P08		-117.11969	32.67164	2001				Iron (Fe)	Dry weight	42800 mg/kg	
Mouth of Paleta Creek	P08		-117.11969	32.67164	2001				Lead (Pb)	Dry weight	42.4 mg/kg	
Mouth of Paleta Creek	P08		-117.11969	32.67164					Mercury (Hg)	Dry weight	0.44 mg/kg	
	1			02.07104				1		/	0.11.0.09	

PROJECT_NAME	SITE_NAME	SAMPLE_ID	X_COORDINATE	Y_COORDINATE	SAMPLE_DATE	SAMPLE_MEDIUM	TYPE	MEASUREMENT_METHOD	PARAMETER_NAME	PROPERTY	QUANTITY UNIT	QUALIFIER
Mouth of Paleta Creek	P08		-117.11969	32.67164	2001				Zinc (Zn)	Dry weight	184 mg/kg	
Mouth of Paleta Creek	P09		-117.11840	32.67236	2001				Aluminum (Al)	Dry weight	75900 mg/kg	
Mouth of Paleta Creek	P09		-117.11840	32.67236	2001				Arsenic (As)	Dry weight	2.8 mg/kg	
Mouth of Paleta Creek	P09		-117.11840	32.67236	2001				Cadmium (Cd)	Dry weight	0.01 mg/kg	U
Mouth of Paleta Creek	P09		-117.11840	32.67236	2001				Copper (Cu)	Dry weight	22.1 mg/kg	
Mouth of Paleta Creek	P09		-117.11840	32.67236	2001				Iron (Fe)	Dry weight	41900 mg/kg	
Mouth of Paleta Creek	P09		-117.11840	32.67236	2001				Lead (Pb)	Dry weight	11.3 mg/kg	
Mouth of Paleta Creek	P09		-117.11840	32.67236	2001				Mercury (Hg)	Dry weight	0.068 mg/kg	
Mouth of Paleta Creek	P09		-117.11840	32.67236	2001				Zinc (Zn)	Dry weight	89 mg/kg	
Mouth of Paleta Creek	P10		-117.11840	32.67197	2001				Aluminum (Al)	Dry weight	73000 mg/kg	
Mouth of Paleta Creek	P10		-117.11840	32.67197	2001				Arsenic (As)	Dry weight	5.4 mg/kg	
Mouth of Paleta Creek	P10		-117.11840	32.67197	2001				Cadmium (Cd)	Dry weight	0.35 mg/kg	
Mouth of Paleta Creek	P10		-117.11840	32.67197	2001				Copper (Cu)	Dry weight	105 mg/kg	
Mouth of Paleta Creek	P10		-117.11840	32.67197	2001				Iron (Fe)	Dry weight	41600 mg/kg	
Mouth of Paleta Creek	P10		-117.11840	32.67197	2001				Lead (Pb)	Dry weight	44.4 mg/kg	
Mouth of Paleta Creek	P10		-117.11840	32.67197	2001				Mercury (Hg)	Dry weight	0.304 mg/kg	
Mouth of Paleta Creek	P10		-117.11840	32.67197	2001				Zinc (Zn)		242 mg/kg	
Mouth of Paleta Creek					2001					Dry weight		
	P11 P11		-117.11822 -117.11822	32.67265 32.67265	2001				Aluminum (Al) Arsenic (As)	Dry weight	74750 mg/kg	+
Mouth of Paleta Creek Mouth of Paleta Creek					2001					Dry weight	6.5 mg/kg	+
	P11		-117.11822	32.67265					Cadmium (Cd)	Dry weight	1.39 mg/kg	
Mouth of Paleta Creek	P11		-117.11822	32.67265	2001				Copper (Cu)	Dry weight	127 mg/kg	
Mouth of Paleta Creek	P11		-117.11822	32.67265	2001				Iron (Fe)	Dry weight	42400 mg/kg	
Mouth of Paleta Creek	P11		-117.11822	32.67265	2001				Lead (Pb)	Dry weight	116.0 mg/kg	
Mouth of Paleta Creek	P11		-117.11822	32.67265	2001				Mercury (Hg)	Dry weight	1.08 mg/kg	
Mouth of Paleta Creek	P11		-117.11822	32.67265	2001				Zinc (Zn)	Dry weight	304 mg/kg	
Mouth of Paleta Creek	P12		-117.11770	32.67232	2001				Aluminum (Al)	Dry weight	79200 mg/kg	
Mouth of Paleta Creek	P12		-117.11770	32.67232	2001				Arsenic (As)	Dry weight	5.9 mg/kg	
Mouth of Paleta Creek	P12		-117.11770	32.67232	2001				Cadmium (Cd)	Dry weight	0.20 mg/kg	
Mouth of Paleta Creek	P12		-117.11770	32.67232	2001				Copper (Cu)	Dry weight	134 mg/kg	
Mouth of Paleta Creek	P12		-117.11770	32.67232	2001				Iron (Fe)	Dry weight	44500 mg/kg	
Mouth of Paleta Creek	P12		-117.11770	32.67232	2001				Lead (Pb)	Dry weight	52.3 mg/kg	
Mouth of Paleta Creek	P12		-117.11770	32.67232	2001				Mercury (Hg)	Dry weight	0.34 mg/kg	
Mouth of Paleta Creek	P12		-117.11770	32.67232	2001				Zinc (Zn)	Dry weight	180 mg/kg	
Mouth of Paleta Creek	P13		-117.11733	32.67306	2001				Aluminum (Al)	Dry weight	71700 mg/kg	
Mouth of Paleta Creek	P13		-117.11733	32.67306	2001				Arsenic (As)	Dry weight	4.2 mg/kg	
Mouth of Paleta Creek	P13		-117.11733	32.67306	2001				Cadmium (Cd)	Dry weight	0.17 mg/kg	
Mouth of Paleta Creek	P13		-117.11733	32.67306	2001				Copper (Cu)	Dry weight	71.9 mg/kg	
Mouth of Paleta Creek	P13		-117.11733	32.67306	2001				Iron (Fe)	Dry weight	28700 mg/kg	
Mouth of Paleta Creek	P13		-117.11733	32.67306	2001				Lead (Pb)	Dry weight	40.7 mg/kg	
Mouth of Paleta Creek	P13		-117.11733	32.67306	2001				Mercury (Hg)	Dry weight	0.25 mg/kg	
Mouth of Paleta Creek	P13		-117.11733	32.67306	2001				Zinc (Zn)	Dry weight	174 mg/kg	
Mouth of Paleta Creek	P14		-117.11709	32.67268	2001				Aluminum (Al)	Dry weight	80200 mg/kg	
Mouth of Paleta Creek	P14		-117.11709	32.67268	2001		1		Arsenic (As)	Dry weight	6.6 mg/kg	
Mouth of Paleta Creek	P14		-117.11709	32.67268	2001				Cadmium (Cd)	Dry weight	0.57 mg/kg	
Mouth of Paleta Creek	P14		-117.11709	32.67268	2001				Copper (Cu)	Dry weight	138 mg/kg	
Mouth of Paleta Creek	P14		-117.11709	32.67268	2001				Iron (Fe)	Dry weight	43100 mg/kg	
Mouth of Paleta Creek	P14	İ	-117.11709	32.67268	2001				Lead (Pb)	Dry weight	67.2 mg/kg	
Mouth of Paleta Creek	P14		-117.11709	32.67268	2001				Mercury (Hg)	Dry weight	0.46 mg/kg	
Mouth of Paleta Creek	P14		-117.11709	32.67268	2001		1		Zinc (Zn)	Dry weight	246 mg/kg	
Mouth of Paleta Creek	P15		-117.11669	32.67342	2001		1		Aluminum (Al)	Dry weight	77400 mg/kg	
Mouth of Paleta Creek	P15		-117.11669	32.67342	2001		1		Arsenic (As)	Dry weight	7.9 mg/kg	1
Mouth of Paleta Creek	P15		-117.11669	32.67342	2001		1		Cadmium (Cd)	Dry weight	1.59 mg/kg	1
Mouth of Paleta Creek	P15		-117.11669	32.67342	2001		1		Copper (Cu)	Dry weight	157 mg/kg	-
Mouth of Paleta Creek	P15		-117.11669	32.67342	2001		1		Iron (Fe)	Dry weight	44500 mg/kg	+
Mouth of Paleta Creek	P15		-117.11669	32.67342	2001				Lead (Pb)	Dry weight	159.1 mg/kg	+
Mouth of Paleta Creek	P15		-117.11669	32.67342	2001				Mercury (Hg)	Dry weight	0.61 mg/kg	+
Mouth of Paleta Creek	P15		-117.11669	32.67342	2001		1		Zinc (Zn)	Dry weight	374 mg/kg	+
	P15 P16		-117.11669	32.67342	2001							+
Mouth of Paleta Creek									Aluminum (Al)	Dry weight	78400 mg/kg	+
Mouth of Paleta Creek	P16		-117.11642	32.67305	2001				Arsenic (As)	Dry weight	7.6 mg/kg	
Mouth of Paleta Creek	P16		-117.11642	32.67305	2001				Cadmium (Cd)	Dry weight	0.89 mg/kg	
Mouth of Paleta Creek	P16 P16		-117.11642 -117.11642	32.67305 32.67305	2001 2001				Copper (Cu) Iron (Fe)	Dry weight Dry weight	181 mg/kg 47700 mg/kg	
Mouth of Paleta Creek												

PROJECT_NAME	SITE_NAME	SAMPLE_ID	X_COORDINATE	Y_COORDINATE	SAMPLE_DATE	SAMPLE_MEDIUM	TYPE	MEASUREMENT_METHOD	PARAMETER_NAME	PROPERTY	QUANTITY UNIT	QUALIFIER
Mouth of Paleta Creek	P16		-117.11642	32.67305	2001				Lead (Pb)	Dry weight	91.4 mg/kg	
Mouth of Paleta Creek	P16		-117.11642	32.67305	2001				Mercury (Hg)	Dry weight	0.56 mg/kg	
Mouth of Paleta Creek	P16		-117.11642	32.67305	2001				Zinc (Zn)	Dry weight	314 mg/kg	
Mouth of Paleta Creek	P17		-117.11601	32.67376	2001				Aluminum (Al)	Dry weight	72800 mg/kg	
Mouth of Paleta Creek	P17		-117.11601	32.67376	2001				Arsenic (As)	Dry weight	19.8 mg/kg	
Mouth of Paleta Creek	P17		-117.11601	32.67376	2001				Cadmium (Cd)	Dry weight	1.27 mg/kg	
Mouth of Paleta Creek	P17		-117.11601	32.67376	2001				Copper (Cu)	Dry weight	157 mg/kg	
Mouth of Paleta Creek	P17		-117.11601	32.67376	2001				Iron (Fe)	Dry weight	40200 mg/kg	
Mouth of Paleta Creek	P17		-117.11601	32.67376	2001				Lead (Pb)	Dry weight	102.8 mg/kg	
Mouth of Paleta Creek	P17		-117.11601	32.67376	2001				Mercury (Hg)	Dry weight	0.6 mg/kg	
Mouth of Paleta Creek	P17		-117.11601	32.67376	2001				Zinc (Zn)	Dry weight	370 mg/kg	
NAVSTA TMDL 2008	NS11		-117.12710	32.68197	2008				Aluminum (Al)	Dry weight	79100 mg/kg	
NAVSTA TMDL 2008	NS11		-117.12710	32.68197	2008				Arsenic (As)	Dry weight	16.9 mg/kg	
NAVSTA TMDL 2008	NS11		-117.12710	32.68197	2008				Cadmium (Cd)	Dry weight	0.541 mg/kg	
NAVSTA TMDL 2008	NS11		-117.12710	32.68197	2008				Copper (Cu)	Dry weight	366 mg/kg	
NAVSTA TMDL 2008	NS11		-117.12710	32.68197	2008				Iron (Fe)	Dry weight	50000 mg/kg	
NAVSTA TMDL 2008	NS11		-117.12710	32.68197	2008			ICP-MS	Lead (Pb)	Dry weight	102 mg/kg	
NAVSTA TMDL 2008	NS11		-117.12710	32.68197	2008				Mercury (Hg)	Dry weight	1.33 mg/kg	4
NAVSTA TMDL 2008	NS11		-117.12710	32.68197	2008				Zinc (Zn)	Dry weight	482 mg/kg	
NAVSTA TMDL 2008	NS12		-117.12771	32.68165					Aluminum (Al)	Dry weight	79300 mg/kg	∔
NAVSTA TMDL 2008	NS12		-117.12771	32.68165					Arsenic (As)	Dry weight	14.8 mg/kg	
NAVSTA TMDL 2008	NS12		-117.12771	32.68165					Cadmium (Cd)	Dry weight	0.288 mg/kg	I
NAVSTA TMDL 2008	NS12		-117.12771	32.68165					Copper (Cu)	Dry weight	282 mg/kg	4
NAVSTA TMDL 2008	NS12		-117.12771	32.68165					Iron (Fe)	Dry weight	52400 mg/kg	
NAVSTA TMDL 2008	NS12		-117.12771	32.68165				ICP-MS	Lead (Pb)	Dry weight	82.2 mg/kg	
NAVSTA TMDL 2008	NS12		-117.12771	32.68165					Mercury (Hg)	Dry weight	0.929 mg/kg	
NAVSTA TMDL 2008	NS12		-117.12771	32.68165	2008				Zinc (Zn)	Dry weight	335 mg/kg	
NAVSTA TMDL 2008	NS13		-117.12879	32.68104					Aluminum (Al)	Dry weight	81100 mg/kg	
NAVSTA TMDL 2008	NS13		-117.12879	32.68104	2008				Arsenic (As)	Dry weight	14.8 mg/kg	
NAVSTA TMDL 2008	NS13		-117.12879	32.68104	2008				Cadmium (Cd)	Dry weight	0.205 mg/kg	
NAVSTA TMDL 2008	NS13		-117.12879	32.68104					Copper (Cu)	Dry weight	254 mg/kg	
NAVSTA TMDL 2008	NS13		-117.12879	32.68104	2008				Iron (Fe)	Dry weight	52200 mg/kg	
NAVSTA TMDL 2008	NS13		-117.12879	32.68104	2008			ICP-MS	Lead (Pb)	Dry weight	73.8 mg/kg	
NAVSTA TMDL 2008	NS13		-117.12879	32.68104	2008				Mercury (Hg)	Dry weight	0.897 mg/kg	
NAVSTA TMDL 2008	NS13		-117.12879	32.68104	2008				Zinc (Zn)	Dry weight	315 mg/kg	
NAVSTA TMDL 2008	NS14		-117.13030	32.68021	2008				Aluminum (Al)	Dry weight	76900 mg/kg	
NAVSTA TMDL 2008	NS14		-117.13030	32.68021	2008				Arsenic (As)	Dry weight	12.4 mg/kg	
NAVSTA TMDL 2008	NS14		-117.13030	32.68021	2008				Cadmium (Cd)	Dry weight	0.187 mg/kg	
NAVSTA TMDL 2008	NS14		-117.13030	32.68021	2008				Copper (Cu)	Dry weight	185 mg/kg	
NAVSTA TMDL 2008	NS14		-117.13030	32.68021	2008				Iron (Fe)	Dry weight	45600 mg/kg	
NAVSTA TMDL 2008	NS14		-117.13030	32.68021	2008				Lead (Pb)	Dry weight	61.4 mg/kg	
NAVSTA TMDL 2008	NS14		-117.13030	32.68021	2008				Mercury (Hg)	Dry weight	0.699 mg/kg	
NAVSTA TMDL 2008	NS14 NS15		-117.13030 -117.13122	32.68021 32.67967	2008 2008				Zinc (Zn)	Dry weight	261 mg/kg	+
NAVSTA TMDL 2008					2008				Aluminum (Al)	Dry weight	75900 mg/kg	+
NAVSTA TMDL 2008 NAVSTA TMDL 2008	NS15 NS15		-117.13122 -117.13122	32.67967 32.67967	2008				Arsenic (As) Cadmium (Cd)	Dry weight	9.65 mg/kg	+
NAVSTA TMDL 2008 NAVSTA TMDL 2008	NS15 NS15		-117.13122 -117.13122	32.67967 32.67967	2008					Dry weight	0.143 mg/kg 133 mg/kg	+
NAVSTA TMDL 2008 NAVSTA TMDL 2008	NS15 NS15		-117.13122 -117.13122	32.67967	2008				Copper (Cu)	Dry weight		+
NAVSTA TMDL 2008 NAVSTA TMDL 2008	NS15 NS15		-117.13122 -117.13122	32.67967 32.67967	2008				Iron (Fe) Lead (Pb)	Dry weight	38500 mg/kg	+
NAVSTA TMDL 2008 NAVSTA TMDL 2008	NS15 NS15		-117.13122 -117.13122		2008					Dry weight	47.9 mg/kg	+
NAVSTA TMDL 2008 NAVSTA TMDL 2008	NS15 NS15		-117.13122 -117.13122	32.67967 32.67967	2008				Mercury (Hg)	Dry weight	0.536 mg/kg	+
NAVSTA TMDL 2008 NAVSTA TMDL 2008	NS15 NS16		-117.13122 -117.12577	32.67967					Zinc (Zn) Aluminum (Al)	Dry weight	200 mg/kg	+
NAVSTA TMDL 2008 NAVSTA TMDL 2008	NS16		-117.12577 -117.12577	32.68018	2008				()	Dry weight	77400 mg/kg	+
NAVSTA TMDL 2008 NAVSTA TMDL 2008	NS16 NS16		-117.12577 -117.12577	32.68018	2008				Arsenic (As)	Dry weight	14.2 mg/kg	+
NAVSTA TMDL 2008 NAVSTA TMDL 2008	NS16		-117.12577 -117.12577	32.68018	2008				Cadmium (Cd)	Dry weight	0.396 mg/kg	+
NAVSTA TMDL 2008 NAVSTA TMDL 2008	NS16		-117.12577 -117.12577	32.68018	2008				Copper (Cu)	Dry weight	317 mg/kg	+
NAVSTA TMDL 2008 NAVSTA TMDL 2008	NS16 NS16		-117.12577 -117.12577	32.68018	2008			ICP-OES ICP-MS	Iron (Fe)	Dry weight	48100 mg/kg	+
NAVSTA TMDL 2008 NAVSTA TMDL 2008	NS16 NS16		-117.12577	32.68018					Lead (Pb)	Dry weight	81.8 mg/kg 1.03 mg/kg	+
NAVSTA TMDL 2008 NAVSTA TMDL 2008	NS16		-117.12577 -117.12577	32.68018	2008				Mercury (Hg) Zinc (Zn)	Dry weight	353 mg/kg	+
NAVSTA TMDL 2008 NAVSTA TMDL 2008	NS16 NS17		-117.12577 -117.12631	32.68018	2008				Aluminum (Al)	Dry weight	78100 mg/kg	+
NAVSTA TMDL 2008 NAVSTA TMDL 2008	NS17 NS17		-117.12631	32.67986	2008				Arsenic (As)	Dry weight		+
NAVSTA TMDL 2008 NAVSTA TMDL 2008	NS17 NS17		-117.12631	32.67986	2008				Cadmium (Cd)	Dry weight	15.5 mg/kg 0.343 mg/kg	+
NAVOTA TIVIDE 2008	11017	1	-117.12631	32.07986	2008	1	1		Caumum (Cu)	Dry weight	0.343 mg/Kg	

PROJECT_NAME	SITE_NAME	SAMPLE_ID	X_COORDINATE	Y_COORDINATE	SAMPLE_DATE	SAMPLE_MEDIUM	TYPE MEASUREMENT_METHOD	PARAMETER_NAME	PROPERTY	QUANTITY	UNIT	QUALIFIER
NAVSTA TMDL 2008	NS17		-117.12631	32.67986	2008		ICP-OES	Copper (Cu)	Dry weight	328	mg/kg	
NAVSTA TMDL 2008	NS17		-117.12631	32.67986	2008		ICP-OES	Iron (Fe)	Dry weight	50500	mg/kg	
NAVSTA TMDL 2008	NS17		-117.12631	32.67986	2008		ICP-MS	Lead (Pb)	Dry weight	82.5	mg/kg	
NAVSTA TMDL 2008	NS17		-117.12631	32.67986	2008		CVAA	Mercury (Hg)	Dry weight	0.975	mg/kg	
NAVSTA TMDL 2008	NS17		-117.12631	32.67986	2008		ICP-OES	Zinc (Zn)	Dry weight	364 1	mg/kg	
NAVSTA TMDL 2008	NS18		-117.12715	32.67947	2008		ICP-OES	Aluminum (Al)	Dry weight	78800	mg/kg	1
NAVSTA TMDL 2008	NS18		-117.12715	32.67947	2008		ICP-MS	Arsenic (As)	Dry weight	12.1	mg/kg	
NAVSTA TMDL 2008	NS18		-117.12715	32.67947	2008		ICP/MS	Cadmium (Cd)	Dry weight	0.418	mg/kg	1
NAVSTA TMDL 2008	NS18		-117.12715	32.67947	2008		ICP-OES	Copper (Cu)	Dry weight	275	mg/kg	
NAVSTA TMDL 2008	NS18		-117.12715	32.67947	2008		ICP-OES	Iron (Fe)	Dry weight	43600	mg/kg	
NAVSTA TMDL 2008	NS18		-117.12715	32.67947	2008		ICP-MS	Lead (Pb)	Dry weight	84.1	mg/kg	
NAVSTA TMDL 2008	NS18		-117.12715	32.67947	2008		CVAA	Mercury (Hg)	Dry weight	1.03	mg/kg	
NAVSTA TMDL 2008	NS18		-117.12715	32.67947	2008		ICP-OES	Zinc (Zn)	Dry weight	320	mg/kg	
NAVSTA TMDL 2008	NS19		-117.12857	32.67865	2008		ICP-OES	Aluminum (Al)	Dry weight	79100		
NAVSTA TMDL 2008	NS19		-117.12857	32.67865	2008		ICP-MS	Arsenic (As)	Dry weight		mg/kg	
NAVSTA TMDL 2008	NS19		-117.12857	32.67865	2008		ICP/MS	Cadmium (Cd)	Dry weight	0.288		
NAVSTA TMDL 2008	NS19		-117.12857	32.67865	2008		ICP-OES	Copper (Cu)	Dry weight	241	mg/kg	
NAVSTA TMDL 2008	NS19		-117.12857	32.67865	2008		ICP-OES	Iron (Fe)	Dry weight	48900		
NAVSTA TMDL 2008	NS19		-117.12857	32.67865	2008	1	ICP-MS	Lead (Pb)	Dry weight	73.6		
NAVSTA TMDL 2008	NS19		-117.12857	32.67865	2008		CVAA	Mercury (Hg)	Dry weight	0.970		
NAVSTA TMDL 2008	NS19		-117.12857	32.67865	2008		ICP-OES	Zinc (Zn)	Dry weight		mg/kg	
NAVSTA TMDL 2008	NS21		-117.12426	32.67845	2008		ICP-OES	Aluminum (Al)	Dry weight	74500		
NAVSTA TMDL 2008	NS21		-117.12426	32.67845	2008		ICP-MS	Arsenic (As)	Dry weight	13.6		
NAVSTA TMDL 2008	NS21		-117.12426	32.67845	2008		ICP/MS	Cadmium (Cd)	Dry weight	0.354		
NAVSTA TMDL 2008	NS21		-117.12426	32.67845	2008		ICP-OES	Copper (Cu)	Dry weight		mg/kg	
NAVSTA TMDL 2008	NS21		-117.12426	32.67845	2008		ICP-OES	Iron (Fe)	Dry weight	43500		
NAVSTA TMDL 2008	NS21		-117.12426	32.67845	2008		ICP-MS	Lead (Pb)	Dry weight		mg/kg	
NAVSTA TMDL 2008	NS21		-117.12426	32.67845	2008		CVAA	Mercury (Hg)	Dry weight	0.755		
NAVSTA TMDL 2008	NS21		-117.12426	32.67845	2008		ICP-OES	Zinc (Zn)	Dry weight		mg/kg	
NAVSTA TMDL 2008	NS22		-117.12487	32.67811	2008		ICP-OES	Aluminum (Al)	Dry weight	79300		
NAVSTA TMDL 2008	NS22		-117.12487	32.67811	2008		ICP-MS	Arsenic (As)	Dry weight	13.6		
NAVSTA TMDL 2008	NS22		-117.12487	32.67811	2008		ICP/MS	Cadmium (Cd)	Dry weight	0.267		
NAVSTA TMDL 2008	NS22		-117.12487	32.67811	2008		ICP-OES	Copper (Cu)	Dry weight		mg/kg	
NAVSTA TMDL 2008	NS22		-117.12487	32.67811	2008		ICP-OES	Iron (Fe)	Dry weight	51000		
NAVSTA TMDL 2008	NS22		-117.12487	32.67811	2008		ICP-MS	Lead (Pb)	Dry weight	75.4		
NAVSTA TMDL 2008	NS22		-117.12487	32.67811	2008		CVAA	Mercury (Hg)	Dry weight	0.906		
NAVSTA TMDL 2008	NS22		-117.12487	32.67811	2008		ICP-OES	Zinc (Zn)	Dry weight		mg/kg	
NAVSTA TMDL 2008	NS2233		-117.15174	32.68581	2008		ICP-OES	Aluminum (Al)	Dry weight	81000		
NAVSTA TMDL 2008	NS2233		-117.15174	32.68581	2008		ICP-MS	Arsenic (As)	Dry weight	5.28		
NAVSTA TMDL 2008	NS2233		-117.15174	32.68581	2008		ICP/MS	Cadmium (Cd)	Dry weight	0.189		
NAVSTA TMDL 2008	NS2233		-117.15174	32.68581	2008		ICP-OES	Copper (Cu)	Dry weight	47.8		
NAVSTA TMDL 2008	NS2233		-117.15174	32.68581	2008		ICP-OES	Iron (Fe)	Dry weight	24400		
NAVSTA TMDL 2008	NS2233		-117.15174	32.68581	2008		ICP-MS	Lead (Pb)	Dry weight	27.8		
NAVSTA TMDL 2008	NS2233		-117.15174	32.68581	2008		CVAA	Mercury (Hg)	Dry weight	0.282		
NAVSTA TMDL 2008	NS2233		-117.15174	32.68581	2008		ICP-OES	Zinc (Zn)	Dry weight		mg/kg	
NAVSTA TMDL 2008	NS2258		-117.13212	32.67601	2008		ICP-OES	Aluminum (Al)	Dry weight	62900		
NAVSTA TMDL 2008	NS2258		-117.13212	32.67601	2008		ICP-MS	Arsenic (As)	Dry weight	6.06		
NAVSTA TMDL 2008	NS2258		-117.13212	32.67601	2008		ICP/MS	Cadmium (Cd)	Dry weight	0.125		
NAVSTA TMDL 2008	NS2258		-117.13212	32.67601	2008		ICP-OES	Copper (Cu)	Dry weight	69.0		
NAVSTA TMDL 2008	NS2258		-117.13212	32.67601	2008		ICP-OES	Iron (Fe)	Dry weight	28200		
NAVSTA TMDL 2008	NS2258		-117.13212	32.67601	2008		ICP-MS	Lead (Pb)	Dry weight	30.7		
NAVSTA TMDL 2008	NS2258		-117.13212	32.67601	2008		CVAA	Mercury (Hg)	Dry weight	0.280		
NAVSTA TMDL 2008	NS2258		-117.13212	32.67601	2008		ICP-OES	Zinc (Zn)	Dry weight		mg/kg	
NAVSTA TMDL 2008	NS23		-117.12571	32.67761	2008		ICP-OES	Aluminum (Al)	Dry weight	78000		
NAVSTA TMDL 2008	NS23		-117.12571	32.67761	2008		ICP-MS	Arsenic (As)	Dry weight	10.7		
NAVSTA TMDL 2008	NS23		-117.12571	32.67761	2008		ICP/MS	Cadmium (Cd)	Dry weight	0.252		
NAVSTA TMDL 2008	NS23		-117.12571	32.67761	2008		ICP-OES	Copper (Cu)	Dry weight		mg/kg	
NAVSTA TMDL 2008	NS23		-117.12571	32.67761	2008		ICP-OES	Iron (Fe)	Dry weight	42000		
NAVSTA TMDL 2008	NS23		-117.12571	32.67761	2008		ICP-MS	Lead (Pb)	Dry weight	62.7		
NAVSTA TMDL 2008	NS23		-117.12571	32.67761	2008		CVAA	Mercury (Hg)	Dry weight	0.657		
NAVSTA TMDL 2008	NS23		-117.12571	32.67761	2008		ICP-OES	Zinc (Zn)	Dry weight		mg/kg	
NAVSTA TMDL 2008	NS24		-117.12689	32.67705	2008		ICP-OES	Aluminum (Al)	Dry weight	78500		1
			117.12003	02.01100	2000	1			Dif Hoight	100001	<u>a</u> /ng	·

IABLE D-1 Inorganic Parameters in Surface Sediment Response to Shipyard Sediment Site Tentative Cleanup and Abatement Order and City of San Diego Complaint United States Naval Base San Diego, California

PROJECT_NAME	SITE_NAME	SAMPLE_ID	X_COORDINATE	Y_COORDINATE	SAMPLE_DATE	SAMPLE_MEDIUM	TYPE MEASUREMENT_METHOD	PARAMETER_NAME	PROPERTY	QUANTITY UNIT	QUALIFIER
NAVSTA TMDL 2008	NS24		-117.12689	32.67705	2008		ICP-MS	Arsenic (As)	Dry weight	10.6 mg/kg	
NAVSTA TMDL 2008	NS24		-117.12689	32.67705	2008		ICP/MS	Cadmium (Cd)	Dry weight	0.669 mg/kg	
NAVSTA TMDL 2008	NS24		-117.12689	32.67705	2008		ICP-OES	Copper (Cu)	Dry weight	197 mg/kg	
NAVSTA TMDL 2008	NS24		-117.12689	32.67705	2008	ı	ICP-OES	Iron (Fe)	Dry weight	42100 mg/kg	
NAVSTA TMDL 2008	NS24		-117.12689	32.67705	2008		ICP-MS	Lead (Pb)	Dry weight	63.2 mg/kg	
NAVSTA TMDL 2008	NS24		-117.12689	32.67705	2008		CVAA	Mercury (Hg)	Dry weight	0.793 mg/kg	
NAVSTA TMDL 2008	NS24		-117.12689	32.67705	2008		ICP-OES	Zinc (Zn)	Dry weight	308 mg/kg	
NAVSTA TMDL 2008	NS25		-117.12798	32.67632	2008		ICP-OES	Aluminum (Al)	Dry weight	76800 mg/kg	
NAVSTA TMDL 2008	NS25		-117.12798	32.67632	2008		ICP-MS	Arsenic (As)	Dry weight	9.43 mg/kg	
NAVSTA TMDL 2008	NS25		-117.12798	32.67632	2008	i.	ICP/MS	Cadmium (Cd)	Dry weight	0.286 mg/kg	
NAVSTA TMDL 2008	NS25		-117.12798	32.67632	2008		ICP-OES	Copper (Cu)	Dry weight	143 mg/kg	
NAVSTA TMDL 2008	NS25		-117.12798	32.67632	2008		ICP-OES	Iron (Fe)	Dry weight	39100 mg/kg	
NAVSTA TMDL 2008	NS25		-117.12798	32.67632	2008		ICP-MS	Lead (Pb)	Dry weight	48.1 mg/kg	
NAVSTA TMDL 2008	NS25		-117.12798	32.67632	2008		CVAA	Mercury (Hg)	Dry weight	0.549 mg/kg	
NAVSTA TMDL 2008	NS25		-117.12798	32.67632	2008		ICP-OES	Zinc (Zn)	Dry weight	205 mg/kg	
NAVSTA TMDL 2008	NS26		-117.12261	32.67669	2008		ICP-OES	Aluminum (Al)	Dry weight	74200 mg/kg	
NAVSTA TMDL 2008	NS26		-117.12261	32.67669	2008		ICP-MS	Arsenic (As)	Dry weight	16.3 mg/kg	
NAVSTA TMDL 2008	NS26		-117.12261	32.67669	2008		ICP/MS	Cadmium (Cd)	Dry weight	1.26 mg/kg	
NAVSTA TMDL 2008	NS26		-117.12261	32.67669	2008		ICP-OES	Copper (Cu)	Dry weight	290 mg/kg	
NAVSTA TMDL 2008	NS26	1	-117.12261	32.67669	2008		ICP-OES	Iron (Fe)	Dry weight	40100 mg/kg	
NAVSTA TMDL 2008	NS26	1	-117.12261	32.67669	2008		ICP-MS	Lead (Pb)	Dry weight	98.7 mg/kg	
NAVSTA TMDL 2008	NS26		-117.12261	32.67669	2008		CVAA	Mercury (Hg)	Dry weight	0.542 mg/kg	
NAVSTA TMDL 2008	NS26		-117.12261	32.67669	2008		ICP-OES	Zinc (Zn)	Dry weight	410 mg/kg	
NAVSTA TMDL 2008	NS27		-117.12326	32.67639	2008		ICP-OES	Aluminum (Al)	Dry weight	80800 mg/kg	
NAVSTA TMDL 2008	NS27		-117.12326	32.67639	2008		ICP-MS	Arsenic (As)	Dry weight	12.6 mg/kg	
NAVSTA TMDL 2008	NS27		-117.12326	32.67639	2008		ICP/MS	Cadmium (Cd)	Dry weight	0.280 mg/kg	
NAVSTA TMDL 2008	NS27		-117.12326	32.67639	2008		ICP-OES	Copper (Cu)	Dry weight	292 mg/kg	
NAVSTA TMDL 2008	NS27		-117.12326	32.67639	2008		ICP-OES	Iron (Fe)	Dry weight	48000 mg/kg	
NAVSTA TMDL 2008	NS27		-117.12326	32.67639	2008		ICP-MS	Lead (Pb)	Dry weight	68.8 mg/kg	
NAVSTA TMDL 2008	NS27		-117.12326	32.67639	2008		CVAA	Mercury (Hg)	Dry weight	0.688 mg/kg	
NAVSTA TMDL 2008	NS27		-117.12326	32.67639	2008		ICP-OES	Zinc (Zn)	Dry weight	327 mg/kg	
NAVSTA TMDL 2008	NS28		-117.12320	32.67569	2008		ICP-OES	Aluminum (Al)	Dry weight	77900 mg/kg	
NAVSTA TMDL 2008	NS28		-117.12454	32.67569	2008		ICP-0ES	Arsenic (As)	Dry weight	10.2 mg/kg	
NAVSTA TMDL 2008	NS28		-117.12454	32.67569	2008		ICP/MS	Cadmium (Cd)		0.201 mg/kg	
NAVSTA TMDL 2008	NS28		-117.12454	32.67569	2008		ICP-MIS	Copper (Cu)	Dry weight Dry weight	235 mg/kg	
NAVSTA TMDL 2008	NS28		-117.12454	32.67569	2008		ICP-OES	Iron (Fe)		44700 mg/kg	
NAVSTA TMDL 2008	NS28		-117.12454	32.67569	2008		ICP-0ES	Lead (Pb)	Dry weight Dry weight	59.2 mg/kg	
NAVSTA TMDL 2008	NS28		-117.12454	32.67569	2008		CVAA		· · ·	0.567 mg/kg	
NAVSTA TMDL 2008 NAVSTA TMDL 2008	NS28		-117.12454	32.67569	2008		ICP-OES	Mercury (Hg) Zinc (Zn)	Dry weight	271 mg/kg	
NAVSTA TMDL 2008	NS28		-117.12454	32.67509	2008		ICP-OES	Aluminum (Al)	Dry weight		
NAVSTA TMDL 2008 NAVSTA TMDL 2008	NS29 NS29		-117.12566	32.67511	2008		ICP-OES ICP-MS	Arsenic (As)	Dry weight	79000 mg/kg	
NAVSTA TMDL 2008 NAVSTA TMDL 2008	NS29 NS29		-117.12566	32.67511	2008		ICP-MS ICP/MS	()	Dry weight	10.8 mg/kg	
	NS29 NS29		-117.12566	32.67511	2008		ICP/MS ICP-OES	Cadmium (Cd)	Dry weight	0.145 mg/kg	
NAVSTA TMDL 2008	NS29 NS29						ICP-OES ICP-OES	Copper (Cu)	Dry weight	231 mg/kg	+
NAVSTA TMDL 2008 NAVSTA TMDL 2008	NS29 NS29		-117.12566 -117.12566	32.67511 32.67511	2008 2008		ICP-OES ICP-MS	Iron (Fe)	Dry weight	46100 mg/kg	
NAVSTA TMDL 2008 NAVSTA TMDL 2008	NS29 NS29		-117.12566	32.67511	2008		CVAA	Lead (Pb)	Dry weight	65.1 mg/kg	+
NAVSTA TMDL 2008 NAVSTA TMDL 2008	NS29 NS29		-117.12566	32.67511	2008		ICP-OES	Mercury (Hg) Zinc (Zn)	Dry weight	0.628 mg/kg	
									Dry weight	276 mg/kg	+
NAVSTA TMDL 2008 NAVSTA TMDL 2008	NS6 NS6		-117.12836 -117.12836	32.68356 32.68356	2008 2008		ICP-OES ICP-MS	Aluminum (Al)	Dry weight	79900 mg/kg	+
							ICP-MS ICP/MS	Arsenic (As)	Dry weight	17.8 mg/kg	
NAVSTA TMDL 2008	NS6		-117.12836	32.68356	2008			Cadmium (Cd)	Dry weight	0.518 mg/kg	
NAVSTA TMDL 2008	NS6		-117.12836	32.68356	2008		ICP-OES	Copper (Cu)	Dry weight	297 mg/kg	+
NAVSTA TMDL 2008	NS6		-117.12836	32.68356	2008		ICP-OES	Iron (Fe)	Dry weight	49800 mg/kg	
NAVSTA TMDL 2008	NS6	l	-117.12836	32.68356	2008	. <u> </u>	ICP-MS	Lead (Pb)	Dry weight	103 mg/kg	+
NAVSTA TMDL 2008	NS6	1	-117.12836	32.68356	2008	·	CVAA	Mercury (Hg)	Dry weight	1.71 mg/kg	+
NAVSTA TMDL 2008	NS6	1	-117.12836	32.68356	2008	·	ICP-OES	Zinc (Zn)	Dry weight	394 mg/kg	+
NAVSTA TMDL 2008	NS7		-117.12912	32.68321	2008		ICP-OES	Aluminum (Al)	Dry weight	78700 mg/kg	+
NAVSTA TMDL 2008	NS7		-117.12912	32.68321	2008		ICP-MS	Arsenic (As)	Dry weight	16.1 mg/kg	+
NAVSTA TMDL 2008	NS7		-117.12912	32.68321	2008		ICP/MS	Cadmium (Cd)	Dry weight	0.168 mg/kg	
NAVSTA TMDL 2008	NS7		-117.12912	32.68321	2008		ICP-OES	Copper (Cu)	Dry weight	262 mg/kg	1
NAVSTA TMDL 2008	NS7		-117.12912	32.68321	2008		ICP-OES	Iron (Fe)	Dry weight	52200 mg/kg	
NAVSTA TMDL 2008	NS7		-117.12912	32.68321	2008	i -	ICP-MS	Lead (Pb)	Dry weight	77.2 mg/kg	
NAVSTA TMDL 2008	NS7		-117.12912	32.68321	2008		CVAA	Mercury (Hg)	Dry weight	0.934 mg/kg	

IABLE D-1 Inorganic Parameters in Surface Sediment Response to Shipyard Sediment Site Tentative Cleanup and Abatement Order and City of San Diego Complaint United States Naval Base San Diego, California

MACHA INDAMACHA INDAMACHA INDAMARCA INDA	PROJECT_NAME	SITE_NAME SAMP	LE_ID	X_COORDINATE	Y_COORDINATE	SAMPLE_DATE	SAMPLE_MEDIUM	TYPE	MEASUREMENT_METHOD	PARAMETER_NAME	PROPERTY	QUANTITY UNIT	QUALIFIER
NAMENAMENAMENAMECAMECAMEManeMathM	NAVSTA TMDL 2008	NS7		-117.12912	32.68321	2008				Zinc (Zn)	Dry weight	308 mg/kg	
NAMETNAMETNAMEITT 1002S2045030.00OF MALObservingDy mageDy ma	NAVSTA TMDL 2008	NS8		-117.13032	32.68249	2008			ICP-OES	Aluminum (Al)	Dry weight	72700 mg/kg	
NAMESNAMESNAME <th< td=""><td>NAVSTA TMDL 2008</td><td>NS8</td><td></td><td>-117.13032</td><td>32.68249</td><td>2008</td><td></td><td></td><td>ICP-MS</td><td>Arsenic (As)</td><td>Dry weight</td><td>14.4 mg/kg</td><td></td></th<>	NAVSTA TMDL 2008	NS8		-117.13032	32.68249	2008			ICP-MS	Arsenic (As)	Dry weight	14.4 mg/kg	
NAMEA <th< td=""><td>NAVSTA TMDL 2008</td><td>NS8</td><td></td><td>-117.13032</td><td>32.68249</td><td>2008</td><td></td><td></td><td>ICP/MS</td><td>Cadmium (Cd)</td><td>Dry weight</td><td>0.272 mg/kg</td><td></td></th<>	NAVSTA TMDL 2008	NS8		-117.13032	32.68249	2008			ICP/MS	Cadmium (Cd)	Dry weight	0.272 mg/kg	
AMOBIALange <thlange< th="">LangeLangeLange<th< td=""><td>NAVSTA TMDL 2008</td><td>NS8</td><td></td><td>-117.13032</td><td>32.68249</td><td>2008</td><td></td><td></td><td>ICP-OES</td><td>Copper (Cu)</td><td>Dry weight</td><td>212 mg/kg</td><td></td></th<></thlange<>	NAVSTA TMDL 2008	NS8		-117.13032	32.68249	2008			ICP-OES	Copper (Cu)	Dry weight	212 mg/kg	
NAMETA NAMET	NAVSTA TMDL 2008	NS8		-117.13032	32.68249	2008			ICP-OES	Iron (Fe)	Dry weight	46000 mg/kg	
NameN	NAVSTA TMDL 2008	NS8		-117.13032	32.68249	2008			ICP-MS	Lead (Pb)	Dry weight	89.7 mg/kg	
NAMEA <th< td=""><td>NAVSTA TMDL 2008</td><td>NS8</td><td></td><td>-117.13032</td><td>32.68249</td><td>2008</td><td></td><td></td><td>CVAA</td><td>Mercury (Hg)</td><td></td><td></td><td></td></th<>	NAVSTA TMDL 2008	NS8		-117.13032	32.68249	2008			CVAA	Mercury (Hg)			
NMATE <th< td=""><td>NAVSTA TMDL 2008</td><td>NS8</td><td></td><td>-117,13032</td><td>32,68249</td><td>2008</td><td></td><td></td><td>ICP-OES</td><td></td><td></td><td></td><td></td></th<>	NAVSTA TMDL 2008	NS8		-117,13032	32,68249	2008			ICP-OES				
MADEA <th< td=""><td>NAVSTA TMDL 2008</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	NAVSTA TMDL 2008												
NMX57 <th< td=""><td>NAVSTA TMDL 2008</td><td>NS9</td><td></td><td>-117.13138</td><td>32.68181</td><td>2008</td><td></td><td></td><td>ICP-MS</td><td>Arsenic (As)</td><td></td><td></td><td></td></th<>	NAVSTA TMDL 2008	NS9		-117.13138	32.68181	2008			ICP-MS	Arsenic (As)			
MACHA DACADAMADEATTATUSSAMEADMIPAIPAMay AMASTA DAC ADMNSAATTATUSSAMEADM						2008					, ,		
NAMEA <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ICP-OES</td><td></td><td></td><td></td><td></td></th<>									ICP-OES				
NACEAUNADE	NAVSTA TMDL 2008												
NAMEA <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>													
NAMENDAL2000BPSBPSInternationalBPS <td></td> <td>, ,</td> <td></td> <td></td>											, ,		
PREM X02CP17.1P17.1109P17.1109P2.077P200PAR													
PREM 3000P17-1P17-11P17-11P17-11P207P000PDASPD													
PREM 2002P17.1 <td></td> <td>1</td>													1
PREM ADOC PT/1 Intrinsion Sector ABS Coper (Cu) Drywint Main Single PREM ADOC PT/1 Intrinsion Sector BES Sector Sector Bes Sector Drywint Sector Sector Bes Sector Drywint Sector Sector Bes Sector Drywint Drywint </td <td></td> <td>+</td>													+
PREM 2022P17.1 <td></td> <td>, ,</td> <td></td> <td>+</td>											, ,		+
PHRMM 2002 PH7-1 H7-1 PH7-1													<u> </u>
PREM MOD2 P17-1 Image P17-1182 S.2.67.37 P002 P17-10 P17-1182 P17-1													<u> </u>
PREMA DO2Pr7.4Pr7.1Pr7.1Pr7.4 <td></td> <td>+</td>													+
PHSM 202 PT-2 -117.1158 32.6738 2021 AES ALMINUT (A) Dy weight Boot Type PRSM 202 PT-2 -117.1158 32.6738 2021 CPAMS Cafmann CA) Dy weight 1.38 mg/s PRSM 202 PT-2 -117.1168 32.6738 2021 CPAMS Cafmann CA) Dy weight 1.38 mg/s PRSM 202 PT-2 -117.1168 32.6738 2021 CPAMS Cafmann CA) Dy weight 3128 mg/s PRSM 202 PT-2 -117.1168 32.6738 2022 CPAMS ALB Dy weight 101													
PHEM 2002 PT-20 -117.1758 32.6738 2021 CPAMS Cadmit (C) Dy weight 10.2 might PREM 2002 PT-20 -117.1758 32.6738 2002 AES Cadmit (C) Dy weight 138 mg/s PREM 2002 PT-20 -117.1758 32.6738 2002 AES Complex Dy weight 312 mg/s PREM 2002 PT-20 -117.1758 32.6738 2002 CPAMS Land (Pb) Dy weight 312 mg/s PREM 2002 PT-20 -117.1758 32.6738 2002 CPAMS Macro (D) Dy weight 61.01 mg/s PREM 2002 PT-2 -117.1758 32.6738 2002 AES Ammun Dy weight 61.01 mg/s 1.02 mg/s 1.01 mg/s <td></td>													
PHSM 2002 P17-2 P17-111118 32 6736 2002 PCMS CarMam Coll Dywight 1.38/mg/n PHSM 2002 P17-2 -1111186 32 6736 2002 AES Coper) Dywight 3012/mg/n PHSM 2002 P17-2 -1111186 32 6736 2002 CPMS Lag Dywight 0.111mg/n PHSM 2002 P17-2 -1111186 32 6736 2002 CPMS Mercay (H) Dywight 0.328/mg/n PHSM 2002 P17-3 -1111186 32 6736 2002 CPMS Ammun (A) Dywight 66140/mg/n PHSM 2002 P17-3 -1111186 32 6736 2002 AES Carbin (G) Dywight 1.41/mg/n PHSM 2002 P17-3 -1111186 32 6736 2002 AES Carbin (G) Dywight 1.44/mg/n PHSM 2002 P17-3 -1111186 32 6736 2002 AES Carbin (G) Dywight 320/mg/n PHSM 2002 P17-3 -11111186 32 673													
PREMS 2002PT-2PT-7PT-11718632.07382002PRAMS 2002PRAMS 2002PRAMS 2002PRAMS 2002PRAMS 2002PT-2PT-2PT-11718632.07382002PRAMS 2002PRAMS 2002PT-2PT													
PREM PM2 Image: PM3 202 PM2 PM2 PM3 202 PM2 PM3 202 PM3 202 <td></td>													
PREM 2002 P1-72 I-117.1198 32.67.38 20.02 CPAMS Leaf (Phy) Dy weight 1.011 m/ng a PREM 2002 P1-72 I-117.1198 32.67.38 20.02 AES Znc (A) Dy weight 4.141 m/ng a PREM 2002 P1-73 I-117.1198 32.67.38 20.02 AES Znc (A) Dy weight 6.81.40 m/ng a PREM 2002 P1-3 I-117.1198 32.67.36 20.02 CPAMS Atminu (A) Dy weight 6.81.40 m/ng a PREM 2002 P1-3 I-117.1198 32.67.36 20.02 CPAMS Caminu (A) Dy weight 1.41.61.90 m/ng a PREM 2002 P1-3 I-117.1198 32.67.36 20.02 AES Coper (A) Dy weight 3.65.07.90 m/ng a PREM 2002 P1-3 I-117.1198 32.67.36 20.02 CVAF Mercur (H) 0.35.67.90 m/ng a PREM 2002 P1-3 I-117.1198 32.67.36 20.02 AES CAPA Mercur (H) 0.35.67.90 m/ng a PREM 2002													
PRESM 2002 P17-2 Intr 1156 32.0788 2002 PAC PAC 0.326 mpdg PRESM 2002 P17-3 Intr 1156 32.0788 2002 AES Aunum (A) Dy wight 66140 mpdg PRESM 2002 P17-3 Intr 1159 32.0736 2002 ICPANS Arenic (A) Dy wight 66140 mpdg PRESM 2002 P17-3 Intr 1159 32.0736 2002 ICPANS Capper (A) Dy wight 14.6 mpdg PRESM 2002 P17-3 Intr 1159 32.0736 2002 ICPANS Capper (A) Dy wight 14.6 mpdg PRESM 2002 P17-3 Intr 1159 32.0736 2002 ICPANS Lad (Pond) Dy wight 36520 mpdg PRESM 2002 P17-3 Intr 1159 32.0736 2002 ICPANS Lad (Pond) Dy wight 3555 mpdg PRESM 2002 P17-3 Intr 1159 32.0736 2002 ICPANS Lad (Pond) Dy wight 3555 mpdg PRESM 2002 P04-1 Intr 11516													
PHSM 2002 P17-3 P17-11158 P2.0788 P2.000 AES P2.07.00 P17-44 P1													
PRESM 2002 P173 III -11198 32.27365 2002 AES Aluminar (A) Dy weight 66140 mpkg PRESM 2002 P173 III -11198 32.87365 2002 ICP-M3G Carhium (Ci) Dy weight 14.8 PRESM 2002 PRESM 2002 P173 III -11198 32.87365 2002 AES Cope() Dy weight 142.1mg/kg III -11198 PRESM 2002 P173 III -11198 32.87365 2002 III CP-M3G LGP-M3G LGP-M3G LGP-M3G Dy weight 132.1mg/kg III mg/kg													
PRISM 2002 P17.3 I I II.171186 S.26.736 O.02 I ICP-MS Common Code Dyweight M.26.80 PRISM 2002 P17.3 I II.171186 S.26.736 200.2 ICP-MS Coper (Cu) Dyweight M.26.80 PMS PRISM 2002 P17.3 II.171186 S.26.736 200.2 ICP AES Dyweight Dyweight 36620 PMS PRISM 2002 P17.3 II.171186 S.26.736 200.2 ICP ICP MS Lad (Ph) Dyweight 30520 PMS PRISM 2002 P17.3 II.171186 S.26.736 200.2 ICP MS CAder (Marun													
PHSM 2002 P17-3 P17-11195 32.6736 2002 P17-8 Cp4rs() Dy weight 1.12 de ng/g PRISM 2002 P17-3 1.17.1195 32.6736 2002 AES Copper (0u) Dy weight 1.28 m/g PRISM 2002 P17-3 1.17.1195 32.67365 2002 ICP-MS Ladr (Pi) Dy weight 38620 m/g PRISM 2002 P17-3 1.17.11965 32.67365 2002 ICP-MS Ladr (Pi) Dy weight 0.355 m/g PRISM 2002 P17-3 1.17.11965 32.67365 2002 ICP-MS Ladr (Pi) Dy weight 0.355 m/g PRISM 2002 P04-1 1.17.12164 32.67153 2002 ICP-MS Astinium (A) Dy weight 1.20 m/g PRISM 2002 P04-1 1.17.12164 32.67153 2002 ICP-MS Astinium (A) Dy weight 1.20 m/g PRISM 2002 P04-1 1.17.12164 32.67153 2002 ICP-MS Ladr (P) Dy weight 4.52 m/g PRISM 2002													
PHSM 2002 P17.3 -117.11956 32.67365 2002 AES Copper (Cu) Dry weight 132 mg/kg PRISM 2002 P17.3 -117.11956 32.67365 2002 AES Iton (Fe) Dry weight 110 mg/kg PRISM 2002 P17.3 -117.11956 32.67365 2002 CCPAMS Lead (PO) Dry weight 0.356 mg/kg PRISM 2002 P17.3 -117.11956 32.67365 2002 AES Almonur (A) Dry weight 0.356 mg/kg PRISM 2002 P04-1 -117.12164 32.67155 2002 AES Almonur (A) Dry weight 65556 mg/kg PRISM 2002 P04-1 -117.12164 32.67155 2002 AES Copper (Cu) Dry weight 1.20 mg/kg PRISM 2002 P04-1 -117.12164 32.67155 2002 AES Copper (Cu) Dry weight 4.25 mg/kg PRISM 2002 P04-1 -117.12164 32.67155 2002 AES Copper (Cu) Dry weight 4.37 mg/kg PRISM 20													
PRISM 2002 P17.3 Int 711198 32.6786 2002 AES Int 00 (Fe) Dy weight 36820 mg/s PRISM 2002 P17.3 Int 711198 32.6786 2002 ICPAMS Lad(Pb) Dy weight 0.355 mg/s PRISM 2002 P17.3 Int 711198 32.6786 2002 ICPAMS Mercury (Hg) Dy weight 0.355 mg/s PRISM 2002 P04.1 Int 7112164 32.6785 2002 AES Auminum (A) Dy weight 65655 mg/s PRISM 2002 P04.1 Int 7112164 32.67153 2002 ICPAMS Arsenic (As) Dy weight 65695 mg/s PRISM 2002 P04.1 Int 7112164 32.67153 2002 ICPAMS Capper (O) Dy weight 92.81 mg/s PRISM 2002 P04.1 Int 7112164 32.67153 2002 AES Ion (Fe) Dy weight 92.81 mg/s PRISM 2002 P04.1 Int 71.2164 32.67153 2002 AES Ion (Fe) Dy weight 92.81 mg/s PRISM 2002<													
PRISM 2002 P17-3 -117.1195 32.67365 2002 CPLMS Lead (Ph) Dy weight 1101 mg/kg PRISM 2002 P17-3 -117.1195 32.67365 2002 CVAF Merruy (Hg) Dy weight 32.57365 2002 PRISM 2002 P04-1 -117.12164 32.67365 2002 AES ALminur (A) Dy weight 32.87365 2002 PRISM 2002 P04-1 -117.2164 32.67153 2002 CPLMS AeS Alminur (A) Dy weight 12.9 mg/kg PRISM 2002 P04-1 -117.2164 32.67153 2002 CPLMS Cadmium (C) Dy weight 12.9 mg/kg PRISM 2002 P04-1 -117.12164 32.67153 2002 AES Codmiun (C) Dy weight 32.8 mg/kg PRISM 2002 P04-1 -117.12164 32.67153 2002 AES Ion (Fe) Dy weight 34.8 mg/kg PRISM 2002 P04-1 -117.12164 32.67152 2002 AES Aiminur, A) Dy weight 44.													
PRISM 2002 P17-3 Image: P17.11955 3.2.8.7.855 2.002 CVAF Mercury (Hg) Dyweight 0.385 [mg/kg] PRISM 2002 P04-1 -117.1295 3.2.8.7.855 2002 AES Zinc (Zn) Dry weight 65556 [mg/kg] PRISM 2002 P04-1 -117.12164 3.2.6.7153 2002 Image: P17.456 Arsen: (As) Dry weight 12.9 [mg/kg] PRISM 2002 P04-1 -117.12164 3.2.6.7153 2002 Image: P17.456 Cadmium (Cu) Dry weight 12.9 [mg/kg] PRISM 2002 P04-1 -117.12164 3.2.6.7153 2002 Image: P17.456 Cadmium (Cu) Dry weight 12.9 [mg/kg] PRISM 2002 P04-1 -117.12164 3.2.67153 2002 Image: P17.456 2.2.8 [mg/kg] 2.2.7 [mg/kg] PRISM 2002 P04-1 -117.12164 3.2.67153 2002 Image: P17.456 3.2.67163 P17.456 AFS Image: P17.456 3.2.67163 P17.456 3.2.6715 P17.456 3.2.6715 P17.456 2.2.67153 P17.456													
PRISM 2002 P17.3 -117.12164 32.67365 2002 AES Zinc Zn Dy weight 52.9 PRISM 2002 PO4-1 -117.12164 32.67155 2002 AES Aumin(A) Dy weight 12.9 Mg/g PRISM 2002 PO4-1 -117.12164 32.67153 2002 CPMS Cadmiun (Cd) Dy weight 12.9 mg/g Imaget Aumin Imaget Aumin Dy weight 12.9 Mg/g Imaget Aumin Dy weight 12.9 Mg/g Imaget Aumin Imaget Aumin Dy weight 12.9 Mg/g Imaget Aumin Dy weight 14.9 Mg/g Imaget Aumin Imaget Aumin Imaget Aumin ImagetA													
PRISM 2002 PO-4.1 -1.17.12164 32.627153 2002 AES Aluminum (A) Dry weight 65585 mg/kg PRISM 2002 PO-4.1 -1.17.12164 32.67153 2002 ICP-MS Astenic (A) Dry weight 1.2.9 mg/kg PRISM 2002 PO-1 -1.17.12164 32.67153 2002 ICP-MS Cadmium (C4) Dry weight 1.2.9 mg/kg PRISM 2002 PO-1 -1.17.12164 32.67153 2002 AES Ton (Fe) Dry weight 42.8 mg/kg PRISM 2002 PO-1 -1.17.12164 32.67153 2002 AES Ton (Fe) Dry weight 43.2 47.7 mg/kg PRISM 2002 PO-1 -1.17.12164 32.67153 2002 CVAF Mercury (Hg) Dry weight 47.4 mg/kg PRISM 2002 PO-1 -1.17.12164 32.67152 2002 AES Aluminum (A) Dry weight 47.4 mg/kg PRISM 2002 PO-4 -1.17.12164 32.67152 2002 AES Aluminum (A) Dry weight 47.4 mg/kg											, ,		
PRISM 2002 P04-1 -117.12164 32.67153 2002 ICP-MS Arsenic (As) Dry weight 12.9 mg/kg PRISM 2002 P04-1 -117.12164 32.67153 2002 ICP-MS Cadhum (Cd) Dry weight 1.2.0 mg/kg PRISM 2002 P04-1 -117.12164 32.67153 2002 ICP-MS Cadhum (Cd) Dry weight 32.427 mg/kg PRISM 2002 P04-1 -117.12164 32.67153 2002 ICP-MS Lafe (Pb) Dry weight 32.427 mg/kg PRISM 2002 P04-1 -117.12164 32.67153 2002 ICP-MS Lafe (Pb) Dry weight 32.427 mg/kg PRISM 2002 P04-1 -117.12164 32.67153 2002 ICP-MS Lafe (Pb) Dry weight 4.57 mg/kg PRISM 2002 P04-1 -117.12164 32.67152 2002 ICP-MS Arsenic (As) Dry weight 1414 mg/kg PRISM 2002 P04-2 -117.12164 32.67152 2002 ICP-MS Cadmun (Cd) Dry weight 0.652 mg/kg <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>													
PRISM 2002 PO4-1 -117.12164 32.67153 2002 ICP-MS Cadmium (Cd) Dry weight 1.20 mg/kg PRISM 2002 PO4-1 -117.12164 32.67153 2002 AES Copper (Cu) Dry weight 32.87 mg/kg PRISM 2002 PO4-1 -117.12164 32.67153 2002 AES Iron (Fe) Dry weight 32.87 mg/kg PRISM 2002 PO4-1 -117.12164 32.67153 2002 CVAF Mercury (Hg) Dry weight 45.7 mg/kg PRISM 2002 PO4-1 -117.12164 32.67153 2002 CVAF Mercury (Hg) Dry weight 45.7 mg/kg PRISM 2002 PO4-1 -117.12164 32.67153 2002 AES Zinc Zin Dry weight 74.97 mg/kg PRISM 2002 PO4-2 -117.12164 32.67152 2002 AES Aluminum (A) Dry weight 74.997 mg/kg PRISM 2002 PO4-2 -117.12164 32.67152 2002 AES Cadminu (Cd) Dry weight 0.652 mg/kg													
PRISM 2002 PO4-1 -117.12164 32.67153 2002 AES Copper (Cu) Dry weight 92.8 mg/kg PRISM 2002 PO4-1 -117.12164 32.67153 2002 AES Iron (Fe) Dry weight 32.427 mg/kg PRISM 2002 PO4-1 -117.12164 32.67153 2002 ICP-MS Lead (Pb) Dry weight 45.77 mg/kg PRISM 2002 PO4-1 -117.12164 32.67153 2002 ICP-MS Lead (Pb) Dry weight 45.77 mg/kg PRISM 2002 PO4-1 -117.12164 32.67153 2002 AES Zinc (Zn) Dry weight 74.97 mg/kg PRISM 2002 PO4-2 -117.12164 32.67152 2002 AES Alumin (A) Dry weight 74.97 mg/kg PRISM 2002 PO4-2 -117.12164 32.67152 2002 AES Copper (Cu) Dry weight 14.6 mg/kg PRISM 2002 PO4-2 -117.12164 32.67152 2002 AES Copper (Cu) Dry weight 14.6 mg/kg PRIS													+
PRISM 2002 PO4-1 -117.12164 32.67153 2002 AES Iron (Fe) Dry weight 32.427 mg/kg PRISM 2002 PO4-1 -117.12164 32.67153 2002 ICP-MS Lead (Pb) Dry weight 45.7 mg/kg PRISM 2002 PO4-1 -117.12164 32.67153 2002 CVAF Mercury (Hg) Dry weight 45.7 mg/kg PRISM 2002 PO4-1 -117.12164 32.67153 2002 AES Zinc (Zn) Dry weight 74.9 mg/kg PRISM 2002 PO4-2 -117.12164 32.67152 2002 AES Aluminum (A) Dry weight 74.97 mg/kg PRISM 2002 PO4-2 -117.12154 32.67152 2002 AES Aluminum (A) Dry weight 0.62 mg/kg J PRISM 2002 PO4-2 -117.12154 32.67152 2002 AES Copper (Cu) Dry weight 0.62 mg/kg J PRISM 2002 PO4-2 -117.12154 32.67152				-									+
PRISM 2002 PO4-1 -117.12164 32.67153 2002 ICP-MS Lead (Pb) Dry weight 45.7 mg/kg PRISM 2002 PO4-1 -117.12164 32.67153 2002 CVAF Mercury (Hg) Dry weight 0.391 mg/kg PRISM 2002 PO4-1 -117.12164 32.67153 2002 AES Zinc (Zn) Dry weight 1.74 74 mg/kg PRISM 2002 PO4-2 -117.12164 32.67152 2002 AES Aluminum (A) Dry weight 1.74 mg/kg PRISM 2002 PO4-2 -117.12164 32.67152 2002 AES Auminum (A) Dry weight 1.46 mg/kg PRISM 2002 PO4-2 -117.12164 32.67152 2002 AES Copper (Cu) Dry weight 0.652 mg/kg ICP-MS Cadmium (Cd) Dry weight 0.662 mg/kg ICP-MS Cadmium (Cd) Dry weight 0.662 mg/kg ICP-MS Cadmium (Cd) Dry weight 0.662 mg/kg ICP-MS											, ,		+
PRISM 2002 P04.1 -117.12164 32.67153 2002 CVAF Mercury (Hg) Dry weight 0.391 mg/kg PRISM 2002 P04.1 -117.12164 32.67153 2002 AES Zinc (Zn) Dry weight 7.149 mg/kg PRISM 2002 P04-2 -117.12154 32.67152 2002 AES Aluminum (Al) Dry weight 7.499 mg/kg PRISM 2002 P04-2 -117.12154 32.67152 2002 ICP-MS Arsenic (As) Dry weight 1.4.9 mg/kg J PRISM 2002 P04-2 -117.12154 32.67152 2002 ICP-MS Cadmim (Cd) Dry weight 0.652 mg/kg J PRISM 2002 P04-2 -117.12154 32.67152 2002 AES Cadmim (Cd) Dry weight 0.652 mg/kg J PRISM 2002 P04-2 -117.12154 32.67152 2002 AES Iron (Fe) Dry weight 68.9 mg/kg I PRISM 2002 P04-2													+
PRISM 2002 PO4.1 -117.12164 32.67153 2002 AES Zinc (Zn) Dry weight 174 mg/kg PRISM 2002 PO4-2 -117.12154 32.67152 2002 AES Aluminum (A) Dry weight 74.997 mg/kg PRISM 2002 PO4-2 -117.12154 32.67152 2002 ICP-MS Arsenic (As) Dry weight 16.6 mg/kg ICP-MS PRISM 2002 PO4-2 -117.12154 32.67152 2002 ICP-MS Arsenic (As) Dry weight 0.62 mg/kg ICP-MS PRISM 2002 PO4-2 -117.12154 32.67152 2002 AES Copper (Cu) Dry weight 0.65 mg/kg ICP-MS PRISM 2002 PO4-2 -117.12154 32.67152 2002 AES Copper (Cu) Dry weight 0.65 mg/kg ICP-MS PRISM 2002 PO4-2 -117.12154 32.67152 2002 ICP-MS Lead (Pb) Dry weight 0.652 mg/kg ICP-MS PRISM 2002 PO4-2 -117.12154 32.67152 2002 IC													+
PRISM 2002 P04-2 -117.12154 32.67152 2002 AES Aluminum (Al) Dry weight 74997 mg/kg PRISM 2002 P04-2 -117.12154 32.67152 2002 ICP-MSS Arsenic (As) Dry weight 14.6 mg/kg ICP-MSS Arsenic (As) Dry weight 14.6 mg/kg ICP-MSS Cadmium (Cd) Dry weight 17.9 mg/kg ICP-MSS Cadmium (Cd) Dry weight 17.9 mg/kg ICP-MSS Lead (Pb) Dry weight 167.9 mg/kg ICP-MSS Lead (Pb) Dry weight 68.6.9 mg/kg ICP-MSS Lead (Pb) Dry weight 68.6.9 mg/kg ICP-MS Lead (Pb) Dry weight 67.6.9													+
PRISM 2002 PO4-2 -117.12154 32.67152 2002 ICP-MS Arsenic (As) Dry weight 14.6 mg/kg PRISM 2002 PO4-2 -117.12154 32.67152 2002 ICP-MS Cadmium (Cd) Dry weight 0.652 mg/kg J PRISM 2002 PO4-2 -117.12154 32.67152 2002 AES Copper (Cu) Dry weight 0.652 mg/kg J PRISM 2002 PO4-2 -117.12154 32.67152 2002 AES Copper (Cu) Dry weight 68.9 mg/kg I PRISM 2002 PO4-2 -117.12154 32.67152 2002 AES Iron (Fe) Dry weight 68.9 mg/kg I PRISM 2002 PO4-2 -117.12154 32.67152 2002 CVAF Mercury (Hg) Dry weight 68.9 mg/kg I 90.9 PIX weight 0.625 mg/kg I 90.9 90.9 90.9 90.9 90.9 90.9 90.9 90.9 90.9 90.9											, ,		<u> </u>
PRISM 2002 PO4-2 -117.12154 32.67152 2002 ICP-MS Cadmium (Cd) Dry weight 0.662 mg/kg J PRISM 2002 PO4-2 -117.12154 32.67152 2002 AES Copper (Cu) Dry weight 179 mg/kg PRISM 2002 PO4-2 -117.12154 32.67152 2002 AES Copper (Cu) Dry weight 6634 mg/kg PRISM 2002 PO4-2 -117.12154 32.67152 2002 CASS Iron (Fe) Dry weight 6634 mg/kg PRISM 2002 PO4-2 -117.12154 32.67152 2002 CVAF Mercury (Hg) Dry weight 0.652 mg/kg PRISM 2002 PO4-2 -117.12154 32.67152 2002 CVAF Mercury (Hg) Dry weight 0.652 mg/kg PRISM 2002 PO4-2 -117.12154 32.67152 2002 AES Zinc (Zn) Dry weight 0.622 mg/kg PRISM													
PRISM 2002 P0-2 -117.12154 32.67152 2002 AES Copper (Cu) Dry weight 179 mg/kg Pmg/kg PRISM 2002 P0-42 -117.12154 32.67152 2002 AES Kong PC Dry weight 46734 mg/kg AES PRISM 2002 P0-42 -117.12154 32.67152 2002 ICP-MS Lead (Pb) Dry weight 66.93 mg/kg AES PRISM 2002 P0-42 -117.12154 32.67152 2002 ICP-MS Lead (Pb) Dry weight 0.652 mg/kg AES PRISM 2002 P0-42 -117.12154 32.67152 2002 ICP-MS Mercury (Hg) Dry weight 0.652 mg/kg AES PRISM 2002 P0-42 -117.12164 32.67152 2002 AES Zinc (Zn) Dry weight 0.622 mg/kg AES PRISM 2002 P0-43 -117.12162 32.67162 2002 AES Airca (As) Dry weight 7.2390 mg/kg AES PRISM 2002 P0-43 -117.12162 32.67160													<u> </u>
PRISM 2002 P0-2 -117.12154 32.67152 2002 AES Iron (Fe) Dry weight 46734 mg/kg Prism 2002 PRISM 2002 PO-2 -117.12154 32.67152 2002 ICP-MS Lead (Pb) Dry weight 68.69 mg/kg ICP-MS Lead (Pb) Dry weight 67.67 mg/kg ICP-MS Lead (Pb) Dry weight 67.68 mg/kg <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>J</td></td<>													J
PRISM 2002 P04-2 -117.12154 32.67162 2002 ICP-MS Lead (Pb) Dry weight 68.9 mg/kg PRISM 2002 P04-2 -117.12154 32.67152 2002 CVAF Mercury (Hg) Dry weight 0.652 mg/kg PRISM 2002 P04-2 -117.12154 32.67152 2002 CVAF Mercury (Hg) Dry weight 0.652 mg/kg PRISM 2002 P04-3 -117.12154 32.67152 2002 AES Aluminum (Al) Dry weight 723 mg/kg PRISM 2002 P04-3 -117.12162 32.67160 2002 AES Aluminum (Al) Dry weight 7239 mg/kg PRISM 2002 P04-3 -117.12162 32.67160 2002 ICP-MS Arsenic (As) Dry weight 0.268 mg/kg ICP-MS Arsenic (As) Dry weight 0.268 mg/kg ICP-MS Cadmium (Cd) Dry weight 0.268 mg/kg ICP-MS Cadmium (Cd) Dry weight 0.268 mg/kg ICP-MS Cadmi													
PRISM 2002 P04-2 -117.12154 32.67152 2002 CVAF Mercury (Hg) Dry weight 0.662 mg/kg PRISM 2002 P04-2 -117.12154 32.67152 2002 AES Zinc (Zn) Dry weight 723 mg/kg PRISM 2002 P04-3 -117.12162 32.67160 2002 AES Aluminum (A) Dry weight 72390 mg/kg PRISM 2002 P04-3 -117.12162 32.67160 2002 AES Aluminum (A) Dry weight 72390 mg/kg PRISM 2002 P04-3 -117.12162 32.67160 2002 ICP-MS Arsenic (As) Dry weight 0.688 mg/kg J PRISM 2002 P04-3 -117.12162 32.67160 2002 ICP-MS Cadmium (Cd) Dry weight 0.688 mg/kg J PRISM 2002 P04-3 -117.12162 32.67160 2002 ICP-MS Cadmium (Cd) Dry weight 0.688 mg/kg J PRISM 2002 P04-3 -117.12162 32.67160 2002 AES Cadmium (Cd)													<u> </u>
PRISM 2002 PO4-2 -117.12154 32.67152 2002 AES Zinc (Zn) Dry weight 273 mg/kg PRISM 2002 PO4-3 -117.12162 32.67162 2002 AES Aluminum (A) Dry weight 72390 mg/kg PCI-3900 mg/kg PRISM 2002 PO4-3 -117.12162 32.67160 2002 AES Aluminum (A) Dry weight 72390 mg/kg PCI-3900 mg/kg PCI-3	PRISM 2002										, v		<u> </u>
PRISM 2002 PO4-3 -117.12162 32.67160 2002 AES Aluminum (Al) Dry weight 72390 mg/kg PRISM 2002 PO4-3 -117.12162 32.67160 2002 ICP-MS Arsenic (As) Dry weight 10.63 mg/kg ICP-MS PRISM 2002 PO4-3 -117.12162 32.67160 2002 ICP-MS Cadmium (Cd) Dry weight 10.63 mg/kg ICP-MS PRISM 2002 PO4-3 -117.12162 32.67160 2002 ICP-MS Capper (Cu) Dry weight 167 mg/kg	PRISM 2002												<u> </u>
PRISM 2002 PO4-3 -117.12162 32.67160 2002 ICP-MS Arsenic (As) Dry weight 16.3 mg/kg PRISM 2002 PO4-3 -117.12162 32.67160 2002 ICP-MS Cadmium (Cd) Dry weight 0.268 mg/kg J PRISM 2002 PO4-3 -117.12162 32.67160 2002 ICP-MS Cadmium (Cd) Dry weight 0.268 mg/kg J PRISM 2002 PO4-3 -117.12162 32.67160 2002 AES Copper (Cu) Dry weight 167 mg/kg	PRISM 2002												
PRISM 2002 PO4-3 -117.12162 32.67160 2002 ICP-MS Cadmium (Cd) Dry weight 0.268 [mg/kg J PRISM 2002 PO4-3 -117.12162 32.67160 2002 AES Copper (Cu) Dry weight 167 [mg/kg J	PRISM 2002										Dry weight		
PRISM 2002 PO4-3 -117.12162 32.67160 2002 AES Copper (Cu) Dry weight 167 mg/kg	PRISM 2002										Dry weight		
	PRISM 2002	PO4-3		-117.12162	32.67160	2002				Cadmium (Cd)	Dry weight	0.268 mg/kg	J
PQ4-3 -117.12162 32.67160 2002 AES Iron (Fe) Dry weight 44505 mg/kg	PRISM 2002]
	PRISM 2002	PO4-3		-117.12162	32.67160	2002			AES	Iron (Fe)	Dry weight	44505 mg/kg	

PROJECT_NAME	SITE_NAME	SAMPLE_ID X_COORDINATE	Y_COORDINATE	SAMPLE_DATE	SAMPLE_MEDIUM	TYPE	MEASUREMENT_METHOD	PARAMETER_NAME	PROPERTY	QUANTITY UNIT	QUALIFIER
PRISM 2002	PO4-3	-117.12162	32.67160	2002			ICP-MS	Lead (Pb)	Dry weight	61.0 mg/kg	
PRISM 2002	PO4-3	-117.12162	32.67160	2002			CVAF	Mercury (Hg)	Dry weight	0.607 mg/kg	
PRISM 2002	PO4-3	-117.12162	32.67160	2002			AES	Zinc (Zn)	Dry weight	242 mg/kg	
PWC Graving Dock Naval Station NPDES Permit	GVD-S01	-117.12499	32.67971	1993-2009		Grab		Arsenic (As)	Dry weight	13.0 mg/kg	
PWC Graving Dock Naval Station NPDES Permit	GVD-S01	-117.12499	32.67971	1993-2009		Grab		Cadmium (Cd)	Dry weight	1.5 mg/kg	
PWC Graving Dock Naval Station NPDES Permit	GVD-S01	-117.12499	32.67971	1993-2009		Grab		Copper (Cu)	Dry weight	378.9 mg/kg	
PWC Graving Dock Naval Station NPDES Permit	GVD-S01	-117.12499	32.67971	1993-2009		Grab		Lead (Pb)	Dry weight	130.3 mg/kg	
PWC Graving Dock Naval Station NPDES Permit	GVD-S01	-117.12499	32.67971	1993-2009		Grab		Mercury (Hg)	Dry weight	1.3 mg/kg	
PWC Graving Dock Naval Station NPDES Permit	GVD-S01	-117.12499	32.67971	1993-2009		Grab		Zinc (Zn)	Dry weight	448.1 mg/kg	
PWC Graving Dock Naval Station NPDES Permit	GVD-S02	-117.12803	32.67751	1993-2009		Grab		Arsenic (As)	Dry weight	9.2 mg/kg	
PWC Graving Dock Naval Station NPDES Permit	GVD-S02	-117.12803	32.67751	1993-2009		Grab		Cadmium (Cd)	Dry weight	1.1 mg/kg	
PWC Graving Dock Naval Station NPDES Permit	GVD-S02	-117.12803	32.67751	1993-2009		Grab		Copper (Cu)	Dry weight	44.9 mg/kg	
PWC Graving Dock Naval Station NPDES Permit	GVD-S02	-117.12803	32.67751	1993-2009		Grab		Lead (Pb)	Dry weight	250.1 mg/kg	
PWC Graving Dock Naval Station NPDES Permit	GVD-S02	-117.12803	32.67751	1993-2009		Grab		Mercury (Hg)	Dry weight	1.0 mg/kg	
PWC Graving Dock Naval Station NPDES Permit	GVD-S02	-117.12803	32.67751	1993-2009		Grab		Zinc (Zn)	Dry weight	326.1 mg/kg	
PWC Graving Dock Naval Station NPDES Permit	GVD-S03	-117.12660	32.67837	1993-2009		Grab		Arsenic (As)	Dry weight	8.1 mg/kg	
PWC Graving Dock Naval Station NPDES Permit	GVD-S03	-117.12660	32.67837	1993-2009		Grab		Cadmium (Cd)	Dry weight	1.1 mg/kg	
PWC Graving Dock Naval Station NPDES Permit	GVD-S03	-117.12600	32.67837	1993-2009		Grab		Copper (Cu)	Dry weight	293.2 mg/kg	
PWC Graving Dock Naval Station NPDES Permit	GVD-303 GVD-S03	-117.12660	32.67837	1993-2009		Grab		Lead (Pb)	Dry weight	177.7 mg/kg	+
PWC Graving Dock Naval Station NPDES Permit PWC Graving Dock Naval Station NPDES Permit	GVD-S03 GVD-S03	-117.12660	32.67837	1993-2009		Grab		Mercury (Hg)	Dry weight	1.1 mg/kg	+
PWC Graving Dock Naval Station NPDES Permit PWC Graving Dock Naval Station NPDES Permit	GVD-S03 GVD-S03	-117.12660	32.67837	1993-2009		Grab		Zinc (Zn)	Dry weight		+
PWC Graving Dock Naval Station NPDES Permit PWC Graving Dock Naval Station NPDES Permit	GVD-S03 GVD-S04	-117.12660 -117.12463	32.67837	1993-2009		Grab Grab		Zinc (Zn) Arsenic (As)	Dry weight Dry weight	319.5 mg/kg 12.7 mg/kg	+
		-117.12463									
PWC Graving Dock Naval Station NPDES Permit	GVD-S04		32.67929	1993-2009		Grab		Cadmium (Cd)	Dry weight	5.8 mg/kg	
PWC Graving Dock Naval Station NPDES Permit	GVD-S04	-117.12463	32.67929	1993-2009		Grab		Copper (Cu)	Dry weight	456.1 mg/kg	
PWC Graving Dock Naval Station NPDES Permit	GVD-S04	-117.12463	32.67929	1993-2009		Grab		Lead (Pb)	Dry weight	97.4 mg/kg	
PWC Graving Dock Naval Station NPDES Permit	GVD-S04	-117.12463	32.67929	1993-2009		Grab		Mercury (Hg)	Dry weight	0.9 mg/kg	
PWC Graving Dock Naval Station NPDES Permit	GVD-S04	-117.12463	32.67929	1993-2009		Grab		Zinc (Zn)	Dry weight	411.3 mg/kg	
PWC Graving Dock Naval Station NPDES Permit	GVD-S06	-117.12496	32.67818	1993-2009		Grab		Arsenic (As)	Dry weight	10.4 mg/kg	
PWC Graving Dock Naval Station NPDES Permit	GVD-S06	-117.12496	32.67818	1993-2009		Grab		Cadmium (Cd)	Dry weight	1.1 mg/kg	
PWC Graving Dock Naval Station NPDES Permit	GVD-S06	-117.12496	32.67818	1993-2009		Grab		Copper (Cu)	Dry weight	351.6 mg/kg	
PWC Graving Dock Naval Station NPDES Permit	GVD-S06	-117.12496	32.67818	1993-2009		Grab		Lead (Pb)	Dry weight	72.4 mg/kg	
PWC Graving Dock Naval Station NPDES Permit	GVD-S06	-117.12496	32.67818	1993-2009		Grab		Mercury (Hg)	Dry weight	0.8 mg/kg	
PWC Graving Dock Naval Station NPDES Permit	GVD-S06	-117.12496	32.67818	1993-2009		Grab		Zinc (Zn)	Dry weight	306.1 mg/kg	
PWC Graving Dock Naval Station NPDES Permit	STD-GVD-S01	-117.12425	32.67877	1993-2009		Grab		Arsenic (As)	Dry weight	14.5 mg/kg	
PWC Graving Dock Naval Station NPDES Permit	STD-GVD-S01	-117.12425	32.67877	1993-2009		Grab		Cadmium (Cd)	Dry weight	1.2 mg/kg	
PWC Graving Dock Naval Station NPDES Permit	STD-GVD-S01	-117.12425	32.67877	1993-2009		Grab		Copper (Cu)	Dry weight	415.3 mg/kg	
PWC Graving Dock Naval Station NPDES Permit	STD-GVD-S01	-117.12425	32.67877	1993-2009		Grab		Lead (Pb)	Dry weight	80.5 mg/kg	
PWC Graving Dock Naval Station NPDES Permit	STD-GVD-S01	-117.12425	32.67877	1993-2009		Grab		Mercury (Hg)	Dry weight	0.8 mg/kg	
PWC Graving Dock Naval Station NPDES Permit	STD-GVD-S01	-117.12425	32.67877	1993-2009		Grab		Zinc (Zn)	Dry weight	385.9 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-1	-117.12985	32.67933	16-Jun-95	Sediment	Discrete Sample	Crecelius,1993X	Arsenic (As)	Dry weight	11.9 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-1	-117.12985	32.67933	16-Jun-95	Sediment	Discrete Sample	GFAA	Cadmium (Cd)	Dry weight	0.69 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-1	-117.12985	32.67933	16-Jun-95	Sediment	Discrete Sample	XRF	Copper (Cu)	Dry weight	220 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-1	-117.12985	32.67933	16-Jun-95	Sediment	Discrete Sample	XRF	Iron (Fe)	Dry weight	41700 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-1	-117.12985	32.67933	16-Jun-95	Sediment	Discrete Sample	XRF	Lead (Pb)	Dry weight	97.9 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-1	-117.12985	32.67933	16-Jun-95	Sediment	Discrete Sample	CVAF	Mercury (Hg)	Dry weight	1.29 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-1	-117.12985	32.67933	16-Jun-95	Sediment	Discrete Sample	XRF	Zinc (Zn)	Dry weight	386 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-1R	-117.12985	32.67933	16-Jun-95	Sediment	Discrete Sample	XRF	Arsenic (As)	Dry weight	18.8 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-1R	-117.12985	32.67933	16-Jun-95	Sediment	Discrete Sample	XRF	Arsenic (As)	Dry weight	20 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-1R	-117.12985	32.67933	16-Jun-95	Sediment	Discrete Sample	GFAA	Cadmium (Cd)	Dry weight	0.74 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-1R	-117.12985	32.67933	16-Jun-95	Sediment	Discrete Sample	GFAA	Cadmium (Cd)	Dry weight	0.97 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-1R	-117.12985	32.67933	16-Jun-95	Sediment	Discrete Sample	XRF	Copper (Cu)	Dry weight	214 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-1R	-117.12985	32.67933	16-Jun-95	Sediment	Discrete Sample	XRF	Copper (Cu)	Dry weight	314 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-1R	-117.12985	32.67933	16-Jun-95	Sediment	Discrete Sample	XRF	Iron (Fe)	Dry weight	44600 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-1R	-117.12985	32.67933	16-Jun-95	Sediment	Discrete Sample	XRF	Iron (Fe)	Dry weight	45400 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-1R	-117.12985	32.67933	16-Jun-95	Sediment	Discrete Sample	XRF	Lead (Pb)	Dry weight	122 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-1R	-117.12985	32.67933	16-Jun-95	Sediment	Discrete Sample	XRF	Lead (Pb)	Dry weight	170 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-1R	-117.12985	32.67933	16-Jun-95	Sediment	Discrete Sample	CVAF	Mercury (Hg)	Dry weight	1.04 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-1R	-117.12985	32.67933	16-Jun-95	Sediment	Discrete Sample	CVAF	Mercury (Hg)	Dry weight	1.18 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-1R	-117.12985	32.67933	16-Jun-95	Sediment	Discrete Sample	XRF	Zinc (Zn)	Dry weight	499 mg/kg	+
Sediment Quality Characterization Naval Station San Diego	NSB-1R	-117.12985	32.67933	16-Jun-95	Sediment	Discrete Sample	XRF	Zinc (Zn)	Dry weight	564 mg/kg	+
Sediment Quality Characterization Naval Station San Diego	NSB1-S-R2	-117.12985	32.67933	03-Sep-97	Sediment	Discrete Sample	Perkin5100	Arsenic (As)	Dry weight	14.7 mg/kg	+
Sediment Quality Characterization Naval Station San Diego		-117.12985	32.67933	03-Sep-97		Discrete Sample	Perkin5100 Perkin5100	Cadmium (Cd)	Dry weight	1.56 mg/kg	+
ocument addity enaracterization wavar station Salt Diego	11001-0-112	-117.12983	32.07933	00-0ep-07	ocument	Disorete Gample	r chang 100	Gaamum (Gu)	Dry weight	1.50 mg/kg	

PROJECT NAME	SITE NAME	SAMPLE ID	X COORDINATE	Y COORDINATE	SAMPLE DATE	SAMPLE MEDIUM	TYPE	MEASUREMENT METHOD	PARAMETER NAME	PROPERTY	QUANTITY UNIT	QUALIFIER
Sediment Quality Characterization Naval Station San Diego	_		-117.12985	32.67933	03-Sep-97	Sediment	Discrete Sample	FAAS	Copper (Cu)	Dry weight	270 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB1-S-R2		-117.12985	32.67933	03-Sep-97	Sediment	Discrete Sample	FAAS	Iron (Fe)	Dry weight	45700 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB1-S-R2		-117.12985	32.67933	03-Sep-97	Sediment	Discrete Sample	FAAS	Lead (Pb)	Dry weight	90.7 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB1-S-R2		-117.12985	32.67933	03-Sep-97	Sediment	Discrete Sample	CVAA	Mercury (Hg)	Dry weight	1.168 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB1-S-R2		-117.12985	32.67933	03-Sep-97	Sediment	Discrete Sample	FAAS	Zinc (Zn)	Dry weight	579 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-2		-117.13298	32.67208	16-Jun-95	Sediment	Discrete Sample	XRF	Arsenic (As)	Dry weight	7.5 mg/kg	
Sediment Quality Characterization Naval Station San Diego			-117.13298	32.67208	16-Jun-95	Sediment	Discrete Sample	GFAA	Cadmium (Cd)	Dry weight	0.2 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-2		-117.13298	32.67208	16-Jun-95	Sediment	Discrete Sample	XRF	Copper (Cu)	Dry weight	83.4 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-2		-117.13298	32.67208	16-Jun-95	Sediment	Discrete Sample	XRF	Iron (Fe)	Dry weight	29400 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-2		-117.13298	32.67208	16-Jun-95	Sediment	Discrete Sample	XRF	Lead (Pb)	Dry weight	38.3 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-2		-117.13298	32.67208	16-Jun-95	Sediment		CVAF	Mercury (Hg)		0.482 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-2		-117.13298	32.67208	16-Jun-95	Sediment	Discrete Sample Discrete Sample	XRF	Zinc (Zn)	Dry weight Dry weight	161 mg/kg	
, , , , , , , , , , , , , , , , , , , ,	NSB-3		-117.13298	32.67990	16-Jun-95			XRF		, ,		
Sediment Quality Characterization Naval Station San Diego Sediment Quality Characterization Naval Station San Diego				32.67990	16-Jun-95 16-Jun-95	Sediment Sediment	Discrete Sample	XRF	Arsenic (As)	Dry weight	22.7 mg/kg	
, , , , , , , , , , , , , , , , , , , ,	NSB-3		-117.12535				Discrete Sample	GFAA	Arsenic (As)	Dry weight	29.9 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-3		-117.12535	32.67990	16-Jun-95	Sediment	Discrete Sample		Cadmium (Cd)	Dry weight	1.33 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-3		-117.12535	32.67990	16-Jun-95	Sediment	Discrete Sample	GFAA	Cadmium (Cd)	Dry weight	9.2 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-3		-117.12535	32.67990	16-Jun-95	Sediment	Discrete Sample	XRF	Copper (Cu)	Dry weight	485 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-3	+	-117.12535	32.67990	16-Jun-95	Sediment	Discrete Sample	XRF	Copper (Cu)	Dry weight	521 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-3		-117.12535	32.67990	16-Jun-95	Sediment	Discrete Sample	XRF	Iron (Fe)	Dry weight	45400 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-3		-117.12535	32.67990	16-Jun-95	Sediment	Discrete Sample	XRF	Iron (Fe)	Dry weight	53600 mg/kg	ļ
Sediment Quality Characterization Naval Station San Diego	NSB-3		-117.12535	32.67990	16-Jun-95	Sediment	Discrete Sample	XRF	Lead (Pb)	Dry weight	153 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-3		-117.12535	32.67990	16-Jun-95	Sediment	Discrete Sample	XRF	Lead (Pb)	Dry weight	154 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-3		-117.12535	32.67990	16-Jun-95	Sediment	Discrete Sample	CVAA	Mercury (Hg)	Dry weight	1.32 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-3		-117.12535	32.67990	16-Jun-95	Sediment	Discrete Sample	CVAF	Mercury (Hg)	Dry weight	1.41 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-3		-117.12535	32.67990	16-Jun-95	Sediment	Discrete Sample	XRF	Zinc (Zn)	Dry weight	641 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-3		-117.12535	32.67990	16-Jun-95	Sediment	Discrete Sample	XRF	Zinc (Zn)	Dry weight	680 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB3-S-R2		-117.12535	32.67990	03-Sep-97	Sediment	Discrete Sample	Perkin5100	Arsenic (As)	Dry weight	36.2 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB3-S-R2		-117.12535	32.67990	03-Sep-97	Sediment	Discrete Sample	Perkin5100	Cadmium (Cd)	Dry weight	1 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB3-S-R2		-117.12535	32.67990	03-Sep-97	Sediment	Discrete Sample	FAAS	Copper (Cu)	Dry weight	308 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB3-S-R2		-117.12535	32.67990	03-Sep-97	Sediment	Discrete Sample	FAAS	Iron (Fe)	Dry weight	43700 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB3-S-R2		-117.12535	32.67990	03-Sep-97	Sediment	Discrete Sample	FAAS	Lead (Pb)	Dry weight	99.7 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB3-S-R2		-117.12535	32.67990	03-Sep-97	Sediment	Discrete Sample	CVAA	Mercury (Hg)	Dry weight	0.567 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB3-S-R2		-117.12535	32.67990	03-Sep-97	Sediment	Discrete Sample	FAAS	Zinc (Zn)	Dry weight	410 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-4		-117,12483	32.67208	07-Aug-95	Sediment	Discrete Sample	XRF	Arsenic (As)	Dry weight	13.1 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-4		-117.12483	32.67208	07-Aug-95	Sediment	Discrete Sample	GFAA	Cadmium (Cd)	Dry weight	0.4 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-4		-117.12483	32.67208	07-Aug-95	Sediment	Discrete Sample	XRF	Copper (Cu)	Dry weight	180 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-4		-117.12483	32.67208	07-Aug-95	Sediment	Discrete Sample	XRF	Iron (Fe)	Dry weight	46800 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-4		-117.12483	32.67208	07-Aug-95	Sediment	Discrete Sample	XRF	Lead (Pb)	Dry weight	56.7 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-4		-117.12483	32.67208	07-Aug-95	Sediment	Discrete Sample	CVAF	Mercury (Hg)	Dry weight	0.516 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-4		-117.12483	32.67208	07-Aug-95	Sediment	Discrete Sample	XRF	Zinc (Zn)	Dry weight	280 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB4-S-R2		-117.12483	32.67208	03-Sep-97	Sediment	Discrete Sample	Perkin5100	Arsenic (As)	Dry weight	10.1 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB4-S-R2		-117.12483	32.67208	03-Sep-97	Sediment	Discrete Sample	Perkin5100	Cadmium (Cd)	Dry weight	0.3 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB4-S-R2		-117.12483	32.67208	03-Sep-97	Sediment	Discrete Sample	FAAS	Copper (Cu)	Dry weight	174 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB4-S-R2	1	-117.12483	32.67208	03-Sep-97 03-Sep-97	Sediment	Discrete Sample	FAAS	Iron (Fe)	Dry weight	46000 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB4-S-R2	+	-117.12483	32.67208	03-Sep-97 03-Sep-97	Sediment	Discrete Sample	FAAS	Lead (Pb)	Dry weight	53.2 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB4-S-R2	+	-117.12483	32.67208	03-Sep-97 03-Sep-97	Sediment	Discrete Sample	CVAA	Mercury (Hg)	Dry weight	0.472 mg/kg	
Sediment Quality Characterization Naval Station San Diego Sediment Quality Characterization Naval Station San Diego	NSB4-S-R2 NSB4-S-R2	+	-117.12483	32.67208	03-Sep-97 03-Sep-97	Sediment	Discrete Sample	FAAS	Zinc (Zn)	Dry weight Dry weight	277 mg/kg	
Sediment Quality Characterization Naval Station San Diego Sediment Quality Characterization Naval Station San Diego	NSB4-5-R2 NSB-5	+	-117.12483	32.67333	12-Jul-95	Sediment	Discrete Sample	XRF				
		-	-117.11657 -117.11657	32.67333		Gediment	Discrete Sample		Arsenic (As)	Dry weight	8.7 mg/kg 1.36	<u> </u>
Sediment Quality Characterization Naval Station San Diego		-			12-Jul-95 12-Jul-95	Sodimont	Discrete Carral	VDE	Cadmium (Cd)	Drymainht		<u> </u>
Sediment Quality Characterization Naval Station San Diego	NSB-5		-117.11657	32.67333		Sediment	Discrete Sample	XRF	Copper (Cu)	Dry weight	159 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-5		-117.11657	32.67333	12-Jul-95	Sediment	Discrete Sample	XRF	Iron (Fe)	Dry weight	43200 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-5		-117.11657	32.67333	12-Jul-95	Sediment	Discrete Sample	XRF	Lead (Pb)	Dry weight	120 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-5		-117.11657	32.67333	12-Jul-95	Sediment	Discrete Sample	CVAF	Mercury (Hg)	Dry weight	0.596 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-5		-117.11657	32.67333	12-Jul-95	Sediment	Discrete Sample	XRF	Zinc (Zn)	Dry weight	404 mg/kg	ļ
Sediment Quality Characterization Naval Station San Diego	NSB5-S-R2		-117.11657	32.67363	03-Sep-97	Sediment	Discrete Sample	Perkin5100	Arsenic (As)	Dry weight	7.4 mg/kg	L
Sediment Quality Characterization Naval Station San Diego	NSB5-S-R2		-117.11657	32.67363	03-Sep-97	Sediment	Discrete Sample	Perkin5100	Cadmium (Cd)	Dry weight	1.06 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB5-S-R2		-117.11657	32.67363	03-Sep-97	Sediment	Discrete Sample	FAAS	Copper (Cu)	Dry weight	123 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB5-S-R2		-117.11657	32.67363	03-Sep-97	Sediment	Discrete Sample	FAAS	Iron (Fe)	Dry weight	33300 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB5-S-R2		-117.11657	32.67363	03-Sep-97	Sediment	Discrete Sample	FAAS	Lead (Pb)	Dry weight	94.5 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB5-S-R2		-117.11657	32.67363	03-Sep-97	Sediment	Discrete Sample	CVAA	Mercury (Hg)	Dry weight	0.32 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB5-S-R2		-117.11657	32.67363	03-Sep-97	Sediment	Discrete Sample	FAAS	Zinc (Zn)	Dry weight	313 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-10S		-117.12100	32.66338	03-Sep-97	Sediment	Discrete Sample	Perkin5100	Arsenic (As)	Dry weight	8.7 mg/kg	
	-						-	-				

PROJECT_NAME	SITE_NAME	SAMPLE_ID	X_COORDINATE	Y_COORDINATE	SAMPLE_DATE	SAMPLE_MEDIUM	TYPE	MEASUREMENT_METHOD	PARAMETER_NAME	PROPERTY	QUANTITY UNIT	QUALIFIER
Sediment Quality Characterization Naval Station San Diego	NSB-R2-10S		-117.12100	32.66338	03-Sep-97	Sediment	Discrete Sample	Perkin5100	Cadmium (Cd)	Dry weight	0.39 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-10S		-117.12100	32.66338	03-Sep-97	Sediment	Discrete Sample	FAAS	Copper (Cu)	Dry weight	239 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-10S		-117.12100	32.66338	03-Sep-97	Sediment	Discrete Sample	FAAS	Iron (Fe)	Dry weight	56300 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-10S		-117.12100	32.66338	03-Sep-97	Sediment	Discrete Sample	FAAS	Lead (Pb)	Dry weight	61.5 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-10S		-117.12100	32.66338	03-Sep-97	Sediment	Discrete Sample	CVAA	Mercury (Hg)	Dry weight	0.542 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-10S		-117.12100	32.66338	03-Sep-97	Sediment	Discrete Sample	FAAS	Zinc (Zn)	Dry weight	288 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-11S		-117.12345	32.66325	03-Sep-97	Sediment	Discrete Sample	Perkin5100	Arsenic (As)	Dry weight	10.4 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-11S		-117.12345	32.66325	03-Sep-97	Sediment	Discrete Sample	Perkin5100	Cadmium (Cd)	Dry weight	0.2 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-11S		-117.12345	32.66325	03-Sep-97	Sediment	Discrete Sample	FAAS	Copper (Cu)	Dry weight	141 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-11S		-117.12345	32.66325	03-Sep-97	Sediment	Discrete Sample	FAAS	Iron (Fe)	Dry weight	45800 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-11S		-117.12345	32.66325	03-Sep-97	Sediment	Discrete Sample	FAAS	Lead (Pb)	Dry weight	33.1 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-11S		-117.12345	32.66325	03-Sep-97	Sediment	Discrete Sample	CVAA	Mercury (Hg)	Dry weight	0.318 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-11S		-117.12345	32.66325	03-Sep-97	Sediment	Discrete Sample	FAAS	Zinc (Zn)	Dry weight	193 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-13S		-117.12142	32.66532	03-Sep-97	Sediment	Discrete Sample	Perkin5100	Arsenic (As)	Dry weight	9.1 mg/kg	-
Sediment Quality Characterization Naval Station San Diego	NSB-R2-13S		-117.12142	32.66532	03-Sep-97	Sediment	Discrete Sample	Perkin5100	Cadmium (Cd)	Dry weight	0.7 mg/kg	-
Sediment Quality Characterization Naval Station San Diego	NSB-R2-13S		-117,12142	32.66532	03-Sep-97	Sediment	Discrete Sample	FAAS	Copper (Cu)	Dry weight	308 mg/kg	-
Sediment Quality Characterization Naval Station San Diego	NSB-R2-13S		-117,12142	32.66532	03-Sep-97	Sediment	Discrete Sample	FAAS	Iron (Fe)	Dry weight	60200 mg/kg	-
Sediment Quality Characterization Naval Station San Diego	NSB-R2-13S		-117.12142	32.66532	03-Sep-97	Sediment	Discrete Sample	FAAS	Lead (Pb)	Dry weight	87 mg/kg	1 1
Sediment Quality Characterization Naval Station San Diego	NSB-R2-13S		-117.12142	32.66532	03-Sep-97	Sediment	Discrete Sample	CVAA	Mercury (Hg)	Dry weight	0.892 mg/kg	+
Sediment Quality Characterization Naval Station San Diego	NSB-R2-13S		-117.12142	32.66532	03-Sep-97	Sediment	Discrete Sample	FAAS	Zinc (Zn)	Dry weight	355 mg/kg	-
Sediment Quality Characterization Naval Station San Diego	NSB-R2-14S		-117.11962	32.66688	03-Sep-97	Sediment	Discrete Sample	Perkin5100	Arsenic (As)	Dry weight	10.3 mg/kg	1 1
Sediment Quality Characterization Naval Station San Diego	NSB-R2-14S		-117.11962	32.66688	03-Sep-97	Sediment	Discrete Sample	Perkin5100	Cadmium (Cd)	Dry weight	0.94 mg/kg	+
Sediment Quality Characterization Naval Station San Diego	NSB-R2-143		-117.11962	32.66688	03-Sep-97 03-Sep-97	Sediment	Discrete Sample	FAAS	Copper (Cu)	Dry weight	376 mg/kg	1
Sediment Quality Characterization Naval Station San Diego Sediment Quality Characterization Naval Station San Diego	NSB-R2-145		-117.11962	32.66688	03-Sep-97 03-Sep-97	Sediment	Discrete Sample	FAAS	Iron (Fe)	Dry weight	59700 mg/kg	+
, , , , , , , , , , , , , , , , , , , ,	NSB-R2-14S		-117.11962	32.66688	03-Sep-97	Sediment		FAAS	Lead (Pb)		120.1 mg/kg	-
Sediment Quality Characterization Naval Station San Diego	NSB-R2-143			32.66688		Sediment	Discrete Sample	CVAA	. ,	Dry weight		
Sediment Quality Characterization Naval Station San Diego			-117.11962 -117.11962		03-Sep-97		Discrete Sample	FAAS	Mercury (Hg)	Dry weight	0.91 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-14S			32.66688	03-Sep-97	Sediment	Discrete Sample		Zinc (Zn)	Dry weight	397 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-15S		-117.12173	32.66675	03-Sep-97	Sediment	Discrete Sample	Perkin5100	Arsenic (As)	Dry weight	8.3 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-15S		-117.12173	32.66675	03-Sep-97	Sediment	Discrete Sample	Perkin5100	Cadmium (Cd)	Dry weight	0.69 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-15S		-117.12173	32.66675	03-Sep-97	Sediment	Discrete Sample	FAAS	Copper (Cu)	Dry weight	292 mg/kg	
Sediment Quality Characterization Naval Station San Diego			-117.12173	32.66675	03-Sep-97	Sediment	Discrete Sample	FAAS	Iron (Fe)	Dry weight	59200 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-15S		-117.12173	32.66675	03-Sep-97	Sediment	Discrete Sample	FAAS	Lead (Pb)	Dry weight	82.7 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-15S		-117.12173	32.66675	03-Sep-97	Sediment	Discrete Sample	CVAA	Mercury (Hg)	Dry weight	0.914 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-15S		-117.12173	32.66675	03-Sep-97	Sediment	Discrete Sample	FAAS	Zinc (Zn)	Dry weight	355 mg/kg	-
Sediment Quality Characterization Naval Station San Diego	NSB-R2-16S		-117.12393	32.66662	03-Sep-97	Sediment	Discrete Sample	Perkin5100	Arsenic (As)	Dry weight	7.8 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-16S		-117.12393	32.66662	03-Sep-97	Sediment	Discrete Sample	Perkin5100	Cadmium (Cd)	Dry weight	1.34 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-16S		-117.12393	32.66662	03-Sep-97	Sediment	Discrete Sample	FAAS	Copper (Cu)	Dry weight	69.4 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-16S		-117.12393	32.66662	03-Sep-97	Sediment	Discrete Sample	FAAS	Iron (Fe)	Dry weight	61800 mg/kg	_
Sediment Quality Characterization Naval Station San Diego	NSB-R2-16S		-117.12393	32.66662	03-Sep-97	Sediment	Discrete Sample	FAAS	Lead (Pb)	Dry weight	40.7 mg/kg	_
Sediment Quality Characterization Naval Station San Diego	NSB-R2-16S		-117.12393	32.66662	03-Sep-97	Sediment	Discrete Sample	CVAA	Mercury (Hg)	Dry weight	0.727 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-16S		-117.12393	32.66662	03-Sep-97	Sediment	Discrete Sample	FAAS	Zinc (Zn)	Dry weight	192 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-17S		-117.11987	32.66840	03-Sep-97	Sediment	Discrete Sample	Perkin5100	Arsenic (As)	Dry weight	10.6 mg/kg	_
Sediment Quality Characterization Naval Station San Diego	NSB-R2-17S		-117.11987	32.66840	03-Sep-97	Sediment	Discrete Sample	Perkin5100	Cadmium (Cd)	Dry weight	0.65 mg/kg	+
Sediment Quality Characterization Naval Station San Diego	NSB-R2-17S		-117.11987	32.66840	03-Sep-97	Sediment	Discrete Sample	FAAS	Copper (Cu)	Dry weight	400 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-17S		-117.11987	32.66840	03-Sep-97	Sediment	Discrete Sample	FAAS	Iron (Fe)	Dry weight	64000 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-17S		-117.11987	32.66840	03-Sep-97	Sediment	Discrete Sample	FAAS	Lead (Pb)	Dry weight	93 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-17S		-117.11987	32.66840	03-Sep-97	Sediment	Discrete Sample	CVAA	Mercury (Hg)	Dry weight	0.827 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-17S		-117.11987	32.66840	03-Sep-97	Sediment	Discrete Sample	FAAS	Zinc (Zn)	Dry weight	431 mg/kg	1
Sediment Quality Characterization Naval Station San Diego	NSB-R2-18S		-117.12182	32.66833	03-Sep-97	Sediment	Discrete Sample	Perkin5100	Arsenic (As)	Dry weight	14.2 mg/kg	-
Sediment Quality Characterization Naval Station San Diego	NSB-R2-18S		-117.12182	32.66833	03-Sep-97	Sediment	Discrete Sample	Perkin5100	Cadmium (Cd)	Dry weight	0.46 mg/kg	1
Sediment Quality Characterization Naval Station San Diego	NSB-R2-18S		-117.12182	32.66833	03-Sep-97	Sediment	Discrete Sample	FAAS	Copper (Cu)	Dry weight	378 mg/kg	1
Sediment Quality Characterization Naval Station San Diego	NSB-R2-18S		-117.12182	32.66833	03-Sep-97	Sediment	Discrete Sample	FAAS	Iron (Fe)	Dry weight	62300 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-18S		-117.12182	32.66833	03-Sep-97	Sediment	Discrete Sample	FAAS	Lead (Pb)	Dry weight	86.3 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-18S		-117.12182	32.66833	03-Sep-97	Sediment	Discrete Sample	CVAA	Mercury (Hg)	Dry weight	0.785 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-18S		-117.12182	32.66833	03-Sep-97	Sediment	Discrete Sample	FAAS	Zinc (Zn)	Dry weight	392 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-19S		-117.12377	32.66820	03-Sep-97	Sediment	Discrete Sample	Perkin5100	Arsenic (As)	Dry weight	12.6 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-19S		-117.12377	32.66820	03-Sep-97	Sediment	Discrete Sample	Perkin5100	Cadmium (Cd)	Dry weight	0.33 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-19S		-117.12377	32.66820	03-Sep-97	Sediment	Discrete Sample	FAAS	Copper (Cu)	Dry weight	223 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-19S		-117.12377	32.66820	03-Sep-97	Sediment	Discrete Sample	FAAS	Iron (Fe)	Dry weight	60200 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-19S		-117.12377	32.66820	03-Sep-97	Sediment	Discrete Sample	FAAS	Lead (Pb)	Dry weight	78.3 mg/kg	1
Sediment Quality Characterization Naval Station San Diego	NSB-R2-19S		-117.12377	32.66820	03-Sep-97	Sediment	Discrete Sample	CVAA	Mercury (Hg)	Dry weight	0.632 mg/kg	1
Sediment Quality Characterization Naval Station San Diego	NSB-R2-19S		-117.12377	32.66820	03-Sep-97	Sediment	Discrete Sample	FAAS	Zinc (Zn)	Dry weight	368 mg/kg	1
· · · · · · · · · · · · · · · · · · ·												

PROJECT_NAME	SITE_NAME	SAMPLE_ID X_COORDINATE	Y_COORDINATE	SAMPLE_DATE	SAMPLE_MEDIUM	TYPE	MEASUREMENT_METHOD	PARAMETER_NAME	PROPERTY	QUANTITY	UNIT C	QUALIFIER
Sediment Quality Characterization Naval Station San Diego	NSB-R2-20S	-117.11758	32.67262	03-Sep-97		Discrete Sample	Perkin5100	Arsenic (As)	Dry weight	3.5	mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-20S	-117.11758	32.67262	03-Sep-97		Discrete Sample	Perkin5100	Cadmium (Cd)	Dry weight		mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-20S	-117.11758	32.67262	03-Sep-97	Sediment	Discrete Sample	FAAS	Copper (Cu)	Dry weight		mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-20S	-117.11758	32.67262	03-Sep-97	Sediment	Discrete Sample	FAAS	Iron (Fe)	Dry weight	17700	mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-20S	-117.11758	32.67262	03-Sep-97	Sediment	Discrete Sample	FAAS	Lead (Pb)	Dry weight	28.6	mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-20S	-117.11758	32.67262	03-Sep-97	Sediment	Discrete Sample	CVAA	Mercury (Hg)	Dry weight	0.124	mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-20S	-117.11758	32.67262	03-Sep-97	Sediment	Discrete Sample	FAAS	Zinc (Zn)	Dry weight		mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-21S	-117.11922	32.67172	03-Sep-97	Sediment	Discrete Sample	Perkin5100	Arsenic (As)	Dry weight	10.1	mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-21S	-117.11922	32.67172	03-Sep-97	Sediment	Discrete Sample	Perkin5100	Cadmium (Cd)	Dry weight	0.82	mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-21S	-117.11922	32.67172	03-Sep-97	Sediment	Discrete Sample	FAAS	Copper (Cu)	Dry weight	198	mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-21S	-117.11922	32.67172	03-Sep-97	Sediment	Discrete Sample	FAAS	Iron (Fe)	Dry weight	49500	mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-21S	-117.11922	32.67172	03-Sep-97	Sediment	Discrete Sample	FAAS	Lead (Pb)	Dry weight	85.4	mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-21S	-117.11922	32.67172	03-Sep-97	Sediment	Discrete Sample	CVAA	Mercury (Hg)	Dry weight	0.484	mg/kg	-
Sediment Quality Characterization Naval Station San Diego	NSB-R2-21S	-117.11922	32.67172	03-Sep-97	Sediment	Discrete Sample	FAAS	Zinc (Zn)	Dry weight	501	mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-22S	-117.12108	32.67048	03-Sep-97	Sediment	Discrete Sample	Perkin5100	Arsenic (As)	Dry weight	12.4	mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-22S	-117.12108	32.67048	03-Sep-97	Sediment	Discrete Sample	Perkin5100	Cadmium (Cd)	Dry weight	0.47	mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-22S	-117.12108	32.67048	03-Sep-97	Sediment	Discrete Sample	FAAS	Copper (Cu)	Dry weight		mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-22S	-117.12108	32.67048	03-Sep-97	Sediment	Discrete Sample	FAAS	Iron (Fe)	Dry weight	0.00542		
Sediment Quality Characterization Naval Station San Diego	NSB-R2-22S	-117.12108	32.67048	03-Sep-97	Sediment	Discrete Sample	FAAS	Lead (Pb)	Dry weight	88.1	mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-22S	-117.12108	32.67048	03-Sep-97	Sediment	Discrete Sample	CVAA	Mercury (Hg)	Dry weight	0.615		
Sediment Quality Characterization Naval Station San Diego	NSB-R2-22S	-117.12108	32.67048	03-Sep-97	Sediment	Discrete Sample	FAAS	Zinc (Zn)	Dry weight		mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-23S	-117.12368	32.67007	03-Sep-97	Sediment	Discrete Sample	Perkin5100	Arsenic (As)	Dry weight		mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-23S	-117.12368	32,67007	03-Sep-97	Sediment	Discrete Sample	Perkin5100	Cadmium (Cd)	Dry weight		mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-23S	-117.12368	32.67007	03-Sep-97	Sediment	Discrete Sample	FAAS	Copper (Cu)	Dry weight		mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-23S	-117.12368	32.67007	03-Sep-97		Discrete Sample	FAAS	Iron (Fe)	Dry weight	51900		
Sediment Quality Characterization Naval Station San Diego	NSB-R2-23S	-117.12368	32.67007	03-Sep-97		Discrete Sample	FAAS	Lead (Pb)	Dry weight		mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-23S	-117.12368	32.67007	03-Sep-97	Sediment	Discrete Sample	CVAA	Mercury (Hg)	Dry weight	0.598		
Sediment Quality Characterization Naval Station San Diego	NSB-R2-23S	-117.12368	32.67007	03-Sep-97	Sediment	Discrete Sample	FAAS	Zinc (Zn)	Dry weight		mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-24S	-117.12043	32.67350	03-Sep-97		Discrete Sample	Perkin5100	Arsenic (As)	Dry weight		mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-24S	-117.12043	32.67350	03-Sep-97	Sediment	Discrete Sample	Perkin5100	Cadmium (Cd)	Dry weight		mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-24S	-117.12043	32.67350			Discrete Sample	FAAS	Copper (Cu)	Dry weight		mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-24S	-117.12043	32.67350	03-Sep-97		Discrete Sample	FAAS	Iron (Fe)	Dry weight	42300		
Sediment Quality Characterization Naval Station San Diego	NSB-R2-24S	-117.12043	32.67350	03-Sep-97	Sediment	Discrete Sample	FAAS	Lead (Pb)	Dry weight		mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-24S	-117.12043	32.67350		Sediment	Discrete Sample	CVAA	Mercury (Hg)	Dry weight	0.556		
Sediment Quality Characterization Naval Station San Diego	NSB-R2-24S	-117.12043	32.67350	03-Sep-97		Discrete Sample	FAAS	Zinc (Zn)	Dry weight		mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-25S	-117.12238	32.67240	03-Sep-97	Sediment	Discrete Sample	Perkin5100	Arsenic (As)	Dry weight		mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-25S	-117.12238	32.67240	03-Sep-97		Discrete Sample	Perkin5100	Cadmium (Cd)	Dry weight		mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-25S	-117.12238	32.67240	03-Sep-97		Discrete Sample	FAAS	Copper (Cu)	Dry weight		mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-25S	-117.12238	32.67240	03-Sep-97	Sediment	Discrete Sample	FAAS	Iron (Fe)	Dry weight	33200		
Sediment Quality Characterization Naval Station San Diego	NSB-R2-25S	-117.12238	32.67240		Sediment	Discrete Sample	FAAS	Lead (Pb)	Dry weight		mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-25S	-117.12238	32.67240	03-Sep-97		Discrete Sample	CVAA	Mercury (Hg)	Dry weight		mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-25S	-117.12238	32.67240	03-Sep-97	Sediment	Discrete Sample	FAAS	Zinc (Zn)	Dry weight		mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-26S	-117.12198	32.67530	03-Sep-97		Discrete Sample	Perkin5100	Arsenic (As)	Dry weight		mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-26S	-117.12198	32.67530	03-Sep-97		Discrete Sample	Perkin5100	Cadmium (Cd)	Dry weight		mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-26S	-117.12198	32.67530	03-Sep-97	Sediment	Discrete Sample	FAAS	Copper (Cu)	Dry weight		mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-26S	-117.12198	32.67530	03-Sep-97	Sediment	Discrete Sample	FAAS	Iron (Fe)	Dry weight	52200		
Sediment Quality Characterization Naval Station San Diego	NSB-R2-26S	-117.12198	32.67530	03-Sep-97	Sediment	Discrete Sample	FAAS	Lead (Pb)	Dry weight		mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-26S	-117.12198	32.67530	03-Sep-97	Sediment	Discrete Sample	CVAA	Mercury (Hg)	Dry weight	0.619		
Sediment Quality Characterization Naval Station San Diego	NSB-R2-26S	-117.12198	32.67530	03-Sep-97	Sediment	Discrete Sample	FAAS	Zinc (Zn)	Dry weight		mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-27S	-117.12353	32.67433	03-Sep-97		Discrete Sample	Perkin5100	Arsenic (As)	Dry weight		mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-27S	-117.12353	32.67433	03-Sep-97	Sediment	Discrete Sample	Perkin5100	Cadmium (Cd)	Dry weight		mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-27S	-117.12353	32.67433	03-Sep-97	Sediment	Discrete Sample	FAAS	Copper (Cu)	Dry weight		mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-27S	-117.12353	32.67433	03-Sep-97		Discrete Sample	FAAS	Iron (Fe)	Dry weight	37500		
Sediment Quality Characterization Naval Station San Diego	NSB-R2-27S	-117.12353	32.67433	03-Sep-97	Sediment	Discrete Sample	FAAS	Lead (Pb)	Dry weight		mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-27S	-117.12353	32.67433	03-Sep-97	Sediment	Discrete Sample	CVAA	Mercury (Hg)	Dry weight	0.3422		
Sediment Quality Characterization Naval Station San Diego	NSB-R2-27S	-117.12353	32.67433	03-Sep-97		Discrete Sample	FAAS	Zinc (Zn)	Dry weight		mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-28S	-117.12557	32.67317	03-Sep-97	Sediment	Discrete Sample	Perkin5100	Arsenic (As)	Dry weight		mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-28S	-117.12557	32.67317	03-Sep-97	Sediment	Discrete Sample	Perkin5100	Cadmium (Cd)	Dry weight		mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-28S	-117.12557	32.67317	03-Sep-97		Discrete Sample	FAAS	Copper (Cu)	Dry weight		mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-28S	-117.12557	32.67317	03-Sep-97	Sediment	Discrete Sample	FAAS	Iron (Fe)	Dry weight	32000		
Sediment Quality Characterization Naval Station San Diego	NSB-R2-28S	-117.12557	32.67317	03-Sep-97	Sediment	Discrete Sample	FAAS	Lead (Pb)	Dry weight		mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-28S	-117.12557	32.67317	03-Sep-97		Discrete Sample	CVAA	Mercury (Hg)	Dry weight	0.266		
Sources and a second and a second and the second an		-117.12337	52.01311	00 0ep-31	Countern	a solutio dampie	0.701	moroury (rig)	STY HOIGHT	0.200	gring	

Start, Oxergones head shows and shows a	PROJECT_NAME	SITE_NAME	SAMPLE_ID X_COORDINATE	Y_COORDINATE	SAMPLE_DATE	SAMPLE_MEDIUM	TYPE	MEASUREMENT_METHOD	PARAMETER_NAME	PROPERTY	QUANTITY UNIT	QUALIFIER
Selent Oxer Construction Series (Construction)	Sediment Quality Characterization Naval Station San Diego	NSB-R2-28S	-117.12557	32.67317	03-Sep-97	Sediment	Discrete Sample	FAAS	Zinc (Zn)	Dry weight	136 mg/kg	
Stater ControlStaterControlNote SameNote Same <td>Sediment Quality Characterization Naval Station San Diego</td> <td>NSB-R2-29S</td> <td>-117.12345</td> <td>32.67708</td> <td>03-Sep-97</td> <td>Sediment</td> <td>Discrete Sample</td> <td>Perkin5100</td> <td>Arsenic (As)</td> <td>Dry weight</td> <td>12.8 mg/kg</td> <td></td>	Sediment Quality Characterization Naval Station San Diego	NSB-R2-29S	-117.12345	32.67708	03-Sep-97	Sediment	Discrete Sample	Perkin5100	Arsenic (As)	Dry weight	12.8 mg/kg	
Schern Guly Channelsmin Mar State Mar (Mar 1998) 1111232 32.07 19.58 19.57 19.58 19.50	Sediment Quality Characterization Naval Station San Diego	NSB-R2-29S	-117.12345	32.67708	03-Sep-97	Sediment	Discrete Sample	Perkin5100	Cadmium (Cd)			
Schenst Guby Transactions for Bub Bar Day Biology Bar Day </td <td>Sediment Quality Characterization Naval Station San Diego</td> <td>NSB-R2-29S</td> <td>-117.12345</td> <td>32.67708</td> <td>03-Sep-97</td> <td>Sediment</td> <td>Discrete Sample</td> <td>FAAS</td> <td>Copper (Cu)</td> <td>Dry weight</td> <td>396 mg/kg</td> <td></td>	Sediment Quality Characterization Naval Station San Diego	NSB-R2-29S	-117.12345	32.67708	03-Sep-97	Sediment	Discrete Sample	FAAS	Copper (Cu)	Dry weight	396 mg/kg	
Science Johnspittater less Baters Sam Vag Melle 2014 117 1284 22.778 0.58 per 7 Description Park Media Description Park Media Description Park Media Description Park	Sediment Quality Characterization Naval Station San Diego	NSB-R2-29S	-117.12345	32.67708	03-Sep-97	Sediment	Discrete Sample	FAAS	Iron (Fe)	Dry weight	52300 mg/kg	
Science Joseph Construction Joseph Baller Joseph	Sediment Quality Characterization Naval Station San Diego	NSB-R2-29S	-117.12345	32.67708		Sediment	Discrete Sample	FAAS				
Schere de Characterie de la construction de la constr	Sediment Quality Characterization Naval Station San Diego	NSB-R2-29S	-117.12345	32.67708	03-Sep-97	Sediment	Discrete Sample	CVAA	Mercury (Ha)			
Schemer Galler, Canaditation Mark Baller, Balle												
Sinter GubControl GubControl GubServerServe	, , , , , , , , , , , , , , , , , , , ,											
Sinter Galp												
Stande dary, Crasselectanto, Nagona Standar, Standard Horizon Horizon Process Standard Process Standard <t< td=""><td>, , , , , , , , , , , , , , , , , , , ,</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	, , , , , , , , , , , , , , , , , , , ,											
Salamin Casher Construction Name Salamin Casher Construction Name PAG Last Phi Provide PAG Page PAG Page PAG Page Page </td <td>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		-									
Science Cardy Characterized Name Same Same Same Same Same Same Same S	, , , , , , , , , , , , , , , , , , , ,											
Scheer Call	, , , , , , , , , , , , , , , , , , , ,											
Solment Guardy Canaberstation Mon States of Depu MSHR-25.35 [111:127] 32.879-07 Solment Guardy Canaberstation MS States of Depu MSHR-25.35 [111:127] 32.879-07 Solment Guardy Canaberstation MS States of Depu MSHR-25.35 [111:127] 32.879-07 Solment Guardy Canaberstation MS States of Depu MSHR-25.35 [111:127] 32.879-07 Solment Guardy Canaberstation MS States of Depu MSHR-25.35 [111:127] 32.879-07 Solment Guardy Canaberstation MS States of Depu MSHR-25.35 [111:127] 32.879-07 Solment Guardy Canaberstation MS States of Depu MSHR-25.35 [111:127] 32.879-07 Solment Guardy Canaberstation MS States of Depu MSHR-25.35 [111:1287] 32.879-07 Solment Guardy Canaberstation MS States of Depu MSHR-25.35 [111:1287] 32.879-07 Solment Guardy Canaberstation MS States of Depu MSHR-25.35 [111:1287] 32.879-07 Solment Guardy Canaberstation MS States of Depu MSHR-25.35 [111:1287] 32.879-07 Solment Guardy Canaberstation MS States of Depu MSHR-25.35 [111:1286] 32.879-07 Solment Guardy Canaberstation MS States of Depu MSHR-25.35 [111:1286] 32.879-07 Solment Guardy Canaberstation MS States of Depu MSHR-25.35 [111:1287] </td <td>, , , , , , , , , , , , , , , , , , , ,</td> <td></td>	, , , , , , , , , , , , , , , , , , , ,											
Solume Cataly Characterizative Mark State Mark 1984 1.11 (1971) 30.78 pcf Solume Cataly Characterizative Mark State Mark 1984 1.11 (1971) 30.78 pcf Solume Cataly Characterizative Mark State Mark 1984 0.1 (1972) Solume Cataly Characterizative Mark State Mark 1984 1.11 (1971) 30.77 MG 30.78 pcf Solume Cataly Characterizative Mark 1984 0.1 (1972) 30.77 MG 30.78 pcf Solume Cataly Characterizative Mark 1984 0.1 (1972) 30.77 MG 30.78 pcf Solume Cataly Characterizative Mark 1984 0.1 (1972) 30.77 MG 30.78 pcf Solume Cataly Characterizative Mark 1984 0.1 (1972) 30.77 MG 30.78 pcf Solume Cataly Characterizative Mark 1984 0.1 (1972) 30.78 MG 30.78 pcf Solume Cataly Characterizative Mark 1984 0.1 (1972) 30.78 MG 30.78 pcf Solume Cataly Characterizative Mark 1984 0.1 (1972) 30.78 MG 30.78 pcf Solume Cataly Characterizative Mark 1984 0.1 (1972) 30.78 MG 30.78 pcf Solume Cataly Characterizative Mark 1984 0.1 (1972) 30.78 MG 30.78 Pcf Solume Cataly Characterizative Mark 1984 0.1 (1972) 30.78 MG 30.78 Pcf Solume Cataly Characterizative Mark 1984 0.1 (1972) 30.78 MG 30.7	, , , , , , , , , , , , , , , , , , , ,											-
Solmer Outry Outschetzicht Neu Statuts San Dags NB-84 2:13 -117:1207 32.5700 0.58-pd7 Solmer Decemb Sample FAAS Upt (P) 32.0700 0.58-pd7 Solmer Decemb Sample FAAS Upt (P) 32.0700 0.58-pd7 Solmer Decemb Sample FAAS Upt (P) Dy usept 4.00 PU Decemb Sample FAAS Upt (P) Dy usept 4.00 PU Decemb Sample FAAS Upt (P) Dy usept 4.00 PU Decemb Sample FAAS Upt (P) Decemb Sample FAAS Upt (P) Decemb Sample FAAS Upt (P) Decemb Sample FAAS De	· · · · · · · · · · · · · · · · · · ·											
Salama daugi Quancharizator May Salawa Ban Day Silawa Caugi Quancharizator May Salawa	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,											
Solamic dualy Characterization Nand States San Ding NBAS Land (Pb) Pyroget All	· · · · · · · · · · · · · · · · · · ·											┼───┤
Solment Guily Characterization Need States State [No. 1998] No. 28 Array (1) Sol. 28 Array (1)	, , , , , , , , , , , , , , , , , , , ,											<u> </u>
Solmer Cualy Characterization Naval Station Sam Diag NRS 42:35 111 1000 32.676.00 Rosener Dicrate Sampa PARS Zinc Zin, Dry weight 161 00 myeight Sedment Cualy Chrasterization Naval Station Sam Diag NRS 42:35 111.1280 32.676.00 0.589.97 Sedment Cualy Chrasterization Naval Station Sam Diag NRS 42:35 111.1280 32.676.00 0.589.97 Sedment Cualy Chrasterization Naval Station Sam Diag NRS 42:35 111.1280 32.676.00 0.589.97 Sedment Cualy Chrasterization Naval Station Sam Diag NRS 42:35 111.1280 32.676.00 0.589.97 Sedment Cualy Chrasterization Naval Station Sam Diag NRS 42:35 111.1280 32.676.00 0.589.97 Sedment Diag NRS 42:35 120.797.90 32.676.00 NRS 42:35 121.197.92 32.676.00 NRS 42:35 121.197.92 32.676.00 NRS 42:35 121.197.92 32.676.00 NRS 42:35 121.197.92 32.676.00 NRS 42:35 121.197.92 <td>, , , , , , , , , , , , , , , , , , , ,</td> <td></td>	, , , , , , , , , , , , , , , , , , , ,											
Solumin Characterization Naval Staton Sam Day N84-7238 Int 17.1999 32.676.40 Object Sample Period 100 Aracle (Al) Dy weight 7.8 m/m 2ga Solument Outly Characterization Naval Staton Sam Day N84-7235 111.1289 32.676.40 0.58 pr 7 Selment Dicords Sample FAS Copper (A) Dy weight A5.1 m/m 2ga Selment Outly Characterization Naval Staton Sam Day N84-7235 111.1289 32.676.40 0.58 pr 7 Selment Dicords Sample FAAS Copper (A) Dy weight 43.5 m/m 2ga Selment Outly Characterization Naval Staton Sam Day N84-7235 111.1980 32.676.40 0.58 pr 7 Selment Dicords Sample FAAS Load (P) Dy weight 43.5 m/m 2ga Selment Outly Characterization Naval Staton Sam Day N84-7235 111.11277 32.674.40 0.58 pr 7 Selment Outly Characterization Naval Staton Sam Day N84-7235 111.11127 32.674.40 0.58 pr 7 Selment Outly Characterization Naval Staton Sam Day N84-7235 111.11127 32.674.40 0.58 pr 7 Selment Outly Characterization Naval Staton Sam Day N84-7235 111.11127	, , , , , , , , , , , , , , , , , , , ,											
Solmet Quity, Characterization Name Staton Sam Daya NSR-2328 -117.1280 32.6746 0.58-977 Solment Quity, Characterization Name Staton Sam Daya NSR-2328 -117.1280 32.6746 0.58-977 Solment Quity, Characterization Name Staton Sam Daya NSR-2328 -117.1280 32.6746 0.58-977 Solment Quity, Characterization Name Staton Sam Daya NSR-2328 -117.1280 32.6746 0.58-977 Solment Quity, Characterization Name Staton Sam Daya NSR-2328 -117.1280 32.6746 0.58-977 Solment Quity, Characterization Name Staton Sam Daya NSR-2328 -117.1280 32.6746 0.58-977 Solment Quity, Characterization Name Staton Sam Daya NSR-2328 -117.1287 32.6746 0.58-977 Solment Quity, Characterization Name Staton Sam Daya NSR-238 -117.1327 32.6746 0.58-977 Solment Quity, Characterization Name Staton Sam Daya NSR-238 -117.1327 32.6746 0.58-977 Solment Quity, Characterization Name Staton Sam Daya NSR-238 -117.1327 32.6746 0.58-977 Solment Quity, Characterization Name Staton Sam Daya NSR-238 -117.1327 32.6746 0.58-977 Solment Quity, Characterization Name Staton Sam Daya NSR-238 -117.1327	· · · · · · · · · · · · · · · · · · ·											
Sackmard Quily Characterization New Station Same Day NSR-R2:32 -117:2290 32.6746 O.Saper 7 Sackmard Quily Characterization New Station Same Day NSR-R2:35 -117:2290 32.6746 O.Saper 7 Sackmard Quily Characterization New Station Same Day NSR-R2:35 -117:2290 32.6746 O.Saper 7 Sackmard Quily Characterization New Station Same Day NSR-R2:35 -117:2290 32.6746 O.Saper 7 Sackmard Quily Characterization New Station Same Day NSR-R2:35 -117:2290 32.6746 O.Saper 7 Sackmard Quily Characterization New Station Same Day NSR-R2:35 -117:2290 32.6746 O.Saper 7 Sackmard Quily Characterization New Station Same Day NSR-R2:35 -117:1290 32.6746 O.Saper 7 Sackmard Quily Characterization New Station Same Day NSR-R2:35 -117:1397 32.6746 O.Saper 7 Sackmard Quily Characterization New Station Same Day NSR-R2:35 -117:1397 32.6746 O.Saper 7 Sackmard Quily Characterization New Station Same Day NSR-R2:35 -117:1397 32.6746 O.Saper 7 Sackmard Quily Characterization New Station Same Day NSR-R2:35 -117:1397 32.6746 O.Saper 7 Sackmard Quily Characterization New Station Same Day NSR-R2:35	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,											
Sadamet Qualy, Dumaterization Nava Station Sain Digo NSB-R2-328 1-17.1280 32.26740 0.35-ger J Sadamet Discrete Sample FAAS Lead (PD Dy weight 4.300 (Priglig) Sediment Qualy, Dumaterization Nava Station Sain Digo NSB-R2-328 1-17.1280 32.26740 0.35-ger J Sediment Qualy, Dumaterization Nava Station Sain Digo NSB-R2-328 1-17.1280 32.26740 0.35-ger J Sediment Qualy, Dumaterization Nava Station Sain Digo NSB-R2-328 1-17.1280 32.26740 0.35-ger J Sediment Qualy, Dumaterization Nava Station Sain Digo NSB-R2-338 1-17.1287 32.26740 0.35-ger J Sediment Qualy, Dumaterization Nava Station Sain Digo NSB-R2-338 1-17.1287 32.26740 0.35-ger J Sediment Qualy, Dumaterization Nava Station Sain Digo NSB-R2-338 1-17.1287 32.26740 0.35-ger J Sediment Qualy, Dumaterization Nava Station Sain Digo NSB-R2-338 1-17.1287 32.26740 0.35-ger J Sediment Qualy, Dumaterization Nava Station Sain Digo NSB-R2-338 1-17.1287 32.26740 0.35-ger J Sediment Qualy, Dumaterization Nava Station Sain Digo NSB-R2-338 1-17.1287 32.26740 0.35-ger J Sediment Qualy, Dumaterization Nava Sta	· · · · · · · · · · · · · · · · · · ·											
Sadiner Qualy Characterization Navia Station San Dego NSR-R-232 117.1280 32.6760 05-58-97 Sediners Outcome Sample NAA Mexaly Characterization Navia Station San Dego NSR-R-232 117.1280 32.6760 05-58-97 Sediners Diorder Sample NAA Zinc (A) Dy weight 437 mg/s Sediners Quality Characterization Navia Station San Dego NSR-R233 117.1280 32.6764 03-58-97 Sediners Diorder Sample Period CO Acrima (A) Dy weight 40.4 Mg/s Sediners Quality Characterization Navia Station San Dego NSR-R233 117.1257 32.6744 0.55-59.7 Sediners Diorder Sample PAAS Confu Dy weight 40.4 Mg/s Sediners Quality Characterization Navia Station San Dego NSR-R233 117.1527 32.6744 0.55-59.7 Sediners Diorder Sample PAAS Lon Characterization Navia Station San Dego NSR-R233 117.1527 32.6746 0.55-59.7 Sediners Diorder Sample PAAS Lon Characterization Navia Station San Dego NSR-R233 117.1527 32.6746 0.55-59.7	, , , , , , , , , , , , , , , , , , , ,						Discrete Sample			Dry weight		
Satinare Quality Characterization Navel Station Sam Dugo NSH-R2328 (= 117.1290 22.07840 0.95-gpr Satinare ONA Macro Weight 0.74 (mpi q) Satinare Quality Characterization Navel Station Sam Dugo NSH-R2338 (= 117.1327) 22.07840 0.95-gpr Satinare Quality Characterization Navel Station Sam Dugo NSH-R2338 (= 117.1327) 22.07840 0.95-gpr Satinare Quality Characterization Navel Station Sam Dugo NSH-R2338 (= 117.1327) 22.07840 0.95-gpr Satinare Quality Characterization Navel Station Sam Dugo NSH-R2338 (= 117.1327) 22.0740 0.95-gpr Satinare Quality Characterization Navel Station Sam Dugo NSH-R2338 (= 117.1327) 22.0740 0.95-gpr Satinare Quality Characterization Navel Station Sam Dugo NSH-R2338 (= 117.1327) 22.0740 0.95-gpr Satinare Quality Characterization Navel Station Sam Dugo NSH-R2338 (= 117.1327) 22.0740 0.95-gpr Satinare Quality Characterization Navel Station Sam Dugo NSH-R2338 (= 117.1327) 22.0740 0.95-gpr Satinare Quality Characterization Navel Station Sam Dugo NSH-R2348 (= 117.1327) 22.0740 0.95-gpr Satinare Quality Characterization Navel Station Sam Dugo	Sediment Quality Characterization Naval Station San Diego	NSB-R2-32S		32.67640		Sediment	Discrete Sample		Iron (Fe)	Dry weight		
Sadimer Quality Characterization Naval Station San Dego NSB-R2-335 (111) 1287 32.67440 OS-Sp-97 Sedimer Discrete Sample PAKS Zinc (Zn) Dy weight 311 Implication Sediment Quality Characterization Naval Station San Dego NSB-R2-335 (117) 1327 32.67440 OS-Sp-97 Sediment Discrete Sample Pekrin5100 Cadmun (Cd) Dy weight 40.6 Sediment Quality Characterization Naval Station San Dego NSB-R2-335 (117) 1327 32.67440 OS-Sp-97 Sediment Discrete Sample FAAS tron (Fe) Dy weight 47500 mp/g Sediment Quality Characterization Naval Station San Dego NSB-R2-335 (117) 1327 32.67440 OS-Sp-97 Sediment Discrete Sample FAAS tron (Fe) Dy weight 4750 mp/g Sediment Quality Characterization Naval Station San Dego NSB-R2-335 (117) 1327 32.67440 OS-Sp-97 Sediment Discrete Sample FAAS Zinc (Zin) Dy weight 6.16 mp/g Sediment Quality Characterization Naval Station San Dego NSB-R2-345 (117) 1377 32.67140 OS-Sp-97	Sediment Quality Characterization Naval Station San Diego					Sediment	Discrete Sample		Lead (Pb)	Dry weight		
Sedment Quality Characterization Navel Stations Dirego NSB-R2-335 (1-11) 1/13/257 32.874/0 0.58-port Sedment Directe Sample Perkin5100 Academus (A) Dy weight 1.11 mg/n Sediment Quality Characterization Navel Stations Diego NSB-R2-335 1171.1327 2.874/40 0.58-port Sediment Directe Sample FAAS Condmut Dy weight 4750 mg/n Sediment Quality Characterization Navel Stations Diego NSB-R2-335 1171.1327 2.874/40 0.58-port Sediment Directe Sample FAAS Lead (P) Dy weight 4750 mg/n Sediment Quality Characterization Navel Stations Diego NSB-R2-335 1171.1327 2.874/40 0.58-port Sediment Directe Sample FAAS Lead (P) Dy weight 0.19 mg/n Sediment Quality Characterization Navel Stations Diego NSB-R2-345 1171.1377 2.671/40 0.58-port Sediment Directe Sample Perkin5100 Caramut (C) Dy weight 6.21 mg/n Sediment Quality Characterization Navel Stations Diego NSB-R2-345 1171.13777 2.671/40 0.58-port	Sediment Quality Characterization Naval Station San Diego	NSB-R2-32S			03-Sep-97	Sediment	Discrete Sample		Mercury (Hg)	Dry weight	0.401 mg/kg	
Sediment Quality Characterization Nava Stations Bin Diego NSB-R2-335 H117.1327 32.6740 0.53.ep-07 Sediment Dizerte Samol Perkin510 Copper (C) Dy weight 0.40 /m /m /m /m Sediment Quality Characterization Nava Stations Bin Diego NSB-R2-335 H117.1327 32.67440 0.53.ep-07 Sediment Dizerte Samol FAAS Load (C) Dy weight 47500 /m /m /m /m Sediment Quality Characterization Nava Stations Bin Diego NSB-R2-335 H117.1327 32.67440 0.53.ep-07 Sediment Dizerte Samol FAAS Lead (P) Dy weight 0.518/m/g Sediment Quality Characterization Nava Stations Bin Diego NSB-R2-335 H117.1327 32.67440 0.53.ep-07 Sediment Dizerte Samol FAAS Lead (P) Dy weight 0.518/m /m /m Sediment Quality Characterization Nava Station San Diego NSB-R2-345 H117.1377 32.67440 0.53.ep-07 Sediment Dizerte Samol FAAS Copper (L) Dy weight 6.3.lm /m /m /m /m /m Sediment Quality Characterization Nava Station San Diego NSB-R2-345 H117.1377 32.67143 0.53.ep-07	Sediment Quality Characterization Naval Station San Diego	NSB-R2-32S	-117.12890	32.67640	03-Sep-97	Sediment	Discrete Sample	FAAS	Zinc (Zn)	Dry weight	367 mg/kg	
Sadment Duality Characterization Nava Station Sam Dego NSB-R2-335 117.1327 32.87440 0.5-Sep-97 Sedment Discrete Sample FAAS Long (h) Dy weight 7.280m/ng/g Sadment Duality Characterization Nava Station Sam Dego NSB-R2-335 1.17.1327 32.87440 0.5-Sep-97 Sedment Discrete Sample FAAS Long (h) Dy weight 7.270m/ng/g Sadment Duality Characterization Nava Station Sam Dego NSB-R2-335 1.17.1327 32.87440 0.5-Sep-97 Sedment Discrete Sample FAAS Long (h) Dy weight 0.210m/ng/g Sadment Duality Characterization Nava Station Sam Dego NSB-R2-345 1.17.13277 32.67140 0.5-Sep-97 Sedment Discrete Sample Parkin5100 Ammunclinity 0.242m/ng/g Sadment Duality Characterization Nava Station Sam Dego NSB-R2-345 1.17.13777 32.67140 0.5-Sep-97 Sedment Discrete Sample Parkin5100 Campin (C) Dy weight 0.320m/ng/g Sadment Duality Characterization Nava Station Sam Dego NSB-R2-345 1.17.13777 32.67140 0.5-Sep-97 Sedment Discrete Sampl	Sediment Quality Characterization Naval Station San Diego	NSB-R2-33S	-117.13257	32.67440	03-Sep-97	Sediment	Discrete Sample	Perkin5100	Arsenic (As)	Dry weight	11.1 mg/kg	
Sediment Quality Characterization Naval Station Sam Dego NSB-R2-33S Int 17:1327 22.674/40 0.95-8p-97 Sediment Descrite Sample FAAS Led (Ph) Dy weight 0.750 mg/kg Sediment Quality Characterization Naval Station Sam Dego NSB-R2-33S Int 17:1327 32.67440 0.95-8p-97 Sediment Descrite Sample CAAS Mercary (Ph) Dy weight 0.951 mg/kg Sediment Quality Characterization Naval Station Sam Dego NSB-R2-3SS Int 17:13277 32.67143 0.95-8p-97 Sediment Discrete Sample FAAS Zinc (Zn) Dy weight 0.61 mg/kg Sediment Quality Characterization Naval Station Sam Dego NSB-R2-34S Int 17:1777 32.67143 0.95-8p-97 Sediment Discrete Sample FAAS Copy Weight 0.62 mg/kg Sediment Quality Characterization Naval Station Sam Dego NSB-R2-34S Int 17:1777 32.67143 0.95-8p-97 Sediment Discrete Sample FAAS Lon (Cu) Dy weight 0.21 mg/kg Sediment Quality Characterization Naval Station Sam Dego NSB-R2-34S Int 17:1377 32.67143 0.95-8p-97 Sediment Discrete Sample <t< td=""><td>Sediment Quality Characterization Naval Station San Diego</td><td>NSB-R2-33S</td><td>-117.13257</td><td>32.67440</td><td>03-Sep-97</td><td>Sediment</td><td>Discrete Sample</td><td>Perkin5100</td><td>Cadmium (Cd)</td><td>Dry weight</td><td>0.46 mg/kg</td><td></td></t<>	Sediment Quality Characterization Naval Station San Diego	NSB-R2-33S	-117.13257	32.67440	03-Sep-97	Sediment	Discrete Sample	Perkin5100	Cadmium (Cd)	Dry weight	0.46 mg/kg	
Sadment Quality Characterization Naval Station San Diago NSB-R2:33 (117):1327 32 47440 05:89-97 Sadment Discrite Sample FAAS Lead (Ph) Dy weight 75 191m/ga Sadment Quality Characterization Naval Station San Diago NSB-R2:335 (117):1327 32 67440 05:89-97 Sadment Discrite Sample FAAS Znc (Zn) Dy weight 25 11m/ga Sadment Quality Characterization Naval Station San Diago NSB-R2:345 (117):1377 32 67440 05:89-97 Sedment Discrite Sample Perkin5(00 Camulation (Zn) Dy weight 65 11m/ga Sadment Quality Characterization Naval Station San Diago NSB-R2:345 (117):1777 32 67140 05:89-977 Sedment Discrite Sample FAAS Compile Oy weight 65 21m/ga Sadment Quality Characterization Naval Station San Diago NSB-R2:345 (117):1777 32 67140 05:89-97 Sedment Discrite Sample FAAS Con (Fs) Dy weight 12 6 21m/ga Sadment Quality Characterization Naval Station San Diago NSB-R2:345 (117):1277 32 67142 05:89-97 Sedment	Sediment Quality Characterization Naval Station San Diego	NSB-R2-33S	-117.13257	32.67440	03-Sep-97	Sediment	Discrete Sample	FAAS	Copper (Cu)	Dry weight	126 mg/kg	
Sadimer Qualiy Characterization Naval Station San Diego NSB-R2-333 IIIIII 1327 32.674-00 05-Sep-97 Sediment Discrete Sample CVAA Mercur (2n) Dy weight 0.219 0.93 <td>Sediment Quality Characterization Naval Station San Diego</td> <td>NSB-R2-33S</td> <td>-117.13257</td> <td>32.67440</td> <td>03-Sep-97</td> <td>Sediment</td> <td>Discrete Sample</td> <td>FAAS</td> <td>Iron (Fe)</td> <td>Dry weight</td> <td>47500 mg/kg</td> <td></td>	Sediment Quality Characterization Naval Station San Diego	NSB-R2-33S	-117.13257	32.67440	03-Sep-97	Sediment	Discrete Sample	FAAS	Iron (Fe)	Dry weight	47500 mg/kg	
Sadment Quality Characterization Naval Station Sam Dego NSB-R2-335 117.13277 32.67440 00-Sep.97 Sediment Discrete Sample FAAS Znr.(Zn) Dry weight 6.1 Implicit Sodiment Quality Characterization Naval Station Sam Dego NSB-R2-345 -117.13777 32.67143 03-Sep.97 Sediment Discrete Sample Perkin5100 Cadmiun (Cd) Dry weight 6.21 mg/s Sadiment Quality Characterization Naval Station Sam Dego NSB-R2-345 -117.13777 32.67143 03-Sep.97 Sediment Discrete Sample FAAS Copper (Cu) Dry weight 6.32 mg/s Sediment Quality Characterization Naval Station Sam Dego NSB-R2-345 -117.13777 32.67143 03-Sep.97 Sediment Discrete Sample FAAS Ling ////////////////////////////////////	Sediment Quality Characterization Naval Station San Diego	NSB-R2-33S	-117.13257	32.67440	03-Sep-97	Sediment	Discrete Sample	FAAS	Lead (Pb)	Dry weight	75 mg/kg	
Sedment Quality Characterization Naval Station Sam Dego NSB-R2-3S Int 17.13277 32.67440 03-Sap-7 Sedment Diorete Sample FAAS Zinc (2n) Dy weight 211 mg/kg Sedment Quality Characterization Naval Station Sam Dego NSB-R2-345 Int 17.13777 32.67143 03-Sap-77 Sedment Discrite Sample Fehrio100 Arasin (Co) Dy weight 0.6324 mg/g Sedment Quality Characterization Naval Station Sam Dego NSB-R2-345 Int 17.13777 32.67143 03-Sap-77 Sedment Discrite Sample FAAS Discrite Sample FAAS Discrite Sample FAAS Iron (Pio) Dy weight 0.632 mg/g Sedment Quality Characterization Naval Station Sam Dego NSB-R2-345 Int 17.13777 32.67143 03-Sap-97 Sedment Discrite Sample FAAS Lang (Pio) Dy weight 0.33 mg/g Sedment Quality Characterization Naval Station Sam Dego NSB-R2-345 Int 17.13777 32.67143 03-Sap-77 Sedment Discrite Sample FAAS Can(Pio) Dy weight 1.83 mg/g Sedment Quality Characterization Naval Station Sam Dego NSB-R2-355 </td <td>Sediment Quality Characterization Naval Station San Diego</td> <td>NSB-R2-33S</td> <td>-117.13257</td> <td>32.67440</td> <td>03-Sep-97</td> <td>Sediment</td> <td>Discrete Sample</td> <td>CVAA</td> <td>Mercury (Hg)</td> <td>Dry weight</td> <td>0.919 mg/kg</td> <td></td>	Sediment Quality Characterization Naval Station San Diego	NSB-R2-33S	-117.13257	32.67440	03-Sep-97	Sediment	Discrete Sample	CVAA	Mercury (Hg)	Dry weight	0.919 mg/kg	
Sediment Quality Characterization Naval Station San Diego NSB-R2-34S -117.13777 32.67143 03.58p-97 Sediment Discrete Sample Prixe1500 Cardmull (C) Dy weight 0.224 mg/sg Sediment Quality Characterization Naval Station San Diego NSB-R2-34S -117.13777 32.67143 03.58p-97 Sediment Discrete Sample FAAS Lica (P) Dy weight 0.238 mg/sg Sediment Quality Characterization Naval Station San Diego NSB-R2-34S -117.13777 32.67143 03.58p-97 Sediment Discrete Sample FAAS Lica (P) Dy weight 0.38, mg/sg Sediment Quality Characterization Naval Station San Diego NSB-R2-34S -117.13777 32.67143 03.58p-97 Sediment Discrete Sample FAAS Lica (P) Dy weight 0.32 mg/sg Sediment Quality Characterization Naval Station San Diego NSB-R2-3SS -117.1230 32.68073 0.358p-97 Sediment Discrete Sample FAAS Zinc (Zn) Dy weight 4.20 mg/sg Sediment Quality Characterization Naval Station San Diego NSB-R2-3SS -117.12830 32.68073 0.358p-97 Sediment	Sediment Quality Characterization Naval Station San Diego	NSB-R2-33S	-117.13257	32.67440	03-Sep-97	Sediment	Discrete Sample	FAAS	Zinc (Zn)	Dry weight	261 mg/kg	
Sedment Quality Characterization Naval Station San Dego NSB-R2:345 -117:3777 32.67143 03:Sep-97 Sediment Discrete Sample FAAS Copper (Cu) Dry weight 63.2 mg/kg Sediment Quality Characterization Naval Station San Dego NSB-R2:345 -117:3777 32.67143 03:Sep-97 Sediment Discrete Sample FAAS Lead (Pb) Dry weight 38.1 mg/kg Sediment Quality Characterization Naval Station San Dego NSB-R2:345 -117:3777 32.67143 03:Sep-97 Sediment Discrete Sample FAAS Lead (Pb) Dry weight 0.3 mg/kg Sediment Quality Characterization Naval Station San Dego NSB-R2:345 -117:1230 32.68073 0.3 Sep-97 Sediment Discrete Sample Perkin5100 America (Ab) Dry weight 148 mg/kg Sediment Quality Characterization Naval Station San Dego NSB-R2:355 -117:12830 32.68073 0.3 Sep-97 Sediment Discrete Sample Perkin5100 Cadmin (A) Dry weight 438 mg/kg Sediment Quality Characterization Naval Station San Dego NSB-R2:355 -117:2830 32.68073 0.3 Sep-97 Sediment Discrete	Sediment Quality Characterization Naval Station San Diego	NSB-R2-34S	-117.13777	32.67143	03-Sep-97	Sediment	Discrete Sample	Perkin5100	Arsenic (As)	Dry weight	6.1 mg/kg	
Sediment Quality Characterization Naval Station San Diego NSB-R2:34S Intr.13777 32.67143 03:Sep-97 Sediment Discrete Sample FAAS Lead (Pb) Dry weight 32.800 mg/kg Sediment Quality Characterization Naval Station San Diego NSB-R2:34S -117.13777 32.67143 03:Sep-97 Sediment Discrete Sample FAAS Lead (Pb) Dry weight 33.1 mg/kg Sediment Quality Characterization Naval Station San Diego NSB-R2:34S -117.13777 32.67143 03:Sep-97 Sediment Discrete Sample FAAS Zen (Zn) Dry weight 142 mg/kg Sediment Quality Characterization Naval Station San Diego NSB-R2:35S -117.12630 32.68073 03:Sep-97 Sediment Discrete Sample Perkin5100 Arsnic (A) Dry weight 43.8 mg/kg Sediment Quality Characterization Naval Station San Diego NSB-R2:35S -117.12630 32.68073 03:Sep-97 Sediment Discrete Sample FAAS Corpe (L) Dry weight 43.8 mg/kg Sediment Quality Characterization Naval Station San Diego NSB-R2:35S -117.12630 32.68073 03:Sep-97 <	Sediment Quality Characterization Naval Station San Diego	NSB-R2-34S	-117.13777	32.67143	03-Sep-97	Sediment	Discrete Sample	Perkin5100	Cadmium (Cd)	Dry weight	0.24 mg/kg	
Sediment Quality Characterization Naval Station San Diego NSB-R2-34S (117,1377) 32.67143 (33.Sep-97) Sediment Discrete Sample FAAS Lead (Pb) Dry weight 38.1 (mg/kg Sediment Quality Characterization Naval Station San Diego NSB-R2-34S (117,1377) 32.67143 03.Sep-97 Sediment Discrete Sample FAAS Zin (2n) Dry weight 14.2 (mg/kg Sediment Quality Characterization Naval Station San Diego NSB-R2-35S (117,1283) 32.68073 03.Sep-97 Sediment Discrete Sample Perkin5100 Arsenic (Aa) Dry weight 14.2 (mg/kg Sediment Quality Characterization Naval Station San Diego NSB-R2-35S (117,1283) 32.68073 03.Sep-97 Sediment Discrete Sample Perkin5100 Cadmiun (Cd) Dry weight 4.28 (mg/kg Sediment Quality Characterization Naval Station San Diego NSB-R2-35S (117,1283) 32.68073 03.Sep-97 Sediment Discrete Sample FAAS Corper (Cu) Dry weight 4.38 (mg/kg Sediment Quality Characterization Naval Station San Diego NSB-R2-35S (117,1283) 32.68073 03.Sep-97	Sediment Quality Characterization Naval Station San Diego	NSB-R2-34S	-117.13777	32.67143	03-Sep-97	Sediment	Discrete Sample	FAAS	Copper (Cu)	Dry weight	63.2 mg/kg	
Sediment Quality Characterization Naval Station San Diego NSB-R2-34S (m) (1,1777) 32.67143 (0.3 Sep-97) Sediment Discrete Sample FAAS Lead (Pb) Dry weight 38.1 [mg/kg Sadiment Quality Characterization Naval Station San Diego NSB-R2-34S (1.17.13777) 32.67143 (0.3 Sep-97) Sediment Discrete Sample FAAS Mercuy (Hg) Dry weight (1.2 mg/kg) Sediment Quality Characterization Naval Station San Diego NSB-R2-34S (1.17.13777) 32.67143 (0.3 Sep-97) Sediment Discrete Sample FAAS Zin (2.n) Dry weight (1.42 mg/kg) Sediment Quality Characterization Naval Station San Diego NSB-R2-35S (1.17.1283) 32.68073 (0.3 Sep-97) Sediment Discrete Sample FAAS Copper (Cu) Dry weight 4.28 mg/kg Sediment Quality Characterization Naval Station San Diego NSB-R2-35S (1.17.1283) 32.68073 0.3 Sep-97 Sediment Discrete Sample FAAS Copper (Cu) Dry weight 4.38 mg/kg Sediment Quality Characterization Naval Station San Diego NSB-R2-35S (1.17.1283) 32.68073 0.3 Sep-97	Sediment Quality Characterization Naval Station San Diego	NSB-R2-34S	-117.13777	32.67143	03-Sep-97	Sediment	Discrete Sample	FAAS	Iron (Fe)	Dry weight	28300 mg/kg	
Sediment Quality Characterization Naval Station San Diego NSB-R2-34S -117.1377 32.67143 03-Sep-97 Sediment Discrete Sample CVAA Mercury (Hg) Dry weight 0.3 [mg/kg] Sediment Quality Characterization Naval Station San Diego NSB-R2-35S -117.1280 32.68073 03-Sep-97 Sediment Discrete Sample Perkin5100 Arsenic (As) Dry weight 148 [mg/kg] Sediment Quality Characterization Naval Station San Diego NSB-R2-35S -117.1280 32.68073 03-Sep-97 Sediment Discrete Sample Perkin5100 Arsenic (As) Dry weight 2.02 [mg/kg] Sediment Quality Characterization Naval Station San Diego NSB-R2-35S -117.12630 32.68073 03-Sep-97 Sediment Discrete Sample FAAS Lead (Hp) Dry weight 4.33 [mg/kg] Sediment Quality Characterization Naval Station San Diego NSB-R2-35S -117.12630 32.68073 03-Sep-97 Sediment Discrete Sample FAAS Lead (Hp) Dry weight 143.2 [mg/kg] Sediment Quality Characterization Naval Station San Diego NSB-R2-35S -117.12630 32.68073 03-S	Sediment Quality Characterization Naval Station San Diego	NSB-R2-34S	-117.13777	32.67143		Sediment		FAAS				
Sediment Quality Characterization Naval Station San Diego NSB-R2-34S 117.12530 32.67143 03-Sep-97 Sediment Discrete Sample FAAS Zinc (Zn) Dry weight 142 mg/kg Sediment Quality Characterization Naval Station San Diego NSB-R2-3SS 117.12630 32.68073 03-Sep-97 Sediment Discrete Sample Perkin5100 Arsenic (As) Dry weight 148 mg/kg Sediment Quality Characterization Naval Station San Diego NSB-R2-3SS 117.12630 32.68073 03-Sep-97 Sediment Discrete Sample FAAS Copper (Cu) Dry weight 438 mg/kg Sediment Quality Characterization Naval Station San Diego NSB-R2-3SS 117.12630 32.68073 03-Sep-97 Sediment Discrete Sample FAAS Lead (Pb) Dry weight 143.2 mg/kg Sediment Quality Characterization Naval Station San Diego NSB-R2-3SS 117.12630 32.68073 03-Sep-97 Sediment Discrete Sample FAAS Lead (Pb) Dry weight 14.2 mg/kg Sediment Quality Characterization Naval Station San Diego NSB-R2-38S	Sediment Quality Characterization Naval Station San Diego	NSB-R2-34S				Sediment	Discrete Sample	CVAA				
Sediment Quality Characterization Naval Station San Diego NSB-R2-35S Intr.12630 32.68073 03-Sep-97 Sediment Discrete Sample Perkin5100 Arsenic (As) Dry weight 18 mg/kg Sediment Quality Characterization Naval Station San Diego NSB-R2-35S -117.12630 32.68073 03-Sep-97 Sediment Discrete Sample Perkin5100 Cadmium (Cd) Dry weight 42.02 mg/kg Sediment Quality Characterization Naval Station San Diego NSB-R2-35S -117.12630 32.68073 03-Sep-97 Sediment Discrete Sample FAAS Iron (Fe) Dry weight 43.8 mg/kg Sediment Quality Characterization Naval Station San Diego NSB-R2-35S -117.12630 32.68073 03-Sep-97 Sediment Discrete Sample FAAS Lead (Pb) Dry weight 134.2 mg/kg Sediment Quality Characterization Naval Station San Diego NSB-R2-35S -117.12630 32.68073 03-Sep-97 Sediment Discrete Sample FAAS Lead (Pb) Dry weight 134.2 mg/kg Sediment Quality Characterization Naval Station San Diego NSB-R2-36S -117.12630 32.68073 03-Sep-97 <td>, , , , , , , , , , , , , , , , , , , ,</td> <td></td>	, , , , , , , , , , , , , , , , , , , ,											
Sediment Quality Characterization Naval Station San DiegoNSB-R2-35S-117.1263032.6807303-Sep-97SedimentDiscrete SamplePerkin5100Cadmium (Cd)Dry weight2.02 mg/kgSediment Quality Characterization Naval Station San DiegoNSB-R2-35S-117.1263032.6807303-Sep-97SedimentDiscrete SampleFAASCopper (Cu)Dry weight438 mg/kgSediment Quality Characterization Naval Station San DiegoNSB-R2-35S-117.1263032.6807303-Sep-97SedimentDiscrete SampleFAASLead (Pb)Dry weight134.2 mg/kgSediment Quality Characterization Naval Station San DiegoNSB-R2-35S-117.1263032.6807303-Sep-97SedimentDiscrete SampleFAASLead (Pb)Dry weight134.2 mg/kgSediment Quality Characterization Naval Station San DiegoNSB-R2-35S-117.1263032.6807303-Sep-97SedimentDiscrete SampleFAASLead (Pb)Dry weight134.2 mg/kgSediment Quality Characterization Naval Station San DiegoNSB-R2-35S-117.1263032.6807303-Sep-97SedimentDiscrete SampleFAASLead (Pb)Dry weight144.7 mg/kgSediment Quality Characterization Naval Station San DiegoNSB-R2-36S-117.1295032.6787503-Sep-97SedimentDiscrete SampleFAASCopper (Cu)Dry weight3.03 mg/kgSediment Quality Characterization Naval Station San DiegoNSB-R2-36S-117.1295032.6787503-Sep-97SedimentDiscrete SampleFAASIron (Fe)<	· · · · · · · · · · · · · · · · · · ·											
Sediment Quality Characterization Naval Station San DiegoNSB-R2-35S-117.1263032.6807303.5ep-97SedimentDiscrete SampleFAASCopper (Cu)Dry weight438 mg/kgSediment Quality Characterization Naval Station San DiegoNSB-R2-35S-117.1263032.6807303.5ep-97SedimentDiscrete SampleFAASIron (Fe)Dry weight65000Sediment Quality Characterization Naval Station San DiegoNSB-R2-35S-117.1263032.6807303.5ep-97SedimentDiscrete SampleFAASLead (Pb)Dry weight134.2mg/kgSediment Quality Characterization Naval Station San DiegoNSB-R2-35S-117.1263032.6807303.5ep-97SedimentDiscrete SampleFAASLead (Pb)Dry weight134.2mg/kgSediment Quality Characterization Naval Station San DiegoNSB-R2-35S-117.1263032.6807303.5ep-97SedimentDiscrete SampleFAASZinc (Zn)Dry weight134.2mg/kgSediment Quality Characterization Naval Station San DiegoNSB-R2-36S-117.1265032.6807303.5ep-97SedimentDiscrete SampleFAASZinc (Zn)Dry weight3.680 mg/kgSediment Quality Characterization Naval Station San DiegoNSB-R2-36S-117.1265032.6787503.5ep-97SedimentDiscrete SamplePerkin5100Cadmim (Cd)Dry weight3.680 mg/kgSediment Quality Characterization Naval Station San DiegoNSB-R2-36S-117.1265032.6787503.5ep-97SedimentDiscrete SampleFAAS <t< td=""><td>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td> </td></t<>	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,											
Sediment Quality Characterization Naval Station San DiegoNSB-R2:35S117.1263032.6807303-Sep-97SedimentDiscrete SampleFAASIron (Fe)Dry weight55000mg/kgSediment Quality Characterization Naval Station San DiegoNSB-R2:35S117.1263032.6807303-Sep-97SedimentDiscrete SampleFAASLead (Pb)Dry weight134.2mg/kgSediment Quality Characterization Naval Station San DiegoNSB-R2:35S117.1263032.6807303-Sep-97SedimentDiscrete SampleFAASLead (Pb)Dry weight134.2mg/kgSediment Quality Characterization Naval Station San DiegoNSB-R2:35S117.1263032.6807303-Sep-97SedimentDiscrete SampleFAASZinc (Zn)Dry weight136.9Sediment Quality Characterization Naval Station San DiegoNSB-R2:36S117.1295532.6787503-Sep-97SedimentDiscrete SamplePerkin5100Arsenic (As)Dry weight14.8mg/kgSediment Quality Characterization Naval Station San DiegoNSB-R2:36S117.1295532.6787503-Sep-97SedimentDiscrete SamplePerkin5100Arsenic (As)Dry weight14.8mg/kgSediment Quality Characterization Naval Station San DiegoNSB-R2:36S117.1295532.6787503-Sep-97SedimentDiscrete SamplePerkin5100Arsenic (As)Dry weight30:0 mg/kgSediment Quality Characterization Naval Station San DiegoNSB-R2:36S117.1295532.6787503-Sep-97SedimentDiscrete Sa	· · · · · · · · · · · · · · · · · · ·											
Sediment Quality Characterization Naval Station San DiegoNSB-R2:35S-117.1263032.6807303-Sep-97SedimentDiscrete SampleFAASLead (Pb)Dry weight134.2mg/kgSediment Quality Characterization Naval Station San DiegoNSB-R2:35S-117.1263032.6807303-Sep-97SedimentDiscrete SampleCVAAMercury (Hg)Dry weight1.437mg/kgSediment Quality Characterization Naval Station San DiegoNSB-R2:35S-117.1263032.6807303-Sep-97SedimentDiscrete SampleFAASZinc (Zn)Dry weight1.437mg/kgSediment Quality Characterization Naval Station San DiegoNSB-R2:36S-117.1265532.6807303-Sep-97SedimentDiscrete SampleFAASZinc (Zn)Dry weight1.437mg/kgSediment Quality Characterization Naval Station San DiegoNSB-R2:36S-117.1265532.6787503-Sep-97SedimentDiscrete SampleFAASCopper (Cu)Dry weight3.03mg/kgSediment Quality Characterization Naval Station San DiegoNSB-R2:36S-117.1265532.6787503-Sep-97SedimentDiscrete SampleFAASCopper (Cu)Dry weight3.03mg/kgSediment Quality Characterization Naval Station San DiegoNSB-R2:36S-117.1265532.6787503-Sep-97SedimentDiscrete SampleFAASIron (Fe)Dry weight3.03mg/kgSediment Quality Characterization Naval Station San DiegoNSB-R2:36S-117.1295532.6787503-Sep-97SedimentD	, , , , , , , , , , , , , , , , , , , ,											
Sediment Quality Characterization Naval Station San DiegoNSB-R2:35S-117.1263032.6807303-Sep-97SedimentDiscrete SampleCVAAMercury (Hg)Dry weight1.437mg/kgSediment Quality Characterization Naval Station San DiegoNSB-R2:35S-117.1263032.6807303-Sep-97SedimentDiscrete SampleFAASZinc (Zn)Dry weight346.mg/kgSediment Quality Characterization Naval Station San DiegoNSB-R2:36S-117.1295532.6787503-Sep-97SedimentDiscrete SamplePerkin5100Cadmium (Cd)Dry weight2.8730Sediment Quality Characterization Naval Station San DiegoNSB-R2:36S-117.1295532.6787503-Sep-97SedimentDiscrete SamplePerkin5100Cadmium (Cd)Dry weight303mg/kgSediment Quality Characterization Naval Station San DiegoNSB-R2:36S-117.1295532.6787503-Sep-97SedimentDiscrete SampleFAASCopper (Cu)Dry weight303mg/kgSediment Quality Characterization Naval Station San DiegoNSB-R2:36S-117.1295532.6787503-Sep-97SedimentDiscrete SampleFAASIron (Fe)Dry weight30800mg/kgSediment Quality Characterization Naval Station San DiegoNSB-R2:36S-117.1295532.6787503-Sep-97SedimentDiscrete SampleFAASIron (Fe)Dry weight303.000mg/kgSediment Quality Characterization Naval Station San DiegoNSB-R2:36S-117.1295532.6787503-Sep-97Sedime	, , , , , , , , , , , , , , , , , , , ,											
Sediment Quality Characterization Naval Station San DiegoNSB-R2:35S-117.1263032.6807303-Sep-97SedimentDiscrete SampleFAASZinc (Zn)Dry weight366mg/kgSediment Quality Characterization Naval Station San DiegoNSB-R2:36S-117.1295532.6787503-Sep-97SedimentDiscrete SamplePerkin5100Arsenic (As)Dry weight14.5mg/kgSediment Quality Characterization Naval Station San DiegoNSB-R2:36S-117.1295532.6787503-Sep-97SedimentDiscrete SamplePerkin5100Cadmium (Cd)Dry weight12.87Sediment Quality Characterization Naval Station San DiegoNSB-R2:36S-117.1295532.6787503-Sep-97SedimentDiscrete SampleFAASCopper (Cu)Dry weight30800mg/kgSediment Quality Characterization Naval Station San DiegoNSB-R2:36S-117.1295532.6787503-Sep-97SedimentDiscrete SampleFAASIron (Fe)Dry weight30800mg/kgSediment Quality Characterization Naval Station San DiegoNSB-R2:36S-117.1295532.6787503-Sep-97SedimentDiscrete SampleFAASLead (Pb)Dry weight30800mg/kgSediment Quality Characterization Naval Station San DiegoNSB-R2:36S-117.1295532.6787503-Sep-97SedimentDiscrete SampleFAASLead (Pb)Dry weight108.02mg/kgSediment Quality Characterization Naval Station San DiegoNSB-R2:36S-117.1295532.6787503-Sep-97SedimentD	, , , , , , , , , , , , , , , , , , , ,											<u> </u>
Sediment Quality Characterization Naval Station San DiegoNSB-R2:36SO-117.1295532.67875O3-Sep-97SedimentDiscrete SamplePerkin5100Arsenic (As)Dry weight14.5mg/kgSediment Quality Characterization Naval Station San DiegoNSB-R2:36S-117.1295532.67875O3-Sep-97SedimentDiscrete SamplePerkin5100Cadmium (Cd)Dry weight2.87g/kgSediment Quality Characterization Naval Station San DiegoNSB-R2:36S-117.1295532.67875O3-Sep-97SedimentDiscrete SampleFAASCopper (Cu)Dry weight308mg/kgSediment Quality Characterization Naval Station San DiegoNSB-R2:36S-117.1295532.67875O3-Sep-97SedimentDiscrete SampleFAASIcon (Fe)Dry weight308mg/kgSediment Quality Characterization Naval Station San DiegoNSB-R2:36S-117.1295532.67875O3-Sep-97SedimentDiscrete SampleFAASLead (Pb)Dry weight308mg/kgSediment Quality Characterization Naval Station San DiegoNSB-R2:36S-117.1295532.67875O3-Sep-97SedimentDiscrete SampleFAASLead (Pb)Dry weight308mg/kgSediment Quality Characterization Naval Station San DiegoNSB-R2:36S-117.1295532.67875O3-Sep-97SedimentDiscrete SampleFAASLead (Pb)Dry weight40.602mg/kgSediment Quality Characterization Naval Station San DiegoNSB-R2:36S-117.1295532.67875O3-Sep-97Se	· · · · · · · · · · · · · · · · · · ·											<u> </u>
Sediment Quality Characterization Naval Station San DiegoNSB-R2-36SO-117.1295532.67875O3-Sep-97SedimentDiscrete SamplePerkin5100Cadmium (Cd)Dry weight2.87mg/kgSediment Quality Characterization Naval Station San DiegoNSB-R2-36S-117.1295532.6787503-Sep-97SedimentDiscrete SampleFAASCopper (Cu)Dry weight3030mg/kg-Sediment Quality Characterization Naval Station San DiegoNSB-R2-36S-117.1295532.6787503-Sep-97SedimentDiscrete SampleFAASIron (Fe)Dry weight3030mg/kg-Sediment Quality Characterization Naval Station San DiegoNSB-R2-36S-117.1295532.6787503-Sep-97SedimentDiscrete SampleFAASLead (Pb)Dry weight1302mg/kg-Sediment Quality Characterization Naval Station San DiegoNSB-R2-36S-117.1295532.6787503-Sep-97SedimentDiscrete SampleFAASLead (Pb)Dry weight1302mg/kg-Sediment Quality Characterization Naval Station San DiegoNSB-R2-36S-117.1295532.6787503-Sep-97SedimentDiscrete SampleFAASZinc (Zn)Dry weight40.602mg/kgSediment Quality Characterization Naval Station San DiegoNSB-R2-36S-117.1295532.6787503-Sep-97SedimentDiscrete SampleFAASZinc (Zn)Dry weight40.602mg/kgSediment Quality Characterization Naval Station San DiegoNSB-R2-36S-117.12975 <td< td=""><td>, , , , , , , , , , , , , , , , , , , ,</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td> </td></td<>	, , , , , , , , , , , , , , , , , , , ,											
Sediment Quality Characterization Naval Station San Diego NSB-R2:36S -117.12955 32.67875 03-Sep-97 Sediment Discrete Sample FAAS Copper (Cu) Dry weight 303 mg/kg Sediment Quality Characterization Naval Station San Diego NSB-R2:36S -117.12955 32.67875 03-Sep-97 Sediment Discrete Sample FAAS Iron (Fe) Dry weight 3600 mg/kg Sediment Quality Characterization Naval Station San Diego NSB-R2:36S -117.12955 32.67875 03-Sep-97 Sediment Discrete Sample FAAS Lead (Pb) Dry weight 3600 mg/kg Sediment Quality Characterization Naval Station San Diego NSB-R2:36S -117.12955 32.67875 03-Sep-97 Sediment Discrete Sample FAAS Lead (Pb) Dry weight 600:00 mg/kg Sediment Quality Characterization Naval Station San Diego NSB-R2:36S -117.12955 32.67875 03-Sep-97 Sediment Discrete Sample FAAS Lead (Pb) Dry weight 0.00:00 mg/kg Sediment Quality Characterization Naval Station San Diego NSB-R2:36S												
Sediment Quality Characterization Naval Station San DiegoNSB-R2-36S	, , , , , , , , , , , , , , , , , , , ,											
Sediment Quality Characterization Naval Station San Diego NSB-R2-36S -117.12955 32.67875 03-Sep-97 Sediment Discrete Sample FAAS Lead (Pb) Dry weight 130.2 mg/kg Sediment Quality Characterization Naval Station San Diego NSB-R2-36S -117.12955 32.67875 03-Sep-97 Sediment Discrete Sample CVAA Mercury (Hg) Dry weight 0.602 mg/kg Sediment Quality Characterization Naval Station San Diego NSB-R2-36S -117.12955 32.67875 03-Sep-97 Sediment Discrete Sample CVAA Mercury (Hg) Dry weight 0.602 mg/kg Sediment Quality Characterization Naval Station San Diego NSB-R2-36S -117.12955 32.67875 03-Sep-97 Sediment Discrete Sample FAAS Zinc (Zn) Dry weight 486 mg/kg Sediment Quality Characterization Naval Station San Diego NSB-R2-37S -117.12777 32.67992 03-Sep-97 Sediment Discrete Sample FAAS Zinc (Zn) Dry weight 412 mg/kg Sediment Quality Characterization Naval Station San Diego NSB-R2-37S -117.12777 32.67992 03-Sep-97 Sediment Discrete S	· · · · · · · · · · · · · · · · · · ·											
Sediment Quality Characterization Naval Station San Diego NSB-R2-36S Image: NSB-R2-37S	, , , , , , , , , , , , , , , , , , , ,											<u> </u>
Sediment Quality Characterization Naval Station San Diego NSB-R2-36S -117.12955 32.67875 03-Sep-97 Sediment Discrete Sample FAAS Zinc (Zn) Dry weight 446 mg/kg Sediment Quality Characterization Naval Station San Diego NSB-R2-37S -117.12777 32.67992 03-Sep-97 Sediment Discrete Sample Perkin5100 Arsenic (As) Dry weight 11.2 mg/kg Sediment Quality Characterization Naval Station San Diego NSB-R2-37S -117.12777 32.67992 03-Sep-97 Sediment Discrete Sample Perkin5100 Arsenic (As) Dry weight 1.0.2 mg/kg Sediment Quality Characterization Naval Station San Diego NSB-R2-37S -117.12777 32.67992 03-Sep-97 Sediment Discrete Sample Perkin5100 Arsenic (As) Dry weight 1.0.2 mg/kg Sediment Quality Characterization Naval Station San Diego NSB-R2-37S -117.12777 32.67992 03-Sep-97 Sediment Discrete Sample Perkin5100 Cadmium (Cd) Dry weight 1.0.2 mg/kg Sediment Quality Characterization Naval Station San Diego												<u> </u>
Sediment Quality Characterization Naval Station San Diego NSB-R2-37S Image: NSB-R2-37S Image: NSB-R2-37S Sediment Quality Characterization Naval Station San Diego NSB-R2-37S Image: NSB-R2-37S Sediment Quality Characterization Naval Station San Diego NSB-R2-37S Image: NSB-R2-37S Sediment Quality Characterization Naval Station San Diego NSB-R2-37S Image: NSB-R2-37S Sediment Quality Characterization Naval Station San Diego NSB-R2-37S Image: NSB-R2-37S Sediment Quality Characterization Naval Station San Diego NSB-R2-37S Image: NSB-R2-37S Sediment Quality Characterization Naval Station San Diego NSB-R2-37S Image: NSB-R2-37S Sediment Quality Characterization Naval Station San Diego NSB-R2-37S Image: NSB-R2-37S NSB-R2-37S Sediment Quality Characterization Naval Station San Diego NSB-R2-37S NSB-R2-37S Sediment Quality Characterization Naval Station San Diego NSB-R2-37S Notation San Diego Notation San D	, , , , , , , , , , , , , , , , , , , ,											
Sediment Quality Characterization Naval Station San Diego NSB-R2-37S - 117.12777 32.67992 O3-Sep-97 Sediment Discrete Sample Perkin5100 Cadmium (Cd) Dry weight 0.57 mg/kg Sediment Quality Characterization Naval Station San Diego NSB-R2-37S - 117.12777 32.67992 03-Sep-97 Sediment Discrete Sample Perkin5100 Cadmium (Cd) Dry weight 0.57 mg/kg												
Sediment Quality Characterization Naval Station San Diego NSB-R2-37S 117.12777 32.67992 03-Sep-97 Sediment Discrete Sample FAS Copper (Cu) Dry weight 208 mg/kg	, , , , , , , , , , , , , , , , , , , ,											
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,											ļ
	, , , , , , , , , , , , , , , , , , , ,									Dry weight		
	Sediment Quality Characterization Naval Station San Diego	NSB-R2-37S	-117.12777	32.67992	03-Sep-97	Sediment	Discrete Sample	FAAS	Iron (Fe)		49100 mg/kg	
Sediment Quality Characterization Naval Station San Diego NSB-R2-37S - 117.12777 32.67992 03-Sep-97 Sediment Discrete Sample FAAS Lead (Pb) Dry weight 80.6 mg/kg	Sediment Quality Characterization Naval Station San Diego	NSB-R2-37S	-117.12777	32.67992	03-Sep-97	Sediment	Discrete Sample	FAAS	Lead (Pb)	Dry weight	80.6 mg/kg	

PROJECT NAME	SITE NAME	SAMPLE ID	X COORDINATE	Y COORDINATE	SAMPLE DATE	SAMPLE MEDIUM	TYPE	MEASUREMENT METHOD	PARAMETER NAME	PROPERTY	QUANTITY UNIT	QUALIFIER
Sediment Quality Characterization Naval Station San Diego	NSB-R2-37S		-117.12777	32.67992	03-Sep-97	Sediment	Discrete Sample	CVAA	Mercury (Hg)	Dry weight	0.653 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-37S		-117.12777	32.67992	03-Sep-97	Sediment	Discrete Sample	FAAS	Zinc (Zn)	Dry weight	342 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-38S		-117.12922	32.68397	03-Sep-97	Sediment	Discrete Sample	Perkin5100	Arsenic (As)	Dry weight	15.3 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-38S		-117.12922	32.68397	03-Sep-97	Sediment	Discrete Sample	Perkin5100	Cadmium (Cd)	Dry weight	4.93 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-38S		-117.12922	32.68397	03-Sep-97	Sediment	Discrete Sample	FAAS	Copper (Cu)	Dry weight	532 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-38S		-117.12922	32.68397	03-Sep-97	Sediment	Discrete Sample	FAAS	Iron (Fe)	Dry weight	51200 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-38S		-117.12922	32.68397	03-Sep-97	Sediment	Discrete Sample	FAAS	Lead (Pb)	Dry weight	209.4 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-38S		-117.12922	32.68397	03-Sep-97	Sediment	Discrete Sample	CVAA	Mercury (Hg)	Dry weight	6.123 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-38S		-117.12922	32.68397	03-Sep-97	Sediment	Discrete Sample	FAAS	Zinc (Zn)	Dry weight	425 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-39S		-117.13077	32.68295	03-Sep-97	Sediment	Discrete Sample	Perkin5100	Arsenic (As)	Dry weight	10.5 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-39S		-117.13077	32.68295	03-Sep-97	Sediment	Discrete Sample	Perkin5100	Cadmium (Cd)	Dry weight	0.65 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-39S		-117.13077	32.68295	03-Sep-97	Sediment	Discrete Sample	FAAS	Copper (Cu)	Dry weight	255 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-39S		-117.13077	32.68295	03-Sep-97	Sediment	Discrete Sample	FAAS	Iron (Fe)	Dry weight	34200 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-39S		-117.13077	32.68295	03-Sep-97	Sediment	Discrete Sample	FAAS	Lead (Pb)	Dry weight	66.6 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-39S		-117.13077	32.68295	03-Sep-97	Sediment	Discrete Sample	CVAA	Mercury (Hg)	Dry weight	0.538 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-395		-117.13077	32.68295	03-Sep-97	Sediment	Discrete Sample	FAAS	Zinc (Zn)	Dry weight	169 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-40S		-117.13272	32.68192	03-Sep-97	Sediment	Discrete Sample	Perkin5100	Arsenic (As)	Dry weight	12.2 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-40S	-	-117.13272	32.68192	03-Sep-97 03-Sep-97	Sediment	Discrete Sample	Perkin5100	Cadmium (Cd)		1.14 mg/kg	
Sediment Quality Characterization Naval Station San Diego Sediment Quality Characterization Naval Station San Diego	NSB-R2-405	1	-117.13272	32.68192	03-Sep-97 03-Sep-97	Sediment		FAAS		Dry weight	221 mg/kg	+
Sediment Quality Characterization Naval Station San Diego Sediment Quality Characterization Naval Station San Diego	NSB-R2-40S NSB-R2-40S	1	-117.13272 -117.13272	32.68192	03-Sep-97 03-Sep-97	Sediment	Discrete Sample Discrete Sample	FAAS	Copper (Cu) Iron (Fe)	Dry weight Dry weight	32000 mg/kg	<u> </u>
, , , , , , , , , , , , , , , , , , ,		1	-117.13272 -117.13272	32.68192	03-Sep-97 03-Sep-97			FAAS				<u> </u>
Sediment Quality Characterization Naval Station San Diego	NSB-R2-40S					Sediment	Discrete Sample		Lead (Pb)	Dry weight	90.8 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-40S		-117.13272	32.68192	03-Sep-97	Sediment	Discrete Sample	CVAA	Mercury (Hg)	Dry weight	0.911 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-40S	+	-117.13272	32.68192 32.68480	03-Sep-97	Sediment	Discrete Sample	FAAS	Zinc (Zn)	Dry weight	225 mg/kg	───
Sediment Quality Characterization Naval Station San Diego	NSB-R2-41S		-117.13192		03-Sep-97	Sediment	Discrete Sample	Perkin5100	Arsenic (As)	Dry weight	15.8 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-41S		-117.13192	32.68480	03-Sep-97	Sediment	Discrete Sample	Perkin5100	Cadmium (Cd)	Dry weight	0.47 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-41S		-117.13192	32.68480	03-Sep-97	Sediment	Discrete Sample	FAAS	Copper (Cu)	Dry weight	274 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-41S		-117.13192	32.68480	03-Sep-97	Sediment	Discrete Sample	FAAS	Iron (Fe)	Dry weight	51200 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-41S		-117.13192	32.68480	03-Sep-97	Sediment	Discrete Sample	FAAS	Lead (Pb)	Dry weight	96 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-41S		-117.13192	32.68480	03-Sep-97	Sediment	Discrete Sample	CVAA	Mercury (Hg)	Dry weight	0.866 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-41S		-117.13192	32.68480	03-Sep-97	Sediment	Discrete Sample	FAAS	Zinc (Zn)	Dry weight	348 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-42S		-117.13418	32.68357	03-Sep-97	Sediment	Discrete Sample	Perkin5100	Arsenic (As)	Dry weight	9.7 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-42S		-117.13418	32.68357	03-Sep-97	Sediment	Discrete Sample	Perkin5100	Cadmium (Cd)	Dry weight	0.15 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-42S		-117.13418	32.68357	03-Sep-97	Sediment	Discrete Sample	FAAS	Copper (Cu)	Dry weight	103 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-42S		-117.13418	32.68357	03-Sep-97	Sediment	Discrete Sample	FAAS	Iron (Fe)	Dry weight	34700 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-42S		-117.13418	32.68357	03-Sep-97	Sediment	Discrete Sample	FAAS	Lead (Pb)	Dry weight	54 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-42S		-117.13418	32.68357	03-Sep-97	Sediment	Discrete Sample	CVAA	Mercury (Hg)	Dry weight	0.291 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-42S		-117.13418	32.68357	03-Sep-97	Sediment	Discrete Sample	FAAS	Zinc (Zn)	Dry weight	162 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-43S		-117.13330	32.68612	03-Sep-97	Sediment	Discrete Sample	Perkin5100	Arsenic (As)	Dry weight	13.9 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-43S		-117.13330	32.68612	03-Sep-97	Sediment	Discrete Sample	Perkin5100	Cadmium (Cd)	Dry weight	0.64 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-43S		-117.13330	32.68612	03-Sep-97	Sediment	Discrete Sample	FAAS	Copper (Cu)	Dry weight	222 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-43S		-117.13330	32.68612	03-Sep-97	Sediment	Discrete Sample	FAAS	Iron (Fe)	Dry weight	47800 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-43S		-117.13330	32.68612	03-Sep-97	Sediment	Discrete Sample	FAAS	Lead (Pb)	Dry weight	106.7 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-43S		-117.13330	32.68612	03-Sep-97	Sediment	Discrete Sample	CVAA	Mercury (Hg)	Dry weight	0.617 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-43S		-117.13330	32.68612	03-Sep-97	Sediment	Discrete Sample	FAAS	Zinc (Zn)	Dry weight	367 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-44S		-117.13272	32.68763	03-Sep-97	Sediment	Discrete Sample	Perkin5100	Arsenic (As)	Dry weight	16.6 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-44S		-117.13272	32.68763	03-Sep-97	Sediment	Discrete Sample	Perkin5100	Cadmium (Cd)	Dry weight	1.59 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-44S		-117.13272	32.68763	03-Sep-97	Sediment	Discrete Sample	FAAS	Copper (Cu)	Dry weight	141 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-44S	1	-117.13272	32.68763	03-Sep-97	Sediment	Discrete Sample	FAAS	Iron (Fe)	Dry weight	50200 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-44S		-117.13272	32.68763	03-Sep-97	Sediment	Discrete Sample	FAAS	Lead (Pb)	Dry weight	156.3 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-44S		-117.13272	32.68763	03-Sep-97	Sediment	Discrete Sample	CVAA	Mercury (Hg)	Dry weight	0.272 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-44S		-117.13272	32.68763	03-Sep-97	Sediment	Discrete Sample	FAAS	Zinc (Zn)	Dry weight	448 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-45S		-117.13442	32.68722	03-Sep-97	Sediment	Discrete Sample	Perkin5100	Arsenic (As)	Dry weight	12.1 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-45S		-117.13442	32.68722	03-Sep-97	Sediment	Discrete Sample	Perkin5100	Cadmium (Cd)	Dry weight	0.68 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-45S		-117.13442	32.68722	03-Sep-97	Sediment	Discrete Sample	FAAS	Copper (Cu)	Dry weight	140 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-45S		-117.13442	32.68722	03-Sep-97	Sediment	Discrete Sample	FAAS	Iron (Fe)	Dry weight	37000 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-45S		-117.13442	32.68722	03-Sep-97	Sediment	Discrete Sample	FAAS	Lead (Pb)	Dry weight	80.2 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-45S	1	-117.13442	32.68722	03-Sep-97	Sediment	Discrete Sample	CVAA	Mercury (Hg)	Dry weight	0.25 mg/kg	1
Sediment Quality Characterization Naval Station San Diego	NSB-R2-45S	1	-117.13442	32.68722	03-Sep-97	Sediment	Discrete Sample	FAAS	Zinc (Zn)	Dry weight	290 mg/kg	1
Sediment Quality Characterization Naval Station San Diego	NSB-R2-46S	1	-117.14477	32.68667	03-Sep-97	Sediment	Discrete Sample	Perkin5100	Arsenic (As)	Dry weight	4 mg/kg	1
Sediment Quality Characterization Naval Station San Diego	NSB-R2-46S	1	-117.14477	32.68667	03-Sep-97	Sediment	Discrete Sample	Perkin5100	Cadmium (Cd)	Dry weight	0.08 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-46S	1	-117.14477	32.68667	03-Sep-97	Sediment	Discrete Sample	FAAS	Copper (Cu)	Dry weight	18.5 mg/kg	
	NSB-R2-46S	1	-117.14477	32.68667	03-Sep-97 03-Sep-97	Sediment	Discrete Sample	FAAS	Iron (Fe)	Dry weight	17800 mg/kg	<u> </u>
Seament quality Characterization Navai Station San Diego	1100-12-403	1	-117.14477	32.00007	03-3eb-91	Jeuiment	Discrete Sample			Dry weight	17600 mg/Kg	L

PROJECT_NAME	SITE_NAME	SAMPLE_ID	X_COORDINATE	Y_COORDINATE	SAMPLE_DATE	SAMPLE_MEDIUM	TYPE	MEASUREMENT_METHOD	PARAMETER_NAME	PROPERTY	QUANTITY UNIT	QUALIFIER
Sediment Quality Characterization Naval Station San Diego	NSB-R2-46S		-117.14477	32.68667	03-Sep-97	Sediment	Discrete Sample	FAAS	Lead (Pb)	Dry weight	20.5 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-46S		-117.14477	32.68667	03-Sep-97	Sediment	Discrete Sample	CVAA	Mercury (Hg)	Dry weight	0.175 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-46S		-117.14477	32.68667	03-Sep-97	Sediment	Discrete Sample	FAAS	Zinc (Zn)	Dry weight	60 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-47S		-117.14215	32.68838	03-Sep-97	Sediment	Discrete Sample	Perkin5100	Arsenic (As)	Dry weight	12.9 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-47S		-117,14215	32.68838	03-Sep-97	Sediment	Discrete Sample	Perkin5100	Cadmium (Cd)	Dry weight	0.28 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-47S		-117.14215	32.68838	03-Sep-97	Sediment	Discrete Sample	FAAS	Copper (Cu)	Dry weight	244 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-47S		-117.14215	32.68838	03-Sep-97	Sediment	Discrete Sample	FAAS	Iron (Fe)	Dry weight	52300 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-47S		-117.14215	32.68838	03-Sep-97	Sediment	Discrete Sample	FAAS	Lead (Pb)	Dry weight	100.7 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-47S		-117.14215	32.68838	03-Sep-97	Sediment	Discrete Sample	CVAA	Mercury (Hg)	Dry weight	0.751 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-47S		-117.14215	32.68838	03-Sep-97	Sediment	Discrete Sample	FAAS	Zinc (Zn)	Dry weight	357 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-48S		-117.14737	32.69162	03-Sep-97	Sediment	Discrete Sample	Perkin5100	Arsenic (As)	Dry weight	14.5 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-48S		-117.14737	32.69162	03-Sep-97	Sediment	Discrete Sample	Perkin5100	Cadmium (Cd)	Dry weight	0.31 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-48S		-117.14737	32.69162	03-Sep-97	Sediment	Discrete Sample	FAAS	Copper (Cu)	Dry weight	268 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-48S		-117.14737	32.69162	03-Sep-97	Sediment	Discrete Sample	FAAS	Iron (Fe)	Dry weight	49100 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-48S		-117.14737	32.69162	03-Sep-97	Sediment	Discrete Sample	FAAS	Lead (Pb)	Dry weight	101.5 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-48S		-117.14737	32.69162	03-Sep-97 03-Sep-97	Sediment	Discrete Sample	CVAA	Mercury (Hg)		0.83 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-48S		-117.14737	32.69162	03-Sep-97 03-Sep-97	Sediment	Discrete Sample	FAAS	Zinc (Zn)	Dry weight	348 mg/kg	
· · · · · · · · · · · · · · · · · · ·	NSB-R2-485 NSB-R2-5S		-117.12060	32.65870	03-Sep-97 03-Sep-97			PAAS Perkin5100		Dry weight Dry weight	7.9 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-55					Sediment	Discrete Sample		Arsenic (As)			
Sediment Quality Characterization Naval Station San Diego			-117.12060	32.65870	03-Sep-97	Sediment	Discrete Sample	Perkin5100	Cadmium (Cd)	Dry weight	0.43 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-5S		-117.12060	32.65870	03-Sep-97	Sediment	Discrete Sample	FAAS	Copper (Cu)	Dry weight	337 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-5S		-117.12060	32.65870	03-Sep-97	Sediment	Discrete Sample	FAAS	Iron (Fe)	Dry weight	57000 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-5S		-117.12060	32.65870	03-Sep-97	Sediment	Discrete Sample	FAAS	Lead (Pb)	Dry weight	61.1 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-5S		-117.12060	32.65870	03-Sep-97	Sediment	Discrete Sample	CVAA	Mercury (Hg)	Dry weight	0.44 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-5S		-117.12060	32.65870	03-Sep-97	Sediment	Discrete Sample	FAAS	Zinc (Zn)	Dry weight	289 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-6S		-117.11888	32.66138	03-Sep-97	Sediment	Discrete Sample	Perkin5100	Arsenic (As)	Dry weight	6.1 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-6S		-117.11888	32.66138	03-Sep-97	Sediment	Discrete Sample	Perkin5100	Cadmium (Cd)	Dry weight	0.45 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-6S		-117.11888	32.66138	03-Sep-97	Sediment	Discrete Sample	FAAS	Copper (Cu)	Dry weight	161 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-6S		-117.11888	32.66138	03-Sep-97	Sediment	Discrete Sample	FAAS	Iron (Fe)	Dry weight	61100 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-6S		-117.11888	32.66138	03-Sep-97	Sediment	Discrete Sample	FAAS	Lead (Pb)	Dry weight	39.6 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-6S		-117.11888	32.66138	03-Sep-97	Sediment	Discrete Sample	CVAA	Mercury (Hg)	Dry weight	0.301 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-6S		-117.11888	32.66138	03-Sep-97	Sediment	Discrete Sample	FAAS	Zinc (Zn)	Dry weight	201 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-7S		-117.12100	32.66132	03-Sep-97	Sediment	Discrete Sample	Perkin5100	Arsenic (As)	Dry weight	10.3 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-7S		-117.12100	32.66132	03-Sep-97	Sediment	Discrete Sample	Perkin5100	Cadmium (Cd)	Dry weight	0.33 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-7S		-117.12100	32.66132	03-Sep-97	Sediment	Discrete Sample	FAAS	Copper (Cu)	Dry weight	240 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-7S		-117.12100	32.66132	03-Sep-97	Sediment	Discrete Sample	FAAS	Iron (Fe)	Dry weight	56000 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-7S		-117.12100	32.66132	03-Sep-97	Sediment	Discrete Sample	FAAS	Lead (Pb)	Dry weight	57.6 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-7S		-117.12100	32.66132	03-Sep-97	Sediment	Discrete Sample	CVAA	Mercury (Hg)	Dry weight	0.468 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-7S		-117.12100	32.66132	03-Sep-97	Sediment	Discrete Sample	FAAS	Zinc (Zn)	Dry weight	285 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-8S		-117.12328	32.66110	03-Sep-97	Sediment	Discrete Sample	Perkin5100	Arsenic (As)	Dry weight	9.1 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-8S		-117.12328	32.66110	03-Sep-97	Sediment	Discrete Sample	Perkin5100	Cadmium (Cd)	Dry weight	0.19 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-8S		-117.12328	32.66110	03-Sep-97	Sediment	Discrete Sample	FAAS	Copper (Cu)	Dry weight	174 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-8S		-117.12328	32.66110	03-Sep-97	Sediment	Discrete Sample	FAAS	Iron (Fe)	Dry weight	54300 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-8S		-117.12328	32.66110	03-Sep-97	Sediment	Discrete Sample	FAAS	Lead (Pb)	Dry weight	50.8 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-8S	1	-117.12328	32.66110	03-Sep-97	Sediment	Discrete Sample	CVAA	Mercury (Hg)	Dry weight	0.375 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-8S		-117.12328	32.66110	03-Sep-97	Sediment	Discrete Sample	FAAS	Zinc (Zn)	Dry weight	236 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-9S		-117.11913	32.66345	03-Sep-97	Sediment	Discrete Sample	Perkin5100	Arsenic (As)	Dry weight	10.3 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-9S	1	-117.11913	32.66345	03-Sep-97	Sediment	Discrete Sample	Perkin5100	Cadmium (Cd)	Dry weight	0.75 mg/kg	
Sediment Quality Characterization Naval Station San Diego	NSB-R2-9S	1	-117.11913	32.66345	03-Sep-97	Sediment	Discrete Sample	FAAS	Copper (Cu)	Dry weight	657 mg/kg	
Sediment Quality Characterization Naval Station Can Diego	NSB-R2-9S	1	-117.11913	32.66345	03-Sep-97	Sediment	Discrete Sample	FAAS	Iron (Fe)	Dry weight	53700 mg/kg	1 1
Sediment Quality Characterization Naval Station San Diego	NSB-R2-9S	1	-117.11913	32.66345	03-Sep-97	Sediment	Discrete Sample	FAAS	Lead (Pb)	Dry weight	65.3 mg/kg	1 1
Sediment Quality Characterization Naval Station San Diego	NSB-R2-95		-117.11913	32.66345	03-Sep-97	Sediment	Discrete Sample	CVAA	Mercury (Hg)	Dry weight	0.604 mg/kg	+
Sediment Quality Characterization Naval Station San Diego	NSB-R2-95		-117.11913	32.66345	03-Sep-97 03-Sep-97	Sediment	Discrete Sample	FAAS	Zinc (Zn)	Dry weight	345 mg/kg	+
Shipyard Sediment Site	2241	SD0128	-117.13648	32.67027	9/12/2002	ocument	Districte Gample		Arsenic (As)	Dry weight	345 mg/kg	+
Shipyard Sediment Site	2241	SD0128 SD0128	-117.13648	32.67027	9/12/2002			+	Cadmium (Cd)	Dry weight	0.08 mg/kg	+
	2241	SD0128 SD0128	-117.13648	32.67027	9/12/2002	+	+	+			34 mg/kg	+
Shipyard Sediment Site	2241	SD0128 SD0128	-117.13648	32.67027	9/12/2002	+	+	+	Copper (Cu)	Dry weight		+
Shipyard Sediment Site								+	Lead (Pb)	Dry weight	13 mg/kg	+
Shipyard Sediment Site	2241	SD0128	-117.13648	32.67027	9/12/2002			+	Mercury (Hg)	Dry weight	0.18 mg/kg	
Shipyard Sediment Site	2241	SD0128	-117.13648	32.67027	9/12/2002				Zinc (Zn)	Dry weight	70 mg/kg	+
Shipyard Sediment Site	2244	SD0126	-117.13182	32.65972	9/12/2002			+	Arsenic (As)	Dry weight	3.8 mg/kg	┥────┤
Shipyard Sediment Site	2244	SD0126	-117.13182	32.65972	9/12/2002			+	Cadmium (Cd)	Dry weight	0.12 mg/kg	┥────┤
Shipyard Sediment Site							1	1	Copper (Cu)	Dry weight	58 mg/kg	1
Shipyard Sediment Site	2244 2244	SD0126 SD0126	-117.13182 -117.13182	32.65972 32.65972	9/12/2002 9/12/2002				Lead (Pb)	Dry weight	18 mg/kg	

IABLE D-1 Inorganic Parameters in Surface Sediment Response to Shipyard Sediment Site Tentative Cleanup and Abatement Order and City of San Diego Complaint United States Naval Base San Diego, California

PROJECT_NAME	SITE_NAME	SAMPLE_ID	X_COORDINATE	Y_COORDINATE	SAMPLE_DATE	SAMPLE_MEDIUM	TYPE	MEASUREMENT_METHOD	PARAMETER_NAME	PROPERTY	QUANTITY UNIT	QUALIFIER
Shipyard Sediment Site	2244	SD0126	-117.13182	32.65972	9/12/2002				Mercury (Hg)	Dry weight	0.2 mg/kg	
Shipyard Sediment Site	2244	SD0126	-117.13182	32.65972	9/12/2002				Zinc (Zn)	Dry weight	110 mg/kg	
Shipyard Sediment Site	2265	SD0107	-117.14030	32.68388	9/9/2002				Arsenic (As)	Dry weight	5.1 mg/kg	
Shipyard Sediment Site	2265	SD0107	-117.14030	32.68388	9/9/2002				Cadmium (Cd)	Dry weight	0.084 mg/kg	
Shipyard Sediment Site	2265	SD0107	-117.14030	32.68388	9/9/2002				Copper (Cu)	Dry weight	57 mg/kg	
Shipyard Sediment Site	2265	SD0107	-117.14030	32.68388	9/9/2002				Lead (Pb)	Dry weight	29 mg/kg	
Shipyard Sediment Site	2265	SD0107	-117.14030	32.68388	9/9/2002				Mercury (Hg)	Dry weight	0.27 mg/kg	J
Shipyard Sediment Site	2265	SD0107	-117.14030	32.68388	9/9/2002				Zinc (Zn)	Dry weight	91 mg/kg	J
Shipyard Sediment Site	NA01	SD0136	-117.14275	32.68943	9/14/2002				Arsenic (As)	Dry weight	9.4 mg/kg	
Shipyard Sediment Site	NA01	SD0030	-117.14275	32.68943	8/11/2001				Arsenic (As)	Dry weight	11 mg/kg	
Shipyard Sediment Site	NA01	SD0136	-117.14275	32.68943	9/14/2002				Cadmium (Cd)	Dry weight	0.21 mg/kg	
Shipyard Sediment Site	NA01	SD0030	-117.14275	32.68943	8/11/2001				Cadmium (Cd)	Dry weight	0.26 mg/kg	
Shipyard Sediment Site	NA01	SD0030	-117.14275	32.68943	8/11/2001				Copper (Cu)	Dry weight	210 mg/kg	
Shipyard Sediment Site	NA01	SD0136	-117.14275	32.68943	9/14/2002				Copper (Cu)	Dry weight	290 mg/kg	
Shipyard Sediment Site	NA01	SD0136	-117.14275	32.68943	9/14/2002				Lead (Pb)	Dry weight	79 mg/kg	
Shipyard Sediment Site	NA01	SD0030	-117.14275	32.68943	8/11/2001				Lead (Pb)	Dry weight	88 mg/kg	J
Shipyard Sediment Site	NA01	SD0030	-117.14275	32.68943	8/11/2001				Mercury (Hg)	Dry weight	0.95 mg/kg	
Shipyard Sediment Site	NA01	SD0136	-117.14275	32.68943	9/14/2002				Mercury (Hg)	Dry weight	1.1 mg/kg	J
Shipyard Sediment Site	NA01	SD0030	-117.14275	32.68943	8/11/2001				Zinc (Zn)	Dry weight	260 mg/kg	
Shipyard Sediment Site	NA01	SD0136	-117.14275	32.68943	9/14/2002				Zinc (Zn)	Dry weight	330 mg/kg	
Shipyard Sediment Site	NA02	SD0033	-117.14274	32.68860	8/11/2001				Arsenic (As)	Dry weight	10 mg/kg	
Shipyard Sediment Site	NA02	SD0033	-117.14274	32.68860	8/11/2001				Cadmium (Cd)	Dry weight	0.21 mg/kg	
Shipyard Sediment Site	NA02	SD0033	-117.14274	32.68860	8/11/2001				Copper (Cu)	Dry weight	170 mg/kg	
Shipyard Sediment Site	NA02	SD0033	-117.14274	32.68860	8/11/2001				Lead (Pb)	Dry weight	76 mg/kg	J
Shipyard Sediment Site	NA02	SD0033	-117.14274	32.68860	8/11/2001				Mercury (Hg)	Dry weight	0.7 mg/kg	
Shipyard Sediment Site	NA02	SD0033	-117.14274	32.68860	8/11/2001				Zinc (Zn)	Dry weight	240 mg/kg	
Shipyard Sediment Site	NA03	SD0032	-117.14187	32.68932	8/11/2001				Arsenic (As)	Dry weight	11 mg/kg	
Shipyard Sediment Site	NA03	SD0032	-117.14187	32.68932	8/11/2001				Cadmium (Cd)	Dry weight	0.29 mg/kg	
Shipyard Sediment Site	NA03	SD0032	-117.14187	32.68932	8/11/2001				Copper (Cu)	Dry weight	220 mg/kg	
Shipyard Sediment Site	NA03	SD0032	-117.14187	32.68932	8/11/2001				Lead (Pb)	Dry weight	94 mg/kg	J
Shipyard Sediment Site	NA03	SD0032	-117.14187	32.68932	8/11/2001				Mercury (Hg)	Dry weight	1.1 mg/kg	
Shipyard Sediment Site	NA03	SD0032	-117.14187	32.68932	8/11/2001				Zinc (Zn)	Dry weight	260 mg/kg	
Shipyard Sediment Site	NA04	SD0035	-117.14038	32.68923	8/11/2001				Arsenic (As)	Dry weight	12 mg/kg	
Shipyard Sediment Site	NA04	SD0035	-117.14038	32.68923	8/11/2001				Cadmium (Cd)	Dry weight	0.27 mg/kg	
Shipyard Sediment Site	NA04	SD0035	-117.14038	32.68923	8/11/2001				Copper (Cu)	Dry weight	260 mg/kg	
Shipyard Sediment Site	NA04	SD0035	-117.14038	32.68923	8/11/2001				Lead (Pb)	Dry weight	93 mg/kg	J
Shipyard Sediment Site	NA04	SD0035	-117.14038	32.68923	8/11/2001				Mercury (Hg)	Dry weight	1.1 mg/kg	
Shipyard Sediment Site	NA04	SD0035	-117.14038	32.68923	8/11/2001				Zinc (Zn)	Dry weight	310 mg/kg	
Shipyard Sediment Site	NA05	SD0044	-117.14071	32.68853	8/13/2001				Arsenic (As)	Dry weight	9.5 mg/kg	
Shipyard Sediment Site	NA05	SD0044	-117.14071	32.68853	8/13/2001				Cadmium (Cd)	Dry weight	0.17 mg/kg	
Shipyard Sediment Site	NA05	SD0044	-117.14071	32.68853	8/13/2001				Copper (Cu)	Dry weight	170 mg/kg	
Shipyard Sediment Site	NA05	SD0044	-117.14071	32.68853	8/13/2001				Lead (Pb)	Dry weight	65 mg/kg	
Shipyard Sediment Site	NA05	SD0044	-117.14071	32.68853	8/13/2001				Mercury (Hg)	Dry weight	0.61 mg/kg	
Shipyard Sediment Site	NA05	SD0044	-117.14071	32.68853	8/13/2001				Zinc (Zn)	Dry weight	210 mg/kg	J
Shipyard Sediment Site	NA06	SD0101	-117.13909	32.69003	9/8/2002				Arsenic (As)	Dry weight	10 mg/kg	
Shipyard Sediment Site	NA06	SD0020	-117.13909	32.69003	8/9/2001				Arsenic (As)	Dry weight	11 mg/kg	
Shipyard Sediment Site	NA06	SD0101	-117.13909	32.69003	9/8/2002				Cadmium (Cd)	Dry weight	0.25 mg/kg	
Shipyard Sediment Site	NA06	SD0020	-117.13909	32.69003	8/9/2001				Cadmium (Cd)	Dry weight	0.28 mg/kg	
Shipyard Sediment Site	NA06	SD0101	-117.13909	32.69003	9/8/2002				Copper (Cu)	Dry weight	380 mg/kg	
Shipyard Sediment Site	NA06	SD0020	-117.13909	32.69003	8/9/2001				Copper (Cu)	Dry weight	410 mg/kg	
Shipyard Sediment Site	NA06	SD0020	-117.13909	32.69003	8/9/2001				Lead (Pb)	Dry weight	130 mg/kg	
Shipyard Sediment Site	NA06	SD0101	-117.13909	32.69003	9/8/2002				Lead (Pb)	Dry weight	130 mg/kg	
Shipyard Sediment Site	NA06	SD0101	-117.13909	32.69003	9/8/2002				Mercury (Hg)	Dry weight	1.5 mg/kg	J
Shipyard Sediment Site	NA06	SD0020	-117.13909	32.69003	8/9/2001				Mercury (Hg)	Dry weight	3.2 mg/kg	
Shipyard Sediment Site	NA06	SD0020	-117.13909	32.69003	8/9/2001				Zinc (Zn)	Dry weight	330 mg/kg	J
Shipyard Sediment Site	NA06	SD0101	-117.13909	32.69003	9/8/2002				Zinc (Zn)	Dry weight	340 mg/kg	J
Shipyard Sediment Site	NA07	SD0017	-117.13911	32.68933	8/8/2001				Arsenic (As)	Dry weight	15 mg/kg	
Shipyard Sediment Site	NA07	SD0017	-117.13911	32.68933	8/8/2001				Cadmium (Cd)	Dry weight	0.27 mg/kg	
Shipyard Sediment Site	NA07	SD0017	-117.13911	32.68933	8/8/2001				Copper (Cu)	Dry weight	210 mg/kg	J
Shipyard Sediment Site	NA07	SD0017	-117.13911	32.68933	8/8/2001				Lead (Pb)	Dry weight	90 mg/kg	
Shipyard Sediment Site	NA07	SD0017	-117.13911	32.68933	8/8/2001				Mercury (Hg)	Dry weight	1.5 mg/kg	
Shipyard Sediment Site	NA07	SD0017	-117.13911	32.68933	8/8/2001		1		Zinc (Zn)	Dry weight	240 mg/kg	J
	1	1					1	1		, ,	=	1°

PROJECT_NAME	SITE_NAME	SAMPLE_ID	X_COORDINATE	Y_COORDINATE	SAMPLE_DATE	SAMPLE_MEDIUM	TYPE	MEASUREMENT_METHOD	PARAMETER_NAME	PROPERTY	QUANTITY UNIT	QUALIFIER
Shipyard Sediment Site	NA08	SD0055	-117.13902	32.68910	8/14/2001				Arsenic (As)	Dry weight	18 mg/kg	
Shipyard Sediment Site	NA08	SD0055	-117.13902	32.68910	8/14/2001				Cadmium (Cd)	Dry weight	0.31 mg/kg	
Shipyard Sediment Site	NA08	SD0055	-117.13902	32.68910	8/14/2001				Copper (Cu)	Dry weight	270 mg/kg	J
Shipyard Sediment Site	NA08	SD0055	-117.13902	32.68910	8/14/2001				Lead (Pb)	Dry weight	96 mg/kg	
Shipyard Sediment Site	NA08	SD0055	-117.13902	32.68910	8/14/2001				Mercury (Hg)	Dry weight	0.82 mg/kg	
Shipyard Sediment Site	NA08	SD0055	-117.13902	32.68910	8/14/2001				Zinc (Zn)	Dry weight	330 mg/kg	J
Shipyard Sediment Site	NA09	SD0054	-117.13880	32.68883	8/14/2001				Arsenic (As)	Dry weight	13 mg/kg	
Shipyard Sediment Site	NA09	SD0054	-117.13880	32.68883	8/14/2001				Cadmium (Cd)	Dry weight	0.4 mg/kg	
Shipyard Sediment Site	NA09	SD0054	-117.13880	32.68883	8/14/2001				Copper (Cu)	Dry weight	260 mg/kg	J
Shipyard Sediment Site	NA09	SD0054	-117.13880	32.68883	8/14/2001				Lead (Pb)	Dry weight	97 mg/kg	
Shipyard Sediment Site	NA09	SD0054	-117.13880	32.68883	8/14/2001				Mercury (Hg)	Dry weight	1.2 mg/kg	
Shipyard Sediment Site	NA09	SD0054	-117.13880	32.68883	8/14/2001				Zinc (Zn)	Dry weight	330 mg/kg	.1
Shipyard Sediment Site	NA10	SD0056	-117.13936	32.68868	8/14/2001				Arsenic (As)	Dry weight	6.9 mg/kg	-
Shipyard Sediment Site	NA10	SD0056	-117.13936	32.68868	8/14/2001				Cadmium (Cd)	Dry weight	0.22 mg/kg	-
Shipyard Sediment Site	NA10	SD0056	-117.13936	32.68868	8/14/2001				Copper (Cu)	Dry weight	160 mg/kg	-
Shipyard Sediment Site	NA10	SD0056	-117.13936	32.68868	8/14/2001				Lead (Pb)	Dry weight	59 mg/kg	
Shipyard Sediment Site	NA10	SD0056	-117.13936	32.68868	8/14/2001				Mercury (Hg)	Dry weight	0.58 mg/kg	
Shipyard Sediment Site	NA10	SD0056	-117.13936	32.68868	8/14/2001				Zinc (Zn)	Dry weight		1
Shipyard Sediment Site	NA10 NA11	SD0056 SD0021	-117.13936	32.68839	8/9/2001				Arsenic (As)		190 mg/kg 9.3 mg/kg	
	NA11 NA11	SD0021 SD0021	-117.13942 -117.13942	32.68839	8/9/2001				()	Dry weight		+
Shipyard Sediment Site	NA11 NA11	SD0021 SD0021	-117.13942 -117.13942	32.68839					Cadmium (Cd)	Dry weight	0.28 mg/kg	+
Shipyard Sediment Site	NA11 NA11	SD0021 SD0021	-117.13942 -117.13942	32.68839	8/9/2001				Copper (Cu)	Dry weight	180 mg/kg 73 mg/kg	+
Shipyard Sediment Site					8/9/2001				Lead (Pb)	Dry weight		+
Shipyard Sediment Site	NA11	SD0021	-117.13942	32.68839	8/9/2001				Mercury (Hg)	Dry weight	0.85 mg/kg	+
Shipyard Sediment Site	NA11	SD0021	-117.13942	32.68839	8/9/2001				Zinc (Zn)	Dry weight	230 mg/kg	J
Shipyard Sediment Site	NA12	SD0027	-117.13978	32.68768	8/10/2001				Arsenic (As)	Dry weight	9.5 mg/kg	
Shipyard Sediment Site	NA12	SD0027	-117.13978	32.68768					Cadmium (Cd)	Dry weight	0.18 mg/kg	U
Shipyard Sediment Site	NA12	SD0027	-117.13978	32.68768	8/10/2001				Copper (Cu)	Dry weight	150 mg/kg	
Shipyard Sediment Site	NA12	SD0027	-117.13978	32.68768	8/10/2001				Lead (Pb)	Dry weight	59 mg/kg	J
Shipyard Sediment Site	NA12	SD0027	-117.13978	32.68768	8/10/2001				Mercury (Hg)	Dry weight	0.62 mg/kg	
Shipyard Sediment Site	NA12	SD0027	-117.13978	32.68768	8/10/2001				Zinc (Zn)	Dry weight	210 mg/kg	
Shipyard Sediment Site	NA13	SD0120	-117.14018	32.68713	9/11/2002				Arsenic (As)	Dry weight	9.5 mg/kg	J
Shipyard Sediment Site	NA13	SD0036	-117.14018	32.68713	8/11/2001				Arsenic (As)	Dry weight	12 mg/kg	
Shipyard Sediment Site	NA13	SD0120	-117.14018	32.68713	9/11/2002				Cadmium (Cd)	Dry weight	0.23 mg/kg	
Shipyard Sediment Site	NA13	SD0036	-117.14018	32.68713	8/11/2001				Cadmium (Cd)	Dry weight	0.24 mg/kg	
Shipyard Sediment Site	NA13	SD0036	-117.14018	32.68713	8/11/2001				Copper (Cu)	Dry weight	170 mg/kg	
Shipyard Sediment Site	NA13	SD0120	-117.14018	32.68713	9/11/2002				Copper (Cu)	Dry weight	200 mg/kg	
Shipyard Sediment Site	NA13	SD0120	-117.14018	32.68713	9/11/2002				Lead (Pb)	Dry weight	71 mg/kg	
Shipyard Sediment Site	NA13	SD0036	-117.14018	32.68713	8/11/2001				Lead (Pb)	Dry weight	79 mg/kg	J
Shipyard Sediment Site	NA13	SD0120	-117.14018	32.68713	9/11/2002				Mercury (Hg)	Dry weight	0.6 mg/kg	
Shipyard Sediment Site	NA13	SD0036	-117.14018	32.68713	8/11/2001				Mercury (Hg)	Dry weight	0.69 mg/kg	
Shipyard Sediment Site	NA13	SD0036	-117.14018	32.68713	8/11/2001				Zinc (Zn)	Dry weight	280 mg/kg	
Shipyard Sediment Site	NA13	SD0120	-117.14018	32.68713	9/11/2002				Zinc (Zn)	Dry weight	310 mg/kg	7
Shipyard Sediment Site	NA14	SD0051	-117.14084	32.68619	8/14/2001				Arsenic (As)	Dry weight	9 mg/kg	
Shipyard Sediment Site	NA14	SD0051	-117.14084	32.68619	8/14/2001				Cadmium (Cd)	Dry weight	0.25 mg/kg	
Shipyard Sediment Site	NA14	SD0051	-117.14084	32.68619	8/14/2001				Copper (Cu)	Dry weight	130 mg/kg	J
Shipyard Sediment Site	NA14	SD0051	-117.14084	32.68619	8/14/2001				Lead (Pb)	Dry weight	66 mg/kg	
Shipyard Sediment Site	NA14	SD0051	-117.14084	32.68619	8/14/2001				Mercury (Hg)	Dry weight	0.55 mg/kg	
Shipyard Sediment Site	NA14	SD0051	-117.14084	32.68619	8/14/2001				Zinc (Zn)	Dry weight	200 mg/kg	J
Shipyard Sediment Site	NA15	SD0037	-117.13837	32.68841	8/12/2001				Arsenic (As)	Dry weight	12 mg/kg	
Shipyard Sediment Site	NA15	SD0037	-117.13837	32.68841	8/12/2001				Cadmium (Cd)	Dry weight	0.25 mg/kg	
Shipyard Sediment Site	NA15	SD0037	-117.13837	32.68841	8/12/2001				Copper (Cu)	Dry weight	250 mg/kg	
Shipyard Sediment Site	NA15	SD0037	-117.13837	32.68841	8/12/2001				Lead (Pb)	Dry weight	83 mg/kg	J
Shipyard Sediment Site	NA15	SD0037	-117.13837	32.68841	8/12/2001				Mercury (Hg)	Dry weight	0.98 mg/kg	
Shipyard Sediment Site	NA15	SD0037	-117.13837	32.68841	8/12/2001				Zinc (Zn)	Dry weight	310 mg/kg	
Shipyard Sediment Site	NA16	SD0099	-117.13889	32.68819	9/8/2002				Arsenic (As)	Dry weight	10 mg/kg	
Shipyard Sediment Site	NA16	SD0038	-117.13889	32.68819	8/12/2001				Arsenic (As)	Dry weight	11 mg/kg	
Shipyard Sediment Site	NA16	SD0038	-117.13889	32.68819	8/12/2001				Cadmium (Cd)	Dry weight	0.35 mg/kg	+ 1
Shipyard Sediment Site	NA16	SD0099	-117.13889	32.68819	9/8/2002				Cadmium (Cd)	Dry weight	0.41 mg/kg	+ 1
Shipyard Sediment Site	NA16	SD0099	-117.13889	32.68819	9/8/2002				Copper (Cu)	Dry weight	250 mg/kg	+
Shipyard Sediment Site	NA16	SD0033	-117.13889	32.68819	8/12/2002				Copper (Cu)	Dry weight	260 mg/kg	+
Shipyard Sediment Site	NA16	SD0030	-117.13889	32.68819	9/8/2002				Lead (Pb)	Dry weight	91 mg/kg	+
Shipyard Sediment Site	NA16	SD0039 SD0038	-117.13889	32.68819					Lead (Pb)	Dry weight	93 mg/kg	+
ompyara dediment one	INATO	00000	-117.13009	32.00019	0/12/2001	L	l	J		DI Y WEIGIIL	ao ing/kg	<u> </u>

IABLE D-1 Inorganic Parameters in Surface Sediment Response to Shipyard Sediment Site Tentative Cleanup and Abatement Order and City of San Diego Complaint United States Naval Base San Diego, California

PROJECT_NAME	SITE_NAME	SAMPLE_ID	X_COORDINATE	Y_COORDINATE	SAMPLE_DATE	SAMPLE_MEDIUM	TYPE	MEASUREMENT_METHOD	PARAMETER_NAME	PROPERTY	QUANTITY I	JNIT	QUALIFIER
Shipyard Sediment Site	NA16	SD0099	-117.13889	32.68819	9/8/2002				Mercury (Hg)	Dry weight	0.97 r	ng/kg	J
Shipyard Sediment Site	NA16	SD0038	-117.13889	32.68819	8/12/2001				Mercury (Hg)	Dry weight	1.1 r	ng/kg	
Shipyard Sediment Site	NA16	SD0038	-117.13889	32.68819	8/12/2001				Zinc (Zn)	Dry weight	310 r	ng/kg	
Shipyard Sediment Site	NA16	SD0099	-117.13889	32.68819	9/8/2002				Zinc (Zn)	Dry weight	330 r		J
Shipyard Sediment Site	NA17	SD0097	-117.13789	32.68787	9/8/2002				Arsenic (As)	Dry weight		ng/kg	
Shipyard Sediment Site	NA17	SD0039	-117.13789	32.68787	8/12/2001				Arsenic (As)	Dry weight	16 r	ng/kg	
Shipyard Sediment Site	NA17	SD0097	-117.13789	32.68787	9/8/2002				Cadmium (Cd)	Dry weight	0.27 r		
Shipyard Sediment Site	NA17	SD0039	-117.13789	32.68787	8/12/2001				Cadmium (Cd)	Dry weight	0.54 r		
Shipyard Sediment Site	NA17	SD0097	-117.13789	32.68787	9/8/2002				Copper (Cu)	Dry weight	360 r		
Shipyard Sediment Site	NA17	SD0039	-117.13789	32.68787	8/12/2001				Copper (Cu)	Dry weight	660 r		
Shipyard Sediment Site	NA17	SD0097	-117.13789	32.68787	9/8/2002				Lead (Pb)	Dry weight	100 r		
Shipyard Sediment Site	NA17	SD0039	-117.13789	32.68787	8/12/2001				Lead (Pb)	Dry weight	130 r		J
Shipyard Sediment Site	NA17	SD0097	-117.13789	32.68787	9/8/2002				Mercury (Hg)	Dry weight	0.76 r		J
Shipyard Sediment Site	NA17	SD0039	-117.13789	32.68787	8/12/2001				Mercury (Hg)	Dry weight	0.93 r		
Shipyard Sediment Site	NA17	SD0097	-117.13789	32.68787	9/8/2002				Zinc (Zn)	Dry weight		ng/kg	J
Shipyard Sediment Site	NA17	SD0039	-117.13789	32.68787	8/12/2001				Zinc (Zn)	Dry weight	770 r		
Shipyard Sediment Site	NA18	SD0053	-117.13863	32.68778	8/14/2001				Arsenic (As)	Dry weight		ng/kg	
Shipyard Sediment Site	NA18	SD0053	-117.13863	32.68778	8/14/2001				Cadmium (Cd)	Dry weight	0.36 r		
Shipyard Sediment Site	NA18	SD0053	-117.13863	32.68778	8/14/2001		1		Copper (Cu)	Dry weight	230 r		J
Shipyard Sediment Site	NA18	SD0053	-117.13863	32.68778	8/14/2001		1		Lead (Pb)	Dry weight		ng/kg	
Shipyard Sediment Site	NA18	SD0053	-117.13863	32.68778	8/14/2001		1		Mercury (Hg)	Dry weight	0.79 r		
Shipyard Sediment Site	NA18	SD0053	-117.13863	32.68778	8/14/2001		1		Zinc (Zn)	Dry weight	380 r		IJ
Shipyard Sediment Site	NA19	SD0033	-117.13902	32.68742	8/12/2001		1		Arsenic (As)	Dry weight		ng/kg	<u> </u>
Shipyard Sediment Site	NA19	SD0042 SD0042	-117.13902	32.68742	8/12/2001		1		Cadmium (Cd)	Dry weight	0.37 r		
Shipyard Sediment Site	NA19	SD0042	-117.13902	32.68742	8/12/2001				Copper (Cu)	Dry weight	270 r		
Shipyard Sediment Site	NA19	SD0042	-117.13902	32.68742					Lead (Pb)	Dry weight	100 r		
Shipyard Sediment Site	NA19	SD0042	-117.13902	32.68742					Mercury (Hg)	Dry weight	0.78 r		ř
Shipyard Sediment Site	NA19	SD0042 SD0042	-117.13902	32.68742	8/12/2001				Zinc (Zn)	Dry weight	450 r		
Shipyard Sediment Site	NA20	SD0042 SD0028	-117.13611	32.68698	8/10/2001				Arsenic (As)	Dry weight		ng/kg	
Shipyard Sediment Site	NA20	SD0028	-117.13611	32.68698	8/10/2001				Cadmium (Cd)	Dry weight	0.44 r		
Shipyard Sediment Site	NA20	SD0028	-117.13611	32.68698	8/10/2001				Copper (Cu)	Dry weight		ng/kg	
Shipyard Sediment Site	NA20	SD0028	-117.13611	32.68698	8/10/2001				Lead (Pb)	Dry weight		ng/kg	1
Shipyard Sediment Site	NA20	SD0028	-117.13611	32.68698	8/10/2001				Mercury (Hg)	Dry weight	0.24 r		5
Shipyard Sediment Site	NA20	SD0028	-117.13611	32.68698	8/10/2001				Zinc (Zn)	Dry weight		ng/kg	
Shipyard Sediment Site	NA20 NA21	SD0020	-117.13671	32.68529	8/14/2001				Arsenic (As)	Dry weight		ng/kg	
Shipyard Sediment Site	NA21	SD0050	-117.13671	32.68529	8/14/2001				Cadmium (Cd)	Dry weight	0.39 r		
Shipyard Sediment Site	NA21	SD0050	-117.13671	32.68529	8/14/2001				Copper (Cu)	Dry weight		ng/kg	1
Shipyard Sediment Site	NA21	SD0050	-117.13671	32.68529	8/14/2001				Lead (Pb)	Dry weight		ng/kg	<u> </u>
Shipyard Sediment Site	NA21	SD0050	-117.13671	32.68529	8/14/2001				Mercury (Hg)	Dry weight	0.51 r		
Shipyard Sediment Site	NA21	SD0050	-117.13671	32.68529	8/14/2001				Zinc (Zn)	Dry weight	250 r		1
Shipyard Sediment Site	NA22	SD0050 SD0052	-117.13462	32.68688	8/14/2001				Arsenic (As)	Dry weight		ng/kg	5
Shipyard Sediment Site	NA22 NA22	SD0052 SD0052	-117.13462	32.68688	8/14/2001				Cadmium (Cd)	Dry weight	0.46 r		I
Shipyard Sediment Site	NA22 NA22	SD0052 SD0052	-117.13462	32.68688	8/14/2001		1		Copper (Cu)	Dry weight		ng/kg	
Shipyard Sediment Site	NA22 NA22	SD0052 SD0052	-117.13462	32.68688	8/14/2001		1		Lead (Pb)	Dry weight		ng/kg	
Shipyard Sediment Site	NA22 NA22	SD0052 SD0052	-117.13462	32.68688					Mercury (Hg)	Dry weight	0.38 r		
Shipyard Sediment Site	NA22 NA22	SD0052 SD0052	-117.13462	32.68688	8/14/2001				Zinc (Zn)	Dry weight	230 r		
Shipyard Sediment Site	NA22 NA23	SD0052 SD0095	-117.13402	32.68995	9/8/2002		1		Arsenic (As)	Dry weight		ng/kg	
Shipyard Sediment Site	NA23	SD0095	-117.14025	32.68995	9/8/2002				Cadmium (Cd)	Dry weight	0.26 r		
Shipyard Sediment Site	NA23	SD0095	-117.14025	32.68995	9/8/2002		1		Copper (Cu)	Dry weight	350 r		I
Shipyard Sediment Site	NA23	SD0095	-117.14025	32.68995					Lead (Pb)	Dry weight		ng/kg	I
Shipyard Sediment Site	NA23	SD0095	-117.14025	32.68995	9/8/2002		1		Mercury (Hg)	Dry weight		ng/kg	I
Shipyard Sediment Site	NA23	SD0095	-117.14025	32.68995	9/8/2002				Zinc (Zn)	Dry weight	430 r		
Shipyard Sediment Site	NA23	SD0095 SD0094	-117.14023	32.68984	9/8/2002				Arsenic (As)	Dry weight		ng/kg	<u> </u>
Shipyard Sediment Site	NA24 NA24	SD0094 SD0094	-117.14121	32.68984	9/8/2002		1		Cadmium (Cd)	Dry weight		ng/kg ng/kg	I
Shipyard Sediment Site	NA24 NA24	SD0094 SD0094	-117.14121	32.68984	9/8/2002		1		Copper (Cu)	Dry weight Dry weight	200 r		
Shipyard Sediment Site	NA24 NA24	SD0094 SD0094	-117.14121	32.68984	9/8/2002				Lead (Pb)	Dry weight		ng/kg ng/kg	I
Shipyard Sediment Site	NA24 NA24	SD0094 SD0094	-117.14121	32.68984	9/8/2002							ng/kg	
Shipyard Sediment Site	NA24 NA24	SD0094 SD0094	-117.14121 -117.14121	32.68984			1		Mercury (Hg) Zinc (Zn)	Dry weight	280 r		J
••	NA24 NA25		-117.14121 -117.13982						. ,	Dry weight			J
Shipyard Sediment Site Shipyard Sediment Site	NA25 NA25	SD0106 SD0106	-117.13982 -117.13982	32.68477 32.68477	9/9/2002 9/9/2002				Arsenic (As) Cadmium (Cd)	Dry weight Dry weight	0.11 r	ng/kg	I
••	NA25 NA25	SD0106 SD0106	-117.13982	32.68477									I
Shipyard Sediment Site Shipyard Sediment Site	NA25 NA25	SD0106 SD0106	-117.13982 -117.13982	32.68477	9/9/2002 9/9/2002				Copper (Cu) Lead (Pb)	Dry weight		ng/kg	
Shipyard Sediment Site	INAZO	30100	-117.13982	32.68477	9/9/2002	1	1	1	Ledu (PD)	Dry weight	41 r	ng/kg	

PROJECT NAME	SITE NAME	SAMPLE ID	X COORDINATE	Y COORDINATE	SAMPLE DATE	SAMPLE MEDIUM	TYPE	MEASUREMENT METHOD	PARAMETER NAME	PROPERTY	QUANTITY UNIT	QUALIFIER
Shipyard Sediment Site	NA25	SD0106	-117.13982	32.68477	9/9/2002				Mercury (Hg)	Dry weight	0.42 mg/kg	J
Shipyard Sediment Site	NA25	SD0106	-117.13982	32.68477	9/9/2002				Zinc (Zn)	Dry weight	130 mg/kg	J
Shipyard Sediment Site	NA26	SD0116	-117.14308	32.68714	9/11/2002				Arsenic (As)	Dry weight	6.2 mg/kg	Ŭ.
Shipyard Sediment Site	NA26	SD0116	-117.14308	32.68714	9/11/2002				Cadmium (Cd)	Dry weight	0.11 mg/kg	-
Shipyard Sediment Site	NA26	SD0116	-117.14308	32.68714	9/11/2002				Copper (Cu)	Dry weight	80 mg/kg	
Shipyard Sediment Site	NA26	SD0116	-117.14308	32.68714	9/11/2002				Lead (Pb)	Dry weight	41 mg/kg	-
Shipyard Sediment Site	NA26	SD0116	-117.14308	32.68714	9/11/2002				Mercury (Hg)	Dry weight	0.48 mg/kg	
Shipyard Sediment Site	NA26	SD0116	-117.14308	32.68714	9/11/2002				Zinc (Zn)	Dry weight	140 mg/kg	
Shipyard Sediment Site	NA20 NA27	SD0301	-117.13969	32.68947	10/2/2002				Arsenic (As)	Dry weight	13 mg/kg	
Shipyard Sediment Site	NA27	SD0301	-117.13969	32.68947	10/2/2002				Cadmium (Cd)	Dry weight	0.29 mg/kg	
Shipyard Sediment Site	NA27	SD0301	-117.13969	32.68947	10/2/2002				Copper (Cu)	Dry weight	390 mg/kg	+
Shipyard Sediment Site	NA27 NA27	SD0301	-117.13969	32.68947	10/2/2002				Lead (Pb)	Dry weight	110 mg/kg	
Shipyard Sediment Site	NA27 NA27	SD0301	-117.13969	32.68947	10/2/2002				Mercury (Hg)		1.2 mg/kg	-
Shipyard Sediment Site	NA27 NA27	SD0301	-117.13969	32.68947	10/2/2002				Zinc (Zn)	Dry weight Dry weight	500 mg/kg	
Shipyard Sediment Site	NA28	SD0300	-117.13909	32.68869	10/2/2002							
	NA28 NA28	SD0300	-117.13992	32.68869	10/2/2002				Arsenic (As)	Dry weight	10 mg/kg	
Shipyard Sediment Site									Cadmium (Cd)	Dry weight	0.31 mg/kg	
Shipyard Sediment Site	NA28	SD0300	-117.13992	32.68869	10/2/2002				Copper (Cu)	Dry weight	290 mg/kg	
Shipyard Sediment Site	NA28	SD0300	-117.13992	32.68869	10/2/2002				Lead (Pb)	Dry weight	84 mg/kg	+
Shipyard Sediment Site	NA28	SD0300	-117.13992	32.68869	10/2/2002			+	Mercury (Hg)	Dry weight	0.89 mg/kg	+
Shipyard Sediment Site	NA28	SD0300	-117.13992	32.68869	10/2/2002			+	Zinc (Zn)	Dry weight	390 mg/kg	+
Shipyard Sediment Site	NA29	SD0119	-117.14155	32.68792	9/11/2002				Arsenic (As)	Dry weight	6.9 mg/kg	J
Shipyard Sediment Site	NA29	SD0119	-117.14155	32.68792	9/11/2002				Cadmium (Cd)	Dry weight	0.14 mg/kg	┥────┤
Shipyard Sediment Site	NA29	SD0119	-117.14155	32.68792	9/11/2002				Copper (Cu)	Dry weight	110 mg/kg	+
Shipyard Sediment Site	NA29	SD0119	-117.14155	32.68792	9/11/2002				Lead (Pb)	Dry weight	56 mg/kg	
Shipyard Sediment Site	NA29	SD0119	-117.14155	32.68792	9/11/2002				Mercury (Hg)	Dry weight	0.55 mg/kg	
Shipyard Sediment Site	NA29	SD0119	-117.14155	32.68792	9/11/2002				Zinc (Zn)	Dry weight	170 mg/kg	
Shipyard Sediment Site	NA30	SD0115	-117.14134	32.68631	9/11/2002				Arsenic (As)	Dry weight	7.5 mg/kg	J
Shipyard Sediment Site	NA30	SD0115	-117.14134	32.68631	9/11/2002				Cadmium (Cd)	Dry weight	0.22 mg/kg	
Shipyard Sediment Site	NA30	SD0115	-117.14134	32.68631	9/11/2002				Copper (Cu)	Dry weight	140 mg/kg	
Shipyard Sediment Site	NA30	SD0115	-117.14134	32.68631	9/11/2002				Lead (Pb)	Dry weight	59 mg/kg	
Shipyard Sediment Site	NA30	SD0115	-117.14134	32.68631	9/11/2002				Mercury (Hg)	Dry weight	0.71 mg/kg	
Shipyard Sediment Site	NA30	SD0115	-117.14134	32.68631	9/11/2002				Zinc (Zn)	Dry weight	170 mg/kg	
Shipyard Sediment Site	NA31	SD0105	-117.13748	32.68328	9/9/2002				Arsenic (As)	Dry weight	5.3 mg/kg	
Shipyard Sediment Site	NA31	SD0105	-117.13748	32.68328	9/9/2002				Cadmium (Cd)	Dry weight	0.13 mg/kg	
Shipyard Sediment Site	NA31	SD0105	-117.13748	32.68328	9/9/2002				Copper (Cu)	Dry weight	71 mg/kg	
Shipyard Sediment Site	NA31	SD0105	-117.13748	32.68328	9/9/2002				Lead (Pb)	Dry weight	34 mg/kg	
Shipyard Sediment Site	NA31	SD0105	-117.13748	32.68328	9/9/2002				Mercury (Hg)	Dry weight	0.35 mg/kg	J
Shipyard Sediment Site	NA31	SD0105	-117.13748	32.68328	9/9/2002				Zinc (Zn)	Dry weight	110 mg/kg	J
Shipyard Sediment Site	SW01	SD0137	-117.14573	32.69249	9/14/2002				Arsenic (As)	Dry weight	12 mg/kg	
Shipyard Sediment Site	SW01	SD0001	-117.14573	32.69249	8/6/2001				Arsenic (As)	Dry weight	15 mg/kg	
Shipyard Sediment Site	SW01	SD0137	-117.14573	32.69249	9/14/2002				Cadmium (Cd)	Dry weight	0.67 mg/kg	
Shipyard Sediment Site	SW01	SD0001	-117.14573	32.69249	8/6/2001				Cadmium (Cd)	Dry weight	0.75 mg/kg	
Shipyard Sediment Site	SW01	SD0137	-117.14573	32.69249	9/14/2002				Copper (Cu)	Dry weight	500 mg/kg	
Shipyard Sediment Site	SW01	SD0001	-117.14573	32.69249	8/6/2001				Copper (Cu)	Dry weight	620 mg/kg	J
Shipyard Sediment Site	SW01	SD0137	-117.14573	32.69249	9/14/2002				Lead (Pb)	Dry weight	120 mg/kg	
Shipyard Sediment Site	SW01	SD0001	-117.14573	32.69249	8/6/2001				Lead (Pb)	Dry weight	170 mg/kg	
Shipyard Sediment Site	SW01	SD0001	-117.14573	32.69249	8/6/2001				Mercury (Hg)	Dry weight	1.4 mg/kg	
Shipyard Sediment Site	SW01	SD0137	-117.14573	32.69249	9/14/2002				Mercury (Hg)	Dry weight	1.5 mg/kg	J
Shipyard Sediment Site	SW01	SD0137	-117.14573	32.69249	9/14/2002				Zinc (Zn)	Dry weight	430 mg/kg	
Shipyard Sediment Site	SW01	SD0001	-117.14573	32.69249	8/6/2001				Zinc (Zn)	Dry weight	610 mg/kg	J
Shipyard Sediment Site	SW02	SD0138	-117.14593	32.69219	9/14/2002				Arsenic (As)	Dry weight	13 mg/kg	
Shipyard Sediment Site	SW02	SD0005	-117.14593	32.69219	8/6/2001				Arsenic (As)	Dry weight	16 mg/kg	
Shipyard Sediment Site	SW02	SD0005	-117.14593	32.69219	8/6/2001				Cadmium (Cd)	Dry weight	2.5 mg/kg	
Shipyard Sediment Site	SW02	SD0138	-117.14593	32.69219	9/14/2002				Cadmium (Cd)	Dry weight	3.8 mg/kg	
Shipyard Sediment Site	SW02	SD0005	-117.14593	32.69219	8/6/2001			1	Copper (Cu)	Dry weight	570 mg/kg	J
Shipyard Sediment Site	SW02	SD0138	-117.14593	32.69219	9/14/2002			1	Copper (Cu)	Dry weight	610 mg/kg	
Shipyard Sediment Site	SW02	SD0138	-117.14593	32.69219	9/14/2002				Lead (Pb)	Dry weight	150 mg/kg	1
Shipyard Sediment Site	SW02	SD0005	-117.14593	32.69219	8/6/2001				Lead (Pb)	Dry weight	170 mg/kg	1
Shipyard Sediment Site	SW02	SD0005	-117.14593	32.69219	8/6/2001		1	1	Mercury (Hg)	Dry weight	3.9 mg/kg	1
Shipyard Sediment Site	SW02	SD0138	-117.14593	32.69219	9/14/2002			1	Mercury (Hg)	Dry weight	5.4 mg/kg	J
Shipyard Sediment Site	SW02	SD0005	-117.14593	32.69219	8/6/2001			1	Zinc (Zn)	Dry weight	550 mg/kg	J
Shipyard Sediment Site	SW02	SD0003	-117.14593	32.69219	9/14/2002				Zinc (Zn)	Dry weight	620 mg/kg	+
ompyona dodimont one	5/102	300100	117.14000	JZ.03219	J/17/2002		1	1		iony morgine	520 mg/kg	

Beneric SectorBox00-111 MontStatulByzerBox00-111 MontStatulByzerBox00-111 MontStatul-111 MontStatul-111 MontStatul-111 MontStatul-111 MontStatul-111 Mont-111 Mont <th>PROJECT NAME</th> <th>SITE NAME</th> <th>SAMPLE ID</th> <th>X COORDINATE</th> <th>Y COORDINATE</th> <th>SAMPLE DATE</th> <th>SAMPLE MEDIUM</th> <th>TYPE</th> <th>MEASUREMENT METHOD</th> <th>PARAMETER NAME</th> <th>PROPERTY</th> <th>QUANTITY UNIT</th> <th>QUALIFIER</th>	PROJECT NAME	SITE NAME	SAMPLE ID	X COORDINATE	Y COORDINATE	SAMPLE DATE	SAMPLE MEDIUM	TYPE	MEASUREMENT METHOD	PARAMETER NAME	PROPERTY	QUANTITY UNIT	QUALIFIER
Bend scarter 30.BrowAPPLAPPLBrowAPPLBrowBr	—			_	_	_							
Backed solutionBackedBackedAndrowBackedAndrowBacked <td></td>													
Biology Selection 3b.Discole <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>J</td></th<>													J
Bendy SchwartenBendyBorneAmery SchwartenMore and an and an and and and and and and a	Shipyard Sediment Site												
Bender Sheem	Shipyard Sediment Site	SW03	SD0009	-117.14653	32.69148	8/7/2001				Mercury (Hg)			
Brays <th< td=""><td>Shipyard Sediment Site</td><td>SW03</td><td>SD0009</td><td>-117.14653</td><td>32.69148</td><td>8/7/2001</td><td></td><td></td><td></td><td>Zinc (Zn)</td><td>Dry weight</td><td>230 mg/kg</td><td>J</td></th<>	Shipyard Sediment Site	SW03	SD0009	-117.14653	32.69148	8/7/2001				Zinc (Zn)	Dry weight	230 mg/kg	J
Bigues Solutione So	Shipyard Sediment Site	SW04	SD0112	-117.14529	32.69246	9/10/2002				Arsenic (As)			J
Bright StandtenBrownBrownCatalantCatalantSymple </td <td>Shipyard Sediment Site</td> <td>SW04</td> <td>SD0012</td> <td>-117.14529</td> <td>32.69246</td> <td>8/7/2001</td> <td></td> <td></td> <td></td> <td>Arsenic (As)</td> <td></td> <td></td> <td></td>	Shipyard Sediment Site	SW04	SD0012	-117.14529	32.69246	8/7/2001				Arsenic (As)			
Bright Stature Bright Stature Control (Co.) Dry unger Lot (Co.) Dry unger <thlot (co.)<="" th=""> Dry unger Lot (Co.)<td>Shipyard Sediment Site</td><td>SW04</td><td>SD0112</td><td>-117.14529</td><td>32.69246</td><td>9/10/2002</td><td></td><td></td><td></td><td>Cadmium (Cd)</td><td>Dry weight</td><td>1.5 mg/kg</td><td></td></thlot>	Shipyard Sediment Site	SW04	SD0112	-117.14529	32.69246	9/10/2002				Cadmium (Cd)	Dry weight	1.5 mg/kg	
Single Selenta SineSineSineNone <th< td=""><td>Shipyard Sediment Site</td><td>SW04</td><td>SD0012</td><td>-117.14529</td><td>32.69246</td><td>8/7/2001</td><td></td><td></td><td></td><td>Cadmium (Cd)</td><td></td><td>2.4 mg/kg</td><td></td></th<>	Shipyard Sediment Site	SW04	SD0012	-117.14529	32.69246	8/7/2001				Cadmium (Cd)		2.4 mg/kg	
BrayesBray	Shipyard Sediment Site	SW04	SD0112	-117.14529	32.69246	9/10/2002				Copper (Cu)	Dry weight		
Biguest Salement BisBiguest Salement Bis <th< td=""><td>Shipyard Sediment Site</td><td>SW04</td><td>SD0012</td><td>-117.14529</td><td>32.69246</td><td>8/7/2001</td><td></td><td></td><td></td><td>Copper (Cu)</td><td>Dry weight</td><td>1,900 mg/kg</td><td>J</td></th<>	Shipyard Sediment Site	SW04	SD0012	-117.14529	32.69246	8/7/2001				Copper (Cu)	Dry weight	1,900 mg/kg	J
Shorty Sheart	Shipyard Sediment Site	SW04	SD0112	-117.14529	32.69246	9/10/2002				Lead (Pb)	Dry weight	380 mg/kg	
Singer Schwint Singer Synd Stringer Schwint Singer Schwinz Synd Stringer Schwinz Stringer Schwinz <tr< td=""><td>Shipyard Sediment Site</td><td>SW04</td><td>SD0012</td><td>-117.14529</td><td>32.69246</td><td>8/7/2001</td><td></td><td></td><td></td><td>Lead (Pb)</td><td>Dry weight</td><td>480 mg/kg</td><td></td></tr<>	Shipyard Sediment Site	SW04	SD0012	-117.14529	32.69246	8/7/2001				Lead (Pb)	Dry weight	480 mg/kg	
Sharpa Sharpa Sharpa	Shipyard Sediment Site	SW04	SD0012	-117.14529	32.69246	8/7/2001				Mercury (Hg)	Dry weight	1.2 mg/kg	
Binger Beham Sin SinVer <	Shipyard Sediment Site	SW04	SD0112	-117.14529	32.69246	9/10/2002				Mercury (Hg)		2.3 mg/kg	
Bingers Bingers <t< td=""><td>Shipyard Sediment Site</td><td>SW04</td><td>SD0112</td><td>-117.14529</td><td>32.69246</td><td>9/10/2002</td><td></td><td></td><td></td><td>Zinc (Zn)</td><td>Dry weight</td><td>2,300 mg/kg</td><td></td></t<>	Shipyard Sediment Site	SW04	SD0112	-117.14529	32.69246	9/10/2002				Zinc (Zn)	Dry weight	2,300 mg/kg	
Binger Selenct Selenc	Shipyard Sediment Site	SW04	SD0012	-117.14529	32.69246	8/7/2001				Zinc (Zn)	Dry weight		J
Binger Bahmer Ban Strong Strong J. 17. 147. J. 20. 2017 J. 20. 2017 J. J. J. J. J. 2017 J. J. J. 2017 J. J. J. 2017 J. J. J. 2017	Shipyard Sediment Site	SW05	SD0003	-117.14572	32.69191	8/6/2001				Arsenic (As)		11 mg/kg	
Bingurs Selement SineWorksBiolog117.149220.0141BiologLast (Ph)Dr. weight130.mg/bgBingurs Selement SineSinoSino117.149220.0141BiologMerca (Ma)Merca	Shipyard Sediment Site	SW05	SD0003	-117.14572	32.69191	8/6/2001				Cadmium (Cd)	Dry weight	0.86 mg/kg	
Binger Steimer SineSYM05SYM05InterpretSym17Sine PartSine Part<	Shipyard Sediment Site		SD0003		32.69191	8/6/2001				Copper (Cu)	Dry weight	230 mg/kg	J
Bingend Sedemet BinsSNOS <t< td=""><td>Shipyard Sediment Site</td><td></td><td>SD0003</td><td></td><td>32.69191</td><td>8/6/2001</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Shipyard Sediment Site		SD0003		32.69191	8/6/2001							
Bingland Sale SW00 SU000 III / 1468 32.8913 Singland Sale Mass Dyweght Singland Sale Dyweght Singland Sale <thdiweght< th=""> <thdiwweght< th=""> <thd< td=""><td>Shipyard Sediment Site</td><td>SW05</td><td>SD0003</td><td></td><td>32.69191</td><td>8/6/2001</td><td></td><td></td><td></td><td>Mercury (Hg)</td><td>Dry weight</td><td></td><td></td></thd<></thdiwweght<></thdiweght<>	Shipyard Sediment Site	SW05	SD0003		32.69191	8/6/2001				Mercury (Hg)	Dry weight		
Shipyed Schrimer Sile SNO66 SDO20 -117.1460 32.69150 Bic2001 Class (m) Class (m) Doy wight Mol Sile Shipyed Schrimer Sile SNO6 SDO20 -117.1460 32.69150 Bic2001 Lad (Pb Dr wrigt All mg/s All mg/s Shipyed Schrimer Sile SNO6 SDO20 -117.1460 32.69150 Bic2001 All mc/s Dr wrigt	Shipyard Sediment Site	SW05	SD0003	-117.14572	32.69191	8/6/2001				Zinc (Zn)	Dry weight	280 mg/kg	J
Shipund Saferran Sine SN06 SD020 -117 / 1460 32.60166 Biv2001 C C Dop weight I T/I mg/ng J Shipund Saferran Sine SN06 SD020 -117.1460 32.60166 Biv2001 Marcary (%) Dy weight 60.70% g/s J Shipund Saferran Sine SN06 SD020 -117.1460 32.6016 Biv2001 Attain(A) Dy weight 20.70% g/s J Shipund Saferran Sine SN07 SD0004 -117.1460 32.60116 Biv2001 Attain(A) Dy weight 0.116 / 100 /	Shipyard Sediment Site	SW06	SD0002	-117.14606	32.69150	8/6/2001				Arsenic (As)	Dry weight	15 mg/kg	
Shynd Sedment Sia SNO0 SD002 117.1460 32.6450 Mercor	Shipyard Sediment Site	SW06	SD0002	-117.14606	32.69150	8/6/2001				Cadmium (Cd)	Dry weight	0.85 mg/kg	
Shipyat Salamari Sia SW00 S0002 1171400 32.68150 69/2001 Drace (A) Drace (A) <thdrace (a)<="" th=""> Drace (A) Dr</thdrace>	Shipyard Sediment Site	SW06	SD0002	-117.14606	32.69150	8/6/2001				Copper (Cu)	Dry weight	170 mg/kg	J
Shipyat Salemart, Sie NYOE SD002 117.1440 32.8710 Selection Approximation Dy weight Approximation Shipyat Salemare, Sie SYO7 SD004 117.1440 32.8711 862/01 Cadmum, Cal Dy weight 0.18 mp/sg J Shipyat Salemare, Sie SYO7 SD004 117.1440 32.8711 862/01 Cagmum, Cal Dy weight 150 mp/sg J Shipyat Salemare, Sie SYO7 SD004 117.1440 32.8711 862/01 Laad (Pb) Dy weight 62.27 mg/sg G Dy weight 62.27 mg/sg G SS 62.27 mg/sg G SS	Shipyard Sediment Site	SW06	SD0002	-117.14606	32.69150	8/6/2001				Lead (Pb)	Dry weight	81 mg/kg	
Shipyad Sadament Silo SN07 SN004 -117.1440 S2.001 S2.001 Cambin (GM) Dyngids Cathin (GM) Dyngids S1.1 S1.1 S2.001 Cathin (GM) Dyngids S1.1 S1.1 </td <td>Shipyard Sediment Site</td> <td>SW06</td> <td>SD0002</td> <td>-117.14606</td> <td>32.69150</td> <td>8/6/2001</td> <td></td> <td></td> <td></td> <td>Mercury (Hg)</td> <td>Dry weight</td> <td>0.75 mg/kg</td> <td></td>	Shipyard Sediment Site	SW06	SD0002	-117.14606	32.69150	8/6/2001				Mercury (Hg)	Dry weight	0.75 mg/kg	
Shypad Sadmard Sine SW07 SD004 117.1460 32.011 68/201 C Caper (C) Dyngt 10.18 ps/gs I Shypad Sadmard Sine SW07 SD004 117.1460 32.0114 86/201 C Lad (Pb) Dyngtd 637 ps/gs I Shypad Sadmard Sine SW07 SD0044 117.1460 32.0114 86/201 C Lad (Pb) Dyngtd 637 ps/gs I I 10.0117 I 32.012 C D Marcu (A) Dyngtd 127 ps/gs I I 10.0117 I 32.022 D D Ansnic (A) Dyngtd 21.017 ps/gs I I 10.0117 I	Shipyard Sediment Site	SW06	SD0002	-117.14606	32.69150	8/6/2001				Zinc (Zn)	Dry weight	280 mg/kg	J
Shyurd Salmant Sine SW07 SD004 117.1440 32.8114 842.01 C C Cp Mage Mage Mage Shyurd Salmant Sine SW07 SD0044 117.1440 32.8114 842.001 Mage Mage Dy wigh 0.32 mysk Jane Shyurd Salmant Sine SW07 SD0044 117.1440 32.8114 842.001 Americ Ais Dy wigh 0.32 mysk Jane Jane Dy wigh 0.22 mysk Jane Jane Dy wigh 0.22 mysk Jane Jane </td <td>Shipyard Sediment Site</td> <td>SW07</td> <td>SD0004</td> <td>-117.14640</td> <td>32.69114</td> <td>8/6/2001</td> <td></td> <td></td> <td></td> <td>Arsenic (As)</td> <td>Dry weight</td> <td>8.1 mg/kg</td> <td></td>	Shipyard Sediment Site	SW07	SD0004	-117.14640	32.69114	8/6/2001				Arsenic (As)	Dry weight	8.1 mg/kg	
Shyard Sedment Site SMV0 S0004 I-17.1440 S2.6141 68/201 I </td <td>Shipyard Sediment Site</td> <td>SW07</td> <td>SD0004</td> <td>-117.14640</td> <td>32.69114</td> <td>8/6/2001</td> <td></td> <td></td> <td></td> <td>Cadmium (Cd)</td> <td>Dry weight</td> <td>0.19 mg/kg</td> <td></td>	Shipyard Sediment Site	SW07	SD0004	-117.14640	32.69114	8/6/2001				Cadmium (Cd)	Dry weight	0.19 mg/kg	
Shipyad Sedment She SNV7 SD0.04 -117.1460 28.014 8.02001 Mercury (Hg) Dry weight 0.021 mg/sg J Shipyad Sedment She SV07 SD0.004 -117.1462 32.8014 8.02001 Arsenic (Ag) Dry weight 22 mg/sg I Shipyad Sedment She SV08 SD0.16 -117.1462 32.8024 8.92001 Arsenic (Ag) Dry weight 22 mg/sg I Shipyad Sedment She SV08 SD0.16 -117.1462 32.8024 8.92001 Cadmiun (G) Dry weight 0.72 mg/sg I Shipyad Sedment She SV08 SD0.13 -117.1462 32.8242 91.30002 Cadmiun (G) Dry weight 0.72 mg/sg I Shipyad Sedment She SV08 SD0.13 -117.1442 32.8242 91.30002 Laad (P) Dry weight 2.00 mg/sg I Shipyad Sedment She SV08 SD0.15 -117.1442 32.8242 91.2002 Mercury (Hg) Dry weight 2.02 mg/sg Im/sg Shipyad Sedment She SV08 <t< td=""><td>Shipyard Sediment Site</td><td>SW07</td><td>SD0004</td><td>-117.14640</td><td>32.69114</td><td>8/6/2001</td><td></td><td></td><td></td><td>Copper (Cu)</td><td>Dry weight</td><td>150 mg/kg</td><td>J</td></t<>	Shipyard Sediment Site	SW07	SD0004	-117.14640	32.69114	8/6/2001				Copper (Cu)	Dry weight	150 mg/kg	J
Shipyad Sedment Site Strong Spinup Sedment Site	Shipyard Sediment Site	SW07	SD0004		32.69114	8/6/2001				Lead (Pb)	Dry weight	57 mg/kg	
Shoyad Sedment Site SN08 SD133 -117.1442 32.892/2 9/13/2002 Arsenic (As) Dy weight 22_mg/kg Arsenic (As) Dy weight 22_mg/kg Arsenic (As) Dy weight 22_mg/kg Arsenic (As) Dy weight 20.67 Mg/kg Shoyad Sedment Site SN08 SD016 -117.1442 32.892/2 8/82/01 Cadmum (Ca) Dy weight 0.67 <mg kg<="" td=""> - Shoyad Sedment Site SN08 SD013 -117.1442 32.892/2 9/13/2002 Cadmum (Ca) Dy weight 0.67<mg kg<="" td=""> - Shoyad Sedment Site SN08 SD016 -117.1442 32.892/2 9/13/2002 Cadmum (Ca) Dy weight 2.00 mg/kg - Shoyad Sedment Site SN08 SD016 -117.1442 32.892/2 9/13/2002 Marcur (H) Dy weight 2.00 mg/kg - Shoyad Sedment Site SN08 SD016 -117.1442 32.892/2 9/13/2002 Marcur (H) Dy weight 2.5 mg/kg - Shoyad Sedment Site SN08 SD016</mg></mg>	Shipyard Sediment Site	SW07	SD0004	-117.14640	32.69114	8/6/2001				Mercury (Hg)	Dry weight	0.52 mg/kg	
Shipard Sedment Site SW08 SD016 1-17.1442 32.69242 6 #2001 Cadmum (CA) Dry weight 6.7 mayba Shipard Sedment Site SW08 SD013 1-17.1442 32.69242 6 #2001 Cadmum (CA) Dry weight 0.76 mayba Shipard Sedment Site SW08 SD013 1-17.1442 32.69242 6 #132002 Cadmum (CA) Dry weight 8.000 mg/ba Shipard Sedment Site SW08 SD013 1-17.14422 32.69242 6 #132002 Cadmum (CA) Dry weight 8.000 mg/ba Shipard Sedment Site SW08 SD016 1-17.14422 32.69242 6 #132002 Lead (Pb) Dry weight 2.00 mg/ba Shipard Sedment Site SW08 SD013 1-17.14422 32.69242 6 #12001 Lead (Pb) Dry weight 2.20 mg/ba Shipard Sedment Site SW08 SD013 1-17.1442 32.69242 8 #2001 Mercury (Hg) Dry weight 2.20 mg/ba Shipard Sedment Site SW08 SD013 1-17.1442 32.69242 8 #2001 <td< td=""><td>Shipyard Sediment Site</td><td></td><td>SD0004</td><td>-117.14640</td><td>32.69114</td><td>8/6/2001</td><td></td><td></td><td></td><td>Zinc (Zn)</td><td>Dry weight</td><td></td><td>J</td></td<>	Shipyard Sediment Site		SD0004	-117.14640	32.69114	8/6/2001				Zinc (Zn)	Dry weight		J
Shippard Sedment Site SW08 SD0016 -1.17.1442 32.69242 9/82001 Cadmium (Cd) Dy wight 0.07 mg/kg I Shippard Sedment Site SW08 SD0133 -1.17.14492 32.69242 9/132002 Cadput (Cd) Dy wight 0.90 mg/kg 0.71 mg/kg Shippard Sedment Site SW08 SD0133 -1.17.14492 32.69242 9/132002 Cadput (Cd) Dy wight 0.70 mg/kg - Shippard Sedment Site SW08 SD016 -1.17.14492 32.69242 9/132002 Lead (Pb) Dy wight 2.00 mg/kg - Shippard Sedment Site SW08 SD016 -1.17.14492 32.69242 9/132002 Mercury (Hg) Dy wight 2.0 mg/kg - Shippard Sedment Site SW08 SD016 -1.17.14492 32.69242 9/132002 Mercury (Hg) Dy wight 2.0 mg/kg - Shippard Sedment Site SW08 SD016 -1.17.14492 32.69242 9/132002 Zinc (Zin) Dy wight 0.0 mg/kg - Shippard Sedment Site SW08	Shipyard Sediment Site		SD0133			9/13/2002				Arsenic (As)	Dry weight	22 mg/kg	
Shipard Sediment Site SW08 SD0133 I-117.1492 32.89242 9/13/2002 Image: Compart Site Spray Sediment Site Spray Sediment Site SD0133 I-117.1492 32.89242 9/13/2002 Image: Compart Site Spray Sediment Site Spray Sedimen	Shipyard Sediment Site	SW08	SD0016		32.69242	8/8/2001				Arsenic (As)	Dry weight	26 mg/kg	
Shipard Sediment Site SW08 SD0133 117.1442 32.89242 91/32002 Capper (Cu) Dry weight B400 mg/kg J Shipyard Sediment Site SW08 SD013 117.1442 32.89242 8/8/201 Capper (Cu) Dry weight 1.000 mg/kg J Shipyard Sediment Site SW08 SD013 117.1442 32.89242 8/8/201 Lead (Pb) Dry weight 200 mg/kg S Shipyard Sediment Site SW08 SD016 117.1442 32.89242 8/8/201 Mercury (Hg) Dry weight 2.00 mg/kg S Shipyard Sediment Site SW08 SD016 117.1442 32.89242 9/13/2002 Mercury (Hg) Dry weight 8.00 9/16/16/16/16/16/16/16/16/16/16/16/16/16/	Shipyard Sediment Site		SD0016	-117.14492	32.69242	8/8/2001				Cadmium (Cd)	Dry weight	0.67 mg/kg	
Shippard Sediment Site SW08 SD0016 -117.14422 22.6822 PW2001 PW2001 Description Description <thdescriptio< td=""><td>Shipyard Sediment Site</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Cadmium (Cd)</td><td>Dry weight</td><td></td><td></td></thdescriptio<>	Shipyard Sediment Site									Cadmium (Cd)	Dry weight		
Shipyard Sediment Site SW08 SD013 -117.14492 32.69242 91/32002 Image: Constraint Site SW08 SD016 -117.14492 32.69242 91/32002 Image: Constraint Site SW08 SD0133 -117.14492 32.69242 91/32002 Image: Constraint Site SW08 SD0133 -117.14492 32.69242 91/32002 Image: Constraint Site SW08 SD016 -117.14492 32.69242 91/32002 Image: Constraint Site SW08 SD016 -117.14492 32.69242 91/32002 Image: Constraint Site SW08 SD016 -117.14492 32.69242 91/32002 Image: Constraint Site SW08 SD0016 -117.14492 32.69242 91/32002 Image: Constraint Site SW09 SD0007 -117.14528 32.69178 96/2001 Constraint Constraint Site SW09 SD0007 -117.14528 32.69178 86/2001 Stop and Site SW09 SD0007 -117.14528 32.69178 86/2001 Stop and Site SW09 SD0007 -117.14528 32.69178 86/2001 Stop and Site SW09 S	Shipyard Sediment Site	SW08	SD0133	-117.14492	32.69242	9/13/2002				Copper (Cu)	Dry weight	840 mg/kg	
Shipyard Sediment Site SW08 SD016 -117.14492 32.69242 8/8/2001 Mercury (Hg) Dry weight 250 mg/kg Shipyard Sediment Site SW08 SD016 -117.14492 32.69242 8/8/2001 Mercury (Hg) Dry weight 22 mg/kg Shipyard Sediment Site SW08 SD016 -117.14492 32.69242 8/8/2001 Mercury (Hg) Dry weight 25 mg/kg Shipyard Sediment Site SW08 SD016 -117.14492 32.69242 8/8/2001 Zinc (Zn) Dry weight 800 mg/kg J Shipyard Sediment Site SW08 SD0016 -117.14492 32.69242 8/8/2001 Arsenic (As) Dry weight 800 mg/kg J Shipyard Sediment Site SW09 SD0007 -117.1452 32.69178 8/6/2001 Cadmium (Cd) Dry weight 1.1 mg/kg J Shipyard Sediment Site SW09 SD0007 -117.14528 32.69178 8/6/2001 Cadmium (Cd) Dry weight 2.0 mg/kg J Shipyard Sediment Site SW09 SD000	Shipyard Sediment Site									Copper (Cu)	Dry weight		J
Shipyard Sadiment Site SW08 SD0133 -117.14492 32.69242 9/13/2002 Image: Constraint of the constraint of	Shipyard Sediment Site										Dry weight		⊥
Shipyard Sediment Site SW08 SD016 -117.14492 32.68242 8/8/2001 Mercury (Hg) Dry weight 2.5 mg/kg Shipyard Sediment Site SW08 SD0133 -117.14492 32.68242 9/13/2002 Mercury (Hg) Dry weight 800 mg/kg J Shipyard Sediment Site SW08 SD0016 -117.14492 32.69242 9/13/2001 Mercury (Hg) Dry weight 800 mg/kg J Shipyard Sediment Site SW09 SD007 -117.14528 32.69178 8/6/2001 Mercury (Hg) Dry weight 4.72 mg/kg Image Sediment Site SW09 SD007 -117.14528 32.69178 8/6/2001 Mercury (Hg) Dry weight 6.60 mg/kg Image Sediment Site SW09 SD007 -117.14528 32.69178 8/6/2001 Mercury (Hg) Dry weight 6.60 mg/kg Image Sediment Site SW09 SD0007 -117.14528 32.69178 8/6/2001 Mercury (Hg) Dry weight 0.90 mg/kg Image Sediment Site SW09 SD0007 -117.14528 32.69178 8/6/2001 Mercury (Hg) <td>Shipyard Sediment Site</td> <td></td>	Shipyard Sediment Site												
Shipyard Sediment Site SW08 SD0133 -117.14492 32.69242 9/13/2002 Zinc (Zn) Dry weight 800 mg/kg J Shipyard Sediment Site SW08 SD0016 -117.14492 32.69242 8/8/2001 Arsenic (As) Dry weight 800 mg/kg J Shipyard Sediment Site SW09 SD0007 -117.14528 32.69178 8/6/2001 Camium (Cd) Dry weight 2.7 mg/kg J Shipyard Sediment Site SW09 SD0007 -117.14528 32.69178 8/6/2001 Capper (Cu) Dry weight 6.66 mg/kg J Shipyard Sediment Site SW09 SD0007 -117.14528 32.69178 8/6/2001 Lead (Pb) Dry weight 2.05 mg/kg J Shipyard Sediment Site SW09 SD0007 -117.14528 32.69178 8/6/2001 Lead (Pb) Dry weight 0.20 mg/kg J Shipyard Sediment Site SW09 SD0007 -117.14528 32.69178 8/6/2001 Zinc (Zn) D	Shipyard Sediment Site												\downarrow
Shipyard Sediment Site SW08 SD0016 -117.14492 32.69242 8/8/2001 Cinc (Zn) Dry weight 860 mg/kg J Shipyard Sediment Site SW09 SD0007 -117.14528 32.69178 8/6/2001 Arsenic (As) Dry weight 21 mg/kg Img/kg	Shipyard Sediment Site												<u> </u>
Shipyard Sediment Site SW09 SD007 -117.14528 32.69178 8/6/2001 Arsenic (As) Dry weight 27 mg/kg Shipyard Sediment Site SW09 SD0007 -117.14528 32.69178 8/6/2001 Cadmium (Cd) Dry weight 1.1 mg/kg Img/kg Shipyard Sediment Site SW09 SD0007 -117.14528 32.69178 8/6/2001 Copper (Cu) Dry weight 660 mg/kg J Shipyard Sediment Site SW09 SD0007 -117.14528 32.69178 8/6/2001 Lead (Pb) Dry weight 0.20g mg/kg J Shipyard Sediment Site SW09 SD007 -117.14528 32.69178 8/6/2001 Mercury (Hg) Dry weight 0.96 mg/kg J Shipyard Sediment Site SW09 SD007 -117.14528 32.69178 8/6/2001 Mercury (Hg) Dry weight 0.96 mg/kg J Shipyard Sediment Site SW10 SD0008 -117.14529 32.69155 8/6/2001 Arsenic (As) Dry weight 0.87 mg/kg J Mg/kg J	Shipyard Sediment Site												↓
Shipyard Sediment Site SW09 SD007 -117.14528 32.69178 8/6/2001 Cadmium (Cd) Dry weight 1.1 mg/kg Shipyard Sediment Site SW09 SD0007 -117.14528 32.69178 8/6/2001 Copper (Cu) Dry weight 660 mg/kg J Shipyard Sediment Site SW09 SD0007 -117.14528 32.69178 8/6/2001 Lead (Pb) Dry weight 202 mg/kg J Shipyard Sediment Site SW09 SD0007 -117.14528 32.69178 8/6/2001 Mercury (Hg) Dry weight 0.90 mg/kg J Shipyard Sediment Site SW09 SD0007 -117.14528 32.69178 8/6/2001 Mercury (Hg) Dry weight 1.20 mg/kg J Shipyard Sediment Site SW09 SD0007 -117.14528 32.69175 8/6/2001 Arsenic (As) Dry weight 1.20 mg/kg J Shipyard Sediment Site SW10 SD0008 -117.14559 32.69155 8/6/2001 Cadmium (Cd) Dry weight 0.80 mg/kg J Shi	Shipyard Sediment Site												J
Shipyard Sediment Site SW09 SD007 -117.14528 32.69178 8/6/2001 Copper (Cu) Dry weight 660 mg/kg J Shipyard Sediment Site SW09 SD0007 -117.14528 32.69178 8/6/2001 Lead (Pb) Dry weight 2.09 mg/kg 20 2	Shipyard Sediment Site										Dry weight		\downarrow
Shipyard Sediment Site SW09 SD007 -117.14528 32.69178 8/6/2001 Lead (Pb) Dry weight 220 mg/kg End Shipyard Sediment Site SW09 SD0007 -117.14528 32.69178 8/6/2001 Mercury (Hg) Dry weight 0.96 mg/kg Img/kg Img/kg <td>Shipyard Sediment Site</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>. ,</td> <td></td> <td></td> <td>↓</td>	Shipyard Sediment Site									. ,			↓
Shipyard Sediment Site SW09 SD007 -117.14528 32.69178 8/6/2001 Mercury (Hg) Dry weight 0.96 mg/kg J Shipyard Sediment Site SW09 SD0007 -117.14528 32.69178 8/6/2001 Zinc (Zn) Dry weight 1.200 mg/kg J Shipyard Sediment Site SW10 SD0008 -117.14559 32.69155 8/6/2001 Arsenic (As) Dry weight 0.97 mg/kg J Shipyard Sediment Site SW10 SD0008 -117.14559 32.69155 8/6/2001 Cadmium (Cd) Dry weight 0.97 mg/kg J Shipyard Sediment Site SW10 SD0008 -117.14559 32.69155 8/6/2001 Cadmium (Cd) Dry weight 0.87 mg/kg J Shipyard Sediment Site SW10 SD0008 -117.14559 32.69155 8/6/2001 Lead (Pb) Dry weight 79 mg/kg Shipyard Sediment Site SW10 SD0008 -117.14559 32.69155 8/6/2001 Mercury (Hg) Dry weight </td <td>Shipyard Sediment Site</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Copper (Cu)</td> <td>Dry weight</td> <td></td> <td>J</td>	Shipyard Sediment Site									Copper (Cu)	Dry weight		J
Shipyard Sediment Site SW09 SD007 -117.14528 32.69178 8/6/2001 Zinc (Zn) Dry weight 1.200 mg/kg J Shipyard Sediment Site SW10 SD0008 -117.14528 32.69175 8/6/2001 Arsenic (As) Dry weight 1.3 mg/kg Shipyard Sediment Site SW10 SD0008 -117.14559 32.69155 8/6/2001 Cadmium (Cd) Dry weight 0.87 mg/kg Shipyard Sediment Site SW10 SD0008 -117.14559 32.69155 8/6/2001 Copper (Cu) Dry weight 0.60 mg/kg J Shipyard Sediment Site SW10 SD0008 -117.14559 32.69155 8/6/2001 Copper (Cu) Dry weight 0.60 mg/kg J Shipyard Sediment Site SW10 SD0008 -117.14559 32.69155 8/6/2001 Mercury (Hg) Dry weight 0.68 mg/kg Shipyard Sediment Site SW10 SD0008 -117.14559 32.69155 8/6/2001 Mercury (Hg) Dry weight 0.68 mg/kg J Shipyard Sediment Si	Shipyard Sediment Site												⊥
Shipyard Sediment Site SW10 SD0008 -117.14559 32.69155 8/6/2001 Arsenic (As) Dry weight 13 mg/kg Shipyard Sediment Site SW10 SD0008 -117.14559 32.69155 8/6/2001 Cadmium (Cd) Dry weight 0.87 mg/kg Shipyard Sediment Site SW10 SD0008 -117.14559 32.69155 8/6/2001 Cadmium (Cd) Dry weight 160 mg/kg J Shipyard Sediment Site SW10 SD0008 -117.14559 32.69155 8/6/2001 Cadmium (Cd) Dry weight 79 mg/kg J Shipyard Sediment Site SW10 SD0008 -117.14559 32.69155 8/6/2001 Lead (Pb) Dry weight 79 mg/kg Shipyard Sediment Site SW10 SD0008 -117.14559 32.69155 8/6/2001 Mercury (Hg) Dry weight 0.68 mg/kg Shipyard Sediment Site SW10 SD0008 -117.14559 32.69155 8/6/2001 Mercury (Hg) Dry weight 0.68 mg/kg Shipyard Sediment Site SW10 SD0008 -117.14559 </td <td>Shipyard Sediment Site</td> <td></td> <td><u> </u></td>	Shipyard Sediment Site												<u> </u>
Shipyard Sediment Site SW10 SD0008 -117.14559 32.69155 8/6/2001 Cadmium (Cd) Dry weight 0.87 mg/kg Img/kg J Shipyard Sediment Site SW10 SD0008 -117.14559 32.69155 8/6/2001 Copper (Cu) Dry weight 160 mg/kg J Shipyard Sediment Site SW10 SD0008 -117.14559 32.69155 8/6/2001 Lead (Pb) Dry weight 79 mg/kg Shipyard Sediment Site SW10 SD0008 -117.14559 32.69155 8/6/2001 Lead (Pb) Dry weight 0.87 mg/kg Shipyard Sediment Site SW10 SD0008 -117.14559 32.69155 8/6/2001 Mercury (Hg) Dry weight 0.88 mg/kg Shipyard Sediment Site SW10 SD0008 -117.14559 32.69155 8/6/2001 Mercury (Hg) Dry weight 0.80 mg/kg J Shipyard Sediment Site SW10 SD0048 -117.14559 32.69155 8/6/2001 Zinc (Cn) Dry weight 3.60 mg/kg J J <td>Shipyard Sediment Site</td> <td></td> <td>J</td>	Shipyard Sediment Site												J
Shipyard Sediment Site SW10 SD0008 -117.14559 32.69155 8/6/2001 Copper (Cu) Dry weight 160 mg/kg J Shipyard Sediment Site SW10 SD0008 -117.14559 32.69155 8/6/2001 Lead (Pb) Dry weight 79 mg/kg Shipyard Sediment Site SW10 SD0008 -117.14559 32.69155 8/6/2001 Mercury (Hg) Dry weight 0.58 mg/kg Shipyard Sediment Site SW10 SD0008 -117.14559 32.69155 8/6/2001 Mercury (Hg) Dry weight 3.69 mg/kg Shipyard Sediment Site SW10 SD0008 -117.14559 32.69155 8/6/2001 Mercury (Hg) Dry weight 3.69 mg/kg Shipyard Sediment Site SW11 SD0048 -117.14559 32.69152 8/6/2001 Mercury (Hg) Dry weight 3.69 mg/kg J Shipyard Sediment Site SW11 SD0048 -117.14559 32.69112 8/13/2001 Arsenic (As) Dry weight 3.69 mg/kg J	Shipyard Sediment Site												I
Shipyard Sediment Site SW10 SD0008 -117.14559 32.69155 8/6/2001 Lead (Pb) Dry weight 79 mg/kg Shipyard Sediment Site SW10 SD0008 -117.14559 32.69155 8/6/2001 Mercury (Hg) Dry weight 0.58 mg/kg Shipyard Sediment Site SW10 SD0008 -117.14559 32.69155 8/6/2001 Mercury (Hg) Dry weight 0.58 mg/kg Shipyard Sediment Site SW10 SD0008 -117.14559 32.69152 8/6/2001 Zinc (Zn) Dry weight 360 mg/kg Shipyard Sediment Site SW11 SD0048 -117.14597 32.69112 8/13/2001 Arsenic (As) Dry weight 9.6 mg/kg	Shipyard Sediment Site												1
Shipyard Sediment Site SW10 SD0008 -117.14559 32.69155 8/6/2001 Mercury (Hg) Dry weight 0.58 mg/kg Shipyard Sediment Site SW10 SD0008 -117.14559 32.69155 8/6/2001 Zinc (Zn) Dry weight 360 mg/kg J Shipyard Sediment Site SW11 SD0048 -117.14559 32.69152 8/6/2001 Zinc (Zn) Dry weight 360 mg/kg J	Shipyard Sediment Site										Dry weight		J
Shipyard Sediment Site SW10 SD0008 -117.14559 32.69155 8/6/2001 Zinc (Zn) Dry weight 360 mg/kg J Shipyard Sediment Site SW11 SD0048 -117.14559 32.69152 8/6/2001 Arsenic (As) Dry weight 360 mg/kg J	Shipyard Sediment Site										Dry weight		↓
Shipyard Sediment Site SW11 SD0048 -117.14597 32.69112 8/13/2001 Arsenic (As) Dry weight 9.6 mg/kg	Shipyard Sediment Site												
	Shipyard Sediment Site										Dry weight		J
Shipyard Sediment Site SW11 SD0048 -117.14597 32.69112 8/13/2001 Cadmium (Cd) Dry weight 0.24 mg/kg	Shipyard Sediment Site												
	Shipyard Sediment Site	SW11	SD0048	-117.14597	32.69112	8/13/2001				Cadmium (Cd)	Dry weight	0.24 mg/kg	

PROJECT NAME	SITE NAME	SAMPLE ID	X COORDINATE	Y COORDINATE	SAMPLE DATE	SAMPLE MEDIUM	TYPE	MEASUREMENT METHOD	PARAMETER NAME	PROPERTY	QUANTITY UNIT	QUALIFIER
Shipyard Sediment Site	SW11	SD0048	-117.14597	32.69112	_				Copper (Cu)	Dry weight	170 mg/kg	
Shipyard Sediment Site	SW11	SD0048	-117.14597	32.69112					Lead (Pb)	Dry weight	74 mg/kg	
Shipyard Sediment Site	SW11	SD0048	-117.14597	32.69112					Mercury (Hg)	Dry weight	0.75 mg/kg	
Shipyard Sediment Site	SW11	SD0048	-117.14597	32.69112					Zinc (Zn)	Dry weight	240 mg/kg	J
Shipyard Sediment Site	SW12	SD0111	-117.14634	32.69067	9/10/2002				Arsenic (As)	Dry weight	7.1 mg/kg	J
Shipyard Sediment Site	SW12	SD0010	-117.14634	32.69067	8/7/2001				Arsenic (As)	Dry weight	7.7 mg/kg	-
Shipyard Sediment Site	SW12	SD0111	-117.14634	32.69067					Cadmium (Cd)	Dry weight	0.12 mg/kg	
Shipyard Sediment Site	SW12	SD0010	-117.14634	32.69067	8/7/2001				Cadmium (Cd)	Dry weight	0.16 mg/kg	
Shipyard Sediment Site	SW12	SD0111	-117.14634	32.69067	9/10/2002				Copper (Cu)	Dry weight	99 mg/kg	
Shipyard Sediment Site	SW12	SD0010	-117.14634	32.69067	8/7/2001				Copper (Cu)	Dry weight	140 mg/kg	.1
Shipyard Sediment Site	SW12	SD0111	-117.14634	32.69067	9/10/2002				Lead (Pb)	Dry weight	48 mg/kg	0
Shipyard Sediment Site	SW12	SD0010	-117.14634	32.69067	8/7/2001				Lead (Pb)	Dry weight	56 mg/kg	
Shipyard Sediment Site	SW12	SD0111	-117.14634	32.69067	9/10/2002				Mercury (Hg)	Dry weight	0.5 mg/kg	
Shipyard Sediment Site	SW12	SD0010	-117.14634	32.69067	8/7/2001				Mercury (Hg)	Dry weight	0.55 mg/kg	
Shipyard Sediment Site	SW12	SD0111	-117.14634	32.69067	9/10/2002				Zinc (Zn)	Dry weight	150 mg/kg	
Shipyard Sediment Site	SW12 SW12	SD0010	-117.14634	32.69067	8/7/2001				Zinc (Zn)	Dry weight	170 mg/kg	1
Shipyard Sediment Site	SW12	SD0022	-117.14468	32.69182					Arsenic (As)	Dry weight	15 mg/kg	0
Shipyard Sediment Site	SW13	SD0022	-117.14468	32.69182					Cadmium (Cd)	Dry weight	0.42 mg/kg	
Shipyard Sediment Site	SW13	SD0022	-117.14468	32.69182					Copper (Cu)	Dry weight	800 mg/kg	<u> </u>
Shipyard Sediment Site	SW13	SD0022 SD0022	-117.14468	32.69182					Lead (Pb)	Dry weight	93 mg/kg	<u> </u>
Shipyard Sediment Site	SW13	SD0022	-117.14468	32.69182					Mercury (Hg)	Dry weight	0.86 mg/kg	<u> </u>
Shipyard Sediment Site	SW13	SD0022 SD0022	-117.14468	32.69182					Zinc (Zn)	Dry weight	580 mg/kg	<u> </u>
Shipyard Sediment Site	SW13 SW14	SD0022 SD0024	-117.14408	32.69182	8/9/2001 8/10/2001				Arsenic (As)	Dry weight	10 mg/kg	
Shipyard Sediment Site	SW14 SW14	SD0024 SD0024	-117.14493	32.69167	8/10/2001				Cadmium (Cd)	Dry weight	0.31 mg/kg	<u> </u>
Shipyard Sediment Site	SW14	SD0024	-117.14493	32.69167	8/10/2001				Copper (Cu)		280 mg/kg	
Shipyard Sediment Site	SW14	SD0024	-117.14493	32.69167	8/10/2001				Lead (Pb)	Dry weight		
Shipyard Sediment Site	SW14 SW14	SD0024 SD0024	-117.14493	32.69167	8/10/2001				Mercury (Hg)	Dry weight Dry weight	88 mg/kg 1 mg/kg	
Shipyard Sediment Site	SW14	SD0024	-117.14493	32.69167								
	SW14 SW15	SD0024 SD0023	-117.14493	32.69118					Zinc (Zn)	Dry weight	300 mg/kg 11 mg/kg	J
Shipyard Sediment Site	SW15	SD0023 SD0023	-117.14527	32.69118	8/10/2001				Arsenic (As)	Dry weight		
Shipyard Sediment Site Shipyard Sediment Site	SW15 SW15	SD0023	-117.14527	32.69118					Cadmium (Cd) Copper (Cu)	Dry weight	0.45 mg/kg	
	SW15	SD0023	-117.14527	32.69118						Dry weight	230 mg/kg	
Shipyard Sediment Site	SW15 SW15	SD0023	-117.14527	32.69118	8/10/2001				Lead (Pb)	Dry weight	90 mg/kg	
Shipyard Sediment Site	SW15 SW15	SD0023	-117.14527	32.69118					Mercury (Hg)	Dry weight	0.9 mg/kg	
Shipyard Sediment Site Shipyard Sediment Site	SW15 SW16	SD0023	-117.14527 -117.14465	32.69118					Zinc (Zn) Arsenic (As)	Dry weight	290 mg/kg	J
										Dry weight	12 mg/kg	
Shipyard Sediment Site Shipyard Sediment Site	SW16 SW16	SD0025 SD0025	-117.14465 -117.14465	32.69155 32.69155					Cadmium (Cd) Copper (Cu)	Dry weight	0.66 mg/kg	
••	SW16	SD0025	-117.14465	32.69155						Dry weight	430 mg/kg	
Shipyard Sediment Site	SW16	SD0025	-117.14465	32.69155	8/10/2001				Lead (Pb)	Dry weight	97 mg/kg	
Shipyard Sediment Site	SW16	SD0025	-117.14465	32.69155					Mercury (Hg) Zinc (Zn)	Dry weight	1 mg/kg	
Shipyard Sediment Site	SW16 SW17		-117.14465							Dry weight	370 mg/kg	J
Shipyard Sediment Site	SW17 SW17	SD0047 SD0047	-117.14441 -117.14441	32.69136 32.69136	8/13/2001 8/13/2001				Arsenic (As)	Dry weight	12 mg/kg	<u> </u>
Shipyard Sediment Site Shipyard Sediment Site	SW17 SW17	SD0047 SD0047	-117.14441 -117.14441	32.69136	8/13/2001 8/13/2001				Cadmium (Cd) Copper (Cu)	Dry weight Dry weight	0.37 mg/kg 270 mg/kg	
	SW17 SW17	SD0047 SD0047	-117.14441	32.69136								<u> </u>
Shipyard Sediment Site Shipyard Sediment Site	SW17 SW17	SD0047 SD0047	-117.14441 -117.14441	32.69136	8/13/2001 8/13/2001				Lead (Pb) Mercury (Hg)	Dry weight Dry weight	93 mg/kg 0.98 mg/kg	<u> </u>
Shipyard Sediment Site	SW17 SW17	SD0047 SD0047	-117.14441	32.69136					Zinc (Zn)		310 mg/kg	<u> </u>
Shipyard Sediment Site	SW17 SW18	SD0047 SD0046	-117.14441	32.69136					Arsenic (As)	Dry weight	11 mg/kg	5
Shipyard Sediment Site	SW18	SD0046	-117.14487	32.69038	8/13/2001				Cadmium (Cd)	Dry weight	0.33 mg/kg	<u> </u>
Shipyard Sediment Site	SW18 SW18	SD0046	-117.14487	32.69038					Copper (Cu)	Dry weight Dry weight	220 mg/kg	<u> </u>
Shipyard Sediment Site	SW18 SW18	SD0046	-117.14487	32.69038					Lead (Pb)		220 mg/kg 86 mg/kg	<u> </u>
	SW18 SW18	SD0046 SD0046	-117.14487 -117.14487							Dry weight		<u> </u>
Shipyard Sediment Site Shipyard Sediment Site	SW18 SW18	SD0046 SD0046	-117.14487 -117.14487	32.69038 32.69038	8/13/2001 8/13/2001				Mercury (Hg) Zinc (Zn)	Dry weight	0.75 mg/kg	<u> </u>
17	SW18 SW19	SD0046 SD0011	-117.14487 -117.14616	32.69038	8/13/2001					Dry weight	280 mg/kg 7.1 mg/kg	3
Shipyard Sediment Site	SW19 SW19	SD0011 SD0011	-117.14616 -117.14616	32.68907 32.68907	8/7/2001				Arsenic (As) Cadmium (Cd)	Dry weight		<u> </u>
Shipyard Sediment Site Shipyard Sediment Site	SW19 SW19	SD0011 SD0011	-117.14616 -117.14616	32.68907 32.68907	8/7/2001					Dry weight	0.15 mg/kg	<u> </u>
Shipyard Sediment Site	SW19 SW19	SD0011 SD0011	-117.14616 -117.14616	32.68907 32.68907	8/7/2001				Copper (Cu)	Dry weight	110 mg/kg	3
			-117.14616 -117.14616						Lead (Pb)	Dry weight	51 mg/kg	<u> </u>
Shipyard Sediment Site	SW19 SW19	SD0011 SD0011	-117.14616 -117.14616	32.68907 32.68907	8/7/2001 8/7/2001				Mercury (Hg)	Dry weight	2.1 mg/kg	
Shipyard Sediment Site									Zinc (Zn)	Dry weight	150 mg/kg	J
Shipyard Sediment Site	SW20	SD0059	-117.14353 -117.14353	32.69144					Arsenic (As)	Dry weight	14 mg/kg	<u> </u>
Shipyard Sediment Site	SW20	SD0059		32.69144					Cadmium (Cd)	Dry weight	0.41 mg/kg	<u>.</u>
Shipyard Sediment Site	SW20	SD0059	-117.14353	32.69144					Copper (Cu)	Dry weight	290 mg/kg	J
Shipyard Sediment Site	SW20	SD0059	-117.14353	32.69144	8/15/2001	I	1	1	Lead (Pb)	Dry weight	110 mg/kg	

PROJECT_NAME	SITE_NAME	SAMPLE_ID	X_COORDINATE	Y_COORDINATE	SAMPLE_DATE	SAMPLE_MEDIUM	TYPE	MEASUREMENT_METHOD	PARAMETER_NAME	PROPERTY	QUANTITY UNIT	QUALIFIER
Shipyard Sediment Site	SW20	SD0059	-117.14353	32.69144	8/15/2001				Mercury (Hg)	Dry weight	0.99 mg/kg	
Shipyard Sediment Site	SW20	SD0059	-117.14353	32.69144	8/15/2001				Zinc (Zn)	Dry weight	390 mg/kg	J
Shipyard Sediment Site	SW21	SD0019	-117.14335	32.69128	8/9/2001				Arsenic (As)	Dry weight	11 mg/kg	
Shipyard Sediment Site	SW21	SD0019	-117.14335	32.69128	8/9/2001				Cadmium (Cd)	Dry weight	0.51 mg/kg	
Shipyard Sediment Site	SW21	SD0019	-117.14335	32.69128	8/9/2001				Copper (Cu)	Dry weight	260 mg/kg	
Shipyard Sediment Site	SW21	SD0019	-117.14335	32.69128	8/9/2001				Lead (Pb)	Dry weight	120 mg/kg	
Shipyard Sediment Site	SW21	SD0019	-117.14335	32.69128	8/9/2001				Mercury (Hg)	Dry weight	1.4 mg/kg	
Shipyard Sediment Site	SW21	SD0019	-117.14335	32.69128	8/9/2001				Zinc (Zn)	Dry weight	330 mg/kg	J
Shipyard Sediment Site	SW22	SD0060	-117.14346	32.69122	8/15/2001				Arsenic (As)	Dry weight	13 mg/kg	
Shipyard Sediment Site	SW22	SD0060	-117.14346	32.69122	8/15/2001				Cadmium (Cd)	Dry weight	0.35 mg/kg	
Shipyard Sediment Site	SW22	SD0060	-117.14346	32.69122	8/15/2001				Copper (Cu)	Dry weight	260 mg/kg	1
Shipyard Sediment Site	SW22	SD0060	-117.14346	32.69122	8/15/2001				Lead (Pb)	Dry weight	110 mg/kg	
Shipyard Sediment Site	SW22	SD0060	-117.14346	32.69122					Mercury (Hg)	Dry weight	1.1 mg/kg	
Shipyard Sediment Site	SW22	SD0060	-117.14346	32.69122	8/15/2001				Zinc (Zn)	Dry weight	310 mg/kg	1
Shipyard Sediment Site	SW23	SD0058	-117.14362	32.69112	8/15/2001				Arsenic (As)	Dry weight	15 mg/kg	-
Shipyard Sediment Site	SW23	SD0058	-117.14362	32.69112	8/15/2001				Cadmium (Cd)	Dry weight	0.37 mg/kg	
Shipyard Sediment Site	SW23	SD0058	-117.14362	32.69112					Copper (Cu)	Dry weight	280 mg/kg	1
Shipyard Sediment Site	SW23	SD0058	-117.14362	32.69112					Lead (Pb)	Dry weight	110 mg/kg	5
Shipyard Sediment Site	SW23	SD0058	-117.14362	32.69112					Mercury (Hg)	Dry weight	1 mg/kg	+
Shipyard Sediment Site	SW23	SD0058	-117.14362	32.69112					Zinc (Zn)	Dry weight	330 mg/kg	+
Shipyard Sediment Site	SW23	SD0038	-117.14362	32.69109	8/8/2001				Arsenic (As)	Dry weight	10 mg/kg	
Shipyard Sediment Site	SW24 SW24	SD0015 SD0113	-117.14345	32.69109	9/10/2002			+	Arsenic (As)	Dry weight	10 mg/kg	+
	SW24	SD0113 SD0113	-117.14345	32.69109				+	()			
Shipyard Sediment Site Shipyard Sediment Site	SW24 SW24	SD0113 SD0015	-117.14345 -117.14345	32.69109					Cadmium (Cd) Cadmium (Cd)	Dry weight	0.26 mg/kg 0.39 mg/kg	+
		SD0015 SD0015	-117.14345							Dry weight		
Shipyard Sediment Site	SW24			32.69109	8/8/2001				Copper (Cu)	Dry weight	260 mg/kg	J
Shipyard Sediment Site	SW24	SD0113	-117.14345	32.69109					Copper (Cu)	Dry weight	340 mg/kg	
Shipyard Sediment Site	SW24	SD0113	-117.14345	32.69109					Lead (Pb)	Dry weight	80 mg/kg	
Shipyard Sediment Site	SW24	SD0015	-117.14345	32.69109	8/8/2001				Lead (Pb)	Dry weight	96 mg/kg	
Shipyard Sediment Site	SW24	SD0015	-117.14345	32.69109					Mercury (Hg)	Dry weight	1.6 mg/kg	
Shipyard Sediment Site	SW24	SD0113	-117.14345	32.69109	9/10/2002				Mercury (Hg)	Dry weight	2.2 mg/kg	
Shipyard Sediment Site	SW24	SD0015	-117.14345	32.69109	8/8/2001				Zinc (Zn)	Dry weight	260 mg/kg	J
Shipyard Sediment Site	SW24	SD0113	-117.14345	32.69109					Zinc (Zn)	Dry weight	340 mg/kg	
Shipyard Sediment Site	SW25	SD0114	-117.14413	32.69047	9/10/2002				Arsenic (As)	Dry weight	10 mg/kg	J
Shipyard Sediment Site	SW25	SD0057	-117.14413	32.69047	8/15/2001				Arsenic (As)	Dry weight	13 mg/kg	
Shipyard Sediment Site	SW25	SD0114	-117.14413	32.69047	9/10/2002				Cadmium (Cd)	Dry weight	0.24 mg/kg	
Shipyard Sediment Site	SW25	SD0057	-117.14413	32.69047	8/15/2001				Cadmium (Cd)	Dry weight	0.47 mg/kg	
Shipyard Sediment Site	SW25	SD0057	-117.14413	32.69047	8/15/2001				Copper (Cu)	Dry weight	230 mg/kg	J
Shipyard Sediment Site	SW25	SD0114	-117.14413	32.69047	9/10/2002				Copper (Cu)	Dry weight	230 mg/kg	
Shipyard Sediment Site	SW25	SD0114	-117.14413	32.69047	9/10/2002				Lead (Pb)	Dry weight	78 mg/kg	_
Shipyard Sediment Site	SW25	SD0057	-117.14413	32.69047	8/15/2001				Lead (Pb)	Dry weight	93 mg/kg	
Shipyard Sediment Site	SW25	SD0114	-117.14413	32.69047	9/10/2002				Mercury (Hg)	Dry weight	0.75 mg/kg	<u> </u>
Shipyard Sediment Site	SW25	SD0057	-117.14413	32.69047	8/15/2001				Mercury (Hg)	Dry weight	0.8 mg/kg	<u> </u>
Shipyard Sediment Site	SW25	SD0114	-117.14413	32.69047	9/10/2002				Zinc (Zn)	Dry weight	320 mg/kg	
Shipyard Sediment Site	SW25	SD0057	-117.14413	32.69047	8/15/2001				Zinc (Zn)	Dry weight	370 mg/kg	J
Shipyard Sediment Site	SW26	SD0014	-117.14474	32.68972	8/8/2001				Arsenic (As)	Dry weight	9 mg/kg	
Shipyard Sediment Site	SW26	SD0014	-117.14474	32.68972	8/8/2001				Cadmium (Cd)	Dry weight	0.14 mg/kg	⊥]
Shipyard Sediment Site	SW26	SD0014	-117.14474	32.68972	8/8/2001				Copper (Cu)	Dry weight	120 mg/kg	J
Shipyard Sediment Site	SW26	SD0014	-117.14474	32.68972	8/8/2001				Lead (Pb)	Dry weight	58 mg/kg	1
Shipyard Sediment Site	SW26	SD0014	-117.14474	32.68972	8/8/2001				Mercury (Hg)	Dry weight	0.43 mg/kg	1
Shipyard Sediment Site	SW26	SD0014	-117.14474	32.68972	8/8/2001				Zinc (Zn)	Dry weight	160 mg/kg	J
Shipyard Sediment Site	SW27	SD0045	-117.14351	32.69002	8/13/2001				Arsenic (As)	Dry weight	10 mg/kg	
Shipyard Sediment Site	SW27	SD0045	-117.14351	32.69002	8/13/2001				Cadmium (Cd)	Dry weight	0.27 mg/kg	
Shipyard Sediment Site	SW27	SD0045	-117.14351	32.69002	8/13/2001				Copper (Cu)	Dry weight	210 mg/kg	
Shipyard Sediment Site	SW27	SD0045	-117.14351	32.69002	8/13/2001				Lead (Pb)	Dry weight	80 mg/kg	
Shipyard Sediment Site	SW27	SD0045	-117.14351	32.69002	8/13/2001				Mercury (Hg)	Dry weight	0.68 mg/kg	
Shipyard Sediment Site	SW27	SD0045	-117.14351	32.69002	8/13/2001				Zinc (Zn)	Dry weight	250 mg/kg	J
Shipyard Sediment Site	SW28	SD0121	-117.14290	32.69014	9/11/2002				Arsenic (As)	Dry weight	13 mg/kg	J
Shipyard Sediment Site	SW28	SD0029	-117.14290	32.69014	8/11/2001				Arsenic (As)	Dry weight	15 mg/kg	
Shipyard Sediment Site	SW28	SD0121	-117.14290	32.69014	9/11/2002				Cadmium (Cd)	Dry weight	0.27 mg/kg	
Shipyard Sediment Site	SW28	SD0029	-117.14290	32.69014	8/11/2001				Cadmium (Cd)	Dry weight	0.36 mg/kg	
Shipyard Sediment Site	SW28	SD0121	-117.14290	32.69014	9/11/2002				Copper (Cu)	Dry weight	260 mg/kg	
Shipyard Sediment Site	SW28	SD0029	-117.14290	32.69014					Copper (Cu)	Dry weight	270 mg/kg	
	1	1		22.20011			ı	1		,		

PROJECT_NAME	SITE_NAME	SAMPLE_ID	X_COORDINATE	Y_COORDINATE	SAMPLE_DATE	SAMPLE_MEDIUM	TYPE	MEASUREMENT_METHOD	PARAMETER_NAME	PROPERTY	QUANTITY UNIT	QUALIFIER
Shipyard Sediment Site	SW28	SD0029	-117.14290	32.69014	8/11/2001				Lead (Pb)	Dry weight	100 mg/kg	J
Shipyard Sediment Site	SW28	SD0121	-117.14290	32.69014	9/11/2002				Lead (Pb)	Dry weight	100 mg/kg	
Shipyard Sediment Site	SW28	SD0121	-117.14290	32.69014	9/11/2002				Mercury (Hg)	Dry weight	0.77 mg/kg	
Shipyard Sediment Site	SW28	SD0029	-117.14290	32.69014	8/11/2001				Mercury (Hg)	Dry weight	0.98 mg/kg	
Shipyard Sediment Site	SW28	SD0029	-117.14290	32.69014	8/11/2001				Zinc (Zn)	Dry weight	310 mg/kg	
Shipyard Sediment Site	SW28	SD0121	-117.14290	32.69014	9/11/2002				Zinc (Zn)	Dry weight	350 mg/kg	
Shipyard Sediment Site	SW29	SD0110	-117,14638	32,69269	9/9/2002				Arsenic (As)	Dry weight	8.3 mg/kg	
Shipyard Sediment Site	SW29	SD0110	-117.14638	32.69269	9/9/2002				Cadmium (Cd)	Dry weight	0.49 mg/kg	+ 1
Shipyard Sediment Site	SW29	SD0110	-117.14638	32.69269	9/9/2002				Copper (Cu)	Dry weight	220 mg/kg	+
Shipyard Sediment Site	SW29	SD0110	-117.14638	32.69269	9/9/2002				Lead (Pb)	Dry weight	72 mg/kg	+
Shipyard Sediment Site	SW29	SD0110	-117.14638	32.69269	9/9/2002				Mercury (Hg)	Dry weight	0.93 mg/kg	1
Shipyard Sediment Site	SW29	SD0110	-117.14638	32.69269	9/9/2002				Zinc (Zn)	Dry weight	230 mg/kg	
Shipyard Sediment Site	SW30	SD0135	-117.14030	32.69166	9/14/2002				Arsenic (As)		8.9 mg/kg	
Shipyard Sediment Site	SW30	SD0135	-117.14727	32.69166	9/14/2002				Cadmium (Cd)	Dry weight	0.23 mg/kg	+
									. ,	Dry weight		
Shipyard Sediment Site	SW30	SD0135	-117.14727	32.69166	9/14/2002				Copper (Cu)	Dry weight	240 mg/kg	
Shipyard Sediment Site	SW30	SD0135	-117.14727	32.69166	9/14/2002				Lead (Pb)	Dry weight	72 mg/kg	
Shipyard Sediment Site	SW30	SD0135	-117.14727	32.69166	9/14/2002				Mercury (Hg)	Dry weight	1.1 mg/kg	J
Shipyard Sediment Site	SW30	SD0135	-117.14727	32.69166	9/14/2002				Zinc (Zn)	Dry weight	300 mg/kg	+
Shipyard Sediment Site	SW31	SD0122	-117.14443	32.68970	9/11/2002				Arsenic (As)	Dry weight	4 mg/kg	J
Shipyard Sediment Site	SW31	SD0122	-117.14443	32.68970	9/11/2002				Cadmium (Cd)	Dry weight	0.064 mg/kg	
Shipyard Sediment Site	SW31	SD0122	-117.14443	32.68970	9/11/2002				Copper (Cu)	Dry weight	54 mg/kg	+
Shipyard Sediment Site	SW31	SD0122	-117.14443	32.68970	9/11/2002				Lead (Pb)	Dry weight	21 mg/kg	
Shipyard Sediment Site	SW31	SD0122	-117.14443	32.68970	9/11/2002				Mercury (Hg)	Dry weight	0.23 mg/kg	
Shipyard Sediment Site	SW31	SD0122	-117.14443	32.68970	9/11/2002				Zinc (Zn)	Dry weight	80 mg/kg	
Shipyard Sediment Site	SW32	SD0108	-117.14824	32.69056	9/9/2002				Arsenic (As)	Dry weight	9.4 mg/kg	J
Shipyard Sediment Site	SW32	SD0108	-117.14824	32.69056	9/9/2002				Cadmium (Cd)	Dry weight	0.064 mg/kg	
Shipyard Sediment Site	SW32	SD0108	-117.14824	32.69056	9/9/2002				Copper (Cu)	Dry weight	92 mg/kg	
Shipyard Sediment Site	SW32	SD0108	-117.14824	32.69056	9/9/2002				Lead (Pb)	Dry weight	57 mg/kg	
Shipyard Sediment Site	SW32	SD0108	-117.14824	32.69056	9/9/2002				Mercury (Hg)	Dry weight	0.51 mg/kg	J
Shipyard Sediment Site	SW32	SD0108	-117.14824	32.69056	9/9/2002				Zinc (Zn)	Dry weight	160 mg/kg	J
Shipyard Sediment Site	SW33	SD0118	-117.14722	32.68981	9/11/2002				Arsenic (As)	Dry weight	10 mg/kg	J
Shipyard Sediment Site	SW33	SD0118	-117.14722	32.68981	9/11/2002				Cadmium (Cd)	Dry weight	0.065 mg/kg	
Shipyard Sediment Site	SW33	SD0118	-117.14722	32.68981	9/11/2002				Copper (Cu)	Dry weight	100 mg/kg	
Shipyard Sediment Site	SW33	SD0118	-117.14722	32.68981	9/11/2002				Lead (Pb)	Dry weight	58 mg/kg	+ 1
Shipyard Sediment Site	SW33	SD0118	-117.14722	32.68981	9/11/2002				Mercury (Hg)	Dry weight	0.53 mg/kg	+
Shipyard Sediment Site	SW33	SD0118	-117.14722	32.68981	9/11/2002				Zinc (Zn)	Dry weight	170 mg/kg	+
Shipyard Sediment Site	SW34	SD0117	-117.14415	32.68846	9/11/2002				Arsenic (As)	Dry weight	8.3 mg/kg	1
Shipyard Sediment Site	SW34	SD0117	-117.14415	32.68846	9/11/2002				Cadmium (Cd)	Dry weight	0.21 mg/kg	
Shipyard Sediment Site	SW34	SD0117	-117.14415	32.68846	9/11/2002				Copper (Cu)	Dry weight	320 mg/kg	+
	SW34	SD0117	-117.14415	32.68846	9/11/2002							+
Shipyard Sediment Site	SW34 SW34	SD0117 SD0117	-117.14415 -117.14415	32.68846	9/11/2002 9/11/2002	+			Lead (Pb)	Dry weight	99 mg/kg	+
Shipyard Sediment Site	SW34 SW34	SD0117 SD0117	-117.14415 -117.14415			+			Mercury (Hg)	Dry weight	0.75 mg/kg	+
Shipyard Sediment Site				32.68846	9/11/2002				Zinc (Zn)	Dry weight	310 mg/kg	+
Shipyard Sediment Site	SW36	SD0180	-117.14525	32.69023	11/7/2002				Arsenic (As)	Dry weight	9.9 mg/kg	+
Shipyard Sediment Site	SW36	SD0180	-117.14525	32.69023	11/7/2002				Cadmium (Cd)	Dry weight	0.21 mg/kg	+
Shipyard Sediment Site	SW36	SD0180	-117.14525	32.69023	11/7/2002				Copper (Cu)	Dry weight	240 mg/kg	J
Shipyard Sediment Site	SW36	SD0180	-117.14525	32.69023	11/7/2002				Lead (Pb)	Dry weight	79 mg/kg	
Shipyard Sediment Site	SW36	SD0180	-117.14525	32.69023	11/7/2002				Mercury (Hg)	Dry weight	0.75 mg/kg	
Shipyard Sediment Site	SW36	SD0180	-117.14525	32.69023	11/7/2002				Zinc (Zn)	Dry weight	300 mg/kg	J
Studies Supporting an Environmental Risk Assessment of San Diego Bay	A1		-117.13132	32.68768	01-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Aluminum (Al)	Dry weight	13000 mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	A1		-117.13132	32.68768	01-Jul-93	Sediment	Discrete Sample	EPA7060	Arsenic (As)	Dry weight	4.0 mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	A1		-117.13132	32.68768	01-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Cadmium (Cd)	Dry weight	1.0 mg/kg	U
Studies Supporting an Environmental Risk Assessment of San Diego Bay	A1		-117.13132	32.68768	01-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Copper (Cu)	Dry weight	30.0 mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	A1		-117.13132	32.68768	01-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Iron (Fe)	Dry weight	18500.0 mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	A1		-117.13132	32.68768	01-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Lead (Pb)	Dry weight	64.0 mg/kg	+
		+	-117.13132	32.00/68	01-301-93	Jeuiment	Discrete Sample	LI AUTUICE	Ledu (FD)	Dry weight	04.0 mg/Kg	+
Studies Supporting an Environmental Risk Assessment of San Diego Bay	A1		-117.13132	32.68768	01-Jul-93	Sediment	Discrete Sample	EPA7471Mercury	Mercury (Hg)	Dry weight	0.2 mg/kg	U

PROJECT_NAME	SITE_NAME S	AMPLE_ID	X_COORDINATE	Y_COORDINATE	SAMPLE_DATE	SAMPLE_MEDIUM	TYPE	MEASUREMENT_METHOD	PARAMETER_NAME	PROPERTY	QUANTITY UNIT	QUALIFIER
Studies Supporting an Environmental Risk Assessment of San Diego Bay	A1		-117.13132	32.68768	01-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Zinc (Zn)	Dry weight	134.0 mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	A2		-117.13527	32.68512	01-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Aluminum (Al)	Dry weight	16100 mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	A2		-117.13527	32.68512	01-Jul-93	Sediment	Discrete Sample	EPA7060	Arsenic (As)	Dry weight	8.0 mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	A2		-117.13527	32.68512	01-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Cadmium (Cd)	Dry weight	1.0 mg/kg	U
Studies Supporting an Environmental Risk Assessment of San Diego Bay	A2		-117.13527	32.68512	01-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Copper (Cu)	Dry weight	117.0 mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	A2		-117.13527	32.68512	01-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Iron (Fe)	Dry weight	22900.0 mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	A2		-117.13527	32.68512	01-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Lead (Pb)	Dry weight	197.0 mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	A2		-117.13527	32.68512	01-Jul-93	Sediment	Discrete Sample	EPA7471Mercury	Mercury (Hg)	Dry weight	0.5 mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	A2		-117.13527	32.68512	01-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Zinc (Zn)	Dry weight	206.0 mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	A3		-117.13870	32.68230	01-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Aluminum (Al)	Dry weight	15900 mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	A3		-117.13870	32.68230	01-Jul-93	Sediment	Discrete Sample	EPA7060	Arsenic (As)	Dry weight	6.0 mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	A3		-117.13870	32.68230	01-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Cadmium (Cd)	Dry weight	1.0 mg/kg	U
Studies Supporting an Environmental Risk Assessment of San Diego Bay	A3		-117.13870	32.68230	01-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Copper (Cu)	Dry weight	90.0 mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	A3		-117.13870	32.68230	01-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Iron (Fe)	Dry weight	21300.0 mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	A3		-117.13870	32.68230	01-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Lead (Pb)	Dry weight	35.0 mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	A3		-117.13870	32.68230	01-Jul-93	Sediment	Discrete Sample	EPA7471Mercury	Mercury (Hg)	Dry weight	0.4 mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	A3		-117.13870	32.68230	01-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Zinc (Zn)	Dry weight	135.0 mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	A4		-117.14152	32.68038	01-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Aluminum (Al)	Dry weight	10500 mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	A4		-117.14152	32.68038	01-Jul-93	Sediment	Discrete Sample	EPA7060	Arsenic (As)	Dry weight	4.0 mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	A4		-117.14152	32.68038	01-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Cadmium (Cd)	Dry weight	1.0 mg/kg	U
Studies Supporting an Environmental Risk Assessment of San Diego Bay	A4		-117.14152	32.68038	01-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Copper (Cu)	Dry weight	51.0 mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	A4		-117.14152	32.68038	01-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Iron (Fe)	Dry weight	13600.0 mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	A4		-117.14152	32.68038	01-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Lead (Pb)	Dry weight	25.0 mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	A4		-117.14152	32.68038	01-Jul-93	Sediment	Discrete Sample	EPA7471Mercury	Mercury (Hg)	Dry weight	0.4 mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	A4		-117.14152	32.68038	01-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Zinc (Zn)	Dry weight	97.0 mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	A5		-117.14532	32.67830	01-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Aluminum (Al)	Dry weight	5280 mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	A5		-117.14532	32.67830	01-Jul-93	Sediment	Discrete Sample	EPA7060	Arsenic (As)	Dry weight	2.0 mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	A5		-117.14532	32.67830	01-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Cadmium (Cd)	Dry weight	1.0 mg/kg	U
Studies Supporting an Environmental Risk Assessment of San Diego Bay	A5		-117.14532	32.67830	01-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Copper (Cu)	Dry weight	30.0 mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	A5		-117.14532	32.67830	01-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Iron (Fe)	Dry weight	6950.0 mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	A5		-117.14532	32.67830	01-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Lead (Pb)	Dry weight	20.0 mg/kg	U
Studies Supporting an Environmental Risk Assessment of San Diego Bay	A5		-117.14532	32.67830	01-Jul-93	Sediment	Discrete Sample	EPA7471Mercury	Mercury (Hg)	Dry weight	0.2 mg/kg	U

PROJECT_NAME	SITE_NAME	SAMPLE_ID	X_COORDINATE	Y_COORDINATE	SAMPLE_DATE	SAMPLE_MEDIUM	TYPE	MEASUREMENT_METHOD	PARAMETER_NAME	PROPERTY	QUANTITY	UNIT	QUALIFIER
Studies Supporting an Environmental Risk Assessment of San Diego Bay	A5		-117.14532	32.67830	01-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Zinc (Zn)	Dry weight	60.0	mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	B1		-117.12735	32.68203	01-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Aluminum (Al)	Dry weight	29600		
Studies Supporting an Environmental Risk Assessment of San Diego Bay	B1		-117.12735	32.68203	01-Jul-93	Sediment	Discrete Sample	EPA7060	Arsenic (As)	Dry weight	16.0	mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	B1		-117.12735	32.68203	01-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Cadmium (Cd)	Dry weight	1.0	mg/kg	υ
Studies Supporting an Environmental Risk Assessment of San Diego Bay	B1		-117.12735	32.68203	01-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Copper (Cu)	Dry weight	486.0	mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	B1		-117.12735	32.68203	01-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Iron (Fe)	Dry weight	42100.0	mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	B1		-117.12735	32.68203	01-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Lead (Pb)	Dry weight	120.0	mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	B1		-117.12735	32.68203	01-Jul-93	Sediment	Discrete Sample	EPA7471Mercury	Mercury (Hg)	Dry weight	1.5	mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	B1		-117.12735	32.68203	01-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Zinc (Zn)	Dry weight	444.0	mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	B2		-117.13043	32.68017	01-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Aluminum (Al)	Dry weight	16800	mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	B2		-117.13043	32.68017	01-Jul-93	Sediment	Discrete Sample	EPA7060	Arsenic (As)	Dry weight	2.0	mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	B2		-117.13043	32.68017	01-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Cadmium (Cd)	Dry weight	1.0	mg/kg	U
Studies Supporting an Environmental Risk Assessment of San Diego Bay	B2		-117.13043	32.68017	01-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Copper (Cu)	Dry weight	41.0	mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	B2		-117.13043	32.68017	01-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Iron (Fe)	Dry weight	20300.0	mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	B2		-117.13043	32.68017	01-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Lead (Pb)	Dry weight	20.0	mg/kg	υ
Studies Supporting an Environmental Risk Assessment of San Diego Bay	B2		-117.13043	32.68017	01-Jul-93	Sediment	Discrete Sample	EPA7471Mercury	Mercury (Hg)	Dry weight	0.2	mg/kg	U
Studies Supporting an Environmental Risk Assessment of San Diego Bay	B2		-117.13043	32.68017	01-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Zinc (Zn)	Dry weight	69.0	mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	B3		-117.13297	32.67897	01-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Aluminum (Al)	Dry weight	31500	mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	B3		-117.13297	32.67897	01-Jul-93	Sediment	Discrete Sample	EPA7060	Arsenic (As)	Dry weight	8.0	mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	B3		-117.13297	32.67897	01-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Cadmium (Cd)	Dry weight	2.0	mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	В3		-117.13297	32.67897	01-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Copper (Cu)	Dry weight	162.0	mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	B3		-117.13297	32.67897	01-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Iron (Fe)	Dry weight	36000.0	mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	B3		-117.13297	32.67897	01-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Lead (Pb)	Dry weight	82.0	mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	B3		-117.13297	32.67897	01-Jul-93	Sediment	Discrete Sample	EPA7471Mercury	Mercury (Hg)	Dry weight	2.0	mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	B3		-117.13297	32.67897	01-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Zinc (Zn)	Dry weight	313.0	mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	B4		-117.13623	32.67748	01-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Aluminum (Al)	Dry weight	19800	mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	B4		-117.13623	32.67748	01-Jul-93	Sediment	Discrete Sample	EPA7060	Arsenic (As)	Dry weight	7.0	mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	B4		-117.13623	32.67748	01-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Cadmium (Cd)	Dry weight		mg/kg	U
Studies Supporting an Environmental Risk Assessment of San Diego Bay	B4		-117.13623	32.67748	01-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Copper (Cu)	Dry weight	98.0	mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	B4		-117.13623	32.67748	01-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Iron (Fe)	Dry weight	25000.0	mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	B4		-117.13623	32.67748	01-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Lead (Pb)	Dry weight		mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	B4		-117.13623	32.67748	01-Jul-93	Sediment	Discrete Sample	EPA7471Mercury	Mercury (Hg)	Dry weight	0.5	mg/kg	

PROJECT_NAME	SITE_NAME	SAMPLE_ID	X_COORDINATE	Y_COORDINATE	SAMPLE_DATE	SAMPLE_MEDIUM	TYPE	MEASUREMENT_METHOD	PARAMETER_NAME	PROPERTY	QUANTITY UNIT	QUALIFIER
Studies Supporting an Environmental Risk Assessment of San Diego Bay	B4		-117.13623	32.67748	01-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Zinc (Zn)	Dry weight	162.0 mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	B5		-117.14030	32.67472	01-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Aluminum (Al)	Dry weight	8490 mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	B5		-117.14030	32.67472	01-Jul-93	Sediment	Discrete Sample	EPA7060	Arsenic (As)	Dry weight	3.0 mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	B5		-117.14030	32.67472	01-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Cadmium (Cd)	Dry weight	1.0 mg/kg	U
Studies Supporting an Environmental Risk Assessment of San Diego Bay	B5		-117.14030	32.67472	01-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Copper (Cu)	Dry weight	44.0 mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	B5		-117.14030	32.67472	01-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Iron (Fe)	Dry weight	11300.0 mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	B5		-117.14030	32.67472	01-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Lead (Pb)	Dry weight	20.0 mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	B5		-117.14030	32.67472	01-Jul-93	Sediment	Discrete Sample	EPA7471Mercury	Mercury (Hg)	Dry weight	0.2 mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	B5		-117.14030	32.67472	01-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Zinc (Zn)	Dry weight	91.0 mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	C1		-117.11612	32.67360	01-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Aluminum (Al)	Dry weight	15400 mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	C1		-117.11612	32.67360	01-Jul-93	Sediment	Discrete Sample	EPA7060	Arsenic (As)	Dry weight	6.0 mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	C1		-117.11612	32.67360	01-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Cadmium (Cd)	Dry weight	1.0 mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	C1		-117.11612	32.67360	01-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Copper (Cu)	Dry weight	156.0 mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	C1		-117.11612	32.67360	01-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Iron (Fe)	Dry weight	23000.0 mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	C1		-117.11612	32.67360	01-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Lead (Pb)	Dry weight	102.0 mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	C1		-117.11612	32.67360	01-Jul-93	Sediment	Discrete Sample	EPA7471Mercury	Mercury (Hg)	Dry weight	0.4 mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	C1		-117.11612	32.67360	01-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Zinc (Zn)	Dry weight	516.0 mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	C2		-117.12350	32.67100	01-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Aluminum (Al)	Dry weight	12700 mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	C2		-117.12350	32.67100	01-Jul-93	Sediment	Discrete Sample	EPA7060	Arsenic (As)	Dry weight	2.0 mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	C2		-117.12350	32.67100	01-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Cadmium (Cd)	Dry weight	1.0 mg/kg	U
Studies Supporting an Environmental Risk Assessment of San Diego Bay	C2		-117.12350	32.67100	01-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Copper (Cu)	Dry weight	30.0 mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	C2		-117.12350	32.67100	01-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Iron (Fe)	Dry weight	18500.0 mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	C2		-117.12350	32.67100	01-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Lead (Pb)	Dry weight	20.0 mg/kg	U
Studies Supporting an Environmental Risk Assessment of San Diego Bay	C2		-117.12350	32.67100	01-Jul-93	Sediment	Discrete Sample	EPA7471Mercury	Mercury (Hg)	Dry weight	0.2 mg/kg	U
Studies Supporting an Environmental Risk Assessment of San Diego Bay	C2		-117.12350	32.67100	01-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Zinc (Zn)	Dry weight	58.0 mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	C3		-117.12570	32.66970	01-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Aluminum (Al)	Dry weight	17600 mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	СЗ		-117.12570	32.66970	01-Jul-93	Sediment	Discrete Sample	EPA7060	Arsenic (As)	Dry weight	5.0 mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	СЗ		-117.12570	32.66970	01-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Cadmium (Cd)	Dry weight	1.0 mg/kg	U
Studies Supporting an Environmental Risk Assessment of San Diego Bay	СЗ		-117.12570	32.66970	01-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Copper (Cu)	Dry weight	87.0 mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	СЗ		-117.12570	32.66970	01-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Iron (Fe)	Dry weight	24400.0 mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	СЗ		-117.12570	32.66970	01-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Lead (Pb)	Dry weight	26.0 mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	C3		-117.12570	32.66970	01-Jul-93	Sediment	Discrete Sample	EPA7471Mercury	Mercury (Hg)	Dry weight	0.3 mg/kg	

PROJECT_NAME	SITE_NAME	SAMPLE_ID	X_COORDINATE	Y_COORDINATE	SAMPLE_DATE	SAMPLE_MEDIUM	TYPE	MEASUREMENT_METHOD	PARAMETER_NAME	PROPERTY	QUANTITY U	INIT	QUALIFIER
Studies Supporting an Environmental Risk Assessment of San Diego Bay	C3		-117.12570	32.66970	01-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Zinc (Zn)	Dry weight	124.0 m	na/ka	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	C4		-117.12833	32.66902	01-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Aluminum (Al)	Dry weight	30800 m		
Studies Supporting an Environmental Risk Assessment of San Diego Bay	C4		-117.12833	32.66902	01-Jul-93	Sediment	Discrete Sample	EPA7060	Arsenic (As)	Dry weight	7.0 m		
Studies Supporting an Environmental Risk Assessment of San Diego Bay	C4		-117.12833	32.66902	01-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Cadmium (Cd)	Dry weight	1.0 m	ng/kg	U
Studies Supporting an Environmental Risk Assessment of San Diego Bay	C4		-117.12833	32.66902	01-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Copper (Cu)	Dry weight	161.0 m	ng/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	C4		-117.12833	32.66902	01-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Iron (Fe)	Dry weight	37100.0 m	ng/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	C4		-117.12833	32.66902	01-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Lead (Pb)	Dry weight	57.0 m	ng/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	C4		-117.12833	32.66902	01-Jul-93	Sediment	Discrete Sample	EPA7471Mercury	Mercury (Hg)	Dry weight	0.7 m	ng/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	C4		-117.12833	32.66902	01-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Zinc (Zn)	Dry weight	227.0 m	ng/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	C5		-117.13482	32.66693	01-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Aluminum (Al)	Dry weight	8030 m	ng/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	C5		-117.13482	32.66693	01-Jul-93	Sediment	Discrete Sample	EPA7060	Arsenic (As)	Dry weight	6.0 m	ng/kg	I
Studies Supporting an Environmental Risk Assessment of San Diego Bay	C5		-117.13482	32.66693	01-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Cadmium (Cd)	Dry weight	1.0 m	ng/kg	U
Studies Supporting an Environmental Risk Assessment of San Diego Bay	C5		-117.13482	32.66693	01-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Copper (Cu)	Dry weight	46.0 m	ng/kg	I
Studies Supporting an Environmental Risk Assessment of San Diego Bay	C5		-117.13482	32.66693	01-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Iron (Fe)	Dry weight	11000.0 m	ng/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	C5		-117.13482	32.66693	01-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Lead (Pb)	Dry weight	20.0 m	ng/kg	U
Studies Supporting an Environmental Risk Assessment of San Diego Bay	C5		-117.13482	32.66693	01-Jul-93	Sediment	Discrete Sample	EPA7471Mercury	Mercury (Hg)	Dry weight	0.2 m	ng/kg	I
Studies Supporting an Environmental Risk Assessment of San Diego Bay	C5		-117.13482	32.66693	01-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Zinc (Zn)	Dry weight	91.0 m	ng/kg	I
Studies Supporting an Environmental Risk Assessment of San Diego Bay	D1		-117.11945	32.66533	02-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Aluminum (Al)	Dry weight	29900 m	ng/kg	I
Studies Supporting an Environmental Risk Assessment of San Diego Bay	D1		-117.11945	32.66533	02-Jul-93	Sediment	Discrete Sample	EPA7060	Arsenic (As)	Dry weight	9.0 m	ng/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	D1		-117.11945	32.66533	02-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Cadmium (Cd)	Dry weight	1.0 m	ng/kg	U
Studies Supporting an Environmental Risk Assessment of San Diego Bay	D1		-117.11945	32.66533	02-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Copper (Cu)	Dry weight	358.0 m	ng/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	D1		-117.11945	32.66533	02-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Iron (Fe)	Dry weight	41700.0 m	ng/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	D1		-117.11945	32.66533	02-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Lead (Pb)	Dry weight	68.0 m	ng/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	D1		-117.11945	32.66533	02-Jul-93	Sediment	Discrete Sample	EPA7471Mercury	Mercury (Hg)	Dry weight	1.5 m	ng/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	D1		-117.11945	32.66533	02-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Zinc (Zn)	Dry weight	330.0 m	ng/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	D2		-117.12350	32.66507	02-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Aluminum (Al)	Dry weight	35800 m	ng/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	D2		-117.12350	32.66507	02-Jul-93	Sediment	Discrete Sample	EPA7060	Arsenic (As)	Dry weight	6.0 m	ng/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	D2		-117.12350	32.66507	02-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Cadmium (Cd)	Dry weight	1.0 m	ng/kg	U
Studies Supporting an Environmental Risk Assessment of San Diego Bay	D2		-117.12350	32.66507	02-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Copper (Cu)	Dry weight	89.0 m	ng/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	D2		-117.12350	32.66507	02-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Iron (Fe)	Dry weight	42500.0 m	ng/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	D2		-117.12350	32.66507	02-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Lead (Pb)	Dry weight	41.0 m	ng/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	D2		-117.12350	32.66507	02-Jul-93	Sediment	Discrete Sample	EPA7471Mercury	Mercury (Hg)	Dry weight	1.2 m	ng/kg	1

PROJECT_NAME	SITE_NAME SAM	/IPLE_ID	X_COORDINATE	Y_COORDINATE	SAMPLE_DATE	SAMPLE_MEDIUM	TYPE	MEASUREMENT_METHOD	PARAMETER_NAME	PROPERTY	QUANTITY UNIT	QUALIFIER
Studies Supporting an Environmental Risk Assessment of San Diego Bay	D2		-117.12350	32.66507	02-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Zinc (Zn)	Dry weight	191.0 mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	D3		-117.12522	32.66495	02-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Aluminum (Al)	Dry weight	18800 mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	D3		-117.12522	32.66495	02-Jul-93	Sediment	Discrete Sample	EPA7060	Arsenic (As)	Dry weight	7.0 mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	D3		-117.12522	32.66495	02-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Cadmium (Cd)	Dry weight	1.0 mg/kg	U
Studies Supporting an Environmental Risk Assessment of San Diego Bay	D3		-117.12522	32.66495	02-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Copper (Cu)	Dry weight	129.0 mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	D3		-117.12522	32.66495	02-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Iron (Fe)	Dry weight	26700.0 mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	D3		-117.12522	32.66495	02-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Lead (Pb)	Dry weight	34.0 mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	D3		-117.12522	32.66495	02-Jul-93	Sediment	Discrete Sample	EPA7471Mercury	Mercury (Hg)	Dry weight	0.5 mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	D3		-117.12522	32.66495	02-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Zinc (Zn)	Dry weight	161.0 mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	D4		-117.12718	32.66412	02-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Aluminum (Al)	Dry weight	10400 mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	D4		-117.12718	32.66412	02-Jul-93	Sediment	Discrete Sample	EPA7060	Arsenic (As)	Dry weight	8.0 mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	D4		-117.12718	32.66412	02-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Cadmium (Cd)	Dry weight	1.0 mg/kg	U
Studies Supporting an Environmental Risk Assessment of San Diego Bay	D4		-117.12718	32.66412	02-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Copper (Cu)	Dry weight	60.0 mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	D4		-117.12718	32.66412	02-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Iron (Fe)	Dry weight	13700.0 mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	D4		-117.12718	32.66412	02-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Lead (Pb)	Dry weight	20.0 mg/kg	U
Studies Supporting an Environmental Risk Assessment of San Diego Bay	D4		-117.12718	32.66412	02-Jul-93	Sediment	Discrete Sample	EPA7471Mercury	Mercury (Hg)	Dry weight	0.2 mg/kg	U
Studies Supporting an Environmental Risk Assessment of San Diego Bay	D4		-117.12718	32.66412	02-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Zinc (Zn)	Dry weight	94.0 mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	D5		-117.13388	32.66387	02-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Aluminum (Al)	Dry weight	7170 mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	D5		-117.13388	32.66387	02-Jul-93	Sediment	Discrete Sample	EPA7060	Arsenic (As)	Dry weight	6.0 mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	D5		-117.13388	32.66387	02-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Cadmium (Cd)	Dry weight	1.0 mg/kg	U
Studies Supporting an Environmental Risk Assessment of San Diego Bay	D5		-117.13388	32.66387	02-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Copper (Cu)	Dry weight	36.0 mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	D5		-117.13388	32.66387	02-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Iron (Fe)	Dry weight	9350.0 mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	D5		-117.13388	32.66387	02-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Lead (Pb)	Dry weight	21.0 mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	D5		-117.13388	32.66387	02-Jul-93	Sediment	Discrete Sample	EPA7471Mercury	Mercury (Hg)	Dry weight	0.2 mg/kg	U
Studies Supporting an Environmental Risk Assessment of San Diego Bay	D5		-117.13388	32.66387	02-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Zinc (Zn)	Dry weight	74.0 mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	E1		-117.11863	32.65910	02-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Aluminum (Al)	Dry weight	22300 mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	E1		-117.11863	32.65910	02-Jul-93	Sediment	Discrete Sample	EPA7060	Arsenic (As)	Dry weight	8.0 mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	E1		-117.11863	32.65910	02-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Cadmium (Cd)	Dry weight	1.0 mg/kg	U
Studies Supporting an Environmental Risk Assessment of San Diego Bay	E1		-117.11863	32.65910	02-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Copper (Cu)	Dry weight	371.0 mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	E1		-117.11863	32.65910	02-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Iron (Fe)	Dry weight	33100.0 mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	E1		-117.11863	32.65910	02-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Lead (Pb)	Dry weight	74.0 mg/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	E1		-117.11863	32.65910	02-Jul-93	Sediment	Discrete Sample	EPA7471Mercury	Mercury (Hg)	Dry weight	1.0 mg/kg	

PROJECT_NAME	SITE_NAME	SAMPLE_ID	X_COORDINATE	Y_COORDINATE	SAMPLE_DATE	SAMPLE_MEDIUM	TYPE	MEASUREMENT_METHOD	PARAMETER_NAME	PROPERTY	QUANTITY L	JNIT	QUALIFIER
Studies Supporting an Environmental Risk Assessment of San Diego Bay	E1		-117.11863	32.65910	02-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Zinc (Zn)	Dry weight	313.0 n	na/ka	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	E2		-117.12270	32.65808	02-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Aluminum (Al)	Dry weight	33100 n		
Studies Supporting an Environmental Risk Assessment of San Diego Bay	E2		-117.12270	32.65808	02-Jul-93	Sediment	Discrete Sample	EPA7060	Arsenic (As)	Dry weight		ng/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	E2		-117.12270	32.65808	02-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Cadmium (Cd)	Dry weight	1.0 n	ng/kg	U
Studies Supporting an Environmental Risk Assessment of San Diego Bay	E2		-117.12270	32.65808	02-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Copper (Cu)	Dry weight	400.0 n	ng/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	E2		-117.12270	32.65808	02-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Iron (Fe)	Dry weight	38600.0 n	ng/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	E2		-117.12270	32.65808	02-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Lead (Pb)	Dry weight	42.0 n	ng/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	E2		-117.12270	32.65808	02-Jul-93	Sediment	Discrete Sample	EPA7471Mercury	Mercury (Hg)	Dry weight	0.4 n	ng/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	E2		-117.12270	32.65808	02-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Zinc (Zn)	Dry weight	244.0 n	ng/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	E3		-117.12465	32.65753	02-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Aluminum (Al)	Dry weight	26700 n	ng/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	E3		-117.12465	32.65753	02-Jul-93	Sediment	Discrete Sample	EPA7060	Arsenic (As)	Dry weight	6.0 n	ng/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	E3		-117.12465	32.65753	02-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Cadmium (Cd)	Dry weight	1.0 n	ng/kg	υ
Studies Supporting an Environmental Risk Assessment of San Diego Bay	E3		-117.12465	32.65753	02-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Copper (Cu)	Dry weight	188.0 n	ng/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	E3		-117.12465	32.65753	02-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Iron (Fe)	Dry weight	33300.0 n	ng/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	E3		-117.12465	32.65753	02-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Lead (Pb)	Dry weight	36.0 n	ng/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	E3		-117.12465	32.65753	02-Jul-93	Sediment	Discrete Sample	EPA7471Mercury	Mercury (Hg)	Dry weight	0.4 n	ng/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	E3		-117.12465	32.65753	02-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Zinc (Zn)	Dry weight	189.0 n	ng/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	E4		-117.12708	32.65775	02-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Aluminum (Al)	Dry weight	28900 n	ng/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	E4		-117.12708	32.65775	02-Jul-93	Sediment	Discrete Sample	EPA7060	Arsenic (As)	Dry weight	7.0 n	ng/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	E4		-117.12708	32.65775	02-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Cadmium (Cd)	Dry weight	1.0 n	ng/kg	U
Studies Supporting an Environmental Risk Assessment of San Diego Bay	E4		-117.12708	32.65775	02-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Copper (Cu)	Dry weight	185.0 n	ng/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	E4		-117.12708	32.65775	02-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Iron (Fe)	Dry weight	36100.0 n	ng/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	E4		-117.12708	32.65775	02-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Lead (Pb)	Dry weight	42.0 n	ng/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	E4		-117.12708	32.65775	02-Jul-93	Sediment	Discrete Sample	EPA7471Mercury	Mercury (Hg)	Dry weight	0.5 n	ng/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	E4		-117.12708	32.65775	02-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Zinc (Zn)	Dry weight	222.0 n	ng/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	E5		-117.13218	32.65643	02-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Aluminum (Al)	Dry weight	16800 n	ng/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	E5		-117.13218	32.65643	02-Jul-93	Sediment	Discrete Sample	EPA7060	Arsenic (As)	Dry weight	5.0 n	ng/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	E5		-117.13218	32.65643	02-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Cadmium (Cd)	Dry weight	1.0 n	ng/kg	U
Studies Supporting an Environmental Risk Assessment of San Diego Bay	E5		-117.13218	32.65643	02-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Copper (Cu)	Dry weight	73.0 n	ng/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	E5		-117.13218	32.65643	02-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Iron (Fe)	Dry weight	21100.0 n	ng/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	E5		-117.13218	32.65643	02-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Lead (Pb)	Dry weight	26.0 n	ng/kg	
Studies Supporting an Environmental Risk Assessment of San Diego Bay	E5		-117.13218	32.65643	02-Jul-93	Sediment	Discrete Sample	EPA7471Mercury	Mercury (Hg)	Dry weight	0.3 n	ng/kg	

PROJECT_NAME	SITE_NAME	SAMPLE_ID	X_COORDINATE	Y_COORDINATE	SAMPLE_DATE	SAMPLE_MEDIUM	TYPE	MEASUREMENT_METHOD	PARAMETER_NAME	PROPERTY	QUANTITY UNIT	QUALIFIER
Studies Supporting an Environmental Risk Assessment of												
San Diego Bay	E5		-117.13218	32.65643	02-Jul-93	Sediment	Discrete Sample	EPA6010ICP	Zinc (Zn)	Dry weight	137.0 mg/kg	
Upstream Paleta Creek	IR-PAC14		-117.11505	32.67480	2004			ICP/OES	Aluminum (Al)	Dry weight	71227 mg/kg	
Upstream Paleta Creek	IR-PAC14		-117.11505	32.67480	2004			ICP/MS	Arsenic (As)	Dry weight	13.3 mg/kg	
Upstream Paleta Creek	IR-PAC14		-117.11505	32.67480	2004			ICP-MS	Cadmium (Cd)	Dry weight	1.15 mg/kg	
Upstream Paleta Creek	IR-PAC14		-117.11505	32.67480	2004			ICP/OES	Copper (Cu)	Dry weight	211 mg/kg	
Upstream Paleta Creek	IR-PAC14		-117.11505	32.67480	2004			ICP/OES	Iron (Fe)	Dry weight	40749 mg/kg	
Upstream Paleta Creek	IR-PAC14		-117.11505	32.67480	2004			ICP/OES	Lead (Pb)	Dry weight	140 mg/kg	
Upstream Paleta Creek	IR-PAC14		-117.11505	32.67480	2004			CVAF	Mercury (Hg)	Dry weight	0.338 mg/kg	
Upstream Paleta Creek	IR-PAC14		-117.11505	32.67480	2004			ICP/OES	Zinc (Zn)	Dry weight	482 mg/kg	
Upstream Paleta Creek	IR-PAC17		-117.11485	32.67513	2004			ICP/OES	Aluminum (Al)	Dry weight	67156 mg/kg	
Upstream Paleta Creek	IR-PAC17		-117.11485	32.67513	2004			ICP/MS	Arsenic (As)	Dry weight	7.16 mg/kg	
Upstream Paleta Creek	IR-PAC17		-117.11485	32.67513	2004			ICP-MS	Cadmium (Cd)	Dry weight	0.989 mg/kg	
Upstream Paleta Creek	IR-PAC17		-117.11485	32.67513	2004			ICP/OES	Copper (Cu)	Dry weight	93.0 mg/kg	
Upstream Paleta Creek	IR-PAC17		-117.11485	32.67513	2004			ICP/OES	Iron (Fe)	Dry weight	28575 mg/kg	
Upstream Paleta Creek	IR-PAC17		-117.11485	32.67513	2004			ICP/OES	Lead (Pb)	Dry weight	120 mg/kg	
Upstream Paleta Creek	IR-PAC17		-117.11485	32.67513	2004			CVAF	Mercury (Hg)	Dry weight	0.324 mg/kg	
Upstream Paleta Creek	IR-PAC17		-117.11485	32.67513	2004			ICP/OES	Zinc (Zn)	Dry weight	288 mg/kg	
Upstream Paleta Creek	IR-PAC29	1	-117.11427	32.67568	2004	1		ICP/OES	Aluminum (Al)	Dry weight	64404 mg/kg	1
Upstream Paleta Creek	IR-PAC29	1	-117.11427	32.67568	2004	1		ICP/MS	Arsenic (As)	Dry weight	7.08 mg/kg	1
Upstream Paleta Creek	IR-PAC29	1	-117.11427	32.67568	2004	1	1	ICP-MS	Cadmium (Cd)	Dry weight	0.784 mg/kg	+ 1
Upstream Paleta Creek	IR-PAC29	1	-117.11427	32.67568	2004			ICP/OES	Copper (Cu)	Dry weight	65.0 mg/kg	+
Upstream Paleta Creek	IR-PAC29		-117.11427	32.67568	2004			ICP/OES	Iron (Fe)	Dry weight	29238 mg/kg	+
Upstream Paleta Creek	IR-PAC29		-117.11427	32.67568	2004			ICP/OES	Lead (Pb)	Dry weight	82.3 mg/kg	
Upstream Paleta Creek	IR-PAC29		-117.11427	32.67568	2004			CVAF	Mercury (Hg)	Dry weight	0.324 mg/kg	
Upstream Paleta Creek	IR-PAC29		-117.11427	32.67568	2004			ICP/OES	Zinc (Zn)	Dry weight	232 mg/kg	
Upstream Paleta Creek	IR-PAC3		-117.11427	32.67443	2004			ICP/OES	Aluminum (Al)	Dry weight	54500 mg/kg	
Upstream Paleta Creek	IR-PAC3		-117.11562	32.67443	2004			ICP/MS	Arsenic (As)	Dry weight	4.28 mg/kg	
Upstream Paleta Creek	IR-PAC3		-117.11562	32.67443	2004			ICP-MS	Cadmium (Cd)	Dry weight	0.276 mg/kg	
Upstream Paleta Creek	IR-PAC3		-117.11562	32.67443	2004			ICP/OES	Copper (Cu)	Dry weight	18.1 mg/kg	
Upstream Paleta Creek	IR-PAC3		-117.11562	32.67443	2004			ICP/OES	Iron (Fe)	Dry weight	8910 mg/kg	
Upstream Paleta Creek	IR-PAC3		-117.11562	32.67443	2004			ICP/OES	Lead (Pb)	Dry weight	38.3 mg/kg	
Upstream Paleta Creek	IR-PAC3		-117.11562	32.67443	2004			CVAF	Mercury (Hg)	Dry weight	0.0643 mg/kg	
Upstream Paleta Creek	IR-PAC3		-117.11562	32.67443	2004			ICP/OES	Zinc (Zn)	Dry weight	144 mg/kg	
Upstream Paleta Creek	IR-PAC38		-117.11380	32.67605	2004			ICP/OES	Aluminum (Al)	Dry weight	61732 mg/kg	
Upstream Paleta Creek	IR-PAC38		-117.11380	32.67605	2004			ICP/MS	Arsenic (As)	Dry weight	4.43 mg/kg	
Upstream Paleta Creek	IR-PAC38		-117.11380	32.67605	2004			ICP-MS	Cadmium (Cd)	Dry weight	0.603 mg/kg	
Upstream Paleta Creek	IR-PAC38		-117.11380	32.67605	2004			ICP/OES	Copper (Cu)	Dry weight	50.2 mg/kg	
Upstream Paleta Creek	IR-PAC38		-117.11380	32.67605	2004			ICP/OES	Iron (Fe)	Dry weight	22265 mg/kg	
Upstream Paleta Creek	IR-PAC38		-117.11380	32.67605	2004			ICP/OES	Lead (Pb)	Dry weight	87.6 mg/kg	
Upstream Paleta Creek	IR-PAC38		-117.11380	32.67605	2004			CVAF	Mercury (Hg)	Dry weight	0.101 mg/kg	
Upstream Paleta Creek	IR-PAC38		-117.11380	32.67605	2004			ICP/OES	Zinc (Zn)	Dry weight	267 mg/kg	
Upstream Paleta Creek	IR-PAC41		-117.11173	32.67665	2004			ICP/OES	Aluminum (Al)	Dry weight	67838 mg/kg	
Upstream Paleta Creek	IR-PAC41		-117.11173	32.67665	2004			ICP/MS	Arsenic (As)	Dry weight	6.60 mg/kg	+
Upstream Paleta Creek	IR-PAC41		-117.11173	32.67665	2004			ICP/MS ICP-MS	Cadmium (Cd)	Dry weight	0.733 mg/kg	+
Upstream Paleta Creek	IR-PAC41		-117.11173	32.67665	2004			ICP/OES	Copper (Cu)	Dry weight	57.8 mg/kg	+
Upstream Paleta Creek	IR-PAC41		-117.11173	32.67665	2004			ICP/OES	Iron (Fe)	Dry weight	27572 mg/kg	+
Upstream Paleta Creek	IR-PAC41		-117.11173	32.67665	2004			ICP/OES	Lead (Pb)	Dry weight	107 mg/kg	+
Upstream Paleta Creek	IR-PAC41	1	-117.11173	32.67665	2004	1	+	CVAF	Mercury (Hg)	Dry weight	0.157 mg/kg	+
Upstream Paleta Creek	IR-PAC41		-117.11173	32.67665	2004			ICP/OES	Zinc (Zn)	Dry weight	220 mg/kg	+
Upstream Paleta Creek	IR-PAC41	1	-117.11215	32.67665	2004	1	+	ICP/OES	Aluminum (Al)	Dry weight	64532 mg/kg	+
Upstream Paleta Creek	IR-PAC49 IR-PAC49	1	-117.11215	32.68297	2004	1	+	ICP/0ES	Aluminum (Al) Arsenic (As)	Dry weight	4.70 mg/kg	+
Upstream Paleta Creek	IR-PAC49		-117.11215	32.68297	2004		+	ICP/MS	Cadmium (Cd)	Dry weight	0.317 mg/kg	+
Upstream Paleta Creek	IR-PAC49 IR-PAC49		-117.11215	32.68297	2004		+	ICP-MS ICP/OES				+
Upstream Paleta Creek Upstream Paleta Creek	IR-PAC49 IR-PAC49	1	-117.11215	32.68297	2004	+	+	ICP/OES	Copper (Cu) Iron (Fe)	Dry weight Dry weight	18.1 mg/kg	+
Upstream Paleta Creek	IR-PAC49 IR-PAC49		-117.11215	32.68297	2004		+	ICP/OES	Lead (Pb)		20640 mg/kg	+
Upstream Paleta Creek Upstream Paleta Creek					2004					Dry weight	27.6 mg/kg	+
	IR-PAC49		-117.11215	32.68297				CVAF ICP/OES	Mercury (Hg)	Dry weight	0.0344 mg/kg	+
Upstream Paleta Creek	IR-PAC49		-117.11215	32.68297	2004				Zinc (Zn)	Dry weight	104 mg/kg	+
Upstream Paleta Creek	IR-PAC55		-117.11468	32.67508	2004			ICP/OES	Aluminum (Al)	Dry weight	69683 mg/kg	+
Upstream Paleta Creek	IR-PAC55		-117.11468	32.67508	2004			ICP/MS	Arsenic (As)	Dry weight	8.79 mg/kg	+
Upstream Paleta Creek	IR-PAC55		-117.11468	32.67508	2004			ICP-MS	Cadmium (Cd)	Dry weight	0.867 mg/kg	+
Upstream Paleta Creek	IR-PAC55	1	-117.11468	32.67508	2004	1	1	ICP/OES	Copper (Cu)	Dry weight	136 mg/kg	1

PROJECT_NAME	SITE_NAME	SAMPLE_ID	X_COORDINATE	Y_COORDINATE	SAMPLE_DATE	SAMPLE_MEDIUM	TYPE	MEASUREMENT_METHOD	PARAMETER_NAME	PROPERTY	QUANTITY	UNIT	QUALIFIER
Upstream Paleta Creek	IR-PAC55		-117.11468	32.67508	2004			ICP/OES	Iron (Fe)	Dry weight	27702	mg/kg	
Upstream Paleta Creek	IR-PAC55		-117.11468	32.67508	2004			ICP/OES	Lead (Pb)	Dry weight	104	mg/kg	
Upstream Paleta Creek	IR-PAC55		-117.11468	32.67508	2004			CVAF	Mercury (Hg)	Dry weight	0.274	mg/kg	
Upstream Paleta Creek	IR-PAC55		-117.11468	32.67508	2004			ICP/OES	Zinc (Zn)	Dry weight	362	mg/kg	
Upstream Paleta Creek	IR-PAC56		-117.11060	32.68375	2004			ICP/OES	Aluminum (Al)	Dry weight	57515	mg/kg	
Upstream Paleta Creek	IR-PAC56		-117.11060	32.68375	2004			ICP/MS	Arsenic (As)	Dry weight	4.06	mg/kg	
Upstream Paleta Creek	IR-PAC56		-117.11060	32.68375	2004			ICP-MS	Cadmium (Cd)	Dry weight	0.288	mg/kg	
Upstream Paleta Creek	IR-PAC56		-117.11060	32.68375	2004			ICP/OES	Copper (Cu)	Dry weight		mg/kg	
Upstream Paleta Creek	IR-PAC56		-117.11060	32.68375	2004			ICP/OES	Iron (Fe)	Dry weight	19702	mg/kg	
Upstream Paleta Creek	IR-PAC56		-117.11060	32.68375	2004			ICP/OES	Lead (Pb)	Dry weight	25.9	mg/kg	
Upstream Paleta Creek	IR-PAC56		-117.11060	32.68375	2004			CVAF	Mercury (Hg)	Dry weight	0.0331	mg/kg	
Upstream Paleta Creek	IR-PAC56		-117.11060	32.68375	2004			ICP/OES	Zinc (Zn)	Dry weight		mg/kg	
Upstream Paleta Creek	IR-PAC60		-117.11529	32.67467	2004			ICP/OES	Aluminum (Al)	Dry weight	65466	mg/kg	
Upstream Paleta Creek	IR-PAC60		-117.11529	32.67467	2004			ICP/MS	Arsenic (As)	Dry weight	7.24	mg/kg	
Upstream Paleta Creek	IR-PAC60		-117.11529	32.67467	2004			ICP-MS	Cadmium (Cd)	Dry weight	0.912	mg/kg	
Upstream Paleta Creek	IR-PAC60		-117.11529	32.67467	2004			ICP/OES	Copper (Cu)	Dry weight	82.2	mg/kg	
Upstream Paleta Creek	IR-PAC60		-117.11529	32.67467	2004			ICP/OES	Iron (Fe)	Dry weight	28749	mg/kg	
Upstream Paleta Creek	IR-PAC60		-117.11529	32.67467	2004			ICP/OES	Lead (Pb)	Dry weight	67.6	mg/kg	
Upstream Paleta Creek	IR-PAC60		-117.11529	32.67467	2004			CVAF	Mercury (Hg)	Dry weight	0.138	mg/kg	
Upstream Paleta Creek	IR-PAC60		-117.11529	32.67467	2004			ICP/OES	Zinc (Zn)	Dry weight		mg/kg	
Upstream Paleta Creek	IR-PAC61		-117.11532	32.67483	2004			ICP/OES	Aluminum (Al)	Dry weight	50424		
Upstream Paleta Creek	IR-PAC61		-117.11532	32.67483	2004			ICP/MS	Arsenic (As)	Dry weight	3.97	mg/kg	
Upstream Paleta Creek	IR-PAC61		-117.11532	32.67483	2004			ICP-MS	Cadmium (Cd)	Dry weight	0.163	mg/kg	
Upstream Paleta Creek	IR-PAC61		-117.11532	32.67483	2004			ICP/OES	Copper (Cu)	Dry weight	1143	mg/kg	
Upstream Paleta Creek	IR-PAC61		-117.11532	32.67483	2004			ICP/OES	Iron (Fe)	Dry weight	9914	mg/kg	
Upstream Paleta Creek	IR-PAC61		-117.11532	32.67483	2004			ICP/OES	Lead (Pb)	Dry weight		mg/kg	
Upstream Paleta Creek	IR-PAC61		-117.11532	32.67483	2004			CVAF	Mercury (Hg)	Dry weight	0.0397	mg/kg	
Upstream Paleta Creek	IR-PAC61		-117.11532	32.67483	2004			ICP/OES	Zinc (Zn)	Dry weight		mg/kg	
Upstream Paleta Creek	IR-PAC63		-117.11397	32.67595	2004			ICP/OES	Aluminum (Al)	Dry weight	69777	mg/kg	
Upstream Paleta Creek	IR-PAC63		-117.11397	32.67595	2004			ICP/MS	Arsenic (As)	Dry weight	8.67	mg/kg	
Upstream Paleta Creek	IR-PAC63		-117.11397	32.67595	2004			ICP-MS	Cadmium (Cd)	Dry weight	1.04	mg/kg	
Upstream Paleta Creek	IR-PAC63		-117.11397	32.67595	2004			ICP/OES	Copper (Cu)	Dry weight		mg/kg	
Upstream Paleta Creek	IR-PAC63		-117.11397	32.67595	2004			ICP/OES	Iron (Fe)	Dry weight	42361		
Upstream Paleta Creek	IR-PAC63		-117.11397	32.67595	2004			ICP/OES	Lead (Pb)	Dry weight		mg/kg	
Upstream Paleta Creek	IR-PAC63		-117.11397	32.67595	2004			CVAF	Mercury (Hg)	Dry weight	0.0793		
Upstream Paleta Creek	IR-PAC63		-117.11397	32.67595	2004			ICP/OES	Zinc (Zn)	Dry weight		mg/kg	
Upstream Paleta Creek	IR-PAC65		-117.11433	32.67560	2004			ICP/OES	Aluminum (Al)	Dry weight	65282		
Upstream Paleta Creek	IR-PAC65		-117.11433	32.67560	2004			ICP/MS	Arsenic (As)	Dry weight		mg/kg	
Upstream Paleta Creek	IR-PAC65		-117.11433	32.67560	2004			ICP-MS	Cadmium (Cd)	Dry weight		mg/kg	
Upstream Paleta Creek	IR-PAC65		-117.11433	32.67560	2004			ICP/OES	Copper (Cu)	Dry weight		mg/kg	L
Upstream Paleta Creek	IR-PAC65		-117.11433	32.67560	2004			ICP/OES	Iron (Fe)	Dry weight	37950		
Upstream Paleta Creek	IR-PAC65		-117.11433	32.67560	2004			ICP/OES	Lead (Pb)	Dry weight		mg/kg	<u> </u>
Upstream Paleta Creek	IR-PAC65		-117.11433	32.67560	2004			CVAF	Mercury (Hg)	Dry weight		mg/kg	<u> </u>
Upstream Paleta Creek	IR-PAC65		-117.11433	32.67560	2004			ICP/OES	Zinc (Zn)	Dry weight		mg/kg	<u> </u>
Upstream Paleta Creek	IR-PAC7		-117.11538	32.67470	2004		+	ICP/OES	Aluminum (Al)	Dry weight	67396		⊢]
Upstream Paleta Creek	IR-PAC7		-117.11538	32.67470	2004		+	ICP/MS	Arsenic (As)	Dry weight		mg/kg	⊢I
Upstream Paleta Creek	IR-PAC7	1	-117.11538	32.67470	2004		+	ICP-MS	Cadmium (Cd)	Dry weight	0.486		⊢]
Upstream Paleta Creek	IR-PAC7		-117.11538	32.67470	2004		+	ICP/OES	Copper (Cu)	Dry weight		mg/kg	⊢I
Upstream Paleta Creek	IR-PAC7		-117.11538	32.67470	2004		+	ICP/OES	Iron (Fe)	Dry weight	26196		<u>⊢ </u>
Upstream Paleta Creek	IR-PAC7		-117.11538	32.67470	2004		+	ICP/OES	Lead (Pb)	Dry weight		mg/kg	⊢−−−− I
Upstream Paleta Creek	IR-PAC7		-117.11538	32.67470	2004		+	CVAF	Mercury (Hg)	Dry weight	0.143		⊢]
Upstream Paleta Creek	IR-PAC7	1	-117.11538	32.67470	2004		+	ICP/OES	Zinc (Zn)	Dry weight		mg/kg	⊢]
Upstream Paleta Creek	IR-PAC71		-117.11008	32.68398	2004		+	ICP/OES	Aluminum (Al)	Dry weight	50492		⊢−−−−−
Upstream Paleta Creek	IR-PAC71		-117.11008	32.68398	2004		+	ICP/MS	Arsenic (As)	Dry weight		mg/kg	⊢−−−− I
Upstream Paleta Creek	IR-PAC71		-117.11008	32.68398	2004		+	ICP-MS	Cadmium (Cd)	Dry weight		mg/kg	⊢
Upstream Paleta Creek	IR-PAC71		-117.11008	32.68398	2004		+	ICP/OES	Copper (Cu)	Dry weight		mg/kg	⊢]
Upstream Paleta Creek	IR-PAC71	l	-117.11008	32.68398	2004		+	ICP/OES	Iron (Fe)	Dry weight	12523		⊢]
Upstream Paleta Creek	IR-PAC71	1	-117.11008	32.68398	2004		+	ICP/OES	Lead (Pb)	Dry weight		mg/kg	⊢]
Upstream Paleta Creek	IR-PAC71		-117.11008	32.68398	2004		+	CVAF	Mercury (Hg)	Dry weight	0.0288		⊢I
Upstream Paleta Creek	IR-PAC71	1	-117.11008	32.68398	2004		1	ICP/OES	Zinc (Zn)	Dry weight	82.0	mg/kg	

PROJECT NAME	SITE NAME	SAMPLE ID	X COORDINATE	Y COORDINATE	SAMPLE DATE	SAMPLE MEDIUM	TYPE	D	PARAMETER NAME	PROPERTY	QUANTITY UNIT	QUALIFIER
Bay Protection and Toxic Cleanup Program	90006		-117.13417	32.68667	04-Aug-93	Sediment	Discrete Sample	Sloan,C.A.,	Tributyltin (TBT)	Dry weight	0.013 µg/kg	U
Bay Protection and Toxic Cleanup Program	90007		-117.12889	32.68028	10-Nov-92	Sediment	Discrete Sample	Sloan,C.A.,	Tributyltin (TBT)	Dry weight	0.15 µg/kg	
Bay Protection and Toxic Cleanup Program	90007		-117.12917	32.68117	17-Aug-93	Sediment	Discrete Sample	Sloan,C.A.,	Tributyltin (TBT)	Dry weight	0.013 µg/kg	U
Bay Protection and Toxic Cleanup Program	90007		-117.12902	32.68090	03-Dec-96	Sediment	Discrete Sample	Sloan,C.A.,	Tributyltin (TBT)	Dry weight	0.050 µg/kg	
Bay Protection and Toxic Cleanup Program	90008		-117.12556	32.67417	10-Nov-92	Sediment	Discrete Sample	Sloan,C.A.,	Tributyltin (TBT)	Dry weight	0.12 µg/kg	
Bay Protection and Toxic Cleanup Program	90008		-117.12517	32.67383	17-Aug-93	Sediment	Discrete Sample	Sloan,C.A.,	Tributyltin (TBT)	Dry weight	0.013 µg/kg	U
Bay Protection and Toxic Cleanup Program	90008		-117.12460	32.67552	03-Dec-96	Sediment	Discrete Sample	Sloan,C.A.,	Tributyltin (TBT)	Dry weight	0.057 µg/kg	
Bay Protection and Toxic Cleanup Program	90009		-117.11694	32.67250	10-Nov-92	Sediment	Discrete Sample	Sloan,C.A.,	Tributyltin (TBT)	Dry weight	0.09 µg/kg	
Bay Protection and Toxic Cleanup Program	90009		-117.11700	32.67233	17-Aug-93	Sediment	Discrete Sample	Sloan,C.A.,	Tributyltin (TBT)	Dry weight	0.013 µg/kg	U
Bay Protection and Toxic Cleanup Program	90010		-117.11900	32.65800	17-Aug-93	Sediment	Discrete Sample	Sloan,C.A.,	Tributyltin (TBT)	Dry weight	0.013 µg/kg	U
Bay Protection and Toxic Cleanup Program	90020		-117.14667	32.69278	26-Jan-93	Sediment	Discrete Sample	Sloan,C.A.,	Tributyltin (TBT)	Dry weight	1.38 µg/kg	
Bay Protection and Toxic Cleanup Program	90020	Rep 1	-117.14757	32.69200	01-Mar-94	Sediment	Discrete Sample	Sloan,C.A.,	Tributyltin (TBT)	Dry weight	0.795 µg/kg	
Bay Protection and Toxic Cleanup Program	90020		-117.14757	32.69323	03-Dec-96	Sediment	Discrete Sample	Sloan,C.A.,	Tributyltin (TBT)	Dry weight	0.640 µg/kg	
Bay Protection and Toxic Cleanup Program	90021		-117.14617	32.69200	04-Aug-93	Sediment	Discrete Sample	Sloan,C.A.,	Tributyltin (TBT)	Dry weight	0.013 µg/kg	U
Bay Protection and Toxic Cleanup Program	90022		-117.12389	32.67833	10-Nov-92	Sediment	Discrete Sample	Sloan,C.A.,	Tributyltin (TBT)	Dry weight	0.24 µg/kg	
Bay Protection and Toxic Cleanup Program	90022		-117.12500	32.67900	04-Aug-93	Sediment	Discrete Sample	Sloan,C.A.,	Tributyltin (TBT)	Dry weight	0.013 µg/kg	U
Bay Protection and Toxic Cleanup Program	90022	Rep 1	-117.12528	32.67889	01-Mar-94	Sediment	Discrete Sample	Sloan,C.A.,	Tributyltin (TBT)	Dry weight	0.0927 µg/kg	
Bay Protection and Toxic Cleanup Program	90022		-117.12438	32.67853	03-Dec-96	Sediment	Discrete Sample	Sloan,C.A.,	Tributyltin (TBT)	Dry weight	0.136 µg/kg	
Bay Protection and Toxic Cleanup Program	90030		-117.14194	32.68972	26-Jan-93	Sediment	Discrete Sample	Sloan,C.A.,	Tributyltin (TBT)	Dry weight	0.74 µg/kg	
Bay Protection and Toxic Cleanup Program	90030	Rep 1	-117.14306	32.68944	15-Mar-94	Sediment	Discrete Sample	Sloan,C.A.,	Tributyltin (TBT)	Dry weight	6.21 µg/kg	
Bay Protection and Toxic Cleanup Program	93178		-117.14967	32.69417	26-May-93	Sediment	Discrete Sample	Sloan,C.A.,	Tributyltin (TBT)	Dry weight	0.34 µg/kg	
Bay Protection and Toxic Cleanup Program	93178	Rep 1	-117.14967	32.69483	02-Mar-94	Sediment	Discrete Sample	Sloan,C.A.,	Tributyltin (TBT)	Dry weight	0.364 µg/kg	
Bay Protection and Toxic Cleanup Program	93178		-117.14997	32.69532	03-Dec-96	Sediment	Discrete Sample	Sloan,C.A.,	Tributyltin (TBT)	Dry weight	0.177 µg/kg	
Bay Protection and Toxic Cleanup Program	93179		-117.14850	32.69383	26-May-93	Sediment	Discrete Sample	Sloan,C.A.,	Tributyltin (TBT)	Dry weight	0.246 µg/kg	
Bay Protection and Toxic Cleanup Program	93179	Rep 1	-117.14900	32.69400	02-Mar-94	Sediment	Discrete Sample	Sloan,C.A.,	Tributyltin (TBT)	Dry weight	0.559 µg/kg	
Bay Protection and Toxic Cleanup Program	93179		-117.14862	32.69372	03-Dec-96	Sediment	Discrete Sample	Sloan,C.A.,	Tributyltin (TBT)	Dry weight	0.367 µg/kg	
Bay Protection and Toxic Cleanup Program	93181		-117.13967	32.68983	26-May-93	Sediment	Discrete Sample	Sloan,C.A.,	Tributyltin (TBT)	Dry weight	0.958 µg/kg	
Bay Protection and Toxic Cleanup Program	93181	Rep 1	-117.14017	32.68983	02-Mar-94	Sediment	Discrete Sample	Sloan,C.A.,	Tributyltin (TBT)	Dry weight	0.766 µg/kg	
Bay Protection and Toxic Cleanup Program	93184		-117.12617	32.68017	26-May-93	Sediment	Discrete Sample	Sloan,C.A.,	Tributyltin (TBT)	Dry weight	0.206 µg/kg	
Bay Protection and Toxic Cleanup Program	93210		-117.14667	32.69317	04-Aug-93	Sediment	Discrete Sample	Sloan,C.A.,	Tributyltin (TBT)	Dry weight	0.013 µg/kg	U
Bay Protection and Toxic Cleanup Program	93211		-117.14583	32.69283	04-Aug-93	Sediment	Discrete Sample	Sloan,C.A.,	Tributyltin (TBT)	Dry weight	0.013 µg/kg	U
Bay Protection and Toxic Cleanup Program	93212		-117.13350	32.68767	04-Aug-93	Sediment	Discrete Sample	Sloan,C.A.,	Tributyltin (TBT)	Dry weight	0.013 µg/kg	U
Bay Protection and Toxic Cleanup Program	93213		-117.13433	32.68733	04-Aug-93	Sediment	Discrete Sample	Sloan,C.A.,	Tributyltin (TBT)	Dry weight	0.013 µg/kg	U
Bay Protection and Toxic Cleanup Program	93214		-117.12517	32.67450	04-Aug-93	Sediment	Discrete Sample	Sloan,C.A.,	Tributyltin (TBT)	Dry weight	0.013 µg/kg	U
Bay Protection and Toxic Cleanup Program	93215		-117.12617	32.67600	04-Aug-93	Sediment	Discrete Sample	Sloan,C.A.,	Tributyltin (TBT)	Dry weight	0.013 µg/kg	U
Bay Protection and Toxic Cleanup Program	93223		-117.13000	32.68050	17-Aug-93	Sediment	Discrete Sample	Sloan,C.A.,	Tributyltin (TBT)	Dry weight	0.013 µg/kg	U
Bay Protection and Toxic Cleanup Program	93224		-117.12917	32.67933	17-Aug-93	Sediment	Discrete Sample	Sloan,C.A.,	Tributyltin (TBT)	Dry weight	0.013 µg/kg	U
Bay Protection and Toxic Cleanup Program	93225		-117.12233	32.67600	17-Aug-93	Sediment	Discrete Sample	Sloan,C.A.,	Tributyltin (TBT)	Dry weight	0.013 µg/kg	U
Bay Protection and Toxic Cleanup Program	93226		-117.12367	32.67667	17-Aug-93	Sediment	Discrete Sample	Sloan,C.A.,	Tributyltin (TBT)	Dry weight	0.013 µg/kg	U
Bay Protection and Toxic Cleanup Program	93227		-117.11633	32.67367	17-Aug-93	Sediment	Discrete Sample	Sloan,C.A.,	Tributyltin (TBT)	Dry weight	0.013 µg/kg	U
Bay Protection and Toxic Cleanup Program	93228		-117.11617	32.67317	17-Aug-93	Sediment	Discrete Sample	Sloan,C.A.,	Tributyltin (TBT)	Dry weight	0.013 µg/kg	U
Bay Protection and Toxic Cleanup Program	93229		-117.11883	32.65967	17-Aug-93	Sediment	Discrete Sample	Sloan,C.A.,	Tributyltin (TBT)	Dry weight	0.013 µg/kg	U
Bay Protection and Toxic Cleanup Program	93230		-117.11883	32.65933	17-Aug-93	Sediment	Discrete Sample	Sloan,C.A.,	Tributyltin (TBT)	Dry weight	0.013 µg/kg	U
NAVSTA TMDL 2008	NS11		-117.12710	32.68197	2008				Dibutyltin (DBT)	Dry weight	15.7 µg/kg	
NAVSTA TMDL 2008	NS11		-117.12710	32.68197	2008				Monobutyltin (MBT)	Dry weight	1.29 µg/kg	J
NAVSTA TMDL 2008	NS11		-117.12710	32.68197	2008				Tetrabutyltin (TTBT)	Dry weight	0.96 µg/kg	U
NAVSTA TMDL 2008	NS11		-117.12710	32.68197	2008				Tributyltin (TBT)	Dry weight	20.79 µg/kg	
NAVSTA TMDL 2008	NS12		-117.12771	32.68165	2008				Dibutyltin (DBT)	Dry weight	15.47 µg/kg	
NAVSTA TMDL 2008	NS12		-117.12771	32.68165	2008				Monobutyltin (MBT)	Dry weight	1.54 µg/kg	J
NAVSTA TMDL 2008	NS12		-117.12771	32.68165	2008				Tetrabutyltin (TTBT)	Dry weight	0.96 µg/kg	U
NAVSTA TMDL 2008	NS12		-117.12771	32.68165	2008				Tributyltin (TBT)	Dry weight	20.67 µg/kg	
NAVSTA TMDL 2008	NS13		-117.12879	32.68104	2008				Dibutyltin (DBT)	Dry weight	14.36 µg/kg	
NAVSTA TMDL 2008	NS13		-117.12879	32.68104	2008				Monobutyltin (MBT)	Dry weight	2.01 µg/kg	J
NAVSTA TMDL 2008	NS13		-117.12879	32.68104	2008				Tetrabutyltin (TTBT)	Dry weight	0.96 µg/kg	U
NAVSTA TMDL 2008	NS13		-117.12879	32.68104	2008				Tributyltin (TBT)	Dry weight	16.82 µg/kg	
NAVSTA TMDL 2008	NS14		-117.13030	32.68021	2008				Dibutyltin (DBT)	Dry weight	9.83 µg/kg	
NAVSTA TMDL 2008	NS14		-117.13030	32.68021	2008				Monobutyltin (MBT)	Dry weight	1.73 µg/kg	J
NAVSTA TMDL 2008	NS14		-117.13030	32.68021	2008				Tetrabutyltin (TTBT)	Dry weight	0.96 µg/kg	U
NAVSTA TMDL 2008	NS14		-117.13030	32.68021	2008				Tributyltin (TBT)	Dry weight	11.87 µg/kg	
NAVSTA TMDL 2008	NS15		-117.13122	32.67967	2008				Dibutyltin (DBT)	Dry weight	7.46 µg/kg	
NAVSTA TMDL 2008	NS15	1	-117.13122	32.67967	2008	1			Monobutyltin (MBT)	Dry weight	2.17 µg/kg	J

PROJECT_NAME	SITE_NAME	SAMPLE_ID	X_COORDINATE	Y_COORDINATE	SAMPLE_DATE	SAMPLE_MEDIUM TY	'PE	D	PARAMETER_NAME	PROPERTY	QUANTITY UNIT	QUALIFIER
NAVSTA TMDL 2008	NS15		-117.13122	32.67967	2008				Tetrabutyltin (TTBT)	Dry weight	0.96 µg/kg	U
NAVSTA TMDL 2008	NS15		-117.13122	32.67967	2008				Tributyltin (TBT)	Dry weight	6.88 µg/kg	
NAVSTA TMDL 2008	NS16		-117.12577	32.68018	2008				Dibutyltin (DBT)	Dry weight	13.97 µg/kg	
NAVSTA TMDL 2008	NS16		-117.12577	32.68018	2008				Monobutyltin (MBT)	Dry weight	1.65 µg/kg	
NAVSTA TMDL 2008	NS16		-117.12577	32.68018	2008				Tetrabutyltin (TTBT)	Dry weight	0.96 µg/kg	
NAVSTA TMDL 2008	NS16		-117.12577	32.68018	2008				Tributyltin (TBT)	Dry weight	14.6 µg/kg	
NAVSTA TMDL 2008	NS17		-117.12631	32.67986	2008				Dibutyltin (DBT)	Dry weight	12.4 µg/kg	
NAVSTA TMDL 2008	NS17		-117.12631	32.67986	2008				Monobutyltin (MBT)	Dry weight	1.32 µg/kg	
NAVSTA TMDL 2008	NS17		-117.12631	32.67986	2008				Tetrabutyltin (TTBT)	Dry weight	0.96 µg/kg	U
NAVSTA TMDL 2008	NS17		-117.12631	32.67986	2008				Tributyltin (TBT)	Dry weight	16.16 µg/kg	
NAVSTA TMDL 2008	NS18		-117.12715	32.67947	2008				Dibutyltin (DBT)	Dry weight	14.83 µg/kg	
NAVSTA TMDL 2008	NS18		-117.12715	32.67947	2008				Monobutyltin (MBT)	Dry weight	1.93 µg/kg	
NAVSTA TMDL 2008	NS18		-117.12715	32.67947	2008				Tetrabutyltin (TTBT)	Dry weight	0.96 µg/kg	
NAVSTA TMDL 2008	NS18		-117.12715	32.67947	2008				Tributyltin (TBT)	Dry weight	14.37 µg/kg	
NAVSTA TMDL 2008	NS19		-117.12857	32.67865	2008				Dibutyltin (DBT)	Dry weight	11.2 µg/kg	
NAVSTA TMDL 2008	NS19		-117.12857	32.67865	2008				Monobutyltin (MBT)	Dry weight	1.23 µg/kg	
NAVSTA TMDL 2008	NS19		-117.12857	32.67865	2008				Tetrabutyltin (TTBT)	Dry weight	0.96 µg/kg	
NAVSTA TMDL 2008	NS19		-117.12857	32.67865	2008				Tributyltin (TBT)	Dry weight	11.01 µg/kg	
NAVSTA TMDL 2008	NS21		-117.12426	32.67845					Dibutyltin (DBT)	Dry weight	13.35 µg/kg	
NAVSTA TMDL 2008	NS21		-117.12426	32.67845					Monobutyltin (MBT)	Dry weight	1.93 µg/kg	
NAVSTA TMDL 2008	NS21		-117.12426	32.67845	2008				Tetrabutyltin (TTBT)	Dry weight	0.96 µg/kg	
NAVSTA TMDL 2008	NS21		-117.12426	32.67845	2008				Tributyltin (TBT)	Dry weight	13.26 µg/kg	
NAVSTA TMDL 2008	NS22		-117.12487	32.67811	2008				Dibutyltin (DBT)	Dry weight	12.67 µg/kg	
NAVSTA TMDL 2008	NS22		-117.12487	32.67811	2008				Monobutyltin (MBT)	Dry weight	1.69 µg/kg	
NAVSTA TMDL 2008	NS22		-117.12487	32.67811	2008				Tetrabutyltin (TTBT)	Dry weight	0.96 µg/kg	
NAVSTA TMDL 2008	NS22		-117.12487	32.67811	2008				Tributyltin (TBT)	Dry weight	11.94 µg/kg	
NAVSTA TMDL 2008	NS2233		-117.15174	32.68581	2008				Dibutyltin (DBT)	Dry weight	3.43 µg/kg	
NAVSTA TMDL 2008	NS2233		-117.15174	32.68581	2008				Monobutyltin (MBT)	Dry weight	2.17 µg/kg	
NAVSTA TMDL 2008	NS2233		-117.15174	32.68581	2008				Tetrabutyltin (TTBT)	Dry weight	0.96 µg/kg	
NAVSTA TMDL 2008	NS2233		-117.15174	32.68581	2008				Tributyltin (TBT)	Dry weight	1.59 µg/kg	
NAVSTA TMDL 2008	NS2258		-117.13212	32.67601	2008				Dibutyltin (DBT)	Dry weight	6.76 µg/kg	
NAVSTA TMDL 2008	NS2258		-117.13212	32.67601	2008				Monobutyltin (MBT)	Dry weight	2.45 µg/kg	
NAVSTA TMDL 2008	NS2258		-117.13212	32.67601	2008				Tetrabutyltin (TTBT)	Dry weight	0.96 µg/kg	
NAVSTA TMDL 2008	NS2258		-117.13212	32.67601	2008				Tributyltin (TBT)	Dry weight	4.61 µg/kg	
NAVSTA TMDL 2008	NS23		-117.12571	32.67761	2008				Dibutyltin (DBT)	Dry weight	10.67 µg/kg	
NAVSTA TMDL 2008	NS23		-117.12571	32.67761	2008				Monobutyltin (MBT)	Dry weight	2 µg/kg	
NAVSTA TMDL 2008	NS23		-117.12571	32.67761	2008				Tetrabutyltin (TTBT)	Dry weight	0.96 µg/kg	
NAVSTA TMDL 2008	NS23		-117.12571	32.67761	2008				Tributyltin (TBT)	Dry weight	6.84 µg/kg	
NAVSTA TMDL 2008	NS24		-117.12689	32.67705	2008				Dibutyltin (DBT)	Dry weight	16.94 µg/kg	
NAVSTA TMDL 2008	NS24		-117.12689	32.67705					Monobutyltin (MBT)	Dry weight	2.75 µg/kg	
NAVSTA TMDL 2008 NAVSTA TMDL 2008	NS24		-117.12689	32.67705	2008 2008				Tetrabutyltin (TTBT)	Dry weight	0.96 µg/kg	
NAVSTA TMDL 2008 NAVSTA TMDL 2008	NS24		-117.12689	32.67705					Tributyltin (TBT)	Dry weight	13.1 µg/kg	
	NS25 NS25		-117.12798	32.67632	2008				Dibutyltin (DBT)	Dry weight	7.42 µg/kg	
NAVSTA TMDL 2008 NAVSTA TMDL 2008	NS25 NS25		-117.12798 -117.12798	32.67632 32.67632	2008 2008				Monobutyltin (MBT) Tetrabutyltin (TTBT)	Dry weight Dry weight	1.95 µg/kg 0.96 µg/kg	
NAVSTA TMDL 2008 NAVSTA TMDL 2008	NS25 NS25		-117.12798	32.67632	2008				Tributyltin (TBT)	Dry weight	5.61 µg/kg	
NAVSTA TMDL 2008 NAVSTA TMDL 2008	NS26		-117.12798	32.67632	2008				Dibutyltin (DBT)	Dry weight	13.65 µg/kg	
NAVSTA TMDL 2008 NAVSTA TMDL 2008	NS26		-117.12261	32.67669	2008				Monobutyltin (MBT)	Dry weight	2.24 µg/kg	
NAVSTA TMDL 2008 NAVSTA TMDL 2008	NS26		-117.12261	32.67669	2008				Tetrabutyltin (TTBT)	Dry weight	0.96 µg/kg	
NAVSTA TMDL 2008	NS26		-117.12261	32.67669	2008				Tributyltin (TBT)	Dry weight	19.05 µg/kg	
NAVSTA TMDL 2008 NAVSTA TMDL 2008	NS27		-117.12261	32.67639	2008				Dibutyltin (DBT)	Dry weight	10.02 µg/kg	
NAVSTA TMDL 2008 NAVSTA TMDL 2008	NS27		-117.12326	32.67639	2008				Monobutyltin (MBT)	Dry weight	1.33 µg/kg	
NAVSTA TMDL 2008	NS27		-117.12326	32.67639	2008				Tetrabutyltin (TTBT)	Dry weight	0.96 µg/kg	
NAVSTA TMDL 2008	NS27		-117.12326	32.67639	2008				Tributyltin (TBT)	Dry weight	10.69 µg/kg	
NAVSTA TMDL 2008	NS28		-117.12320	32.67569	2008				Dibutyltin (DBT)	Dry weight	8.26 µg/kg	
NAVSTA TMDL 2008	NS28		-117.12454	32.67569	2008				Monobutyltin (MBT)	Dry weight	2.03 µg/kg	
NAVSTA TMDL 2008	NS28		-117.12454	32.67569	2008				Tetrabutyltin (TTBT)	Dry weight	0.96 µg/kg	
NAVSTA TMDL 2008	NS28		-117.12454	32.67569	2008				Tributyltin (TBT)	Dry weight	9.07 µg/kg	
NAVSTA TMDL 2008	NS29		-117.12454	32.67511	2008				Dibutyltin (DBT)	Dry weight	8.76 µg/kg	
NAVSTA TMDL 2008 NAVSTA TMDL 2008	NS29		-117.12566	32.67511	2008				Monobutyltin (MBT)	Dry weight	1.73 µg/kg	
NAVSTA TMDL 2008	NS29		-117.12566	32.67511	2008				Tetrabutyltin (TTBT)	Dry weight	0.96 µg/kg	
	11023	I	-117.12000	32.0/511	2000			1	Treadbutytutt (TTBT)	Lory weight	0.90 µg/kg	U

NUMBER NUMBER<	PROJECT NAME	SITE NAME	SAMPLE ID X COORDINAT	E Y COORDINATE	SAMPLE DATE	SAMPLE MEDIUM	TYPE	D PARAMET	ER NAME	PROPERTY	QUANTITY UNIT	QUALIFIER
NAME NAME NAME NAME Description Description <thdescription< th=""> Description</thdescription<>	NAVSTA TMDL 2008	NS29			2008			Tributvltin	(TBT)	Drv weight		
NAMES NAME NAME NAME Nome Nome <t< td=""><td>NAVSTA TMDL 2008</td><td></td><td></td><td></td><td>2008</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	NAVSTA TMDL 2008				2008							
AMACTA TADU 300NAMENAM												J
NACHT PROL 2000 Nacht Prol												U
MADE ADDMADE ADDMOUTE ADDMADE ADDMouge ADD <t< td=""><td>NAVSTA TMDL 2008</td><td></td><td></td><td></td><td>2008</td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></t<>	NAVSTA TMDL 2008				2008							-
NAMES NAMES	NAVSTA TMDL 2008				2008							-
NAMPY MP/F Intrustant S2020 2008 Final-sharin (TDI) Dy werds DB Jack VALUETA TADL 2008 NG2 Intrustant Intrustant Templay (TDI) Dy werds Intrustant VALUETA TADL 2008 NG3 Intrustant SA2620 2008 Intrustant Decknh (DDI) Dy werds Intrustant VALUETA TADL 2008 NG3 Intrustant SA2640 2008 Intrustant Decknh (DDI) Dy werds Intrustant VALUETA TADL 2008 NG3 Intrustant SA2640 2008 Intrustant Decknh (DDI) Dy werds Intrustant VALUETA TADL 2008 NG3 Intrustant NG3 NG3 Intrustant Decknh (DDI) Dy werds Intrustant NG3 Intrustant NG3 Intrustant NG3 NG												J
NMST DDL 200MST<												U
MAUST NDL 2004M9.5M9.5M1.71 2003M2.82649M2.00MM0.60 (m)(M)My settyM.510 (m)MV3T NDL 2004M9.61M9.61M1.71 2003M2.640 (m)M2.640 (m)												+
NACHT NUC. 208NBBHBBHT 1300S2 2046208Monolight NUT NUC. 208Monolight NUT NU												-
NAMESMARCE <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>J</td></th<>												J
NAUGE 2008 NBB International state Name International state Name International state NAUSTA TMD, 2008 NBB International state Name												U
NAME NAME No. No. </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>()</td> <td></td> <td></td> <td></td>									()			
NAUSTA TMDL 2006 NS9 Image: Second S												-
NAVST NDL 2008 NSD NSD NSD NSD NSD Big NDL 2008 NSD												1
NAXS TADE. 2016 NSB I I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII												- U
VPC Grang DotA Newl Sation NPCEs Permi UD-Sprint												
PWC Graing Dock Meal Silons NPEIS Parmet6VD-6301 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Grab</td> <td>,</td> <td>. ,</td> <td></td> <td></td> <td>-</td>							Grab	,	. ,			-
PMC Grang Dook Marel Station NPDES Permit Ox9-630 117.7260 32.67.37 1993-2009 Gala Trapping T(T) Dy weight 22.4 [jp/s] PMC Grang Dook Marel Station NPDES Permit GV-536 117.71248 32.67.371 1993-2009 Gala Trapping T(T) Dy weight 23.6 [jg/s] PMC Grang Dook Marel Station NPDES Permit GV-536 117.71248 32.67.77 193.5009 Gala Trapping T(T) Dy weight 35.8 [jg/s] Styped Selement Stat 2241 S0128 117.71248 32.67.07 12.5 ep.42 1 Modu/ant MSt Dy weight 36.6 [jg/s] Styped Selement Stat 2241 S0128 117.7346 32.67.07 12.5 ep.42 1 Modu/ant MSt Dy weight 36.6 [jg/s] Styped Selement Stat 2244 S00128 117.7312 32.68.07 12.5 ep.42 1 Modu/ant MSt Dy weight 36.6 [jg/s] Styped Selement Stat 2244 S00128 117.7318 32.68.07 12.5 ep.42 1 Modu/ant MSt Dy weight 16.6 [jg/s] <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>												
PWC Grang Dack Hard Staton NPDES Permit OVS 504 -117.1486 32.6729 1993-200 Orab Thoughin (TBT) Dy weight 327.1970 PWC Grang Dack Hard Staton NPDES Permit STD-GVD-S01 -117.1426 32.6777 1993-200 Grab Thoughin (TBT) Dy weight 325.1914 Stryund Schmer Sas 241 SD128 -117.1426 32.6777 12.8940 Grab Thoughin (TBT) Dy weight 325.1914 Stryund Schmer Sas 241 SD128 -117.1346 32.6707 12.8940 Mandoughin Main Dy weight 32.1914 Stryund Schmer Sas 244 SD128 -117.1346 32.6707 12.8940 Mandoughin Main Dy weight 31.9940 Stryund Schmer Sas 244 SD128 -117.1348 32.6077 12.8940 Mandoughin Main Dy weight 16.1949. Stryund Schmer Sas 244 SD128 -117.1348 32.6077 12.8940 Mandoughin (TBT) Dy weight 16.1949. Stryund Schmer Sas 244 SD128 -117.1348 32.6077 <td></td>												
PWC Grawg Dack Meral Staton MPDES Permit GVD-S08 International Control Draw of the Control Throughin (TBT) Dy weight 25.6 p3/2 Sheyard Satinmer Sta 2241 SD128 -117.1246 32.6 7027 12.8 sp-02 Control Throughin (TBT) Dy weight 65.6 p3/8 Sheyard Satinmer Sta 2241 SD128 -117.1246 32.6 7027 12.8 sp-02 Monochynin (MBT) Dy weight 32.6 p3/2 Sheyard Satinmer Sta 2241 SD128 -117.1346 32.6 7027 12.8 sp-02 Monochynin (MBT) Dy weight 32.6 p3/2 Sheyard Satinmer Sta 2244 SD128 -117.1348 32.6 7027 12.8 sp-02 Monochynin (MBT) Dy weight 16.6 p3/2 Sheyard Satinmer Sta 2244 SD128 -117.1342 32.6 677 12.8 sp-02 Monochynin (MBT) Dy weight 16.6 p3/2 Sheyard Satinmer Sta 2244 SD128 -117.1342 32.6 657 12.8 sp-02 Monochynin (MBT) Dy weight 16.6 p3/2 Sheyard Satinmer Sta 2245 SD127 -117.1430						1						+
PNC Grang Dack Neurol Steon NPDES Permit STD -QVD-S01 Out 1171 7282 32.6 7777 178-8-00 One Totuyinn (TR) Dy weight 33.8 jpg/3 Shygad Soliment Sile 241 SD028 1171 1364 32.6 7077 12.8-9-02 Monobackylin (MBT) Dy weight 32.9 jpg/3 Shygad Soliment Sile 241 SD028 1171 1364 32.6 for 77 12.8-9-02 Totabulyin (TR) Dy weight 13.9 jpg/3 Shygad Soliment Sile 241 SD028 1171 1364 32.6 for 77 12.8-9-02 Monobackylin (MBT) Dy weight 15. jpg/3 Shygad Soliment Sile 244 SD026 1171 1312 32.6 6977 12.8-9-02 Monobackylin (MBT) Dy weight 16. jpg/3 Shygad Soliment Sile 244 SD026 1171 1312 32.6 6977 12.8-9-02 Monobackylin (MBT) Dy weight 14.1 jpg/3 Shygad Soliment Sile 256 SD077 1171 1403 32.6 8987 12.8-9-02 Monobackylin (MBT) Dy weight 14.1 jpg/3												
Shyard Semant Sin 241 S0128 -117.1344 32.67.02 12.58p-02 Monbuly MSID Dy weight 56.1pr Shyard Semant Sin 241 S0128 -117.13444 32.67.02 12.58p-02 Monbuly MSID Dy weight 14.1pr Jack Jack<												
Shypad Safemart Sine 2241 SD128 -117.3848 32.6.702 12.8.9.02 Image Monte Sine Monobuytin (HTS) Dy weight 3.1.6.903 Shypad Safemart Sine 244 SD128 -117.3848 32.6.702 12.8.9-02 Image Monte Sine Dbuytin (HTS) Dy weight 1.8.9.92 Shypad Safemart Sine 244 SD128 -117.3182 32.6.507 12.8.9-02 Image Monte Sine Dbuytin (HTS) Dy weight 1.6.9.942 Shypad Safemart Sine 244 SD128 -117.13182 32.65972 12.8.9-02 Image Monte Sine Dbuytin (HTS) Dy weight 1.6.9.942 Shypad Safemart Sine 226 SD107 -117.1402 32.6588 08.9-02 Image Monte Sine Dbuytin (HTS) Dy weight 3.1.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.							Giab					+
Shyapat Sadiment Sile 2241 500128 117.13484 22.87.02 12.58-02 17.13484 22.87.02 12.58-02 17.13484 22.87.02 15.89-02 17.13484 22.85.02 17.13484 22.85.02 17.13484 22.85.02 17.13482 22.85.02 15.89-02 15.99-02 15.99-02 15.99-02	17								. ,			
Shyang Sadiment Site 2241 SD0128 117.1342 22.859/2 12.89-02 Dbuckyin (DF1) Dy, wight 13.91p20 Shyang Sadiment Site 22.44 SD0128 117.1312 22.859/2 12.89-02 Dbuckyin (DF1) Dy, wight 16.81p30 Shyang Sadiment Site 22.44 SD0128 117.1312 22.859/2 12.89-02 Dbuckyin (DF1) Dy, wight 16.81p30 Shyang Sadiment Site 22.44 SD0128 117.11312 22.859/2 12.89-02 Dbuckyin (DF1) Dy, wight 16.91p30 Shyang Sadiment Site 22.65 SD0107 117.11403 22.8588 09.89-02 Dbuckyin (DF1) Dy, wight 11.91p30 Shyang Sadiment Site 22.65 SD0107 117.11403 22.8588 09.89-02 Dbuckyin (DF1) Dy, wight 11.91p30 Shyang Sadiment Site Mo1 SD0030 117.114275 22.8684 11.49.01 Dbuckyin (DF1) Dy wight 12.11p30 Shyang Sadiment Site Mo1 SD0030 117.14275 22.8684 11.49.01												
Shyard Sedment Site 244 SD0128 117.13162 2.2.56972 1.5.8.p-02 Amodbulyin (DET) Dy weght 1.5.1920 Shyard Sedment Site 244 SD0128 117.13162 2.2.56972 1.5.8.p-02 Amodbulyin (MT) Dy weght 1.5.1920 Shyard Sedment Site 244 SD0128 117.13162 2.2.56972 1.5.8.p-02 Amodbulyin (MT) Dy weght 1.5.1920 Shyard Sedment Site 2.265 SD0107 117.14030 2.2.8388 0.9.8.p-02 Amodbulyin (MT) Dy weght 1.4.1.9.p10 Shyard Sedment Site 2.265 SD1017 117.14030 2.2.8888 0.9.8.p-02 Amodbulyin (MT) Dy weght 1.7.1.9.p30 Shyard Sedment Site No1 SD0030 117.1.4275 2.2.8884 11.4.9.p1 Amodbulyin (MT) Dy weght 2.21.9.p30 Shyard Sedment Site No1 SD0030 117.1.4275 2.2.8884 11.4.9.p1 Amodbulyin (MT) Dy weght 2.21.9.p30 Shyard Sedment Site No1 SD0030 117.4.275 2.2.88843 <th1< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th1<>												
Singand Sediment Site 2244 SD0126 -117.1312 32.65972 12.58p-02 Monobunytin (MET) Dy weight 15.6 µp/s0 Sinyand Sediment Site 2244 SD0126 -117.1312 32.65972 12.58p-02 Tritubytin (TET) Dy weight 2.6 µp/s0 Sinyand Sediment Site 2265 SD0107 -117.1403 32.8388 00-58p-02 Dburytin (TET) Dy weight 3.5 µp/s0 Sinyand Sediment Site 2265 SD0107 -117.1403 32.8388 00-58p-02 Monobunytin (MET) Dy weight 3.5 µp/s0 Sinyand Sediment Site SD0107 -117.1403 32.8388 00-58p-02 Tritubytin (TET) Dy weight 11.19/p01 Sinyand Sediment Site No11 SD0030 -117.14275 32.88840 11-Asg/01 Dburytin (TET) Dy weight 7.2 µp/s0 Sinyand Sediment Site No11 SD0030 -117.14275 32.88840 11-Asg/01 Monobunytin (MET) Dy weight 7.2 µp/s0 Sinyand Sediment Site No16 SD0136 -117.14275 32.88840 11-								,	()			<u> </u>
Shypard Sediment Site 2244 SD0126 -117.1318 23.69572 12.58p-02 - - Tetrahynim (TTE) Dy weight 15.6 µp/30 Shypard Sediment Site 2265 SD0107 -117.14030 32.69582 - Dbuytin (DE1) Dy weight 14.6 µp/30 Shypard Sediment Site 2265 SD0107 -117.14030 32.69888 OP Sep-02 - Monobuytin (ME1) Dy weight 15.6 µp/30 Shypard Sediment Site 2265 SD0107 -117.14030 32.69888 OP Sep-02 - Tetrahynin (TE1) Dy weight 17.1 µp/30 Shypard Sediment Site N401 SD0030 -117.14276 32.69843 11.4.0p/01 Dbuytin (DE1) Dy weight 2210 µp/30 Shypard Sediment Site N401 SD0030 -117.14276 32.69843 11.4.0p/01 Tetrahynin (TE1) Dy weight 72.1 µp/30 Shypard Sediment Site N401 SD038 -117.14276 32.69843 11.4.0p/01 Tetrahynin (TE1) Dy weight 72.1 µp/30 Shypard Sediment Site N40												J
Shipard Sediment Sile 244 S012 -117.1382 32.68972 12.86972 I I Thoughtin (TB) Dy weight 32.69973 Shipard Sediment Sile 266 S0107 -117.1403 32.6888 09.869-02 International Construction (DB) Dy weight 35.19943 Shipard Sediment Sile 266 S0107 -117.1403 32.6888 09.869-02 International Construction (DB) Dy weight 117.19943 Shipard Sediment Sile 266 S0107 -117.1403 32.68888 09.869-02 International Construction (DB) Dy weight 117.19943 Shipard Sediment Sile N401 S0030 -117.14276 32.68843 11-Aug01 Dubuly (DB) Dy weight 220.19943 Shipard Sediment Sile N401 S0030 -117.14276 32.68843 11-Aug01 Dubuly (DB) Dy weight 220.19943 Shipard Sediment Sile N401 S0038 -117.14276 32.68843 11-Aug01 Dubuly (DB) Dy weight 22.19943 Shipard Sediment Sile N401 S0038												UJ
Singard Seliment Site 2265 SD1017 -117.14030 32.8388 00-Sep-02 Monthlytin (NBT) Dy weight 14.1 ps/ps Singard Seliment Site 2265 SD1017 -117.14030 32.68388 00-Sep-02 Monthlytin (NBT) Dy weight 117.194/kg Singard Seliment Site 2265 SD1017 -117.14030 32.68388 00-Sep-02 Monthlytin (NBT) Dy weight 117.194/kg Singard Seliment Site 2265 SD1017 -117.14275 32.68388 00-Sep-02 Dishuytin (NBT) Dy weight 11.194/kg Singard Seliment Site NA01 SD0030 -117.14275 32.6848.1 11.Aug01 Dishuytin (NBT) Dy weight 22.194/kg Singard Seliment Site NA01 SD0030 -117.14275 32.6848.1 11.Aug01 Tetrabuytin (NBT) Dy weight 22.194/kg Singard Seliment Site NA01 SD0136 -117.14275 32.6843 14.Asg-02 Dishuytin (NBT) Dy weight 22.194/kg Singard Seliment Site NA01 SD0136 -117.14275												<u> </u>
Singard Sediment Site 2265 S0107 -117.14030 32.8388 09-Sep-02 Monoburght (MET) Dyweight 3.5 Dyg/dt Singard Sediment Site 2265 S0107 -117.14030 32.68388 09-Sep-02 Thibuythin (TBT) Dy weight 11 Jug/dt Singard Sediment Site 2265 S0107 -117.14030 32.68388 09-Sep-02 Thibuythin (TBT) Dy weight 11 Jug/dt Singard Sediment Site NA01 S00030 -117.14275 32.68484 11-Aug-01 Monoburghtin (NBT) Dy weight 221 Jug/dt Singard Sediment Site NA01 S00030 -117.14275 32.68484 11-Aug-01 Thibuythin (TBT) Dy weight 221 Jug/dt Singard Sediment Site NA01 S00030 -117.14275 32.68484 11-Aug-01 Thibuythin (TBT) Dy weight 221 Jug/dt Singard Sediment Site NA01 S00136 -117.14275 32.68484 14-Sep-02 Thibuythin (TBT) Dy weight 221 Jug/dt 35	17							,	. ,			J
Shipyard Sediment Sile 2265 SD0107 -117.14030 22.6838 09-Sep-02 Image: Constraint of the constraint of												
Singrad Sadiment Site 2265 SD0107 -117.14020 32.68388 00-58-p-02 O Thbuytin (TBT) Dy weight 11 19/p3 Shipard Sadiment Site NA01 SD0030 -117.14275 32.68493 11-Aug-01 Monobulytin (NBT) Dy weight 221 p/p3 Shipard Sadiment Site NA01 SD0030 -117.14275 32.68494 11-Aug-01 Monobulytin (NBT) Dy weight 7.21 p/p3 Shipard Sadiment Site NA01 SD0030 -117.14275 32.68494 11-Aug-01 Tetabuytin (TBT) Dy weight 7.21 p/p3 Shipard Sadiment Site NA01 SD0136 -117.14275 32.68494 14-Sep-02 Monobulytin (NBT) Dy weight 40.9 p/p3 Sinyard Sadiment Site NA01 SD0136 -117.14275 32.68494 14-Sep-02 Tetabuytin (TBT) Dy weight 4.9 p/p3 Sinyard Sadiment Site NA01 SD0136 -117.14276 32.68494 14-Sep-02 Tetabuytin (TBT) Dy weight 4.9 p/p3 Shipard Sadiment Site												
Shipyard Sediment Site NA01 SD0030 117.14275 32.88943 11-Aug-01 Dburytin (DBT) Dry weight 22.10 g/kg Shipyard Sediment Site NA01 SD0030 -117.14275 32.88943 11-Aug-01 Tratuoytin (TBT) Dry weight 2.28 g/kg Shipyard Sediment Site NA01 SD0030 -117.14275 32.88943 11-Aug-01 Tratuoytin (TBT) Dry weight 7.2 l.g/kg Shipyard Sediment Site NA01 SD0136 -117.14275 32.88943 11-Aug-01 Diotytin (DBT) Dry weight 2.10 l.g/kg Shipyard Sediment Site NA01 SD0136 -117.14275 32.88943 14-Sep-02 Diotytin (DBT) Dry weight 2.20 l.g/kg Shipyard Sediment Site NA01 SD0136 -117.14275 32.88943 14-Sep-02 Tratuoytin (TBT) Dry weight 4.9 l.g/kg Shipyard Sediment Site NA01 SD0136 -117.14276 32.88943 14-Sep-02 Tratuoytin (TBT) Dry weight 4.9 l.g/kg Shipyard Sediment Site NA02 SD0033 -117.14274<												<u> </u>
Shipyard Sediment Site NA01 SD000 117.14275 32.88943 11-Aug-01 Mond bytin (MBT) Dry weight 22 µg/kg Shipyard Sediment Site NA01 SD0000 -117.14275 32.68943 11-Aug-01 Tetrabutylin (TTBT) Dry weight 72 µg/kg Shipyard Sediment Site NA01 SD0030 -117.14275 32.68943 11-Aug-01 Dibutylin (DBT) Dry weight 72 µg/kg Shipyard Sediment Site NA01 SD0136 -117.14275 32.68943 14-Sep-02 Monobutylin (DBT) Dry weight 400 µg/kg Shipyard Sediment Site NA01 SD0136 -117.14275 32.68943 14-Sep-02 Monobutylin (DBT) Dry weight 46 µg/kg Shipyard Sediment Site NA01 SD0136 -117.14275 32.68943 14-Sep-02 Dibutylin (TBT) Dry weight 48 µg/kg Shipyard Sediment Site NA02 SD0033 -117.14274 32.68943 14-Sep-02 Dibutylin (TBT) Dry weight 38 µg/kg Shipyard Sediment Site NA02 SD0033 -117.14274												J
Shipyard Sediment Site NA01 S00030 -117.14275 32.68943 11.Aug-01 Tetrabulytin (TBT) Dy weight 7.2 Jp/s Shipyard Sediment Site NA01 SD0030 -117.14275 32.68943 11.Aug-01 Dubuytin (TBT) Dy weight 2010 Jp/s 2010 Dip/s Dip/s Dip/s 2010 Jp/s 2010 </td <td></td> <td></td> <td></td> <td></td> <td>Ū.</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>'</td>					Ū.							'
Shipyard Sediment Site NA01 SD0030 -117.14275 32.68943 11-Aug-01 Tribuythin (TBT) Dry weight 210 µg/kg Shipyard Sediment Site NA01 SD0136 -117.14275 32.68943 14-Sep-02 Monobuythin (MBT) Dry weight 221 µg/kg Shipyard Sediment Site NA01 SD0136 -117.14275 32.68943 14-Sep-02 Monobuythin (MBT) Dry weight 422 µg/kg Shipyard Sediment Site NA01 SD0136 -117.14276 32.68943 14-Sep-02 Tribuythin (TBT) Dry weight 4.6 µg/kg Shipyard Sediment Site NA01 SD0138 -117.14274 32.68960 11-Aug-01 Dibuytlin (DBT) Dry weight 94 µg/kg Shipyard Sediment Site NA02 SD0033 -117.14274 32.68960 11-Aug-01 Monobuytin (MBT) Dry weight 2.8 µg/kg Shipyard Sediment Site NA02 SD0033 -117.14274 32.68960 11-Aug-01 Monobuytin (MBT) Dry weight 2.8 µg/kg Shipyard Sediment Site NA03 SD0032 -117.14274 </td <td></td> <td>J</td>												J
Shipyard Sediment Site NA01 SD0136 -117.14275 32.68943 14-Sep-02 Dibutytin (DBT) Dry weight 100 µg/kg Shipyard Sediment Site NA01 SD0136 -117.14275 32.68943 14-Sep-02 Monobutytin (NBT) Dry weight 42. µg/kg Shipyard Sediment Site NA01 SD0136 -117.14275 32.68943 14-Sep-02 Tributytin (TBT) Dry weight 49. µg/kg Shipyard Sediment Site NA01 SD0136 -117.14274 32.68943 14-Sep-02 Tributytin (DBT) Dry weight 99 µg/kg Shipyard Sediment Site NA02 SD0033 -117.14274 32.68860 11-Aug-01 Monobutytin (MBT) Dry weight 98 µg/kg Shipyard Sediment Site NA02 SD0033 -117.14274 32.68860 11-Aug-01 Monobutytin (TBT) Dry weight 2.9 µg/kg Shipyard Sediment Site NA03 SD0032 -117.14274 32.68860 11-Aug-01 Dibutytin (DBT) Dry weight 2.9 µg/kg Shipyard Sediment Site NA03 SD0032												'
Shipyard Sediment Site NA01 SD0136 -117.14275 32.88943 14-Sep-02 Monobutylin (MBT) Dry weight 42.9 µg/kg Shipyard Sediment Site NA01 SD0136 -117.14275 32.68943 14-Sep-02 Tributylin (TBT) Dry weight 46.9 µg/kg Shipyard Sediment Site NA01 SD0136 -117.14276 32.68943 14-Sep-02 Tributylin (TBT) Dry weight 49.9 µg/kg Shipyard Sediment Site NA02 SD0033 -117.14274 32.68860 11-Aug-01 Dibutylin (DBT) Dry weight 39. µg/kg Shipyard Sediment Site NA02 SD0033 -117.14274 32.68860 11-Aug-01 Tetrabutylin (TBT) Dry weight 2.9 µg/kg Shipyard Sediment Site NA02 SD0033 -117.14274 32.68860 11-Aug-01 Tetrabutylin (TBT) Dry weight 2.9 µg/kg Shipyard Sediment Site NA03 SD0032 -117.14274 32.68880 11-Aug-01 Tetrabutylin (TBT) Dry weight 2.9 µg/kg Shipyard Sediment Site NA03 SD0032 -11	17							,	()			'
Shipyard Sediment Site NA01 SD0136 -117.14275 32.68943 14-Sep-02 Tetrabutylin (TTBT) Dry weight 4.6 µg/kg Shipyard Sediment Site NA01 SD0136 -117.14275 32.68943 14-Sep-02 Thoutyltin (TBT) Dry weight 99 µg/kg Shipyard Sediment Site NA02 SD0033 -117.14274 32.68960 11-Aug-01 Dbutyltin (DBT) Dry weight 98 µg/kg Shipyard Sediment Site NA02 SD0033 -117.14274 32.68860 11-Aug-01 Tetrabutyltin (TBT) Dry weight 38 µg/kg Shipyard Sediment Site NA02 SD0033 -117.14274 32.68860 11-Aug-01 Tetrabutyltin (TBT) Dry weight 29 µg/kg Shipyard Sediment Site NA02 SD0033 -117.14274 32.68932 11-Aug-01 Tetrabutyltin (TBT) Dry weight 29 µg/kg Shipyard Sediment Site NA03 SD0032 -117.14187 32.68932 11-Aug-01 Monobutyltin (NBT) Dry weight 32 µg/kg Shipyard Sediment Site NA03 SD0032 -117.												<u> </u>
Shipyard Sediment Site NA01 SD0136 -117.14275 32.68943 14-Sep-02 Tributyltin (TBT) Dry weight 99 µg/kg Shipyard Sediment Site NA02 SD0033 -117.14274 32.68860 11-Aug-01 Dibutyltin (DBT) Dry weight 94 µg/kg Shipyard Sediment Site NA02 SD0033 -117.14274 32.68860 11-Aug-01 Monobutyltin (MBT) Dry weight 2.9 µg/kg Shipyard Sediment Site NA02 SD0033 -117.14274 32.68860 11-Aug-01 Tetrabutyltin (TBT) Dry weight 2.9 µg/kg Shipyard Sediment Site NA02 SD0033 -117.14274 32.68802 11-Aug-01 Tetrabutyltin (TBT) Dry weight 2.9 µg/kg Shipyard Sediment Site NA03 SD0032 -117.14187 32.68932 11-Aug-01 Monobutyltin (MBT) Dry weight 32 µg/kg Shipyard Sediment Site NA03 SD0032 -117.14187 32.68932 11-Aug-01 Monobutyltin (MBT) Dry weight 51 µg/kg Shipyard Sediment Site NA04 SD0035 -11								,	. ,			J
Shipyard Sediment Site NA02 SD033 117.14274 32.68860 11-Aug-01 Dibutytin (DBT) Dry weight 94 µg/kg Shipyard Sediment Site NA02 SD0033 -117.14274 32.68860 11-Aug-01 Monobutytin (MBT) Dry weight 38 µg/kg Shipyard Sediment Site NA02 SD0033 -117.14274 32.68860 11-Aug-01 Tributytin (TBT) Dry weight 38 µg/kg Shipyard Sediment Site NA02 SD0033 -117.14274 32.68860 11-Aug-01 Tributytin (TBT) Dry weight 28 µg/kg Shipyard Sediment Site NA03 SD0032 -117.14187 32.68932 11-Aug-01 Dibutytin (DBT) Dry weight 20 µg/kg Shipyard Sediment Site NA03 SD0032 -117.14187 32.68932 11-Aug-01 Tetrabutytin (TBT) Dry weight 30 µg/kg Shipyard Sediment Site NA03 SD0032 -117.14187 32.68932 11-Aug-01 Tetrabutytin (TBT) Dry weight 10 µg/kg Shipyard Sediment Site NA04 SD0035 -117.14038												J
Shipyard Sediment Site NA02 SD033 -117.14274 32.68860 11-Aug-01 Monobutyltin (MBT) Dry weight 38 g/kg Shipyard Sediment Site NA02 SD0033 -117.14274 32.68860 11-Aug-01 Tetabutyltin (TBT) Dry weight 2.8 g/kg Shipyard Sediment Site NA02 SD0033 -117.14274 32.68860 11-Aug-01 Tetabutytin (TBT) Dry weight 2.8 g/kg Shipyard Sediment Site NA03 SD0032 -117.14187 32.68932 11-Aug-01 Dibutytin (DBT) Dry weight 2.8 g/kg Shipyard Sediment Site NA03 SD0032 -117.14187 32.68932 11-Aug-01 Monobutytin (MBT) Dry weight 32 g/kg Shipyard Sediment Site NA03 SD0032 -117.14187 32.68932 11-Aug-01 Monobutytin (MBT) Dry weight 32 g/kg Shipyard Sediment Site NA03 SD0032 -117.14187 32.68932 11-Aug-01 Tetabutytin (TBT) Dry weight 58 g/kg Shipyard Sediment Site NA04 SD0035 -117.14038								,	()			J
Shipyard Sediment Site NA02 SD033 -117.14274 32.68860 11-Aug-01 Tetrabulytin (TTBT) Dry weight 2.9 µg/kg Shipyard Sediment Site NA02 SD0033 -117.14274 32.68860 11-Aug-01 Tribulytin (TTBT) Dry weight 82.µg/kg Shipyard Sediment Site NA03 SD0032 -117.14187 32.68932 11-Aug-01 Dibulytin (DBT) Dry weight 32.µg/kg Shipyard Sediment Site NA03 SD0032 -117.14187 32.68932 11-Aug-01 Monobutytin (MBT) Dry weight 32.µg/kg Shipyard Sediment Site NA03 SD0032 -117.14187 32.68932 11-Aug-01 Tetrabutytin (TTBT) Dry weight 51.µg/kg Shipyard Sediment Site NA03 SD0032 -117.14187 32.68932 11-Aug-01 Dibutytin (TBT) Dry weight 51.µg/kg Shipyard Sediment Site NA04 SD0035 -117.14187 32.68923 11-Aug-01 Dibutytin (DBT) Dry weight 130 µg/kg Shipyard Sediment Site NA04 SD0035 -117.14038 <td></td> <td>!</td>												!
Shipyard Sediment Site NA02 SD033 -117.14274 32.68860 11-Aug-01 Tributytin (TBT) Dry weight 82 µg/kg Shipyard Sediment Site NA03 SD032 -117.14187 32.6889.2 11-Aug-01 Dibutytin (DBT) Dry weight 200 µg/kg Shipyard Sediment Site NA03 SD032 -117.14187 32.6893.2 11-Aug-01 Monobutytin (MBT) Dry weight 32 µg/kg Shipyard Sediment Site NA03 SD032 -117.14187 32.6893.2 11-Aug-01 Tetrabutytin (TBT) Dry weight 32 µg/kg Shipyard Sediment Site NA03 SD032 -117.14187 32.6893.2 11-Aug-01 Tributytin (TBT) Dry weight 32 µg/kg Shipyard Sediment Site NA04 SD035 -117.14187 32.6892.3 11-Aug-01 Dibutytin (DBT) Dry weight 130 µg/kg Shipyard Sediment Site NA04 SD035 -117.14038 32.6892.3 11-Aug-01 Monobutytin (MBT) Dry weight 59 µg/kg Shipyard Sediment Site NA04 SD035 -117.14038												<u> </u>
Shipyard Sediment Site NA03 SD032 -117.14187 32.68932 11-Aug-01 Dibutyltin (DBT) Dry weight 200 µg/kg Shipyard Sediment Site NA03 SD032 -117.14187 32.68932 11-Aug-01 Monobutyltin (MBT) Dry weight 32 µg/kg Shipyard Sediment Site NA03 SD032 -117.14187 32.68932 11-Aug-01 Tetrabutyltin (TBT) Dry weight 32 µg/kg Shipyard Sediment Site NA03 SD032 -117.14187 32.68932 11-Aug-01 Tributyltin (TBT) Dry weight 38 µg/kg Shipyard Sediment Site NA04 SD035 -117.14187 32.68923 11-Aug-01 Dibutyltin (DBT) Dry weight 130 µg/kg Shipyard Sediment Site NA04 SD035 -117.14038 32.68923 11-Aug-01 Monobutyltin (MBT) Dry weight 2.09 µg/kg Shipyard Sediment Site NA04 SD035 -117.14038 32.68923 11-Aug-01 Monobutyltin (MBT) Dry weight 2.09 µg/kg Shipyard Sediment Site NA04 SD035 -117.14038<												U
Shipyard Sediment Site NA03 SD0032 -117.14187 32.68932 11-Aug-01 Monobutyltin (MBT) Dry weight 32 µg/kg Shipyard Sediment Site NA03 SD0032 -117.14187 32.68932 11-Aug-01 Tetabutyltin (TBT) Dry weight 5 µg/kg Shipyard Sediment Site NA03 SD0032 -117.14187 32.68932 11-Aug-01 Tetabutyltin (TBT) Dry weight 5 µg/kg Shipyard Sediment Site NA04 SD0035 -117.14038 32.68923 11-Aug-01 Dibutyltin (DBT) Dry weight 180 µg/kg Shipyard Sediment Site NA04 SD0035 -117.14038 32.68923 11-Aug-01 Monobutyltin (DBT) Dry weight 2.09 µg/kg Shipyard Sediment Site NA04 SD0035 -117.14038 32.68923 11-Aug-01 Monobutyltin (MBT) Dry weight 2.09 µg/kg Shipyard Sediment Site NA04 SD0035 -117.14038 32.68923 11-Aug-01 Tetrabutyltin (TBT) Dry weight 3.09 µg/kg Shipyard Sediment Site NA04 SD0035 -								,	()			!
Shipyard Sediment Site NA03 SD032 -117.14187 32.68932 11-Aug-01 Tetrabutyltin (TTBT) Dry weight 5 µg/kg Shipyard Sediment Site NA03 SD032 -117.14187 32.68932 11-Aug-01 Tributyltin (TTBT) Dry weight 180 µg/kg Shipyard Sediment Site NA04 SD035 -117.14038 32.68923 11-Aug-01 Dibutyltin (DBT) Dry weight 180 µg/kg Shipyard Sediment Site NA04 SD035 -117.14038 32.68923 11-Aug-01 Monobutyltin (MBT) Dry weight 130 µg/kg Shipyard Sediment Site NA04 SD035 -117.14038 32.68923 11-Aug-01 Tetrabutyltin (TBT) Dry weight 5.9 µg/kg Shipyard Sediment Site NA04 SD035 -117.14038 32.68923 11-Aug-01 Tetrabutyltin (TBT) Dry weight 5.9 µg/kg Shipyard Sediment Site NA04 SD035 -117.14038 32.68923 11-Aug-01 Tetrabutyltin (TBT) Dry weight 5.9 µg/kg Shipyard Sediment Site NA04 SD035 -117.												!
Shipyard Sediment Site NA03 SD032 -117.14187 32.68932 11-Aug-01 Tributyltin (TBT) Dry weight 180 µg/kg Shipyard Sediment Site NA04 SD035 -117.14038 32.68923 11-Aug-01 Dibutyltin (DBT) Dry weight 130 µg/kg Shipyard Sediment Site NA04 SD035 -117.14038 32.68923 11-Aug-01 Monobutyltin (DBT) Dry weight 130 µg/kg Shipyard Sediment Site NA04 SD035 -117.14038 32.68923 11-Aug-01 Monobutyltin (MBT) Dry weight 5.9 µg/kg Shipyard Sediment Site NA04 SD035 -117.14038 32.68923 11-Aug-01 Tributyltin (TBT) Dry weight 5.9 µg/kg Shipyard Sediment Site NA04 SD035 -117.14038 32.68923 11-Aug-01 Tributyltin (TBT) Dry weight 5.9 µg/kg Shipyard Sediment Site NA04 SD035 -117.14038 32.68923 11-Aug-01 Tributyltin (TBT) Dry weight 300 µg/kg Shipyard Sediment Site NA05 SD034 -117.14071 </td <td></td> <td><u> </u></td>												<u> </u>
Shipyard Sediment Site NA04 SD035 -117.14038 32.68923 11-Aug-01 Dibutyltin (DBT) Dry weight 130 µg/kg Shipyard Sediment Site NA04 SD035 -117.14038 32.68923 11-Aug-01 Monobutyltin (MBT) Dry weight 130 µg/kg Shipyard Sediment Site NA04 SD035 -117.14038 32.68923 11-Aug-01 Monobutyltin (MBT) Dry weight 250 µg/kg Shipyard Sediment Site NA04 SD0035 -117.14038 32.68923 11-Aug-01 Tributyltin (TBT) Dry weight 300 µg/kg Shipyard Sediment Site NA04 SD0035 -117.14038 32.68923 11-Aug-01 Tributyltin (TBT) Dry weight 300 µg/kg Shipyard Sediment Site NA05 SD0044 -117.14071 32.68853 13-Aug-01 Dibutyltin (DBT) Dry weight 110 µg/kg Shipyard Sediment Site NA05 SD0044 -117.14071 32.68853 13-Aug-01 Monobutyltin (MBT) Dry weight 12 µg/kg Shipyard Sediment Site NA05 SD0044 -117.140												!
Shipyard Sediment Site NA04 SD0035 -117.14038 32.68923 11-Aug-01 Monobutyltin (MBT) Dry weight 20 µg/kg Shipyard Sediment Site NA04 SD0035 -117.14038 32.68923 11-Aug-01 Tetrabutyltin (TBT) Dry weight 5.9 µg/kg Shipyard Sediment Site NA04 SD0035 -117.14038 32.68923 11-Aug-01 Tetrabutyltin (TBT) Dry weight 5.9 µg/kg Shipyard Sediment Site NA04 SD0035 -117.14038 32.68923 11-Aug-01 Tributyltin (TBT) Dry weight 300 µg/kg Shipyard Sediment Site NA05 SD0044 -117.14071 32.68853 13-Aug-01 Dibutyltin (DBT) Dry weight 110 µg/kg Shipyard Sediment Site NA05 SD0044 -117.14071 32.68853 13-Aug-01 Monobutyltin (MBT) Dry weight 2.4 µg/kg Shipyard Sediment Site NA05 SD0044 -117.14071 32.68853 13-Aug-01 Tetrabutyltin (TBT) Dry weight 2.4 µg/kg Shipyard Sediment Site NA05 SD0044 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>'</td></td<>												'
Shipyard Sediment Site NA04 SD035 -117.14038 32.68923 11-Aug-01 Tetrabutyltin (TTBT) Dry weight 5.9 µg/kg Shipyard Sediment Site NA04 SD035 -117.14038 32.68923 11-Aug-01 Tetrabutyltin (TTBT) Dry weight 5.9 µg/kg Shipyard Sediment Site NA05 SD0044 -117.14071 32.68923 11-Aug-01 Dibutyltin (DBT) Dry weight 300 µg/kg Shipyard Sediment Site NA05 SD0044 -117.14071 32.68853 13-Aug-01 Dibutyltin (DBT) Dry weight 110 µg/kg Shipyard Sediment Site NA05 SD0044 -117.14071 32.68853 13-Aug-01 Dibutyltin (TTBT) Dry weight 14 µg/kg Shipyard Sediment Site NA05 SD0044 -117.14071 32.68853 13-Aug-01 Tetrabutyltin (TTBT) Dry weight 24 µg/kg Shipyard Sediment Site NA05 SD0044 -117.14071 32.68853 13-Aug-01 Tetrabutyltin (TTBT) Dry weight 24 µg/kg Shipyard Sediment Site NA05 SD044 -												
Shipyard Sediment Site NA04 SD035 -117.14038 32.68923 11-Aug-01 Tributytin (TBT) Dry weight 300 µg/kg Shipyard Sediment Site NA05 SD0044 -117.14071 32.68823 13-Aug-01 Dibutytin (DBT) Dry weight 110 µg/kg Shipyard Sediment Site NA05 SD0044 -117.14071 32.68853 13-Aug-01 Monoburytin (MBT) Dry weight 110 µg/kg Shipyard Sediment Site NA05 SD0044 -117.14071 32.68853 13-Aug-01 Monoburytin (MBT) Dry weight 14 µg/kg Shipyard Sediment Site NA05 SD0044 -117.14071 32.68853 13-Aug-01 Tributytin (TBT) Dry weight 14 µg/kg Shipyard Sediment Site NA05 SD0044 -117.14071 32.68853 13-Aug-01 Tributytin (TBT) Dry weight 14 µg/kg Shipyard Sediment Site NA05 SD0044 -117.14071 32.68853 13-Aug-01 Tributytin (TBT) Dry weight 110 µg/kg												!
Shipyard Sediment Site NA05 SD0044 -117.14071 32.68853 13-Aug-01 Dibutyltin (DBT) Dry weight 110 µg/kg Shipyard Sediment Site NA05 SD0044 -117.14071 32.68853 13-Aug-01 Monoburyltin (MBT) Dry weight 110 µg/kg Shipyard Sediment Site NA05 SD0044 -117.14071 32.68853 13-Aug-01 Monoburyltin (MBT) Dry weight 124 µg/kg Shipyard Sediment Site NA05 SD0044 -117.14071 32.68853 13-Aug-01 Tributyltin (TBT) Dry weight 124 µg/kg Shipyard Sediment Site NA05 SD0044 -117.14071 32.68853 13-Aug-01 Tributyltin (TBT) Dry weight 124 µg/kg												U
Shipyard Sediment Site NA05 SD0044 -117.14071 32.68853 13-Aug-01 Monobutyltin (MBT) Dry weight 18 µg/kg Shipyard Sediment Site NA05 SD0044 -117.14071 32.68853 13-Aug-01 Tetrabutyltin (TBT) Dry weight 2.4 µg/kg Shipyard Sediment Site NA05 SD0044 -117.14071 32.68853 13-Aug-01 Tetrabutyltin (TBT) Dry weight 2.4 µg/kg Shipyard Sediment Site NA05 SD0044 -117.14071 32.68853 13-Aug-01 Tributyltin (TBT) Dry weight 110 µg/kg					v					, v		<u> </u>
Shipyard Sediment Site NA05 SD0044 -117.14071 32.68853 13-Aug-01 Tetrabutyltin (TTBT) Dry weight 2.4 µg/kg Shipyard Sediment Site NA05 SD0044 -117.14071 32.68853 13-Aug-01 Tributyltin (TTBT) Dry weight 110 µg/kg						1						<u> </u>
Shipyard Sediment Site NA05 SD0044 -117.14071 32.68853 13-Aug-01 Tributyltin (TBT) Dry weight 110 µg/kg						1				Dry weight		<u> </u>
										Dry weight		U
					13-Aug-01							
	Shipyard Sediment Site	NA06	SD0020 -117.139	9 32.69003	09-Aug-01	L		Dibutyltin ((DBT)	Dry weight	97 µg/kg	
Shipyard Sediment Site NA06 SD0020 -117.13909 32.69003 09-Aug-01 Monobutyltin (MBT) Dry weight 23 µg/kg	Shipyard Sediment Site	NA06	SD0020 -117.139	9 32.69003	09-Aug-01			Monobutyl	tin (MBT)	Dry weight	23 µg/kg	

PROJECT NAME	SITE NAME	SAMPLE ID	X COORDINATE	Y COORDINATE	SAMPLE DATE SAMPLE MEDIUM TYPE	D	PARAMETER NAME	PROPERTY	QUANTITY	UNIT	QUALIFIER
Shipyard Sediment Site	NA06	SD0020	-117.13909	32.69003	09-Aug-01	D	Tetrabutyltin (TTBT)	Dry weight		µg/kg	QUALITIEN
Shipyard Sediment Site	NA06	SD0020	-117.13909	32.69003	09-Aug-01		Tributyltin (TBT)	Dry weight	180	µg/kg µa/ka	
Shipyard Sediment Site	NA06	SD0020	-117.13909	32.69003	08-Sep-02		Dibutyltin (DBT)	Dry weight	130		
Shipyard Sediment Site	NA06	SD0101	-117.13909	32.69003	08-Sep-02		Monobutyltin (MBT)	Dry weight		µg/kg	
Shipyard Sediment Site	NA06	SD0101	-117.13909	32.69003	08-Sep-02		Tetrabutyltin (TTBT)	Dry weight		µg/kg	
Shipyard Sediment Site	NA06	SD0101	-117.13909	32.69003	08-Sep-02		Tributyltin (TBT)	Dry weight		µg/kg	J
Shipyard Sediment Site	NA07	SD0017	-117.13911	32.68933	08-Aug-01		Dibutyltin (DBT)	Dry weight		µg/kg	Ů
Shipyard Sediment Site	NA07	SD0017	-117.13911	32.68933	08-Aug-01		Monobutyltin (MBT)	Dry weight	16	µg/kg	
Shipyard Sediment Site	NA07	SD0017	-117.13911	32.68933	08-Aug-01		Tetrabutyltin (TTBT)	Dry weight		µg/kg	U
Shipyard Sediment Site	NA07	SD0017	-117.13911	32.68933	08-Aug-01		Tributyltin (TBT)	Dry weight		µg/kg	
Shipyard Sediment Site	NA08	SD0055	-117.13902	32.68910	14-Aug-01		Dibutyltin (DBT)	Dry weight	110		
Shipyard Sediment Site	NA08	SD0055	-117.13902	32.68910	14-Aug-01		Monobutyltin (MBT)	Dry weight		µg/kg	
Shipyard Sediment Site	NA08	SD0055	-117.13902	32.68910	14-Aug-01		Tetrabutyltin (TTBT)	Dry weight		µg/kg	U
Shipyard Sediment Site	NA08	SD0055	-117.13902	32.68910	14-Aug-01		Tributyltin (TBT)	Dry weight	110		
Shipyard Sediment Site	NA09	SD0054	-117.13880	32.68883	14-Aug-01		Dibutyltin (DBT)	Dry weight		µg/kg	
Shipyard Sediment Site	NA09	SD0054	-117.13880	32.68883	14-Aug-01		Monobutyltin (MBT)	Dry weight		µg/kg	
Shipyard Sediment Site	NA09	SD0054	-117.13880	32.68883	14-Aug-01		Tetrabutyltin (TTBT)	Dry weight	3.3	µg/kg	U
Shipyard Sediment Site	NA09	SD0054	-117.13880	32.68883	14-Aug-01		Tributyltin (TBT)	Dry weight		µg/kg	
Shipyard Sediment Site	NA10	SD0056	-117.13936	32.68868	14-Aug-01		Dibutyltin (DBT)	Dry weight		µg/kg	
Shipyard Sediment Site	NA10	SD0056	-117.13936	32.68868	14-Aug-01		Monobutyltin (MBT)	Dry weight		µg/kg	
Shipyard Sediment Site	NA10	SD0056	-117.13936	32.68868	14-Aug-01		Tetrabutyltin (TTBT)	Dry weight	2.2	µg/kg	U
Shipyard Sediment Site	NA10	SD0056	-117.13936	32.68868	14-Aug-01		Tributyltin (TBT)	Dry weight	91	µg/kg	
Shipyard Sediment Site	NA11	SD0021	-117.13942	32.68839	09-Aug-01		Dibutyltin (DBT)	Dry weight		µg/kg	J
Shipyard Sediment Site	NA11	SD0021	-117.13942	32.68839	09-Aug-01		Monobutyltin (MBT)	Dry weight		µg/kg	J
Shipyard Sediment Site	NA11	SD0021	-117.13942	32.68839	09-Aug-01		Tetrabutyltin (TTBT)	Dry weight	2.6	µg/kg	UJ
Shipyard Sediment Site	NA11	SD0021	-117.13942	32.68839	09-Aug-01		Tributyltin (TBT)	Dry weight		µg/kg	J
Shipyard Sediment Site	NA12	SD0027	-117.13978	32.68768	10-Aug-01		Dibutyltin (DBT)	Dry weight		µg/kg	
Shipyard Sediment Site	NA12	SD0027	-117.13978	32.68768	10-Aug-01		Monobutyltin (MBT)	Dry weight		µg/kg	
Shipyard Sediment Site	NA12	SD0027	-117.13978	32.68768	10-Aug-01		Tetrabutyltin (TTBT)	Dry weight		µg/kg	U
Shipyard Sediment Site	NA12	SD0027	-117.13978	32.68768	10-Aug-01		Tributyltin (TBT)	Dry weight		µg/kg	
Shipyard Sediment Site	NA13	SD0036	-117.14018	32.68713	11-Aug-01		Dibutyltin (DBT)	Dry weight		µg/kg	
Shipyard Sediment Site	NA13	SD0036	-117.14018	32.68713	11-Aug-01		Monobutyltin (MBT)	Dry weight		µg/kg	
Shipyard Sediment Site	NA13	SD0036	-117.14018	32.68713	11-Aug-01		Tetrabutyltin (TTBT)	Dry weight		µg/kg	U
Shipyard Sediment Site	NA13	SD0036	-117.14018	32.68713	11-Aug-01		Tributyltin (TBT)	Dry weight		µg/kg	
Shipyard Sediment Site	NA13	SD0120	-117.14018	32.68713	11-Sep-02		Dibutyltin (DBT)	Dry weight		µg/kg	
Shipyard Sediment Site	NA13	SD0120	-117.14018	32.68713	11-Sep-02		Monobutyltin (MBT)	Dry weight		µg/kg	
Shipyard Sediment Site	NA13	SD0120	-117.14018	32.68713	11-Sep-02		Tetrabutyltin (TTBT)	Dry weight		µg/kg	U
Shipyard Sediment Site	NA13	SD0120	-117.14018	32.68713	11-Sep-02		Tributyltin (TBT)	Dry weight		µg/kg	
Shipyard Sediment Site	NA14	SD0051	-117.14084	32.68619	14-Aug-01		Dibutyltin (DBT)	Dry weight		µg/kg	
Shipyard Sediment Site	NA14	SD0051	-117.14084	32.68619	14-Aug-01		Monobutyltin (MBT)	Dry weight		µg/kg	
Shipyard Sediment Site	NA14	SD0051	-117.14084	32.68619	14-Aug-01		Tetrabutyltin (TTBT)	Dry weight		µg/kg	U
Shipyard Sediment Site	NA14	SD0051	-117.14084	32.68619	14-Aug-01		Tributyltin (TBT)	Dry weight		µg/kg	<u> </u>
Shipyard Sediment Site	NA15	SD0037	-117.13837	32.68841	12-Aug-01		Dibutyltin (DBT)	Dry weight		µg/kg	<u> </u>
Shipyard Sediment Site Shipyard Sediment Site	NA15 NA15	SD0037	-117.13837 -117.13837	32.68841 32.68841	12-Aug-01		Monobutyltin (MBT) Tetrabutyltin (TTBT)	Dry weight		µg/kg	<u> </u>
Shipyard Sediment Site	NA15 NA15	SD0037 SD0037	-117.13837 -117.13837	32.68841 32.68841	12-Aug-01			Dry weight	14 670	µg/kg	───┦
Shipyard Sediment Site	NA15 NA16	SD0037 SD0038	-117.13837 -117.13889	32.68841	12-Aug-01		Tributyltin (TBT) Dibutyltin (DBT)	Dry weight Dry weight	200		───┤
Shipyard Sediment Site	NA16 NA16	SD0038 SD0038	-117.13889 -117.13889	32.68819	12-Aug-01 12-Aug-01	1	Monobutyltin (DBT)	Dry weight Dry weight		µg/kg µg/kg	+₹
Shipyard Sediment Site	NA16 NA16	SD0038 SD0038	-117.13889	32.68819	12-Aug-01 12-Aug-01	1	Tetrabutyltin (MBT)	Dry weight Dry weight		µg/kg µg/kg	+₹
Shipyard Sediment Site	NA16 NA16	SD0038 SD0038	-117.13889	32.68819	12-Aug-01 12-Aug-01	1	Tributyltin (TBT)	Dry weight		µg/kg µg/kg	+1
Shipyard Sediment Site	NA16	SD0038 SD0099	-117.13889	32.68819	08-Sep-02		Dibutyltin (DBT)	Dry weight		µg/kg µg/kg	┼───┦
Shipyard Sediment Site	NA16	SD0099 SD0099	-117.13889	32.68819	08-Sep-02 08-Sep-02		Monobutyltin (MBT)	Dry weight		µg/kg µg/kg	<u> </u>]
Shipyard Sediment Site	NA16	SD0099 SD0099	-117.13889	32.68819	08-Sep-02		Tetrabutyltin (TTBT)	Dry weight		µg/kg µg/kg	<u> </u>
Shipyard Sediment Site	NA16	SD0099 SD0099	-117.13889	32.68819	08-Sep-02 08-Sep-02		Tributyltin (TBT)	Dry weight		µg/kg µg/kg	<u> </u>
Shipyard Sediment Site	NA17	SD0039 SD0039	-117.13789	32.68787	12-Aug-01		Dibutyltin (DBT)	Dry weight	520		<u> </u>
Shipyard Sediment Site	NA17	SD0039 SD0039	-117.13789	32.68787	12-Aug-01 12-Aug-01		Monobutyltin (MBT)	Dry weight		µg/kg µg/kg	<u> </u>
Shipyard Sediment Site	NA17	SD0039	-117.13789	32.68787	12-Aug-01		Tetrabutyltin (TTBT)	Dry weight		µg/kg	u l
Shipyard Sediment Site	NA17	SD0039 SD0039	-117.13789	32.68787	12-Aug-01 12-Aug-01	1	Tributyltin (TBT)	Dry weight	1,000		
Shipyard Sediment Site	NA17	SD0097	-117.13789	32.68787	08-Sep-02		Dibutyltin (DBT)	Dry weight		µg/kg	<u> </u>
Shipyard Sediment Site	NA17	SD0097 SD0097	-117.13789	32.68787	08-Sep-02		Monobutyltin (MBT)	Dry weight		µg/kg	u l
Shipyard Sediment Site	NA17	SD0097 SD0097	-117.13789	32.68787	08-Sep-02	1	Tetrabutyltin (TTBT)	Dry weight		µg/kg	Ū.
empyara countent one	Levit .	00000	117.10703	02.00707	00 00p 0L	1	roadbugian (TDT)	Diy woight	50	r9/n9	<u> </u>

PROJECT NAME SITE NAME SAMPLE ID X COORDINATE Y COORDINATE SAMPLE DATE SAMPLE MEDIUM TYPE PARAMETER NAME PROPERTY QUANTITY UNIT QUALIFIER D Shipyard Sediment Site NA17 SD0097 -117.13789 32.68787 08-Sep-02 Tributyltin (TBT) Dry weight 1,700 µg/kg -117,13863 Shipyard Sediment Site **NA18** SD0053 32,68778 14-Aug-01 Dibutyltin (DBT) Dry weight 160 µg/kg 37 µg/kg NA18 SD0053 -117.13863 32.68778 14-Aug-01 Monobutyltin (MBT) Shipvard Sediment Site Dry weight Shipyard Sediment Site NA18 SD0053 -117.13863 32.68778 14-Aug-01 Tetrabutyltin (TTBT) Dry weight 5.6 µg/kg 210 µg/kg NA18 SD0053 -117.13863 32.68778 14-Aua-01 Tributyltin (TBT) Shipyard Sediment Site Dry weight NA19 -117.13902 32.68742 Shipyard Sediment Site SD0042 12-Aug-01 Dibutyltin (DBT) Dry weight 320 µg/kg Shipyard Sediment Site NA19 SD0042 -117.13902 32.68742 12-Aug-01 Monobutyltin (MBT) Dry weight 58 µg/kg Dry weight 14 µg/kg Shipyard Sediment Site NA19 SD0042 -117.1390232.68742 12-Aug-01 Tetrabutyltin (TTBT) Shipyard Sediment Site NA19 SD0042 -117.13902 32.68742 12-Aug-01 Tributyltin (TBT) Dry weight 570 µg/kg NA20 SD0028 -117 13611 32 68698 10-Aug-01 Dibutvltin (DBT) Dry weight Shipyard Sediment Site 160 µg/kg -117.13611 Shipyard Sediment Site NA20 SD0028 32.68698 10-Aug-01 Monobutyltin (MBT) Dry weight 23 µg/kg NA20 -117,13611 Tetrabutvltin (TTBT) Shipvard Sediment Site SD0028 32.68698 10-Aug-01 Drv weight 7.2 µg/kg Shipyard Sediment Site NA20 SD0028 -117.13611 32.68698 10-Aug-01 Tributyltin (TBT) Dry weight 280 µg/kg Shipyard Sediment Site NA21 SD0050 -117.13671 32.68529 14-Aug-01 Dibutyltin (DBT) Dry weight 220 µg/kg NA21 SD0050 -117.13671 32.68529 14-Aug-01 Monobutyltin (MBT) Dry weight 70 µg/kg Shipyard Sediment Site Shipyard Sediment Site NA21 -117.13671 Tetrabutyltin (TTBT) Dry weight SD0050 32.68529 14-Aug-01 8.8 µg/kg Shinvard Sediment Site NA21 SD0050 -117 13671 32 68529 14-Aug-01 Tributyltin (TBT) 410 µg/kg Drv weight Shipyard Sediment Site NA22 SD0052 -117.13462 32.68688 14-Aug-01 Dibutyltin (DBT) Dry weight 77 µg/kg Shipyard Sediment Site NA22 SD0052 -117.13462 32.68688 14-Aug-01 Monobutyltin (MBT) Dry weight 6.9 µg/kg 2.2 µg/kg Shipyard Sediment Site NA22 SD0052 -117.13462 32.68688 14-Aug-01 Tetrabutyltin (TTBT) Dry weight 120 µg/kg Shipyard Sediment Site NA22 SD0052 -117.13462 32.68688 14-Aug-01 Tributyltin (TBT) Dry weight NA23 SD0095 -117 14025 32 68995 08-Sep-02 76 µg/kg Shipvard Sediment Site Dibutyltin (DBT) Dry weight NA23 SD0095 -117.14025 Shipyard Sediment Site 32.68995 08-Sep-02 Monobutyltin (MBT) Dry weight 13 µg/kg Drv weight Shipvard Sediment Site NA23 SD0095 -117.1402532.68995 08-Sep-02 Tetrabutyltin (TTBT) 2.8 µg/kg Shipyard Sediment Site NA23 SD0095 -117.14025 32.68995 08-Sep-02 Tributyltin (TBT) Dry weight 120 µg/kg Shipyard Sediment Site NA24 SD0094 -117.14121 32.68984 08-Sep-02 Dibutyltin (DBT) Dry weight 73 µg/kg NA24 SD0094 -117.14121 32.68984 08-Sep-02 Monobutyltin (MBT) 15 µg/kg Shipvard Sediment Site Dry weight Shipyard Sediment Site NA24 SD0094 -117.14121 32.68984 08-Sep-02 Tetrabutyltin (TTBT) Dry weight 2.5 µg/kg NA24 32 68984 59 µg/kg SD0094 -117 14121 08-Sep-02 Tributvltin (TBT) Shipyard Sediment Site Dry weight Shipvard Sediment Site NA25 SD0106 -117.1398232.68477 09-Sep-02 Dibutyltin (DBT) Dry weight 31 µg/kg Shipyard Sediment Site NA25 SD0106 -117,13982 32.68477 09-Sep-02 Monobutyltin (MBT) Dry weight 4.3 µg/kg 2.1 µg/kg NA25 SD0106 -117.13982 32.68477 09-Sep-02 Tetrabutyltin (TTBT) Dry weight Shipvard Sediment Site Shipyard Sediment Site NA25 SD0106 -117.13982 32.68477 09-Sep-02 Tributyltin (TBT) Dry weight 25 µg/kg NA26 SD0116 -117 14308 32 68714 31 µg/kg 11-Sep-02 Dibutyltin (DBT) Dry weight Shipvard Sediment Site Shipyard Sediment Site NA26 SD0116 -117.14308 32.68714 11-Sep-02 Monobutyltin (MBT) Dry weight 5 µg/kg Shipyard Sediment Site NA26 SD0116 -117.14308 32.68714 11-Sep-02 Tetrabutyltin (TTBT) Dry weight 2.2 µg/kg Shipyard Sediment Site NA26 SD0116 -117.14308 32.68714 11-Sep-02 Tributyltin (TBT) Drv weight 37 µg/kg Shipyard Sediment Site NA27 SD0301 -117.13969 32 68947 02-Oct-02 Dibutyltin (DBT) Dry weight 91 µg/kg Shipyard Sediment Site NA27 SD0301 -117 13969 32 68947 02-Oct-02 Monobutyltin (MBT) Dry weight 37 µg/kg Shipyard Sediment Site NA27 SD0301 -117.13969 32.68947 02-Oct-02 Tetrabutyltin (TTBT) Dry weight 3.9 µg/kg Shinvard Sediment Site NA27 SD0301 -117.13969 32.68947 02-Oct-02 Tributyltin (TBT) Drv weight 100 µg/kg Shipyard Sediment Site NA28 SD0300 -117.13992 32.68869 02-Oct-02 Dibutyltin (DBT) Dry weight 87 µg/kg Shipyard Sediment Site NA28 SD0300 -117.13992 32.68869 02-Oct-02 Monobutyltin (MBT) Dry weight 32 µg/kg NA28 SD0300 -117.13992 32.68869 02-Oct-02 Tetrabutyltin (TTBT) Dry weight 3.5 µg/kg Shipyard Sediment Site Shipyard Sediment Site NA28 SD0300 -117.13992 32.68869 02-Oct-02 Tributyltin (TBT) Dry weight 90 µg/kg NA29 32 68792 SD0119 -117 14155 Dibutyltin (DBT) 67 µg/kg Shinvard Sediment Site 11-Sep-02 Drv weight Shipyard Sediment Site NA29 SD0119 -117.14155 32.68792 11-Sep-02 Monobutyltin (MBT) Dry weight 8 µg/kg Shipyard Sediment Site NA29 SD0119 -117.14155 32.68792 11-Sep-02 Tetrabutyltin (TTBT) Dry weight 2.5 µg/kg Shipyard Sediment Site NA29 SD0119 -117.14155 32.68792 11-Sep-02 Tributyltin (TBT) Dry weight 58 µg/kg Shipyard Sediment Site NA30 SD0115 -117.14134 32.68631 11-Sep-02 Dibutyltin (DBT) Dry weight 33 µg/kg NA30 -117 14134 32 6863 SD0115 11-Sep-02 Monobutyltin (MBT) 4.5 µg/kg Shipyard Sediment Site Dry weight Shipyard Sediment Site NA30 SD0115 -117.14134 32.6863 11-Sep-02 Tetrabutyltin (TTBT) Dry weight 2.2 µg/kg Shipyard Sediment Site NA30 SD0115 -117.14134 32.68631 11-Sep-02 Tributyltin (TBT) Dry weight 22 µg/kg Shipyard Sediment Site NA31 SD0105 -117.13748 32.68328 09-Sep-02 Dibutyltin (DBT) Dry weight 22 µg/kg 3.5 µg/kg Shipvard Sediment Site NA31 SD0105 -117.13748 32.68328 09-Sep-02 Monobutyltin (MBT) Dry weight NA31 SD0105 -117.13748 32,68328 09-Sep-02 Tetrabutvltin (TTBT) Shipyard Sediment Site Dry weight 2 µg/kg Shipyard Sediment Site NA31 SD0105 -117.13748 32,68328 09-Sep-02 Tributyltin (TBT) Dry weight 20 µg/kg SW01 SD0001 -117 14573 32 69249 290 µg/kg Shipyard Sediment Site 06-Aua-01 Dibutvltin (DBT) Dry weight Shipyard Sediment Site SW01 SD0001 -117.14573 32.69249 06-Aug-01 Monobutyltin (MBT) Dry weight 51 µg/kg Shipyard Sediment Site SW01 SD0001 -117.14573 32.69249 06-Aua-01 Tetrabutyltin (TTBT) Dry weight 12 µg/kg SW01 SD0001 -117.14573 32.69249 520 µg/kg Shipvard Sediment Site 06-Aug-01 Tributyltin (TBT) Dry weight

PROJECT NAME	SITE NAME	SAMPLE ID	X COORDINATE	Y COORDINATE	SAMPLE DATE	SAMPLE MEDIUM	TYPE	D	PARAMETER NAME	PROPERTY	QUANTITY UNIT	QUALIFIER
Shipyard Sediment Site	SW01	SD0137	-117.14573	32.69249	14-Sep-02				Dibutyltin (DBT)	Dry weight	230 µg/kg	J
Shipyard Sediment Site	SW01	SD0137	-117.14573	32.69249	14-Sep-02				Monobutyltin (MBT)	Dry weight	65 µg/kg	J
Shipyard Sediment Site	SW01	SD0137	-117.14573	32.69249	14-Sep-02				Tetrabutyltin (TTBT)	Dry weight	26 µg/kg	U
Shipyard Sediment Site	SW01	SD0137	-117.14573	32.69249	14-Sep-02				Tributyltin (TBT)	Dry weight	380 µg/kg	
Shipyard Sediment Site	SW02	SD0005	-117.14593	32.69219	06-Aug-01				Dibutyltin (DBT)	Dry weight	170 µg/kg	
Shipyard Sediment Site	SW02	SD0005	-117.14593	32.69219	06-Aug-01				Monobutyltin (MBT)	Dry weight	16 µg/kg	
Shipyard Sediment Site	SW02	SD0005	-117.14593	32.69219	06-Aug-01				Tetrabutyltin (TTBT)	Dry weight	5.1 µg/kg	
Shipyard Sediment Site	SW02	SD0005	-117.14593	32.69219	06-Aug-01				Tributyltin (TBT)	Dry weight	220 µg/kg	
Shipyard Sediment Site	SW02	SD0138	-117.14593	32.69219	14-Sep-02				Dibutyltin (DBT)	Dry weight	49 µg/kg	J
Shipyard Sediment Site	SW02	SD0138	-117.14593	32.69219	14-Sep-02				Monobutyltin (MBT)	Dry weight	27 µg/kg	UJ
Shipyard Sediment Site	SW02	SD0138	-117.14593	32.69219	14-Sep-02				Tetrabutyltin (TTBT)	Dry weight	27 µg/kg	U
Shipyard Sediment Site	SW02	SD0138	-117.14593	32.69219	14-Sep-02				Tributyltin (TBT)	Dry weight	69 µg/kg	J
Shipyard Sediment Site	SW03	SD0009	-117.14653	32.69148	07-Aug-01				Dibutyltin (DBT)	Dry weight	57 µg/kg	
Shipyard Sediment Site	SW03	SD0009	-117.14653	32.69148	07-Aug-01				Monobutyltin (MBT)	Dry weight	12 µg/kg	
Shipyard Sediment Site	SW03	SD0009	-117.14653	32.69148	07-Aug-01				Tetrabutyltin (TTBT)	Dry weight	2.7 µg/kg	U
Shipyard Sediment Site	SW03	SD0009	-117.14653	32.69148	07-Aug-01				Tributyltin (TBT)	Dry weight	53 µg/kg	
Shipyard Sediment Site	SW04	SD0012	-117.14529	32.69246	07-Aug-01				Dibutyltin (DBT)	Dry weight	960 µg/kg	
Shipyard Sediment Site	SW04	SD0012	-117.14529	32.69246	07-Aug-01				Monobutyltin (MBT)	Dry weight	130 µg/kg	
Shipyard Sediment Site	SW04	SD0012	-117.14529	32.69246	07-Aug-01				Tetrabutyltin (TTBT)	Dry weight	61 µg/kg	
Shipyard Sediment Site	SW04	SD0012	-117.14529	32.69246	07-Aug-01				Tributyltin (TBT)	Dry weight	2,800 µg/kg	
Shipyard Sediment Site	SW04	SD0112	-117.14529	32.69246	10-Sep-02				Dibutyltin (DBT)	Dry weight	1,000 µg/kg	
Shipyard Sediment Site	SW04	SD0112	-117.14529	32.69246	10-Sep-02				Monobutyltin (MBT)	Dry weight	300 µg/kg	U
Shipyard Sediment Site	SW04	SD0112	-117.14529	32.69246	10-Sep-02				Tetrabutyltin (TTBT)	Dry weight	300 µg/kg	U
Shipyard Sediment Site	SW04	SD0112	-117.14529	32.69246	10-Sep-02				Tributyltin (TBT)	Dry weight	3,700 µg/kg	J
Shipyard Sediment Site	SW05	SD0003	-117.14572	32.69191	06-Aug-01				Dibutyltin (DBT)	Dry weight	140 µg/kg	
Shipyard Sediment Site	SW05	SD0003	-117.14572	32.69191	06-Aug-01				Monobutyltin (MBT)	Dry weight	26 µg/kg	
Shipyard Sediment Site	SW05	SD0003	-117.14572	32.69191	06-Aug-01				Tetrabutyltin (TTBT)	Dry weight	3.8 µg/kg	
Shipyard Sediment Site	SW05	SD0003	-117.14572	32.69191	06-Aug-01				Tributyltin (TBT)	Dry weight	170 µg/kg	
Shipyard Sediment Site	SW06	SD0002	-117.14606	32.69150	06-Aug-01				Dibutyltin (DBT)	Dry weight	65 µg/kg	
Shipyard Sediment Site	SW06	SD0002	-117.14606	32.69150	06-Aug-01				MonobutyItin (MBT)	Dry weight	11 µg/kg	
Shipyard Sediment Site	SW06	SD0002	-117.14606	32.69150	06-Aug-01				Tetrabutyltin (TTBT)	Dry weight	2.8 µg/kg	U
Shipyard Sediment Site	SW06	SD0002	-117.14606	32.69150	06-Aug-01				Tributyltin (TBT)	Dry weight	100 µg/kg	
Shipyard Sediment Site	SW07	SD0004	-117.14640	32.69114	06-Aug-01				Dibutyltin (DBT)	Dry weight	48 µg/kg	
Shipyard Sediment Site	SW07	SD0004	-117.14640	32.69114	06-Aug-01				MonobutyItin (MBT)	Dry weight	8.7 µg/kg	
Shipyard Sediment Site	SW07	SD0004	-117.14640	32.69114	06-Aug-01				Tetrabutyltin (TTBT)	Dry weight	2.3 µg/kg	U
Shipyard Sediment Site	SW07	SD0004	-117.14640	32.69114	06-Aug-01				Tributyltin (TBT)	Dry weight	44 µg/kg	
Shipyard Sediment Site	SW08 SW08	SD0016	-117.14492	32.69242	08-Aug-01				Dibutyltin (DBT)	Dry weight	1,000 µg/kg	
Shipyard Sediment Site Shipyard Sediment Site	SW08	SD0016	-117.14492 -117.14492	32.69242	08-Aug-01				Monobutyltin (MBT) Tetrabutyltin (TTBT)	Dry weight	160 µg/kg 65 µg/kg	
	SW08	SD0016 SD0016	-117.14492 -117.14492	32.69242 32.69242	08-Aug-01				, , ,	Dry weight		U
Shipyard Sediment Site Shipyard Sediment Site		SD0018 SD0133	-117.14492		08-Aug-01				Tributyltin (TBT) Dibutyltin (DBT)	Dry weight Dry weight	1,900 µg/kg	
Shipyard Sediment Site	SW08 SW08	SD0133 SD0133	-117.14492	32.69242 32.69242	13-Sep-02 13-Sep-02				Monobutyltin (MBT)		960 µg/kg 240 µg/kg	
Shipyard Sediment Site	SW08	SD0133	-117.14492	32.69242	13-Sep-02				Tetrabutyltin (TTBT)	Dry weight Dry weight	39 µg/kg	J
Shipyard Sediment Site	SW08	SD0133	-117.14492	32.69242	13-Sep-02				Tributyltin (TBT)	Dry weight	1,800 µg/kg	0
Shipyard Sediment Site	SW08	SD0133 SD0007	-117.14492 -117.14528	32.69242	06-Aug-01				Dibutyltin (DBT)	Dry weight	500 µg/kg	•
Shipyard Sediment Site	SW09 SW09	SD0007 SD0007	-117.14528	32.69178	06-Aug-01				Monobutyltin (MBT)	Dry weight	500 µg/kg 58 µg/kg	
Shipyard Sediment Site	SW09	SD0007	-117.14528	32.69178	06-Aug-01				Tetrabutyltin (TTBT)	Dry weight	19 µg/kg	
Shipyard Sediment Site	SW09	SD0007	-117.14528	32.69178	06-Aug-01				Tributyltin (TBT)	Dry weight	910 µg/kg	1
Shipyard Sediment Site	SW10	SD0007	-117.14520	32.69155	06-Aug-01				Dibutyltin (DBT)	Dry weight	99 µg/kg	1
Shipyard Sediment Site	SW10	SD0008	-117.14559	32.69155	06-Aug-01		1		Monobutyltin (MBT)	Dry weight	19 µg/kg	-
Shipyard Sediment Site	SW10	SD0008	-117.14559	32.69155	06-Aug-01		1		Tetrabutyltin (TTBT)	Dry weight	8.7 µg/kg	J
Shipyard Sediment Site	SW10	SD0008	-117.14559	32.69155	06-Aug-01		1		Tributyltin (TBT)	Dry weight	250 µg/kg	
Shipyard Sediment Site	SW10	SD0048	-117.14597	32.69112	13-Aug-01		1		Dibutyltin (DBT)	Dry weight	120 µg/kg	1
Shipyard Sediment Site	SW11	SD0048	-117.14597	32.69112	13-Aug-01		1		Monobutyltin (MBT)	Dry weight	29 µg/kg	
Shipyard Sediment Site	SW11	SD0048	-117.14597	32.69112	13-Aug-01		1		Tetrabutyltin (TTBT)	Dry weight	2.8 µg/kg	J
Shipyard Sediment Site	SW11	SD0048	-117.14597	32.69112	13-Aug-01				Tributyltin (TBT)	Dry weight	140 µg/kg	-
Shipyard Sediment Site	SW12	SD0010	-117.14634	32.69067	07-Aug-01		1		Dibutyltin (DBT)	Dry weight	48 µg/kg	
Shipyard Sediment Site	SW12	SD0010	-117.14634	32.69067	07-Aug-01		1		MonobutyItin (MBT)	Dry weight	15 µg/kg	
Shipyard Sediment Site	SW12	SD0010	-117.14634	32.69067	07-Aug-01				Tetrabutyltin (TTBT)	Dry weight	2.3 µg/kg	U
Shipyard Sediment Site	SW12	SD0010	-117.14634	32.69067	07-Aug-01				Tributyltin (TBT)	Dry weight	31 µg/kg	
Shipyard Sediment Site	SW12	SD0111	-117.14634	32.69067	10-Sep-02				Dibutyltin (DBT)	Dry weight	42 µg/kg	

PROJECT_NAME	SITE_NAME	SAMPLE_ID	X_COORDINATE	Y_COORDINATE	SAMPLE_DATE	SAMPLE_MEDIUM	TYPE	D	PARAMETER_NAME	PROPERTY	QUANTITY UNIT	QUALIFIER
Shipyard Sediment Site	SW12	SD0111	-117.14634	32.69067	10-Sep-02				Monobutyltin (MBT)	Dry weight	6.5 µg/kg	
Shipyard Sediment Site	SW12	SD0111	-117.14634	32.69067	10-Sep-02				Tetrabutyltin (TTBT)	Dry weight	2.3 µg/kg	U
Shipyard Sediment Site	SW12	SD0111	-117.14634	32.69067	10-Sep-02				Tributyltin (TBT)	Dry weight	41 µg/kg	
Shipyard Sediment Site	SW13	SD0022	-117.14468	32.69182	09-Aug-01				Dibutyltin (DBT)	Dry weight	200 µg/kg	
Shipyard Sediment Site	SW13	SD0022	-117.14468	32.69182	09-Aug-01				Monobutyltin (MBT)	Dry weight	44 µg/kg	
Shipyard Sediment Site	SW13	SD0022	-117.14468	32.69182	09-Aug-01				Tetrabutyltin (TTBT)	Dry weight	30 µg/kg	U
Shipyard Sediment Site	SW13	SD0022	-117.14468	32.69182	09-Aug-01				Tributyltin (TBT)	Dry weight	790 µg/kg	
Shipyard Sediment Site	SW14	SD0024	-117.14493	32.69167	10-Aug-01				Dibutyltin (DBT)	Dry weight	120 µg/kg	
Shipyard Sediment Site	SW14	SD0024	-117.14493	32.69167	10-Aug-01				Monobutyltin (MBT)	Dry weight	31 µg/kg	
Shipyard Sediment Site	SW14	SD0024	-117.14493	32.69167	10-Aug-01				Tetrabutyltin (TTBT)	Dry weight	13 µg/kg	U
Shipyard Sediment Site	SW14	SD0024	-117.14493	32.69167	10-Aug-01				Tributyltin (TBT)	Dry weight	450 µg/kg	
Shipyard Sediment Site	SW15	SD0023	-117.14527	32.69118	10-Aug-01				Dibutyltin (DBT)	Dry weight	130 µg/kg	
Shipyard Sediment Site	SW15	SD0023	-117.14527	32.69118	10-Aug-01				Monobutyltin (MBT)	Dry weight	37 µg/kg	
Shipyard Sediment Site	SW15	SD0023	-117.14527	32.69118	10-Aug-01				Tetrabutyltin (TTBT)	Dry weight	4.7 µg/kg	J
Shipyard Sediment Site	SW15	SD0023	-117.14527	32.69118	10-Aug-01				Tributyltin (TBT)	Dry weight	170 µg/kg	
Shipyard Sediment Site	SW16	SD0025	-117.14465	32.69155	10-Aug-01				Dibutyltin (DBT)	Dry weight	460 µg/kg	
Shipyard Sediment Site	SW16	SD0025	-117.14465	32.69155	10-Aug-01				Monobutyltin (MBT)	Dry weight	71 µg/kg	
Shipyard Sediment Site	SW16	SD0025	-117.14465	32.69155	10-Aug-01				Tetrabutyltin (TTBT)	Dry weight	24 µg/kg	U
Shipyard Sediment Site	SW16	SD0025	-117.14465	32.69155	10-Aug-01				Tributyltin (TBT)	Dry weight	1,100 µg/kg	
Shipyard Sediment Site	SW17	SD0047	-117.14441	32.69136	13-Aug-01				Dibutyltin (DBT)	Dry weight	240 µg/kg	
Shipyard Sediment Site	SW17	SD0047	-117.14441	32.69136	13-Aug-01				Monobutyltin (MBT)	Dry weight	47 µg/kg	
Shipyard Sediment Site	SW17	SD0047	-117.14441	32.69136	13-Aug-01				Tetrabutyltin (TTBT)	Dry weight	30 µg/kg	U
Shipyard Sediment Site	SW17	SD0047	-117.14441	32.69136	13-Aug-01				Tributyltin (TBT)	Dry weight	440 µg/kg	
Shipyard Sediment Site	SW18	SD0046	-117.14487	32.69038	13-Aug-01				Dibutyltin (DBT)	Dry weight	130 µg/kg	
Shipyard Sediment Site	SW18	SD0046	-117.14487	32.69038	13-Aug-01				Monobutyltin (MBT)	Dry weight	27 µg/kg	
Shipyard Sediment Site	SW18	SD0046	-117.14487	32.69038	13-Aug-01				Tetrabutyltin (TTBT)	Dry weight	4.1 µg/kg	J
Shipyard Sediment Site	SW18	SD0046	-117.14487	32.69038	13-Aug-01				Tributyltin (TBT)	Dry weight	130 µg/kg	
Shipyard Sediment Site	SW19	SD0011	-117.14616	32.68907	07-Aug-01				Dibutyltin (DBT)	Dry weight	37 µg/kg	
Shipyard Sediment Site	SW19	SD0011	-117.14616	32.68907	07-Aug-01				Monobutyltin (MBT)	Dry weight	15 µg/kg	
Shipyard Sediment Site	SW19	SD0011	-117.14616	32.68907	07-Aug-01				Tetrabutyltin (TTBT)	Dry weight	2.1 µg/kg	U
Shipyard Sediment Site	SW19	SD0011	-117.14616	32.68907	07-Aug-01				Tributyltin (TBT)	Dry weight	37 µg/kg	
Shipyard Sediment Site	SW20	SD0059	-117.14353	32.69144	15-Aug-01				Dibutyltin (DBT)	Dry weight	110 µg/kg	_
Shipyard Sediment Site	SW20	SD0059	-117.14353	32.69144	15-Aug-01				Monobutyltin (MBT)	Dry weight	27 µg/kg	
Shipyard Sediment Site	SW20	SD0059	-117.14353	32.69144	15-Aug-01				Tetrabutyltin (TTBT)	Dry weight	2.5 µg/kg	U
Shipyard Sediment Site	SW20	SD0059	-117.14353	32.69144	15-Aug-01				Tributyltin (TBT)	Dry weight	130 µg/kg	_
Shipyard Sediment Site	SW21	SD0019	-117.14335	32.69128	09-Aug-01				Dibutyltin (DBT)	Dry weight	130 µg/kg	_
Shipyard Sediment Site	SW21	SD0019	-117.14335	32.69128	09-Aug-01				Monobutyltin (MBT)	Dry weight	27 µg/kg	
Shipyard Sediment Site	SW21	SD0019	-117.14335	32.69128	09-Aug-01				Tetrabutyltin (TTBT)	Dry weight	3.7 µg/kg	
Shipyard Sediment Site	SW21	SD0019	-117.14335	32.69128	09-Aug-01				Tributyltin (TBT)	Dry weight	170 µg/kg	
Shipyard Sediment Site	SW22	SD0060	-117.14346	32.69122	15-Aug-01				Dibutyltin (DBT)	Dry weight	160 µg/kg	
Shipyard Sediment Site	SW22	SD0060	-117.14346	32.69122	15-Aug-01				Monobutyltin (MBT)	Dry weight	34 µg/kg	
Shipyard Sediment Site	SW22	SD0060	-117.14346	32.69122	15-Aug-01				Tetrabutyltin (TTBT)	Dry weight	3.3 µg/kg	J
Shipyard Sediment Site	SW22	SD0060	-117.14346	32.69122	15-Aug-01				Tributyltin (TBT)	Dry weight	190 µg/kg	+
Shipyard Sediment Site	SW23	SD0058	-117.14362	32.69112	15-Aug-01				Dibutyltin (DBT)	Dry weight	160 µg/kg	+
Shipyard Sediment Site	SW23	SD0058	-117.14362	32.69112	15-Aug-01		+		Monobutyltin (MBT)	Dry weight	32 µg/kg	
Shipyard Sediment Site	SW23	SD0058	-117.14362	32.69112	15-Aug-01		+		Tetrabutyltin (TTBT)	Dry weight	4.2 µg/kg	
Shipyard Sediment Site	SW23	SD0058	-117.14362	32.69112	15-Aug-01		+		Tributyltin (TBT)	Dry weight	210 µg/kg	
Shipyard Sediment Site	SW24	SD0015	-117.14345	32.69109	08-Aug-01				Dibutyltin (DBT)	Dry weight	150 µg/kg	+
Shipyard Sediment Site	SW24	SD0015	-117.14345	32.69109	08-Aug-01				Monobutyltin (MBT)	Dry weight	21 µg/kg	+
Shipyard Sediment Site	SW24	SD0015	-117.14345	32.69109	08-Aug-01				Tetrabutyltin (TTBT)	Dry weight	3.4 µg/kg	U
Shipyard Sediment Site	SW24	SD0015	-117.14345	32.69109	08-Aug-01		+		Tributyltin (TBT)	Dry weight	170 µg/kg	+
Shipyard Sediment Site	SW24	SD0113	-117.14345	32.69109	10-Sep-02				Dibutyltin (DBT)	Dry weight	120 µg/kg	+
Shipyard Sediment Site	SW24	SD0113	-117.14345	32.69109	10-Sep-02		+		Monobutyltin (MBT)	Dry weight	13 µg/kg	+
Shipyard Sediment Site	SW24	SD0113	-117.14345	32.69109	10-Sep-02		+		Tetrabutyltin (TTBT)	Dry weight	3.7 µg/kg	
Shipyard Sediment Site	SW24	SD0113	-117.14345	32.69109	10-Sep-02		+		Tributyltin (TBT)	Dry weight	160 µg/kg	
Shipyard Sediment Site	SW25	SD0057	-117.14413	32.69047	15-Aug-01		+		Dibutyltin (DBT)	Dry weight	220 µg/kg	
Shipyard Sediment Site	SW25	SD0057	-117.14413	32.69047	15-Aug-01		+		Monobutyltin (MBT)	Dry weight	61 µg/kg	+
Shipyard Sediment Site	SW25	SD0057	-117.14413	32.69047	15-Aug-01		+		Tetrabutyltin (TTBT)	Dry weight	25 µg/kg	U
Shipyard Sediment Site	SW25	SD0057	-117.14413	32.69047	15-Aug-01		+		Tributyltin (TBT)	Dry weight	370 µg/kg	
Shipyard Sediment Site	SW25	SD0114	-117.14413	32.69047	10-Sep-02		+		Dibutyltin (DBT)	Dry weight	76 µg/kg	
Shipyard Sediment Site	SW25	SD0114	-117.14413	32.69047	10-Sep-02	1	1		Monobutyltin (MBT)	Dry weight	15 µg/kg	

PROJECT_NAME	SITE_NAME	SAMPLE_ID	X_COORDINATE	Y_COORDINATE	SAMPLE_DATE	SAMPLE_MEDIUM	TYPE	D	PARAMETER_NAME	PROPERTY	QUANTITY UNIT	QUALIFIER
Shipyard Sediment Site	SW25	SD0114	-117.14413	32.69047	10-Sep-02				Tetrabutyltin (TTBT)	Dry weight	3 µg/kg	U
Shipyard Sediment Site	SW25	SD0114	-117.14413	32.69047	10-Sep-02				Tributyltin (TBT)	Dry weight	91 µg/kg	J
Shipyard Sediment Site	SW26	SD0014	-117.14474	32.68972	08-Aug-01				Dibutyltin (DBT)	Dry weight	46 µg/kg	
Shipyard Sediment Site	SW26	SD0014	-117.14474	32.68972	08-Aug-01				Monobutyltin (MBT)	Dry weight	11 µg/kg	
Shipyard Sediment Site	SW26	SD0014	-117.14474	32.68972	08-Aug-01				Tetrabutyltin (TTBT)	Dry weight	2.3 µg/kg	U
Shipyard Sediment Site	SW26	SD0014	-117.14474	32.68972	08-Aug-01				Tributyltin (TBT)	Dry weight	49 µg/kg	
Shipyard Sediment Site	SW27	SD0045	-117.14351	32.69002	13-Aug-01				Dibutyltin (DBT)	Dry weight	150 µg/kg	
Shipyard Sediment Site	SW27	SD0045	-117.14351	32.69002	13-Aug-01				Monobutyltin (MBT)	Dry weight	35 µg/kg	
Shipyard Sediment Site	SW27	SD0045	-117.14351	32.69002	13-Aug-01				Tetrabutyltin (TTBT)	Dry weight	9.6 µg/kg	
Shipyard Sediment Site	SW27	SD0045	-117.14351	32.69002	13-Aug-01				Tributyltin (TBT)	Dry weight	250 µg/kg	
Shipyard Sediment Site	SW28	SD0029	-117.14290	32.69014	11-Aug-01				Dibutyltin (DBT)	Dry weight	160 µg/kg	
Shipyard Sediment Site	SW28	SD0029	-117.14290	32.69014	11-Aug-01				Monobutyltin (MBT)	Dry weight	40 µg/kg	
Shipyard Sediment Site	SW28	SD0029	-117.14290	32.69014	11-Aug-01				Tetrabutyltin (TTBT)	Dry weight	7.7 µg/kg	
Shipyard Sediment Site	SW28	SD0029	-117.14290	32.69014	11-Aug-01				Tributyltin (TBT)	Dry weight	180 µg/kg	
Shipyard Sediment Site	SW28	SD0121	-117.14290	32.69014	11-Sep-02				Dibutyltin (DBT)	Dry weight	110 µg/kg	
Shipyard Sediment Site	SW28	SD0121	-117.14290	32.69014	11-Sep-02				Monobutyltin (MBT)	Dry weight	12 µg/kg	
Shipyard Sediment Site	SW28	SD0121	-117.14290	32.69014	11-Sep-02				Tetrabutyltin (TTBT)	Dry weight	2.9 µg/kg	U
Shipyard Sediment Site	SW28	SD0121	-117.14290	32.69014	11-Sep-02				Tributyltin (TBT)	Dry weight	120 µg/kg	1
Shipyard Sediment Site	SW29	SD0121	-117.14638	32.69269	09-Sep-02	1			Dibutyltin (DBT)	Dry weight	130 µg/kg	<u> </u>
Shipyard Sediment Site	SW29	SD0110	-117.14638	32.69269	09-Sep-02		1	1	Monobutyltin (MBT)	Dry weight	8.9 µg/kg	1
Shipyard Sediment Site	SW29	SD0110	-117.14638	32.69269	09-Sep-02	1	1		Tetrabutyltin (TTBT)	Dry weight	8.8 µg/kg	
Shipyard Sediment Site	SW29	SD0110	-117.14638	32.69269	09-Sep-02		1	1	Tributyltin (TBT)	Dry weight	190 µg/kg	1
Shipyard Sediment Site	SW30	SD0135	-117.14727	32.69166	14-Sep-02				Dibutyltin (DBT)	Dry weight	110 µg/kg	
Shipyard Sediment Site	SW30	SD0135	-117.14727	32.69166	14-Sep-02				Monobutyltin (MBT)	Dry weight	26 µg/kg	1
Shipyard Sediment Site	SW30	SD0135	-117.14727	32.69166	14-Sep-02				Tetrabutyltin (TTBT)	Dry weight	9.2 µg/kg	1
Shipyard Sediment Site	SW30	SD0135	-117.14727	32.69166	14-Sep-02				Tributyltin (TBT)	Dry weight	200 µg/kg	0
Shipyard Sediment Site	SW31	SD0133 SD0122	-117.14443	32.68970	11-Sep-02				Dibutyltin (DBT)	Dry weight	30 µg/kg	
Shipyard Sediment Site	SW31	SD0122	-117.14443	32.68970	11-Sep-02				Monobutyltin (MBT)	Dry weight	9.3 µg/kg	1
Shipyard Sediment Site	SW31	SD0122 SD0122	-117.14443	32.68970	11-Sep-02				Tetrabutyltin (TTBT)	Dry weight	1.7 µg/kg	J II
Shipyard Sediment Site	SW31	SD0122 SD0122	-117.14443	32.68970	11-Sep-02				Tributyltin (TBT)	Dry weight	36 µg/kg	0
Shipyard Sediment Site	SW31	SD0122 SD0108	-117.14824	32.69056	09-Sep-02				Dibutyltin (DBT)	Dry weight	26 µg/kg	5
Shipyard Sediment Site	SW32	SD0108	-117.14824	32.69056	09-Sep-02				Monobutyltin (MBT)	Dry weight	13 µg/kg	
Shipyard Sediment Site	SW32	SD0108	-117.14824	32.69056	09-Sep-02				Tetrabutyltin (TTBT)	Dry weight	2.9 µg/kg	11
Shipyard Sediment Site	SW32	SD0108	-117.14824	32.69056	09-Sep-02				Tributyltin (TBT)	Dry weight	30 µg/kg	0
Shipyard Sediment Site	SW32	SD0108	-117.14024	32.68981	11-Sep-02				Dibutyltin (DBT)	Dry weight	24 µg/kg	
Shipyard Sediment Site	SW33	SD0118	-117.14722	32.68981	11-Sep-02				Monobutyltin (MBT)	Dry weight	16 µg/kg	
Shipyard Sediment Site	SW33	SD0118	-117.14722	32.68981	11-Sep-02				Tetrabutyltin (TTBT)	Dry weight	2.9 µg/kg	
Shipyard Sediment Site	SW33	SD0118	-117.14722	32.68981	11-Sep-02 11-Sep-02				Tributyltin (TBT)	Dry weight	2.9 µg/kg 19 µg/kg	0
Shipyard Sediment Site	SW34	SD0110	-117.14722	32.68846	11-Sep-02				Dibutyltin (DBT)	Dry weight	49 µg/kg	5
Shipyard Sediment Site	SW34	SD0117	-117.14415	32.68846	11-Sep-02 11-Sep-02				Monobutyltin (MBT)		9.3 µg/kg	
Shipyard Sediment Site	SW34	SD0117 SD0117	-117.14415	32.68846					Tetrabutyltin (TTBT)	Dry weight	2.3 µg/kg	
Shipyard Sediment Site	SW34 SW34	SD0117 SD0117	-117.14415 -117.14415	32.68846	11-Sep-02 11-Sep-02		1	+	Tributyltin (TBT)	Dry weight	2.3 µg/kg 38 µg/kg	J
Shipyard Sediment Site	SW34 SW36	SD0117 SD0180	-117.14415	32.68846	07-Nov-02			+	Dibutyltin (DBT)	Dry weight Dry weight	48 µg/kg	<u> </u>
Shipyard Sediment Site	SW36	SD0180 SD0180	-117.14525 -117.14525	32.69023	07-Nov-02 07-Nov-02		1	+	Monobutyltin (MBT)		48 µg/kg 17 µg/kg	1
Shipyard Sediment Site	SW36	SD0180	-117.14525	32.69023	07-Nov-02 07-Nov-02			+	Tetrabutyltin (TTBT)	Dry weight Dry weight	3.2 µg/kg	
Shipyard Sediment Site	SW36	SD0180	-117.14525	32.69023	07-Nov-02 07-Nov-02				Tributyltin (TBT)	Dry weight	3.2 µg/kg 49 µg/kg	0
17	01100	300100	-117.14020	32.09023	07-1107-02		1	+		Dry weight	49 µg/kg	<u> </u>
U.S. Navy Statutory Monitoring of Tributyltin in Selected Harbors	SD-19	Rep 1	-117.13969	32.68856	23-Feb-88	Sediment	Discrete Sample	Stallard, M, et al. 1989	Dibutyltin (DBT)	Dry weight	46 µg/kg	
U.S. Navy Statutory Monitoring of Tributyltin in Selected	1									,		
Harbors	SD-19	Rep 1	-117.13969	32.68856	23-Feb-88	Sediment	Discrete Sample	Stallard, M, et al. 1989	Monobutyltin (MBT)	Dry weight	0 µg/kg	
U.S. Navy Statutory Monitoring of Tributyltin in Selected		· · · ·								.,		
Harbors	SD-19	Rep 1	-117.13969	32.68856	23-Feb-88	Sediment	Discrete Sample	Stallard, M, et al. 1989	Tributyltin (TBT)	Dry weight	64 µg/kg	
U.S. Navy Statutory Monitoring of Tributyltin in Selected				52.00000	20.0000					S., noight	0-1 1-9/1/9	<u> </u>
Harbors	SD-21	Rep 1	-117.13222	32.68403	23-Feb-88	Sediment	Discrete Sample	Stallard, M, et al. 1989	Dibutyltin (DBT)	Dry weight	230 µg/kg	
	00 21		117.10222	02.00403	2010000	Coamon	2.00roto Gample	Ctanard, W, Ctar. 1000	Dissignan (DDT)	Dry weight	200 µg/kg	
U.S. Navy Statutory Monitoring of Tributyltin in Selected Harbors	SD-21	Rep 1	-117.13222	32.68403	23-Feb-88	Sediment	Discrete Sample	Stallard, M, et al. 1989	Monobutyltin (MBT)	Dry weight	48 µg/kg	
U.S. Navy Statutory Monitoring of Tributyltin in Selected	1			52.00.00			contro bumpio			,	10 19.19	1
U.S. Navy Statutory Monitoring of Tributyitin in Selected Harbors	SD-21	Rep 1	-117.13222	32.68403	23-Feb-88	Sediment	Discrete Sample	Stallard, M, et al. 1989	Tributyltin (TBT)	Dry weight	180 µg/kg	
				02.00400	_0.0000						100 pg/kg	1
U.S. Navy Statutory Monitoring of Tributyltin in Selected Harbors	SD-33	Rep 1	-117.13192	32.67367	22-Feb-88	Sediment	Discrete Sample	Stallard, M, et al. 1989	Dibutyltin (DBT)	Dry weight	56 µg/kg	
		1		02.01001	00000	1				,	50 pg/kg	1

PROJECT_NAME	SITE_NAME	SAMPLE_ID	X_COORDINATE	Y_COORDINATE	SAMPLE_DATE	SAMPLE_MEDIUM	TYPE	D	PARAMETER_NAME	PROPERTY	QUANTITY UN	IT QUALIFIER
U.S. Navy Statutory Monitoring of Tributyltin in Selected Harbors	SD-33	Bop 1	-117.13192	32.67367	22-Feb-88	Sediment	Discrete Sample	Stallard, M, etal. 1989	Monobutyltin (MBT)	Druweight	0.00	ka
U.S. Navy Statutory Monitoring of Tributyltin in Selected	50-33	Rep 1	-117.13192	32.07307	22-Feb-88	Sediment	Discrete Sample	Stallard, M, etal. 1989	Monobutylun (MBT)	Dry weight	0 µg	ку
Harbors	SD-33	Rep 1	-117.13192	32.67367	22-Feb-88	Sediment	Discrete Sample	Stallard, M, et al. 1989	Tributyltin (TBT)	Dry weight	36 µg	kg
U.S. Navy Statutory Monitoring of Tributyltin in Selected Harbors	SD-38A	Rep 1	-117.12403	32.67181	22-Feb-88	Sediment	Discrete Sample	Stallard,M,etal.1989	Dibutyltin (DBT)	Dry weight	230 µg	kg
U.S. Navy Statutory Monitoring of Tributyltin in Selected Harbors	SD-38A	Rep 1	-117.12403	32.67181	22-Feb-88	Sediment	Discrete Sample	Stallard,M,etal.1989	Monobutyltin (MBT)	Dry weight	34 µg	kg
U.S. Navy Statutory Monitoring of Tributyltin in Selected Harbors	SD-38A	Rep 1	-117.12403	32.67181	22-Feb-88	Sediment	Discrete Sample	Stallard, M, etal. 1989	Tributyltin (TBT)	Dry weight	170 µg	kg
U.S. Navy Statutory Monitoring of Tributyltin in Selected Harbors	SD-38A	Rep 1	-117.12403	32.67181	27-Oct-88	Sediment	Discrete Sample	Stallard, M, etal. 1989	Dibutyltin (DBT)	Dry weight	0 µg	kg
U.S. Navy Statutory Monitoring of Tributyltin in Selected Harbors	SD-38A	Rep 1	-117.12403	32.67181	27-Oct-88	Sediment	Discrete Sample	Stallard,M,etal.1989	Monobutyltin (MBT)	Dry weight	0 µg	kg
U.S. Navy Statutory Monitoring of Tributyltin in Selected Harbors	SD-38A	Rep 1	-117.12403	32.67181	27-Oct-88	Sediment	Discrete Sample	Stallard,M,etal.1989	Tributyltin (TBT)	Dry weight	8 µg	kg
U.S. Navy Statutory Monitoring of Tributyltin in Selected Harbors	SD-38A	Rep 1	-117.12403	32.67181	31-Jan-89	Sediment	Discrete Sample	Stallard,M,etal.1989	Dibutyltin (DBT)	Dry weight	150 µg	kg
U.S. Navy Statutory Monitoring of Tributyltin in Selected Harbors	SD-38A	Rep 1	-117.12403	32.67181	31-Jan-89	Sediment	Discrete Sample	Stallard,M,etal.1989	Monobutyltin (MBT)	Dry weight	34 µg	kg
U.S. Navy Statutory Monitoring of Tributyltin in Selected Harbors	SD-38A	Rep 1	-117.12403	32.67181	31-Jan-89	Sediment	Discrete Sample	Stallard,M,etal.1989	Tributyltin (TBT)	Dry weight	42 µg	kg
U.S. Navy Statutory Monitoring of Tributyltin in Selected Harbors	SD-38A	Rep 1	-117.12403	32.67181	28-Apr-89	Sediment	Discrete Sample	Stallard,M,etal.1989	Dibutyltin (DBT)	Dry weight	140 µg	kg
U.S. Navy Statutory Monitoring of Tributyltin in Selected Harbors	SD-38A	Rep 1	-117.12403	32.67181	28-Apr-89	Sediment	Discrete Sample	Stallard,M,etal.1989	Monobutyltin (MBT)	Dry weight	57 µg	kg
U.S. Navy Statutory Monitoring of Tributyltin in Selected Harbors	SD-38A	Rep 1	-117.12403	32.67181	28-Apr-89	Sediment	Discrete Sample	Stallard,M,etal.1989	Tributyltin (TBT)	Dry weight	42 µg	kg
U.S. Navy Statutory Monitoring of Tributyltin in Selected Harbors	SD-38A	Rep 1	-117.12403	32.67181	18-Aug-89	Sediment	Discrete Sample	Stallard,M,etal.1989	Dibutyltin (DBT)	Dry weight	140 µg	kg
U.S. Navy Statutory Monitoring of Tributyltin in Selected Harbors	SD-38A	Rep 1	-117.12403	32.67181	18-Aug-89	Sediment	Discrete Sample	Stallard,M,etal.1989	Monobutyltin (MBT)	Dry weight	75 µg	kg
U.S. Navy Statutory Monitoring of Tributyltin in Selected Harbors	SD-38A	Rep 1	-117.12403	32.67181	18-Aug-89	Sediment	Discrete Sample	Stallard,M,etal.1989	Tributyltin (TBT)	Dry weight	41 µg	kg
U.S. Navy Statutory Monitoring of Tributyltin in Selected Harbors	SD-38A	Rep 1	-117.12403	32.67181	30-Oct-89	Sediment	Discrete Sample	Stallard,M,etal.1989	Dibutyltin (DBT)	Dry weight	150 µg	kg
U.S. Navy Statutory Monitoring of Tributyltin in Selected Harbors	SD-38A	Rep 1	-117.12403	32.67181	30-Oct-89	Sediment	Discrete Sample	Stallard, M, etal. 1989	Monobutyltin (MBT)	Dry weight	72 µg	kg
U.S. Navy Statutory Monitoring of Tributyltin in Selected Harbors	SD-38A	Rep 1	-117.12403	32.67181	30-Oct-89	Sediment	Discrete Sample	Stallard, M, etal. 1989	Tributyltin (TBT)	Dry weight	48 µg	kg
U.S. Navy Statutory Monitoring of Tributyltin in Selected Harbors	SD-38A	Rep 1	-117.12403	32.67181	08-Feb-90	Sediment	Discrete Sample	Stallard,M,etal.1989	Dibutyltin (DBT)	Dry weight	93 µg	kg
U.S. Navy Statutory Monitoring of Tributyltin in Selected Harbors	SD-38A	Rep 1	-117.12403	32.67181	08-Feb-90	Sediment	Discrete Sample	Stallard,M,etal.1989	Monobutyltin (MBT)	Dry weight	42 µg	kg
U.S. Navy Statutory Monitoring of Tributyltin in Selected Harbors	SD-38A	Rep 1	-117.12403	32.67181	08-Feb-90	Sediment	Discrete Sample	Stallard,M,etal.1989	Tributyltin (TBT)	Dry weight	53 µg	kg
U.S. Navy Statutory Monitoring of Tributyltin in Selected Harbors	SD-38A	Rep 1	-117.12403	32.67181	30-Apr-90	Sediment	Discrete Sample	Stallard,M,etal.1989	Dibutyltin (DBT)	Dry weight	63 µg	kg
U.S. Navy Statutory Monitoring of Tributyltin in Selected Harbors	SD-38A	Rep 1	-117.12403	32.67181	30-Apr-90	Sediment	Discrete Sample	Stallard,M,etal.1989	Monobutyltin (MBT)	Dry weight	61 µg	kg
U.S. Navy Statutory Monitoring of Tributyltin in Selected Harbors	SD-38A	Rep 1	-117.12403	32.67181	30-Apr-90	Sediment	Discrete Sample	Stallard,M,etal.1989	Tributyltin (TBT)	Dry weight	35 µg	kg
U.S. Navy Statutory Monitoring of Tributyltin in Selected Harbors	SD-38A	Rep 1	-117.12403	32.67181	20-Jul-90	Sediment	Discrete Sample	Stallard,M,etal.1989	Dibutyltin (DBT)	Dry weight	73 µg	kg
U.S. Navy Statutory Monitoring of Tributyltin in Selected Harbors	SD-38A	Rep 1	-117.12403	32.67181	20-Jul-90	Sediment	Discrete Sample	Stallard,M,etal.1989	Monobutyltin (MBT)	Dry weight	58 µg	kg
U.S. Navy Statutory Monitoring of Tributyltin in Selected Harbors	SD-38A	Rep 1	-117.12403	32.67181	20-Jul-90	Sediment	Discrete Sample	Stallard,M,etal.1989	Tributyltin (TBT)	Dry weight	43 µg	kg
U.S. Navy Statutory Monitoring of Tributyltin in Selected Harbors	SD-38A	Rep 1	-117.12403	32.67181	16-Oct-90	Sediment	Discrete Sample	Stallard, M, et al. 1989	Dibutyltin (DBT)	Dry weight	120 µg	kg

PROJECT_NAME	SITE_NAME	SAMPLE_ID	X_COORDINATE	Y_COORDINATE	SAMPLE_DATE	SAMPLE_MEDIUM	TYPE	D	PARAMETER_NAME	PROPERTY	QUANTITY UNI	T QUALIFIER
U.S. Navy Statutory Monitoring of Tributyltin in Selected Harbors	SD-38A	Rep 1	-117.12403	32.67181	16-Oct-90	Sediment	Discrete Sample	Stallard, M, et al. 1989	Monobutyltin (MBT)	Dry weight	62 µg/ł	g
U.S. Navy Statutory Monitoring of Tributyltin in Selected Harbors	SD-38A	Rep 1	-117.12403	32.67181	16-Oct-90	Sediment	Discrete Sample	Stallard, M, et al. 1989	Tributyltin (TBT)	Dry weight	33 µg/ł	g
U.S. Navy Statutory Monitoring of Tributyltin in Selected Harbors	SD-38A	Rep 1	-117.12403	32.67181	15-Apr-92	Sediment	Discrete Sample	Stallard, M, et al. 1989	Dibutyltin (DBT)	Dry weight	96 µg/ł	g
U.S. Navy Statutory Monitoring of Tributyltin in Selected Harbors	SD-38A	Rep 1	-117.12403	32.67181	15-Apr-92	Sediment	Discrete Sample	Stallard, M, et al. 1989	Monobutyltin (MBT)	Dry weight	160 µg/ł	g
U.S. Navy Statutory Monitoring of Tributyltin in Selected Harbors	SD-38A	Rep 1	-117.12403	32.67181	15-Apr-92	Sediment	Discrete Sample	Stallard, M, et al. 1989	Tributyltin (TBT)	Dry weight	40 µg/ł	g
U.S. Navy Statutory Monitoring of Tributyltin in Selected Harbors	SD-42	Rep 1	-117.12583	32.65653	22-Feb-88	Sediment	Discrete Sample	Stallard, M, et al. 1989	Dibutyltin (DBT)	Dry weight	100 µg/ł	g
U.S. Navy Statutory Monitoring of Tributyltin in Selected Harbors	SD-42	Rep 1	-117.12583	32.65653	22-Feb-88	Sediment	Discrete Sample	Stallard, M, et al. 1989	Monobutyltin (MBT)	Dry weight	0 µg/ł	g
U.S. Navy Statutory Monitoring of Tributyltin in Selected Harbors	SD-42	Rep 1	-117.12583	32.65653	22-Feb-88	Sediment	Discrete Sample	Stallard, M, et al. 1989	Tributyltin (TBT)	Dry weight	40 µg/ł	g

High-Molecular-Weight Polynuclear Aromatic Hydrocarbons (HPAHs) in Surface Sediment Samples Response to Tentative Cleanup and Abatement Order and City of San Diego Complaint United States Naval Base San Diego, California

PROJECT NAME	SITE_NAME	SAMPLE_ID	X_COORDINATE	Y_COORDINATE	SAMPLE_DATE	TOTAL HPAH (µg/kg dry wt)
Bay Protection and Toxic Cleanup Program	90006	SAIVIFLE_ID	-117.13417	32.68667	08/04/93	(µg/kg dry wt) 6608
Bay Protection and Toxic Cleanup Program	90007		-117.12889	32.68028	11/10/92	5889
Bay Protection and Toxic Cleanup Program	90007		-117.12003	32.68117	08/17/93	10175
Bay Protection and Toxic Cleanup Program	90007		-117.12902	32.68090	12/03/96	7694
Bay Protection and Toxic Cleanup Program	90008		-117.12556	32.67417	11/10/92	8332
Bay Protection and Toxic Cleanup Program	90008		-117.12500	32.67383	08/17/93	8071
Bay Protection and Toxic Cleanup Program	90008		-117.12460		12/03/96	6359
Bay Protection and Toxic Cleanup Program	90009		-117.11694	32.67250	11/10/92	6326
Bay Protection and Toxic Cleanup Program	90009		-117.11700		08/17/93	4310
Bay Protection and Toxic Cleanup Program	90010		-117.11900		08/17/93	925
Bay Protection and Toxic Cleanup Program	90020		-117.14667	32.69278	01/26/93	15924
Bay Protection and Toxic Cleanup Program	90020	Rep 1	-117.14757	32.69200	03/01/94	13200
Bay Protection and Toxic Cleanup Program	90020		-117.14757	32.69323	12/03/96	14972
Bay Protection and Toxic Cleanup Program	90021		-117.14617	32.69200	08/04/93	10461
Bay Protection and Toxic Cleanup Program	90022		-117.12389	32.67833	11/10/92	23242
Bay Protection and Toxic Cleanup Program	90022		-117.12500		08/04/93	25960
Bay Protection and Toxic Cleanup Program	90022	Rep 1	-117.12528	32.67889	03/01/94	23523
Bay Protection and Toxic Cleanup Program	90022		-117.12438	32.67853	12/03/96	12697
Bay Protection and Toxic Cleanup Program	90030		-117.14194	32.68972	01/26/93	28833
Bay Protection and Toxic Cleanup Program	90030	Rep 1	-117.14306		03/15/94	12590
Bay Protection and Toxic Cleanup Program	93133		-117.12867	32.67300	04/06/93	5579
Bay Protection and Toxic Cleanup Program	93178		-117.14967	32.69417	05/26/93	8602
Bay Protection and Toxic Cleanup Program	93178	Rep 1	-117.14967	32.69483	03/02/94	7721
Bay Protection and Toxic Cleanup Program	93178		-117.14997	32.69532	12/03/96	7329
Bay Protection and Toxic Cleanup Program	93179		-117.14850		05/26/93	12904
Bay Protection and Toxic Cleanup Program	93179	Rep 1	-117.14900		03/02/94	17035
Bay Protection and Toxic Cleanup Program	93179		-117.14862		12/03/96	24056
Bay Protection and Toxic Cleanup Program	93181		-117.13967	32.68983	05/26/93	5423
Bay Protection and Toxic Cleanup Program	93181	Rep 1	-117.14017	32.68983	03/02/94	4985
Bay Protection and Toxic Cleanup Program	93184		-117.12617	32.68017	05/26/93	14525
Bay Protection and Toxic Cleanup Program	93210		-117.14667	32.69317	08/04/93	7458
Bay Protection and Toxic Cleanup Program	93211		-117.14583	32.69283	08/04/93	15500
Bay Protection and Toxic Cleanup Program	93212		-117.13350	32.68767	08/04/93	3916
Bay Protection and Toxic Cleanup Program	93213		-117.13433		08/04/93	6359
Bay Protection and Toxic Cleanup Program	93214		-117.12517	32.67450	08/04/93	10745
Bay Protection and Toxic Cleanup Program	93215		-117.12617	32.67600	08/04/93	7020
Bay Protection and Toxic Cleanup Program	93223		-117.13000		08/17/93	11836
Bay Protection and Toxic Cleanup Program	93224		-117.12917	32.67933	08/17/93	1001

High-Molecular-Weight Polynuclear Aromatic Hydrocarbons (HPAHs) in Surface Sediment Samples Response to Tentative Cleanup and Abatement Order and City of San Diego Complaint United States Naval Base San Diego, California

PROJECT NAME	SITE NAME	SAMPLE_ID	X_COORDINATE	Y COORDINATE	SAMPLE_DATE	TOTAL HPAH (µg/kg dry wt)
Bay Protection and Toxic Cleanup Program	93225		-117.12233	32.67600	08/17/93	18749
Bay Protection and Toxic Cleanup Program	93226		-117.12267	32.67667	08/17/93	16804
Bay Protection and Toxic Cleanup Program	93227		-117.11633	32.67367	08/17/93	10725
Bay Protection and Toxic Cleanup Program	93228		-117.11617	32.67317	08/17/93	9067
Bay Protection and Toxic Cleanup Program	93229		-117.11883	32.65967	08/17/93	40769
Bay Protection and Toxic Cleanup Program	93230		-117.11883	32.65933	08/17/93	6297
Mouth of Chollas Creek	C01		-117.13539	32.68573	2001	2184
Mouth of Chollas Creek	C02		-117.13520	32.68540	2001	2050
Mouth of Chollas Creek	C03		-117.13493	32.68500	2001	2660
Mouth of Chollas Creek	C04		-117.13495	32.68646	2001	1787
Mouth of Chollas Creek	C05		-117.13456	32.68594	2001	1913
Mouth of Chollas Creek	C06		-117.13407	32.68545	2001	2306
Mouth of Chollas Creek	C07		-117.13439	32.68723	2001	772
Mouth of Chollas Creek	C08		-117.13403	32.68686	2001	775
Mouth of Chollas Creek	C09		-117.13364	32.68641	2001	6020
Mouth of Chollas Creek	C10		-117.13330	32.68595	2001	2560
Mouth of Chollas Creek	C11		-117.13353	32.68726	2001	1013
Mouth of Chollas Creek	C12		-117.13229	32.68760	2001	36060
Mouth of Chollas Creek	C13		-117.13088	32.68758	2001	11600
Mouth of Chollas Creek	C14		-117.12971	32.68763	2001	5194
Mouth of Paleta Creek	P01		-117.12407	32.67153	2001	432
Mouth of Paleta Creek	P02		-117.12357	32.67069	2001	1504
Mouth of Paleta Creek	P03		-117.12234	32.67247	2001	808
Mouth of Paleta Creek	P04		-117.12177	32.67158	2001	1329
Mouth of Paleta Creek	P05		-117.12123	32.67089	2001	2170
Mouth of Paleta Creek	P06		-117.12091	32.67321	2001	2110
Mouth of Paleta Creek	P07		-117.12023	32.67243	2001	1870
Mouth of Paleta Creek	P08		-117.11969	32.67164	2001	2870
Mouth of Paleta Creek	P09		-117.11840	32.67236	2001	108
Mouth of Paleta Creek	P10		-117.11840	32.67197	2001	1326
Mouth of Paleta Creek	P11		-117.11822	32.67265	2001	5540
Mouth of Paleta Creek	P12		-117.11770	32.67232	2001	3470
Mouth of Paleta Creek	P13		-117.11733	32.67306	2001	645
Mouth of Paleta Creek	P14		-117.11709	32.67268	2001	2810
Mouth of Paleta Creek	P15		-117.11669	32.67342	2001	5440
Mouth of Paleta Creek	P16		-117.11642	32.67305	2001	3940
Mouth of Paleta Creek	P17		-117.11601	32.67376	2001	4440
NAVSTA TMDL 2008	NS2233		-117.15174	32.68581	2008	176

High-Molecular-Weight Polynuclear Aromatic Hydrocarbons (HPAHs) in Surface Sediment Samples Response to Tentative Cleanup and Abatement Order and City of San Diego Complaint United States Naval Base San Diego, California

PROJECT_NAME	SITE_NAME	SAMPLE_ID	X_COORDINATE	Y_COORDINATE	SAMPLE_DATE	TOTAL HPAH (µg/kg dry wt)
NAVSTA TMDL 2008	NS2258		-117.13212	32.67601	2008	195
NAVSTA TMDL 2008	NS28		-117.12454	32.67569	2008	634
NAVSTA TMDL 2008	NS29		-117.12566	32.67511	2008	644
NAVSTA TMDL 2008	NS8		-117.13032	32.68249	2008	1081
NAVSTA TMDL 2008	NS9		-117.13138	32.68181	2008	689
PRISM 2002	P04-1		-117.12164	32.67153	01/15/02	966
PRISM 2002	P04-2		-117.12154	32.67152	01/15/02	1314
PRISM 2002	P04-3		-117.12162	32.67160	01/15/02	1559
PRISM 2002	P17-1		-117.11592	32.67371	01/09/02	8162
PRISM 2002	P17-2		-117.11586	32.67368	01/09/02	4539
PRISM 2002	P17-3		-117.11595	32.67365	01/09/02	4117
PWC Graving Dock Naval Station NPDES Permit	GVD-S03		-117.12660	32.67837	2004-2009	1,030
PWC Graving Dock Naval Station NPDES Permit	GVD-S04		-117.12463	32.67929	2004-2009	1,662
PWC Graving Dock Naval Station NPDES Permit	STD-GVD-S01		-117.12425	32.67877	2004-2009	1,556
Sediment Quality Characterization Naval Station San Diego	NSB1-S-R2		-117.12985	32.67933	09/02/97	86800
Sediment Quality Characterization Naval Station San Diego	NSB3-S-R2		-117.12535	32.67990	09/02/97	70280
Sediment Quality Characterization Naval Station San Diego	NSB-4		-117.12483	32.67208	08/07/95	62138
Sediment Quality Characterization Naval Station San Diego	NSB4-S-R2		-117.12483	32.67208	09/02/97	24480
Sediment Quality Characterization Naval Station San Diego	NSB-5		-117.11657	32.67333	07/12/95	8943
Sediment Quality Characterization Naval Station San Diego	NSB5-S-R2		-117.11657	32.67363	09/03/97	31400
Sediment Quality Characterization Naval Station San Diego	NSB-R2-10S		-117.12100	32.66338	09/03/97	4560
Sediment Quality Characterization Naval Station San Diego	NSB-R2-11S		-117.12345	32.66325	09/03/97	1642
Sediment Quality Characterization Naval Station San Diego	NSB-R2-13S		-117.12142	32.66532	09/03/97	5850
Sediment Quality Characterization Naval Station San Diego	NSB-R2-14S		-117.11962	32.66688	09/03/97	7180
Sediment Quality Characterization Naval Station San Diego	NSB-R2-15S		-117.12173	32.66675	09/03/97	4960
Sediment Quality Characterization Naval Station San Diego	NSB-R2-16S		-117.12393	32.66662	09/03/97	487
Sediment Quality Characterization Naval Station San Diego	NSB-R2-17S		-117.11987	32.66840	09/03/97	7740
Sediment Quality Characterization Naval Station San Diego	NSB-R2-18S		-117.12182	32.66833	09/03/97	6530
Sediment Quality Characterization Naval Station San Diego	NSB-R2-19S		-117.12377	32.66820	09/03/97	4300
Sediment Quality Characterization Naval Station San Diego	NSB-R2-20S		-117.11758	32.67262	09/03/97	1148
Sediment Quality Characterization Naval Station San Diego	NSB-R2-21S		-117.11922	32.67172	09/03/97	4520
Sediment Quality Characterization Naval Station San Diego	NSB-R2-22S		-117.12108	32.67048	09/03/97	5250
Sediment Quality Characterization Naval Station San Diego	NSB-R2-23S		-117.12368	32.67007	09/03/97	2750
Sediment Quality Characterization Naval Station San Diego	NSB-R2-24S		-117.12043	32.67350	09/03/97	3200
Sediment Quality Characterization Naval Station San Diego	NSB-R2-25S		-117.12238	32.67240	09/03/97	1680
Sediment Quality Characterization Naval Station San Diego	NSB-R2-26S		-117.12198	32.67530	09/03/97	7810
Sediment Quality Characterization Naval Station San Diego	NSB-R2-27S		-117.12353	32.67433	09/03/97	3250
Sediment Quality Characterization Naval Station San Diego	NSB-R2-28S		-117.12557	32.67317	09/03/97	567

High-Molecular-Weight Polynuclear Aromatic Hydrocarbons (HPAHs) in Surface Sediment Samples Response to Tentative Cleanup and Abatement Order and City of San Diego Complaint United States Naval Base San Diego, California

Sediment Quality Characterization Naval Station San Diego NSB-R2:286 -117.12345 22.677.00 090.097 7980 Sediment Quality Characterization Naval Station San Diego NSB-R2:315 -117.12452 32.67833 090.397 1066 Sediment Quality Characterization Naval Station San Diego NSB-R2:325 -117.12807 32.67840 090.397 1066 Sediment Quality Characterization Naval Station San Diego NSB-R2:325 -117.12807 32.67440 090.397 286 Sediment Quality Characterization Naval Station San Diego NSB-R2:335 -117.12803 32.67740 090.397 2920 Sediment Quality Characterization Naval Station San Diego NSB-R2:365 -117.12803 32.67740 090.397 2940 Sediment Quality Characterization Naval Station San Diego NSB-R2:365 -117.12956 32.67783 090.397 2940 Sediment Quality Characterization Naval Station San Diego NSB-R2:365 -117.12926 32.67892 090.397 2940 Sediment Quality Characterization Naval Station San Diego NSB-R2:405 -117.12927 32.68192 090.397 6390 Sediment Quality				V OOODDINATE	V COODDINATE		TOTAL HPAH
Sediment Quality Characterization Naval Station San Diego NSB-R2-308 -117.1242 22.67833 0903397 1910 Sediment Quality Characterization Naval Station San Diego NSB-R2-325 -117.1280 32.67640 0903397 1066 Sediment Quality Characterization Naval Station San Diego NSB-R2-325 -117.1287 32.67640 0903397 1048 Sediment Quality Characterization Naval Station San Diego NSB-R2-355 -117.12830 32.67640 0903397 2920 Sediment Quality Characterization Naval Station San Diego NSB-R2-355 -117.12850 32.68073 0903397 9940 Sediment Quality Characterization Naval Station San Diego NSB-R2-365 -117.1292 32.68073 0903397 2580 Sediment Quality Characterization Naval Station San Diego NSB-R2-385 -117.1292 32.68397 0903397 6580 Sediment Quality Characterization Naval Station San Diego NSB-R2-485 -117.1327 32.68496 0903397 6580 Sediment Quality Characterization Naval Station San Diego NSB-R2-485 -117.1327 32.68491 0903397 6280 Sediment Quality Charac	PROJECT_NAME	SITE_NAME	SAMPLE_ID	_	_	SAMPLE_DATE	(µg/kg dry wt)
Sediment Quality Characterization Naval Station San Dego NSB-R2:315 117.12570 32.67568 0903/97 1066 Sediment Quality Characterization Naval Station San Dego NSB-R2:325 -117.12870 32.67640 0903/97 1048 Sediment Quality Characterization Naval Station San Dego NSB-R2:335 -117.12877 32.67440 0903/97 288 Sediment Quality Characterization Naval Station San Dego NSB-R2:365 -117.12856 32.66773 0903/97 9920 Sediment Quality Characterization Naval Station San Dego NSB-R2:365 -117.12856 32.66773 0903/97 0903/97 0903/97 0903/97 0903/97 0903/97 0903/97 0903/97 0903/97 0903/97 0903/97 0903/97 0903/97 050/90 0903/97 050/90 0903/97 050/90 0903/97 050/90 0903/97 050/90 0903/97 050/90 0903/97 050/90 0903/97 050/90 0903/97 050/90 0903/97 050/90 0903/97 050/90 0903/97 050/90 0903/97 050/90 0903/97 050/90	· · · · · · · · · · · · · · · · · · ·						
Sediment Quality Characterization Naval Station San Diego NSB-R2-328 -117.1289 32.6740 09/0397 1048 Sediment Quality Characterization Naval Station San Diego NSB-R2-345 -117.1327 32.6740 09/0397 268 Sediment Quality Characterization Naval Station San Diego NSB-R2-355 -117.1283 32.6740 09/0397 268 Sediment Quality Characterization Naval Station San Diego NSB-R2-365 -117.1285 32.67767 09/0397 09/04 Sediment Quality Characterization Naval Station San Diego NSB-R2-365 -117.1287 32.67940 09/0397 2580 Sediment Quality Characterization Naval Station San Diego NSB-R2-385 -117.1287 32.67940 09/0397 6300 Sediment Quality Characterization Naval Station San Diego NSB-R2-385 -117.1307 32.68192 09/0397 6690 Sediment Quality Characterization Naval Station San Diego NSB-R2-485 -117.1317 32.68192 09/0397 6680 Sediment Quality Characterization Naval Station San Diego NSB-R2-485 -117.13418 32.68672 09/0397 2297 Sediment Quality Characteriz	· · · · · · · · · · · · · · · · · · ·						
Sediment Quality Characterization Naval Station San Diego NSB-R2-33S -117.13257 32.67440 090.0397 2818 Sediment Quality Characterization Naval Station San Diego NSB-R2-35S -117.1285 32.68073 090.0397 2920 Sediment Quality Characterization Naval Station San Diego NSB-R2-36S -117.12855 32.68073 090.0397 9040 Sediment Quality Characterization Naval Station San Diego NSB-R2-37S -117.12925 32.68397 090.0397 23580 Sediment Quality Characterization Naval Station San Diego NSB-R2-38S -117.13077 32.68492 090.0397 26380 Sediment Quality Characterization Naval Station San Diego NSB-R2-40S -117.13077 32.68492 090.0397 6680 Sediment Quality Characterization Naval Station San Diego NSB-R2-41S -117.13077 32.68492 090.0397 6680 Sediment Quality Characterization Naval Station San Diego NSB-R2-41S -117.1330 32.68672 090.0397 6520 Sediment Quality Characterization Naval Station San Diego NSB-R2-45S -117.1342 32.68672 090.0397 6200 Sediment	, , , , , , , , , , , , , , , , , , , ,						
Sediment Quality Characterization Naval Station San Diego NSB-R2-34S -117.1377 32.67143 0900397 268 Sediment Quality Characterization Naval Station San Diego NSB-R2-36S -117.12805 32.67875 0900397 0900 Sediment Quality Characterization Naval Station San Diego NSB-R2-37S -117.12777 32.67825 0900397 23580 Sediment Quality Characterization Naval Station San Diego NSB-R2-38S -117.12777 32.68236 0900397 23580 Sediment Quality Characterization Naval Station San Diego NSB-R2-39S -117.13077 32.68236 0900397 6900 Sediment Quality Characterization Naval Station San Diego NSB-R2-49S -117.13077 32.68236 0900397 6490 Sediment Quality Characterization Naval Station San Diego NSB-R2-41S -117.13071 32.68480 0900397 6490 Sediment Quality Characterization Naval Station San Diego NSB-R2-42S -117.13172 32.68462 0900397 6290 Sediment Quality Characterization Naval Station San Diego NSB-R2-44S -117.13272 32.68763 0900397 6290 Sediment Quality							
Sadiment Quality Characterization Naval Station San Diego NSB-R2-36S -117.12630 32.26073 0900397 9920 Sediment Quality Characterization Naval Station San Diego NSB-R2-36S -117.12777 32.67875 090397 8930 Sediment Quality Characterization Naval Station San Diego NSB-R2-38S -117.12777 32.67825 090397 2350 Sediment Quality Characterization Naval Station San Diego NSB-R2-38S -117.13077 32.68397 090397 6560 Sediment Quality Characterization Naval Station San Diego NSB-R2-40S -117.11822 32.68192 090397 6680 Sediment Quality Characterization Naval Station San Diego NSB-R2-42S -117.13141 32.68612 090397 62930 Sediment Quality Characterization Naval Station San Diego NSB-R2-43S -117.13141 32.68612 090397 5230 Sediment Quality Characterization Naval Station San Diego NSB-R2-43S -117.13421 32.68672 090397 3220 Sediment Quality Characterization Naval Station San Diego NSB-R2-45S -117.14477 32.68672 090397 2220 Sediment Quality Charac	· · · · · · · · · · · · · · · · · · ·						
Sediment Quality Characterization Naval Station San Diego NSB-R2-365 -117.12955 32.67875 0903977 9940 Sediment Quality Characterization Naval Station San Diego NSB-R2-375 -117.1222 32.68397 0903977 23580 Sediment Quality Characterization Naval Station San Diego NSB-R2-395 -117.13077 32.68295 0903977 5590 Sediment Quality Characterization Naval Station San Diego NSB-R2-405 -117.13172 32.68192 0903977 6490 Sediment Quality Characterization Naval Station San Diego NSB-R2-415 -117.13182 32.68412 0903977 6490 Sediment Quality Characterization Naval Station San Diego NSB-R2-425 -117.13182 32.68412 0903977 5320 Sediment Quality Characterization Naval Station San Diego NSB-R2-425 -117.14147 32.68673 0903977 5320 Sediment Quality Characterization Naval Station San Diego NSB-R2-455 -117.14147 32.68673 0903977 1282 Sediment Quality Characterization Naval Station San Diego NSB-R2-455 -117.14147 32.68670 0903977 1282 Sediment Quality							
Sediment Quality Characterization Naval Station San Diego NSB-R2-37S -117.1277 32.67992 0903477 8310 Sediment Quality Characterization Naval Station San Diego NSB-R2-39S -117.1292 32.68937 090397 5090 Sediment Quality Characterization Naval Station San Diego NSB-R2-40S -117.13272 32.68192 090397 6580 Sediment Quality Characterization Naval Station San Diego NSB-R2-41S -117.13182 32.68357 090397 6490 Sediment Quality Characterization Naval Station San Diego NSB-R2-41S -117.13418 32.68357 090397 5227 Sediment Quality Characterization Naval Station San Diego NSB-R2-44S -117.13418 32.68612 090397 5220 Sediment Quality Characterization Naval Station San Diego NSB-R2-44S -117.13421 32.6872 090397 1280 Sediment Quality Characterization Naval Station San Diego NSB-R2-46S -117.14477 32.68676 090397 1280 Sediment Quality Characterization Naval Station San Diego NSB-R2-46S -117.14477 32.68676 090397 1280 Sediment Quality Characteri	, , , , , , , , , , , , , , , , , , , ,						
Sediment Quality Characterization Naval Station San Diego NSB-R2:385 -117.12922 32.68397 09/03/97 23580 Sediment Quality Characterization Naval Station San Diego NSB-R2:495 -117.13077 32.68129 09/03/97 5680 Sediment Quality Characterization Naval Station San Diego NSB-R2:405 -117.13172 32.68129 09/03/97 6580 Sediment Quality Characterization Naval Station San Diego NSB-R2:415 -117.1318 32.68357 09/03/97 5230 Sediment Quality Characterization Naval Station San Diego NSB-R2:445 -117.13272 32.68763 09/03/97 5220 Sediment Quality Characterization Naval Station San Diego NSB-R2:445 -117.13272 32.68763 09/03/97 5220 Sediment Quality Characterization Naval Station San Diego NSB-R2:445 -117.14247 32.68667 09/03/97 1284 Sediment Quality Characterization Naval Station San Diego NSB-R2:465 -117.14247 32.68667 09/03/97 1284 Sediment Quality Characterization Naval Station San Diego NSB-R2:485 -117.14247 32.68638 09/03/97 1285 Sedimen	, , , , , , , , , , , , , , , , , , , ,						
Sediment Quality Characterization Naval Station San Diego NSB-R2-39S -117.13077 32.68295 09/03/97 5690 Sediment Quality Characterization Naval Station San Diego NSB-R2-40S -117.13272 32.68496 09/03/97 6680 Sediment Quality Characterization Naval Station San Diego NSB-R2-41S -117.13418 32.68480 09/03/97 6280 Sediment Quality Characterization Naval Station San Diego NSB-R2-42S -117.13418 32.68612 09/03/97 5320 Sediment Quality Characterization Naval Station San Diego NSB-R2-43S -117.13424 32.68673 09/03/97 5220 Sediment Quality Characterization Naval Station San Diego NSB-R2-44S -117.13424 32.68672 09/03/97 1227 Sediment Quality Characterization Naval Station San Diego NSB-R2-45S -117.14477 32.68662 09/03/97 1280 Sediment Quality Characterization Naval Station San Diego NSB-R2-47S -117.14271 32.68670 09/03/97 1280 Sediment Quality Characterization Naval Station San Diego NSB-R2-6S -117.14273 32.66180 09/03/97 1205 Sediment				-117.12777		09/03/97	
Sediment Quality Characterization Naval Station San Diego NSB-R2-40S -117.13272 32.68192 09/03/97 56800 Sediment Quality Characterization Naval Station San Diego NSB-R2-41S -117.13141 32.68480 09/03/97 6490 Sediment Quality Characterization Naval Station San Diego NSB-R2-42S -117.13141 32.68672 09/03/97 5220 Sediment Quality Characterization Naval Station San Diego NSB-R2-44S -117.13142 32.68672 09/03/97 9270 Sediment Quality Characterization Naval Station San Diego NSB-R2-46S -117.14477 32.68672 09/03/97 9270 Sediment Quality Characterization Naval Station San Diego NSB-R2-46S -117.14477 32.68676 09/03/97 1284 Sediment Quality Characterization Naval Station San Diego NSB-R2-475 -117.14477 32.68676 09/03/97 2920 Sediment Quality Characterization Naval Station San Diego NSB-R2-485 -117.14275 32.66170 09/03/97 1282 Sediment Quality Characterization Naval Station San Diego NSB-R2-65 -117.14276 32.66132 09/03/97 12920 Sedime	•	NSB-R2-38S		-117.12922	32.68397	09/03/97	23580
Sediment Quality Characterization Naval Station San Diego NSB-R2-41S -117.13192 32.68480 09/03/97 6490 Sediment Quality Characterization Naval Station San Diego NSB-R2-42S -117.13103 32.68470 09/03/97 1297 Sediment Quality Characterization Naval Station San Diego NSB-R2-43S -117.13303 32.68612 09/03/97 9270 Sediment Quality Characterization Naval Station San Diego NSB-R2-44S -117.14477 32.68672 09/03/97 9270 Sediment Quality Characterization Naval Station San Diego NSB-R2-46S -117.14477 32.68667 09/03/97 1282 Sediment Quality Characterization Naval Station San Diego NSB-R2-47S -117.14477 32.68667 09/03/97 1282 Sediment Quality Characterization Naval Station San Diego NSB-R2-47S -117.14275 32.68671 09/03/97 1292 Sediment Quality Characterization Naval Station San Diego NSB-R2-48S -117.14275 32.6812 09/03/97 1292 Sediment Quality Characterization Naval Station San Diego NSB-R2-85 -117.1200 32.66138 09/03/97 1290 Sediment Q	Sediment Quality Characterization Naval Station San Diego			-117.13077		09/03/97	5090
Sediment Quality Characterization Naval Station San Diego NSB-R2-42S -117.13418 32.68637 09/03/97 1297 Sediment Quality Characterization Naval Station San Diego NSB-R2-43S -117.1320 32.68612 09/03/97 5320 Sediment Quality Characterization Naval Station San Diego NSB-R2-44S -117.13242 32.68672 09/03/97 3910 Sediment Quality Characterization Naval Station San Diego NSB-R2-46S -117.14247 32.68672 09/03/97 3910 Sediment Quality Characterization Naval Station San Diego NSB-R2-46S -117.14247 32.68676 09/03/97 2820 Sediment Quality Characterization Naval Station San Diego NSB-R2-48S -117.14275 32.68670 09/03/97 2820 Sediment Quality Characterization Naval Station San Diego NSB-R2-48S -117.14276 32.6812 09/03/97 6260 Sediment Quality Characterization Naval Station San Diego NSB-R2-48S -117.14276 32.6812 09/03/97 1205 Sediment Quality Characterization Naval Station San Diego NSB-R2-8S -117.11470 32.66132 09/03/97 1296 Sediment Qu	Sediment Quality Characterization Naval Station San Diego	NSB-R2-40S		-117.13272	32.68192	09/03/97	5680
Sediment Quality Characterization Naval Station San Diego NSB-R2-43S -117.13330 32.68612 09/03/97 5320 Sediment Quality Characterization Naval Station San Diego NSB-R2-44S -117.13422 32.68763 09/03/97 9270 Sediment Quality Characterization Naval Station San Diego NSB-R2-45S -117.13442 32.68722 09/03/97 1381 Sediment Quality Characterization Naval Station San Diego NSB-R2-46S -117.14477 32.68676 09/03/97 1284 Sediment Quality Characterization Naval Station San Diego NSB-R2-47S -117.14275 32.68838 09/03/97 6260 Sediment Quality Characterization Naval Station San Diego NSB-R2-6S -117.117.10206 32.65870 09/03/97 1205 Sediment Quality Characterization Naval Station San Diego NSB-R2-6S -117.11888 32.66132 09/03/97 1205 Sediment Quality Characterization Naval Station San Diego NSB-R2-7S -117.1206 32.66132 09/03/97 1289 Sediment Quality Characterization Naval Station San Diego NSB-R2-9S -117.11913 32.66132 09/03/97 1289 Sediment	Sediment Quality Characterization Naval Station San Diego			-117.13192	32.68480	09/03/97	6490
Sediment Quality Characterization Naval Station San Diego NSB-R2-44S -117.13272 32.68763 09/03/97 9270 Sediment Quality Characterization Naval Station San Diego NSB-R2-46S -117.13442 32.68722 09/03/97 1284 Sediment Quality Characterization Naval Station San Diego NSB-R2-46S -117.144215 32.68867 09/03/97 128.4 Sediment Quality Characterization Naval Station San Diego NSB-R2-48S -117.14215 32.68863 09/03/97 6260 Sediment Quality Characterization Naval Station San Diego NSB-R2-48S -117.14216 32.68162 09/03/97 6260 Sediment Quality Characterization Naval Station San Diego NSB-R2-6S -117.12060 32.66138 09/03/97 1205 Sediment Quality Characterization Naval Station San Diego NSB-R2-7S -117.1200 32.66132 09/03/97 1289 Sediment Quality Characterization Naval Station San Diego NSB-R2-8S -117.13848 32.66132 09/03/97 1289 Sediment Quality Characterization Naval Station San Diego NSB-R2-8S -117.11913 32.66345 09/03/97 1480 Shipyard S	Sediment Quality Characterization Naval Station San Diego	NSB-R2-42S		-117.13418	32.68357	09/03/97	1297
Sediment Quality Characterization Naval Station San Diego NSB-R2-45S -117.13442 32.68722 09/03/97 3910 Sediment Quality Characterization Naval Station San Diego NSB-R2-46S -117.14477 32.68667 09/03/97 128.4 Sediment Quality Characterization Naval Station San Diego NSB-R2-47S -117.14215 32.68838 09/03/97 62200 Sediment Quality Characterization Naval Station San Diego NSB-R2-48S -117.14737 32.60162 09/03/97 62200 Sediment Quality Characterization Naval Station San Diego NSB-R2-6S -117.1188 32.66132 09/03/97 1205 Sediment Quality Characterization Naval Station San Diego NSB-R2-6S -117.12100 32.66132 09/03/97 1205 Sediment Quality Characterization Naval Station San Diego NSB-R2-8S -117.12100 32.66132 09/03/97 1249 Sediment Quality Characterization Naval Station San Diego NSB-R2-8S -117.12100 32.66132 09/03/97 1248 Sediment Quality Characterization Naval Station San Diego NSB-R2-9S -117.11813 32.66110 09/03/97 1480 Shipyard S	Sediment Quality Characterization Naval Station San Diego	NSB-R2-43S		-117.13330	32.68612	09/03/97	5320
Sediment Quality Characterization Naval Station San Diego NSB-R2-46S -117.14477 32.68667 09/03/97 128.4 Sediment Quality Characterization Naval Station San Diego NSB-R2-47S -117.14215 32.68838 09/03/97 2920 Sediment Quality Characterization Naval Station San Diego NSB-R2-48S -117.14216 32.68870 09/03/97 6260 Sediment Quality Characterization Naval Station San Diego NSB-R2-5S -117.12060 32.6138 09/03/97 1205 Sediment Quality Characterization Naval Station San Diego NSB-R2-6S -117.11888 32.66132 09/03/97 1286 Sediment Quality Characterization Naval Station San Diego NSB-R2-7S -117.12100 32.66132 09/03/97 1289 Sediment Quality Characterization Naval Station San Diego NSB-R2-8S -117.11913 32.66345 09/03/97 4480 Shipyard Sediment Site 2241 SD0126 -117.13648 32.67027 09/12/02 54 Shipyard Sediment Site 2244 SD0126 -117.1362 32.68372 09/12/02 54 Shipyard Sediment Site 2265	Sediment Quality Characterization Naval Station San Diego	NSB-R2-44S		-117.13272	32.68763	09/03/97	9270
Sediment Quality Characterization Naval Station San Diego NSB-R2-47S -117.14215 32.68838 09/03/97 2920 Sediment Quality Characterization Naval Station San Diego NSB-R2-48S -117.14737 32.69162 09/03/97 6260 Sediment Quality Characterization Naval Station San Diego NSB-R2-5S -117.12060 32.65870 09/03/97 1205 Sediment Quality Characterization Naval Station San Diego NSB-R2-6S -117.1188 32.66138 09/03/97 1205 Sediment Quality Characterization Naval Station San Diego NSB-R2-7S -117.12100 32.66132 09/03/97 1289 Sediment Quality Characterization Naval Station San Diego NSB-R2-8S -117.11933 32.66110 09/03/97 1289 Sediment Quality Characterization Naval Station San Diego NSB-R2-9S -117.11913 32.66345 09/03/97 4480 Shipyard Sediment Site 2244 SD0126 -117.13182 32.66110 09/03/97 4480 Shipyard Sediment Site 2265 SD0107 -117.14030 32.68345 09/09/02 111 Shipyard Sediment Site NA01 <td>Sediment Quality Characterization Naval Station San Diego</td> <td>NSB-R2-45S</td> <td></td> <td>-117.13442</td> <td>32.68722</td> <td>09/03/97</td> <td>3910</td>	Sediment Quality Characterization Naval Station San Diego	NSB-R2-45S		-117.13442	32.68722	09/03/97	3910
Sediment Quality Characterization Naval Station San Diego NSB-R2-48S -117.14737 32.69162 09/03/97 6260 Sediment Quality Characterization Naval Station San Diego NSB-R2-5S -117.12060 32.65870 09/03/97 1205 Sediment Quality Characterization Naval Station San Diego NSB-R2-6S -117.1188 32.66138 09/03/97 1956 Sediment Quality Characterization Naval Station San Diego NSB-R2-7S -117.1200 32.66132 09/03/97 12740 Sediment Quality Characterization Naval Station San Diego NSB-R2-7S -117.1188 32.66140 09/03/97 1289 Sediment Quality Characterization Naval Station San Diego NSB-R2-9S -117.1200 32.66345 09/03/97 4480 Shipyard Sediment Site 2241 SD0128 -117.13182 32.66140 09/03/97 4480 Shipyard Sediment Site 2244 SD0126 -117.13182 32.66345 09/03/97 4440 Shipyard Sediment Site NA01 SD0030 -117.14030 32.68348 09/09/02 1111 Shipyard Sediment Site NA02 SD00	Sediment Quality Characterization Naval Station San Diego	NSB-R2-46S		-117.14477	32.68667	09/03/97	128.4
Sediment Quality Characterization Naval Station San Diego NSB-R2-5S -117.12060 32.65870 09/03/97 1205 Sediment Quality Characterization Naval Station San Diego NSB-R2-6S -117.11888 32.66132 09/03/97 1956 Sediment Quality Characterization Naval Station San Diego NSB-R2-7S -117.12100 32.66132 09/03/97 1289 Sediment Quality Characterization Naval Station San Diego NSB-R2-8S -117.11913 32.66132 09/03/97 1289 Sediment Quality Characterization Naval Station San Diego NSB-R2-9S -117.11913 32.66345 09/03/97 4480 Shipyard Sediment Site 2241 SD0128 -117.1384 32.67027 09/12/02 54 Shipyard Sediment Site 2244 SD0126 -117.14030 32.68388 09/09/02 111 Shipyard Sediment Site 2265 SD0107 -117.14030 32.68388 09/09/02 111 Shipyard Sediment Site NA02 SD0033 -117.1427 32.68843 08/11/01 4440 Shipyard Sediment Site NA03 SD0032	Sediment Quality Characterization Naval Station San Diego	NSB-R2-47S		-117.14215	32.68838	09/03/97	2920
Sediment Quality Characterization Naval Station San Diego NSB-R2-6S -117.1188 32.66138 09/03/97 1956 Sediment Quality Characterization Naval Station San Diego NSB-R2-7S -117.12100 32.66132 09/03/97 2740 Sediment Quality Characterization Naval Station San Diego NSB-R2-8S -117.1228 32.66110 09/03/97 1289 Sediment Quality Characterization Naval Station San Diego NSB-R2-9S -117.11913 32.66345 09/03/97 4480 Shipyard Sediment Site 2241 SD0128 -117.13648 32.67027 09/12/02 54 Shipyard Sediment Site 2244 SD0126 -117.13182 32.65972 09/12/02 96 Shipyard Sediment Site 2265 SD0107 -117.14030 32.66388 09/09/02 111 Shipyard Sediment Site NA01 SD0030 -117.14274 32.68943 08/11/01 4440 Shipyard Sediment Site NA02 SD0033 -117.14274 32.68932 08/11/01 1611 Shipyard Sediment Site NA03 SD0035 -117.14038	Sediment Quality Characterization Naval Station San Diego	NSB-R2-48S		-117.14737	32.69162	09/03/97	6260
Sediment Quality Characterization Naval Station San Diego NSB-R2-6S -117.1188 32.66138 09/03/97 1956 Sediment Quality Characterization Naval Station San Diego NSB-R2-7S -117.12100 32.66132 09/03/97 2740 Sediment Quality Characterization Naval Station San Diego NSB-R2-8S -117.1228 32.66110 09/03/97 1289 Sediment Quality Characterization Naval Station San Diego NSB-R2-9S -117.11913 32.66345 09/03/97 4480 Shipyard Sediment Site 2241 SD0128 -117.13648 32.67027 09/12/02 54 Shipyard Sediment Site 2244 SD0126 -117.13182 32.65972 09/12/02 96 Shipyard Sediment Site 2265 SD0107 -117.14030 32.66388 09/09/02 111 Shipyard Sediment Site NA01 SD0030 -117.14274 32.68943 08/11/01 4440 Shipyard Sediment Site NA02 SD0033 -117.14274 32.68932 08/11/01 1611 Shipyard Sediment Site NA03 SD0035 -117.14038	Sediment Quality Characterization Naval Station San Diego	NSB-R2-5S		-117.12060	32.65870	09/03/97	1205
Sediment Quality Characterization Naval Station San DiegoNSB-R2-8S-117.1232832.6611009/03/971289Sediment Quality Characterization Naval Station San DiegoNSB-R2-9S-117.1191332.6634509/03/974480Shipyard Sediment Site2241SD0128-117.1364832.6702709/12/0254Shipyard Sediment Site2244SD0126-117.1318232.6537209/12/0296Shipyard Sediment Site2265SD0107-117.1403032.6838809/09/02111Shipyard Sediment SiteNA01SD0030-117.1427532.6894308/11/014440Shipyard Sediment SiteNA02SD0033-117.1427432.6886008/11/011611Shipyard Sediment SiteNA03SD0032-117.1418732.6893208/11/013280Shipyard Sediment SiteNA04SD0035-117.1403832.6893308/11/011702Shipyard Sediment SiteNA04SD0035-117.1403832.6893308/11/011702Shipyard Sediment SiteNA05SD0044-117.1403932.6893308/11/011440Shipyard Sediment SiteNA06SD0020-117.130932.6893308/08/012429Shipyard Sediment SiteNA07SD017-117.130932.6893308/08/012429Shipyard Sediment SiteNA08SD0055-117.130232.6893308/14/011838Shipyard Sediment SiteNA08SD0055-117.130232.6893308/14/0114		NSB-R2-6S		-117.11888	32.66138	09/03/97	1956
Sediment Quality Characterization Naval Station San DiegoNSB-R2-9S-117.1191332.6634509/03/974480Shipyard Sediment Site2241SD0128-117.1364832.6702709/12/0254Shipyard Sediment Site2244SD0126-117.1318232.6597209/12/0296Shipyard Sediment Site2265SD0107-117.1403032.6838809/09/02111Shipyard Sediment Site2265SD0107-117.1427532.6894308/11/014440Shipyard Sediment SiteNA01SD0030-117.1427532.6894308/11/011611Shipyard Sediment SiteNA02SD0033-117.1427432.6893208/11/011611Shipyard Sediment SiteNA03SD0032-117.1418732.6893208/11/011611Shipyard Sediment SiteNA04SD0035-117.1418732.6893208/11/011702Shipyard Sediment SiteNA04SD0035-117.1403832.6893308/13/011440Shipyard Sediment SiteNA06SD0020-117.1390932.6900308/09/012429Shipyard Sediment SiteNA06SD0020-117.1391132.6893308/08/0126900Shipyard Sediment SiteNA08SD0055-117.1390232.6891008/14/011838Shipyard Sediment SiteNA08SD0055-117.138032.6888308/14/011404	Sediment Quality Characterization Naval Station San Diego	NSB-R2-7S		-117.12100	32.66132	09/03/97	2740
Shipyard Sediment Site2241SD0128-117.1364832.6702709/12/0254Shipyard Sediment Site2244SD0126-117.1318232.6597209/12/0296Shipyard Sediment Site2265SD0107-117.1403032.6838809/09/02111Shipyard Sediment SiteNA01SD030-117.1427532.6894308/11/014440Shipyard Sediment SiteNA02SD033-117.1427432.6886008/11/011611Shipyard Sediment SiteNA03SD0032-117.1418732.6893208/11/013280Shipyard Sediment SiteNA04SD035-117.1403832.6893208/11/011702Shipyard Sediment SiteNA04SD0035-117.1403832.6893308/13/011440Shipyard Sediment SiteNA06SD0020-117.1390932.6893308/09/012429Shipyard Sediment SiteNA06SD0020-117.1391132.6893308/08/012499Shipyard Sediment SiteNA08SD0055-117.1390232.6891008/14/011838Shipyard Sediment SiteNA08SD0055-117.1380032.6883308/14/011838Shipyard Sediment SiteNA09SD0054-117.1388032.6883308/14/011404	Sediment Quality Characterization Naval Station San Diego	NSB-R2-8S		-117.12328	32.66110	09/03/97	1289
Shipyard Sediment Site2241SD0128-117.1364832.6702709/12/0254Shipyard Sediment Site2244SD0126-117.1318232.6597209/12/0296Shipyard Sediment Site2265SD0107-117.1403032.6838809/09/02111Shipyard Sediment SiteNA01SD030-117.1427532.6894308/11/014440Shipyard Sediment SiteNA02SD033-117.1427432.6886008/11/011611Shipyard Sediment SiteNA03SD0032-117.1418732.6893208/11/013280Shipyard Sediment SiteNA04SD035-117.1403832.6893208/11/011702Shipyard Sediment SiteNA04SD0035-117.1403832.6893308/13/011440Shipyard Sediment SiteNA06SD0020-117.1390932.6893308/09/012429Shipyard Sediment SiteNA06SD0020-117.1391132.6893308/08/012499Shipyard Sediment SiteNA08SD0055-117.1390232.6891008/14/011838Shipyard Sediment SiteNA08SD0055-117.1380032.6883308/14/011838Shipyard Sediment SiteNA09SD0054-117.1388032.6883308/14/011404	Sediment Quality Characterization Naval Station San Diego	NSB-R2-9S		-117.11913	32.66345	09/03/97	4480
Shipyard Sediment Site2265SD0107-117.1403032.6838809/09/02111Shipyard Sediment SiteNA01SD0030-117.1427532.6894308/11/014440Shipyard Sediment SiteNA02SD0033-117.1427432.6886008/11/011611Shipyard Sediment SiteNA03SD0032-117.1418732.6893208/11/013280Shipyard Sediment SiteNA03SD0035-117.1403832.6893208/11/013280Shipyard Sediment SiteNA04SD0035-117.1403832.6893208/11/011702Shipyard Sediment SiteNA06SD0020-117.1407132.6885308/01011440Shipyard Sediment SiteNA06SD0020-117.1390932.6900308/09/012429Shipyard Sediment SiteNA07SD0017-117.1391132.6893308/08/012690Shipyard Sediment SiteNA08SD0055-117.1390232.6894008/14/011838Shipyard Sediment SiteNA08SD0055-117.1380032.6883308/14/011404		2241	SD0128		32.67027	09/12/02	54
Shipyard Sediment Site2265SD0107-117.1403032.6838809/09/02111Shipyard Sediment SiteNA01SD0030-117.1427532.6894308/11/014440Shipyard Sediment SiteNA02SD0033-117.1427432.6886008/11/011611Shipyard Sediment SiteNA03SD0032-117.1418732.6893208/11/013280Shipyard Sediment SiteNA04SD0035-117.1403832.6893208/11/011702Shipyard Sediment SiteNA04SD0035-117.1403832.6893308/13/011440Shipyard Sediment SiteNA06SD0020-117.1390932.6900308/09/012429Shipyard Sediment SiteNA07SD0017-117.1391132.6893308/08/012690Shipyard Sediment SiteNA08SD0055-117.1390232.6891008/14/011838Shipyard Sediment SiteNA08SD0055-117.1380032.6883308/14/011404	Shipyard Sediment Site	2244	SD0126	-117.13182	32.65972	09/12/02	96
Shipyard Sediment Site NA01 SD0030 -117.14275 32.68943 08/11/01 4440 Shipyard Sediment Site NA02 SD0033 -117.14274 32.68960 08/11/01 1611 Shipyard Sediment Site NA03 SD0032 -117.14187 32.68932 08/11/01 1611 Shipyard Sediment Site NA03 SD0032 -117.14187 32.68932 08/11/01 1702 Shipyard Sediment Site NA04 SD0035 -117.14071 32.68933 08/11/01 1702 Shipyard Sediment Site NA05 SD0044 -117.14071 32.68933 08/13/01 1440 Shipyard Sediment Site NA06 SD0020 -117.13909 32.69003 08/09/01 2429 Shipyard Sediment Site NA07 SD0017 -117.13911 32.68933 08/08/01 26900 Shipyard Sediment Site NA08 SD0055 -117.13902 32.68930 08/14/01 1838 Shipyard Sediment Site NA09 SD0054 -117.13880 32.68833 08/14/01		2265	SD0107				111
Shipyard Sediment Site NA02 SD0033 -117.14274 32.68860 08/11/01 1611 Shipyard Sediment Site NA03 SD0032 -117.14187 32.68932 08/11/01 3280 Shipyard Sediment Site NA04 SD0035 -117.14038 32.68923 08/11/01 1702 Shipyard Sediment Site NA04 SD0044 -117.14071 32.68853 08/13/01 1440 Shipyard Sediment Site NA06 SD0020 -117.13909 32.69003 08/09/01 2429 Shipyard Sediment Site NA07 SD0017 -117.13911 32.68933 08/08/01 26900 Shipyard Sediment Site NA08 SD0055 -117.13902 32.68910 08/14/01 1838 Shipyard Sediment Site NA08 SD0055 -117.13800 32.68833 08/14/01 1838 Shipyard Sediment Site NA09 SD0054 -117.13880 32.68833 08/14/01 1404		NA01					
Shipyard Sediment Site NA03 SD0032 -117.14187 32.68932 08/11/01 3280 Shipyard Sediment Site NA04 SD0035 -117.14038 32.68923 08/11/01 1702 Shipyard Sediment Site NA04 SD0035 -117.14038 32.68923 08/11/01 1702 Shipyard Sediment Site NA05 SD0044 -117.14071 32.68853 08/13/01 1440 Shipyard Sediment Site NA06 SD0020 -117.13909 32.69003 08/09/01 2429 Shipyard Sediment Site NA07 SD0017 -117.13911 32.68933 08/08/01 26900 Shipyard Sediment Site NA08 SD0055 -117.13902 32.68910 08/14/01 1838 Shipyard Sediment Site NA09 SD0054 -117.13880 32.68833 08/14/01 1404		NA02	SD0033			08/11/01	1611
Shipyard Sediment Site NA04 SD0035 -117.14038 32.68923 08/11/01 1702 Shipyard Sediment Site NA05 SD0044 -117.14071 32.68853 08/13/01 1440 Shipyard Sediment Site NA06 SD0020 -117.13099 32.69003 08/09/01 2429 Shipyard Sediment Site NA07 SD0017 -117.13911 32.68933 08/08/01 26900 Shipyard Sediment Site NA08 SD0055 -117.13902 32.68910 08/14/01 1838 Shipyard Sediment Site NA09 SD0054 -117.13880 32.68883 08/14/01 1404							
Shipyard Sediment Site NA05 SD0044 -117.14071 32.68853 08/13/01 1440 Shipyard Sediment Site NA06 SD0020 -117.13909 32.69003 08/09/01 2429 Shipyard Sediment Site NA07 SD0017 -117.13911 32.68933 08/08/01 26900 Shipyard Sediment Site NA08 SD0055 -117.13902 32.68910 08/14/01 1838 Shipyard Sediment Site NA09 SD0054 -117.13880 32.68883 08/14/01 1404							
Shipyard Sediment Site NA06 SD0020 -117.13909 32.69003 08/09/01 2429 Shipyard Sediment Site NA07 SD0017 -117.13911 32.68933 08/08/01 2690 Shipyard Sediment Site NA08 SD0055 -117.13902 32.68910 08/14/01 1838 Shipyard Sediment Site NA09 SD0054 -117.13880 32.68883 08/14/01 1404							
Shipyard Sediment Site NA07 SD0017 -117.13911 32.68933 08/08/01 2690 Shipyard Sediment Site NA08 SD0055 -117.13902 32.68910 08/14/01 1838 Shipyard Sediment Site NA09 SD0054 -117.13880 32.68833 08/14/01 1404	- 17						
Shipyard Sediment Site NA08 SD0055 -117.13902 32.68910 08/14/01 1838 Shipyard Sediment Site NA09 SD0054 -117.13880 32.68883 08/14/01 1404							
Shipyard Sediment Site NA09 SD0054 -117.13880 32.68883 08/14/01 1404		-					
	Shipyard Sediment Site	NA10	SD0054	-117.13880	32.68868	08/14/01	869

High-Molecular-Weight Polynuclear Aromatic Hydrocarbons (HPAHs) in Surface Sediment Samples Response to Tentative Cleanup and Abatement Order and City of San Diego Complaint United States Naval Base San Diego, California

PROJECT NAME	SITE_NAME	SAMPLE ID	X COORDINATE	Y COORDINATE	SAMPLE_DATE	TOTAL HPAH (µg/kg dry wt)
Shipyard Sediment Site	NA11	SD0021	-117.13942	32.68839	08/09/01	(µg) kg ury (kr) 1526
Shipyard Sediment Site	NA12	SD0027	-117.13978	32.68768	08/10/01	1084
Shipyard Sediment Site	NA13	SD0036	-117.14018	32.68713	08/11/01	838
Shipyard Sediment Site	NA14	SD0051	-117.14084	32.68619	08/14/01	656
Shipyard Sediment Site	NA15	SD0037	-117.13837	32.68841	08/12/01	1660
Shipyard Sediment Site	NA16	SD0038	-117.13889	32.68819	08/12/01	1947
Shipyard Sediment Site	NA17	SD0039	-117.13789	32.68787	08/12/01	2225
Shipyard Sediment Site	NA18	SD0053	-117.13863	32.68778	08/14/01	1209
Shipyard Sediment Site	NA19	SD0042	-117.13902	32.68742	08/12/01	1426
Shipyard Sediment Site	NA20	SD0028	-117.13611	32.68698	08/10/01	1707
Shipyard Sediment Site	NA21	SD0050	-117.13671	32.68529	08/14/01	1223
Shipyard Sediment Site	NA22	SD0052	-117.13462	32.68688	08/14/01	1930
Shipyard Sediment Site	NA23	SD0095	-117.14025	32.68995	09/08/02	1905
Shipyard Sediment Site	NA24	SD0094	-117.14121	32.68984	09/08/02	1081
Shipyard Sediment Site	NA25	SD0106	-117.13982	32.68477	09/09/02	576
Shipyard Sediment Site	NA26	SD0116	-117.14308	32.68714	09/11/02	446
Shipyard Sediment Site	NA27	SD0301	-117.13969	32.68947	10/02/02	1547
Shipyard Sediment Site	NA28	SD0300	-117.13992	32.68869	10/02/02	1881
Shipyard Sediment Site	NA29	SD0119	-117.14155	32.68792	09/11/02	978
Shipyard Sediment Site	NA30	SD0115	-117.14134	32.68631	09/11/02	519
Shipyard Sediment Site	NA31	SD0105	-117.13748	32.68328	09/09/02	279
Shipyard Sediment Site	SW01	SD0001	-117.14573	32.69249	08/06/01	6250
Shipyard Sediment Site	SW02	SD0005	-117.14593	32.69219	08/06/01	10130
Shipyard Sediment Site	SW03	SD0009	-117.14653	32.69148	08/07/01	3790
Shipyard Sediment Site	SW04	SD0012	-117.14529	32.69246	08/07/01	8730
Shipyard Sediment Site	SW05	SD0003	-117.14572	32.69191	08/06/01	8610
Shipyard Sediment Site	SW06	SD0002	-117.14606	32.69150	08/06/01	8730
Shipyard Sediment Site	SW07	SD0004	-117.14640	32.69114	08/06/01	2273
Shipyard Sediment Site	SW08	SD0016	-117.14492	32.69242	08/08/01	16650
Shipyard Sediment Site	SW09	SD0007	-117.14528	32.69178	08/06/01	11590
Shipyard Sediment Site	SW10	SD0008	-117.14559	32.69155	08/06/01	12000
Shipyard Sediment Site	SW11	SD0048	-117.14597	32.69112	08/13/01	4450
Shipyard Sediment Site	SW12	SD0010	-117.14634	32.69067	08/07/01	1797
Shipyard Sediment Site	SW13	SD0022	-117.14468	32.69182	08/09/01	7930
Shipyard Sediment Site	SW14	SD0024	-117.14493	32.69167	08/10/01	4730
Shipyard Sediment Site	SW15	SD0023	-117.14527	32.69118	08/10/01	4810
Shipyard Sediment Site	SW16	SD0025	-117.14465	32.69155	08/10/01	2720
Shipyard Sediment Site	SW17	SD0047	-117.14441	32.69136	08/13/01	6000

High-Molecular-Weight Polynuclear Aromatic Hydrocarbons (HPAHs) in Surface Sediment Samples Response to Tentative Cleanup and Abatement Order and City of San Diego Complaint United States Naval Base San Diego, California

PROJECT_NAME	SITE_NAME	SAMPLE_ID	X_COORDINATE	Y_COORDINATE	SAMPLE_DATE	TOTAL HPAH (µg/kg dry wt)
Shipyard Sediment Site	SW18	SD0046	-117.14487	32.69038	08/13/01	4840
Shipyard Sediment Site	SW19	SD0011	-117.14616	32.68907	08/07/01	620
Shipyard Sediment Site	SW20	SD0059	-117.14353	32.69144	08/15/01	6290
Shipyard Sediment Site	SW21	SD0019	-117.14335	32.69128	08/09/01	5190
Shipyard Sediment Site	SW22	SD0060	-117.14346	32.69122	08/15/01	6730
Shipyard Sediment Site	SW23	SD0058	-117.14362	32.69112	08/15/01	6330
Shipyard Sediment Site	SW24	SD0015	-117.14345	32.69109	08/08/01	37400
Shipyard Sediment Site	SW25	SD0057	-117.14413	32.69047	08/15/01	5940
Shipyard Sediment Site	SW26	SD0014	-117.14474	32.68972	08/08/01	870
Shipyard Sediment Site	SW27	SD0045	-117.14351	32.69002	08/13/01	7760
Shipyard Sediment Site	SW28	SD0029	-117.14290	32.69014	08/11/01	12330
Shipyard Sediment Site	SW29	SD0110	-117.14638	32.69269	09/09/02	2675
Shipyard Sediment Site	SW30	SD0135	-117.14727	32.69166	09/14/02	2820
Shipyard Sediment Site	SW31	SD0122	-117.14443	32.68970	09/11/02	609
Shipyard Sediment Site	SW32	SD0108	-117.14824	32.69056	09/09/02	469
Shipyard Sediment Site	SW33	SD0118	-117.14722	32.68981	09/11/02	548
Shipyard Sediment Site	SW34	SD0117	-117.14415	32.68846	09/11/02	752
Studies Supporting an Environmental Risk Assessment of San Diego Bay	A1		-117.13132	32.68768	07/01/93	3964
Studies Supporting an Environmental Risk Assessment of San Diego Bay	A2		-117.13527	32.68512	07/01/93	1180
Studies Supporting an Environmental Risk Assessment of San Diego Bay	A3		-117.13870	32.68230	07/01/93	632
Studies Supporting an Environmental Risk Assessment of San Diego Bay	A4		-117.14152	32.68038	07/01/93	334
Studies Supporting an Environmental Risk Assessment of San Diego Bay	A5		-117.14532	32.67830	07/01/93	133
Studies Supporting an Environmental Risk Assessment of San Diego Bay	B1		-117.12735	32.68203	07/01/93	7840
Studies Supporting an Environmental Risk Assessment of San Diego Bay	B2		-117.13043	32.68017	07/01/93	573
Studies Supporting an Environmental Risk Assessment of San Diego Bay	B3		-117.13297	32.67897	07/01/93	982
Studies Supporting an Environmental Risk Assessment of San Diego Bay	B4		-117.13623	32.67748	07/01/93	742
Studies Supporting an Environmental Risk Assessment of San Diego Bay	B5		-117.14030	32.67472	07/01/93	204
Studies Supporting an Environmental Risk Assessment of San Diego Bay	C1		-117.11612	32.67360	07/01/93	4620
Studies Supporting an Environmental Risk Assessment of San Diego Bay	C2		-117.12350	32.67100	07/01/93	114
Studies Supporting an Environmental Risk Assessment of San Diego Bay	C3		-117.12570	32.66970	07/01/93	465
Studies Supporting an Environmental Risk Assessment of San Diego Bay	C4		-117.12833	32.66902	07/01/93	504
Studies Supporting an Environmental Risk Assessment of San Diego Bay	C5		-117.13482	32.66693	07/01/93	92
Studies Supporting an Environmental Risk Assessment of San Diego Bay	D1		-117.11945	32.66533	07/02/93	6740
Studies Supporting an Environmental Risk Assessment of San Diego Bay	D2		-117.12350	32.66507	07/02/93	770
Studies Supporting an Environmental Risk Assessment of San Diego Bay	D3		-117.12522	32.66495	07/02/93	425
Studies Supporting an Environmental Risk Assessment of San Diego Bay	D4		-117.12718	32.66412	07/02/93	192
Studies Supporting an Environmental Risk Assessment of San Diego Bay	D5		-117.13388	32.66387	07/02/93	93
Studies Supporting an Environmental Risk Assessment of San Diego Bay	E1		-117.11863	32.65910	07/02/93	2596

High-Molecular-Weight Polynuclear Aromatic Hydrocarbons (HPAHs) in Surface Sediment Samples Response to Tentative Cleanup and Abatement Order and City of San Diego Complaint United States Naval Base San Diego, California

PROJECT_NAME	SITE_NAME	SAMPLE_ID	X_COORDINATE	Y_COORDINATE	SAMPLE_DATE	TOTAL HPAH (µg/kg dry wt)
Studies Supporting an Environmental Risk Assessment of San Diego Bay	E2		-117.12270	32.65808	07/02/93	654
Studies Supporting an Environmental Risk Assessment of San Diego Bay	E3		-117.12465	32.65753	07/02/93	368
Studies Supporting an Environmental Risk Assessment of San Diego Bay	E4		-117.12708	32.65775	07/02/93	337
Studies Supporting an Environmental Risk Assessment of San Diego Bay	E5		-117.13218	32.65643	07/02/93	84
Upstream Paleta Creek	IR-PAC14		-117.11505	32.67480	2004	3089
Upstream Paleta Creek	IR-PAC17		-117.11485	32.67513	2004	1732
Upstream Paleta Creek	IR-PAC29		-117.11427	32.67568	2004	847
Upstream Paleta Creek	IR-PAC3		-117.11562	32.67443	2004	918
Upstream Paleta Creek	IR-PAC38		-117.11380	32.67605	2004	890
Upstream Paleta Creek	IR-PAC41		-117.11173	32.67665	2004	1049
Upstream Paleta Creek	IR-PAC49		-117.11215	32.68297	2004	399
Upstream Paleta Creek	IR-PAC55		-117.11468	32.67508	2004	1899
Upstream Paleta Creek	IR-PAC56		-117.11060	32.68375	2004	767
Upstream Paleta Creek	IR-PAC60		-117.11529	32.67467	2004	1261
Upstream Paleta Creek	IR-PAC61		-117.11532	32.67483	2004	407
Upstream Paleta Creek	IR-PAC63		-117.11397	32.67595	2004	1191
Upstream Paleta Creek	IR-PAC65		-117.11433	32.67560	2004	2295
Upstream Paleta Creek	IR-PAC7		-117.11538	32.67470	2004	919
Upstream Paleta Creek	IR-PAC71		-117.11008	32.68398	2004	264

Total Polychlorinated Biphenyl (PCB) Congeners in Surface Sediment Samples Response to Tentative Cleanup and Abatement Order and City of San Diego Complaint United States Naval Base San Diego, California

					Total PCB Congeners
PROJECT_NAME	SITE_NAME	SAMPLE_DATE	X_COORDINATE	Y_COORDINATE	(µg/kg dry wt)
Bay Protection and Toxic Cleanup Program	90007	11/10/92	-117.12889	32.68028	777
Bay Protection and Toxic Cleanup Program	90008	11/10/92	-117.12556	32.67417	138
Bay Protection and Toxic Cleanup Program	90009	11/10/92	-117.11694	32.67250	978
Bay Protection and Toxic Cleanup Program	90022	11/10/92	-117.12389	32.67833	403
Bay Protection and Toxic Cleanup Program	90020	01/26/93	-117.14667	32.69278	988
Bay Protection and Toxic Cleanup Program	90030	01/26/93	-117.14194	32.68972	533
Bay Protection and Toxic Cleanup Program	93133	04/06/93	-117.12867	32.67300	114
Bay Protection and Toxic Cleanup Program	93178	05/26/93	-117.14967	32.69417	681
Bay Protection and Toxic Cleanup Program	93179	05/26/93	-117.14850	32.69383	784
Bay Protection and Toxic Cleanup Program	93181	05/26/93	-117.13967	32.68983	385
Bay Protection and Toxic Cleanup Program	93184	05/26/93	-117.12617	32.68017	687
Bay Protection and Toxic Cleanup Program	90006	08/04/93	-117.13417	32.68667	145
Bay Protection and Toxic Cleanup Program	90021	08/04/93	-117.14617	32.69200	213
Bay Protection and Toxic Cleanup Program	90022	08/04/93	-117.12500	32.67900	438
Bay Protection and Toxic Cleanup Program	93210	08/04/93	-117.14667	32.69317	1752
Bay Protection and Toxic Cleanup Program	93211	08/04/93	-117.14583	32.69283	1988
Bay Protection and Toxic Cleanup Program	93212	08/04/93	-117.13350	32.68767	75
Bay Protection and Toxic Cleanup Program	93213	08/04/93	-117.13433	32.68733	164
Bay Protection and Toxic Cleanup Program	93214	08/04/93	-117.12517	32.67450	124
Bay Protection and Toxic Cleanup Program	93215	08/04/93	-117.12617	32.67600	143
Bay Protection and Toxic Cleanup Program	90007	08/17/93	-117.12917	32.68117	435
Bay Protection and Toxic Cleanup Program	90008	08/17/93	-117.12517	32.67383	138
Bay Protection and Toxic Cleanup Program	90009	08/17/93	-117.11700	32.67233	271
Bay Protection and Toxic Cleanup Program	90010	08/17/93	-117.11900	32.65800	46
Bay Protection and Toxic Cleanup Program	93223	08/17/93	-117.13000	32.68050	512
Bay Protection and Toxic Cleanup Program	93224	08/17/93	-117.12917	32.67933	185
Bay Protection and Toxic Cleanup Program	93225	08/17/93	-117.12233	32.67600	272
Bay Protection and Toxic Cleanup Program	93226	08/17/93	-117.12367	32.67667	278
Bay Protection and Toxic Cleanup Program	93227	08/17/93	-117.11633	32.67367	340
Bay Protection and Toxic Cleanup Program	93228	08/17/93	-117.11617	32.67317	811
Bay Protection and Toxic Cleanup Program	93229	08/17/93	-117.11883	32.65967	141
Bay Protection and Toxic Cleanup Program	93230	08/17/93	-117.11883	32.65933	152
Bay Protection and Toxic Cleanup Program	90020	03/01/94	-117.14757	32.69200	835
Bay Protection and Toxic Cleanup Program	90022	03/01/94	-117.12528	32.67889	350
Bay Protection and Toxic Cleanup Program	93178	03/02/94	-117.14967	32.69483	995
Bay Protection and Toxic Cleanup Program	93179	03/02/94	-117.14900	32.69400	842
Bay Protection and Toxic Cleanup Program	93181	03/02/94	-117.14017	32.68983	498

Total Polychlorinated Biphenyl (PCB) Congeners in Surface Sediment Samples Response to Tentative Cleanup and Abatement Order and City of San Diego Complaint United States Naval Base San Diego, California

					Total PCB Congeners
PROJECT_NAME	SITE_NAME	SAMPLE_DATE	X_COORDINATE	Y_COORDINATE	(µg/kg dry wt)
Bay Protection and Toxic Cleanup Program	90030	03/15/94	-117.14306	32.68944	579
Bay Protection and Toxic Cleanup Program	90007	12/03/96	-117.129017	32.68090	268
Bay Protection and Toxic Cleanup Program	90008	12/03/96	-117.124600	32.67552	141
Bay Protection and Toxic Cleanup Program	90020	12/03/96	-117.147567	32.69323	2544
Bay Protection and Toxic Cleanup Program	90022	12/03/96	-117.124383	32.67853	343
Bay Protection and Toxic Cleanup Program	93178	12/03/96	-117.149967	32.69532	1555
Bay Protection and Toxic Cleanup Program	93179	12/03/96	-117.148617	32.69372	1118
Mouth of Chollas Creek	C01	2001	-117.13539	32.68573	190
Mouth of Chollas Creek	C02	2001	-117.13520	32.68540	422
Mouth of Chollas Creek	C03	2001	-117.13493	32.68500	320
Mouth of Chollas Creek	C04	2001	-117.13495	32.68646	145
Mouth of Chollas Creek	C05	2001	-117.13456	32.68594	234
Mouth of Chollas Creek	C06	2001	-117.13407	32.68545	190
Mouth of Chollas Creek	C07	2001	-117.13439	32.68723	60
Mouth of Chollas Creek	C08	2001	-117.13403	32.68686	53
Mouth of Chollas Creek	C09	2001	-117.13364	32.68641	154
Mouth of Chollas Creek	C10	2001	-117.13330	32.68595	202
Mouth of Chollas Creek	C11	2001	-117.13353	32.68726	74
Mouth of Chollas Creek	C12	2001	-117.13229	32.68760	167
Mouth of Chollas Creek	C13	2001	-117.13088	32.68758	255
Mouth of Chollas Creek	C14	2001	-117.12971	32.68763	212
Mouth of Paleta Creek	P01	2001	-117.12407	32.67153	40
Mouth of Paleta Creek	P02	2001	-117.12357	32.67069	79
Mouth of Paleta Creek	P03	2001	-117.12234	32.67247	51
Mouth of Paleta Creek	P04	2001	-117.12177	32.67158	102
Mouth of Paleta Creek	P05	2001	-117.12123	32.67089	752
Mouth of Paleta Creek	P06	2001	-117.12091	32.67321	122
Mouth of Paleta Creek	P07	2001	-117.12023	32.67243	114
Mouth of Paleta Creek	P08	2001	-117.11969	32.67164	81
Mouth of Paleta Creek	P09	2001	-117.11840	32.67236	10
Mouth of Paleta Creek	P10	2001	-117.11840	32.67197	72
Mouth of Paleta Creek	P11	2001	-117.11822	32.67265	369
Mouth of Paleta Creek	P12	2001	-117.11770	32.67232	129
Mouth of Paleta Creek	P13	2001	-117.11733	32.67306	53
Mouth of Paleta Creek	P14	2001	-117.11709	32.67268	196
Mouth of Paleta Creek	P15	2001	-117.11669	32.67342	374
Mouth of Paleta Creek	P16	2001	-117.11642	32.67305	192

Total Polychlorinated Biphenyl (PCB) Congeners in Surface Sediment Samples Response to Tentative Cleanup and Abatement Order and City of San Diego Complaint United States Naval Base San Diego, California

					Total PCB Congeners
PROJECT_NAME Mouth of Paleta Creek	SITE_NAME P17	SAMPLE_DATE 2001	X_COORDINATE -117.11601	Y_COORDINATE 32.67376	(µg/kg dry wt) 189
NAVSTA TMDL 2008	NS2233	2001	-117.15174	32.68581	20
NAVSTA TMDL 2008	NS11	2008	-117.12710	32.68197	400
NAVSTA TMDL 2008	NS12	2008	-117.12710	32.68165	221
NAVSTA TMDL 2008	NS13	2008	-117.12879	32.68103	209
NAVSTA TMDL 2008	NS14	2008	-117.13030	32.68021	102
NAVSTA TMDL 2008	NS14 NS15	2008	-117.13030	32.67967	57
NAVSTA TMDL 2008	NS16	2008	-117.12577	32.68018	201
NAVSTA TMDL 2008	NS17	2008	-117.12631	32.67986	201
NAVSTA TMDL 2008	NS18	2008	-117.12031	32.67947	212
NAVSTA TMDL 2008	NS19	2008	-117.12715	32.67865	513
NAVSTA TMDL 2008	NS21	2008	-117.12857	32.67845	234
NAVSTA TMDL 2008	NS22	2008	-117.12420	32.67811	172
NAVSTA TMDL 2008	NS2258	2008	-117.13212	32.67601	27
NAVSTA TMDL 2008	NS23	2008	-117.12571	32.67761	131
NAVSTA TMDL 2008	NS24	2008	-117.12689	32.67705	207
NAVSTA TMDL 2008	NS25	2008	-117.12089	32.67632	81
NAVSTA TMDL 2008	NS26	2008	-117.12798	32.67669	203
NAVSTA TMDL 2008	NS27	2008	-117.12326	32.67639	123
NAVSTA TMDL 2008	NS28	2008	-117.12320	32.67569	74
NAVSTA TMDL 2008	NS29	2008	-117.12434	32.67511	65
NAVSTA TMDL 2008	NS6	2008	-117.12836	32.68356	842
NAVSTA TMDL 2008	NS7	2008	-117.12030	32.68321	277
NAVSTA TMDL 2008	NS8	2008	-117.13032	32.68249	152
NAVSTA TMDL 2008	NS9	2008	-117.13138	32.68181	92
Sediment Quality Characterization Naval Station San Diego	NSB1-S-R2	2000	-117.12985	32.67933	161
Sediment Quality Characterization Naval Station San Diego	NSB3-S-R2		-117.12535	32.67990	263
Sediment Quality Characterization Naval Station San Diego	NSB4-S-R2		-117.12483	32.67208	134
Sediment Quality Characterization Naval Station San Diego	NSB5-S-R2		-117.11657	32.67363	156
Sediment Quality Characterization Naval Station San Diego	NSB-R2-10S		-117.12100	32.66338	185
Sediment Quality Characterization Naval Station San Diego	NSB-R2-11S		-117.12345	32.66325	97
Sediment Quality Characterization Naval Station San Diego	NSB-R2-13S		-117.12142	32.66532	256
Sediment Quality Characterization Naval Station San Diego	NSB-R2-14S		-117.11962	32.66688	268
Sediment Quality Characterization Naval Station San Diego	NSB-R2-15S		-117.12173	32.66675	222
Sediment Quality Characterization Naval Station San Diego	NSB-R2-16S		-117.12393	32.66662	39
Sediment Quality Characterization Naval Station San Diego	NSB-R2-17S		-117.11987	32.66840	241
Sediment Quality Characterization Naval Station San Diego	NSB-R2-18S		-117.12182	32.66833	331

Total Polychlorinated Biphenyl (PCB) Congeners in Surface Sediment Samples Response to Tentative Cleanup and Abatement Order and City of San Diego Complaint United States Naval Base San Diego, California

					Total PCB Congeners
PROJECT_NAME	SITE_NAME	SAMPLE_DATE	X_COORDINATE	Y_COORDINATE	(µg/kg dry wt)
Sediment Quality Characterization Naval Station San Diego	NSB-R2-19S		-117.12377	32.66820	160
Sediment Quality Characterization Naval Station San Diego	NSB-R2-20S		-117.11758	32.67262	78
Sediment Quality Characterization Naval Station San Diego	NSB-R2-21S		-117.11922	32.67172	240
Sediment Quality Characterization Naval Station San Diego	NSB-R2-22S		-117.12108	32.67048	217
Sediment Quality Characterization Naval Station San Diego	NSB-R2-23S		-117.12368	32.67007	156
Sediment Quality Characterization Naval Station San Diego	NSB-R2-24S		-117.12043	32.67350	206
Sediment Quality Characterization Naval Station San Diego	NSB-R2-25S		-117.12238	32.67240	93
Sediment Quality Characterization Naval Station San Diego	NSB-R2-26S		-117.12198	32.67530	262
Sediment Quality Characterization Naval Station San Diego	NSB-R2-27S		-117.12353	32.67433	128
Sediment Quality Characterization Naval Station San Diego	NSB-R2-28S		-117.12557	32.67317	117
Sediment Quality Characterization Naval Station San Diego	NSB-R2-29S		-117.12345	32.67708	320
Sediment Quality Characterization Naval Station San Diego	NSB-R2-30S		-117.12492	32.67633	241
Sediment Quality Characterization Naval Station San Diego	NSB-R2-31S		-117.12670	32.67508	92
Sediment Quality Characterization Naval Station San Diego	NSB-R2-32S		-117.12890	32.67640	116
Sediment Quality Characterization Naval Station San Diego	NSB-R2-33S		-117.13257	32.67440	224
Sediment Quality Characterization Naval Station San Diego	NSB-R2-34S		-117.13777	32.67143	53
Sediment Quality Characterization Naval Station San Diego	NSB-R2-35S		-117.12630	32.68073	545
Sediment Quality Characterization Naval Station San Diego	NSB-R2-36S		-117.12955	32.67875	554
Sediment Quality Characterization Naval Station San Diego	NSB-R2-37S		-117.12777	32.67992	233
Sediment Quality Characterization Naval Station San Diego	NSB-R2-38S		-117.12922	32.68397	1948
Sediment Quality Characterization Naval Station San Diego	NSB-R2-39S		-117.13272	32.68192	168
Sediment Quality Characterization Naval Station San Diego	NSB-R2-40S		-117.13272	32.68192	260
Sediment Quality Characterization Naval Station San Diego	NSB-R2-41S		-117.13192	32.68480	177
Sediment Quality Characterization Naval Station San Diego	NSB-R2-42S		-117.13418	32.68357	81
Sediment Quality Characterization Naval Station San Diego	NSB-R2-43S		-117.13330	32.68612	213
Sediment Quality Characterization Naval Station San Diego	NSB-R2-44S		-117.13272	32.68763	188
Sediment Quality Characterization Naval Station San Diego	NSB-R2-45S		-117.13442	32.68722	154
Sediment Quality Characterization Naval Station San Diego	NSB-R2-46S		-117.14477	32.68667	16
Sediment Quality Characterization Naval Station San Diego	NSB-R2-47S		-117.14215	32.68838	205
Sediment Quality Characterization Naval Station San Diego	NSB-R2-48S		-117.14737	32.69162	384
Sediment Quality Characterization Naval Station San Diego	NSB-R2-5S		-117.12060	32.65870	131
Sediment Quality Characterization Naval Station San Diego	NSB-R2-6S		-117.11888	32.66138	123
Sediment Quality Characterization Naval Station San Diego	NSB-R2-7S		-117.12100	32.66132	163
Sediment Quality Characterization Naval Station San Diego	NSB-R2-8S		-117.12328	32.66110	114
Sediment Quality Characterization Naval Station San Diego	NSB-R2-9S		-117.11913	32.66345	234
Shipyard Sediment Site	2241		-117.13648	32.67027	14
Shipyard Sediment Site	2244		-117.13182	32.65972	25

DRAFT RESPONSE TO SHIPYARD SEDIMENT SITE TENTATIVE CAO AND CITY OF SAN DIEGO COMPLAINT, NBSD, DECEMBER 2010 N62470-08-D-1000, CTO FZN1; DCN CH2M-1000-FZN1-0002 ES111110054058SCO

Total Polychlorinated Biphenyl (PCB) Congeners in Surface Sediment Samples Response to Tentative Cleanup and Abatement Order and City of San Diego Complaint United States Naval Base San Diego, California

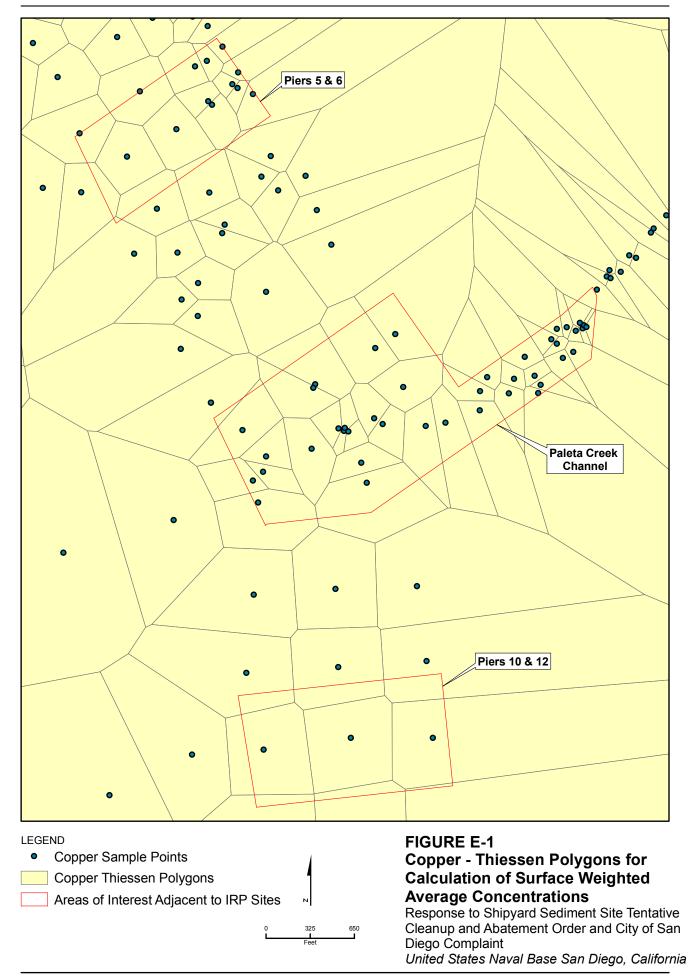
					Total PCB Congeners
PROJECT_NAME	SITE_NAME	SAMPLE_DATE	X_COORDINATE	Y_COORDINATE	(µg/kg dry wt)
Shipyard Sediment Site	2265		-117.14030	32.68388	38
Shipyard Sediment Site	NA01		-117.14275	32.68943	380
Shipyard Sediment Site	NA02		-117.14274	32.68860	208
Shipyard Sediment Site	NA03		-117.14187	32.68932	370
Shipyard Sediment Site	NA04		-117.14038	32.68923	250
Shipyard Sediment Site	NA05		-117.14071	32.68853	180
Shipyard Sediment Site	NA06		-117.13909	32.69003	640
Shipyard Sediment Site	NA07		-117.13911	32.68933	460
Shipyard Sediment Site	NA08		-117.13902	32.68910	310
Shipyard Sediment Site	NA09		-117.13880	32.68883	290
Shipyard Sediment Site	NA10		-117.13936	32.68868	160
Shipyard Sediment Site	NA11		-117.13942	32.68839	190
Shipyard Sediment Site	NA12		-117.13978	32.68768	150
Shipyard Sediment Site	NA13		-117.14018	32.68713	173
Shipyard Sediment Site	NA14		-117.14084	32.68619	128
Shipyard Sediment Site	NA15		-117.13837	32.68841	340
Shipyard Sediment Site	NA16		-117.13889	32.68819	590
Shipyard Sediment Site	NA17		-117.13789	32.68787	550
Shipyard Sediment Site	NA18		-117.13863	32.68778	350
Shipyard Sediment Site	NA19		-117.13902	32.68742	990
Shipyard Sediment Site	NA20		-117.13611	32.68698	120
Shipyard Sediment Site	NA21		-117.13671	32.68529	177
Shipyard Sediment Site	NA22		-117.13462	32.68688	180
Shipyard Sediment Site	NA24		-117.14121	32.68984	290
Shipyard Sediment Site	NA25		-117.13982	32.68477	83
Shipyard Sediment Site	NA26		-117.14308	32.68714	180
Shipyard Sediment Site	NA27		-117.13969	32.68947	210
Shipyard Sediment Site	NA28		-117.13992	32.68869	180
Shipyard Sediment Site	NA29		-117.14155	32.68792	190
Shipyard Sediment Site	NA30		-117.14134	32.68631	100
Shipyard Sediment Site	NA31		-117.13748	32.68328	68
Shipyard Sediment Site	SW01		-117.14573	32.69249	1,600
Shipyard Sediment Site	SW02		-117.14593	32.69219	5,600
Shipyard Sediment Site	SW03		-117.14653	32.69148	410
Shipyard Sediment Site	SW04		-117.14529	32.69246	4,000
Shipyard Sediment Site	SW05		-117.14572	32.69191	1,200
Shipyard Sediment Site	SW06		-117.14606	32.69150	380

DRAFT RESPONSE TO SHIPYARD SEDIMENT SITE TENTATIVE CAO AND CITY OF SAN DIEGO COMPLAINT, NBSD, DECEMBER 2010 N62470-08-D-1000, CTO FZN1; DCN CH2M-1000-FZN1-0002 ES111110054058SCO

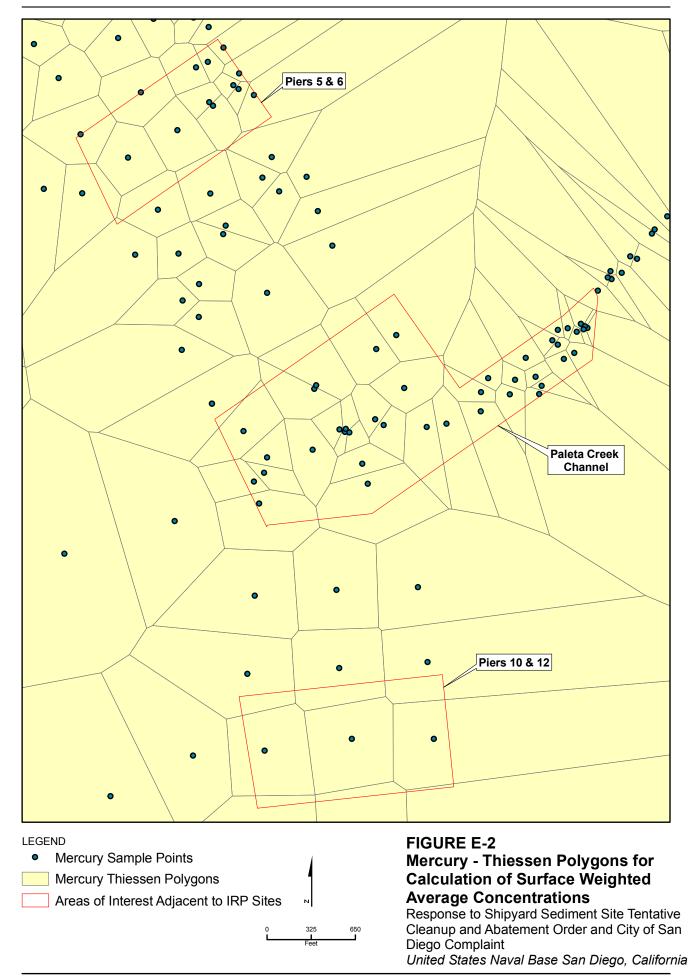
Total Polychlorinated Biphenyl (PCB) Congeners in Surface Sediment Samples Response to Tentative Cleanup and Abatement Order and City of San Diego Complaint United States Naval Base San Diego, California

					Total PCB Congeners
PROJECT_NAME	SITE_NAME	SAMPLE_DATE	X_COORDINATE	Y_COORDINATE	(µg/kg dry wt)
Shipyard Sediment Site	SW07		-117.14640	32.69114	170
Shipyard Sediment Site	SW08		-117.14492	32.69242	2,100
Shipyard Sediment Site	SW09		-117.14528	32.69178	710
Shipyard Sediment Site	SW10		-117.14559	32.69155	610
Shipyard Sediment Site	SW11		-117.14597	32.69112	200
Shipyard Sediment Site	SW12		-117.14634	32.69067	155
Shipyard Sediment Site	SW13		-117.14468	32.69182	490
Shipyard Sediment Site	SW14		-117.14493	32.69167	400
Shipyard Sediment Site	SW15		-117.14527	32.69118	380
Shipyard Sediment Site	SW16		-117.14465	32.69155	430
Shipyard Sediment Site	SW17		-117.14441	32.69136	540
Shipyard Sediment Site	SW18		-117.14487	32.69038	440
Shipyard Sediment Site	SW19		-117.14616	32.68907	94
Shipyard Sediment Site	SW20		-117.14353	32.69144	1,600
Shipyard Sediment Site	SW21		-117.14335	32.69128	2,400
Shipyard Sediment Site	SW22		-117.14346	32.69122	900
Shipyard Sediment Site	SW23		-117.14362	32.69112	1,000
Shipyard Sediment Site	SW24		-117.14345	32.69109	950
Shipyard Sediment Site	SW25		-117.14413	32.69047	350
Shipyard Sediment Site	SW26		-117.14474	32.68972	293
Shipyard Sediment Site	SW27		-117.14351	32.69002	200
Shipyard Sediment Site	SW28		-117.14290	32.69014	2,100
Shipyard Sediment Site	SW29		-117.14638	32.69269	820
Shipyard Sediment Site	SW30		-117.14727	32.69166	380
Shipyard Sediment Site	SW31		-117.14443	32.68970	66
Shipyard Sediment Site	SW32		-117.14824	32.69056	160
Shipyard Sediment Site	SW33		-117.14722	32.68981	100
Shipyard Sediment Site	SW34		-117.14415	32.68846	130
Shipyard Sediment Site	SW36		-117.14525	32.69023	200
Upstream Paleta Creek	IR-PAC65	2004	-117.11433	32.67560	249
Upstream Paleta Creek	IR-PAC55	2004	-117.11468	32.67508	227
Upstream Paleta Creek	IR-PAC17	2004	-117.11485	32.67513	150
Upstream Paleta Creek	IR-PAC29	2004	-117.11427	32.67568	124
Upstream Paleta Creek	IR-PAC14	2004	-117.11505	32.67480	105
Upstream Paleta Creek	IR-PAC60	2004	-117.11529	32.67467	93
Upstream Paleta Creek	IR-PAC41	2004	-117.11173	32.67665	68
Upstream Paleta Creek	IR-PAC3	2004	-117.11562	32.67443	68

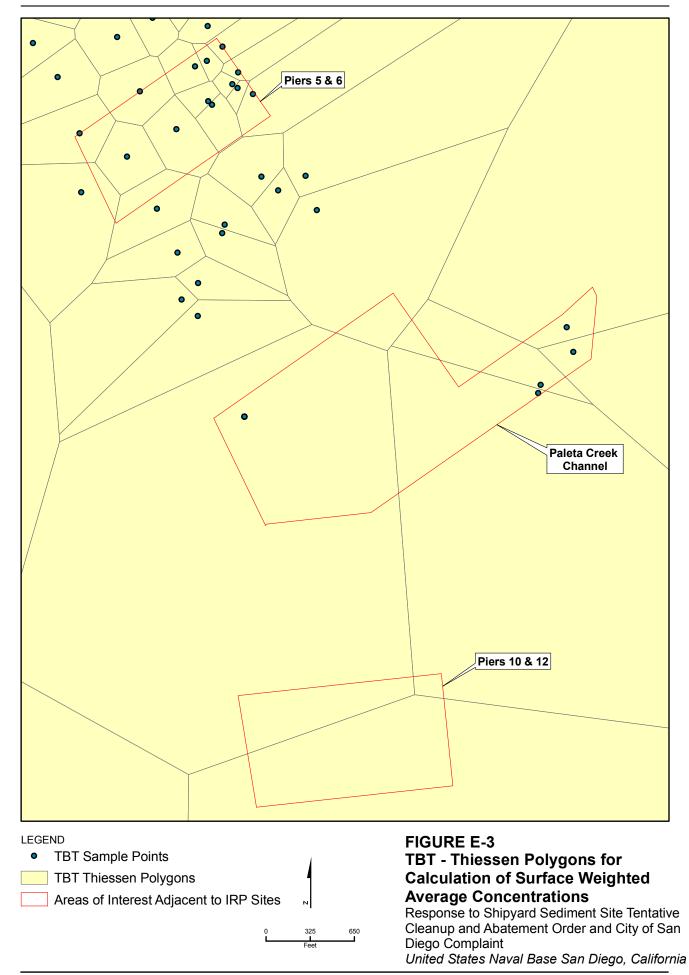
DRAFT RESPONSE TO SHIPYARD SEDIMENT SITE TENTATIVE CAO AND CITY OF SAN DIEGO COMPLAINT, NBSD, DECEMBER 2010 N62470-08-D-1000, CTO FZN1; DCN CH2M-1000-FZN1-0002 ES111110054058SCO

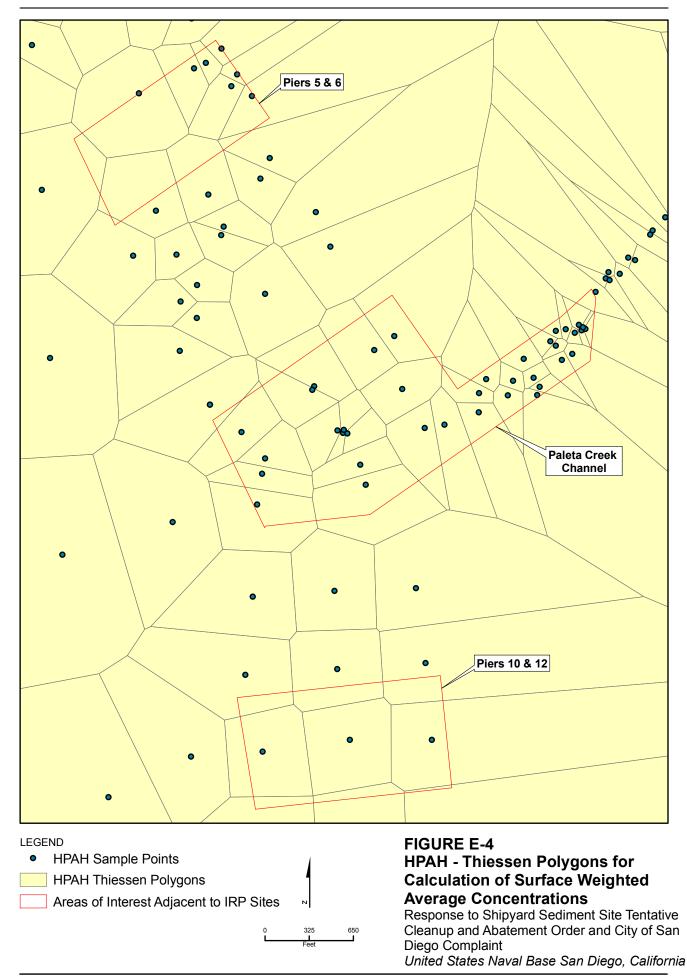

Total Polychlorinated Biphenyl (PCB) Congeners in Surface Sediment Samples Response to Tentative Cleanup and Abatement Order and City of San Diego Complaint United States Naval Base San Diego, California

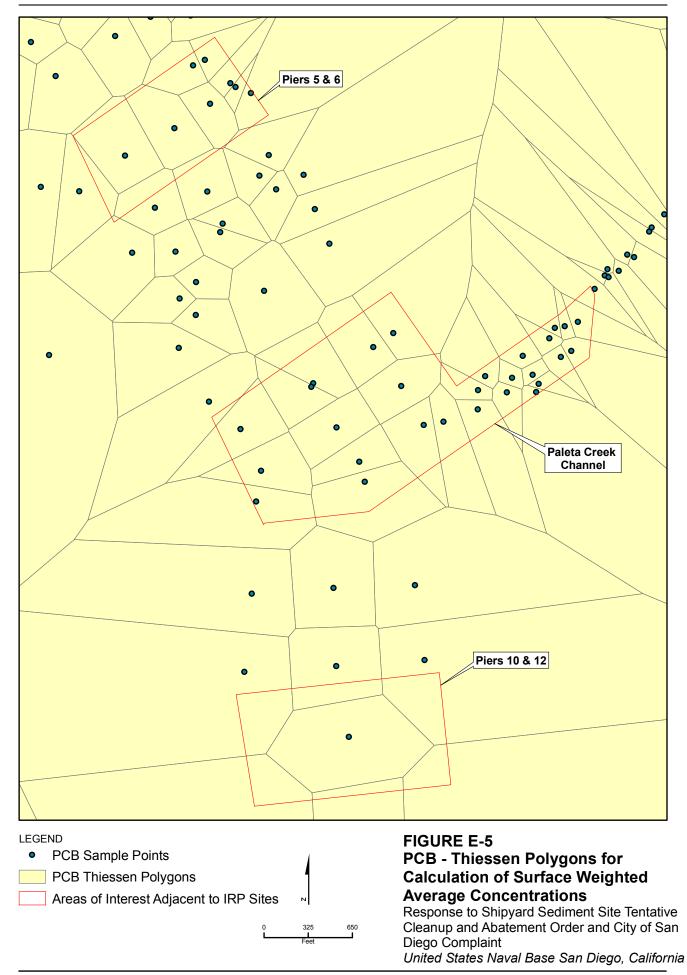
PROJECT NAME	SITE NAME	SAMPLE DATE	X COORDINATE	Y COORDINATE	Total PCB Congeners (µg/kg dry wt)
Upstream Paleta Creek	IR-PAC61	2004	-117.11532	32.67483	40
Upstream Paleta Creek	IR-PAC63	2004	-117.11397	32.67595	38
Upstream Paleta Creek	IR-PAC38	2004	-117.11380	32.67605	37
Upstream Paleta Creek	IR-PAC7	2004	-117.11538	32.67470	35
Upstream Paleta Creek	IR-PAC49	2004	-117.11215	32.68297	3.4
Upstream Paleta Creek	IR-PAC71	2004	-117.11008	32.68398	2.7
Upstream Paleta Creek	IR-PAC56	2004	-117.11060	32.68375	2.3

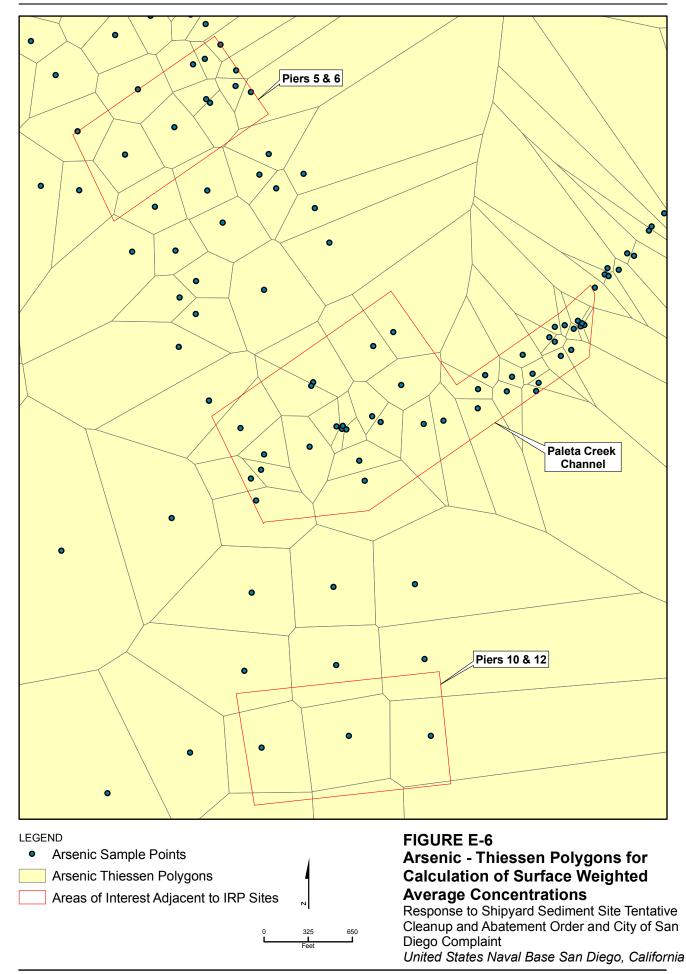

This page intentionally left blank.

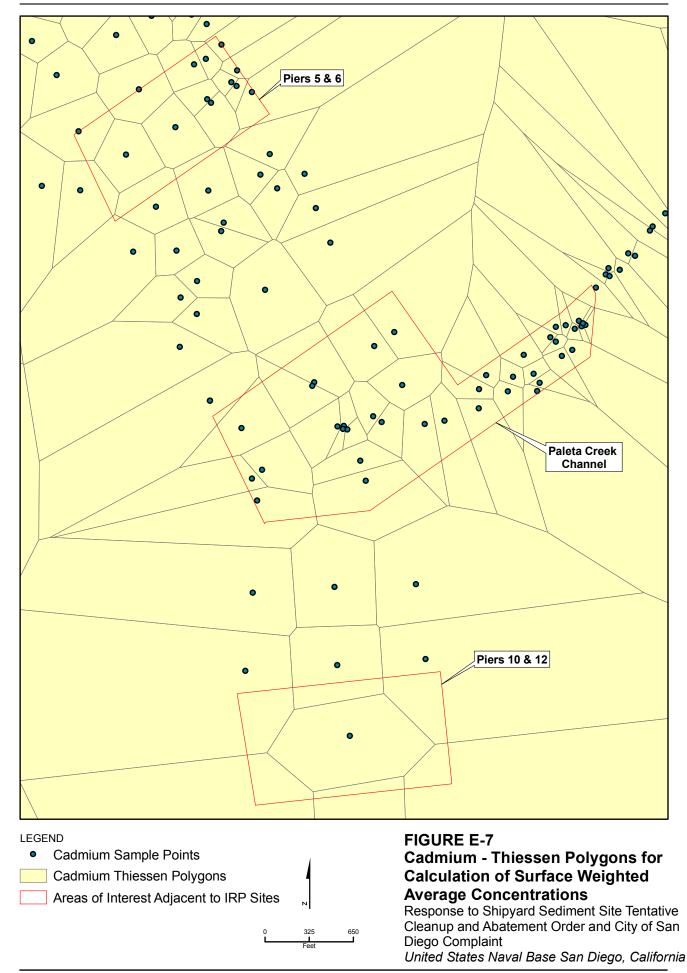
Appendix E Supporting Information for Calculation of Surface-Weighted Average Concentrations

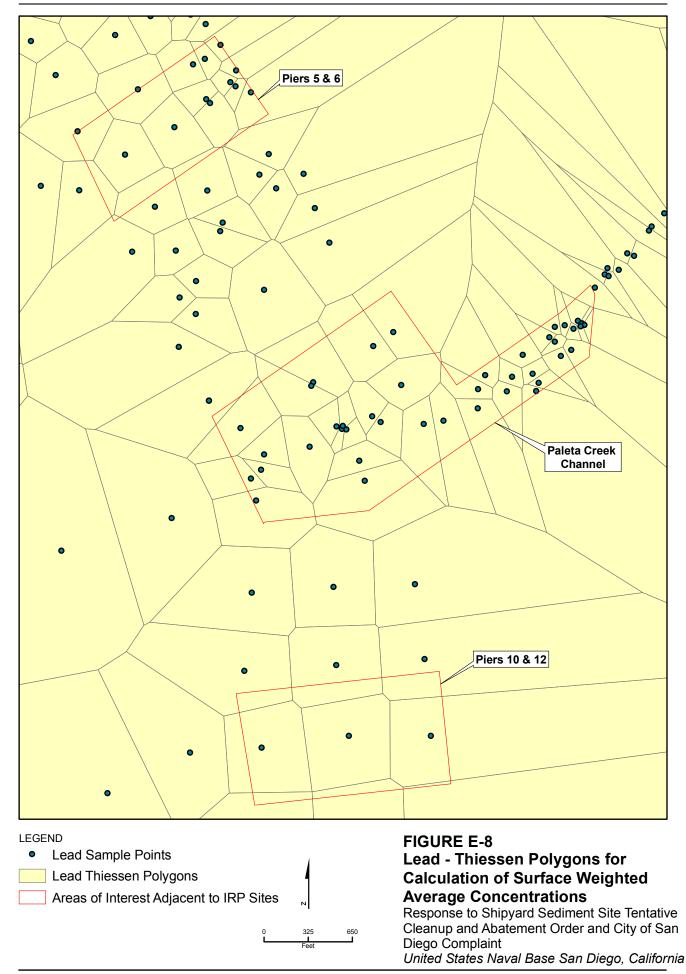

This page intentionally left blank.

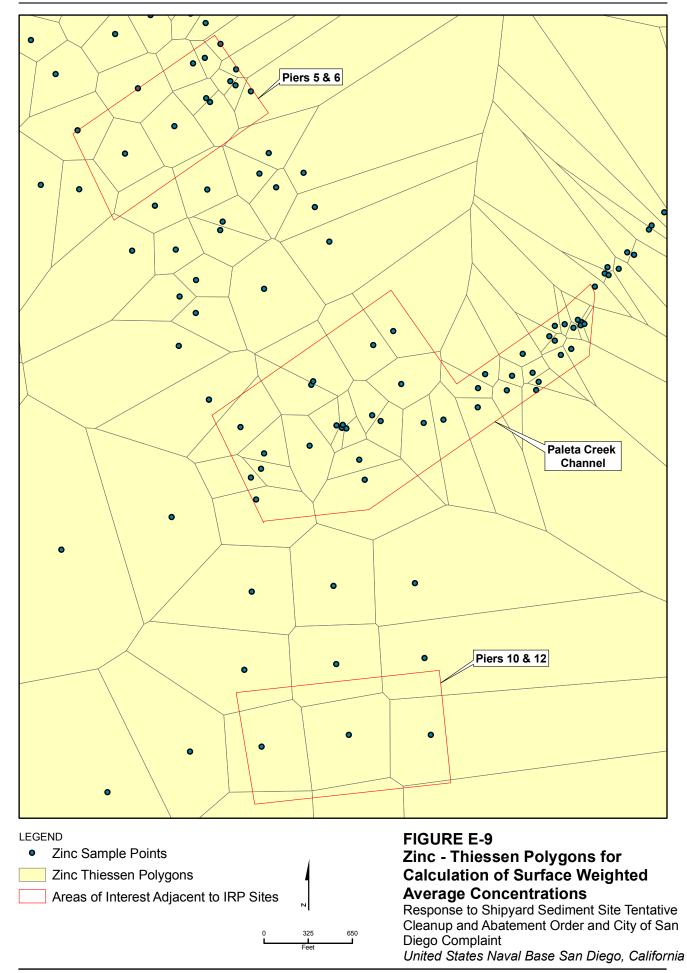

\ICONIA\PROJECTS\US_NAVY\388185_NBSD\GIS\SHIPYARDSEDIMENTSITE\MAPFILES\COC_MAPS\RESPONSEREPORT_FIG_E1_COPPER.MXD_SWOLFSKI 6/9/2010 13:53:35

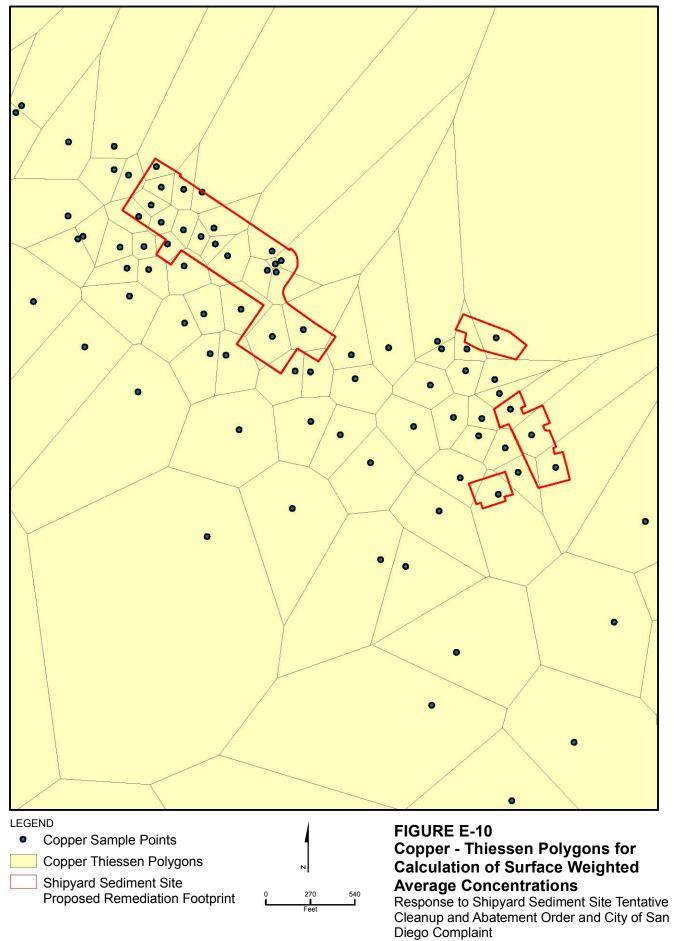

^{\\}ICONIA\PROJECTS\US_NAVY\388185_NBSD\GIS\SHIPYARDSEDIMENTSITE\MAPFILES\COC_MAPS\RESPONSEREPORT_FIG_E2_MERCURY.MXD_SWOLFSKI 6/9/2010 13:55:51

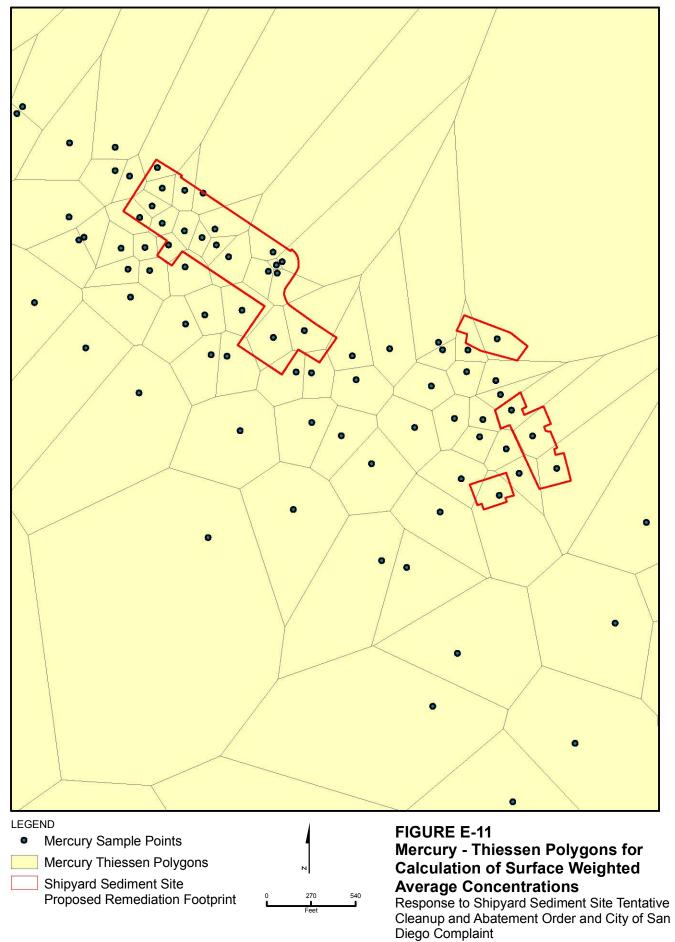

\ICONIA\PROJECTS\US_NAVY\388185_NBSD\GIS\SHIPYARDSEDIMENTSITE\MAPFILES\COC_MAPS\RESPONSEREPORT_FIG_E3_TBT.MXD_SWOLFSKI 6/22/2010 15:11:41

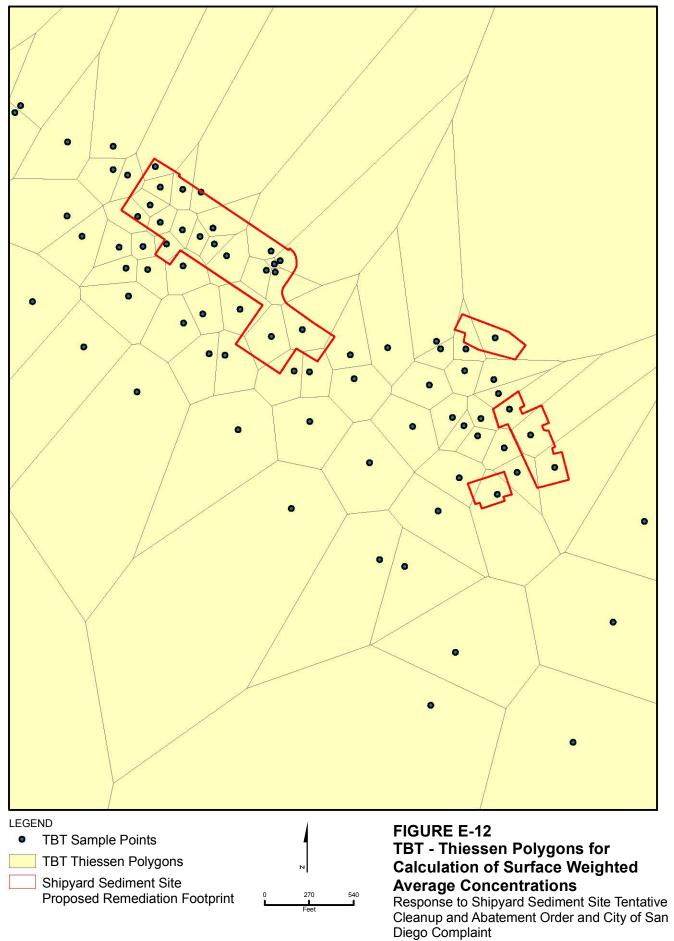

[\]ICONIA\PROJECTS\US_NAVY\388185_NBSD\GIS\SHIPYARDSEDIMENTSITE\MAPFILES\COC_MAPS\RESPONSEREPORT_FIG_E4_HPAH.MXD_SWOLFSKI 6/22/2010 15:12:25

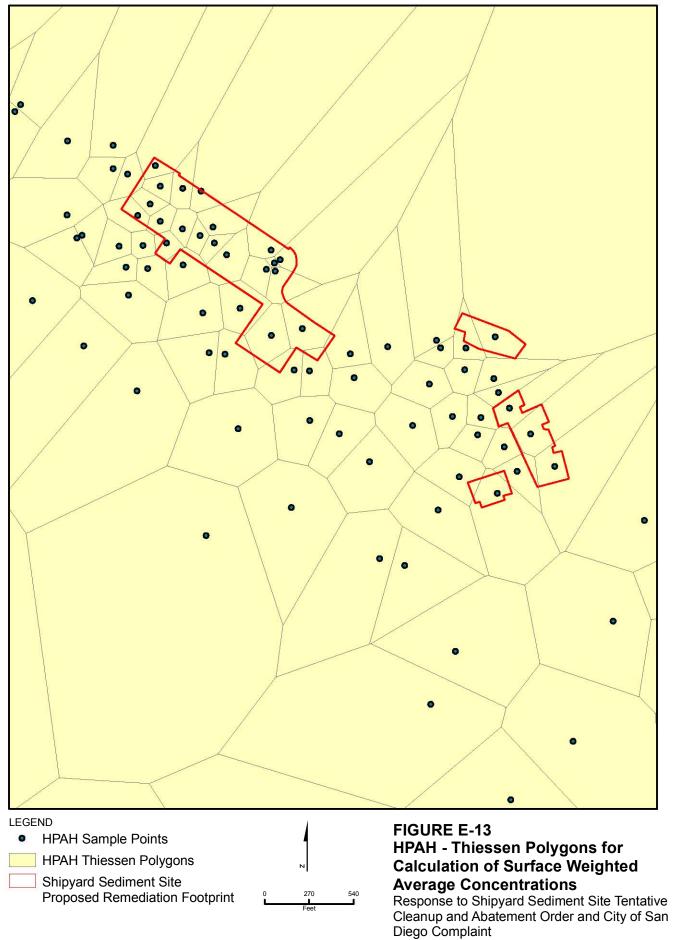

\ICONIA\PROJECTS\US_NAVY\388185_NBSD\GIS\SHIPYARDSEDIMENTSITE\MAPFILES\COC_MAPS\RESPONSEREPORT_FIG_E5_PCB.MXD_SWOLFSKI 6/22/2010 15:13:30

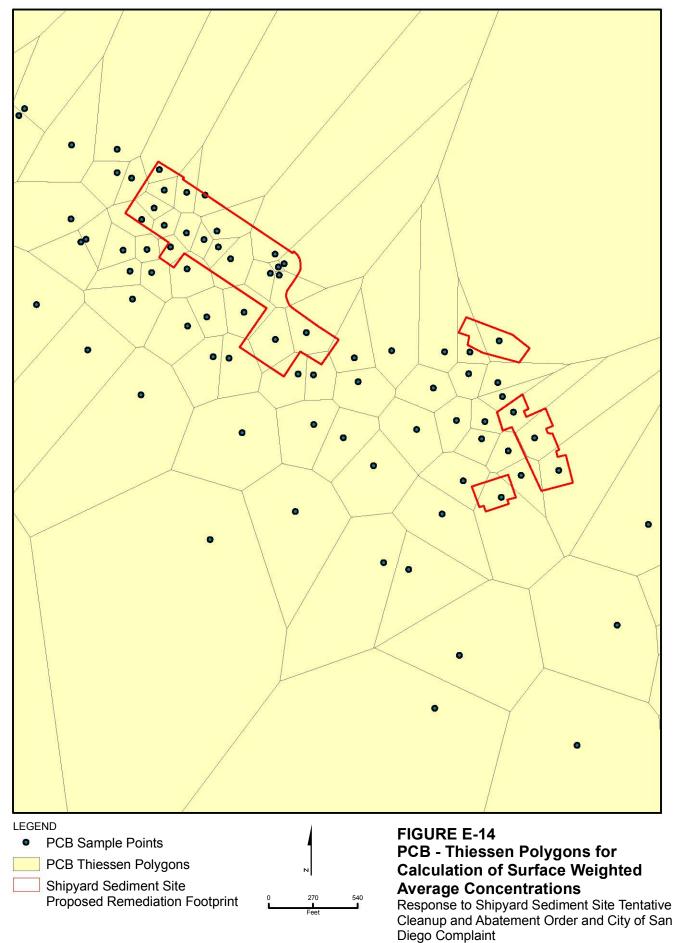

\ICONIA\PROJECTS\US_NAVY\388185_NBSD\GIS\SHIPYARDSEDIMENTSITE\MAPFILES\COC_MAPS\RESPONSEREPORT_FIG_E6_ARSENIC.MXD_SWOLFSKI 6/22/2010 15:14:20

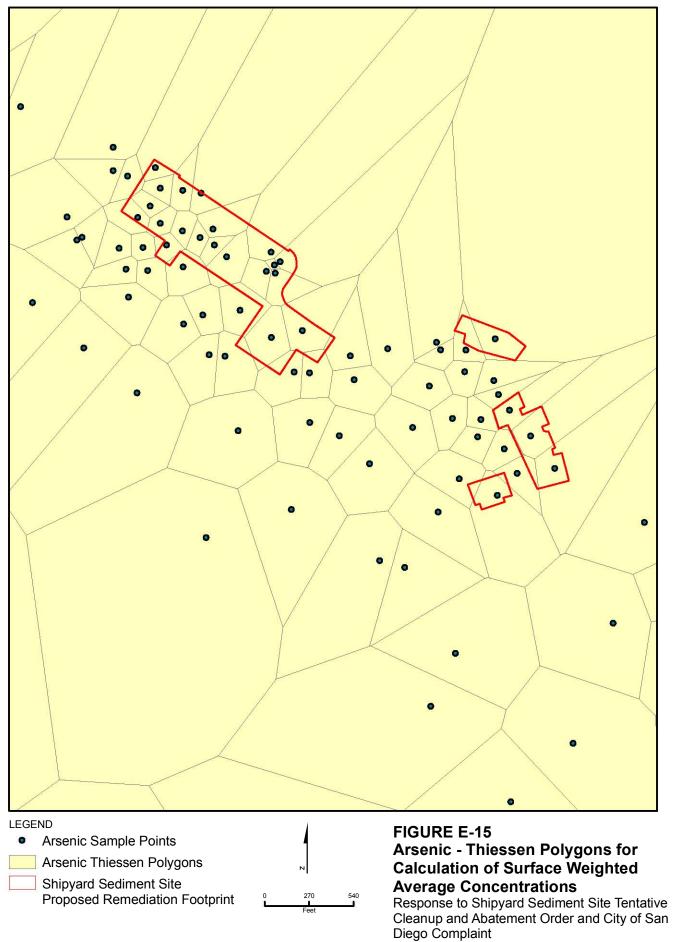

[\]ICONIA\PROJECTS\US_NAVY\388185_NBSD\GIS\SHIPYARDSEDIMENTSITE\MAPFILES\COC_MAPS\RESPONSEREPORT_FIG_E7_CADMIUM.MXD_SWOLFSKI 6/22/2010 15:15:04

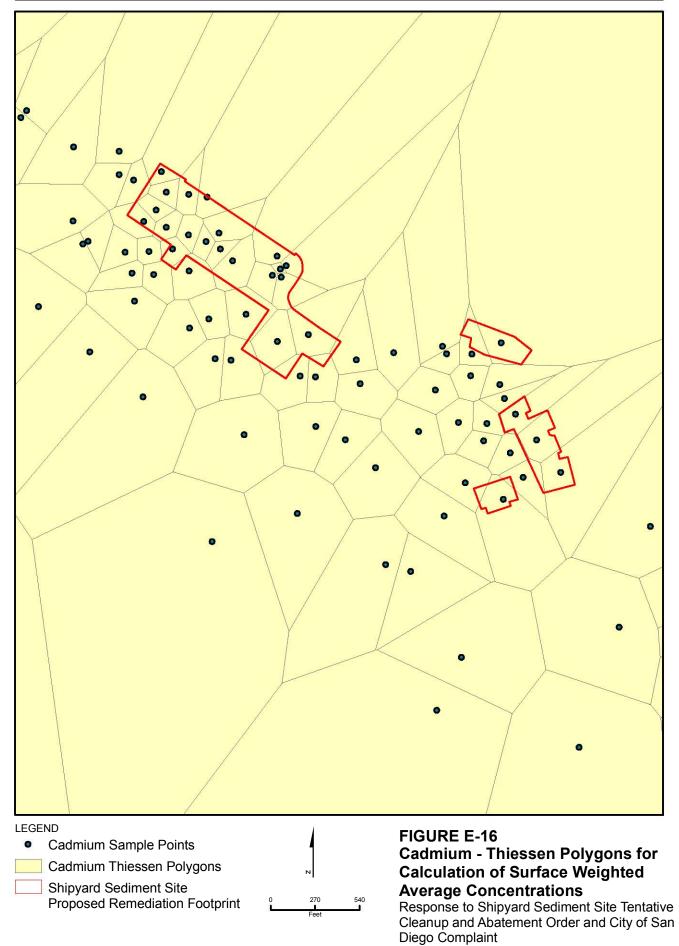

[\]ICONIA\PROJECTS\US_NAVY\388185_NBSD\GIS\SHIPYARDSEDIMENTSITE\MAPFILES\COC_MAPS\RESPONSEREPORT_FIG_E8_LEAD.MXD_SWOLFSKI 6/22/2010 15:15:35

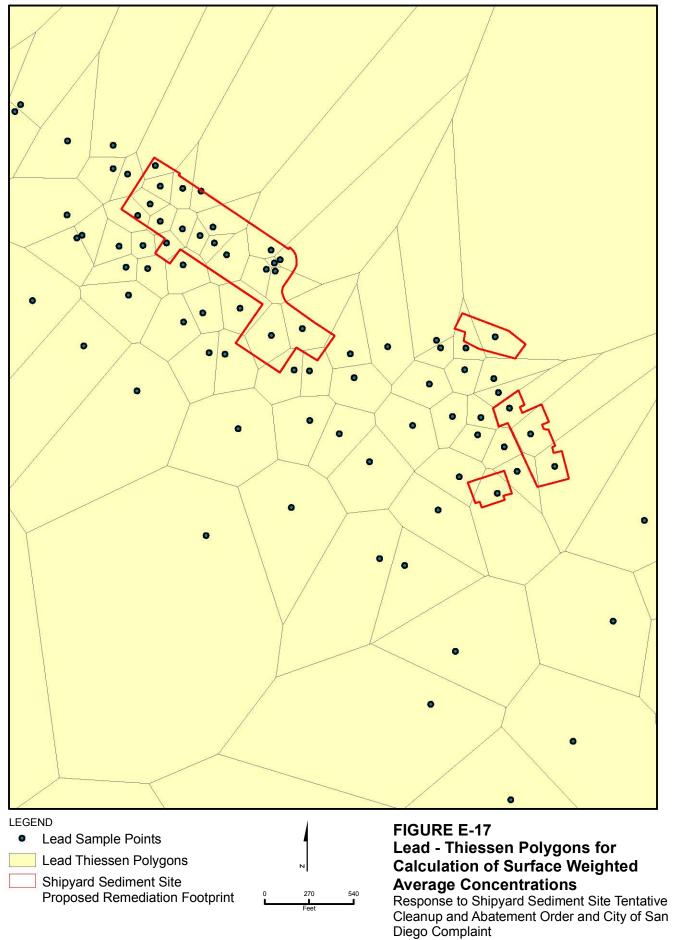

\ICONIA\PROJECTS\US_NAVY\388185_NBSD\GIS\SHIPYARDSEDIMENTSITE\MAPFILES\COC_MAPS\RESPONSEREPORT_FIG_E9_ZINC.MXD_SWOLFSKI 6/22/2010 15:16:04

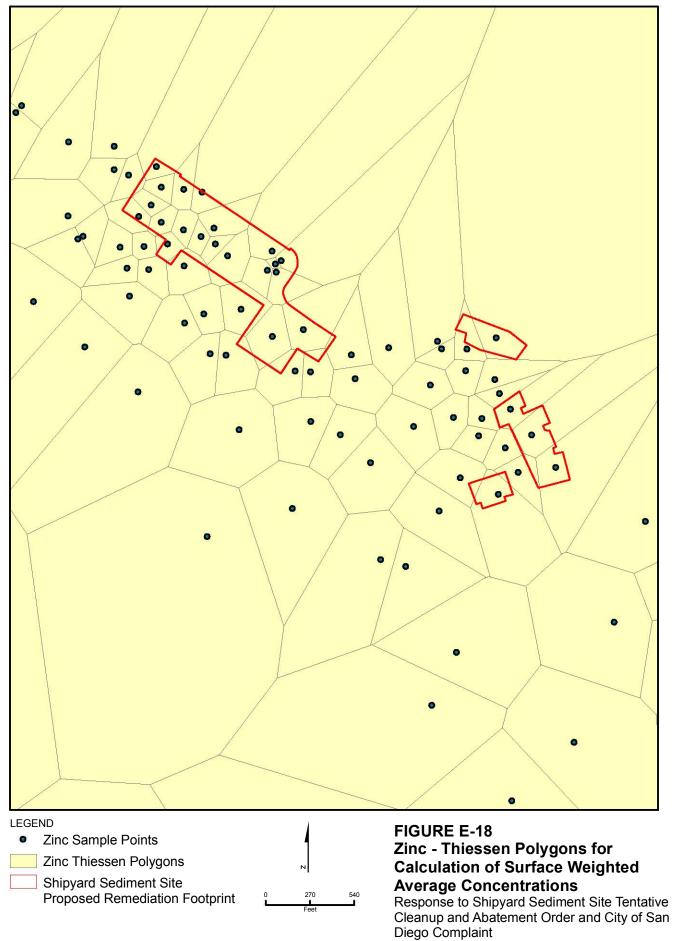

\\ICONIA\PROJECTS\US_NAVY\388185_NBSD\GIS\SHIPYARDSEDIMENTSITE\MAPFILES\COC_MAPS\RESPONSEREPORT_FIG_E10_COPPER.MXD_SWOLFSKI 6/22/2010 15:35:05


\\ICONIA\PROJECTS\US_NAVY\388185_NBSD\GIS\SHIPYARDSEDIMENTSITE\MAPFILES\COC_MAPS\RESPONSEREPORT_FIG_E11_MERCURY.MXD_SWOLFSKI 6/22/2010 15:36:39


\\ICONIA\PROJECTS\US_NAVY\388185_NBSD\GIS\SHIPYARDSEDIMENTSITE\MAPFILES\COC_MAPS\RESPONSEREPORT_FIG_E12_TBT.MXD_SWOLFSKI 6/22/2010 15:37:23


\\ICONIA\PROJECTS\US_NAVY\388185_NBSD\GIS\SHIPYARDSEDIMENTSITE\MAPFILES\COC_MAPS\RESPONSEREPORT_FIG_E13_HPAH.MXD_SWOLFSKI 6/22/2010 15:38:14


\ICONIA\PROJECTS\US_NAVY\388185_NBSD\GIS\SHIPYARDSEDIMENTSITE\MAPFILES\COC_MAPS\RESPONSEREPORT_FIG_E14_PCB.MXD_SWOLFSKI 6/22/2010 15:38:45


\\ICONIA\PROJECTS\US_NAVY\388185_NBSD\GIS\SHIPYARDSEDIMENTSITE\MAPFILES\COC_MAPS\RESPONSEREPORT_FIG_E15_ARSENIC.MXD_SWOLFSKI 6/22/2010 15:39:23

\\ICONIA\PROJECTS\US_NAVY\388185_NBSD\GIS\SHIPYARDSEDIMENTSITE\MAPFILES\COC_MAPS\RESPONSEREPORT_FIG_E16_CADMIUM.MXD_SWOLFSKI 6/22/2010 15:39:59

\\ICONIA\PROJECTS\US_NAVY\388185_NBSD\GIS\SHIPYARDSEDIMENTSITE\MAPFILES\COC_MAPS\RESPONSEREPORT_FIG_E17_LEAD.MXD_SWOLFSKI 6/22/2010 15:41:26

\\ICONIA\PROJECTS\US_NAVY\388185_NBSD\GIS\SHIPYARDSEDIMENTSITE\MAPFILES\COC_MAPS\RESPONSEREPORT_FIG_E18_ZINC.MXD_SWOLFSKI 6/22/2010 15:42:18

Appendix F Composite Sediment Chemistry Analytical Data

This page intentionally left blank.

Image: Control Image: Control Control Norm Norm <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th>MEASUREMEN</th><th>TPARAMETER</th><th></th><th></th><th></th><th></th></t<>							MEASUREMEN	TPARAMETER				
Disk Hall Greek Selence Constructions Suby 11 11/11/16 HATTRB Gree JUNIONE Description	PROJECT NAME	SITE NAME	SAMPLE ID	X COORDINATE	Y COORDINATE	TYPE			PROPERTY	QUANTITY UNIT	OLIALIEIER	AREA OF INTEREST
DATA Hale Core Leftonet Duscritents Subj. 1-1 117.1180 11.2738 Grave Control (C) Dyrangit 2.3 Partic Core Leftonet Subscritents Subj. 2.1 Partic Core Leftonet Subscritent Subj. Partic Core LeftonetS		=	5/ WH EE_10								donen ien	
DND Mark Cook Market Description Symplet Timplet Distance constructions Distance Cook Market Distance Cook Market <td></td> <td>1-1</td> <td></td>		1-1										
Desk Heiner 1.1 1.17 (118) <td></td>												
Ditt And Cock Science Characterization Study 51 117.1186 117.1186 Core Spr2000 Precry figs Precry figs <td>,</td> <td></td>	,											
Disk Pass Core & Science Observations Stager 1.1 <th1.1< th=""> <th1.1< th=""> 1.1</th1.1<></th1.1<>	,											
DATA Mate Cress Monter Characterization Multip 1.1 111.1173 Mit STM Core Space (a) bit STM Description Descripion Description Desc												
DotA Haus Cook Lations Daugh 1-2 1111158 100 First Cook Lations Daught 100 First Cook Manner DOA First Cook Manner Daught 1-3 1111158 100 First Cook Manner 100 First Cook Manne 100 Firs												
Data Para Cresk selemen Descriptions buy 1-3 111715 100.711 00.7111												
Del Hanc Ceek Monte Outschreichter Solgen 1-2 111/1758 300 7718 Core 570/7001 Lent (P) Dyweight 138 m/ga Partic Ceek Month DBA Halz Ceek Monte Dustrictions Solgen 1-2 111/1758 800 711 Core 570/7001 Zore (D) Dyweight 408 m/gk Partic Ceek Month DBA Halz Ceek Monte Dustrictions Solgen 1-3 111/1758 800 7118 Core 570/7001 Zore (D) Dyweight 408 m/gk Partic Ceek Month DBA Halz Ceek Monte Dustrictions Solgen 1-3 111/1728 120 7118 Core 570/7001 Co	· · · · ·											
Data A manual constructions shuph 1-2 111 11151 30.6731 Over 5.070001 Merrary Pig For weight 1.0 Pig/tec Pig/tec <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
DOAD Product Cerels Science Characterization Subpl 1-2 132 1125 30.6738 Care 570/2004 Zare (c) Dot wright 60.01 mm/sc Parted Cerel Mode DOAD Prace Cerels Mode 13 117177 32.6738 Care 570/2004 Cammun (C) Draw stell 22.87 Mark Cerel Mode DOAD Prace Cerel Mode 13 117177 32.6738 Care 570/2004 Cammun (C) Draw stell 22.87 Mark Cerel Mode DOAD Prace Cerel Mode 13 117177 32.6738 Care 570/2004 Mark Cerel Mode Parte Cerel Mode	,											
DATA Field Credit Solution List 21/20 J.2.2738 Core S/07/200 Learnin (Ad) Preside Credit Mode) DATA Field Credit Solution 1.3 1.111170 J.2.0718 Core S/07/2004 Cadmund (D) System J.2.2778 Core Male Credit Mode) DOTA Field Credit Solution 1.3 1.111170 J.2.0718 Core S/07/2004 Cadmund (D) System J.2.2778 Core S/07/2004 Core S/07/2004 Preside Credit Mode) J.3.27788 Core S/07/2004 Core S/07/2004 Preside Credit Mode) J.3.27788 Core S/07/2004 Core S/07/2004 Preside Credit Mode) J.3.27788 Core S/07/2004	,											
DDATest Cerels Sediment Characterization Study 1-3 117.17.20 22.6738 Core 5/07/004 Codeword (c) Dys weight 22.87 m/g Meta Cerels Modin DDAT Pasiz Cerels Sediment Characterization Study 1-3 117.17.170 32.6738 Core 5/07/004 Ital (P) Dys weight 130 m/g Pata Cerels Modin DDAT Pasiz Cerels Sediment Characterization Study 1-3 117.17.170 32.6738 Core 5/07/004 Meta (P) Dys weight 130 m/g Pata Cerels Modin DDAT Pasiz Cerels Sediment Characterization Study 1-4 117.1186 32.6748 Core 5/07/004 Acress (A) Dys weight 23.6 m/g Pata Cerels Modin DDAT Pasiz Cerels Sediment Characterization Study 1-4 117.1186 32.6748 Core 5/07/004 Metarcery Modin 23.6 m/g Pata Cerels Modin DDAT Pasiz Cerels Sediment Characterization Study 1-4 117.1186 32.6748 Core 5/07/004 Metarcery Modin 23.6 m/g Pata Cerels Modin DDAT Pasiz Cerels Modin 1-3 117.11865 32.6748 Core												
2004 Prace Creek Sediment Characterization Study 1-3 117.1120 232.6738 Core 5/20/2004 Log Partice 237.mg/hg Place Creek Moulth D00A Partice Creek Sediment Characterization Study 1-3 117.1120 32.6738 Core 5/20/2004 Dark Partice Place Creek Moulth D00A Partice Creek Sediment Characterization Study 1-4 117.1120 32.6738 Core 5/20/2004 Dark Partice Place Creek Moulth D00A Partice Creek Sediment Characterization Study 1-4 117.1126 32.6738 Core 5/20/2004 Coremins Clin Place Creek Moulth D00A Partice Creek Sediment Characterization Study 1-4 117.11365 32.6738 Core 5/20/2004 Coremins Clin Place Series Moulth D00A Partice Creek Sediment Characterization Study 1-4 117.11365 32.6738 Core 5/20/2004 Loss (Pla) 2.01 Partice Place Creek Moulth D00A Partice Creek Sediment Characterization Study 1-5 117.1156 32.6738 Core 5/20/2004 Loss (Pla) D18 Place Creek Moulth D00A Partice Creek Sediment												
Deb F Jack Corek Seminer Characterization Study 1:4 117:1770 22:778 Core 5/30/2004 Inside (Ph) Dry wight 1:91 mp/g Pelera Corek Mooin Deb F Jack Corek Seminer Characterization Study 1:8 117:1770 22:0788 Core 5/30/2004 Data (A) Diversity 1:8 Pelera Corek Mooin Deb F Jack Corek Seminer Characterization Study 1:4 1:17:1700 22:0784 Core 5/30/2004 Data (A) Diversity 1:8 Pelera Corek Mooin Deb F Jack Corek Seminer Characterization Study 1:4 1:17:1108 22:0784 Core 5/30/2004 Deal (P) Diversity 1:2 Prelia Corek Mooin Deb F Jack Corek Seminer Characterization Study 1:4 1:17:1108 22:0784 Core 5/30/2004 Deal (P) Diversity 2:0 Pile Corek Mooin Deb F Jack Corek Seminer Characterization Study 1:4 1:17:1108 22:0784 Core 5/30/2004 Deal (P) Diversity 2:0 Pile Corek Mooin Deb F Jack Corek Seminer Characterization Study 1:5 1:17:1108 22:0784												
2040 Flate Creek Sedment Characterization Study 1-3 117.1770 32.0738 Cere \$9/07,0004 Jake Carek Month 2040 Flate Creek Sedment Characterization Study 1-4 117.1770 32.0738 Cere \$5/00.2004 Jake Carek Month 2040 Flate Creek Sedment Characterization Study 1-4 117.1188 52.0736 Cere \$5/00.2004 Artesice (Ad. DY weight 16.0 mp/dz Paleta Creek Month 2040 Flates Creek Sedment Characterization Study 1-4 117.1188 52.0736 Cere \$5/00.2004 Caretaria 11.0 mp/dz Paleta Creek Month 2040 Flates Creek Sedment Characterization Study 1-4 117.1186 52.07364 Cere \$5/20.2004 Marce Treek 2041 Paleta Creek Sedment Characterization Study 1-4 117.1186 52.07364 Cere \$5/20.2004 Artes Treek 2041 Paleta Creek Sedment Characterization Study 1-5 117.1186 52.0738 Cere \$5/20.2004 Artes Treek 2041 Paleta Creek Month 2040 Flate Creek Sedment Characterization Study 1-5 117.1186 32.0738 Cere \$5/20.2004<												
2004 Plate Creek Sediment Characterization Sudy 1-3 117.1170 32.0734 Core 570/2004 Assen: (A) Dy weight 105 plught Plate Creek Noch 2004 Plate Creek Sediment Characterization Sudy 1-4 117.1168 32.07348 Cree 570/2004 Cadmum (C) Dy weight 32.05 plught Plate Creek Noch 2004 Plate Creek Sediment Characterization Sudy 1-4 117.1168 32.07348 Cree 570/2004 Cadmum (C) Dy weight 32.11 plught Plate Creek Noch 2004 Plate Creek Sediment Characterization Sudy 1-4 117.1168 32.07348 Cree 570/2004 Cadmum (C) Dy weight 32.11 plught Plate Creek Noch 2004 Plate Creek Sediment Characterization Sudy 1-5 117.1166 32.07348 Cree 570/2004 Assen: (A) Dy weight 32.9 m/gkt Plate Creek Noch 2004 Plate Creek Sediment Characterization Sudy 1-5 117.1166 32.07348 Cree 570/2004 Cagper (C) Dy weight 32.9 m/gkt Plate Creek Noch 2004 Plate Creek Sediment Characterization Sudy 1-5				-								
Dob Alustic credits Solutions 1.4 117.1188 32.2748 Core 5/20/204 Association 1.00 mg/mg Pales Creck Modin DOD Flatic Credits Solution 1.4 117.1188 32.2748 Core 5/20/204 Capling (Ca) Dy weight 2.26 mg/mg Pales Creck Modin DOD Flatic Credits Solution 1.4 117.1168 32.2748 Core 5/20/204 Lead (Pa) Dy weight 2.21 mg/mg Pales Creck Modin DOM Flatic Credits Solution 1.4 117.1168 32.2748 Core 5/20/204 Metry (Pd) Dy weight 0.81 mg/mg Pales Creck Modin DOM Flatic Credits Solution 1.4 117.1168 32.2748 Core 5/20/204 Carp (M) Dy weight 0.81 mg/mg Pales Creck Modin DOM Flatic Credits Solution 1.5 117.1166 32.2788 Core 5/20/204 Carp (M) Dy weight 2.31 mg/mg Pales Creck Modin DOM Flatic Credits Solution 1.5 117.1166 32.2788 Core 5/20/204 Lang (M) Dy weight 3.31 mg/mg												
D004 Pate Creek Softmert Characterization Study 1-4 117.11865 32.2738 Core 5/20/2004 Codemin (G) Dy weight 2.16 m/g/te Piete Creek Month D004 Pate Creek Softmert Characterization Study 1-4 117.11865 32.2738 Core 5/20/2004 Lead (Ph) Dy weight 2.11 m/g/te Piete Creek Month D004 Pate Creek Softmert Characterization Study 1-4 117.11865 32.2738 Core 5/20/2004 Mercary (Pa) Dy weight 0.281 m/g/te Piete Creek Month D004 Pate Creek Softmert Characterization Study 1-5 117.11666 32.2738 Core 5/20/2004 Arence (24) Dy weight 2.31 m/g/te Piete Creek Month D004 Pate Creek Softmert Characterization Study 1-5 117.11666 32.2738 Core 5/20/2004 Codepar (24) Dy weight 2.31 m/g/te Piete Creek Month D004 Pate Creek Softmert Characterization Study 1-5 117.11666 32.2738 Core 5/20/2004 Arene (14) Dy weight 2.31 m/g/te Piete Creek Month D004 Pate Creek Softmert Characterization Study 2-											1	
DOOD Figles Creek Sedimer Characterization Study 14 117.11685 32.07481 Core 5//0/2044 Cocpup (c). Dry weight 217.me/rag PateL creek Nooth DOOD Figles Creek Sedimer Characterization Study 1-4 117.11686 32.07481 Core 5//0/2044 Mercury (trg) Dry weight 0.381 m//rag PateL creek Nooth DOOD Figles Creek Sedimer Characterization Study 1-4 117.11686 32.07481 Core 5//0/2044 Arcenic (A) Dry weight 0.831 m//rag PateL creek Nooth DOID Figles Creek Sedimer Characterization Study 1-5 117.11666 32.07381 Core 5//0/2044 Carenic (A) Dry weight 1.22 m//rag PateL creek Nooth DOID Figles Creek Sedimers Characterization Study 1-5 117.11666 32.07381 Core 5//0/2044 Lead(Th) Dry weight 1.32 m//rag PateL creek Nooth DOID Figles Creek Sedimers Characterization Study 1-5 117.11666 32.07381 Core 5//0/2044 Zarmain The Zarma//rag PateL creek Nooth DOID Figles Creek Sedimers Characterization Study 2-1												
D006 Paleta Creek Sediment Characterization Study 14 111 mining Paleta Creek Mouth D006 Paleta Creek Sediment Characterization Study 1-4 117 11685 32 20738 Core 5/20/2004 Zinc (Pa) Dyr weight 435 mining Paleta Creek Mouth D006 Paleta Creek Sediment Characterization Study 1-4 117 11666 32 20738 Core 5/20/2004 Zinc (Pa) Dyr weight 102 mining Paleta Creek Mouth D006 Paleta Creek Sediment Characterization Study 1-3 117 11666 32 20738 Core 5/20/2004 Cardmunt (C) Dyr weight 32 mining Paleta Creek Mouth D006 Paleta Creek Sediment Characterization Study 1-5 117 11666 32 20738 Core 5/20/2004 Lead (Po) Dyr weight 121 mining Paleta Creek Mouth D006 Paleta Creek Sediment Characterization Study 1-5 117 11666 32 207387 Core 5/20/2004 Lead (Po) Dyr weight 121 mining Paleta Creek Mouth D006 Paleta Creek Sediment Characterization Study 2-1 117 11162 32 207387 Core 5/20/2004 Lead (Po)											1	
DODA Plate Creek Sedment Characterization Study 1.4 P1711885 22.0738 Core 5/7/2004 Mercury (hg) Dyweight 0.831 mp/g Plate Creek Nouth DODA Plate Creek Sedment Characterization Study 1.5 117.11665 32.0738 Core 5/7/2004 Arsenic (Jo) Dyweight 0.33 mp/g Platet Creek Nouth DOM Plate Creek Sedment Characterization Study 1.5 117.11665 32.0738 Core 5/7/2004 Caght (Hu) Dyweight 0.33 mp/g Platet Creek Nouth DOM Plate Creek Sedment Characterization Study 1.5 117.11665 32.0738 Core 5/7/2004 Load (Hu) Dyweight 0.35 mp/g Platet Creek Nouth DOM Plate Creek Sedment Characterization Study 1.5 117.11665 32.0738 Core 5/7/2004 Arsen (Ja) Dyweight 1.31 mp/g Platet Creek Nouth DOM Plate Creek Sedment Characterization Study 2.1 117.11658 32.0738 Core 5/7/2004 Arsen (Ja) Dyweight 3.31 mp/g Platet Creek Nouth DOM Plate Creek Sedment Characterization Study 2.1 117.1165												
DOAD PlateL Creek Sediment Characterization Study 14 117.1165 22.07.348 Core 5/20/2004 Carne (A) Dy weight 448 mp/hg Plate Creek Mouth DOAD PlateL Creek Sediment Characterization Study 1-5 117.1166 32.07.380 Core 5/20/2004 Cardinum (C) Dy weight 2.38 Plate Creek Sediment Characterization Study 2.98 Plate Creek Sediment Characterization Study 1.5 117.1166 32.07.380 Core 5/20/2004 Lead (Ph) Dy weight 32.89 Plate Creek Sediment Characterization Study 1.5 117.1166 32.07.380 Core 5/20/2004 Lead (Ph) Dy weight 33.18 Plate Creek Sediment Characterization Study 2.1 117.1162 32.07.380 Core 5/20/2004 Arne (A) Dy weight 33.18 Plate Creek Sediment Characterization Study 2.1 117.1162 32.07.380 Core 5/20/2004 Carmiun (C) Dy weight 33.18 Plate Creek Sediment Characterization Study 2.1 117.1162 32.07.387 Core 5/20/2004 Carmiun (C) Dy weight 33.18 Plate Creek Sediment C												
D004 Plate Creek Sediment Characterizations Study 1-5 117 11665 32.07380 Core 5/0/2004 Arsens (A) Dyw weight 10.2 $n_{1}^{0}n_{2}^{0}$ Plate Creek Mouth D004 Plate Creek Sediment Characterizations Study 1-5 117.11665 32.07380 Core 5/0/2004 Cager (Cu) Dyw weight 339 $n_{1}^{0}n_{2}$ Plate Creek Sedimet Characterizations Study 1-5 117.11665 32.07380 Core 5/0/2004 Lea(Ph) Dyw weight 1.12 $n_{1}^{0}n_{2}$ Plate Creek Sedimet Characterizations Study 1-5 117.11665 32.07380 Core 5/0/2004 Mercury (Pg) Dyw weight 1.12 $n_{1}^{0}n_{2}^{0}n_{2}^{0}$ Plate Creek Sedimet Characterizations Study 2-1 Plate Creek Sedimet Cha												
DOAD Plate Creek Sediment Duracterization Study 1-5 117.1166 32.57380 Core 57.02/004 Copper (cu) Dy weight 239. mg/kg Plates Creek Mouth DOAD Plates Creek Sediment Duracterization Study 1-5 117.1166 32.67380 Core 57.02/004 Lead (Ph) Dy weight 239. mg/kg Plates Creek Mouth DOAD Plates Creek Sediment Duracterization Study 1-5 117.1166 32.67380 Core 57.02/004 Mercury (Hg) Dy weight 112. mg/kg Plates Creek Mouth DOAD Plates Creek Sediment Duracterization Study 2-1 117.1162 32.67387 Core 57.02/004 Asent(A)A Dy weight 2.31. mg/kg Plates Creek Mouth DOAD Plates Creek Sediment Duracterization Study 2-1 117.1162 32.67387 Core 57.02/004 Copper (cu) Dy weight 2.32. mg/kg Plates Creek Mouth DOAD Plates Creek Sediment Duracterization Study 2-1 117.1162 32.67387 Core 57.02/004 Cadmun (G) Dy weight 3.32. mg/kg Plates Creek Mouth DOAD Plates Creek Sediment Duracterization Study <		1-5										
D004 Paleta Creek Sediment Characterization Study 1-5 117.1166 32.67380 Core 5/20/2004 Copper (Cu) Dyr, weight 335 mg/kg Paleta Creek Mouth D004 Paleta Creek Sediment Characterization Study 1-5 117.11665 32.67380 Core 5/20/2004 Mercury (Hg) Dyr, weight 1.31 mg/kg Paleta Creek Mouth D004 Paleta Creek Sediment Characterization Study 2-1 117.11685 32.67387 Core 5/20/2004 Arenic (A) Dyr, weight 5.73 mg/kg Paleta Creek Mouth D004 Paleta Creek Sediment Characterization Study 2-1 117.11682 32.67387 Core 5/20/2004 Cadmin Doractereek Mouth D004 Paleta Creek Sediment Characterization Study 2-1 117.11628 32.67387 Core 5/20/2004 Cadmin (D) Dyr, weight 135 mg/kg Paleta Creek Mouth D004 Paleta Creek Sediment Characterization Study 2-1 117.11628 32.67387 Core 5/20/2004 Mercury (Hg) Dyr, weight 3.07 mg/kg Paleta Creek Mouth 2004 Paleta Creek Sediment Characterization Study 2-2 117.11607		1-5			32.67380	Core						
D004 Pales Ceek Sediment Characterization Study 1-5 117.1186 32.67380 Core \$ 5/20/2004 Lead (Ph) Dyw weight 5.12.1mg/kg Palesta Ceek Mouth D004 Pales Ceek Sediment Characterization Study 1-5 117.1186 32.67380 Core \$ 5/20/2004 Zinc Zin Dyw weight 5.33.1mg/kg Palesta Ceek Mouth D004 Pales Ceek Sediment Characterization Study 2-1 117.1182 32.67380 Core \$ 5/20/2004 Anseit (A) Dyw weight 7.33.1mg/kg Palesta Ceek Mouth D004 Palest Ceek Sediment Characterization Study 2-1 117.1182 32.67387 Core \$ 5/20/2004 Corepression Dyw weight 2.32.1mg/kg Palesta Ceek Mouth D004 Palest Ceek Sediment Characterization Study 2-1 117.1182 32.67387 Core \$ 5/20/2004 Long Dyw weight 0.75.1mg/kg Palesta Ceek Mouth D004 Palesta Ceek Sediment Characterization Study 2-1 117.1182 32.67387 Core \$ 5/20/2004 Mercury (H) Dyw weight 0.35.1mg/kg Palesta Ceek Mouth D004 Palesta Ceek Sediment Characterization Study 2												
D004 Pales Creek Sediment Characterization Study 1:5 117.1165 32.07380 Core 5/20/2004 Mercury (Hg) Dy weight 1:1 Im/fig. Pales Creek Mouth D004 Pales Creek Sediment Characterization Study 2:1 117.11665 32.07380 Core 5/20/2004 Arcenic (A) Dy weight 7:3 Im/fig. Pales Creek Mouth D004 Pales Creek Sediment Characterization Study 2:4 117.1163 32.07387 Core 5/20/2004 Cambrid Dy weight 3:3 Im/fig. Pales Creek Mouth D004 Pales Creek Sediment Characterization Study 2:4 117.1163 32.07387 Core 5/20/2004 Lead (Pb) Dy weight 3:8 m/fig. Pales Creek Mouth D004 Pales Creek Sediment Characterization Study 2:4 117.1163 32.07387 Core 5/20/2004 Lead (Pb) Dy weight 3:8 m/fig. Pales Creek Mouth D004 Pales Creek Sediment Characterization Study 2:4 117.1160 32.07387 Core 5/20/2004 Lar (m/fig.) Dy weight 3:8 m/fig. Pales Creek Mouth <td></td>												
D004 Pales Creek Sediment Characterization Study 1-5 117.11665 32.67380 Core 5/0/2004 Zinc (Zn) Dry weight 5.13 mg/kg Peleta Creek Mouth D004 Pales Creek Sediment Characterization Study 2-1 117.11628 32.67387 Core 5/0/2004 Cadmium (Gd) Dry weight 2.33 mg/kg Peleta Creek Mouth D004 Pales Creek Sediment Characterization Study 2-1 117.11628 32.67387 Core 5/0/2004 Cadmium (Gd) Dry weight 2.33 mg/kg Peleta Creek Mouth D004 Pales Creek Sediment Characterization Study 2-1 117.11628 32.67387 Core 5/0/2004 Load (Ph) Dry weight 2.17 mg/kg Peleta Creek Mouth D004 Paleta Creek Sediment Characterization Study 2-1 117.11628 32.67387 Core 5/0/2004 Zon (Za) Dry weight 3.31 mg/kg Peleta Creek Mouth D004 Paleta Creek Sediment Characterization Study 2-2 117.11679 32.67410 Core 5/0/2004 Zon (Za) Dry weight 3.31 mg/kg Peleta Creek Mouth D004 Paleta Creek Sediment Characterization Study	2004 Paleta Creek Sediment Characterization Study	1-5		117.11665	32.67380	Core		Mercury (Hg)				Paleta Creek Mouth
1004 Palea creek sediment Characterization Study 2-1 117.11628 32.67387 Core 5/20/2004 Arsenic (As) Dry weight 7.23 (mg/kg Paleta Creek Mouth 2004 Palea creek Sediment Characterization Study 2-1 117.11628 32.67387 Core 5/20/2004 Copper (Gu) Dry weight 135 (mg/kg Paleta Creek Mouth 2004 Paleta Creek Sediment Characterization Study 2-1 117.11628 32.67387 Core 5/20/2004 Leag(Pb) Dry weight 125 (mg/kg Paleta Creek Mouth 2004 Paleta Creek Sediment Characterization Study 2-1 117.11628 32.67387 Core 5/20/2004 Mercury (Hg) Dry weight 0.75 (mg/kg Paleta Creek Mouth 2004 Paleta Creek Sediment Characterization Study 2-2 117.11607 32.67410 Core 5/20/2004 Arsenic (As) Dry weight 13.1 (mg/kg Paleta Creek Mouth 2004 Paleta Creek Sediment Characterization Study 2-2 117.11607 32.67410 Core 5/20/2004 Cambin (G) Dry weight 13.1 (mg/kg Paleta Creek Mouth 2004 Paleta Creek Sediment Characterizatio		1-5			32.67380	Core						Paleta Creek Mouth
D004 Paleta Creek Sediment Characterization Study 2-1 117.11628 32.67387 Core 5/20/2004 Codm/un (G) Dry weight 4.32 [mg/kg Paleta Creek Mouth D004 Paleta Creek Sediment Characterization Study 2-1 117.11628 32.67387 Core 5/20/2004 Lead (Pb) Dry weight 42.1 Paleta Creek Mouth D004 Paleta Creek Sediment Characterization Study 2-1 117.11628 32.67387 Core 5/20/2004 Mercury (Hg) Dry weight 0.754 [mg/kg Paleta Creek Mouth D004 Paleta Creek Sediment Characterization Study 2-1 117.11628 32.67487 Core 5/20/2004 Amcory (Hg) Dry weight 0.754 [mg/kg Paleta Creek Mouth D004 Paleta Creek Sediment Characterization Study 2-2 117.11607 32.67410 Core 5/20/2004 Cadmin (G) Dry weight 5.13 [mg/kg Paleta Creek Mouth D004 Paleta Creek Sediment Characterization Study 2-2 117.11607 32.67410 Core 5/20/2004 Lead (Pb) Dry weight 51.8 [mg/kg Paleta Creek Mouth D004 Paleta Creek Sediment Characterization St		2-1		117.11628	32.67387	Core						Paleta Creek Mouth
2004 Paleta Creek Sediment Characterization Study 2-1 117.11628 32.67387 Core 5/20/2004 Lead (Pb) Dry weight 217.51 mg/rg Paleta Creek Mouth 2004 Paleta Creek Sediment Characterization Study 2-1 117.11628 32.67387 Core 5/20/2004 Zm (Zn) Dry weight 331 mg/rg Paleta Creek Mouth 2004 Paleta Creek Sediment Characterization Study 2-2 117.11607 32.67410 Core 5/20/2004 Ansenic (As) Dry weight 5.11 mg/rg Paleta Creek Mouth 2004 Paleta Creek Sediment Characterization Study 2-2 117.11607 32.67410 Core 5/20/2004 Copper (Cu) Dry weight 5.11 mg/rg Paleta Creek Mouth 2004 Paleta Creek Sediment Characterization Study 2-2 117.11607 32.67410 Core 5/20/2004 Load (Pb) Dry weight 9.12 mg/rg Paleta Creek Mouth 2004 Paleta Creek Sediment Characterization Study 2-2 117.11607 32.67410 Core 5/20/2004 Load (Pb) Dry weight 9.20 mg/rg Paleta Creek Mouth 2004 Paleta Creek Sediment Characterization Study </td <td>2004 Paleta Creek Sediment Characterization Study</td> <td>2-1</td> <td></td> <td>117.11628</td> <td>32.67387</td> <td>Core</td> <td>5/20/2004</td> <td>Cadmium (Cd)</td> <td></td> <td></td> <td></td> <td>Paleta Creek Mouth</td>	2004 Paleta Creek Sediment Characterization Study	2-1		117.11628	32.67387	Core	5/20/2004	Cadmium (Cd)				Paleta Creek Mouth
2004 Paleta Creek Sediment Characterization Study 2-1 117.11628 32.67387 Core 5/20/2004 Mercury (Hg) Dry weight 0.734 [mg/kg] Paleta Creek Mouth 2004 Paleta Creek Sediment Characterization Study 2-1 117.11607 32.67410 Core 5/20/2004 Zinc (Zin) Dry weight 3.31 [mg/kg] Paleta Creek Mouth 2004 Paleta Creek Sediment Characterization Study 2-2 117.11607 32.67410 Core 5/20/2004 Cadmiun (Cd) Dry weight 1.12 [mg/kg] Paleta Creek Mouth 2004 Paleta Creek Sediment Characterization Study 2-2 117.11607 32.67410 Core 5/20/2004 Cadmiun (Cd) Dry weight 1.12 [mg/kg] Paleta Creek Mouth 2004 Paleta Creek Sediment Characterization Study 2-2 117.11607 32.67410 Core 5/20/2004 Lead (Ph) Dry weight 0.0227 [mg/kg] Paleta Creek Mouth 2004 Paleta Creek Sediment Characterization Study 2-3 117.11607 32.67410 Core 5/20/2004 Zinc (Zn) Dry weight 0.027 [mg/kg] Paleta Creek Mouth 2004 Paleta Creek Sediment Ch	2004 Paleta Creek Sediment Characterization Study	2-1		117.11628	32.67387	Core	5/20/2004	Copper (Cu)	Dry weight	135 mg/kg		Paleta Creek Mouth
2004 Paleta Creek Sediment Characterization Study 2-1 117 11628 32.67387 Core 5/20/2004 Zinc (Zn.) Dry weight 381 mg/kg Paleta Creek Mouth 2004 Paleta Creek Sediment Characterization Study 2-2 117.11607 32.67410 Core 5/20/2004 Arsenic (As) Dry weight 5.11 mg/kg Paleta Creek Mouth 2004 Paleta Creek Sediment Characterization Study 2-2 117.11607 32.67410 Core 5/20/2004 Copper (Cu) Dry weight 9.14 mg/kg Paleta Creek Mouth 2004 Paleta Creek Sediment Characterization Study 2-2 117.11607 32.67410 Core 5/20/2004 Logper (Cu) Dry weight 9.18 mg/kg Paleta Creek Mouth 2004 Paleta Creek Sediment Characterization Study 2-2 117.11607 32.67410 Core 5/20/2004 Mercury (Hg) Dry weight 20.27 mg/kg Paleta Creek Mouth 2004 Paleta Creek Sediment Characterization Study 2-3 117.11507 32.67377 Core 5/20/2004 Arsenic (As) Dry weight 20.97 mg/kg Paleta Creek Mouth 2004 Paleta Creek Sediment Characterizat	2004 Paleta Creek Sediment Characterization Study	2-1		117.11628	32.67387	Core	5/20/2004	Lead (Pb)	Dry weight	217 mg/kg		Paleta Creek Mouth
2004 Paleta Creek Sediment Characterization Study 2-2 117.11607 32.67410 Core 5/20/2004 Arsenic (As) Dry weight 5.11 mg/kg Paleta Creek Mouth 2004 Paleta Creek Sediment Characterization Study 2-2 117.11607 32.67410 Core 5/20/2004 Cadmium (Cd) Dry weight 1.12 mg/kg Paleta Creek Mouth 2004 Paleta Creek Sediment Characterization Study 2-2 117.11607 32.67410 Core 5/20/2004 Lead (Pb) Dry weight 1.14 mg/kg Paleta Creek Mouth 2004 Paleta Creek Sediment Characterization Study 2-2 117.11607 32.67410 Core 5/20/2004 Merce Var(Hg) Dry weight 0.27 mg/kg Paleta Creek Mouth 2004 Paleta Creek Sediment Characterization Study 2-2 117.11607 32.67317 Core 5/20/2004 Arsenic (As) Dry weight 0.04 mg/kg Paleta Creek Mouth 2004 Paleta Creek Sediment Characterization Study 2-3 117.11593 32.67377 Core 5/20/2004 Cadmium (Cd) Dry weight 1.08 mg/kg Paleta Creek Mouth 2004 Paleta Creek Sediment Characteriza	2004 Paleta Creek Sediment Characterization Study	2-1		117.11628	32.67387	Core	5/20/2004	Mercury (Hg)	Dry weight	0.754 mg/kg		Paleta Creek Mouth
2004 Paleta Creek Sediment Characterization Study 2-2 117.11607 32.67410 Core 5/20/2004 Cadmium (Cd) Dry weight 1.12 mg/kg Paleta Creek Mouth 2004 Paleta Creek Sediment Characterization Study 2-2 117.11607 32.67410 Core 5/20/2004 Lead (Pb) Dry weight 104 mg/kg Paleta Creek Mouth 2004 Paleta Creek Sediment Characterization Study 2-2 117.11607 32.67410 Core 5/20/2004 Mercury (kg) Dry weight 0.227 mg/kg Paleta Creek Mouth 2004 Paleta Creek Sediment Characterization Study 2-2 117.11507 32.67410 Core 5/20/2004 Mercury (kg) Dry weight 0.227 mg/kg Paleta Creek Mouth 2004 Paleta Creek Sediment Characterization Study 2-3 117.11593 32.67377 Core 5/20/2004 Arsenic (As) Dry weight 1.08 Paleta Creek Mouth 2004 Paleta Creek Sediment Characterization Study 2-3 117.11593 32.67377 Core 5/20/2004 Cadmium (Cd) Dry weight 1.08 Paleta Creek Mouth 2004 Paleta Creek Sediment Characterization Study </td <td>2004 Paleta Creek Sediment Characterization Study</td> <td>2-1</td> <td></td> <td>117.11628</td> <td>32.67387</td> <td>Core</td> <td>5/20/2004</td> <td>Zinc (Zn)</td> <td>Dry weight</td> <td>381 mg/kg</td> <td></td> <td>Paleta Creek Mouth</td>	2004 Paleta Creek Sediment Characterization Study	2-1		117.11628	32.67387	Core	5/20/2004	Zinc (Zn)	Dry weight	381 mg/kg		Paleta Creek Mouth
2004 Paleta Creek Sediment Characterization Study 2-2 117.11607 32.67410 Core 5/20/2004 Lead (Pb) Dry weight 91.4 mg/kg Paleta Creek Mouth 2004 Paleta Creek Sediment Characterization Study 2-2 117.11607 32.67410 Core 5/20/2004 Lead (Pb) Dry weight 0.227 mg/kg Paleta Creek Mouth 2004 Paleta Creek Sediment Characterization Study 2-2 117.11607 32.67410 Core 5/20/2004 Mercury (Pg) Dry weight 0.227 mg/kg Paleta Creek Mouth 2004 Paleta Creek Sediment Characterization Study 2-3 117.11593 32.67377 Core 5/20/2004 Arsnic (As) Dry weight 0.44 mg/kg Paleta Creek Mouth 2004 Paleta Creek Sediment Characterization Study 2-3 117.11593 32.67377 Core 5/20/2004 Copper (Cu) Dry weight 0.84 mg/kg Paleta Creek Mouth 2004 Paleta Creek Sediment Characterization Study 2-3 117.11593 32.67377 Core 5/20/2004 Lead (Pb) Dry weight 0.85 mg/kg <td< td=""><td>2004 Paleta Creek Sediment Characterization Study</td><td>2-2</td><td></td><td>117.11607</td><td>32.67410</td><td>Core</td><td>5/20/2004</td><td>Arsenic (As)</td><td>Dry weight</td><td>5.31 mg/kg</td><td></td><td>Paleta Creek Mouth</td></td<>	2004 Paleta Creek Sediment Characterization Study	2-2		117.11607	32.67410	Core	5/20/2004	Arsenic (As)	Dry weight	5.31 mg/kg		Paleta Creek Mouth
2004 Paleta Creek Sediment Characterization Study 2-2 117.11607 32.67410 Core 5/20/2004 Lead (Pb) Dry weight 108 mg/kg Paleta Creek Mouth 2004 Paleta Creek Sediment Characterization Study 2-2 117.11607 32.67410 Core 5/20/2004 Mercury (Pg) Dry weight 0.227 mg/kg Paleta Creek Mouth 2004 Paleta Creek Sediment Characterization Study 2-2 117.11607 32.67410 Core 5/20/2004 Zinc (As) Dry weight 0.29 mg/kg Paleta Creek Mouth 2004 Paleta Creek Sediment Characterization Study 2-3 117.11593 32.67377 Core 5/20/2004 Arsenic (As) Dry weight 9.04 mg/kg Paleta Creek Mouth 2004 Paleta Creek Sediment Characterization Study 2-3 117.11593 32.67377 Core 5/20/2004 Copper (Cu) Dry weight 160 mg/kg Paleta Creek Mouth 2004 Paleta Creek Sediment Characterization Study 2-3 117.11593 32.67377 Core 5/20/2004 Lead (Pb) Dry weight 0.559 mg/kg	2004 Paleta Creek Sediment Characterization Study	2-2		117.11607	32.67410	Core	5/20/2004	Cadmium (Cd)	Dry weight	1.12 mg/kg		Paleta Creek Mouth
2004 Paleta Creek Sediment Characterization Study 2-2 117.11607 32.67410 Core 5/20/2004 Mercury (Hg) Dry weight 0.227 mg/kg Paleta Creek Mouth 2004 Paleta Creek Sediment Characterization Study 2-2 117.11607 32.67410 Core 5/20/2004 Zinc (2n) Dry weight 209 mg/kg Paleta Creek Mouth 2004 Paleta Creek Sediment Characterization Study 2-3 117.11593 32.67377 Core 5/20/2004 Camium (Cd) Dry weight 9.04 mg/kg Paleta Creek Mouth 2004 Paleta Creek Sediment Characterization Study 2-3 117.11593 32.67377 Core 5/20/2004 Commun (Cd) Dry weight 1.05 mg/kg Paleta Creek Mouth 2004 Paleta Creek Sediment Characterization Study 2-3 117.11593 32.67377 Core 5/20/2004 Lead (Pb) Dry weight 1.02 mg/kg Paleta Creek Mouth 2004 Paleta Creek Sediment Characterization Study 2-3 117.11593 32.67377 Core 5/20/2004 Lead (Pb) Dry weight 3.66 mg/kg P	2004 Paleta Creek Sediment Characterization Study	2-2		117.11607	32.67410	Core	5/20/2004	Copper (Cu)	Dry weight	91.4 mg/kg		Paleta Creek Mouth
2004 Paleta Creek Sediment Characterization Study2-2117.1160732.67410Core5/20/2004Zinc (Zn)Dry weight209mg/kgPaleta Creek Mouth2004 Paleta Creek Sediment Characterization Study2-3117.1159332.67377Core5/20/2004Arsenic (As)Dry weight9.44mg/kgPaleta Creek Mouth2004 Paleta Creek Sediment Characterization Study2-3117.1159332.67377Core5/20/2004Cadmium (Cd)Dry weight1.78mg/kgPaleta Creek Mouth2004 Paleta Creek Sediment Characterization Study2-3117.1159332.67377Core5/20/2004Copper (Cu)Dry weight1.80mg/kgPaleta Creek Mouth2004 Paleta Creek Sediment Characterization Study2-3117.1159332.67377Core5/20/2004Lead (Pb)Dry weight1.82mg/kgPaleta Creek Mouth2004 Paleta Creek Sediment Characterization Study2-3117.1159332.67377Core5/20/2004Mercury (Hg)Dry weight1.82mg/kgPaleta Creek Mouth2004 Paleta Creek Sediment Characterization Study2-3117.1159332.67377Core5/20/2004Mercury (Hg)Dry weight3.46mg/kgPaleta Creek Mouth2004 Paleta Creek Sediment Characterization Study2-4117.1159832.67352Core5/20/2004Zinc (Zn)Dry weight1.86mg/kgPaleta Creek Mouth2004 Paleta Creek Sediment Characterization Study2-4117.1159832.67352Core5/20/2004 </td <td>2004 Paleta Creek Sediment Characterization Study</td> <td>2-2</td> <td></td> <td>117.11607</td> <td>32.67410</td> <td>Core</td> <td>5/20/2004</td> <td>Lead (Pb)</td> <td>Dry weight</td> <td>108 mg/kg</td> <td></td> <td>Paleta Creek Mouth</td>	2004 Paleta Creek Sediment Characterization Study	2-2		117.11607	32.67410	Core	5/20/2004	Lead (Pb)	Dry weight	108 mg/kg		Paleta Creek Mouth
2004 Paleta Creek Sediment Characterization Study2-3117.1159332.67377Core5/20/2004Arsenic (As)Dry weight9.04mg/kgPaleta Creek Mouth2004 Paleta Creek Sediment Characterization Study2-3117.1159332.67377Core5/20/2004Cadmium (Cd)Dry weight1.78mg/kgPaleta Creek Mouth2004 Paleta Creek Sediment Characterization Study2-3117.1159332.67377Core5/20/2004Copper (Cu)Dry weight1.80mg/kgPaleta Creek Mouth2004 Paleta Creek Sediment Characterization Study2-3117.1159332.67377Core5/20/2004Lepad (Pb)Dry weight1.82mg/kgPaleta Creek Mouth2004 Paleta Creek Sediment Characterization Study2-3117.1159332.67377Core5/20/2004Mercury (Hg)Dry weight0.559mg/kgPaleta Creek Mouth2004 Paleta Creek Sediment Characterization Study2-3117.1159332.67377Core5/20/2004Mercury (Hg)Dry weight0.559mg/kgPaleta Creek Mouth2004 Paleta Creek Sediment Characterization Study2-4117.1159332.67372Core5/20/2004Zin czniDry weight3.46Paleta Creek Mouth2004 Paleta Creek Sediment Characterization Study2-4117.1159832.67372Core5/20/2004Zin czniDry weight3.46Paleta Creek Mouth2004 Paleta Creek Sediment Characterization Study2-4117.1159832.67352Core5/20/2004Cadmium (Cd) <t< td=""><td>2004 Paleta Creek Sediment Characterization Study</td><td>2-2</td><td></td><td>117.11607</td><td>32.67410</td><td>Core</td><td>5/20/2004</td><td>Mercury (Hg)</td><td>Dry weight</td><td>0.227 mg/kg</td><td></td><td>Paleta Creek Mouth</td></t<>	2004 Paleta Creek Sediment Characterization Study	2-2		117.11607	32.67410	Core	5/20/2004	Mercury (Hg)	Dry weight	0.227 mg/kg		Paleta Creek Mouth
2004 Paleta Creek Sediment Characterization Study2-3117.1159332.67377Core5/20/2004Cadmium (Cd)Dry weight1.78mg/kgPaleta Creek Mouth2004 Paleta Creek Sediment Characterization Study2-3117.1159332.67377Core5/20/2004Copper (Cu)Dry weight160mg/kgPaleta Creek Mouth2004 Paleta Creek Sediment Characterization Study2-3117.1159332.67377Core5/20/2004Lead (Pb)Dry weight182mg/kgPaleta Creek Mouth2004 Paleta Creek Sediment Characterization Study2-3117.1159332.67377Core5/20/2004Mercury (Hg)Dry weight0.559mg/kgPaleta Creek Mouth2004 Paleta Creek Sediment Characterization Study2-3117.1159332.67377Core5/20/2004Zinc (Zn)Dry weight346mg/kgPaleta Creek Mouth2004 Paleta Creek Sediment Characterization Study2-3117.1159332.67372Core5/20/2004Zinc (Zn)Dry weight346mg/kgPaleta Creek Mouth2004 Paleta Creek Sediment Characterization Study2-4117.1159832.67352Core5/20/2004Arsenic (As)Dry weight1.8mg/kgPaleta Creek Mouth2004 Paleta Creek Sediment Characterization Study2-4117.1159832.67352Core5/20/2004Comper (Cu)Dry weight1.8mg/kgPaleta Creek Mouth2004 Paleta Creek Sediment Characterization Study2-4117.1159832.67352Core5/20/2004 <t< td=""><td>2004 Paleta Creek Sediment Characterization Study</td><td>2-2</td><td></td><td>117.11607</td><td>32.67410</td><td>Core</td><td>5/20/2004</td><td>Zinc (Zn)</td><td>Dry weight</td><td>209 mg/kg</td><td></td><td>Paleta Creek Mouth</td></t<>	2004 Paleta Creek Sediment Characterization Study	2-2		117.11607	32.67410	Core	5/20/2004	Zinc (Zn)	Dry weight	209 mg/kg		Paleta Creek Mouth
2004 Paleta Creek Sediment Characterization Study2-3117.1159332.67377Core5/20/2004Copper (Cu)Dry weight160mg/kgPaleta Creek Mouth2004 Paleta Creek Sediment Characterization Study2-3117.1159332.67377Core5/20/2004Lead (Pb)Dry weight182mg/kgPaleta Creek Mouth2004 Paleta Creek Sediment Characterization Study2-3117.1159332.67377Core5/20/2004Mercury (Hg)Dry weight0.559mg/kgPaleta Creek Mouth2004 Paleta Creek Sediment Characterization Study2-3117.1159332.67377Core5/20/2004Mercury (Hg)Dry weight0.559mg/kgPaleta Creek Mouth2004 Paleta Creek Sediment Characterization Study2-4117.1159832.67352Core5/20/2004Arsenic (As)Dry weight1.8mg/kgPaleta Creek Mouth2004 Paleta Creek Sediment Characterization Study2-4117.1159832.67352Core5/20/2004Cadmium (Cd)Dry weight1.8mg/kgPaleta Creek Mouth2004 Paleta Creek Sediment Characterization Study2-4117.1159832.67352Core5/20/2004Cadmium (Cd)Dry weight1.8mg/kgPaleta Creek Mouth2004 Paleta Creek Sediment Characterization Study2-4117.1159832.67352Core5/20/2004CoreCopper (Cu)Dry weight1.8mg/kgPaleta Creek Mouth2004 Paleta Creek Sediment Characterization Study2-4117.1159832.67352Core	2004 Paleta Creek Sediment Characterization Study					Core		Arsenic (As)	Dry weight	9.04 mg/kg		Paleta Creek Mouth
2004 Paleta Creek Sediment Characterization Study2-3117.1159332.67377Core5/20/2004Lead (Pb)Dry weight182 mg/kgPaleta Creek Mouth2004 Paleta Creek Sediment Characterization Study2-3117.1159332.67377Core5/20/2004Mercury (Hg)Dry weight0.559 mg/kgPaleta Creek Mouth2004 Paleta Creek Sediment Characterization Study2-3117.1159332.67377Core5/20/2004Zinc (2n)Dry weight0.559 mg/kgPaleta Creek Mouth2004 Paleta Creek Sediment Characterization Study2-4117.1159832.67375Core5/20/2004Zinc (2n)Dry weight7.41 mg/kgPaleta Creek Mouth2004 Paleta Creek Sediment Characterization Study2-4117.1159832.67352Core5/20/2004Cadmium (Cd)Dry weight1.8 mg/kgPaleta Creek Mouth2004 Paleta Creek Sediment Characterization Study2-4117.1159832.67352Core5/20/2004Cadmium (Cd)Dry weight1.8 mg/kgPaleta Creek Mouth2004 Paleta Creek Sediment Characterization Study2-4117.1159832.67352Core5/20/2004Cadmium (Cd)Dry weight1.8 mg/kgPaleta Creek Mouth2004 Paleta Creek Sediment Characterization Study2-4117.1159832.67352Core5/20/2004Lead (Pb)Dry weight0.824 mg/kgPaleta Creek Mouth2004 Paleta Creek Sediment Characterization Study2-4117.1159832.67352Core5/20/2004Lead (Pb)Dry weight0.824 mg/kgPa								Cadmium (Cd)	Dry weight			
2004 Paleta Creek Sediment Characterization Study2-3117.1159332.67377Core5/20/2004Mercury (Hg)Dry weight0.559mg/kgPaleta Creek Mouth2004 Paleta Creek Sediment Characterization Study2-3117.1159332.67377Core5/20/2004Zinc (Zn)Dry weight346mg/kgPaleta Creek Mouth2004 Paleta Creek Sediment Characterization Study2-4117.1159832.67352Core5/20/2004Arsenic (As)Dry weight7.41mg/kgPaleta Creek Mouth2004 Paleta Creek Sediment Characterization Study2-4117.1159832.67352Core5/20/2004Cadmium (Cd)Dry weight1.8mg/kgPaleta Creek Mouth2004 Paleta Creek Sediment Characterization Study2-4117.1159832.67352Core5/20/2004Cadmium (Cd)Dry weight1.8mg/kgPaleta Creek Mouth2004 Paleta Creek Sediment Characterization Study2-4117.1159832.67352Core5/20/2004Cadmium (Cd)Dry weight1.6mg/kgPaleta Creek Mouth2004 Paleta Creek Sediment Characterization Study2-4117.1159832.67352Core5/20/2004Lead (Pb)Dry weight1.26mg/kgPaleta Creek Mouth2004 Paleta Creek Sediment Characterization Study2-4117.1159832.67352Core5/20/2004Mercury (Hg)Dry weight0.884mg/kgPaleta Creek Mouth2004 Paleta Creek Sediment Characterization Study2-4117.1159832.67352Core5/20/200												
2004 Paleta Creek Sediment Characterization Study2-3117.1159332.67377Core5/20/2004Zinc (Zn)Dry weight346mg/kgPaleta Creek Mouth2004 Paleta Creek Sediment Characterization Study2-4117.1159832.67352Core5/20/2004Arsenic (As)Dry weight7.41mg/kgPaleta Creek Mouth2004 Paleta Creek Sediment Characterization Study2-4117.1159832.67352Core5/20/2004Cadmium (Cd)Dry weight1.8mg/kgPaleta Creek Mouth2004 Paleta Creek Sediment Characterization Study2-4117.1159832.67352Core5/20/2004Copper (Cu)Dry weight1.8mg/kgPaleta Creek Mouth2004 Paleta Creek Sediment Characterization Study2-4117.1159832.67352Core5/20/2004Lead (Pb)Dry weight1.6mg/kgPaleta Creek Mouth2004 Paleta Creek Sediment Characterization Study2-4117.1159832.67352Core5/20/2004Lead (Pb)Dry weight1.6mg/kgPaleta Creek Mouth2004 Paleta Creek Sediment Characterization Study2-4117.1159832.67352Core5/20/2004Mercury (Hg)Dry weight0.884mg/kgPaleta Creek Mouth2004 Paleta Creek Sediment Characterization Study2-4117.1159832.67352Core5/20/2004Mercury (Hg)Dry weight0.884mg/kgPaleta Creek Mouth2004 Paleta Creek Sediment Characterization Study2-4117.1159832.67352Core5/20/2004 <td></td>												
2004 Paleta Creek Sediment Characterization Study2-4117.1159832.67352Core5/20/2004Arsenic (As)Dry weight7.41mg/kgPaleta Creek Mouth2004 Paleta Creek Sediment Characterization Study2-4117.1159832.67352Core5/20/2004Cadmium (Cd)Dry weight1.8mg/kgPaleta Creek Mouth2004 Paleta Creek Sediment Characterization Study2-4117.1159832.67352Core5/20/2004Coper (Cu)Dry weight163mg/kgPaleta Creek Mouth2004 Paleta Creek Sediment Characterization Study2-4117.1159832.67352Core5/20/2004Coper (Cu)Dry weight163mg/kgPaleta Creek Mouth2004 Paleta Creek Sediment Characterization Study2-4117.1159832.67352Core5/20/2004Mercury (Hg)Dry weight0.884mg/kgPaleta Creek Mouth2004 Paleta Creek Sediment Characterization Study2-4117.1159832.67352Core5/20/2004Mercury (Hg)Dry weight0.884mg/kgPaleta Creek Mouth2004 Paleta Creek Sediment Characterization Study2-4117.1159832.67352Core5/20/2004Zinc (Zn)Dry weight0.884mg/kgPaleta Creek Mouth2004 Paleta Creek Sediment Characterization Study2-4117.1159832.67352Core5/20/2004Zinc (Zn)Dry weight4.49mg/kgPaleta Creek Mouth2004 Paleta Creek Sediment Characterization Study2-5117.1159732.67258Core5/20/2004<												
2004 Paleta Creek Sediment Characterization Study 2-4 117.11598 32.67352 Core 5/20/2004 Cadmium (Cd) Dry weight 1.8 mg/kg Paleta Creek Mouth 2004 Paleta Creek Sediment Characterization Study 2-4 117.11598 32.67352 Core 5/20/2004 Copper (Cu) Dry weight 163 mg/kg Paleta Creek Mouth 2004 Paleta Creek Sediment Characterization Study 2-4 117.11598 32.67352 Core 5/20/2004 Led (Pb) Dry weight 163 mg/kg Paleta Creek Mouth 2004 Paleta Creek Sediment Characterization Study 2-4 117.11598 32.67352 Core 5/20/2004 Led (Pb) Dry weight 0.884 mg/kg Paleta Creek Mouth 2004 Paleta Creek Sediment Characterization Study 2-4 117.11598 32.67352 Core 5/20/2004 Mercury (Hg) Dry weight 0.884 mg/kg Paleta Creek Mouth 2004 Paleta Creek Sediment Characterization Study 2-4 117.11598 32.67352 Core 5/20/2004 Zinc (Zn) Dry weight 4.49 mg/kg Pal												
2004 Paleta Creek Sediment Characterization Study2-4117.1159832.67352Core5/20/2004Coper (Cu)Dry weight163mg/kgPaleta Creek Mouth2004 Paleta Creek Sediment Characterization Study2-4117.1159832.67352Core5/20/2004Lead (Pb)Dry weight126mg/kgPaleta Creek Mouth2004 Paleta Creek Sediment Characterization Study2-4117.1159832.67352Core5/20/2004Mercury (Hg)Dry weight0.844mg/kgPaleta Creek Mouth2004 Paleta Creek Sediment Characterization Study2-4117.1159832.67352Core5/20/2004Zinc (Zn)Dry weight0.844mg/kgPaleta Creek Mouth2004 Paleta Creek Sediment Characterization Study2-5117.1159732.67352Core5/20/2004Arsenic (As)Dry weight7.73mg/kgPaleta Creek Mouth2004 Paleta Creek Sediment Characterization Study2-5117.1159732.67258Core5/20/2004Arsenic (As)Dry weight7.73mg/kgPaleta Creek Mouth2004 Paleta Creek Sediment Characterization Study2-5117.1159732.67298Core5/20/2004Arsenic (As)Dry weight7.73mg/kgPaleta Creek Mouth2004 Paleta Creek Sediment Characterization Study2-5117.1159732.67298Core5/20/2004Arsenic (As)Dry weight7.73mg/kgPaleta Creek Mouth2004 Paleta Creek Sediment Characterization Study2-5117.1159732.67298Core5/20/200									Dry weight			
2004 Paleta Creek Sediment Characterization Study 2.4 117.11598 32.67352 Core 5/20/2004 Lead (Pb) Dry weight 126 mg/kg Paleta Creek Mouth 2004 Paleta Creek Sediment Characterization Study 2.4 117.11598 32.67352 Core 5/20/2004 Mercury (Hg) Dry weight 0.884 mg/kg Paleta Creek Mouth 2004 Paleta Creek Sediment Characterization Study 2.4 117.11598 32.67352 Core 5/20/2004 Mercury (Hg) Dry weight 0.884 mg/kg Paleta Creek Mouth 2004 Paleta Creek Sediment Characterization Study 2.4 117.11598 32.67352 Core 5/20/2004 Zinc (Zn) Dry weight 449 mg/kg Paleta Creek Mouth 2004 Paleta Creek Sediment Characterization Study 2.5 117.11597 32.67298 Core 5/20/2004 Arsenic (As) Dry weight 7.73 mg/kg Paleta Creek Mouth 2004 Paleta Creek Sediment Characterization Study 2.5 117.11597 32.67298 Core 5/20/2004 Arsenic (As) Dry weight 1.99 mg/kg			-									
2004 Paleta Creek Sediment Characterization Study 2-4 117.11598 32.67352 Core 5/20/2004 Mercury (Hg) Dry weight 0.884 mg/kg Paleta Creek Mouth 2004 Paleta Creek Sediment Characterization Study 2-4 117.11598 32.67352 Core 5/20/2004 Zinc (Zn) Dry weight 449 mg/kg Paleta Creek Mouth 2004 Paleta Creek Sediment Characterization Study 2-5 117.11597 32.67298 Core 5/20/2004 Arsenic (As) Dry weight 449 mg/kg Paleta Creek Mouth 2004 Paleta Creek Sediment Characterization Study 2-5 117.11597 32.67298 Core 5/20/2004 Arsenic (As) Dry weight 7.73 mg/kg Paleta Creek Mouth 2004 Paleta Creek Sediment Characterization Study 2-5 117.11597 32.67298 Core 5/20/2004 Cadmium (Cd) Dry weight 1.99 mg/kg Paleta Creek Mouth												
2004 Paleta Creek Sediment Characterization Study 2-4 117.11598 32.67352 Core 5/20/2004 Zinc (Zn) Dry weight 449 mg/kg Paleta Creek Mouth 2004 Paleta Creek Sediment Characterization Study 2-5 117.11597 32.67298 Core 5/20/2004 Arsenic (As) Dry weight 7.73 mg/kg Paleta Creek Mouth 2004 Paleta Creek Sediment Characterization Study 2-5 117.11597 32.67298 Core 5/20/2004 Cadmium (Cd) Dry weight 1.99 mg/kg Paleta Creek Mouth												
2004 Paleta Creek Sediment Characterization Study 2-5 117.11597 32.67298 Core 5/20/2004 Arsenic (As) Dry weight 7.73 mg/kg Paleta Creek Mouth 2004 Paleta Creek Sediment Characterization Study 2-5 117.11597 32.67298 Core 5/20/2004 Cadmium (Cd) Dry weight 1.99 mg/kg Paleta Creek Mouth												
2004 Paleta Creek Sediment Characterization Study 2-5 117.11597 32.67298 Core 5/20/2004 Cadmium (Cd) Dry weight 1.99 mg/kg Paleta Creek Mouth												
			-					. ,				
2004 Paleta Creek Sediment Characterization Study 2-5 117.11597 32.67298 Core 5/20/2004 Copper (Cu) Dry weight 175 mg/kg Paleta Creek Mouth												
2004 Paleta Creek Sediment Characterization Study 2-5 117.11597 32.67298 Core 5/20/2004 Lead (Pb) Dry weight 253 mg/kg Paleta Creek Mouth												
2004 Paleta Creek Sediment Characterization Study 2-5 117.11597 32.67298 Core 5/20/2004 Mercury (Hg) Dry weight 0.641 mg/kg Paleta Creek Mouth												
2004 Paleta Creek Sediment Characterization Study 2-5 117.11597 32.67298 Core 5/20/2004 Zinc (Zn) Dry weight 530 mg/kg Paleta Creek Mouth	2004 Paleta Creek Sediment Characterization Study	2.5	1	117 11507	22 67200	C	E /20 /2004	7:	Descussion	E 20	1	Delete Creek Marsh
2004 Paleta Creek Sediment Characterization Study 3-1 117.11630 32.67273 Core 5/20/2004 Arsenic (As) Dry weight 5.37 mg/kg Paleta Creek Mouth												

DRAFT RESPONSE TO SHIPYARD SEDIMENT SITE TENTATIVE CAO AND CITY OF SAN DIEGO COMPLAINT, NBSD, DECEMBER 2010 N62470-08-D-1000, CTO FZN1, DCN CH2M-1000-FZN1-0002 ES111110054058SCO

							MEASUREMENT	PARAMETER				
PROJECT_NAME	SITE_NAME	SAMPLE_ID	X_COORDINATE	Y COORDINATE	TYPE	SAMPLE_DATE	METHOD	NAME	PROPERTY	QUANTITY	UNIT	QUALIFIER AREA OF INTEREST
2004 Paleta Creek Sediment Characterization Study	3-1	5, WH 22_15	117.11630	32.67273	Core	5/20/2004	memory	Cadmium (Cd)	Dry weight		mg/kg	Paleta Creek Mouth
2004 Paleta Creek Sediment Characterization Study	3-1		117.11630	32.67273	Core	5/20/2004		Copper (Cu)	Dry weight		mg/kg	Paleta Creek Mouth
2004 Paleta Creek Sediment Characterization Study	3-1		117.11630	32.67273	Core	5/20/2004		Lead (Pb)	Dry weight		mg/kg	Paleta Creek Mouth
2004 Paleta Creek Sediment Characterization Study	3-1		117.11630	32.67273	Core	5/20/2004		Mercury (Hg)	Dry weight		mg/kg	Paleta Creek Mouth
2004 Paleta Creek Sediment Characterization Study	3-1		117.11630	32.67273	Core	5/20/2004		Zinc (Zn)	Dry weight		mg/kg	Paleta Creek Mouth
2004 Paleta Creek Sediment Characterization Study	3-2		117.11695	32.67237	Core	5/21/2004		Arsenic (As)	Dry weight		mg/kg	Paleta Creek Mouth
2004 Paleta Creek Sediment Characterization Study	3-2		117.11695	32.67237	Core	5/21/2004		Cadmium (Cd)	Dry weight		mg/kg	Paleta Creek Mouth
2004 Paleta Creek Sediment Characterization Study	3-2		117.11695	32.67237	Core	5/21/2004		Copper (Cu)	Dry weight		mg/kg	Paleta Creek Mouth
2004 Paleta Creek Sediment Characterization Study	3-2		117.11695	32.67237	Core	5/21/2004		Lead (Pb)	Dry weight		mg/kg	Paleta Creek Mouth
2004 Paleta Creek Sediment Characterization Study	3-2		117.11695	32.67237	Core	5/21/2004		Mercury (Hg)	Dry weight		mg/kg	Paleta Creek Mouth
2004 Paleta Creek Sediment Characterization Study	3-2		117.11695	32.67237	Core	5/21/2004		Zinc (Zn)	Dry weight		mg/kg	Paleta Creek Mouth
2004 Paleta Creek Sediment Characterization Study	3-3		117.11035	32.67222	Core	5/20/2004		Arsenic (As)	Dry weight		mg/kg	Paleta Creek Mouth
2004 Paleta Creek Sediment Characterization Study	3-3		117.11718	32.67222	Core	5/20/2004		Cadmium (Cd)	Dry weight		mg/kg	Paleta Creek Mouth
2004 Paleta Creek Sediment Characterization Study	3-3		117.11718	32.67222	Core	5/20/2004			Dry weight		mg/kg	Paleta Creek Mouth
2004 Paleta Creek Sediment Characterization Study	3-3		117.11718	32.67222	Core	5/20/2004		Copper (Cu)	Dry weight		mg/kg	Paleta Creek Mouth
2004 Paleta Creek Sediment Characterization Study	3-3		117.11718	32.67222	Core	5/20/2004		Lead (Pb) Mercury (Hg)	Dry weight		mg/kg	Paleta Creek Mouth
2004 Paleta Creek Sediment Characterization Study	3-3		117.11718	32.67222	Core	5/20/2004						Paleta Creek Mouth
2004 Paleta Creek Sediment Characterization Study 2004 Paleta Creek Sediment Characterization Study	3-4		117.11718	32.67182	Core	5/21/2004	+	Zinc (Zn) Arsenic (As)	Dry weight Dry weight		mg/kg mg/kg	Paleta Creek Mouth
2004 Paleta Creek Sediment Characterization Study 2004 Paleta Creek Sediment Characterization Study	3-4		117.11815	32.67182	Core	5/21/2004		Cadmium (Cd)	Dry weight Dry weight		mg/kg mg/kg	Paleta Creek Mouth Paleta Creek Mouth
2004 Paleta Creek Sediment Characterization Study 2004 Paleta Creek Sediment Characterization Study	3-4		117.11815	32.67182	Core	5/21/2004	+		Dry weight		mg/kg	Paleta Creek Mouth
	3-4		117.11815	32.67182	Core	5/21/2004		Copper (Cu)			mg/kg mg/kg	Paleta Creek Mouth
2004 Paleta Creek Sediment Characterization Study 2004 Paleta Creek Sediment Characterization Study	3-4		117.11815	32.67182	Core	5/21/2004	+	Lead (Pb) Mercury (Hg)	Dry weight Dry weight	0.574		Paleta Creek Mouth Paleta Creek Mouth
2004 Paleta Creek Sediment Characterization Study	3-4		117.11815	32.67182	Core	5/21/2004		Zinc (Zn)	Dry weight		mg/kg	Paleta Creek Mouth
2004 Paleta Creek Sediment Characterization Study	3-4		117.11815	32.67160	Core	5/21/2004		Arsenic (As)			mg/kg	Paleta Creek Mouth
2004 Paleta Creek Sediment Characterization Study	3-5		117.11835	32.67160	Core	5/21/2004		Cadmium (Cd)	Dry weight			Paleta Creek Mouth
2004 Paleta Creek Sediment Characterization Study	3-5		117.11835	32.67160	Core	5/21/2004		Copper (Cu)	Dry weight Dry weight		mg/kg mg/kg	Paleta Creek Mouth
2004 Paleta Creek Sediment Characterization Study	3-5		117.11835	32.67160	Core	5/21/2004		Lead (Pb)	Dry weight		mg/kg	Paleta Creek Mouth
2004 Paleta Creek Sediment Characterization Study	3-5		117.11835	32.67160	Core	5/21/2004		Mercury (Hg)	Dry weight		mg/kg	Paleta Creek Mouth
2004 Paleta Creek Sediment Characterization Study	3-5		117.11835	32.67160	Core	5/21/2004		Zinc (Zn)	Dry weight		mg/kg	Paleta Creek Mouth
Sediment Characterization Study Pier and Berthing Areas	SD1-42 NAVSTA		-117.12320	32.67219	Core	10/30/93	EPA7471Mercury	Mercury (Hg)	Dry weight		mg/kg	Paleta Creek Mouth
Sediment Characterization Study Pier and Berthing Areas	SD1-42 NAVSTA		-117.12320	32.67308	Core	10/30/93	EPA7471Mercury	Mercury (Hg)	Dry weight		mg/kg	Paleta Creek Mouth
Sediment Characterization Study Pier and Berthing Areas	SD3-44 NAVSTA		-117.12053	32.67048	Core	10/30/93	EPA7471Mercury	Mercury (Hg)	Dry weight		mg/kg	U Paleta Creek Mouth
Sediment Characterization Study Fier and Berthing Areas	SD3-44 NAVSTA		-117.12053	32.67048	Core	10/30/93	EPA7471Mercury	Mercury (Hg)	Dry weight		mg/kg	Paleta Creek Mouth
Sediment Characterization Study Pier and Berthing Areas	SD3-44 NAVSTA		-117.12053	32.67048	Core	10/30/93	EPA7471Mercury	Mercury (Hg)	Dry weight		mg/kg	Paleta Creek Mouth
Sediment Chemistry Results for Naval Station San Diego	Pier 8, Area A		-117.12301	32.67125	Core	12/01/92	Greenbook	Arsenic (As)	Dry weight		mg/kg	Paleta Creek Mouth
Sediment Chemistry Results for Naval Station San Diego	Pier 8, Area A		-117.12301	32.67125	Core	12/01/92	Greenbook	Cadmium (Cd)	Dry weight		mg/kg	Paleta Creek Mouth
Sediment Chemistry Results for Naval Station San Diego	Pier 8, Area A		-117.12301	32.67125	Core	12/01/92	Greenbook	Copper (Cu)	Dry weight		mg/kg	Paleta Creek Mouth
Sediment Chemistry Results for Naval Station San Diego	Pier 8, Area A		-117.12301	32.67125	Core	12/01/92	Greenbook	Lead (Pb)	Dry weight		mg/kg	Paleta Creek Mouth
Sediment Chemistry Results for Naval Station San Diego	Pier 8, Area A		-117.12301	32.67125	Core	12/01/92	Greenbook	Mercury (Hg)	Dry weight		mg/kg	Paleta Creek Mouth
Sediment Chemistry Results for Naval Station San Diego	Pier 8, Area A		-117.12301	32.67125	Core	12/01/92	Greenbook	Zinc (Zn)	Dry weight		mg/kg	Paleta Creek Mouth
Sediment Chemistry Results for Naval Station San Diego	Pier 8, Area A Mole pier		-117.12120	32.67053	Core	11/10/92	Greenbook	Arsenic (As)	Dry weight		mg/kg	Paleta Creek Mouth
Sediment Chemistry Results for Naval Station San Diego	Pier 8, Area A Mole pier		-117.12120	32.67053	Core	11/10/92	Greenbook	Cadmium (Cd)	Dry weight		mg/kg	Paleta Creek Mouth
Sediment Chemistry Results for Naval Station San Diego	Pier 8, Area A Mole pier		-117.12120	32.67053	Core	11/10/92	Greenbook	Copper (Cu)	Dry weight		mg/kg	Paleta Creek Mouth
Sediment Chemistry Results for Naval Station San Diego	Pier 8, Area A Mole pier		-117.12120	32.67053	Core	11/10/92	Greenbook	Lead (Pb)	Dry weight		mg/kg	Paleta Creek Mouth
Sediment Chemistry Results for Naval Station San Diego	Pier 8, Area A Mole pier		-117.12120	32.67053	Core	11/10/92	Greenbook	Mercury (Hg)	Dry weight		mg/kg	Paleta Creek Mouth
Sediment Chemistry Results for Naval Station San Diego	Pier 8, Area A Mole pier		-117.12120	32.67053	Core	11/10/92	Greenbook	Zinc (Zn)	Dry weight		mg/kg	Paleta Creek Mouth
Sediment Chemistry Results for Naval Station San Diego	Pier 8, Area B		-117.12120	32.67266	Core	12/02/92	Greenbook	Arsenic (As)	Dry weight		mg/kg	Paleta Creek Mouth
Sediment Chemistry Results for Naval Station San Diego	Pier 8, Area B		-117.12120	32.67266	Core	12/02/92	Greenbook	Cadmium (Cd)	Dry weight		mg/kg	Paleta Creek Mouth
Sediment Chemistry Results for Naval Station San Diego	Pier 8, Area B		-117.12120	32.67266	Core	12/02/92	Greenbook	Copper (Cu)	Dry weight		mg/kg	Paleta Creek Mouth
Sediment Chemistry Results for Naval Station San Diego	Pier 8, Area B		-117.12120	32.67266	Core	12/02/92	Greenbook	Lead (Pb)	Dry weight		mg/kg	Paleta Creek Mouth
Sediment Chemistry Results for Naval Station San Diego	Pier 8, Area B		-117.12120	32.67266	Core	12/02/92	Greenbook	Mercury (Hg)	Dry weight		mg/kg	Paleta Creek Mouth
Sediment Chemistry Results for Naval Station San Diego	Pier 8, Area B		-117.12120	32.67266	Core	12/02/92	Greenbook	Zinc (Zn)	Dry weight		mg/kg	Paleta Creek Mouth
Sediment Chemistry Results for Naval Station San Diego	Pier 8, Area B Mole pier		-117.12120	32.67053	Core	11/10/92	Greenbook	Arsenic (As)	Dry weight		mg/kg	U Paleta Creek Mouth
Sediment Chemistry Results for Naval Station San Diego	Pier 8, Area B Mole pier		-117.12120	32.67053	Core	11/10/92	Greenbook	Cadmium (Cd)	Dry weight		mg/kg	U Paleta Creek Mouth
Sediment Chemistry Results for Naval Station San Diego	Pier 8, Area B Mole pier		-117.12120	32.67053	Core	11/10/92	Greenbook	Copper (Cu)	Dry weight		mg/kg	Paleta Creek Mouth
Sediment Chemistry Results for Naval Station San Diego	Pier 8, Area B Mole pier		-117.12120	32.67053	Core	11/10/92	Greenbook	Lead (Pb)	Dry weight		mg/kg	Paleta Creek Mouth
Sediment Chemistry Results for Naval Station San Diego	Pier 8, Area B Mole pier		-117.12120	32.67053	Core	11/10/92	Greenbook	Mercury (Hg)	Dry weight		mg/kg	U Paleta Creek Mouth
Sediment Chemistry Results for Naval Station San Diego	Pier 8, Area B Mole pier		-117.12120	32.67053	Core	11/10/92	Greenbook	Zinc (Zn)	Dry weight		mg/kg	Paleta Creek Mouth
P-326 1997 Preliminary Sediment Characterization Study	20		117.12120	52.07033	Core	1997	Greenbook	Copper (Cu)	Dry weight		mg/kg	Pier 10-12
P-326 1997 Preliminary Sediment Characterization Study P-326 1997 Preliminary Sediment Characterization Study	20				Core	1997		Lead (Pb)	Dry weight		mg/kg	Pier 10-12
P-326 1997 Preliminary Sediment Characterization Study	20				Core	1997		Mercury (Hg)	Dry weight		mg/kg	Pier 10-12
520 1557 Freiminary Seument Characterization Study	20	1			COIC	1007	1	iniciculy (ing)	10. y weight	0.55	···6/ \^6	11011012

DRAFT RESPONSE TO SHIPYARD SEDIMENT SITE TENTATIVE CAO AND CITY OF SAN DIEGO COMPLAINT, NBSD, DECEMBER 2010 N62470-08-D-1000, CTO FZN1, DCN CH2M-1000-FZN1-0002 ES111110054058SCO

						ME	ASUREMENT PARAMETER				
PROJECT NAME	SITE NAME	SAMPLE ID	X COORDINATE	Y COORDINATE	TYPE		THOD NAME	PROPERTY	QUANTITY UNIT	QUALIFIER	AREA OF INTEREST
P-326 1997 Preliminary Sediment Characterization Study	20	_			Core	1997	Zinc (Zn)	Dry weight	92 mg/kg		Pier 10-12
P-326 1997 Preliminary Sediment Characterization Study	21				Core	1997	Copper (Cu)	Dry weight	24 mg/kg		Pier 10-12
P-326 1997 Preliminary Sediment Characterization Study	21				Core	1997	Lead (Pb)	Dry weight	5.1 mg/kg		Pier 10-12
P-326 1997 Preliminary Sediment Characterization Study	21				Core	1997	Mercury (Hg)	Dry weight	0.06 mg/kg		Pier 10-12
P-326 1997 Preliminary Sediment Characterization Study	21				Core	1997	Zinc (Zn)	Dry weight	47 mg/kg		Pier 10-12
P-326 1997 Preliminary Sediment Characterization Study	22				Core	1997	Copper (Cu)	Dry weight	29 mg/kg		Pier 10-12
P-326 1997 Preliminary Sediment Characterization Study	22				Core	1997	Lead (Pb)	Dry weight	6.4 mg/kg		Pier 10-12
P-326 1997 Preliminary Sediment Characterization Study	22				Core	1997	Mercury (Hg)	Dry weight	0.13 mg/kg		Pier 10-12
P-326 1997 Preliminary Sediment Characterization Study	22				Core	1997	Zinc (Zn)	Dry weight	56 mg/kg		Pier 10-12
P-326 1997 Preliminary Sediment Characterization Study	23				Core	1997	Copper (Cu)	Dry weight	120 mg/kg		Pier 10-12
P-326 1997 Preliminary Sediment Characterization Study	23				Core	1997	Lead (Pb)	Dry weight	31 mg/kg		Pier 10-12
P-326 1997 Preliminary Sediment Characterization Study	23				Core	1997	Mercury (Hg)	Dry weight	0.73 mg/kg		Pier 10-12
P-326 1997 Preliminary Sediment Characterization Study	23				Core	1997	Zinc (Zn)	Dry weight	220 mg/kg		Pier 10-12
P-326 1997 Preliminary Sediment Characterization Study	24				Core	1997	Copper (Cu)	Dry weight	94 mg/kg		Pier 10-12
P-326 1997 Preliminary Sediment Characterization Study	24				Core	1997	Lead (Pb)	Dry weight	30 mg/kg		Pier 10-12
P-326 1997 Preliminary Sediment Characterization Study	24				Core	1997	Mercury (Hg)	Dry weight	0.83 mg/kg		Pier 10-12
P-326 1997 Preliminary Sediment Characterization Study	24				Core	1997	Zinc (Zn)	Dry weight	160 mg/kg		Pier 10-12
P-326 1997 Preliminary Sediment Characterization Study	25				Core	1997	Copper (Cu)	Dry weight	26 mg/kg		Pier 10-12
P-326 1997 Preliminary Sediment Characterization Study	25				Core	1997	Lead (Pb)	Dry weight	4 mg/kg		Pier 10-12
P-326 1997 Preliminary Sediment Characterization Study	25				Core	1997	Mercury (Hg)	Dry weight	0.02 mg/kg	U	Pier 10-12
P-326 1997 Preliminary Sediment Characterization Study	25				Core	1997	Zinc (Zn)	Dry weight	21 mg/kg		Pier 10-12
P-326 1997 Preliminary Sediment Characterization Study	26				Core	1997	Copper (Cu)	Dry weight	20 mg/kg		Pier 10-12
P-326 1997 Preliminary Sediment Characterization Study	26				Core	1997	Lead (Pb)	Dry weight	8.3 mg/kg		Pier 10-12
P-326 1997 Preliminary Sediment Characterization Study	26				Core	1997	Mercury (Hg)	Dry weight	0.05 mg/kg		Pier 10-12
P-326 1997 Preliminary Sediment Characterization Study	26				Core	1997	Zinc (Zn)	Dry weight	38 mg/kg		Pier 10-12
P-326 1997 Preliminary Sediment Characterization Study	27				Core	1997	Copper (Cu)	Dry weight	100 mg/kg		Pier 10-12
P-326 1997 Preliminary Sediment Characterization Study	27				Core	1997	Lead (Pb)	Dry weight	31 mg/kg		Pier 10-12
P-326 1997 Preliminary Sediment Characterization Study	27				Core	1997	Mercury (Hg)	Dry weight	0.32 mg/kg		Pier 10-12
P-326 1997 Preliminary Sediment Characterization Study	27				Core	1997	Zinc (Zn)	Dry weight	110 mg/kg		Pier 10-12
P-326 1997 Preliminary Sediment Characterization Study	28				Core	1997	Copper (Cu)	Dry weight	450 mg/kg		Pier 10-12
P-326 1997 Preliminary Sediment Characterization Study	28				Core	1997	Lead (Pb)	Dry weight	87 mg/kg		Pier 10-12
P-326 1997 Preliminary Sediment Characterization Study	28				Core	1997	Mercury (Hg)	Dry weight	0.57 mg/kg		Pier 10-12
P-326 1997 Preliminary Sediment Characterization Study	28				Core Core	1997 1997	Zinc (Zn)	Dry weight	210 mg/kg		Pier 10-12 Pier 10-12
P-326 1997 Preliminary Sediment Characterization Study P-326 1997 Preliminary Sediment Characterization Study	29				Core	1997	Copper (Cu)	Dry weight	110 mg/kg		Pier 10-12
	29				Core	1997	Lead (Pb)	Dry weight	44 mg/kg 1.24 mg/kg		Pier 10-12 Pier 10-12
P-326 1997 Preliminary Sediment Characterization Study P-326 1997 Preliminary Sediment Characterization Study	29				Core	1997	Mercury (Hg) Zinc (Zn)	Dry weight	1.24 mg/kg 150 mg/kg		Pier 10-12
P-326 1997 Preliminary Sediment Characterization Study	30				Core	1997	Copper (Cu)	Dry weight Dry weight	30 mg/kg		Pier 10-12
P-326 1997 Preliminary Sediment Characterization Study P-326 1997 Preliminary Sediment Characterization Study	30				Core	1997	Lead (Pb)	Dry weight	18 mg/kg		Pier 10-12
P-326 1997 Preliminary Sediment Characterization Study	30				Core	1997	Mercury (Hg)	Dry weight	0.47 mg/kg		Pier 10-12
P-326 1997 Preliminary Sediment Characterization Study P-326 1997 Preliminary Sediment Characterization Study	30		-117.12228	32.66493	Core	1997	Zinc (Zn)	Dry weight	81 mg/kg		Pier 10-12
P-326 1997 Preliminary Sediment Characterization Study	32		117.12220	52.00455	Core	1997	Copper (Cu)	Dry weight	190 mg/kg		Pier 10-12
P-326 1997 Preliminary Sediment Characterization Study	32				Core	1997	Lead (Pb)	Dry weight	58 mg/kg		Pier 10-12
P-326 1997 Preliminary Sediment Characterization Study	32				Core	1997	Mercury (Hg)	Dry weight	1.06 mg/kg		Pier 10-12
P-326 1997 Preliminary Sediment Characterization Study	32		-117.11912	32.66517	Core	1997	Zinc (Zn)	Dry weight	220 mg/kg		Pier 10-12
P-326 1997 Preliminary Sediment Characterization Study	33				Core	1997	Copper (Cu)	Dry weight	64 mg/kg		Pier 10-12
P-326 1997 Preliminary Sediment Characterization Study	33				Core	1997	Lead (Pb)	Dry weight	21 mg/kg		Pier 10-12
P-326 1997 Preliminary Sediment Characterization Study	33				Core	1997	Mercury (Hg)	Dry weight	0.28 mg/kg		Pier 10-12
P-326 1997 Preliminary Sediment Characterization Study	33		-117.11997	32.66500	Core	1997	Zinc (Zn)	Dry weight	97 mg/kg		Pier 10-12
P-326 1997 Preliminary Sediment Characterization Study	34				Core	1997	Copper (Cu)	Dry weight	92 mg/kg		Pier 10-12
P-326 1997 Preliminary Sediment Characterization Study	34				Core	1997	Lead (Pb)	Dry weight	35 mg/kg		Pier 10-12
P-326 1997 Preliminary Sediment Characterization Study	34				Core	1997	Mercury (Hg)	Dry weight	0.69 mg/kg		Pier 10-12
P-326 1997 Preliminary Sediment Characterization Study	34		-117.12065	32.66508	Core	1997	Zinc (Zn)	Dry weight	130 mg/kg		Pier 10-12
P-326 1997 Preliminary Sediment Characterization Study	35				Core	1997	Copper (Cu)	Dry weight	17 mg/kg		Pier 10-12
P-326 1997 Preliminary Sediment Characterization Study	35				Core	1997	Lead (Pb)	Dry weight	8.7 mg/kg		Pier 10-12
P-326 1997 Preliminary Sediment Characterization Study	35				Core	1997	Mercury (Hg)	Dry weight	0.16 mg/kg		Pier 10-12
P-326 1997 Preliminary Sediment Characterization Study	35		-117.12133	32.66500	Core	1997	Zinc (Zn)	Dry weight	35 mg/kg		Pier 10-12
P-326 1997 Preliminary Sediment Characterization Study	36				Core	1997	Copper (Cu)	Dry weight	22 mg/kg		Pier 10-12
P-326 1997 Preliminary Sediment Characterization Study	36				Core	1997	Lead (Pb)	Dry weight	13 mg/kg		Pier 10-12
P-326 1997 Preliminary Sediment Characterization Study	36			-	Core	1997	Mercury (Hg)	Dry weight	0.32 mg/kg		Pier 10-12

							MEASUREMENT	PARAMETER				
PROJECT_NAME	SITE_NAME	SAMPLE_ID	X_COORDINATE	Y_COORDINATE	TYPE	SAMPLE_DATE	METHOD	NAME	PROPERTY	QUANTITY UNIT	QUALIFIER	AREA OF INTEREST
P-326 1997 Preliminary Sediment Characterization Study	38	5, 111 EE_15	<u></u>	1_00010110112	Core	1997	METHOD	Copper (Cu)	Dry weight	61 mg/kg	don ten ren	Pier 10-12
P-326 1997 Preliminary Sediment Characterization Study	38				Core	1997		Lead (Pb)	Dry weight	40 mg/kg		Pier 10-12
P-326 1997 Preliminary Sediment Characterization Study	38				Core	1997		Mercury (Hg)	Dry weight	0.71 mg/kg		Pier 10-12
P-326 1997 Preliminary Sediment Characterization Study	38		-117.12188	32.66443	Core	1997		Zinc (Zn)	Dry weight	110 mg/kg		Pier 10-12
P-326 1997 Preliminary Sediment Characterization Study	39		-117.12100	32.00443	Core	1997		Copper (Cu)	Dry weight	64 mg/kg		Pier 10-12
P-326 1997 Preliminary Sediment Characterization Study P-326 1997 Preliminary Sediment Characterization Study	39				Core	1997		Lead (Pb)	Dry weight	27 mg/kg	-	Pier 10-12
P-326 1997 Preliminary Sediment Characterization Study	39				Core	1997				0.37 mg/kg		Pier 10-12
			447 42040	22.00405				Mercury (Hg)	Dry weight			
P-326 1997 Preliminary Sediment Characterization Study	39		-117.12048	32.66465	Core	1997		Zinc (Zn)	Dry weight	1300 mg/kg		Pier 10-12
P-326 1997 Preliminary Sediment Characterization Study	40				Core	1997		Copper (Cu)	Dry weight	120 mg/kg		Pier 10-12
P-326 1997 Preliminary Sediment Characterization Study	40				Core	1997		Lead (Pb)	Dry weight	50 mg/kg		Pier 10-12
P-326 1997 Preliminary Sediment Characterization Study	40				Core	1997		Mercury (Hg)	Dry weight	0.67 mg/kg		Pier 10-12
P-326 1997 Preliminary Sediment Characterization Study	40		-117.11935	32.66470	Core	1997		Zinc (Zn)	Dry weight	190 mg/kg		Pier 10-12
P-326 1997 Preliminary Sediment Characterization Study	41				Core	1997		Copper (Cu)	Dry weight	78 mg/kg		Pier 10-12
P-326 1997 Preliminary Sediment Characterization Study	41				Core	1997		Lead (Pb)	Dry weight	43 mg/kg		Pier 10-12
P-326 1997 Preliminary Sediment Characterization Study	41				Core	1997		Mercury (Hg)	Dry weight	0.24 mg/kg		Pier 10-12
P-326 1997 Preliminary Sediment Characterization Study	41		-117.11863	32.66448	Core	1997		Zinc (Zn)	Dry weight	250 mg/kg		Pier 10-12
P-326 1997 Preliminary Sediment Characterization Study	42				Core	1997		Copper (Cu)	Dry weight	24 mg/kg		Pier 10-12
P-326 1997 Preliminary Sediment Characterization Study	42				Core	1997		Lead (Pb)	Dry weight	15 mg/kg		Pier 10-12
P-326 1997 Preliminary Sediment Characterization Study	42				Core	1997		Mercury (Hg)	Dry weight	0.5 mg/kg		Pier 10-12
P-326 1997 Preliminary Sediment Characterization Study	42		-117.12163	32.66420	Core	1997		Zinc (Zn)	Dry weight	72 mg/kg		Pier 10-12
P-326 2000 Study	4				Composite	2000		Arsenic (As)	Dry weight	1.43 mg/kg		Pier 10-12
P-326 2000 Study	4				Composite	2000		Cadmium (Cd)	Dry weight	0.219 mg/kg		Pier 10-12
P-326 2000 Study	4				Composite	2000		Copper (Cu)	Dry weight	26.4 mg/kg		Pier 10-12
P-326 2000 Study	4				Composite	2000		Lead (Pb)	Dry weight	8.24 mg/kg		Pier 10-12
P-326 2000 Study	4				Composite	2000		Mercury (Hg)	Dry weight	0.109 mg/kg		Pier 10-12
P-326 2000 Study	4				Composite	2000		Zinc (Zn)	Dry weight	46.3 mg/kg		Pier 10-12
P-326 2000 Study	5				Composite	2000		Arsenic (As)	Dry weight	2.36 mg/kg		Pier 10-12
P-326 2000 Study	5				Composite	2000		Cadmium (Cd)	Dry weight	0.59 mg/kg		Pier 10-12
P-326 2000 Study	5				Composite	2000		Copper (Cu)	Dry weight	39.1 mg/kg		Pier 10-12
P-326 2000 Study	5				Composite	2000		Lead (Pb)	Dry weight	15 mg/kg		Pier 10-12
P-326 2000 Study	5				Composite	2000		Mercury (Hg)	Dry weight	1.55 mg/kg		Pier 10-12
P-326 2000 Study	5				Composite	2000		Zinc (Zn)	Dry weight	63.5 mg/kg		Pier 10-12
P-326 2000 Study	6				Composite	2000		Arsenic (As)	Dry weight	4.07 mg/kg	-	Pier 10-12
P-326 2000 Study	6				Composite	2000		Cadmium (Cd)	Dry weight	1.12 mg/kg	-	Pier 10-12
P-326 2000 Study	6					2000		. ,				Pier 10-12
	6				Composite Composite			Copper (Cu)	Dry weight	40.1 mg/kg 25.2 mg/kg		Pier 10-12 Pier 10-12
P-326 2000 Study	6					2000		Lead (Pb)	Dry weight			
P-326 2000 Study	· · · · · · · · · · · · · · · · · · ·				Composite	2000		Mercury (Hg)	Dry weight	0.499 mg/kg		Pier 10-12
P-326 2000 Study	6				Composite	2000		Zinc (Zn)	Dry weight	83.2 mg/kg		Pier 10-12
P-326 2000 Study	7				Composite	2000		Arsenic (As)	Dry weight	1.73 mg/kg		Pier 10-12
P-326 2000 Study					Composite	2000		Cadmium (Cd)	Dry weight	0.278 mg/kg		Pier 10-12
P-326 2000 Study	7				Composite	2000		Copper (Cu)	Dry weight	41.2 mg/kg		Pier 10-12
P-326 2000 Study	7				Composite	2000		Lead (Pb)	Dry weight	15.6 mg/kg	1	Pier 10-12
P-326 2000 Study	7				Composite	2000		Mercury (Hg)	Dry weight	0.132 mg/kg		Pier 10-12
P-326 2000 Study	7				Composite	2000		Zinc (Zn)	Dry weight	64.4 mg/kg		Pier 10-12
P-326 2000 Study	8				Composite	2000		Arsenic (As)	Dry weight	2.23 mg/kg	1	Pier 10-12
P-326 2000 Study	8				Composite	2000		Cadmium (Cd)	Dry weight	0.268 mg/kg	1	Pier 10-12
P-326 2000 Study	8				Composite	2000		Copper (Cu)	Dry weight	32.2 mg/kg		Pier 10-12
P-326 2000 Study	8				Composite	2000		Lead (Pb)	Dry weight	11 mg/kg		Pier 10-12
P-326 2000 Study	8				Composite	2000		Mercury (Hg)	Dry weight	0.115 mg/kg		Pier 10-12
P-326 2000 Study	8				Composite	2000		Zinc (Zn)	Dry weight	118 mg/kg		Pier 10-12
P-326 2000 Study	9			-	Composite	2000		Arsenic (As)	Dry weight	3 mg/kg	1	Pier 10-12
P-326 2000 Study	9				Composite	2000		Cadmium (Cd)	Dry weight	0.456 mg/kg		Pier 10-12
P-326 2000 Study	9				Composite	2000		Copper (Cu)	Dry weight	32.3 mg/kg		Pier 10-12
P-326 2000 Study	9				Composite	2000		Lead (Pb)	Dry weight	19 mg/kg	1	Pier 10-12
P-326 2000 Study	9				Composite	2000		Mercury (Hg)	Dry weight	0.338 mg/kg	1	Pier 10-12
P-326 2000 Study	9	1			Composite	2000		Zinc (Zn)	Dry weight	71.2 mg/kg		Pier 10-12
P-327 Pier 12 Phase I	1				Composite	2005		Arsenic (As)	Dry Weight	2.78 mg/kg	1	Pier 10-12
P-327 Pier 12 Phase I	1	-			Composite	2005		Cadmium (Cd)	Dry Weight	0.429 mg/kg	1	Pier 10-12
P-327 Pier 12 Phase I		-			Composite	2003		Copper (Cu)	· · · · ·		1	Pier 10-12
P-327 Pier 12 Phase I	1					2005		Lead (Pb)	Dry Weight	59.5 mg/kg	1	Pier 10-12 Pier 10-12
					Composite				Dry Weight	20.2 mg/kg	+	
P-327 Pier 12 Phase I	1		1		Composite	2005	l	Mercury (Hg)	Dry Weight	0.243 mg/kg	1	Pier 10-12

							MEASUREMENT	PARAMETER				
PROJECT NAME	SITE NAME	SAMPLE ID	X COORDINATE	Y COORDINATE	TYPE	SAMPLE DATE	METHOD	NAME	PROPERTY	QUANTITY UNIT	QUALIFIER	AREA OF INTEREST
P-327 Pier 12 Phase I	1	_			Composite	2005		Zinc (Zn)	Dry Weight	84.6 mg/kg		Pier 10-12
P-327 Pier 12 Phase I	2				Composite	2005	ĺ	Arsenic (As)	Dry Weight	4.57 mg/kg		Pier 10-12
P-327 Pier 12 Phase I	2				Composite	2005		Cadmium (Cd)	Dry Weight	0.591 mg/kg		Pier 10-12
P-327 Pier 12 Phase I	2				Composite	2005	ĺ	Copper (Cu)	Dry Weight	85.5 mg/kg		Pier 10-12
P-327 Pier 12 Phase I	2				Composite	2005	ĺ	Lead (Pb)	Dry Weight	35.5 mg/kg		Pier 10-12
P-327 Pier 12 Phase I	2				Composite	2005		Mercury (Hg)	Dry Weight	0.300 mg/kg	+	Pier 10-12
P-327 Pier 12 Phase I	2				Composite	2005		Zinc (Zn)	Dry Weight	197 mg/kg		Pier 10-12
P-327 Pier 12 Phase I	3				Composite	2005		Arsenic (As)	Dry Weight	5.04 mg/kg	+	Pier 10-12
P-327 Pier 12 Phase I	3				Composite	2005		Cadmium (Cd)	Dry Weight	0.747 mg/kg		Pier 10-12
P-327 Pier 12 Phase I	3				Composite	2005		Copper (Cu)	Dry Weight	91.7 mg/kg	+	Pier 10-12
P-327 Pier 12 Phase I	3				Composite	2005		Lead (Pb)		21.4 mg/kg	+	Pier 10-12
P-327 Pier 12 Phase I	3				Composite	2005		Mercury (Hg)	Dry Weight Dry Weight	0.459 mg/kg	+	Pier 10-12
P-327 Pier 12 Phase I	3				Composite	2005		Zinc (Zn)				Pier 10-12
P-327 Pier 12 Phase I	Navy 1-1		-117.11942	32.66513	Core	2003		Arsenic (As)	Dry Weight	141 mg/kg		Pier 10-12
							<u> </u>		Dry Weight	3.99 mg/kg		Pier 10-12
P-327 Pier 12 Phase I	Navy 1-1		-117.11942	32.66513 32.66513	Core	2005 2005	<u> </u>	Cadmium (Cd)	Dry Weight	0.486 mg/kg		Pier 10-12
P-327 Pier 12 Phase I	Navy 1-1		-117.11942		Core		l	Copper (Cu)	Dry Weight	85.6 mg/kg		
P-327 Pier 12 Phase I	Navy 1-1		-117.11942	32.66513	Core	2005	<u> </u>	Lead (Pb)	Dry Weight	22.8 mg/kg	+	Pier 10-12
P-327 Pier 12 Phase I	Navy 1-1		-117.11942	32.66513	Core	2005	ŀ	Mercury (Hg)	Dry Weight	0.257 mg/kg	+	Pier 10-12
P-327 Pier 12 Phase I	Navy 1-1		-117.11942		Core	2005	ŀ	Zinc (Zn)	Dry Weight	115 mg/kg	+	Pier 10-12
P-327 Pier 12 Phase I	Navy 1-2		-117.11932	32.66450	Core	2005	l	Arsenic (As)	Dry Weight	3.26 mg/kg	+	Pier 10-12
P-327 Pier 12 Phase I	Navy 1-2		-117.11932	32.66450	Core	2005	l	Cadmium (Cd)	Dry Weight	0.441 mg/kg	<u> </u>	Pier 10-12
P-327 Pier 12 Phase I	Navy 1-2		-117.11932		Core	2005	l	Copper (Cu)	Dry Weight	77.4 mg/kg	<u> </u>	Pier 10-12
P-327 Pier 12 Phase I	Navy 1-2		-117.11932	32.66450	Core	2005	l	Lead (Pb)	Dry Weight	18.7 mg/kg		Pier 10-12
P-327 Pier 12 Phase I	Navy 1-2		-117.11932	32.66450	Core	2005	ļ	Mercury (Hg)	Dry Weight	0.246 mg/kg		Pier 10-12
P-327 Pier 12 Phase I	Navy 1-2		-117.11932	32.66450	Core	2005	ļ	Zinc (Zn)	Dry Weight	107 mg/kg		Pier 10-12
P-327 Pier 12 Phase I	Navy 1-3		-117.11988	32.66517	Core	2005	L	Arsenic (As)	Dry Weight	3.93 mg/kg		Pier 10-12
P-327 Pier 12 Phase I	Navy 1-3		-117.11988	32.66517	Core	2005		Cadmium (Cd)	Dry Weight	0.236 mg/kg		Pier 10-12
P-327 Pier 12 Phase I	Navy 1-3		-117.11988	32.66517	Core	2005		Copper (Cu)	Dry Weight	79.3 mg/kg		Pier 10-12
P-327 Pier 12 Phase I	Navy 1-3		-117.11988	32.66517	Core	2005		Lead (Pb)	Dry Weight	17 mg/kg		Pier 10-12
P-327 Pier 12 Phase I	Navy 1-3		-117.11988	32.66517	Core	2005	I	Mercury (Hg)	Dry Weight	0.261 mg/kg		Pier 10-12
P-327 Pier 12 Phase I	Navy 1-3		-117.11988	32.66517	Core	2005		Zinc (Zn)	Dry Weight	96.3 mg/kg		Pier 10-12
P-327 Pier 12 Phase I	Navy 1-4		-117.11963	32.66477	Core	2005		Arsenic (As)	Dry Weight	2.02 mg/kg		Pier 10-12
P-327 Pier 12 Phase I	Navy 1-4		-117.11963	32.66477	Core	2005		Cadmium (Cd)	Dry Weight	0.145 mg/kg		Pier 10-12
P-327 Pier 12 Phase I	Navy 1-4		-117.11963	32.66477	Core	2005		Copper (Cu)	Dry Weight	24.9 mg/kg		Pier 10-12
P-327 Pier 12 Phase I	Navy 1-4		-117.11963	32.66477	Core	2005		Lead (Pb)	Dry Weight	6.54 mg/kg		Pier 10-12
P-327 Pier 12 Phase I	Navy 1-4		-117.11963	32.66477	Core	2005	l	Mercury (Hg)	Dry Weight	0.134 mg/kg		Pier 10-12
P-327 Pier 12 Phase I	Navy 1-4		-117.11963	32.66477	Core	2005	l	Zinc (Zn)	Dry Weight	48.9 mg/kg		Pier 10-12
P-327 Pier 12 Phase I	Navy 1-5		-117.12018	32.66475	Core	2005		Arsenic (As)	Dry Weight	8.02 mg/kg		Pier 10-12
P-327 Pier 12 Phase I	Navy 1-5		-117.12018	32.66475	Core	2005		Cadmium (Cd)	Dry Weight	2.24 mg/kg		Pier 10-12
P-327 Pier 12 Phase I	Navy 1-5		-117.12018	32.66475	Core	2005	1	Copper (Cu)	Dry Weight	105 mg/kg	1	Pier 10-12
P-327 Pier 12 Phase I	Navy 1-5		-117.12018	32.66475	Core	2005	1	Lead (Pb)	Dry Weight	51.4 mg/kg	1	Pier 10-12
P-327 Pier 12 Phase I	Navy 1-5		-117.12018	32.66475	Core	2005	Í.	Mercury (Hg)	Dry Weight	0.507 mg/kg	1	Pier 10-12
P-327 Pier 12 Phase I	Navy 1-5		-117.12018	32.66475	Core	2005	Í.	Zinc (Zn)	Dry Weight	636 mg/kg	1	Pier 10-12
P-327 Pier 12 Phase I	Navy 2-1		-117.12093	32.66505	Core	2005	[Arsenic (As)	Dry Weight	2.89 mg/kg	+	Pier 10-12
P-327 Pier 12 Phase I	Navy 2-1		-117.12093	32.66505	Core	2005	[Cadmium (Cd)	Dry Weight	0.263 mg/kg	+	Pier 10-12
P-327 Pier 12 Phase I	Navy 2-1		-117.12093	32.66505	Core	2005	(Copper (Cu)	Dry Weight	42.2 mg/kg	<u> </u>	Pier 10-12
P-327 Pier 12 Phase I	Navy 2-1 Navy 2-1		-117.12093	32.66505	Core	2005	(Lead (Pb)	Dry Weight	10.6 mg/kg	<u> </u>	Pier 10-12
P-327 Pier 12 Phase I	Navy 2-1		-117.12093	32.66505	Core	2005		Mercury (Hg)	Dry Weight	0.69 mg/kg	+	Pier 10-12
P-327 Pier 12 Phase I	Navy 2-1 Navy 2-1		-117.12093	32.66505	Core	2003		Zinc (Zn)	Dry Weight	83.5 mg/kg	+	Pier 10-12
P-327 Pier 12 Phase I	Navy 2-1 Navy 2-2		-117.12093	32.66430	Core	2005	<u> </u>	Arsenic (As)	Dry Weight	11.1 mg/kg	+	Pier 10-12
P-327 Pier 12 Phase I	Navy 2-2 Navy 2-2		-117.12077	32.66430	Core	2005		Cadmium (Cd)	Dry Weight Dry Weight	1.46 mg/kg	+	Pier 10-12 Pier 10-12
			-117.12077	32.66430	Core	2005				249 mg/kg	+	Pier 10-12 Pier 10-12
P-327 Pier 12 Phase I	Navy 2-2		-117.12077	32.66430		2005		Copper (Cu)	Dry Weight		+	
P-327 Pier 12 Phase I	Navy 2-2				Core		<u> </u>	Lead (Pb)	Dry Weight	78.8 mg/kg	+	Pier 10-12
P-327 Pier 12 Phase I	Navy 2-2		-117.12077	32.66430	Core	2005	<u> </u>	Mercury (Hg)	Dry Weight	0.228 mg/kg	+	Pier 10-12
P-327 Pier 12 Phase I	Navy 2-2		-117.12077	32.66430	Core	2005	l	Zinc (Zn)	Dry Weight	411 mg/kg	+	Pier 10-12
P-327 Pier 12 Phase I	Navy 2-3		-117.12153	32.66482	Core	2005		Arsenic (As)	Dry Weight	2.51 mg/kg	+	Pier 10-12
P-327 Pier 12 Phase I	Navy 2-3		-117.12153	32.66482	Core	2005	l	Cadmium (Cd)	Dry Weight	1.2 mg/kg	U	Pier 10-12
P-327 Pier 12 Phase I	Navy 2-3		-117.12153	32.66482	Core	2005	I	Copper (Cu)	Dry Weight	26.1 mg/kg		Pier 10-12
P-327 Pier 12 Phase I	Navy 2-3		-117.12153	32.66482	Core	2005	Į	Lead (Pb)	Dry Weight	6.23 mg/kg		Pier 10-12
P-327 Pier 12 Phase I	Navy 2-3	1	-117.12153	32.66482	Core	2005	1	Mercury (Hg)	Dry Weight	0.52 mg/kg	1	Pier 10-12
P-327 Pier 12 Phase I	Navy 2-3		-117.12153	32.66482	Core	2005		Zinc (Zn)	Dry Weight	54.9 mg/kg	-	Pier 10-12

							MEASUREMENT	PARAMETER			
PROJECT_NAME	SITE_NAME	SAMPLE_ID	X_COORDINATE	Y_COORDINATE	TYPE	SAMPLE_DATE	METHOD	NAME	PROPERTY	QUANTITY UNIT	QUALIFIER AREA OF INTEREST
P-327 Pier 12 Phase I	Navy 2-4	<u>o, un cc_io</u>	-117.12138	32.66420	Core	2005	incino b	Arsenic (As)	Dry Weight	7.16 mg/kg	Pier 10-12
P-327 Pier 12 Phase I	Navy 2-4		-117.12138	32.66420	Core	2005		Cadmium (Cd)	Dry Weight	0.581 mg/kg	Pier 10-12
P-327 Pier 12 Phase I	Navy 2-4		-117.12138	32.66420	Core	2005		Copper (Cu)	Dry Weight	161 mg/kg	Pier 10-12
P-327 Pier 12 Phase I	Navy 2-4	+	-117.12138	32.66420	Core	2005		Lead (Pb)	Dry Weight	40.1 mg/kg	Pier 10-12
P-327 Pier 12 Phase I	Navy 2-4 Navy 2-4	+	-117.12138	32.66420	Core	2005			Dry Weight	0.0954 mg/kg	Pier 10-12
P-327 Pier 12 Phase I	Navy 2-4		-117.12138	32.66420	Core	2003		Mercury (Hg)			Pier 10-12
				32.66487	Core	2005		Zinc (Zn)	Dry Weight	212 mg/kg	Pier 10-12 Pier 10-12
P-327 Pier 12 Phase I	Navy 2-5		-117.12188					Arsenic (As)	Dry Weight	2.52 mg/kg	
P-327 Pier 12 Phase I	Navy 2-5		-117.12188	32.66487	Core	2005		Cadmium (Cd)	Dry Weight	0.163 mg/kg	Pier 10-12
P-327 Pier 12 Phase I	Navy 2-5		-117.12188	32.66487	Core	2005		Copper (Cu)	Dry Weight	26.5 mg/kg	Pier 10-12
P-327 Pier 12 Phase I	Navy 2-5		-117.12188	32.66487	Core	2005		Lead (Pb)	Dry Weight	8.04 mg/kg	Pier 10-12
P-327 Pier 12 Phase I	Navy 2-5		-117.12188	32.66487	Core	2005		Mercury (Hg)	Dry Weight	0.341 mg/kg	Pier 10-12
P-327 Pier 12 Phase I	Navy 2-5		-117.12188	32.66487	Core	2005		Zinc (Zn)	Dry Weight	82.1 mg/kg	Pier 10-12
P-327 Pier 12 Phase I	Navy 3-1		-117.12235	32.66487	Core	2005		Arsenic (As)	Dry Weight	6.29 mg/kg	Pier 10-12
P-327 Pier 12 Phase I	Navy 3-1		-117.12235	32.66487	Core	2005		Cadmium (Cd)	Dry Weight	0.862 mg/kg	Pier 10-12
P-327 Pier 12 Phase I	Navy 3-1		-117.12235	32.66487	Core	2005		Copper (Cu)	Dry Weight	55.8 mg/kg	Pier 10-12
P-327 Pier 12 Phase I	Navy 3-1		-117.12235	32.66487	Core	2005		Lead (Pb)	Dry Weight	25.4 mg/kg	Pier 10-12
P-327 Pier 12 Phase I	Navy 3-1		-117.12235	32.66487	Core	2005		Mercury (Hg)	Dry Weight	0.362 mg/kg	Pier 10-12
P-327 Pier 12 Phase I	Navy 3-1		-117.12235	32.66487	Core	2005		Zinc (Zn)	Dry Weight	125 mg/kg	Pier 10-12
P-327 Pier 12 Phase I	Navy 3-2	1	-117.12230	32.66412	Core	2005	1	Arsenic (As)	Dry Weight	4.16 mg/kg	Pier 10-12
P-327 Pier 12 Phase I	Navy 3-2	1	-117.12230	32.66412	Core	2005	1	Cadmium (Cd)	Dry Weight	0.261 mg/kg	Pier 10-12
P-327 Pier 12 Phase I	Navy 3-2	+	-117.12230	32.66412	Core	2005	1	Copper (Cu)	Dry Weight	66.7 mg/kg	Pier 10-12
P-327 Pier 12 Phase I	Navy 3-2	+ +	-117.12230	32.66412	Core	2005	t	Lead (Pb)	Dry Weight	29.2 mg/kg	Pier 10-12
P-327 Pier 12 Phase I	Navy 3-2	+	-117.12230	32.66412	Core	2005	<u> </u>	Mercury (Hg)	Dry Weight	0.146 mg/kg	Pier 10-12
P-327 Pier 12 Phase I	Navy 3-2		-117.12230	32.66412	Core	2005		Zinc (Zn)	Dry Weight	111 mg/kg	Pier 10-12
P-327 Pier 12 Phase I	Navy 3-2 Navy 3-3	+	-117.12250	32.66492	Core	2005		Arsenic (As)	Dry Weight	5.54 mg/kg	Pier 10-12
P-327 Pier 12 Phase I	Navy 3-3	+	-117.12325	32.66492	Core	2003		Cadmium (Cd)		0.596 mg/kg	Pier 10-12
			-117.12325	32.66492	Core	2005			Dry Weight		Pier 10-12
P-327 Pier 12 Phase I	Navy 3-3		-117.12325	32.66492	Core	2003		Copper (Cu)	Dry Weight	32.4 mg/kg	Pier 10-12
P-327 Pier 12 Phase I	Navy 3-3							Lead (Pb)	Dry Weight	17.4 mg/kg	
P-327 Pier 12 Phase I	Navy 3-3		-117.12325	32.66492	Core	2005		Mercury (Hg)	Dry Weight	0.389 mg/kg	Pier 10-12
P-327 Pier 12 Phase I	Navy 3-3		-117.12325	32.66492	Core	2005		Zinc (Zn)	Dry Weight	88.3 mg/kg	Pier 10-12
P-327 Pier 12 Phase I	Navy 3-4		-117.12273	32.66433	Core	2005		Arsenic (As)	Dry Weight	6.4 mg/kg	Pier 10-12
P-327 Pier 12 Phase I	Navy 3-4		-117.12273	32.66433	Core	2005		Cadmium (Cd)	Dry Weight	1.25 mg/kg	Pier 10-12
P-327 Pier 12 Phase I	Navy 3-4		-117.12273	32.66433	Core	2005		Copper (Cu)	Dry Weight	114 mg/kg	Pier 10-12
P-327 Pier 12 Phase I	Navy 3-4		-117.12273	32.66433	Core	2005		Lead (Pb)	Dry Weight	34.9 mg/kg	Pier 10-12
P-327 Pier 12 Phase I	Navy 3-4		-117.12273	32.66433	Core	2005		Mercury (Hg)	Dry Weight	0.668 mg/kg	Pier 10-12
P-327 Pier 12 Phase I	Navy 3-4		-117.12273	32.66433	Core	2005		Zinc (Zn)	Dry Weight	186 mg/kg	Pier 10-12
P-327 Pier 12 Phase I	Navy 3-5		-117.12327	32.66425	Core	2005		Arsenic (As)	Dry Weight	3.34 mg/kg	Pier 10-12
P-327 Pier 12 Phase I	Navy 3-5		-117.12327	32.66425	Core	2005		Cadmium (Cd)	Dry Weight	1.2 mg/kg	U Pier 10-12
P-327 Pier 12 Phase I	Navy 3-5		-117.12327	32.66425	Core	2005		Copper (Cu)	Dry Weight	32.6 mg/kg	Pier 10-12
P-327 Pier 12 Phase I	Navy 3-5		-117.12327	32.66425	Core	2005		Lead (Pb)	Dry Weight	8.7 mg/kg	Pier 10-12
P-327 Pier 12 Phase I	Navy 3-5		-117.12327	32.66425	Core	2005		Mercury (Hg)	Dry Weight	0.091 mg/kg	Pier 10-12
P-327 Pier 12 Phase I	Navy 3-5		-117.12327	32.66425	Core	2005		Zinc (Zn)	Dry Weight	61.6 mg/kg	Pier 10-12
P-327 Pier 12 Phase II	Area D				Composite	2005		Arsenic (As)	Dry Weight	2.13 mg/kg	Pier 10-12
P-327 Pier 12 Phase II	Area D				Composite	2005		Cadmium (Cd)	Dry Weight	0.188 mg/kg	Pier 10-12
P-327 Pier 12 Phase II	Area D				Composite	2005		Copper (Cu)	Dry Weight	28.8 mg/kg	Pier 10-12
P-327 Pier 12 Phase II	Area D	1			Composite	2005	1	Lead (Pb)	Dry Weight	8.01 mg/kg	Pier 10-12
P-327 Pier 12 Phase II	Area D	1			Composite	2005	1	Mercury (Hg)	Dry Weight	0.0907 mg/kg	Pier 10-12
P-327 Pier 12 Phase II	Area D	+			Composite	2005	1	Zinc (Zn)	Dry Weight	53.6 mg/kg	Pier 10-12
P-327 Pier 12 Phase II	Area E	+ +			Composite	2005	t	Arsenic (As)	Dry Weight	3.3 mg/kg	Pier 10-12
P-327 Pier 12 Phase II	Area E	+			Composite	2005	+	Cadmium (Cd)	Dry Weight	0.359 mg/kg	Pier 10-12
P-327 Pier 12 Phase II	Area E	+			Composite	2005	+	Copper (Cu)	Dry Weight	34.3 mg/kg	Pier 10-12
P-327 Pier 12 Phase II	Area E	+	-		Composite	2003	+	Lead (Pb)	Dry Weight Dry Weight	13.2 mg/kg	Pier 10-12
P-327 Pier 12 Phase II P-327 Pier 12 Phase II	Area E	+	-			2005	+			0.184 mg/kg	Pier 10-12 Pier 10-12
P-327 Pier 12 Phase II P-327 Pier 12 Phase II		+			Composite	2005	+	Mercury (Hg)	Dry Weight		
	Area E	USNIVC 2008 D			Composite		EDA 6020m	Zinc (Zn)	Dry Weight	76.8 mg/kg	Pier 10-12
P-327 Pier 12 Phase III	D	USNVC-2008-D			Composite	10/29/08	EPA 6020m	Arsenic (As)	Dry Weight	2.601 µg/kg	Pier 10-12
P-327 Pier 12 Phase III	D	USNVC-2008-D			Composite	10/29/08	EPA 6020m	Cadmium (Cd)	Dry Weight	0.191 µg/kg	Pier 10-12
P-327 Pier 12 Phase III	D	USNVC-2008-D			Composite	10/29/08	EPA 6020m	Copper (Cu)	Dry Weight	35.76 µg/kg	Pier 10-12
P-327 Pier 12 Phase III	D	USNVC-2008-D			Composite	10/29/08	EPA 6020m	Lead (Pb)	Dry Weight	8.597 μg/kg	Pier 10-12
P-327 Pier 12 Phase III	D	USNVC-2008-D			Composite	10/29/08	EPA 245.7m	Mercury (Hg)	Dry Weight	0.09 µg/kg	Pier 10-12
P-327 Pier 12 Phase III P-327 Pier 12 Phase III	D	USNVC-2008-D USNVC-2008-E			Composite	10/29/08 10/31/08	EPA 6020m EPA 6020m	Zinc (Zn) Arsenic (As)	Dry Weight Dry Weight	51.94 μg/kg 4.893 μg/kg	Pier 10-12 Pier 10-12

							MEASUREMENT	PARAMETER				
PROJECT_NAME	SITE_NAME	SAMPLE_ID	X_COORDINATE	Y_COORDINATE	TYPE	SAMPLE_DATE	METHOD	NAME	PROPERTY QUANTI	Y UNIT	QUALIFIER	AREA OF INTEREST
P-327 Pier 12 Phase III	E	USNVC-2008-E			Composite	10/31/08	EPA 6020m	Cadmium (Cd)	Dry Weight 0.	176 µg/kg		Pier 10-12
P-327 Pier 12 Phase III	E	USNVC-2008-E			Composite	10/31/08	EPA 6020m	Copper (Cu)	Dry Weight 51	.03 µg/kg		Pier 10-12
P-327 Pier 12 Phase III	E	USNVC-2008-E			Composite	10/31/08	EPA 6020m	Lead (Pb)	Dry Weight 15	.01 µg/kg		Pier 10-12
P-327 Pier 12 Phase III	E	USNVC-2008-E			Composite	10/31/08	EPA 245.7m	Mercury (Hg)	Dry Weight (.24 µg/kg		Pier 10-12
P-327 Pier 12 Phase III	E	USNVC-2008-E			Composite	10/31/08	EPA 6020m	Zinc (Zn)	Dry Weight 89	.85 µg/kg		Pier 10-12
Sediment Characterization Study Pier and Berthing Areas	SD3-54 NAVSTA		-117.12007	32.66606	Core	10/30/93	EPA7471Mercury	Mercury (Hg)	Dry weight (.46 mg/kg		Pier 10-12
Sediment Characterization Study Pier and Berthing Areas	SD3-54 NAVSTA		-117.12007	32.66606	Core	10/30/93	EPA7471Mercury	Mercury (Hg)	Dry weight 0	.67 mg/kg		Pier 10-12
Sediment Characterization Study Pier and Berthing Areas	SD3-54 NAVSTA		-117.12007	32.66606	Core	10/30/93	EPA7471Mercury	Mercury (Hg)	Dry weight 0	.87 mg/kg		Pier 10-12
Sediment Characterization Study Pier and Berthing Areas	SD3-55 NAVSTA		-117.12105	32.66595	Core	10/30/93	EPA7471Mercury	Mercury (Hg)	Dry weight (.01 mg/kg	U	Pier 10-12
Sediment Characterization Study Pier and Berthing Areas	SD3-55 NAVSTA		-117.12105	32.66595	Core	10/30/93	EPA7471Mercury	Mercury (Hg)	Dry weight 0	.08 mg/kg		Pier 10-12
Sediment Characterization Study Pier and Berthing Areas	SD3-55 NAVSTA		-117.12105	32.66595	Core	10/30/93	EPA7471Mercury	Mercury (Hg)	Dry weight (.25 mg/kg		Pier 10-12
Sediment Characterization Study Pier and Berthing Areas	SD3-56 NAVSTA		-117.12199	32.66576	Core	10/30/93	EPA7471Mercury	Mercury (Hg)	Dry weight	0.9 mg/kg		Pier 10-12
Sediment Characterization Study Pier and Berthing Areas	SD3-57 NAVSTA		-117.12295	32.66568	Core	10/30/93	EPA7471Mercury	Mercury (Hg)	Dry weight (.02 mg/kg		Pier 10-12
Sediment Characterization Study Pier and Berthing Areas	SD3-57 NAVSTA		-117.12295	32.66568	Core	10/30/93	EPA7471Mercury	Mercury (Hg)	Dry weight 0	.38 mg/kg		Pier 10-12
Sediment Characterization Study Pier and Berthing Areas	SD3-57 NAVSTA		-117.12295	32.66568	Core	10/30/93	EPA7471Mercury	Mercury (Hg)	Dry weight (.97 mg/kg		Pier 10-12
Sediment Characterization Study Pier and Berthing Areas	SD3-59 NAVSTA		-117.12293	32.66526	Core	10/30/93	EPA7471Mercury	Mercury (Hg)	Dry weight 0	.06 mg/kg		Pier 10-12
Sediment Characterization Study Pier and Berthing Areas	SD3-59 NAVSTA		-117.12293	32.66526	Core	10/30/93	EPA7471Mercury	Mercury (Hg)	Dry weight (.57 mg/kg		Pier 10-12
Sediment Characterization Study Pier and Berthing Areas	SD3-59 NAVSTA		-117.12293	32.66526	Core	10/30/93	EPA7471Mercury	Mercury (Hg)	Dry weight	0.9 mg/kg		Pier 10-12
Sediment Characterization Study Pier and Berthing Areas	SD3-59 NAVSTA		-117.12293	32.66526	Core	10/30/93	EPA7471Mercury	Mercury (Hg)	Dry weight 1	.34 mg/kg		Pier 10-12
Sediment Characterization Study Pier and Berthing Areas	SD3-60 NAVSTA		-117.12196	32.66537	Core	10/30/93	EPA7471Mercury	Mercury (Hg)	Dry weight 0	.01 mg/kg	U	Pier 10-12
Sediment Characterization Study Pier and Berthing Areas	SD3-60 NAVSTA		-117.12196	32.66537	Core	10/30/93	EPA7471Mercury	Mercury (Hg)	Dry weight (.01 mg/kg	U	Pier 10-12
Sediment Characterization Study Pier and Berthing Areas	SD3-60 NAVSTA		-117.12196	32.66537	Core	10/30/93	EPA7471Mercury	Mercury (Hg)	Dry weight 0	.18 mg/kg		Pier 10-12
Sediment Characterization Study Pier and Berthing Areas	SD3-60 NAVSTA		-117.12196	32.66537	Core	10/30/93	EPA7471Mercury	Mercury (Hg)	Dry weight	1.3 mg/kg		Pier 10-12
Sediment Characterization Study Pier and Berthing Areas	SD3-61 NAVSTA		-117.12087	32.66539	Core	10/30/93	EPA7471Mercury	Mercury (Hg)	Dry weight (.01 mg/kg	U	Pier 10-12
Sediment Characterization Study Pier and Berthing Areas	SD3-61 NAVSTA		-117.12087	32.66539	Core	10/30/93	EPA7471Mercury	Mercury (Hg)	Dry weight 0	.01 mg/kg	U	Pier 10-12
Sediment Characterization Study Pier and Berthing Areas	SD3-61 NAVSTA		-117.12087	32.66539	Core	10/30/93	EPA7471Mercury	Mercury (Hg)	Dry weight (.07 mg/kg		Pier 10-12
Sediment Characterization Study Pier and Berthing Areas	SD3-61 NAVSTA		-117.12087	32.66539	Core	10/30/93	EPA7471Mercury	Mercury (Hg)		0.3 mg/kg		Pier 10-12
Sediment Characterization Study Pier and Berthing Areas	SD3-62 NAVSTA		-117.11992	32.66546	Core	10/30/93	EPA7471Mercury	Mercury (Hg)	Dry weight (.05 mg/kg		Pier 10-12
Sediment Characterization Study Pier and Berthing Areas	SD3-62 NAVSTA		-117.11992	32.66546	Core	10/30/93	EPA7471Mercury	Mercury (Hg)	Dry weight (.86 mg/kg		Pier 10-12
Sediment Characterization Study Pier and Berthing Areas	SD3-26 NAVSTA		-117.12738	32.67736	Core	10/30/93	EPA7471Mercury	Mercury (Hg)	Dry weight (.03 mg/kg		Pier 5-6
Sediment Characterization Study Pier and Berthing Areas	SD3-26 NAVSTA		-117.12738	32.67736	Core	10/30/93	EPA7471Mercury	Mercury (Hg)		.86 mg/kg		Pier 5-6
Sediment Characterization Study Pier and Berthing Areas	SD3-26 NAVSTA		-117.12738	32.67736	Core	10/30/93	EPA7471Mercury	Mercury (Hg)	Dry weight	1.9 mg/kg		Pier 5-6
Sediment Characterization Study Pier and Berthing Areas	SD3-27 NAVSTA		-117.12672	32.67778	Core	10/30/93	EPA7471Mercury	Mercury (Hg)		.41 mg/kg		Pier 5-6
Sediment Characterization Study Pier and Berthing Areas	SD3-27 NAVSTA		-117.12672	32.67778	Core	10/30/93	EPA7471Mercury	Mercury (Hg)	Dry weight	1.9 mg/kg		Pier 5-6
Sediment Characterization Study Pier and Berthing Areas	SD3-28 NAVSTA		-117.12599	32.67819	Core	10/30/93	EPA7471Mercury	Mercury (Hg)		.07 mg/kg		Pier 5-6
Sediment Characterization Study Pier and Berthing Areas	SD3-29 NAVSTA		-117.12534	32.67857	Core	10/30/93	EPA7471Mercury	Mercury (Hg)		.12 mg/kg		Pier 5-6
Sediment Characterization Study Pier and Berthing Areas	SD3-29 NAVSTA		-117.12534	32.67857	Core	10/30/93	EPA7471Mercury	Mercury (Hg)	Dry weight (.78 mg/kg		Pier 5-6
Sediment Characterization Study Pier and Berthing Areas	SD3-30 NAVSTA		-117.12430	32.67723	Core	10/30/93	EPA7471Mercury	Mercury (Hg)	Dry weight	0.1 mg/kg		Pier 5-6
Sediment Characterization Study Pier and Berthing Areas	SD3-30 NAVSTA		-117.12430	32.67723	Core	10/30/93	EPA7471Mercury	Mercury (Hg)	Dry weight (.47 mg/kg		Pier 5-6
Sediment Characterization Study Pier and Berthing Areas	SD3-30 NAVSTA		-117.12430	32.67723	Core	10/30/93	EPA7471Mercury	Mercury (Hg)	Dry weight (.91 mg/kg		Pier 5-6
Sediment Characterization Study Pier and Berthing Areas	SD3-30 NAVSTA		-117.12430	32.67723	Core	10/30/93	EPA7471Mercury	Mercury (Hg)		0.1 mg/kg		Pier 5-6
Sediment Characterization Study Pier and Berthing Areas	SD3-31 NAVSTA		-117.12506	32.67681	Core	10/30/93	EPA7471Mercury	Mercury (Hg)		.13 mg/kg		Pier 5-6
Sediment Characterization Study Pier and Berthing Areas	SD3-31 NAVSTA		-117.12506	32.67681	Core	10/30/93	EPA7471Mercury	Mercury (Hg)	1 0	2.7 mg/kg		Pier 5-6
Sediment Characterization Study Pier and Berthing Areas	SD3-32 NAVSTA		-117.12572	32.67642	Core	10/30/93	EPA7471Mercury	Mercury (Hg)	Dry weight (.04 mg/kg		Pier 5-6
Sediment Characterization Study Pier and Berthing Areas	SD3-32 NAVSTA		-117.12572	32.67642	Core	10/30/93	EPA7471Mercury	Mercury (Hg)		.48 mg/kg		Pier 5-6
Sediment Characterization Study Pier and Berthing Areas	SD3-33 NAVSTA		-117.12656	32.67598	Core	10/30/93	EPA7471Mercury	Mercury (Hg)	Dry weight (.01 mg/kg	U	Pier 5-6
Sediment Characterization Study Pier and Berthing Areas	SD3-33 NAVSTA		-117.12656	32.67598	Core	10/30/93	EPA7471Mercury	Mercury (Hg)	Dry weight 0	.07 mg/kg		Pier 5-6
Sediment Characterization Study Pier and Berthing Areas	SD3-33 NAVSTA		-117.12656	32.67598	Core	10/30/93	EPA7471Mercury	Mercury (Hg)	Dry weight (.49 mg/kg		Pier 5-6

							MEASUREMENT_	PARAMETER_					
PROJECT_NAME	SITE_NAME	SAMPLE_ID	X_COORDINATE	Y_COORDINATE	SAMPLE_DATE	TYPE	METHOD	NAME	PROPERTY	QUANTITY	UNIT	QUALIFIER	AREA OF INTEREST
2004 Paleta Creek Sediment Characterization Study	1-1		117.11826	32.67280	5/20/2004	Core		Tributyltin (TBT)	Dry weight	145	µg/kg	U	Paleta Creek Mouth
2004 Paleta Creek Sediment Characterization Study	1-2		117.11758	30.67318	5/20/2004	Core		Tributyltin (TBT)	Dry weight	694	µg/kg	U	Paleta Creek Mouth
2004 Paleta Creek Sediment Characterization Study	1-3		117.11720	32.67338	5/20/2004	Core		Tributyltin (TBT)	Dry weight	553	µg/kg	U	Paleta Creek Mouth
2004 Paleta Creek Sediment Characterization Study	1-4		117.11685	32.67348	5/20/2004	Core		Tributyltin (TBT)	Dry weight	68.7	µg/kg	U	Paleta Creek Mouth
2004 Paleta Creek Sediment Characterization Study	1-5		117.11665	32.67380	5/20/2004	Core		Tributyltin (TBT)	Dry weight	1620	µg/kg	U	Paleta Creek Mouth
2004 Paleta Creek Sediment Characterization Study	2-1		117.11628	32.67387	5/20/2004	Core		Tributyltin (TBT)	Dry weight	41.8	µg/kg		Paleta Creek Mouth
2004 Paleta Creek Sediment Characterization Study	2-2		117.11607	32.67410	5/20/2004	Core		Tributyltin (TBT)	Dry weight	30.6	µg/kg		Paleta Creek Mouth
2004 Paleta Creek Sediment Characterization Study	2-3		117.11593	32.67377	5/20/2004	Core		Tributyltin (TBT)	Dry weight	7.5	µg/kg		Paleta Creek Mouth
2004 Paleta Creek Sediment Characterization Study	2-4		117.11598	32.67352	5/20/2004	Core		Tributyltin (TBT)	Dry weight	27.1	µg/kg	U	Paleta Creek Mouth
2004 Paleta Creek Sediment Characterization Study	2-5		117.11597	32.67298	5/20/2004	Core		Tributyltin (TBT)	Dry weight	3.3	µg/kg		Paleta Creek Mouth
2004 Paleta Creek Sediment Characterization Study	3-1		117.11630	32.67273	5/20/2004	Core		Tributyltin (TBT)	Dry weight	87	µg/kg	U	Paleta Creek Mouth
2004 Paleta Creek Sediment Characterization Study	3-2		117.11695	32.67237	5/21/2004	Core		Tributyltin (TBT)	Dry weight	9	µg/kg		Paleta Creek Mouth
2004 Paleta Creek Sediment Characterization Study	3-3		117.11718	32.67222	5/20/2004	Core		Tributyltin (TBT)	Dry weight	26.4	µg/kg	U	Paleta Creek Mouth
2004 Paleta Creek Sediment Characterization Study	3-4		117.11815	32.67182	5/21/2004	Core		Tributyltin (TBT)	Dry weight	38	µg/kg	U	Paleta Creek Mouth
2004 Paleta Creek Sediment Characterization Study	3-5		117.11835	32.67160	5/21/2004	Core		Tributyltin (TBT)	Dry weight	59.9	µg/kg	U	Paleta Creek Mouth
Sediment Chemistry Results for Naval Station San Diego	Pier 8, Area A		-117.12301	32.67125	12/01/92	Discrete Sample	Greenbook	Tributyltin (TBT)	Dry weight	3.54	µg/kg		Paleta Creek Mouth
Sediment Chemistry Results for Naval Station San Diego	Pier 8, Area A Mole pier		-117.12120	32.67053	11/10/92	Discrete Sample	Greenbook	Tributyltin (TBT)	Dry weight	1.68	µg/kg	U	Paleta Creek Mouth
Sediment Chemistry Results for Naval Station San Diego	Pier 8, Area B		-117.12120	32.67266	12/02/92	Discrete Sample	Greenbook	Tributyltin (TBT)	Dry weight	1.68	µg/kg	U	Paleta Creek Mouth
Sediment Chemistry Results for Naval Station San Diego	Pier 8, Area B Mole pier		-117.12120	32.67053	11/10/92	Discrete Sample	Greenbook	Tributyltin (TBT)	Dry weight	1.21	µg/kg	U	Paleta Creek Mouth
P-327 Pier 12 Phase I	1				2005	Composite		Tributyltin (TBT)	Dry Weight	1	µg/kg	U	Piers 10-12
P-327 Pier 12 Phase I	2				2005	Composite		Tributyltin (TBT)	Dry Weight	1.6	µg/kg		Piers 10-12
P-327 Pier 12 Phase I	3				2005	Composite		Tributyltin (TBT)	Dry Weight	1.5	µg/kg		Piers 10-12
P-327 Pier 12 Phase II	Area D				2005	Composite		Tributyltin (TBT)	Dry Weight	4.1	µg/kg	U	Piers 10-12
P-327 Pier 12 Phase II	Area E				2005	Composite		Tributyltin (TBT)	Dry Weight	4.4	µg/kg	U	Piers 10-12
P-327 Pier 12 Phase III	D	USNVC-2008-D			10/29/08	Composite	Krone et al., 1989	Tributyltin (TBT)	Dry Weight	3	µg/kg	U	Piers 10-12
P-327 Pier 12 Phase III	E	USNVC-2008-E			10/31/08	Composite	Krone et al., 1989	Tributyltin (TBT)	Dry Weight	3	µg/kg	U	Piers 10-12
P-326 2000 Study	4				2000	Composite		Tributyltin (TBT)	Dry weight	1		U	Piers 10-12
P-326 2000 Study	5				2000	Composite		Tributyltin (TBT)	Dry weight	1		U	Piers 10-12
P-326 2000 Study	6				2000	Composite		Tributyltin (TBT)	Dry weight	1		U	Piers 10-12
P-326 2000 Study	7				2000	Composite		Tributyltin (TBT)	Dry weight	1		U	Piers 10-12
P-326 2000 Study	8				2000	Composite		Tributyltin (TBT)	Dry weight	1		U	Piers 10-12
P-326 2000 Study	9				2000	Composite		Tributyltin (TBT)	Dry weight	1		U	Piers 10-12

TABLE F-3

HABLE F-3 High Molecular Weight Polynuclear Aromatic Hydrocarbons (HPAH) in Composite Sediment Samples Response to Tentative Cleanup and Abatement Order and City of San Diego Complaint United States Naval Base San Diego, California

PROJECT NAME	SITE NAME	SAMPLE ID	X COORDINATE	Y COORDINATE	TYPE	SAMPLE DATE	PARAMETER NAME	PROPERTY	QUANTITY UNIT	AREA OF INTEREST
P-327 Pier 12 Phase I	1			_	Composite	2005	Total HPAH	Dry Weight	390 µg/kg	Piers 10-12
P-327 Pier 12 Phase I	2				Composite	2005	Total HPAH	Dry Weight	885 µg/kg	Piers 10-12
P-327 Pier 12 Phase I	3				Composite	2005	Total HPAH	Dry Weight	247 µg/kg	Piers 10-12
P-327 Pier 12 Phase II	Area D				Composite	2005	Total HPAH	Dry Weight	101 µg/kg	Piers 10-12
P-327 Pier 12 Phase II	Area E				Composite	2005	Total HPAH	Dry Weight	84 µg/kg	Piers 10-12
P-327 Pier 12 Phase III	D	USNVC-2008-D			Composite	10/29/08	Total HPAH	Dry Weight	335 µg/kg	Piers 10-12
P-327 Pier 12 Phase III	E	USNVC-2008-E			Composite	10/31/08	Total HPAH	Dry Weight	365 µg/kg	Piers 10-12
P-326 1997 Preliminary Sediment Characterization Study	7	05.110 2000 2			Core	1997	Total HPAH	Dry Weight	89 µg/kg	Piers 10-12
P-326 1997 Preliminary Sediment Characterization Study	8				Core	1997	Total HPAH	Dry Weight	224 µg/kg	Piers 10-12
P-326 1997 Preliminary Sediment Characterization Study	9				Core	1997	Total HPAH	Dry Weight	77 μg/kg	Piers 10-12
P-326 1997 Preliminary Sediment Characterization Study	10				Core	1997	Total HPAH	Dry Weight	442 µg/kg	Piers 10-12
P-326 1997 Preliminary Sediment Characterization Study	10				Core	1997	Total HPAH	Dry Weight	200 µg/kg	Piers 10-12
P-326 1997 Preliminary Sediment Characterization Study	12				Core	1997	Total HPAH	Dry Weight	15267 µg/kg	Piers 10-12
P-326 1997 Preliminary Sediment Characterization Study	12				Core	1997	Total HPAH	Dry Weight	621 µg/kg	Piers 10-12
P-326 1997 Preliminary Sediment Characterization Study	14				Core	1997	Total HPAH	Dry Weight	594 µg/kg	Piers 10-12
P-326 1997 Preliminary Sediment Characterization Study	14				Core	1997	Total HPAH	Dry Weight	60 μg/kg	Piers 10-12
P-326 1997 Preliminary Sediment Characterization Study	15				Core	1997	Total HPAH	Dry Weight	202 µg/kg	Piers 10-12 Piers 10-12
· · ·	18				Core	1997	Total HPAH		60 μg/kg	
P-326 1997 Preliminary Sediment Characterization Study P-326 1997 Preliminary Sediment Characterization Study	18				Core	1997	Total HPAH	Dry Weight		Piers 10-12 Piers 10-12
	20					1997		Dry Weight	81 μg/kg	
P-326 1997 Preliminary Sediment Characterization Study					Core	1997	Total HPAH	Dry Weight	680 µg/kg	Piers 10-12
P-326 1997 Preliminary Sediment Characterization Study	21 22				Core	1997	Total HPAH	Dry Weight	236 µg/kg	Piers 10-12
P-326 1997 Preliminary Sediment Characterization Study	22 23				Core		Total HPAH	Dry Weight	114 µg/kg	Piers 10-12
P-326 1997 Preliminary Sediment Characterization Study					Core	1997	Total HPAH	Dry Weight	1930 µg/kg	Piers 10-12
P-326 1997 Preliminary Sediment Characterization Study	24				Core	1997	Total HPAH	Dry Weight	563 µg/kg	Piers 10-12
P-326 1997 Preliminary Sediment Characterization Study	25				Core	1997	Total HPAH	Dry Weight	60 µg/kg	Piers 10-12
P-326 1997 Preliminary Sediment Characterization Study	26				Core	1997	Total HPAH	Dry Weight	118 µg/kg	Piers 10-12
P-326 1997 Preliminary Sediment Characterization Study	27				Core	1997	Total HPAH	Dry Weight	854 μg/kg	Piers 10-12
P-326 1997 Preliminary Sediment Characterization Study	28				Core	1997	Total HPAH	Dry Weight	669 µg/kg	Piers 10-12
P-326 1997 Preliminary Sediment Characterization Study	29				Core	1997	Total HPAH	Dry Weight	1454 µg/kg	Piers 10-12
P-326 1997 Preliminary Sediment Characterization Study	30		-117.12228	32.66493	Core	1997	Total HPAH	Dry Weight	225 µg/kg	Piers 10-12
P-326 1997 Preliminary Sediment Characterization Study	32		-117.11912	32.66517	Core	1997	Total HPAH	Dry Weight	2026 µg/kg	Piers 10-12
P-326 1997 Preliminary Sediment Characterization Study	33		-117.11997	32.66500	Core	1997	Total HPAH	Dry Weight	547 μg/kg	Piers 10-12
P-326 1997 Preliminary Sediment Characterization Study	34		-117.12065	32.66508	Core	1997	Total HPAH	Dry Weight	316 µg/kg	Piers 10-12
P-326 1997 Preliminary Sediment Characterization Study	35		-117.12133	32.66500	Core	1997	Total HPAH	Dry Weight	79 µg/kg	Piers 10-12
P-326 1997 Preliminary Sediment Characterization Study	36		-117.12268	32.66447	Core	1997	Total HPAH	Dry Weight	123 μg/kg	Piers 10-12
P-326 1997 Preliminary Sediment Characterization Study	38		-117.12188	32.66443	Core	1997	Total HPAH	Dry Weight	590 µg/kg	Piers 10-12
P-326 1997 Preliminary Sediment Characterization Study	39		-117.12048	32.66465	Core	1997	Total HPAH	Dry Weight	210 μg/kg	Piers 10-12
P-326 1997 Preliminary Sediment Characterization Study	40		-117.11935	32.66470	Core	1997	Total HPAH	Dry Weight	1245 μg/kg	Piers 10-12
P-326 1997 Preliminary Sediment Characterization Study	41		-117.11863	32.66448	Core	1997	Total HPAH	Dry Weight	631 μg/kg	Piers 10-12
P-326 1997 Preliminary Sediment Characterization Study	42		-117.12163	32.66420	Core	1997	Total HPAH	Dry Weight	147 μg/kg	Piers 10-12
P-326 2000 Study	7				Composite	2000	Total HPAH	Dry Weight	334 μg/kg	Piers 10-12
P-326 2000 Study	8				Composite	2000	Total HPAH	Dry Weight	169 µg/kg	Piers 10-12
P-326 2000 Study	9				Composite	2000	Total HPAH	Dry Weight	210 µg/kg	Piers 10-12
P-326 2000 Study	4				Composite	2000	Total HPAH	Dry Weight	182 µg/kg	Piers 10-12
P-326 2000 Study	5				Composite	2000	Total HPAH	Dry Weight	167 µg/kg	Piers 10-12
P-326 2000 Study	6				Composite	2000	Total HPAH	Dry Weight	94 µg/kg	Piers 10-12
2004 Paleta Creek Sediment Characterization Study	1-1		117.11826	32.67280	Core	5/20/2004	Total HPAH	Dry weight	5665 μg/kg	Paleta Creek Mouth
2004 Paleta Creek Sediment Characterization Study	1-2		117.11758	30.67318	Core	5/20/2004	Total HPAH	Dry weight	4240 µg/kg	Paleta Creek Mouth
2004 Paleta Creek Sediment Characterization Study	1-3		117.11720	32.67338	Core	5/20/2004	Total HPAH	Dry weight	5070 µg/kg	Paleta Creek Mouth
2004 Paleta Creek Sediment Characterization Study	1-4		117.11685	32.67348	Core	5/20/2004	Total HPAH	Dry weight	3225 μg/kg	Paleta Creek Mouth
2004 Paleta Creek Sediment Characterization Study	1-5		117.11665	32.67380	Core	5/20/2004	Total HPAH	Dry weight	10920 µg/kg	Paleta Creek Mouth
2004 Paleta Creek Sediment Characterization Study	2-1		117.11628	32.67387	Core	5/20/2004	Total HPAH	Dry weight	4805 μg/kg	Paleta Creek Mouth
2004 Paleta Creek Sediment Characterization Study	2-2		117.11607	32.67410	Core	5/20/2004	Total HPAH	Dry weight	1670 µg/kg	Paleta Creek Mouth
2004 Paleta Creek Sediment Characterization Study	2-3		117.11593	32.67377	Core	5/20/2004	Total HPAH	Dry weight	2955 µg/kg	Paleta Creek Mouth
2004 Paleta Creek Sediment Characterization Study	2-4		117.11598	32.67352	Core	5/20/2004	Total HPAH	Dry weight	4700 μg/kg	Paleta Creek Mouth
2004 Paleta Creek Sediment Characterization Study	2-5		117.11597	32.67298	Core	5/20/2004	Total HPAH	Dry weight	4980 µg/kg	Paleta Creek Mouth
2004 Paleta Creek Sediment Characterization Study	3-1		117.11630	32.67273	Core	5/20/2004	Total HPAH	Dry weight	5180 µg/kg	Paleta Creek Mouth
2004 Paleta Creek Sediment Characterization Study	3-2		117.11695	32.67237	Core	5/21/2004	Total HPAH	Dry weight	1540 µg/kg	Paleta Creek Mouth
2004 Paleta Creek Sediment Characterization Study	3-3		117.11718	32.67222	Core	5/20/2004	Total HPAH	Dry weight	3150 µg/kg	Paleta Creek Mouth
2004 Paleta Creek Sediment Characterization Study	3-4		117.11815	32.67182	Core	5/21/2004	Total HPAH	Dry weight	3060 µg/kg	Paleta Creek Mouth
2004 Paleta Creek Sediment Characterization Study	3-5		117.11835	32.67160	Core	5/21/2004	Total HPAH	Dry weight	6715 µg/kg	Paleta Creek Mouth
		1				-, ,=		,	100,0	

TABLE F-3

HABLE F-3 High Molecular Weight Polynuclear Aromatic Hydrocarbons (HPAH) in Composite Sediment Samples Response to Tentative Cleanup and Abatement Order and City of San Diego Complaint United States Naval Base San Diego, California

PROJECT_NAME	SITE_NAME	SAMPLE_ID	X_COORDINATE	Y_COORDINATE	TYPE	SAMPLE_DATE	PARAMETER_NAME	PROPERTY	QUANTITY UNIT	AREA OF INTEREST
Sediment Chemistry Results for Naval Station San Diego	Pier 8, Area A		-117.12301	32.67125	Core	12/01/92	Total HPAH	Dry weight	539 µg/kg	Paleta Creek Mouth
Sediment Chemistry Results for Naval Station San Diego	Pier 8, Area A Mole pier		-117.12120	32.67053	Core	11/10/92	Total HPAH	Dry weight	1075 µg/kg	Paleta Creek Mouth
Sediment Chemistry Results for Naval Station San Diego	Pier 8, Area B		-117.12120	32.67266	Core	12/02/92	Total HPAH	Dry weight	490 µg/kg	Paleta Creek Mouth
Sediment Chemistry Results for Naval Station San Diego	Pier 8, Area B Mole pier		-117.12120	32.67053	Core	11/10/92	Total HPAH	Dry weight	60 µg/kg	Paleta Creek Mouth

TABLE F-4

Total Polychlorinated Biphenyl (PCB) Congeners in Composite Sediment Samples Response to Tentative Cleanup and Abatement Order and City of San Diego Complaint United States Naval Base San Diego, California

PROJECT_NAME	SITE_NAME	SAMPLE_ID	ТҮРЕ	SAMPLE_DATE	PARAMETER_NAME	PROPERTY	QUANTITY	UNIT	AREA OF INTEREST
Navy Pier 12 Phase III	D	USNVC-2008-D	Composite	10/29/08	Total PCB congeners	Dry Weight	101	µg/kg	Piers 10-12
Navy Pier 12 Phase III	E	USNVC-2008-E	Composite	10/31/08	Total PCB congeners	Dry Weight	98	µg/kg	Piers 10-12

This page intentionally left blank.