Site Characterization Report

Airport/Former Teledyne Ryan Aeronautical Site 2701 North Harbor Drive San Diego, California

WDID No. 9371004452 (Former TRA Facility)

Brin Hittens

Brian Hitchens, P.G., C.Hg.

Sam Whilliams

Sam Williams, P.G., C.Hg.

December 19, 2005

11305 Rancho Bernardo Rd. Suite 101, San Diego, California 92127 (858) 674-6559

CERTIFICATION

I certify under penalty of perjury that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Edgard Bertaut Senior Environmental Manager TDY Industries, Inc.

12-19-05

Date

Site Characterization Report 2701 North Harbor Drive San Diego California

Table of Contents

<u>SEC</u>	TION	Page No	No.
1.	INTI	RODUCTION	1
	1.1	Background	1
	1.2	Objectives	1
	1.3	Regulatory Setting	2
	1.4	Site History	2
		1.4.1 Convair Lagoon History	3
		1.4.2 SWCS History	3
	1.5	Site Vicinity	5
	1.6	Report Organization	б
2.	PRE	VIOUS INVESTIGATIONS	7
	2.1	UST Closure and No Further Action Determinations	7
	2.2	PES Report	8
	2.3	GeoSyntec 2002 Site Investigation	8
	2.4	GeoSyntec 2002 PCB Investigation	9
	2.5	Haley & Aldrich 2003 Site Assessment	9
	2.6	Ongoing Investigations	9
3.	SCO	PE OF 2005 SITE CHARACTERIZATION10	0
	3.1	Identification of Data Gaps1	0
	3.2	Constituents of Potential Concern1	1
	3.3	Background Concentrations of Metals and Cyanide in Soil12	2
		3.3.1 Methodology for Background Analysis12	2
		3.3.2 Results of Background Analysis1	2
	3.4	Final Work Plan Scope and Field Methodologies1	3
		3.4.1 Monitor Well Installation	3
		3.4.1.1 Well Development14	4
		3.4.2 Hydropunch Sampling14	4
		3.4.3 Soil Sampling14	4
		3.4.4 Groundwater Sampling14	4
		3.4.5 Storm Water Conveyance System Sampling1	5

		3.4.5.1 Existing Sediment Sampling	15
		3.4.5.2 Run-In Sediment Sampling	
		3.4.5.3 In-Line Sediment Sampling	15
		3.4.5.4 Video-Assisted Sediment Sampling	16
		3.4.5.5 Invert Elevation Survey Methods	16
		3.4.6 Geophysical Surveys	16
		3.4.7 Monitor Well and Hydropunch Location Surveys	16
		3.4.8 Convair Lagoon Sediment Sampling	16
		3.4.9 Tidal Influx Sampling	17
		3.4.10 Laboratory Analytical Methods	17
		3.4.11 Geotracker Reporting	17
4.	HYD	ROGEOLOGIC CHARACTERIZATION	18
	4.1	Subsurface Geology	18
	4.2	Hydrogeologic Conditions	18
	4.3	Existing Monitor Well Distribution	18
	4.4	Potential Preferential Pathways	19
	4.5	Groundwater Flow Characterization	19
	4.6	Proposed Monitor Well Abandonment Plan	19
5.	SUM	IMARY OF 2005 SOIL AND GROUNDWATER SAMPLING	21
	5.1	VOCs Downgradient of Building 120	
	5.2	Upgradient Extent of VOCs Associated with AST West of Building 166	
	5.3	PCE Northeast of Building 161	21
	5.4	Extent of Anomalous Vinyl Chloride and Metals Detected South of Building	•
	5.5	Extent of VOCs in the Building 131/242 Area	
	5.6	Current Hydrogeologic Conditions and Chemical Quality of Groundwater	22
6.	STO	RM WATER CONVEYANCE SYSTEM CHARACTERIZATION	23
	6.1	Description of SWCS Beneath the Site and Into Convair Lagoon	
	6.2	Description of SWCS Beneath Site Not Draining to Convair Lagoon	
	6.3	Description of Other Potentially Relevant SWCS	
	6.4	Tidal Influence on the SWCS	
		6.4.1 SWCS Invert Survey	
		6.4.2 Flow Analysis	
	6.5	Tidal Influx Sampling Evaluation	
	6.6	On-Site SWCS Video Survey Off-Site SWCS Video Survey	
	6.7		

EXT	ENT OF WASTE CONSTITUENT CHARACTERIZATION	30
7.1	Comparability of Data	30
7.2	Extent of Sediment Impacts	
	7.2.1.1 Upgradient PCB Impacts	31
	7.2.1.2 PCBs on the San Diego International Airport	
	7.2.1.3 PCB Impacts on the Former General Dynamics-Lindbergh	Field
	Facility	
	7.2.1.4 PCB Impacts Upgradient of General Dynamics-Lindbergh	Field
	Facility	
	7.2.1.5 PCB Impacts on the former Sky Chefs Facility	32
	7.2.1.6 PCB Impacts on the Former General Dynamics Harbor	Drive
	Plant	32
	7.2.2 Onsite PCB Impacts	33
	7.2.3 PCB Impacts in Convair Lagoon	34
	7.2.4 Upgradient Metals in Sediment	35
	7.2.5 Onsite Metals in Sediment	35
7.3	Extent of Soil Impacts	35
	7.3.1 VOCs	35
	7.3.1.1 Discussion of Rationale for Contouring	36
	7.3.2 TPH	36
	7.3.3 SVOCs	37
	7.3.4 PCBs	37
	7.3.5 Perchlorate	38
	7.3.6 Metals	38
7.4	Extent of Impacts to Groundwater	39
	7.4.1 VOCs	39
	7.4.1.1 Discussion of Rationale for Contouring	40
	•	
	7.4.3 SVOCs	40
	7.4.4 Metals	
7.5	Extent of PCBs in Groundwater	42
7.6	Extent of Apparent Non Aqueous Phase Liquid (NAPL)	
	7.6.2 Dense Non-Aqueous Phase Liquids (DNAPL)	43
7.7	Soil Gas Results	44
ARE	AS OF POTENTIAL CONCERN	45
8.1	Building 180	45
8.2	Outside Maintenance Yard Near Building 161	
	 7.1 7.2 7.3 7.4 7.5 7.6 7.7 ARE 8.1 	 7.2 Extent of Sediment Impacts

	8.3	Above Ground Solvent Tank Near Building 166	46
	8.4	Building 120	46
	8.5	South of Building 121	47
	8.6	Building 222/228	47
	8.7	Building 146	
	8.8	Building 158	
	8.9	Test Cell #4/Area D	49
	8.10	Building 142	
	8.11	Building 131/242	50
	8.12	Building 156	51
	8.13	Explosives Area	51
	8.14	Portions of the Storm Water Conveyance System (SWCS)	
9.	UPDA	TED CONCEPTUAL SITE MODEL	53
	9.1	Constituent Characteristics and Potential Exposure Routes	53
	9.2	Selection of Receptors	
		9.2.1 Receptors – During Redevelopment Activities	53
		9.2.2 Receptors - After Site Redevelopment	54
	9.3	Selection of Exposure Pathways	
		9.3.1 Direct Exposure to COPCs in Soil	55
		9.3.2 Direct Exposure to COPCs in Groundwater	
		9.3.3 Inhalation of COPCs in Airborne Dust	
		9.3.4 Inhalation of Vapors in Indoor and Outdoor Air	56
		9.3.5 Ingestion of PCB Impacted Biota	56
		9.3.6 Summary of Selected Exposure Pathways	
10.	SUMN	1ARY	
11.	REFE	RENCES	62

<u>Tables</u>

- Table 2-1: Comprehensive Summary of Building Use
- Table 3-1: Constituents of Potential Concern
- Table 3-2: Calculated Background Concentrations for Metals and Cyanide in Soil and Groundwater
- Table 3-3: Comparison of Maximum Background Soil Concentrations With Published Values
- Table 3-4:
 Groundwater Monitor Well Construction Details
- Table 3-5: Soil, Sediment, and Groundwater Sample Matrix
- Table 3-6:
 Groundwater Elevations
- Table 3-7:
 Laboratory Analytical Methods

- Table 4-1: Groundwater Monitoring and Monitor Well Abandonment Plan
- Table 7-1: Analytical Results PCBs in Sediment Samples
- Table 7-2: Analytical Results SVOCs in Sediment Samples
- Table 7-3:
 Analytical Results Metals in Sediment Samples
- Table 7-4: Analytical Results VOCs and TPH in Soil Samples
- Table 7-5: Analytical Results VOCs and TPH in Groundwater Samples
- Table 7-6: Analytical Results SVOCs in Groundwater Samples
- Table 7-7: Analytical Results Metals in Groundwater Samples
- Table 7-8: Constituent Concentrations Indicative of Non-Aqueous Phase Liquids in Soil

Figures

- Figure 1-1: Site Location
- Figure 1-2: Site Plan and Historical Activity Areas
- Figure 2-1: Site Plan and Historical VOC Use Areas
- Figure 2-2: Site Plan and Historical SVOC Use Areas
- Figure 2-3: Site Plan and Historical Metals Use Areas
- Figure 2-4: Site Plan and Historical PCB Use Areas
- Figure 2-5: Historical Use Areas All Classes
- Figure 3-1: Soil Sample Locations
- Figure 3-2: Existing Monitor Wells and Groundwater Sample Locations
- Figure 3-3: Storm Water Conveyance System Sediment Sampling Locations
- Figure 4-1: Hydrogeologic Cross-Section A-A'
- Figure 4-2: Hydrogeologic Cross-Section B-B'
- Figure 4-3: Groundwater Elevations and Flow Direction
- Figure 6-1: Storm Water Conveyance System
- Figure 6-2: Survey of SWCS Invert Elevations
- Figure 7-1: PCB Results in Off Site SWCS Airport
- Figure 7-2: PCB Results in Off Site SWCS Former General Dynamics Lindbergh Field
- Figure 7-3: PCB Results in Off Site SWCS Upgradient Properties
- Figure 7-4: PCB Results in Off Site SWCS Sky Chefs/San Park Properties
- Figure 7-5: PCB Results in Off Site SWCS Former General Dynamics Harbor Drive
- Figure 7-6: PCB Results in On Site SWCS
- Figure 7-7: Metals Results in On Site SWCS
- Figure 7-8: Total VOCs in Soil Gas
- Figure 7S-1: Chromium in Soil 0-5 Feet
- Figure 7S-2: Chromium in Soil 5-10 Feet
- Figure 7S-3: Cobalt in Soil 0-5 Feet
- Figure 7S-4: Cobalt in Soil 5-10 Feet
- Figure 7S-5: Cyanide in Soil 0-5 Feet
- Figure 7S-6: Lead in Soil 0-5 Feet

Figure 7S-7: Lead in Soil 5-10 Feet Figure 7S-8: Mercury in Soil 0-5 Feet Figure 7S-9: Mercury in Soil 5-10 Feet Figure 7S-10: Nickel in Soil 0-5 Feet Figure 7S-11: Nickel in Soil 5-10 Feet Figure 7S-12: Selenium in Soil 0-5 Feet Figure 7S-13: Selenium in Soil 5-10 Feet Figure 7S-14: Zinc in Soil 0-5 Feet Figure 7S-15: Zinc in Soil 5-10 Feet Figure 7S-16: Total Volatile Organic Compounds in Soil 0-5 Feet Figure 7S-17: Total Volatile Organic Compounds in Soil 5-10 Feet Figure 7S-18: 1,2,4-Trimethylbenzene in Soil 0-5 Feet Figure 7S-19: 1,2,4-Trimethylbenzene in Soil 5-10 Feet Figure 7S-20: Cis-1,2-Dichloroethene in Soil 0-5 Feet Figure 7S-21: Cis-1,2-Dichloroethene in Soil 5-10 Feet Figure 7S-22: Tetrachloroethene in Soil 0-5 Feet Figure 7S-23: Tetrachloroethene in Soil 5-10 Feet Figure 7S-24: Trichloroethene in Soil 0-5 Feet Figure 7S-25: Trichloroethene in Soil 5-10 Feet Figure 7S-26: Vinyl Chloride in Soil 0-5 Feet Figure 7S-27: Vinyl Chloride in Soil 5-10 Feet Figure 7S-28: Total Petroleum Hydrocarbons in Soil 0-5 Feet Figure 7S-29: Total Petroleum Hydrocarbons in Soil 5-10 Feet Figure 7S-30: Total Semi-Volatile Organic Compounds in Soil 0-5 Feet Figure 7S-31: Benzo(a)pyrene in Soil 0-5 Feet Figure 7S-32: Benzo(a)pyrene in Soil 5-10 Feet Figure 7S-33: PCB's in Soil 0-5 Feet Figure 7S-34: PCB's in Soil 5-10 Feet Figure 7S-35: Perchlorate in Soil 0-5 Feet Figure 7S-36: Potential LNAPL in Soil Figure 7S-37: Potential DNAPL in Soil Figure 7G-1: Chromium in Groundwater Figure 7G-2: Hexavalent Chromium in Groundwater Figure 7G-3: Cyanide in Groundwater Figure 7G-4: Molybdenum in Groundwater Figure 7G-5: Nickel in Groundwater Figure 7G-6: Selenium in Groundwater Figure 7G-7: Total Volatile Organic Compounds in Groundwater Figure 7G-8: Benzene in Groundwater Figure 7G-9: 1,1-Dichloroethane in Groundwater Figure 7G-10: Cis-1,2-Dichloroethene in Groundwater

- Figure 7G-11: Naphthalene in Groundwater
- Figure 7G-12: Tetrachloroethene in Groundwater
- Figure 7G-13: 1,1,1-Trichloroethane in Groundwater

- Figure 7G-14: Trichloroethene in Groundwater
- Figure 7G-15: Vinyl Chloride in Groundwater
- Figure 7G-16: Total Petroleum Hydrocarbons in Groundwater
- Figure 7G-17: Total Semi-Volatile Organic Compounds in Groundwater
- Figure 7G-18: 1,4-Dioxane in Groundwater
- Figure 7G-19: Bis(2-Ethylhexyl)Phthalate in Groundwater
- Figure 7G-20: Aroclor 1016 in Groundwater
- Figure 7G-21: Potential LNAPL in Groundwater
- Figure 7G-22: Potential DNAPL in Groundwater
- Figure 8-1: Areas of Potential Concern
- Figure 9-1: Updated Conceptual Site Model

Appendixes

- Appendix A Background Analysis
- Appendix B Copies of Waste Manifests
- Appendix C Boring Logs and Monitor Well Construction Diagrams
- Appendix D Groundwater Sampling and Well Development Field Logs
- Appendix E Survey Data
- Appendix F Geophysical Survey Reports
- Appendix G Video Survey (DVD) and Reports
- Appendix H Laboratory Analytical Reports for 2005 investigations and Database of 2003 Results (DVD)
- Appendix I Electronic Copy of Text, Tables, and Figures

EXECUTIVE SUMMARY

On October 4, 2004, the San Diego Regional Water Quality Control Board (RWQCB) issued Cleanup and Abatement Order #R9-2004-0258 (CAO-04-0258) for alleged discharges of waste from 2701 North Harbor Drive in San Diego, California. CAO 04-0258, which was revised on May 17, 2005 and amended on July 22, 2005, requires TDY Industries, Incorporated, TDY Holdings, LLC, and Teledyne Ryan Aeronautical Company to: (1) cleanup and abate discharges, (2) perform site investigation and characterization, (3) perform interim remedial actions, (4) perform a remedial investigation and feasibility study, (5) prepare a remedial action plan, and (6) cleanup and verify abatement completion. This report is being submitted in fulfillment of the Site Investigation and Characterization Report requirement contained in CAO 04-0258. Included in this report are the following:

- A description of field methodologies used for drilling, soil sampling, groundwater sampling, storm water conveyance system (SWCS) sampling, well, and piezometer construction, geophysical surveys, and video surveys;
- A description of activities related to the characterization of the SWCS for both onsite and upgradient properties;
- Presentation of the hydrogeologic characterization of the Site developed for this report, including the geology, hydrogeologic conditions, direction of local groundwater flow, and potential preferential pathways;
- Identification of all potential sources through a review of historical documents, site operations, and records, as well as more recent site investigations and analytical results;
- Refinement of the Conceptual Site Model (CSM) based on data collected during the course of site characterization;
- Characterization of the lateral and vertical extent of impacts to sediment, soil, and groundwater for identified Constituents of Potential Concern (COPCs), and development of a list of Areas of Potential Concern (AOPCs) which will be further evaluated in the Remedial Investigation/Feasibility Study (RI/FS); and
- Evaluation of the potential for PCBs to travel into and through the SWCS and accumulate on the sand cap installed in Convair Lagoon.

During 2005, an extensive investigation of the Site was performed. This investigation consisted of: evaluating soil and groundwater quality data to identify data gaps; performing a statistical analysis of analytical data to calculate background concentrations of metals and cyanide; identifying constituents of potential concern based on historical site use and the prevalence of constituents detected in soil and groundwater. Based on this analysis of existing data, soil, sediment, and groundwater sampling were performed to complete the characterization of the nature and extent of residual constituents at the Site and surrounding properties.

The following is a summary of findings based on the investigations and studies performed in 2005.

Hydrogeologic Conditions

The 44-acre site is constructed upon dredged bay-fill material, placed between 1936 and 1939 during redevelopment of the tidelands on the northern edge of San Diego Bay. Fill material currently ranges from approximately 5-8 feet thick, underlain by bay mud deposits. These bay muds have a gradational contact with the Bay Point formation, approximately 20-30 feet bgs.

Hydraulic gradients at the Site are relatively flat, and vary from approximately 0.001 to 0.008 ft/ft, with steeper gradients in close proximity to the Convair Lagoon and in the immediate vicinity of some storm drains. It appears that the engineered backfill surrounding the storm drains may provide a preferential pathway for groundwater transport, inducing an artificial groundwater gradient in the immediate vicinity of certain storm drains. Groundwater velocity is estimated to range from approximately 1 to 28 feet per year, based on variations in hydraulic conductivity and gradient. More refined velocities will be calculated for area-specific remediation estimates based on data collected during the RI/FS process.

Results of Soil and Groundwater Sampling

Soil and groundwater sampling were conducted to complete the site characterization prior to beginning the RI/FS work. These data more clearly defined impacts in the following areas:

- **Building 180**: Confirmed and defined the extent of a potential Volatile Organic Compounds (VOCs) and metals source area in the vicinity of the loading dock;
- Northeast of Building 161: Confirmed and defined the extent of a potential tetrachloroethene source area in former outdoor maintenance yard;
- North of former solvent AST near Building 166: Defined the northern extent of VOC and Semi-VOC (SVOC) impacts;
- **Building 120**: Confirmed and defined the southern extent of VOC impacts;
- Building 158: Confirmed the extent of chromium impacts to groundwater; and
- **Building 131/242 Area**: Confirmed and defined the lateral extent of VOC and SVOC impacts to soil and groundwater.

Results of Storm Water Conveyance System Investigation

Onsite and offsite impacts to the storm water conveyance system each were assessed. Based on results collected in existing, run-in, and in-line sediment samples from catch basins contributing to the Convair Lagoon, polychlorinated biphenyls (PCBs) were identified in sediment originating both onsite and offsite. Further data will be collected during the 2005-2006 rainy season and reported in the April 2006 addendum to this Site Characterization Report.

During the 2005 Site Characterization, SWCS sampling activities determined which

branches of the SWCS contained PCBs at concentrations above 1.0 mg/Kg. Impacts were detected in the SWCS on General Dynamics - Lindbergh Field, the Airport, and on Site.

SWCS sampling activities in 2005 also identified PCBs in run-in and in-line samples collected in the following SWCS locations:

- 60-inch line: GD Lindbergh Field, Airport, and on-site;
- 54-inch line: Airport and on-site;
- 30-inch east: on-site and
- 30-inch to San Diego Bay: on-site.

The video logging performed in 2005 was used to assess the condition and integrity of the SWCS.

Resolution of Data Gaps

Specific data gaps in soil and groundwater were identified by the Site Characterization Work Plan. Data gaps in soil and groundwater were addressed by specific sampling conducted during the 2005 site characterization. Sufficient data has been gathered to move forward with the RI/FS process.

Areas of Potential Concern

Fourteen Areas of Potential Concern, were identified for further evaluation in the risk assessment and remedial investigation/feasibility study programs. These areas and the associated constituents are as follows:

- Building 180 loading dock area (metals, VOCs, TPH);
- Outside maintenance yard/tool racks near Building 161 (VOCs);
- Above ground solvent tank near Building 166 (VOCs, SVOCs);
- Building 120 (metals, VOCs, SVOCs, TPH, PCBs);
- South of Building 121 (PCBs);
- Building 222/228 (metals, VOCs, SVOCs, TPH, PCBs, perchlorate);
- Southeast of Building 146 (VOCs);
- Building 158 (metals, VOCs, TPH);
- Test Cell #4/Area D (TPH, VOCs, SVOCs);
- Building 142 Area (VOCs);
- Building 131/242 Area (VOCs, SVOCs, TPH);
- Building 156 (metals, VOCs, TPH, PCBs);
- Explosives Area (PCBs); and
- SWCS (PCBs).

1. INTRODUCTION

The scope of work for this investigation is described in the January 28, 2005 Site Characterization Work Plan (Work Plan) prepared by S.S. Papadopulos and Associates (SSPA) and GeoSyntec Consultants (GeoSyntec) and subsequent amendments dated May 20, July 8, and July 19, 2005 (SSPA, 2005; GeoSyntec and SSPA, 2005a/2005b/2005c). This report presents the results of the site characterization investigation conducted at and in the vicinity of the Airport/Former Teledyne Ryan Aeronautical site located at 2701 North Harbor Drive, San Diego, California (the Site). This report was prepared by GeoSyntec Consultants (GeoSyntec) for TDY Industries, Inc. in response to Cleanup and Abatement Order #R9-2004-0258 (CAO 04-0258). This report was prepared by Mr. Brian Hitchens, P.G., C.Hg., and Mr. Chris Lieder and has been reviewed by Mr. Sam Williams, P.G., C.Hg., in accordance with the peer review policy of the firm.

1.1 <u>Background</u>

On October 4, 2004, the San Diego Regional Water Quality Control Board (RWQCB) issued CAO 04-0258 (RWQCB, 2004) for alleged discharges of waste from the Site. CAO 04-0258 was amended on July 22, 2005 and requires TDY Industries, Inc., TDY Holdings, LLC, and Teledyne Ryan Aeronautical Company to: (1) cleanup and abate discharges, (2) perform site investigation and characterization, (3) perform interim remedial actions, (4) perform a remedial investigation and feasibility study, (5) prepare a remedial action plan, and (6) cleanup and verify abatement completion. This report is being submitted in fulfillment of the Site Investigation and Characterization Report requirement contained in CAO 04-0258. Based on discussions between TDY and the RWQCB, CAO 04-0258 was revised on May 17, 2005 (RWQCB, 2005a) to, among other things, address waste discharge and ownership issues, storm water compliance issues, and electronic reporting requirements. Addendum No. 1 to CAO 04-0258 was issued on July 22, 2005 (RWQCB, 2005b), which established a time schedule for submitting the Site Characterization Report and modified certain findings in the CAO based on TDY's June 13,2005 petition to the State Water Resources Control Board.

1.2 <u>Objectives</u>

The objective of this report is to present the findings of the site characterization investigation performed in accordance with the Site Characterization Work Plan, as amended, and in compliance with requirements established by CAO 04-0258. This includes:

- Field methodologies used for drilling, soil sampling, groundwater sampling, storm water conveyance system (SWCS) sampling, well, and piezometer construction, geophysical surveys, and video surveys;
- A description of activities related to the characterization of the SWCS for both onsite and upgradient investigations;

- Presentation of the hydrogeologic characterization of the Site developed for this report, including the geology, hydrogeologic conditions, direction of local groundwater flow, and potential preferential pathways;
- Identification of all potential sources through a review of historical documents, site operations, and records, as well as more recent site investigations and analytical results;
- Refinement of the existing Conceptual Site Model (CSM) based on data collected during the course of site characterization;
- Characterization of the lateral and vertical extent of impacts to sediment, soil, and groundwater for identified Constituents of Potential Concern (COPCs), and development of a list of Areas of Potential Concern (AOPCs) which will be further evaluated in the Remedial Investigation/Feasibility Study (RI/FS); and
- Evaluate the potential for polychlorinated biphenyls (PCBs) to travel into and through the SWCS and accumulate on the sand cap installed in Convair Lagoon.

1.3 <u>Regulatory Setting</u>

This site characterization report was performed in response to CAO 04-0258 under the oversight of the RWQCB. The California Department of Toxic Substance Control (DTSC) retains jurisdiction over the closure of two waste management units adjacent to Building 130. The San Diego County Department of Environmental Health (DEH) remains the lead agency for the closure of the "Test Cell #4/Area D" underground storage tank (UST).

In May 1998, the RWQCB adopted Waste Discharge Requirements Order 98-21 for the long-term maintenance and monitoring of the sand cap in Convair Lagoon. The monitoring requirements of Order 98-21 include sampling and analysis of sediment from the sand cap and SWCS.

On August 28, 2003, TDY requested termination of their requirements under the Industrial Storm Water General Permit Order No. 97-03-DWQ. TDY made this request because they no longer operate the facility subject to the permit, are no longer a tenant, and do not have access to the Site. The RWQCB denied this request on September 2, 2003 based on "the presence of PCBs in the Site SWCS and the apparent continuing discharges of PCB contaminated sediment to Convair Lagoon and San Diego Bay."

1.4 <u>Site History</u>

The Site is a 44-acre parcel located at 2701 North Harbor Drive in San Diego, California (Figure 1-1). The Site is owned by the San Diego Unified Port District ("Port") and is reportedly occupied at the current time by the Airport. The Site, building numbers, catch basin locations, and surrounding features of interest such as the storm drains that are part of the SWCS

are presented in Figure 1-2. The Site is located adjacent to and south of the Airport runway. The Site was originally tidelands of the San Diego Harbor but was filled with materials dredged from San Diego Harbor from 1936 to 1939 during the creation of Lindberg Field and the U.S. Coast Guard Station. The Site was initially owned by the City of San Diego as part of its airport operations. The Site was leased to the Ryan Aeronautical Company ("Ryan Aeronautical") commencing on or around 1939, and was later leased toTeledyne Industries, Inc., acting by and through its Teledyne Ryan Aeronautical Division ("TRA") commencing in 1984. The westernmost portion of the Site was reportedly used by the City of San Diego for its operations during the early 1940s. The Port subsequently received title for the property from the City of San Diego in the early 1960s. Ryan Aeronautical and TRA manufactured aircraft and military planes for the U.S. Government from 1939 to 1999. The business and the majority of the assets of Ryan Aeronautical were sold in 1999 to Northrop Grumman. Operations at the Site ceased in 1999 and the Port terminated TDY's lease was terminated on November 1, 2002.

A detailed site use history was developed by PES Environmental (PES, 2001). The activities described in the PES report are consistent with large scale manufacturing of aircraft and aeronautical equipment. As such, various chemicals of interest were utilized onsite, including polychlorinated biphenyls (PCBs), volatile organic compounds (VOCs), and metals.

1.4.1 Convair Lagoon History

Initial concerns regarding PCBs in Convair Lagoon were raised in the late 1970s and early 1980s, particularly as part of the State Mussel Watch Program. The RWQCB became involved in investigating potential sources of PCBs loading to Convair Lagoon, and in 1986 issued a staff testimony report [RWQCB, 1986a]. As a result, Cleanup and Abatement Order 86-92 was issued to TRA and sampling and cleaning of storm drains and catch basins was undertaken. CAO 86-92 was amended in Addendums Nos. 1 through 10, each requiring additional sampling, cleanouts or investigations of conditions relating to Convair Lagoon. While data collected over the years indicated that additional parties had contributed to PCBs in Convair Lagoon, including the Port and General Dynamics, only TRA was required by administrative order to investigate its Site and to cap and monitor Convair Lagoon (GeoSyntec, 2002a).

In response to Addendum No. 4 to CAO 86-92 (RWQCB, 1991), TRA designed, constructed and monitors a sand cap to "isolate the contamination in Convair Lagoon from the environment" (RWQCB, 1998). The cap covers approximately 7 acres in Convair Lagoon and covers areas where sediments are present with PCB concentrations equal to or exceeding 4.6 mg/Kg. The cap is approximately 3 feet thick and transitions between the outer berm, the main cap and the shoreline (GeoSyntec, 2002a).

1.4.2 SWCS History

Onsite, portions of the 54-inch storm drain system were cleaned three times between

1986 and 1991 in response to RWQCB requirements relating to CAO 86-92. Sediment was removed from catchbasins by shoveling, followed by vacuuming, power brushing, and cleansing with an alkaline surfactant (GeoSyntec, 2002a). Portions of the 60-inch storm drain has been cleaned out in 1986 (WESTEC, 1986), 1987 (RWQCB, 1987a), and twice in 1989 (ERC, 1989, TRA 1989). Commencing in 1989, the on-site portion of the 30-inch east stormdrain was removed and replaced after detecting high concentrations of PCBs along the line.

On November 18, 1994, Environmental Remediation Management Company completed cleanout of most of the catch basins at the GD Lindbergh Field parcel by both shoveling and then by high pressure steam cleaning (Carpenter, 1994).

On March 6, 1997, just prior to the cap construction in Convair Lagoon, but following TRA's cleanouts of the lines beneath the Site, PCBs were detected above 4.6 mg/Kg by TRA in the storm drains upstream of TRA during a joint inspection by General Dynamics and the Port of the SWCS beneath the GD Lindbergh Field site (Hicks, 1997).

The Port then required General Dynamics, as a tenant at the GD Lindbergh Field site, to undertake clean out work. Records from General Dynamics contractor, Brown & Caldwell, reflect that the 60-inch main storm water line beneath the GD Lindbergh Field Site was cleaned out by Environmental Remediation Management of San Diego in June and July 1997. The storm drain cleaning was reportedly done by wet vacuuming. An inflatable bladder was used at the downstream end of the storm water pipe to hold out tidal flow. After daily evacuation of infiltrated water, sediment was vacuumed out and stockpiled (Brown and Caldwell, 1997).

Additional sampling of sediments in July 1997 by General Dynamics in portions of their SWCS that flow southeasterly and not into Convair Lagoon also detected PCBs and metals at hazardous waste concentrations. These metals included antimony and zinc in addition to the cadmium, chromium, and lead noted in the Convair Lagoon SWCS (Brown and Caldwell, 1997).

TRA cleaned the entire onsite portion of the 60-inch storm drain in 1997 by flushing and jetting the sediment into Convair Lagoon prior to the installation of the sand cap, as described by Don Ostrand of Ocean Blue Environmental (personal communication, October, 2005).

When the Port undertook further sampling of the 60-inch line in 2000, PCBs were again detected above 4.6 mg/Kg in sediments upstream of the Site on the Airport property. [Brown and Caldwell, 2002].

General Dynamics again initiated SWCS sampling and cleanout activities in 2003 that resulted in a removal action which was implemented from October 2004 to January 7, 2005 (Brown and Caldwell, 2005). Materials removed from the SWCS were categorized as hazardous waste for PCBs and heavy metals.

1.5 <u>Site Vicinity</u>

The Site was one of several aircraft manufacturing facilities historically located in the area along with other industrial, municipal, and/or defense related facilities. The SWCS serving the Site and surrounding areas is also discussed in this characterization report. Figure 1-3 identifies some of the facilities in the surrounding area that are of interest, as described in the following paragraphs.

General Dynamics manufactured aircraft and weapon systems in two nearby sites referred to as the former General Dynamics Harbor Drive Plant ("GD Harbor Drive") and the former General Dynamics Lindbergh Field Plant ("GD Lindbergh Field"). Operations at these sites date back to the 1940s. In addition, there is existing information in agency files concerning chemical usage and releases at these facilities (Brown and Caldwell, 1994). GD Lindbergh Field is located upgradient of the Site on the 60-inch storm drain which flows to Convair Lagoon. GD Harbor Drive is located southwest of the Site. Storm water from the Harbor Drive site discharges into the East Basin, and subsequently flows past the mouth of Convair Lagoon.

Similarly, a portion of former Convair Plant 2, located to the north of the San Diego Airport, is drained by a SWCS that flows south to Convair Lagoon. This facility's operations were related to the military aerospace industry. Convair Plant 2 was also known as Air Force Plant 19 suggesting that at one time the Department of Defense operated the site. Reportedly at one time the Convair facility was also owned and operated by General Dynamics. It is currently owned and operated by Lockheed Martin as the Lockheed Martin SPAWAR facility. A 1987 letter in agency files from a concerned citizen noted the history of PCB usage and spills at this facility as the issue of PCBs in Convair Lagoon sediments was first being regulated by the Regional Board (Sallaz, 1987).

The area immediately west of the Site now houses the San Diego Airport Commuter Terminal, small aircraft parking, maintenance and service areas, a fuel dispensing terminal for aircraft fuel trucks, and large aircraft washing facilities, along with flight operations centers and food production facilities for passenger aircraft. Some of this area is drained by a tributary to the 54-inch SWCS line to Convair Lagoon and some is drained by a tributary to a 48-inch SWCS line that drains to the west of Convair Lagoon into the East Basin. Historical aerial photos from the 1940s suggest that this area may have been initially used as military barracks or some other form of high density housing unrelated to the Site. This area sits within the saline waters of the reclaimed shoreline, and formerly housed large USTs for jet fuel. The jet fuel operation caused large fuel releases over time, and these releases have impacted the area adjacent to the 48-inch storm drain that connects to the East Harbor Island Basin (East Basin) (AMEC, 2002).

The San Diego Airport runway is located immediately north of the Site. The air traffic control tower was moved to the area northwest of the airfield along the 54-inch storm drain in the 1980s. In 1995 to 1996 the aircraft fuel storage was moved to an above ground

storage facility in this location with a buried fuel supply pipeline running to a distribution facility near the Commuter Terminal. Investigations of theses areas adjacent to the 54-inch line and its tributaries have found VOC contamination (Leighton and Associates, 1994). The Port has not tested these areas for PCBs nor documented their activities in the areas tributary to the 54-inch line (Brown and Caldwell, 2002).

1.6 <u>Report Organization</u>

The remainder of the report is organized as follows:

- Section 2, "Previous Investigations" describes potential source areas identified through previous investigations, historical site data, and historical research;
- Section 3, "Scope of 2005 Site Characterization" presents COPC and background analysis, identified data gaps, and field procedures and methods employed during the execution of site investigation activities;
- Section 4, "Hydrogeologic Characterization" presents the subsurface geology, hydrogeologic characteristics, and potential preferential pathways present at the site;
- Section 5, "Summary of 2005 Soil and Groundwater Sampling" presents the data gathered during the 2005 site characterization and an analysis of how this data fills the data gaps from previous studies identified in Section 3.
- Section 6, "Storm Water Conveyance System Characterization" describes the physical extent, and disposition of the storm water conveyance system on and upgradient to the Site;
- Section 7, "Extent of Waste Constituent Characterization" presents a summary of COPCs, an analysis of the comparability of 2003 2005 data sets, the extent of impacts of each class of COPCs as applied to soil, groundwater, sediment, and the extent of possible Non-Aqueous Phase Liquids (NAPL);
- Section 8, "Areas of Potential Concern" presents a summary of areas with constituents of potential concern which have been identified above background levels.
- Section 9, "Updated Conceptual Site Model" presents a site model which identifies sources, pathways, and receptors for potential migration of constituents of potential concern (COPCs);
- Section 10, "Summary" presents data gathered through the site investigation and the resulting identified Areas of Potential Concern;
- Section 11, "References" presents a list of the citations referenced in this report.

All supporting data and documentation generated during the Site Characterization are contained in Appendices A through I.

2. **PREVIOUS INVESTIGATIONS**

A number of environmental investigations of potential sources of waste constituent discharges to the soil and groundwater at the Site have been conducted over the years. Those conducted through 2000 are summarized in the PES Report (PES, 2001). The PES Report was based on reviews of available site historical information, site environmental documents, regulatory agency files, site reconnaissance, and an interview of a former employee. A comprehensive summary of building use, historical activities, and potential sources is presented in Table 2-1. All potential sources for VOCs, SVOCs, metals, and PCBs have been identified on Figures 2-1 through 2-4, respectively. Figure 2-4 also includes potential source information contained in the GeoSyntec PCB Report (GeoSyntec, 2002a). A combined map showing all classes of waste constituents is included as Figure 2-5.

2.1 UST Closure and No Further Action Determinations

The following areas have been previously investigated and remedial actions have been taken, resulting in no further action letters from the San Diego County Department of Environment Health (DEH).

Building 142

A 2,000 gallon UST used for storage of gasoline was removed from the southeast corner of Building 142 in 1990. Thirteen wells were installed to characterize the extent of impacts to groundwater. Of these 13 wells, 10 were proposed for abandonment and a no-further action letter was granted by the DEH on October 23, 2000 (PES, 2001). These ten wells are among those which have been proposed for abandonment, which is discussed in more detail in Section 4.6.

Area A

Area A is located on the northern property boundary east of Building 115 and North of Building 140. Three USTs containing aviation fuel were located in this area, until their removal in 1986 (GTI, 1992a). The DEH issued a "no further action" letter for Area A in January 1993 (PES, 2001).

Area B

Area B is located south of Building 149. Two USTs containing diesel fuel were located in this area until their removal in 1986 (GTI, 1992b). The DEH issued a "no further action" letter for Area B in September 1992 (PES, 2001).

Area C

Area C is located west of Building 157 in the northwest corner of the Site. Two USTs containing kerosene were located in this area until their removal in 1986 (GTI, 1992c).

The DEH issued a "no further action letter" for Area C in November 1992 (PES, 2001).

UST No. 19

UST No. 19 contained diesel fuel and was located on the south side of Building 156, approximately 100 feet from the west end. On August 29, 1994, San Diego DEH wrote a letter confirming the completion of site investigation and remedial action, noting that approximately 260 pounds of diesel fuel remained in the soil (PES, 2001).

UST No. 7

UST No. 7 contained diesel fuel and was located south of Building 149 until it was removed in 1992 (IT, 1992). The DEH issued a "no further action" letter on September 18, 1992 (PES, 2001).

Chemical Mill Masking Tank Near Building 125

One UST storing chemical mill masking fluid (PCE, toluene, 1,1,2,2-tetrachloroethane, xylenes) was located next to Building 125. The tank was filled with concrete and inspected by the DEH. No further action was required (PES, 2001).

Tank #10

Tank #10 located in Building 102 was removed by the Port's consultant, Haley and Aldrich (H&A) in June 2003 (H&A, 2004). Tank #10 previously contained diesel fuel until it was emptied in 1989. The DEH reportedly closed the matter by letter on August 11, 2004 (SSPA, 2005).

2.2 <u>PES Report</u>

In January 2001, PES Environmental prepared an environmental assessment report (PES, 2001) which documented environmental conditions at the Site through a review of agency files, Site-related environmental documents, historical records, previously prepared and environmental documents. PES also performed site reconnaissance and conducted an employee interview with Mr. Wayne Hopkins, a former TRA employee. From this research, a detailed building-by-building site history was developed which combined site and agency records of historic use, anecdotal evidence of operational practices, and observation of site conditions. This report was included as Volume 3 of the Site Characterization Work Plan (SSPA, 2005).

2.3 <u>GeoSyntec 2002 Site Investigation</u>

A letter from the Regional Board dated November 8, 2001 required TDY to perform a site assessment of "chromic acid contamination in the vicinity of Building 158" and "chlorinated hydrocarbon contamination in the vicinity of Building 120". GeoSyntec Consultants prepared a work plan, performed site assessment activities and prepared their *Report of Site Assessment*

Activities (GeoSyntec 2002b). The report, prepared for TDY, documented the results of the site assessment activities and recommended additional delineation activities, pending concurrence from the Regional Board.

2.4 <u>GeoSyntec 2002 PCB Investigation</u>

A letter from the Regional Board dated November 7, 2001 required TDY to provide current and historical information related to PCBs at the Site. GeoSyntec Consultants prepared a work plan, performed site assessment activities, and prepare a PCB Investigation Technical Report (GeoSyntec 2002a). The report, prepared for TDY, document the results of historical research concerning the use, storage and disposal of PCBs at the Site, sampling and analysis of storm drains, and a tidal influence investigation to determine whether sediments contained in the storm drain system beneath the Site could be transported upgradient and beyond the Site property boundary due to tidal action.

2.5 Haley & Aldrich 2003 Site Assessment

After TDY's lease was terminated by the Port, the Port retained H&A to conduct an additional site characterization, including former employee interviews and a site-wide soil, soil gas, and groundwater investigation in 2003 (H&A, 2004).

2.6 <u>Ongoing Investigations</u>

Shaw Environmental prepared a report entitled *Site Evaluation and Request for Closure, Area D* (Shaw, 2003). In a letter dated May 12, 2004, the DEH requested additional information. TDY is currently working with the DEH to close this area.

3. SCOPE OF 2005 SITE CHARACTERIZATION

During 2005, an extensive investigation of the Site was performed. This investigation consisted of: evaluating soil and groundwater quality data to identify data gaps; performing a statistical analysis of analytical data to calculate background concentrations of metals and cyanide; identifying constituents of potential concern based on historical site use and the prevalence of constituents detected in soil and groundwater. Based on this analysis of existing data, GeoSyntec performed soil, sediment, and groundwater sampling to complete the characterization of the nature and extent of residual constituents at the Site and surrounding properties.

3.1 <u>Identification of Data Gaps</u>

SSPA and GeoSyntec prepared the Site Characterization Work Plan wherein the data needed to complete the site characterization and delineation of potential sources (e.g. data gaps) were identified. Based on comments received from the RWQCB and subsequent amendments to the Site Characterization Work Plan, the following data gaps in regards to the chemical quality of soil and groundwater at the Site were identified:

- The downgradient extent of VOCs associated with historical operations in Building 120;
- The upgradient extent of VOCs associated with the former above ground solvent storage tank located west of Building 166;
- The confirmation and extent of an anomalous detection of PCE to the northeast of Building 161;
- The confirmation and extent of an anomalous detection of vinyl chloride detected in groundwater to the south of Building 181;
- The extent of VOCs detected in soil and groundwater to the vicinity of Buildings 131 and 242; and
- The current hydrogeologic conditions and chemical quality of groundwater at the Site.

Soil and groundwater sampling was performed at each of these locations as described herein to fill the respective data gaps listed above.

In regards to the SWCS that services the Site and surrounding properties, the following data gaps were identified:

• Determine which branches of the SWCS contribute PCBs to the SWCS and Convair Lagoon;

- The source of PCBs being contributed to each impacted branch of the SWCS; and
- The condition and integrity of the SWCS.

Run-in, existing, and in-line sampling of sediment was conducted on the SWCS in an effort to fill these data gaps. Video logging of the SWCS was also performed to document the current condition and integrity of the SWCS. Because of access restrictions during the rainy season, not all of the data described in the Work Plan was collected in time to be included in this report. As discussed and agreed upon with the RWQCB, the remaining data will be included in a subsequent report, which will be submitted in April 2006.

3.2 <u>Constituents of Potential Concern</u>

This section summarizes the constituents of potential concern (COPCs) for the Port/TRA property. COPCs are defined as constituents detected onsite more than once at concentrations in excess of the detection limit or site background, as appropriate. The COPCs identified will be evaluated in the Remedial Investigation/Feasibility Study (RI/FS).

To identify the COPCs, all soil and groundwater analytical data generated during the following investigations were compiled into a site-specific database:

- GeoSyntec PCB Investigation Technical Report (GeoSyntec, 2002a);
- GeoSyntec Site Assessment Activities report (GeoSyntec 2002b);
- H&A Site-Wide Investigation (H&A, 2004 (Appendix H)); and
- Soil and groundwater samples collected by GeoSyntec during the 2005 site investigation and summarized herein.

GeoSyntec evaluated all constituents listed in the database which contained results for 1,289 soil samples and 267 groundwater samples. It was noted that numerous constituents were detected only once. In the identification of COPCs, constituents detected only once were eliminated because of their lack of prevalence. Further, metals that were not detected at concentrations exceeding their respective background concentration (Section 3.3) were also eliminated.

For each COPC in soil and groundwater, information regarding the number of analyses, number of detections, and maximum concentration is presented in Table 3-1. The identified COPCs consisted of 55 volatile organic compounds (VOCs), 25 semi-VOCs (SVOCs), 21 metals and cyanides, 6 polychlorinated biphenyls (PCBs), perchlorate, and total petroleum hydrocarbons (TPH) (Table 3-1).

To plot the analysis of the nature and extent of COPCs in soil and groundwater at the

Site, a subset of the metals, VOCs and SVOCs was selected to represent trends in areas where COPCs have been detected. The remaining volatile and semi-volatile COPCs not individually plotted are captured in the total VOCs, total SVOCs, or TPH illustrations.

3.3 Background Concentrations of Metals and Cyanide in Soil

This section provides a summary of the analysis of background concentrations of metals and cyanide in soil and groundwater at the Site. Because metals and cyanide occur naturally in the environment, an evaluation of background concentrations is necessary to determine and delineate the nature and extent of potential metals impacts due to historical use.

3.3.1 Methodology for Background Analysis

SSPA performed a statistical analysis of the metals and cyanide data using guidance as specified by the California Department of Toxic Substances Control (DTSC, 1997). This analysis was used to develop site-specific background levels for metals and cyanide in soil and groundwater. The database used in this analysis was generated by H&A and provided to TDY Industries, Inc. The database reportedly includes the data collected by H&A during their assessment of the Site which is summarized in their May 2004 report (H&A, 2004). No independent confirmation of the accuracy or completeness of the H&A database was performed in the course of the background metals analysis.

For each constituent in each of the two media, the evaluation methodology consisted of examining the type of data distribution (e.g. normal, log-normal, or indeterminate) and determining the presence of outliers, calculating summary statistics, and plotting cumulative probability diagrams (Appendix A). Using the data distribution diagrams, each constituent plot was evaluated as a normal and a log-normal population to determine which distribution best fit the data. The diagrams were then used to determine if the dataset for that constituent represented a single population or whether two or more populations were evident.

For single population datasets, the entire dataset for that constituent was considered to be representative of background. In these instances, the maximum observed concentration was taken to be the maximum background concentration. For multiple population datasets, the population nearest the origin was taken as the background concentration. The maximum background concentration was estimated from the point at the break in slope on the cumulative probability plot. For these constituents, an arrow has been added to the point determined to represent the maximum background concentration.

3.3.2 Results of Background Analysis

Based on the background analysis, the maximum background concentration for each metal and cyanide, where possible, in soil and groundwater was calculated (Table 3-2). For soil analytical data, the entire dataset for arsenic, barium, and vanadium was within the maximum

7

background concentration. Further, beryllium, silver, thallium, and cyanide, were not detected in enough samples to make a statistical determination as to the background concentrations of these constituents in soil.

For groundwater analytical data, the entire dataset for barium was within the maximum background concentration. Further, antimony, arsenic, beryllium, cadmium, copper, lead, mercury, silver, thallium, and cyanide were not detected in enough samples to statistically calculate the background concentrations of these constituents in groundwater.

Calculated maximum background concentrations in soil were compared to literature values for background concentration of metals in California and the Western United States (Table 3-3). Site–specific maximum background concentrations for arsenic, barium, chromium, cobalt, copper, lead, molybdenum, nickel, vanadium, and zinc are less than literature values. In contrast, site-specific background concentration of antimony, cadmium, and selenium are greater than literature values.

3.4 Final Work Plan Scope and Field Methodologies

The following section describes the field activities and methods employed during the site characterization. The sampling methods and procedures used during field activities are described in detail in the Site Characterization Work Plan (SSPA and GeoSyntec, 2005b), as amended, and were performed in general accordance with the Department of Environmental Health Site Assessment and Mitigation (SAM) Manual. All investigative derived wastes generated during the course of site characterization activities were properly characterized and disposed of under waste manifests. Copies of the waste manifests are included as Appendix B.

3.4.1 Monitor Well Installation

The necessary permits were obtained from the DEH prior to commencing field activities. Nine groundwater monitor wells (B120-MW-4, B120-MW-5, B120-MW-6, B131-MW-1, B131-MW-2, B131-MW-3, B131-MW-4, B131-MW-5, and B180-MW-1) were installed to evaluate potential groundwater impacts from historical operations at the Site. Each monitor well was installed within an 8-inch diameter soil boring advanced to approximately 15 feet below ground surface (bgs) using hollow stem auger (HSA) drilling methods. The wells were constructed using 2-inch, schedule 40 PVC well casing with 10 feet of 0.010-inch factory-slotted well screen. A filter pack consisting of #3 Monterey sand was installed from the bottom of the boring to approximately 1 foot above the top of the screen in each well. A transition seal consisting of approximately 1 foot of bentonite chips was placed above the filter pack. Distilled water was added and the bentonite chips were allowed to hydrate for approximately 20 minutes. A concrete surface seal was placed in the upper 3 feet of annular space in each well and finished with flush-mounted 12-inch well vault set in a 3-foot diameter concrete pad. Well construction details are summarized in Table 3-4 and presented on the boring logs in Appendix C.

3.4.1.1 Well Development

The new monitor wells were developed by surging each well with a surge block for 20 minutes followed by purging with a WaTerra® Footvalve to remove sediment that had accumulated at bottom of the well during surging. A 2-inch pump was then set 1 foot above the bottom of casing. The well was purged of 3 borehole volumes plus the volume of any water that was added during well installation. Field parameters (pH, temperature, turbidity, and conductivity) were monitored during development to verify stabilization of water quality parameters. Well development logs are included in Appendix D. Well locations are shown on Figure 3-2.

3.4.2 Hydropunch Sampling

Forty-one direct-push borings were advanced at the Site. Permits were obtained from the DEH prior to commencing field activities. Groundwater samples were collected from each boring at approximately 2-3 feet below the groundwater table. Groundwater samples were collected from temporary PVC casing using either disposable bailers (for VOCs, and TPH) or a peristaltic pump (SVOCs and metals) with disposable tubing. Prior to sampling, depth to groundwater was measured. The locations and the constituents that were sampled at each location are presented in Table 3-5 and Figure 3-1. The procedures and sampling methods for hydropunch sampling are described in detail in the work plan. Hydropunch locations are shown on Figure 3-2.

3.4.3 Soil Sampling

Fifty soil borings were advanced and field screened with Sudan Red and a photo ionization detector (PID). Soil samples were collected from the same borings as described in Sections 1.2 and 2.2. Samples were then collected from acetate sleeved cores (direct-push borings) or a split spoon sampler (hollow stem auger drilling). The samples were collected from the capillary fringe approximately 6-8 feet below ground surface. The locations and constituents that were sampled at each location are presented in Table 3-5 and Figure 3-1.

3.4.4 Groundwater Sampling

Groundwater samples were collected from 9 newly installed monitor wells and additional 21 existing monitor wells at the Site (Figure 3-1) Water level was measured in all existing wells prior to sampling using an interface probe to assess the presence of non-aqueous phase liquid (NAPL) (Table 3-6). Groundwater samples were collected using low flow sampling procedure with a bladder pump set in the middle of the water column. The well was then purged at a low rate to minimize draw-down within the well. During purging, the water level, pumping rate, cumulative withdrawal, and field indicator parameters (i.e., DO, turbidity, Eh (ORP), specific conductance, pH, and temperature) were measured and recorded. If excessive draw-

down was observed, wells were then sampled using the slow recharging well procedure. Samples were collected when field indicator parameters had stabilized. The names of the wells and the constituents that were analyzed at each location are presented in Table 3-5 and Figure 3-2.

3.4.5 Storm Water Conveyance System Sampling

Existing sediment, run-in sediment, and in-line sediment samples were collected from the SWCS. Results of this sampling are discussed in Section 7.2.

3.4.5.1 Existing Sediment Sampling

Existing sediment refers to sediment that is present within the catch basin or directly within the storm drain. Samples were collected using a lab-cleaned polyurethane bottle or stainless steel spoon which was attached to a section of PVC pipe to eliminate the need for confined space entry. The sediment was then transferred to a stainless steel bowl and homogenized. The sample then was placed into an 8oz glass sample jar with a stainless steel spoon. The locations and constituents analyzed are presented in Table 3-5 and Figure 3-3.

3.4.5.2 Run-In Sediment Sampling

Run-in sediment consists of sediment trapped on filter fabric or in the immediate vicinity of a storm drain inlet, such that it is characteristic of sediment flowing to a specific catch basin. Filter fabric existed in many onsite catch basins. These devices trap suspended sediment that would enter the catch basin during a rain event. The filter fabric was removed and the sediment retained on the filter fabric was transferred from the fabric into a stainless steel bowl using a stainless steel spoon. The sample was then placed into an 8-oz glass sample jar with a Teflon liner. At locations where insufficient sample was present on the filter fabric or where no fabric was installed, samples were collected from sediment which had accumulated around the edge of the grate. The locations of the catch basins and constituents sampled are presented in Table 3-5 and Figure 3-3.

3.4.5.3 In-Line Sediment Sampling

In-line sediment consists of sediment that is suspended in water flowing through the SWCS. In-line sediment samples were collected using a 50-micron mesh filter socks mounted in 3-foot sections of slotted 4-inch PVC, which were in turn installed in select offsite storm drains. The in-line sampling devices were removed from the storm drains and the sediment transferred from the filter sock using a stainless steel spoon into a stainless steel bowl. The sample was homogenized and placed into an 8-oz glass sample jar with a Teflon liner. Sample locations and the constituents that were analyzed are presented in Table 3-5 and Figure 3-3.

3.4.5.4 Video-Assisted Sediment Sampling

A rover-mounted video camera was used to survey selected lines across each of the parcels that contribute flow to the SWCS or indirectly to Convair Lagoon. This survey identified areas of significant sediment accumulation, locations of tributary connections, the condition of the line, and prospective subsequent sampling locations of interest. Remote sampling was performed, when possible, by a sampling cup attached to the camera rover. Specialized equipment, including hoist, ropes, and cables were provided by the subcontractor to lower the rover into the SWCS and subsequently remove it. Sample locations and the constituents that were analyzed are presented in Table 3-5 and Figure 3-3.

3.4.5.5 Invert Elevation Survey Methods

Invert elevations of the influent and effluent points inside select catch basins were surveyed using a Trimble RTK GPS and an Optical Station with a survey rod and prism in the following manner. The catch basin covers were removed and a telescoping survey rod was used to measure the invert to a point at ground surface. Then the point at ground surface was surveyed with a survey rod and prism and an Optical Station. The locations where the Optical Station was set were then surveyed with a Trimble RTK GPS unit to sub-centimeter accuracy.

3.4.6 Geophysical Surveys

Underground Service Alert (USA) was notified at least 48-hours prior to initiation of subsurface activities. Geophysical surveys were performed in the areas to be investigated at the Site to identify the presence of previously unidentified buried utilities or other obstructions. Utilities or other obstructions discovered during geophysical surveys were marked out on the ground surface with spray paint. Geophysical survey reports are included in Appendix E.

3.4.7 Monitor Well and Hydropunch Location Surveys

Monitor well and hydropunch locations were surveyed using a Trimble RTK GPS Unit with sub-inch accuracy and an optical station with a survey rod and prism. The survey coordinate system used was State Plane 1983 Zone 6, North American Datum 1983 (Conus). Coordinates and elevations were recorded in US survey feet. Survey results are included in Appendix E.

3.4.8 Convair Lagoon Sediment Sampling

Bottom sediments were collected on 11 August 2005 from the surface of the sand cap located in Convair Lagoon. The samples were collected by a field crew in SCUBA gear. The samples were collected and placed in 8-oz sample jars with a Teflon liner.

Z

3.4.9 Tidal Influx Sampling

Water samples were collected during incoming tides to evaluate potential contributions to the SCWS from San Diego Harbor. Samples were collected in 1 liter polyurethane bottles using a peristaltic pump with the intake set approximately 1 foot above the base of the inlet. The samples were then analyzed for Total Suspended Solids (TSS) to evaluate the potential of the incoming tides to transport sediment into the SWCS.

3.4.10 Laboratory Analytical Methods

All analyses were performed by Colombia Analytical, using EPA-approved methods or other recognized standard methods. Method references for laboratory analyses that were performed were provided in the Site Characterization Work Plan (SSPA, 2005) and are documented here in Table 3-7. Soil samples were analyzed for volatile organic compounds (VOCs), total petroleum hydrocarbon (TPH), grain size, and total organic carbon (TOC). Groundwater samples were analyzed for VOCs, semi-volatile organic compounds (SVOCs), TPH, Title-22 metals, and hexavalent chromium. Sediment samples were analyzed for SVOCs, metals, and PCBs.

3.4.11 Geotracker Reporting

The groundwater monitoring data, laboratory data, and a final copy of this Site Characterization Report will be electronically submitted to and confirmed by the State Water Board's internet-accessible database system, Geotracker. This information will be submitted to the Geotracker database in accordance with Chapter 30, Division 3, Titles 23 & 27 of the California Code of Regulations.

4. HYDROGEOLOGIC CHARACTERIZATION

4.1 <u>Subsurface Geology</u>

The Site was originally tidelands of the San Diego Harbor. The area was filled with material dredged from San Diego Harbor from 1936 to 1939 during the creation of Lindbergh Field and the U.S. Coast Guard Station. Field investigations indicate the upper 8-10 feet of soil at the Site consists of bay fill, primarily composed of mixed silty sand and clay with interbedded shell hash. Below the fill material is fine sands, silts, and interbedded clays of the shallow marine Bay Point Formation. Over 300 soil borings have been advanced at the site ranging in depth from 6 to 60 feet. The transition from bay mud to the Bay Point Formation is gradational beginning at approximately 30 feet bgs (H&A, 2004). Cross sections of the Site are depicted in Figure 4-1 and Figure 4-2.

4.2 <u>Hydrogeologic Conditions</u>

The Site is located within the coastal plain section of San Diego Drainage Province, approximately 250 feet north of Convair Lagoon and the San Diego Bay. The San Diego Basin Plan (RWQCB, 1994) identifies the site location as a portion of the Lindbergh Hydrologic Sub Area (8.21) of the San Diego Mesa Hydrologic Area within the Pueblo San Diego Hydrologic Unit. Groundwater in the Lindbergh Hydrologic Sub Area is designated as non-beneficial use and has been exempted from municipal drinking water designation by the RWQCB. Groundwater at the Site occurs at approximately 5 to 8 feet bgs. Groundwater elevations fluctuate diurnally with tidal variations in the San Diego Bay.

The surface water of the San Diego Bay has been designated for many beneficial uses including industrial service supply, navigation, contact and non-contact recreation, fishing, and wildlife habitat. Presently, surface runoff from the Site is directed through the SWCS discussed in detail in Section 6.

Physical properties of the Site soils were characterized during 2003 (H&A, 2004). Samples were collected from 3 to 55 feet below grade with effective porosity ranging from 18% and 48% with an average of approximately 32% effective porosity. Saturated hydraulic conductivity data was not available in the Port's 2003 investigation due to sidewall leakages and sample disturbance. A range of 3×10^{-4} to 3×10^{-2} cm/sec has been estimated for the purposes of the site characterization study based on average published values of hydraulic conductivity for silty sand, as observed in onsite borings (Heath, 1983).

4.3 Existing Monitor Well Distribution

A total of 50 currently existing monitor wells have been installed at the Site during the course of numerous investigations (Figure 3-2). Many of these wells are associated with tank closures or other area investigations which have been resolved by the lead agencies.

Approximately 40 of these wells are located in the western portion of the site, clustered around Area D, Building 142, Building 158, and Building 242. The remaining 10 wells are located in the vicinity of Buildings 102, 120, 121, and 180. Wells generally range in depth between 5 and 18 feet, with the exception of a deep well adjacent to TC4WNC which extends to 35 feet bgs.

4.4 <u>Potential Preferential Pathways</u>

The primary pathway for groundwater migration on-site is through coarser-grained soils towards the San Diego Bay. Engineered fill placed around storm drains, sanitary sewers, and utility corridors that intercept the groundwater table may serve as localized preferential migration pathways. These preferential pathways could influence the pattern of groundwater flow, with groundwater on a large scale migrating from north to south towards the bay, but on a small scale migrating toward nearby storm drain and utility corridors.

4.5 <u>Groundwater Flow Characterization</u>

Two rounds of groundwater elevation data were collected across the Site on July 27, 2005 to evaluate groundwater gradient and flow direction and, potential tidal influence. Groundwater elevations were collected by two teams and all elevations were recorded within 3.25 hours during a period of both a high and low tide. Variations in groundwater elevations between the two events ranged from 0 to 3.04 feet. Generally wells located closer to the bay and near utility/storm drain corridors experienced the greatest influence from tidal variations. However, only wells BLD120-MW4 and BLD120-MW5 had variations of greater than 1 foot. This anomalously high water fluctuation has not yet been confirmed. All other wells showed less than 0.25 foot diurnal fluctuation with an average fluctuation of 0.06 feet.

Groundwater generally flows from north to south at a gradient of between 0.001 and 0.008 ft/ft. The gradient appears to increase adjacent to storm drains and the Convair Lagoon (Figure 4-3). In the Building 142 area, groundwater appears to preferentially flow towards storm drain, sewer, and local utility corridors. Groundwater velocity onsite is estimated to range between 1 and 28 feet per year based on a possible range of hydraulic conductivity between 3.0×10^{-4} to 3.0×10^{-2} cm/sec, a gradient ranging between 0.001 ft/ft and 0.008 ft/ft, and an estimated effective porosity of 32%. Groundwater velocities may vary in the immediate vicinity of utility corridors due to variances in the hydraulic conductivity and porosity of the engineered fill surrounding the utility lines.

4.6 <u>Proposed Monitor Well Abandonment Plan</u>

Of the 50 monitor wells presently at the Site, 18 are recommended for abandonment. Most of these wells are associated with former underground storage tanks or other area investigations for which the associated cases have been closed. These wells are also in poor repair and are no longer useful for the purposes of characterizing or monitoring groundwater

conditions at the Site. Because these wells are no longer useful, and equivalent groundwater data can be collected from other groundwater monitor wells in equal or better condition, a monitor well abandonment plan has been developed (Table 4-1).

5. SUMMARY OF 2005 SOIL AND GROUNDWATER SAMPLING

Data gaps identified in the Site Characterization Work Plan (SSPA and GeoSyntec, 2005b), as amended and as outlined in Section 3, were addressed by the soil and groundwater sampling conducted in 2005.

5.1 <u>VOCs Downgradient of Building 120</u>

Monitor wells B120-MW4, B120-MW5, and B120-MW6 were installed downgradient of Building 120. Groundwater samples collected from these wells confirmed earlier grab samples collected in 2003, and indicate that VOC impacts are mitigated to near non-detect levels at the southern property boundary. Soil screening indicates no NAPL in this area and soils laboratory analysis from these borings also had no detectable TPH impacts. Data from these monitor wells address this previous data gap and aid in defining the extent of VOCs downgradient of Building 120.

5.2 Upgradient Extent of VOCs Associated with AST West of Building 166

A groundwater grab sample was collected immediately north of the property boundary on the north side of the AST west of Building 166. The results show low concentrations of chlorinated VOCs (less than 10 ug/L) and SVOCs. Soil screening indicates no NAPL in this area. Data from these monitor wells address this previous data gap and aid in defining the extent of VOCs northwest of Building 166.

5.3 <u>PCE Northeast of Building 161</u>

A temporary groundwater sample collected to the northeast of Building 161 in 2003 indicated elevated PCE concentrations in groundwater. Five groundwater grab samples collected in 2005 confirmed the previous detection of elevated VOCs in this vicinity. A soil sample from the capillary fringe contained chlorinated VOCs (PCE, TCE, and cis-1,2-DCE), but no detectable TPH impacts. Soil screening indicates no NAPL in this area. A sixth groundwater grab sample was collected along the property boundary northeast of the VOC detection. This grab sample confirmed that VOC concentrations are decreasing at the property boundary and bound area of impacted groundwater at Building 120 to the northeast. Data from these monitor wells address this previous data gap and aid in defining the extent of VOCs northeast of Building 161.

5.4 Extent of Anomalous Vinyl Chloride and Metals Detected South of Building 180

In 2003, elevated concentrations of vinyl chloride and metals were detected in a grab sample collected from the loading dock area south of Building 180. In 2005, elevated VOCs were confirmed; however, concentrations were lower than the 2003 sample. A monitor well (B180-MW1) was installed downgradient of this area. Groundwater samples collected from

B180-MW1 contained no VOCs above laboratory reporting limits and no metals above sitespecific background concentrations. Soil screening indicates no NAPL in this area. Data from these monitor wells address this previous data gap and aid in defining the extent of VOCs downgradient of Building 180.

5.5 Extent of VOCs in the Building 131/242 Area

Twenty-five groundwater grab samples were collected and five monitor wells were installed in this area to define and delineate the extent of impacts to groundwater and soil in this vicinity. Soil screening indicates no NAPL within the capillary fringe of the locations sampled; however, groundwater concentrations indicate the potential for DNAPL at some locations. Soils and groundwater data collected from the most downgradient sample points serve to define the extent of impacts. Data from these monitor wells address this previous data gap and aid in defining the extent of VOCs downgradient of the Building 131/242 Area; however, additional vertical definition may be required for evaluation of RI/FS alternatives.

5.6 <u>Current Hydrogeologic Conditions and Chemical Quality of Groundwater</u>

Water levels were collected from all existing groundwater wells during a period of both high and low tide. The low tide data were used to create a map of groundwater elevations and flow direction (Figure 4-3). A subset of the existing monitor wells was sampled to confirm the current chemical quality of groundwater. These current data correlate well with historic site conditions and previous grab groundwater samples, described in more detail in Section 7. Data from these monitor wells address this previous data gap and aid in defining the chemical quality of groundwater across the Site.

Section 6

6. STORM WATER CONVEYANCE SYSTEM CHARACTERIZATION

6.1 Description of SWCS Beneath the Site and Into Convair Lagoon

Six storm water outfalls discharge into Convair Lagoon (Figure 6-1). Two of the outfalls are from lines associated with the former GD Harbor Drive facility. The GD Harbor Drive facility reportedly used PCBs in its operations. Of the remaining four outfalls, two are from storm drains that originate from other sites and transect the Site, and two are from storm drains that originate on the Site.

Moving from west to east around Convair Lagoon the six storm drains and associated outfalls are:

- <u>15-inch Storm Drain</u>: This storm drain collects runoff from what is now a parking area. Historically this storm drain drained a portion of the former GD Harbor Drive site.
- <u>**18-inch Storm Drain**</u>: This storm drain collects runoff from what is now a parking area. Historically this storm drain drained a portion of the former GD Harbor Drive site.
- <u>54-inch Storm Drain</u>: This storm drain is a continuation of a storm drain from the San Diego Airport Lindbergh Field facility. The storm drain has two branches that enter the Site from the north and west. The two branches traverse the western portion of the Site, and connect into a single line onsite that ultimately discharges to Convair Lagoon. This line receives runoff from the western portions of the Site, as well as from Lindbergh Field and from Harbor Drive.
- <u>30-inch West. Storm Drain</u>: This storm drain is located on the southwest portion of the Site, between the 54-inch and 60-inch storm drain. The storm drain originates onsite and receives runoff from the SanPark parking area operated by the Airport, as well as runoff from Harbor Drive.
- <u>60-inch Storm Drain</u>: This storm drain crosses under the center of the Site, traversing from north to south. The 60-inch storm drain is a continuation of a major storm water conveyance for properties to the north of the Site. The storm drain starts north of Pacific Coast Highway near former Convair Plant 2, then passes by the U.S. Marine Corps Recruiting Depot, the former GD Lindbergh Field property, the San Diego Airport Lindbergh Field, and under the Site and finally under Harbor Drive before discharging to Convair Lagoon. Along the route, numerous branch lines connect with the main line.
- <u>30-inch East. Storm Drain</u>: This storm drain is located east of the 60-inch storm drain in the central-eastern portion of the Site. This storm drain is sometimes referred to as the 15/30 or 18/30 storm drain. The storm drain receives runoff from the Site only and is not connected to any other storm drain system.

6.2 <u>Description of SWCS Beneath Site Not Draining to Convair Lagoon</u>

Two additional storm drains in the eastern portion of the Site drain into San Diego Bay and do not contribute to Convair Lagoon (Figure 6-1).

- <u>18-inch Storm Drain Beneath U.S. Coast Guard Station</u>: This storm drain originates on the Site and receives runoff from the eastern portion of the Site. This storm drain discharges to San Diego Bay.
- <u>36-inch Storm Drain</u>: This storm drain originates at Lindbergh Airfield and collects drainage from the northeastern portion of the Site and discharges to San Diego Bay.

6.3 <u>Description of Other Potentially Relevant SWCS</u>

In addition to the SWCS that drain directly to Convair Lagoon, there are many storm drains that flow into the East Harbor Island Basin (East Basin) that carry storm water flow from industrial areas like the airport and the former GD Harbor Drive site.

- <u>HD-7</u>: This storm drain, which originates on the GD Harbor Drive site, was reported to be contaminated with PCBs (>13,000 milligrams per kilogram (mg/Kg) in soil) when tested in 1987. The storm drain was subsequently removed in late 1988 (Brown and Caldwell, 1994). The storm drain outfall discharged to the East Basin.
- **<u>GD-Harbor Drive Storm Drains</u>**: Eleven storm drains originate on the GD Harbor Drive and discharge into the East Basin. These storm drains generally have very short runs (mostly less than 500 feet) and currently drain three rental car facilities.
- <u>48-inch Airport East Basin Drain</u>: This storm drain collects the vast majority of runoff for the industrial portions of the airport where commuter and larger aircraft are serviced. This storm drain discharges to the East Basin.

6.4 <u>Tidal Influence on the SWCS</u>

Three tidal surveys were previously conducted, two by TDY in 2002 and 2003 and one by the Port in 2004 (GeoSyntec, 2002a; Shaw Environmental, 2003; H&A, 2004). These studies indicate that during periods of high tide, sea water flows past the northern boundary of the Site in the 60-inch and 54-inch storm drains. Invert elevations of selected catch basins and manhole access points were measured during this investigation to further refine the extent of tidal impacts both onsite and upgradient (Appendix E).

6.4.1 SWCS Invert Survey

Invert elevations were measured at selected catch basins and manhole access points

along the following storm water conveyance systems:

- The eastern 30-inch storm drain (onsite);
- The 60-inch storm drain (General Dynamics, Airport, and onsite);
- The 54-inch storm drain (Airport and onsite); and
- The 18-inch western branch to the 54-inch storm drain (Airport and onsite).

Data indicate that the mean higher high water (MHHW) (2.78 feet MSL) does not reach the southern property boundary within the eastern 30-inch storm drain (Figure 6-2). Tidal influence along the 60-inch storm drain during the MHHW extends more than 3,000-feet north of the Site boundary, on to the GD Lindbergh Field property. The MHHW also extends approximately 1,300 feet north of the Site boundary along the 54-inch storm drain, and approximately 600 feet west of the Site boundary along the 18-inch western tributary to the 54-inch storm drain.

The mean lower low water (MLLW) (-2.94 feet MSL) in the 60-inch storm drain reaches approximately 1,700 feet north of the Site boundary into the southern portion of the GD Lindbergh Field property (Figure 3-2). The MLLW within the 54-inch storm drain extends to approximately the southern Site boundary. As such the 54-inch storm drain becomes dry beneath the Site during low tides.

6.4.2 Flow Analysis

The flow velocity of water in the 60-inch storm drain system during both rising and receding tides was measured at catch basins A-131 (north of Building 126) and A-133 (south of Building 120) on April 9, 2002. Ten measurements were taken over an eight hour period, five in each catch basin. The water velocity ranged from 0.09 to 0.47 feet per second (ft/s). The maximum measured velocity during incoming tide was 0.3 ft/s, measured at 7:00 am in A-133 approximately 1.5 hours before high tide. The maximum measured velocity during the receding tide was 0.47 ft/s measured at 12:40 PM in A-131, approximately 2 hours before low tide (GeoSyntec, 2002a).

Published literature states that the typical water velocity required to mobilize sediments ranging in size from 0.001 to 100 millimeters is a minimum of 0.7 to 2.9 ft/sec (Schwab and Prothero, 1996; Julian 1998), approximately two to ten times higher than the maximum incoming tidal flow velocity measured in the 60-inch storm drain system on April 9, 2002 (GeoSyntec, 2002a). Grain size data collected from samples along the 60-inch line indicate that approximately 45 percent of sediment is sand-sized or larger, 50 percent is fine sand, and 5 percent is silt or finer. While fine sediment suspended in the water column may be transported

under low-velocity conditions, it appears unlikely that significant volumes of sediment could be re-mobilized and transported upgradient of the Site based on observed site conditions.

6.5 <u>Tidal Influx Sampling Evaluation</u>

Grab samples of tidal influent were collected at the outfall to the 60-inch and 54-inch storm drains. The incoming seawater was sampled using tubing which was suspended approximately 1 foot above the base of the storm drain, connected to a peristaltic pump. Approximately 1 liter of water was collected from each location and analyzed for Total Suspended Solids. Results from these analyses indicated that 7 to 18 milligrams per liter (mg/L) of total suspended sediment were present in the tidal influx 1 foot above the base of the storm drains. These samples were collected during a non-storm event at high tide. At these concentrations sediment would be deposited at relatively low rates in the SWCS. However, during storm events, scouring may occur of bottom sediments in Convair Lagoon. Such storm events would increase the suspended sediment load coming into the SWCS at the Site.

6.6 <u>On-Site SWCS Video Survey</u>

A submersible, track-mounted camera was deployed in the 30-inch west tributary to the 54-inch storm drain, the 54-inch storm drain, the 60-inch storm drain, and the east 30-inch storm drain to record the amount of sediment within the storm drain, condition of the pipe, and evidence of potential for Site impacts to leak into the SWCS. A brief summary of findings associated with these inspections is presented below. The full video and Survey reports are included in Appendix G.

Storm Drain System	Access Point	Direction	Total Distance (ft)	DVD
East branch of 54"	A-20	West	365	6
East branch of 54"	A-20	East to A-63	490	6
54"	A-63	North	558	6

Southeast to lagoon

A-63

National Plant Services was retained to perform on-site storm drain inspections. On September 30, 2005, the following storm drains were inspected:

54"

7

Storm Drain	Access	Direction	Total Distance	DVD
System	Point		(ft)	
60"	A-133	South	161	8
60"	A-133	North	606	8
30" East	A-154	North to A-152	115	8
30" East	A-154	Southeast to A-155	40	8
30" East	A-155	Southeast to A-201	41	8
30" East	A-161	West to A-201	105	8
30" East	A-201	Southwest to lagoon	60	8

The following storm drains were inspected on October 3, 2005:

Most of the storm drains were constructed with concrete, except for pipes connecting to A-154 and A-155 which were apparently constructed with PVC. The overall condition of the concrete or PVC in each pipe appeared to be sound. There were no obvious structural failures for the sections of storm drain which were inspected. However, visibility was generally limited due to floating organic matter in the tidally influenced sections of drain along the 54-inch and 60-inch SWCS.

For concrete pipes, pipe seams generally occurred every 5 to 8 feet. Pipe seams generally occurred every 20 feet in the PVC pipes associated with the 30-inch east storm drain. Overall, the pipe seams appeared to be in good condition. One crack was observed in the abandoned section of storm drain connecting into the east branch of the 54-inch storm drain towards abandoned catch basin A-21, bearing south. The crack was at the base of the pipe intruding into the storm drain approximately 146 feet east of catch basin A-20. Approximately 25 feet east of this connection, another abandoned storm drain line, which serviced A-22 before it was abandoned, connects into the 30-inch tributary to the 54-inch storm drain. This abandoned storm drain has apparently old sediment caked to its walls.

Sediment has collected in all of the inspected storm drains except for the storm drain leading from manhole A-201 to the Convair Lagoon which only had trace amounts of sediment. The other pipes contained accumulated sediment and debris as much as 12 to 15 inches wide and several inches deep. In general, the 54-inch and 60-inch storm drain network had greater sediment build up than the 30-inch storm drain network.

6.7 Off-Site SWCS Video Survey

A submersible, track-mounted camera was deployed in the following off-site storm drains to inspect the general condition of the storm drain, note sediment accumulation, and collect discret sediment samples, where possible.

Storm Drain System	Access Point	Direction	Total Distance (ft)	DVD
16" east branch of 54"	B-24	East	487	9*
18" east branch of 54"	B-22	North	498	9*
54"	catch basin northeast of B-2	Southwest	106	9*
54"	B-2	North	229	10*
54"	B-2	Southeast	576	10*
54"	B-3	South	408	10*
60"	D-12	Northwest	223	10*
18" east branch of 54"	C-2	East to B-24	198	1
54"	B-3-MH200	South	718	2
60"	B-8	South	0.6	2
16" east branch of 54"	B-23-15N	North to B-20	417	3
16" east branch of 54"	B-23-242N	South	70	3
60"	B-11	North to B-8	67	4
60"	D-7	East to D-8	11	5
60"	D-13-MH842	North to D-8	132	5
60"	D-13-MH842	South	160	5

*Performed by Everest VIT in March/2005

All inspected storm drains were constructed with concrete. Seams generally occurred every 5 to 8 feet. Overall, the seams appeared to be in fair condition, with some erosion and minor chipping. The condition of the concrete could not be determined in the inspections from manholes B-11 and D-13-MH842. Flooded conditions in these lines severely limited visibility due to floating organic matter and debris. The inspection at B-8 and D-7 were terminated a short distance from the entrance point due to obstruction of the storm drain by debris and cemented sediment. Large pieces of debris were visible in the pipe leading from B-8.

The 16-inch north-south tributary to the 54-inch storm drain was in the worst condition of the inspected storm drains. Cracks were visible on both sides of the pipe for the majority of the inspected length, and the top of the storm drain had collapsed leaving the rebar exposed 315 feet north of catch basin B-22. Cracks also occurred approximately 267 to 271 feet north of manhole B-23-15N in the 16-inch tributary to the 54-inch storm drain network. Overall, the concrete in the remaining storm drains appeared to be in fair condition with a few thin cracks. A hole in the concrete was found approximately 85 feet east of C-2 on the north side of the storm drain and had a diameter of approximately 8 inches. Due to the angle of the camera, it was not determined if the hole was sealed off or connected to an intruding pipe. A large hole was discovered in the storm drain prevented further access to the north. Due to the poor visibility

underwater, the full extent of the hole was not able to be determined.

Intruding pipes were found in the investigations leading from manholes B-24 and B-3-MH200. The seals around the intruding pipes did not appear to be in good condition, and may represent abandoned storm drain lines.

Small amounts of sediment were found in the northern portion of the 54-inch storm drain, and the small 16-inch tributary to 54-inch storm drain that runs north/south in front of the commuter terminal. Thick layers of sediment were present in 12 to 36 inch strips along the base of the 18-inch tributary to the 50-inch storm drain running east/west in front of the commuter terminal and throughout the 60-inch storm drain. The rover was used to collect sediment samples in a cup from the north/south and east/west tributaries to the 54-inch storm drain in front of the commuter terminal.

The portion of the 60-inch storm drain leading from catch basin D-7 had the largest amount of observed sediment which had collected in the base of the storm drain which appeared to be several inches thick and approximately 30 inches wide with piles of cemented sediment several feet long and 15 inches high. The rover was only able to investigate 11 feet into the storm drain due to these obstructions.

7. EXTENT OF WASTE CONSTITUENT CHARACTERIZATION

7.1 <u>Comparability of Data</u>

Data collected during site characterization activities has been compared to the earlier data collected by the Port of San Diego in 2003 (H&A, 2004) and TRA in 2002 (GeoSyntec, 2002a,b). Site conditions are stable, given the low groundwater gradient and velocity at the Site, and the maturity of the historical site impacts. Analytical results from grab samples collected in 2005 and permanent monitor wells re-sampled in 2005 show concentrations which are consistent with the 2002/2003 site characterization data. For example, Tetrachlroethene in Groundwater (Figure 7G-12) shows many locations in the Building 120, Building 131/242 area, and the area northeast of Building 161 where PCE data from 2002 through 2005 are presented. These data sets agree and complement each other, with the 2005 data adding definition to, and not conflicting with, values collected during the 2002 and 2003 sampling events.

Groundwater velocity calculations indicate that groundwater is unlikely to have migrated more than 60 feet, and probably far less in the two years between the two sampling events. While it is acknowledged that temporary sample locations are generally designed to give a "snapshot" of site conditions, due to the maturity of site impacts and the low groundwater velocity onsite, the 2002 to 2005 data can be used as one data set for the purpose of site characterization. Data from the 2005 site characterization defines the downgradient extent of impacts.

7.2 <u>Extent of Sediment Impacts</u>

Run-in, existing, and in-line sediment samples were collected during the 2005 site characterization.

- **Run-in samples** were collected from either A) sediment which had been trapped on filter-fabric or in silt-sacks installed in a catch basin, B) sediment trapped in the groove around the catch basin grate, or C) sediment in the base of a catch basin (only if there was insufficient sediment of type A or B, the catch basin was the most upgradient catch basin on the drain line, and there was no tidal influence on the catch basin). This sample type is intended to represent sediment in the immediate vicinity of the catch basin from which it was collected.
- **Existing samples** were collected from the base of a catch basin or directly from the storm drain itself. These samples represent cumulative the storm drain from all upgradient contributions.
- **In-line samples** were collected from a fine-mesh filter sock supported by a 4-inch slotted PVC pipe. The filter sock is placed into the center of the storm drain and is used to collect a representative sample of suspended sediment from flowing

water within the SWCS. These samples represent the mobile sediment entrained within the SWCS discharge.

Due to restricted access to the Site during the 2004-2005 rainy season, in-line sediment samples from onsite locations were not able to be collected for inclusion in this report. These samples are scheduled to be collected during the 2005-2006 rainy season, and these results will be included in an amendment to the site characterization report, which is scheduled to be submitted in April 2006. This approach has been approved by the RWQCB based on discussions during our monthly meetings. Full lab reports from the 2005 site characterization activities, are included electronically as Appendix H.

7.2.1.1 Upgradient PCB Impacts

Sediment was sampled along the 60-inch and 54-inch lines, and their tributaries during site characterization field activities in 2005. Data collected from the 2005 onsite and offsite SWCS characterization study is presented in Tables 7-1 through 7-3. Storm drain sample data collected during the 2005 site characterization field activities on properties contributing storm water to the Convair Lagoon is presented in Figures 7-1 through 7-6.

7.2.1.2 PCBs on the San Diego International Airport

Sediment samples were collected and analyzed for PCBs in four principal drainage areas on the Airport property (Figure 7-1).

- Catch basins leading to the 48-inch East Basin Drain;
- Catch basins leading to the western 30-inch tributary to the 54-inch storm drain;
- Catch basins leading to the 54-inch storm drain; and
- Catch basins leading to the 60-inch storm drain.

48-inch East Basin Storm Drain

Three existing sediment samples and one in-line sample were collected from the 48inch East Basin drain line. No PCBs were detected in these samples.

30-inch West Tributary of 54-inch Storm Drain

Five existing, two in-line, and one run-in samples were collected on the 30-inch tributary to the 54-inch storm drain. No PCBs were detected above 1.0 mg/Kg the five existing sediment samples collected. The highest concentrations were found in semi-lithified sediment shelves clinging to the walls of the storm drains which were sampled remotely with the use of a video survey device equipped with a sampling cup. No PCBs were detected above 1.0 mg/Kg in either of the in-line sediment samples. No PCBs were detected in the one run-in sample collected from this segment of storm drain.

54-inch Storm Drain

Five existing and eight run-in samples were collected from the 54-inch storm drain and its tributaries. PCBs were detected above 1.0 mg/Kg in one of the five existing sediment samples with a concentration of 1.6 mg/Kg. The sample was collected from existing sediment in the north/south running 18-inch storm drain north of the commuter terminal which is a secondary tributary to the 54-inch storm drain. No PCBs were detected above 1.0 mg/Kg in any of the runin samples from catch basins contributing to the 54-inch storm drain.

60-inch Storm Drain

Seven run-in, two existing, and one in-line sample were collected from storm drains contributing the 60-inch storm drain. PCBs were found above 1.0 mg/Kg in one of the five catch basins sampled which contribute to the 60-inch storm drain. PCBs were detected in the one inline sample collected at a concentration of 7.98 mg/Kg. No PCBs were detected above 1.0 mg/Kg in the existing or run-in samples contributing to the 60-inch storm drain.

7.2.1.3 PCB Impacts on the Former General Dynamics-Lindbergh Field Facility

Three run-in and 16 existing sediment samples were collected from catch basins contributing to the 60-inch storm drain. PCBs were detected above 1.0 mg/Kg in two run-in samples and seven existing sediment samples from tributaries which contribute to the 60-inch storm drain on the former General Dynamics Facility (Figure 7-2).

7.2.1.4 PCB Impacts Upgradient of General Dynamics-Lindbergh Field Facility

Five existing, one run-in and four in-line samples were collected in 7 catch basins upgradient of the Former General Dynamics Facility which eventually contribute to the 60-inch storm drain. No PCBs were detected above 1.0 mg/Kg (Figure 7-3).

7.2.1.5 PCB Impacts on the former Sky Chefs Facility

Two existing sediment samples were collected from storm drains on the former Sky Chefs Facility, adjacent to the western Site boundary. PCBs were not detected above 1.0 mg/Kg. These storm drains contribute to the 48-inch storm drain to the East Basin (Figure7-4).

7.2.1.6 PCB Impacts on the Former General Dynamics Harbor Drive Plant

Five existing and five run-in sediment samples were collected from storm drains on the former General Dynamics Harbor Drive site. In addition to SWCS lines that drain directly to Convair Lagoon, there are many local storm drain that discharge into the East Harbor Island Basin (East Basin) that carry storm water flow from industrial areas like the airport and the former GD Harbor Drive (Figure 7-5). Some of these storm drains that contained PCBs historically as described below.

- <u>HD-7</u>: This storm drain, which originates on the GD Harbor Drive site, was reported to be contaminated with PCBs (>13,000 mg/Kg in soil) when tested in 1987. The storm drain was subsequently removed in late 1988 (Brown and Caldwell, 1994). The storm drain discharged into the East Basin and would have contributed PCB contaminated material to the mouth of and into Convair Lagoon. Other testing in 1986 and 1987 showed consistent PCB contamination of catch basin sediment along the line from 33 mg/Kg to 130 mg/Kg with an increasing trend over three sampling events (Brown and Caldwell, 1992).
- <u>**GD-Harbor Drive Storm Drains</u></u>: These lines all originate on the GD Harbor Drive and discharge into East Basin. Any PCB discharges from these lines would enter the East Basin on the southern edge of the GD Harbor Drive facility, and discharge into the mouth of Convair Lagoon. All of the sediment samples collected from the lines during 1986 and 1987 contained PCBs at concentrations up to 6.6 mg/Kg**. Sediment sampled during the 2005 site characterization did not contain PCBs in sediment above 1.0 mg/Kg total PCBs.</u>
- <u>48-inch Airport East Basin Drain</u>: This line drains the vast majority of the industrial portions of the airport where commuter and larger aircrafts are serviced. Documented VOC contamination exists in these areas which may mobilize PCBs into the SWCS as described in Section 5. Given the position of the outfall location, PCB contaminated material from the East Basin would travel to the mouth of and into Convair Lagoon. Sediment sampled during the 2005 site characterization did not contain PCBs in sediment above 1.0 mg/Kg total PCBs.

7.2.2 Onsite PCB Impacts

WDR 98-21 specifies that if PCBs are detected in sediment on the sand cap at concentrations exceeding 4.6 mg/Kg, the nearest upgradient catch basin must be cleaned out. The RWQCB subsequently required delineation to 1.0 mg/Kg. The 1.0 mg/Kg criterion for PCBs is used as a screening criterion herein to evaluate potential sources of PCBs on-site.

The PCB data collected for the Site over the past 18 years is extensive and comprehensive. In summary, a total of 15 PCB usage areas were identified at the Site (Figure 5-4). All PCB containing materials at these locations were removed by 1990 (GeoSyntec, 2002). No known PCB source areas remain on the Site; however, areas with elevated concentrations of PCBs in surface sediment are indicated by recent sampling.

Results from the 2005 site characterization have been compiled on Table 7-1. The full lab reports from the 2005 site characterization activities are included electronically in Appendix H.

Site-wide characterization of sediment in or immediately adjacent to the SWCS during 2005 indicated PCBs were detected above 1.0 mg/Kg in six existing sediment samples collected from within the SWCS and in twelve run-in sediment samples collected in or around

onsite catch basin inlets as described below (Figure 7-6).

- **54-** Inch Storm Drain and Tributaries Five locations along tributaries to the 54-inch storm drain contained PCBs in sediment above 1.0 mg/Kg (60 mg/Kg at A-200, 5.3 mg/Kg at A-47, 1.87 mg/Kg at A-45, 1.8 mg/Kg at A-48, and 2.8 mg/Kg at A-55). All of these samples were run-in samples in the vicinity of the engine test cell Building 157, with the exception of A-55, which was an existing sediment sample just north of Building 158 (Figure 7-6). No PCBs were detected in the western tributary to the 54-inch storm drain that enters the property near the former Sky Chefs Building. Three samples of existing and run-in sediment from the 54-inch storm drain and eastern tributaries all contained PCB concentrations less than 1.0 mg/Kg.
- **60-Inch Storm Drain and Tributaries** PCBs were detected in existing sediment within the 60-inch storm drain at concentrations of up to 25.4 mg/Kg (A-134) (Figure 7-6), and run-in sediment at concentrations of up to 380 mg/Kg (A-132). Seven additional run-in samples and two existing sediment sample were collected from the eastern and western tributaries to the 60-inch storm drain. Of these samples, five run-in and one existing sediment samples contained concentrations of PCBs above 1.0 mg/Kg (A-124, A-123, A-131, A-99, A-91, and A-102).
- **30-Inch East Storm Drain** PCBs were detected above 1.0 mg/Kg in three existing sediment samples within the east 30-inch storm drain at concentrations of 52 mg/Kg (A-201) and 15.7 mg/Kg (A-145). PCBs were also detected in one runin sample east of Building 120 at a concentration of 14.9 mg/Kg (A-144) (Figure 7-6)).
- **18-Inch Storm Drain to San Diego Bay** PCBs were not detected above 1.0 mg/Kg in the 18-inch storm drain to San Diego Bay.
- **30-Inch Storm Drain to San Diego Bay** PCBs were detected above 1.0 mg/Kg in two existing sediment samples within the 30-inch storm drain to San Diego Bay at concentrations of 21.7 mg/Kg (A-172) and 5.2 mg/Kg (A-173). PCBs were also detected in one run-in sample northeast of Building 161 at a concentration of 2.89 mg/Kg (Figure 7-6).

7.2.3 PCB Impacts in Convair Lagoon

Six sediment samples (L-1 through L-6) were collected within Convair Lagoon and analyzed for PCBs (Table 7-1 and Figure 7-6). PCBs were detected above 1.0 mg/Kg in two Convair Lagoon sediment samples. Samples L-5 and L-1 contained total PCB concentrations of 11.07 mg/Kg and 23.6 mg/Kg, respectively. These samples were collected from the area in front of the discharge from the 60-inch storm drain (Figure 7-6). No PCBs were detected at the outfall to the eastern 30-inch storm drain. A sediment sample collected in the vicinity of the 54-inch

and western 30-inch outfall contained low, but detectable concentrations of PCBs (0.612 mg/Kg) (Table 7-2).

7.2.4 Upgradient Metals in Sediment

Metals were analyzed in sediment from the most upgradient catch basin to the 60inch storm drain on the GD Lindbergh Field site, location D-7 (Table 7-4, Figure 7-7). Results were compared to shallow soil Environmental Screening Levels (ESLs) (Region 2 RWQCB, 2005) for industrial and commercial properties without beneficial groundwater use. No metals were found to be elevated compared to these ESLs.

7.2.5 Onsite Metals in Sediment

Metals were analyzed in sediment from onsite storm drain catch basins and from the run-in sediment surrounding the basins (Table 7-4 and Figure 7-7). Arsenic, barium, chromium, cobalt, copper, lead, nickel, and zinc were found to be elevated relative to non-beneficial use groundwater commercial/industrial ESLs.

7.3 <u>Extent of Soil Impacts</u>

Soil impacts at the Site are presented in Figures 7S-1 through 7S-37, and summarized below. The full lab reports from the 2005 site characterization activities are included electronically in Appendix H. Soil data from the 0 to 5-foot below ground surface (bgs) interval represents the vadose zone. Five soil samples had concentrations of greater than 1.0 mg/Kg. Soil data from the 5- to 10- foot bgs interval represents the capillary fringe and upper saturated zone. No samples had PCB concentrations over 1.0 mg/Kg.

7.3.1 VOCs

GeoSyntec performed a preliminary site assessment in 2002, collecting 21 soil samples in the vicinity of Building 120. During the Port's investigation (H&A, 2004) 686 soil samples were collected and analyzed for VOCs. During the 2005 site characterization investigation, 51 additional soil samples from the capillary fringe were screened in the field with Sudan-Red and a photoionization detector (PID) for indications of elevated VOCs. None of the samples had a positive reaction to the Sudan-Red field screening test, which indicates that NAPL was not present in any of the soil samples. Seven of these soil samples were further analyzed for VOCs and TPH (Table 7-5). In summary, a total of 18 locations were identified with elevated VOCs in soil (>1 mg/Kg) from 0-5 feet bgs (Figure 7S-16). Select individual VOC impacts to soil are presented in Figures 7S-18 to 7S-27. These samples were collected from the following areas:

• Building 120;

- Building 102;
- Above ground solvent tank near Building 166;
- Maintenance yard northeast of Building 161;
- Building 131/242 area; and
- Building 156.

Samples were collected from five locations with elevated VOCs in soil (>1 mg/Kg) from 5-10 feet bgs (Figure 7S-17). These samples were collected from the following areas:

- Building 131/242 area; and
- Building 158.

Historical data indicate potential releases on the Airport property north of Area D; however, based on data collected from borings surrounding these areas, the extent of VOCs in on-site soil has been adequately defined.

7.3.1.1 Discussion of Rationale for Contouring

As described above, VOC concentrations in soil across the Site are consistent with groundwater and soil gas data. The justification for closing contours of soil impacts where no soils data is available surrounding an impact is based on soil gas and groundwater quality data for the same constituents. For example, in the northern region of the area of impacted groundwater at Building 120, the low concentrations of VOCs in groundwater at grab location T-43 and negative field screening for NAPL or VOCs indicate that it is unlikely that elevated VOC concentrations are present in soil north of the Site property boundary. For this reason, contour lines in this area can be closed (Figure 7-16).

7.3.2 TPH

Eleven soil samples collected from the capillary fringe were sampled for TPH during the 2005 site characterization activities (Table 7-4). Of the eleven samples, one sample (T-31-6S-T) contained detectable TPH (12 mg/Kg TPH in the C23-C36 carbon range). This was reported as an approximate concentration, between the laboratory reporting limit and detection limit. During the 2003 assessment (H&A, 2004), 780 samples were analyzed for TPH, collected from depths ranging from 1 to 55 feet bgs. Sample results range from non-detect to 8,184 mg/Kg (excluding one sample collected from Building 158 noted to have free product and having a result of approximately 123% TPH). TPH in soil are presented in Figures 7S-28 and 7S-29. In summary, 16 samples from 0-5 feet bgs contained TPH at concentrations above 500 mg/Kg (Figure 7S-28). These samples were collected from the following areas:

- Building 156;
- The vicinity of Building 158;
- Building 120;

- Former Building 222/228 Area;
- Building 161 Area; and
- Building 180.

Samples were collected from ten locations with elevated TPH in soil (>500 mg/Kg) from 5-10 feet bgs (Figure 7S-29). These samples were collected from the following areas:

- The vicinity of Building 158;
- Building 156 Area (Former UST #19);
- Building 157 (Area C);
- East of Building 146; and
- Building 102.

Historical data indicate potential releases on the Airport property north of Area D; however, based on data collected from borings surrounding these areas, the extent of VOCs in on-site soil has been adequately defined.

7.3.3 SVOCs

A total of 157 soil samples were collected and analyzed for SVOCs (including 1,4dioxane) during the 2003 site assessment performed by the Port (H&A, 2004). Twenty-three samples contained at least one SVOC. The majority of SVOCs detected are PAHs, including benzo(b)fluoranthene, benzo(a)anthracene, benzo(a)pyrene, phenanthrene, and pyrene. SVOC impacts to soil are presented in Figures 7S-29 through 7S-32. In summary 11 samples from 0-5 feet bgs contained SVOC concentrations above 1 mg/Kg (Figure 7S-30). These samples were collected from the following areas:

- Test Cell #4/Area D;
- Building 157 (Area C);
- West of Building 105;
- Northeast of Building 140 (Area A);
- Building 120;
- Maintenance yard northeast of Building 161;
- Former Building 222/228 Area; and
- Above ground solvent tank near Building 166.

No elevated SVOCs were detected from 5-10 feet bgs. Based on these data and data collected from borings surrounding these areas, the extent of SVOCs in soil has been adequately defined.

7.3.4 PCBs

PCBs were sampled in soil during the 2003 site assessment performed by the Port

(H&A, 2004). Of the 250 locations sampled, 47 contained detectable concentrations of PCBs. The most commonly detected PCB was Aroclor 1260, followed by Aroclor 1254 and Aroclor 1248. These results are presented on Figures 7S-33 and 7S-34. In summary, PCBs were detected in soil at concentrations above 1 mg/Kg in the following areas:

- Explosives area;
- Building 156;
- Building 120;
- Building 222/228 Area; and
- South of Building 121.

Based on data collected from borings surrounding these areas, the extent of PCBs in soil has been adequately defined.

7.3.5 Perchlorate

Perchlorate was detected in four of the 54 soil samples analyzed during the 2003 site assessment, up to a maximum concentration of 3.6 mg/Kg. The extent of perchlorate in soil is shown on Figure (7S-35). In summary, perchlorate was detected in soil from 0-5 feet bgs in only the former Building 222/228 area.

No perchlorate was detected from 5-10 feet bgs. Based on these data the extent of perchlorate in soil has been adequately defined.

7.3.6 Metals

Chromium and hexavalent chromium were analyzed in nine soil samples in the vicinity of Building 158 during the 2002 site assessment (GeoSyntec, 2002b). Title 22 metals and hexavalent chromium were analyzed in up to 331 samples during the Port 2003 site assessment (H&A, 2004). Thirteen metals were detected above their respective statistically determined site-specific background concentrations. These metals were antimony (>1% of samples exceeding background), cadmium (>1%), chromium (6%), hexavalent chromium (>1%), cobalt (1%), copper (>1%), lead (5%), mercury (3%), molybdenum (>1%), nickel (4%), selenium(>1%), thallium(>1%), and zinc(4%). These results are presented in Figures 7S-1 through 7S-15. In summary, locations where metals significantly exceed background include the following:

- Building 158;
- Former Building 222/228 Area; and
- Building 180.

Based on data collected from borings surrounding these areas, the extent of metals in soil has been adequately defined.

7.4 <u>Extent of Impacts to Groundwater</u>

The extent of groundwater impacts at the Site are presented graphically in Figures 7G-1 through 7G-22, and summarized below. The full lab reports from the 2005 site characterization activities, are included electronically in Appendix H. Delineation contours have been drawn which show an interpretation of the extent of impacts as defined by existing site data. In some cases, there is insufficient data to explicitly close contours. Nevertheless, the contours have been interpreted as closed based on observed trends, historical site use, groundwater flow directions, an understanding of apparent preferential pathways, and professional judgment. Details regarding these interpretations are included on the respective figures, as applicable.

7.4.1 VOCs

At least one VOC was detected in 180 of 230 groundwater samples collected at the Site during the 2002, 2003, and 2005 sample events (Figures 7G-7 through 7G-15). Data from the 2005 investigation is presented in Table 7-5. The most commonly detected constituents were PCE (67% of samples), TCE (51% of samples), cis-1,2-DCE (51% of samples), vinyl chloride (41% of samples), trans-1,2-dichloroethene (40% of samples), acetone (29% of samples), benzene (27% of samples), 1,1-dichloroethene (24% of samples), 1,1-dichloroethane (27% of samples). In summary, 81 locations contained VOCs significantly exceeding background concentrations in samples collected from the following areas:

- Building 131/242 Area;
- Former Building 222/228 Area;
- Building 156;
- Building 142 Area;
- Building 158;
- Test Cell #4/Area D;
- Southeast of Building 146/Building 102 Area;
- Building 180 Loading Dock;
- East Building 120 Area; and
- Northeast of Building 161.

Based on these data the extent of VOCs in groundwater have been adequately defined horizontally; however, elevated concentrations of chlorinated hydrocarbons in groundwater indicate that further vertical delineation may be required in the Building 131/242 area.

7.4.1.1 Discussion of Rationale for Contouring

In terms of the upgradient extent of impacts north of Building 120, the groundwater sample collected from boring T-43 contained low concentrations of TCE, PCE, and cis-1,2-DCE and no detectable 1,1,1-trichloroethane (1,1,1-TCA). These data demonstrate the attenuation of the area of impacted groundwater at Building 120 to the north. Similarly, boring T-11 establishes a declining trend in PCE and helps to bound the eastern extent of the area of impacted groundwater at Building 120. VOCs to the south of Building 180 are bounded by non-detectable concentrations in B180-MW1 to the south. Based on current groundwater sample distribution alone, it is not immediately clear whether the area of impacted groundwater at Building 120 may be connected to the impacts observed south of Building 180; however, when the soil gas data collected in this area is taken into account, it becomes apparent that these impacts are not associated. Based on this evidence, the contour has been closed. Historical data indicate potential releases on the Airport property within the commuter terminal area could migrate eastward along the 30-inch tributary to the 54-inch storm drain. Consequently the extent of cis-1,2-dichloroethene has been dashed to the west in this area. The Building 131/242 plume has been constrained to the south by groundwater samples collected at locations T-7, T-8, T-9 and B131-MW4. Based on data collected from borings and monitor wells surrounding these areas, the extent of on-site impacts has been adequately defined.

7.4.2 Total Petroleum Hydrocarbons

TPH has been detected in 249 groundwater samples collected from the Site since 2003, including three samples from the 2005 site investigation (Table 7-5). The majority of these samples were collected during the 2003 site assessment (H&A, 2004). The majority of TPH impacts reflect samples collected in the vicinity of UST sites. These results have been presented in Figure 7G-16. In summary, 17 locations contained TPH significantly exceeding background concentrations (>1 mg/L), in samples collected from the following areas:

- Building 131/242 Area;
- Building 120 Area;
- Test Cell #4/Area D; and
- Building 158.

Historical data indicate potential releases on the Airport property north of Area D; however, based on data collected from borings and monitor wells surrounding these areas, the extent of VOCs in groundwater has been adequately defined.

7.4.3 SVOCs

SVOCs have been detected above laboratory reporting limits in 34 of 134 groundwater samples collected at the Site during the 2003 and 2005 sampling events. The most

commonly detected constituents were 1,4-dioxane (detected in 34 samples) and bis(2-ethylhexyl)phthalate (detected in 20 samples). Groundwater data for SVOCs is presented in Table 7-6 and in Figures 7G-17 through 7G-19. In summary, 9 locations contained SVOCs significantly exceeding background concentrations, in samples collected from the following areas:

- Building 131/242 Area;
- Building 120;
- Former Building 222/228 Area; and
- Above ground solvent tank near Building 166.

Based on data collected from borings and monitor wells surrounding these areas, the extent of SVOCs in groundwater has been adequately defined, with the exception of 1,4-dioxane in the Building 131/242 area and benzo(a)pyrene north of Area D. The lateral extent of 1,4-dioxane is not defined to the southwest of Building 131/242. Existing sample data in the Building 131/242 area will be evaluated during the RI/FS to determine if further delineation of 1,4-dioxane is required. Historical data indicate potential releases on the Airport property north of Area D, however the extent of on-site impacts has been adequately defined.

7.4.4 Metals

Metals analyses of groundwater samples collected during the 2003 sampling event by the Port were for total metals, which include unfiltered sediment collected with the groundwater sample (H&A, 2004). As a result, these data cannot be used to screen water quality data for metals against regulatory criteria (which are expressed as dissolved criteria) because total metals are always higher than dissolved metals. However, this data can be used to identify areas where elevated total metals are present. In contrast, the samples collected during the 2002 and 2005 investigations were analyzed for dissolved metals. During the 2003 event, 12 different metals were detected above site-specific background concentrations. During the 2002 and 2005 sampling event, only chromium, barium and molybdenum exceeded site-specific background concentrations (Figures 7G-1 through 7G-6). Data from the 2005 investigation is presented in Table 7-7. In summary, locations where metals significantly exceed background in groundwater include the following:

- Building 158;
- Building 180 Loading Dock;
- Building 156;
- Former Building 222/228 Area; and
- Building 120.

Based on data collected from borings and monitor wells surrounding these areas, the extent of metals in groundwater has been adequately defined; however, additional samples may be collected in the Building 158 Area to refine remedial options.

7.5 <u>Extent of PCBs in Groundwater</u>

During the 2003 site assessment, the Port analyzed 43 groundwater samples for PCBs. These samples were analyzed as total PCB concentrations which were unfiltered and included any PCBs which may have been attached to suspended particulate matter. Two of these samples contained detectable PCBs at concentrations of 0.0011 and 0.0019 mg/L, respectively (Figure 7G-20). Both samples were collected at a location immediately south of Building 120. Because these samples were unfiltered, they are not clearly indicative of PCB impacts to groundwater and have not been added as a separate AOPC.

7.6 Extent of Apparent Non Aqueous Phase Liquid (NAPL)

During 2005 site characterization activities, all onsite monitor wells were gauged for water levels and for the presence of non-aqueous phase liquids using an interface probe. Dense non-aqueous phase liquid (DNAPL) was not observed in any monitor well. One monitor well (TC4WNC) contained approximately 0.08 feet of light non-aqueous phase liquid (LNAPL). This well is located in the center of the Test Cell #4 UST area (Area D) and based on historical investigations in this area, the LNAPL is likely comprised of jet fuel. In addition, a hydrocarbon sheen was observed in monitor well 142NC, which is located to the southeast of Building 142. During the 2003 site assessment, one boring reportedly contained 0.1 feet of LNAPL (H&A, 2004). This boring was advanced in Building 158. Samples from this location indicated that the NAPL was comprised primarily of naphthalene.

Soil from the capillary fringe zone within 52 boreholes was screened in the field for the presence of NAPL with Sudan Red during the 2005 site characterization. None of these samples indicated the presence of NAPL.

Based on known concentrations of VOCs and TPH in soil and groundwater, the presence of NAPL can be theoretically calculated using phase partitioning equations. A summary of these calculations are presented below, and areas where NAPL theoretically may be present are illustrated in Figures 7S-36, 7S-37, 7G-21, and 7G-22.

7.6.1 Light Non-Aqueous Phase Liquids (LNAPL)

LNAPLs include fuel hydrocarbons such as gasoline, diesel, and jet fuel. Fuel additives such as benzene, toluene, ethylbenzene, xylenes, and naphthalene in their pure form can also be LNAPLs. Because these constituents are less dense than water, they tend to float on the water table.

Using the partitioning equation, the concentrations of these constituents that would be indicative of residual LNAPL in soil were calculated (Table 7-8). The apparent LNAPL concentrations in soil were then compared to soil analytical data for the Site. Based on this analysis combined with where LNAPL was observed during the site characterization, areas

 $\overline{}$

where LNAPL is or may be present in soil at the Site were identified (Figure 7S-36). The extent of potential LNAPL in soil at each location is adequately defined and is relatively localized.

The locations where LNAPL has been physically observed is much less than where theoretical partitioning calculations indicate NAPL may be present. It is common for NAPL to be adhered to soil in disconnected pores. In this state, the NAPL can continue to serve as a potential source of groundwater impacts. However, in areas where the groundwater is of no beneficial use, it is more important to identify where the soil contains hydrocarbons at concentrations high enough for the NAPL to be mobile. The residual saturation for soil with respect to diesel/jet fuel was calculated for the Site. Based on the average values for the soil physical properties, the residual saturation for TPH as diesel range organics is approximately 5,400 mg/Kg (Figure 7S-36).

To evaluate the extent of potential LNAPL in groundwater, the "1 percent rule" was applied. The 1 percent rule is recognized as being conservative in that apparent LNAPL is suggested if a constituent is detected at a concentration exceeding 1 percent of its solubility in water (EPA, 1992). Based on an evaluation of groundwater quality data for the Site using the 1 percent rule, locations where apparent LNAPL may be present at the Site were identified (Figure 7G-21). At these locations, LNAPL may be present in the capillary fringe or floating on the water table. The extent of potential LNAPL in groundwater at each location is adequately defined.

The locations where LNAPL was physically observed is much smaller than where LNAPL is theoretically located based on partitioning calculations or the 1 percent rule. These data underscore the conservative nature of theoretical calculations. Regardless, groundwater quality data for samples collected nearest to Convair Lagoon did not exceed the LNAPL screening criteria (Figure 7G-20).

7.6.2 Dense Non-Aqueous Phase Liquids (DNAPL)

DNAPLs include chlorinated solvents such as PCE and TCE. Because these constituents are denser than water they tend to sink below the water table if they were released in sufficient quantities. However, downward DNAPL transport can be hindered at the water table due to capillary forces.

Using the partitioning equation, the concentrations of chlorinated hydrocarbons that would be indicative of residual DNAPL in soil were calculated (Table 7-8). The apparent DNAPL concentrations in soil were then compared to soil analytical data for the Site. PCE was the only chlorinated hydrocarbon detected in soil at a concentration indicative of apparent DNAPL. Two locations were identified where DNAPL may be present in soil at the Site. These locations are in the vicinity of Building 131/242 and in Building 120 at the location of a former degreaser (Figure 7S-37). The extent of DNAPL in these areas is localized and bounded by soil

samples collected from nearby borings that had PCE concentrations much lower than the apparent DNAPL concentration.

To evaluate the extent of DNAPL in groundwater, the "1 percent rule" was applied. As stated above, the 1 percent rule is recognized as being conservative. Based on an evaluation of groundwater quality data for the Site using the 1 percent rule, the locations where apparent DNAPL may be present were identified (Figure 7G-22). These locations are larger but correspond to the same areas where apparent DNAPL was suggested in soil. The lateral extent of apparent DNAPL at each of these locations is adequately defined.

In Building 120, groundwater samples were collected in a vertical profile to depths up to 55 feet bls. Based on groundwater samples collected from these borings (borings 0120-GW-56, 0120-GW-57, 0120-GW-58, and 0120-GW-61), the vertical extent of potential DNAPL appears to be confined to the shallow groundwater. Groundwater quality data from these borings also indicates that the chlorinated hydrocarbon concentrations attenuate substantially with depth to near non-detect levels at 30 feet bls. In the Building 131/242 area, the vertical extent of apparent DNAPL and groundwater impacts has not been defined.

7.7 <u>Soil Gas Results</u>

A soil gas survey was performed at the Site by the Port in 2003. Results of this investigation are presented on Figure 7-8. The soil gas survey can be used to identify potential source areas and refine areas of impacts identified by soil and groundwater sampling. The 2003 soil gas data confirms the results previously discussed for VOCs in soil and groundwater (Sections 7.3.1 and 7.4.1). Three primary source areas for VOCs were identified:

- Building 131/242;
- Building 120; and
- the AST east of Building 166.

The soil gas survey data are currently being evaluated to determine if they are suitable for use in the risk assessment. The soil gas data may be used to evaluate the potential risk to hypothetical receptors from the inhalation of vapors emanating from residual VOCs in soil and groundwater.

8. AREAS OF POTENTIAL CONCERN

Based on existing site data, areas of potential concern (AOPCs) have been identified for further evaluation in the risk assessment and remedial investigation/feasibility study programs (Figure 8-1). Each AOPC represents a specific area where identified COPCs have been detected above site specific background values. Each area is described and evaluated for potential sources based on a review of previous reports and analytical data collected during the site characterization process (Table 2-1). The AOPCs and associated COPCs are:

- Building 180 loading dock area (metals, VOCs, TPH);
- Outside maintenance yard/tool racks near Building 161 (VOCs);
- Above ground solvent tank near Building 166 (VOCs, SVOCs);
- Building 120 (metals, VOCs, SVOCs, TPH, PCBs);
- South of Building 121 (PCBs);
- Building 222/228 (metals, VOCs, SVOCs, TPH, PCBs, perchlorate);
- Southeast of Building 146 (VOCs);
- Building 158 (metals, VOCs, TPH);
- Test Cell #4/Area D (TPH, VOCs, SVOCs);
- Building 142 Area (VOCs);
- Building 131/242 Area (VOCs, SVOCs, TPH);
- Building 156 (metals, VOCs, TPH);
- Explosives Area (PCBs); and
- Portions of the Storm Water Conveyance System (PCBs).

Each of these areas will be further evaluated during the RI/FS process to determine whether remedial activities are warranted. If remedial activities are recommended, a thorough screening of viable remedial alternatives will be presented for each area.

8.1 <u>Building 180</u>

Building 180 is a concrete-floored, wooden hangar building, located on the eastern corner of the Site. This building served as an aircraft hangar, as well as shipping and receiving. On the north (runway) side of the building are large, sliding hangar doors. Maps of site operations indicate that the northern portion of the hanger served as flight operations, and the southern portion was used for shipping and receiving (PES, 2001). VOCs have been detected in groundwater in the vicinity of the loading dock immediately south of Building 180. Mercury, cobalt, zinc, lead, and mercury were identified above background in shallow soils to the southeast of Building 180 during 2003 (H&A, 2004).

8.2 <u>Outside Maintenance Yard Near Building 161</u>

An outside maintenance yard was formerly located northeast of Building 161. Historical aerial photographs indicate the presence of tool racks in the area. Currently the area is an open lot paved with asphalt and concrete. Groundwater samples in the area indicate elevated PCE concentrations which appear to be a separate source of PCE in this area. This area of impacted groundwater is co-mingled with impacted groundwater from the Building 120 AOPC.

8.3 <u>Above Ground Solvent Tank Near Building 166</u>

An empty 5,207-gallon above ground storage tank (AST) is located near the fence along the northern border of the property, between Buildings 130 and 166. According to permit information, this tank has been present at the Site since at least 1976. The tank is mounted horizontally on concrete tank cradles and is surrounded by a concrete containment vault. The containment vault was reportedly installed in approximately 1993. According to labeling on the tank, as well as tank permits, the tank was used to store various chlorinated solvents including "trichloroethylene, S.C. 1.465", "perchloroethylene", and "chloroethene SM solvent, inhibited 1,1,1-trichloroethane". This later solvent contained 1,1,1-trichloroethane with 1,4-dioxane and 1,2-butylene. A permit from 1976 indicates that a 200-gallon portable AST was associated with this larger tank (PES, 2001).

Groundwater samples collected in the vicinity contained chlorinated solvents and 1,4dioxane which co-mingle with impacted groundwater from the Building 120 AOPC (Figure 7G-7).

8.4 <u>Building 120</u>

Building 120 is located in the central portion of the Site and was the original manufacturing building for the former TRA facility. Building 120 was constructed in 1939. The main portion of the building is a large, open manufacturing room which contained various pieces of equipment. The western portion of Building 120 contained a machine shop and fabrication operations. The eastern portion of Building 120 housed the former sheet metal fabrication workshop. Permits and site facility maps indicate up to four degreasers operated within Building 120, in at least 3 known locations. Two of these former degreaser locations are in the eastern portion of Building 120. Operational permits indicate that the degreasers initially used TCE, but were converted to PCE by early 1973.

An 18- by 30-foot maintenance access pit that was five feet deep was located in the center of the eastern portion of Building 120, in the former sheet metal fabrication area. During closure of the maintenance pit in 1989, soil samples were collected which contained high concentrations of PCE and TCE (GSI, 1992). In 1990, a portion of the concrete floor was removed from the southern end of the access pit and about a foot of soil was excavated. In 1993,

during subsequent closure activities, an additional 5 yards of contaminated soil was removed from the southern end of the access pit (PES, 2001). Soil samples collected at the bottom or just below the base of the excavation indicated high concentrations of PCE, TCE and DCE remained in saturated soil beneath the excavation (IT, 1993). The maintenance pit excavation was subsequently backfilled.

Groundwater samples collected during 2005 site characterization activities from well BLD-120-MW1, just outside the maintenance access pit, and downgradient wells BLD-120-MW2, -MW3, -MW4, -MW5, and –MW6 are presented in the table below.

	Concentration (ug/L)					
Location	PCE	TCE	Total DCE	VC	1,4-Dioxane	
BLD-120-MW1	3,400	2,900	2,890	ND	490	Source
BLD-120-MW2	120	440	916	ND	1.6	200 Feet
BLD-120-MW3	86	57	3900	ND	ND	Downgradient
BLD-120-MW6	68	120	4900	ND	18	Downgraulerit
BLD-120-MW4	6.6	0.96	3.29	ND	ND	350 Feet
BLD-120-MW5	0.82	0.25	0.69	ND	ND	Downgradient

These results appear to demonstrate a trend of dechlorination of the source PCE and TCE, to nearly non-detect levels at the downgradient wells BLD-120-MW4 and BLD-120-MW5.

8.5 <u>South of Building 121</u>

Building 121 is a long, single-story concrete building along the southeastern side of the facility. The building contains a small office and restrooms, with one other main room. Building 121 was reportedly used for raw storage. A railroad spur runs along the southern side of the building, and a concrete loading ramp is also present on the south side of Building 121. During the 2001 site inspection, a gantry crane was still present inside the building, as well as fork lifts, and plant service carts (PES, 2001).

Groundwater results indicate elevated VOCs in groundwater south of Building 121. PCBs have also been detected at concentrations above 1.0 mg/Kg in shallow soil in the vicinity of Manhole 201 during the 2003 Port investigation (H&A, 2004).

8.6 <u>Building 222/228</u>

The area to the northwest of Buildings 125/126 (former Building 228) was historically used as a chemical mill masking tank (PES, 2001) (Table 2-1). An historical facility map indicates former Building 228 housed a chemical mill facility in 1966 or earlier, to at least 1974. A 1972 description indicated the process was a chemical aluminum milling operation, where stamped aluminum parts were dip-masked with a corrosion resistant coating. The coating was then stripped from those portions of the parts which were to be milled, and the parts were then dipped in a sodium hydroxide/sodium sulfide solution, followed by a water rinse, a dip in an

aluminum deoxidizer solution, and a final water rinse. The aluminum de-oxidizer reportedly contained sodium dichromate, nitric acid and sodium fluoroborate.

Based on facility maps, Building 222 was previously located between buildings 126 and 125. A chemical milling operation occupied this former structure. Metal parts were dipped into tanks and coated or "masked" in plastic. An approximately 800-gallon UST/dip tank and associated 800-gallon overflow sump were located on the western side of Building 125, where Building 222 was formerly located. The dip tank consisted of an inner concrete tank with an outer concrete containment. The two tanks were filled with concrete and covered with a concrete slab.

Soil samples collected west of former Building 228 contained identified chromium, cobalt, lead, mercury, nickel, and zinc above calculated site-specific background concentrations (Figures 7S-1 through 7S-4, 7S-6, through 7S-11, 7S-14, and 7S-15).

8.7 <u>Building 146</u>

Building 146 is a two-story, corrugated metal building constructed in 1945. The building is divided by interior walls into a northern and a southern half. The southern half of this building is a warehouse-type area which apparently housed offices and some manufacturing and assembly operations. One historic facility map indicates that the southern portion of Building 146 was used for "engineering model shop and advanced systems/avionics lab/stores/training". Another facility map indicates that the southern and western portions of the building housed manufacturing, assembly, painting and testing. A paint spray booth is present in the western portion of the building. An operational permit indicated aerospace hardware was painted in the spray booth, and then oven dried. A hydraulic elevator is present in the center of the building. Building 146A is an annex that was constructed in 1956.

Groundwater samples collected during the 2005 site characterization activities indicate an area of elevated vinyl chloride concentrations in groundwater southeast of Building 149.

8.8 <u>Building 158</u>

Building 158 is a corrugated metal, two-story shed which is attached to the western side of Building 140. "Metal finishing operations" and "metal parts processing" were conducted in Building 158 (PES, 2001; GTI, 1992d). A process line consisting of a series of dip tanks used in alodining and anodizing processes, including a chromic acid dip tank, were located in the building.

Operational permits from between 1972 and 1979 indicated that the chromic acid dip tank had a capacity of 1,737 gallons, and that 50 pounds of chromic acid were added to the tank every two months (PES, 2001). The chromic acid tank was situated above ground within a

concrete berm and a drainline connected the tank to a sump in the building floor (GTI, 1992d). A 1970 site plan showing the Building 158 layout indicated 24 tanks were used for coating, dipping, rinsing, dyeing and plating. A later 1987 permit indicated there were nine tanks in Building 158, utilizing anodine solution and chromic acid (PES, 2001). A 1987 note in the DEH file for the site also indicated that an overflow sump and collection pit are located in the building (PES, 2001).

A 1976 description of the processes in Building 158, which was included in a permit application, indicated that magnesium parts were dipped into an alkaline cleaning tank, then into a magnesium anodizing tank. Chemicals listed as being used in this processes included sodium dichromate, phosphoric acid and ammonium bifluoride (PES, 2001). The chromic acid dip tank was removed in 1992 and soil sampling confirmed the presence of chromium-impacted soils beneath the former dip tank location.

Chromium impacted soil and groundwater have been detected in the vicinity of the former chromium plating tank within Building 158 (Figures 7S-1, 7S-2, and 7G-1). LNAPL consisting primarily of naphthalene was detected in one temporary sample location advanced near the center of the building (Figure 7G-11) during the 2003 assessment (H&A, 2004).

8.9 <u>Test Cell #4/Area D</u>

Test Cell #4 is a steel walled and roofed building with a concrete floor, located on the east side of Building 157. The building was used for the testing of aircraft engines. Building 144 is located just east of Test Cell #4, and was used as Test Cell #1.

An airframe washdown station was located on the east side of Test Cell #2. According to SDAPCD permits, solvent from a 55-gallon drum was sprayed onto the areas of the airframe requiring cleaning. The waste solvent runoff was directed to a floor drain with a holding tank. This tank consisted of a 550-gallon UST located just outside of former Test Cell #2, about 30 feet east of Test Cell #4. The air frame washing operations were apparently conducted from at least 1967 through 1993. Solvents reportedly used in the airframe washing operation included "active solvent #5221-66, Isopar M and Tolisol 10". Solvent #5221-66 reportedly consisted of 50% aeromatic naphtha, 20% ethyl acetate, 20% MEK, and 10% isopropanol. The solvent "Isopar M" reportedly contained paraffins and naphtha. The solvent "Tolusol 10" reportedly contained a "blend of oxygenated and petroleum thinners and solvents" (PES, 2001).

Two USTs used to supply jet fuel (JP-4 and JP-5) to the test cells were located to the east of Test Cell #4. The two tanks were located east of Test Cell #4, near the airport fence. The UST containing JP-5 was reportedly located adjacent to the northern property boundary, and the JP-4 tank was situated just south of the JP-5 tank. The JP-4 tank was in service by 1972. The jet fuel tanks and the underground waste solvent tank were installed between 1956 and 1970, and

were removed in 1986 (PES, 2001). The area around Test Cell #4, including the waste solvent UST and the jet fuel USTs have been collectively referred to as "Area D"

Area D investigations have shown soil and groundwater impacts by mixed fuel hydrocarbons (aviation fuel, gasoline) and chlorinated solvents (Fluor Daniel, GTI, 1998). Shaw Environmental prepared a report entitled *Site Evaluation and Request for Closure, Area D* (Shaw, 2003). By letter dated May 12, 2004, DEH requested additional information. TDY is currently working with DEH to close this area.

8.10 <u>Building 142</u>

Building 142 is an open-bay structure which served as a vehicle cleaning and service facility. The bay on the southern end of the building was utilized for vehicle steam cleaning, and the two northern bays were used for vehicle repair. A small office and tool crib area is located on the northern end of the building, adjacent to the vehicle repair bays. Two subsurface hydraulic lifts are located in the southern repair bays. During the 2001 inspection, a parts washer and floor drain were noted in the southern portion of the repair bays. An equipment permit from 1976 indicated that a solvent still which processed TCE was present on the west side of Building 142, but that it had not been used for many years. A 2,000 gallon UST used for storage of gasoline was removed from the southeast corner of Building 142 in 1990, and a no further action determination was granted by DEH in October 2000.

The only VOC that was detected significantly above background in the vicinity of Building 142 is PCE in groundwater. The chlorinated VOCs were primarily detected in two areas, one to the north and one south of Building 142.

8.11 <u>Building 131/242</u>

Building 131 is a concrete floored, warehouse-type building with large roll-up bay doors on the east and west sides. The building was reportedly used for "tool fabrication" and "machining operations" and was known as the "tooling area". A paint booth was also reportedly located in an enclosed area in the northeastern corner of the building. During inspection of the building for the 2001 Phase 1 report (PES, 2001), no equipment remained in the building although numerous equipment foundations were apparent on the building floor. Site records indicated that an oven was located in the eastern portion of the building and was used in the manufacture of plastic tooling parts utilized in the production of aircraft drones. A second oven was also used to prepare plaster molds and fiberglass. This second oven was reportedly located in the northeast portion of Building 131. A note in the San Diego County Department of Environmental Health file indicated that cutting oils used in the building were collected by a "sump system", and that drums containing "spent solvents" were stored within the building (PES, 2001).

Building 242 is a small, open-sided storage shed located just west of Building 131. During the 2001 site inspection, crates of various tools and materials were located in and around the shed, however no equipment was present in the area. No information on possible chemical use or storage was located in facility files or agency records (PES, 2001).

VOCs detected in soil and groundwater samples collected from monitor wells and hydropunch borings near Buildings 131 and 242 indicate an apparent source between the buildings (Figures 7G-6 through 7G-14). An apparent release to the backfill for the storm drain or sanitary sewer system in this area is suggested by the VOC distribution pattern.

8.12 <u>Building 156</u>

Building 156 is a manufacturing and assembly building with a 30-foot high ceiling and adjoins the southern wall of Building 152, the drone assembly area. Building 156 was reportedly used for the manufacture of composite and bonded structures. During the 2001 site inspection, the building was empty with the exception of two hydraulic lifts contained in a large, water-filled pit in the northwest corner of the building. Several steel plated floor trenches and vaults were also observed, in addition to several areas where apparent former pits and trenches had been filled with concrete. Some areas of the floor also appeared to contain equipment foundations (PES, 2001).

Operational permits indicated a paint spray booth used to "clean core material prior to bond lay up" was located in the south-central portion of Building 156 from at least 1973 until it was discontinued in 1982. In 1973, the primary solvents reported as being used in the spray booth were MEK and naphtha. A walk-in oven which utilized rollers and brushes for cleaning with TCA was listed on a permit for an abrasives blast cabinet which was used from at least 1981 through at least 1993. The blast cabinet was located on the western wall inside Building 156. A permit for a fiberglass finishing system for the building also included cleaning with brush application of 1,1,1-TCA. A 1987 note to the DEH file indicated that a "spent solvents drum" was also located somewhere within Building 156 and was referred to as "collection station #3" (PES, 2001).

Groundwater and soil gas samples collected during the 2003 assessment indicate the presence of a potential source of VOCs in the northeast portion of Building 156 (Figures 7-7 and 7G-6) (H&A, 2004).

8.13 <u>Explosives Area</u>

The former explosives area was a 30-by 60-foot fenced, gated enclosure which was located in the northwest corner of the Site, adjacent to the airport runway. An historical facility map identified this as an explosives area, however; there were no other records or information on the use of this area. One sample from the 2003 Port investigation contained a PCB concentration

in shallow soil at a concentration of 1.5 mg/Kg (H&A, 2004). No explosives were detected in this area.

8.14 Portions of the Storm Water Conveyance System (SWCS)

PCBs have been detected both onsite and in upgradient areas which contribute to the SWCS servicing the Site. There are many potential sources for PCBs in the commercial and industrial facilities surrounding the Site. PCBs were sampled in sediment from catch basins, filter fabrics, and in-line sample collectors across the Site, and in many offsite locations contributing to the ultimate discharge of storm water to Convair Lagoon. Onsite, elevated PCB concentrations above the 4.6 mg/Kg screening level were detected in the 60-inch storm drain, the east 30-inch storm drain, and tributaries to the 54-inch storm drain at concentrations ranging from non-detect to 380 mg/Kg. Offsite, elevated PCB concentrations above the 4.6 mg/Kg screening level were detected in the 60-inch storm drain at concentrations ranging from non-detect to 7.98 mg/Kg.

No known PCB source areas remain at the Site; however, areas with elevated concentrations of PCBs in surface sediment still remain. Additional investigation is planned to further delineate residual PCBs remaining onsite and on upgradient contributing properties (Figures 7-1 through 7-6). These areas include:

- The former General Dynamics Lindbergh Field site Contributions to the 60inch line and several tributaries, specifically catch basins D-7, D-13, D-20, D-23, D-24, D-30, and D-13-MH-842;
- The San Diego International Airport Facility Contributions to the 54-inch and 60-inch line, specifically catch basins B-18 and B-11; and
- The Airport/TRA Facility Contributions to the 54-inch, 60-inch, 30-inch East to Convair Lagoon, and 30-inch East to San Diego Bay specifically catch basins A-200, A-45, A-48, A-47, A-55, A-134, A-102, A-99 A-132, A-91, A-131, A-124, A-123, A-201, A-145, A-144, A-168, A-172, and A-173.

9. UPDATED CONCEPTUAL SITE MODEL

The Updated Conceptual Site Model (CSM) identifies potential chemical sources, release mechanisms, transport media, routes of chemical migration through the environment, exposure media, and potential receptors, while taking into account the anticipated future Site use. A Conceptual Site Model (CSM) has been prepared for the Site in accordance with CERCLA Guidance for Site Investigation and Remediation (EPA, 1992) and CAO 04-0258. The general CSM was constructed based on a review of the available site information regarding the environmental setting and chemical distribution in environmental media. The general CSM, represents the current understanding of the sources of COPCs, the means by which they are released and transported within and among media, and the exposure pathways and routes by which they may contact human receptors (Figure 9-1). The major components of the CSM are discussed below.

9.1 <u>Constituent Characteristics and Potential Exposure Routes</u>

Potential exposure routes to be considered include both direct and indirect exposure routes. Contact with soil and groundwater constitute potential direct exposure routes. If volatile chemicals are detected in soil, indirect exposures from vapors migrating from the subsurface may occur. Such indirect exposures from vapors are irrelevant for metals, PCBs, or semi-volatile organic compounds (SVOCs). For those chemicals the direct contact routes of exposure, such as incidental ingestion or dermal contact, are the most potentially relevant.

The primary chemicals detected at the Site are PCBs, SVOCs, heavy metals, and volatile organic compounds (VOCs). As a result, both indirect and direct exposure routes will be considered.

9.2 <u>Selection of Receptors</u>

The current land use is industrial, but the proposed future land use for the Site is light industrial/commercial. Therefore, the future onsite receptors of concern that will be evaluated in the risk assessment consist of: (1) an industrial/commercial worker, (2) a landscaper, (3) a construction worker, and (4) a recreational fisher in Convair Lagoon/San Diego Bay. The receptors and exposure pathways selected for evaluation in the risk assessment were based on these considerations and are discussed in more detail below.

9.2.1 Receptors – During Redevelopment Activities

Onsite Construction Worker

Construction workers will likely be involved in site grading and excavation for footings and utility lines when the Site is redeveloped. Due to the depth of typical footings and utilities, it is assumed that construction workers can be exposed to chemicals in the top 10 feet of

soil. Additionally, because groundwater at the Site is relatively shallow, it is assumed that the construction worker may be exposed to impacted groundwater. Although these exposures will be evaluated in the risk assessment, it is anticipated that potential exposure to construction workers would be minimized by adherence to Health and Safety plans required for work on the Site during redevelopment.

9.2.2 Receptors - After Site Redevelopment

Onsite Industrial/Commercial Worker

Potential use of the Site under a commercial designation may include offices, hotels, retail, warehouse, and light manufacturing. It is anticipated that the majority of the Site will be covered by pavement and buildings if the Site is redeveloped for commercial use, which reduces the potential for direct exposure to soils. The potential exists for vapor migration into indoor air from chemicals detected in soil, soil gas and groundwater beneath the Site.

Onsite Landscaper

It is anticipated that the majority of the Site will be covered by pavement and buildings if the Site is redeveloped for commercial land use, which reduces the potential for exposures to soils. However, potential exposures may occur to a future landscaper working at the Site during landscaping activities.

Offsite Fisher

PCBs have the potential to bio-accumulate in fish and other biota within San Diego Bay. Although Convair Lagoon is posted with signs warning against fishing in the area, a potential pathway exists for PCB impacted fish to be ingested by recreational fishers in San Diego Bay.

9.3 <u>Selection of Exposure Pathways</u>

An exposure pathway describes a specific environmental pathway by which an individual (receptor) can be exposed to COPCs present at or originating from a source. The following five elements comprise a complete exposure pathway:

- A source of chemical;
- A mechanism of chemical release to the environment;
- An environmental transport medium (e.g., soil or air);
- A point of potential human contact with the medium; and
- A means of entry (i.e., intake route) into the body (e.g., ingestion).

A complete exposure pathway must exist from the source of chemicals in the environment (i.e., from soil, air, or groundwater) to human receptors in order for chemical intake

 $\overline{\mathcal{L}}$

to occur. If all exposure pathways are incomplete for human receptors, no chemical intake occurs and hence, no human health effects are associated with site-related COPCs. Potentially complete exposure pathways at the Site include:

- Incidental ingestion of COPCs in soil;
- Contact with soil or groundwater and absorption of COPCs through the skin;
- Inhalation of dust generated from soil;
- Inhalation of vapors emanating from soil or soil gas, or groundwater, into outdoor air;
- Inhalation of vapors emanating from soil, soil gas, or groundwater into indoor air;
- Ingestion of impacted biota.

Given the characteristics of the COPCs and the Site conditions, several exposure pathways may be potentially complete. The CSM considers potential exposure pathways at the Site and a determination as to their completeness (Figure 9-1). Potentially complete exposure pathways are described in more detail below.

Incomplete exposure pathways are those pathways in which constituent intakes are considered to be relatively insignificant or nonexistent in comparison to other exposure pathways. Potential exposure pathways that are significant are indicated as being complete and potential exposure pathways that may occur under certain site conditions are indicated as being potentially complete.

Potential exposures exist for soil, soil gas, groundwater, and biota. Because no public groundwater supply wells are located within one mile of the Site, ingestion of impacted groundwater from beneath the Site is unlikely. However, potential indirect exposures, via inhalation of indoor air vapors emanating from groundwater, represent a potential exposure pathway.

9.3.1 Direct Exposure to COPCs in Soil

Future onsite landscapers can potentially come into contact with chemicals in onsite soils via dermal absorption and incidental ingestion after redevelopment. During redevelopment, onsite construction workers can also come in contact with chemicals in onsite soils via these pathways. It is assumed for future onsite commercial workers that direct contact exposures to soil would not occur due to hardscape and landscaping at the Site, but that indirect exposures via the indoor air pathway may occur.

9.3.2 Direct Exposure to COPCs in Groundwater

Onsite construction workers can potentially come into contact with chemicals in shallow groundwater via dermal absorption and incidental ingestion for a short exposure period during excavation activities.

9.3.3 Inhalation of COPCs in Airborne Dust

COPCs, such as SVOCs and metals, can adhere to soil particles; thus, exposure to these COPCs may occur via inhalation of fugitive dust. After redevelopment, much of the land surface is likely to be covered with buildings, asphalt or landscaping thus, minimizing any generation of fugitive dust. However, potential exposures to fugitive dust by a future landscaper working at the Site may occur during landscaping activities. During redevelopment, the onsite construction worker has the greater potential for becoming exposed to dust generated during Site redevelopment activities. For future onsite commercial workers, it is assumed that this pathway is incomplete (due to the presence of hardscape).

9.3.4 Inhalation of Vapors in Indoor and Outdoor Air

VOCs were detected in soil, soil gas and groundwater samples collected at the Site. Because these compounds are volatile, humans could potentially be exposed to vapors migrating through the soil to the surface. During redevelopment, construction workers may also be exposed to outdoor air vapors emanating from the subsurface. However, potential exposure to outdoor air vapors is considered potentially incomplete due to the large amount of ambient air dilution that likely occurs. After redevelopment, future onsite industrial/commercial workers may come in contact with vapors migrating from soil and groundwater to indoor air. Similar to the construction worker, the landscaper is not expected to be exposure to significant amounts of soil vapor due to ambient air dilution.

9.3.5 Ingestion of PCB Impacted Biota

PCBs have been detected in benthic organisms within Convair Lagoon and have the potential to bio-accumulate in fish and other biota within San Diego Bay. However, PCBs were not detected in biota samples collected in 2005 (JNE, 2005). The potential for exposure to PCB impacted material in Convair Lagoon was greatly reduced by the installation of the sand cap in 1998, although recent sampling has indicated that PCB impacted sediment has continued to accumulate in this area. This pathway is considered potentially incomplete due to signs posted in the vicinity of Convair Lagoon warning against fishing in the area and the reduction in PCB impacted sediment available to biota after the installation of the sand cap. However, the potential pathway exists for PCB impacted fish to be ingested by recreational fishers in San Diego Bay.

9.3.6 Summary of Selected Exposure Pathways

The following table summarizes the potential receptor groups, exposure medium and exposure pathways for the CSM.

Receptor Population	Exposure Medium	Potentially Complete Exposure Pathway
Construction Worker	Shallow Soil	 Incidental Ingestion Dermal Contact Fugitive Dust Vapor Inhalation in Outdoor Air
	Groundwater	Dermal ContactVapor Inhalation in Outdoor Air
Future Onsite Industrial/Commercial Worker	Shallow Soil	• Vapor Inhalation in Indoor Air
	Groundwater	 Vapor Inhalation in Indoor Air Vapor Inhalation in Outdoor Air (risk likely negligible)
Future Onsite Landscaper	Shallow Soil	 Incidental Ingestion Dermal Contact Fugitive Dust Vapor Inhalation in Outdoor Air
	Groundwater	Vapor Inhalation in Outdoor Air (risk likely negligible)
Offsite Recreational Fisher	Biota	 Ingestion of PCB impacted biota (risk likely negligible)

10. SUMMARY

During 2005, an extensive investigation of the Site was performed. This investigation consisted of: evaluating soil and groundwater quality data to identify data gaps; performing a statistical analysis of analytical data to calculate background concentrations of metals and cyanide; identifying constituents of potential concern based on historical site use and the prevalence of constituents detected in soil and groundwater. Based on this analysis of existing data, soil, sediment, and groundwater sampling were performed to complete the characterization of the nature and extent of residual constituents at the Site and surrounding properties.

The following is a summary of findings based on the investigations and studies performed in 2005.

Hydrogeologic Conditions

The 44-acre site is constructed upon dredged bay-fill material, placed between 1936 and 1939 during redevelopment of the tidelands on the northern edge of San Diego Bay. Fill material currently ranges from approximately 5-8 feet thick, underlain by bay mud deposits. These bay muds have a gradational contact with the Bay Point formation, approximately 20-30 feet bgs.

Hydraulic gradients at the Site are relatively flat, and vary from approximately 0.001 to 0.008 ft/ft, with steeper gradients in close proximity to the Convair Lagoon and in the immediate vicinity of some storm drains. It appears that the engineered backfill surrounding the storm drains may provide a preferential pathway for groundwater transport, inducing an artificial groundwater gradient in the immediate vicinity of certain storm drains. Groundwater velocity is estimated to range from approximately 1 to 28 feet per year, based on variations in hydraulic conductivity and gradient. More refined velocities will be calculated for area-specific remediation estimates based on data collected during the RI/FS process.

Results of Soil and Groundwater Sampling

Soil and groundwater sampling were conducted to complete the site characterization prior to beginning the RI/FS work. These data more clearly defined impacts in the following areas:

- **Building 180**: Confirmed and defined the extent of a potential VOC and metals source area in the vicinity of the loading dock;
- Northeast of Building 161: Confirmed and defined the extent of a potential PCE source area in former outdoor maintenance yard;
- North of former solvent AST near Building 166: Defined the northern extent of VOC/SVOC impacts;
- Building 120: Confirmed and defined the southern extent of VOC impacts;

- **Building 158**: Confirmed the extent of chromium impacts to groundwater; and
- **Building 131/242 Area**: Confirmed and defined the lateral extent of VOC and SVOC impacts to soil and groundwater.

Results of Storm Water Conveyance System Investigation

Onsite and offsite impacts to the storm water conveyance system each were assessed. Based on results collected in existing, run-in, and in-line sediment samples from catch basins contributing to the Convair Lagoon, PCBs were identified in sediment originating both onsite and offsite. Further data will be collected during the 2005-2006 rainy season and reported in the April 2006 addendum to this Site Characterization Report.

During the 2005 Site Characterization, SWCS sampling activities determined in which branches of the SWCS PCBs at concentrations above 1.0 mg/Kg were present. These are:

General Dynamics – Lindbergh Field

• PCBs above 1.0 mg/Kg were detected in all branches of the SWCS contributing to the 60-inch storm drain;

Airport

- Existing sediment in the 60-inch SWCS contained PCBs at concentrations above 1.0 mg/Kg; and
- Existing sediment at one catch basin (B-18) on a tributary to the 54-inch SWCS contained PCBs above 1.0 mg/Kg.

Site

- Existing sediment within the 60-inch SWCS and in all contributing branches sampled contained PCBs above 1.0 mg/Kg;
- Existing sediment in the A-58 catch basin (tributary to the 54-inch storm drain) and all run in samples contributing to the 54-inch storm drain from the Building 157/Test Cell #4 area contained PCBs above 1.0 mg/Kg;
- Existing and run-in sediment contributing to the 30-inch east storm drain contained PCBs above 1.0 mg/Kg; and
- Existing and run-in sediment contributing to the 30-inch storm drain to San Diego Bay contained PCBs above 1.0 mg/Kg.

SWCS sampling activities in 2005 also identified the sources of PCBs in run-in and in-line samples collected in the following SWCS locations:

- 60-inch line: GD Lindbergh Field, Airport, and on-site;
- 54-inch line: Airport and on-site;
- 30-inch east: on-site; and

• 30-inch to San Diego Bay: on-site.

The video logging assessed the condition and integrity of the SWCS. Based on video logging, the following were observed:

GD Lindbergh Field:

• Due to limited visibility, the physical condition of the 60-inch storm drain could not be fully assessed; however, a large volume of sediment was observed to be built-up within line.

Airport:

• The 54-inch storm drain is in excellent physical condition. There was little to no sediment built-up in the northern reaches of the 54- inch storm drain; however, moderate sediment accumulation was observed in the southern, tidally influenced portion of the line. The SWCS in commuter terminal area (tributaries to 54-inch storm drain) were observed to be in poor condition. Cracks have formed along significant portions of the cement lines, and the roof of the storm drain has collapsed in some sections. Significant sediment build-up was documented in these lines. Due to limited visibility, the physical condition of the 60-inch storm drain could not be fully assessed; however, a large volume of sediment was observed to be built-up within line. A hole was observed in bottom of storm drain approximately 70-feet north of Site boundary, it is estimated to be several feet across.

Site:

• Due to limited visibility, the physical condition of the 60-inch and 54-inch storm drains could not be fully assessed; however, a large volume of sediment was observed to be built-up within lines. The eastern tributary to the 54-inch storm drain appeared to be in good physical condition. Significant sediment was also observed this storm drain. The 30-inch east storm drain was in observed to be in excellent physical condition and contained less overall sediment than other storm drains on-site. No significant cracks or breaks in the integrity of the on-site storm drains were identified through the video reconnaissance

Resolution of Data Gaps

Specific data gaps in soil and groundwater were identified by the Site Characterization Work Plan, as discussed in Section 5. Each of the six data gaps in soil and groundwater were addressed by specific sampling conducted during the 2005 site characterization. Sufficient data has been gathered to move forward with the RI/FS process.

Three data gaps were identified in the Site Characterization Work Plan (SSPA and GeoSyntec, 2005) for the SWCS. Each of the three data gaps were addressed by specific sampling conducted during the 2005 site characterization, and will be augmented by data to be presented in the April 2006 addendum to this Site Characterization Report; however, sufficient

data has been gathered to move forward with the RI/FS process.

Areas of Potential Concern

Fourteen Areas of Potential Concern, were identified for further evaluation in the risk assessment and remedial investigation/feasibility study programs. These areas and the associated constituents are as follows:

- Building 180 loading dock area (metals, VOCs, TPH);
- Outside maintenance yard/tool racks near Building 161 (VOCs);
- Above ground solvent tank near Building 166 (VOCs, SVOCs);
- Building 120 (metals, VOCs, SVOCs, TPH, PCBs);
- South of Building 121 (PCBs);
- Building 222/228 (metals, VOCs, SVOCs, TPH, PCBs, perchlorate);
- Southeast of Building 146 (VOCs);
- Building 158 (metals, VOCs, TPH);
- Test Cell #4/Area D (TPH, VOCs, SVOCs);
- Building 142 Area (VOCs);
- Building 131/242 Area (VOCs, SVOCs, TPH);
- Building 156 (metals, VOCs, TPH);
- Explosives Area (PCBs); and
- SWCS (PCBs).

11. **REFERENCES**

- AMEC Earth & Environmental, Inc. 2002. *Historical Review of Lindbergh Field San Diego International Airport*. Prepared for the Port of San Diego, June 2002.
- Brown and Caldwell Consultants. 1994. Phase I Baseline Assessment, Parts I and II General Dynamics Convair. November, 1994.
- Brown and Caldwell Consultants. 1997. Site Assessment Report, Chlorinated Hydrocarbons, Lindbergh Field Plant Building No. 3 Area, General Dynamics Convair Division. November 1997.
- Brown and Caldwell Consultants. 2002. Convair Lagoon PCB Technical Report. January 2002.
- Brown and Caldwell, February 18, 2005, "Storm Sewer Maintenance at "Middletown" Site", Prepared for San Diego County Regional Airport Authority (on behalf of General Dynamics Corporation), Project 123218-005.
- California Department of Toxic Substances Control (DTSC), 1997. Selecting Inorganic Constituents as Chemicals of Potential Concern for Risk Assessment at Hazardous Waste Sites and Permitted Facilities. February 1997.
- EPA, 1992. Estimating Potential for Occurrence of DNAPL at Superfund Sites, OSWER Publication 9355.4-07FS, January 1992
- ERC Environmental and Energy Services Company. 1989. 15/30 Storm Drain Removal and Replacement, Volume I, Technical Report. April.
- Fluor, Daniel, GTI. 1998. Groundwater Monitoring and Sampling Report, Teledyne Ryan Aeronautical, 2701 Harbor Drive, San Diego, California, Unauthorized Releases #H00419-001 (Area D), H00419-002 and H00419-003. September 21 1998.
- GeoSyntec Consultants. 2002a. PCB Investigation Technical Report, Former Teledyne Ryan Aeronautical Facility, 2701 North Harbor Drive, San Diego, California. April, 2002.
- GeoSyntec Consultants. 2002b. Report of Site Assessment Activities, Former Teledyne Ryan Aeronautical Facility, 2701 North Harbor Drive, San Diego, California. September, 2002.
- GeoSyntec Consultants and S.S. Papadopulos and Associates. 2005a. Addendum to Site Characterization Work Plan, Revised Appendix A, Volume 5, and Volume 6 May 2005.
- GeoSyntec Consultants and S.S. Papadopulos and Associates. 2005b. Addendum to Site Characterization Work Plan, Revised Appendix A, Volume 5, and Volume 6 July 2005.

- GeoSyntec Consultants and S.S. Papadopulos and Associates. 2005. Resolution of Comments on Revised Site Characterization Work Plan Port/TRA Site 2701 North Harbor Drive, San Diego, California, Cleanup and Abatement Order No. R9-2005-0258. 19 July 2005.
- GSI Associates. 1992. Summary Report of Subsurface Investigation, Building 120 Maintenance Access Pit Area, Teledyne Ryan Aeronautical, 2701 Harbor Drive, San Diego, California 92101. March 3 1992.
- GTI, 1992a. Site Assessment Report, Area A, Teledyne Ryan Aeronautical, 2701 Harbor Drive, San Diego, California, HMMD #t000065/H00419-001. April 27
- GTI, 1992b. Site Assessment Report, Area B, Teledyne Ryan Aeronautical, 2701 Harbor Drive, San Diego, California, HMMD #t000065/H00419-001. April 27
- GTI, 1992c. Site Assessment Report, Area C, Teledyne Ryan Aeronautical, 2701 Harbor Drive, San Diego, California, HMMD #t000065/H00419-001. April 27
- GTI, 1992d. Workplan for Area D Assessment, Teledyne Ryan Aeronautical, 2701 Harbor Drive, San Diego, California, HMMD #t000065/H00419-001. June 4.
- GTI, 1995. Historical Data Compilation, Teledyne Ryan Aeronautical, Areas D and Tank 142, 2701 Harbor Drive, San Diego, California. August 4.
- Haley & Aldrich. 2004. *Baseline Site-Wide Investigation at 2701 N. Harbor Drive*, Volumes I V. May 2004.
- Hicks, Ralph T., 1997. *Removal and Disposal of PCB Containing Storm Drain Sediment*. Letter to Port of San Diego. May 15.
- IT Corporation, 1992. Contamination Assessment Report, Teledyne Ryan Aeronautical, Underground Storage Tanks Nos. 7 and 19, 2701 Harbor Drive, San Diego California. May 21.
- IT Corporation, 1993. Closure Assessment, Building 120 Maintenance Access Pit. May.
- JNE & Associates, Inc. 2005. Convair Lagoon Monitoring 2005 Monitoring and Reporting Program 98-21. October, 2005.
- Julien, Pierre Y. 1998. *Erosion and Sediment*, pp. 188-119. Cambridge University Press, Cambridge.

- Leighton & Associates. 1994. DRAFT Baseline Phase II Environmental Site Assessment at the Proposed Above-Ground Fuel Facility, Fuel Transfer Pipeline and Remote Fueling Area, San Diego International Airport, Lindbergh Field, San Diego, California. Report No. 4930816-03. June 9, 1994.
- Papadopulos and Associates and GeoSyntec Consultants. 2005. Site Characterization Work Plan, Revised Appendix A, Volume 5, and Volume 6, May 2005.
- PES Environmental, Inc. 2001. Environmental Assessment, Former Teledyne Ryan Aeronautical Site, 2701 North Harbor Drive, San Diego, California. Prepared for TDY Industries, Inc. January 2001.
- S.S. Papadopulos and Associates, 2005. Site Characterization Work Plan Port/TRA Site 2701 North Harbor Drive, Volumes 1 through 5. January 28, 2005.
- PES Environmental Inc. 2001. Environmental Assessment Former Teledyne Ryan Aeronautical Site, 2701 N. Harbor Drive, San Diego, California, Volumes 1 and 2. January 2001.
- Regional Water Quality Control Board (RWQCB), San Diego Region. 1986a. Investigation of Polychlorinated Biphenyls (PCBs) in the Convair Lagoon Portion of San Diego Bay – Staff Testimony. July 1986.
- RWQCB, San Diego Region. 1986b. Cleanout and Abatement Order No. 86-92 For Teledyne Ryan Aeronautical Near Lindbergh Field, San Diego County. 17 October revised 20 October 1986.
- RWQCB, San Diego Region. 1987a. Addendum No. 1 To Cleanout and Abatement Order No. 86-92 For Teledyne Ryan Aeronautical Near Lindbergh Field, San Diego County. 2 July.
- RWQCB, San Diego Region. 1987b. Addendum No. 2 To Cleanout and Abatement Order No. 86-92 For Teledyne Ryan Aeronautical Near Lindbergh Field, San Diego County. 7 December.
- RWQCB, San Diego Region. 1988. Addendum No. 3 To Cleanout and Abatement Order No. 86-92 For Teledyne Ryan Aeronautical Near Lindbergh Field, San Diego County. 16 September.
- RWQCB, San Diego Region. 1991a. Addendum No. 4 To Cleanout and Abatement Order No. 86-92 For Teledyne Ryan Aeronautical Near Lindbergh Field, San Diego County. 9 December.

- RWQCB, San Diego Region. 1991b. Revised Addendum No. 4 to Cleanout and Abatement Order No. 86-92 For Teledyne Ryan Aeronautical Near Lindbergh Field, San Diego County. 13 December.
- RWQCB, San Diego Region. 1992. Addendum No. 5 To Cleanout and Abatement Order No. 86-92 For Teledyne Ryan Aeronautical Near Lindbergh Field, San Diego County. 4 September.
- RWQCB, San Diego Region. 1993a. Addendum No. 6 To Cleanout and Abatement Order No. 86-92 For Teledyne Ryan Aeronautical Near Lindbergh Field, San Diego County. 4 March.
- RWQCB, San Diego Region. 1993b. Addendum No. 7 To Cleanout and Abatement Order No. 86-92 For Teledyne Ryan Aeronautical Near Lindbergh Field, San Diego County. 30 September.
- RWQCB, San Diego Region. 1994. Water Quality Control Plan for the San Diego Basin (9). September 8.
- RWQCB, San Diego Region. 1995a. Addendum No. 8 to Cleanout and Abatement Order No. 86-92 For Teledyne Ryan Aeronautical Near Lindbergh Field, San Diego County. 9 February.
- RWQCB, San Diego Region. 1995b. Addendum No. 9 to Cleanout and Abatement Order No. 86-92 For Teledyne Ryan Aeronautical Near Lindbergh Field, San Diego County. 30 August.
- RWQCB, San Diego Region. 1996. Addendum No. 10 to Cleanout and Abatement Order No. 86-92 For Teledyne Ryan Aeronautical Near Lindbergh Field, San Diego County. 24 January.
- RWQCB, San Diego Region. 1998. Order No. 98-21, Waste Discharge Requirements for Teledyne Ryan Aeronautical. 13 May.
- RWQCB, San Diego Region. 2004. *Cleanup and Abatement Order #R9-2004-0258*. October, 2004.
- RWQCB, San Diego Region. 2005a. *Revised Cleanup and Abatement Order No. R9-2004-0258*. May 2005.
- RWQCB, San Diego Region. 2005b. Amendment No.1 to Cleanup and Abatement Order No. R9-2004-0258. July 2005.

- RWQCB, San Francisco Bay Region. 2005. Screening For Environmental Concerns at Sites With Contaminated Soil and Groundwater (4th edition). February 2005.
- Sallaz, L. 1987. Letter from Lana Sallaz, concerned citizen, to Ladin Delaney, Regional Water Quality Control Board, Region 9, regarding Convair Plant Releases. April 3, 1987.
- Schwab, Fred, and Prothero, Donald R. 1996. Sedimentary Geology: An Introduction to Sedimentary Rocks and Stratigraphy, P. 33. W. H. Freeman and Company. New York.
- Shaw Environmental Inc. 2003. Site Evaluation and Request for Case Closure: Area D, Former Teledyne Ryan Aeronautical Facility, 2701 Harbor Drive, San Diego, California. Report No. SDCDEH Case No. H00419-001. August 27, 2003.

Teledyne Ryan Aeronautical. 1989. Daily log Remediation – 12/15 Storm Drain.

WESTEC Services. 1986. Final Report: Storm Drain Sediment Removal and Catch Basin Sediment Sampling Activities at Teledyne Ryan Aeronautical. November.

TABLES

<u> </u>	Description	TPH	Metals	VOCs	SVOCs	PCBs
Offices	Building 183 is a stucco and steel-walled building located on the eastern edge of the site. The building was reportedly built in 1951, although an annex connected to Building 183 appears more recent in construction. Site facility maps indicate Building 183 was used for Special Programs. A paint spray booth and oven were located on the exterior of the northern side of the building on a concrete pad. An operational permit indicated the paint spray booth operation included downdraft benches, and was used in the fabrication and coating of fiberglass and graphite-reinforced plastic tools and molds. The southern portion of the building was used as office space. The northern portion of the building contains a former clean room in the interior, northeast corner, and an epoxy-coated floor.	0	0	•	0	0
	Building 180 is a concrete-floored, wooden hangar building, located on the eastern corner of the facility. This building served as an aircraft hangar, as well as shipping and receiving. On the north (runway) side of the building are large, sliding hangar doors. Maps of site operations (PES, 2001) indicate that the northern portion of the hanger served as flight operations, and the southern portion was used for shipping and receiving. An electrical transformer containing PCBs was located in the southern portion of the building. All PCB materials were removed in December 1998 (GeoSyntec, 2002a).	0	0	0	0	•
• 182	Building 182 is located on the northeast corner of Building 180 and is a wood and steel-walled building. Building 182 was reportedly used for storage.	0	0	0	0	0
Loading Dock	A loading dock which would have served the shipping and receiving area is situated on the exterior of Building 180, between the south side of the building and the railroad spur (Figure 1-2). Two hydraulic lifts are also present on the western side of the exterior loading dock.	0	•	•	0	0
• 221	Receiving Storage area	0	0	0	0	0
• 236	QA Calibration Lab/Dry Storage	0	0	0	0	0
181: Tool Stores/Raw Material	Building 181 is a stucco and steel walled building located east of Building 121. Historical facility maps indicate this building was used for the storage of tools and raw materials.	0	0	0	0	0
Outside maintenance	An outside maintenance yard was located to the northeast of Building 161. Area is currently open, with paved asphalt and concrete.	0	0	•	0	0
	Building 160 is a corrugated metal building with a wooden "Quonset-style" roof, adjacent to Building 168. Historical facility maps indicated Building 160 contained tool storage and/or tool fabrication. A lead smelting furnace was also reportedly contained in Building 160. A 1970s operational permit referred to Building 160 as the "foundry".	0	•	0	0	0
• 168	Building 168 is a corrugated metal outbuilding on the east side of Building 160. It was reportedly used for material storage.	0	0	0	0	0
• 161	Building 161 is a corrugated metal building, located north of Building 168. Building 161 housed a wood shop and a paint spray booth. An equipment list for the facility indicated that Building 161 was a "carpenter shop".	0	0	•	0	0
• 169	Building 169 is a corrugated metal building located just south of Building 167. Building 169 formerly housed two curing ovens and air compressors. During a 2001 site inspection, a drum of synthetic compressor lubricant and coolant was noted. A notation on a 1976 operational permit indicated that a 980-gallon solvent AST and solvent still were located in or around Building 169, but were not in use.	•	0	•	0	0
• 167	Building 167 is an open-sided, corrugated metal awning located just north of Building 169. This outside area was used for machine tool cutting and storage.	0	•	0	0	0
· ·	Building 166 is a corrugated steel building located in the northeast corner of the site. Facility maps indicate this building was used for "special programs" and storage of government property. Two covered vaults are located outside, between the northern side of Building 166 and the airport runway fence.	0	0	0	0	0
tank, former	An empty 5,207-gallon aboveground storage tank is located outside, near the fence along the northern border of the property, between Buildings 130 and 166. According to permit information, this tank has been present at the site since at least 1976. The tank is mounted horizontally on concrete tank cradles and is surrounded by a concrete containment vault. The containment vault was reportedly installed in approximately 1993. According to labeling on the tank, as well as tank permits, the tank was used to store various chlorinated solvents including <i>"trichloroethylene, S.C. 1.465"</i> , <i>"perchloroethylene"</i> , and <i>"chloroethene SM solvent, inhibited 1,1,1-trichloroethane"</i> . This later solvent contained 1,1,1-trichloroethane with 1,4-dioxane and 1,2-butylene. A permit from 1976 indicates that a 200-gallon portable AST was associated with this larger tank.	0	0	•	•	0
	Building 121 is a long, single-story concrete building along the southeastern side of the facility. The building contains a small office and restrooms, with one other main room. Building 121 was reportedly used for raw material storage. A railroad spur runs along the southern side of the building, and a concrete loading ramp is also present on the south side of Building 121. During the 2001 site inspection, a gantry crane was still present inside the building, as well as fork lifts, and plant service carts.	0	0	•	0	0
100	Building 100 is a long, two-story office building located south of Building 120.	0	0	0	0	0
& Machine Shop	Building 120 is located in the central portion of the site and is the original manufacturing building at the facility). Building 120 was constructed in 1939. The main portion of the building is a large, open manufacturing room which contained various pieces of equipment. The western portion of Building 120 contained a machine shop and fabrication operations. The eastern portion of Building 120 housed the former sheet metal fabrication workshop. Permits and site facility maps indicate up to four degreasers operated within Building 120, in at least 3 known locations. Two of these former degreaser locations are in the eastern portion of Building 120. Operational permits indicate that the degreasers initially used TCE, but were converted to PCE by early 1973. An 18- by 30-foot maintenance access pit that was five feet deep was located in the center of the eastern portion of Building 120, in the former sheet metal fabrication area. During closure of the maintenance pit in 1989, soil samples were collected which contained high concentrations of PCE and TCE (GIS, 1992). In 1990, a portion of the southern end of the access pit and about a foot of soil was excavated. In 1993, during subsequent closure activities, an additional 5 yards of contaminated soil was removed from the southern end of the access pit (PES, 2001). Soil samples collected at the bottom or just below the base of the excavation indicated high concentrations of PCE, TCE and DCE remained in saturated soil beneath the excavation (IT, 1993). The maintenance pit excavation was subsequently backfilled.	0	•	•	0	•

<u>Note:</u>
•

0

Yellow fill: Site data indicates impacts

Solid dot: Historical use indicates potential for impacts. Constituents were sampled for but not detected.

Building Number & Use	Description	TPH	Metals	VOCs	SVOCs	PCBs
• 170	Building 170 is a corrugated metal outbuilding located on the east side of Building 120, adjacent to Building 110. This building opens into Building 120. An operational permit indicates that a vapor degreaser (#11) was located in building 170. Other operational permits indicate this is the same degreaser that also was located in the south central portion of Building 120.	0	0	•	0	0
• 110	Building 110 is a corrugated metal outbuilding located on the east side of Building 120, between Buildings 112 and 170. The building reportedly contained a lead smelter and four drop hammers. There are four large equipment foundations inside the building, apparently where the drop hammers were located. An operational permit indicated that molten lead from the smelter was poured around the lower half of the drop hammer dies to hold them in place.	0	•	0	0	0
• 112	Building 112 is a corrugated metal outbuilding located on the east side of Building 120, adjacent to Building 110. Building 112 housed router equipment. Equipment bays were present inside the building, and during the 2001 site inspection, metal shavings and oil stains were noted on the concrete floor near former equipment locations.	•	•	0	0	0
• 128	Building 128 is a corrugated metal building located on the eastern side of Building 120, adjacent to Building 111. This building reportedly most recently housed a router operation and may have also housed some chemical processing operations and/or a paint booth. An operating permit indicates that a paint booth which was located in the northern portion of Building 128 was taken out of service in 1976. The permit indicated the spray booth was used to clean "honeycomb" material using spray and compressed air.	0	0	•	0	0
• 111	Building 111 is a corrugated metal outbuilding on the north side of Building 120, near the northeast corner, adjacent to Building 128. This building housed welding operations.	0	•	•	0	0
• 127	Building 127 is a two-story, corrugated metal building on the western side of Building 120, at the southwest corner. Building 127 housed offices and an image processing laboratory. A hydraulic elevator is present in the western portion of the building. An operational permit from 1972 indicated a spray booth was present in the southeast corner of the building. This spray booth was used to apply light sensitive emulsion to sheet metal plates.	•	0	•	0	0
130: Factory Supplies	Building 130 is just east of Building 129 and was used to store factory supplies. Historical site maps also indicate acids and compressed gases were stored in Building 130. A 2001 site inspection indicated gas cylinder storage racks were present in the southeastern portion of the building. According to an historical site map, acids were stored in the northeastern portion of the building. A grated sump or drain was also noted in the concrete floor in the northeastern portion of the building. A covered, fenced chemical storage area surrounded by a concrete berm is located at the southeastern corner of Building 130. Signs indicate that corrosives were stored in this outdoor enclosure.	0	•	•	0	0
• 129	Building 129 is a wood-framed, concrete floored building located on the western side of Building 130 which reportedly contained factory supplies. A 2001 site inspection noted that markings and stains on the floor suggested some type of equipment had been used in the building. One historical facility map noted that chemicals were formerly stored in the building.	0	•	•	0	0
• 123	Building 123 is a small concrete block structure which housed a diesel pump for emergency fire water. This structure is located on the south side of the large water tank which is adjacent to the northern boundary fence. An aboveground diesel tank of less than 50-gallon capacity was adjacent to the diesel pump.	•	0	0	0	0
• 125	Building 125 is located just east of Building 126 and is a corrugated steel building partitioned into three rooms. A 2001 site inspection indicated that some painting may have been done in the northern room. An undated facility map indicates solvents may have been stored just north of the building or possibly in the northern room of Building 125. A 1987 note in the agency file indicated crushed metal drums, cut-up poly drums, waste oil and coolant, and nitric acid were stored on the south side of the building.	•	0	•	0	0
222 (demolished): Chemical Milling Area	Based on facility maps, a building designated "222" was previously located between buildings 126 and 125. Reportedly, a chemical milling operation occupied this former structure. Metal parts were dipped into tanks and coated or "masked" in plastic. An approximately 800-gallon dip tank and associated 800-gallon overflow sump were located on the western side of Building 125, where Building 222 was formerly located. The dip tank consisted of an inner concrete tank with an outer concrete containment. The dip tank was connected to the overflow sump by a 4-inch pipe. This dip tank system was reportedly last used in the 1970s. The tanks were closed between 1990 and 1991. The connecting pipe was removed, and a sample of the masking fluid sludge in the dip tank was found to contain PCE (22,000 mg/kg), toluene (4,000 mg/kg), 1,1,2-2-tetrachloroethylene (750 mg/kg) and xylenes (1,700 mg/kg). Neither the connecting pipe nor the overflow tank reportedly contained any masking fluid. The two tanks were filled with concrete and covered with a concrete slab.	0	•	•	0	0
126: Rework Facility & Electronic Assembly	Building 126 is a brick building with insulated wooden roof which is located just south of Building 115. Reportedly Building 126 was used for tool storage, as a rework facility, electronic facility and possibly a paint shop. At the time of the 2001 inspection, the building was partitioned into various cubicles or workstations.	0	0	•	0	0
(no #): Coolant/Oil Recovery	This un-numbered building is a corrugated steel shed located just north of Building 125. An undated facility map indicates a metal finishing operation and pickling line were formerly present at this location. More recently, the current structure was known as the Coolant/Oil Recovery building and was used for storage of waste coolant and oil.	•	•	•	0	0
228 (demolished): Chemical Milling area	An historical facility map indicates former Building 228 housed a chemical mill facility in 1966 or earlier, to at least 1974. A 1972 description indicated the process was a chemical aluminum milling operation, where stamped aluminum parts were dip-masked with a corrosion resistant coating. The coating was then stripped from those portions of the parts which were to be milled, and the parts were then dipped in a sodium hydroxide/sodium sulfide solution, followed by a water rinse, a dip in an aluminum deoxidizer solution, and a final water rinse. The aluminum de-oxidizer reportedly contained sodium dichromate, nitric acid and sodium fluoroborate.	~	•	•	0	0
115: Flight Simulation Lab	Building 115 is a two-story cinderblock building located northeast of Building 140. The western side of the building has roll-up doors. Site facility maps indicate this building was used as a flight simulation lab. A compressor was housed in a small shed on the exterior, south side of Building 115. Floor staining and worn linoleum, as well as operational permits, indicate that a cold solvent degreaser was located in the southern portion of the building. Operational permits indicate that the degreaser used 1,1,1-TCA, and was in operation by 1985.		0	•	0	0
Building 102	Building 102 is a long, 2-story building located along the south-central property boundary. This building was used for various offices including engineering and executive offices.	0	0	0	0	0
Café Ryan	In the eastern portion of Building 102 is "Café Ryan" which served as the cafeteria for the facility.	0	0	0	0	0
 Former Diesel UST 	A 1000-gallon diesel UST was located within the eastern portion of Building 102, adjacent to the eastern side of Café Ryan. The tank was installed in 1942, and was reportedly emptied in 1989.	•	0	•	0	0

<u>Note:</u>
•

Yellow fill: Site data indicates impacts

Solid dot: Historical use indicates potential for impacts. Constituents were sampled for but not detected.

Building Number & Use	Description	ТРН	Metals	VOCs	SVOCs	PCBs
104: Offices	Building 104 is a two-story office building located off the western end of Building 102, along the southern edge of the facility.	0	0	0	0	0
105: Laboratory	Building 105 is a two-story building located just south of Building 102. The first floor of Building 105 was utilized as a laboratory, with offices occupying the second floor. The first floor has tile or linoleum covered floors, sinks, sumps, ovens, floor drains and trenches. A concrete lined pit was observed during the 2001 inspection. It was covered with a metal plate which had a cutout, presumably to fit some sort of equipment. A 1987 inspection report indicated that a clarifying sump for the laboratory was located in the western portion of the first floor of Building 105. The sump was used to neutralize waste or waste water which was then discharged to the sewer.		0	•	0	0
146/146A: Helicopter Sub- Assembly	Building 146 is a two-story, corrugated metal building constructed in 1945. The building is divided by interior walls into a northern and a southern half. The southern half of this building is a warehouse-type area which apparently housed offices and some manufacturing and assembly operations. One historic facility map indicates that the southern portion of Building 146 was used for "engr model shop + advanced systems/avionics lab/stores/training". Another facility map indicates that the southern and western portions of the building housed manufacturing, assembly, painting and testing. A paint spray booth is present in the western portion of the building. An operational permit indicated aerospace hardware were painted in the spray booth, then oven dried. A hydraulic elevator is present in the center of the building 146A is an annex that was constructed in 1956. Eight spot-welders used in Building 146 used PCB containing capacitors. All capacitors were removed by December 1982 (GeoSyntec, 2002a).	0	0	•	0	•
• 149	Building 149 is adjacent to the southeast corner of Building 140 and was apparently used for office space.	0	0	0	0	0
• 148	Building 148 is adjacent to the southeast corner of Building 140 and is a 3-story, stuccoed building. Building 148 was apparently used for offices, and possibly laboratory or medical examination areas.	0	0	0	0	0
• 147: Storage	Building 147 is a 2-story, concrete walled building located on the northeast corner of Building 146. Building 147 housed a gas fired boiler for hot water supply and was also used for storage of miscellaneous materials such as fluorescent bulbs. An electric cart and forklift were also stored in Building 147. An operational permit indicated that a "Winnin" multi-chambered incinerator was present in Building 147 from at least 1969 to about 1970.		0	0	0	0
• 536	Building 536 is a small building located on the southeast corner of Building 147.	0	0	0	0	0
• 150: Electrical Vault & Compressor	Building 150 is a single-story, wood and plaster structure, located in the corner bordered by Buildings 146A, 146, 140 and 153. This structure has two rooms. The northern room houses a large compressor and air tank, and the southern room reportedly contains an electrical vault ("#7"). A cooling tower is present on the western side of the building.	0	0	0	0	•
• 153	Building 153 is a single-story, wood-sided structure located in a small, outdoor courtyard on the west end of the southern wall of Building 140. It housed a spray booth and curing oven.	0	0	•	0	0
• Downdraft Spray Booth	On the west side of Building 153, located on the south wall of Building 140, is an un-numbered, two-story, bolted steel structure. This building has a concrete foundation with a large, sub-grade floor sump and was used as a coating spray booth. A 2001 site inspection noted that the entire floor, sump and portions of the walls of this structure were stained yellowish-green. An operational permit described this operation as being a "downdraft spray booth, water wash exhaust" with two gas-fired furnaces and a blower which was located in the adjacent Building 153. During the 2001 site inspection, a posted permit indicated that an airframe wash down station was also in this building, and may have utilized solvents.	0	0	•	0	0
140: Helicopter Final Assembly	Building 140 was constructed in 1943, and used as an assembly building. According to facility maps, operations conducted in Building 140 included helicopter final assembly, engineering static testing, firebolt assembly, and fabrication, paint and processing. One facility map indicates a paint shop was located in the western portion of the building. Operational permits indicate that a spray paint conveyor system was moved from another portion of the site and installed in this building in 1966. A process description indicates that parts were moved through the spray booth and then through drying stations using this system. Excess paint spray was collected in a wash down system. This conveyor system may have operated as late as 1994.		0	•	0	0
• 159: Manufactured Parts Stores/Plant	Building 159 is a long, metal sided shed with a concrete floor and soundproofing or insulation in the roof. It is situated along the north side of Building 140. Building 159 was reportedly used to store manufactured parts for plant engineering and maintenance.	0	0	0	0	0
158: Anodizing & Anodizing dip tanks (chromic acid)	Building 158 is a corrugated metal, two-story shed which is attached to the western side of Building 140. "Metal finishing operations" and "metal parts processing" were conducted in Building 158 (PES, 2001; GTI, 1992). A process line consisting of a series of dip tanks used in alodining and anodizing processes, including a chromic acid dip tank, were located in the building. Operational permits from between 1972 and 1979 indicated that the chromic acid dip tank had a capacity of 1,737 gallons, and that 50 pounds of chromic acid were added to the tank every two months (PES, 2001). The chromic acid tank was situated above ground within a concrete berm and a drainline connected the tank to a sump in the building floor (GTI, 1992). A 1970 site plan showing the Building 158 layout indicated there were 24 tanks used for coating, dipping, rinsing, dyeing and plating. A later 1987 permit indicated there were nine tanks in Building 158, utilizing anodine solution and chromic acid (PES, 2001). A 1987 note in the SDCDEH file for the site also indicated that an overflow sump and collection pit was located in the building (PES, 2001). A 1976 description of the processes in Building 158, which was included in a permit application, indicated that magnesium partswere dipped into an alkaline cleaning tank, then into a magnesium anodizing tank. Chemicals listed as being used in this processes included sodium dichromate, phosphoric acid and ammonium bifluoride (PES, 2001). The chromic acid dip tank was removed in	•	•	•	o	0
Auxiliary Diesel Tank	1992 and soil sampling confirmed the presence of chromium-impacted soils beneath for former dip tank location.	•	0	0	0	0

<u>Note:</u>
•

0

Yellow fill: Site data indicates impacts

Solid dot: Historical use indicates potential for impacts. Constituents were sampled for but not detected.

0	Description	TPH	Metals	VOCs	SVOCs	PCBs
131: Tool Fabrication	Building 131 is a concrete floored, warehouse-type building with large roll-up bay doors on the east and west sides. The building was reportedly used for "tool fabrication" and "machining operations" and was known as the "tooling area". A paint booth was also reportedly located in an enclosed area in the northeastern corner of the building. During inspection of the building for the 2001 Phase 1 report, no equipment remained in the building although numerous equipment foundations were apparent on the building floor. Site records indicated that an oven was located in the eastern portion of the building and was used in the manufacture of plastic tooling parts utilized in the production of aircraft drones. A second oven was also used to prepare plaster molds and fiberglass. This second oven was reportedly located in the northeast portion of Building 131. A note in the San Diego County Department of Environmental Health file indicated that cutting oils used in the building were collected by a "sump system", and that drums containing "spent solvents" were stored within the building.	0	•	•	•	0
• 242: Open shed	Building 242 is a small, open-sided storage shed located just west of Building 131. During the 2001 site inspection, crates of various tools and materials were located in and around the shed, however no equipment was present in the area. No information on possible chemical use or storage was located in facility files or agency records.	0	0	0	0	0
142: Garage & Vehicle Maintenance	Building 142 is an open-bay structure which served as a vehicle cleaning and service facility. The bay on the southern end of the building was utilized for vehicle steam cleaning, and the two northern bays were used for vehicle repair. A small office and tool crib area is located on the northern end of the building, adjacent to the vehicle repair bays. Two subsurface hydraulic lifts are located in the southern repair bays. During the 2001 inspection, a parts washer and floor drain were noted in the southern portion of the repair bays. An equipment permit from 1976 indicated that a solvent still which processed TCE was present on the west side of Building 142, but that it had not been used for many years .	0	0	•	0	0
	In 1976, a single 2000-gallon UST containing gasoline was installed just off the southeast corner of Building 142. When the tank was removed in 1990, fuel-impacted soils were observed and removed (Fluor Daniel GTI, 1998). At least thirteen groundwater monitoring wells were installed to evaluate the extent of the release to groundwater. Based on the results of the groundwater investigation, the San Diego County Department of Environmental Health issued a no-further-action in October of 2000.		0	•	0	0
156: Composites & Bonded Structures	Building 156 is a manufacturing and assembly building with a 30-foot high ceiling and adjoins the southern wall of Building 152, the drone assembly area (Figure 1-2). Building 156 was reportedly used for the manufacture of composite and bonded structures. During the 2001 site inspection, the building was empty with the exception of two hydraulic lifts contained in a large, water-filled pit in the northwest corner of the building. Several steel plated floor trenches and vaults were also observed, in addition to several areas where apparent former pits and trenches had been filled with concrete. Some areas of the floor also appeared to contain equipment foundations. Operational permits indicated a paint spray booth used to "clean core material prior to bond lay up" was located in the south-central portion of Building 156 from at least 1973 until it was discontinued in 1982. In 1973, the primary solvents reported as being used in the spray booth were MEK and naphtha. A walk-in oven which utilized rollers and brushes for cleaning with TCA was listed on a permit for an abrasives blast cabinet which was used from at least 1981 through at least 1993. The blast cabinet was located on the western wall inside Building 156. A permit for a fiberglass finishing system for the building also included cleaning with brush application of TCA. A 1987 note to the SDCDEH file indicated that a "spent solvents drum" was also located somewhere within Building 156 and was referred to as "collection station #3".	0	0	•	0	0
• Former Diesel UST#19	A 20,000-gallon diesel UST designated as UST#19 was located just south of Building 156. The tank was installed in 1974 to supply an emergency generator and was removed in 1992. During the tank removal, diesel-impacted soil was observed and removed. Additional soil and groundwater investigations were conducted (GTI, 1993; IT Corp 1992), and the SDCDEH issued a letter in 1994 indicating that no further investigation or remedial action was required unless the planned land use changed		0	•	0	0
• 518	Building 518 is a corrugated metal shed is located on the outer wall of the western side of Building 156. One historical facility map also shows this building being numbered "513". A former 20,000 gallon diesel UST was located just outside the southern wall of Building 156. This tank was designated UST#19 and is discussed in Section 4.2.	•	0	•	0	0
• 245	Building 245 is a corrugated metal shed located on the outer wall of the eastern side of Building 156.	0	0	0	0	0
152: Q2C & Northrop Assembly	Building 152 is situated on the north side of Building 156 (Figure 1-2). The building is concrete floored with 30-foot high ceilings. The building was supposedly constructed in 1952 and known as the "drone assembly building" (PES, 2001). Signage on the building during the 2001 inspection identified it as "Target Assembly". In 1999, onsite records indicated that the building was used for production of the "Firebee", a Vietnam-era retrievable reconnaissance and target drone used in photographic missions. Site maps from unspecified time frames also indicate that the northern half of the building was used for "Northrop Assembly", the southern portion for "Q2C Assembly", and a small central portion of the building was used for 'Cruise Missile". The Q2C was the earlier designation for the Firebee indicating that the principal use of this building did not apparently change during it's use. At the time of the 2001 inspection, over five apparent sumps or floor drains were observed, in addition to numerous machine footprints visible on the concrete floor. Other subfloor features and trenches were present which appeared to have been filled with concrete. On the eastern side of the building, a 20- by 50-foot area was identified by red paint on the floor, and appeared to coincide with the location of a paint booth , identified in early TDY site maps. According to facility permits, the paint booth was present in the building prior to 1972, and was used to paint drone assemblies. Chemicals reported as used in the paint booth in 1974 included "thinners", specifically toluene and xylene; and "clean-up solvents", specifically methyl ethyl ketone (MEK), toluene, naphtha, and "cleaner active solvent 522 1-66". According to operating permits, a 4- by 8-foot, 4-foot deep degreaser was present in Building 152 prior to 1973 through at least 1985. According to operationing permits and records, TCE was used in the degreaser prior to 1973. Subsequently, PCE was used. Information from 1972 indicated about 8 gallons of solvent was used on	0	ο	•	0	•
• 152A: Shed	corner of Building 158. All PCB containing materials were removed in July 1987 (GeoSyntec, 2002a). Building 152A is a small concrete floored shed attached to the northwest side of Building 152. At the time of the 2001 inspection, the concrete floor had an apparent epoxy coating.	0	0	0	0	0

<u>Note:</u> ● ● ○

Yellow fill: Site data indicates impacts

Solid dot: Historical use indicates potential for impacts. Constituents were sampled for but not detected.

Building Number & Use	Description	TPH	Metals	VOCs	SVOCs	PCBs
• 154: X-ray	Similar to Building 230, Building 154 was also located on the side of the drone assembly Building 152. This small attached building housed an x-ray lab, including a former x-ray machine and a wet lab for the development of x-ray films. The southern part of the building included a small winch, and was apparently where the x-ray maching was located. The northeastern corner of the building was apparently the development lab, with black walls, steel sinks, and a metal-lined pass-through cabinet, which connected to the x-ray room itself. A note in the in the SDCDEH file from 1987 indicated that the x-ray laboratory generated waste photographic fixer containing silver. According to the SDCDEH note, approximately 40-gallons of fixer was discharged to the sewer annually.		•	0	0	0
• 230: Foam room	Building 230 is located on the northwestern edge of Building 152. Building 230 has four rooms which housed a restroom and air compressor room in the eastern half of the building, and another air compressor room and a "foam room" in the western half. The air compressors apparently were used to supply compressed air to the operations conducted in the adjoining Building 152. An approximately 100-gallon AST was present in the western air compressor room during the 2001 inspection, however it's usage and contents is not known. The "foam room" was apprently where polyeurathane foams were mixed. In addition, an operational permit indicated that one or more industrial ovens used to process aircraft parts were located in Building 230 from at least 1972 to as late as 1981.	0	0	0	0	0
Test Cell #4 ("Area D")	Test Cell #4 is a steel walled and roofed building with a concrete floor, located on the east side of Building 157. The building was used for the testing of aircraft engines.	•	0	•	0	•
• 144	Building 144 is located just east of Test Cell #4, and was used as Test Cell #1.	•	0	•	0	0
• 145		•	0	•	0	0
• Former Solvent UST	An airframe washdown station was located on the east side of Test Cell #2. According to SDAPCD permits, solvent from a 55-gallon drum was sprayed onto the areas of the airframe requiring cleaning. The waste solvent runoff was directed to a floor drain with a holding tank. This tank consisted of a 550-gallon underground storage tank located just outside of former Test Cell #2, about 30 feet east of Test Cell #4. The air frame washing operation apparently operated from at least 1967 through 1993. Solvents reportedly used in the airframe washing operation indluced "active solvent #5221-66, Isopar M and Tolisol 10". Solvent #5221-66 reportedly consisted of 50% aeromatic naphtha, 20% ethyl acetate, 20% MEK, and 10% isopropanal. The solvent "Isopar M" reportedly contained paraffins and naphtha. The solvent "Tolusol 10" reportedly contained a "blend of oxygenated and petroleum thinners and solvents".	0	0	•	0	0
• Former JP4 AST		•	0	•	0	0
• Former JP4 UST	Two underground storage tanks used to supply jet fuel (JP-4 and JP-5) to the test cells were located to the east of Test Cell #4. The two tanks were located east of Test Cell #4, near the airport fence. The UST containing JP-5 was reportedly located adjacent to the northern property boundary, and the JP-4 tank was situated just south of the JP-5 tank. The JP-4 tank was in service by 1972. The jet		0	•	0	0
 Former JP5 UST 	fuel tanks and the underground waste solvent tank were installed between 1956 and 1970, and were removed in 1986.	•	0	•	0	0
157: Test Cells	Building 157 is a former test cell building and was apparently used for testing of jet engines which included remotely piloted vehicles (PES, 2001). Operational permits indicated methyl isobutyl ketone (MIBK) was used in Building 157. Two former 10,000-gallon kerosene tanks were located just west of Building 157. There tanks were referred to as tanks #17 and #18 and the area has been referred to as "Area C". The tanks were installed in 1954 and removed in 1986. At the time of removal, impacted soil and groundwater were observed. Impacted soils were removed and subsequently, groundwater monitoring wells installed and additional soil samples were collected. Based on the results of soil and groundwater sampling (GTI, 1992), the SDCDEH issued a "no further action" letter	•	0	•	0	0
Explosives Area	The former explosives area was a 30-by 60-foot fenced, gated enclosure which was located in the northwest corner of the facility, adjacent to the airport runway. An historical facility map identified this as an explosives area, however, there were no other records or information on the use of this area.	0	•	•	0	0

<u>Note:</u> •

0

Yellow fill: Site data indicates impacts

Solid dot: Historical use indicates potential for impacts. Constituents were sampled for but not detected.

Table 3-1Identified Constituents of Potential Concern2701 North Harbor DriveSan Diego, California

METALS & CYANIDE ANTIMONY ARSENIC BARIUM BERYLLIUM CADMIUM CHROMIUM CHROMIUM (HEXAVALENT) COBALT COPPER CYANIDE (AMENABLE) CYANIDE (AMENABLE) CYANIDE (TOTAL) LEAD MAGNESIUM MERCURY MOLYBDENUM NICKEL SELENIUM SILVER THALLIUM VANADIUM ZINC SEMI-VOLATILE ORGANIC COMPOUNDS	VOLATILE ORGANIC COMPOUNDS 1,1,1,2-TETRACHLOROETHANE 1,1,1-TRICHLOROETHANE 1,1,2-TRICHLOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHYLENE 1,1-DICHLOROETHYLENE 1,1-DICHLOROPROPENE 1,2,4-TRIMETHYLBENZENE 1,2-DIBROMO-3-CHLOROPROPANE 1,2-BENZPHENANTHRACENE 1,2-DICHLOROBENZENE 1,2-DICHLOROBENZENE 1,3-TRIMETHYLBENZENE 1,3-TRIMETHYLBENZENE 1,3-DICHLOROBENZENE 1,3-DICHLOROBENZENE 1,3-DICHLOROBENZENE 1,3-DICHLOROBENZENE 1,3-DICHLOROBENZENE 1,4-DICHLOROBENZENE 2-BUTANONE (MEK) 2-CHLOROTOLUENE
BARIUM BERYLLIUM CADMIUM CHROMIUM CHROMIUM (HEXAVALENT) COBALT COPPER CYANIDE (AMENABLE) CYANIDE (TOTAL) LEAD MAGNESIUM MERCURY MOLYBDENUM NICKEL SELENIUM SILVER THALLIUM VANADIUM ZINC SEMI-VOLATILE ORGANIC COMPOUNDS	1,1,1-TRICHLOROETHANE1,1,2-TRICHLOROETHANE1,1-DICHLOROETHANE1,1-DICHLOROETHYLENE1,1-DICHLOROPROPENE1,2,4-TRIMETHYLBENZENE1,2,4-TRICHLOROBENZENE1,2-DIBROMO-3-CHLOROPROPANE1,2-BENZPHENANTHRACENE1,2-DICHLOROBENZENE1,2-DICHLOROBENZENE1,3-TRIMETHYLBENZENE1,3-TRIMETHYLBENZENE1,3-DICHLOROETHANE1,3-DICHLOROBENZENE1,3-DICHLOROBENZENE1,3-DICHLOROBENZENE1,3-DICHLOROBENZENE1,3-DICHLOROBENZENE1,4-DICHLOROBENZENE2-BUTANONE (MEK)
BERYLLIUM CADMIUM CHROMIUM CHROMIUM (HEXAVALENT) COBALT COPPER CYANIDE (AMENABLE) CYANIDE (TOTAL) LEAD MAGNESIUM MERCURY MOLYBDENUM NICKEL SELENIUM SILVER THALLIUM VANADIUM ZINC SEMI-VOLATILE ORGANIC COMPOUNDS	1,1-DICHLOROETHANE1,1-DICHLOROETHYLENE1,1-DICHLOROPROPENE1,2,4-TRIMETHYLBENZENE1,2,4-TRICHLOROBENZENE1,2-DIBROMO-3-CHLOROPROPANE1,2-BENZPHENANTHRACENE1,2-DICHLOROBENZENE1,2-DICHLOROBENZENE1,2-DICHLOROETHANE1,3-5-TRIMETHYLBENZENE1,3-DICHLOROBENZENE1,3-DICHLOROBENZENE1,3-DICHLOROBENZENE1,3-DICHLOROPROPANE1,4-DICHLOROBENZENE2-BUTANONE (MEK)
CADMIUM CHROMIUM CHROMIUM (HEXAVALENT) COBALT COPPER CYANIDE (AMENABLE) CYANIDE (AMENABLE) CYANIDE (TOTAL) LEAD MAGNESIUM MERCURY MOLYBDENUM MICKEL SELENIUM SILVER THALLIUM VANADIUM ZINC SEMI-VOLATILE ORGANIC COMPOUNDS	1,1-DICHLOROETHYLENE 1,1-DICHLOROPROPENE 1,2,4-TRIMETHYLBENZENE 1,2,4-TRICHLOROBENZENE 1,2-DIBROMO-3-CHLOROPROPANE 1,2-BENZPHENANTHRACENE 1,2-DICHLOROBENZENE 1,2-DICHLOROBENZENE 1,2-DICHLOROBENZENE 1,3-DICHLOROETHANE 1,3-5-TRIMETHYLBENZENE 1,3-DICHLOROBENZENE 1,3-DICHLOROBENZENE 1,3-DICHLOROBENZENE 1,4-DICHLOROBENZENE 2-BUTANONE (MEK)
CHROMIUM CHROMIUM (HEXAVALENT) COBALT COPPER CYANIDE (AMENABLE) CYANIDE (TOTAL) LEAD MAGNESIUM MERCURY MOLYBDENUM NICKEL SELENIUM SILVER THALLIUM VANADIUM ZINC SEMI-VOLATILE ORGANIC COMPOUNDS	1,1-DICHLOROPROPENE 1,2,4-TRIMETHYLBENZENE 1,2,4-TRICHLOROBENZENE 1,2-DIBROMO-3-CHLOROPROPANE 1,2-BENZPHENANTHRACENE 1,2-DICHLOROBENZENE 1,2-DICHLOROBENZENE 1,3-DICHLOROBENZENE 1,3-DICHLOROBENZENE 1,3-DICHLOROBENZENE 1,3-DICHLOROBENZENE 1,3-DICHLOROBENZENE 1,3-DICHLOROPROPANE 1,4-DICHLOROBENZENE 2-BUTANONE (MEK)
CHROMIUM (HEXAVALENT) COBALT COPPER CYANIDE (AMENABLE) CYANIDE (TOTAL) LEAD MAGNESIUM MERCURY MOLYBDENUM NICKEL SELENIUM SILVER THALLIUM VANADIUM ZINC SEMI-VOLATILE ORGANIC COMPOUNDS	1,2,4-TRIMETHYLBENZENE 1,2,4-TRICHLOROBENZENE 1,2-DIBROMO-3-CHLOROPROPANE 1,2-BENZPHENANTHRACENE 1,2-DICHLOROBENZENE 1,2-DICHLOROBENZENE 1,3-5-TRIMETHYLBENZENE 1,3-DICHLOROBENZENE 1,3-DICHLOROBENZENE 1,3-DICHLOROBENZENE 1,3-DICHLOROPROPANE 1,4-DICHLOROBENZENE 2-BUTANONE (MEK)
COBALT COPPER CYANIDE (AMENABLE) CYANIDE (TOTAL) LEAD MAGNESIUM MERCURY MOLYBDENUM NICKEL SELENIUM SILVER THALLIUM VANADIUM ZINC SEMI-VOLATILE ORGANIC COMPOUNDS	1,2,4-TRICHLOROBENZENE 1,2-DIBROMO-3-CHLOROPROPANE 1,2-BENZPHENANTHRACENE 1,2-DICHLOROBENZENE 1,2-DICHLOROETHANE 1,3,5-TRIMETHYLBENZENE 1,3-DICHLOROBENZENE 1,3-DICHLOROPROPANE 1,4-DICHLOROBENZENE 2-BUTANONE (MEK)
COPPER CYANIDE (AMENABLE) CYANIDE (TOTAL) LEAD MAGNESIUM MERCURY MOLYBDENUM NICKEL SELENIUM SILVER THALLIUM VANADIUM ZINC SEMI-VOLATILE ORGANIC COMPOUNDS	1,2-DIBROMO-3-CHLOROPROPANE 1,2-BENZPHENANTHRACENE 1,2-DICHLOROBENZENE 1,2-DICHLOROETHANE 1,3,5-TRIMETHYLBENZENE 1,3-DICHLOROBENZENE 1,3-DICHLOROPROPANE 1,4-DICHLOROBENZENE 2-BUTANONE (MEK)
CYANIDE (AMENABLE) CYANIDE (TOTAL) LEAD MAGNESIUM MERCURY MOLYBDENUM NICKEL SELENIUM SILVER THALLIUM VANADIUM ZINC SEMI-VOLATILE ORGANIC COMPOUNDS	1,2-BENZPHENANTHRACENE 1,2-DICHLOROBENZENE 1,2-DICHLOROETHANE 1,3,5-TRIMETHYLBENZENE 1,3-DICHLOROBENZENE 1,3-DICHLOROPROPANE 1,4-DICHLOROBENZENE 2-BUTANONE (MEK)
CYANIDE (TOTAL) LEAD MAGNESIUM MERCURY MOLYBDENUM NICKEL SELENIUM SILVER THALLIUM VANADIUM ZINC SEMI-VOLATILE ORGANIC COMPOUNDS	1,2-DICHLOROBENZENE 1,2-DICHLOROETHANE 1,3,5-TRIMETHYLBENZENE 1,3-DICHLOROBENZENE 1,3-DICHLOROPROPANE 1,4-DICHLOROBENZENE 2-BUTANONE (MEK)
LEAD MAGNESIUM MERCURY MOLYBDENUM NICKEL SELENIUM SILVER THALLIUM VANADIUM ZINC SEMI-VOLATILE ORGANIC COMPOUNDS	1,2-DICHLOROETHANE 1,3,5-TRIMETHYLBENZENE 1,3-DICHLOROBENZENE 1,3-DICHLOROPROPANE 1,4-DICHLOROBENZENE 2-BUTANONE (MEK)
MAGNESIUM MERCURY MOLYBDENUM NICKEL SELENIUM SILVER THALLIUM VANADIUM ZINC SEMI-VOLATILE ORGANIC COMPOUNDS	1,3,5-TRIMETHYLBENZENE 1,3-DICHLOROBENZENE 1,3-DICHLOROPROPANE 1,4-DICHLOROBENZENE 2-BUTANONE (MEK)
MERCURY MOLYBDENUM NICKEL SELENIUM SILVER THALLIUM VANADIUM ZINC SEMI-VOLATILE ORGANIC COMPOUNDS	1,3-DICHLOROBENZENE 1,3-DICHLOROPROPANE 1,4-DICHLOROBENZENE 2-BUTANONE (MEK)
MOLYBDENUM NICKEL SELENIUM SILVER THALLIUM VANADIUM ZINC SEMI-VOLATILE ORGANIC COMPOUNDS	1,3-DICHLOROPROPANE 1,4-DICHLOROBENZENE 2-BUTANONE (MEK)
NICKEL SELENIUM SILVER THALLIUM VANADIUM ZINC SEMI-VOLATILE ORGANIC COMPOUNDS	1,4-DICHLOROBENZENE 2-BUTANONE (MEK)
SELENIUM SILVER THALLIUM VANADIUM ZINC SEMI-VOLATILE ORGANIC COMPOUNDS	2-BUTANONE (MEK)
SILVER THALLIUM VANADIUM ZINC SEMI-VOLATILE ORGANIC COMPOUNDS	
THALLIUM VANADIUM ZINC SEMI-VOLATILE ORGANIC COMPOUNDS	2-CHLOROTOLUENE
VANADIUM ZINC SEMI-VOLATILE ORGANIC COMPOUNDS	
ZINC SEMI-VOLATILE ORGANIC COMPOUNDS	ACETONE
SEMI-VOLATILE ORGANIC COMPOUNDS	BENZENE
	BROMOCHLOROMETHANE
	BROMOMETHANE
1,3-DICHLOROBENZENE	CARBON DISULFIDE
1,4-DICHLOROBENZENE	CHLORINATED FLUOROCARBON (FREON 11)
1,4,-DIOXANE	CHLORINATED FLUOROCARBON (FREON 113)
2-METHYLYNAPHTHALENE	CHLOROBENZENE
2-PHENYLBUTANE	CHLOROETHANE
4-CHLORO-3-METHYLPHENOL	CHLOROFORM
ACENAPHTHENE	CHLOROMETHANE
ANILINE DENZO(A) ANTHRACENE	CIS-1,2-DICHLOROETHENE
BENZO(A)ANTHRACENE	CYMENE DIRROMOCHLOROMETHANE
BENZO(A)PYRENE BENZO(B)FLUORANTHENE	DIBROMOCHLOROMETHANE DIBROMOMETHANE
BENZO(G,H,I)PERYLENE	DICHLOROBROMOMETHANE
BENZO(K)FLUORANTHENE	DICHLOROMETHANE
BIS(2-ETHYLHEXYL)PHTHALATE	ETHYLBENZENE
BUTYLBENZYLPHTHALATE	ETHYL-TERT-BUTYL ETHER
CHRYSENE	HEXACHLORO-1,3-BUTADIENE
DIBENZA(A,H)ANTHRACENE	ISOPROPYLBENZENE
DIETHYLPHTHALATE	M-DICHLOROBENZENE
DIMETHYLPHTHALATE	METHYL TERT BUTYL ETHER (MTBE)
DI-N-BUTYPHTHALATE	METHYLBENZENE
FLUORANTHENE	NAPHTHALENE
FLUORENE	N-BUTYLBENZENE
INDENO(1,2,3-CD)PYRENE	N-PROPYLBENZENE
PHENANTHRENE	O-XYLENE
PYRENE	P/M-XYLENE
POLYCHLORINATED BIPHENYLS	TERT-BUTYL ALCOHOL
AROCLOR 1016	TERT-BUTYLBENZENE
AROCLOR 1242	TETRACHLOROETHENE
AROCLOR 1248	TRANS-1,2-DICHLOROETHENE
AROCLOR 1254	TRICHLOROETHENE
AROCLOR 1260	TRICHLOROETHYLENE
AROCLOR 1262	VINYL CHLORIDE
PERCHLORATE	XYLENES (TOTAL)
PERCHLORATE	
TOTAL PETROLEUM HYDROCARBONS	
TOTAL PETROLEUM HYDROCARBONS	

Table 3-2

Calculated Background Concentrations for Metals and Cyanide in Soil and Groundwater 2701 North Harbor Drive San Diego, California

			Soil		
	Max Background (mg/kg)	Min Detected (mg/kg)	Max Detected (mg/kg)	No. Samples	% Detection Above Background
Antimony	3.9	0.3	8.5	408	0.7%
Arsenic	23 ^a	0.4	23	408	0.0%
Barium	440^{a}	1	440	408	0.0%
Beryllium	b	ND	ND	408	b
Cadmium	3.6	0.06	6.8	408	0.7%
Chromium	47	1.8	2200	431	6.0%
Cobalt	23	0.5	100	408	1.5%
Copper	55	0.2	200	408	0.7%
Lead	13.4	0.6	150	408	5.9%
Mercury	0.065	0.03	0.38	409	2.7%
Molybdenum	2.3	0.1	10	408	1.0%
Nickel	14.3	0.7	170	408	3.7%
Selenium	23.7	0.3	30	408	0.5%
Silver	b	0.5	2.5	408	b
Thallium	b	2.2	2.2	408	b
Vanadium	70^{a}	0.8	70	408	0.0%
Zinc	53	2	710	408	5.4%
Cyanide (total)	b	0.08	1.7	161	b
Cyanide (amenable)	b	0.08	1	159	b

			Groundwater		
	Max Background (mg/L)	Min Detected (mg/L)	Max Detected (mg/L)	No. Samples	% Detection Above Background
Antimony	b	0.03	3	121	b
Arsenic	b	ND	ND	121	b
Barium	0.49^{a}	0.0099	0.49	121	0.0%
Beryllium	b	0.0003	0.01	121	b
Cadmium	b	0.0031	0.01	121	b
Chromium	0.03	0.002	250	121	1.7%
Cobalt	0.04	0.0008	0.09	121	0.8%
Copper	b	0.002	0.019	121	b
Lead	b	ND	ND	121	b
Mercury	b	ND	ND	127	b
Molybdenum	0.046	0.004	0.29	121	26.4%
Nickel	0.1	0.003	0.45	121	4.1%
Selenium	0.63	0.025	1.3	121	4.1%
Silver	b	ND	ND	121	b
Thallium	b	ND	ND	121	b
Vanadium	0.076	0.0006	0.13	121	1.7%
Zinc	0.069	0.006	1.3	121	5.0%
Cyanide (total)	b	0.005	0.01	19	b
Cyanide (amenable)	b	ND	ND	19	b

Notes:

a - Entire dataset within background

b - Insufficient detections to determine background

mg/kg - milligram per kilogram

mg/L - milligram per liter

Table 3-3 Comparison of Maximum Background Soil Concentrations With Published Values 2701 North Harbor Drive San Diego, California

	Site-Specific	Literature Ma	ximum Values
	Maximum Background (mg/kg)	California ^{1,2} (mg/kg)	Western US ³ (mg/kg)
Antimony	3.9	1.95	2.6
Arsenic	23	31.2	97
Barium	440	1400	5000
Beryllium	-	2.7	15
Cadmium	3.6	1.7	-
Chromium	47	1579	2000
Cobalt	23	46.9	50
Copper	55	96.4	300
Lead	13.4	97.1	700
Mercury	0.065	0.9	4.6
Molybdenum	2.3	9.6	7
Nickel	14.3	509	700
Selenium	23.7	1.3	4.3
Silver	(2.5)b	8.3	-
Thallium	(2.2)b	1.1	31
Vanadium	70	288	500
Zinc	53	236	2100

Notes:

1. University of California, Riverside and DTSC. 1996. Background Concentrations of Trace and Major Elements in California Soils. Kearney Foundation of Soil Science, Division of Agriculture and Natural Resources.

2. Bradford, G. R., R. J. Arkley, P. F. Pratt and F. L. Bair. 1967. Total content of nine mineral elements in 50 selected benchmark soil profiles of California. Hilgardia 38:541-556.

3. Shacklette, H.T. and J.G. Boerngen. 1984. Element Concentrations in Soils and Other Surficial Materials of the Conterminous United States. U.S. Geological Survey Professional Paper 1270. U.S. Gov. Printing Office, Washington D.C. 105 p. (Westen US data only)

(2.5)b - Insufficient detections to determine site specific background, maximum detection presented - no data for the constituent

mg/kg - milligram per kilogram

Table 3-4Groundwater Monitor Well Construction Details2701 North Harbor DriveSan Diego, California

Well ID	Date Installed	Northing	Easting	Drilling Method	Borehole Depth (msl)	Top of Casing (msl)	Well Depth (ft bgs)	Well Depth (msl)		Screen Slot Size	Sand Pack Type	Completion
B-120-MW4	20-Jul-05	1846188.138	6274477.135	Hollow-Stem Auger	-8.429	7.071	15	-7.929	10	0.010"	#3 quartz sand	Flush Mount
B-120-MW5	20-Jul-05	1846210.514	6274393.927	Hollow-Stem Auger	-7.471	8.029	15	-6.971	10	0.010"	#3 quartz sand	Flush Mount
B-120-MW6	21-Jul-05	1846283.91	6274713.157	Hollow-Stem Auger	-6.772	8.728	15	-6.272	10	0.010"	#3 quartz sand	Flush Mount
B-131-MW1	18-Jul-05	1846823.902	6272827.732	Hollow-Stem Auger	-6.505	8.995	15	-6.005	10	0.010"	#3 quartz sand	Flush Mount
B-131-MW2	19-Jul-05	1846789.935	6272935.156	Hollow-Stem Auger	-6.04	9.46	15	-5.54	10	0.010"	#3 quartz sand	Flush Mount
B-131-MW3	19-Jul-05	1846653.118	6272916.366	Hollow-Stem Auger	-6.304	9.196	15	-5.804	10	0.010"	#3 quartz sand	Flush Mount
B-131-MW4	18-Jul-05	1846477.935	6272916.55	Hollow-Stem Auger	-6.584	8.916	15	-6.084	10	0.010"	#3 quartz sand	Flush Mount
B-131-MW5	21-Jul-05	1846602.39	6272782.342	Hollow-Stem Auger	-5.384	10.116	15	-4.884	10	0.010"	#3 quartz sand	Flush Mount
B-180-MW1	23-Sep-05	1845956.529	6275067.431	Hollow-Stem Auger	-9.613	7.887	15	-7.113	10	0.010"	#3 quartz sand	Flush Mount

Notes:

ft bgs - feet below ground surface msl - mean sea level

Sample Area	Sample Location	Sample Type	Sample Matrix	Date Sampled	PCB	Metals	Cr6	VOCs	SVOCs	Perchlorate	TPH	Grain
А	A-145	Existing	Sediment	8/15/2005	Х							
А	A-153	Existing	Sediment	8/15/2005	Х							
А	A-172	Existing	Sediment	8/15/2005	Х	Х						
А	A-173	Existing	Sediment	8/15/2005	Х							
А	A-181	Existing	Sediment	8/15/2005	Х							
А	A-91	Existing	Sediment	8/15/2005	Х							
А	A-55	Existing	Sediment	8/17/2005	Х							
А	A-201	Existing	Sediment	8/17/2005	Х	X						
А	A-58	Existing	Sediment	8/17/2005		Х						
А	A-169	Existing	Sediment	8/19/2005		Х			Х			
А	A-187	Existing	Sediment	8/19/2005		X			Х			
А	A-22	Existing	Sediment	8/19/2005	Х							
А	A-134	Existing	Sediment	9/7/2005	Х	Х						
А	A-68	Existing	Sediment	9/7/2005	Х	Х						
А	T-13-GW	Hydropunch	Groundwater	6/30/2005				Х	Х			
А	T-14-GW	Hydropunch	Groundwater	6/30/2005				Х	Х		Х	
А	T-15-GW	Hydropunch	Groundwater	6/30/2005				Х	Х			
А	T-16-GW	Hydropunch	Groundwater	6/30/2005				Х	Х			
А	T-17B-GW	Hydropunch	Groundwater	6/30/2005				Х				
А	T-17-GW	Hydropunch	Groundwater	6/30/2005				Х	Х		Х	
А	T-18-GW	Hydropunch	Groundwater	6/30/2005				Х	Х			
А	T-19-GW	Hydropunch	Groundwater	6/30/2005				Х	Х		Х	
А	T-20-GW	Hydropunch	Groundwater	6/30/2005				Х	Х			
А	T-29-GW	Hydropunch	Groundwater	6/30/2005		Х		Х				
А	T-30-GW	Hydropunch	Groundwater	6/30/2005		Х		Х				
А	T-31-GW	Hydropunch	Groundwater	6/30/2005		Х		Х				
А	T-33-GW	Hydropunch	Groundwater	6/30/2005		Х		Х				
А	T-19-S-6.5-T	Hydropunch	Soil	6/30/2005				Х			Х	
А	T-31-S-6T	Hydropunch	Soil	6/30/2005				Х			Х	
А	T-14-S-6B	Hydropunch	Soil	6/30/2005				Х			Х	
А	T-1-GW	Hydropunch	Groundwater	7/5/2005				Х				
А	T2-GW	Hydropunch	Groundwater	7/5/2005				Х				
А	T-32-GW	Hydropunch	Groundwater	7/5/2005		Х		Х				
А	T3-GW	Hydropunch	Groundwater	7/5/2005				Х				
А	T4-GW	Hydropunch	Groundwater	7/5/2005				Х				
А	T5-GW	Hydropunch	Groundwater	7/5/2005				Х				

Sample Area	Sample Location	Sample Type	Sample Matrix	Date Sampled	PCB	Metals	Cr6	VOCs	SVOCs	Perchlorate	TPH	Grain
X - Constituen	t Analyzed					•						
А	T6-GW	Hydropunch	Groundwater	7/5/2005				Х				
А	T-21B-GW	Hydropunch	Groundwater	7/6/2005				Х	Х			
А	T-22-GW	Hydropunch	Groundwater	7/6/2005				Х	Х			
А	T-23-GW	Hydropunch	Groundwater	7/6/2005				Х	Х			
А	T-24-GW	Hydropunch	Groundwater	7/6/2005				Х	Х			
А	T-25-GW	Hydropunch	Groundwater	7/13/2005				Х	Х			
А	T-26-GW	Hydropunch	Groundwater	7/13/2005				Х	Х		Х	
А	T-27-GW	Hydropunch	Groundwater	7/13/2005				Х	Х			
А	T-27-GW-B	Hydropunch	Groundwater	7/13/2005				Х	Х			
А	T-28-GW	Hydropunch	Groundwater	7/13/2005				Х	Х			
А	T-40-GW	Hydropunch	Groundwater	7/13/2005				Х				
А	T-42-GW	Hydropunch	Groundwater	7/13/2005				Х				
А	T-26-S-6.5-B	Hydropunch	Soil	7/13/2005				Х			Х	
А	T-39-S-6.5B	Hydropunch	Soil	7/13/2005				Х			Х	
А	T-40-S-6.5-T	Hydropunch	Soil	7/13/2005				Х			Х	
А	T-34-GW	Hydropunch	Groundwater	7/14/2005				Х	Х		Х	
А	T-36-GW	Hydropunch	Groundwater	7/14/2005				Х	Х			
А	T-37-GW	Hydropunch	Groundwater	7/14/2005				Х	Х		Х	
А	T-38-GW	Hydropunch	Groundwater	7/14/2005				Х	Х			
А	T-41-GW	Hydropunch	Groundwater	7/14/2005				Х				
Α	T-41-GW-B	Hydropunch	Groundwater	7/14/2005				Х				
А	T-34-S-7-T	Hydropunch	Soil	7/14/2005				Х				
А	T-10B	Hydropunch	Groundwater	9/22/2005				Х	Х			
А	T-10GW	Hydropunch	Groundwater	9/22/2005				Х	Х			
А	T-11GW	Hydropunch	Groundwater	9/22/2005		Х		Х			Х	
А	T-7-GW	Hydropunch	Groundwater	9/22/2005				Х	Х			
А	T-8-GW	Hydropunch	Groundwater	9/22/2005				Х	Х			
А	T-9-GW	Hydropunch	Groundwater	9/22/2005				Х	Х			
А	T-43-GW	Hydropunch	Groundwater	11/18/2005				Х	Х			
А	B120-MW4-6.5-B	Monitor Well	Soil	7/20/2005							Х	
А	B120-MW5-6.5	Monitor Well	Soil	7/20/2005							Х	
А	B120-MW6-6-B	Monitor Well	Soil	7/20/2005							Х	
А	B131-MW5-7-T	Monitor Well	Soil	7/20/2005							Х	
А	BLD102-MW3	Monitor Well	Groundwater	7/28/2005				Х				
А	BLD102-MW4	Monitor Well	Groundwater	7/28/2005				Х			Х	

Sample Area	Sample Location	Sample Type	Sample Matrix	Date Sampled	PCB	Metals	Cr6	VOCs	SVOCs	Perchlorate	TPH	Grain
X - Constituent	Analyzed								-			
А	BLD120-MW3	Monitor Well	Groundwater	7/29/2005				Х	Х	X		
А	BLD156-MW1	Monitor Well	Groundwater	7/29/2005				Х				
А	B120-MW6	Monitor Well	Groundwater	8/1/2005				Х	Х		Х	
А	BLD120-MW-1	Monitor Well	Groundwater	8/1/2005				Х	Х	X		
А	BLD120-MW-2	Monitor Well	Groundwater	8/1/2005				Х	Х	X		
А	B156-MW3	Monitor Well	Groundwater	8/2/2005			Х	Х				
А	B120-MW4	Monitor Well	Groundwater	8/2/2005				Х	Х		Х	
А	B120-MW5	Monitor Well	Groundwater	8/2/2005				Х	Х		Х	
А	GT-4	Monitor Well	Groundwater	8/2/2005			Х	Х				
А	SDE	Monitor Well	Groundwater	8/3/2005		Х	Х	Х	Х			
А	TC4-EHP	Monitor Well	Groundwater	8/3/2005		Х	Х	Х	Х			
А	B131-MW1	Monitor Well	Groundwater	8/4/2005				Х	Х			
А	B131-MW2	Monitor Well	Groundwater	8/4/2005				Х	Х			
А	B131-MW3	Monitor Well	Groundwater	8/4/2005				Х	Х			
А	B131-MW4	Monitor Well	Groundwater	8/5/2005				Х	Х		Х	
А	B131-MW5	Monitor Well	Groundwater	8/5/2005				Х	Х		Х	
А	BLD-102-MW-5	Monitor Well	Groundwater	8/5/2005				Х				
А	P1	Monitor Well	Groundwater	8/5/2005				Х	Х	Х		
А	142WDP	Monitor Well	Groundwater	8/8/2005		Х		Х	Х			
А	142WEP	Monitor Well	Groundwater	8/8/2005		Х	Х	Х	Х			
А	142WGP	Monitor Well	Groundwater	8/8/2005		Х		Х	Х			
А	GT4	Monitor Well	Groundwater	8/9/2005		Х						
A	P2	Monitor Well	Groundwater	8/9/2005		Х	Х	Х	Х			
А	TC4EEP	Monitor Well	Groundwater	8/9/2005				Х	Х			
A	TC4EGP	Monitor Well	Groundwater	8/9/2005				Х	Х	X		
Α	BLD156-MW3	Monitor Well	Groundwater	8/10/2005		Х						
А	B180-MW-1	Monitor Well	Groundwater	10/4/2005		Х		Х				
А	A-102	Run-In	Sediment	8/15/2005	Х							
Α	A-104	Run-In	Sediment	8/15/2005	Х							
Α	A-144	Run-In	Sediment	8/15/2005	Х							
Α	A-168	Run-In	Sediment	8/15/2005	Х							
Α	A-124	Run-In	Sediment	8/17/2005	Х							
Α	A-123	Run-In	Sediment	8/17/2005	Х							
Α	A-131	Run-In	Sediment	8/17/2005	Х							
А	A-103	Run-In	Sediment	8/17/2005	Х							

Sample Area	Sample Location	Sample Type	Sample Matrix	Date Sampled	PCB	Metals	Cr6	VOCs	SVOCs	Perchlorate	TPH	Grain
X - Constituent	Analyzed											
А	A-45	Run-In	Sediment	8/17/2005	Х							
А	A-200	Run-In	Sediment	8/19/2005	Х							
А	A-47	Run-In	Sediment	8/19/2005	Х							
А	A-48	Run-In	Sediment	8/19/2005	Х							
А	A-64	Run-In	Sediment	8/19/2005	Х							
А	A-99	Run-In	Sediment	8/19/2005	Х							
А	A-132	Run-In	Sediment	9/7/2005	Х	Х		Х				
В	B1 BOTTOM	Existing	Sediment	3/18/2005	Х							
В	B13	Existing	Sediment	3/18/2005	Х							
В	B14	Existing	Sediment	3/18/2005	Х							
В	B18	Existing	Sediment	3/18/2005	Х							
В	B19	Existing	Sediment	3/18/2005	Х							
В	B20	Existing	Sediment	3/18/2005	Х							
В	B24	Existing	Sediment	3/18/2005	Х							
В	B25	Existing	Sediment	3/18/2005	Х							
В	B26	Existing	Sediment	3/18/2005	Х							
В	B28	Existing	Sediment	3/18/2005	Х							
В	B6 BOTTOM	Existing	Sediment	3/18/2005	Х							
В	B9 BOTTOM	Existing	Sediment	3/18/2005	Х							
В	B-4	Existing	Sediment	9/7/2005	Х							
В	B-11	In-Line	Sediment	8/29/2005	Х							
В	B-21	In-Line	Sediment	8/29/2005	Х							
В	B-23	In-Line	Sediment	9/7/2005	Х							
В	B-27	In-Line	Sediment	9/9/2005	Х							
В	TC4-WIP	Monitor Well	Groundwater	9/19/2005				Х	Х			
В	B1 TOP	Run-In	Sediment	3/18/2005	Х							
В	B10 TOP	Run-In	Sediment	3/18/2005	Х							
В	B11 TOP	Run-In	Sediment	3/18/2005	Х							
В	B2 TOP	Run-In	Sediment	3/18/2005	Х							
В	B3 TOP	Run-In	Sediment	3/18/2005	Х							
В	B6 TOP	Run-In	Sediment	3/18/2005	Х							
В	B8 TOP	Run-In	Sediment	3/18/2005	Х							
В	B9 TOP	Run-In	Sediment	3/18/2005	Х							
В	B8	Run-In	Sediment	4/29/2005	Х							
В	B-1	Run-In	Sediment	8/29/2005	Х							

Sample Area	Sample Location	Sample Type	Sample Matrix	Date Sampled	PCB	Metals	Cr6	VOCs	SVOCs	Perchlorate	TPH	Grain
X - Constituen	t Analyzed					•			•	•		
В	B-11	Run-In	Sediment	8/29/2005	Х							
В	B-14	Run-In	Sediment	8/29/2005	Х							
В	B-2	Run-In	Sediment	8/29/2005	Х							
В	B-21	Run-In	Sediment	8/29/2005	Х							
В	B-18	Run-In	Sediment	9/7/2005	Х							
С	C-1	Existing	Sediment	8/23/2005	Х							
С	C-2	Existing	Sediment	8/23/2005	Х							
D	D12	Existing	Sediment	3/23/2005	Х							
D	D13	Existing	Sediment	3/23/2005	Х							
D	D15	Existing	Sediment	3/23/2005	Х							
D	D-21	Existing	Sediment	4/22/2005	Х							
D	D-22	Existing	Sediment	4/22/2005	Х							
D	D-23 BOTTOM	Existing	Sediment	4/22/2005	Х							
D	D-24 BOTTOM	Existing	Sediment	4/22/2005	Х							
D	D-25	Existing	Sediment	4/22/2005	Х							
D	D-26	Existing	Sediment	4/22/2005	Х							
D	D-13MH-842	Existing	Sediment	9/9/2005	Х							X
D	D-20	Existing	Sediment	9/9/2005	Х							
D	D-27	Existing	Sediment	9/9/2005	Х							Х
D	D-28	Existing	Sediment	9/9/2005	Х							
D	D-29	Existing	Sediment	9/9/2005	Х							Х
D	D-30	Existing	Sediment	9/9/2005	Х							
D	D-7	Existing	Sediment	9/28/2005	Х	X						Х
D	D-23 TOP	Run-In	Sediment	4/22/2005	Х							
D	D-24 TOP	Run-In	Sediment	4/22/2005	Х							
D	D-28	Run-In	Sediment	9/9/2005	Х							
D	C-2/B-24-119VID	Video	Sediment	9/8/2005	Х							
D	MH-B23-242N-70S	Video	Sediment	9/28/2005	Х							
D	MH-B23-242N-0	Video	Sediment	9/28/2005	Х							
E	E-1	Existing	Sediment	8/22/2005	Х							
E	E-2	Existing	Sediment	8/22/2005	Х							
E	E-10	Existing	Sediment	8/23/2005	Х							
E	E-13	Existing	Sediment	8/23/2005	Х							
E	E-14	Existing	Sediment	8/23/2005	Х							
E	E-17	Existing	Sediment	8/23/2005	Х							

Sample Area	Sample Location	Sample Type	Sample Matrix	Date Sampled	PCB	Metals	Cr6	VOCs	SVOCs	Perchlorate	TPH	Grain
X - Constituent	t Analyzed											
Е	E-18	Existing	Sediment	8/23/2005	Х							
Е	E-22	Existing	Sediment	8/23/2005	Х							
Е	E-7	Run-In	Sediment	8/22/2005	Х							
Е	E-21	Run-In	Sediment	8/23/2005	Х							
E	E-25	Run-In	Sediment	8/23/2005	Х							
G	G1	Existing	Sediment	3/9/2005	Х							
G	G3	Existing	Sediment	3/9/2005	Х							
G	G1	In-Line	Sediment	9/12/2005	Х							
G	G2	In-Line	Sediment	9/12/2005	Х							
G	G3	In-Line	Sediment	9/12/2005	Х							
Н	H5	Existing	Sediment	3/23/2005	Х							
Н	H-5	In-Line	Sediment	9/14/2005	Х							
Ι	I1	Existing	Sediment	3/9/2005	Х							
Ι	I2	Existing	Sediment	3/9/2005	Х							
Ι	I1	Run-In	Sediment	4/29/2005	Х							
L	L-1	Lagoon	Sediment	8/11/2005	Х							
L	L-2	Lagoon	Sediment	8/11/2005	Х							
L	L-3	Lagoon	Sediment	8/11/2005	Х							
L	L-4	Lagoon	Sediment	8/11/2005	Х							
L	L-5	Lagoon	Sediment	8/11/2005	Х							
L	L-6	Lagoon	Sediment	8/11/2005	Х							

Note:

X - Constituent Analyzed

Table 3-6Groundwater Elevations on 7/27/052701 North Harbor DriveSan Diego, California

LOCATION	Time (AM)	Time (PM)	LNAPL	DTW (AM)	DTW (PM)	DNAPL	TD
			(ft bgs)				
142EAP	10:20	15:42	ND	7.11	7.04	ND	9.83
142NC	10:27	15:49	6.99	6.99	7.00	ND	9.68
142SC	10:37	15:52	ND	6.97	6.99	ND	9.65
142WEP	09:58	15:07	ND	6.64	6.50	ND	9.83
142WDP	10:44	15:58	ND	6.81	6.84	ND	9.85
142WFP	10:35	16:02	ND	6.46	6.44	ND	9.80
142WGP	10:48	16:10	ND	6.34	6.22	ND	9.81
142WCP	10:30	16:00	ND	6.89	6.66	ND	9.85
142EBP	10:45	15:57	ND	6.32	6.28	ND	9.84
BLD102-MW-3	08:23	15:51	ND	7.21	7.21	ND	17.10
BLD102-MW-4	08:59	16:31	ND	6.55	6.51	ND	17.80
BLD102-MW-5	11:00	16:18	ND	7.02	7.02	ND	15.20
BLD120-MW-1	07:59	14:53	ND	5.94	5.90	ND	14.80
BLD120-MW-2	07:48	14:58	ND	6.19	6.16	ND	14.60
BLD120-MW-3	08:02	14:46	ND	6.22	6.21	ND	14.35
B120-MW4	08:38	15:38	ND	7.85	4.81	ND	13.80
B120-MW5	08:45	15:44	ND	6.72	5.69	ND	13.50
B120-MW6	09:54	15:05	ND	6.08	6.07	ND	14.70
B131-MW1	10:22	15:17	ND	6.29	6.21	ND	12.10
B131-MW2	10:16	15:22	ND	6.70	6.69	ND	12.60
B131-MW3	10:04	15:27	ND	6.54	6.51	ND	14.50
B131-MW4	09:12	15:18	ND	6.20	6.18	ND	13.90
B131-MW5	09:25	15:25	ND	7.51	7.50	ND	13.55
BLD156-MW1	10:10	15:32	ND	6.49	6.51	ND	15.55
BLD156-MW2	10:12	15:35	ND	6.85	6.85	ND	15.22
BLD156-MW3	10:05	15:37	ND	6.30	6.32	ND	15.30
GT1	10:35	15:50	ND	7.11	7.06	ND	15.63
GT2	10:40	15:55	ND	6.81	6.74	ND	14.54
GT3	10:25	15:47	ND	6.98	6.90	ND	15.38
GT4	10:22	15:44	ND	7.03	6.95	ND	15.70
P1	07:42	14:10	ND	7.95	7.92	ND	15.34
P2	09:45	15:02	ND	6.25	6.24	ND	14.83
Р3	09:42	15:00	ND	6.48	6.45	ND	15.34
SDE	09:32	14:55	ND	6.80	6.79	ND	9.20
SDW	09:35	14:57	ND	6.80	6.82	ND	9.37
TC4ECP	08:40	14:29	ND	8.15	8.10	ND	15.15
TC4EDP	09:20	14:23	ND	7.20	7.20	ND	15.03

Table 3-6Groundwater Elevations on 7/27/052701 North Harbor DriveSan Diego, California

LOCATION	Time (AM)	Time (PM)	LNAPL	DTW (AM)	DTW (PM)	DNAPL	TD
			(ft bgs)				
TC4EEP	08:27	14:20	ND	7.51	7.49	ND	9.80
TC4EGP	08:05	14:15	ND	7.45	7.38	ND	9.95
TC4EHP	08:17	14:18	ND	6.95	6.93	ND	15.35
TC4WCP	08:45	14:32	ND	7.98	7.96	ND	15.45
TC4WDP	08:50	14:35	ND	8.12	8.10	ND	15.31
TC4WEP	07:50		ND	DRY	DRY	ND	5.6
TC4WHP	08:55	14:37	ND	8.43	8.30	ND	9.90
TC4ENC	08:36	14:36	ND	7.51	7.52	ND	14.87
TC4WNC	09:00	14:42	8.01	8.09	8.05	ND	11.15
? Near TC4WNC	09:10	14:45	ND	8.74	8.74	ND	34.81
TC4WSC	09:05	14:50	ND	8.00	8.04	ND	10.89

Notes:

DNAPL - Dense non-aqueous phase liquid DTW - Depth to water ft bgs - feet below ground surface LNAPL - Light non-aqueous phase liquid TD - Total Depth

Table 3-7Laboratory Analytical Methods2701 North Harbor DriveSan Diego, California

Analyte	EPA Method	Matrix	Container	Preservation	Maximum Hold Time
Chromium VI	7199	Water	500 mL HDPE	Cool, 4 °C	24 hours
	7196A	Soil	8 oz glass	Cool, 4 °C	24 hours
Matala	6010	Water	500 mL HDPE	HNO ₃ , pH<2	180 days
Metals	6010	Soil	8 oz glass	Cool, 4 °C	180 days
РСВ	8082	Water	1 L amber glass	Cool, 4 °C	5 days
РСБ	8082	Soil	4 oz glass	Cool, 4 °C	5 days
VOC	8260	Water	3-40 mL vial	HCl, pH<2, Cool, 4°C	14 days
VOC	8260	Soil	Variable	Cool, 4 °C	48 hours
SVOC	8270	Water	1 L amber glass	Cool, 4 °C	7 days
svoc -	8270	Soil	4 oz glass	Cool, 4 °C	14 days

Notes:

EPA - United States Environmental Protection Agency

HDPE - High density polyethylene

PCB - Polychlorinated biphenyls

SVOC - Semi-volatile organic compound

VOC - Volatile organic compound

Table 4-1Groundwater Monitoring and Monitoring Well Abandonment Plan2701 North Harbor DriveSan Diego, California

Location	Depth (ft bgs)	Status	Recommendation	Rationale	Diameter
142EAP	9.66	active	abandon	close well spacing, 1 inch, poor condition, cracked bentonite	1
142NC	9.45	active	retain	necessary for monitoring	4
142SC	9.36	active	abandon	close well spacing	4
142WEP	9.65	active	abandon	abandon close well spacing, 1 inch, poor condition, cracked bentonite	
142WDP	9.6	active	abandon	close well spacing, 1 inch, poor condition, cracked bentonite	1
142WFP	9.6	active	abandon	close well spacing, 1 inch, poor condition, cracked bentonite	1
142WGP	9.5	active	abandon	close well spacing, 1 inch, poor condition	1
142WCP	9.56	active	abandon	close well spacing, 1 inch, poor condition, cracked bentonite	1
142EBP	9.65	active	abandon	close well spacing, 1 inch, poor condition, cracked bentonite	1
BLD102-MW-3	16.8	active	retain	necessary for monitoring	4
BLD102-MW-4	17.8	active	retain	necessary for monitoring	4
BLD120-MW-1	14.54	active	retain	necessary for monitoring	4
BLD120-MW-2	13.3	active	retain	necessary for monitoring	4
BLD120-MW-3	14.1	active	retain	necessary for monitoring	4
B120-MW4	15	active	retain	necessary for monitoring	2
B120-MW5	15	active	retain	necessary for monitoring	2
B120-MW6	15	active	retain	necessary for monitoring	2
B131-MW1	15	active	retain	necessary for monitoring	2
B131-MW2	15	active	retain	necessary for monitoring	2
B131-MW3	15	active	retain	necessary for monitoring	2
B131-MW4	15	active	retain	necessary for monitoring	2
B131-MW5	15	active	retain	necessary for monitoring	2
B180-MW1	15	active	retain	necessary for monitoring	2

Table 4-1Groundwater Monitoring and Monitoring Well Abandonment Plan2701 North Harbor DriveSan Diego, California

Location	Depth (ft bgs)	Status	Recommendation	Rationale	Diameter
BLD156-MW1	15.15	active	repair and retain	necessary for monitoring, loose seal	4
BLD156-MW2	15	active	retain	necessary for monitoring	4
BLD156-MW3	15.05	active	retain	necessary for monitoring	4
GT1	15.4	active	abandon	close well spacing	4
GT2	14.45	active	abandon	close well spacing	4
GT3	15.08	active	abandon	close well spacing	4
GT4	15.4	active	retain	groundwater control	4
P1	15.1	active	repair and retain	groundwater control, no seal	4
P2	14.56	active	retain	necessary for monitoring	4
Р3	15.1	active	abandon	close well spacing	4
SDE	9.02	active	abandon	screened to surface, possible pathway	2
SDW	9.15	active	abandon	screened to surface, possible pathway	2
TC4ECP	14.95	active	retain	groundwater control	4
TC4EDP	14.72	active	retain	groundwater control	4
TC4EEP	9.7	active	repair and retain	necessary for monitoring, cracked bentonite	1
TC4EGP	9.7	active	repair and retain	necessary for monitoring, cracked bentonite	1
TC4EHP	15.1	active	repair and retain	groundwater control, compromised seal	4
TC4EJP	-	on airport property	abandon	close well spacing	-
TC4WCP	15.05	active	repair and retain	active UST investigation	4
TC4WDP	15.05	active	repair and retain active UST investigation		4
TC4WEP	5.6	dry/blocked with bentonite	I apandon I -		1
TC4WHP	9.6	active	abandon	close well spacing, 1 inch, cracked/destroyed	1

Table 4-1Groundwater Monitoring and Monitoring Well Abandonment Plan2701 North Harbor DriveSan Diego, California

Location	Depth (ft bgs)	Status	Recommendation	Rationale	Diameter
TC4WIP	15.22	on airport Property/active	retain	necessary for monitoring	4
TC4ENC	14.6 active abandon		groundwater control, no seal	4	
TC4WNC	10.95	active repair and retain		NAPL, non-functioning seal	4
TC4WNC Deep	34.5	active	repair and retain	active UST investigation, poor seal	4
TC4WSC	TC4WSC 10.62 active repair and retain		active UST investigation, no seal	4	

Note:

ft bgs - feet below ground surface

NAPL - Non-aqueous phase liquid

UST - Underground storage tank

- unknown

			Aroclor							
Sample ID	Date Sampled	Units	1016	1221	1232	1242	1248	1254	1260	
Airport/TRA Site										
A-102R	8/15/2005	mg/kg	ND<1.7	ND<3.5	ND<1.7	ND<1.7	ND<1.7	1.20 J,D	2.20 D	
A-103E	8/17/2005	mg/kg	ND<0.59	ND<1.2	ND<0.59	ND<0.59	ND<0.59	ND<0.59	ND<0.59	
A-103R	8/17/2005	mg/kg	ND<0.067	ND<0.14	ND<0.067	ND<0.067	ND<0.067	0.10 D	ND<0.067	
A-104R	8/15/2005	mg/kg	ND<0.034	ND<0.069	ND<0.034	ND<0.034	ND<0.034	0.094	0.1	
A-123R	8/17/2005	mg/kg	ND<0.81	ND<1.7	ND<0.81	ND<0.81	ND<0.81	1 D	ND<0.81	
A-124R	8/17/2005	mg/kg	ND<3.4	ND<6.8	ND<3.4	ND<3.4	5.20 D	3.5 D	ND<3.4	
A-131R	8/17/2005	mg/kg	ND<1.7	ND<3.4	ND<1.7	ND<1.7	2.80 D	3.2 D	2.90 D,Y	
A-132R	9/7/2005	mg/kg	ND<69	ND<140	ND<69	ND<69	ND<69	ND<69	380.0 D,X	
A-134E	9/7/2005	mg/kg	ND<0.83	ND<1.7	ND<0.83	24 D,Z	ND<0.83	ND<0.83	1.40 D	
A-144R	8/15/2005	mg/kg	ND<1.7	ND<3.5	ND<1.7	ND<1.7	ND<1.70 X	11 D	3.90 D	
A-145E	8/15/2005	mg/kg	ND<1.7	ND<3.5	ND<1.7	ND<1.7	7.30 D,Z	5.7 D	2.30 D	
A-153E	8/15/2005	mg/kg	ND<0.13	ND<0.26	ND<0.13	ND<0.13	ND<0.13 X	0.35	0.21	
A-168R	8/15/2005	mg/kg	ND<0.17	ND<0.34	ND<0.17	ND<0.17	1.20 D,Z	0.810 D	0.880 D	
A-172E	8/15/2005	mg/kg	ND<2.2	ND<4.3	ND<2.2	ND<2.2	ND<2.20 X	13.0 D	8.70 D	
A-173E	8/15/2005	mg/kg	ND<0.48	ND<0.97	ND<0.48	ND<0.48	ND<0.48 X	3.8 D	1.40 D	
A-181E	8/15/2005	mg/kg	ND<0.057	ND<0.12	ND<0.057	ND<0.057	ND<0.057	0.15	0.26	
A-200R	8/19/2005	mg/kg	ND<8.4	ND<17	ND<8.4	ND<8.4	ND<8.4	60 D	ND<8.4	
A-201E	8/17/2005	mg/kg	ND<6	ND<13	ND<6	ND<6	52 D	ND<6.0	ND<6.0	
A-22E	8/19/2005	mg/kg	ND<0.075	ND<0.16	ND<0.075	ND<0.075	ND<0.075	ND<0.075	ND<0.075	
A-45R	8/17/2005	mg/kg	ND<0.69	ND<1.4	ND<0.69	ND<0.69	ND<0.69	0.870 D	1.0 D	
A-47R	8/19/2005	mg/kg	ND<1.7	ND<3.4	ND<1.7	ND<1.7	ND<1.7	5.20 D	ND<1.7	
A-48R	8/19/2005	mg/kg	ND<0.31	ND<0.63	ND<0.31	ND<0.31	ND<0.31	1.30 D	0.5 D	
A-55E	8/17/2005	mg/kg	ND<0.66	ND<1.4	ND<0.66	ND<0.66	ND<0.66	2.8 D	ND<0.66	
A-64R	8/19/2005	mg/kg	ND<0.049	ND<0.1	ND<0.049	ND<0.049	ND<0.049	0.099	0.068	
A-64R RE	8/19/2005	mg/kg	ND<0.05	ND<0.1	ND<0.05	ND<0.05	ND<0.05	0.23	0.16	
A-68E	9/7/2005	mg/kg	ND<0.045	ND<0.089	ND<0.045	ND<0.045	ND<0.045	0.044 J	ND<0.045	
A-91E	8/15/2005	mg/kg	ND<0.38	ND<0.76	ND<0.38	ND<0.38	0.850 D,Z	1.70 D	0.740 D	
A-99R	8/19/2005	mg/kg	ND<0.17	ND<0.35	ND<0.17	ND<0.17	2.90 D	ND<0.17	0.390 D	

			Aroclor							
Sample ID	Date Sampled	Units	1016	1221	1232	1242	1248	1254	1260	
Airport										
B10-E-TOP	3/19/2005	mg/kg	ND<0.72	ND<1.4	ND<0.72	ND<0.72	0.20 J,D	ND<0.72	ND<0.72	
B11-E-TOP	3/19/2005	mg/kg	ND<0.15	ND<0.29	ND<0.15	ND<0.15	ND<0.15	ND<0.15	ND<0.15	
B-11I	8/29/2005	mg/kg	ND<0.29	ND<0.58	ND<0.29	7.0 D,Z	ND<0.29	ND<0.29	0.98	
B-11R	8/29/2005	mg/kg	ND<0.034	ND<0.068	ND<0.034	0.043 Z	ND<0.034	0.012 J	ND<0.034	
В13-Е	3/19/2005	mg/kg	ND<0.86	ND<1.7	ND<0.86	ND<0.86	ND<0.86	ND<0.86	ND<0.86	
B14-E	3/19/2005	mg/kg	ND<0.75	ND<1.5	ND<0.75	ND<0.75	ND<0.75	ND<0.75	ND<0.75	
B-14R	8/29/2005	mg/kg	ND<0.034	ND<0.068	ND<0.034	ND<0.034	ND<0.034	0.011 J	ND<0.034	
B18-E	3/19/2005	mg/kg	ND<0.17	ND<0.33	ND<0.17	ND<0.17	ND<0.17	1.60 D	ND<0.17	
B-18R	9/7/2005	mg/kg	ND<0.069	ND<0.14	ND<0.069	ND<0.069	ND<0.069	0.25	ND<0.069	
В19-Е	3/18/2005	mg/kg	ND<0.089	ND<0.18	ND<0.089	ND<0.089	0.14	ND<0.089	ND<0.089	
B1-E-BOTTOM	3/18/2005	mg/kg	ND<0.08	ND<0.16	ND<0.08	ND<0.08	ND<0.08	ND<0.08	ND<0.08	
B1-E-TOP	3/18/2005	mg/kg	ND<0.069	ND<0.14	ND<0.069	ND<0.069	ND<0.069	ND<0.069	ND<0.069	
B-1R	8/29/2005	mg/kg	ND<0.033	ND<0.067	ND<0.033	ND<0.033	ND<0.033	ND<0.033	ND<0.033	
В20-Е	3/18/2005	mg/kg	ND<0.088	ND<0.17	ND<0.088	ND<0.088	ND<0.088	ND<0.088	ND<0.088	
B-21I	8/29/2005	mg/kg	ND<0.16	ND<0.31	ND<0.16	ND<0.16	ND<0.16	0.160 J	ND<0.16	
B-21R	8/29/2005	mg/kg	ND<0.033	ND<0.067	ND<0.033	ND<0.033	ND<0.033	ND<0.033	ND<0.033	
B-23I	9/7/2005	mg/kg	ND<0.076	ND<0.15	ND<0.076	ND<0.076	ND<0.076	0.13	ND<0.076	
В24-Е	3/18/2005	mg/kg	ND<0.084	ND<0.17	ND<0.084	ND<0.084	0.086	ND<0.084	ND<0.084	
В25-Е	3/18/2005	mg/kg	ND<0.08	ND<0.16	ND<0.08	ND<0.08	ND<0.08	ND<0.08	ND<0.08	
В26-Е	3/18/2005	mg/kg	ND<0.067	ND<0.13	ND<0.067	ND<0.067	ND<0.067	ND<0.067	ND<0.067	
B-27I	9/9/2005	mg/kg	ND<0.35	ND<0.69	ND<0.35	ND<0.35	ND<0.35	ND<0.35	ND<0.35	
В28-Е	3/18/2005	mg/kg	ND<0.078	ND<0.15	ND<0.078	ND<0.078	ND<0.078	ND<0.078	ND<0.078	
B2-E-TOP	3/18/2005	mg/kg	ND<0.075	ND<0.15	ND<0.075	ND<0.075	ND<0.075	ND<0.075	ND<0.075	
B-2R	8/29/2005	mg/kg	ND<0.033	ND<0.067	ND<0.033	ND<0.033	ND<0.033	ND<0.033	ND<0.033	
B3-E-TOP	3/19/2005	mg/kg	ND<0.78	ND<1.6	ND<0.78	ND<0.78	ND<0.78	ND<0.78	ND<0.78	
B-4E	9/7/2005	mg/kg	ND<0.17	ND<0.33	ND<0.17	ND<0.17	ND<0.17	ND<0.17	ND<0.17	
B6-E-BOTTOM	3/18/2005	mg/kg	ND<0.084	ND<0.17	ND<0.084	ND<0.084	ND<0.084	ND<0.084	ND<0.084	
B6-E-TOP	3/18/2005	mg/kg	ND<0.068	ND<0.14	ND<0.068	ND<0.068	ND<0.068	ND<0.068	ND<0.068	
B8-E-TOP	3/19/2005	mg/kg	ND<0.074	ND<0.15	ND<0.074	ND<0.074	0.11	ND<0.074	ND<0.074	
B8-R	4/29/2005	mg/kg	ND<0.068	ND<0.14	ND<0.068	ND<0.068	0.086	0.064 J	ND<0.068	
B9-E-BOTTOM	3/19/2005	mg/kg	ND<0.23	ND<0.44	ND<0.23	ND<0.23	0.24	ND<0.23	ND<0.23	
B9-E-TOP	3/19/2005	mg/kg	ND<0.7	ND<1.4	ND<0.7	ND<0.7	0.230 J,D	ND<0.7	ND<0.7	
MH-B23-242N-0	9/28/2005	mg/kg	ND<0.13	ND<0.25	ND<0.13	ND<0.13	ND<0.13	ND<0.13	ND<0.13	
MH-B23-242N-70S	9/28/2005	mg/kg	ND<0.11	ND<0.21	ND<0.11	ND<0.11	ND<0.11	ND<0.11	0.17	

			Aroclor								
Sample ID	Date Sampled	Units	1016	1221	1232	1242	1248	1254	1260		
Sky Chefs											
C-1 E	8/24/2005	mg/kg	ND<0.069	ND<0.14	ND<0.069	ND<0.069	ND<0.069	0.034 J	ND<0.069		
C-2 E	8/24/2005	mg/kg	ND<0.11	ND<0.21	ND<0.11	ND<0.11	ND<0.11	ND<0.11	ND<0.11		
C-2/B-24-119VID	9/8/2005	mg/kg	ND<0.17	ND<0.34	ND<0.17	ND<0.17 Z	ND<0.17	0.300 D	ND<0.17		
General Dynamics	General Dynamics										
D12-E	3/23/2005	mg/kg	ND<0.093	ND<0.18	ND<0.093	ND<0.093	ND<0.093	2.0 D	1.0 D		
D13-E	3/23/2005	mg/kg	ND<0.087	ND<0.17	ND<0.087	ND<0.087	ND<0.087	ND<0.087	1.3 D		
D-13MH-842	9/9/2005	mg/kg	ND<0.44	ND<0.85	ND<0.44	ND<0.44	0.330 J,D	ND<0.44	1.9 D		
D15-E	3/23/2005	mg/kg	ND<0.11	ND<0.21	ND<0.11	ND<0.11	ND<0.11	ND<0.11	0.48		
D-20E	9/9/2005	mg/kg	ND<0.43	ND<0.85	ND<0.43	ND<0.43	ND<0.43	ND<0.43	3.20 D		
D21E	4/22/2005	mg/kg	ND<0.089	ND<0.18	ND<0.089	ND<0.089	ND<0.089	0.056 J	ND<0.17		
D22E	4/22/2005	mg/kg	ND<0.085	ND<0.17	ND<0.085	ND<0.085	ND<0.085	0.026 J	ND<0.085		
D23E BOTTOM	4/22/2005	mg/kg	ND<0.18	ND<0.34	ND<0.18	ND<0.18	ND<0.18	0.34	0.66		
D23E TOP	4/22/2005	mg/kg	ND<0.074	ND<0.15	ND<0.074	ND<0.074	ND<0.074	0.32	0.47		
D24E BOTTOM	4/22/2005	mg/kg	ND<0.097	ND<0.19	ND<0.097	ND<0.097	ND<0.097	0.32	0.55		
D24E TOP	4/22/2005	mg/kg	ND<0.074	ND<0.15	ND<0.074	ND<0.074	ND<0.074	0.64 D	1.0 D		
D25E	4/22/2005	mg/kg	ND<0.083	ND<0.17	ND<0.083	ND<0.083	ND<0.083	0.12	0.13		
D26E	4/22/2005	mg/kg	ND<0.081	ND<0.16	ND<0.081	ND<0.081	ND<0.081	0.061 J	ND<0.081		
D-27E	9/9/2005	mg/kg	ND<0.088	ND<0.18	ND<0.088	ND<0.088	ND<0.088	ND<0.088	0.092		
D-28E	9/9/2005	mg/kg	ND<0.042	ND<0.083	ND<0.042	ND<0.042	ND<0.042	ND<0.042	0.08 X		
D-28R	9/9/2005	mg/kg	ND<0.069	ND<0.14	ND<0.069	ND<0.069	ND<0.069	ND<0.069	0.084		
D-29E	9/9/2005	mg/kg	ND<0.069	ND<0.14	ND<0.069	ND<0.069	ND<0.069 Z	0.19	0.16		
D-30E	9/9/2005	mg/kg	ND<0.27	ND<0.53	ND<0.27	ND<0.27	ND<0.27	1.2	ND<0.27		
D-7E	9/29/2005	mg/kg	ND<0.17	ND<0.32	ND<0.17	ND<0.17	ND<0.17	ND<0.17	1.0 D		
Rental Car Area	-										
E-10 E	8/23/2005	mg/kg	ND<0.064	ND<0.13	ND<0.064	ND<0.064	ND<0.064	ND<0.064	ND<0.064		
E-13 E	8/23/2005	mg/kg	ND<0.069	ND<0.14	ND<0.069	ND<0.069	ND<0.069	0.035 J	ND<0.069		
E-14 E	8/23/2005	mg/kg	ND<0.067	ND<0.14	ND<0.067	ND<0.067	ND<0.067	0.033 J	ND<0.067		
E-17 E	8/23/2005	mg/kg	ND<2	ND<4	ND<2	ND<2	ND<2	ND<2	ND<2		
E-18 E	8/24/2005	mg/kg	ND<0.064	ND<0.13	ND<0.064	ND<0.064	ND<0.064	ND<0.064	ND<0.064		
E-1E	8/22/2005	mg/kg	ND<0.042	ND<0.084	ND<0.042	ND<0.042	ND<0.042	0.020 JP	ND<0.042		
E-21 R	8/24/2005	mg/kg	ND<0.064	ND<0.13	ND<0.064	ND<0.064	ND<0.064	ND<0.064	ND<0.064		
E-22 E	8/24/2005	mg/kg	ND<0.067	ND<0.14	ND<0.067	ND<0.067	ND<0.067	ND<0.067	ND<0.067		
E-25 R	8/24/2005	mg/kg	ND<0.067	ND<0.14	ND<0.067	ND<0.067	ND<0.067	ND<0.067	ND<0.067		
E-2E	8/22/2005	mg/kg	ND<0.033	ND<0.066	ND<0.033	ND<0.033	ND<0.033	0.064	ND<0.033		
E-7R	8/22/2005	mg/kg	ND<0.034	ND<0.068	ND<0.034	ND<0.034	ND<0.034	0.053	ND<0.034		

			Aroclor								
Sample ID	Date Sampled	Units	1016	1221	1232	1242	1248	1254	1260		
City of San Diego Offsite											
G1-E	3/9/2005	mg/kg	ND<0.18	ND<0.35	ND<0.18	ND<0.18	ND<0.18	ND<0.18	ND<0.18		
G-1I	9/12/2005	mg/kg	ND<0.22	ND<0.43	ND<0.22	ND<0.22	ND<0.22	ND<0.22	ND<0.22		
G-2I	9/12/2005	mg/kg	ND<0.071	ND<0.14	ND<0.071	ND<0.071	ND<0.071	ND<0.071	ND<0.071		
G3-E	3/9/2005	mg/kg	ND<0.086	ND<0.17	ND<0.086	ND<0.086	ND<0.086	ND<0.086	ND<0.086		
G-4I	9/12/2005	mg/kg	ND<0.21	ND<0.41	ND<0.21	ND<0.21	ND<0.21	ND<0.21	ND<0.21		
H5-E	3/23/2005	mg/kg	ND<0.077	ND<0.15	ND<0.077	ND<0.077	ND<0.077	ND<0.077	ND<0.077		
H-5I	9/14/2005	mg/kg	ND<0.098	ND<0.2	ND<0.098	ND<0.098	ND<0.098	ND<0.098	ND<0.098		
I1-E	3/9/2005	mg/kg	ND<0.085	ND<0.17	ND<0.085	ND<0.085	ND<0.085	ND<0.085	0.026 J		
I1-R	4/29/2005	mg/kg	ND<0.1	ND<0.2	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1		
I2-E	3/9/2005	mg/kg	ND<0.077	ND<0.15	ND<0.077	ND<0.077	ND<0.077	ND<0.077	ND<0.077		
Convair Lagoon	-										
L-1	8/11/2005	mg/kg	ND<0.61	ND<1.3	ND<0.61	18 D,Z	ND<0.61	3.10 D	2.50 D		
L-2	8/11/2005	mg/kg	ND<0.11	ND<0.23	ND<0.11	ND<0.11	ND<0.11	ND<0.11	ND<0.11		
L-3	8/11/2005	mg/kg	ND<0.041	ND<0.082	ND<0.041	0.220 Z	ND<0.041	0.07	0.047		
L-4	8/11/2005	mg/kg	ND<0.11	ND<0.23	ND<0.11	0.320 Z	ND<0.11	ND<0.11	ND<0.11		
L-5	8/11/2005	mg/kg	ND<0.32	ND<0.64	ND<0.32	9.60 D,Z	ND<0.32	1.0 D	0.47 D		
L-6	8/11/2005	mg/kg	ND<0.095	ND<0.2	ND<0.095	0.520 D,Z	ND<0.095	0.092 J,D	ND<0.095		

Note:

Sample types:

E - Existing sediment sample

I - In-line sample

R - Run-in sample

VID - Sample collected remotely with video rover

BOTTOM - Sample collected from bottom of catch basins

TOP - Sample collected from the catch basin grate

mg/kg - milligram per kilogram

ND< - Analyte not detected at concentrations greater than or equal to reporting limits (RL)

bold - Analyte detected

D - Result from diluted sample

J - Analyte detected above method detection limit (MDL), but below RL

X - Aroclor was confirmed qualitatively

Y - Amount reported is estimated due to presence of Aroclor 1260 and heavier Aroclors

Z - Indicates a weathered Aroclor

Table 7-2 GeoSy Concentrations of Semi-Volatile Organic Compounds Detected in Sediment Samples 2701 North Harbor Drive San Diego, California San Diego, California

		A-58E	A-132R	A-169E	A-187E
	Units	8/17/2005	9/7/2005	8/19/2005	8/19/2005
Semi-Volatile Organic Compounds			-		
1,2,4-Trichlorobenzene	mg/kg	ND<35	ND<1.7	ND<33	ND<49
1,2-Dichlorobenzene	mg/kg	ND<35	ND<1.7	ND<33	ND<49
1,3-Dichlorobenzene	mg/kg	ND<35	ND<1.7	ND<33	ND<49
1,4-Dichlorobenzene	mg/kg	ND<35	ND<1.7	ND<33	ND<49
1,4-Dioxane	mg/kg	ND<35	ND<1.7	ND<33	ND<49
2,4,5-Trichlorophenol	mg/kg	ND<35	ND<1.7	ND<33	ND<49
2,4,6-Trichlorophenol	mg/kg	ND<35	ND<1.7	ND<33	ND<49
2,4-Dichlorophenol	mg/kg	ND<35	ND<1.7	ND<33	ND<49
2,4-Dimethylphenol	mg/kg	ND<35	ND<1.7	ND<33	ND<49
2,4-Dinitrophenol	mg/kg	ND<180	ND<8.6	ND<170	ND<250
2.4-Dinitrotoluene	mg/kg	ND<35	ND<1.7	ND<33	ND<49
2,6-Dinitrotoluene	mg/kg	ND<35	ND<1.7	ND<33	ND<49
2-Chloronaphthalene	mg/kg	ND<35	ND<1.7	ND<33	ND<49
2-Chlorophenol	mg/kg	ND<35	ND<1.7	ND<33	ND<49
2-Methylnaphthalene	mg/kg	ND<35	ND<1.7	ND<33	ND<49
2-Methylphenol	mg/kg	ND<35	ND<1.7	ND<33	ND<49
2-Nitroaniline	mg/kg	ND<71	ND<3.5	ND<67	ND<100
2-Nitrophenol	mg/kg	ND<35	ND<3.5	ND<33	ND<100
3,3'-Dichlorobenzidine	mg/kg	ND<33		ND<55 ND<67	ND<100
· ·	00		ND<3.5		
3,4-Methylphenol	mg/kg	ND<71	ND<3.5	ND<67	ND<100
3-Nitroaniline	mg/kg	ND<71	ND<3.5	ND<67	ND<100
4,6-Dinitro-2-methylphenol	mg/kg	ND<71	ND<3.5	ND<67	ND<100
4-Bromophenyl-phenylether	mg/kg	ND<35	ND<1.7	ND<33	ND<49
4-Chloro-3-methylphenol	mg/kg	ND<35	ND<1.7	ND<33	ND<49
4-Chloroaniline	mg/kg	ND<35	ND<1.7	ND<33	ND<49
4-Chlorophenyl-phenylether	mg/kg	ND<35	ND<1.7	ND<33	ND<49
4-Nitroaniline	mg/kg	ND<71	ND<3.5	ND<67	ND<100
4-Nitrophenol	mg/kg	ND<180	ND<8.6	ND<170	ND<250
Acenaphthene	mg/kg	ND<35	ND<1.7	ND<33	ND<49
Acenaphthylene	mg/kg	ND<35	ND<1.7	ND<33	ND<49
Aniline	mg/kg	ND<35	ND<1.7	ND<33	ND<49
Anthracene	mg/kg	ND<35	ND<1.7	ND<33	ND<49
Benzo(a)anthracene	mg/kg	ND<35	ND<1.7	6.3 J,D	ND<49
Benzo(a)pyrene	mg/kg	ND<35	ND<1.7	9.4 J,D	ND<49
Benzo(b)fluoranthene	mg/kg	ND<35	ND<1.7	13 J,D	ND<49
Benzo(g,h,i)perylene	mg/kg	ND<35	ND<1.7	9.5 J,D	ND<49
Benzo(k)fluoranthene	mg/kg	ND<35	ND<1.7	5.7 J,D	ND<49
Benzoic Acid	mg/kg	ND<180	ND<8.6	ND<170	ND<250
Benzyl Alcohol	mg/kg	ND<35	ND<1.7	ND<33	ND<49
bis (2-Chloroethoxy) methane	mg/kg	ND<35	ND<1.7	ND<33	ND<49
bis (2-chloroethyl) Ether	mg/kg	ND<35	ND<1.7	ND<33	ND<49
bis (2-chloroisopropyl) Ether	mg/kg	ND<35	ND<1.7	ND<33	ND<49
bis (2-ethylhexyl) Phthalate	mg/kg	12 J,D	0.51 J,D	ND<33	ND<49
Butylbenzylphthalate	mg/kg	ND<35	0.21 J,D	ND<33	ND<49
Chrysene	mg/kg	ND<35	ND<1.7	10 J,D	ND<49
Dibenzo(a,h)anthracene	mg/kg	ND<35	ND<1.7	10 J,D 1.6 J,D	ND<49
Dibenzofuran	mg/kg	ND<35	ND<1.7	ND<33	ND<49
Diethylphthalate	mg/kg	ND<35	ND<1.7	ND<33	ND<49
Dimethylphthalate		ND<35	ND<1.7		ND<49
* *	mg/kg			ND<33	
di-n-butylphthalate	mg/kg	5.1 J,D	0.14 J,D	ND<33	ND<49

Table 7-2 GeoSystem Concentrations of Semi-Volatile Organic Compounds Detected in Sediment Samples 2701 North Harbor Drive San Diego, California San Diego

	Units	A-58E 8/17/2005	A-132R 9/7/2005	A-169E 8/19/2005	A-187E 8/19/2005
Semi-Volatile Organic Compounds			-		•
di-n-octylphthalate	mg/kg	ND<35	ND<1.7	ND<33	ND<49
Fluoranthene	mg/kg	ND<35	ND<1.7	12 J,D	ND<49
Fluorene	mg/kg	ND<35	ND<1.7	ND<33	ND<49
Hexachlorobenzene	mg/kg	ND<35	ND<1.7	ND<33	ND<49
Hexachlorobutadiene	mg/kg	ND<35	ND<1.7	ND<33	ND<49
Hexachlorocyclopentadiene	mg/kg	ND<35	ND<1.7	ND<33	ND<49
Hexachloroethane	mg/kg	ND<35	ND<1.7	ND<33	ND<49
Indeno (1,2,3-cd) pyrene	mg/kg	ND<35	ND<1.7	8 J,D	ND<49
Isophorone	mg/kg	ND<35	ND<1.7	ND<33	ND<49
Naphthalene	mg/kg	ND<35	ND<1.7	ND<33	ND<49
Nitrobenzene	mg/kg	ND<35	ND<1.7	ND<33	ND<49
n-Nitrosodimethylamine	mg/kg	ND<35	ND<1.7	ND<33	ND<49
n-Nitroso-di-n-propylamine	mg/kg	ND<35	ND<1.7	ND<33	ND<49
n-Nitrosodiphenylamine/Diphenylamine	mg/kg	ND<35	ND<1.7	ND<33	ND<49
Pentachlorophenol	mg/kg	ND<110	ND<5.2	ND<100	ND<150
Phenanthrene	mg/kg	ND<35	ND<1.7	4.7 J,D	ND<49
Phenol	mg/kg	ND<35	ND<1.7	ND<33	ND<49
Pyrene	mg/kg	ND<35	ND<1.7	14 J,D	ND<49
Pyridine	mg/kg	ND<35	ND<1.7	ND<33	ND<49

Note:

mg/kg - milligram per kilogram

ND< - Analyte not detected at concentrations greater than or equal to reporting limits (RL)

bold - Analyte detected

D - Result from diluted sample

J - Analyte detected above method detection limit (MDL), but below RL

Table 7-3Concentrations of Metals Detected in Sediment Samples2701 North Harbor DriveSan Diego, California

	Units	ESL	A-58E 8/17/2005	A-68E 9/7/2005	A-132R 9/7/2005	A-134E 9/7/2005	A-169E 8/19/2005	A-172E 8/15/2005	A-187E 8/19/2005	A-201E 8/17/2005	D-7E 9/29/2005
Metals					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
Antimony	mg/kg	40	ND<11 N	ND<13 N*	ND<10 N*	ND<12 N*	ND<10	ND<13 N	20	ND<23 N	ND<10 N
Arsenic	mg/kg	5.5	4.6	19 N	6.9 N	3.7 N	3.4	3.4	18	3.4 J	2
Barium	mg/kg	1500	1000	51 *	420 *	2900 *	710	255 N	433	112	26
Beryllium	mg/kg	8	0.6	0.2 B	0.3 B	0.2 B	0.2 J	0.2	0.1 J	0.2 J	0.1
Cadmium	mg/kg	7.4	29	0.8 B	312	3	3.2	2.9 N	0.9 J	1.3	1
Chromium	mg/kg	750	322	35	1080	279	17	55 N	1130	427	93
Cobalt	mg/kg	10	17	4.8	12	4.2	2.6	4.8	17	6.3	2
Copper	mg/kg	230	950	360 N*	801 N*	60 N*	538	91 N	230	152	25
Lead	mg/kg	750	858 N	618 N*	532 N*	71 N*	248	253	131	582 N	136
Mercury	mg/kg	10	0.25	0.15	1.6	0.12	0.045 J	0.091	0.19	0.2	0.02
Molybdenum	mg/kg	40	10 J,N	2.9 N,B	20 N	0.9 N,B	0.8 J	4.3	29	17 J,N	1.4
Nickel	mg/kg	150	63	32 N*	216 N*	40 N*	12	19 N	124	54	8.1
Selenium	mg/kg	10	ND<3.2	ND<4 N	ND<3.1 N	ND<3.6 N	ND<3	ND<4.0	ND<4.5	ND<6.8	ND<3
Silver	mg/kg	40	23	ND<1.3	8.8	0.8 B	ND<1	2.4	ND<1.5	ND<2.3	ND<1
Thallium	mg/kg	13	0.3 J	0.089 B	0.09 B	0.15 B	0.048 J	0.15	0.075 J	ND<0.91	ND<0.4
Vanadium	mg/kg	200	68	25	26	17	12	16	6.7	28	11
Zinc	mg/kg	600	2730	216 N	5280 N	176 N	480	662	446	1010	177 N

Note:

ESL - Environmental Screening Level

mg/kg - milligram per kilogram

ND< - Analyte not detected at concentrations greater than or equal to reporting limit (RL)

bold - Analyte detected above ESL

B - Hit above RL also found in Method Blank

J - Analyte detected above method detection limit (MDL), but below RL

N - Matrix Spike/Matrix Spike Duplicate outside control limits. The Laboratory Control Sample (LCS) was acceptable; therefore, data was approved.

* - Relative Percent Difference outside of acceptance limits. The LCS was acceptable: therefore, data was approved.

Table 7-4

Concentrations of Volatile Organic Compounds and Total Petroleum Hydrocarbons Detected in Soil Samples

2701 North Harbor Drive

San Diego, California

		T-14-S-6B	T-19-S-6.5T	T-26-S-6.5-B	T-31-S-6T	T-34-S-7-T	Т-39-S-6.5-В	T-40-S-6.5-T
	UNITS	6/30/2005	6/30/2005	7/13/2005	7/1/2005	7/14/2005	7/13/2005	7/13/2005
VOCs								
1,1,1,2-Tetrachloroethane	µg/kg	ND<5.5	ND<7.0	ND<5.9	ND<5.9	ND<5.1	ND<6.6	ND<5.5
1,1,1-Trichloroethane	µg/kg	ND<5.5	ND<7.0	ND<5.9	ND<5.9	ND<5.1	ND<6.6	ND<5.5
1,1,2,2-Tetrachloroethane	µg/kg	ND<5.5	ND<7.0	ND<5.9	ND<5.9	ND<5.1	ND<6.6	ND<5.5
1,1,2-Trichloroethane	µg/kg	ND<5.5	ND<7.0	ND<5.9	ND<5.9	ND<5.1	ND<6.6	ND<5.5
1,1-Dichloroethane	µg/kg	ND<5.5	ND<7.0	ND<5.9	ND<5.9	ND<5.1	ND<6.6	ND<5.5
1,1-Dichloroethene	µg/kg	ND<5.5	ND<7.0	ND<5.9	ND<5.9	ND<5.1	ND<6.6	ND<5.5
1,1-Dichloropropene	µg/kg	ND<5.5	ND<7.0	ND<5.9	ND<5.9	ND<5.1	ND<6.6	ND<5.5
1,2,3-Trichlorobenzene	µg/kg	ND<5.5	ND<7.0	ND<5.9	ND<5.9	ND<5.1	ND<6.6	ND<5.5
1,2,3-Trichloropropane	µg/kg	ND<5.5	ND<7.0	ND<5.9	ND<5.9	ND<5.1	ND<6.6	ND<5.5
1,2,4-Trichlorobenzene	µg/kg	ND<5.5	ND<7.0	ND<5.9	ND<5.9	ND<5.1	ND<6.6	ND<5.5
1,2,4-Trimethylbenzene	µg/kg	ND<5.5	ND<7.0	ND<5.9	ND<5.9	ND<5.1	ND<6.6	ND<5.5
1,2-Dibromo-3-chloropropane	µg/kg	ND<5.5	ND<7.0	ND<5.9	ND<5.9	ND<5.1	ND<6.6	ND<5.5
1,2-Dibromoethane	µg/kg	ND<5.5	ND<7.0	ND<5.9	ND<5.9	ND<5.1	ND<6.6	ND<5.5
1,2-Dichlorobenzene	µg/kg	ND<5.5	ND<7.0	ND<5.9	ND<5.9	ND<5.1	ND<6.6	ND<5.5
1,2-Dichloroethane	µg/kg	ND<5.5	ND<7.0	ND<5.9	ND<5.9	ND<5.1	ND<6.6	ND<5.5
1,2-Dichloropropane	µg/kg	ND<5.5	ND<7.0	ND<5.9	ND<5.9	ND<5.1	ND<6.6	ND<5.5
1,3,5-Trimethylbenzene	µg/kg	ND<5.5	ND<7.0	ND<5.9	ND<5.9	ND<5.1	ND<6.6	ND<5.5
1,3-Dichlorobenzene	µg/kg	ND<5.5	ND<7.0	ND<5.9	ND<5.9	ND<5.1	ND<6.6	ND<5.5
1,3-Dichloropropane	µg/kg	ND<5.5	ND<7.0	ND<5.9	ND<5.9	ND<5.1	ND<6.6	ND<5.5
1,4-Dichlorobenzene	µg/kg	ND<5.5	2.9 J	ND<5.9	ND<5.9	ND<5.1	ND<6.6	ND<5.5
2,2-Dichloropropane	µg/kg	ND<5.5	ND<7.0	ND<5.9	ND<5.9	ND<5.1	ND<6.6	ND<5.5
2-Butanone (MEK)	µg/kg	ND<22	ND<28	ND<24	ND<24	ND<21	ND<27	ND<22
2-Chlorotoluene	µg/kg	ND<5.5	ND<7.0	ND<5.9	ND<5.9	ND<5.1	ND<6.6	ND<5.5
2-Hexanone	µg/kg	ND<22	ND<28	ND<24	ND<24	ND<21	ND<27	ND<22
4-Chlorotoluene	µg/kg	ND<5.5	ND<7.0	ND<5.9	ND<5.9	ND<5.1	ND<6.6	ND<5.5
4-Methyl-2-pentanone	µg/kg	ND<22	ND<28	ND<24	ND<24	ND<21	ND<27	ND<22
Acetone	µg/kg	13 J,H	8.1 J,H	13 J,H	11 J,H	ND<21	8 J,H	7.3 J,H
Benzene	µg/kg	6.4	ND<7.0	ND<5.9	ND<5.9	ND<5.1	ND<6.6	ND<5.5
Bromobenzene	µg/kg	ND<5.5	ND<7.0	ND<5.9	ND<5.9	ND<5.1	ND<6.6	ND<5.5
Bromochloromethane	µg/kg	ND<5.5	ND<7.0	ND<5.9	ND<5.9	ND<5.1	ND<6.6	ND<5.5
Bromoform	µg/kg	ND<5.5	ND<7.0	ND<5.9	ND<5.9	ND<5.1	ND<6.6	ND<5.5
Bromomethane	µg/kg	ND<5.5	ND<7.0	ND<5.9	ND<5.9	ND<5.1	ND<6.6	ND<5.5
Carbon Disulfide	µg/kg	ND<5.5	ND<7.0	ND<5.9	ND<5.9	ND<5.1	ND<6.6	ND<5.5
Carbon Tetrachloride	µg/kg	ND<5.5	ND<7.0	ND<5.9	ND<5.9	ND<5.1	ND<6.6	ND<5.5
Chlorobenzene	µg/kg	ND<5.5	ND<7.0	ND<5.9	ND<5.9	ND<5.1	ND<6.6	ND<5.5

Table 7-4

Concentrations of Volatile Organic Compounds and Total Petroleum Hydrocarbons Detected in Soil Samples

2701 North Harbor Drive

		T-14-S-6B	T-19-S-6.5T	T-26-S-6.5-B	T-31-S-6T	T-34-S-7-T	T-39-S-6.5-B	T-40-S-6.5-T
VOCs	UNITS	6/30/2005	6/30/2005	7/13/2005	7/1/2005	7/14/2005	7/13/2005	7/13/2005
	. /1 .	ND -5 5	ND 70	ND .5 0	ND 15 0	ND -5-1		ND -5.5
Chloroethane Chloroform	µg/kg	ND<5.5 ND<5.5	ND<7.0 ND<7.0	ND<5.9 ND<5.9	ND<5.9 ND<5.9	ND<5.1 ND<5.1	ND<6.6 ND<6.6	ND<5.5 ND<5.5
	µg/kg							
Chloromethane	µg/kg	ND<5.5	ND<7.0	ND<5.9	ND<5.9	ND<5.1	ND<6.6	ND<5.5
cis-1,2-Dichloroethene	µg/kg	ND<5.5	280 J,X	ND<5.9	ND<5.9	6.5	ND<6.6	ND<5.5
cis-1,3-Dichloropropene	µg/kg	ND<5.5	ND<7.0	ND<5.9	ND<5.9	ND<5.1	ND<6.6	ND<5.5
Dibromochloromethane	µg/kg	ND<5.5	ND<7.0	ND<5.9	ND<5.9	ND<5.1	ND<6.6	ND<5.5
Dibromomethane	µg/kg	ND<5.5	ND<7.0	ND<5.9	ND<5.9	ND<5.1	ND<6.6	ND<5.5
Dichlorobromomethane	µg/kg	ND<5.5	ND<7.0	ND<5.9	ND<5.9	ND<5.1	ND<6.6	ND<5.5
Dichloromethane (Methylene Chloride)	µg/kg	9.4	6.9 J	3.4 J,H	8.4	4.9 J,H	6.2 J,H	2.9 J,H
Ethyl benzene	µg/kg	ND<5.5	ND<7.0	ND<5.9	ND<5.9	ND<5.1	ND<6.6	ND<5.5
Freon-11	µg/kg	ND<5.5	ND<7.0	ND<5.9	ND<5.9	ND<5.1	ND<6.6	ND<5.5
Freon-113	µg/kg	ND<5.5	ND<7.0	ND<5.9	ND<5.9	ND<5.1	ND<6.6	ND<5.5
Freon-12	µg/kg	ND<5.5	ND<7.0	ND<5.9	ND<5.9	ND<5.1	ND<6.6	ND<5.5
Hexachlorobutadiene	µg/kg	ND<5.5	ND<7.0	ND<5.9	ND<5.9	ND<5.1	ND<6.6	ND<5.5
Isopropylbenzene	µg/kg	ND<5.5	ND<7.0	ND<5.9	ND<5.9	ND<5.1	ND<6.6	ND<5.5
Methyl tertbutyl ether (MTBE)	µg/kg	ND<11	ND<14	ND<12	ND<12	ND<11	ND<14	ND<11
Naphthalene	µg/kg	ND<5.5	ND<7.0	ND<5.9	ND<5.9	ND<5.1	ND<6.6	ND<5.5
n-Butylbenzene	µg/kg	ND<5.5	ND<7.0	ND<5.9	ND<5.9	ND<5.1	ND<6.6	ND<5.5
n-Propylbenzene	µg/kg	ND<5.5	ND<7.0	ND<5.9	ND<5.9	ND<5.1	ND<6.6	ND<5.5
p-Isopropyltoluene	µg/kg	ND<5.5	ND<7.0	ND<5.9	ND<5.9	ND<5.1	ND<6.6	ND<5.5
sec-Butylbenzene	µg/kg	ND<5.5	ND<7.0	ND<5.9	ND<5.9	ND<5.1	ND<6.6	ND<5.5
Styrene	µg/kg	ND<5.5	ND<7.0	ND<5.9	ND<5.9	ND<5.1	ND<6.6	ND<5.5
tert-Butylbenzene	µg/kg	ND<5.5	ND<7.0	ND<5.9	ND<5.9	ND<5.1	ND<6.6	ND<5.5
Tetrachloroethene	µg/kg	ND<5.5	570 X	ND<5.9	ND<5.9	81	47	ND<5.5
Toluene	µg/kg	ND<5.5	ND<7.0	ND<5.9	ND<5.9	ND<5.1	ND<6.6	ND<5.5
trans-1,2-Dichloroethene	µg/kg	ND<5.5	ND<7.0	ND<5.9	ND<5.9	ND<5.1	ND<6.6	ND<5.5
trans-1,3-Dichloropropene	µg/kg	ND<5.5	ND<7.0	ND<5.9	ND<5.9	ND<5.1	ND<6.6	ND<5.5
Trichloroethene	µg/kg	ND<5.5	280 X	ND<5.9	ND<5.9	10	ND<6.6	ND<5.5
Vinyl Acetate	µg/kg	ND<22	ND<28	ND<24	ND<24	ND<21	ND<27	ND<22
Vinyl Chloride	µg/kg	ND<5.5	ND<7.0	ND<5.9	ND<5.9	ND<5.1	ND<6.6	ND<5.5
Xylenes (Total)	µg/kg	ND<17	ND<21	ND<18	ND<18	ND<16	ND<21	ND<17
Petroleum Hydrocarbons			·		•			
C13 - C22 DRO	mg/kg	ND<12	ND<13	ND<12	ND<11	ND<12	ND<13	ND<11
C23 - C36 HRO	mg/kg	ND<62 *	ND<67 *	ND<60 *	12 J*	ND<62 *	ND<65 *	ND<57 *
C6 - C12 GRO	mg/kg	ND<12 *	ND<13 *	ND<12 *	ND<11 *	ND<12 *	ND<13 *	ND<11 *
Total Petroleum Hydrocarbon (TPH)	mg/kg	ND<86	ND<93	ND<84	ND<77	ND<86	ND<91	ND<79

Concentrations of Volatile Organic Compounds and Total Petroleum Hydrocarbons Detected in Soil Samples

2701 North Harbor Drive

		B120-MW4-6.5-B	B120-MW5-6.5	B120-MW6-6-B	B131-MW5-7-T
	UNITS	7/20/2005	7/20/2005	7/21/2005	7/21/2005
VOCs					•
1,1,1,2-Tetrachloroethane	µg/kg	-	-	-	-
1,1,1-Trichloroethane	µg/kg	-	-	-	-
1,1,2,2-Tetrachloroethane	µg/kg	-	-	-	-
1,1,2-Trichloroethane	µg/kg	-	-	-	-
1,1-Dichloroethane	µg/kg	-	-	-	-
1,1-Dichloroethene	µg/kg	-	-	-	-
1,1-Dichloropropene	µg/kg	-	-	-	-
1,2,3-Trichlorobenzene	µg/kg	-	-	-	-
1,2,3-Trichloropropane	µg/kg	-	-	-	-
1,2,4-Trichlorobenzene	µg/kg	-	-	-	-
1,2,4-Trimethylbenzene	µg/kg	-	-	-	-
1,2-Dibromo-3-chloropropane	µg/kg	-	-	-	-
1,2-Dibromoethane	µg/kg	-	-	-	-
1,2-Dichlorobenzene	µg/kg	-	-	-	-
1,2-Dichloroethane	µg/kg	-	-	-	-
1,2-Dichloropropane	µg/kg	-	-	-	-
1,3,5-Trimethylbenzene	µg/kg	-	-	-	-
1,3-Dichlorobenzene	µg/kg	-	-	-	-
1,3-Dichloropropane	µg/kg	-	-	-	-
1,4-Dichlorobenzene	µg/kg	-	-	-	-
2,2-Dichloropropane	µg/kg	-	-	-	-
2-Butanone (MEK)	µg/kg	-	-	-	-
2-Chlorotoluene	µg/kg	-	-	-	-
2-Hexanone	µg/kg	-	-	-	-
4-Chlorotoluene	µg/kg	-	-	-	-
4-Methyl-2-pentanone	µg/kg	-	-	-	-
Acetone	µg/kg	-	-	-	-
Benzene	µg/kg	-	-	-	-
Bromobenzene	µg/kg	-	-	-	-
Bromochloromethane	µg/kg	-	-	-	-
Bromoform	µg/kg	-	-	-	-
Bromomethane	µg/kg	-	-	-	-
Carbon Disulfide	µg/kg	-	-	-	-
Carbon Tetrachloride	µg/kg	-	-	-	-
Chlorobenzene	µg/kg	-	-	-	-

Concentrations of Volatile Organic Compounds and Total Petroleum Hydrocarbons Detected in Soil Samples

2701 North Harbor Drive

	UNITS	B120-MW4-6.5-B 7/20/2005	B120-MW5-6.5 7/20/2005	B120-MW6-6-B 7/21/2005	B131-MW5-7-T 7/21/2005
VOCs	UNIIS	1/20/2005	1/20/2005	//21/2005	//21/2005
Chloroethane	µg/kg	-	-	-	-
Chloroform	μg/kg	-	-	-	-
Chloromethane	$\mu g/kg$	-	-	-	-
cis-1,2-Dichloroethene	$\mu g/kg$	-	-	-	-
cis-1,3-Dichloropropene	$\mu g/kg$	-	-	-	-
Dibromochloromethane	μg/kg	-	-	-	-
Dibromomethane	µg/kg	-	-	-	-
Dichlorobromomethane	µg/kg	-	-	-	-
Dichloromethane (Methylene Chloride)	μg/kg	-	-	-	-
Ethyl benzene	μg/kg	-	-	-	-
Freon-11	µg/kg	-	-	-	-
Freon-113	µg/kg	-	-	-	-
Freon-12	µg/kg	-	-	-	-
Hexachlorobutadiene	µg/kg	-	-	-	-
Isopropylbenzene	µg/kg	-	-	-	-
Methyl tertbutyl ether (MTBE)	µg/kg	-	-	-	-
Naphthalene	µg/kg	-	-	-	-
n-Butylbenzene	µg/kg	-	-	-	-
n-Propylbenzene	µg/kg	-	-	-	-
p-Isopropyltoluene	µg/kg	-	-	-	-
sec-Butylbenzene	µg/kg	-	-	-	-
Styrene	µg/kg	-	-	-	-
tert-Butylbenzene	µg/kg	-	-	-	-
Tetrachloroethene	µg/kg	-	-	-	-
Toluene	µg/kg	-	-	-	-
trans-1,2-Dichloroethene	µg/kg	-	-	-	-
trans-1,3-Dichloropropene	µg/kg	-	-	-	-
Trichloroethene	µg/kg	-	-	-	-
Vinyl Acetate	µg/kg	-	-	-	-
Vinyl Chloride	µg/kg	-	-	-	-
Xylenes (Total)	µg/kg	-	-	-	-
Petroleum Hydrocarbons					
C13 - C22 DRO	mg/kg	ND<12	ND<12	ND<12	ND<12
C23 - C36 HRO	mg/kg	ND<60	ND<62	ND<62	ND<61
C6 - C12 GRO	mg/kg	ND<12	ND<12	ND<12	ND<12
Total Petroleum Hydrocarbon (TPH)	mg/kg	ND<84	ND<86	ND<86	ND<85

Concentrations of Volatile Organic Compounds and Total Petroleum Hydrocarbons Detected in Soil Samples 2701 North Harbor Drive San Diego, California

Note:

DRO - Diesel range organics

- GRO Gasoline range organics
- HRO heavy oil range organics
- µg/kg microgram per kilogram
- mg/kg milligram per kilogram
- ND< Analyte not detected at concentrations greater than or equal to reporting limits (RL)
- **bold** Analyte detected
- Constituent not analyzed for
- D Result from diluted sample
- H It is the opinion of CAS that this result is due to laboratory contamination
- J Analyte detected above method detection limit (MDL), but below RL
- X Indicates a holding time violation
- \ast GRO and HRO MDL based on lowest calibration standard

Concentrations of Volatile Organic Compounds and Total Petroleum Hydrocarbons Detected in Groundwater Samples 2701 North Harbor Drive San Diego, California

	San Diego, Camorina						
	Units	142WDP 8/8/2005	142WEP 8/8/2005	DUP4 (142WEP) 8/8/2005	142WGP 8/8/2005		
Volatile Organic Compounds							
1,1,1,2-Tetrachloroethane	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50		
1,1,1-Trichloroethane	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50		
1,1,2,2-Tetrachloroethane	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50		
1,1,2-Trichloroethane	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50		
1,1-Dichloroethane	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50		
1,1-Dichloroethene	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50		
1,1-Dichloropropene	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50		
1,2,3-Trichlorobenzene	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0		
1,2,3-Trichloropropane	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50		
1,2,4-Trichlorobenzene	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0		
1,2,4-Trimethylbenzene	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0		
1,2-Dibromo-3-chloropropane	μg/L	ND<2.0	ND<2.0	ND<2.0	ND<2.0		
1,2-Dibromoethane	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0		
1,2-Dichlorobenzene	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50		
1,2-Dichloroethane	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50		
1,2-Dichloropropane	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50		
1,3,5-Trimethylbenzene	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0		
1,3-Dichlorobenzene	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50		
1,3-Dichloropropane	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50		
1,4-Dichlorobenzene	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50		
2,2-Dichloropropane	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50		
2-Butanone (MEK)	μg/L	ND<10	ND<10	ND<10	ND<10		
2-Chlorotoluene	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0		
2-Hexanone	μg/L	ND<10	ND<10	ND<10	ND<10		
4-Chlorotoluene	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0		
4-Methyl-2-pentanone	μg/L	ND<10	ND<10	ND<10	ND<10		
Acetone	μg/L	ND<10	ND<10	ND<10	ND<10		
Benzene	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50		
Bromobenzene	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0		
Bromochloromethane	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50		
Bromoform	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0		
Bromomethane	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0		
Carbon Disulfide	μg/L	ND<2.0	0.62 J	ND<2.0	ND<2.0		
Carbon Tetrachloride	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50		
Chlorobenzene	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50		
Chloroethane	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0		
Chloroform	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50		
Chloromethane	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0		
cis-1,2-Dichloroethene	μg/L	0.42 J	ND<0.50	ND<0.50	ND<0.50		
cis-1,3-Dichloropropene	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50		
Dibromochloromethane	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0		
Dibromomethane	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50		
Dichlorobromomethane	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0		
Dichloromethane (Methylene Chloride)	μg/L	ND<2.0	ND<2.0	ND<2.0	ND<2.0		
Ethyl benzene	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50		
Freon-11	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0		
Freon-113	μg/L	ND<2.0	ND<2.0	ND<2.0	ND<2.0		
Freon-12	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0		
Hexachlorobutadiene	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0		
Isopropylbenzene	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0		

Concentrations of Volatile Organic Compounds and Total Petroleum Hydrocarbons Detected in Groundwater Samples 2701 North Harbor Drive

San Diego, California

	Units	142WDP 8/8/2005	142WEP 8/8/2005	DUP4 (142WEP) 8/8/2005	142WGP 8/8/2005
Volatile Organic Compounds					
Methyl tertbutyl ether (MTBE)	μg/L	0.45 J	ND<2.0	ND<2.0	ND<2.0
Naphthalene	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
n-Butylbenzene	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
n-Propylbenzene	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
p-Isopropyltoluene	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
sec-Butylbenzene	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Styrene	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
tert-Butylbenzene	μg/L	ND<1.0	0.4 J	0.41 J	ND<1.0
Tetrachloroethene	μg/L	ND<0.50	0.72	0.44 J	ND<0.50
Toluene	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
trans-1,2-Dichloroethene	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
trans-1,3-Dichloropropene	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
Trichloroethene	μg/L	ND<0.50	0.27 J	0.18 J	0.34 J
Vinyl Acetate	μg/L	ND<10	ND<10	ND<10	ND<10
Vinyl Chloride	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
Xylenes (Total)	μg/L	ND<1.5	ND<1.5	ND<1.5	ND<1.5
Petroleum Hydrocarbons					
C13 - C22 DRO	mg/L	-	-	-	-
C23 - C36 HRO	mg/L	-	-	-	-
C6 - C12 GRO	mg/L	-	-	-	-
Total Petroleum Hydrocarbon (TPH)	mg/L	-	-	-	-

Note:

- DUP Field duplicate
- DRO Diesel range organics
- GRO Gasoline range organics
- HRO heavy oil range organics
- $\mu g/L$ microgram per liter
- mg/L milligram per liter
- ND< Analyte not detected at concentrations greater than or equal to reporting limits (RL)
- **bold** Analyte detected

- Constituent not analyzed for

- D Result from diluted sample
- J Analyte detected above method detection limit (MDL), but below RL
- * GRO and HRO MDL based on lowest calibration standard

Concentrations of Volatile Organic Compounds and Total Petroleum Hydrocarbons Detected in Groundwater Samples 2701 North Harbor Drive

		BL D102-MW3	BLD102-MW4	BLD102-MW-5	BLD120-MW-1
	Units	7/28/2005	7/28/2005	8/5/2005	8/1/2005
Volatile Organic Compounds		112012000	1120,2000	0,0,2000	0/1/2000
1,1,1,2-Tetrachloroethane	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<50
1,1,1-Trichloroethane	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<50
1,1,2,2-Tetrachloroethane	μg/L μg/L	ND<0.50	ND<0.50	ND<0.50	ND<50
1,1,2-Trichloroethane	μg/L μg/L	ND<0.50	ND<0.50	ND<0.50	ND<50
1,1-Dichloroethane	μg/L μg/L	ND<0.50	ND<0.50	0.36 J	46 J,D
1,1-Dichloroethene	μg/L μg/L	ND<0.50	ND<0.50	ND<0.50	340 D
1,1-Dichloropropene	μg/L μg/L	ND<0.50	ND<0.50	ND<0.50	ND<50
1,2,3-Trichlorobenzene	μg/L μg/L	ND<1.0	ND<1.0	ND<1.0	ND<100
1,2,3-Trichloropropane	μg/L μg/L	ND<0.50	ND<0.50	ND<0.50	ND<50
1,2,4-Trichlorobenzene	μg/L μg/L	ND<1.0	ND<1.0	ND<1.0	ND<100
1,2,4-Trimethylbenzene	μg/L μg/L	ND<1.0	ND<1.0	ND<1.0	ND<100
1,2,4-Timeurybenzene 1,2-Dibromo-3-chloropropane	μg/L μg/L	ND<1.0	ND<2.0	ND<1.0	ND<200
1,2-Dibromoethane	μg/L μg/L	ND<1.0	ND<1.0	ND<2.0	ND<100
1,2-Dichlorobenzene	μg/L μg/L	ND<1.0	ND<1.0	ND<1.0	ND<50
1,2-Dichloroethane	μg/L μg/L	ND<0.50	ND<0.50	ND<0.50	ND<50
1,2-Dichloropropane	μg/L μg/L	ND<0.50	ND<0.50	ND<0.50	ND<50
1,3,5-Trimethylbenzene	μg/L μg/L	ND<0.30	ND<0.30	ND<0.30	ND<100
1,3-Dichlorobenzene		ND<1.0	ND<1.0	ND<1.0	ND<50
1,3-Dichloropropane	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<50
1,3-Dichlorobenzene	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<50
1	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<50
2,2-Dichloropropane 2-Butanone (MEK)	μg/L				
	μg/L	ND<10	ND<10	ND<10	ND<1000
2-Chlorotoluene	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<100
2-Hexanone	μg/L	ND<10	ND<10	ND<10	ND<1000
4-Chlorotoluene	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<100
4-Methyl-2-pentanone	μg/L	ND<10	ND<10	ND<10	ND<1000
Acetone	μg/L	ND<10	ND<10	2.3 J	ND<1000
Benzene	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<50
Bromobenzene	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<100
Bromochloromethane	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<50
Bromoform	μg/L	ND<1.0 ND<1.0	ND<1.0	ND<1.0	ND<100
Bromomethane Carbon Disulfide	μg/L	ND<1.0 ND<2.0	ND<1.0 ND<2.0	ND<1.0 ND<2.0	ND<100 ND<200
	μg/L				
Carbon Tetrachloride	μg/L	ND<0.50	ND<0.50	ND<0.50 ND<0.50	ND<50
Chlorobenzene	μg/L	ND<0.50	ND<0.50		ND<50
Chloroethane Chloroform	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<100
	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<50
Chloromethane	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<100
cis-1,2-Dichloroethene	μg/L	ND<0.50 ND<0.50	0.63	0.57 ND<0.50	2400 D ND<50
cis-1,3-Dichloropropene Dibromochloromethane	μg/L		ND<0.50		
	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<100
Dibromomethane	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<50
Dichlorobromomethane	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<100
Dichloromethane (Methylene Chloride)	μg/L	ND<2.0	ND<2.0	ND<2.0	ND<200
Ethyl benzene	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<50
Freon-11	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<100
Freon-113	μg/L	ND<2.0	ND<2.0	ND<2.0	ND<200
Freon-12	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<100
Hexachlorobutadiene	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<100
Isopropylbenzene	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<100

Concentrations of Volatile Organic Compounds and Total Petroleum Hydrocarbons Detected in Groundwater Samples 2701 North Harbor Drive

2701 North Harbor Drive

San Diego, California

			BLD102-MW4		BLD120-MW-1
	Units	7/28/2005	7/28/2005	8/5/2005	8/1/2005
Volatile Organic Compounds					
Methyl tertbutyl ether (MTBE)	μg/L	ND<2.0	ND<2.0	ND<2.0	ND<200
Naphthalene	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<100
n-Butylbenzene	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<100
n-Propylbenzene	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<100
p-Isopropyltoluene	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<100
sec-Butylbenzene	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<100
Styrene	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<50
tert-Butylbenzene	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<100
Tetrachloroethene	μg/L	0.64	ND<0.50	ND<0.50	3400 D
Toluene	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<50
trans-1,2-Dichloroethene	μg/L	ND<0.50	ND<0.50	ND<0.50	94 D
trans-1,3-Dichloropropene	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<50
Trichloroethene	μg/L	ND<0.50	ND<0.50	ND<0.50	2900 D
Vinyl Acetate	μg/L	ND<10	ND<10	ND<10	ND<1000
Vinyl Chloride	μg/L	ND<0.50	5.1	0.66	ND<50
Xylenes (Total)	μg/L	ND<1.5	ND<1.5	ND<1.5	ND<150
Petroleum Hydrocarbons					
C13 - C22 DRO	mg/L	-	ND<1	-	-
C23 - C36 HRO	mg/L	-	ND<5	-	-
C6 - C12 GRO	mg/L	-	ND<1	-	-
Total Petroleum Hydrocarbon (TPH)	mg/L	-	ND<7	-	-

Note:

- DUP Field duplicate
- DRO Diesel range organics
- GRO Gasoline range organics
- HRO heavy oil range organics
- $\mu g/L$ microgram per liter
- mg/L milligram per liter
- ND< Analyte not detected at concentrations greater than or equal to reporting limits (RL)
- bold Analyte detected

- Constituent not analyzed for

- D Result from diluted sample
- J Analyte detected above method detection limit (MDL), but below RL
- * GRO and HRO MDL based on lowest calibration standar

Concentrations of Volatile Organic Compounds and Total Petroleum Hydrocarbons Detected in Groundwater Samples 2701 North Harbor Drive

		8 /		
	Units	BLD120-MW-2 8/1/2005	BLD120-MW3 7/29/2005	B120-MW4 8/2/2005
Volatile Organic Compounds				
1,1,1,2-Tetrachloroethane	μg/L	ND<10	ND<50	ND<0.50
1,1,1-Trichloroethane	μg/L	ND<10	ND<50	ND<0.50
1,1,2,2-Tetrachloroethane	μg/L	ND<10	ND<50	ND<0.50
1,1,2-Trichloroethane	μg/L	ND<10	ND<50	ND<0.50
1,1-Dichloroethane	μg/L	ND<10	60 D	ND<0.50
1,1-Dichloroethene	μg/L	ND<10	310 D	ND<0.50
1,1-Dichloropropene	μg/L	ND<10	ND<50	ND<0.50
1,2,3-Trichlorobenzene	μg/L	ND<20	ND<100	ND<1.0
1,2,3-Trichloropropane	μg/L	ND<10	ND<50	ND<0.50
1,2,4-Trichlorobenzene	μg/L μg/L	ND<20	ND<100	ND<1.0
1,2,4-Trimethylbenzene	μg/L μg/L	ND<20	ND<100	ND<1.0
1,2-Dibromo-3-chloropropane	μg/L μg/L	ND<40	ND<200	ND<2.0
1,2-Dibromoethane	μg/L μg/L	ND<40	ND<100	ND<1.0
1,2-Dichlorobenzene	μg/L μg/L	ND<20 ND<10	ND<100 ND<50	ND<1.0 ND<0.50
1,2-Dichloroethane		ND<10	ND<50	ND<0.50
1	μg/L			
1,2-Dichloropropane	μg/L	ND<10	ND<50	ND<0.50
1,3,5-Trimethylbenzene	μg/L	ND<20	ND<100	ND<1.0
1,3-Dichlorobenzene	μg/L	ND<10	ND<50	ND<0.50
1,3-Dichloropropane	μg/L	ND<10	ND<50	ND<0.50
1,4-Dichlorobenzene	μg/L	ND<10	ND<50	ND<0.50
2,2-Dichloropropane	μg/L	ND<10	ND<50	ND<0.50
2-Butanone (MEK)	μg/L	ND<200	ND<1000	ND<10
2-Chlorotoluene	μg/L	ND<20	ND<100	ND<1.0
2-Hexanone	μg/L	ND<200	ND<1000	ND<10
4-Chlorotoluene	μg/L	ND<20	ND<100	ND<1.0
4-Methyl-2-pentanone	μg/L	ND<200	ND<1000	ND<10
Acetone	μg/L	ND<200	ND<1000	ND<10
Benzene	μg/L	ND<10	ND<50	ND<0.50
Bromobenzene	μg/L	ND<20	ND<100	ND<1.0
Bromochloromethane	μg/L	ND<10	ND<50	ND<0.50
Bromoform	μg/L	ND<20	ND<100	ND<1.0
Bromomethane	μg/L	ND<20	ND<100	ND<1.0
Carbon Disulfide	μg/L	ND<40	ND<200	ND<2.0
Carbon Tetrachloride	μg/L	ND<10	ND<50	ND<0.50
Chlorobenzene	μg/L	ND<10	ND<50	ND<0.50
Chloroethane	μg/L	ND<20	ND<100	ND<1.0
Chloroform	μg/L	ND<10	ND<50	ND<0.50
Chloromethane	μg/L	ND<20	ND<100	ND<1.0
cis-1,2-Dichloroethene	μg/L	890 D	3800 D	2.9
cis-1,3-Dichloropropene	μg/L	ND<10	ND<50	ND<0.50
Dibromochloromethane	μg/L	ND<20	ND<100	ND<1.0
Dibromomethane	μg/L	ND<10	ND<50	ND<0.50
Dichlorobromomethane	μg/L	ND<20	ND<100	ND<1.0
Dichloromethane (Methylene Chloride)	μg/L	ND<40	ND<200	ND<2.0
Ethyl benzene	μg/L μg/L	ND<10	ND<50	ND<0.50
Freon-11	μg/L μg/L	ND<20	ND<100	ND<1.0
Freon-113	μg/L μg/L	ND<40	ND<200	ND<2.0
Freon-12	μg/L μg/L	ND<40	ND<100	ND<1.0
Hexachlorobutadiene	μg/L μg/L	ND<20	ND<100	ND<1.0
		ND<20	ND<100	ND<1.0
Isopropylbenzene	μg/L	ND<20	ND<100	ND<1.0

Concentrations of Volatile Organic Compounds and Total Petroleum Hydrocarbons Detected in Groundwater Samples

2701 North Harbor Drive

San Diego, California

	Units	BLD120-MW-2 8/1/2005	BLD120-MW3 7/29/2005	B120-MW4 8/2/2005
Volatile Organic Compounds	Units	8/1/2003	112312005	8/2/2003
Methyl tertbutyl ether (MTBE)	μg/L	ND<40	ND<200	ND<2.0
Naphthalene	μg/L	ND<20	ND<100	ND<1.0
n-Butylbenzene	μg/L	ND<20	ND<100	ND<1.0
n-Propylbenzene	μg/L	ND<20	ND<100	ND<1.0
p-Isopropyltoluene	μg/L	ND<20	ND<100	ND<1.0
sec-Butylbenzene	μg/L	ND<20	ND<100	ND<1.0
Styrene	μg/L	ND<10	ND<50	ND<0.50
tert-Butylbenzene	μg/L	ND<20	ND<100	ND<1.0
Tetrachloroethene	μg/L	120 D	86 D	6.6
Toluene	μg/L	ND<10	ND<50	ND<0.50
trans-1,2-Dichloroethene	μg/L	26 D	100 D	0.39 J
trans-1,3-Dichloropropene	μg/L	ND<10	ND<50	ND<0.50
Trichloroethene	μg/L	440 D	57 D	0.96
Vinyl Acetate	μg/L	ND<200	ND<1000	ND<10
Vinyl Chloride	μg/L	ND<10	ND<50	ND<0.50
Xylenes (Total)	μg/L	ND<30	ND<150	ND<1.5
Petroleum Hydrocarbons	-			
C13 - C22 DRO	mg/L	-	-	-
C23 - C36 HRO	mg/L	-	-	-
C6 - C12 GRO	mg/L	-	-	-
Total Petroleum Hydrocarbon (TPH)	mg/L	-	-	-

Note:

- DUP Field duplicate
- DRO Diesel range organics
- GRO Gasoline range organics
- HRO heavy oil range organics
- $\mu g/L$ microgram per liter
- mg/L milligram per liter
- ND< Analyte not detected at concentrations greater than or equal to reporting limits (RL)
- bold Analyte detected

- Constituent not analyzed for

- D Result from diluted sample
- J Analyte detected above method detection limit (MDL), but below RL
- * GRO and HRO MDL based on lowest calibration standar

Concentrations of Volatile Organic Compounds and Total Petroleum Hydrocarbons Detected in Groundwater Samples 2701 North Harbor Drive

		8 /		
	Units	B120-MW5 8/2/2005	B120-MW6 8/1/2005	DUP3 (B120-MW6) 8/1/2005
Volatile Organic Compounds	- Cinto	0/2/2000	0/1/2000	0/1/2000
1,1,1,2-Tetrachloroethane	μg/L	ND<0.50	ND<50	ND<50
1,1,1-Trichloroethane	μg/L μg/L	ND<0.50	ND<50	ND<50
1,1,2,2-Tetrachloroethane	μg/L μg/L	ND<0.50	ND<50	ND<50
1,1,2-Trichloroethane	μg/L μg/L	ND<0.50	ND<50	ND<50
1,1-Dichloroethane	μg/L μg/L	ND<0.50	ND<50	ND<50
1,1-Dichloroethene	μg/L μg/L	ND<0.50	ND<50	ND<50
1,1-Dichloropropene	μg/L μg/L	ND<0.50	ND<50	ND<50
1,2,3-Trichlorobenzene	μg/L μg/L	ND<1.0	ND<100	ND<100
1,2,3-Trichloropropane	μg/L μg/L	ND<0.50	ND<50	ND<100
1,2,3-Trichlorobenzene		ND<0.30	ND<100	ND<100
	μg/L	ND<1.0	ND<100	ND<100
1,2,4-Trimethylbenzene	μg/L			
1,2-Dibromo-3-chloropropane	μg/L	ND<2.0	ND<200	ND<200
1,2-Dibromoethane	μg/L	ND<1.0	ND<100	ND<100
1,2-Dichlorobenzene	μg/L	ND<0.50	ND<50	ND<50
1,2-Dichloroethane	μg/L	ND<0.50	ND<50	ND<50
1,2-Dichloropropane	μg/L	ND<0.50	ND<50	ND<50
1,3,5-Trimethylbenzene	μg/L	ND<1.0	ND<100	ND<100
1,3-Dichlorobenzene	μg/L	ND<0.50	ND<50	ND<50
1,3-Dichloropropane	μg/L	ND<0.50	ND<50	ND<50
1,4-Dichlorobenzene	μg/L	ND<0.50	ND<50	ND<50
2,2-Dichloropropane	μg/L	ND<0.50	ND<50	ND<50
2-Butanone (MEK)	μg/L	ND<10	ND<1000	ND<1000
2-Chlorotoluene	μg/L	ND<1.0	ND<100	ND<100
2-Hexanone	μg/L	ND<10	ND<1000	ND<1000
4-Chlorotoluene	μg/L	ND<1.0	ND<100	ND<100
4-Methyl-2-pentanone	μg/L	ND<10	ND<1000	ND<1000
Acetone	μg/L	ND<10	ND<1000	ND<1000
Benzene	μg/L	ND<0.50	ND<50	ND<50
Bromobenzene	μg/L	ND<1.0	ND<100	ND<100
Bromochloromethane	μg/L	ND<0.50	ND<50	ND<50
Bromoform	μg/L	ND<1.0	ND<100	ND<100
Bromomethane	μg/L	ND<1.0	ND<100	ND<100
Carbon Disulfide	μg/L	ND<2.0	ND<200	ND<200
Carbon Tetrachloride	μg/L	ND<0.50	ND<50	ND<50
Chlorobenzene	μg/L	ND<0.50	ND<50	ND<50
Chloroethane	μg/L	ND<1.0	ND<100	ND<100
Chloroform	μg/L	3.1	ND<50	ND<50
Chloromethane	μg/L	ND<1.0	ND<100	ND<100
cis-1,2-Dichloroethene	μg/L	0.69	4800 D	4900 D
cis-1,3-Dichloropropene	μg/L	ND<0.50	ND<50	ND<50
Dibromochloromethane	μg/L	ND<1.0	ND<100	ND<100
Dibromomethane	μg/L	ND<0.50	ND<50	ND<50
Dichlorobromomethane	μg/L	ND<1.0	ND<100	ND<100
Dichloromethane (Methylene Chloride)	μg/L μg/L	ND<2.0	ND<200	ND<200
Ethyl benzene	μg/L μg/L	ND<0.50	ND<50	ND<200
Freon-11	μg/L μg/L	ND<1.0	ND<100	ND<100
Freon-113	μg/L μg/L	ND<1.0	ND<200	ND<100
Freon-12	μg/L μg/L	ND<2.0	ND<100	ND<200
Hexachlorobutadiene	μg/L μg/L	ND<1.0	ND<100	ND<100
Isopropylbenzene		ND<1.0	ND<100	ND<100
творгоругосписте	μg/L	ND<1.0	10U<100	IND<100

Concentrations of Volatile Organic Compounds and Total Petroleum Hydrocarbons Detected in Groundwater Samples 2701 North Harbor Drive

San Diego, California

	San Diego, Camorina						
	Units	B120-MW5 8/2/2005	B120-MW6 8/1/2005	DUP3 (B120-MW6) 8/1/2005			
Volatile Organic Compounds							
Methyl tertbutyl ether (MTBE)	μg/L	ND<2.0	ND<200	ND<200			
Naphthalene	μg/L	ND<1.0	ND<100	ND<100			
n-Butylbenzene	μg/L	ND<1.0	ND<100	ND<100			
n-Propylbenzene	μg/L	ND<1.0	ND<100	ND<100			
p-Isopropyltoluene	μg/L	ND<1.0	ND<100	ND<100			
sec-Butylbenzene	μg/L	ND<1.0	ND<100	ND<100			
Styrene	μg/L	ND<0.50	ND<50	ND<50			
tert-Butylbenzene	μg/L	ND<1.0	ND<100	ND<100			
Tetrachloroethene	μg/L	0.82	68 D	63 D			
Toluene	μg/L	ND<0.50	ND<50	ND<50			
trans-1,2-Dichloroethene	μg/L	ND<0.50	100 D	100 D			
trans-1,3-Dichloropropene	μg/L	ND<0.50	ND<50	ND<50			
Trichloroethene	μg/L	0.25 J	120 D	100 D			
Vinyl Acetate	μg/L	ND<10	ND<1000	ND<1000			
Vinyl Chloride	μg/L	ND<0.50	ND<50	ND<50			
Xylenes (Total)	μg/L	ND<1.5	ND<150	ND<150			
Petroleum Hydrocarbons	-						
C13 - C22 DRO	mg/L	-	ND<1	ND<1			
C23 - C36 HRO	mg/L	-	ND<5	ND<5			
C6 - C12 GRO	mg/L	-	ND<1	ND<1			
Total Petroleum Hydrocarbon (TPH)	mg/L	-	ND<7	ND<7			

Note:

- DUP Field duplicate
- DRO Diesel range organics
- GRO Gasoline range organics
- HRO heavy oil range organics
- $\mu g/L$ microgram per liter
- mg/L milligram per liter
- ND< Analyte not detected at concentrations greater than or equal to reporting limits (RL)
- bold Analyte detected

- Constituent not analyzed for

- D Result from diluted sample
- J Analyte detected above method detection limit (MDL), but below RL
- * GRO and HRO MDL based on lowest calibration standar

Concentrations of Volatile Organic Compounds and Total Petroleum Hydrocarbons Detected in Groundwater Samples 2701 North Harbor Drive

	San Diego, Camornia				
	Units	B131-MW1 8/4/2005	B131-MW2 8/4/2005		
Volatile Organic Compounds		-			
1,1,1,2-Tetrachloroethane	μg/L	ND<0.50	ND<500		
1,1,1-Trichloroethane	μg/L	ND<0.50	ND<500		
1,1,2,2-Tetrachloroethane	μg/L	ND<0.50	ND<500		
1,1,2-Trichloroethane	μg/L	ND<0.50	ND<500		
1,1-Dichloroethane	μg/L	ND<0.50	ND<500		
1,1-Dichloroethene	μg/L	ND<0.50	ND<500		
1,1-Dichloropropene	μg/L	ND<0.50	ND<500		
1,2,3-Trichlorobenzene	μg/L	ND<1.0	ND<1000		
1,2,3-Trichloropropane	μg/L	ND<0.50	ND<500		
1,2,4-Trichlorobenzene	μg/L	ND<1.0	ND<1000		
1,2,4-Trimethylbenzene	μg/L	ND<1.0	ND<1000		
1,2-Dibromo-3-chloropropane	μg/L	ND<2.0	ND<2000		
1,2-Dibromoethane	μg/L	ND<1.0	ND<1000		
1,2-Dichlorobenzene	μg/L	ND<0.50	ND<500		
1,2-Dichloroethane	μg/L	ND<0.50	ND<500		
1,2-Dichloropropane	μg/L	ND<0.50	ND<500		
1,3,5-Trimethylbenzene	μg/L μg/L	ND<1.0	ND<1000		
1,3-Dichlorobenzene	μg/L	ND<0.50	ND<500		
1,3-Dichloropropane	μg/L	ND<0.50	ND<500		
1,4-Dichlorobenzene	μg/L μg/L	ND<0.50	ND<500		
2,2-Dichloropropane	μg/L μg/L	ND<0.50	ND<500		
2-Butanone (MEK)	μg/L μg/L	1.8 J	ND<10000		
2-Chlorotoluene	μg/L μg/L	ND<1.0	ND<1000		
2-Hexanone	μg/L μg/L	ND<10	ND<10000		
4-Chlorotoluene	μg/L μg/L	ND<1.0	ND<1000		
4-Methyl-2-pentanone	μg/L	ND<10	ND<10000		
Acetone	μg/L μg/L	5 J	ND<10000		
Benzene	μg/L μg/L	0.89	ND<500		
Bromobenzene	μg/L	ND<1.0	ND<1000		
Bromochloromethane	μg/L	ND<0.50	ND<500		
Bromoform	μg/L	ND<1.0	ND<1000		
Bromomethane	μg/L	ND<1.0	ND<1000		
Carbon Disulfide	μg/L	ND<2.0	ND<2000		
Carbon Tetrachloride	μg/L	ND<0.50	ND<500		
Chlorobenzene	μg/L μg/L	ND<0.50	ND<500		
Chloroethane	μg/L	ND<1.0	ND<1000		
Chloroform	μg/L μg/L	0.22 J	ND<500		
Chloromethane	μg/L	ND<1.0	ND<1000		
cis-1,2-Dichloroethene	μg/L	ND<0.50	6200 D		
cis-1,3-Dichloropropene	μg/L	ND<0.50	ND<500		
Dibromochloromethane	μg/L	ND<1.0	ND<1000		
Dibromomethane	μg/L	ND<0.50	ND<500		
Dichlorobromomethane	μg/L	ND<1.0	ND<1000		
Dichloromethane (Methylene Chloride)	μg/L	ND<2.0	ND<2000		
Ethyl benzene	μg/L	ND<0.50	ND<500		
Freon-11	μg/L	ND<1.0	ND<1000		
Freon-113	μg/L μg/L	ND<2.0	ND<2000		
Freon-12	μg/L μg/L	ND<1.0	ND<1000		
Hexachlorobutadiene	μg/L μg/L	ND<1.0	ND<1000		
Isopropylbenzene		ND<1.0	ND<1000		
isopropyioenzene	μg/L	110\1.0	1000		

Concentrations of Volatile Organic Compounds and Total Petroleum Hydrocarbons Detected in Groundwater Samples

2701 North Harbor Drive

San Diego, (California
--------------	------------

	Units	B131-MW1 8/4/2005	B131-MW2 8/4/2005		
Volatile Organic Compounds		<u>I</u>			
Methyl tertbutyl ether (MTBE)	μg/L	ND<2.0	ND<2000		
Naphthalene	μg/L	ND<1.0	ND<1000		
n-Butylbenzene	μg/L	ND<1.0	ND<1000		
n-Propylbenzene	μg/L	ND<1.0	ND<1000		
p-Isopropyltoluene	μg/L	ND<1.0	ND<1000		
sec-Butylbenzene	μg/L	ND<1.0	ND<1000		
Styrene	μg/L	ND<0.50	ND<500		
tert-Butylbenzene	μg/L	ND<1.0	ND<1000		
Tetrachloroethene	μg/L	ND<0.50	39000 D		
Toluene	μg/L	ND<0.50	ND<500		
trans-1,2-Dichloroethene	μg/L	0.43 J	ND<500		
trans-1,3-Dichloropropene	μg/L	ND<0.50	ND<500		
Trichloroethene	μg/L	ND<0.50	7400 D		
Vinyl Acetate	μg/L	ND<10	ND<10000		
Vinyl Chloride	μg/L	4.4	810 D		
Xylenes (Total)	μg/L	ND<1.5	ND<1500		
Petroleum Hydrocarbons	-				
C13 - C22 DRO	mg/L	-	-		
C23 - C36 HRO	mg/L	-	-		
C6 - C12 GRO	mg/L	-	-		
Total Petroleum Hydrocarbon (TPH)	mg/L	-	-		

Note:

- DUP Field duplicate
- DRO Diesel range organics
- GRO Gasoline range organics
- HRO heavy oil range organics
- $\mu g/L$ microgram per liter
- mg/L milligram per liter
- ND< Analyte not detected at concentrations greater than or equal to reporting limits (RL)
- bold Analyte detected

- Constituent not analyzed for

- D Result from diluted sample
- J Analyte detected above method detection limit (MDL), but below RL
- * GRO and HRO MDL based on lowest calibration standar

Concentrations of Volatile Organic Compounds and Total Petroleum Hydrocarbons Detected in Groundwater Samples 2701 North Harbor Drive San Diago, California

San Diego, California						
		B131-MW3	B131-MW4	B131-MW5	B156-MW3	
	Units	8/4/2005	8/5/2005	8/5/2005	8/2/2005	
Volatile Organic Compounds						
1,1,1,2-Tetrachloroethane	μg/L	ND<250	ND<2.5	ND<50	ND<0.50	
1,1,1-Trichloroethane	μg/L	ND<250	ND<2.5	ND<50	ND<0.50	
1,1,2,2-Tetrachloroethane	μg/L	ND<250	ND<2.5	ND<50	ND<0.50	
1,1,2-Trichloroethane	μg/L	ND<250	ND<2.5	ND<50	ND<0.50	
1,1-Dichloroethane	μg/L	ND<250	ND<2.5	ND<50	ND<0.50	
1,1-Dichloroethene	μg/L	ND<250	ND<2.5	ND<50	ND<0.50	
1,1-Dichloropropene	μg/L	ND<250	ND<2.5	ND<50	ND<0.50	
1,2,3-Trichlorobenzene	μg/L	ND<500	ND<5.0	ND<100	ND<1.0	
1,2,3-Trichloropropane	μg/L	ND<250	ND<2.5	ND<50	ND<0.50	
1,2,4-Trichlorobenzene	μg/L	ND<500	ND<5.0	ND<100	ND<1.0	
1,2,4-Trimethylbenzene	μg/L	ND<500	ND<5.0	ND<100	ND<1.0	
1,2-Dibromo-3-chloropropane	μg/L	ND<1000	ND<10	ND<200	ND<2.0	
1,2-Dibromoethane	μg/L	ND<500	ND<5.0	ND<100	ND<1.0	
1,2-Dichlorobenzene	μg/L	ND<250	ND<2.5	ND<50	ND<0.50	
1,2-Dichloroethane	μg/L	ND<250	ND<2.5	ND<50	ND<0.50	
1,2-Dichloropropane	μg/L	ND<250	ND<2.5	ND<50	ND<0.50	
1,3,5-Trimethylbenzene	μg/L	ND<500	ND<5.0	ND<100	ND<1.0	
1,3-Dichlorobenzene	μg/L	ND<250	ND<2.5	ND<50	ND<0.50	
1,3-Dichloropropane	μg/L	ND<250	ND<2.5	ND<50	ND<0.50	
1,4-Dichlorobenzene	μg/L	ND<250	ND<2.5	ND<50	ND<0.50	
2,2-Dichloropropane	μg/L	ND<250	ND<2.5	ND<50	ND<0.50	
2-Butanone (MEK)	μg/L	ND<5000	ND<50	ND<1000	ND<10	
2-Chlorotoluene	μg/L	ND<500	ND<5.0	ND<100	ND<1.0	
2-Hexanone	μg/L	ND<5000	ND<50	ND<1000	ND<10	
4-Chlorotoluene	μg/L	ND<500	ND<5.0	ND<100	ND<1.0	
4-Methyl-2-pentanone	μg/L	ND<5000	ND<50	ND<1000	ND<10	
Acetone	μg/L	ND<5000	ND<50	ND<1000	ND<10	
Benzene	μg/L	ND<250	ND<2.5	ND<50	ND<0.50	
Bromobenzene	μg/L	ND<500	ND<5.0	ND<100	ND<1.0	
Bromochloromethane	μg/L	ND<250	ND<2.5	ND<50	ND<0.50	
Bromoform	μg/L	ND<500	ND<5.0	ND<100	ND<1.0	
Bromomethane	μg/L	ND<500	ND<5.0	ND<100	ND<1.0	
Carbon Disulfide	μg/L	ND<1000	ND<10	ND<200	ND<2.0	
Carbon Tetrachloride	μg/L	ND<250	ND<2.5	ND<50	ND<0.50	
Chlorobenzene	μg/L	ND<250	ND<2.5	ND<50	ND<0.50	
Chloroethane	μg/L	ND<500	ND<5.0	ND<100	ND<1.0	
Chloroform	μg/L	ND<250	ND<2.5	ND<50	ND<0.50	
Chloromethane	μg/L	ND<500	ND<5.0	ND<100	ND<1.0	
cis-1,2-Dichloroethene	μg/L	11000 D	150 D	5000 D	1.4	
cis-1,3-Dichloropropene	μg/L	ND<250	ND<2.5	ND<50	ND<0.50	
Dibromochloromethane	μg/L	ND<500	ND<5.0	ND<100	ND<1.0	
Dibromomethane	μg/L	ND<250	ND<2.5	ND<50	ND<0.50	
Dichlorobromomethane	μg/L	ND<500	ND<5.0	ND<100	ND<1.0	
Dichloromethane (Methylene Chloride)	μg/L	ND<1000	ND<10	ND<200	ND<2.0	
Ethyl benzene	μg/L	ND<250	ND<2.5	ND<50	ND<0.50	
Freon-11	μg/L	ND<500	ND<5.0	ND<100	ND<1.0	
Freon-113	μg/L	ND<1000	ND<10	ND<200	ND<2.0	
Freon-12	μg/L	ND<500	ND<5.0	ND<100	ND<1.0	
Hexachlorobutadiene	μg/L	ND<500	ND<5.0	ND<100	ND<1.0	
Isopropylbenzene	μg/L	ND<500	ND<5.0	ND<100	ND<1.0	

Concentrations of Volatile Organic Compounds and Total Petroleum Hydrocarbons Detected in Groundwater Samples 2701 North Harbor Drive

San Diego, California

	Units	B131-MW3 8/4/2005	B131-MW4 8/5/2005	B131-MW5 8/5/2005	B156-MW3 8/2/2005			
Volatile Organic Compounds								
Methyl tertbutyl ether (MTBE)	μg/L	ND<1000	ND<10	ND<200	ND<2.0			
Naphthalene	μg/L	ND<500	ND<5.0	ND<100	ND<1.0			
n-Butylbenzene	μg/L	ND<500	ND<5.0	ND<100	ND<1.0			
n-Propylbenzene	μg/L	ND<500	ND<5.0	ND<100	ND<1.0			
p-Isopropyltoluene	μg/L	ND<500	ND<5.0	ND<100	ND<1.0			
sec-Butylbenzene	μg/L	ND<500	ND<5.0	ND<100	ND<1.0			
Styrene	μg/L	ND<250	ND<2.5	ND<50	ND<0.50			
tert-Butylbenzene	μg/L	ND<500	ND<5.0	ND<100	ND<1.0			
Tetrachloroethene	μg/L	9400 D	1.7 J,D	ND<50	2.7			
Toluene	μg/L	ND<250	ND<2.5	ND<50	ND<0.50			
trans-1,2-Dichloroethene	μg/L	ND<250	ND<2.5	67 D	ND<0.50			
trans-1,3-Dichloropropene	μg/L	ND<250	ND<2.5	ND<50	ND<0.50			
Trichloroethene	μg/L	4300 D	1.8 J D	ND<50	1.3			
Vinyl Acetate	μg/L	ND<5000	ND<50	ND<1000	ND<10			
Vinyl Chloride	μg/L	1900 D	48 D	4200 D	0.77			
Xylenes (Total)	μg/L	ND<750	ND<7.5	ND<150	ND<1.5			
Petroleum Hydrocarbons	-							
C13 - C22 DRO	mg/L	-	ND<1	ND<1	-			
C23 - C36 HRO	mg/L	-	ND<5	ND<5	-			
C6 - C12 GRO	mg/L	-	ND<1	ND<1	-			
Total Petroleum Hydrocarbon (TPH)	mg/L	-	ND<7	ND<7	-			

Note:

- DUP Field duplicate
- DRO Diesel range organics
- GRO Gasoline range organics
- HRO heavy oil range organics
- $\mu g/L$ microgram per liter
- mg/L milligram per liter
- ND< Analyte not detected at concentrations greater than or equal to reporting limits (RL)
- bold Analyte detected

- Constituent not analyzed for

- D Result from diluted sample
- J Analyte detected above method detection limit (MDL), but below RL
- * GRO and HRO MDL based on lowest calibration standar

Concentrations of Volatile Organic Compounds and Total Petroleum Hydrocarbons Detected in **Groundwater Samples** 2701 North Harbor Drive

	4	BLD156-MW1	B180-MW-1	GT4			
	Units	7/29/2005	10/4/2005	8/2/2005			
Volatile Organic Compounds							
1,1,1,2-Tetrachloroethane	μg/L	ND<0.50	ND<2.5	ND<0.50			
1,1,1-Trichloroethane	μg/L	ND<0.50	ND<2.5	ND<0.50			
1,1,2,2-Tetrachloroethane	μg/L	ND<0.50	ND<2.5	ND<0.50			
1,1,2-Trichloroethane	μg/L	ND<0.50	ND<2.5	ND<0.50			
1,1-Dichloroethane	μg/L	0.88	ND<2.5	0.32 J			
1,1-Dichloroethene	μg/L	ND<0.50	ND<2.5	ND<0.50			
1,1-Dichloropropene	μg/L	ND<0.50	ND<2.5	ND<0.50			
1,2,3-Trichlorobenzene	μg/L	ND<1.0	ND<5.0	ND<1.0			
1,2,3-Trichloropropane	µg/L	ND<0.50	ND<2.5	ND<0.50			
1,2,4-Trichlorobenzene	μg/L	ND<1.0	ND<5.0	ND<1.0			
1,2,4-Trimethylbenzene	μg/L	ND<1.0	ND<5.0	ND<1.0			
1,2-Dibromo-3-chloropropane	μg/L	ND<2.0	ND<10	ND<2.0			
1,2-Dibromoethane	μg/L	ND<1.0	ND<5.0	ND<1.0			
1,2-Dichlorobenzene	μg/L	ND<0.50	ND<2.5	ND<0.50			
1,2-Dichloroethane	μg/L	ND<0.50	ND<2.5	ND<0.50			
1,2-Dichloropropane	μg/L	ND<0.50	ND<2.5	ND<0.50			
1,3,5-Trimethylbenzene	$\mu g/L$	ND<1.0	ND<5.0	ND<1.0			
1,3-Dichlorobenzene	μg/L μg/L	ND<0.50	ND<2.5	ND<0.50			
1,3-Dichloropropane	μg/L μg/L	ND<0.50	ND<2.5	ND<0.50			
1,4-Dichlorobenzene	μg/L μg/L	ND<0.50	ND<2.5	ND<0.50			
2,2-Dichloropropane	μg/L μg/L	ND<0.50	ND<2.5	ND<0.50			
2-Butanone (MEK)	μg/L μg/L	ND<10	ND<50	ND<10			
2-Chlorotoluene	μg/L μg/L	ND<10	ND<5.0	ND<1.0			
2-Hexanone	μg/L μg/L	ND<10	ND<50	ND<10			
4-Chlorotoluene	μg/L μg/L	ND<10	ND<5.0	ND<1.0			
4-Onorototuene 4-Methyl-2-pentanone		ND<10	ND<50	ND<10			
Acetone	μg/L	ND<10	42 J,D	<u>ND<10</u> 2 J			
Benzene	μg/L		ND<2.5				
Bromobenzene	μg/L	ND<0.50		ND<0.50			
Bromochloromethane	μg/L	ND<1.0	ND<5.0	ND<1.0			
	μg/L	ND<0.50	ND<2.5	ND<0.50			
Bromoform	μg/L	ND<1.0	ND<5.0	ND<1.0			
Bromomethane	μg/L	ND<1.0	ND<5.0	ND<1.0			
Carbon Disulfide	μg/L	ND<2.0	ND<10	ND<2.0			
Carbon Tetrachloride	μg/L	ND<0.50	ND<5.0	ND<0.50			
Chlorobenzene	μg/L	ND<0.50	ND<2.5	ND<0.50			
Chloroethane	μg/L	ND<1.0	ND<5.0	ND<1.0			
Chloroform	μg/L	ND<0.50	ND<2.5	ND<0.50			
Chloromethane	μg/L	ND<1.0	ND<5.0	ND<1.0			
cis-1,2-Dichloroethene	μg/L	3.9	ND<2.5	ND<0.50			
cis-1,3-Dichloropropene	μg/L	ND<0.50	ND<2.5	ND<0.50			
Dibromochloromethane	μg/L	ND<1.0	ND<5.0	ND<1.0			
Dibromomethane	μg/L	ND<0.50	ND<2.5	ND<0.50			
Dichlorobromomethane	μg/L	ND<1.0	ND<5.0	ND<1.0			
Dichloromethane (Methylene Chloride)	μg/L	ND<2.0	ND<10	0.7 J			
Ethyl benzene	μg/L	ND<0.50	ND<2.5	ND<0.50			
Freon-11	μg/L	ND<1.0	ND<5.0	ND<1.0			
Freon-113	μg/L	ND<2.0	ND<10	ND<2.0			
Freon-12	μg/L	ND<1.0	ND<5.0	ND<1.0			
Hexachlorobutadiene	μg/L	ND<1.0	ND<5.0	ND<1.0			
Isopropylbenzene	μg/L	ND<1.0	ND<5.0	0.55 J			

Concentrations of Volatile Organic Compounds and Total Petroleum Hydrocarbons Detected in Groundwater Samples

2701 North Harbor Drive

San Diego, California

	Units	BLD156-MW1 7/29/2005	B180-MW-1 10/4/2005	GT4 8/2/2005
Volatile Organic Compounds	Units	112312003	10/4/2003	0/2/2003
		i		
Methyl tertbutyl ether (MTBE)	μg/L	ND<2.0	ND<10	ND<2.0
Naphthalene	μg/L	ND<1.0	ND<5.0	ND<1.0
n-Butylbenzene	μg/L	ND<1.0	ND<5.0	ND<1.0
n-Propylbenzene	μg/L	ND<1.0	ND<5.0	0.28 J
p-Isopropyltoluene	μg/L	ND<1.0	ND<5.0	ND<1.0
sec-Butylbenzene	μg/L	ND<1.0	ND<5.0	ND<1.0
Styrene	μg/L	ND<0.50	ND<2.5	ND<0.50
tert-Butylbenzene	μg/L	ND<1.0	ND<5.0	ND<1.0
Tetrachloroethene	μg/L	12	ND<2.5	ND<0.50
Toluene	μg/L	ND<0.50	ND<2.5	ND<0.50
trans-1,2-Dichloroethene	μg/L	0.37 J	ND<2.5	ND<0.50
trans-1,3-Dichloropropene	μg/L	ND<0.50	ND<2.5	ND<0.50
Trichloroethene	μg/L	6.5	ND<2.5	ND<0.50
Vinyl Acetate	μg/L	ND<10	ND<50	ND<10
Vinyl Chloride	μg/L	18	ND<2.5	ND<0.50
Xylenes (Total)	μg/L	ND<1.5	ND<7.5	ND<1.5
Petroleum Hydrocarbons				
C13 - C22 DRO	mg/L	-		-
C23 - C36 HRO	mg/L	-		-
C6 - C12 GRO	mg/L	-		-
Total Petroleum Hydrocarbon (TPH)	mg/L	-		-

Note:

- DUP Field duplicate
- DRO Diesel range organics
- GRO Gasoline range organics
- HRO heavy oil range organics
- $\mu g/L$ microgram per liter
- mg/L milligram per liter
- ND< Analyte not detected at concentrations greater than or equal to reporting limits (RL)
- **bold** Analyte detected

- Constituent not analyzed for

- D Result from diluted sample
- J Analyte detected above method detection limit (MDL), but below RL
- * GRO and HRO MDL based on lowest calibration standar

Concentrations of Volatile Organic Compounds and Total Petroleum Hydrocarbons Detected in Groundwater Samples 2701 North Harbor Drive San Diego, California

	Units	P1 8/5/2005	P2 8/9/2005	SDE 8/3/2005	T-1-GW 7/5/2005
Valatila Organia Compounda	Units	0/5/2005	0/7/2003	0/5/2005	11512005
Volatile Organic Compounds		NID (0.50	NID (0.50	NID (0.50	NID -0.50
1,1,1,2-Tetrachloroethane	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
1,1,1-Trichloroethane	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
1,1,2,2-Tetrachloroethane	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
1,1,2-Trichloroethane	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
1,1-Dichloroethane	μg/L	ND<0.50	1.9	ND<0.50	ND<0.50
1,1-Dichloroethene	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
1,1-Dichloropropene	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
1,2,3-Trichlorobenzene	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
1,2,3-Trichloropropane	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
1,2,4-Trichlorobenzene	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
1,2,4-Trimethylbenzene	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
1,2-Dibromo-3-chloropropane	μg/L	ND<2.0	ND<2.0	ND<2.0	ND<2.0
1,2-Dibromoethane	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
1,2-Dichlorobenzene	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
1,2-Dichloroethane	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
1,2-Dichloropropane	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
1,3,5-Trimethylbenzene	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
1,3-Dichlorobenzene	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
1,3-Dichloropropane	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
1,4-Dichlorobenzene	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
2,2-Dichloropropane	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
2-Butanone (MEK)	μg/L	ND<10	ND<10	ND<10	ND<10
2-Chlorotoluene	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
2-Hexanone	µg/L	ND<10	ND<10	ND<10	ND<10
4-Chlorotoluene	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
4-Methyl-2-pentanone	μg/L	ND<10	ND<10	ND<10	ND<10
Acetone	μg/L	ND<10	3.2 J	1.9 J	ND<10
Benzene	μg/L	ND<0.50	ND<0.50	2.4	ND<0.50
Bromobenzene	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Bromochloromethane	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
Bromoform	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Bromomethane	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Carbon Disulfide	μg/L	ND<2.0	ND<2.0	ND<2.0	ND<2.0
Carbon Tetrachloride	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
Chlorobenzene	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
Chloroethane	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Chloroform	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
Chloromethane	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
cis-1,2-Dichloroethene	μg/L	19	0.48 J	ND<0.50	3
cis-1,3-Dichloropropene	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
Dibromochloromethane	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Dibromomethane	μg/L μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
Dichlorobromomethane	μg/L μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Dichloromethane (Methylene Chloride)	μg/L μg/L	ND<2.0	ND<2.0	ND<2.0	ND<2.0
Ethyl benzene	μg/L μg/L	ND<0.50	ND<0.50	1.3	ND<0.50
Freon-11	μg/L μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Freon-113	μg/L μg/L	ND<1.0	ND<2.0	ND<1.0	ND<1.0
Freon-12	μg/L μg/L	ND<2.0 ND<1.0	ND<2.0	ND<2.0 ND<1.0	ND<2.0 ND<1.0
Hexachlorobutadiene		ND<1.0	ND<1.0	ND<1.0	ND<1.0
	μg/L μg/I				ND<1.0
Isopropylbenzene	μg/L	ND<1.0	ND<1.0	28	U1>U1

Concentrations of Volatile Organic Compounds and Total Petroleum Hydrocarbons Detected in Groundwater Samples 2701 North Harbor Drive

San Diego, California

	T T •4	P1	P2	SDE	T-1-GW
	Units	8/5/2005	8/9/2005	8/3/2005	7/5/2005
Volatile Organic Compounds		i			
Methyl tertbutyl ether (MTBE)	μg/L	ND<2.0	ND<2.0	ND<2.0	ND<2.0
Naphthalene	μg/L	ND<1.0	ND<1.0	63 C	ND<1.0
n-Butylbenzene	μg/L	ND<1.0	ND<1.0	0.64 J	ND<1.0
n-Propylbenzene	μg/L	ND<1.0	ND<1.0	33	ND<1.0
p-Isopropyltoluene	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
sec-Butylbenzene	μg/L	ND<1.0	ND<1.0	6.9	ND<1.0
Styrene	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
tert-Butylbenzene	μg/L	ND<1.0	0.37 J	1.7	ND<1.0
Tetrachloroethene	μg/L	8.6	1.4	ND<0.50	ND<0.50
Toluene	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
trans-1,2-Dichloroethene	μg/L	1.2	ND<0.50	ND<0.50	ND<0.50
trans-1,3-Dichloropropene	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
Trichloroethene	μg/L	2.8	0.33 J	ND<0.50	0.13 J
Vinyl Acetate	μg/L	ND<10	ND<10	ND<10	ND<10
Vinyl Chloride	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
Xylenes (Total)	μg/L	ND<1.5	ND<1.5	ND<1.5	ND<1.5
Petroleum Hydrocarbons					
C13 - C22 DRO	mg/L	-	-	-	-
C23 - C36 HRO	mg/L	-	-	-	-
C6 - C12 GRO	mg/L	-	-	-	-
Total Petroleum Hydrocarbon (TPH)	mg/L	-	-	-	-

Note:

- DUP Field duplicate
- DRO Diesel range organics
- GRO Gasoline range organics
- HRO heavy oil range organics
- $\mu g/L$ microgram per liter
- mg/L milligram per liter
- ND< Analyte not detected at concentrations greater than or equal to reporting limits (RL)
- **bold** Analyte detected

- Constituent not analyzed for

- D Result from diluted sample
- J Analyte detected above method detection limit (MDL), but below RL
- * GRO and HRO MDL based on lowest calibration standar

Concentrations of Volatile Organic Compounds and Total Petroleum Hydrocarbons Detected in Groundwater Samples 2701 North Harbor Drive

San Diego, California					
	Units	T2-GW 7/5/2005	T3-GW 7/5/2005	T4-GW 7/5/2005	T5-GW 7/5/2005
Volatile Organic Compounds					
1,1,1,2-Tetrachloroethane	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
1,1,1-Trichloroethane	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
1,1,2,2-Tetrachloroethane	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
1,1,2-Trichloroethane	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
1,1-Dichloroethane	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
1,1-Dichloroethene	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
1,1-Dichloropropene	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
1,2,3-Trichlorobenzene	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
1,2,3-Trichloropropane	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
1,2,4-Trichlorobenzene	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
1,2,4-Trimethylbenzene	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
1,2-Dibromo-3-chloropropane	μg/L	ND<2.0	ND<2.0	ND<2.0	ND<2.0
1,2-Dibromoethane	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
1,2-Dichlorobenzene	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
1.2-Dichloroethane	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
1,2-Dichloropropane	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
1,3,5-Trimethylbenzene	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
1,3-Dichlorobenzene	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
1,3-Dichloropropane	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
1,4-Dichlorobenzene	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
2,2-Dichloropropane	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
2-Butanone (MEK)	μg/L	ND<10	ND<10	ND<10	ND<10
2-Chlorotoluene	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
2-Hexanone	μg/L	ND<10	ND<10	ND<10	ND<10
4-Chlorotoluene	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
4-Methyl-2-pentanone	μg/L	ND<10	ND<10	ND<10	ND<10
Acetone	μg/L	ND<10	ND<10	ND<10	ND<10
Benzene	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
Bromobenzene	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Bromochloromethane	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
Bromoform	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Bromomethane	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Carbon Disulfide	μg/L	ND<2.0	ND<2.0	0.47 J	ND<2.0
Carbon Tetrachloride	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
Chlorobenzene	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
Chloroethane	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Chloroform	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
Chloromethane	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
cis-1,2-Dichloroethene	μg/L μg/L	1.2	0.8	1.5	0.22 J
cis-1,3-Dichloropropene	μg/L μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
Dibromochloromethane	μg/L μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Dibromoethane	μg/L μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
Dichlorobromomethane	μg/L μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Dichloromethane (Methylene Chloride)	μg/L μg/L	ND<2.0	ND<2.0	ND<2.0	ND<1.0
Ethyl benzene	μg/L μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
Freon-11	μg/L μg/L	ND<0.30	ND<0.50	ND<0.30	ND<0.30
Freon-113		ND<1.0	ND<1.0	ND<1.0	ND<1.0
Freon-12	μg/L μg/I	ND<2.0 ND<1.0	ND<2.0 ND<1.0	ND<2.0 ND<1.0	ND<2.0 ND<1.0
Freon-12	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0

Hexachlorobutadiene

Isopropylbenzene

ND<1.0

ND<1.0

ND<1.0

ND<1.0

ND<1.0

ND<1.0

μg/L

μg/L

ND<1.0

ND<1.0

Concentrations of Volatile Organic Compounds and Total Petroleum Hydrocarbons Detected in Groundwater Samples 2701 North Harbor Drive

San Diego, California

		-			
	Units	T2-GW 7/5/2005	T3-GW 7/5/2005	T4-GW 7/5/2005	T5-GW 7/5/2005
Volatile Organic Compounds	Onits	115/2005	11512005	11512005	115/2005
Methyl tertbutyl ether (MTBE)	μg/L	ND<2.0	ND<2.0	ND<2.0	ND<2.0
Naphthalene	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
n-Butylbenzene	µg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
n-Propylbenzene	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
p-Isopropyltoluene	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
sec-Butylbenzene	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Styrene	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
tert-Butylbenzene	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Tetrachloroethene	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
Toluene	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
trans-1,2-Dichloroethene	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
trans-1,3-Dichloropropene	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
Trichloroethene	μg/L	0.13 J	0.13 J	0.14 J	ND<0.50
Vinyl Acetate	μg/L	ND<10	ND<10	ND<10	ND<10
Vinyl Chloride	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
Xylenes (Total)	μg/L	ND<1.5	ND<1.5	ND<1.5	ND<1.5
Petroleum Hydrocarbons	-				
C13 - C22 DRO	mg/L	-	-	-	-
C23 - C36 HRO	mg/L	-	-	-	-
C6 - C12 GRO	mg/L	-	-	-	-
Total Petroleum Hydrocarbon (TPH)	mg/L	-	-	-	-

Note:

- DUP Field duplicate
- DRO Diesel range organics
- GRO Gasoline range organics
- HRO heavy oil range organics
- $\mu g/L$ microgram per liter
- mg/L milligram per liter
- ND< Analyte not detected at concentrations greater than or equal to reporting limits (RL)
- **bold** Analyte detected

- Constituent not analyzed for

- D Result from diluted sample
- J Analyte detected above method detection limit (MDL), but below RL
- * GRO and HRO MDL based on lowest calibration standar

Concentrations of Volatile Organic Compounds and Total Petroleum Hydrocarbons Detected in Groundwater Samples 2701 North Harbor Drive

San Diego, California					
		T6-GW	T-7-GW	T-8-GW	T-9GW
	Units	7/5/2005	9/22/2005	9/22/2005	9/22/2005
Volatile Organic Compounds	l'include the second se	-		-	- -
1,1,1,2-Tetrachloroethane	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
1,1,1-Trichloroethane	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
1,1,2,2-Tetrachloroethane	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
1,1,2-Trichloroethane	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
1,1-Dichloroethane	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
1,1-Dichloroethene	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
1,1-Dichloropropene	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
1,2,3-Trichlorobenzene	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
1,2,3-Trichloropropane	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
1,2,4-Trichlorobenzene	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
1,2,4-Trimethylbenzene	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
1,2-Dibromo-3-chloropropane	μg/L	ND<2.0	ND<2.0	ND<2.0	ND<2.0
1,2-Dibromoethane	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
1,2-Dichlorobenzene	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
1,2-Dichloroethane	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
1,2-Dichloropropane	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
1,3,5-Trimethylbenzene	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
1,3-Dichlorobenzene	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
1,3-Dichloropropane	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
1,4-Dichlorobenzene	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
2,2-Dichloropropane	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
2-Butanone (MEK)	μg/L	ND<10	ND<10	ND<10	ND<10
2-Chlorotoluene	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
2-Hexanone	μg/L	ND<10	ND<10	ND<10	ND<10
4-Chlorotoluene	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
4-Methyl-2-pentanone	μg/L	ND<10	ND<10	ND<10	ND<10
Acetone	μg/L	ND<10	3.7 J	3.3 J	3.9 J
Benzene	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
Bromobenzene	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Bromochloromethane	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
Bromoform	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Bromomethane	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Carbon Disulfide	μg/L	ND<2.0	ND<2.0	ND<2.0	ND<2.0
Carbon Tetrachloride	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
Chlorobenzene	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
Chloroethane	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Chloroform	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
Chloromethane	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
cis-1,2-Dichloroethene	μg/L	0.35 J	ND<0.50	0.70	2.6
cis-1,3-Dichloropropene	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
Dibromochloromethane	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Dibromomethane	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
Dichlorobromomethane	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Dichloromethane (Methylene Chloride)	μg/L	ND<2.0	ND<1.0	ND<1.0	ND<1.0
Ethyl benzene	μg/L	ND<0.50	ND<2.0	ND<2.0	ND<2.0
Freon-11	μg/L	ND<1.0	ND<0.50	ND<0.50	ND<0.50
Freon-113	μg/L	ND<2.0	ND<1.0	ND<1.0	ND<1.0
Freon-12	μg/L	ND<1.0	ND<2.0	ND<2.0	ND<2.0
Hexachlorobutadiene	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Isopropylbenzene	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0

Concentrations of Volatile Organic Compounds and Total Petroleum Hydrocarbons Detected in Groundwater Samples 2701 North Harbor Drive

San Diego, California

		T6-GW	T-7-GW	T-8-GW	T-9GW
	Units	7/5/2005	9/22/2005	9/22/2005	9/22/2005
Volatile Organic Compounds					
Methyl tertbutyl ether (MTBE)	μg/L	ND<2.0	ND<2.0	ND<2.0	11
Naphthalene	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
n-Butylbenzene	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
n-Propylbenzene	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
p-Isopropyltoluene	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
sec-Butylbenzene	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Styrene	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
tert-Butylbenzene	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Tetrachloroethene	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
Toluene	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
trans-1,2-Dichloroethene	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
trans-1,3-Dichloropropene	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
Trichloroethene	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
Vinyl Acetate	μg/L	ND<10	ND<10	ND<10	ND<10
Vinyl Chloride	μg/L	ND<0.50	ND<0.50	ND<0.50	5.3
Xylenes (Total)	μg/L	ND<1.5	ND<1.5	ND<1.5	ND<1.5
Petroleum Hydrocarbons	-				
C13 - C22 DRO	mg/L	-	-	-	-
C23 - C36 HRO	mg/L	-	-	-	-
C6 - C12 GRO	mg/L	-	-	-	-
Total Petroleum Hydrocarbon (TPH)	mg/L	-	-	-	-

Note:

- DUP Field duplicate
- DRO Diesel range organics
- GRO Gasoline range organics
- HRO heavy oil range organics
- $\mu g/L$ microgram per liter
- mg/L milligram per liter
- ND< Analyte not detected at concentrations greater than or equal to reporting limits (RL)
- bold Analyte detected

- Constituent not analyzed for

- D Result from diluted sample
- J Analyte detected above method detection limit (MDL), but below RL
- * GRO and HRO MDL based on lowest calibration standar

Concentrations of Volatile Organic Compounds and Total Petroleum Hydrocarbons Detected in Groundwater Samples 2701 North Harbor Drive

	San I	Diego, Califor	nia		
		T-10B	T-10GW	T-11GW	T-13-GW
	Units	9/22/2005	9/22/2005	9/22/2005	6/30/2005
Volatile Organic Compounds					
1,1,1,2-Tetrachloroethane	μg/L	ND<0.50	ND<1.0	ND<2.5	ND<0.50
1,1,1-Trichloroethane	μg/L	ND<0.50	ND<1.0	ND<2.5	ND<0.50
1,1,2,2-Tetrachloroethane	μg/L	ND<0.50	ND<1.0	ND<2.5	ND<0.50
1,1,2-Trichloroethane	μg/L	ND<0.50	ND<1.0	ND<2.5	ND<0.50
1,1-Dichloroethane	μg/L	ND<0.50	ND<1.0	ND<2.5	ND<0.50
1,1-Dichloroethene	μg/L	ND<0.50	ND<1.0	ND<2.5	ND<0.50
1,1-Dichloropropene	μg/L	ND<0.50	ND<1.0	ND<2.5	ND<0.50
1,2,3-Trichlorobenzene	μg/L	ND<1.0	ND<2.0	ND<5.0	ND<1.0
1,2,3-Trichloropropane	μg/L	ND<0.50	ND<1.0	ND<2.5	ND<0.50
1,2,4-Trichlorobenzene	μg/L	ND<1.0	ND<2.0	ND<5.0	ND<1.0
1,2,4-Trimethylbenzene	μg/L	ND<1.0	ND<2.0	ND<5.0	ND<1.0
1,2-Dibromo-3-chloropropane	μg/L	ND<2.0	ND<4.0	ND<10	ND<2.0
1,2-Dibromoethane	μg/L	ND<1.0	ND<2.0	ND<5.0	ND<1.0
1,2-Dichlorobenzene	μg/L	ND<0.50	ND<1.0	ND<2.5	ND<0.50
1,2-Dichloroethane	μg/L	ND<0.50	ND<1.0	ND<2.5	ND<0.50
1,2-Dichloropropane	μg/L	ND<0.50	ND<1.0	ND<2.5	ND<0.50
1,3,5-Trimethylbenzene	μg/L	ND<1.0	ND<2.0	ND<5.0	ND<1.0
1,3-Dichlorobenzene	μg/L	ND<0.50	ND<1.0	ND<2.5	ND<0.50
1,3-Dichloropropane	μg/L	ND<0.50	ND<1.0	ND<2.5	ND<0.50
1,4-Dichlorobenzene	μg/L	ND<0.50	ND<1.0	ND<2.5	ND<0.50
2,2-Dichloropropane	μg/L	ND<0.50	ND<1.0	ND<2.5	ND<0.50
2-Butanone (MEK)	μg/L	ND<10	ND<20	ND<50	1.1 J
2-Chlorotoluene	μg/L	ND<1.0	ND<2.0	ND<5.0	ND<1.0
2-Hexanone	μg/L	ND<10	ND<20	ND<50	ND<10
4-Chlorotoluene	μg/L	ND<1.0	ND<2.0	ND<5.0	ND<1.0
4-Methyl-2-pentanone	μg/L	ND<10	ND<20	ND<50	ND<10
Acetone	μg/L	10	ND<20	ND<50	2.8 J
Benzene	μg/L	ND<0.50	ND<1.0	ND<2.5	1.2
Bromobenzene	μg/L	ND<1.0	ND<2.0	ND<5.0	ND<1.0
Bromochloromethane	μg/L	ND<0.50	ND<1.0	ND<2.5	ND<0.50
Bromoform	μg/L	ND<1.0	ND<2.0	ND<5.0	ND<1.0
Bromomethane	μg/L	ND<1.0	ND<2.0	ND<5.0	ND<1.0
Carbon Disulfide	μg/L	ND<2.0	ND<4.0	ND<10	ND<2.0
Carbon Tetrachloride	μg/L	ND<0.50	ND<1.0	ND<2.5	ND<0.50
Chlorobenzene	μg/L	ND<0.50	ND<1.0	ND<2.5	ND<0.50
Chloroethane	μg/L	ND<1.0	ND<2.0	ND<5.0	ND<1.0
Chloroform	μg/L	0.43 J	ND<1.0	ND<2.5	ND<0.50
Chloromethane	μg/L	ND<1.0	ND<2.0	ND<5.0	ND<1.0
cis-1,2-Dichloroethene	μg/L	16	15 D	ND<2.5	ND<0.50
cis-1,3-Dichloropropene	μg/L	ND<0.50	ND<1.0	ND<2.5	ND<0.50
Dibromochloromethane	μg/L	ND<1.0	ND<2.0	ND<5.0	ND<1.0
Dibromomethane	μg/L	ND<0.50	ND<1.0	ND<2.5	ND<0.50
Dichlorobromomethane	μg/L	ND<1.0	ND<2.0	ND<5.0	ND<1.0
Dichloromethane (Methylene Chloride)	μg/L	ND<1.0	ND<2.0	ND<5.0	ND<2.0
Ethyl benzene	μg/L	ND<2.0	ND<4.0	ND<10	ND<0.50
Freon-11	μg/L	ND<0.50	ND<1.0	ND<2.5	ND<1.0
Freon-113	μg/L	ND<1.0	ND<2.0	ND<5.0	ND<2.0
Freon-12	μg/L	ND<2.0	ND<4.0	ND<10	ND<1.0
Hexachlorobutadiene	μg/L	ND<1.0	ND<2.0	ND<5.0	ND<1.0
Isopropylbenzene	μg/L	ND<1.0	ND<2.0	ND<5.0	ND<1.0

Concentrations of Volatile Organic Compounds and Total Petroleum Hydrocarbons Detected in Groundwater Samples 2701 North Harbor Drive

San Diego, California

		<u> </u>			
	Units	T-10B 9/22/2005	T-10GW 9/22/2005	T-11GW 9/22/2005	T-13-GW 6/30/2005
Volatile Organic Compounds		772272000	712212000	772272000	0/50/2005
Methyl tertbutyl ether (MTBE)	μg/L	ND<2.0	ND<4.0	ND<10	ND<2.0
Naphthalene	μg/L	ND<1.0	ND<2.0	ND<5.0	ND<1.0
n-Butylbenzene	µg/L	ND<1.0	ND<2.0	ND<5.0	ND<1.0
n-Propylbenzene	μg/L	ND<1.0	ND<2.0	ND<5.0	ND<1.0
p-Isopropyltoluene	μg/L	ND<1.0	ND<2.0	ND<5.0	ND<1.0
sec-Butylbenzene	μg/L	ND<1.0	ND<2.0	ND<5.0	ND<1.0
Styrene	μg/L	ND<0.50	ND<1.0	ND<2.5	ND<0.50
tert-Butylbenzene	μg/L	ND<1.0	ND<2.0	ND<5.0	ND<1.0
Tetrachloroethene	μg/L	110 D	99 D	1.3 J,D	ND<0.50
Toluene	μg/L	ND<0.50	ND<1.0	ND<2.5	ND<0.50
trans-1,2-Dichloroethene	μg/L	0.53	ND<1.0	ND<2.5	0.65
trans-1,3-Dichloropropene	μg/L	ND<0.50	ND<1.0	ND<2.5	ND<0.50
Trichloroethene	μg/L	83 D	79 D	12 D	ND<0.50
Vinyl Acetate	μg/L	ND<10	ND<20	ND<50	ND<10
Vinyl Chloride	μg/L	ND<0.50	ND<1.0	150 D	0.59
Xylenes (Total)	μg/L	ND<1.5	ND<3.0	ND<7.5	ND<1.5
Petroleum Hydrocarbons					
C13 - C22 DRO	mg/L	-	-	-	-
C23 - C36 HRO	mg/L	-	-	-	-
C6 - C12 GRO	mg/L	-	-	-	-
Total Petroleum Hydrocarbon (TPH)	mg/L	-	-	-	-

Note:

- DUP Field duplicate
- DRO Diesel range organics
- GRO Gasoline range organics
- HRO heavy oil range organics
- $\mu g/L$ microgram per liter
- mg/L milligram per liter
- ND< Analyte not detected at concentrations greater than or equal to reporting limits (RL)
- **bold** Analyte detected

- Constituent not analyzed for

- D Result from diluted sample
- J Analyte detected above method detection limit (MDL), but below RL
- * GRO and HRO MDL based on lowest calibration standar

Concentrations of Volatile Organic Compounds and Total Petroleum Hydrocarbons Detected in Groundwater Samples 2701 North Harbor Drive

	San I	Diego, Califor	nia		
	Units	T-14-GW 6/30/2005	T-15-GW 7/1/2005	T-16-GW 7/1/2005	T-17B-GW 6/30/2005
Volatile Organic Compounds					
1,1,1,2-Tetrachloroethane	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
1,1,1-Trichloroethane	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
1,1,2,2-Tetrachloroethane	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
1,1,2-Trichloroethane	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
1,1-Dichloroethane	μg/L	ND<0.50	ND<0.50	ND<0.50	1.2
1,1-Dichloroethene	μg/L	ND<0.50	ND<0.50	ND<0.50	3.9
1,1-Dichloropropene	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
1,2,3-Trichlorobenzene	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
1,2,3-Trichloropropane	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
1,2,4-Trichlorobenzene	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
1,2,4-Trimethylbenzene	μg/L	ND<1.0	ND<1.0	ND<1.0	0.3 J
1,2-Dibromo-3-chloropropane	μg/L	ND<2.0	ND<2.0	ND<2.0	ND<2.0
1,2-Dibromoethane	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
1,2-Dichlorobenzene	μg/L	ND<0.50	ND<0.50	ND<0.50	3.4
1,2-Dichloroethane	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
1,2-Dichloropropane	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
1,3,5-Trimethylbenzene	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
1,3-Dichlorobenzene	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
1,3-Dichloropropane	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
1,4-Dichlorobenzene	μg/L	ND<0.50	ND<0.50	ND<0.50	13
2,2-Dichloropropane	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
2-Butanone (MEK)	μg/L	ND<10	ND<10	ND<10	ND<10
2-Chlorotoluene	μg/L	ND<1.0	ND<1.0	ND<1.0	0.22 J
2-Hexanone	μg/L	ND<10	ND<10	ND<10	ND<10
4-Chlorotoluene	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
4-Methyl-2-pentanone	μg/L	ND<10	ND<10	ND<10	ND<10
Acetone	μg/L	4.2 J	3.1 J	5.1 J	2.3 J
Benzene	μg/L	1.3	0.37 J	1	0.44 J
Bromobenzene	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Bromochloromethane	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
Bromoform	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Bromomethane	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Carbon Disulfide	μg/L	ND<2.0	ND<2.0	ND<2.0	0.56 J
Carbon Tetrachloride	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
Chlorobenzene	μg/L	ND<0.50	ND<0.50	ND<0.50	3
Chloroethane	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Chloroform	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
Chloromethane	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
cis-1,2-Dichloroethene	μg/L	ND<0.50	0.23 J	1.8	4800 D
cis-1,3-Dichloropropene	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
Dibromochloromethane	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Dibromomethane	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
Dichlorobromomethane	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Dichloromethane (Methylene Chloride)	μg/L	ND<2.0	ND<2.0	ND<2.0	ND<2.0
Ethyl benzene	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
Freon-11	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Freon-113	μg/L	ND<2.0	ND<2.0	ND<2.0	ND<2.0
Freon-12	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Hexachlorobutadiene	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Isopropylbenzene	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0

Concentrations of Volatile Organic Compounds and Total Petroleum Hydrocarbons Detected in Groundwater Samples 2701 North Harbor Drive

San Diego, California

		T-14-GW	T-15-GW	T-16-GW	T-17B-GW
	Units	6/30/2005	7/1/2005	7/1/2005	6/30/2005
Volatile Organic Compounds					
Methyl tertbutyl ether (MTBE)	μg/L	ND<2.0	ND<2.0	ND<2.0	ND<2.0
Naphthalene	μg/L	ND<1.0	ND<1.0	ND<1.0	0.4 J
n-Butylbenzene	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
n-Propylbenzene	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
p-Isopropyltoluene	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
sec-Butylbenzene	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Styrene	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
tert-Butylbenzene	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Tetrachloroethene	μg/L	ND<0.50	ND<0.50	ND<0.50	31000 D
Toluene	μg/L	ND<0.50	ND<0.50	ND<0.50	0.54
trans-1,2-Dichloroethene	μg/L	0.5	0.4 J	0.49 J	88
trans-1,3-Dichloropropene	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
Trichloroethene	μg/L	ND<0.50	ND<0.50	ND<0.50	5700 D
Vinyl Acetate	μg/L	ND<10	ND<10	ND<10	ND<10
Vinyl Chloride	μg/L	2.8	12	14	290 D
Xylenes (Total)	μg/L	ND<1.5	ND<1.5	ND<1.5	0.6 J
Petroleum Hydrocarbons					
C13 - C22 DRO	mg/L	0.72 J	-	-	-
C23 - C36 HRO	mg/L	ND<5	-	-	-
C6 - C12 GRO	mg/L	ND<1 *	-	-	-
Total Petroleum Hydrocarbon (TPH)	mg/L	ND<7	-	-	-

Note:

- DUP Field duplicate
- DRO Diesel range organics
- GRO Gasoline range organics
- HRO heavy oil range organics
- $\mu g/L$ microgram per liter
- mg/L milligram per liter
- ND< Analyte not detected at concentrations greater than or equal to reporting limits (RL)
- bold Analyte detected

- Constituent not analyzed for

- D Result from diluted sample
- J Analyte detected above method detection limit (MDL), but below RL
- * GRO and HRO MDL based on lowest calibration standar

Concentrations of Volatile Organic Compounds and Total Petroleum Hydrocarbons Detected in Groundwater Samples 2701 North Harbor Drive

San Diego,	California
------------	------------

	TT • 4	T-17-GW	T-18-GW	T-19-GW	T-20-GW
	Units	6/30/2005	6/30/2005	6/30/2005	6/30/2005
Volatile Organic Compounds	~				
1,1,1,2-Tetrachloroethane	μg/L	ND<0.50	ND<0.50	ND<10	ND<0.50
1,1,1-Trichloroethane	μg/L	ND<0.50	ND<0.50	ND<10	ND<0.50
1,1,2,2-Tetrachloroethane	μg/L	ND<0.50	ND<0.50	ND<10	ND<0.50
1,1,2-Trichloroethane	μg/L	ND<0.50	ND<0.50	ND<10	ND<0.50
1,1-Dichloroethane	μg/L	0.88	1.2	ND<10	2.2
1,1-Dichloroethene	μg/L	5.7	7.6	ND<10	1.7
1,1-Dichloropropene	μg/L	ND<0.50	ND<0.50	ND<10	ND<0.50
1,2,3-Trichlorobenzene	μg/L	ND<1.0	ND<1.0	ND<20	ND<1.0
1,2,3-Trichloropropane	μg/L	ND<0.50	ND<0.50	ND<10	ND<0.50
1,2,4-Trichlorobenzene	μg/L	ND<1.0	ND<1.0	ND<20	ND<1.0
1,2,4-Trimethylbenzene	μg/L	0.7 J	ND<1.0	ND<20	ND<1.0
1,2-Dibromo-3-chloropropane	μg/L	ND<2.0	ND<2.0	ND<40	ND<2.0
1,2-Dibromoethane	μg/L	ND<1.0	ND<1.0	ND<20	ND<1.0
1,2-Dichlorobenzene	μg/L	6.4	9.7	ND<10	0.19 J
1,2-Dichloroethane	μg/L	ND<0.50	ND<0.50	ND<10	ND<0.50
1,2-Dichloropropane	μg/L	ND<0.50	ND<0.50	ND<10	ND<0.50
1,3,5-Trimethylbenzene	μg/L	ND<1.0	ND<1.0	ND<20	ND<1.0
1,3-Dichlorobenzene	μg/L	ND<0.50	0.72	ND<10	ND<0.50
1,3-Dichloropropane	μg/L	ND<0.50	ND<0.50	ND<10	ND<0.50
1,4-Dichlorobenzene	$\mu g/L$	22	17	ND<10	0.63
2,2-Dichloropropane	μg/L	ND<0.50	ND<0.50	ND<10	ND<0.50
2-Butanone (MEK)	μg/L	ND<10	ND<10	ND<200	ND<10
2-Chlorotoluene	μg/L μg/L	0.38 J	0.28 J	ND<20	ND<1.0
2-Hexanone	μg/L μg/L	ND<10	ND<10	ND<200	ND<10
4-Chlorotoluene	μg/L μg/L	ND<1.0	ND<1.0	ND<20	ND<1.0
4-Methyl-2-pentanone	μg/L μg/L	ND<10	ND<10	ND<200	ND<10
Acetone	μg/L μg/L	3.4 J	3.1 J	ND<200	3.4 J
Benzene	μg/L μg/L	0.87	1.6	ND<10	0.33 J
Bromobenzene	μg/L μg/L	ND<1.0	ND<1.0	ND<20	ND<1.0
Bromochloromethane	μg/L μg/L	ND<0.50	ND<0.50	ND<10	ND<0.50
Bromoform	μg/L μg/L	ND<0.50	ND<1.0	ND<20	ND<1.0
Bromomethane	μg/L μg/L	ND<1.0	ND<1.0	ND<20	ND<1.0
Carbon Disulfide	μg/L μg/L	0.53 J	ND<1.0	ND<40	ND<1.0
				ND<40 ND<10	
Carbon Tetrachloride Chlorobenzene	μg/L	ND<0.50 5.6	ND<0.50 3.9		ND<0.50 0.42 J
	μg/L			ND<10	
Chloroethane	μg/L	ND<1.0	ND<1.0	ND<20	ND<1.0
Chloroform	μg/L	ND<0.50	ND<0.50	ND<10	ND<0.50
Chloromethane	μg/L	ND<1.0	ND<1.0	ND<20	ND<1.0
cis-1,2-Dichloroethene	μg/L	7500 D	13000 D	1400 D	2100 D
cis-1,3-Dichloropropene	μg/L	ND<0.50	ND<0.50	ND<10	ND<0.50
Dibromochloromethane	μg/L	ND<1.0	ND<1.0	ND<20	ND<1.0
Dibromomethane	μg/L	ND<0.50	ND<0.50	ND<10	ND<0.50
Dichlorobromomethane	μg/L	ND<1.0	ND<1.0	ND<20	ND<1.0
Dichloromethane (Methylene Chloride)	μg/L	ND<2.0	ND<2.0	ND<40	ND<2.0
Ethyl benzene	μg/L	0.2 J	ND<0.50	ND<10	ND<0.50
Freon-11	μg/L	ND<1.0	ND<1.0	ND<20	ND<1.0
Freon-113	μg/L	ND<2.0	ND<2.0	ND<40	ND<2.0
Freon-12	μg/L	ND<1.0	ND<1.0	ND<20	ND<1.0
Hexachlorobutadiene	μg/L	ND<1.0	ND<1.0	ND<20	ND<1.0
Isopropylbenzene	μg/L	ND<1.0	ND<1.0	ND<20	ND<1.0

Concentrations of Volatile Organic Compounds and Total Petroleum Hydrocarbons Detected in Groundwater Samples 2701 North Harbor Drive

San Diego, California

	Units	T-17-GW 6/30/2005	T-18-GW 6/30/2005	T-19-GW 6/30/2005	T-20-GW 6/30/2005
Volatile Organic Compounds		<u>.</u>		I	
Methyl tertbutyl ether (MTBE)	μg/L	ND<2.0	ND<2.0	ND<40	ND<2.0
Naphthalene	μg/L	0.89 J	ND<1.0	ND<20	ND<1.0
n-Butylbenzene	μg/L	ND<1.0	ND<1.0	ND<20	ND<1.0
n-Propylbenzene	μg/L	ND<1.0	ND<1.0	ND<20	ND<1.0
p-Isopropyltoluene	μg/L	ND<1.0	ND<1.0	ND<20	ND<1.0
sec-Butylbenzene	μg/L	ND<1.0	ND<1.0	ND<20	ND<1.0
Styrene	μg/L	ND<0.50	ND<0.50	ND<10	ND<0.50
tert-Butylbenzene	μg/L	ND<1.0	ND<1.0	ND<20	ND<1.0
Tetrachloroethene	μg/L	61000 D	2000 D	770 D	330 D
Toluene	μg/L	1.1	0.54	ND<10	ND<0.50
trans-1,2-Dichloroethene	μg/L	80	40	7.4 J,D	13
trans-1,3-Dichloropropene	μg/L	ND<0.50	ND<0.50	ND<10	ND<0.50
Trichloroethene	μg/L	6400 D	10000 D	1400 D	1100 D
Vinyl Acetate	μg/L	ND<10	ND<10	ND<200	ND<10
Vinyl Chloride	μg/L	270 D	350 D	180 D	200 D
Xylenes (Total)	μg/L	1.1 J	0.56 J	ND<30	ND<1.5
Petroleum Hydrocarbons	-				
C13 - C22 DRO	mg/L	0.67 J	-	0.62 J	-
C23 - C36 HRO	mg/L	ND<5	-	ND<5	-
C6 - C12 GRO	mg/L	15 *	-	0.72 J*	-
Total Petroleum Hydrocarbon (TPH)	mg/L	16	-	ND<7	-

Note:

- DUP Field duplicate
- DRO Diesel range organics
- GRO Gasoline range organics
- HRO heavy oil range organics
- $\mu g/L$ microgram per liter
- mg/L milligram per liter
- ND< Analyte not detected at concentrations greater than or equal to reporting limits (RL)
- bold Analyte detected

- Constituent not analyzed for

- D Result from diluted sample
- J Analyte detected above method detection limit (MDL), but below RL
- * GRO and HRO MDL based on lowest calibration standar

Concentrations of Volatile Organic Compounds and Total Petroleum Hydrocarbons Detected in Groundwater Samples 2701 North Harbor Drive

		8 /		
	Tim:4a	T-21B-GW	T-22-GW	T-23-GW
	Units	7/6/2005	7/6/2005	7/6/2005
Volatile Organic Compounds	~			
1,1,1,2-Tetrachloroethane	μg/L	ND<50	ND<250	ND<25
1,1,1-Trichloroethane	μg/L	ND<50	ND<250	ND<25
1,1,2,2-Tetrachloroethane	μg/L	ND<50	ND<250	ND<25
1,1,2-Trichloroethane	μg/L	ND<50	ND<250	ND<25
1,1-Dichloroethane	μg/L	ND<50	ND<250	ND<25
1,1-Dichloroethene	μg/L	ND<50	ND<250	ND<25
1,1-Dichloropropene	μg/L	ND<50	ND<250	ND<25
1,2,3-Trichlorobenzene	μg/L	ND<100	ND<500	ND<50
1,2,3-Trichloropropane	μg/L	ND<50	ND<250	ND<25
1,2,4-Trichlorobenzene	μg/L	ND<100	ND<500	ND<50
1,2,4-Trimethylbenzene	μg/L	ND<100	ND<500	ND<50
1,2-Dibromo-3-chloropropane	μg/L	ND<200	ND<1000	ND<100
1,2-Dibromoethane	μg/L	ND<100	ND<500	ND<50
1,2-Dichlorobenzene	μg/L	ND<50	ND<250	ND<25
1,2-Dichloroethane	μg/L	ND<50	ND<250	ND<25
1,2-Dichloropropane	μg/L	ND<50	ND<250	ND<25
1,3,5-Trimethylbenzene	μg/L	ND<100	ND<500	ND<50
1,3-Dichlorobenzene	μg/L	ND<50	ND<250	ND<25
1,3-Dichloropropane	μg/L	ND<50	ND<250	ND<25
1,4-Dichlorobenzene	<u>μg</u> /L	ND<50	ND<250	ND<25
2,2-Dichloropropane	μg/L	ND<50	ND<250	ND<25
2-Butanone (MEK)	μg/L	ND<1000	ND<5000	ND<500
2-Chlorotoluene	μg/L	ND<100	ND<500	ND<50
2-Hexanone	μg/L μg/L	ND<1000	ND<5000	ND<500
4-Chlorotoluene	μg/L μg/L	ND<100	ND<500	ND<50
4-Methyl-2-pentanone	μg/L μg/L	ND<1000	ND<5000	ND<500
Acetone	μg/L μg/L	ND<1000	ND<5000	ND<500
Benzene	μg/L μg/L	45 J,D	ND<250	12 J,D
Bromobenzene		ND<100	ND<500	ND<50
Bromochloromethane	μg/L ug/L	ND<100	ND<250	ND<25
Bromoform	μg/L			
Bromonothane	μg/L	ND<100	ND<500	ND<50
Carbon Disulfide	μg/L	ND<100	ND<500	ND<50
	μg/L	ND<200	ND<1000	ND<100
Carbon Tetrachloride	μg/L	ND<50	ND<250	ND<25
Chlorobenzene	μg/L	ND<50	ND<250	ND<25
Chloroethane	μg/L	ND<100	ND<500	ND<50
Chloroform	μg/L	ND<50	ND<250	ND<25
Chloromethane	μg/L	ND<100	ND<500	ND<50
cis-1,2-Dichloroethene	μg/L	57 D	ND<250	83 D
cis-1,3-Dichloropropene	μg/L	ND<50	ND<250	ND<25
Dibromochloromethane	μg/L	ND<100	ND<500	ND<50
Dibromomethane	μg/L	ND<50	ND<250	ND<25
Dichlorobromomethane	μg/L	ND<100	ND<500	ND<50
Dichloromethane (Methylene Chloride)	μg/L	ND<200	ND<1000	ND<100
Ethyl benzene	μg/L	ND<50	ND<250	ND<25
Freon-11	μg/L	ND<100	ND<500	ND<50
Freon-113	μg/L	ND<200	ND<1000	ND<100
Freon-12	μg/L	ND<100	ND<500	ND<50
Hexachlorobutadiene	μg/L	ND<100	ND<500	ND<50
Isopropylbenzene	μg/L	ND<100	ND<500	ND<50

Concentrations of Volatile Organic Compounds and Total Petroleum Hydrocarbons Detected in Groundwater Samples 2701 North Harbor Drive

San Diego, California

	Units	T-21B-GW	T-22-GW 7/6/2005	T-23-GW
	Units	7/6/2005	//6/2005	7/6/2005
Volatile Organic Compounds				
Methyl tertbutyl ether (MTBE)	μg/L	ND<200	ND<1000	ND<100
Naphthalene	μg/L	ND<100	ND<500	ND<50
n-Butylbenzene	μg/L	ND<100	ND<500	ND<50
n-Propylbenzene	μg/L	ND<100	ND<500	ND<50
p-Isopropyltoluene	μg/L	ND<100	ND<500	ND<50
sec-Butylbenzene	μg/L	ND<100	ND<500	ND<50
Styrene	μg/L	ND<50	ND<250	ND<25
tert-Butylbenzene	μg/L	ND<100	ND<500	ND<50
Tetrachloroethene	μg/L	ND<50	ND<250	ND<25
Toluene	μg/L	ND<50	ND<250	ND<25
trans-1,2-Dichloroethene	μg/L	78 D	ND<250	18 J,D
trans-1,3-Dichloropropene	μg/L	ND<50	ND<250	ND<25
Trichloroethene	μg/L	ND<50	ND<250	ND<25
Vinyl Acetate	μg/L	ND<1000	ND<5000	ND<500
Vinyl Chloride	μg/L	4300 D	19000 D	2300 D
Xylenes (Total)	μg/L	ND<150	ND<750	ND<75
Petroleum Hydrocarbons				
C13 - C22 DRO	mg/L	-	-	-
C23 - C36 HRO	mg/L	-	-	-
C6 - C12 GRO	mg/L	-	-	-
Total Petroleum Hydrocarbon (TPH)	mg/L	-	-	-

Note:

- DUP Field duplicate
- DRO Diesel range organics
- GRO Gasoline range organics
- HRO heavy oil range organics
- $\mu g/L$ microgram per liter
- mg/L milligram per liter
- ND< Analyte not detected at concentrations greater than or equal to reporting limits (RL)
- bold Analyte detected

- Constituent not analyzed for

- D Result from diluted sample
- J Analyte detected above method detection limit (MDL), but below RL
- * GRO and HRO MDL based on lowest calibration standar

Concentrations of Volatile Organic Compounds and Total Petroleum Hydrocarbons Detected in Groundwater Samples 2701 North Harbor Drive

	Units	DUP2 (T-23-GW) 7/6/2005	T-24-GW 7/6/2005
Volatile Organic Compounds			
1,1,1,2-Tetrachloroethane	μg/L	ND<50	ND<250
1,1,1-Trichloroethane	μg/L	ND<50	ND<250
1,1,2,2-Tetrachloroethane	μg/L	ND<50	ND<250
1,1,2-Trichloroethane	μg/L	ND<50	ND<250
1,1-Dichloroethane	μg/L	ND<50	ND<250
1,1-Dichloroethene	μg/L	ND<50	ND<250
1,1-Dichloropropene	μg/L	ND<50	ND<250
1,2,3-Trichlorobenzene	μg/L	ND<100	ND<500
1,2,3-Trichloropropane	μg/L	ND<50	ND<250
1,2,4-Trichlorobenzene	μg/L	ND<100	ND<500
1,2,4-Trimethylbenzene	μg/L	ND<100	ND<500
1,2-Dibromo-3-chloropropane	μg/L	ND<200	ND<1000
1,2-Dibromoethane	μg/L	ND<100	ND<500
1,2-Dichlorobenzene	μg/L μg/L	ND<50	ND<250
1,2-Dichloroethane	μg/L μg/L	ND<50	ND<250
1,2-Dichloropropane	μg/L μg/L	ND<50	ND<250
1,3,5-Trimethylbenzene	μg/L μg/L	ND<100	ND<500
1,3-Dichlorobenzene	μg/L μg/L	ND<100	ND<250
1,3-Dichloropropane	μg/L μg/L	ND<50	ND<250
1,4-Dichlorobenzene	μg/L μg/L	ND<50	ND<250
2,2-Dichloropropane	μg/L μg/L	ND<50	ND<250
2-Butanone (MEK)	μg/L μg/L	ND<1000	ND<5000
2-Chlorotoluene	μg/L μg/L	ND<1000	ND<500
2-Hexanone	μg/L μg/L	ND<1000	ND<5000
4-Chlorotoluene	μg/L μg/L	ND<1000	ND<500
4-Methyl-2-pentanone	μg/L μg/L	ND<1000	ND<5000
Acetone	μg/L μg/L	ND<1000	ND<5000
Benzene	μg/L μg/L	ND<1000	ND<250
Bromobenzene	μg/L μg/L	ND<100	ND<500
Bromochloromethane	μg/L μg/L	ND<50	ND<250
Bromoform	μg/L μg/L	ND<100	ND<500
Bromomethane	μg/L μg/L	ND<100	ND<500
Carbon Disulfide	μg/L μg/L	ND<200	ND<1000
Carbon Disunde Carbon Tetrachloride	μg/L μg/L	ND<50	ND<250
Chlorobenzene	μg/L μg/L	ND<50	ND<250
Chloroethane	μg/L μg/L	ND<100	ND<500
Chloroform	μg/L μg/L	ND<50	ND<300
Chloromethane	μg/L μg/L	ND<30	ND<230
cis-1,2-Dichloroethene	μg/L μg/L	130 D	15000 D
cis-1,3-Dichloropropene	μg/L μg/L	ND<50	ND<250
Dibromochloromethane	μg/L μg/L	ND<100	ND<500
Dibromoethane	μg/L μg/L	ND<50	ND<250
Dichlorobromomethane	μg/L μg/L	ND<100	ND<500
Dichloromethane (Methylene Chloride)	μg/L μg/L	ND<200	ND<1000
Ethyl benzene	μg/L μg/L	ND<50	ND<250
Freon-11	μg/L μg/L	ND<100	ND<500
Freon-113	μg/L μg/L	ND<200	ND<1000
Freon-12	μg/L μg/L	ND<100	ND<1000
Hexachlorobutadiene	μg/L μg/L	ND<100	ND<500
Isopropylbenzene	μg/L μg/L	ND<100	ND<500
rsopropyrochizene	μg/L	110~100	

Concentrations of Volatile Organic Compounds and Total Petroleum Hydrocarbons Detected in Groundwater Samples 2701 North Harbor Drive

San Diego, California

	Sun Diego, Cumorina			
	Units	DUP2 (T-23-GW) 7/6/2005	T-24-GW 7/6/2005	
Volatile Organic Compounds				
Methyl tertbutyl ether (MTBE)	μg/L	ND<200	ND<1000	
Naphthalene	μg/L	ND<100	ND<500	
n-Butylbenzene	μg/L	ND<100	ND<500	
n-Propylbenzene	μg/L	ND<100	ND<500	
p-Isopropyltoluene	μg/L	ND<100	ND<500	
sec-Butylbenzene	μg/L	ND<100	ND<500	
Styrene	μg/L	ND<50	ND<250	
tert-Butylbenzene	μg/L	ND<100	ND<500	
Tetrachloroethene	μg/L	ND<50	41000 D	
Toluene	μg/L	ND<50	ND<250	
trans-1,2-Dichloroethene	μg/L	23 J,D	ND<250	
trans-1,3-Dichloropropene	μg/L	ND<50	ND<250	
Trichloroethene	μg/L	ND<50	9600 D	
Vinyl Acetate	μg/L	ND<1000	ND<5000	
Vinyl Chloride	μg/L	3100 D	630 D	
Xylenes (Total)	μg/L	ND<150	ND<750	
Petroleum Hydrocarbons				
C13 - C22 DRO	mg/L	-	-	
C23 - C36 HRO	mg/L	-	-	
C6 - C12 GRO	mg/L	-	-	
Total Petroleum Hydrocarbon (TPH)	mg/L	-	-	

Note:

- DUP Field duplicate
- DRO Diesel range organics
- GRO Gasoline range organics
- HRO heavy oil range organics
- $\mu g/L$ microgram per liter
- mg/L milligram per liter
- ND< Analyte not detected at concentrations greater than or equal to reporting limits (RL)
- bold Analyte detected

- Constituent not analyzed for

- D Result from diluted sample
- J Analyte detected above method detection limit (MDL), but below RL
- * GRO and HRO MDL based on lowest calibration standar

Concentrations of Volatile Organic Compounds and Total Petroleum Hydrocarbons Detected in Groundwater Samples 2701 North Harbor Drive

San Diego,	California
------------	------------

	T les ! 4 e	T-25-GW	T-26-GW	T-27-GW	T-27-GW-B
	Units	7/13/2005	7/13/2005	7/13/2005	7/13/2005
Volatile Organic Compounds	1		ND 0 50	ND 0 50	NID -0.50
1,1,1,2-Tetrachloroethane	μg/L	ND<2.5	ND<0.50	ND<0.50	ND<0.50
1,1,1-Trichloroethane	μg/L	ND<2.5	ND<0.50	ND<0.50	ND<0.50
1,1,2,2-Tetrachloroethane	μg/L	ND<2.5	ND<0.50	ND<0.50	ND<0.50
1,1,2-Trichloroethane	μg/L	ND<2.5	ND<0.50	ND<0.50	ND<0.50
1,1-Dichloroethane	μg/L	ND<2.5	ND<0.50	ND<0.50	ND<0.50
1,1-Dichloroethene	μg/L	ND<2.5	ND<0.50	ND<0.50	ND<0.50
1,1-Dichloropropene	μg/L	ND<2.5	ND<0.50	ND<0.50	ND<0.50
1,2,3-Trichlorobenzene	μg/L	ND<5.0	ND<1.0	ND<1.0	ND<1.0
1,2,3-Trichloropropane	μg/L	ND<2.5	ND<0.50	ND<0.50	ND<0.50
1,2,4-Trichlorobenzene	μg/L	ND<5.0	ND<1.0	ND<1.0	ND<1.0
1,2,4-Trimethylbenzene	μg/L	ND<5.0	ND<1.0	ND<1.0	ND<1.0
1,2-Dibromo-3-chloropropane	μg/L	ND<10	ND<2.0	ND<2.0	ND<2.0
1,2-Dibromoethane	μg/L	ND<5.0	ND<1.0	ND<1.0	ND<1.0
1,2-Dichlorobenzene	μg/L	ND<2.5	ND<0.50	ND<0.50	ND<0.50
1,2-Dichloroethane	μg/L	ND<2.5	ND<0.50	ND<0.50	ND<0.50
1,2-Dichloropropane	μg/L	ND<2.5	ND<0.50	ND<0.50	ND<0.50
1,3,5-Trimethylbenzene	μg/L	ND<5.0	ND<1.0	ND<1.0	ND<1.0
1,3-Dichlorobenzene	μg/L	ND<2.5	ND<0.50	ND<0.50	ND<0.50
1,3-Dichloropropane	μg/L	ND<2.5	ND<0.50	ND<0.50	ND<0.50
1,4-Dichlorobenzene	μg/L	ND<2.5	ND<0.50	0.15 J	ND<0.50
2,2-Dichloropropane	μg/L	ND<2.5	ND<0.50	ND<0.50	ND<0.50
2-Butanone (MEK)	μg/L	ND<50	ND<10	ND<10	ND<10
2-Chlorotoluene	μg/L	ND<5.0	ND<1.0	ND<1.0	ND<1.0
2-Hexanone	μg/L	ND<50	ND<10	ND<10	ND<10
4-Chlorotoluene	μg/L	ND<5.0	ND<1.0	ND<1.0	ND<1.0
4-Methyl-2-pentanone	μg/L	ND<50	ND<10	ND<10	ND<10
Acetone	μg/L	ND<50	3.1 J	2.5 J	2.4 J
Benzene	μg/L	ND<2.5	ND<0.50	ND<0.50	ND<0.50
Bromobenzene	μg/L	ND<5.0	ND<1.0	ND<1.0	ND<1.0
Bromochloromethane	μg/L	ND<2.5	ND<0.50	ND<0.50	ND<0.50
Bromoform	μg/L	ND<5.0	ND<1.0	ND<1.0	ND<1.0
Bromomethane	μg/L	ND<5.0	ND<1.0	ND<1.0	ND<1.0
Carbon Disulfide	μg/L	ND<10	ND<2.0	0.48 J	0.64 J
Carbon Tetrachloride	μg/L	ND<2.5	ND<0.50	ND<0.50	ND<0.50
Chlorobenzene	μg/L μg/L	ND<2.5	ND<0.50	ND<0.50	ND<0.50
Chloroethane	μg/L μg/L	ND<5.0	ND<1.0	ND<1.0	ND<1.0
Chloroform	μg/L μg/L	ND<2.5	ND<0.50	ND<0.50	ND<0.50
Chloromethane	μg/L μg/L	ND<5.0	ND<1.0	ND<1.0	ND<1.0
cis-1,2-Dichloroethene	μg/L μg/L	89 D	4	0.21 J	0.19 J
cis-1,3-Dichloropropene	μg/L μg/L	ND<2.5	4 ND<0.50	ND<0.50	ND<0.50
Dibromochloromethane		ND<2.3 ND<5.0	ND<0.30	ND<0.30	ND<0.30
Dibromomethane	μg/L μg/I	ND<3.0 ND<2.5	ND<1.0 ND<0.50	ND<1.0 ND<0.50	ND<1.0 ND<0.50
Dichlorobromomethane	μg/L μg/I	ND<2.5 ND<5.0	ND<0.50 ND<1.0	ND<0.50 ND<1.0	ND<0.50 ND<1.0
	μg/L ug/L				
Dichloromethane (Methylene Chloride)	μg/L	ND<10	ND<2.0	ND<2.0	ND<2.0
Ethyl benzene	μg/L	ND<2.5	ND<0.50	ND<0.50	ND<0.50
Freon-11	μg/L	ND<5.0	ND<1.0	ND<1.0	ND<1.0
Freon-113	μg/L	ND<10	ND<2.0	ND<2.0	ND<2.0
Freon-12	μg/L	ND<5.0	ND<1.0	ND<1.0	ND<1.0
Hexachlorobutadiene	μg/L	ND<5.0	ND<1.0	ND<1.0	ND<1.0
Isopropylbenzene	μg/L	ND<5.0	ND<1.0	ND<1.0	ND<1.0

Concentrations of Volatile Organic Compounds and Total Petroleum Hydrocarbons Detected in Groundwater Samples 2701 North Harbor Drive

San Diego, California

	Units	T-25-GW 7/13/2005	T-26-GW 7/13/2005	T-27-GW 7/13/2005	T-27-GW-B 7/13/2005
Volatile Organic Compounds	Onts	1113/2003	1113/2003	1113/2003	113/2003
Methyl tertbutyl ether (MTBE)	μg/L	ND<10	ND<2.0	ND<2.0	ND<2.0
Naphthalene	μg/L	ND<5.0	ND<1.0	ND<1.0	ND<1.0
n-Butylbenzene	μg/L	ND<5.0	ND<1.0	ND<1.0	ND<1.0
n-Propylbenzene	μg/L	ND<5.0	ND<1.0	ND<1.0	ND<1.0
p-Isopropyltoluene	μg/L	ND<5.0	ND<1.0	ND<1.0	ND<1.0
sec-Butylbenzene	μg/L	ND<5.0	ND<1.0	ND<1.0	ND<1.0
Styrene	μg/L	ND<2.5	ND<0.50	ND<0.50	ND<0.50
tert-Butylbenzene	μg/L	ND<5.0	ND<1.0	ND<1.0	ND<1.0
Tetrachloroethene	μg/L	ND<2.5	ND<0.50	ND<0.50	ND<0.50
Toluene	μg/L	ND<2.5	0.27 J	ND<0.50	ND<0.50
trans-1,2-Dichloroethene	μg/L	ND<2.5	ND<0.50	ND<0.50	ND<0.50
trans-1,3-Dichloropropene	μg/L	ND<2.5	ND<0.50	ND<0.50	ND<0.50
Trichloroethene	μg/L	ND<2.5	ND<0.50	0.26 J	0.24 J
Vinyl Acetate	μg/L	ND<50	ND<10	ND<10	ND<10
Vinyl Chloride	μg/L	5.4 D	ND<0.50	ND<0.50	ND<0.50
Xylenes (Total)	μg/L	ND<7.5	ND<1.5	ND<1.5	ND<1.5
Petroleum Hydrocarbons	=				
C13 - C22 DRO	mg/L	-	ND<1	-	-
C23 - C36 HRO	mg/L	-	ND<5 *	-	-
C6 - C12 GRO	mg/L	-	ND<1 *	-	-
Total Petroleum Hydrocarbon (TPH)	mg/L	-	ND<7	-	-

Note:

- DUP Field duplicate
- DRO Diesel range organics
- GRO Gasoline range organics
- HRO heavy oil range organics
- $\mu g/L$ microgram per liter
- mg/L milligram per liter
- ND< Analyte not detected at concentrations greater than or equal to reporting limits (RL)
- **bold** Analyte detected

- Constituent not analyzed for

- D Result from diluted sample
- J Analyte detected above method detection limit (MDL), but below RL
- * GRO and HRO MDL based on lowest calibration standar

Concentrations of Volatile Organic Compounds and Total Petroleum Hydrocarbons Detected in Groundwater Samples 2701 North Harbor Drive San Diego, California

	Sall I	Jiego, Camor	ma		
	Units	T-28-GW 7/13/2005	T-29-GW 7/1/2005	T-30-GW 7/1/2005	T-31-GW 7/1/2005
Volatile Organic Compounds		•	ł		•
1,1,1,2-Tetrachloroethane	μg/L	ND<0.50	ND<10	ND<1.0	ND<0.50
1,1,1-Trichloroethane	μg/L	ND<0.50	ND<10	ND<1.0	ND<0.50
1,1,2,2-Tetrachloroethane	μg/L	ND<0.50	ND<10	ND<1.0	ND<0.50
1,1,2-Trichloroethane	μg/L	ND<0.50	ND<10	ND<1.0	ND<0.50
1,1-Dichloroethane	μg/L	ND<0.50	ND<10	0.82 J,D	ND<0.50
1,1-Dichloroethene	μg/L	ND<0.50	ND<10	ND<1.0	ND<0.50
1,1-Dichloropropene	μg/L	ND<0.50	ND<10	ND<1.0	ND<0.50
1,2,3-Trichlorobenzene	μg/L	ND<1.0	ND<20	ND<2.0	ND<1.0
1,2,3-Trichloropropane	μg/L	ND<0.50	ND<10	ND<1.0	ND<0.50
1,2,4-Trichlorobenzene	μg/L	ND<1.0	ND<20	ND<2.0	ND<1.0
1,2,4-Trimethylbenzene	μg/L	ND<1.0	ND<20	ND<2.0	ND<1.0
1,2-Dibromo-3-chloropropane	μg/L	ND<2.0	ND<40	ND<4.0	ND<2.0
1,2-Dibromoethane	μg/L	ND<1.0	ND<20	ND<2.0	ND<1.0
1,2-Dichlorobenzene	μg/L	ND<0.50	ND<10	ND<1.0	ND<0.50
1,2-Dichloroethane	μg/L	ND<0.50	ND<10	ND<1.0	ND<0.50
1,2-Dichloropropane	μg/L	ND<0.50	ND<10	ND<1.0	ND<0.50
1,3,5-Trimethylbenzene	μg/L	ND<1.0	ND<20	ND<2.0	ND<1.0
1,3-Dichlorobenzene	μg/L	ND<0.50	ND<10	ND<1.0	ND<0.50
1,3-Dichloropropane	μg/L	ND<0.50	ND<10	ND<1.0	ND<0.50
1,4-Dichlorobenzene	μg/L	0.17 J	ND<10	ND<1.0	ND<0.50
2,2-Dichloropropane	μg/L	ND<0.50	ND<10	ND<1.0	ND<0.50
2-Butanone (MEK)	μg/L	ND<10	ND<200	ND<20	ND<10
2-Chlorotoluene	μg/L	ND<1.0	ND<20	ND<2.0	ND<1.0
2-Hexanone	μg/L	ND<10	ND<200	ND<20	ND<10
4-Chlorotoluene	μg/L	ND<1.0	ND<20	ND<2.0	ND<1.0
4-Methyl-2-pentanone	μg/L	ND<10	ND<200	ND<20	ND<10
Acetone	μg/L	ND<10	ND<200	3.9 J,D	ND<10
Benzene	μg/L	ND<0.50	ND<10	0.34 J,D	ND<0.50
Bromobenzene	μg/L	ND<1.0	ND<20	ND<2.0	ND<1.0
Bromochloromethane	μg/L	ND<0.50	ND<10	ND<1.0	ND<0.50
Bromoform	μg/L	ND<1.0	ND<20	ND<2.0	ND<1.0
Bromomethane	μg/L	ND<1.0	ND<20	ND<2.0	ND<1.0
Carbon Disulfide	μg/L	ND<2.0	ND<40	ND<4.0	ND<2.0
Carbon Tetrachloride	μg/L	ND<0.50	ND<10	ND<1.0	ND<0.50
Chlorobenzene	μg/L	ND<0.50	ND<10	ND<1.0	ND<0.50
Chloroethane	μg/L	ND<1.0	ND<20	ND<2.0	ND<1.0
Chloroform	μg/L	ND<0.50	ND<10	ND<1.0	1.2
Chloromethane	μg/L	ND<1.0	ND<20	ND<2.0	ND<1.0
cis-1,2-Dichloroethene	μg/L	0.22 J	ND<10	1.1 D	0.3 J
cis-1,3-Dichloropropene	μg/L	ND<0.50	ND<10	ND<1.0	ND<0.50
Dibromochloromethane	μg/L	ND<1.0	ND<20	ND<2.0	ND<1.0
Dibromomethane	μg/L	ND<0.50	ND<10	ND<1.0	ND<0.50
Dichlorobromomethane	μg/L	ND<1.0	ND<20	ND<2.0	0.2 J
Dichloromethane (Methylene Chloride)	μg/L	ND<2.0	ND<40	ND<4.0	ND<2.0
Ethyl benzene	μg/L	ND<0.50	ND<10	ND<1.0	ND<0.50
Freon-11	μg/L	ND<1.0	ND<20	ND<2.0	ND<1.0
Freon-113	μg/L	ND<2.0	ND<40	ND<4.0	ND<2.0
Freon-12	μg/L	ND<1.0	ND<20	ND<2.0	ND<1.0
Hexachlorobutadiene	μg/L	ND<1.0	ND<20	ND<2.0	ND<1.0
Isopropylbenzene	μg/L	ND<1.0	ND<20	ND<2.0	ND<1.0

Concentrations of Volatile Organic Compounds and Total Petroleum Hydrocarbons Detected in Groundwater Samples 2701 North Harbor Drive

San Diego, California

	T 1	T-28-GW	T-29-GW	T-30-GW	T-31-GW				
V-l-4l- Oi- Cd-	Units	7/13/2005	7/1/2005	7/1/2005	7/1/2005				
Volatile Organic Compounds									
Methyl tertbutyl ether (MTBE)	μg/L	ND<2.0	ND<40	ND<4.0	ND<2.0				
Naphthalene	μg/L	ND<1.0	ND<20	ND<2.0	ND<1.0				
n-Butylbenzene	μg/L	ND<1.0	ND<20	ND<2.0	ND<1.0				
n-Propylbenzene	μg/L	ND<1.0	ND<20	ND<2.0	ND<1.0				
p-Isopropyltoluene	μg/L	ND<1.0	ND<20	ND<2.0	ND<1.0				
sec-Butylbenzene	μg/L	ND<1.0	ND<20	ND<2.0	ND<1.0				
Styrene	μg/L	ND<0.50	ND<10	ND<1.0	ND<0.50				
tert-Butylbenzene	μg/L	ND<1.0	ND<20	ND<2.0	ND<1.0				
Tetrachloroethene	μg/L	ND<0.50	ND<10	0.48 J,D	0.63				
Toluene	μg/L	ND<0.50	ND<10	ND<1.0	ND<0.50				
trans-1,2-Dichloroethene	μg/L	ND<0.50	4.2 J,D	0.9 J,D	0.26 J				
trans-1,3-Dichloropropene	μg/L	ND<0.50	ND<10	ND<1.0	ND<0.50				
Trichloroethene	μg/L	0.18 J	ND<10	ND<1.0	0.63				
Vinyl Acetate	μg/L	ND<10	ND<200	ND<20	ND<10				
Vinyl Chloride	μg/L	ND<0.50	550 D	280 D	53				
Xylenes (Total)	μg/L	ND<1.5	ND<30	ND<3.0	ND<1.5				
Petroleum Hydrocarbons	-								
C13 - C22 DRO	mg/L	-	-	-	ND<1				
C23 - C36 HRO	mg/L	-	-	-	ND<5				
C6 - C12 GRO	mg/L	-	-	-	ND<1 *				
Total Petroleum Hydrocarbon (TPH)	mg/L	-	-	-	ND<7				

Note:

- DUP Field duplicate
- DRO Diesel range organics
- GRO Gasoline range organics
- HRO heavy oil range organics
- $\mu g/L$ microgram per liter
- mg/L milligram per liter
- ND< Analyte not detected at concentrations greater than or equal to reporting limits (RL)
- bold Analyte detected

- Constituent not analyzed for

C - The relative standard deviation was greater than 15%; the sample data is not significantly affected

- D Result from diluted sample
- J Analyte detected above method detection limit (MDL), but below RL
- * GRO and HRO MDL based on lowest calibration standar

Concentrations of Volatile Organic Compounds and Total Petroleum Hydrocarbons Detected in Groundwater Samples 2701 North Harbor Drive

San Diego, California							
		T-32-GW	T-33-GW	T-34-GW	T-35-GW		
	Units	7/5/2005	7/1/2005	7/14/2005	7/14/2005		
Volatile Organic Compounds							
1,1,1,2-Tetrachloroethane	μg/L	ND<0.50	ND<2.5	ND<5.0	ND<5.0		
1,1,1-Trichloroethane	μg/L	ND<0.50	ND<2.5	ND<5.0	ND<5.0		
1,1,2,2-Tetrachloroethane	μg/L	ND<0.50	ND<2.5	ND<5.0	ND<5.0		
1,1,2-Trichloroethane	μg/L	ND<0.50	ND<2.5	ND<5.0	ND<5.0		
1,1-Dichloroethane	μg/L	ND<0.50	0.95 J,D	ND<5.0	ND<5.0		
1,1-Dichloroethene	μg/L	ND<0.50	ND<2.5	ND<5.0	ND<5.0		
1,1-Dichloropropene	μg/L	ND<0.50	ND<2.5	ND<5.0	ND<5.0		
1,2,3-Trichlorobenzene	μg/L	ND<1.0	ND<5.0	ND<10	ND<10		
1,2,3-Trichloropropane	μg/L	ND<0.50	ND<2.5	ND<5.0	ND<5.0		
1,2,4-Trichlorobenzene	μg/L	ND<1.0	ND<5.0	ND<10	ND<10		
1,2,4-Trimethylbenzene	μg/L	ND<1.0	ND<5.0	ND<10	ND<10		
1,2-Dibromo-3-chloropropane	μg/L	ND<2.0	ND<10	ND<20	ND<20		
1,2-Dibromoethane	μg/L	ND<1.0	ND<5.0	ND<10	ND<10		
1,2-Dichlorobenzene	μg/L	ND<0.50	ND<2.5	ND<5.0	ND<5.0		
1,2-Dichloroethane	μg/L	ND<0.50	ND<2.5	ND<5.0	ND<5.0		
1,2-Dichloropropane	μg/L	ND<0.50	ND<2.5	ND<5.0	ND<5.0		
1,3,5-Trimethylbenzene	μg/L	ND<1.0	ND<5.0	ND<10	ND<10		
1,3-Dichlorobenzene	μg/L	ND<0.50	ND<2.5	ND<5.0	ND<5.0		
1,3-Dichloropropane	μg/L	ND<0.50	ND<2.5	ND<5.0	ND<5.0		
1,4-Dichlorobenzene	μg/L	ND<0.50	ND<2.5	ND<5.0	ND<5.0		
2,2-Dichloropropane	μg/L	ND<0.50	ND<2.5	ND<5.0	ND<5.0		
2-Butanone (MEK)	μg/L	ND<10	ND<50	ND<100	ND<100		
2-Chlorotoluene	μg/L	ND<1.0	ND<5.0	ND<10	ND<10		
2-Hexanone	μg/L	ND<10	ND<50	ND<100	ND<100		
4-Chlorotoluene	μg/L	ND<1.0	ND<5.0	ND<10	ND<10		
4-Methyl-2-pentanone	μg/L	ND<10	ND<50	ND<100	ND<100		
Acetone	μg/L	2.6 J	ND<50	ND<100	ND<100		
Benzene	μg/L	ND<0.50	ND<2.5	ND<5.0	ND<5.0		
Bromobenzene	μg/L	ND<1.0	ND<5.0	ND<10	ND<10		
Bromochloromethane	μg/L	1.5	ND<2.5	ND<5.0	ND<5.0		
Bromoform	μg/L	ND<1.0	ND<5.0	ND<10	ND<10		
Bromomethane	μg/L	ND<1.0	ND<5.0	ND<10	ND<10		
Carbon Disulfide	μg/L	ND<2.0	ND<10	ND<20	ND<20		
Carbon Tetrachloride	μg/L	ND<0.50	ND<2.5	ND<5.0	ND<5.0		
Chlorobenzene	μg/L	ND<0.50	ND<2.5	ND<5.0	ND<5.0		
Chloroethane	μg/L	ND<1.0	ND<5.0	ND<10	ND<10		
Chloroform	μg/L	27	ND<2.5	ND<5.0	ND<5.0		
Chloromethane	μg/L	ND<1.0	ND<5.0	ND<10	ND<10		
cis-1,2-Dichloroethene	μg/L	ND<0.50	1.8 J,D	110 D	34 D		
cis-1,3-Dichloropropene	μg/L	ND<0.50	ND<2.5	ND<5.0	ND<5.0		
Dibromochloromethane	μg/L	0.51 J	ND<5.0	ND<10	ND<10		
Dibromomethane	μg/L	0.23 J	ND<2.5	ND<5.0	ND<5.0		
Dichlorobromomethane	μg/L	2.6	ND<5.0	ND<10	ND<10		
Dichloromethane (Methylene Chloride)	μg/L	2.1	ND<10	ND<20	ND<20		
Ethyl benzene	μg/L	ND<0.50	ND<2.5	ND<5.0	ND<5.0		
Freon-11	μg/L	ND<1.0	ND<5.0	ND<10	ND<10		
Freon-113	μg/L	ND<2.0	ND<10	ND<20	ND<20		
Freon-12	μg/L	ND<1.0	ND<5.0	ND<10	ND<10		
Hexachlorobutadiene	μg/L	ND<1.0	ND<5.0	ND<10	ND<10		
Isopropylbenzene	μg/L	ND<1.0	ND<5.0	ND<10	ND<10		

Concentrations of Volatile Organic Compounds and Total Petroleum Hydrocarbons Detected in Groundwater Samples 2701 North Harbor Drive

San Diego, California

		T-32-GW	T-33-GW	T-34-GW	T-35-GW
	Units	7/5/2005	7/1/2005	7/14/2005	7/14/2005
Volatile Organic Compounds					
Methyl tertbutyl ether (MTBE)	μg/L	ND<2.0	ND<10	ND<20	ND<20
Naphthalene	μg/L	ND<1.0	ND<5.0	ND<10	ND<10
n-Butylbenzene	μg/L	ND<1.0	ND<5.0	ND<10	ND<10
n-Propylbenzene	μg/L	ND<1.0	ND<5.0	ND<10	ND<10
p-Isopropyltoluene	μg/L	ND<1.0	ND<5.0	ND<10	ND<10
sec-Butylbenzene	μg/L	ND<1.0	ND<5.0	ND<10	ND<10
Styrene	μg/L	ND<0.50	ND<2.5	ND<5.0	ND<5.0
tert-Butylbenzene	μg/L	ND<1.0	ND<5.0	ND<10	ND<10
Tetrachloroethene	μg/L	ND<0.50	ND<2.5	360 D	590 D
Toluene	μg/L	ND<0.50	ND<2.5	ND<5.0	ND<5.0
trans-1,2-Dichloroethene	μg/L	ND<0.50	1.1 J,D	3.2 J,D	ND<5.0
trans-1,3-Dichloropropene	μg/L	ND<0.50	ND<2.5	ND<5.0	ND<5.0
Trichloroethene	μg/L	ND<0.50	ND<2.5	70 D	64 D
Vinyl Acetate	μg/L	ND<10	ND<50	ND<100	ND<100
Vinyl Chloride	μg/L	16	310 D	ND<5.0	ND<5.0
Xylenes (Total)	μg/L	ND<1.5	ND<7.5	ND<15	ND<15
Petroleum Hydrocarbons	-				
C13 - C22 DRO	mg/L	-	-	ND<1	-
C23 - C36 HRO	mg/L	-	-	ND<5 *	-
C6 - C12 GRO	mg/L	-	-	ND<1 *	-
Total Petroleum Hydrocarbon (TPH)	mg/L	-	-	ND<7	-

Note:

- DUP Field duplicate
- DRO Diesel range organics
- GRO Gasoline range organics
- HRO heavy oil range organics
- $\mu g/L$ microgram per liter
- mg/L milligram per liter
- ND< Analyte not detected at concentrations greater than or equal to reporting limits (RL)
- bold Analyte detected

- Constituent not analyzed for

C - The relative standard deviation was greater than 15%; the sample data is not significantly affected

- D Result from diluted sample
- J Analyte detected above method detection limit (MDL), but below RL
- * GRO and HRO MDL based on lowest calibration standar

Concentrations of Volatile Organic Compounds and Total Petroleum Hydrocarbons Detected in Groundwater Samples 2701 North Harbor Drive

San Diego, California

			-		
		T-37-GW	T-38-GW	T-39-GW	T-40-GW
	Units	7/14/2005	7/14/2005	7/13/2005	7/13/2005
Volatile Organic Compounds			-		
1,1,1,2-Tetrachloroethane	μg/L	ND<2.5	ND<5.0	ND<2.5	ND<0.50
1,1,1-Trichloroethane	μg/L	ND<2.5	ND<5.0	ND<2.5	ND<0.50
1,1,2,2-Tetrachloroethane	μg/L	ND<2.5	ND<5.0	ND<2.5	ND<0.50
1,1,2-Trichloroethane	μg/L	ND<2.5	ND<5.0	ND<2.5	ND<0.50
1,1-Dichloroethane	μg/L	1.6 J,D	ND<5.0	ND<2.5	ND<0.50
1,1-Dichloroethene	μg/L	ND<2.5	ND<5.0	ND<2.5	ND<0.50
1,1-Dichloropropene	μg/L	ND<2.5	ND<5.0	ND<2.5	ND<0.50
1,2,3-Trichlorobenzene	μg/L	ND<5.0	ND<10	ND<5.0	ND<1.0
1,2,3-Trichloropropane	μg/L	ND<2.5	ND<5.0	ND<2.5	ND<0.50
1,2,4-Trichlorobenzene	μg/L	ND<5.0	ND<10	ND<5.0	ND<1.0
1,2,4-Trimethylbenzene	μg/L	ND<5.0	ND<10	ND<5.0	ND<1.0
1,2-Dibromo-3-chloropropane	μg/L	ND<10	ND<20	ND<10	ND<2.0
1,2-Dibromoethane	μg/L	ND<5.0	ND<10	ND<5.0	ND<1.0
1,2-Dichlorobenzene	μg/L	ND<2.5	ND<5.0	ND<2.5	ND<0.50
1,2-Dichloroethane	μg/L	ND<2.5	ND<5.0	ND<2.5	ND<0.50
1,2-Dichloropropane	μg/L	ND<2.5	ND<5.0	ND<2.5	ND<0.50
1,3,5-Trimethylbenzene	μg/L	ND<5.0	ND<10	ND<5.0	ND<1.0
1,3-Dichlorobenzene	μg/L	ND<2.5	ND<5.0	0.7 J,D	ND<0.50
1,3-Dichloropropane	μg/L	ND<2.5	ND<5.0	ND<2.5	ND<0.50
1,4-Dichlorobenzene	μg/L	ND<2.5	ND<5.0	ND<2.5	ND<0.50
2,2-Dichloropropane	μg/L	ND<2.5	ND<5.0	ND<2.5	ND<0.50
2-Butanone (MEK)	μg/L	ND<50	ND<100	ND<50	ND<10
2-Chlorotoluene	μg/L	ND<5.0	ND<10	ND<5.0	ND<1.0
2-Hexanone	μg/L	ND<50	ND<100	ND<50	ND<10
4-Chlorotoluene	μg/L	ND<5.0	ND<10	ND<5.0	ND<1.0
4-Methyl-2-pentanone	μg/L	ND<50	ND<100	ND<50	ND<10
Acetone	μg/L	ND<50	ND<100	ND<50	3.1 J
Benzene	μg/L	ND<2.5	ND<5.0	ND<2.5	ND<0.50
Bromobenzene	μg/L	ND<5.0	ND<10	ND<5.0	ND<1.0
Bromochloromethane	μg/L	ND<2.5	ND<5.0	ND<2.5	ND<0.50
Bromoform	μg/L	ND<5.0	ND<10	ND<5.0	ND<1.0
Bromomethane	μg/L	ND<5.0	ND<10	ND<5.0	ND<1.0
Carbon Disulfide	μg/L	ND<10	ND<20	ND<10	ND<2.0
Carbon Tetrachloride	μg/L	ND<2.5	ND<5.0	ND<2.5	ND<0.50
Chlorobenzene	μg/L	ND<2.5	ND<5.0	ND<2.5	ND<0.50
Chloroethane	μg/L	ND<5.0	ND<10	ND<5.0	ND<1.0
Chloroform	μg/L	ND<2.5	ND<5.0	ND<2.5	ND<0.50
Chloromethane	μg/L	ND<5.0	ND<10	ND<5.0	ND<1.0
cis-1,2-Dichloroethene	μg/L	190 D	77 D	6.2 D	0.67
cis-1,3-Dichloropropene	μg/L	ND<2.5	ND<5.0	ND<2.5	ND<0.50
Dibromochloromethane	μg/L	ND<5.0	ND<10	ND<5.0	ND<1.0
Dibromomethane	μg/L	ND<2.5	ND<5.0	ND<2.5	ND<0.50
Dichlorobromomethane	μ <u>g</u> /L	ND<5.0	ND<10	ND<5.0	ND<1.0
Dichloromethane (Methylene Chloride)	μ <u>g</u> /L	ND<10	ND<20	ND<10	ND<2.0
Ethyl benzene	μg/L	ND<2.5	ND<5.0	ND<2.5	ND<0.50
Freon-11	μg/L	ND<5.0	ND<10	ND<5.0	ND<1.0
Freon-113	μg/L	ND<10	ND<20	ND<10	ND<2.0
Freon-12	μg/L	ND<5.0	ND<10	ND<5.0	ND<1.0
Hexachlorobutadiene	μg/L	ND<5.0	ND<10	ND<5.0	ND<1.0
Isopropylbenzene	μg/L μg/L	ND<5.0	ND<10	ND<5.0	ND<1.0
150propyroenzene	με/ L	110 \3.0		110 \0.0	110/1.0

Concentrations of Volatile Organic Compounds and Total Petroleum Hydrocarbons Detected in Groundwater Samples 2701 North Harbor Drive

San Diego, California

		T-37-GW	T-38-GW	T-39-GW	T-40-GW				
	Units	7/14/2005	7/14/2005	7/13/2005	7/13/2005				
Volatile Organic Compounds									
Methyl tertbutyl ether (MTBE)	μg/L	ND<10	ND<20	ND<10	ND<2.0				
Naphthalene	μg/L	ND<5.0	ND<10	ND<5.0	ND<1.0				
n-Butylbenzene	μg/L	ND<5.0	ND<10	ND<5.0	ND<1.0				
n-Propylbenzene	μg/L	ND<5.0	ND<10	ND<5.0	ND<1.0				
p-Isopropyltoluene	μg/L	ND<5.0	ND<10	ND<5.0	ND<1.0				
sec-Butylbenzene	μg/L	ND<5.0	ND<10	ND<5.0	ND<1.0				
Styrene	μg/L	ND<2.5	ND<5.0	ND<2.5	ND<0.50				
tert-Butylbenzene	μg/L	ND<5.0	ND<10	ND<5.0	ND<1.0				
Tetrachloroethene	μg/L	320 D	410 D	5.2 D	3.1				
Toluene	μg/L	ND<2.5	ND<5.0	ND<2.5	ND<0.50				
trans-1,2-Dichloroethene	μg/L	3.6 D	ND<5.0	8.3 D	0.44 J				
trans-1,3-Dichloropropene	μg/L	ND<2.5	ND<5.0	ND<2.5	ND<0.50				
Trichloroethene	μg/L	59 D	87 D	4.3 D	ND<0.50				
Vinyl Acetate	μg/L	ND<50	ND<100	ND<50	ND<10				
Vinyl Chloride	μg/L	ND<2.5	ND<5.0	160 D	0.92				
Xylenes (Total)	μg/L	ND<7.5	ND<15	ND<7.5	ND<1.5				
Petroleum Hydrocarbons									
C13 - C22 DRO	mg/L	ND<1	-	ND<1	-				
C23 - C36 HRO	mg/L	ND<5 *	-	ND<5 *	-				
C6 - C12 GRO	mg/L	ND<1 *	-	ND<1 *	-				
Total Petroleum Hydrocarbon (TPH)	mg/L	ND<7	-	ND<7	-				

Note:

- DUP Field duplicate
- DRO Diesel range organics
- GRO Gasoline range organics
- HRO heavy oil range organics
- $\mu g/L$ microgram per liter
- mg/L milligram per liter
- ND< Analyte not detected at concentrations greater than or equal to reporting limits (RL)
- bold Analyte detected

- Constituent not analyzed for

C - The relative standard deviation was greater than 15%; the sample data is not significantly affected

- D Result from diluted sample
- J Analyte detected above method detection limit (MDL), but below RL
- * GRO and HRO MDL based on lowest calibration standar

Concentrations of Volatile Organic Compounds and Total Petroleum Hydrocarbons Detected in Groundwater Samples 2701 North Harbor Drive

San Diego, California

		T 41 CW	T 41 CW D	T 42 CW	T-43-GW
	Units	T-41-GW 7/14/2005	T-41-GW-B 7/14/2005	T-42-GW 7/13/2005	1-43-GW 11/18/2005
Valatila Organia Commounda	Units	//14/2003	//14/2003	//13/2003	11/10/2003
Volatile Organic Compounds		ND 0.50		ND 0.50	
1,1,1,2-Tetrachloroethane	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
1,1,1-Trichloroethane	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
1,1,2,2-Tetrachloroethane	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
1,1,2-Trichloroethane	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
1,1-Dichloroethane	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
1,1-Dichloroethene	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
1,1-Dichloropropene	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
1,2,3-Trichlorobenzene	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
1,2,3-Trichloropropane	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
1,2,4-Trichlorobenzene	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
1,2,4-Trimethylbenzene	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
1,2-Dibromo-3-chloropropane	μg/L	ND<2.0	ND<2.0	ND<2.0	ND<2.0
1,2-Dibromoethane	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
1,2-Dichlorobenzene	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
1,2-Dichloroethane	µg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
1,2-Dichloropropane	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
1,3,5-Trimethylbenzene	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
1,3-Dichlorobenzene	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
1,3-Dichloropropane	µg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
1,4-Dichlorobenzene	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
2,2-Dichloropropane	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
2-Butanone (MEK)	μg/L	ND<10	ND<10	ND<10	ND<10
2-Chlorotoluene	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
2-Hexanone	μg/L μg/L	ND<10	ND<10	ND<10	ND<10
4-Chlorotoluene	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
4-Methyl-2-pentanone	μg/L μg/L	ND<10	ND<10	ND<10	ND<10
Acetone	μg/L μg/L	2.5 J	2.2 J	2.9 J	ND<10
Benzene	μg/L μg/L	0.21 J	0.2 J	ND<0.50	ND<0.50
Bromobenzene	μg/L μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Bromochloromethane	μg/L μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
Bromoform	μg/L μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Bromomethane	μg/L μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Carbon Disulfide	μg/L μg/L	ND<2.0	ND<2.0	ND<2.0	ND<2.0
		ND<2.0	ND<2.0	ND<0.50	ND<2.0
Carbon Tetrachloride	μg/L				
Chlorobenzene	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
Chloroethane	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Chloroform	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
Chloromethane	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
cis-1,2-Dichloroethene	μg/L	1.7	1.9	ND<0.50	6.2
cis-1,3-Dichloropropene	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
Dibromochloromethane	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Dibromomethane	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
Dichlorobromomethane	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Dichloromethane (Methylene Chloride)	μg/L	ND<2.0	ND<2.0	ND<2.0	ND<2.0
Ethyl benzene	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50
Freon-11	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Freon-113	μg/L	ND<2.0	ND<2.0	ND<2.0	ND<2.0
Freon-12	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Hexachlorobutadiene	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Isopropylbenzene	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0

Concentrations of Volatile Organic Compounds and Total Petroleum Hydrocarbons Detected in Groundwater Samples

2701 North Harbor Drive

San	Diego,	California
-----	--------	------------

		T-41-GW	T-41-GW-B	T-42-GW	T-43-GW				
	Units	7/14/2005	7/14/2005	7/13/2005	11/18/2005				
Volatile Organic Compounds									
Methyl tertbutyl ether (MTBE)	μg/L	ND<2.0	ND<2.0	ND<2.0	ND<2.0				
Naphthalene	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0				
n-Butylbenzene	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0				
n-Propylbenzene	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0				
p-Isopropyltoluene	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0				
sec-Butylbenzene	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0				
Styrene	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50				
tert-Butylbenzene	μg/L	ND<1.0	ND<1.0	ND<1.0	ND<1.0				
Tetrachloroethene	μg/L	7.5	10	ND<0.50	2.1				
Toluene	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50				
trans-1,2-Dichloroethene	μg/L	5.5	4.8	ND<0.50	0.42 J				
trans-1,3-Dichloropropene	μg/L	ND<0.50	ND<0.50	ND<0.50	ND<0.50				
Trichloroethene	μg/L	1.9	2.5	ND<0.50	2.8				
Vinyl Acetate	μg/L	ND<10	ND<10	ND<10	ND<10				
Vinyl Chloride	μg/L	44	37	ND<0.50	ND<0.50				
Xylenes (Total)	μg/L	ND<1.5	ND<1.5	0.7 J	ND<1.5				
Petroleum Hydrocarbons		-	·		-				
C13 - C22 DRO	mg/L	-	-	-	-				
C23 - C36 HRO	mg/L	-	-	-	-				
C6 - C12 GRO	mg/L	-	-	-	-				
Total Petroleum Hydrocarbon (TPH)	mg/L	-	-	-	-				

Note:

- DUP Field duplicate
- DRO Diesel range organics
- GRO Gasoline range organics
- HRO heavy oil range organics
- $\mu g/L$ microgram per liter
- mg/L milligram per liter
- ND< Analyte not detected at concentrations greater than or equal to reporting limits (RL)
- bold Analyte detected

- Constituent not analyzed for

C - The relative standard deviation was greater than 15%; the sample data is not significantly affected

- D Result from diluted sample
- J Analyte detected above method detection limit (MDL), but below RL
- * GRO and HRO MDL based on lowest calibration standar

Concentrations of Volatile Organic Compounds and Total Petroleum Hydrocarbons Detected in Groundwater Samples 2701 North Harbor Drive

San Diego, California

		TC4EEP	TC4EGP	TC4EHP
	Units	8/9/2005	8/9/2005	8/3/2005
Volatile Organic Compounds				
1,1,1,2-Tetrachloroethane	μg/L	ND<0.50	ND<0.50	ND<0.50
1,1,1-Trichloroethane	μg/L μg/L	ND<0.50	ND<0.50	ND<0.50
1,1,2,2-Tetrachloroethane	μg/L μg/L	ND<0.50	ND<0.50	ND<0.50
1,1,2-Trichloroethane	μg/L μg/L	ND<0.50	ND<0.50	ND<0.50
1,1-Dichloroethane	μg/L μg/L	ND<0.50	ND<0.50	ND<0.50
1,1-Dichloroethene	μg/L μg/L	ND<0.50	ND<0.50	ND<0.50
1,1-Dichloropropene	μg/L μg/L	ND<0.50	ND<0.50	ND<0.50
1,2,3-Trichlorobenzene	μg/L μg/L	ND<1.0	ND<1.0	ND<1.0
1,2,3-Trichloropropane	μg/L μg/L	ND<0.50	ND<0.50	ND<0.50
1,2,4-Trichlorobenzene	μg/L μg/L	ND<0.30	ND<0.30	ND<1.0
1,2,4-Trimethylbenzene		ND<1.0	ND<1.0	
1,2-Dibromo-3-chloropropane	μg/L uα/I	ND<1.0	ND<2.0	ND<1.0
1,2-Dibromoethane	μg/L uα/I	ND<2.0 ND<1.0	ND<2.0	ND<2.0
	μg/L α/L			ND<1.0
1,2-Dichlorobenzene 1,2-Dichloroethane	μg/L uα/I	ND<0.50	ND<0.50	ND<0.50
	μg/L uα/I	ND<0.50	ND<0.50	ND<0.50
1,2-Dichloropropane 1,3,5-Trimethylbenzene	μg/L α/L	ND<0.50	ND<0.50 ND<1.0	ND<0.50 ND<1.0
	μg/L α/L	ND<1.0		
1,3-Dichlorobenzene	μg/L	ND<0.50	ND<0.50	ND<0.50
1,3-Dichloropropane	μg/L	ND<0.50	ND<0.50	ND<0.50
1,4-Dichlorobenzene	μg/L	ND<0.50	ND<0.50	ND<0.50
2,2-Dichloropropane	μg/L	ND<0.50	ND<0.50	ND<0.50
2-Butanone (MEK)	μg/L	ND<10	1.2 J	ND<10
2-Chlorotoluene	μg/L	ND<1.0	ND<1.0	ND<1.0
2-Hexanone	μg/L	ND<10	ND<10	ND<10
4-Chlorotoluene	μg/L σ	ND<1.0	ND<1.0	ND<1.0
4-Methyl-2-pentanone	μg/L	ND<10	ND<10	ND<10
Acetone	μg/L	1.9 J	6.6 J	ND<10
Benzene	μg/L	3.9	0.39 J	ND<0.50
Bromobenzene	μg/L	ND<1.0	ND<1.0	ND<1.0
Bromochloromethane	μg/L	ND<0.50	ND<0.50	ND<0.50
Bromoform	μg/L	ND<1.0	ND<1.0	ND<1.0
Bromomethane	μg/L ~	ND<1.0	ND<1.0	ND<1.0
Carbon Disulfide	μg/L	ND<2.0	ND<2.0	ND<2.0
Carbon Tetrachloride	μg/L	ND<0.50	ND<0.50	ND<0.50
Chlorobenzene	μg/L	ND<0.50	ND<0.50	ND<0.50
Chloroethane	μg/L ~	ND<1.0	ND<1.0	ND<1.0
Chloroform	μg/L	ND<0.50	ND<0.50	ND<0.50
Chloromethane	μg/L	ND<1.0	ND<1.0	ND<1.0
cis-1,2-Dichloroethene	μg/L	0.23 J	ND<0.50	ND<0.50
cis-1,3-Dichloropropene	μg/L ~	ND<0.50	ND<0.50	ND<0.50
Dibromochloromethane	μg/L	ND<1.0	ND<1.0	ND<1.0
Dibromomethane	μg/L ~	ND<0.50	ND<0.50	ND<0.50
Dichlorobromomethane	μg/L	ND<1.0	ND<1.0	ND<1.0
Dichloromethane (Methylene Chloride)	μg/L	ND<2.0	ND<2.0	ND<2.0
Ethyl benzene	μg/L ~	5.1	ND<0.50	ND<0.50
Freon-11	μg/L	ND<1.0	ND<1.0	ND<1.0
Freon-113	μg/L	ND<2.0	ND<2.0	ND<2.0
Freon-12	μg/L	ND<1.0	ND<1.0	ND<1.0
Hexachlorobutadiene	μg/L	ND<1.0	ND<1.0	ND<1.0
Isopropylbenzene	μg/L	15	2	ND<1.0

Concentrations of Volatile Organic Compounds and Total Petroleum Hydrocarbons Detected in Groundwater Samples 2701 North Harbor Drive

San Diego. California

	San Diego, Camorina						
	Units	TC4EEP 8/9/2005	TC4EGP 8/9/2005	TC4EHP 8/3/2005			
Volatile Organic Compounds							
Methyl tertbutyl ether (MTBE)	μg/L	ND<2.0	ND<2.0	ND<2.0			
Naphthalene	μg/L	7.5 C	2.8 C	0.31 J,C			
n-Butylbenzene	μg/L	ND<1.0	ND<1.0	ND<1.0			
n-Propylbenzene	μg/L	16	2.3	ND<1.0			
p-Isopropyltoluene	μg/L	ND<1.0	ND<1.0	ND<1.0			
sec-Butylbenzene	μg/L	3.7	0.45 J	ND<1.0			
Styrene	μg/L	ND<0.50	ND<0.50	ND<0.50			
tert-Butylbenzene	μg/L	2.2	ND<1.0	ND<1.0			
Tetrachloroethene	μg/L	ND<0.50	ND<0.50	ND<0.50			
Toluene	μg/L	ND<0.50	ND<0.50	ND<0.50			
trans-1,2-Dichloroethene	μg/L	ND<0.50	ND<0.50	ND<0.50			
trans-1,3-Dichloropropene	μg/L	ND<0.50	ND<0.50	ND<0.50			
Trichloroethene	μg/L	ND<0.50	ND<0.50	ND<0.50			
Vinyl Acetate	μg/L	ND<10	ND<10	ND<10			
Vinyl Chloride	μg/L	ND<0.50	ND<0.50	ND<0.50			
Xylenes (Total)	μg/L	ND<1.5	ND<1.5	ND<1.5			
Petroleum Hydrocarbons	-						
C13 - C22 DRO	mg/L	-	-	-			
C23 - C36 HRO	mg/L	-	-	-			
C6 - C12 GRO	mg/L	-	-	-			
Total Petroleum Hydrocarbon (TPH)	mg/L	-	-	-			

Note:

- DUP Field duplicate
- DRO Diesel range organics
- GRO Gasoline range organics
- HRO heavy oil range organics
- $\mu g/L$ microgram per liter
- mg/L milligram per liter
- ND< Analyte not detected at concentrations greater than or equal to reporting limits (RL)
- **bold** Analyte detected

- Constituent not analyzed for

C - The relative standard deviation was greater than 15%; the sample data is not significantly affected

- D Result from diluted sample
- J Analyte detected above method detection limit (MDL), but below RL
- * GRO and HRO MDL based on lowest calibration standar

		142WDP	142WEP	DUP4 (142WEP)	BLD120-MW-1
	Units	8/8/2005	8/8/2005	8/8/2005	8/1/2005
Semi-Volatile Organic Compounds	π		ND .4.0	ND 4.0	ND .4.0
1,2,4-Trichlorobenzene	μg/L	ND<4.8	ND<4.8	ND<4.9	ND<4.8
1,2-Dichlorobenzene	μg/L	ND<4.8	ND<4.8	ND<4.9	ND<4.8
1,3-Dichlorobenzene	μg/L	ND<4.8	ND<4.8	ND<4.9	ND<4.8
1,4-Dichlorobenzene	μg/L	ND<4.8	ND<4.8	ND<4.9	ND<4.8
1,4-Dioxane	μg/L	8.8	ND<2.0	ND<2.0	490 D
2,4,5-Trichlorophenol	μg/L	ND<4.8	ND<4.8	ND<4.9	ND<4.8
2,4,6-Trichlorophenol	μg/L	ND<4.8	ND<4.8	ND<4.9	ND<4.8
2,4-Dichlorophenol	μg/L	ND<4.8	ND<4.8	ND<4.9	ND<4.8
2,4-Dimethylphenol	μg/L	ND<9.6	ND<9.6	ND<9.7	ND<9.6
2,4-Dinitrophenol	μg/L	ND<48	ND<48	ND<49	ND<48
2,4-Dinitrotoluene	μg/L	ND<4.8	ND<4.8	ND<4.9	ND<4.8
2,6-Dinitrotoluene	μg/L	ND<4.8	ND<4.8	ND<4.9	ND<4.8
2-Chloronaphthalene	μg/L	ND<4.8	ND<4.8	ND<4.9	ND<4.8
2-Chlorophenol	μg/L	ND<4.8	ND<4.8	ND<4.9	ND<4.8
2-Methylnaphthalene	μg/L	ND<4.8	ND<4.8	ND<4.9	ND<4.8
2-Methylphenol	μg/L	ND<4.8	ND<4.8	ND<4.9	ND<4.8
2-Nitroaniline	μg/L	ND<20	ND<20	ND<20	ND<20
2-Nitrophenol	μg/L	ND<4.8	ND<4.8	ND<4.9	ND<4.8
3,3'-Dichlorobenzidine	μg/L	ND<20	ND<20	ND<20	ND<20
3/4-Methylphenol	μg/L	ND<9.6	ND<9.6	ND<9.7	ND<9.6
3-Nitroaniline	μg/L	ND<20	ND<20	ND<20	ND<20
4,6-Dinitro-2-methylphenol	μg/L	ND<20	ND<20	ND<20	ND<20
4-Bromophenyl-phenylether	μg/L	ND<4.8	ND<4.8	ND<4.9	ND<4.8
4-Chloro-3-methylphenol	μg/L	ND<4.8	ND<4.8	ND<4.9	ND<4.8
4-Chloroaniline	μg/L	ND<4.8	ND<4.8	ND<4.9	ND<4.8
4-Chlorophenyl-phenylether	μg/L	ND<4.8	ND<4.8	ND<4.9	ND<4.8
4-Nitroaniline	μg/L	ND<20	ND<20	ND<20	ND<20
4-Nitrophenol	μg/L	ND<48	ND<48	ND<49	ND<48
Acenaphthene	μg/L	ND<4.8	ND<4.8	ND<4.9	ND<4.8
Acenaphthylene	µg/L	ND<4.8	ND<4.8	ND<4.9	ND<4.8
Aniline	µg/L	ND<4.8	ND<4.8	ND<4.9	ND<4.8
Anthracene	μg/L	ND<4.8	ND<4.8	ND<4.9	ND<4.8
Benzo(a)anthracene	μg/L	ND<4.8	ND<4.8	ND<4.9	ND<4.8
Benzo(a)pyrene	μg/L	ND<4.8	ND<4.8	ND<4.9	ND<4.8
Benzo(b)fluoranthene	μg/L	ND<4.8	ND<4.8	ND<4.9	ND<4.8
Benzo(g,h,i)perylene	μg/L	ND<4.8	ND<4.8	ND<4.9	ND<4.8
Benzo(k)fluoranthene	μg/L	ND<4.8	ND<4.8	ND<4.9	ND<4.8
Benzoic Acid	μg/L	ND<48	ND<48	ND<49	ND<48
Benzyl Alcohol	μg/L	ND<9.6	ND<9.6	ND<9.7	ND<9.6
bis(2-Chloroethoxy) methane	μg/L	ND<4.8	ND<4.8	ND<4.9	ND<4.8
Bis(2-chloroethyl) Ether	μg/L	ND<4.8	ND<4.8	ND<4.9	ND<4.8
Bis(2-chloroisopropyl) Ether	μg/L	ND<4.8	ND<4.8	ND<4.9	ND<4.8
Bis(2-ethylhexyl) Phthalate	μg/L	ND<4.8	ND<4.8	ND<4.9	ND<4.8
Butylbenzylphthalate	μg/L	ND<4.8	ND<4.8	ND<4.9	ND<4.8
Chrysene	μg/L	ND<4.8	ND<4.8	ND<4.9	ND<4.8
Dibenzo(a,h)anthracene	μg/L μg/L	ND<4.8	ND<4.8	ND<4.9	ND<4.8
Dibenzofuran	μg/L μg/L	ND<4.8	ND<4.8	ND<4.9	ND<4.8
Diethylphthalate	μg/L μg/L	ND<4.8	ND<4.8	ND<4.9	ND<4.8
Dimethylphthalate	μg/L μg/L	ND<4.8	ND<4.8	ND<4.9	ND<4.8
Di-n-butylphthalate	μg/L μg/L	ND<4.8	ND<4.8	ND<4.9	ND<4.8
Di-n-octylphthalate		ND<4.8	ND<4.8	ND<4.9	ND<4.8
Di-ii-octytpitulalate	μg/L	110<4.0	110<4.0	ND<4.9	110<4.0

	Units	142WDP 8/8/2005	142WEP 8/8/2005	DUP4 (142WEP) 8/8/2005	BLD120-MW-1 8/1/2005
Semi-Volatile Organic Compounds	Onits	0/0/2003	0/0/2003	8/8/2003	0/1/2003
Fluoranthene	μg/L	ND<4.8	ND<4.8	ND<4.9	ND<4.8
Fluorene	μg/L	ND<4.8	ND<4.8	ND<4.9	ND<4.8
Hexachlorobenzene	μg/L	ND<4.8	ND<4.8	ND<4.9	ND<4.8
Hexachlorobutadiene	μg/L	ND<9.6	ND<9.6	ND<9.7	ND<9.6
Hexachlorocyclopentadiene	μg/L	ND<9.6	ND<9.6	ND<9.7	ND<9.6
Hexachloroethane	μg/L	ND<9.6	ND<9.6	ND<9.7	ND<9.6
Indeno(1,2,3-cd)pyrene	μg/L	ND<4.8	ND<4.8	ND<4.9	ND<4.8
Isophorone	μg/L	ND<4.8	ND<4.8	ND<4.9	ND<4.8
Naphthalene	μg/L	ND<4.8	ND<4.8	ND<4.9	ND<4.8
Nitrobenzene	μg/L	ND<4.8	ND<4.8	ND<4.9	ND<4.8
N-Nitrosodimethylamine	μg/L	ND<4.8	ND<4.8	ND<4.9	ND<4.8
N-Nitroso-di-n-propylamine	μg/L	ND<4.8	ND<4.8	ND<4.9	ND<4.8
N-Nitrosodiphenylamine/Diphenylamine	μg/L	ND<4.8	ND<4.8	ND<4.9	ND<4.8
Pentachlorophenol	μg/L	ND<29	ND<29	ND<29	ND<29
Phenanthrene	μg/L	ND<4.8	ND<4.8	ND<4.9	ND<4.8
Phenol	μg/L	ND<4.8	ND<4.8	ND<4.9	ND<4.8
Pyrene	μg/L	ND<4.8	ND<4.8	ND<4.9	ND<4.8
Pyridine	μg/L	ND<9.6	ND<9.6	ND<9.7	ND<9.6

Note:

DUP - Field duplicate

µg/L - microgram per liter

ND< - Analyte not detected at concentrations greater than or equal to reporting limits (RL)

bold - Analyte detected

- Constituent not analyzed for

D - Result from diluted sample

		BLD120-MW-2	BLD120-MW3	B120-MW4	B120-MW5
	Units	8/1/2005	7/29/2005	8/2/2005	8/2/2005
Semi-Volatile Organic Compounds					
1,2,4-Trichlorobenzene	μg/L	ND<4.8	ND<4.9	ND<4.8	ND<4.8
1,2-Dichlorobenzene	μg/L	ND<4.8	ND<4.9	ND<4.8	ND<4.8
1,3-Dichlorobenzene	μg/L	ND<4.8	ND<4.9	ND<4.8	ND<4.8
1,4-Dichlorobenzene	μg/L	ND<4.8	ND<4.9	ND<4.8	ND<4.8
1,4-Dioxane	μg/L	1.6 J	-	ND<2.0	ND<2.0
2,4,5-Trichlorophenol	μg/L	ND<4.8	ND<4.9	ND<4.8	ND<4.8
2,4,6-Trichlorophenol	μg/L	ND<4.8	ND<4.9	ND<4.8	ND<4.8
2,4-Dichlorophenol	μg/L	ND<4.8	ND<4.9	ND<4.8	ND<4.8
2,4-Dimethylphenol	μg/L	ND<9.5	ND<9.8	ND<9.6	ND<9.6
2,4-Dinitrophenol	μg/L	ND<48	ND<49	ND<48	ND<48
2,4-Dinitrotoluene	μg/L	ND<4.8	ND<4.9	ND<4.8	ND<4.8
2,6-Dinitrotoluene	μg/L	ND<4.8	ND<4.9	ND<4.8	ND<4.8
2-Chloronaphthalene	μg/L	ND<4.8	ND<4.9	ND<4.8	ND<4.8
2-Chlorophenol	μg/L	ND<4.8	ND<4.9	ND<4.8	ND<4.8
2-Methylnaphthalene	μg/L	ND<4.8	ND<4.9	ND<4.8	ND<4.8
2-Methylphenol	μg/L	ND<4.8	ND<4.9	ND<4.8	ND<4.8
2-Nitroaniline	μg/L	ND<19	ND<20	ND<20	ND<20
2-Nitrophenol	μg/L	ND<4.8	ND<4.9	ND<4.8	ND<4.8
3,3'-Dichlorobenzidine	μg/L	ND<19	ND<20	ND<20	ND<20
3/4-Methylphenol	μg/L	ND<9.5	ND<9.8	ND<9.6	ND<9.6
3-Nitroaniline	µg/L	ND<19	ND<20	ND<20	ND<20
4,6-Dinitro-2-methylphenol	μg/L	ND<19	ND<20	ND<20	ND<20
4-Bromophenyl-phenylether	μg/L	ND<4.8	ND<4.9	ND<4.8	ND<4.8
4-Chloro-3-methylphenol	μg/L	ND<4.8	ND<4.9	ND<4.8	ND<4.8
4-Chloroaniline	μg/L	ND<4.8	ND<4.9	ND<4.8	ND<4.8
4-Chlorophenyl-phenylether	μg/L	ND<4.8	ND<4.9	ND<4.8	ND<4.8
4-Nitroaniline	μg/L	ND<19	ND<20	ND<20	ND<20
4-Nitrophenol	μg/L	ND<48	ND<49	ND<48	ND<48
Acenaphthene	μg/L	ND<4.8	ND<4.9	ND<4.8	ND<4.8
Acenaphthylene	μg/L	ND<4.8	ND<4.9	ND<4.8	ND<4.8
Aniline	μg/L	ND<4.8	ND<4.9	ND<4.8	ND<4.8
Anthracene	μg/L	ND<4.8	ND<4.9	ND<4.8	ND<4.8
Benzo(a)anthracene	μg/L	ND<4.8	ND<4.9	ND<4.8	ND<4.8
Benzo(a)pyrene	μg/L	ND<4.8	ND<4.9	ND<4.8	ND<4.8
Benzo(b)fluoranthene	μg/L	ND<4.8	ND<4.9	ND<4.8	ND<4.8
Benzo(g,h,i)perylene	μg/L	ND<4.8	ND<4.9	ND<4.8	ND<4.8
Benzo(k)fluoranthene	μg/L	ND<4.8	ND<4.9	ND<4.8	ND<4.8
Benzoic Acid	μg/L	ND<48	ND<49	ND<48	ND<48
Benzyl Alcohol	μg/L	ND<9.5	ND<9.8	ND<9.6	ND<9.6
bis(2-Chloroethoxy) methane	μg/L	ND<4.8	ND<4.9	ND<4.8	ND<4.8
Bis(2-chloroethyl) Ether	μg/L μg/L	ND<4.8	ND<4.9	ND<4.8	ND<4.8
Bis(2-chloroisopropyl) Ether	μg/L μg/L	ND<4.8	ND<4.9	ND<4.8	ND<4.8
Bis(2-ethylhexyl) Phthalate	μg/L μg/L	ND<4.8	ND<4.9	ND<4.8	ND<4.8
Butylbenzylphthalate	μg/L μg/L	ND<4.8	ND<4.9	ND<4.8	ND<4.8
Chrysene	μg/L μg/L	ND<4.8	ND<4.9	ND<4.8	ND<4.8
Dibenzo(a,h)anthracene		ND<4.8	ND<4.9 ND<4.9	ND<4.8	ND<4.8
Dibenzofuran	μg/L μg/Ι		ND<4.9 ND<4.9	ND<4.8	ND<4.8
Diethylphthalate	μg/L μg/L	ND<4.8 ND<4.8	0.59 J	1.6 J	1.1 J
Dimethylphthalate		ND<4.8	ND<4.9	ND<4.8	ND<4.8
	μg/L				
Di-n-butylphthalate	μg/L	ND<4.8	ND<4.9	ND<4.8	ND<4.8
Di-n-octylphthalate	μg/L	ND<4.8	ND<4.9	ND<4.8	ND<4.8

	Units	BLD120-MW-2 8/1/2005	BLD120-MW3 7/29/2005	B120-MW4 8/2/2005	B120-MW5 8/2/2005
Semi-Volatile Organic Compounds			-	-	
Fluoranthene	μg/L	ND<4.8	ND<4.9	ND<4.8	ND<4.8
Fluorene	μg/L	ND<4.8	ND<4.9	ND<4.8	ND<4.8
Hexachlorobenzene	μg/L	ND<4.8	ND<4.9	ND<4.8	ND<4.8
Hexachlorobutadiene	μg/L	ND<9.5	ND<9.8	ND<9.6	ND<9.6
Hexachlorocyclopentadiene	μg/L	ND<9.5	ND<9.8	ND<9.6	ND<9.6
Hexachloroethane	μg/L	ND<9.5	ND<9.8	ND<9.6	ND<9.6
Indeno(1,2,3-cd)pyrene	μg/L	ND<4.8	0.34 J	ND<4.8	ND<4.8
Isophorone	μg/L	ND<4.8	ND<4.9	ND<4.8	ND<4.8
Naphthalene	μg/L	ND<4.8	ND<4.9	ND<4.8	ND<4.8
Nitrobenzene	μg/L	ND<4.8	ND<4.9	ND<4.8	ND<4.8
N-Nitrosodimethylamine	μg/L	ND<4.8	ND<4.9	ND<4.8	ND<4.8
N-Nitroso-di-n-propylamine	μg/L	ND<4.8	ND<4.9	ND<4.8	ND<4.8
N-Nitrosodiphenylamine/Diphenylamine	μg/L	ND<4.8	ND<4.9	ND<4.8	ND<4.8
Pentachlorophenol	μg/L	ND<29	ND<30	ND<29	ND<29
Phenanthrene	μg/L	ND<4.8	ND<4.9	ND<4.8	ND<4.8
Phenol	μg/L	ND<4.8	ND<4.9	ND<4.8	ND<4.8
Pyrene	μg/L	ND<4.8	ND<4.9	ND<4.8	ND<4.8
Pyridine	μg/L	ND<9.5	ND<9.8	ND<9.6	ND<9.6

Note:

DUP - Field duplicate

µg/L - microgram per liter

ND< - Analyte not detected at concentrations greater than or equal to reporting limits (RL)

bold - Analyte detected

- Constituent not analyzed for

D - Result from diluted sample

Units $8/1/2005$ $8/1/2005$ $8/4/2005$ $8/4/2005$ 1.2-Dichlorobenzene $\mu g/L$ ND<4.8 ND<4.4 ND<4.8 ND<4.4 ND<4.8 ND<4.4			B120-MW6	DUP3 (B120-MW6)	B131-MW1	B131-MW2
Semi-Volatile Organic Compounds $\mu g/L$ ND<4.8		Units				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Semi-Volatile Organic Compounds			0, 2, 2000	0.0.000	0, 0, 2000
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		ug/L	ND<4.8	ND<4.8	ND<4.8	ND<4.9
$\begin{split} & 3-Dichlorobenzene pg/L ND<4.8 ND<4.8 ND<4.8 ND<4.8 ND<4.8 ND<4.8 12 4-Dicxane µg/L ND<4.8 ND<4.4 N$						
1.4 Dischlorobenzene $\mu g/L$ ND<4.8 ND<4.8 ND<4.8 ND<2.0 38 2.4.5 Trichlorophenol $\mu g/L$ ND ND ND ND ND ND ND 2.4.5 ND ND ND ND ND ND ND 4.8 ND ND ND ND ND ND ND ND 4.8 ND N	7					
14-Discanc $\mu g T.$ 18 19 ND<2.0 38 2.4,5-Trichlorophenol $\mu g L$ ND<4.8						
$\begin{array}{llllllllllllllllllllllllllllllllllll$,					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				-		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{llllllllllllllllllllllllllllllllllll$						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	· · ·					
$\begin{array}{l c c c c c c c c c c c c c c c c c c c$	*					
4,6-Dinitro-2-methylphenol $\mu g/L$ ND<19 ND<20 ND<20 ND<20 4-Bromophenyl-phenylether $\mu g/L$ ND<4.8						
$\begin{array}{l c c c c c c c c c c c c c c c c c c c$						
$\begin{array}{l c c c c c c c c c c c c c c c c c c c$						
4-Chloroaniline $\mu g/L$ ND<4.8ND<4.8ND<4.8ND<4.94-Chlorophenyl-phenylether $\mu g/L$ ND<4.8						
4-Chlorophenyl-phenylether $\mu g/L$ ND<4.8ND<4.8ND<4.8ND<4.94-Nitrophenol $\mu g/L$ ND<19						
4-Nitroaniline $\mu g/L$ ND<19ND<20ND<20ND<204-Nitrophenol $\mu g/L$ ND<48						
4-Nitrophenol $\mu g/L$ ND<48ND<48ND<48ND<49Acenaphthene $\mu g/L$ ND<4.8						
Acenaphthene $\mu g/L$ ND<4.8ND<4.8ND<4.8ND<4.8ND<4.9Acenaphthylene $\mu g/L$ ND<4.8						
Acenaphthylene $\mu g/L$ ND<4.8ND<4.8ND<4.8ND<4.8Aniline $\mu g/L$ ND<4.8	1					
Aniline $\mu g/L$ ND<4.8ND<4.8ND<4.8ND<4.8Anthracene $\mu g/L$ ND<4.8						
Anthracene $\mu g/L$ ND<4.8ND<4.8ND<4.8ND<4.8Benzo(a)anthracene $\mu g/L$ ND<4.8	* _ *					
Benzo(a)anthracene $\mu g/L$ ND<4.8ND<4.8ND<4.8ND<4.8Benzo(a)pyrene $\mu g/L$ ND<4.8						
Benzo(a)pyrene $\mu g/L$ ND<4.8ND<4.8ND<4.8ND<4.9Benzo(b)fluoranthene $\mu g/L$ ND<4.8						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						
Di-n-butylphthalate	· · ·					
	Di-n-octylphthalate	μ <u>g</u> /L	ND<4.8	ND<4.8	ND<4.8	ND<4.9

	Units	B120-MW6 8/1/2005	DUP3 (B120-MW6) 8/1/2005	B131-MW1 8/4/2005	B131-MW2 8/4/2005
Semi-Volatile Organic Compounds	8				
Fluoranthene	μg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.9
Fluorene	μg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.9
Hexachlorobenzene	μg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.9
Hexachlorobutadiene	μg/L	ND<9.5	ND<9.6	ND<9.6	ND<9.7
Hexachlorocyclopentadiene	µg/L	ND<9.5	ND<9.6	ND<9.6	ND<9.7
Hexachloroethane	µg/L	ND<9.5	ND<9.6	ND<9.6	ND<9.7
Indeno(1,2,3-cd)pyrene	µg/L	0.37 J	ND<4.8	ND<4.8	ND<4.9
Isophorone	μg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.9
Naphthalene	µg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.9
Nitrobenzene	μg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.9
N-Nitrosodimethylamine	µg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.9
N-Nitroso-di-n-propylamine	µg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.9
N-Nitrosodiphenylamine/Diphenylamine	µg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.9
Pentachlorophenol	µg/L	ND<29	ND<29	ND<29	ND<29
Phenanthrene	µg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.9
Phenol	µg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.9
Pyrene	µg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.9
Pyridine	μg/L	ND<9.5	ND<9.6	ND<9.6	ND<9.7

Note:

DUP - Field duplicate

µg/L - microgram per liter

ND< - Analyte not detected at concentrations greater than or equal to reporting limits (RL)

bold - Analyte detected

- Constituent not analyzed for

D - Result from diluted sample

		B131-MW3	B131-MW4	B131-MW5	TC4EEP	TC4EGP
	Units	8/4/2005	8/5/2005	8/5/2005	8/9/2005	8/9/2005
Semi-Volatile Organic Compounds	Onto	0/4/2005	0/5/2005	0/5/2005	0/7/2005	0/7/2005
1,2,4-Trichlorobenzene		ND <4.9	ND <4.9	ND <4.9	ND <4.9	ND<4.9
1,2,4-1richlorobenzene	μg/L u α/L	ND<4.8 ND<4.8	ND<4.8 ND<4.8	ND<4.8 ND<4.8	ND<4.8 ND<4.8	ND<4.9 ND<4.9
1,3-Dichlorobenzene	μg/L uα/L	ND<4.8	ND<4.8			
	µg/L			ND<4.8	ND<4.8 ND<4.8	ND<4.9
1,4-Dichlorobenzene	µg/L	<u>8.2</u> 89	ND<4.8	ND<4.8		ND<4.9
1,4-Dioxane	µg/L		1.5 J	120 D	ND<2.0	ND<2.0
2,4,5-Trichlorophenol	µg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.8	ND<4.9
2,4,6-Trichlorophenol	µg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.8	ND<4.9
2,4-Dichlorophenol	µg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.8 ND<9.6	ND<4.9 ND<9.7
2,4-Dimethylphenol	µg/L	ND<9.6	ND<9.5	ND<9.5		
2,4-Dinitrophenol	µg/L	ND<48	ND<48	ND<48	ND<48	ND<49
2,4-Dinitrotoluene	μg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.8	ND<4.9
2,6-Dinitrotoluene	μg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.8	ND<4.9
2-Chloronaphthalene	μg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.8	ND<4.9
2-Chlorophenol	µg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.8	ND<4.9
2-Methylnaphthalene	µg/L	ND<4.8	ND<4.8	ND<4.8	0.66 J	ND<4.9
2-Methylphenol	μg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.8	ND<4.9
2-Nitroaniline	μg/L	ND<20	ND<19	ND<19	ND<20	ND<20
2-Nitrophenol	μg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.8	ND<4.9
3,3'-Dichlorobenzidine	μg/L	ND<20	ND<19	ND<19	ND<20	ND<20
3/4-Methylphenol	μg/L	ND<9.6	ND<9.5	ND<9.5	ND<9.6	ND<9.7
3-Nitroaniline	μg/L	ND<20	ND<19	ND<19	ND<20	ND<20
4,6-Dinitro-2-methylphenol	μg/L	ND<20	ND<19	ND<19	ND<20	ND<20
4-Bromophenyl-phenylether	μg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.8	ND<4.9
4-Chloro-3-methylphenol	μg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.8	ND<4.9
4-Chloroaniline	μg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.8	ND<4.9
4-Chlorophenyl-phenylether	μg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.8	ND<4.9
4-Nitroaniline	μg/L	ND<20	ND<19	ND<19	ND<20	ND<20
4-Nitrophenol	μg/L	ND<48	ND<48	ND<48	ND<48	ND<49
Acenaphthene	μg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.8	ND<4.9
Acenaphthylene	μg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.8	ND<4.9
Aniline	μg/L	ND<4.8	1.6 J	ND<4.8	ND<4.8	ND<4.9
Anthracene	μg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.8	ND<4.9
Benzo(a)anthracene	μg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.8	ND<4.9
Benzo(a)pyrene	μg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.8	ND<4.9
Benzo(b)fluoranthene	µg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.8	ND<4.9
Benzo(g,h,i)perylene	µg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.8	ND<4.9
Benzo(k)fluoranthene	μg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.8	ND<4.9
Benzoic Acid	μg/L	ND<48	ND<48	ND<48	ND<48	ND<49
Benzyl Alcohol	μg/L	ND<9.6	ND<9.5	ND<9.5	ND<9.6	ND<9.7
bis(2-Chloroethoxy) methane	μg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.8	ND<4.9
Bis(2-chloroethyl) Ether	μg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.8	ND<4.9
Bis(2-chloroisopropyl) Ether	μg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.8	ND<4.9
Bis(2-ethylhexyl) Phthalate	μg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.8	ND<4.9
Butylbenzylphthalate	μg/L ~	ND<4.8	ND<4.8	ND<4.8	ND<4.8	ND<4.9
Chrysene	μg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.8	ND<4.9
Dibenzo(a,h)anthracene	μg/L ~	ND<4.8	ND<4.8	ND<4.8	ND<4.8	ND<4.9
Dibenzofuran	μg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.8	ND<4.9
Diethylphthalate	μg/L	ND<4.8	0.97 J	ND<4.8	ND<4.8	ND<4.9
Dimethylphthalate	μg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.8	ND<4.9
Di-n-butylphthalate	μg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.8	ND<4.9
Di-n-octylphthalate	μg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.8	ND<4.9

		B131-MW3	B131-MW4	B131-MW5	TC4EEP	TC4EGP
Semi-Volatile Organic Compounds	Units	8/4/2005	8/5/2005	8/5/2005	8/9/2005	8/9/2005
Fluoranthene	μg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.8	ND<4.9
Fluorene	μg/L μg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.8	ND<4.9
Hexachlorobenzene	μg/L μg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.8	ND<4.9
Hexachlorobutadiene	μg/L	ND<9.6	ND<9.5	ND<9.5	ND<9.6	ND<9.7
Hexachlorocyclopentadiene	μg/L	ND<9.6	ND<9.5	ND<9.5	ND<9.6	ND<9.7
Hexachloroethane	μg/L	ND<9.6	ND<9.5	ND<9.5	ND<9.6	ND<9.7
Indeno(1,2,3-cd)pyrene	μg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.8	ND<4.9
Isophorone	μg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.8	ND<4.9
Naphthalene	μg/L	0.9 J	ND<4.8	ND<4.8	5	1.7 J
Nitrobenzene	μg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.8	ND<4.9
N-Nitrosodimethylamine	μg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.8	ND<4.9
N-Nitroso-di-n-propylamine	μg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.8	ND<4.9
N-Nitrosodiphenylamine/Diphenylamine	μg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.8	ND<4.9
Pentachlorophenol	μg/L	ND<29	ND<29	ND<29	ND<29	ND<29
Phenanthrene	μg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.8	ND<4.9
Phenol	μg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.8	ND<4.9
Pyrene	μg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.8	ND<4.9
Pyridine	μg/L	ND<9.6	ND<9.5	ND<9.5	ND<9.6	ND<9.7

Note:

DUP - Field duplicate

µg/L - microgram per liter

ND< - Analyte not detected at concentrations greater than or equal to reporting limits (RL)

bold - Analyte detected

- Constituent not analyzed for

D - Result from diluted sample

		TC4EHP	P1	P2	SDE	T-7-GW
	Units	8/3/2005	8/5/2005	8/9/2005	8/3/2005	9/22/2005
Semi-Volatile Organic Compounds	Childs	0,0,2000	0,0,2000	0/2/2000	0,0,2000	<i>,,,,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
1,2,4-Trichlorobenzene	µg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.8	ND<5.0
1,2-Dichlorobenzene	μg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.8	ND<5.0
1,3-Dichlorobenzene	μg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.8	ND<5.0
1,4-Dichlorobenzene	μg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.8	ND<5.0
1,4-Dioxane	μg/L μg/L	ND<2.0	ND<1.9	ND<2.0	ND<2.0	ND<2.0
2,4,5-Trichlorophenol	μg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.8	ND<5.0
2,4,6-Trichlorophenol	μg/L μg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.8	ND<5.0
2,4-Dichlorophenol	μg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.8	ND<5.0
2,4-Dimethylphenol	μg/L	ND<9.6	ND<9.5	ND<9.6	ND<9.6	ND<9.9
2,4-Dinitrophenol	μg/L	ND<48	ND<48	ND<48	ND<48	ND<50
2,4-Dinitrotoluene	μg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.8	ND<5.0
2,6-Dinitrotoluene	μg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.8	ND<5.0
2-Chloronaphthalene	μg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.8	ND<5.0
2-Chlorophenol	μg/L μg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.8	ND<5.0
2-Methylnaphthalene	μg/L μg/L	ND<4.8	ND<4.8	ND<4.8	2.2 J	ND<5.0
2-Methylphenol	μg/L μg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.8	ND<5.0
2-Nitroaniline	μg/L	ND<20	ND<19	ND<20	ND<20	ND<20
2-Nitrophenol	μg/L μg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.8	ND<5.0
3,3'-Dichlorobenzidine	μg/L μg/L	ND<20	ND<19	ND<20	ND<20	ND<20
3/4-Methylphenol	μg/L	ND<9.6	ND<9.5	ND<9.6	ND<9.6	ND<20
3-Nitroaniline	μg/L μg/L	ND<20	ND<19	ND<20	ND<20	ND<20
4,6-Dinitro-2-methylphenol	μg/L μg/L	ND<20	ND<19	ND<20	ND<20	ND<20
4-Bromophenyl-phenylether	μg/L μg/L	ND<2.0	ND<19	ND<20	ND<4.8	ND<20
4-Chloro-3-methylphenol	μg/L μg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.8	ND<5.0
4-Chloroaniline	μg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.8	ND<5.0
4-Chlorophenyl-phenylether	μg/L μg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.8	ND<5.0
4-Nitroaniline	μg/L	ND<20	ND<19	ND<20	ND<20	ND<20
4-Nitrophenol	μg/L	ND<48	ND<48	ND<48	ND<48	ND<50
Acenaphthene	μg/L μg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.8	ND<5.0
Acenaphthylene	μg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.8	ND<5.0
Aniline	μg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.8	ND<5.0
Anthracene	μg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.8	ND<5.0
Benzo(a)anthracene	μg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.8	ND<5.0
Benzo(a)pyrene	μg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.8	ND<5.0
Benzo(b)fluoranthene	μg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.8	ND<5.0
Benzo(g,h,i)perylene	μg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.8	ND<5.0
Benzo(k)fluoranthene	μg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.8	ND<5.0
Benzoic Acid	μg/L	ND<48	ND<48	ND<48	ND<48	ND<50
Benzyl Alcohol	μg/L	ND<9.6	ND<9.5	ND<9.6	ND<9.6	ND<9.9
bis(2-Chloroethoxy) methane	μg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.8	ND<5.0
Bis(2-chloroethyl) Ether	μg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.8	ND<5.0
Bis(2-chloroisopropyl) Ether	μg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.8	ND<5.0
Bis(2-ethylhexyl) Phthalate	μg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.8	19
Butylbenzylphthalate	μg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.8	ND<5.0
Chrysene	μg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.8	ND<5.0
Dibenzo(a,h)anthracene	μg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.8	ND<5.0
Dibenzofuran	μg/L μg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.8	ND<5.0
Diethylphthalate	μg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.8	ND<5.0
Dimethylphthalate	μg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.8	ND<5.0
Di-n-butylphthalate	μg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.8	ND<5.0
Di-n-octylphthalate	μg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.8	ND<5.0
	r 8 -					

		TC4EHP	P1	P2	SDE	T-7-GW
	Units	8/3/2005	8/5/2005	8/9/2005	8/3/2005	9/22/2005
Semi-Volatile Organic Compounds		-	-	-	-	
Fluoranthene	μg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.8	ND<5.0
Fluorene	μg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.8	ND<5.0
Hexachlorobenzene	μg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.8	ND<5.0
Hexachlorobutadiene	μg/L	ND<9.6	ND<9.5	ND<9.6	ND<9.6	ND<9.9
Hexachlorocyclopentadiene	μg/L	ND<9.6	ND<9.5	ND<9.6	ND<9.6	ND<9.9
Hexachloroethane	μg/L	ND<9.6	ND<9.5	ND<9.6	ND<9.6	ND<9.9
Indeno(1,2,3-cd)pyrene	μg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.8	ND<5.0
Isophorone	μg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.8	ND<5.0
Naphthalene	μg/L	ND<4.8	ND<4.8	ND<4.8	30	ND<5.0
Nitrobenzene	μg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.8	ND<5.0
N-Nitrosodimethylamine	μg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.8	ND<5.0
N-Nitroso-di-n-propylamine	μg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.8	ND<5.0
N-Nitrosodiphenylamine/Diphenylamine	μg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.8	ND<5.0
Pentachlorophenol	μg/L	ND<29	ND<29	ND<29	ND<29	ND<30
Phenanthrene	μg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.8	ND<5.0
Phenol	μg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.8	ND<5.0
Pyrene	μg/L	ND<4.8	ND<4.8	ND<4.8	ND<4.8	ND<5.0
Pyridine	μg/L	ND<9.6	ND<9.5	ND<9.6	ND<9.6	ND<9.9

Note:

DUP - Field duplicate

µg/L - microgram per liter

ND< - Analyte not detected at concentrations greater than or equal to reporting limits (RL)

bold - Analyte detected

- Constituent not analyzed for

D - Result from diluted sample

	r	T-8-GW	T-9GW	T-10B	T-10GW	T-13-GW
	Units	9/22/2005	9/22/2005	9/22/2005	9/22/2005	6/30/2005
Semi-Volatile Organic Compounds	Cinto	7/22/2003	7/22/2005	7/22/2005	7/22/2005	0/30/2003
1.2.4-Trichlorobenzene	μg/L	ND<5.0	ND<4.9	ND<4.9	ND<5.0	ND<4.8
1,2-Dichlorobenzene	10	ND<5.0	ND<4.9 ND<4.9	ND<4.9 ND<4.9	ND<5.0	ND<4.8
1,3-Dichlorobenzene	μg/L μg/I	ND<5.0	ND<4.9 ND<4.9	ND<4.9 ND<4.9	ND<5.0	ND<4.8
1,4-Dichlorobenzene	μg/L	ND<5.0				ND<4.8
1,4-Dichlorobenzene 1,4-Dioxane	μg/L	240 D	ND<4.9 11	ND<4.9 ND<2.0	ND<5.0 ND<2.0	ND<4.8 ND<1.9
	μg/L	ND<5.0	ND<4.9	ND<2.0 ND<4.9	ND<2.0 ND<5.0	ND<1.9 ND<4.8
2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	μg/L		ND<4.9 ND<4.9			ND<4.8
	μg/L	ND<5.0		ND<4.9	ND<5.0	
2,4-Dichlorophenol	μg/L	ND<5.0	ND<4.9	ND<4.9	ND<5.0	ND<4.8
2,4-Dimethylphenol 2,4-Dinitrophenol	μg/L	ND<9.9	ND<9.7	ND<9.8 ND<49	ND<9.9 ND<50	ND<9.5 ND<48
*	μg/L	ND<50	ND<49	ND<49 ND<4.9		
2,4-Dinitrotoluene	µg/L	ND<5.0	ND<4.9		ND<5.0	ND<4.8
2,6-Dinitrotoluene	µg/L	ND<5.0	ND<4.9	ND<4.9	ND<5.0	ND<4.8
2-Chloronaphthalene	μg/L	ND<5.0	ND<4.9	ND<4.9	ND<5.0	ND<4.8
2-Chlorophenol	µg/L	ND<5.0	ND<4.9	ND<4.9	ND<5.0	ND<4.8
2-Methylnaphthalene	µg/L	ND<5.0	ND<4.9	ND<4.9	ND<5.0	ND<4.8
2-Methylphenol	μg/L ~	ND<5.0	ND<4.9	ND<4.9	ND<5.0	ND<4.8
2-Nitroaniline	μg/L	ND<20	ND<20	ND<20	ND<20	ND<19
2-Nitrophenol	μg/L	ND<5.0	ND<4.9	ND<4.9	ND<5.0	ND<4.8
3,3'-Dichlorobenzidine	μg/L	ND<20	ND<20	ND<20	ND<20	ND<19
3/4-Methylphenol	μg/L	ND<9.9	ND<9.7	ND<9.8	ND<9.9	ND<9.5
3-Nitroaniline	μg/L	ND<20	ND<20	ND<20	ND<20	ND<19
4,6-Dinitro-2-methylphenol	μg/L	ND<20	ND<20	ND<20	ND<20	ND<19
4-Bromophenyl-phenylether	μg/L	ND<5.0	ND<4.9	ND<4.9	ND<5.0	ND<4.8
4-Chloro-3-methylphenol	μg/L	ND<5.0	ND<4.9	ND<4.9	ND<5.0	ND<4.8
4-Chloroaniline	μg/L	ND<5.0	ND<4.9	ND<4.9	ND<5.0	ND<4.8
4-Chlorophenyl-phenylether	μg/L	ND<5.0	ND<4.9	ND<4.9	ND<5.0	ND<4.8
4-Nitroaniline	μg/L	ND<20	ND<20	ND<20	ND<20	ND<19
4-Nitrophenol	μg/L	ND<50	ND<49	ND<49	ND<50	ND<48
Acenaphthene	μg/L	ND<5.0	ND<4.9	ND<4.9	ND<5.0	ND<4.8
Acenaphthylene	μg/L	ND<5.0	ND<4.9	ND<4.9	ND<5.0	ND<4.8
Aniline	μg/L	ND<5.0	ND<4.9	ND<4.9	ND<5.0	ND<4.8
Anthracene	μg/L	ND<5.0	ND<4.9	ND<4.9	ND<5.0	ND<4.8
Benzo(a)anthracene	μg/L	ND<5.0	ND<4.9	ND<4.9	ND<5.0	ND<4.8
Benzo(a)pyrene	μg/L	ND<5.0	ND<4.9	ND<4.9	ND<5.0	ND<4.8
Benzo(b)fluoranthene	μg/L	ND<5.0	ND<4.9	ND<4.9	ND<5.0	ND<4.8
Benzo(g,h,i)perylene	μg/L	ND<5.0	ND<4.9	0.50 J	ND<5.0	ND<4.8
Benzo(k)fluoranthene	μg/L	ND<5.0	ND<4.9	ND<4.9	ND<5.0	ND<4.8
Benzoic Acid	μg/L	ND<50	ND<49	ND<49	ND<50	ND<48
Benzyl Alcohol	μg/L	ND<9.9	ND<9.7	ND<9.8	ND<9.9	ND<9.5
bis(2-Chloroethoxy) methane	μg/L	ND<5.0	ND<4.9	ND<4.9	ND<5.0	ND<4.8
Bis(2-chloroethyl) Ether	μg/L	ND<5.0	ND<4.9	ND<4.9	ND<5.0	ND<4.8
Bis(2-chloroisopropyl) Ether	μg/L	ND<5.0	ND<4.9	ND<4.9	ND<5.0	ND<4.8
Bis(2-ethylhexyl) Phthalate	μg/L	1.7 J	2.3 J	4.1 J	5.1	1.4 J
Butylbenzylphthalate	μg/L	ND<5.0	ND<4.9	ND<4.9	ND<5.0	ND<4.8
Chrysene	μg/L	ND<5.0	ND<4.9	ND<4.9	ND<5.0	ND<4.8
Dibenzo(a,h)anthracene	μg/L	ND<5.0	ND<4.9	ND<4.9	ND<5.0	ND<4.8
Dibenzofuran	μg/L	ND<5.0	ND<4.9	ND<4.9	ND<5.0	ND<4.8
Diethylphthalate	μg/L	ND<5.0	1.6 J	ND<4.9	ND<5.0	ND<4.8
Dimethylphthalate	μg/L	ND<5.0	ND<4.9	ND<4.9	ND<5.0	ND<4.8
Di-n-butylphthalate	μg/L	ND<5.0	ND<4.9	ND<4.9	ND<5.0	ND<4.8
Di-n-octylphthalate	μg/L	ND<5.0	ND<4.9	ND<4.9	ND<5.0	ND<4.8

		T-8-GW	T-9GW	T-10B	T-10GW	T-13-GW
	Units	9/22/2005	9/22/2005	9/22/2005	9/22/2005	6/30/2005
Semi-Volatile Organic Compounds						
Fluoranthene	μg/L	ND<5.0	ND<4.9	ND<4.9	ND<5.0	ND<4.8
Fluorene	μg/L	ND<5.0	ND<4.9	ND<4.9	ND<5.0	ND<4.8
Hexachlorobenzene	μg/L	ND<5.0	ND<4.9	ND<4.9	ND<5.0	ND<4.8
Hexachlorobutadiene	μg/L	ND<9.9	ND<9.7	ND<9.8	ND<9.9	ND<9.5
Hexachlorocyclopentadiene	μg/L	ND<9.9	ND<9.7	ND<9.8	ND<9.9	ND<9.5
Hexachloroethane	μg/L	ND<9.9	ND<9.7	ND<9.8	ND<9.9	ND<9.5
Indeno(1,2,3-cd)pyrene	μg/L	ND<5.0	ND<4.9	ND<4.9	0.28 J	ND<4.8
Isophorone	μg/L	ND<5.0	ND<4.9	ND<4.9	ND<5.0	ND<4.8
Naphthalene	μg/L	ND<5.0	ND<4.9	ND<4.9	ND<5.0	ND<4.8
Nitrobenzene	μg/L	ND<5.0	ND<4.9	ND<4.9	ND<5.0	ND<4.8
N-Nitrosodimethylamine	μg/L	ND<5.0	ND<4.9	ND<4.9	ND<5.0	ND<4.8
N-Nitroso-di-n-propylamine	μg/L	ND<5.0	ND<4.9	ND<4.9	ND<5.0	ND<4.8
N-Nitrosodiphenylamine/Diphenylamine	μg/L	ND<5.0	ND<4.9	ND<4.9	ND<5.0	ND<4.8
Pentachlorophenol	μg/L	ND<30	ND<29	ND<30	ND<30	ND<29
Phenanthrene	μg/L	ND<5.0	ND<4.9	ND<4.9	ND<5.0	ND<4.8
Phenol	μg/L	ND<5.0	ND<4.9	ND<4.9	ND<5.0	ND<4.8
Pyrene	μg/L	ND<5.0	ND<4.9	ND<4.9	ND<5.0	ND<4.8
Pyridine	μg/L	ND<9.9	ND<9.7	ND<9.8	ND<9.9	ND<9.5

Note:

DUP - Field duplicate

µg/L - microgram per liter

ND< - Analyte not detected at concentrations greater than or equal to reporting limits (RL)

bold - Analyte detected

- Constituent not analyzed for

D - Result from diluted sample

			I			
	T T 1 (T-14-GW	T-15-GW	T-16-GW	T-17-GW	T-18-GW
	Units	6/30/2005	7/1/2005	7/1/2005	6/30/2005	6/30/2005
Semi-Volatile Organic Compounds	~					
1,2,4-Trichlorobenzene	μg/L	ND<4.9	ND<4.9	ND<25	ND<4.9	ND<4.8
1,2-Dichlorobenzene	μg/L	ND<4.9	ND<4.9	ND<25	2.6 J	6
1,3-Dichlorobenzene	μg/L	ND<4.9	ND<4.9	ND<25	ND<4.9	ND<4.8
1,4-Dichlorobenzene	μg/L	ND<4.9	ND<4.9	ND<25	8.7	9.4
1,4-Dioxane	μg/L	ND<2.0	ND<2.0	ND<9.7	14	37
2,4,5-Trichlorophenol	μg/L	ND<4.9	ND<4.9	ND<25	ND<4.9	ND<4.8
2,4,6-Trichlorophenol	μg/L	ND<4.9	ND<4.9	ND<25	ND<4.9	ND<4.8
2,4-Dichlorophenol	μg/L	ND<4.9	ND<4.9	ND<25	ND<4.9	ND<4.8
2,4-Dimethylphenol	μg/L	ND<9.7	ND<9.7	ND<49	ND<9.7	ND<9.5
2,4-Dinitrophenol	μg/L	ND<49	ND<49	ND<250	ND<49	ND<48
2,4-Dinitrotoluene	μg/L	ND<4.9	ND<4.9	ND<25	ND<4.9	ND<4.8
2,6-Dinitrotoluene	μg/L	ND<4.9	ND<4.9	ND<25	ND<4.9	ND<4.8
2-Chloronaphthalene	μg/L	ND<4.9	ND<4.9	ND<25	ND<4.9	ND<4.8
2-Chlorophenol	μg/L	ND<4.9	ND<4.9	ND<25	ND<4.9	ND<4.8
2-Methylnaphthalene	μg/L	ND<4.9	ND<4.9	ND<25	1.4 J	ND<4.8
2-Methylphenol	μg/L	ND<4.9	ND<4.9	ND<25	ND<4.9	ND<4.8
2-Nitroaniline	μg/L	ND<20	ND<20	ND<97	ND<20	ND<19
2-Nitrophenol	μg/L	ND<4.9	ND<4.9	ND<25	ND<4.9	ND<4.8
3,3'-Dichlorobenzidine	μg/L	ND<20	ND<20	ND<97	ND<20	ND<19
3/4-Methylphenol	µg/L	ND<9.7	ND<9.7	ND<49	ND<9.7	ND<9.5
3-Nitroaniline	µg/L	ND<20	ND<20	ND<97	ND<20	ND<19
4,6-Dinitro-2-methylphenol	μg/L	ND<20	ND<20	ND<97	ND<20	ND<19
4-Bromophenyl-phenylether	μg/L	ND<4.9	ND<4.9	ND<25	ND<4.9	ND<4.8
4-Chloro-3-methylphenol	μg/L	ND<4.9	ND<4.9	ND<25	1.9 J	ND<4.8
4-Chloroaniline	μg/L	ND<4.9	ND<4.9	ND<25	ND<4.9	ND<4.8
4-Chlorophenyl-phenylether	μg/L	ND<4.9	ND<4.9	ND<25	ND<4.9	ND<4.8
4-Nitroaniline	μg/L	ND<20	ND<20	ND<97	ND<20	ND<19
4-Nitrophenol	μg/L	ND<49	ND<49	ND<250	ND<49	ND<48
Acenaphthene	μg/L	ND<4.9	ND<4.9	ND<25	ND<4.9	ND<4.8
Acenaphthylene	μg/L	ND<4.9	ND<4.9	ND<25	ND<4.9	ND<4.8
Aniline	μg/L	ND<4.9	ND<4.9	ND<25	ND<4.9	ND<4.8
Anthracene	μg/L	ND<4.9	ND<4.9	ND<25	ND<4.9	ND<4.8
Benzo(a)anthracene	μg/L	ND<4.9	ND<4.9	ND<25	ND<4.9	ND<4.8
Benzo(a)pyrene	μg/L	ND<4.9	ND<4.9	ND<25	ND<4.9	ND<4.8
Benzo(b)fluoranthene	μg/L	ND<4.9	ND<4.9	ND<25	ND<4.9	ND<4.8
Benzo(g,h,i)perylene	μg/L	ND<4.9	ND<4.9	ND<25	ND<4.9	ND<4.8
Benzo(k)fluoranthene	μg/L	ND<4.9	ND<4.9	ND<25	ND<4.9	ND<4.8
Benzoic Acid	μg/L	ND<49	ND<49	ND<250	ND<49	ND<48
Benzyl Alcohol	μg/L	ND<9.7	ND<9.7	ND<49	ND<9.7	ND<9.5
bis(2-Chloroethoxy) methane	μg/L	ND<4.9	ND<4.9	ND<25	ND<4.9	ND<4.8
Bis(2-chloroethyl) Ether	μg/L	ND<4.9	ND<4.9	ND<25	ND<4.9	ND<4.8
Bis(2-chloroisopropyl) Ether	μg/L	ND<4.9	ND<4.9	ND<25	ND<4.9	ND<4.8
Bis(2-ethylhexyl) Phthalate	μg/L μg/L	12	3.8 J	ND<25	ND<4.9	7.7
Butylbenzylphthalate	μg/L μg/L	ND<4.9	ND<4.9	ND<25	ND<4.9	ND<4.8
Chrysene	μg/L μg/L	ND<4.9	ND<4.9	ND<25	ND<4.9	ND<4.8
Dibenzo(a,h)anthracene	μg/L μg/L	ND<4.9 ND<4.9	ND<4.9	ND<25	ND<4.9 ND<4.9	ND<4.8
Dibenzo(a,n)anuracene Dibenzofuran		ND<4.9 ND<4.9	ND<4.9 ND<4.9	ND<25	ND<4.9 ND<4.9	ND<4.8
Diethylphthalate	μg/L μg/I	ND<4.9 ND<4.9	ND<4.9 ND<4.9	ND<25		ND<4.8
Direthylphthalate	μg/L μg/I	ND<4.9 ND<4.9	ND<4.9 ND<4.9		ND<4.9 ND<4.9	ND<4.8 ND<4.8
Dimethylphthalate	μg/L μg/I	ND<4.9 ND<4.9	ND<4.9 ND<4.9	ND<25 ND<25	ND<4.9 ND<4.9	ND<4.8 ND<4.8
	μg/L μg/I					
Di-n-octylphthalate	μg/L	ND<4.9	ND<4.9	ND<25	ND<4.9	ND<4.8

		T-14-GW	T-15-GW	T-16-GW	T-17-GW	T-18-GW
	Units	6/30/2005	7/1/2005	7/1/2005	6/30/2005	6/30/2005
Semi-Volatile Organic Compounds		-				
Fluoranthene	μg/L	ND<4.9	ND<4.9	ND<25	ND<4.9	ND<4.8
Fluorene	μg/L	ND<4.9	ND<4.9	ND<25	ND<4.9	ND<4.8
Hexachlorobenzene	μg/L	ND<4.9	ND<4.9	ND<25	ND<4.9	ND<4.8
Hexachlorobutadiene	μg/L	ND<9.7	ND<9.7	ND<49	ND<9.7	ND<9.5
Hexachlorocyclopentadiene	μg/L	ND<9.7	ND<9.7	ND<49	ND<9.7	ND<9.5
Hexachloroethane	μg/L	ND<9.7	ND<9.7	ND<49	ND<9.7	ND<9.5
Indeno(1,2,3-cd)pyrene	μg/L	ND<4.9	ND<4.9	ND<25	0.33 J	ND<4.8
Isophorone	μg/L	ND<4.9	ND<4.9	ND<25	ND<4.9	ND<4.8
Naphthalene	μg/L	ND<4.9	ND<4.9	ND<25	0.49 J	ND<4.8
Nitrobenzene	μg/L	ND<4.9	ND<4.9	ND<25	ND<4.9	ND<4.8
N-Nitrosodimethylamine	μg/L	ND<4.9	ND<4.9	ND<25	ND<4.9	ND<4.8
N-Nitroso-di-n-propylamine	μg/L	ND<4.9	ND<4.9	ND<25	ND<4.9	ND<4.8
N-Nitrosodiphenylamine/Diphenylamine	μg/L	ND<4.9	ND<4.9	ND<25	ND<4.9	ND<4.8
Pentachlorophenol	μg/L	ND<29	ND<29	ND<150	ND<29	ND<29
Phenanthrene	μg/L	ND<4.9	ND<4.9	ND<25	ND<4.9	ND<4.8
Phenol	μg/L	ND<4.9	ND<4.9	ND<25	ND<4.9	ND<4.8
Pyrene	μg/L	ND<4.9	ND<4.9	ND<25	ND<4.9	ND<4.8
Pyridine	μg/L	ND<9.7	ND<9.7	ND<49	ND<9.7	ND<9.5

Note:

DUP - Field duplicate

µg/L - microgram per liter

ND< - Analyte not detected at concentrations greater than or equal to reporting limits (RL)

bold - Analyte detected

- Constituent not analyzed for

D - Result from diluted sample

		T-19-GW	T-20-GW	T-21B-GW	T-22-GW	T-23-GW
	Units	6/30/2005	6/30/2005	7/6/2005	7/6/2005	7/6/2005
Semi-Volatile Organic Compounds	Cinto	0,00,2000	0,00,2000	110/2000		11012000
1,2,4-Trichlorobenzene	μg/L	ND<4.8	ND<4.8	ND<24	ND<24	ND<4.8
1.2-Dichlorobenzene	μg/L μg/L	ND<4.8	ND<4.8	ND<24	ND<24	ND<4.8
1,3-Dichlorobenzene	μg/L	ND<4.8	ND<4.8	ND<24	ND<24	ND<4.8
1,4-Dichlorobenzene	μg/L	0.58 J	ND<4.8	5.7 J,D	5.2 J,D	1.2 J
1,4-Dioxane	μg/L μg/L	160 D	130 D	ND<9.6	ND<9.6	680 D
2,4,5-Trichlorophenol	μg/L μg/L	ND<4.8	ND<4.8	ND<24	ND<24	ND<4.8
2,4,6-Trichlorophenol	μg/L μg/L	ND<4.8	ND<4.8	ND<24	ND<24	ND<4.8
2,4-Dichlorophenol	μg/L μg/L	ND<4.8	ND<4.8	ND<24	ND<24	ND<4.8
2,4-Dimethylphenol	μg/L μg/L	ND<9.5	ND<9.5	ND<48	ND<48	ND<9.5
2,4-Dinitrophenol	μg/L μg/L	ND<48	ND<48	ND<240	ND<240	ND<48
2,4-Dinitrotoluene	μg/L μg/L	ND<4.8	ND<4.8	ND<24	ND<24	ND<4.8
2,6-Dinitrotoluene	μg/L μg/L	ND<4.8	ND<4.8	ND<24	ND<24	ND<4.8
2-Chloronaphthalene	μg/L μg/L	ND<4.8	ND<4.8	ND<24	ND<24	ND<4.8
2-Chlorophenol	μg/L μg/L	ND<4.8	ND<4.8	ND<24	ND<24	ND<4.8
2-Methylnaphthalene	μg/L μg/L	ND<4.8	ND<4.8	ND<24	ND<24	ND<4.8
2-Methylphenol	μg/L μg/L	ND<4.8	ND<4.8	ND<24	ND<24	ND<4.8
2-Nitroaniline	μg/L μg/L	ND<4.8	ND<4.8 ND<19	ND<24 ND<96	ND<96	ND<4.8 ND<19
2-Nitrophenol	μg/L μg/L	ND<19	ND<19 ND<4.8	ND<90	ND<90	ND<19
3,3'-Dichlorobenzidine	μg/L μg/L	ND<4.8	ND<4.8	ND<24 ND<96	ND<96	ND<4.8 ND<19
3/4-Methylphenol		ND<19 ND<9.5	ND<19 ND<9.5	ND<90	ND<90 ND<48	ND<19 ND<9.5
3-Nitroaniline	μg/L	ND<9.3 ND<19	ND<9.3 ND<19		ND<46 ND<96	ND<9.3 ND<19
4,6-Dinitro-2-methylphenol	μg/L	ND<19 ND<19	ND<19 ND<19	ND<96	ND<96	ND<19 ND<19
	μg/L		ND<19 ND<4.8	ND<96	ND<96 ND<24	
4-Bromophenyl-phenylether 4-Chloro-3-methylphenol	μg/L μg/L	ND<4.8 ND<4.8		ND<24		ND<4.8 ND<4.8
4-Chloroaniline		ND<4.8	ND<4.8 ND<4.8	7.7 J,D	2.2 J,D	ND<4.8
	μg/L			ND<24	ND<24	
4-Chlorophenyl-phenylether	μg/L	ND<4.8	ND<4.8	ND<24	ND<24	ND<4.8
4-Nitroaniline 4-Nitrophenol	μg/L	ND<19	ND<19 ND<48	ND<96	ND<96 ND<240	ND<19
· ·	µg/L	ND<48		ND<240		ND<48
Acenaphthene	µg/L	ND<4.8	ND<4.8	ND<24	ND<24	ND<4.8
Acenaphthylene	µg/L	ND<4.8	ND<4.8	ND<24	ND<24	ND<4.8
Aniline	µg/L	ND<4.8	ND<4.8	ND<24	ND<24	ND<4.8
Anthracene	µg/L	ND<4.8	ND<4.8	ND<24	ND<24	ND<4.8
Benzo(a)anthracene	µg/L	ND<4.8	ND<4.8	ND<24	ND<24	ND<4.8
Benzo(a)pyrene	µg/L	ND<4.8	ND<4.8	ND<24	ND<24	ND<4.8
Benzo(b)fluoranthene	μg/L	ND<4.8	ND<4.8 ND<4.8	ND<24 ND<24	ND<24	ND<4.8
Benzo(g,h,i)perylene	μg/L	ND<4.8			ND<24	0.58 J
Benzo(k)fluoranthene	µg/L	ND<4.8	ND<4.8	ND<24	ND<24	ND<4.8
Benzoic Acid	μg/L	ND<48	ND<48	ND<240	ND<240	ND<48
Benzyl Alcohol	µg/L	ND<9.5	ND<9.5	ND<48	ND<48	ND<9.5
bis(2-Chloroethoxy) methane	µg/L	ND<4.8	ND<4.8	ND<24	ND<24	ND<4.8
Bis(2-chloroethyl) Ether	µg/L	ND<4.8	ND<4.8	ND<24	ND<24	ND<4.8
Bis(2-chloroisopropyl) Ether	µg/L	ND<4.8	ND<4.8	ND<24	ND<24	ND<4.8
Bis(2-ethylhexyl) Phthalate	µg/L	1.8 J	5.6	6.6 J,D	5.7 J,D	4.5 J
Butylbenzylphthalate	µg/L	ND<4.8	ND<4.8	ND<24	ND<24	ND<4.8
Chrysene	µg/L	ND<4.8	ND<4.8	ND<24	ND<24	ND<4.8
Dibenzo(a,h)anthracene	µg/L	ND<4.8	ND<4.8	ND<24	ND<24	0.49 J
Dibenzofuran	µg/L	ND<4.8	ND<4.8	ND<24	ND<24	ND<4.8
Diethylphthalate	μg/L	1.3 J	ND<4.8	ND<24	ND<24	1.1 J
Dimethylphthalate	µg/L	ND<4.8	ND<4.8	ND<24	ND<24	ND<4.8
Di-n-butylphthalate	µg/L	ND<4.8	ND<4.8	ND<24	ND<24	ND<4.8
Di-n-octylphthalate	μg/L	ND<4.8	ND<4.8	ND<24	ND<24	ND<4.8

		T-19-GW	T-20-GW	T-21B-GW	T-22-GW	T-23-GW
	Units	6/30/2005	6/30/2005	7/6/2005	7/6/2005	7/6/2005
Semi-Volatile Organic Compounds						
Fluoranthene	μg/L	ND<4.8	ND<4.8	ND<24	ND<24	ND<4.8
Fluorene	μg/L	ND<4.8	ND<4.8	ND<24	ND<24	ND<4.8
Hexachlorobenzene	μg/L	ND<4.8	ND<4.8	ND<24	ND<24	ND<4.8
Hexachlorobutadiene	μg/L	ND<9.5	ND<9.5	ND<48	ND<48	ND<9.5
Hexachlorocyclopentadiene	μg/L	ND<9.5	ND<9.5	ND<48	ND<48	ND<9.5
Hexachloroethane	μg/L	ND<9.5	ND<9.5	ND<48	ND<48	ND<9.5
Indeno(1,2,3-cd)pyrene	μg/L	ND<4.8	ND<4.8	ND<24	ND<24	0.55 J
Isophorone	μg/L	ND<4.8	ND<4.8	ND<24	ND<24	ND<4.8
Naphthalene	μg/L	ND<4.8	ND<4.8	ND<24	ND<24	ND<4.8
Nitrobenzene	μg/L	ND<4.8	ND<4.8	ND<24	ND<24	ND<4.8
N-Nitrosodimethylamine	μg/L	ND<4.8	ND<4.8	ND<24	ND<24	ND<4.8
N-Nitroso-di-n-propylamine	μg/L	ND<4.8	ND<4.8	ND<24	ND<24	ND<4.8
N-Nitrosodiphenylamine/Diphenylamine	μg/L	ND<4.8	ND<4.8	ND<24	ND<24	ND<4.8
Pentachlorophenol	μg/L	ND<29	ND<29	ND<150	ND<150	ND<29
Phenanthrene	μg/L	ND<4.8	ND<4.8	ND<24	ND<24	ND<4.8
Phenol	μg/L	ND<4.8	ND<4.8	ND<24	ND<24	ND<4.8
Pyrene	μg/L	ND<4.8	ND<4.8	ND<24	ND<24	ND<4.8
Pyridine	μg/L	ND<9.5	ND<9.5	ND<48	ND<48	ND<9.5

Note:

DUP - Field duplicate

µg/L - microgram per liter

ND< - Analyte not detected at concentrations greater than or equal to reporting limits (RL)

bold - Analyte detected

- Constituent not analyzed for

D - Result from diluted sample

	DUP2 (T.23.GW)	T-24-GW	T-25-GW	T-26-GW	T-27-GW
Units					7/13/2005
		.,	.,,		.,,_
ug/L	ND<4.8	ND<24	ND<4.9	ND<9.7	ND<4.8
10					ND<4.8
					ND<4.8
					ND<4.8
					ND<2.0
					ND<4.8
					ND<4.8
		-			ND<4.8
					ND<9.6
					ND<48
					ND<4.8
					ND<20
					ND<4.8
					ND<20
					ND<9.6
					ND<20
					ND<20
					ND<4.8
		-			ND<4.8
					ND<4.8
					ND<4.8
					ND<20
					ND<48
					ND<4.8
					ND<4.8
					0.93 J
					ND<4.8
		-	ND<4.9		ND<4.8
	ND<4.8	ND<24			ND<4.8
		ND<24			ND<4.8
	0.44 J		ND<4.9		ND<4.8
				ND<9.7	ND<4.8
					ND<48
					ND<9.6
	ND<4.8				ND<4.8
	ND<4.8				ND<4.8
					ND<4.8
		ND<24			7.8
	ND<4.8	ND<24	ND<4.9	ND<9.7	ND<4.8
				ND<9.7	ND<4.8
	ND<4.8		ND<4.9	ND<9.7	ND<4.8
	ND<4.8	ND<24	ND<4.9	ND<9.7	ND<4.8
	1.5 J	ND<24	1.2 J		0.9 J
	ND<4.8	ND<24	ND<4.9	ND<9.7	ND<4.8
	ND<4.8		0.4 J		ND<4.8
	Units μg/L μg/L	$\mu g/L$ ND<4.8 $\mu g/L$ ND<4.8	Units $7/6/2005$ $7/6/2005$ µg/L ND<4.8	Units $7/6/2005$ $7/6/2005$ $7/13/2005$ µg/LND<4.8	Units 7/6/2005 7/13/2005 7/13/2005 µg/L ND<4.8

	Units	DUP2 (T-23-GW) 7/6/2005	T-24-GW 7/6/2005	T-25-GW 7/13/2005	T-26-GW 7/13/2005	T-27-GW 7/13/2005
Semi-Volatile Organic Compounds	Units	1/0/2005	110/2003	7/13/2003	//13/2003	//13/2003
Fluoranthene	μg/L	ND<4.8	ND<24	ND<4.9	ND<9.7	ND<4.8
Fluorene	μg/L	ND<4.8	ND<24	ND<4.9	ND<9.7	ND<4.8
Hexachlorobenzene	μg/L	ND<4.8	ND<24	ND<4.9	ND<9.7	ND<4.8
Hexachlorobutadiene	μg/L	ND<9.5	ND<48	ND<9.7	ND<20	ND<9.6
Hexachlorocyclopentadiene	μg/L	ND<9.5	ND<48	ND<9.7	ND<20	ND<9.6
Hexachloroethane	μg/L	ND<9.5	ND<48	ND<9.7	ND<20	ND<9.6
Indeno(1,2,3-cd)pyrene	μg/L	0.39 J	ND<24	ND<4.9	ND<9.7	ND<4.8
Isophorone	μg/L	ND<4.8	ND<24	ND<4.9	ND<9.7	ND<4.8
Naphthalene	μg/L	ND<4.8	ND<24	ND<4.9	ND<9.7	ND<4.8
Nitrobenzene	μg/L	ND<4.8	ND<24	ND<4.9	ND<9.7	ND<4.8
N-Nitrosodimethylamine	μg/L	ND<4.8	ND<24	ND<4.9	ND<9.7	ND<4.8
N-Nitroso-di-n-propylamine	μg/L	ND<4.8	ND<24	ND<4.9	ND<9.7	ND<4.8
N-Nitrosodiphenylamine/Diphenylamine	μg/L	ND<4.8	ND<24	ND<4.9	ND<9.7	ND<4.8
Pentachlorophenol	μg/L	ND<29	ND<150	ND<29	ND<58	ND<29
Phenanthrene	μg/L	ND<4.8	ND<24	ND<4.9	ND<9.7	ND<4.8
Phenol	μg/L	ND<4.8	ND<24	ND<4.9	ND<9.7	ND<4.8
Pyrene	μg/L	ND<4.8	ND<24	ND<4.9	ND<9.7	ND<4.8
Pyridine	μg/L	ND<9.5	ND<48	ND<9.7	ND<20	ND<9.6

Note:

DUP - Field duplicate

µg/L - microgram per liter

ND< - Analyte not detected at concentrations greater than or equal to reporting limits (RL)

bold - Analyte detected

- Constituent not analyzed for

D - Result from diluted sample

		T-27-GW-B	T-28-GW	T-34-GW	T-35-GW	T-36-GW
	Units	7/13/2005	7/13/2005	7/14/2005	7/14/2005	7/14/2005
Semi-Volatile Organic Compounds	Chito					
1,2,4-Trichlorobenzene	μg/L	ND<4.8	ND<4.9	ND<5.0	ND<4.9	ND<5.0
1,2-Dichlorobenzene	μg/L μg/L	ND<4.8	ND<4.9	ND<5.0	ND<4.9	ND<5.0
1,3-Dichlorobenzene	μg/L	ND<4.8	ND<4.9	ND<5.0	ND<4.9	ND<5.0
1,4-Dichlorobenzene	μg/L μg/L	ND<4.8	ND<4.9	ND<5.0	ND<4.9	ND<5.0
1,4-Dioxane	μg/L μg/L	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0
2,4,5-Trichlorophenol	μg/L μg/L	ND<4.8	ND<4.9	ND<5.0	ND<4.9	ND<5.0
2,4,6-Trichlorophenol	μg/L μg/L	ND<4.8	ND<4.9	ND<5.0	ND<4.9	ND<5.0
2,4-Dichlorophenol	μg/L	ND<4.8	ND<4.9	ND<5.0	ND<4.9	ND<5.0
2,4-Dimethylphenol	μg/L	ND<9.6	ND<9.7	ND<9.9	ND<9.7	ND<9.9
2,4-Dinitrophenol	μg/L	ND<48	ND<49	ND<50	ND<49	ND<50
2,4-Dinitrotoluene	μg/L	ND<4.8	ND<4.9	ND<5.0	ND<4.9	ND<5.0
2,6-Dinitrotoluene	μg/L	ND<4.8	ND<4.9	ND<5.0	ND<4.9	ND<5.0
2-Chloronaphthalene	μg/L μg/L	ND<4.8	ND<4.9	ND<5.0	ND<4.9	ND<5.0
2-Chlorophenol	μg/L μg/L	ND<4.8	ND<4.9	ND<5.0	ND<4.9	ND<5.0
2-Methylnaphthalene	μg/L μg/L	ND<4.8	ND<4.9	ND<5.0	ND<4.9	ND<5.0
2-Methylphenol	μg/L μg/L	ND<4.8	ND<4.9	ND<5.0	ND<4.9	ND<5.0
2-Nitroaniline	µg/L	ND<20	ND<20	ND<20	ND<20	ND<20
2-Nitrophenol	µg/L	ND<4.8	ND<4.9	ND<5.0	ND<4.9	ND<5.0
3,3'-Dichlorobenzidine	μg/L	ND<20	ND<20	ND<20	ND<20	ND<20
3/4-Methylphenol	µg/L	ND<9.6	ND<9.7	ND<9.9	ND<9.7	ND<9.9
3-Nitroaniline	μg/L	ND<20	ND<20	ND<20	ND<20	ND<20
4,6-Dinitro-2-methylphenol	µg/L	ND<20	ND<20	ND<20	ND<20	ND<20
4-Bromophenyl-phenylether	µg/L	ND<4.8	ND<4.9	ND<5.0	ND<4.9	ND<5.0
4-Chloro-3-methylphenol	µg/L	ND<4.8	ND<4.9	ND<5.0	ND<4.9	ND<5.0
4-Chloroaniline	µg/L	ND<4.8	ND<4.9	ND<5.0	ND<4.9	ND<5.0
4-Chlorophenyl-phenylether	µg/L	ND<4.8	ND<4.9	ND<5.0	ND<4.9	ND<5.0
4-Nitroaniline	µg/L	ND<20	ND<20	ND<20	ND<20	ND<20
4-Nitrophenol	µg/L	ND<48	ND<49	ND<50	ND<49	ND<50
Acenaphthene	μg/L	ND<4.8	ND<4.9	ND<5.0	ND<4.9	ND<5.0
Acenaphthylene	µg/L	ND<4.8	ND<4.9	ND<5.0	ND<4.9	ND<5.0
Aniline	µg/L	1.1 J	2.2 J	ND<5.0	ND<4.9	ND<5.0
Anthracene	µg/L	ND<4.8	ND<4.9	ND<5.0	ND<4.9	ND<5.0
Benzo(a)anthracene	μg/L	ND<4.8	ND<4.9	ND<5.0	ND<4.9	ND<5.0
Benzo(a)pyrene	μg/L	ND<4.8	ND<4.9	ND<5.0	ND<4.9	ND<5.0
Benzo(b)fluoranthene	μg/L	ND<4.8	ND<4.9	ND<5.0	ND<4.9	ND<5.0
Benzo(g,h,i)perylene	μg/L	ND<4.8	ND<4.9	ND<5.0	ND<4.9	ND<5.0
Benzo(k)fluoranthene	μg/L	ND<4.8	ND<4.9	ND<5.0	ND<4.9	ND<5.0
Benzoic Acid	μg/L	ND<48	ND<49	ND<50	ND<49	ND<50
Benzyl Alcohol	μg/L	ND<9.6	ND<9.7	ND<9.9	ND<9.7	ND<9.9
bis(2-Chloroethoxy) methane	µg/L	ND<4.8	ND<4.9	ND<5.0	ND<4.9	ND<5.0
Bis(2-chloroethyl) Ether	μg/L	ND<4.8	ND<4.9	ND<5.0	ND<4.9	ND<5.0
Bis(2-chloroisopropyl) Ether	µg/L	ND<4.8	ND<4.9	ND<5.0	ND<4.9	ND<5.0
Bis(2-ethylhexyl) Phthalate	µg/L	7.4	1.3 J	2.4 J	3.4 J	2.7 J
Butylbenzylphthalate	µg/L	ND<4.8	ND<4.9	ND<5.0	ND<4.9	ND<5.0
Chrysene	µg/L	ND<4.8	ND<4.9	ND<5.0	ND<4.9	ND<5.0
Dibenzo(a,h)anthracene	µg/L	ND<4.8	ND<4.9	ND<5.0	ND<4.9	ND<5.0
Dibenzofuran	µg/L	ND<4.8	ND<4.9	ND<5.0	ND<4.9	ND<5.0
Diethylphthalate	µg/L	2.2 J	ND<4.9	1.3 J	1.6 J	ND<5.0
Dimethylphthalate	μg/L	ND<4.8	ND<4.9	ND<5.0	ND<4.9	ND<5.0
Di-n-butylphthalate	μg/L	ND<4.8	ND<4.9	ND<5.0	ND<4.9	ND<5.0
Di-n-octylphthalate	μg/L	ND<4.8	ND<4.9	ND<5.0	ND<4.9	ND<5.0

		T-27-GW-B	T-28-GW	T-34-GW	T-35-GW	T-36-GW
	Units	7/13/2005	7/13/2005	7/14/2005	7/14/2005	7/14/2005
Semi-Volatile Organic Compounds						
Fluoranthene	μg/L	ND<4.8	ND<4.9	ND<5.0	ND<4.9	ND<5.0
Fluorene	μg/L	ND<4.8	ND<4.9	ND<5.0	ND<4.9	ND<5.0
Hexachlorobenzene	μg/L	ND<4.8	ND<4.9	ND<5.0	ND<4.9	ND<5.0
Hexachlorobutadiene	μg/L	ND<9.6	ND<9.7	ND<9.9	ND<9.7	ND<9.9
Hexachlorocyclopentadiene	μg/L	ND<9.6	ND<9.7	ND<9.9	ND<9.7	ND<9.9
Hexachloroethane	μg/L	ND<9.6	ND<9.7	ND<9.9	ND<9.7	ND<9.9
Indeno(1,2,3-cd)pyrene	μg/L	ND<4.8	ND<4.9	ND<5.0	ND<4.9	ND<5.0
Isophorone	μg/L	ND<4.8	ND<4.9	ND<5.0	ND<4.9	ND<5.0
Naphthalene	μg/L	ND<4.8	ND<4.9	ND<5.0	ND<4.9	ND<5.0
Nitrobenzene	μg/L	ND<4.8	ND<4.9	ND<5.0	ND<4.9	ND<5.0
N-Nitrosodimethylamine	μg/L	ND<4.8	ND<4.9	ND<5.0	ND<4.9	ND<5.0
N-Nitroso-di-n-propylamine	μg/L	ND<4.8	ND<4.9	ND<5.0	ND<4.9	ND<5.0
N-Nitrosodiphenylamine/Diphenylamine	μg/L	ND<4.8	ND<4.9	ND<5.0	ND<4.9	ND<5.0
Pentachlorophenol	μg/L	ND<29	ND<29	ND<30	ND<29	ND<30
Phenanthrene	μg/L	ND<4.8	ND<4.9	ND<5.0	ND<4.9	ND<5.0
Phenol	μg/L	ND<4.8	ND<4.9	ND<5.0	ND<4.9	ND<5.0
Pyrene	μg/L	ND<4.8	ND<4.9	ND<5.0	ND<4.9	ND<5.0
Pyridine	μg/L	ND<9.6	ND<9.7	ND<9.9	ND<9.7	ND<9.9

Note:

DUP - Field duplicate

µg/L - microgram per liter

ND< - Analyte not detected at concentrations greater than or equal to reporting limits (RL)

bold - Analyte detected

- Constituent not analyzed for

D - Result from diluted sample

		T-37-GW	T-38-GW	T-43-GW
	Units	7/14/2005	7/14/2005	11/18/2005
Semi-Volatile Organic Compounds				
1,2,4-Trichlorobenzene	μg/L	ND<4.9	ND<5.0	ND<5.0
1,2-Dichlorobenzene	μg/L	ND<4.9	ND<5.0	ND<5.0
1,3-Dichlorobenzene	μg/L	ND<4.9	ND<5.0	ND<5.0
1.4-Dichlorobenzene	μg/L	ND<4.9	ND<5.0	ND<5.0
1,4-Dioxane	μg/L	0.86 J	ND<2.0	ND<2.0
2,4,5-Trichlorophenol	μg/L	ND<4.9	ND<5.0	ND<5.0
2,4,6-Trichlorophenol	μg/L	ND<4.9	ND<5.0	ND<5.0
2,4-Dichlorophenol	μg/L	ND<4.9	ND<5.0	ND<5.0
2,4-Dimethylphenol	μg/L	ND<9.7	ND<10	ND<10
2,4-Dinitrophenol	μg/L	ND<49	ND<50	ND<50
2,4-Dinitrotoluene	μg/L	ND<4.9	ND<5.0	ND<5.0
2,6-Dinitrotoluene	μg/L	ND<4.9	ND<5.0	ND<5.0
2-Chloronaphthalene	μg/L	ND<4.9	ND<5.0	ND<5.0
2-Chlorophenol	μg/L	ND<4.9	ND<5.0	ND<5.0
2-Methylnaphthalene	μg/L	ND<4.9	ND<5.0	ND<5.0
2-Methylphenol	μg/L	ND<4.9	ND<5.0	ND<5.0
2-Nitroaniline	µg/L	ND<20	ND<20	ND<20
2-Nitrophenol	μg/L	ND<4.9	ND<5.0	ND<5.0
3,3'-Dichlorobenzidine	μg/L	ND<20	ND<20	ND<20
3/4-Methylphenol	μg/L	ND<9.7	ND<10	ND<10
3-Nitroaniline	μg/L	ND<20	ND<20	ND<20
4,6-Dinitro-2-methylphenol	μg/L	ND<20	ND<20	ND<20
4-Bromophenyl-phenylether	μg/L	ND<4.9	ND<5.0	ND<5.0
4-Chloro-3-methylphenol	μg/L	ND<4.9	ND<5.0	ND<5.0
4-Chloroaniline	μg/L	ND<4.9	ND<5.0	ND<5.0
4-Chlorophenyl-phenylether	μg/L	ND<4.9	ND<5.0	ND<5.0
4-Nitroaniline	μg/L	ND<20	ND<20	ND<20
4-Nitrophenol	µg/L	ND<49	ND<50	ND<50
Acenaphthene	µg/L	ND<4.9	ND<5.0	ND<5.0
Acenaphthylene	μg/L	ND<4.9	ND<5.0	ND<5.0
Aniline	μg/L	ND<4.9	ND<5.0	ND<5.0
Anthracene	μg/L	ND<4.9	ND<5.0	ND<5.0
Benzo(a)anthracene	μg/L	ND<4.9	ND<5.0	ND<5.0
Benzo(a)pyrene	µg/L	ND<4.9	ND<5.0	ND<5.0
Benzo(b)fluoranthene	μg/L	ND<4.9	ND<5.0	ND<5.0
Benzo(g,h,i)perylene	μg/L	ND<4.9	ND<5.0	ND<5.0
Benzo(k)fluoranthene	µg/L	ND<4.9	ND<5.0	ND<5.0
Benzoic Acid	μg/L μg/L	ND<49	ND<50	ND<50
Benzyl Alcohol	μg/L	ND<9.7	ND<10	ND<10
bis(2-Chloroethoxy) methane	μg/L	ND<4.9	ND<5.0	ND<5.0
Bis(2-chloroethyl) Ether	μg/L	ND<4.9	ND<5.0	ND<5.0
Bis(2-chloroisopropyl) Ether	μg/L	ND<4.9	ND<5.0	ND<5.0
Bis(2-ethylhexyl) Phthalate	μg/L	3.2 J	2.6 J	30
Butylbenzylphthalate	μg/L	ND<4.9	ND<5.0	ND<5.0
Chrysene	μg/L	ND<4.9	ND<5.0	ND<5.0
Dibenzo(a,h)anthracene	μg/L	ND<4.9	ND<5.0	ND<5.0
Dibenzofuran	μg/L μg/L	ND<4.9	ND<5.0	ND<5.0
Diethylphthalate	μg/L	1 J	ND<5.0	ND<5.0
Dimethylphthalate	μg/L	ND<4.9	ND<5.0	ND<5.0
Di-n-butylphthalate	μg/L	ND<4.9	ND<5.0	ND<5.0
Di-n-octylphthalate	μg/L	ND<4.9	ND<5.0	ND<5.0

		T OF CITY		
		T-37-GW	T-38-GW	T-43-GW
	Units	7/14/2005	7/14/2005	11/18/2005
Semi-Volatile Organic Compounds		-		
Fluoranthene	μg/L	ND<4.9	ND<5.0	ND<5.0
Fluorene	μg/L	ND<4.9	ND<5.0	ND<5.0
Hexachlorobenzene	μg/L	ND<4.9	ND<5.0	ND<5.0
Hexachlorobutadiene	μg/L	ND<9.7	ND<10	ND<10
Hexachlorocyclopentadiene	μg/L	ND<9.7	ND<10	ND<10
Hexachloroethane	μg/L	ND<9.7	ND<10	ND<10
Indeno(1,2,3-cd)pyrene	μg/L	ND<4.9	ND<5.0	ND<5.0
Isophorone	μg/L	ND<4.9	ND<5.0	ND<5.0
Naphthalene	μg/L	ND<4.9	ND<5.0	ND<5.0
Nitrobenzene	μg/L	ND<4.9	ND<5.0	ND<5.0
N-Nitrosodimethylamine	μg/L	ND<4.9	ND<5.0	ND<5.0
N-Nitroso-di-n-propylamine	μg/L	ND<4.9	ND<5.0	ND<5.0
N-Nitrosodiphenylamine/Diphenylamine	μg/L	ND<4.9	ND<5.0	ND<5.0
Pentachlorophenol	μg/L	ND<29	ND<30	ND<30
Phenanthrene	μg/L	ND<4.9	ND<5.0	ND<5.0
Phenol	μg/L	ND<4.9	ND<5.0	ND<5.0
Pyrene	μg/L	ND<4.9	ND<5.0	ND<5.0
Pyridine	μg/L	ND<9.7	ND<10	ND<10

Note:

DUP - Field duplicate

µg/L - microgram per liter

ND< - Analyte not detected at concentrations greater than or equal to reporting limits (RL)

bold - Analyte detected

- Constituent not analyzed for

D - Result from diluted sample

Table 7-7Concentrations of Metals Detected in Groundwater Samples2701 North Harbor DriveSan Diego, California

			SDE	142WDP	142WEP	DUP4 (142WEP)	142WGP	GT4	P2	BLD156-MW3
	Units	Background	8/3/2005	8/8/2005	8/8/2005	8/8/2005	8/8/2005	8/9/2005	8/9/2005	8/10/2005
Metals										
Antimony	μg/L	NE	ND<50 N	ND<50	ND<50	ND<50	ND<50	ND<50	ND<50	ND<50
Arsenic	μg/L	NE	0.88	4.11 S	1.77 S	2.09 S	3.9 S	6.21 S	3 S	1.9
Barium	μg/L	490	209	33	86	92	65	165	243	44
Beryllium	μg/L	NE	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0
Cadmium	μg/L	NE	ND<10	ND<10	ND<10	9.3	ND<10	ND<10	ND<10	ND<10
Chromium	μg/L	30	ND<10 N	ND<10	5.9	ND<10	ND<10	ND<10 N	19 N	ND<10
Chromium (Hexavalent)	μg/L	NE	ND<0.1 B32	-	ND<0.1	ND<0.1	-	-	ND<0.1	-
Cobalt	μg/L	NE	ND<10	ND<10	ND<10	ND<10	ND<10	ND<10	ND<10	ND<10
Copper	μg/L	40	ND<10	5.5	ND<10	ND<10	ND<10	ND<10	ND<10	ND<10
Lead	μg/L	NE	ND<50	ND<50	ND<50	ND<50	ND<50	ND<50	ND<50	ND<50
Molybdenum	μg/L	46	ND<20	65	6.4	ND<20	28	ND<20	ND<20	87
Nickel	μg/L	NE	ND<40	ND<40	ND<40	ND<40	ND<40	ND<40	ND<40	ND<40
Selenium	μg/L	630	2.8	0.98	1.4	1.2	1.1	ND<5.0	2.3	1.3
Silver	μg/L	NE	ND<10	ND<10 N	ND<10 N	ND<10 N	ND<10 N	ND<10	ND<10	ND<10
Thallium	μg/L	NE	ND<0.50	0.18	ND<0.50	0.39	0.12	0.49	ND<0.50	0.04
Vanadium	μg/L	76	ND<10	ND<10	4.2	ND<10	6.8	ND<10	ND<10	ND<10
Zinc	μg/L	69	ND<20	ND<20	ND<20	ND<20	ND<20	ND<20	5	9.9

Table 7-7Concentrations of Metals Detected in Groundwater Samples2701 North Harbor DriveSan Diego, California

			B180-MW-1	TC4EHP	T-11GW	T-29-GW	T-30-GW	T-31-GW	T-32-GW	T-33-GW
	Units	Background	10/4/2005	8/3/2005	9/22/2005	7/1/2005	7/1/2005	7/1/2005	7/5/2005	7/1/2005
Metals										
Antimony	μg/L	NE	ND<50	ND<50 N	ND<50	ND<50	ND<50	ND<50	ND<50	ND<50
Arsenic	μg/L	NE	1.9 S	2.5	5.2 S	4.2	5.3	2.7	4.6	7.1
Barium	μg/L	490	31	48	27 N	53	44	35	9.1	33
Beryllium	μg/L	NE	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0
Cadmium	μg/L	NE	ND<10	ND<10	ND<10	ND<10	ND<10	ND<10	ND<10	ND<10
Chromium	μg/L	30	ND<10	4.4 N	11	ND<10	ND<10	ND<10	ND<10	ND<10
Chromium (Hexavalent)	μg/L	NE	-	ND<0.1	-	-	-	-	-	-
Cobalt	μg/L	NE	ND<10	ND<10	ND<10	ND<10	ND<10	ND<10	ND<10	ND<10
Copper	μg/L	40	ND<10	ND<10	ND<10	ND<10	ND<10	ND<10	ND<10	ND<10
Lead	μg/L	NE	47 B	ND<50	ND<50	ND<50	ND<50	ND<50	ND<50	31
Molybdenum	μg/L	46	27	44	37	34	39	19	24	38
Nickel	μg/L	NE	ND<40	ND<40	ND<40	ND<40	ND<40	ND<40	ND<40	ND<40
Selenium	μg/L	630	3 B	3.6	4.3 J	2	2.2	1.3	0.74	1.3
Silver	μg/L	NE	ND<10	ND<10	ND<10	ND<10	ND<10	ND<10	ND<10	ND<10
Thallium	μg/L	NE	2	ND<0.50	0.14 J	ND<0.50	ND<0.50	0.02	ND<0.50	ND<0.50
Vanadium	μg/L	76	ND<10	6.8	37	11	7.6	18	4.4	4.4
Zinc	μg/L	69	ND<20	7.5	7 J	ND<20	ND<20	5.5	ND<20	ND<20

Note:

DUP - Field duplicate

 $\mu g/L$ - microgram per liter

NE - Not established

ND< - Analyte not detected at concentrations greater than or equal to reporting limits (RL)

bold - Analyte detected above background concentrations

- Constituent not analyzed for

B - Hit above RL also found in Method Blank

B32 - Sample was analyzed 2 hours and 31 minutes past the end of the recommended maximum holding time

J - Analyte detected above method detection limit (MDL), but below RL

N - Matrix Spike/Matrix Spike Duplicate outside control limits. The Laboratory Control Sample (LCS) was acceptable; therefore, data was approved.

S - The reported value was determined by the Method of Standard Additions

Constituent Concentrations Indicative of Apparent Non-Aqueous Phase Liquids in Soil 2701 North Harbor Drive San Diego, California

Soil Physical Properties

Bulk Density (ρ_b)	1.548 g/cm^3
Total Porosity	43.19 %
Air-Filled Porosity	10.78 %
Water Filled Porosity (ϕ_w)	32.41 %
Total Organic Carbon (TOC)	0.152 %
f_{oc}	0.00152 g/g

Apparent Non-Aqueous Phase Liquid Calculations

Constituent	Solubility (Cw*) (mg/L)	Koc (cm³/g)	Kd (cm³/g)	Apparent NAPL Concentration Ct (mg/kg)
Dense Non-Aqueous Phase Liquids				
Tetrachloroethene	200	270	0.4104	124
Trichloroethene	1100	94.0	0.1429	387
Cis-1,2-Dichloroethene	3500	44.7	0.0679	970
Vinyl Chloride	2800	19.0	0.0289	667
1,1,1-Trichloroethane	1300	140	0.2128	549
1,1-Dichloroethane	5100	53	0.0806	1478
1,2-Dichloroethane	8500	38	0.0578	2270
1,4-Dioxane	800	0.25	0.00038	168
Light Non-Aqueous Phase	Liquids			
Naphthalene	31	1200	1.82400	63
Benzene	1,800	62	0.09424	546
Ethylbenzene	170	200	0.30400	87
Toluene	530	140	0.21280	224
Xylenes	180	250	0.38000	106
TPH - DRO	6	10470	15.91440	97
TPH - GRO	240	890	1.35280	375

$$C_{t} = \frac{C_{w} \left(K_{d} \rho_{b} + \varphi_{w} \right)}{\rho_{b}} \qquad (\text{USEPA, 1992})$$

Where:

 $\phi_{\rm w}$ = water filled porosity

 $\rho_{\rm b}$ = bulk density

 $K_d = partition coefficient = K_{oc} \times f_{oc}$

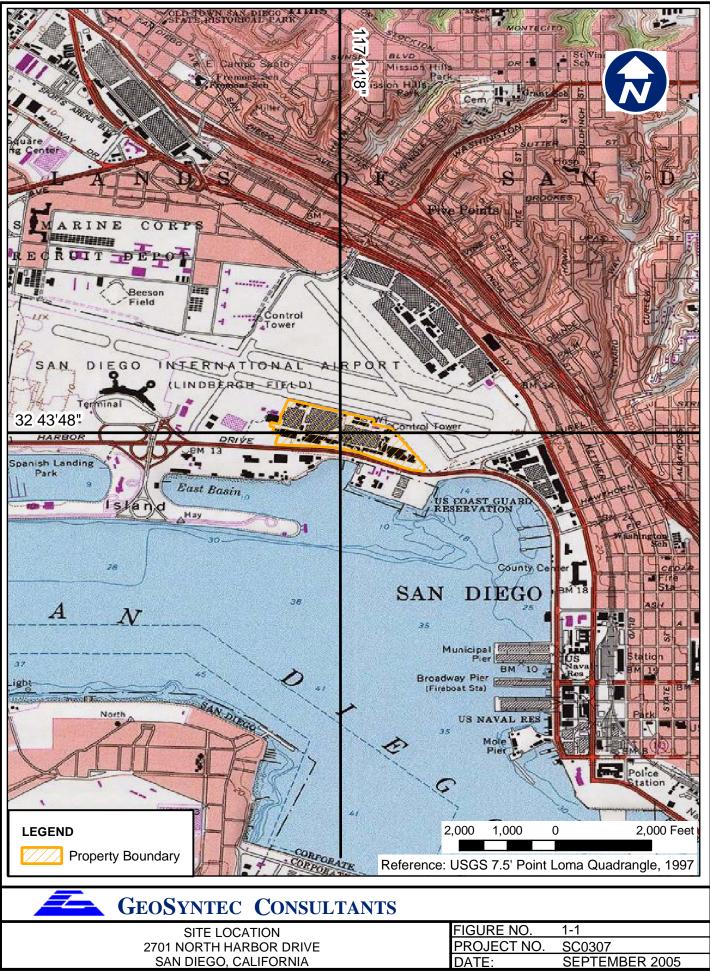
 K_{∞} = Organic carbon-water partition coefficient

 f_{oc} = fraction of organic carbon = TOC(%)/100

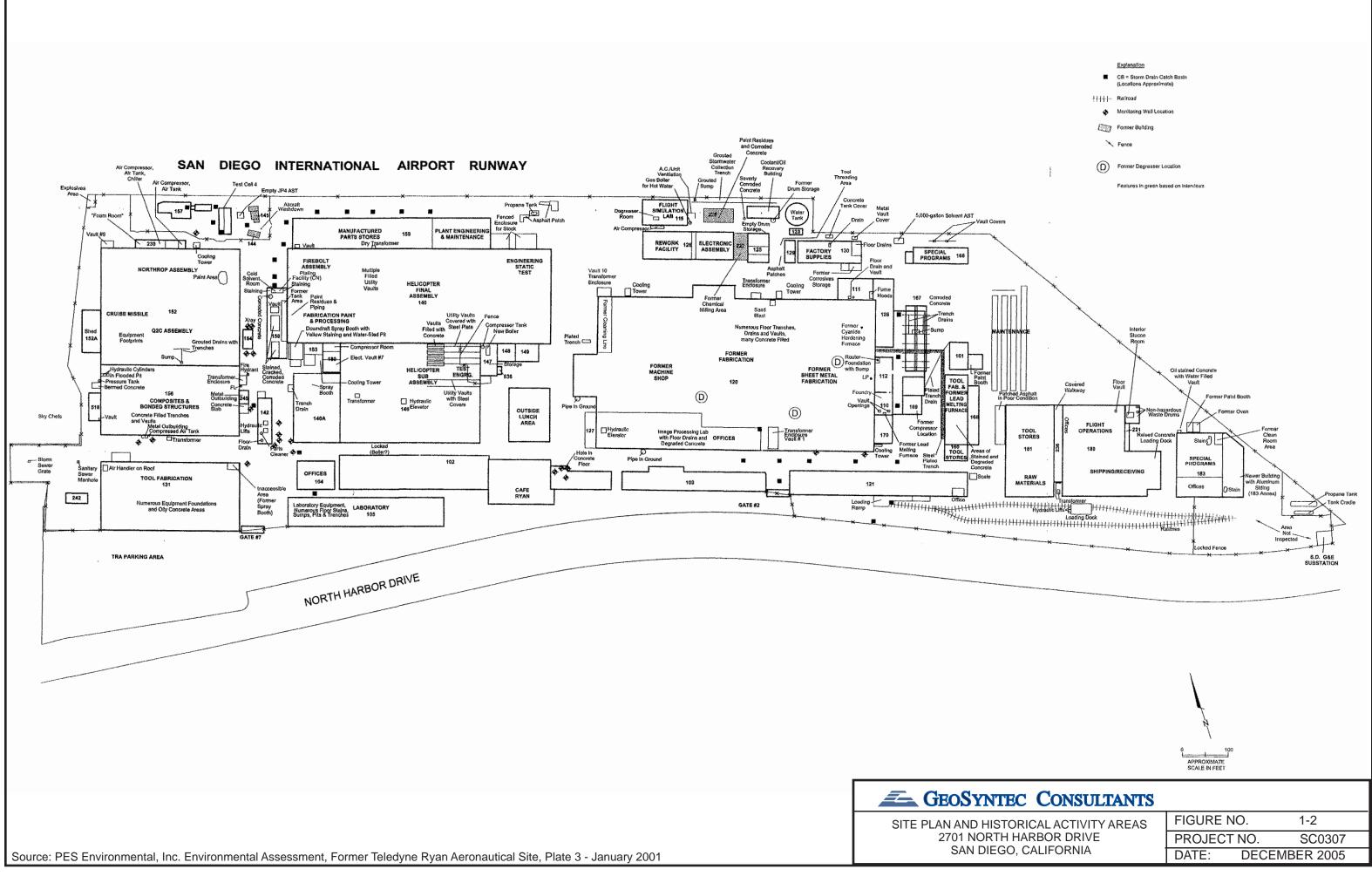
 $C_w = Constituent$ solubility in water

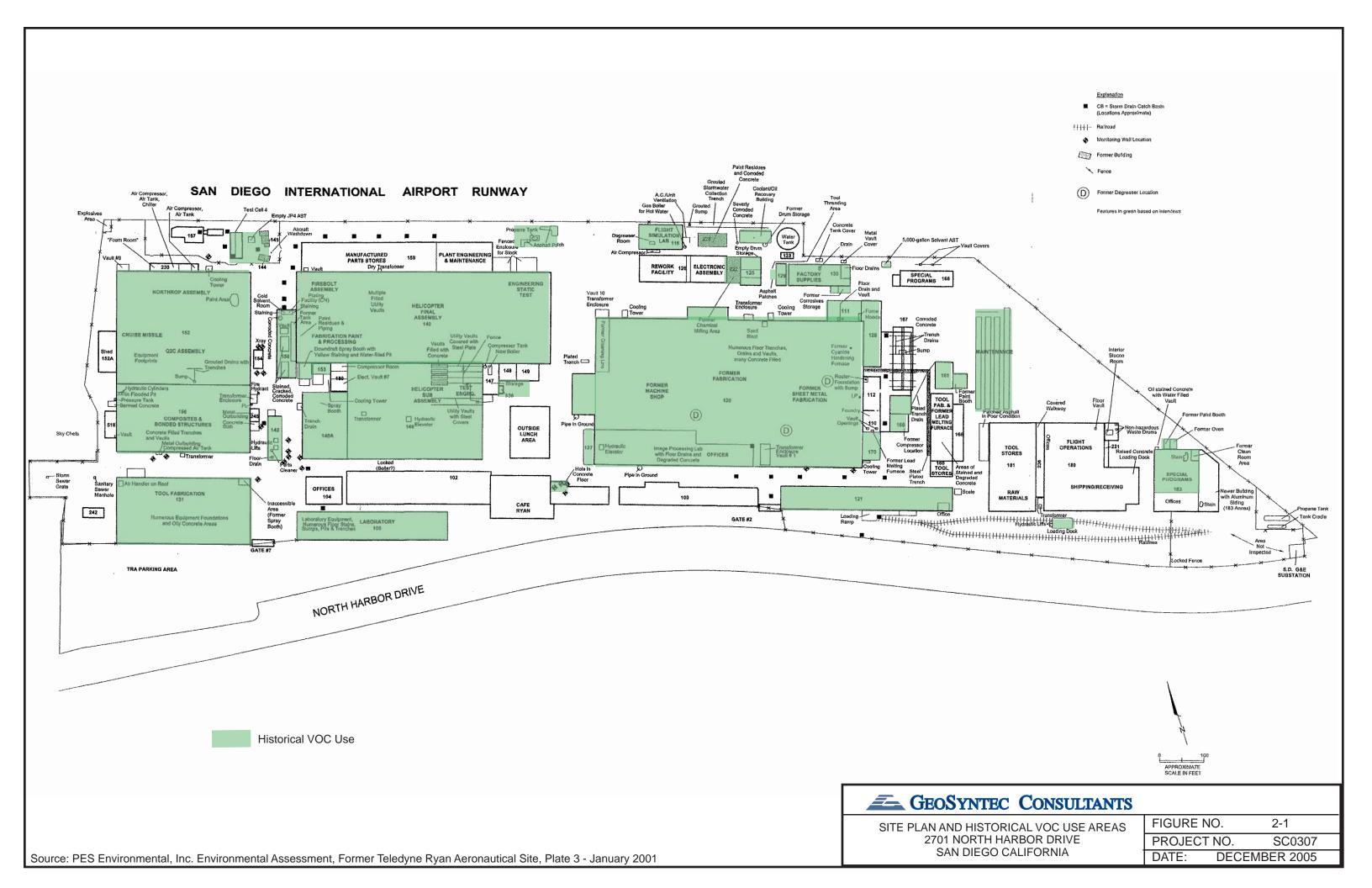
 C_t = Constituent concentration in soil indicative of apparent residual DNAPL

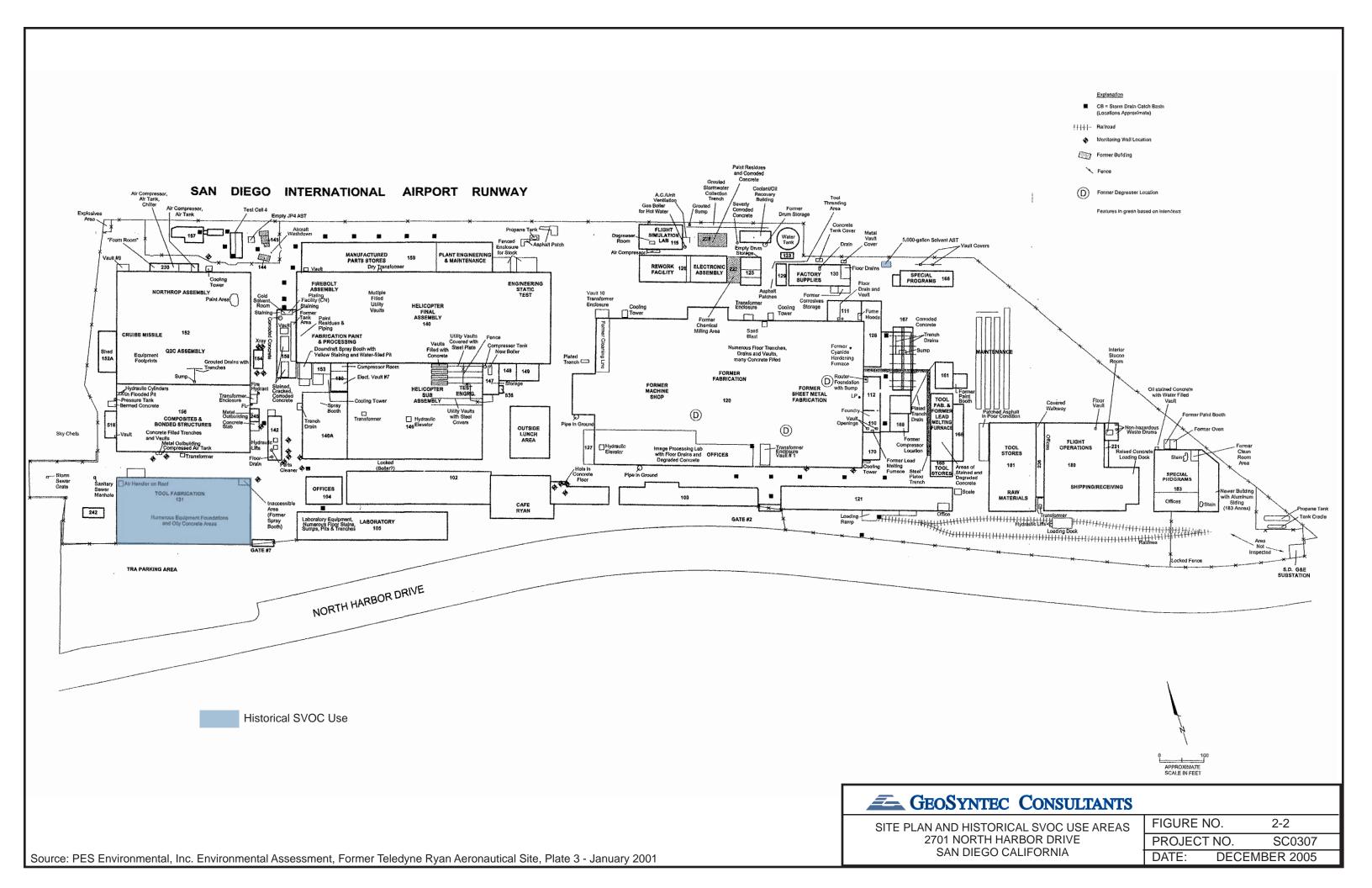
TPH-DRO = Diesel range organics including heating oil and jet fuel

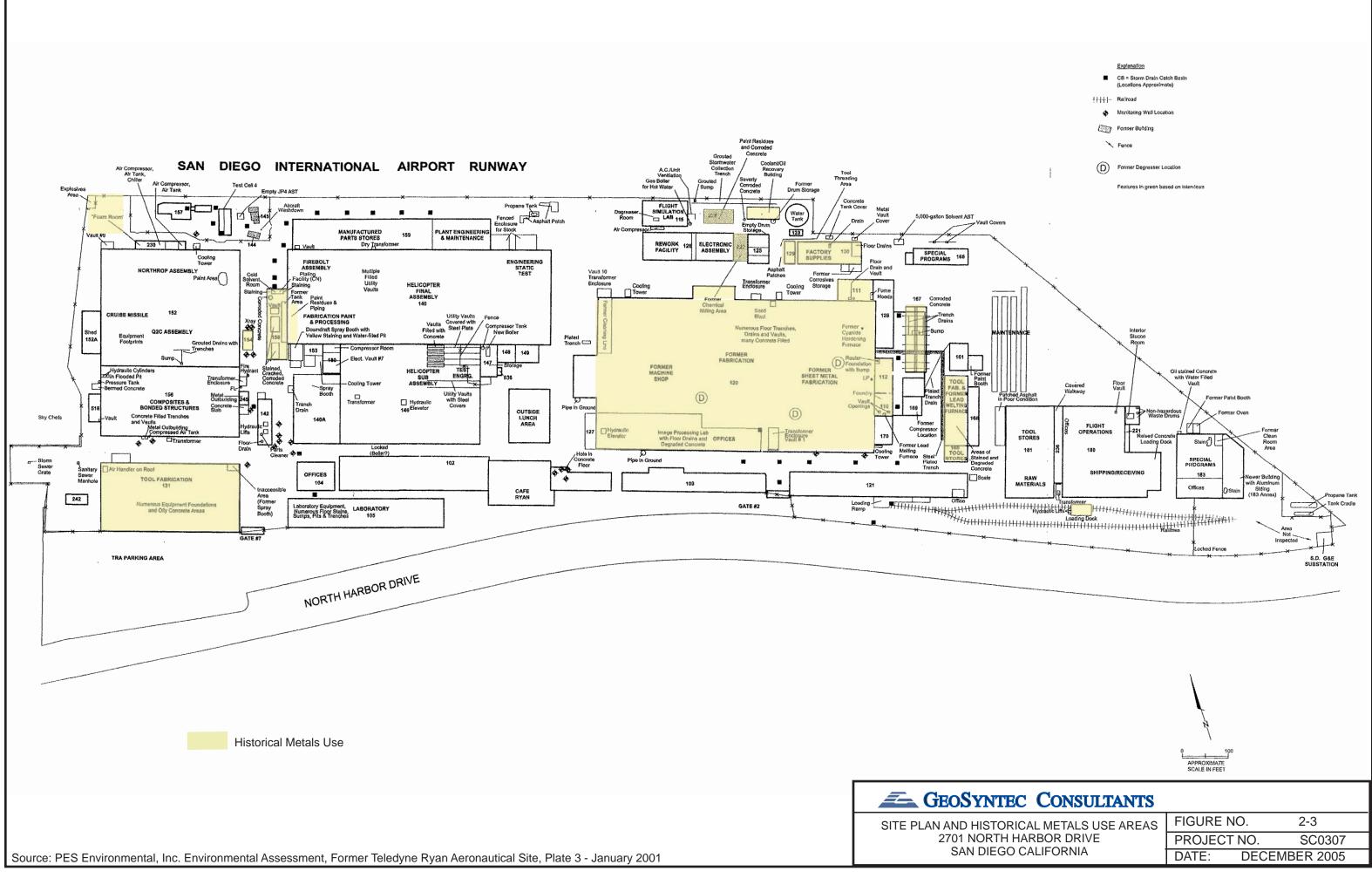

TPH-GRO = Gasoline range organics

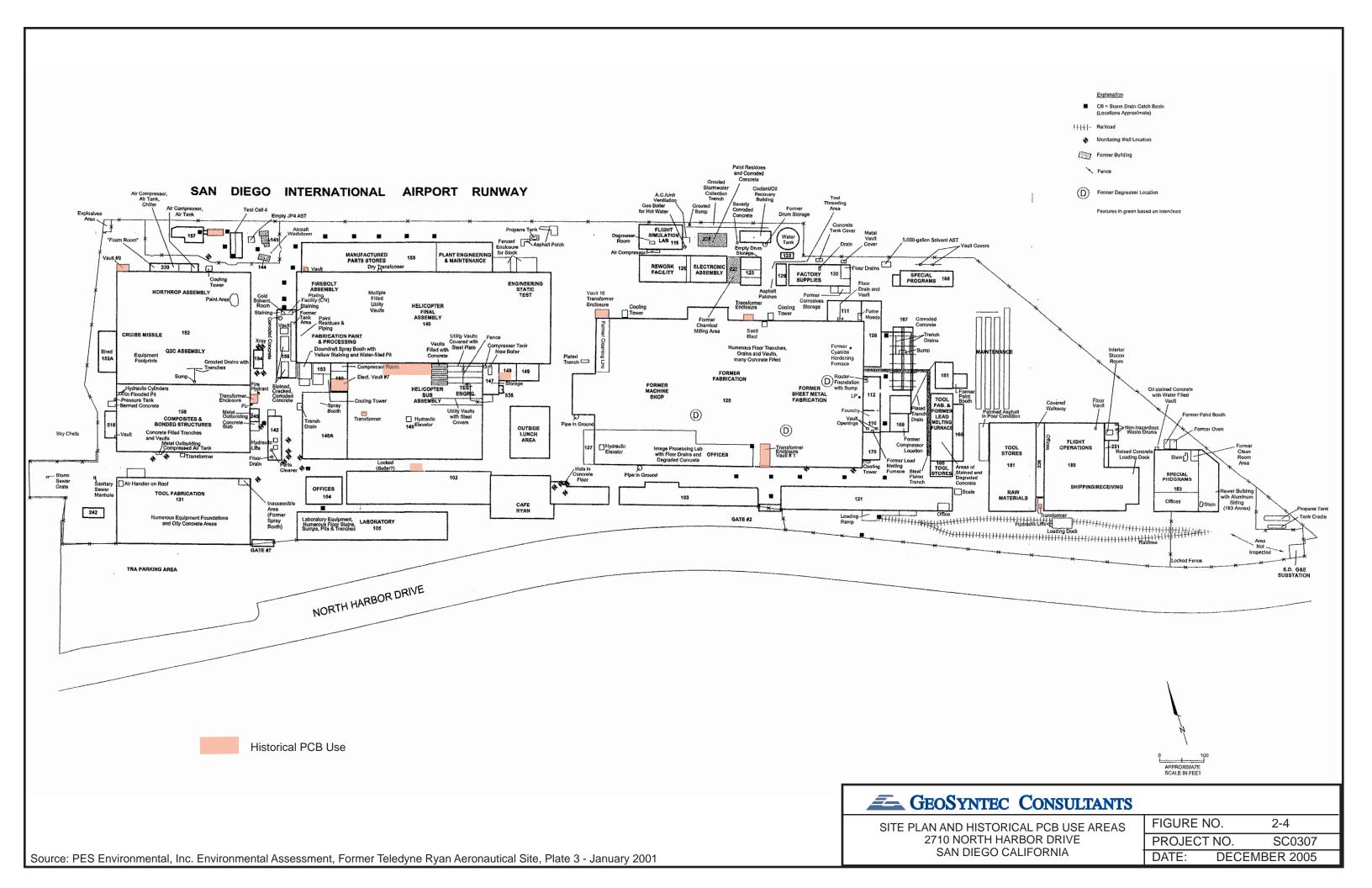
Notes:

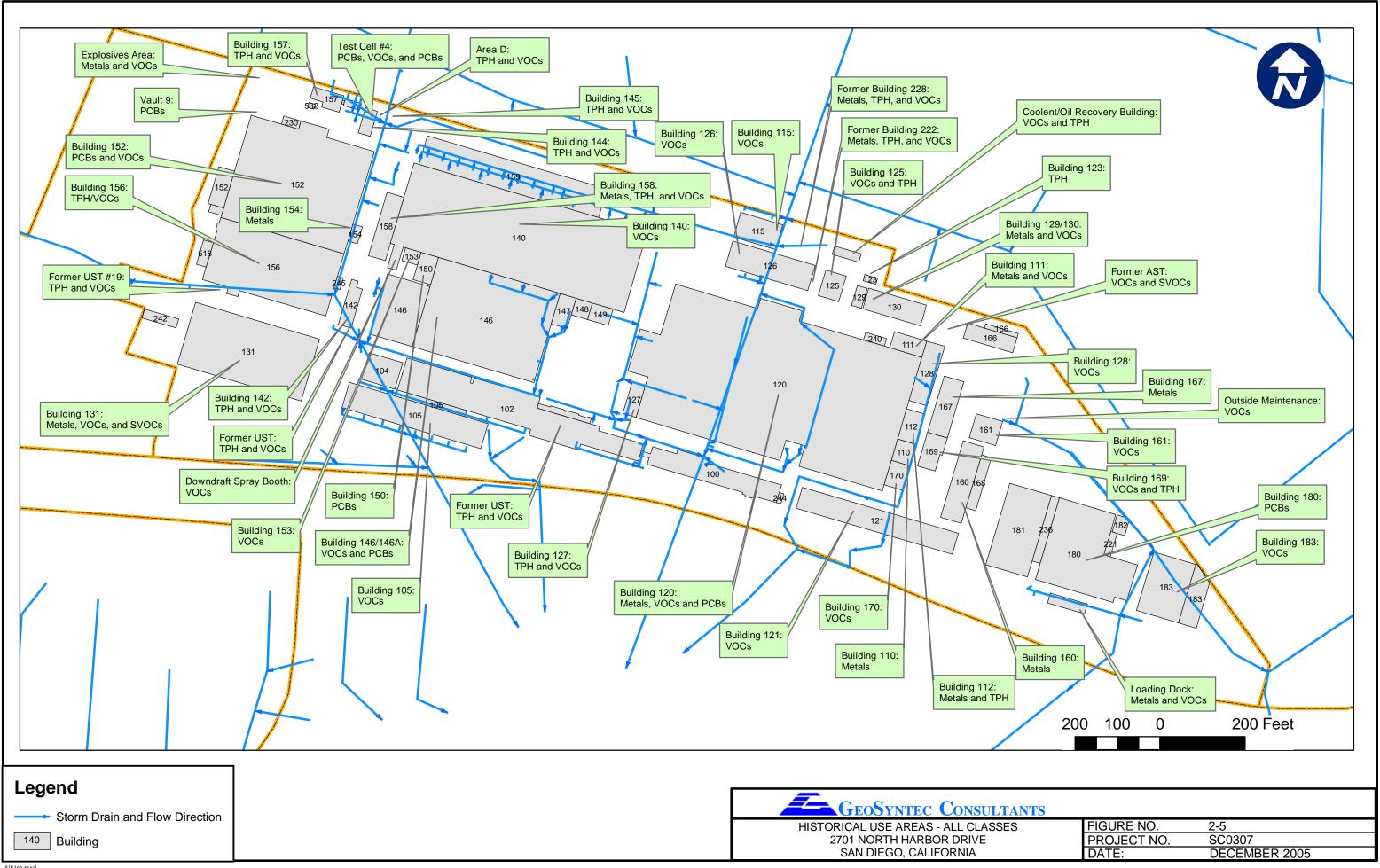

Water filled porosity, bulk density, and total organic carbon values based on an average of saturated soil samples (Haley & Aldrich, 2004).

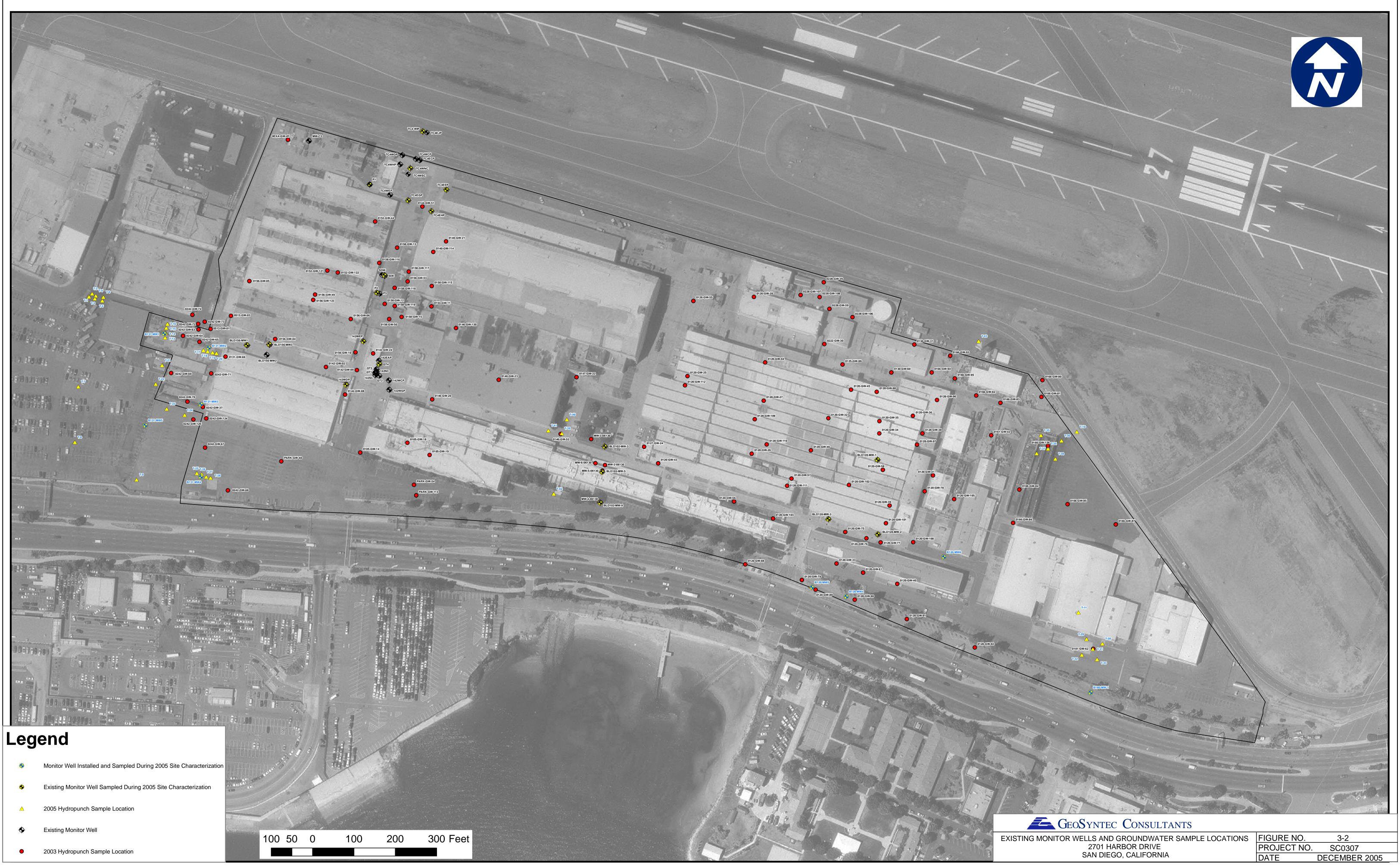

DRO and GRO solubility values from Massachusetts DEP (1996). DRO and GRO Koc values from Kansas DHE (2005).

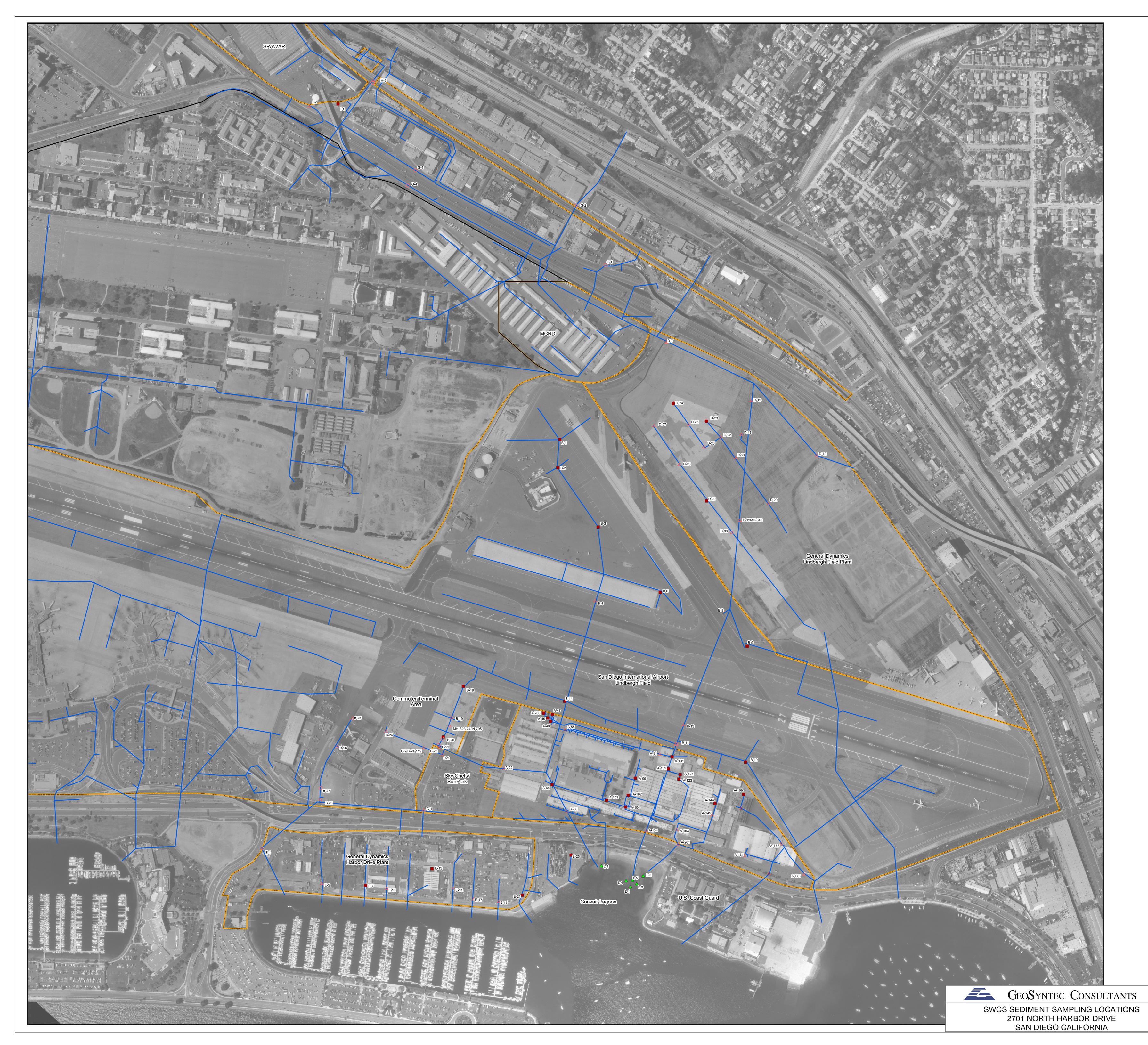

FIGURES



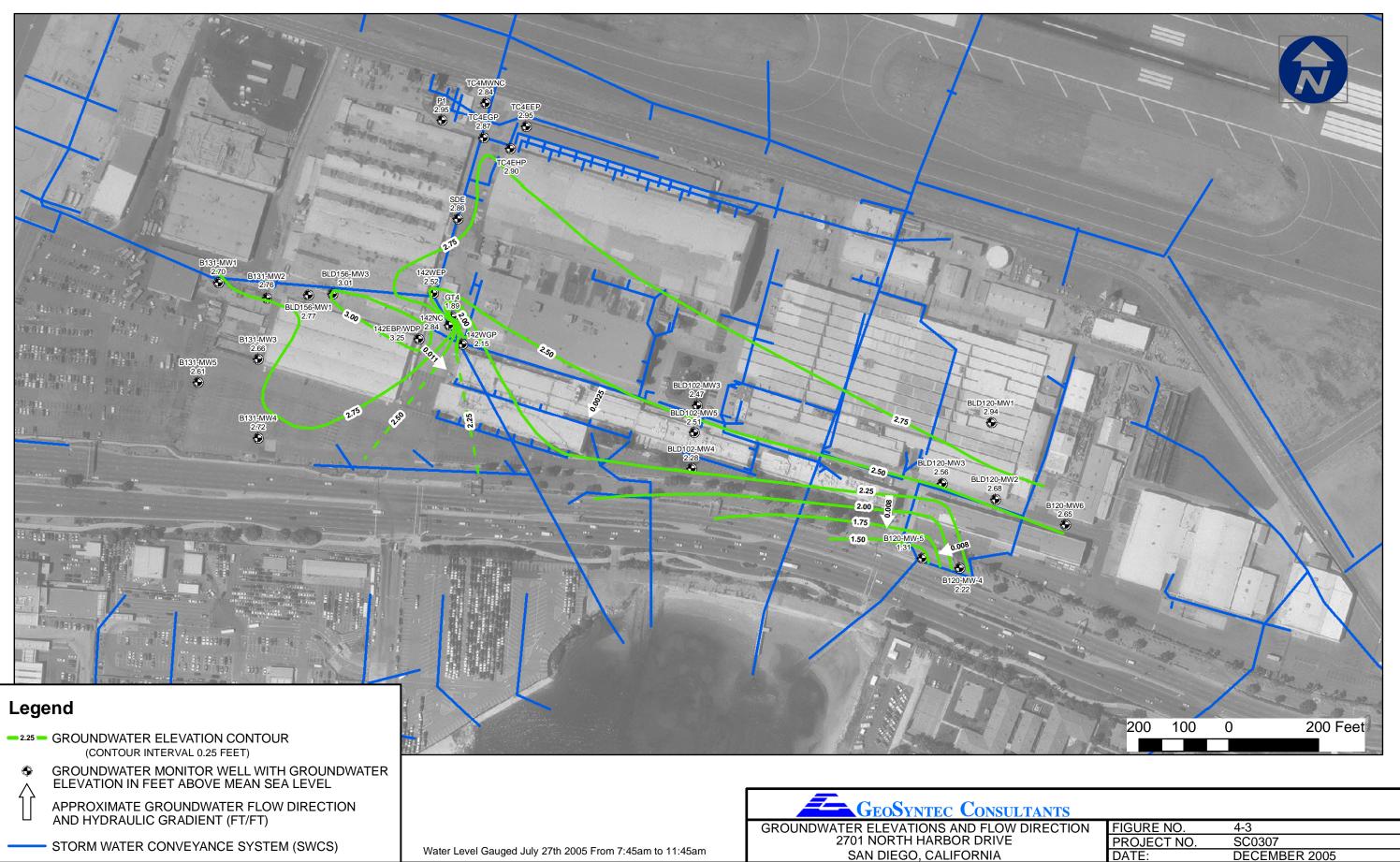

x:/gis/tdy/dtsc/figure1.mxd



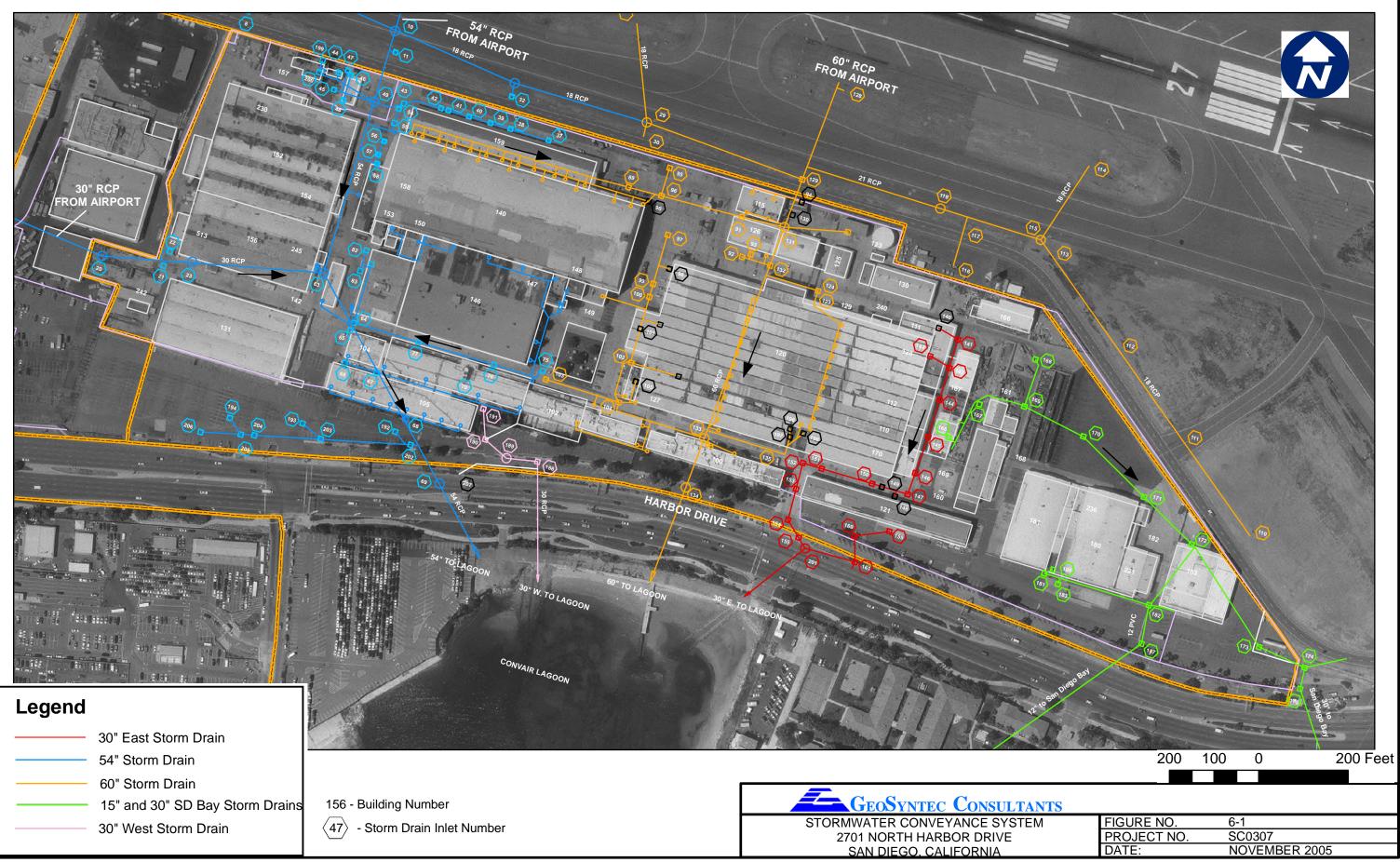




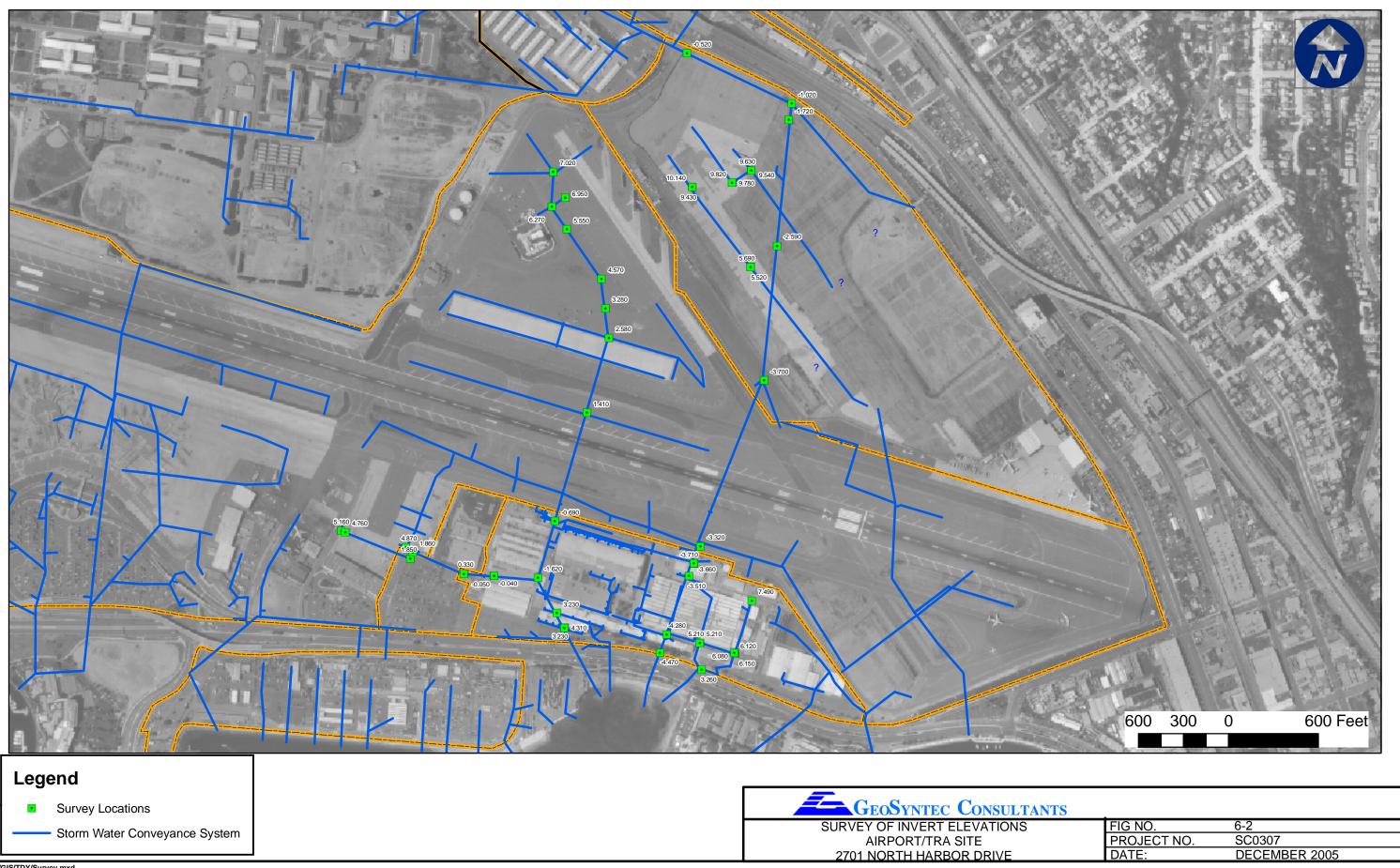
SOIL SAMPLE LOCATIONS	FIGURE NO.	3-1
	PROJECT NO.	SC0307
SAN DIEGO, CALIFORNIA	DATE	DECEMBER 2005



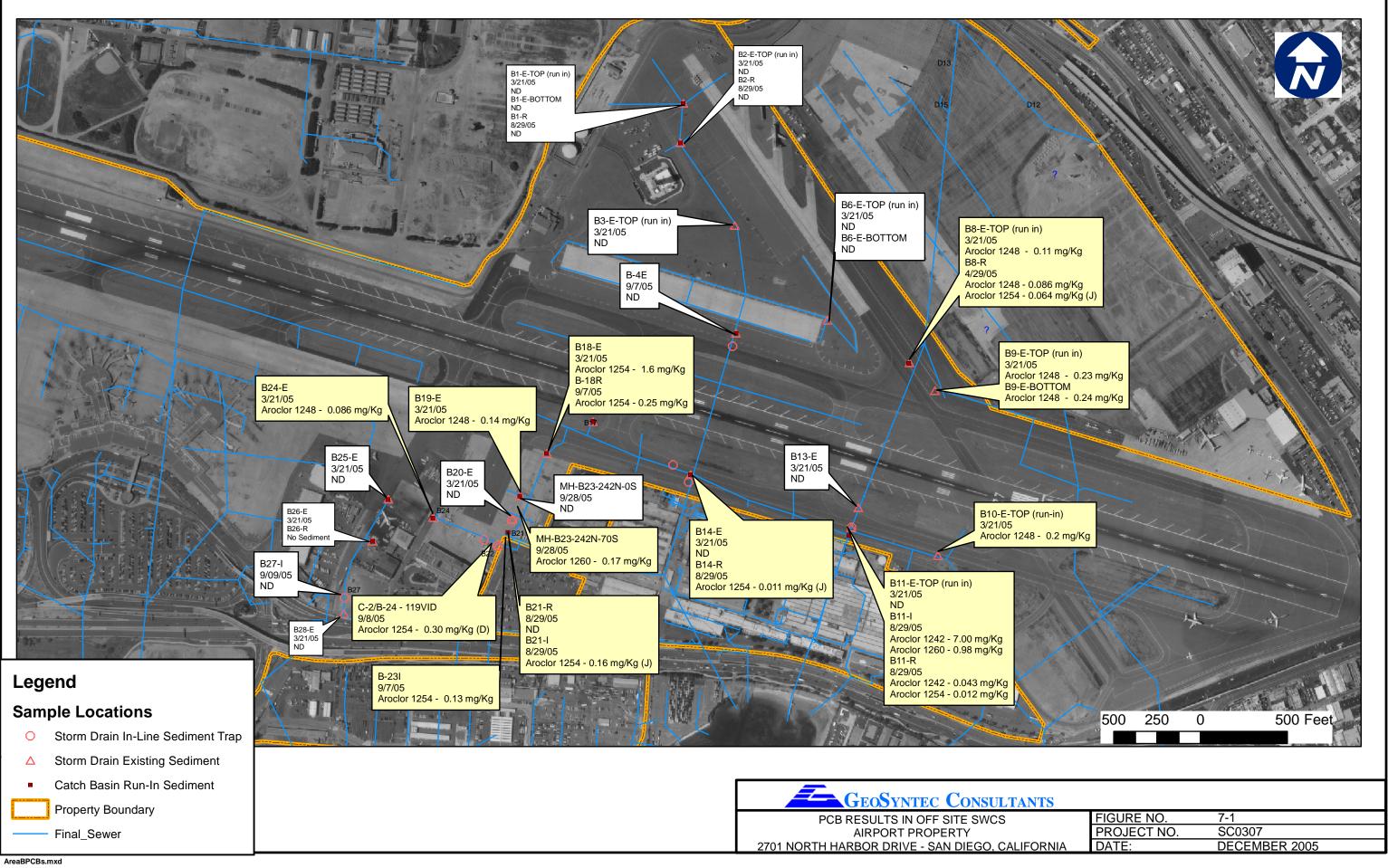
x:/GIS/TDY/HA&GSCLocations.mxd

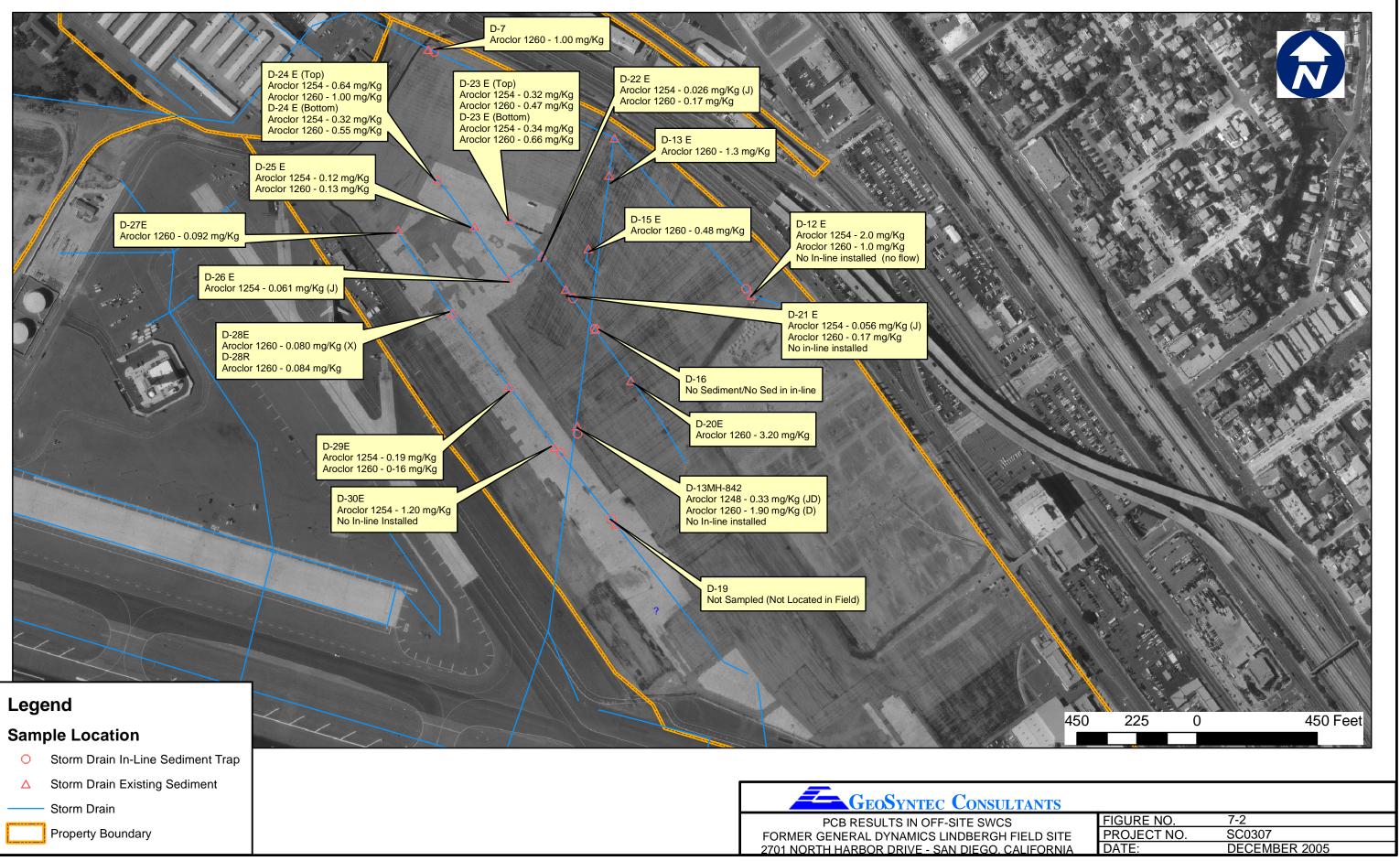


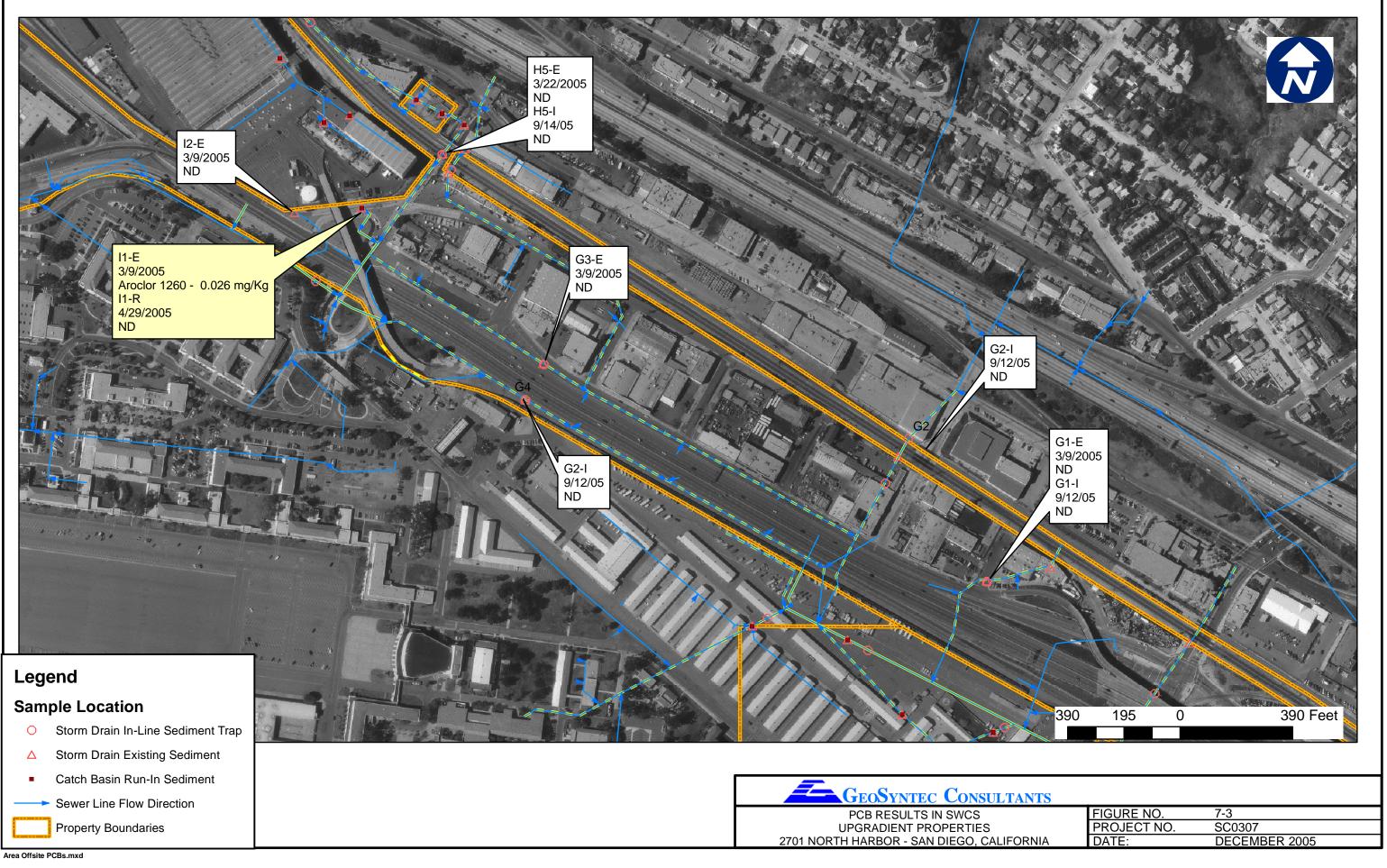
	Lege	end		
	•	Catch Basin Run-In Sediment		
	Δ	Storm Drain Existing Sediment		
	0	Storm Drain In-Line Sediment		
		In-Water Sediment		
250125 0 250 500 750 Feet				
		FIGURE NO.3-3PROJECT NO.SC0307		
		DATE DECEMBER 2005		

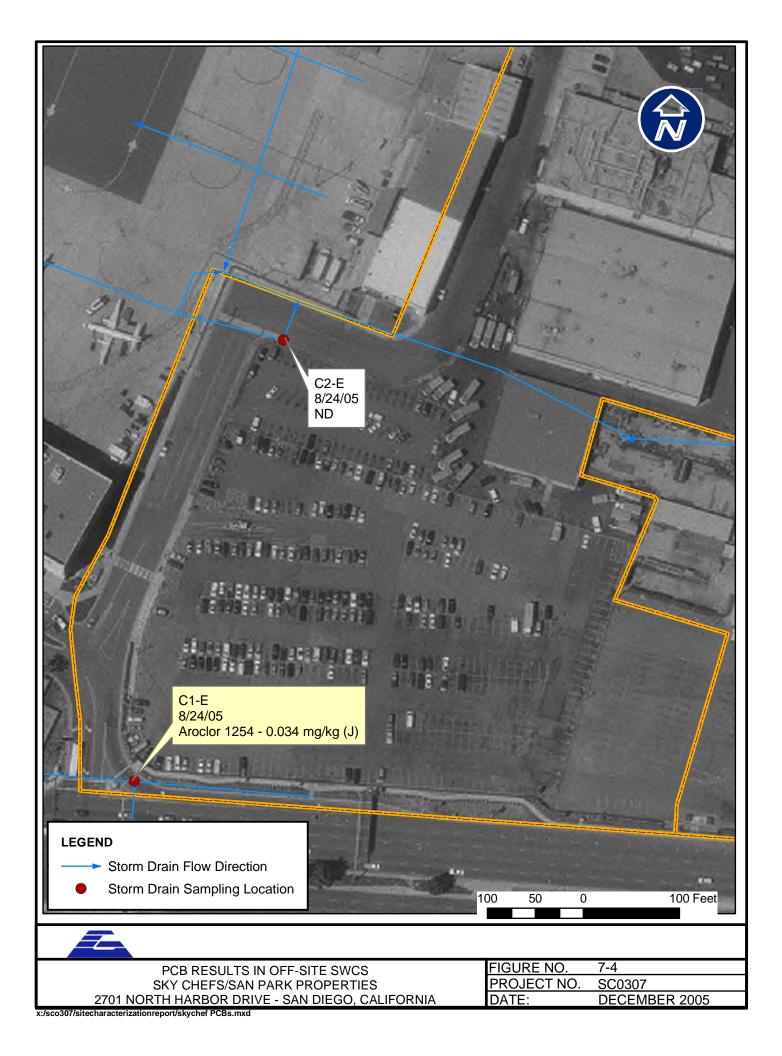


X:\GIS\TDY\WATER LEVEL

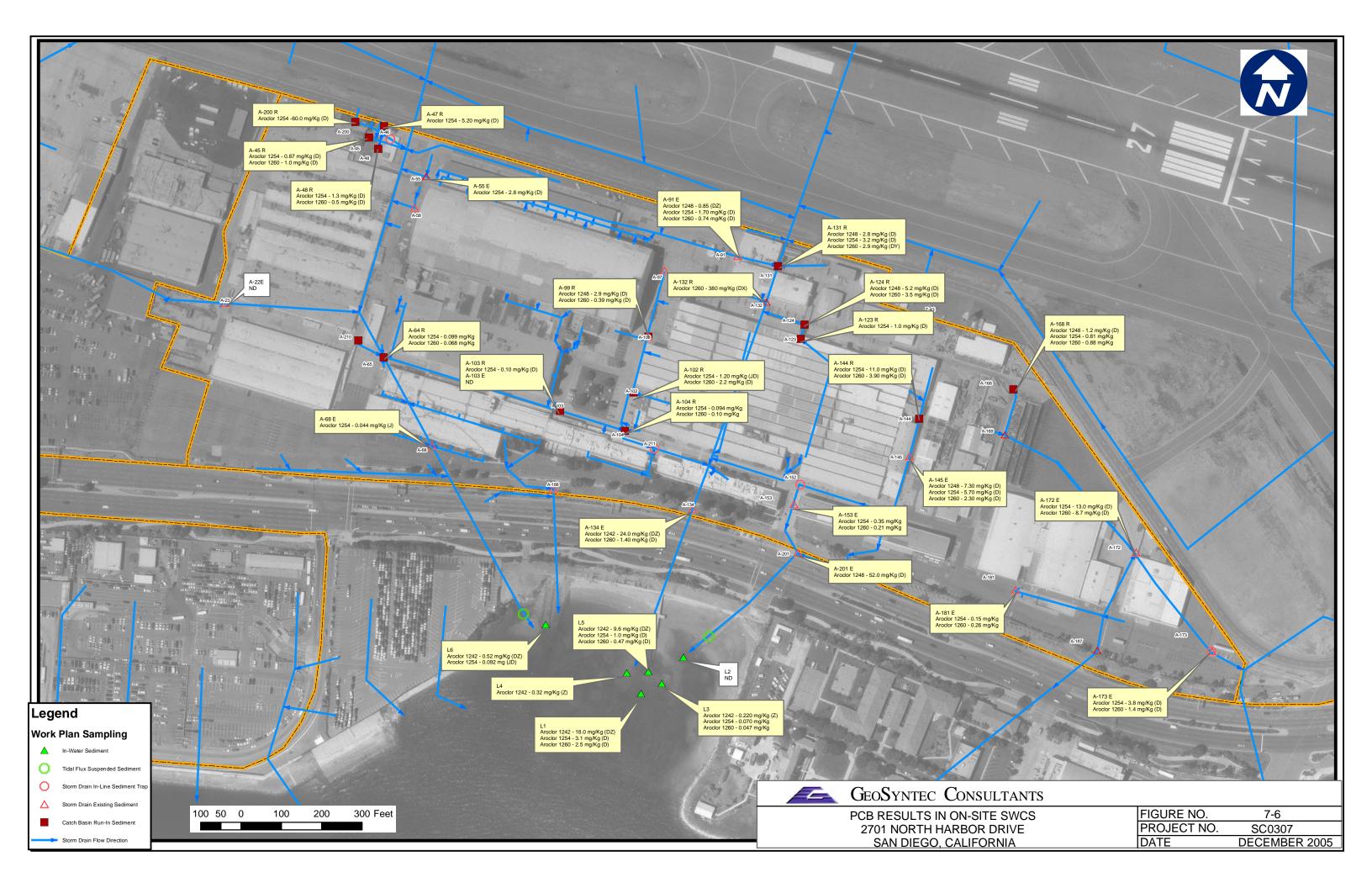

TS			
CTION	FIGURE NO.	4-3	
	PROJECT NO.	SC0307	
	DATE:	DECEMBER 2005	

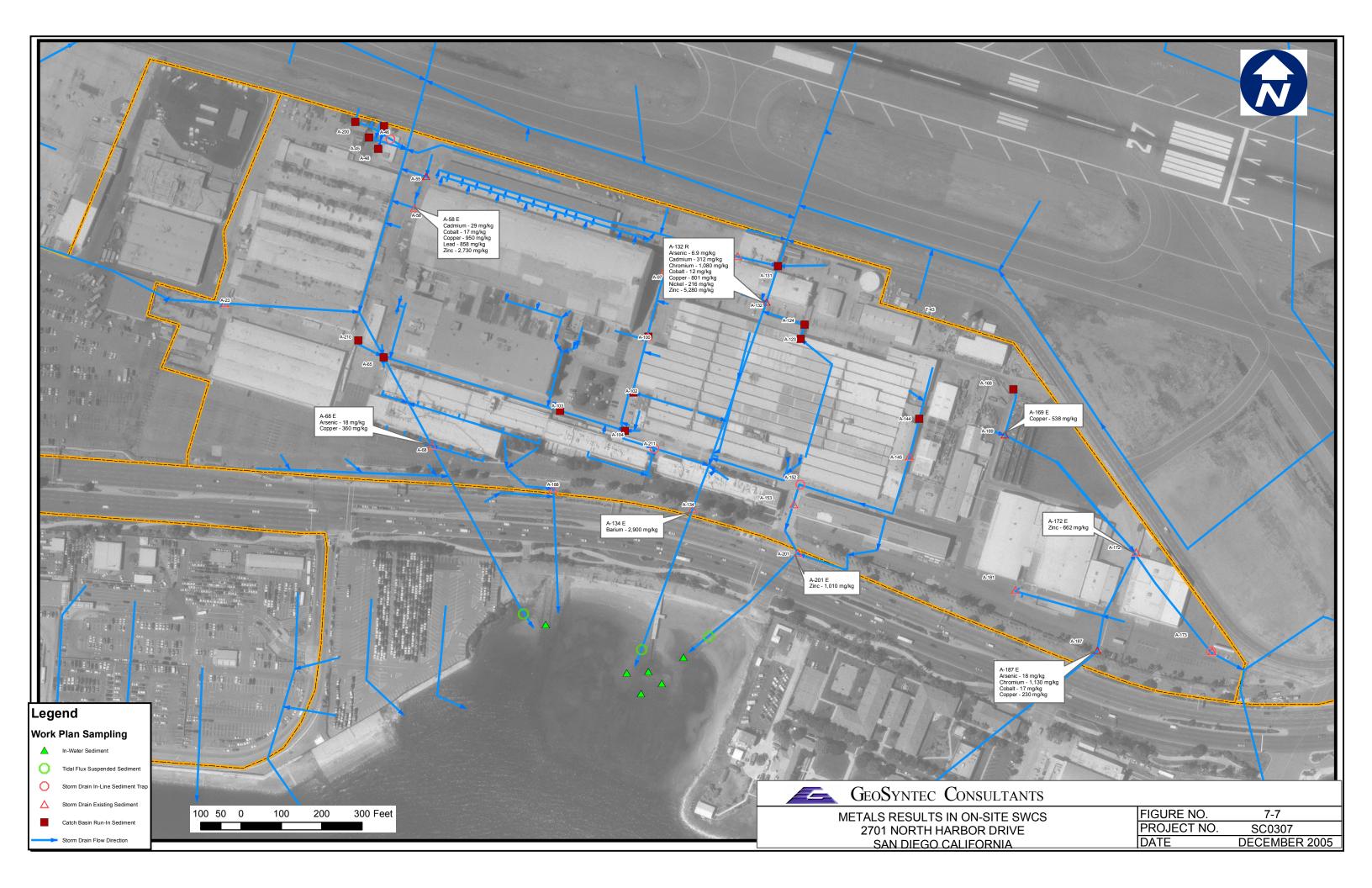


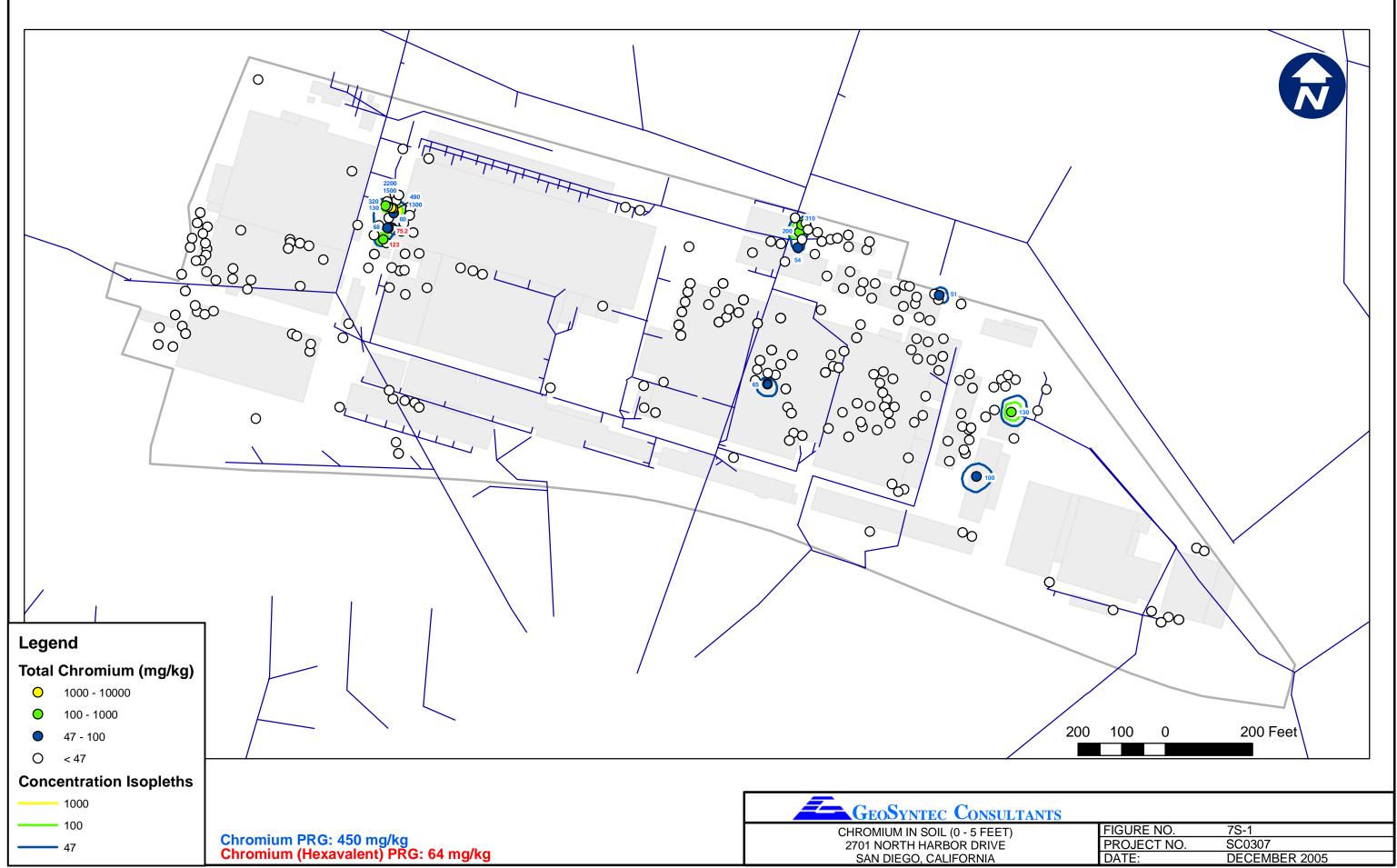

X:/GIS/TDY/BMP

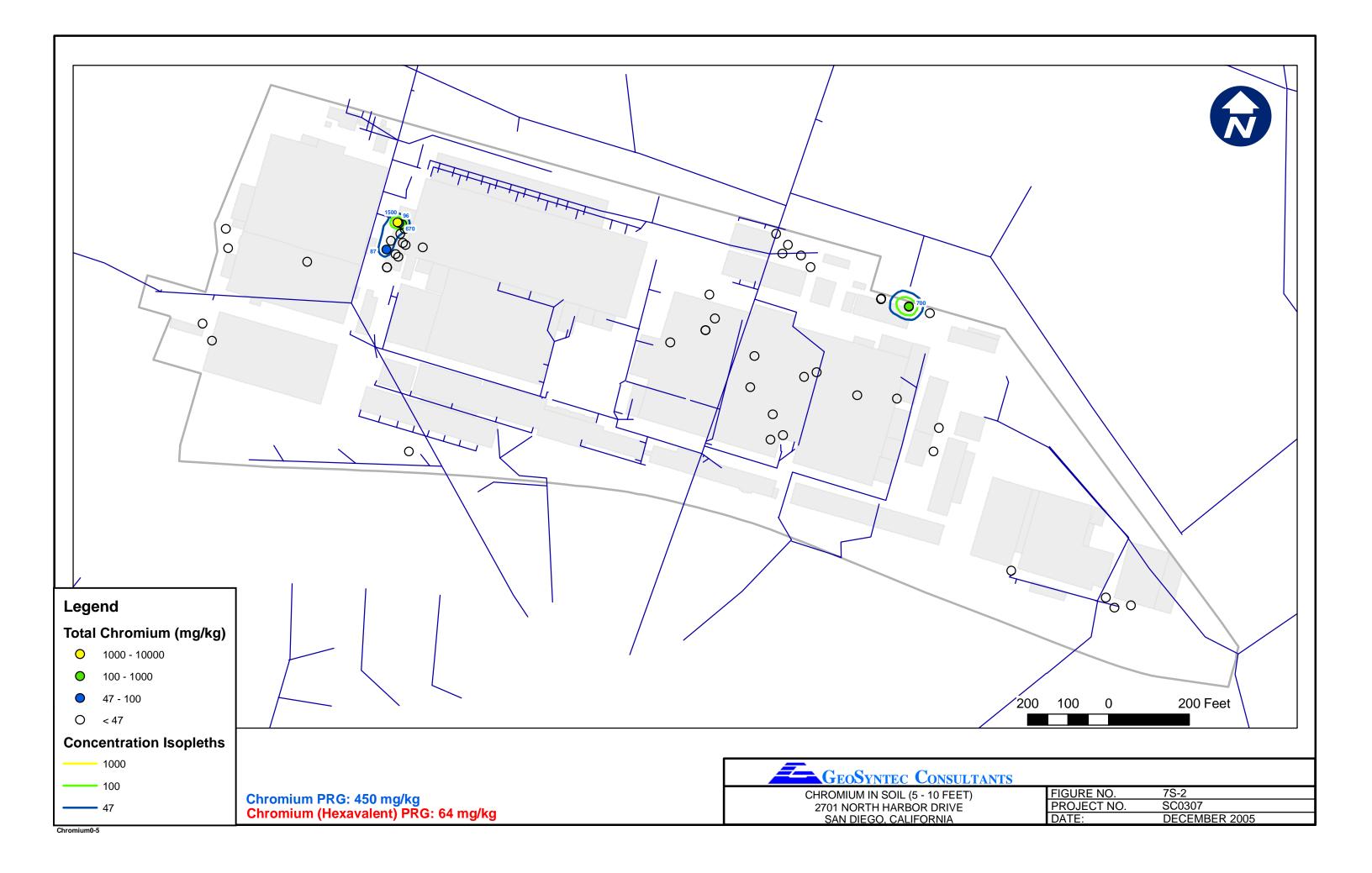


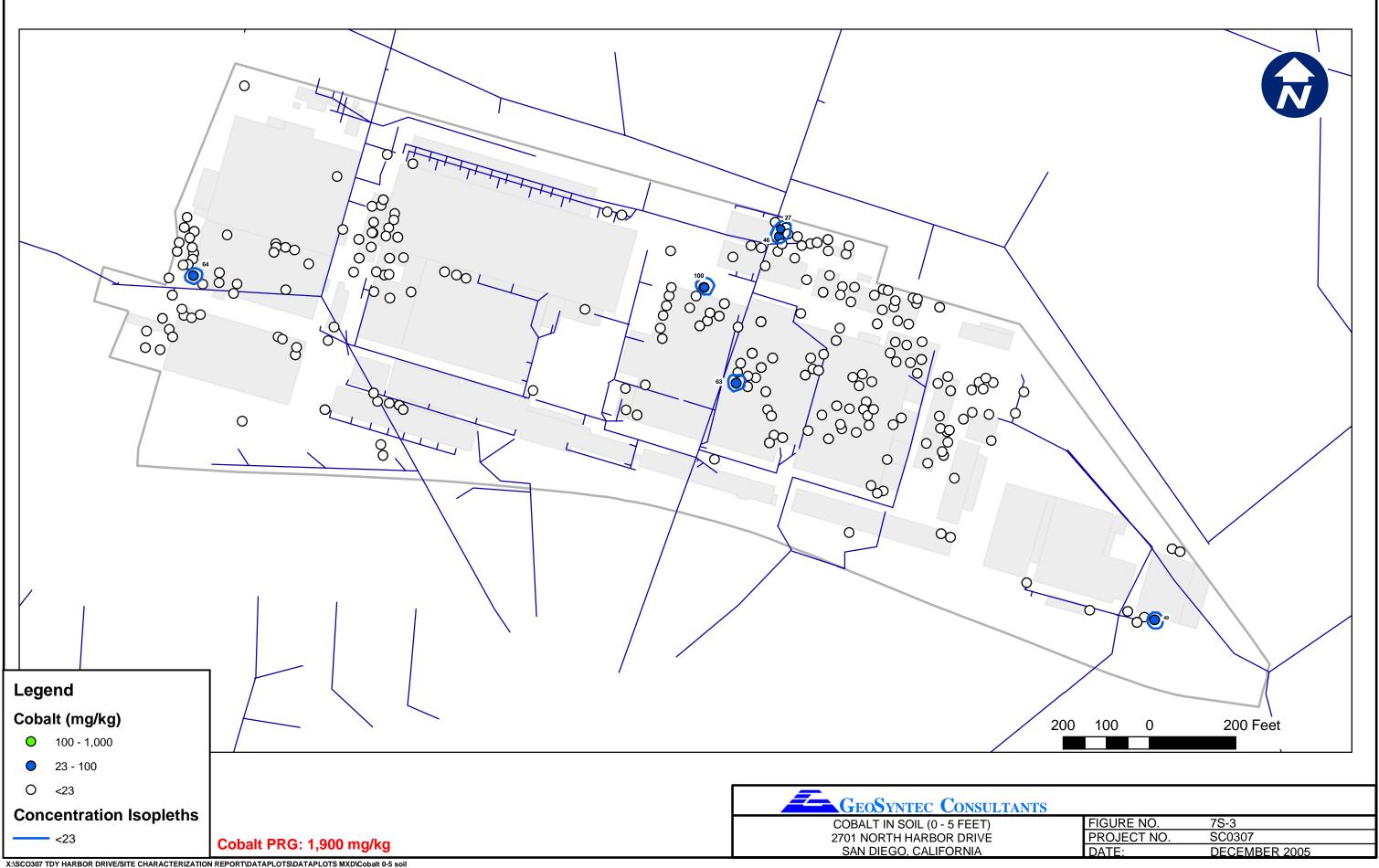
NTS		
	FIG NO.	6-2
	PROJECT NO.	SC0307
	DATE:	DECEMBER 2005

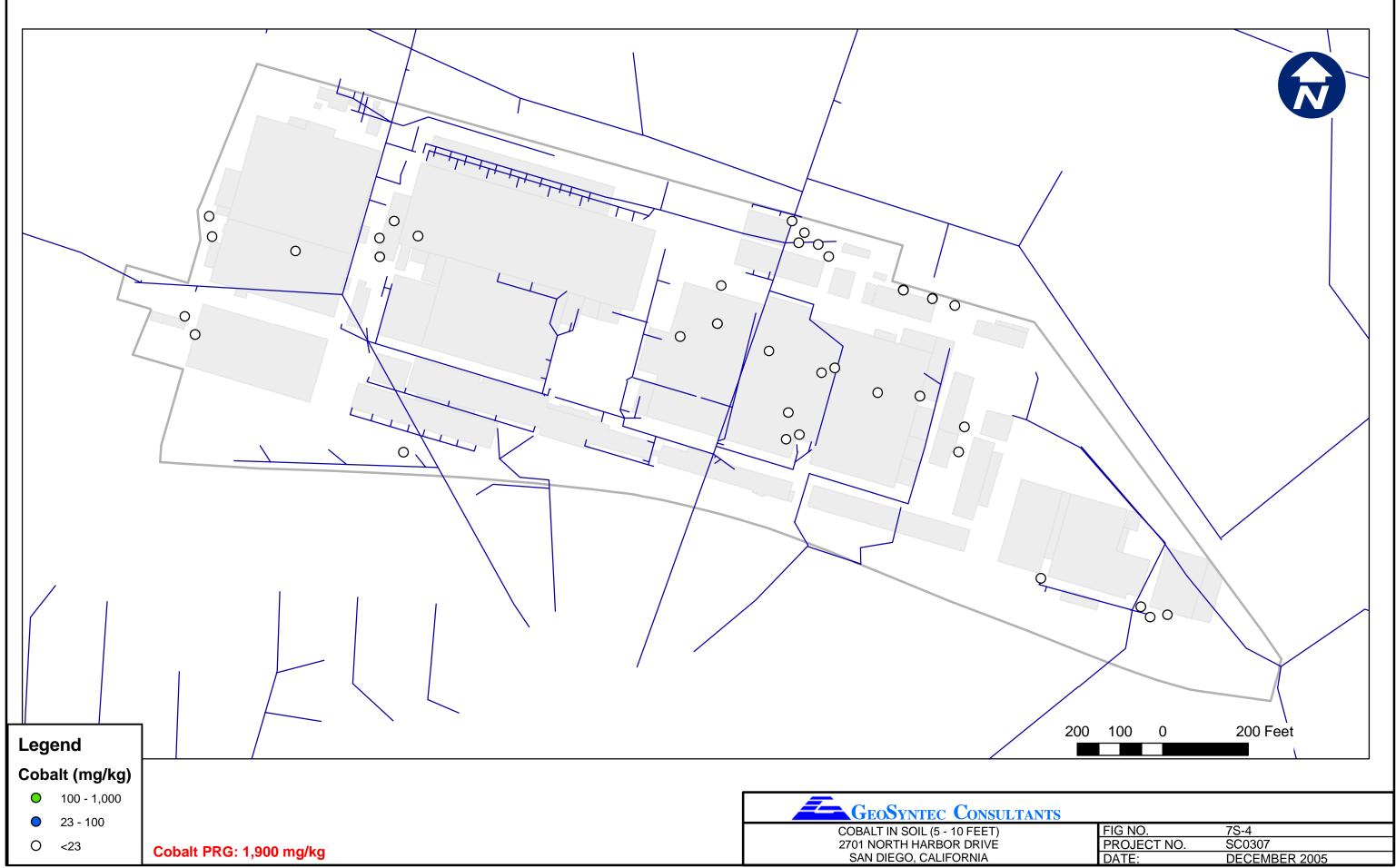


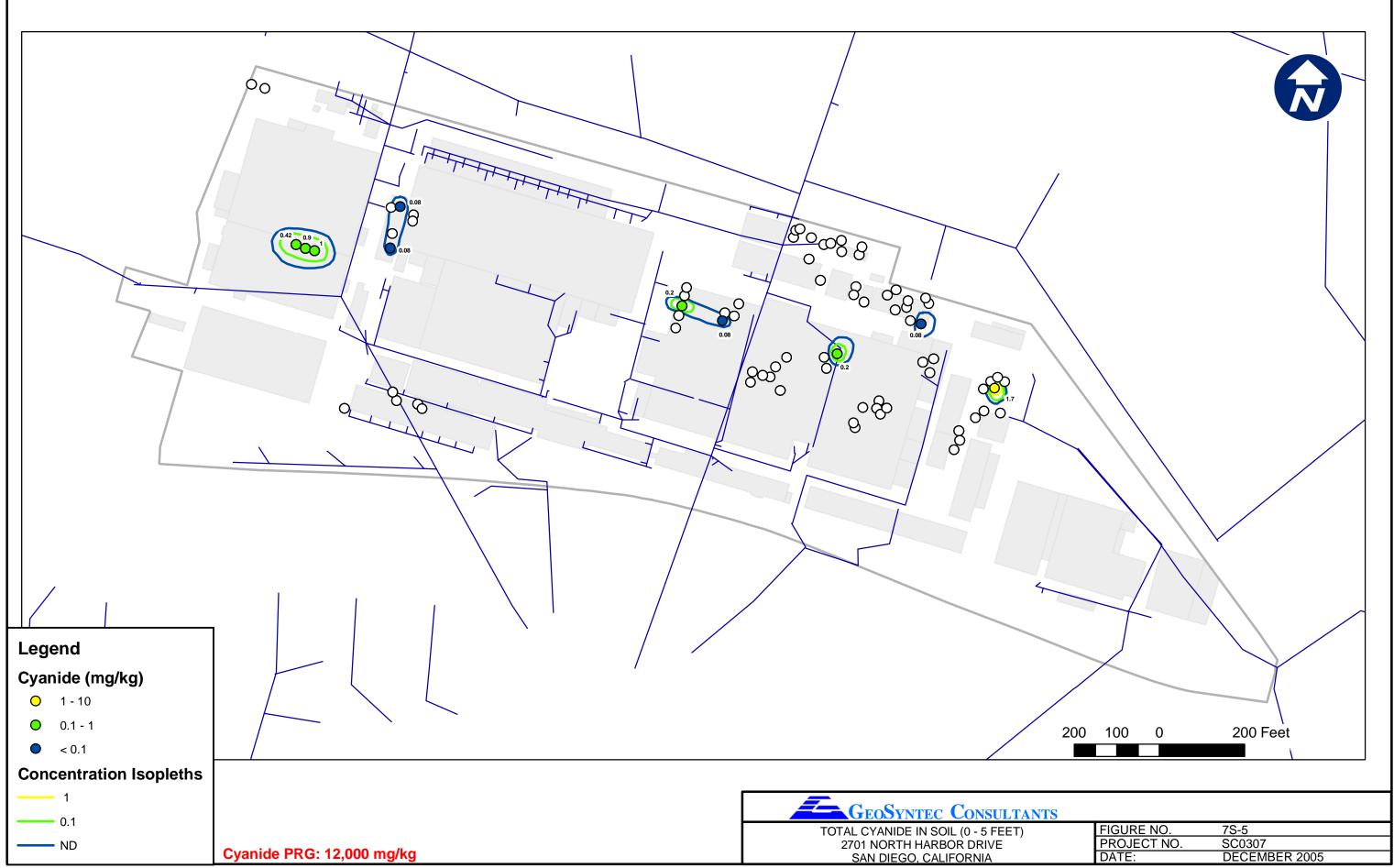


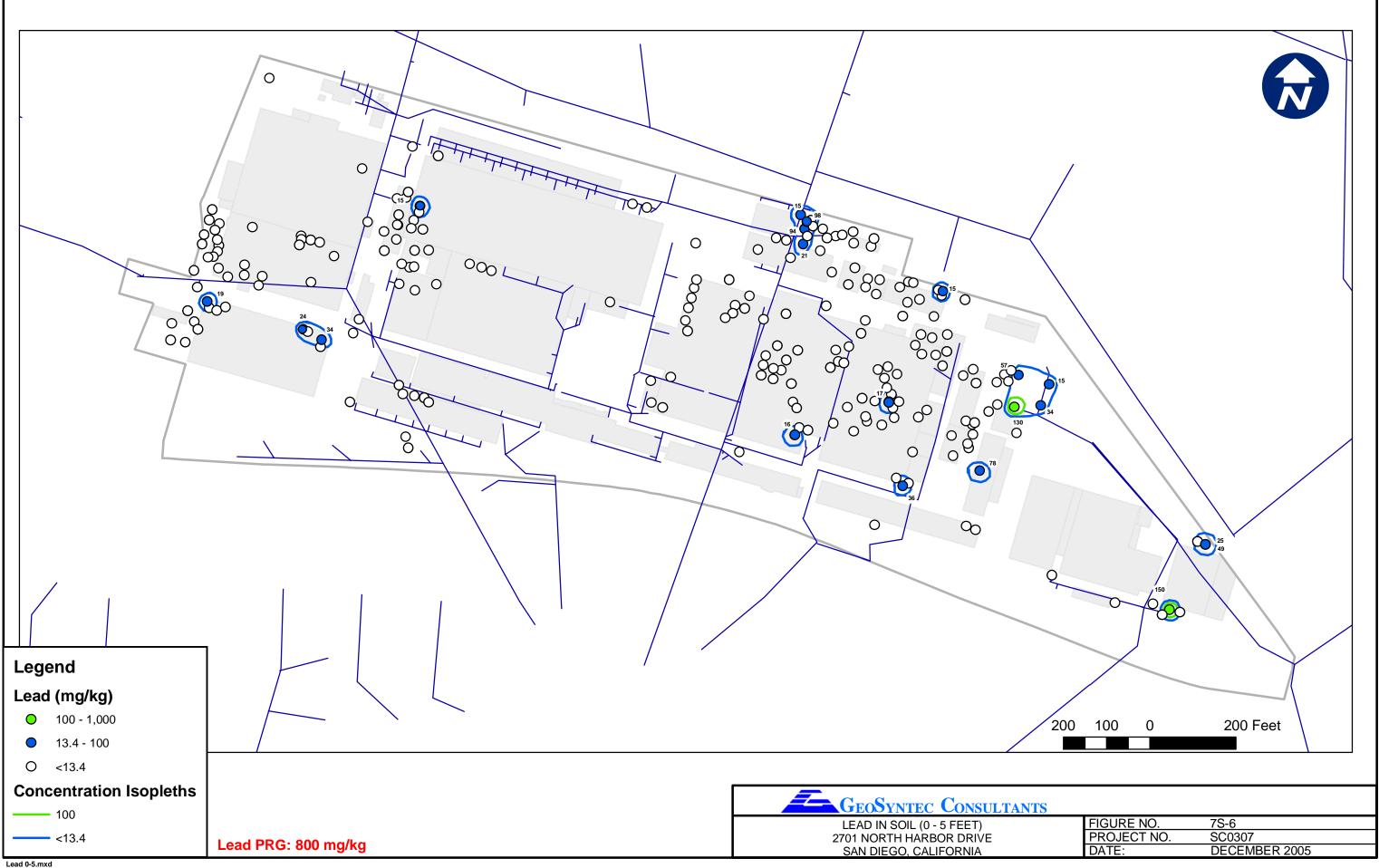


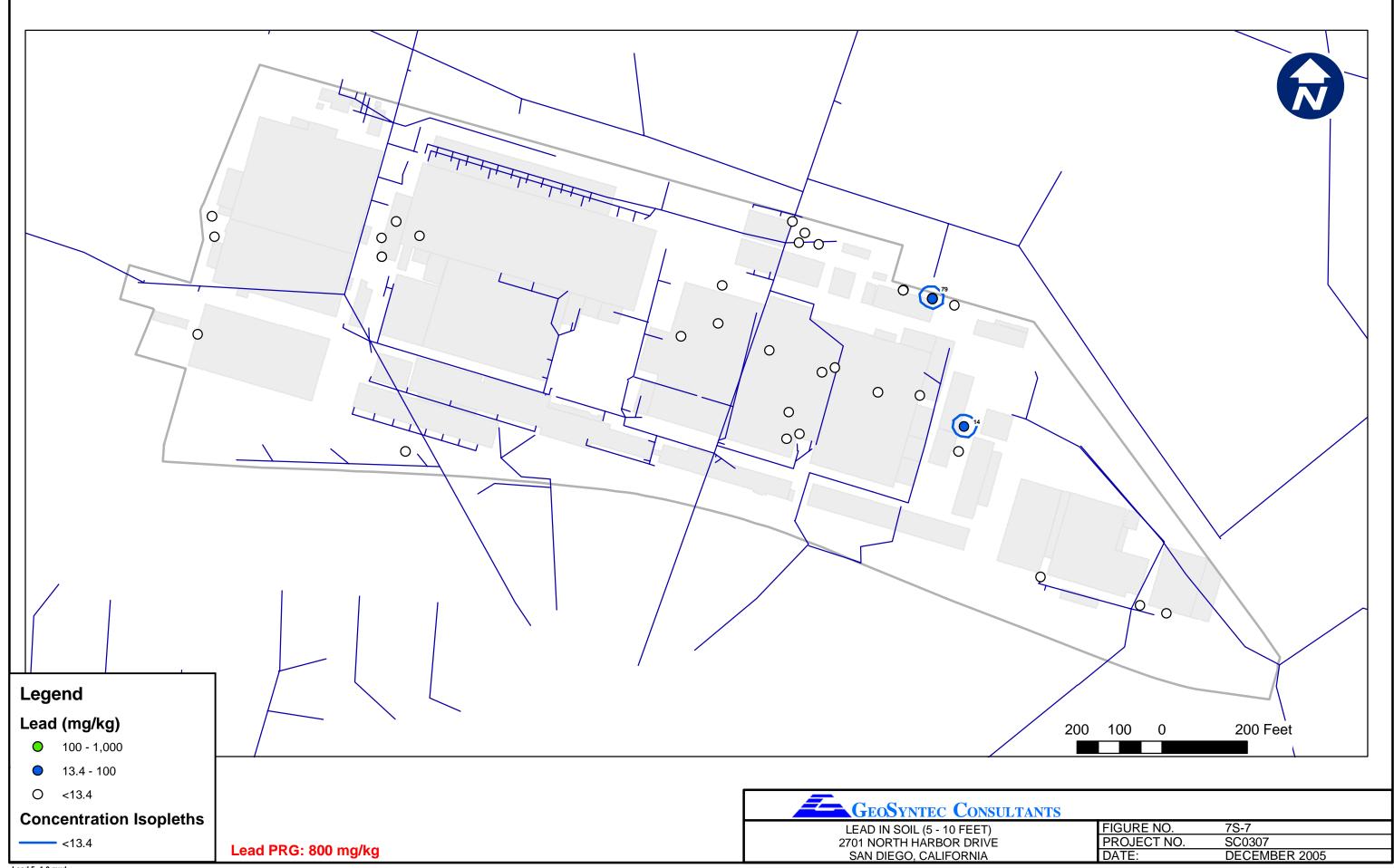


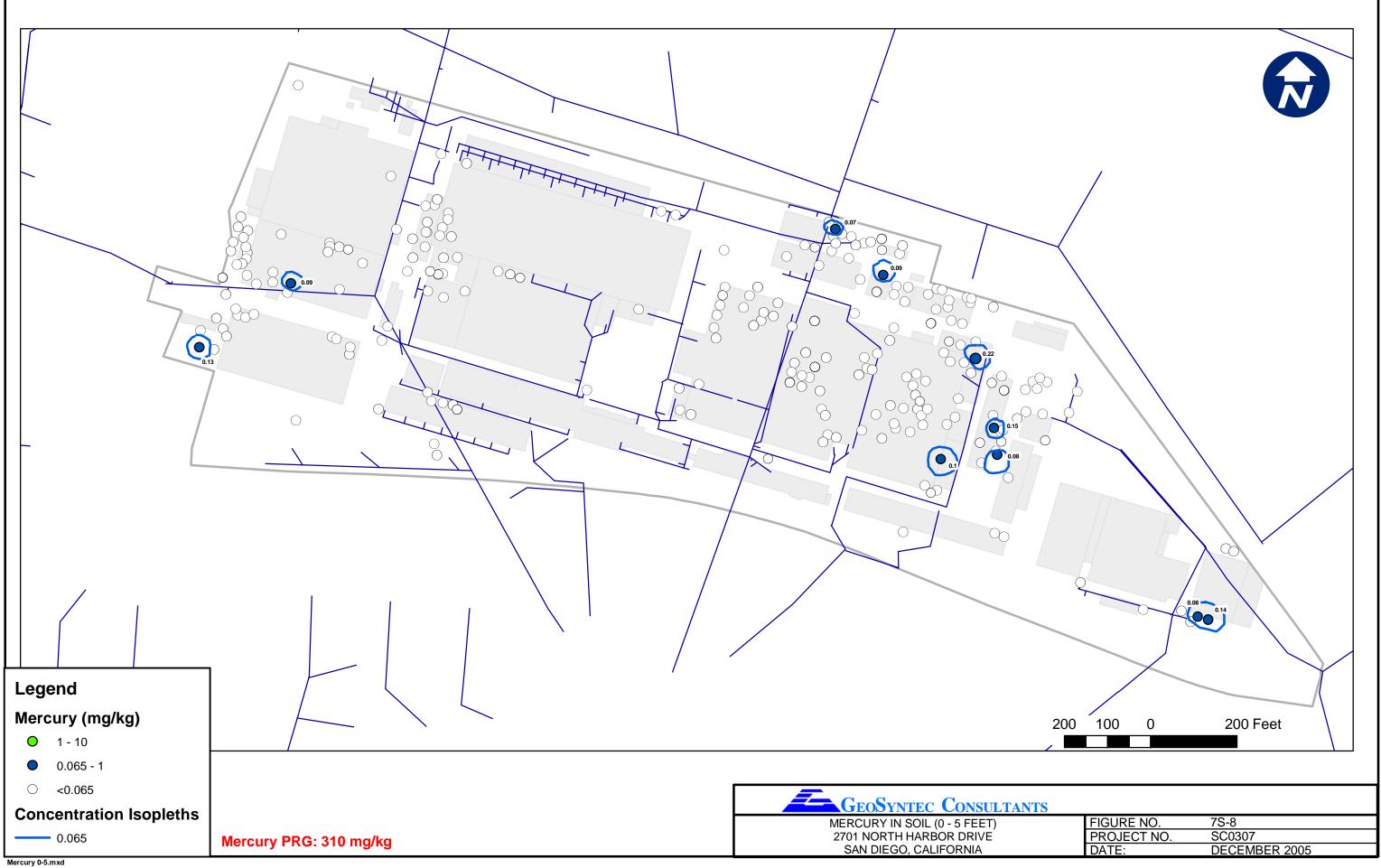

TS			
	FIGURE NO.	7-5	
SITE	PROJECT NO.	SC0307	
DRNIA	DATE:	DECEMBER 2005	

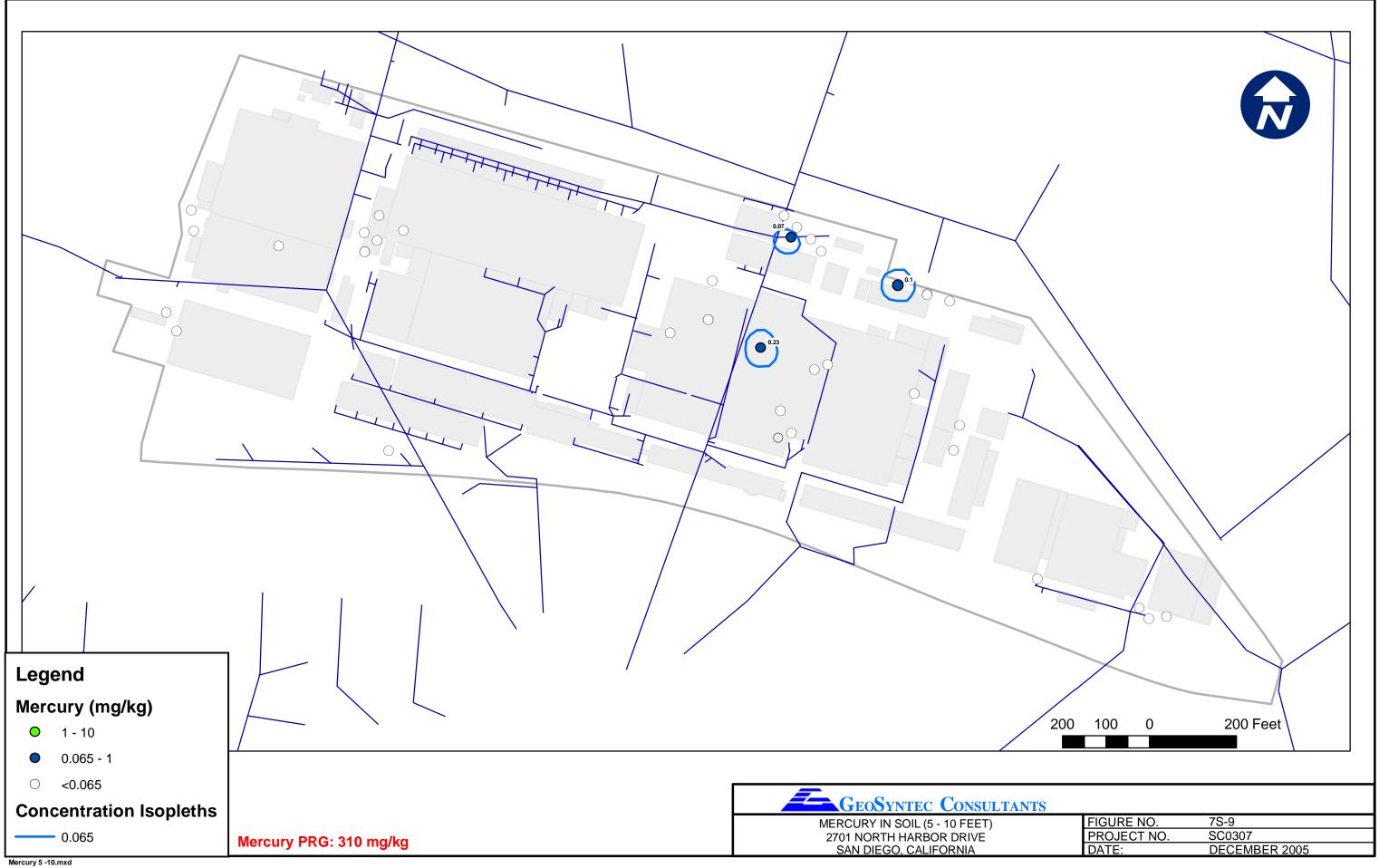


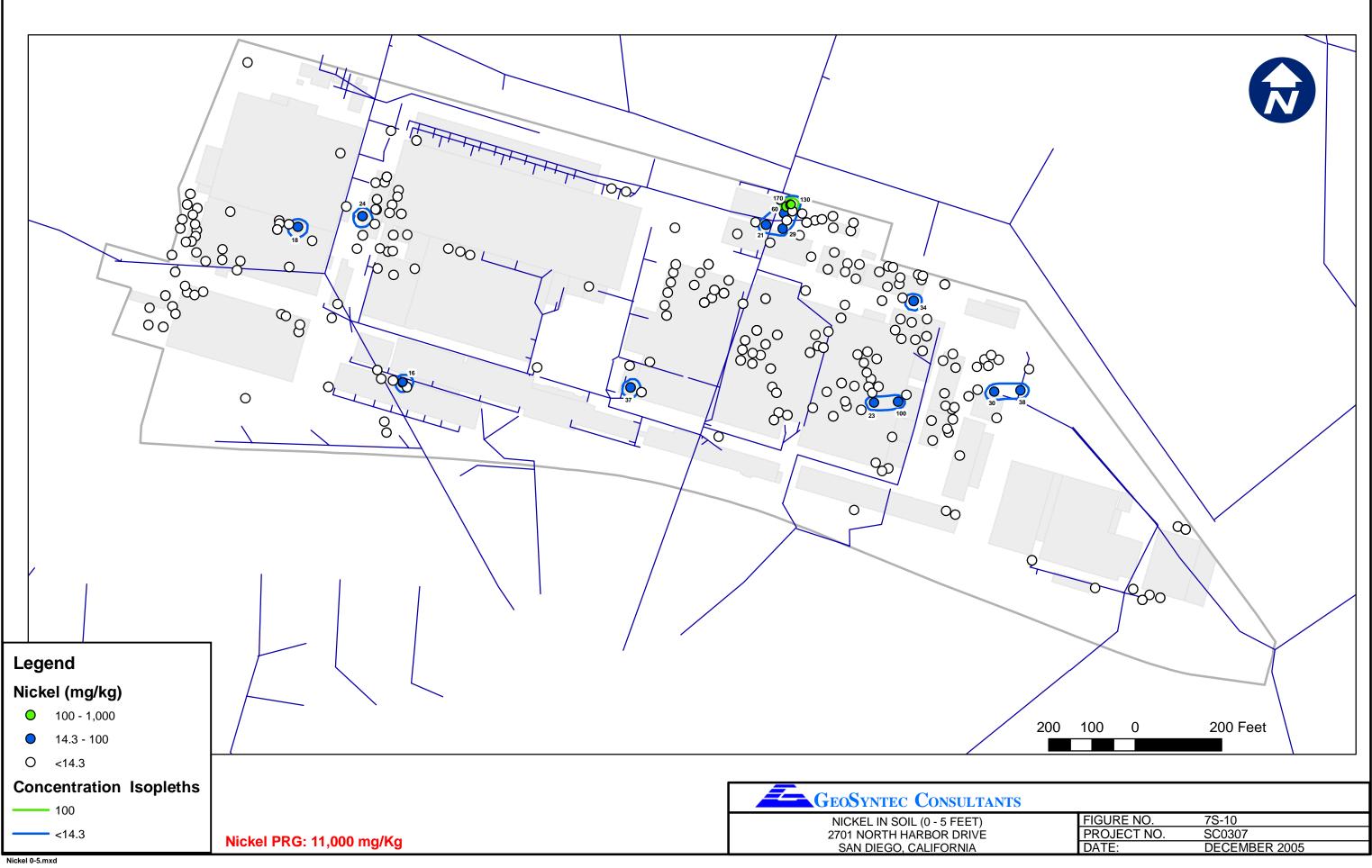


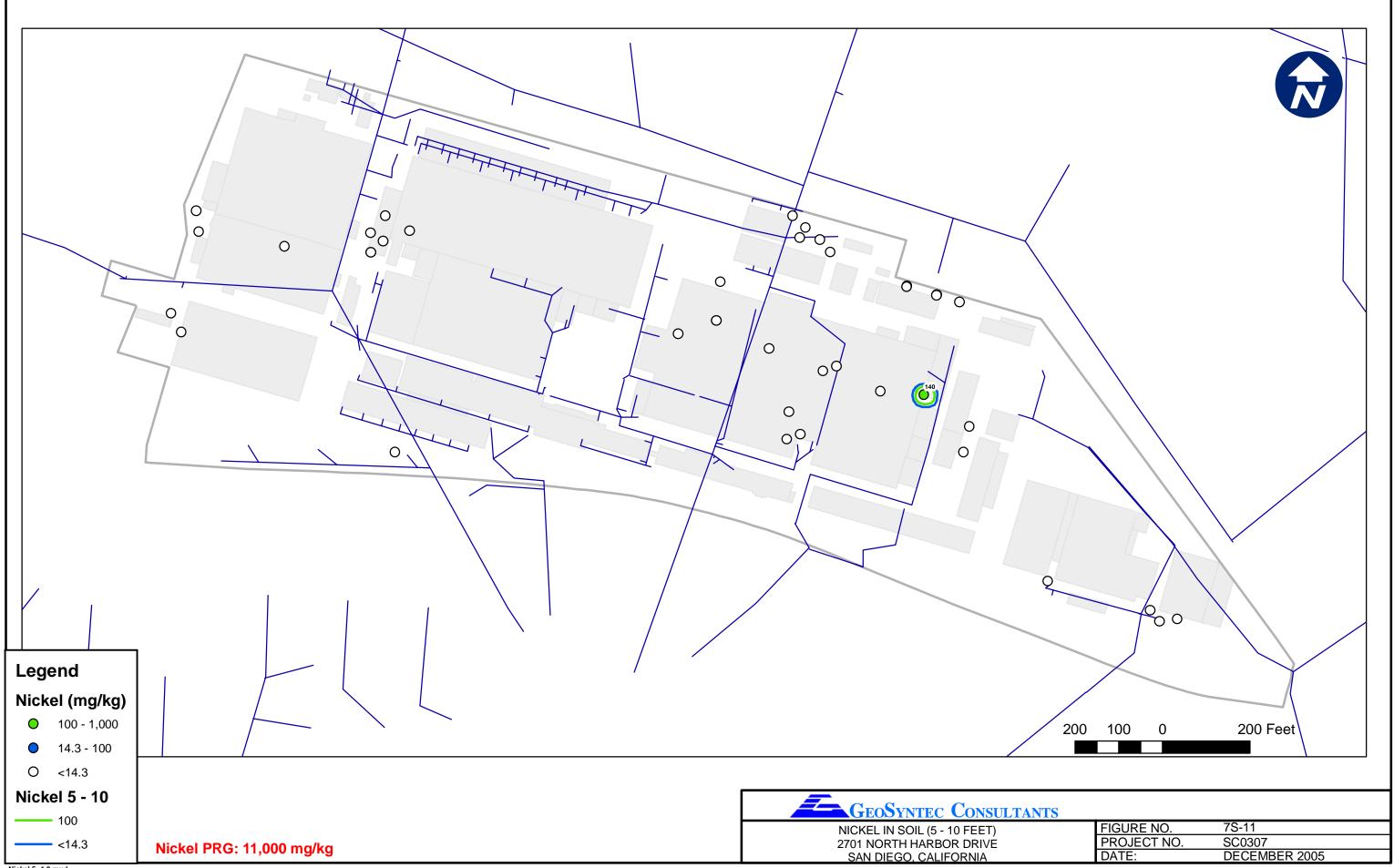


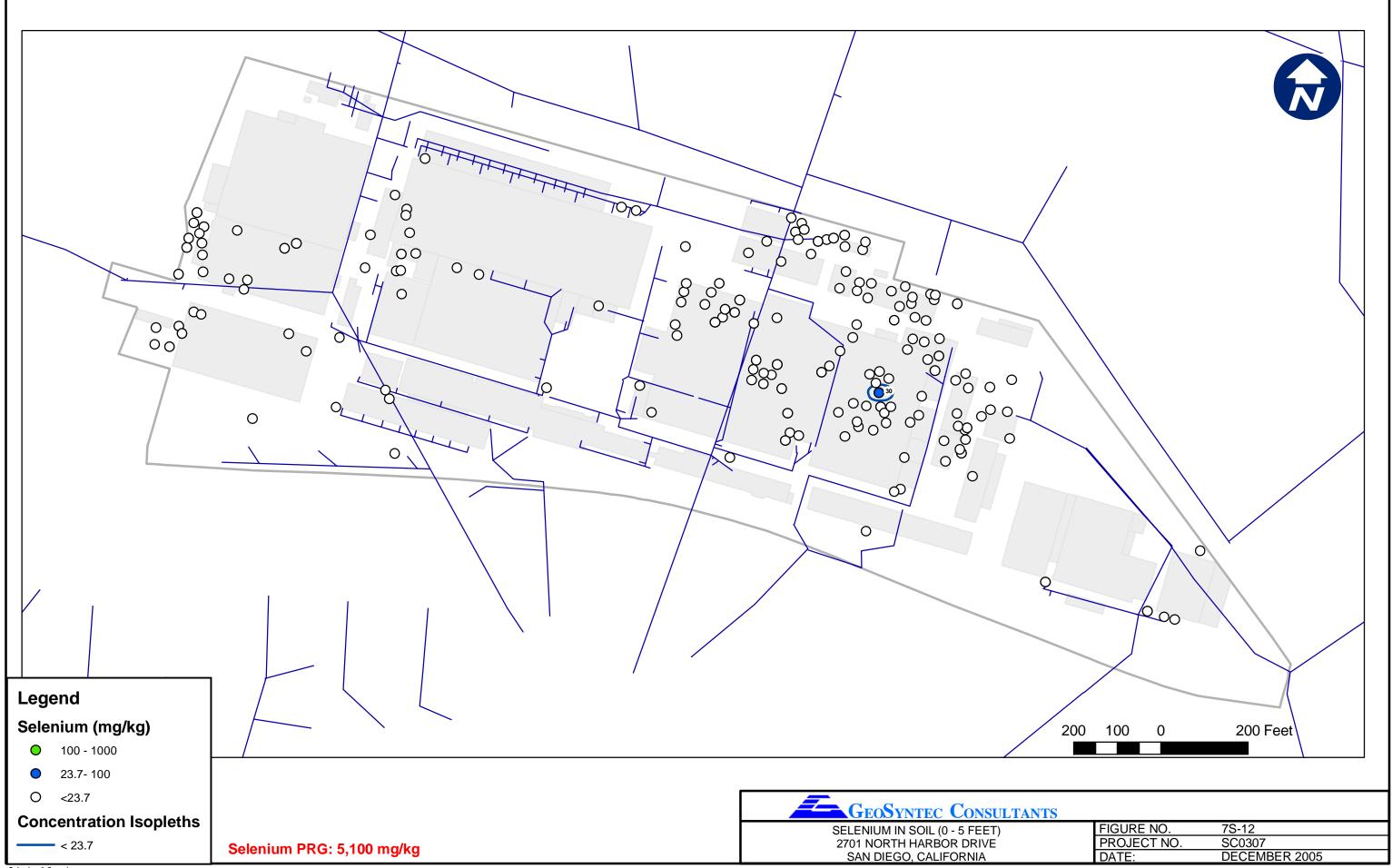


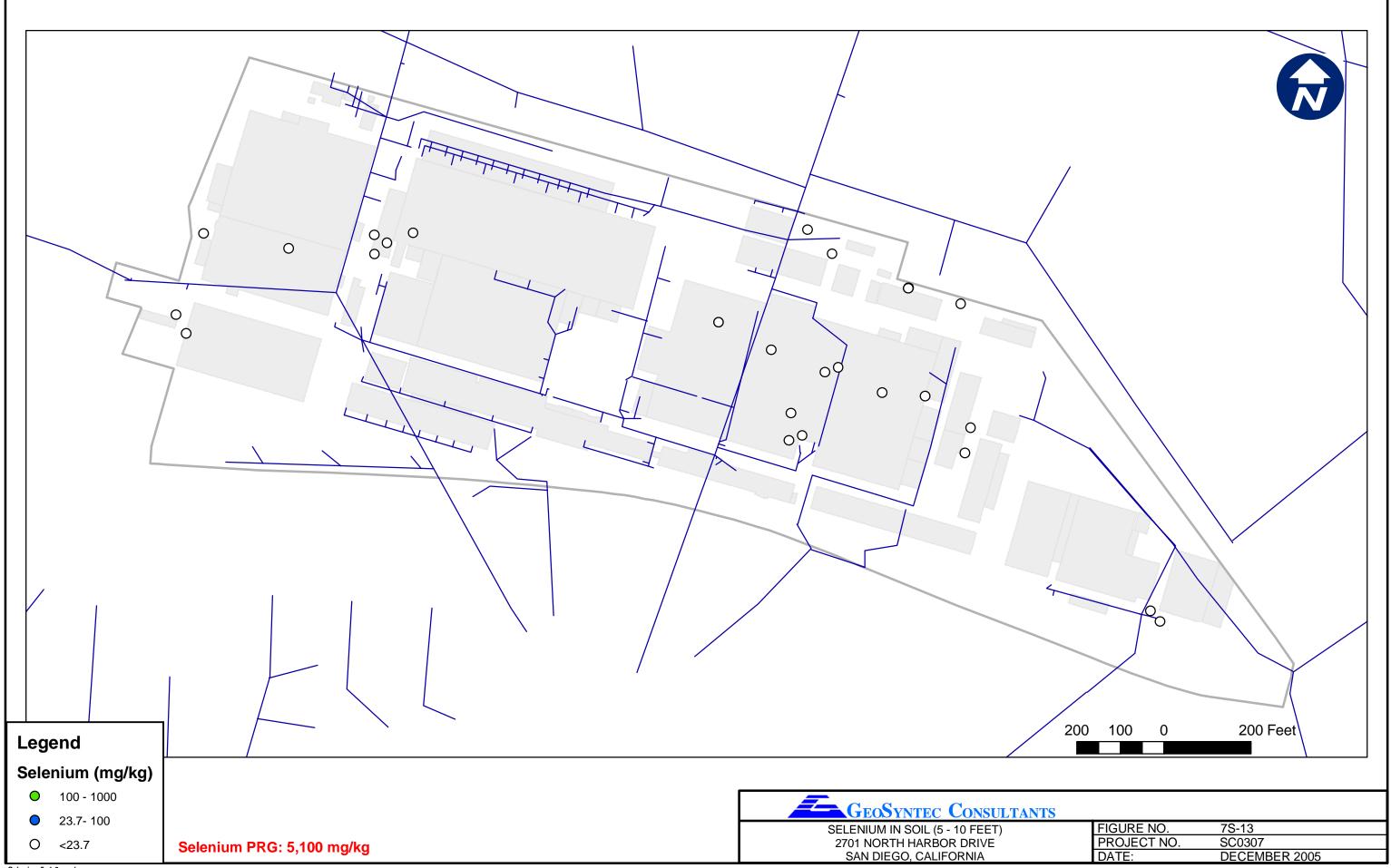


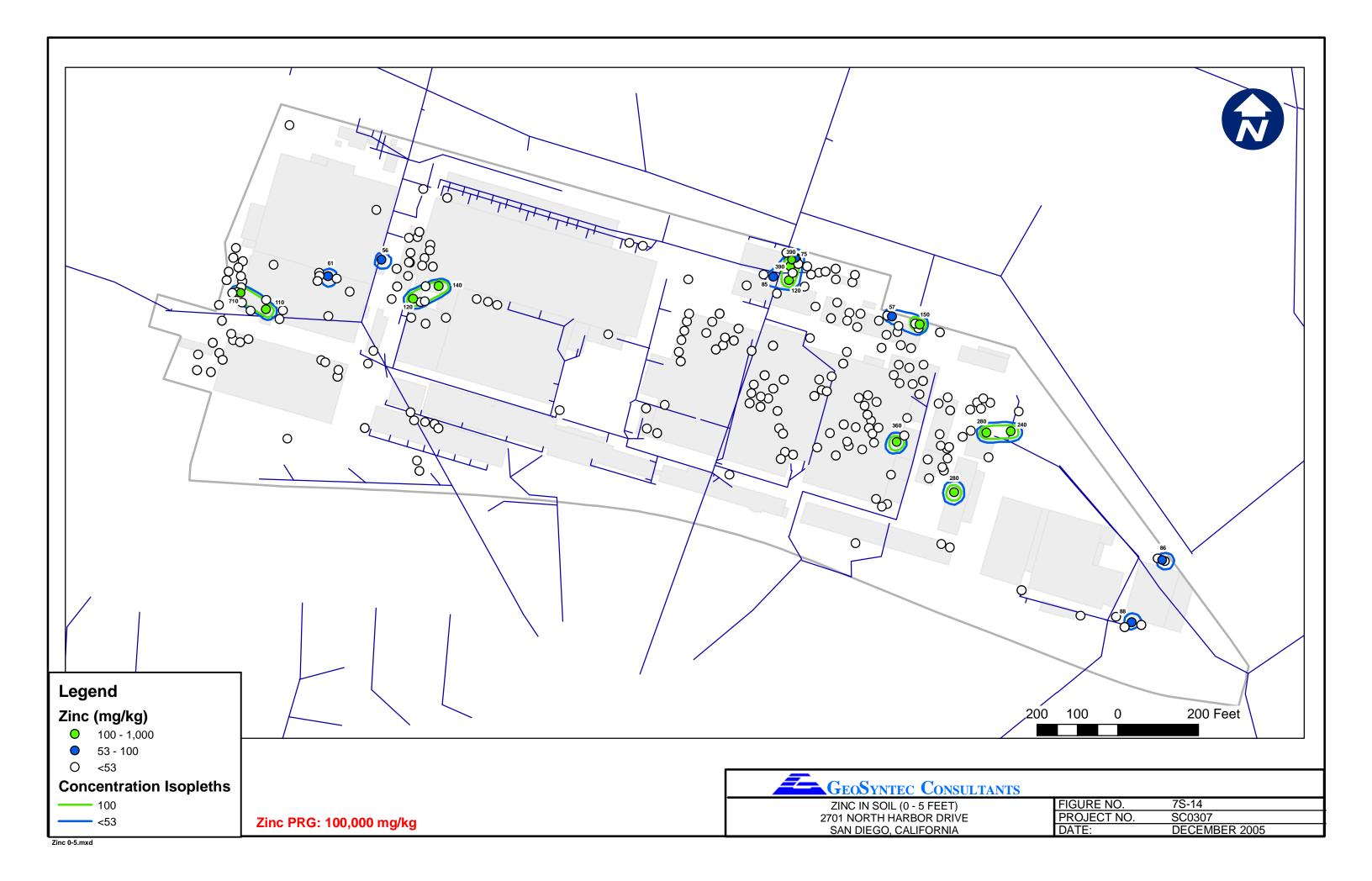


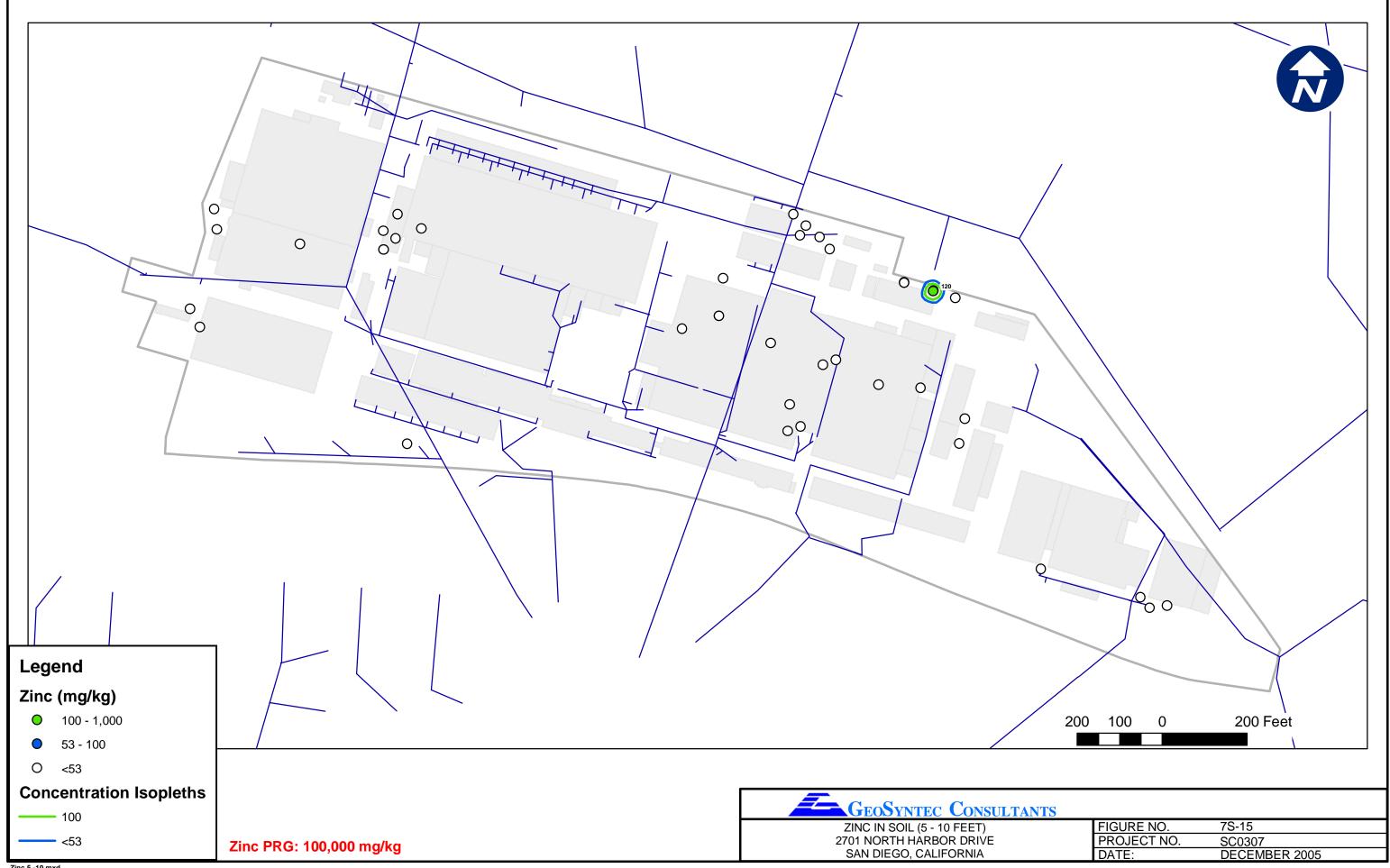


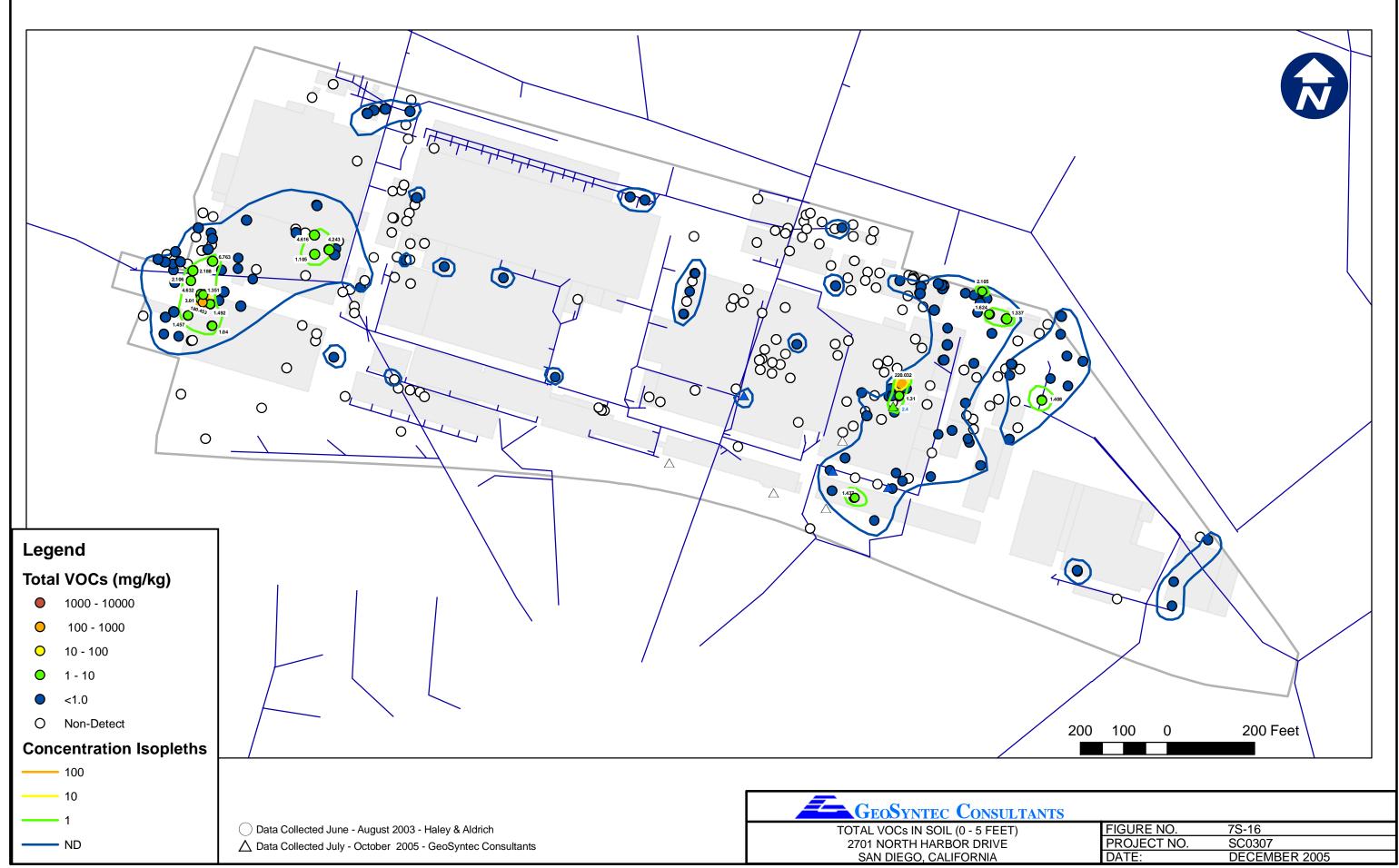


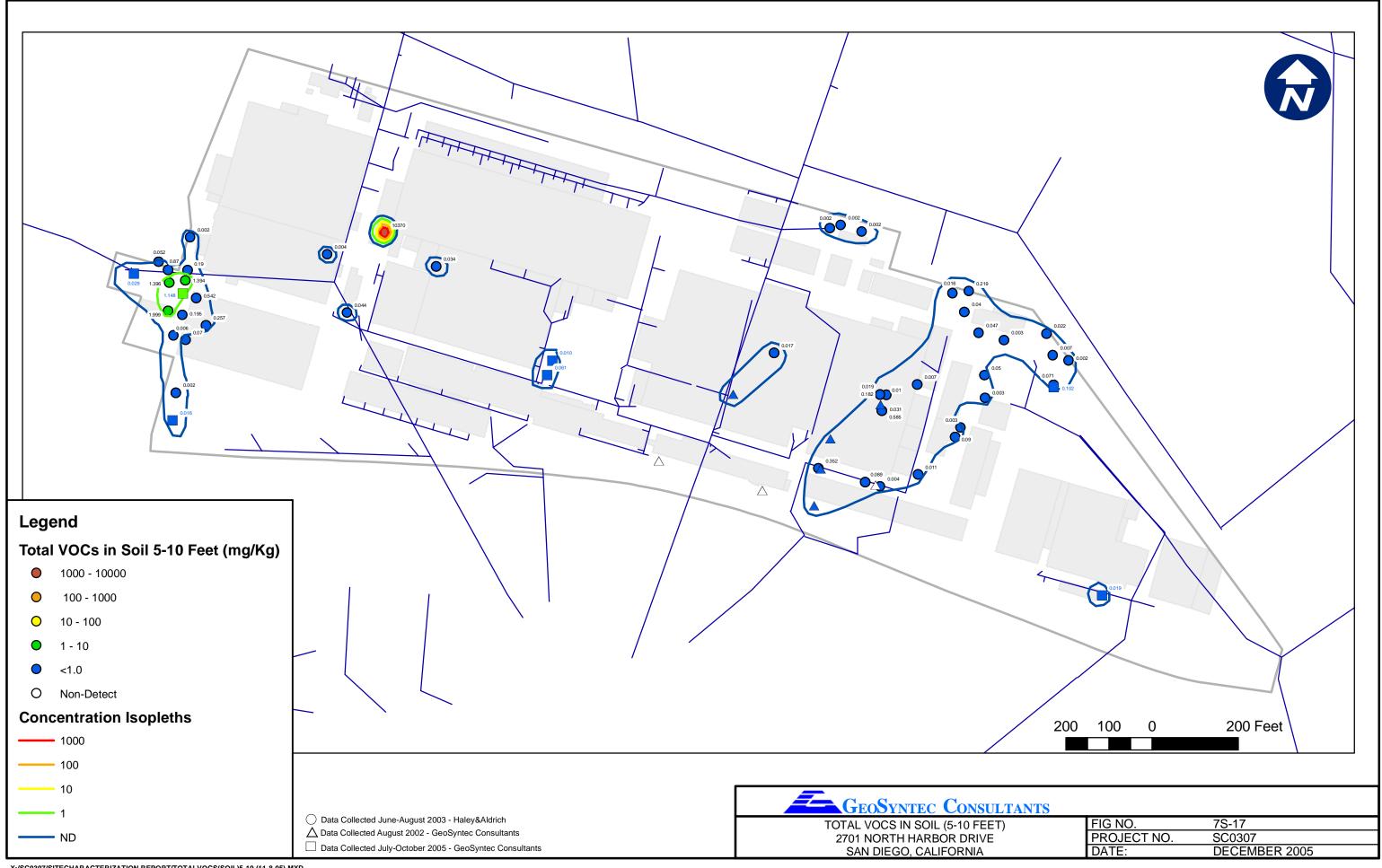

Lead 5 -1 0.mxd

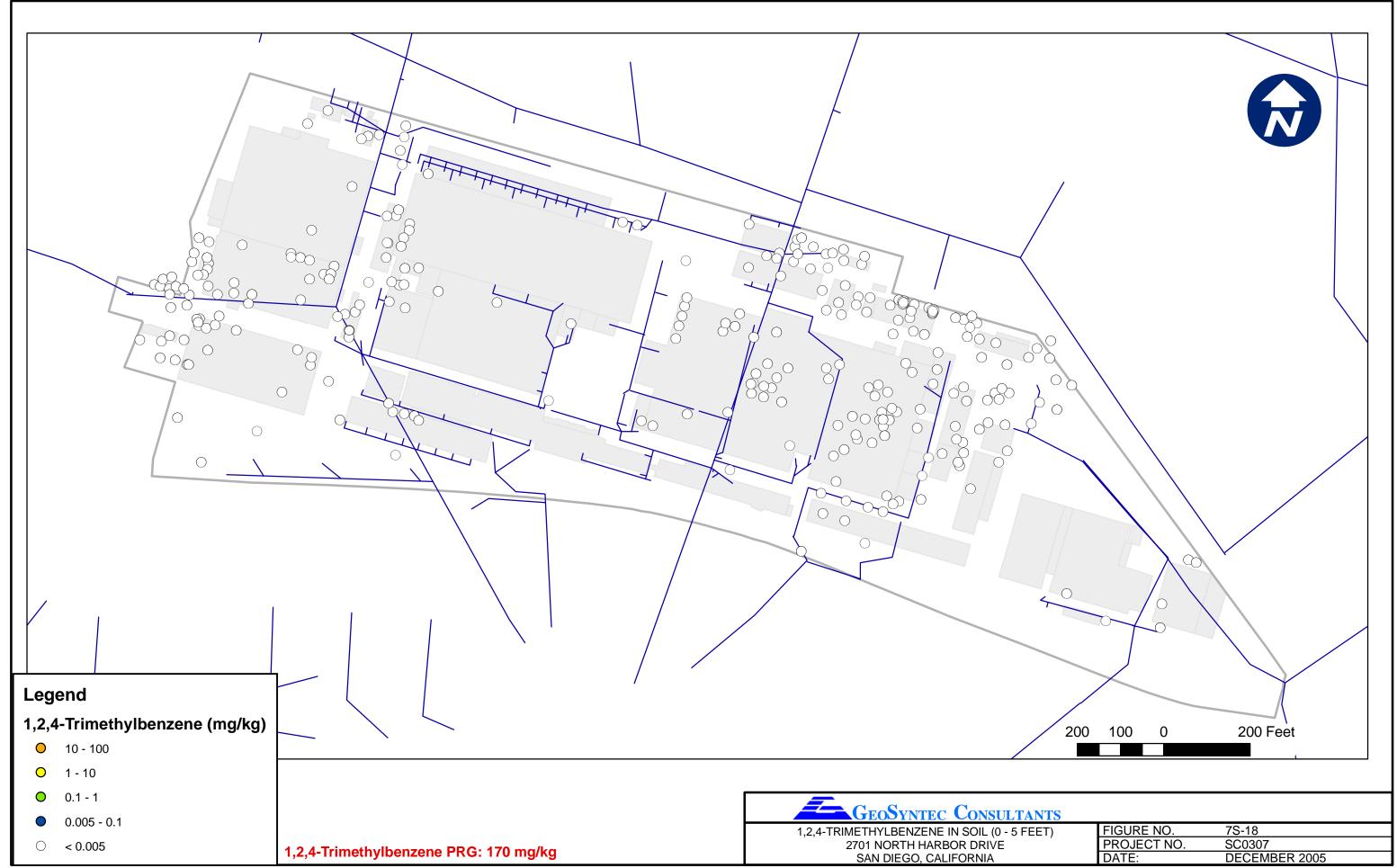


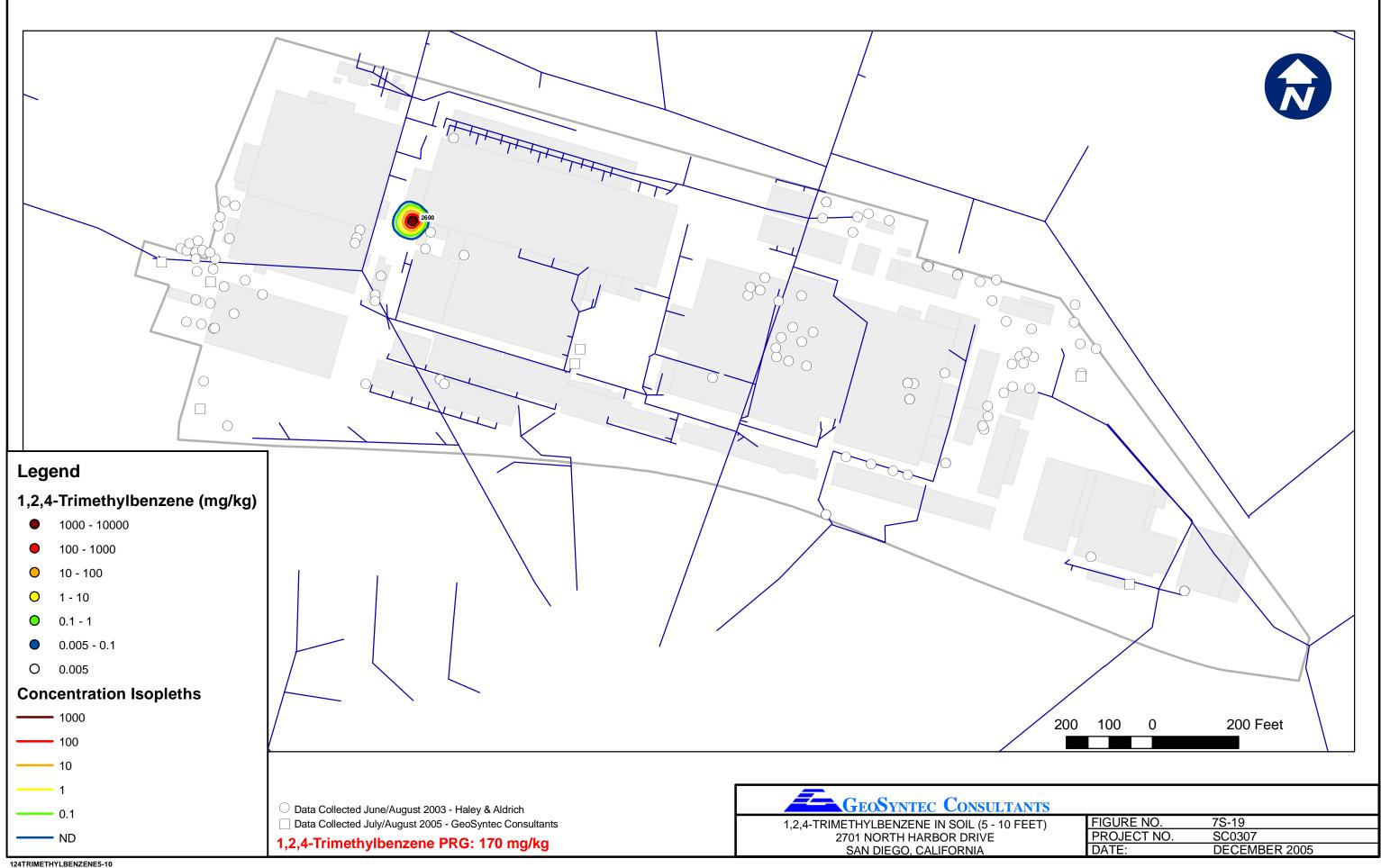


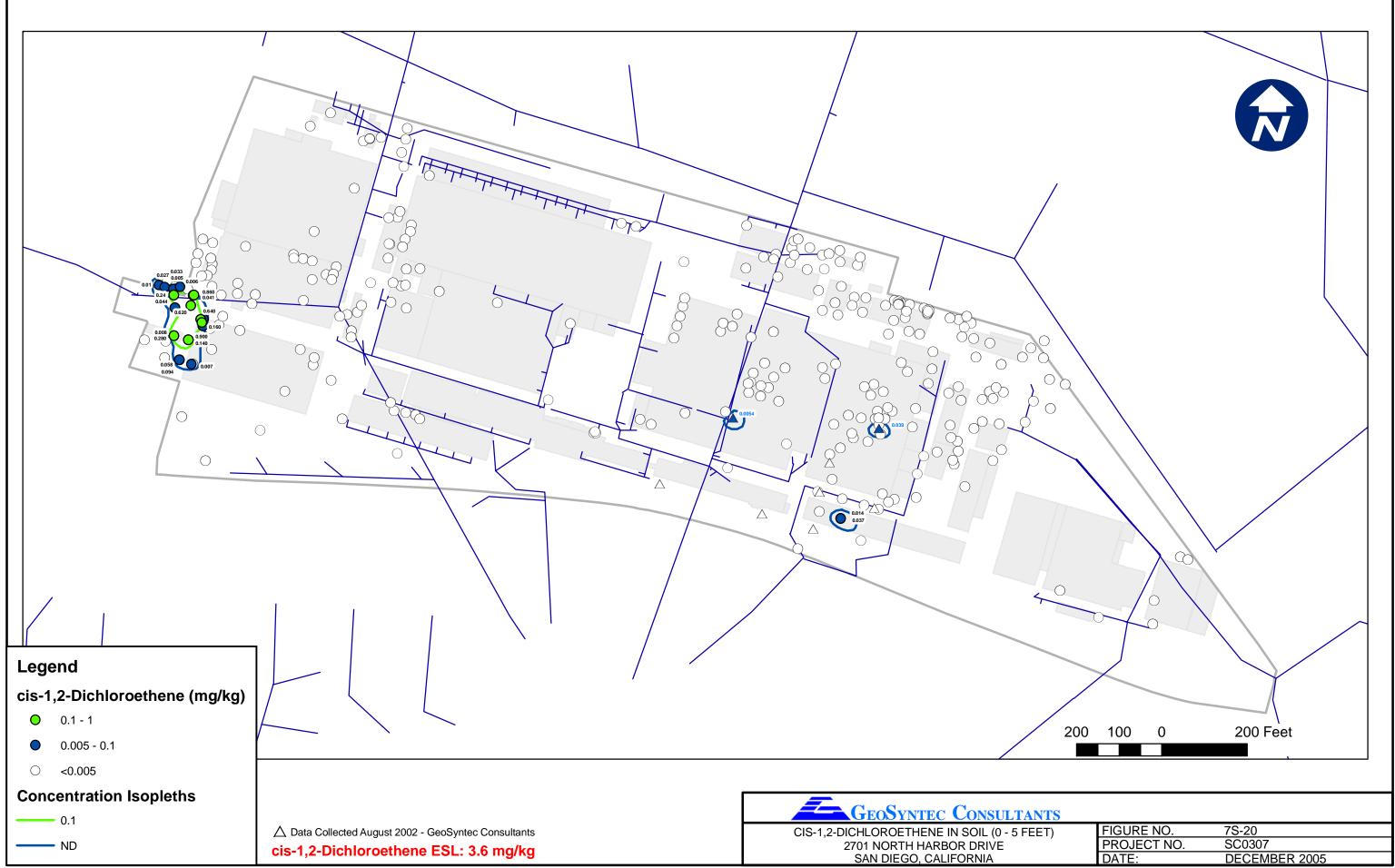


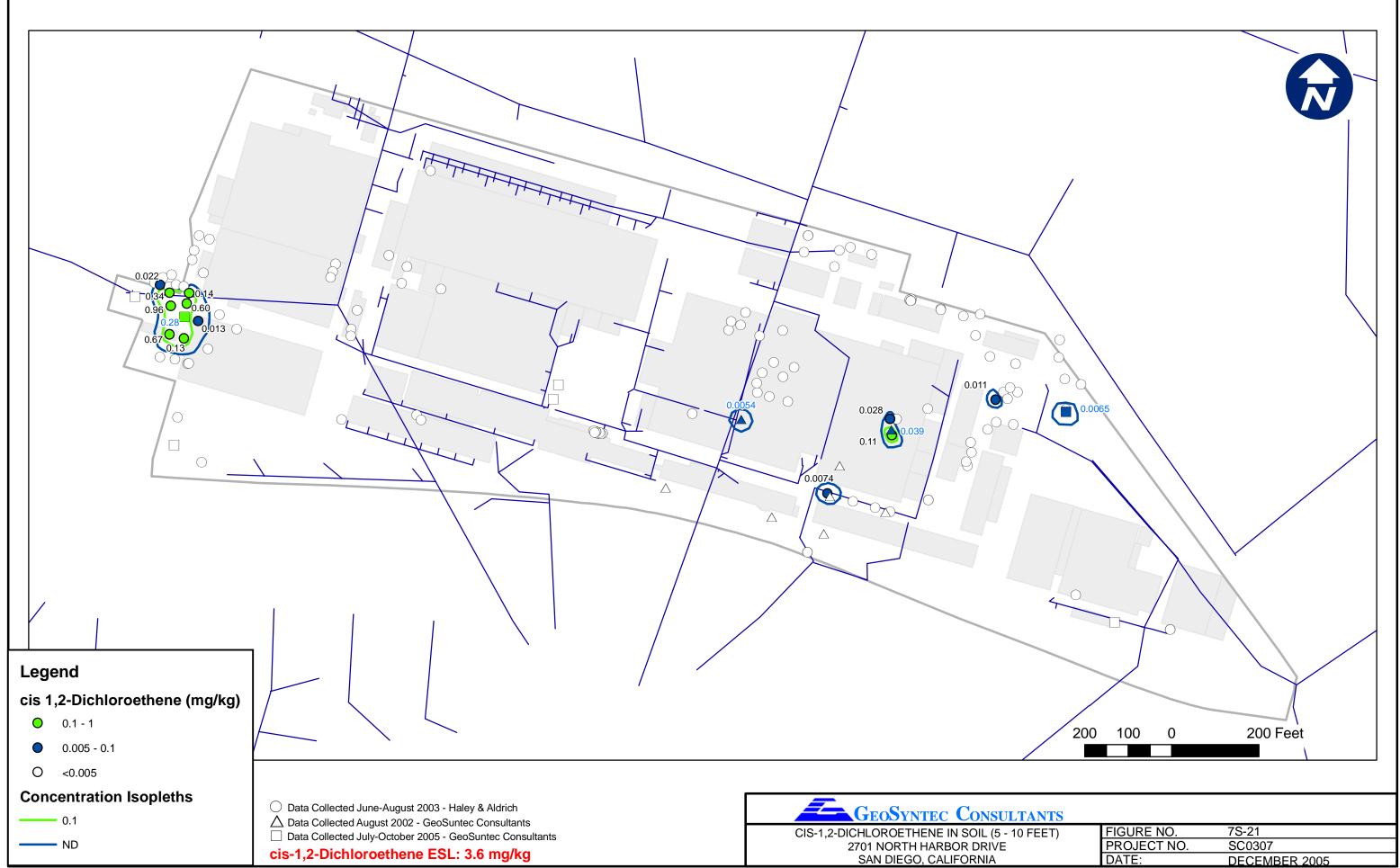


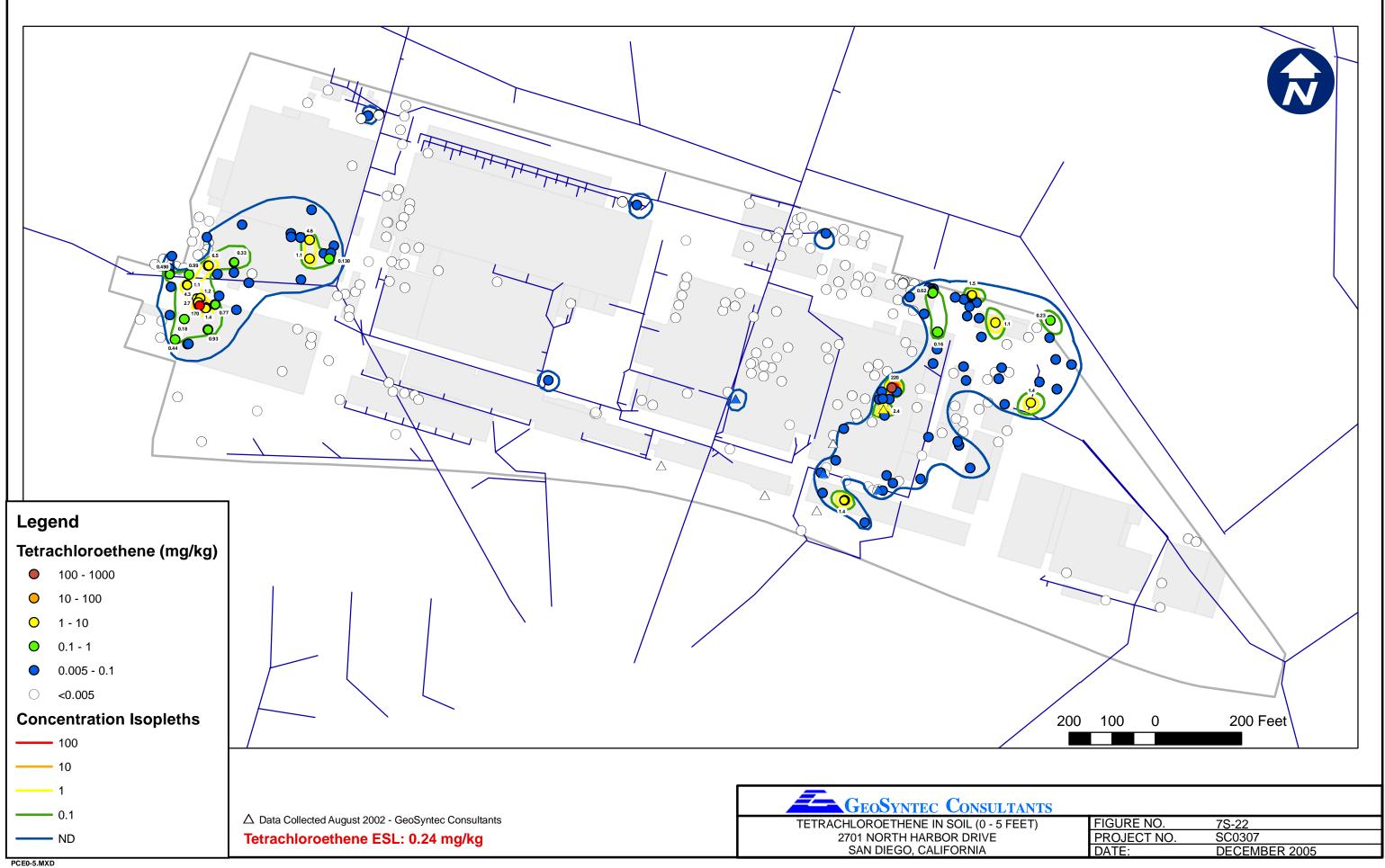


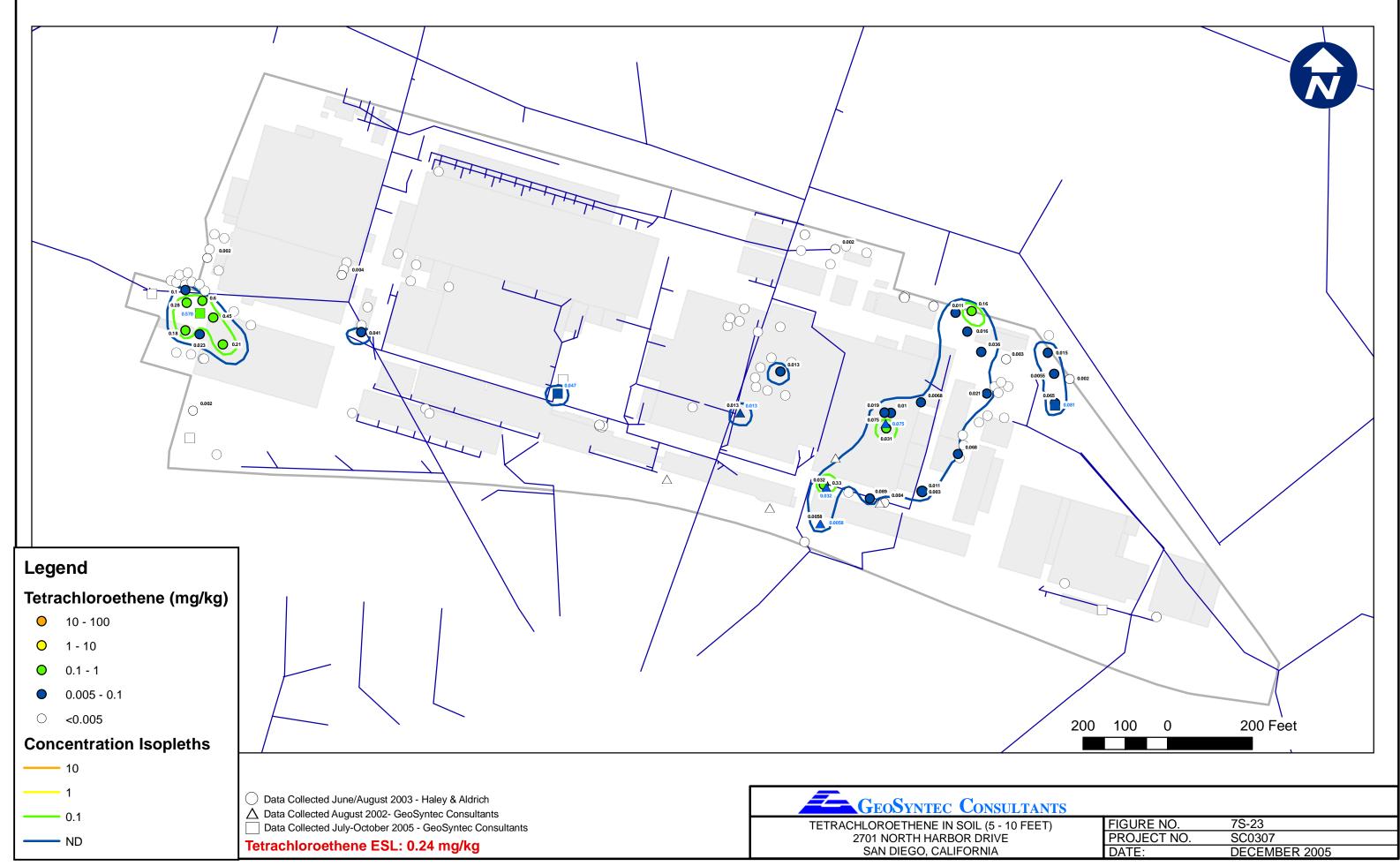

Selenium5 -1 0.mxd

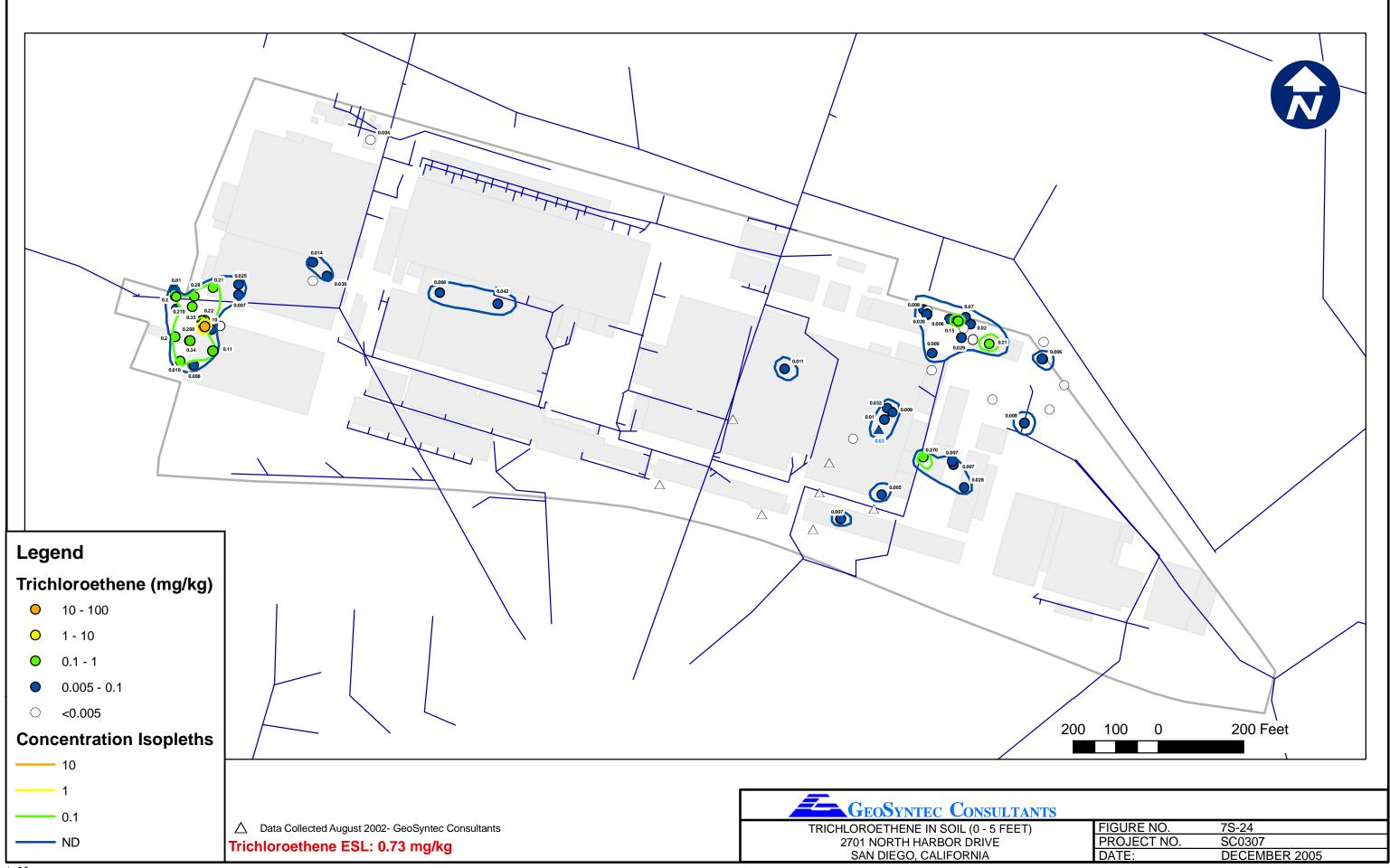


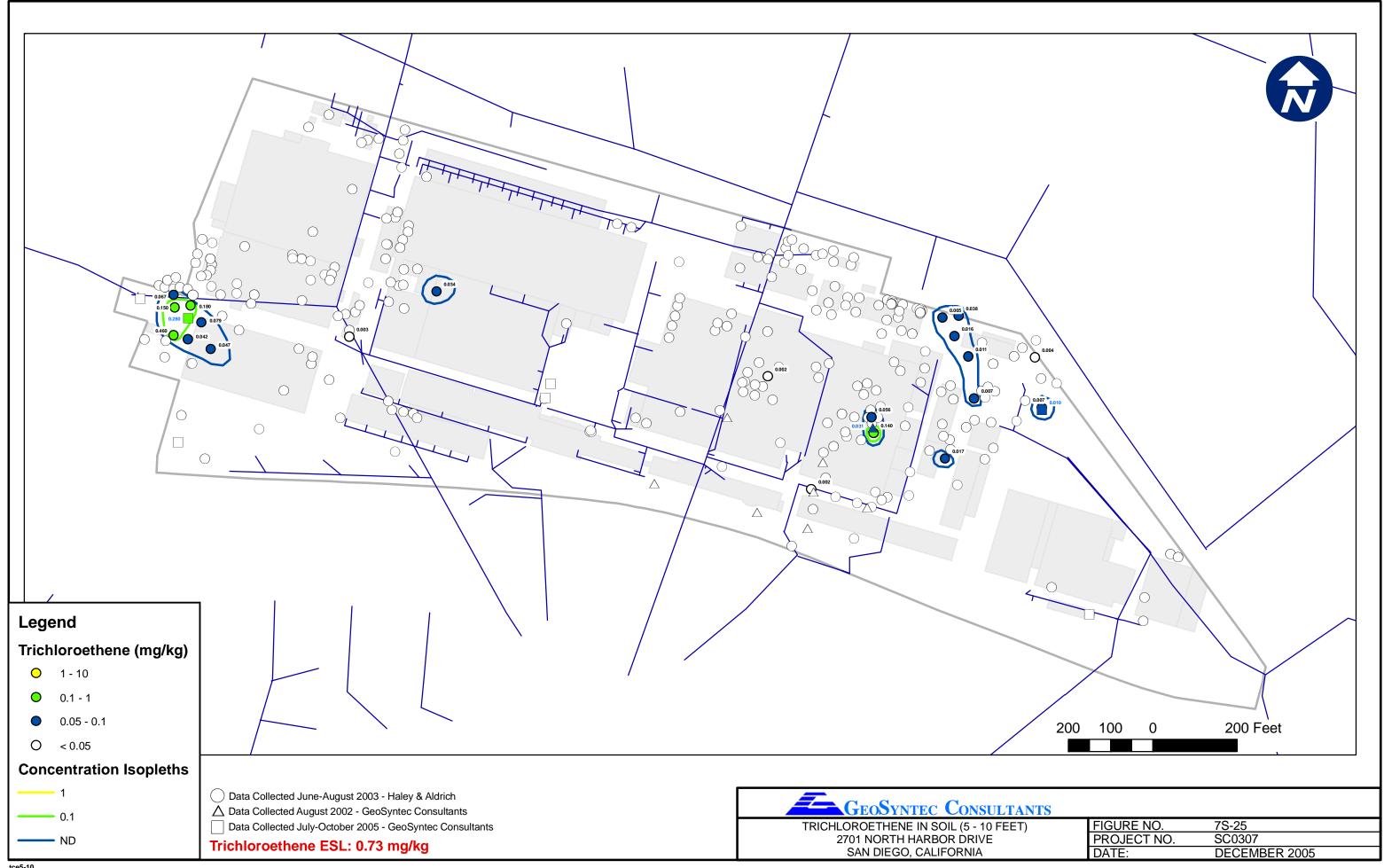


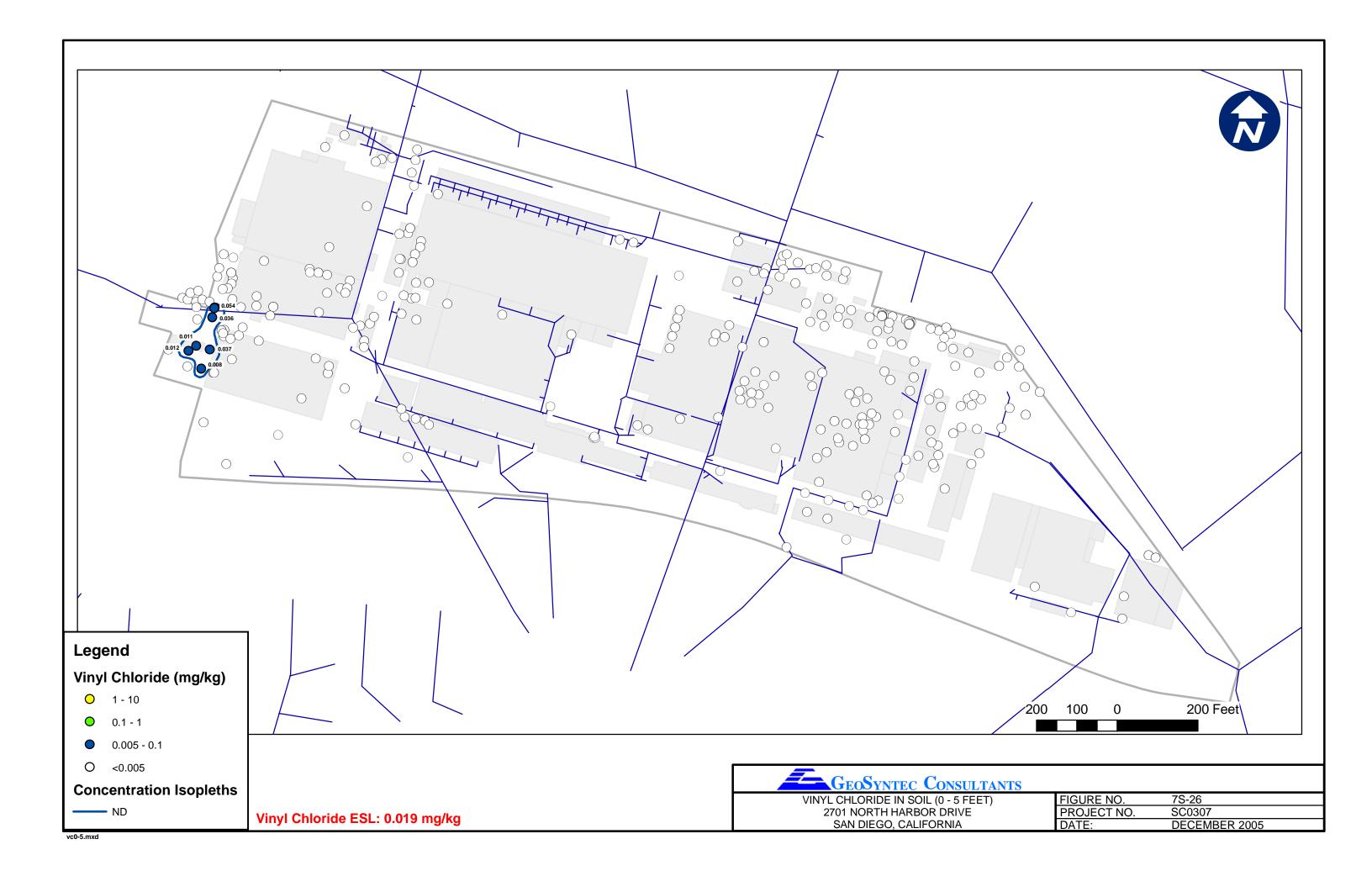


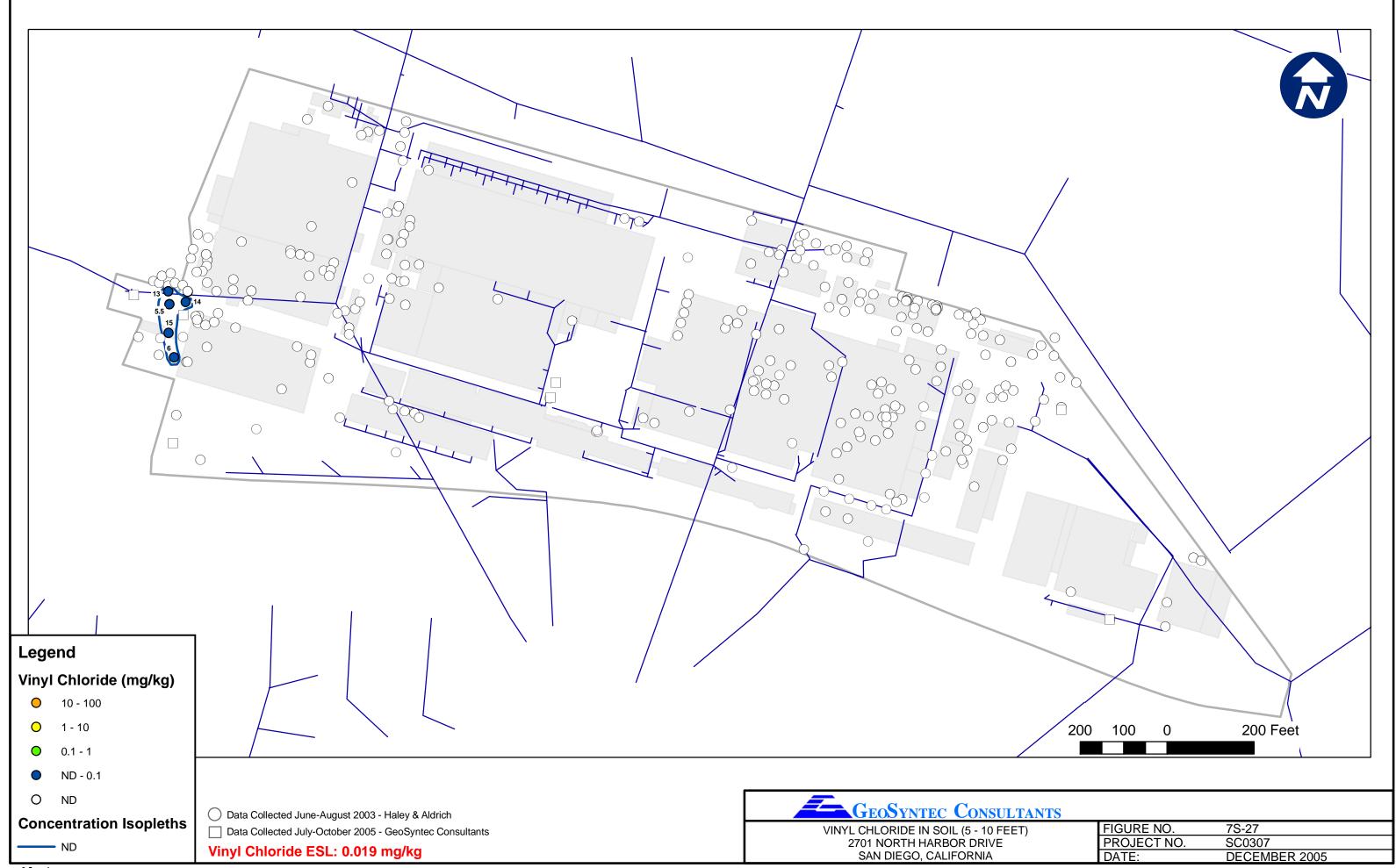


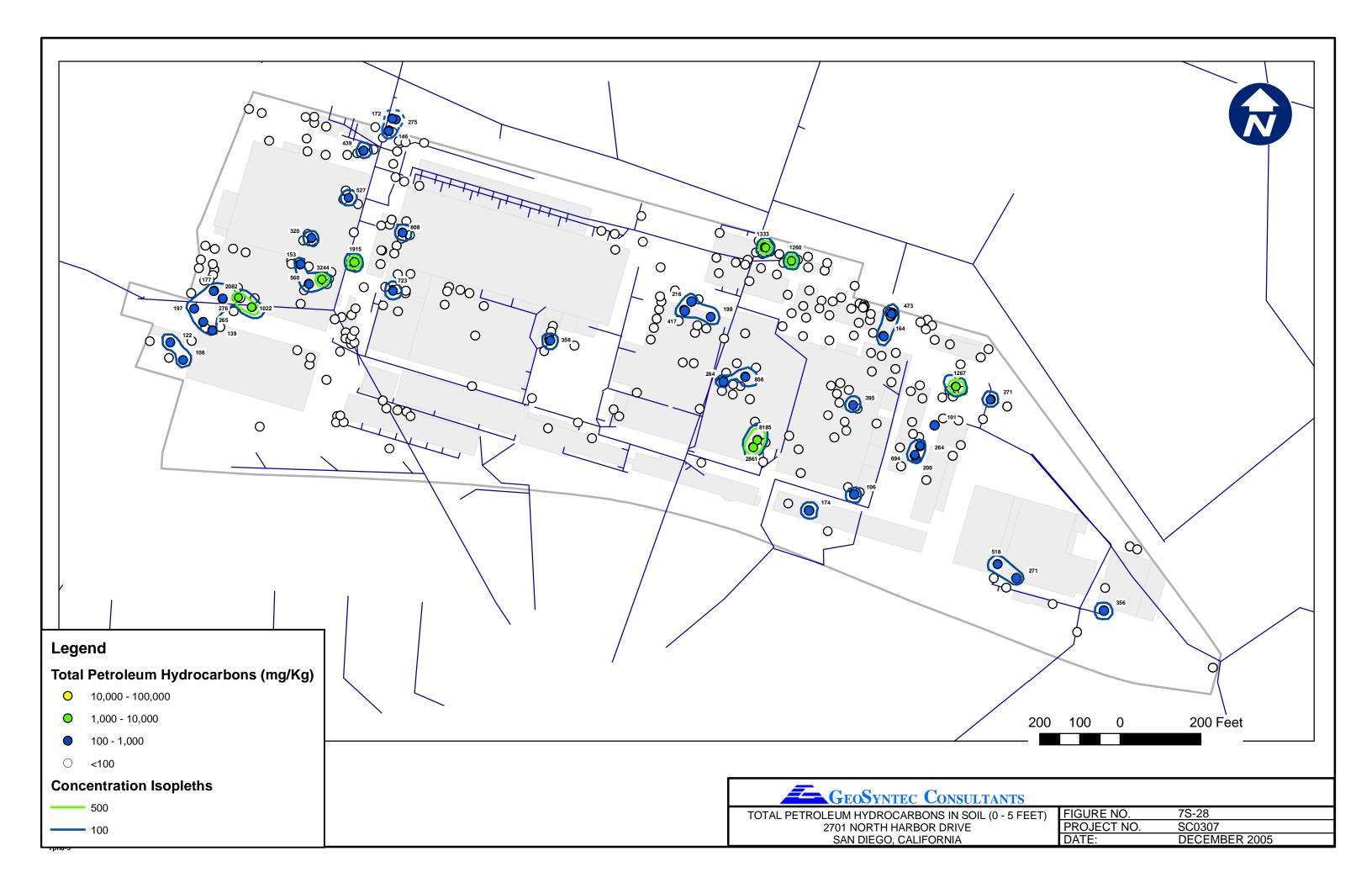

124TRIMETHYLBENZENE0-5

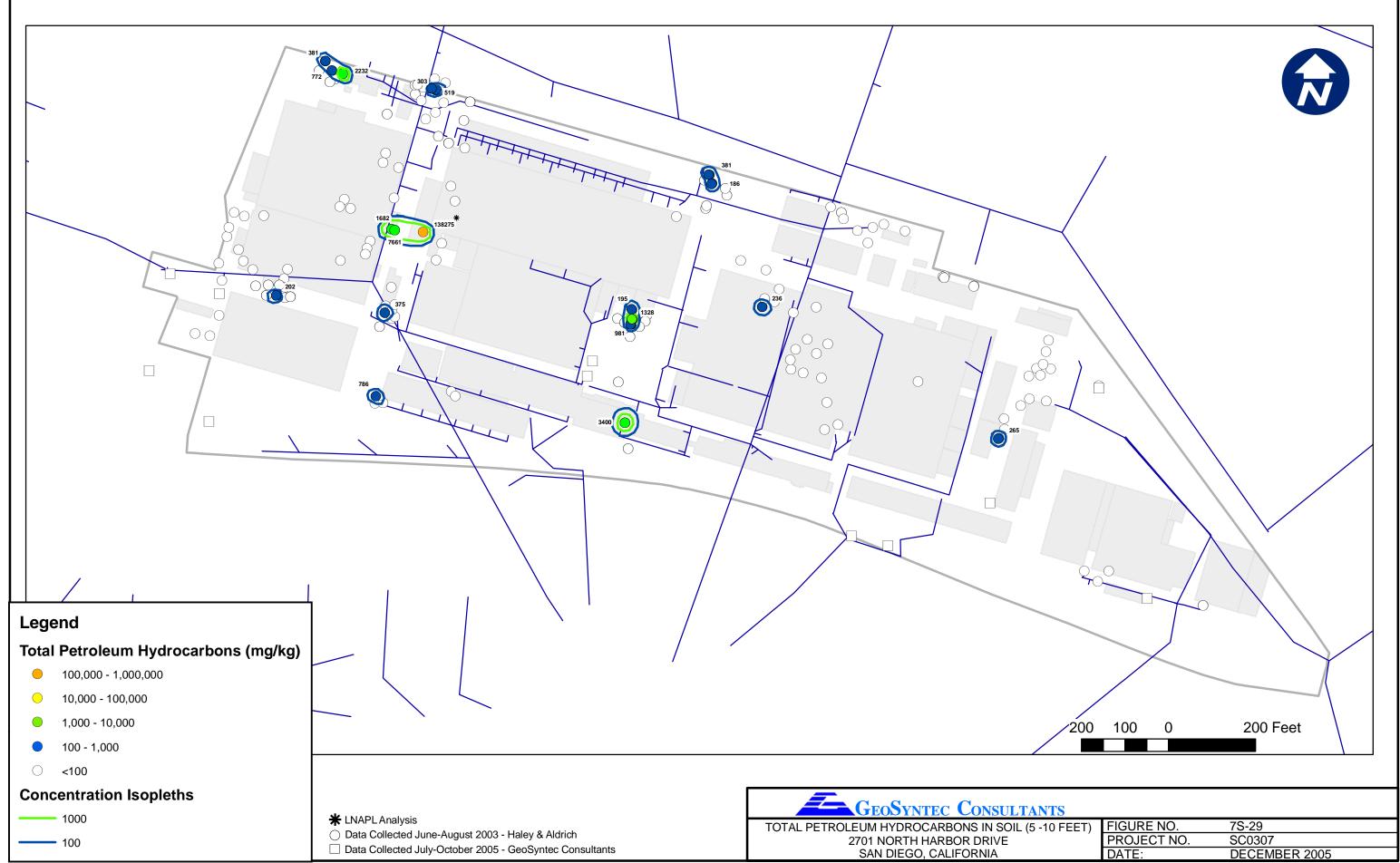


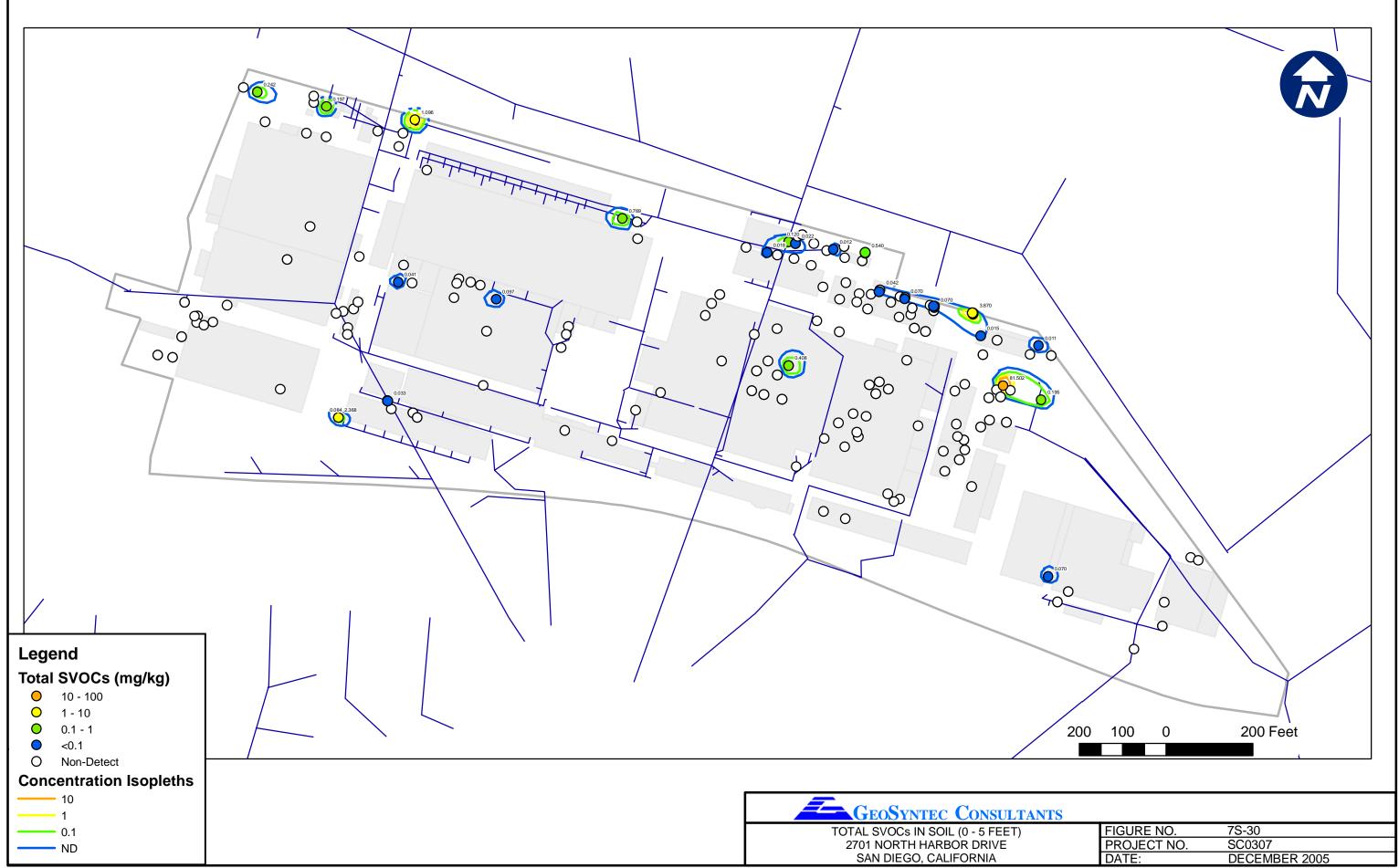


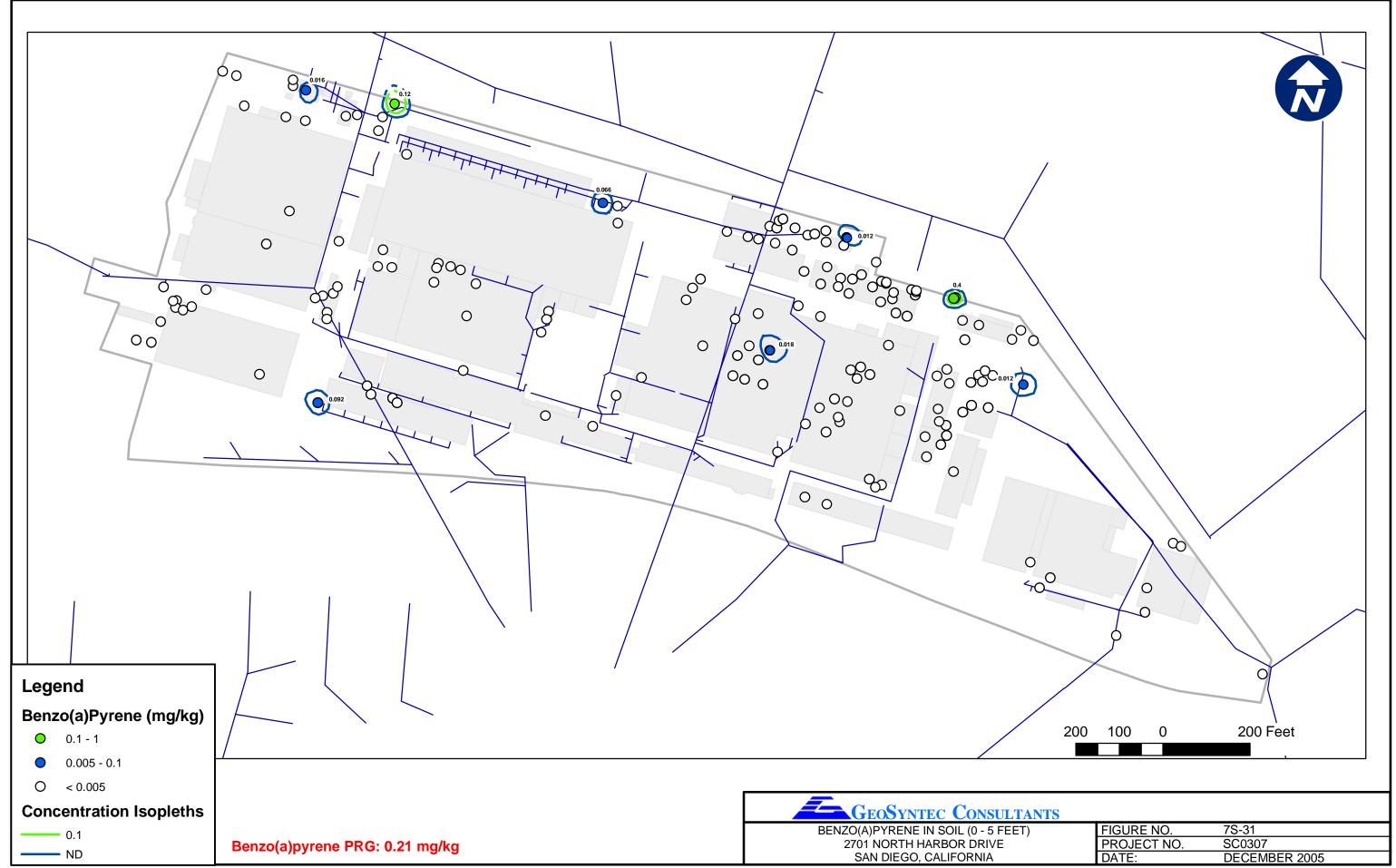


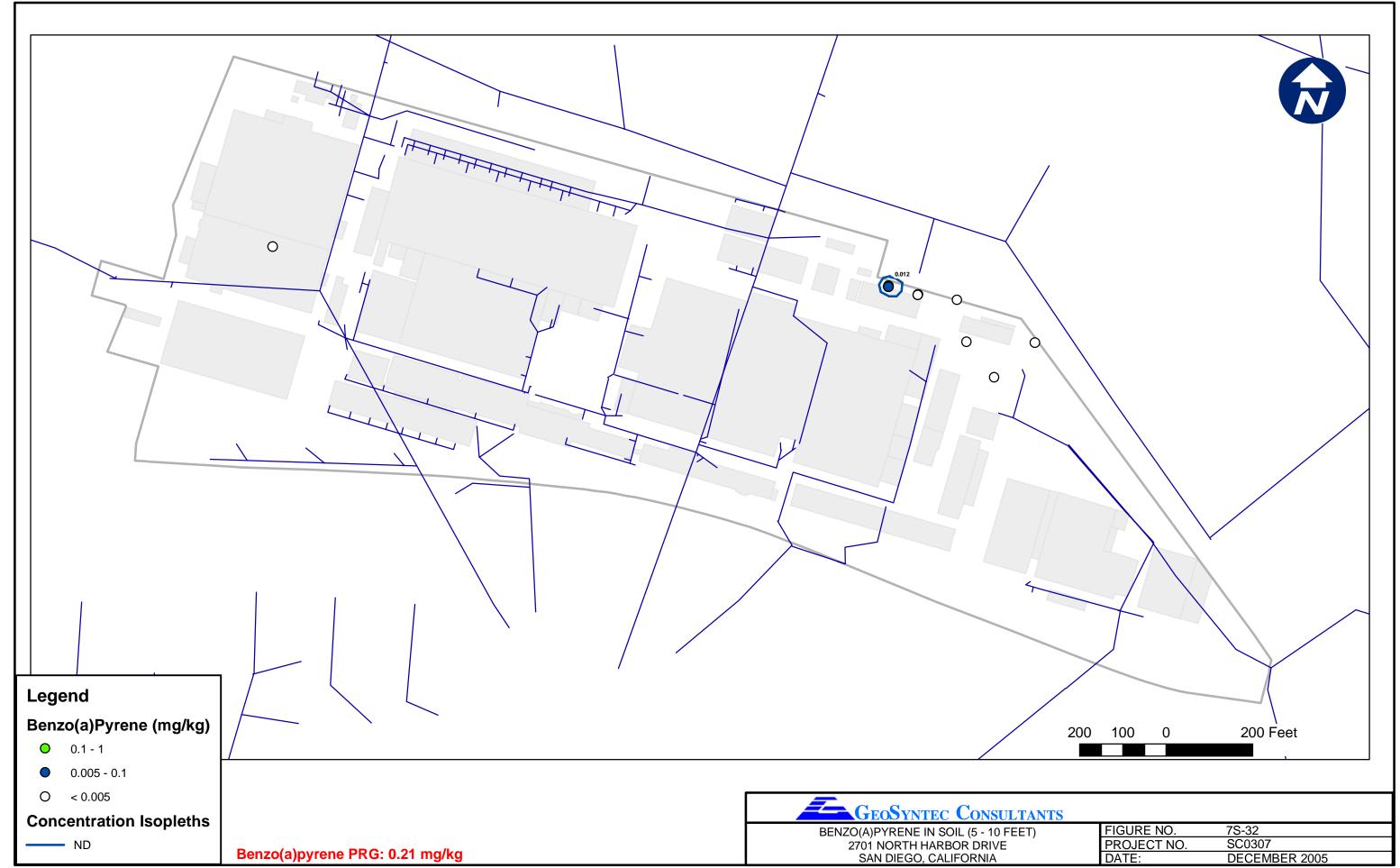


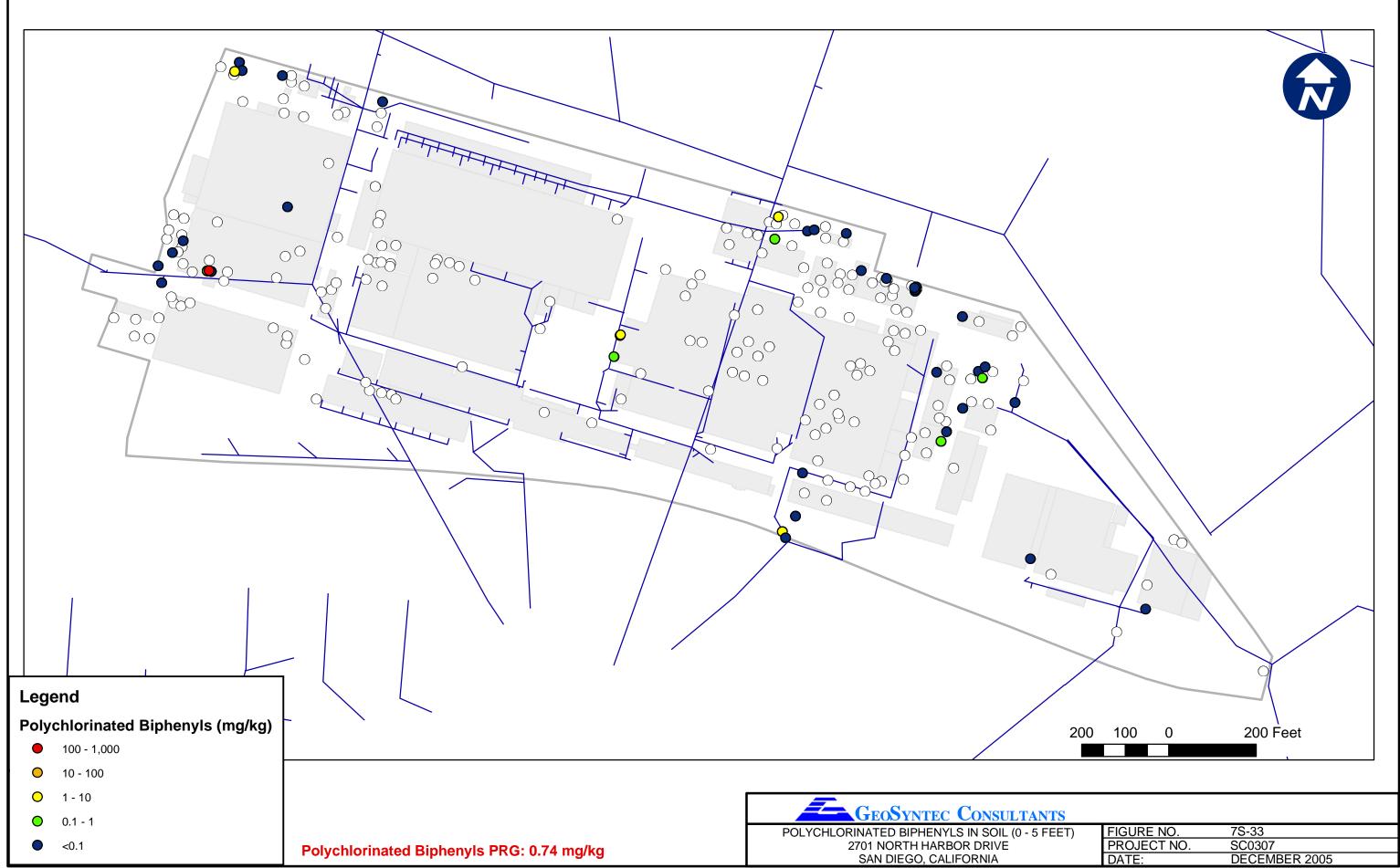


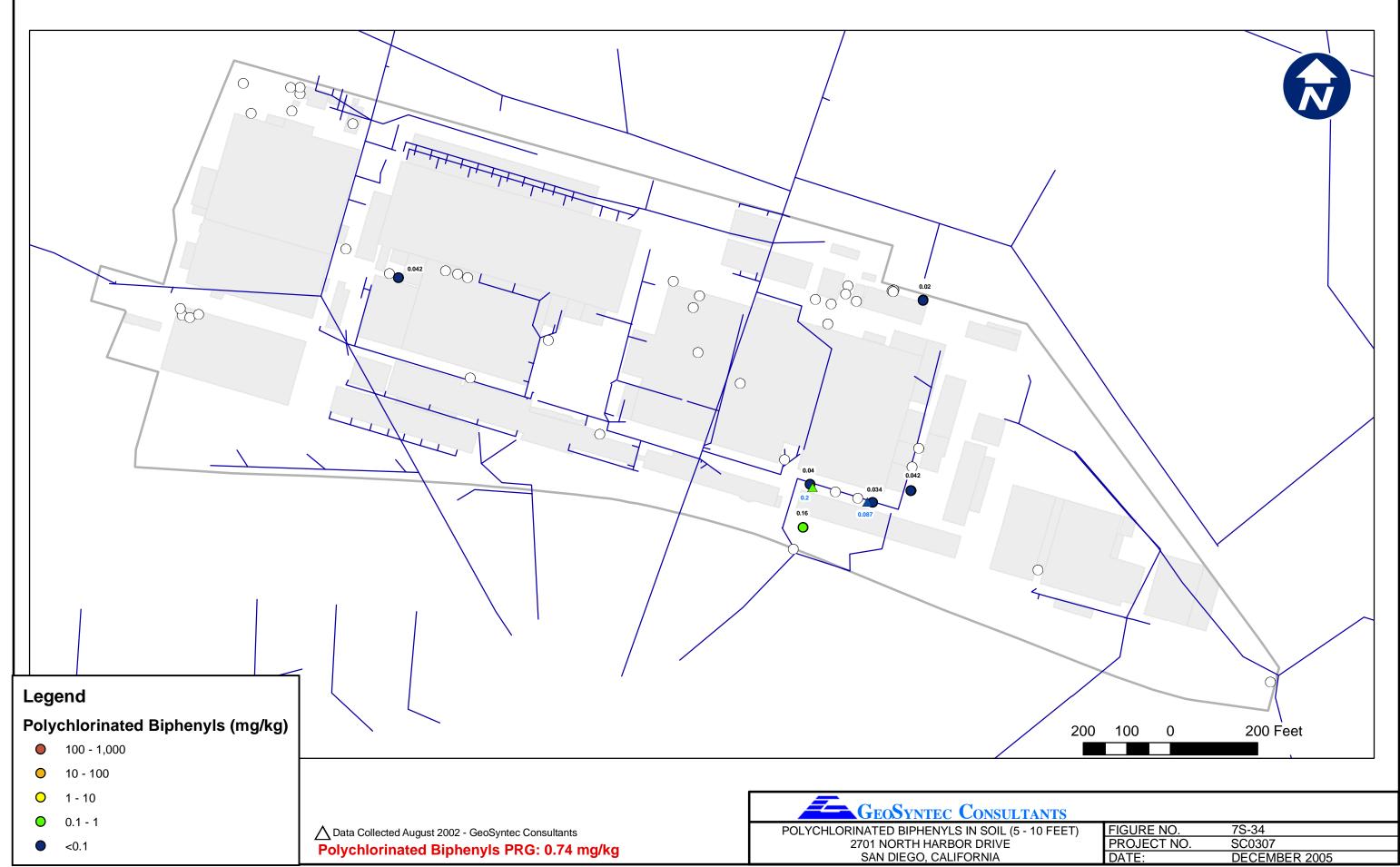


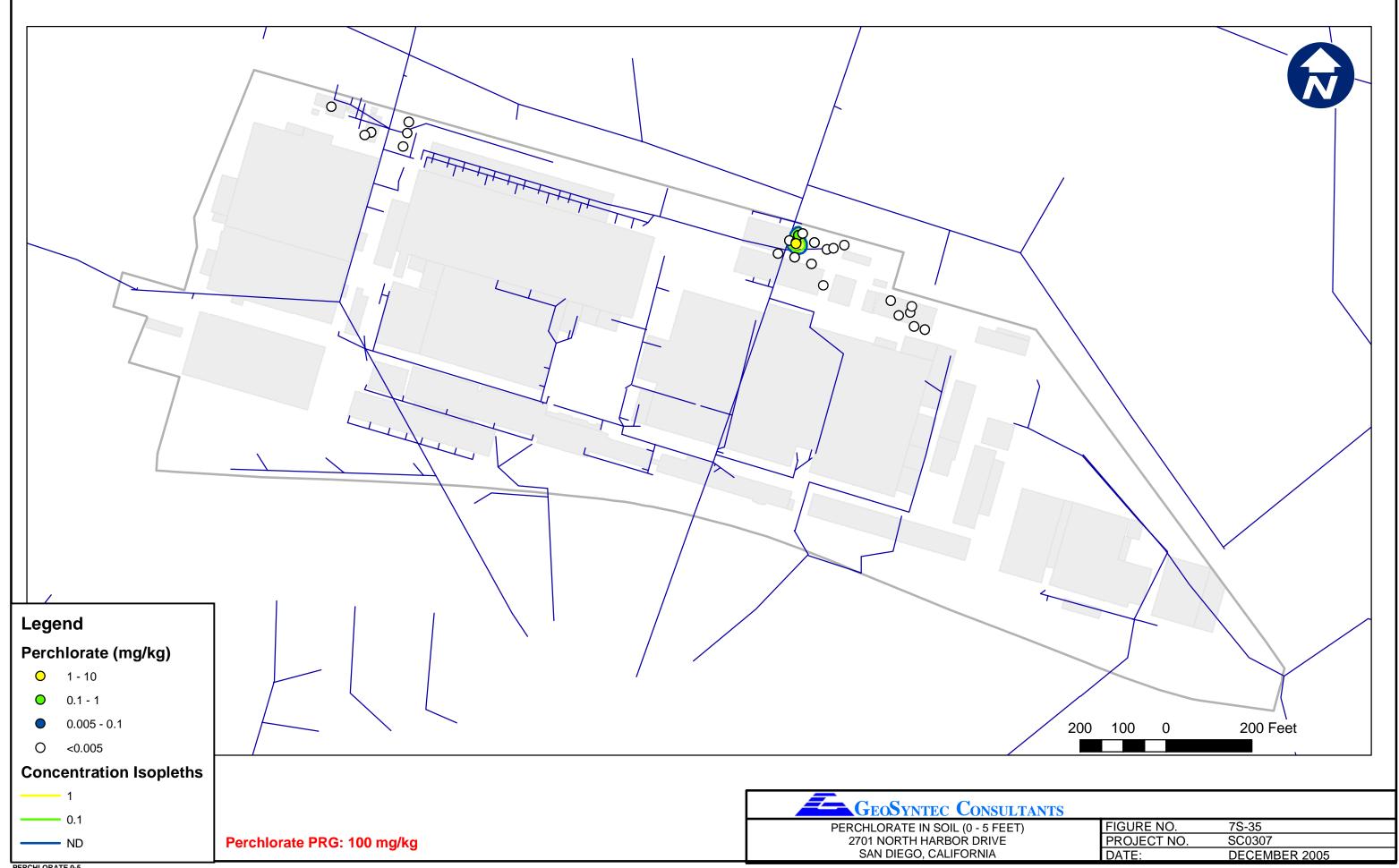


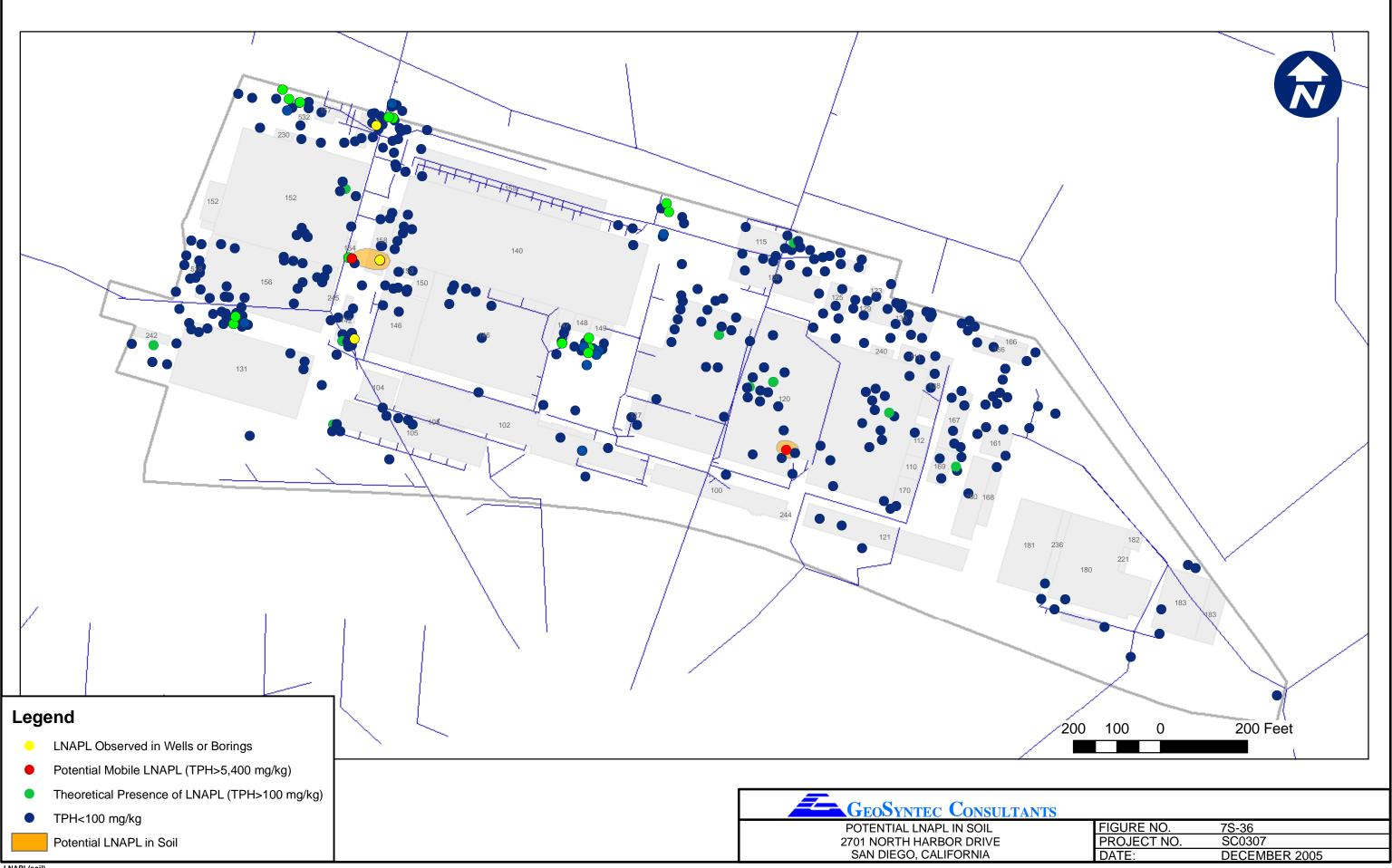


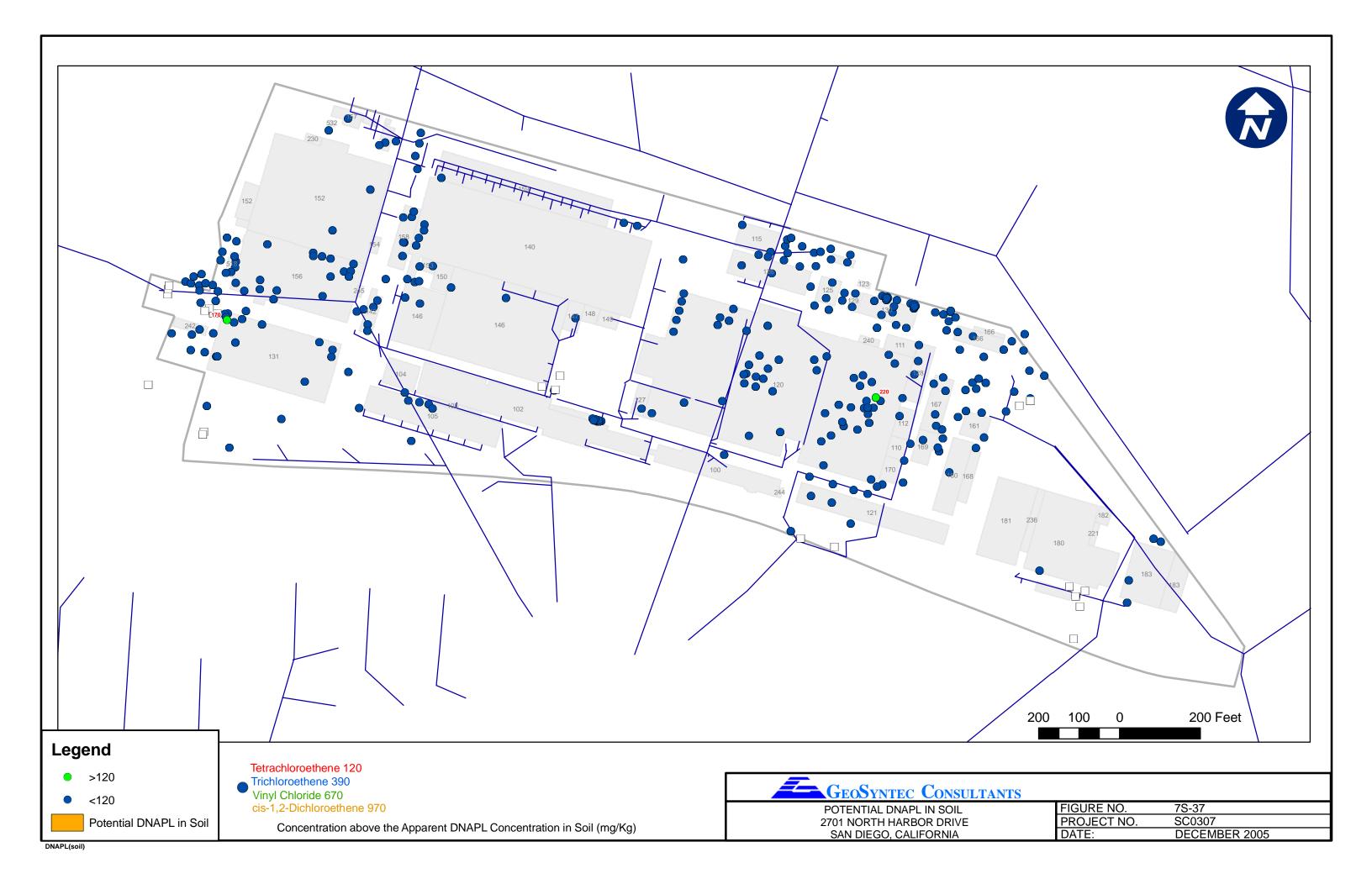


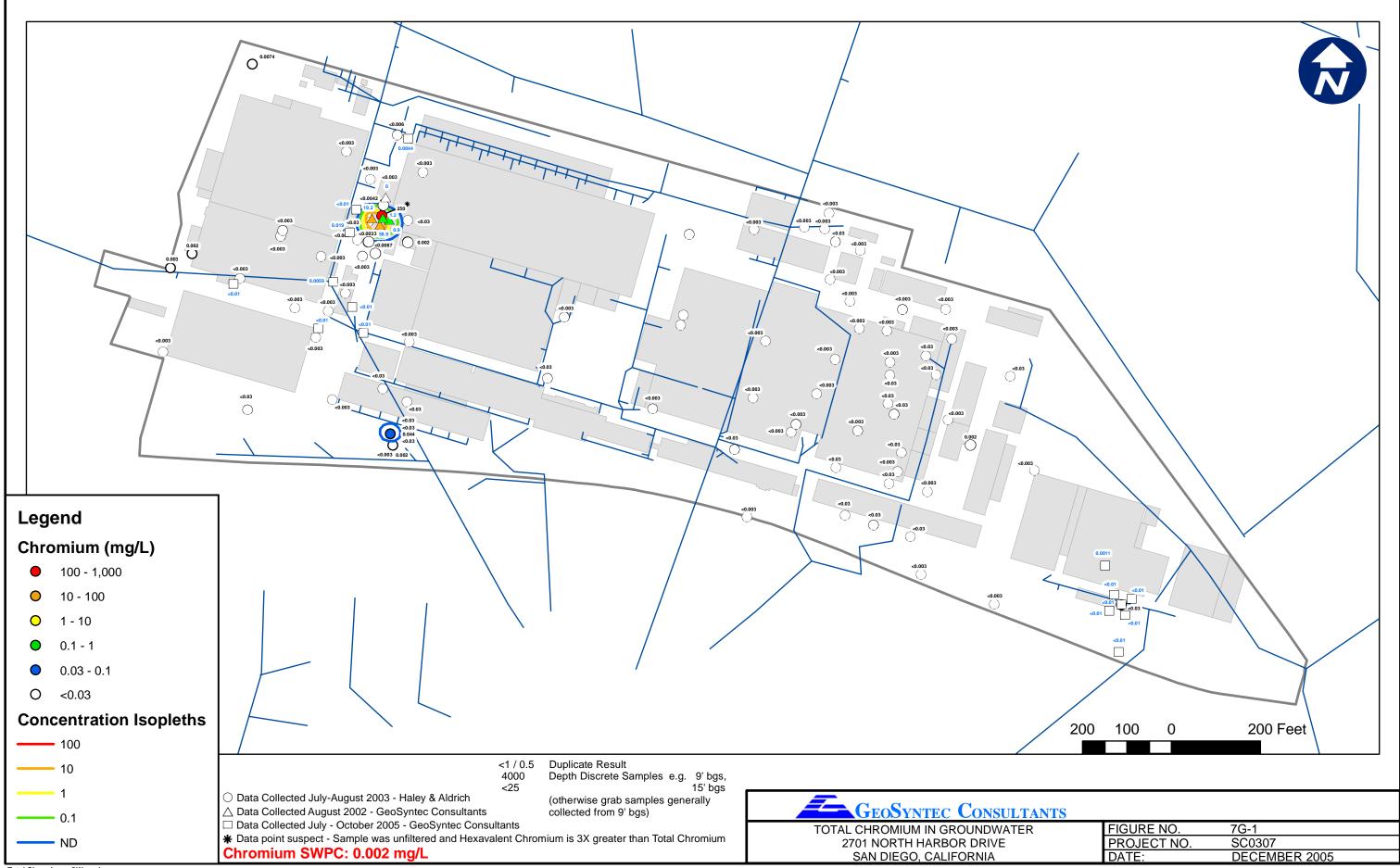


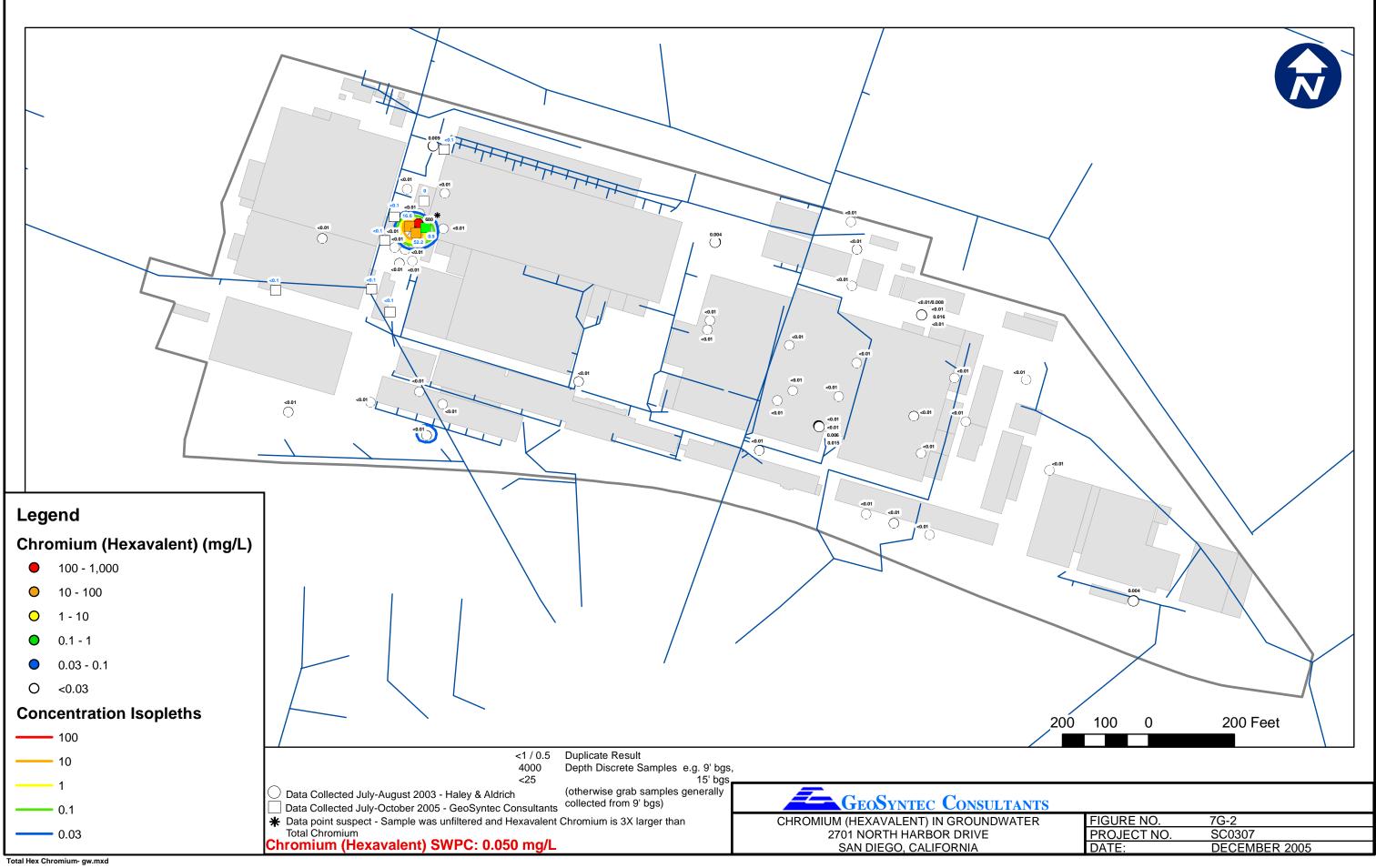


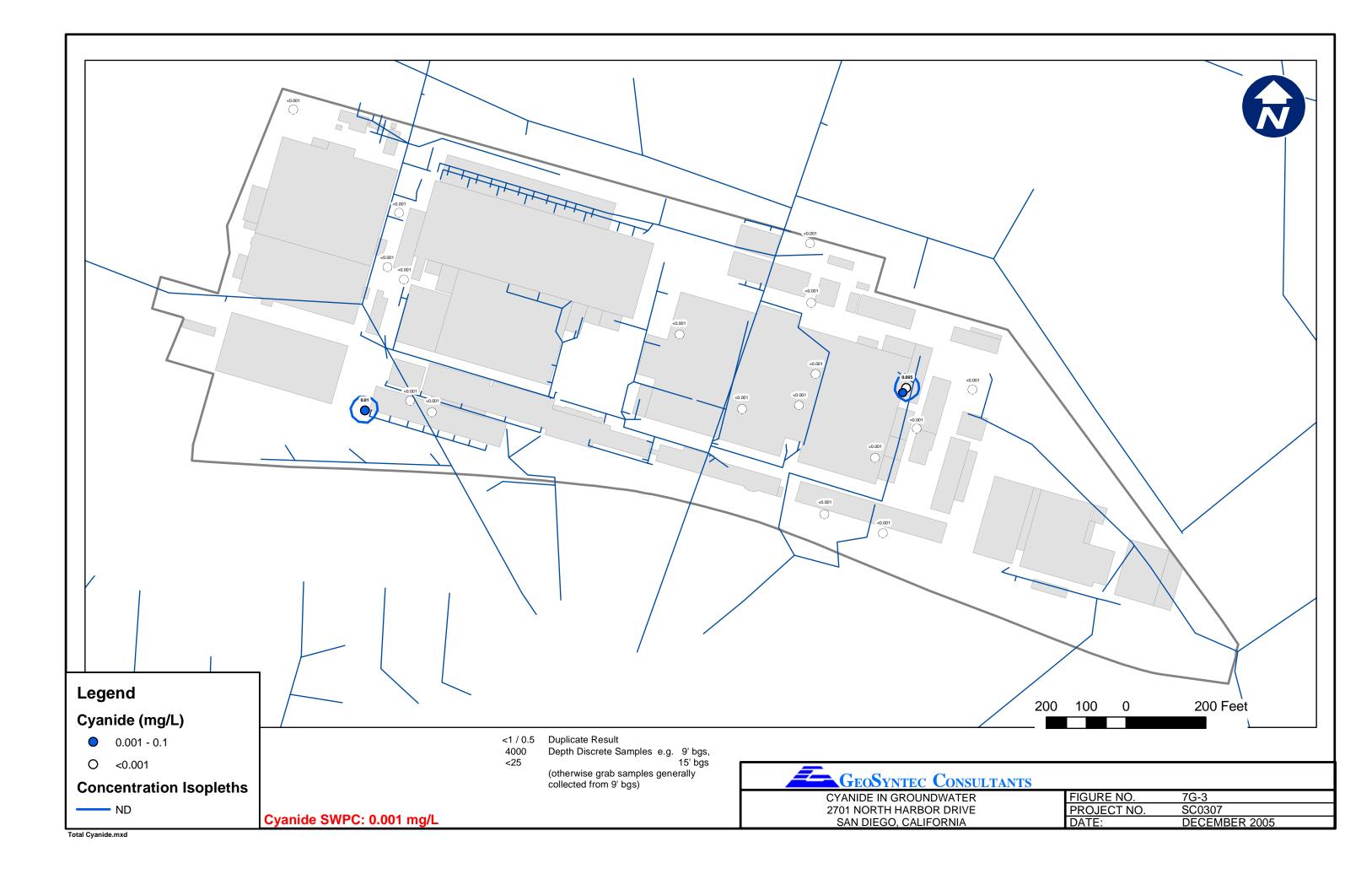


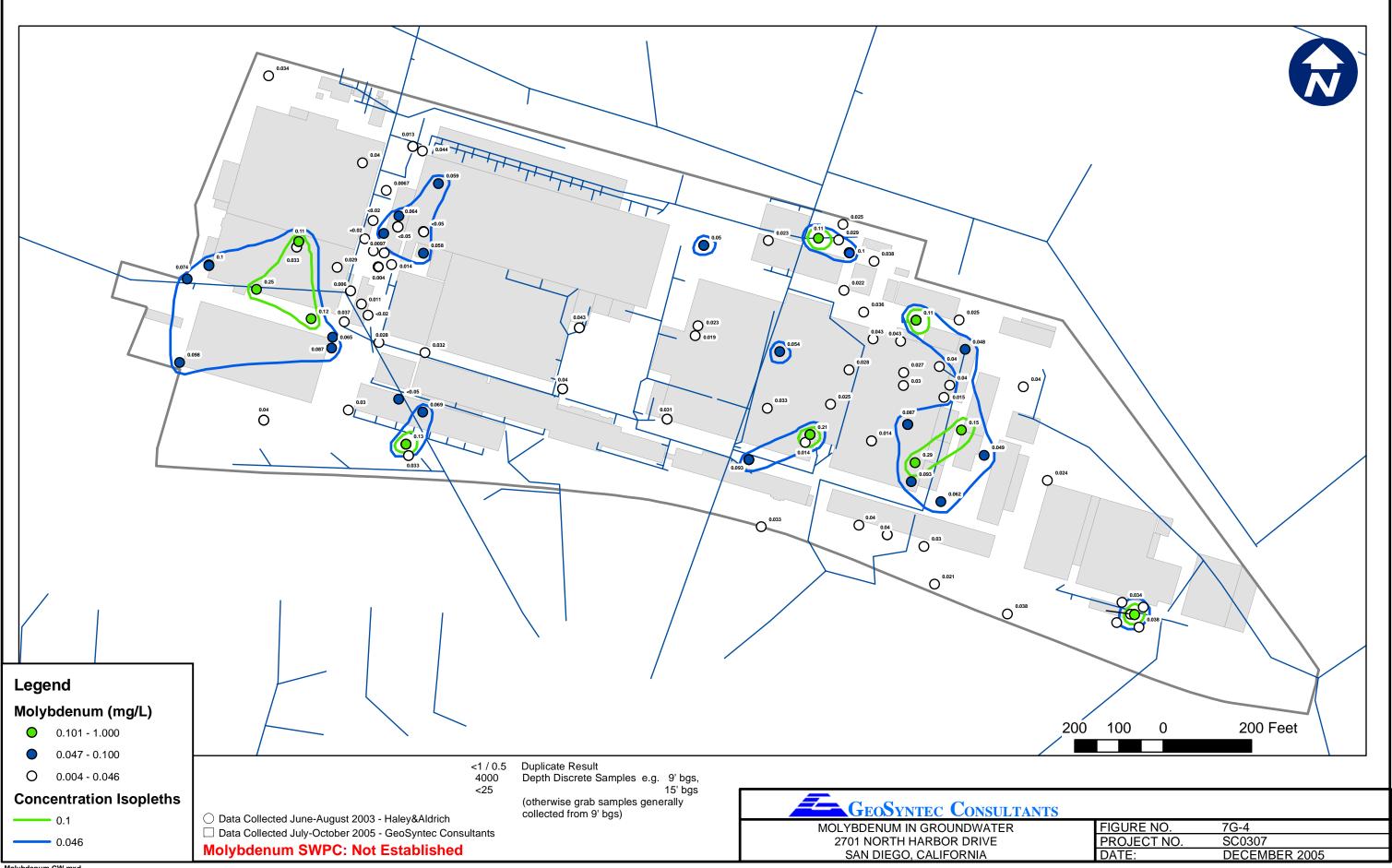


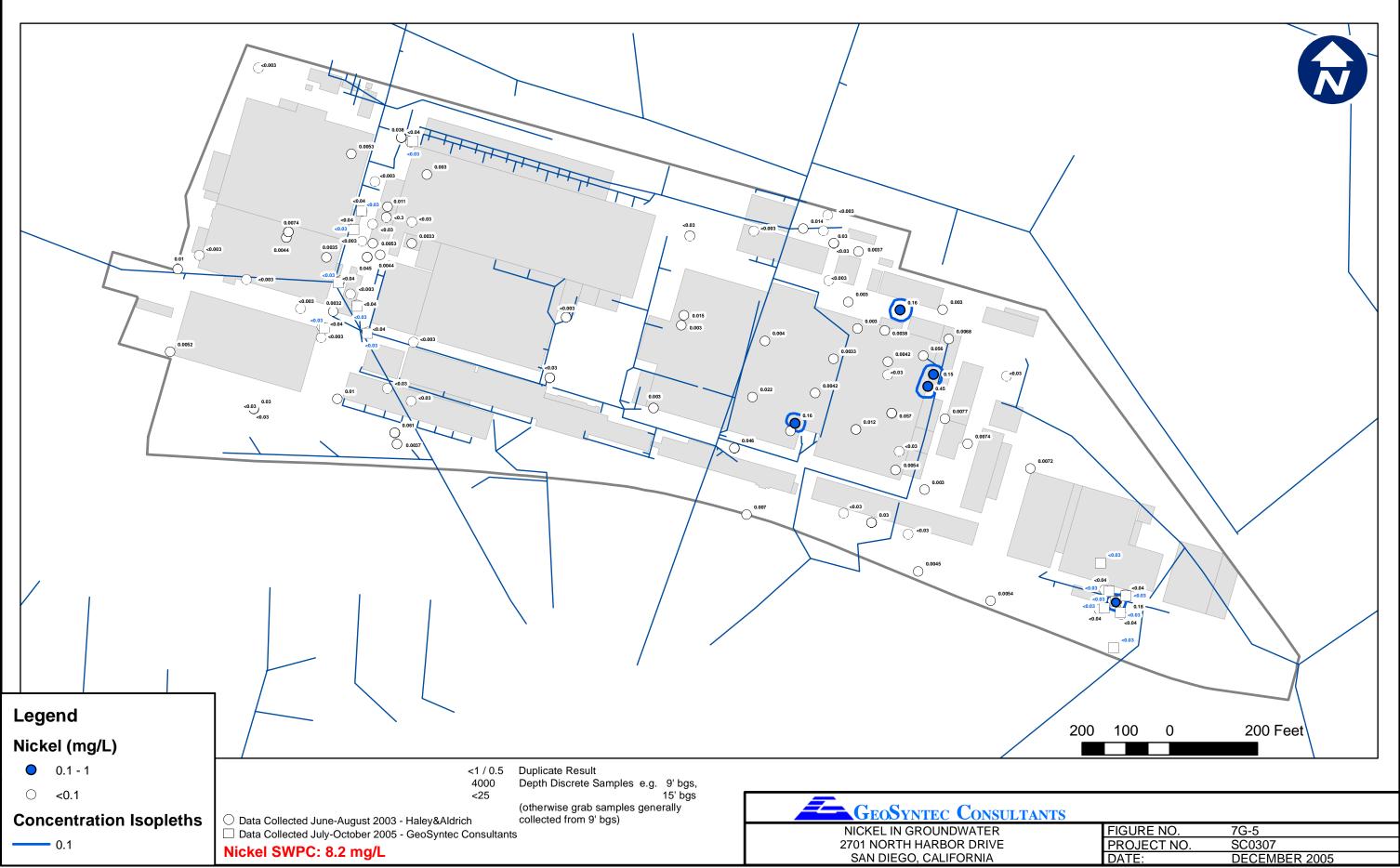


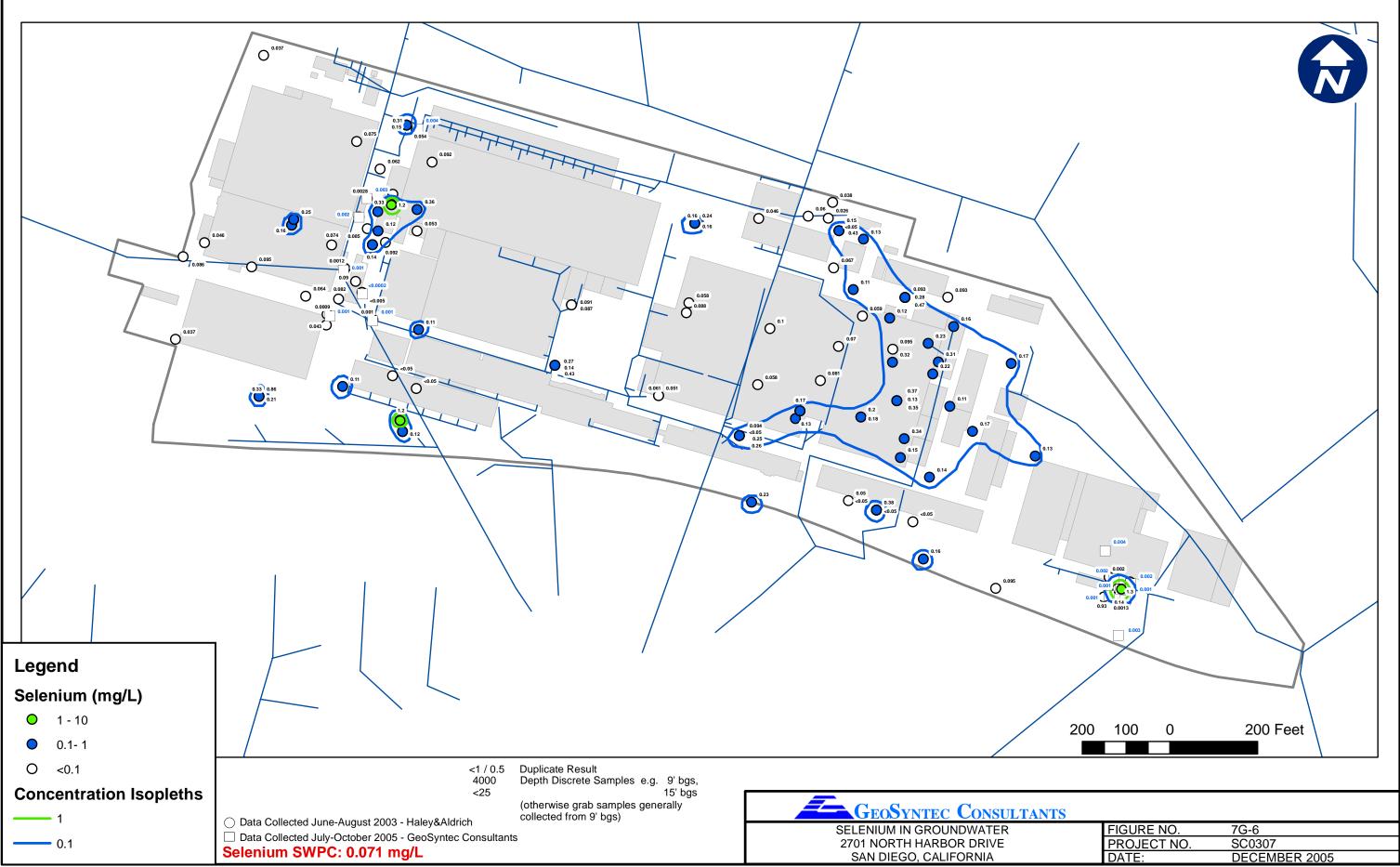


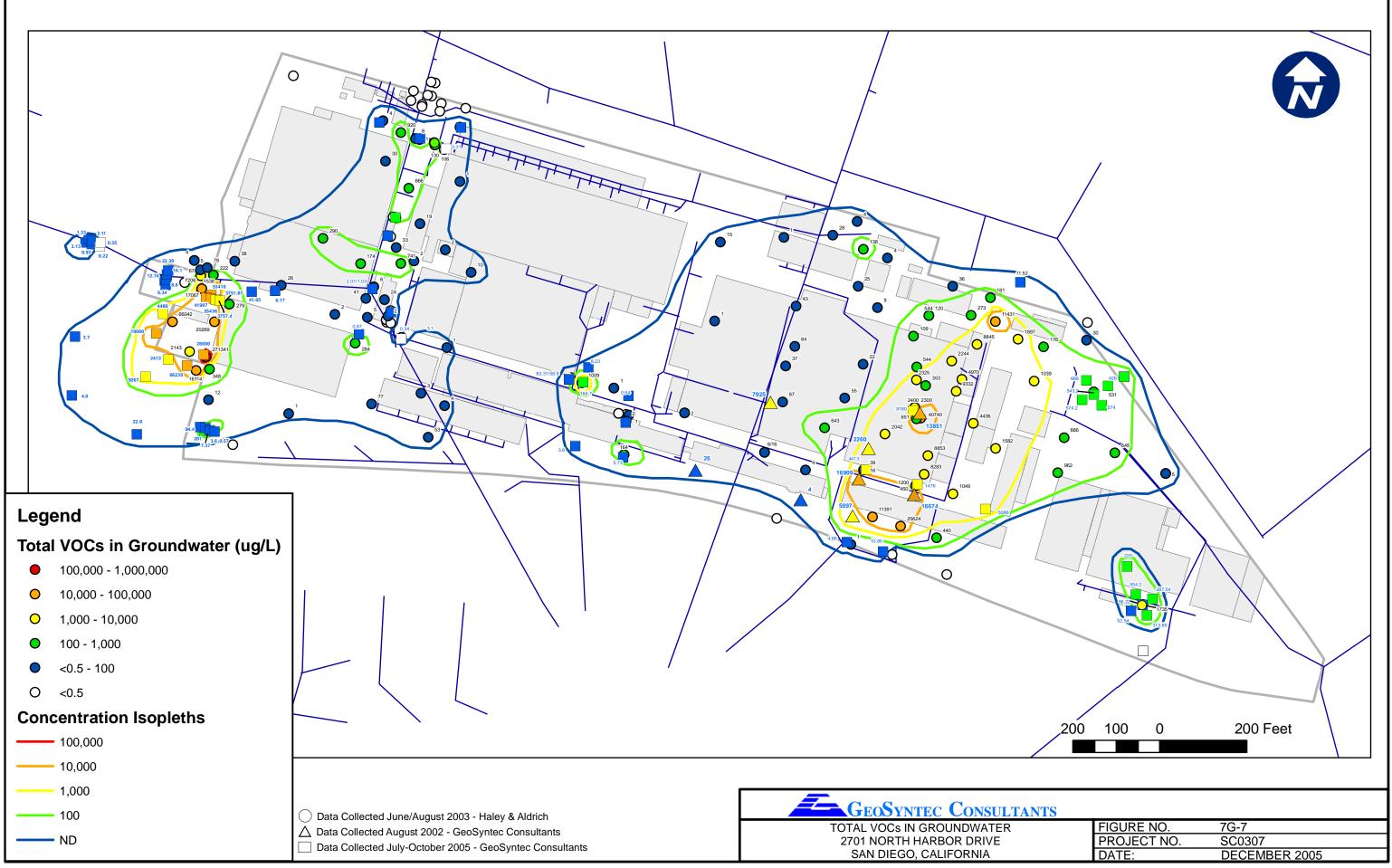


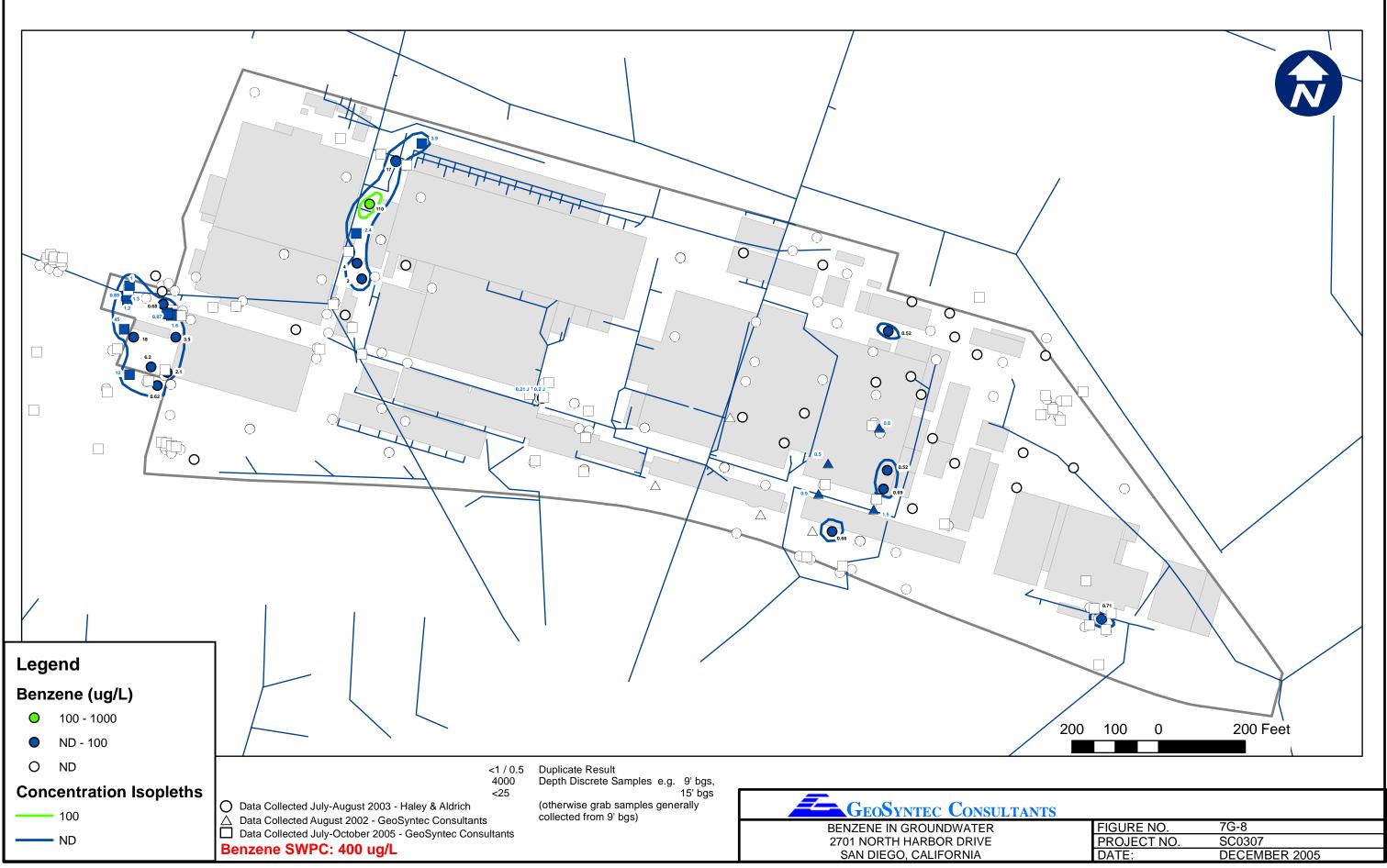

LNAPL(soil)

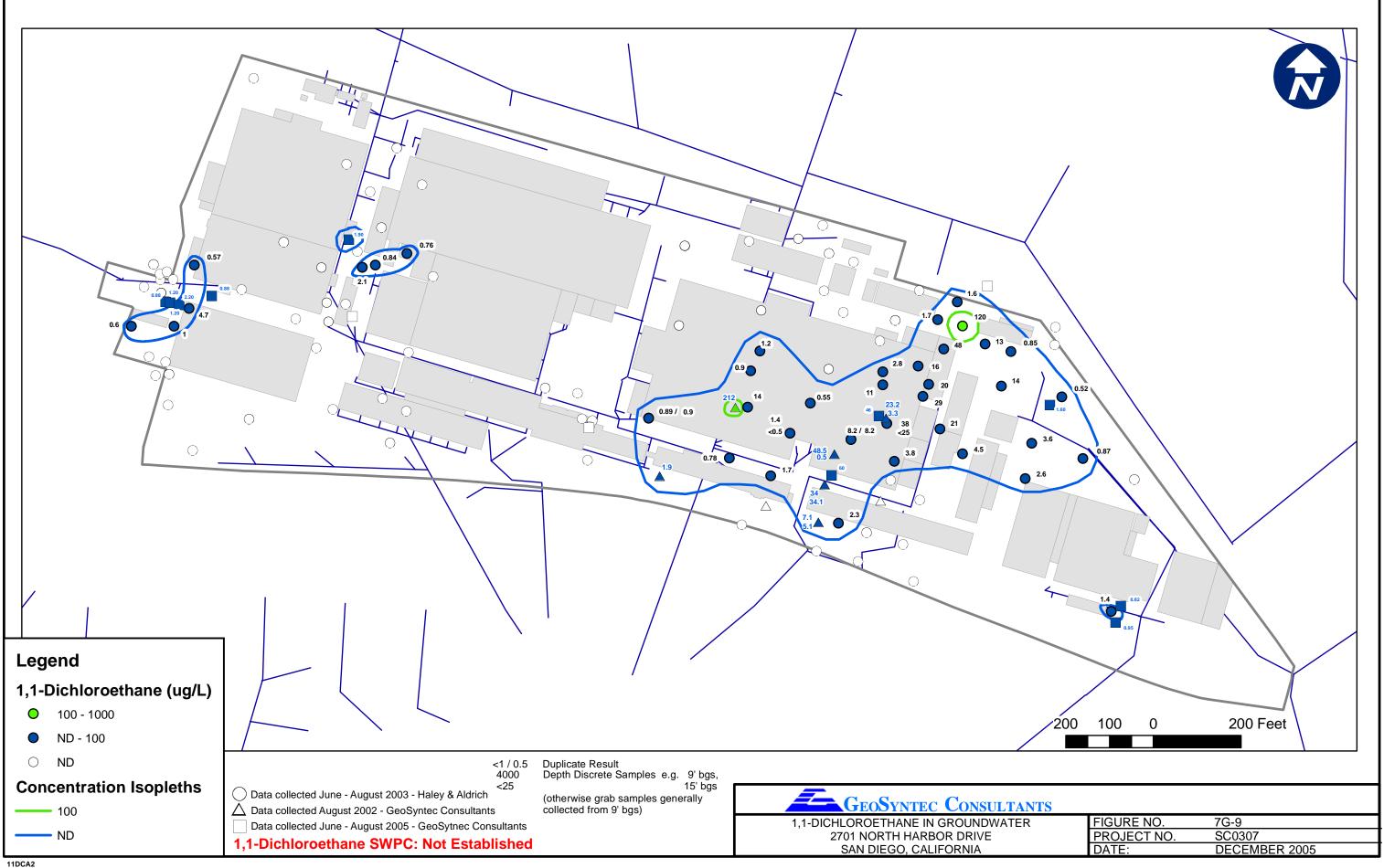


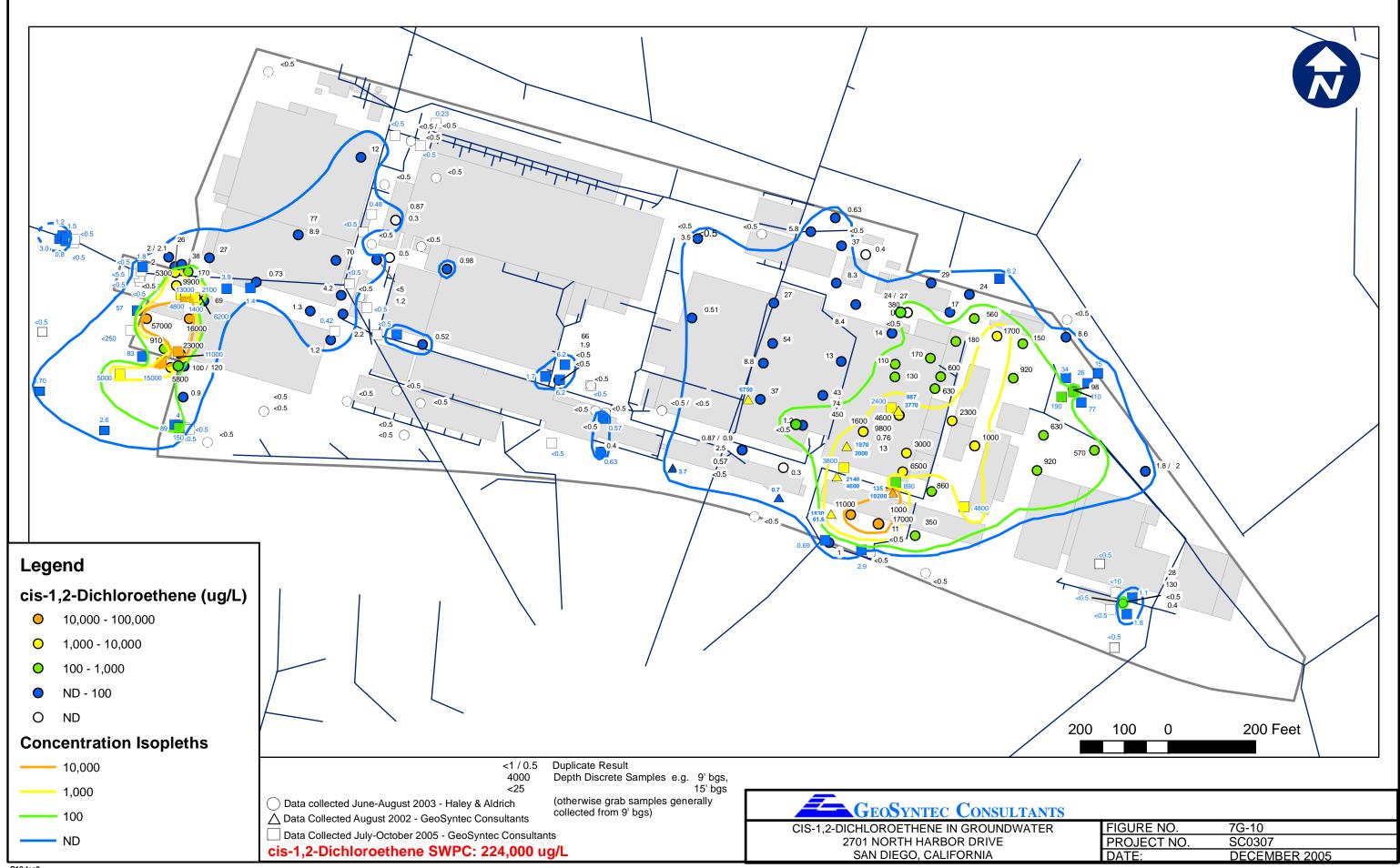


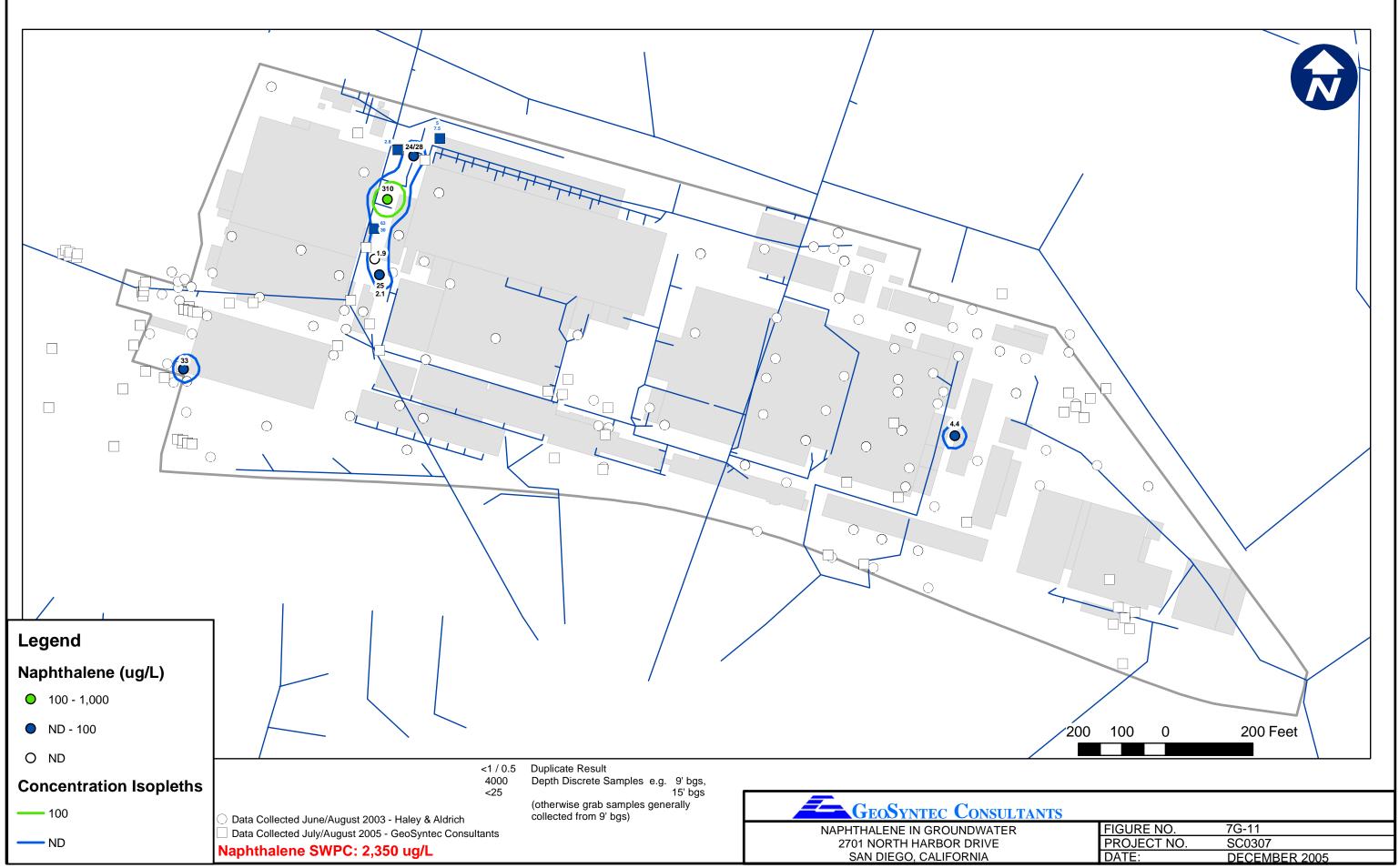

Total Chromium - GW.mxd

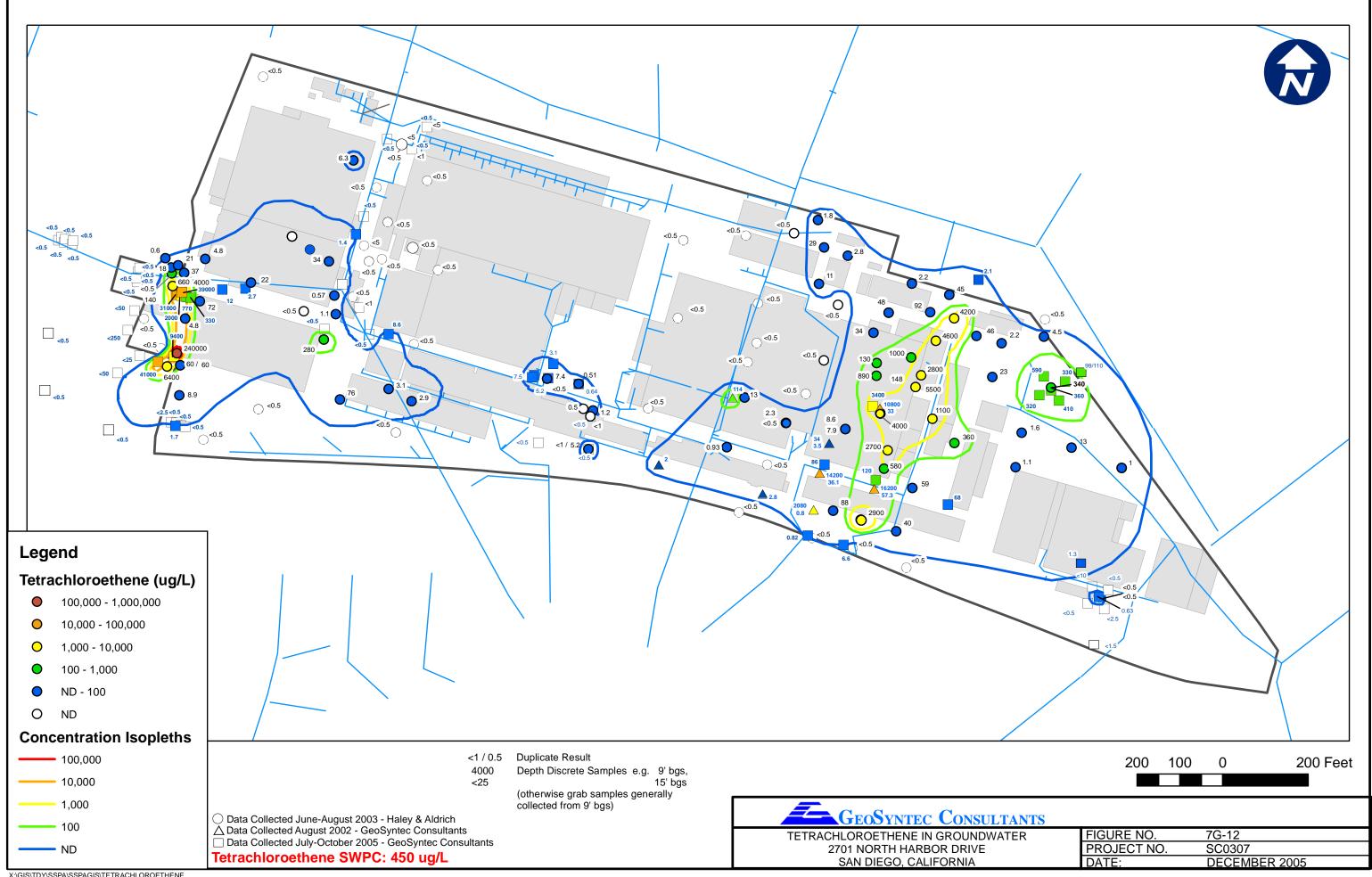


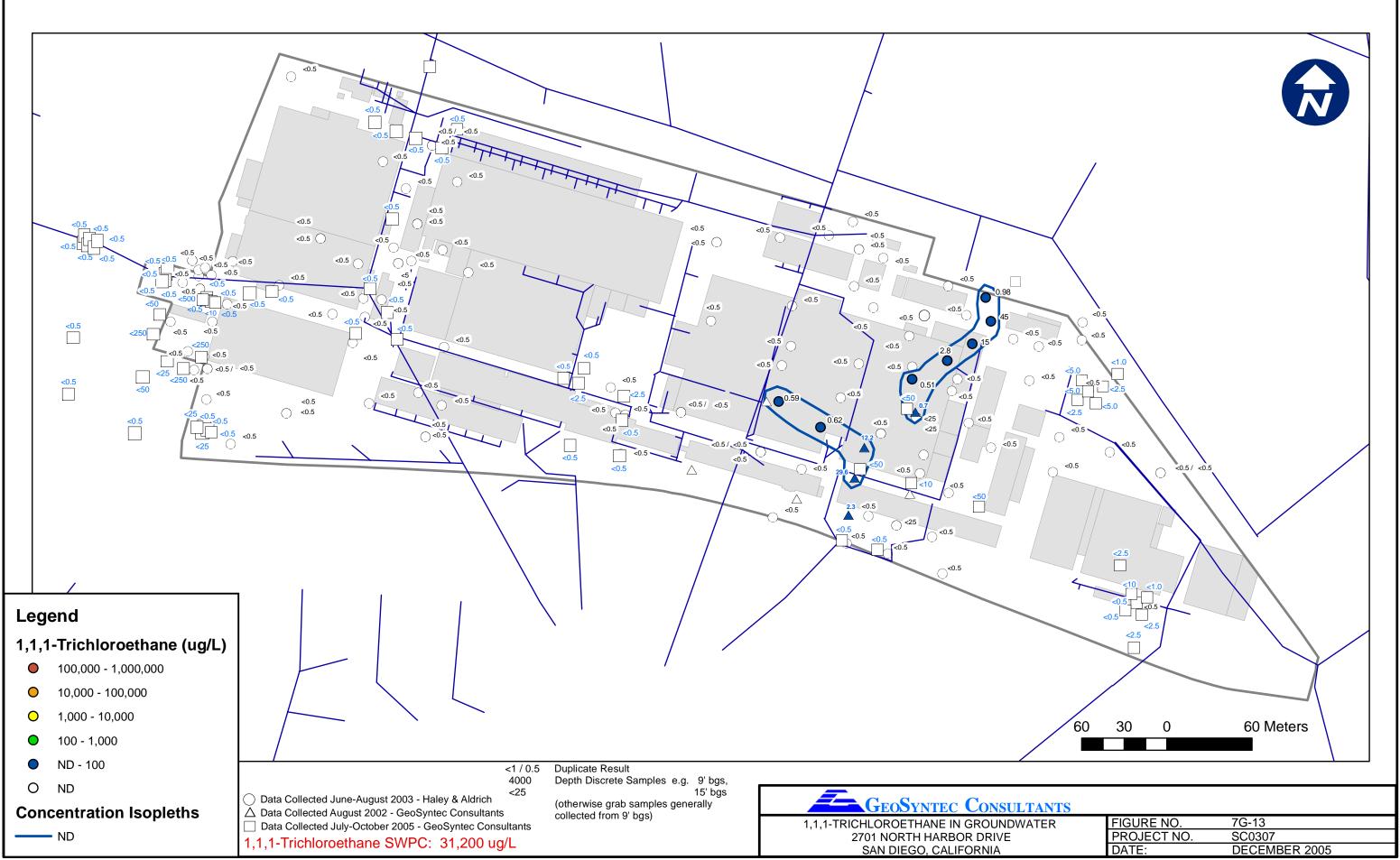


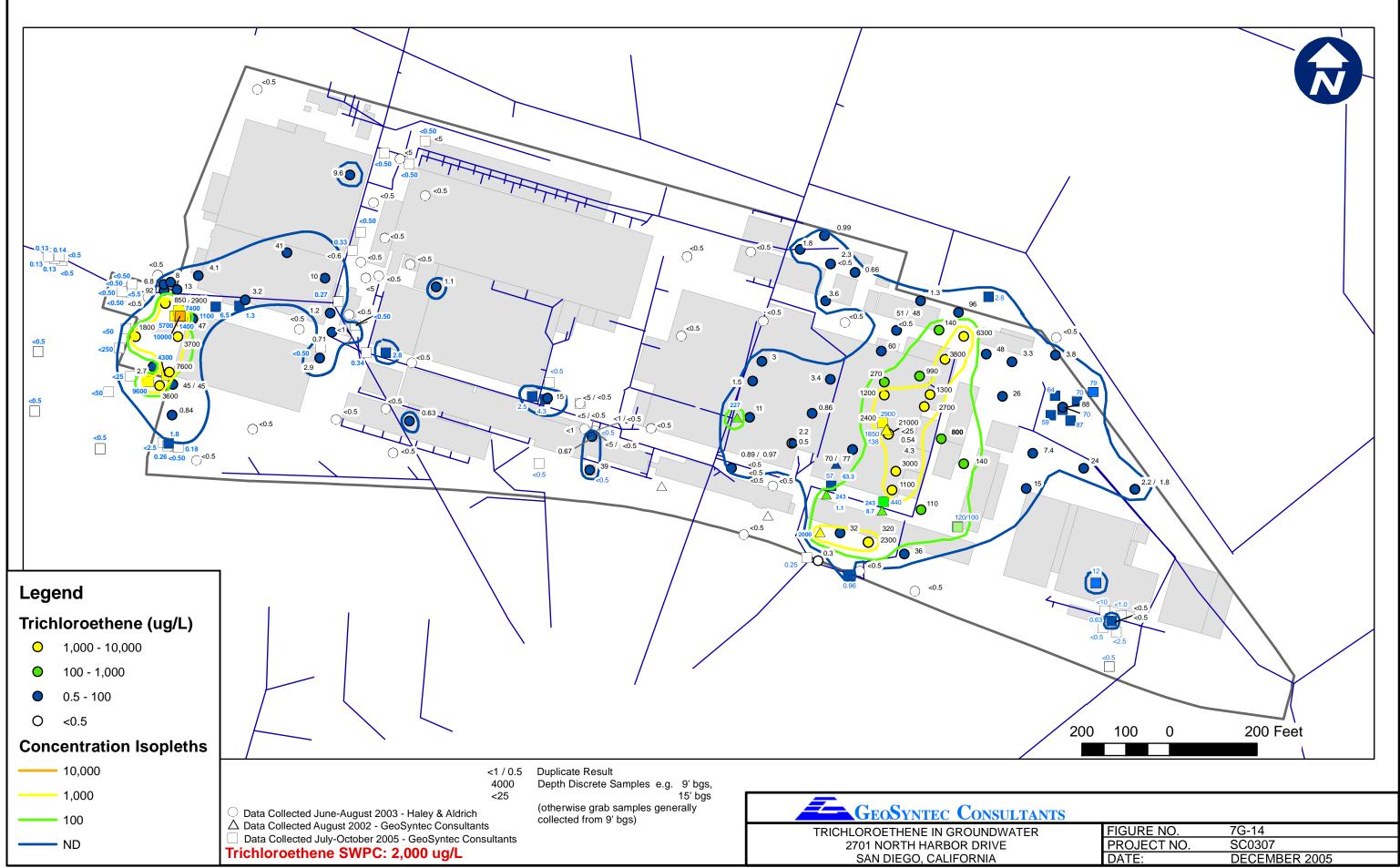


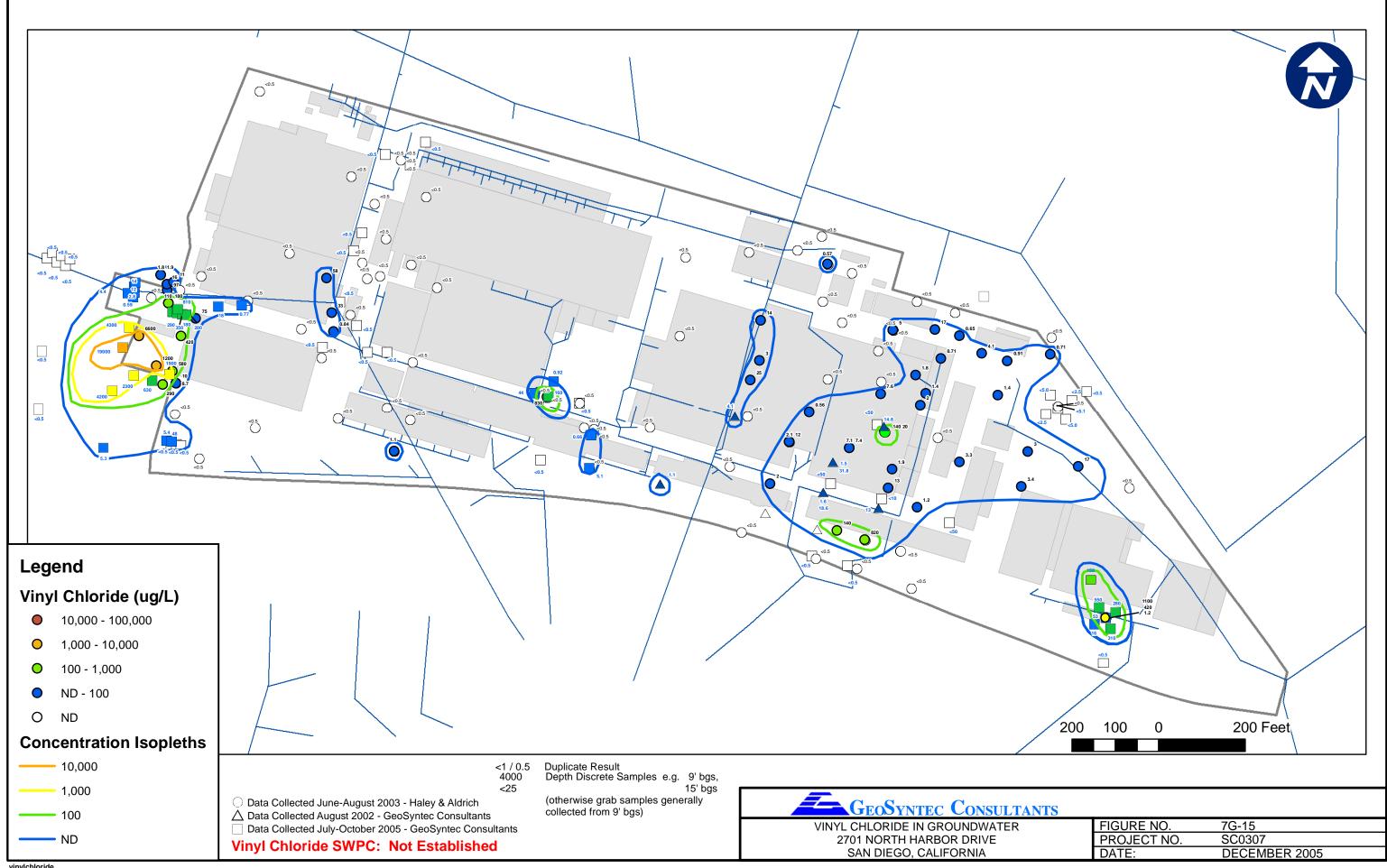


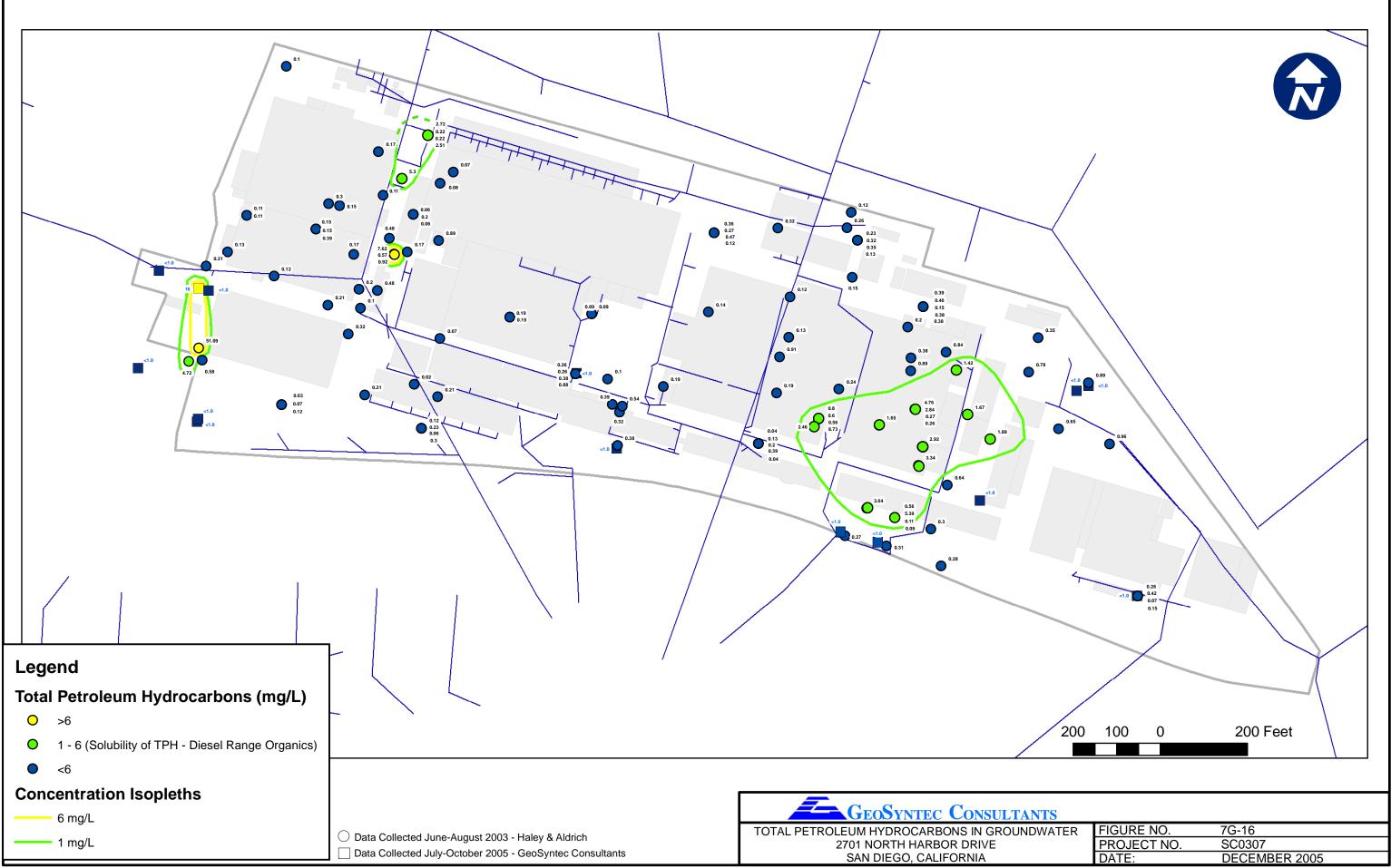


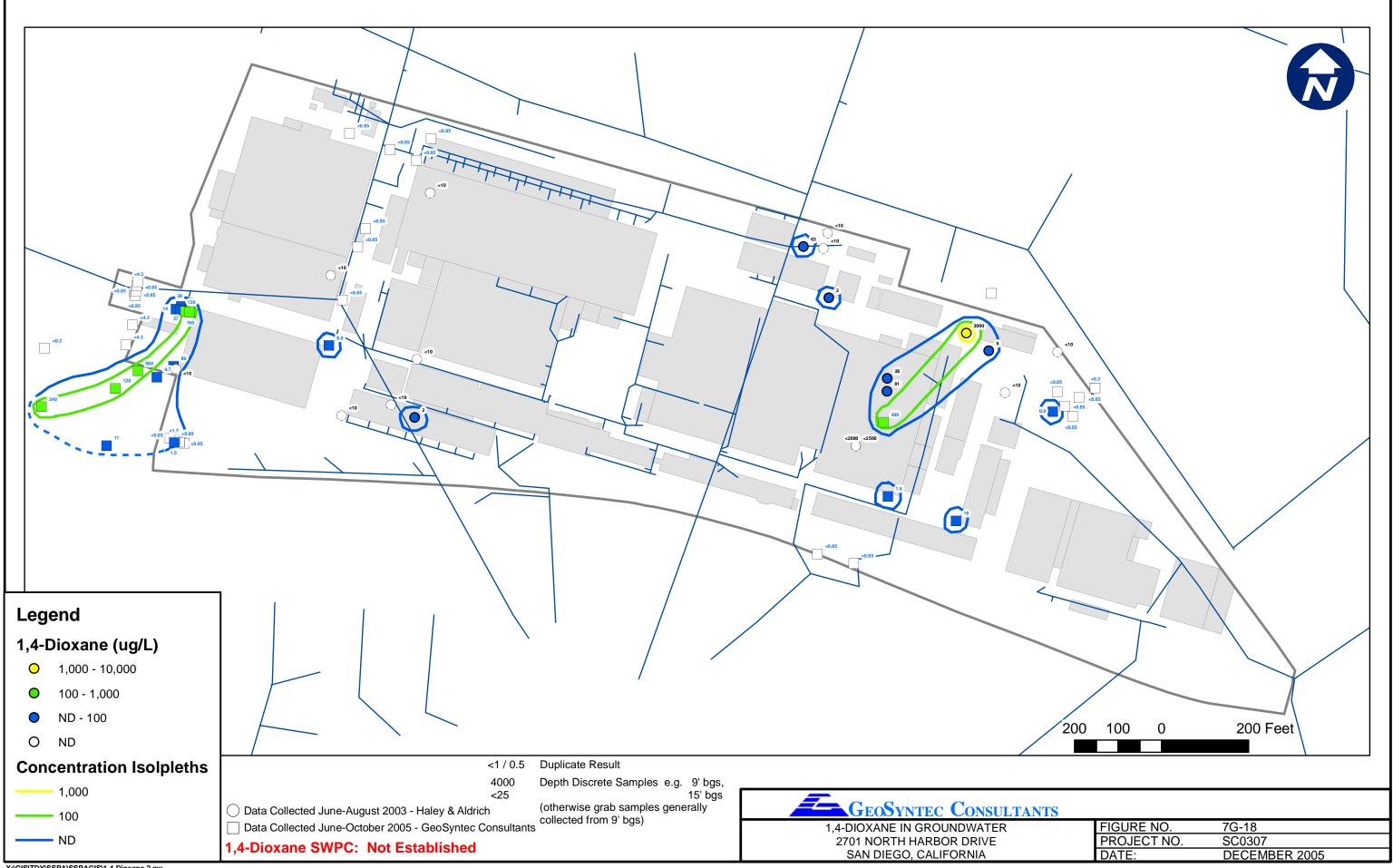


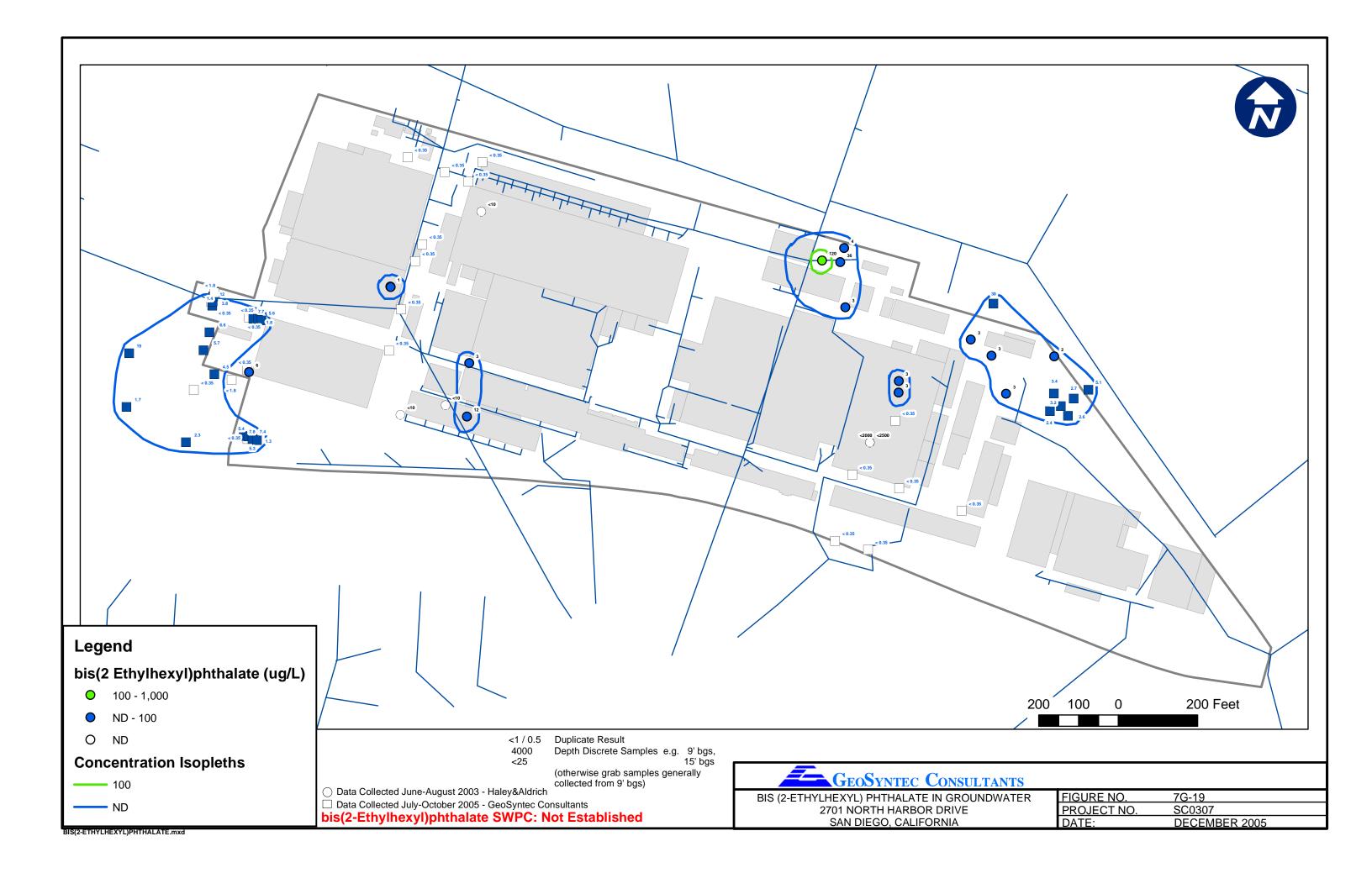


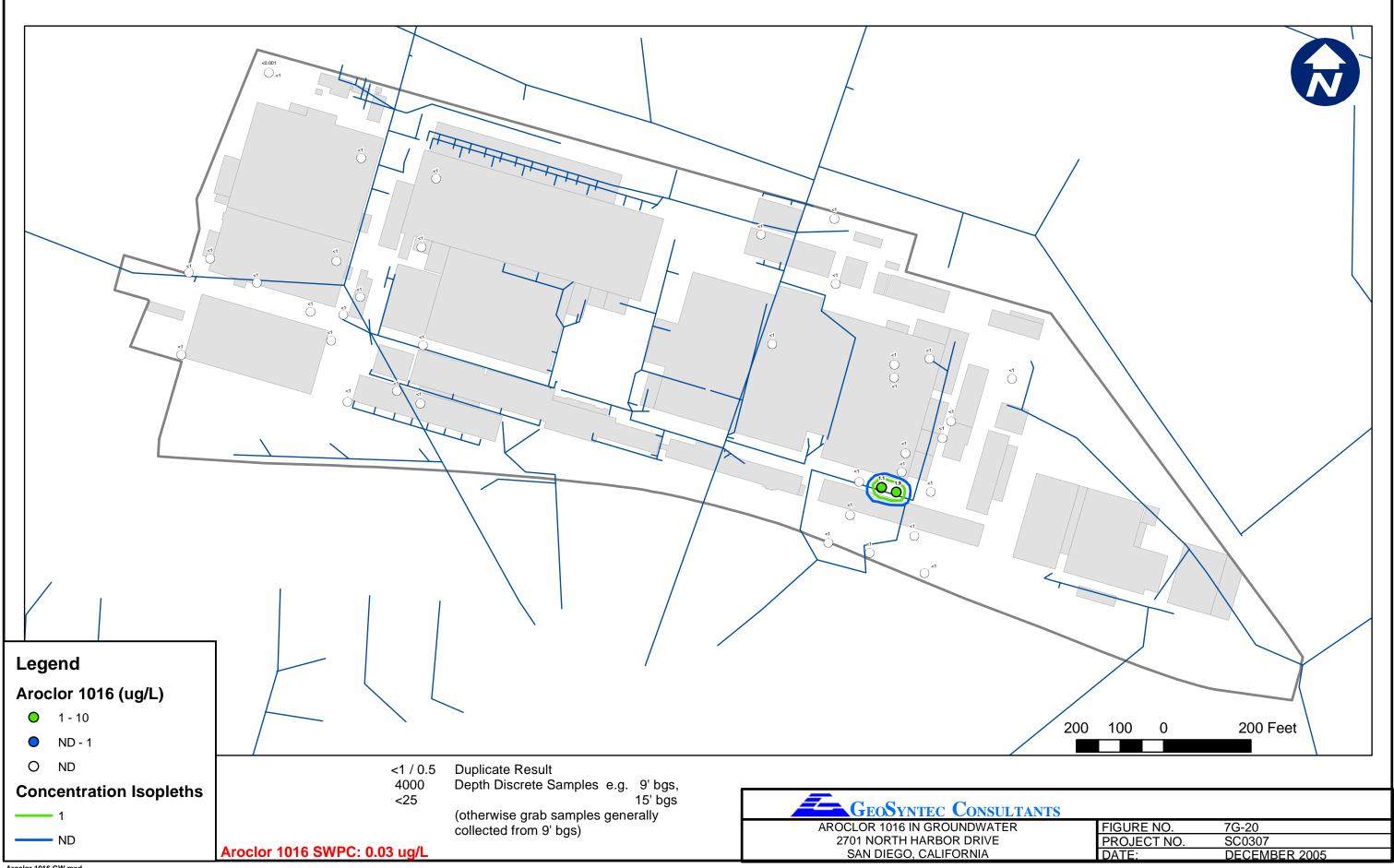


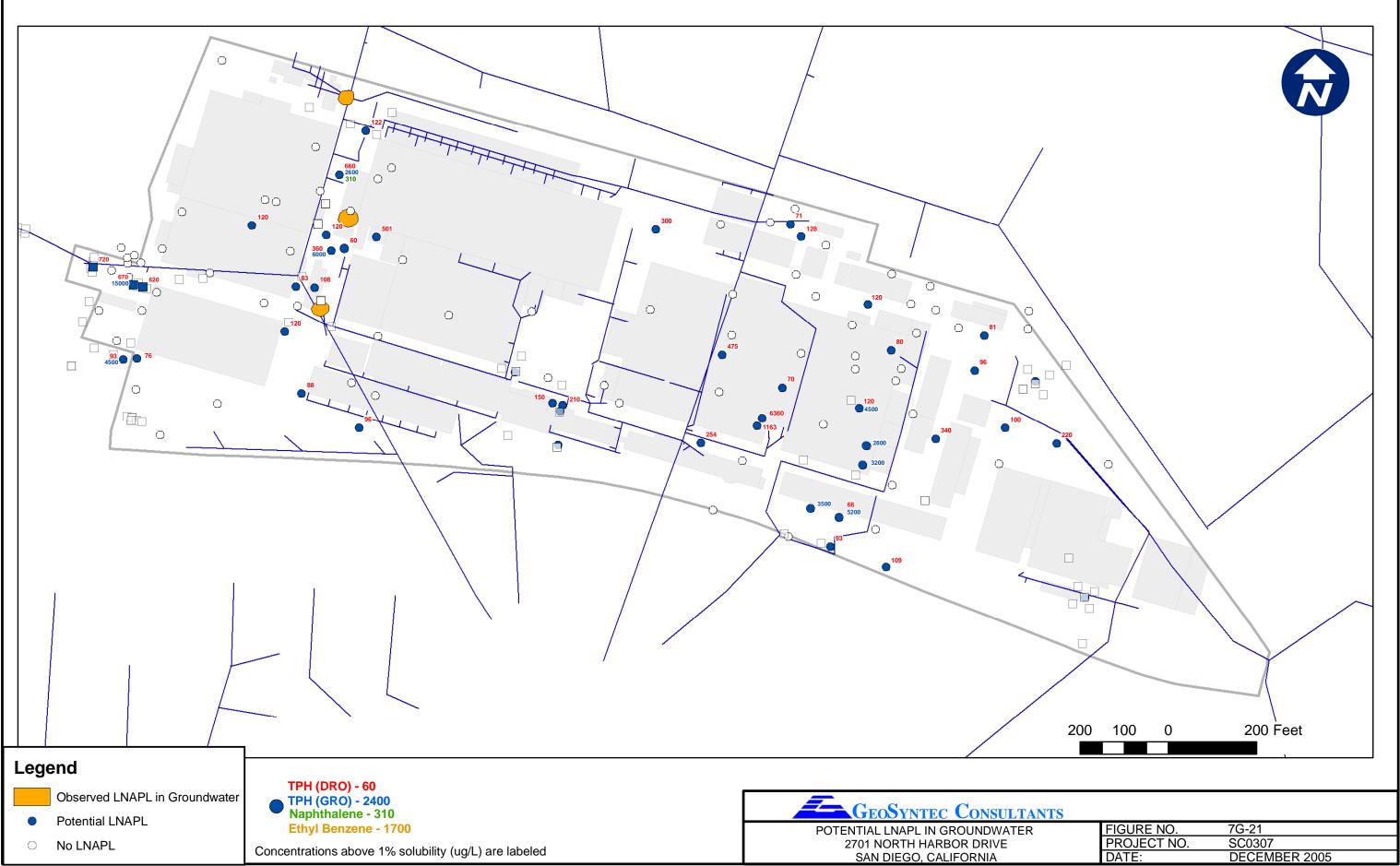




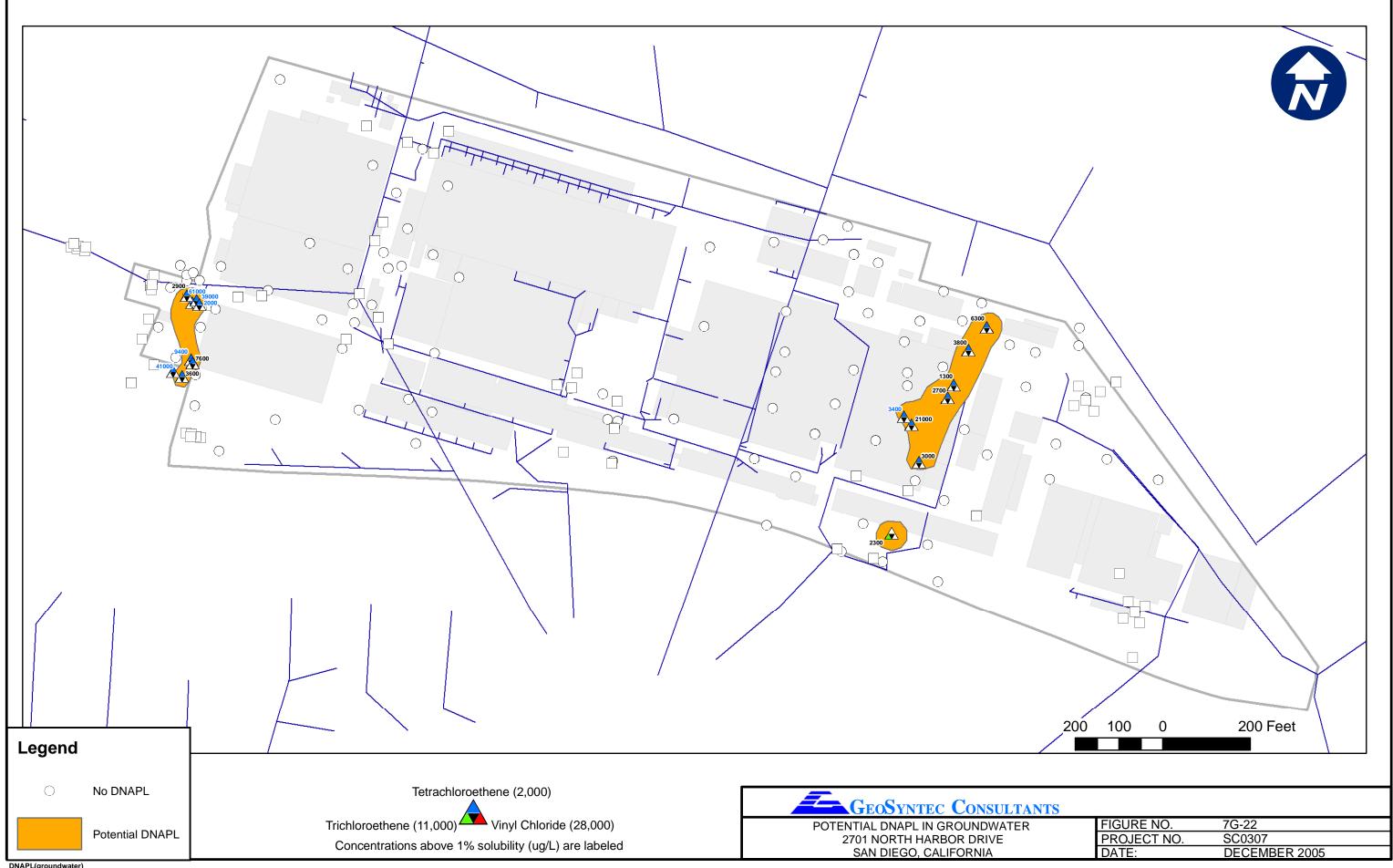

X:\SC0307\SITE CHARACTERIZATION\DATAPLOTS\DATAPLOTS MXD\111TCA

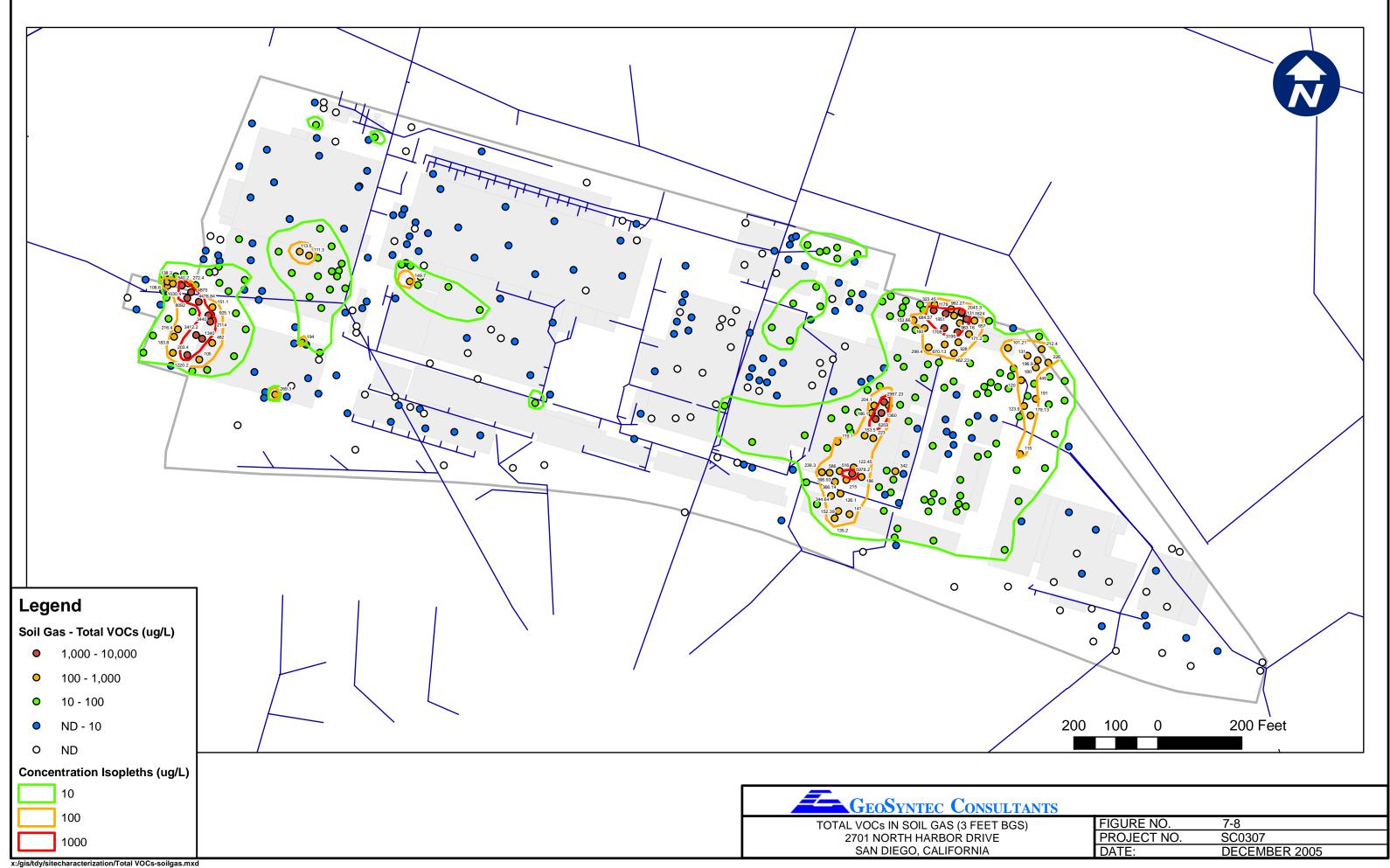


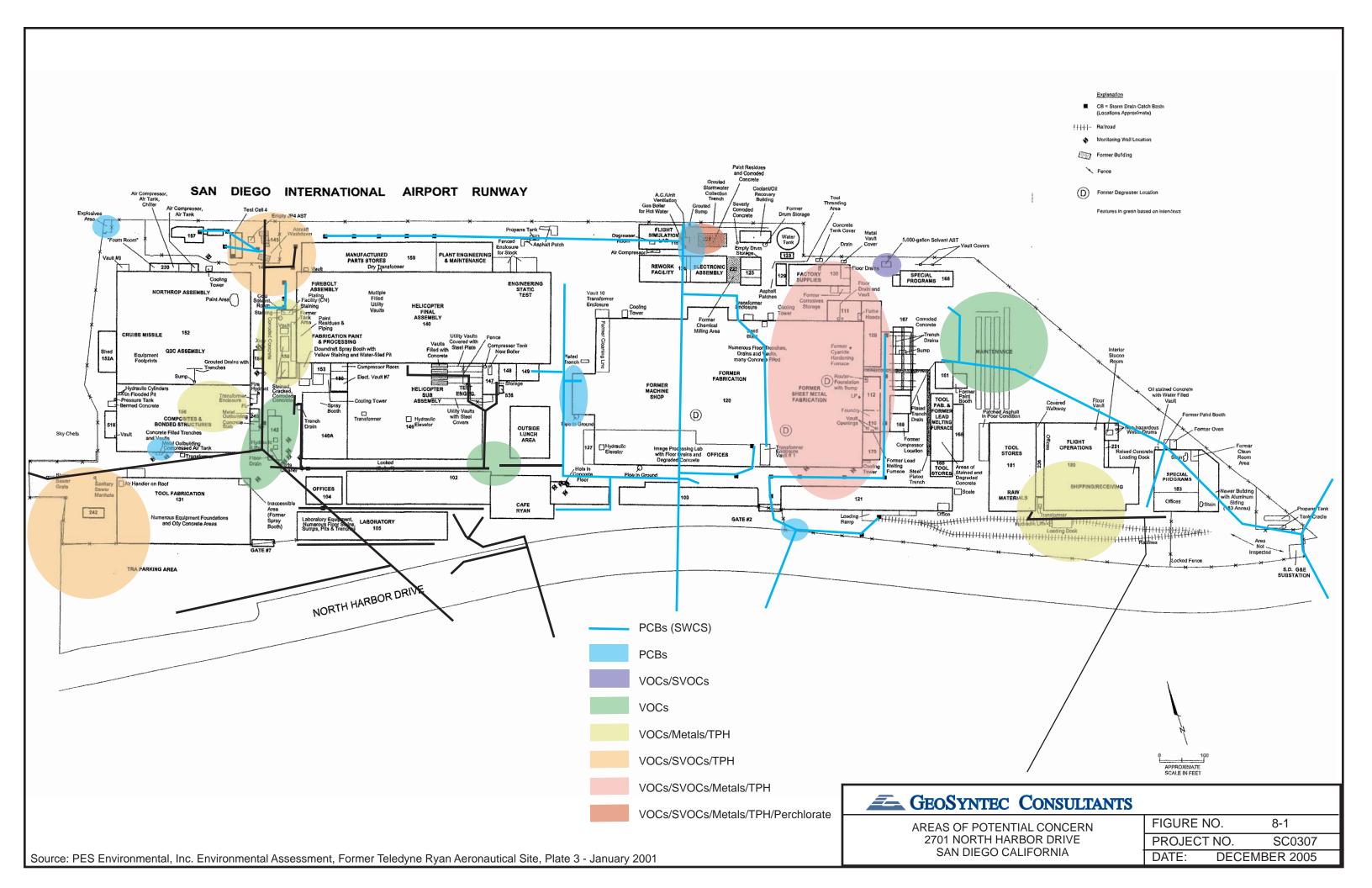




X:\GIS\TDY\SSPA\SSPAGIS\1,4-Dioxane 2 gw






Aroclor 1016 GW.mxd

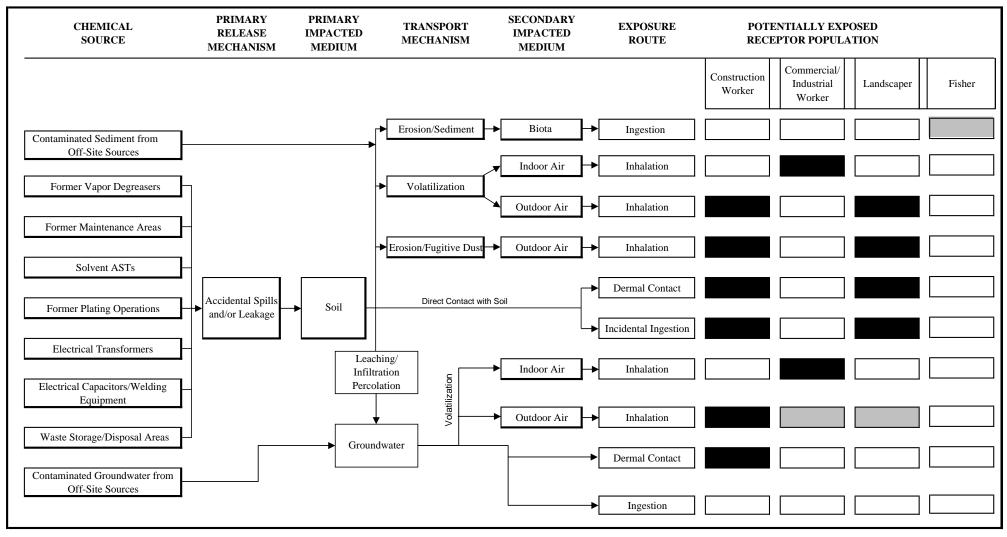

X:\SC0307\SITE CHARACTERIZATION REPORT\DATA PLOTS\DATA PLOTS MXD\LNAPL (groundwater)

FIGURE 9-1 CONCEPTUAL SITE MODEL 2701 NORTH HARBOR DRIVE SAN DIEGO, CALIFORNIA

NOTES:

Complete exposure pathway, which will be quantitatively evaluated in the risk assessment

Potentially complete pathway; however, risk is likely negligible.

Incomplete pathway.

APPENDIX A BACKGROUND ANALYSIS

APPENDIX A SITE-SPECIFIC BACKGROUND EVALUATION

Prepared by S.S. Papadopoulos and Associates, Inc. 12 May 2005

A.1 Methodology

Inorganic constituents such as metals and cyanide occur naturally in the environment. A determination of whether site-related activities have resulted in elevated concentrations of these constituents requires an understanding of the range of background concentrations representative of natural conditions. Existing site data for metals and cyanide in soil and groundwater were evaluated to derive site-specific maximum background concentrations, following guidance provided in the California Department of Toxic Substances Control document *Selecting Inorganic Constituents as Chemicals of Potential Concern at Risk Assessments at Hazardous Waste Sites and Permitted Facilities, Final Policy* (DTSC, 1997). The site-specific maximum background concentrations for soil and groundwater are presented in Table 3-1.

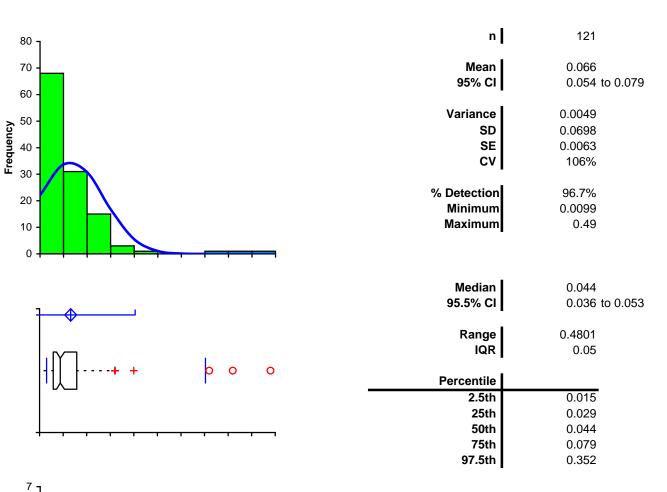
The 2003 site-specific dataset for soil contains between 408 and 431 analytical results for each metal, 161 results for total cyanide, and 159 results for amenable cyanide in soil samples collected across the site. The existing site-specific dataset for groundwater contains between 121 and 127 analytical results for each metal, and 19 results each for total cyanide, and amenable cyanide in groundwater samples collected across the site.

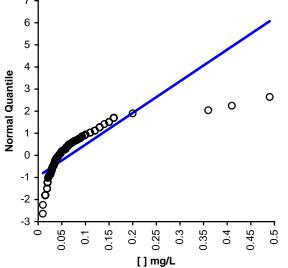
The soil and groundwater datasets include samples from both potentially impacted and non-impacted areas. For each constituent, each dataset may therefore represent either one population, representative of background conditions, or two or more separate populations, one representative of background conditions and the other(s) impacted by facility-related activities. The impacted soil and groundwater sample populations, if present, are characterized by higher concentrations, relative to background, of those constituents. The soil and groundwater datasets were statistically analyzed to determine whether the two or more populations could be identified and distinguished, and to estimate the maximum concentration of each constituent that could be attributed to the background population.

For each constituent in each of the two media, the statistical evaluation included:

1. An initial screening to determine whether the dataset contained sufficient values greater than the detection limit (at least 10% of samples and at least 10 samples for each constituent),

- 2. Computation and review of summary statistics for concentrations and logtransformed concentrations of each constituent in each media,
- 3. Construction and review of histograms, box-and-whisker percentile plots, and normal quantile plots of concentrations and log-transformed concentrations of each constituent in each media, to determine whether the dataset more closely follows a normal or log-normal distribution (both analyses are presented for each constituent), to identify whether more than one population is evident and to estimate the maximum concentration associated with the background population, and
- 4. Comparison of the site-specific maximum background concentrations in soil with published maximum background values for these same metals in California and Western U.S. soils.


A.2 Results


The statistical analyses are presented in Exhibit A. Beryllium, silver, thallium, and total and amenable cyanide were not detected frequently enough in soils to permit a meaningful analysis. In groundwater, there were insufficient detections for antimony, arsenic, beryllium, cadmium, copper, lead, mercury, silver, thallium, and total and amenable cyanide (Table 3-1).

For arsenic, barium, and vanadium in soil, and for barium in groundwater, quantile plots of concentration or log-transformed concentration plot as a single linear trend, indicating a single sample population. For these, the maximum observed value is taken as the maximum site-specific background concentration. For the remaining metals, quantile plots of either concentration or log-transformed concentration indicated a break in slope. The population nearest the origin was taken as the background population, and the maximum background concentration was estimated from the concentration corresponding to the break in slope on the quantile diagram. The interpreted break in slope is indicated by a line on the diagram. The site-specific maximum background concentrations for soil are compared to published maximum background values for California and Western U.S. soils in Table 3-2. All of the site-specific maximum values are less than state or regional maximum background except for antimony, cadmium, and selenium.

Statistical Analysis of Constituents in Groundwater

Test	Continuous summary descriptives	
Variable	Barium in groundwater	
Performed by	ti Date	28 April 2005

	Coefficient	р
Kolmogorov-Smirnov	2.3859	< 0.01
Skewness	3.6599	<0.0001
Kurtosis	17.1296	<0.0001

121

-1.377 to -1.259

-1.318

0.1070

0.3271

0.0297

-25%

96.7%

-2.0044

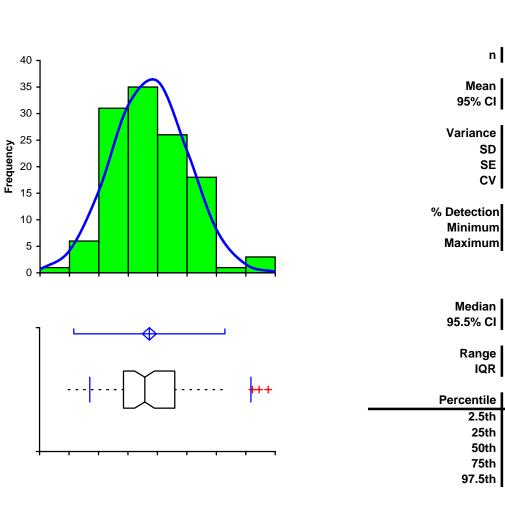
-0.3098

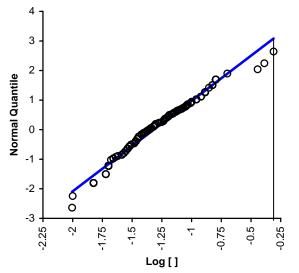
-1.357

1.6946 0.4352

-1.824

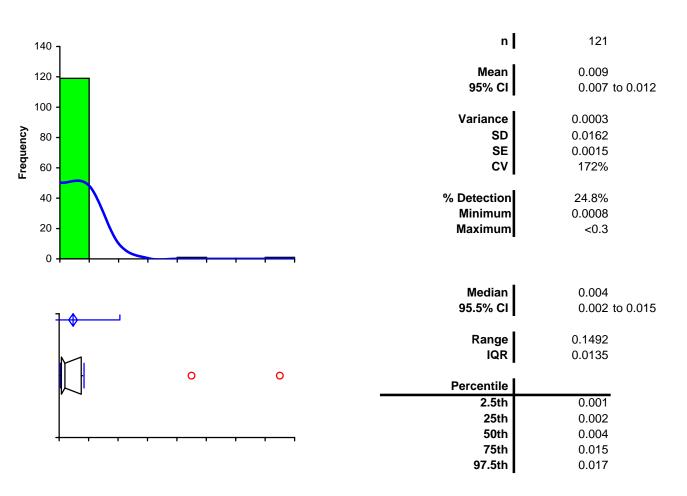
-1.538

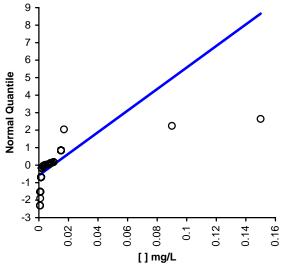

-1.357


-1.102

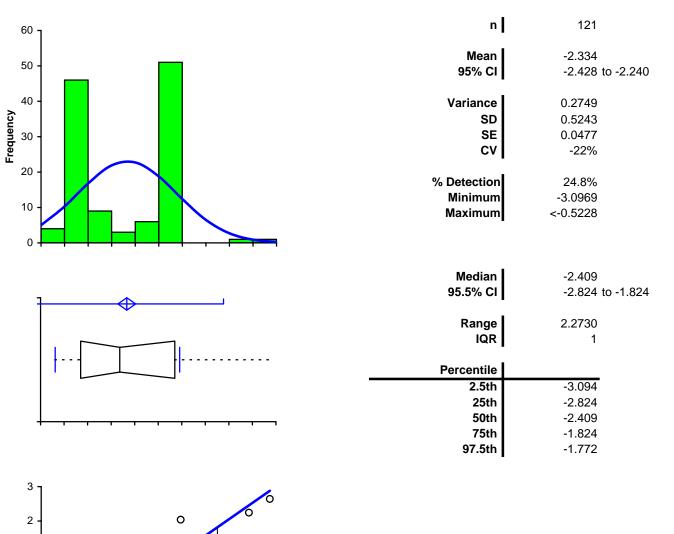
-0.456

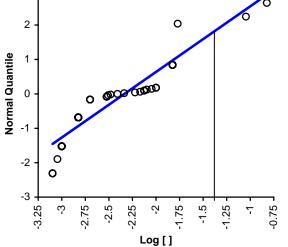
-1.444 to -1.276


Test	Continuous summary descriptives
Variable	Barium in groundwater
Performed by	tl

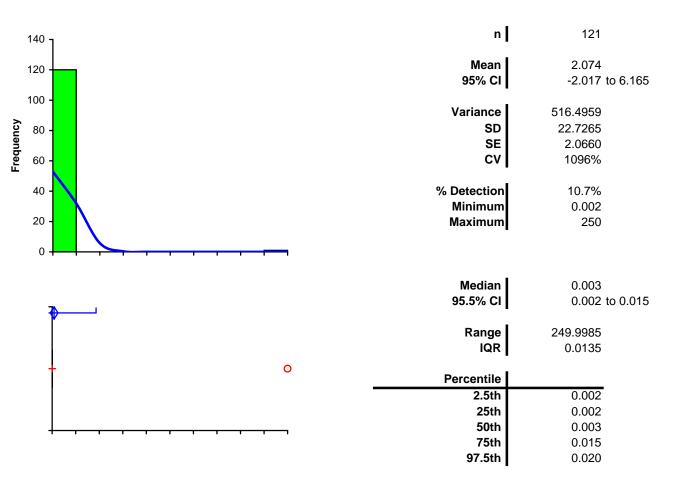


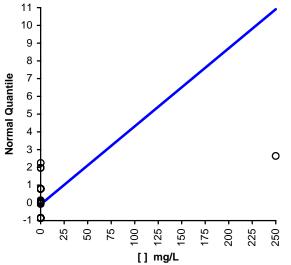
	Coefficient	р
Kolmogorov-Smirnov	0.7846	0.1391
Skewness	0.5167	0.0214
Kurtosis	0.2692	0.4481


Test	Continuous summary descriptives	
Variable	Cobalt in groundwater	
Performed by	tl Date	28 April 2005



	Coefficient	р
Kolmogorov-Smirnov	3.7796	< 0.01
Skewness	6.4942	<0.0001
Kurtosis	51.5265	<0.0001


Test	Continuous summary descriptives	
Variable	Cobalt in groundwater	
Performed by	tl Date	28 April 2005



	Coefficient	р
Kolmogorov-Smirnov	2.8351	< 0.01
Skewness	0.2041	0.3440
Kurtosis	-1.1669	<0.0001

Test	Continuous summary descriptives	
Variable	Chromium in groundwater	
Performed by	ti Date	28 April 2005

	Coefficient	р
Kolmogorov-Smirnov	5.8360	< 0.01
Skewness	11.0000	<0.0001
Kurtosis	121.0000	<0.0001

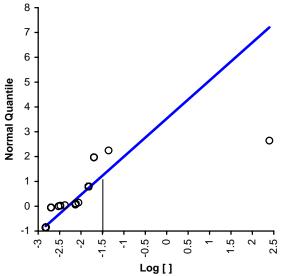
Test	Continuous summary descriptives
Variable	Chromium in groundwater
Performed by	tl

70 -

60

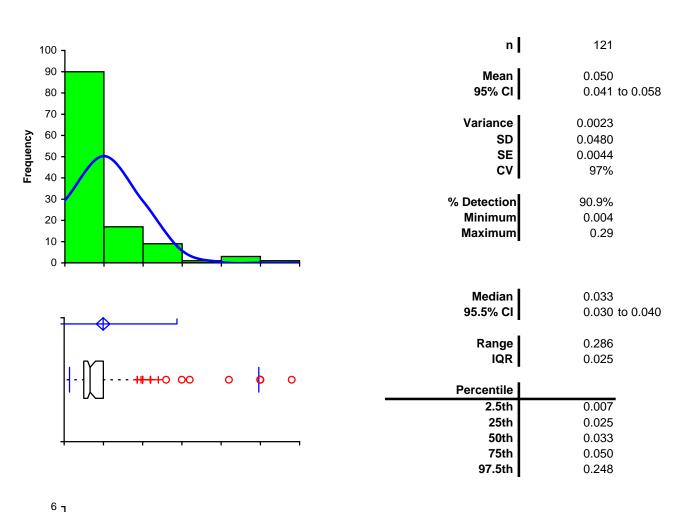
50

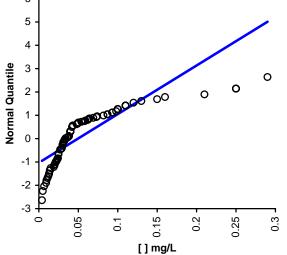
30


20

10

0 -


Frequency 40


	n	121
	Mean	-2.303
	95% CI	-2.420 to -2.185
	Variance	0.4255
	SD	0.6523
	SE	0.0593
	cv	-28%
\mathbf{N}	% Detection	10.7%
	Minimum	-2.6989
	Maximum	2.3979
	Median	-2.523
۰	Median 95.5% Cl	
♪'	95.5% CI	-2.824 to -1.824
	95.5% CI Range IQR	-2.824 to -1.824 5.2218
↓ · · · · · · · · · · · · · · · · · · ·	95.5% CI Range IQR Percentile	-2.824 to -1.824 5.2218 1
↓ · · · · · · · · · · · · · · · · · · ·	95.5% CI Range IQR Percentile 2.5th	-2.824 to -1.824 5.2218 1 -2.824
	95.5% CI Range IQR Percentile 2.5th 25th	-2.824 to -1.824 5.2218 1 -2.824 -2.824
	95.5% CI Range IQR Percentile 2.5th	-2.824 to -1.824 5.2218 1 -2.824

	Coefficient	р
Kolmogorov-Smirnov	2.7749	< 0.01
Skewness	3.1244	<0.0001
Kurtosis	20.9241	<0.0001

Variable	Molybdenum in groundwater	
Performed by	ti Date	28 April 2005

	Coefficient	р
Kolmogorov-Smirnov	3.1235	< 0.01
Skewness	2.8654	<0.0001
Kurtosis	9.5750	<0.0001

121

-1.492 to -1.375

-1.434

0.1052

0.3243

0.0295

-23%

90.9%

-2.3979

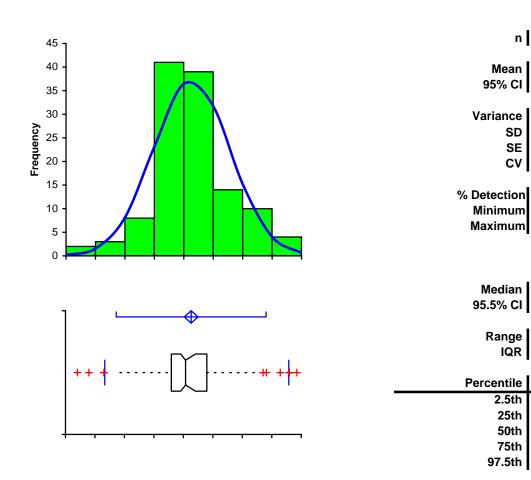
-0.5376

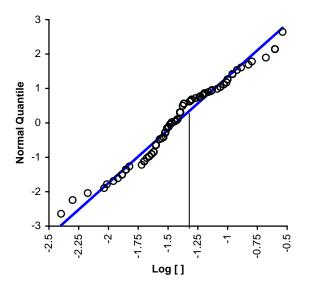
-1.481

1.8603 0.3010

-2.167

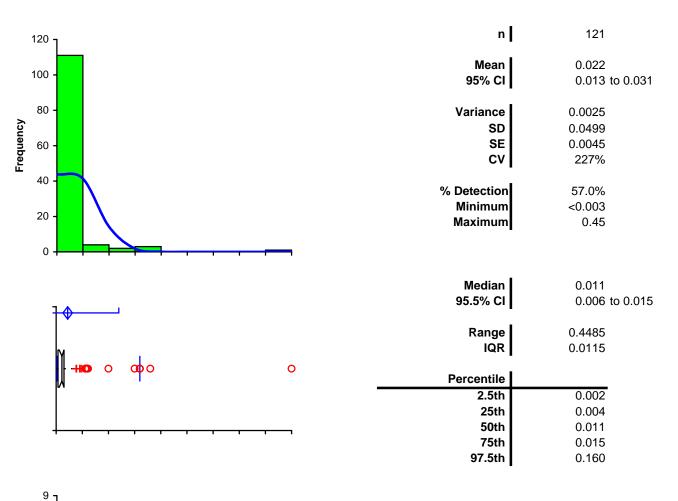
-1.602

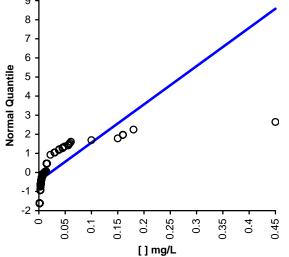

-1.481


-1.301

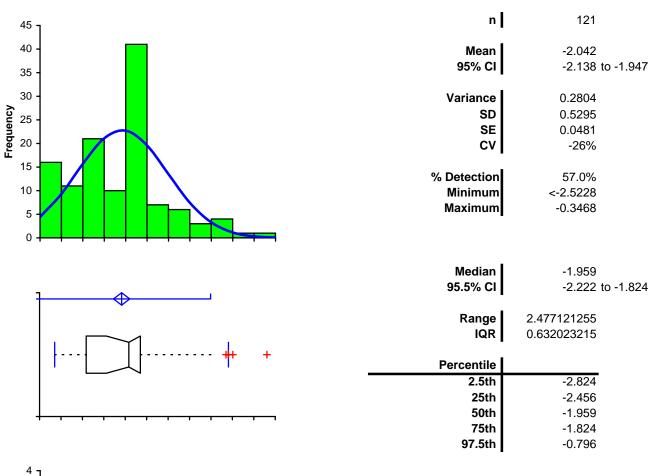
-0.606

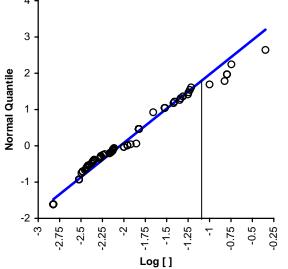
-1.523 to -1.398


Variable	Molybdenum in groundwater		
Performed by		Date	28 April 2005

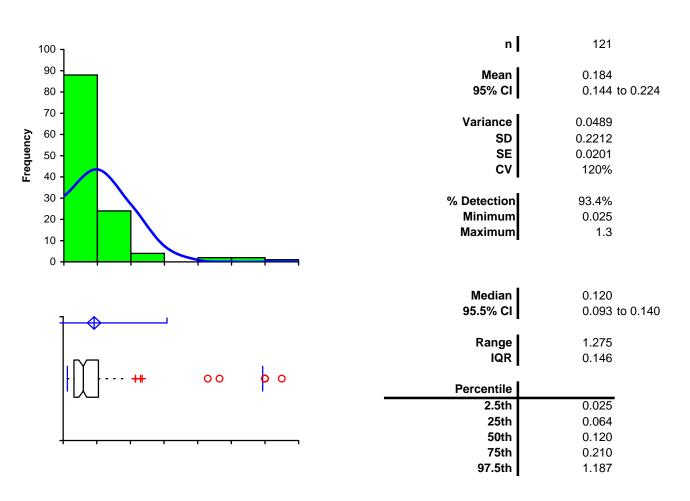


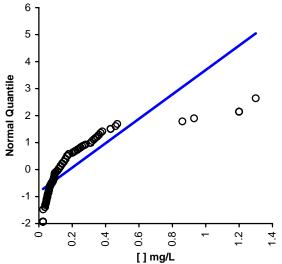
	Coefficient	р
Kolmogorov-Smirnov	1.6089	< 0.01
Skewness	0.2005	0.3523
Kurtosis	1.0308	0.0530


Test	Continuous summary descriptives	
Variable	Nickel in groundwater	
Performed by	tl Date	28 April 2005
		_

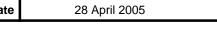


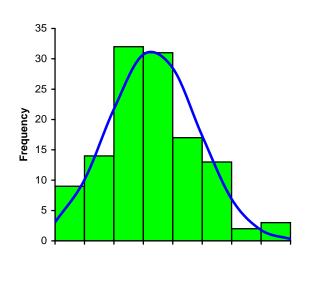
	Coefficient	р
Kolmogorov-Smirnov	4.1378	< 0.01
Skewness	6.1426	<0.0001
Kurtosis	46.7203	<0.0001


Variable	Nickel in groundwater	
Performed by	tl Date	28 April 2005



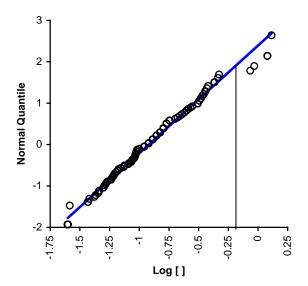
	Coefficient	р
Kolmogorov-Smirnov	1.7517	< 0.01
Skewness	0.5135	0.0222
Kurtosis	0.2152	0.5148


Variable	Selenium in groundwater		
Performed by	ti Date	28 April 2005	
		_	

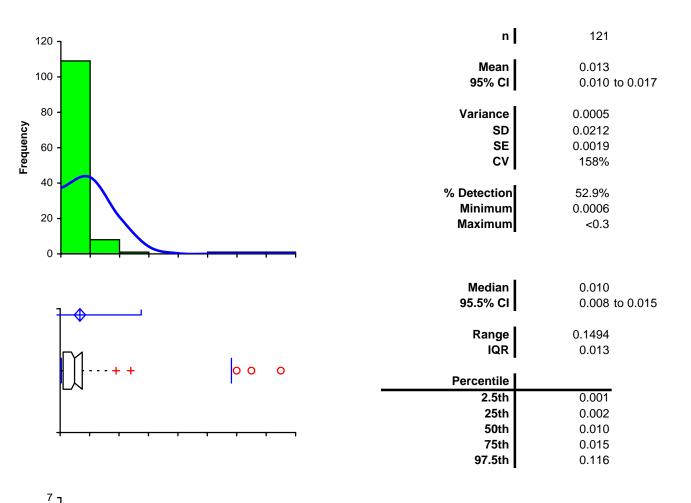


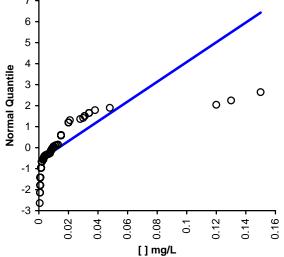
	Coefficient	р
Kolmogorov-Smirnov	2.6135	< 0.01
Skewness	3.3040	<0.0001
Kurtosis	12.4574	<0.0001

Test	Continuous summary descriptives	
Variable	Selenium in groundwater	
Performed by	tl Date	

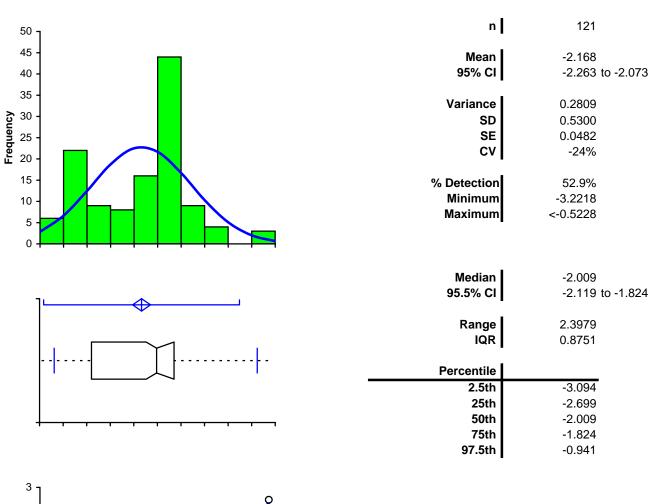


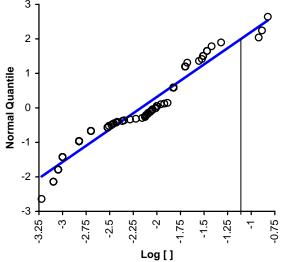
121


Mean 95% Cl	-0.920 -0.989 to -0.851
Variance SD	0.1479 0.3845
SE CV	0.0350 -42%
% Detection Minimum Maximum	93.4% -1.6021 0.1139
Median	0.004
95.5% CI	-0.921 -1.032 to -0.854
95.5% CI Range	-1.032 to -0.854
95.5% CI Range IQR Percentile 2.5th	-1.032 to -0.854 1.7160 0.5160 -1.602
95.5% CI Range IQR Percentile 2.5th 25th	-1.032 to -0.854 1.7160 0.5160 -1.602 -1.194
95.5% CI Range IQR Percentile 2.5th	-1.032 to -0.854 1.7160 0.5160 -1.602

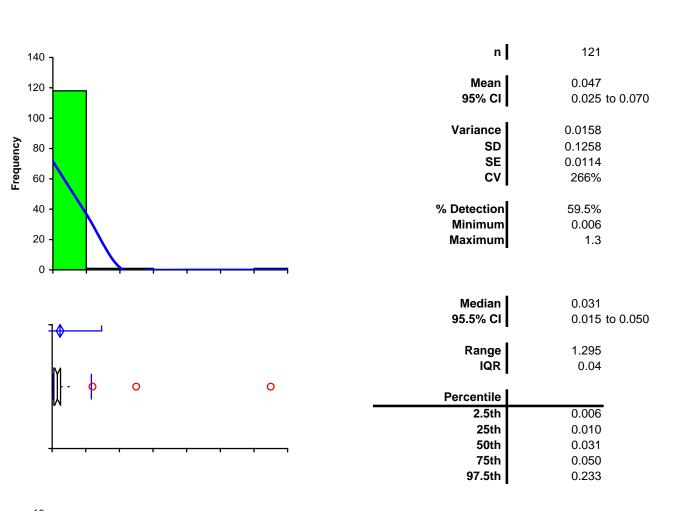

n

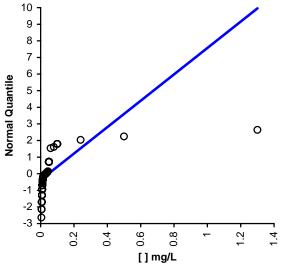
	Coefficient	р
Kolmogorov-Smirnov	0.6479	> 0.15
Skewness	0.3524	0.1077
Kurtosis	0.0621	0.7475


Test	Continuous summary descriptives	
Variable	Vanadium in groundwater	
Performed by	ti Date	28 April 2005

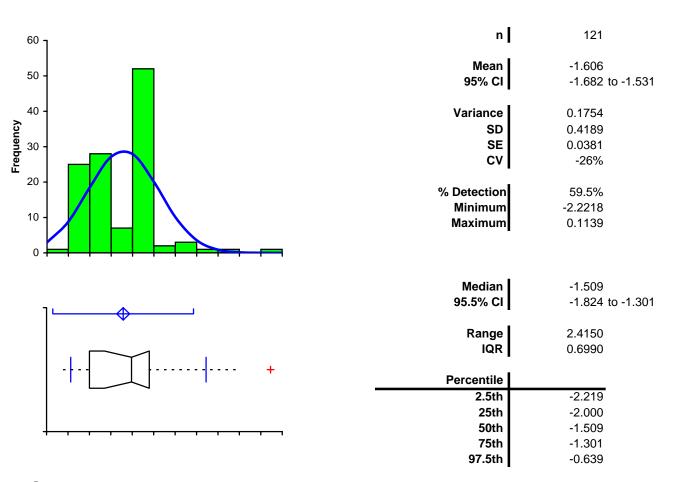


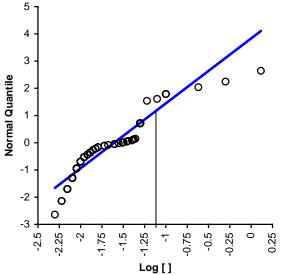
	Coefficient	р
Kolmogorov-Smirnov	3.7436	< 0.01
Skewness	4.7396	<0.0001
Kurtosis	25.5187	<0.0001


Test	Continuous summary descriptives	
Variable	Vanadium in groundwater	
Performed by	ti Date	28 April 2005



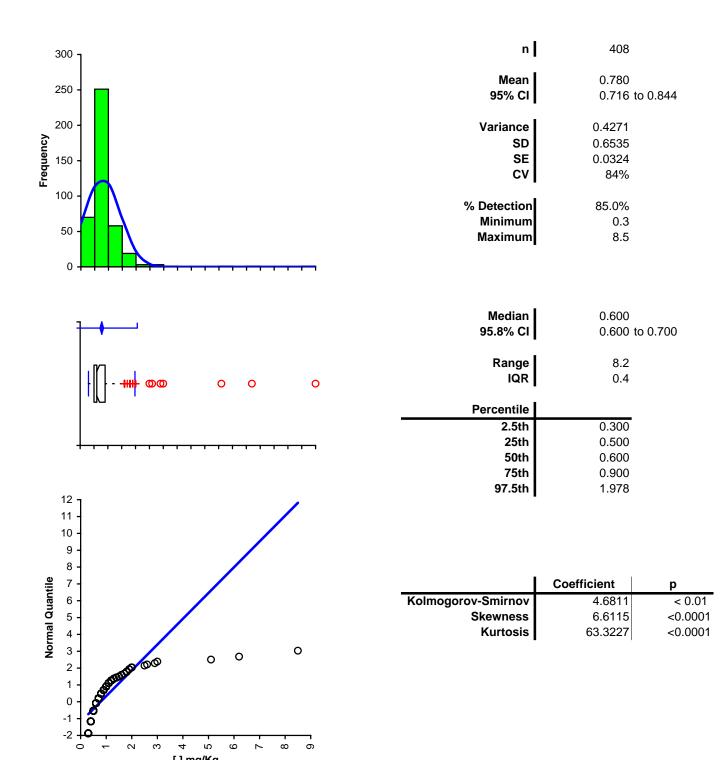
	Coefficient	р
Kolmogorov-Smirnov	1.9913	< 0.01
Skewness	-0.1558	0.4684
Kurtosis	-0.5991	0.0750


Test	Continuous summary descriptives
Variable	Zinc in groundwater
Performed by	tl



	Coefficient	р
Kolmogorov-Smirnov	4.7057	< 0.01
Skewness	8.7733	<0.0001
Kurtosis	84.4713	<0.0001

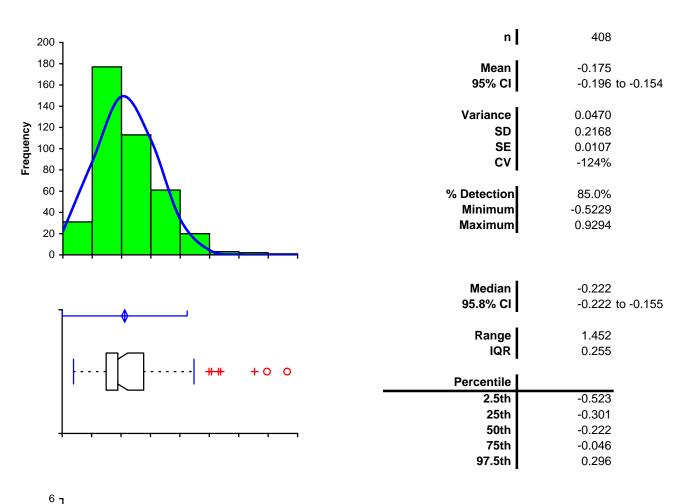
Test	Continuous summary descriptives
Variable	Zinc in groundwater
Performed by	tl

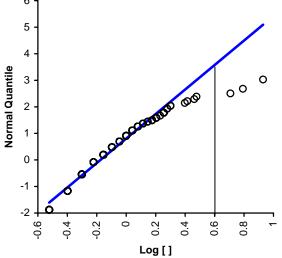


	Coefficient	р
Kolmogorov-Smirnov	2.2674	< 0.01
Skewness	0.7018	0.0025
Kurtosis	1.3746	0.0201

Statistical Analysis of Constituents in Soil

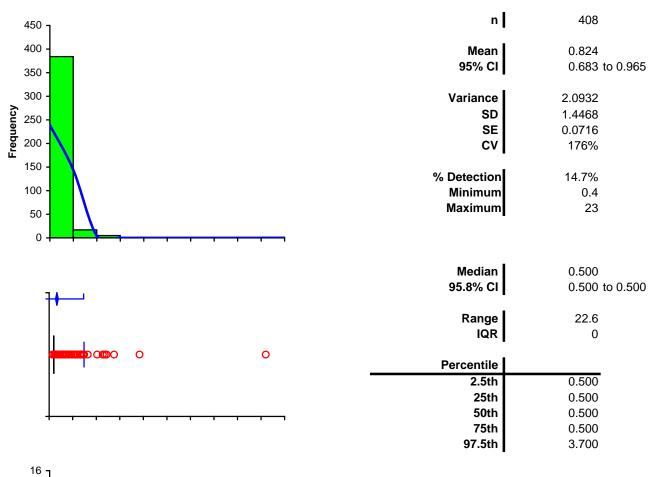
Test	Continuous summary descriptives	
Variable	Antimony in soil	
Performed by	ti Date	15 April 2005

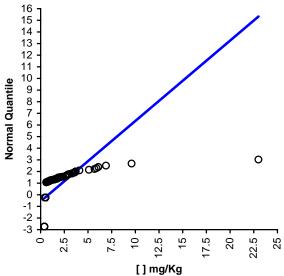

ŵ ົດ


 \sim

[] mg/Kg

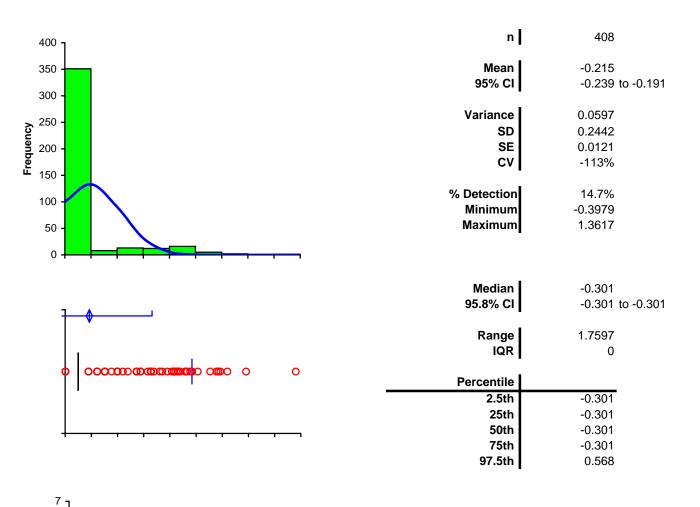
N ć 4 Ś ف

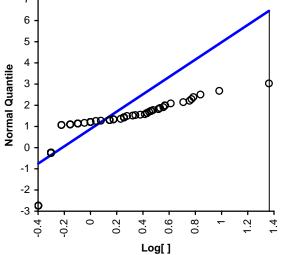

Test	Continuous summary descriptives	
Variable	Antimony in soil	
Performed by	tl Date	15 April 2005



	Coefficient	р
Kolmogorov-Smirnov	2.9000	< 0.01
Skewness	1.0335	<0.0001
Kurtosis	2.5887	<0.0001

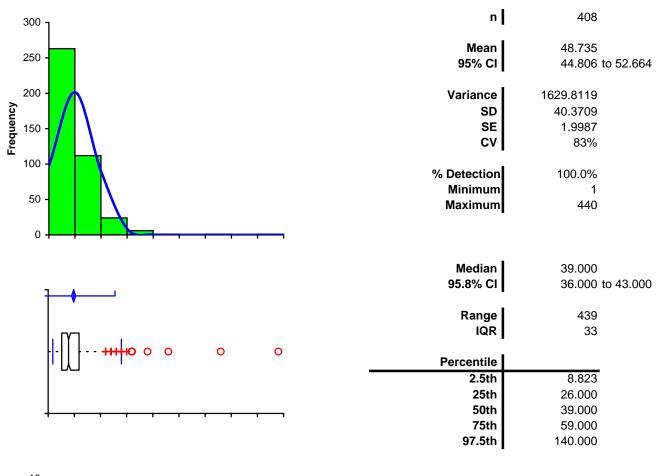
Test	Continuous summary descriptives	
Variable	Arsenic in soil	
Performed by	tl Date	15 April 2005

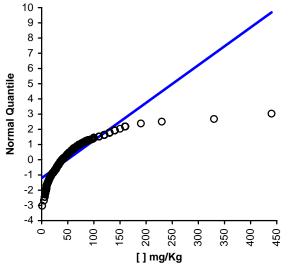




.

	Coefficient	р
Kolmogorov-Smirnov	8.9812	< 0.01
Skewness	10.2139	<0.0001
Kurtosis	140.4708	<0.0001

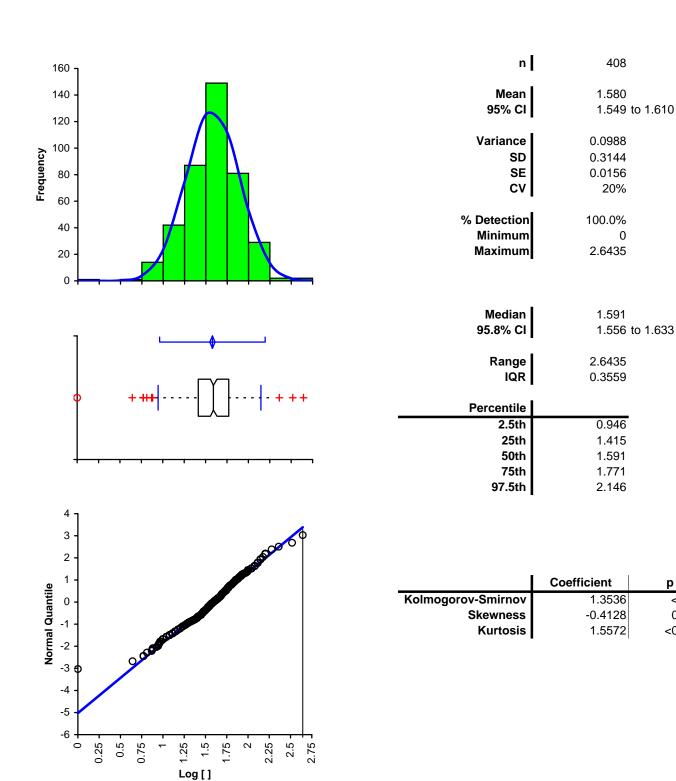

Test	Continuous summary descriptives	
Variable	Arsenic in soil	
Performed by	tl Date	15 April 2005



	Coefficient	р
Kolmogorov-Smirnov	9.9685	< 0.01
Skewness	3.1077	<0.0001
Kurtosis	9.9225	<0.0001

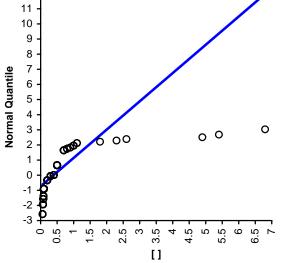
Test	Continuous summary descriptives	
Variable	Barium in soil	
Performed by	tl Date	15 April 2005

	Coefficient	р
Kolmogorov-Smirnov	3.1388	< 0.01
Skewness	3.9154	<0.0001
Kurtosis	27.8067	<0.0001

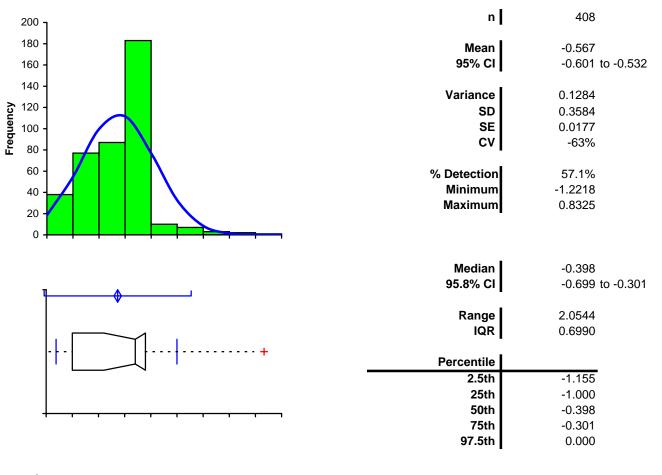

р

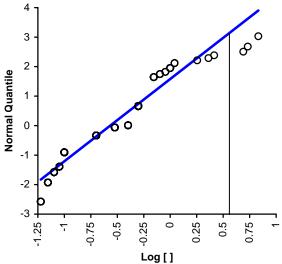
< 0.01


0.0009

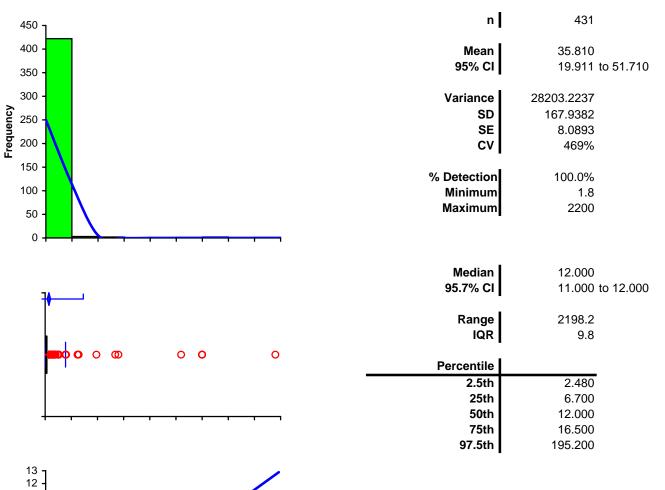

< 0.0001

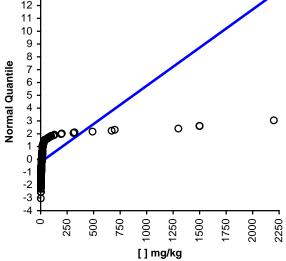
Test	Continuous summary descriptives	
Variable	Barium in soil	
Performed by	ti Date	2 May 2005


Test	Continuous summary descriptives	
Variable	Cadmium in soil	
Performed by	tl Date	15 April 2005

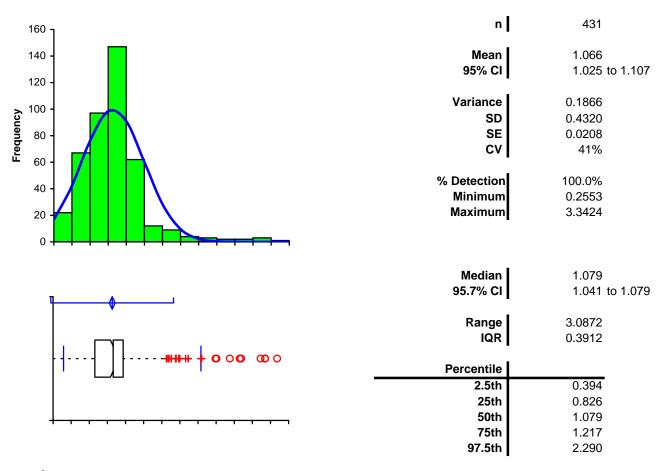


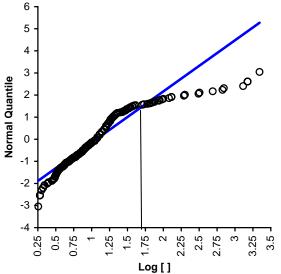
	Coefficient	р
Kolmogorov-Smirnov	7.3263	< 0.01
Skewness	8.0748	<0.0001
Kurtosis	81.5026	<0.0001


Test	Continuous summary descriptives	
Variable	Cadmium in soil	
Performed by	tl Date	15 April 2005

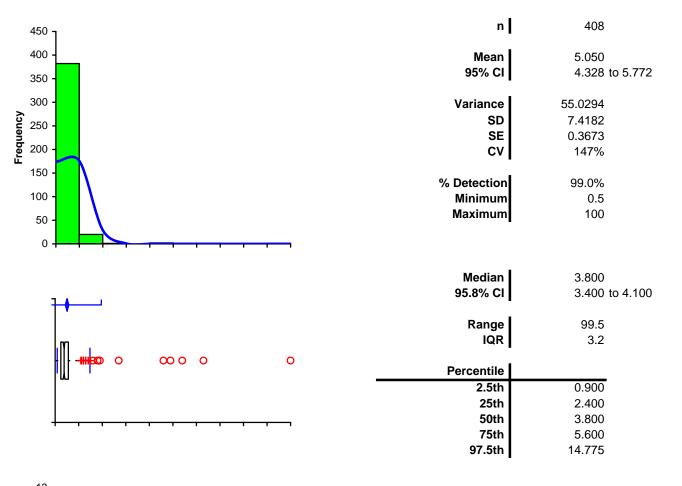


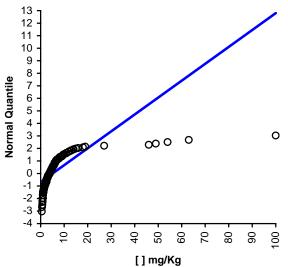
	Coefficient	р
Kolmogorov-Smirnov	5.2266	< 0.01
Skewness	0.0924	0.4408
Kurtosis	-0.0041	0.9247


Test	Continuous summary descriptives	
Variable	Chromium in soil	
Performed by	tl Date	15 April 2005

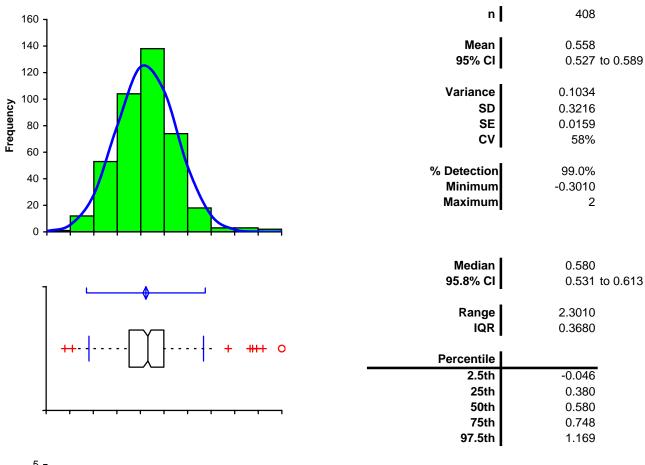


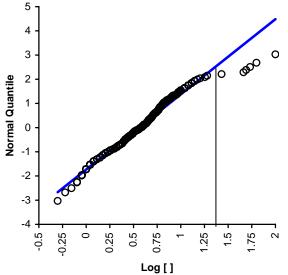
	Coefficient	р
Kolmogorov-Smirnov	8.9863	< 0.01
Skewness	9.4342	<0.0001
Kurtosis	98.0679	<0.0001


Test	Continuous summary descriptives	
Variable	Chromium in soil	
Performed by	ti Date	15 April 2005

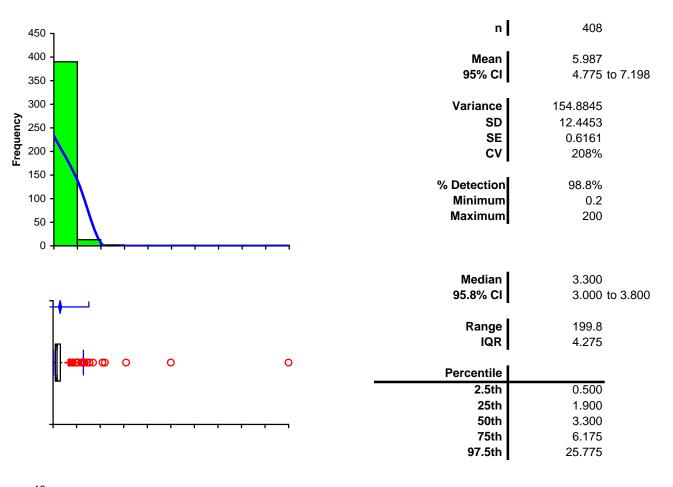


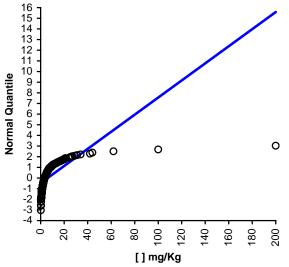
	Coefficient	р
Kolmogorov-Smirnov	3.0872	< 0.01
Skewness	1.8141	<0.0001
Kurtosis	6.5654	<0.0001



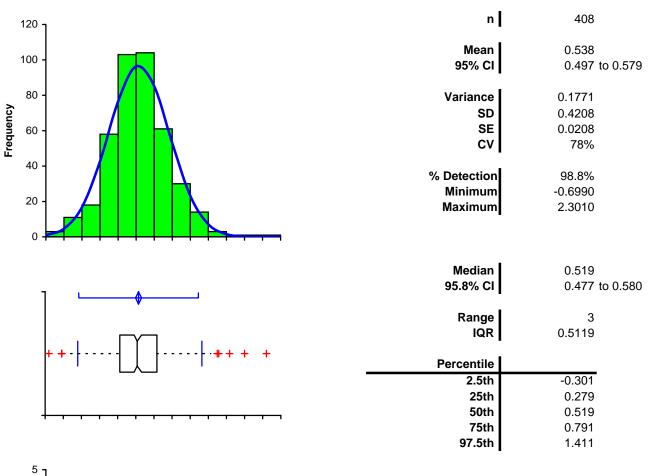


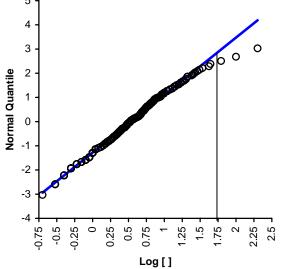
	Coefficient	р
Kolmogorov-Smirnov	5.5840	< 0.01
Skewness	8.1063	<0.0001
Kurtosis	83.6260	<0.0001



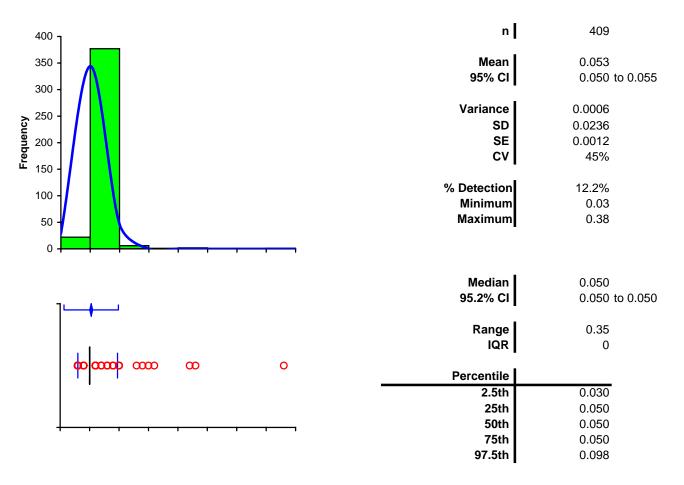


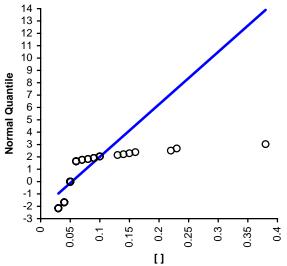
	Coefficient	р
Kolmogorov-Smirnov	1.2053	< 0.01
Skewness	0.4368	0.0005
Kurtosis	1.7240	<0.0001

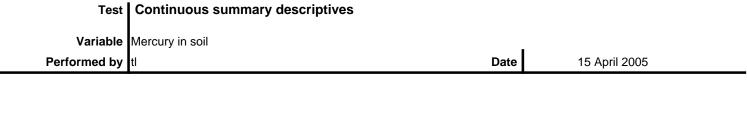

Test	Continuous summary descriptives	
Variable	Copper in soil	
Performed by	ti Date	15 April 2005

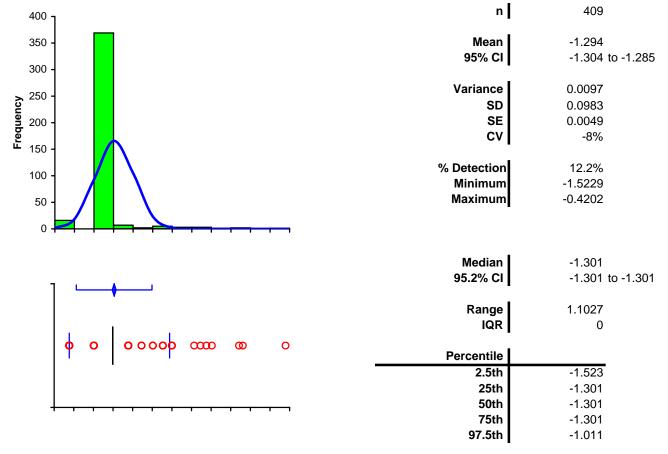


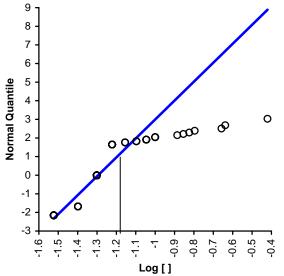
	Coefficient	р
Kolmogorov-Smirnov	6.5025	< 0.01
Skewness	10.9017	<0.0001
Kurtosis	154.0327	<0.0001


Test	Continuous summary descriptives	
Variable	Copper in soil	
Performed by	ti Date	15 April 2005

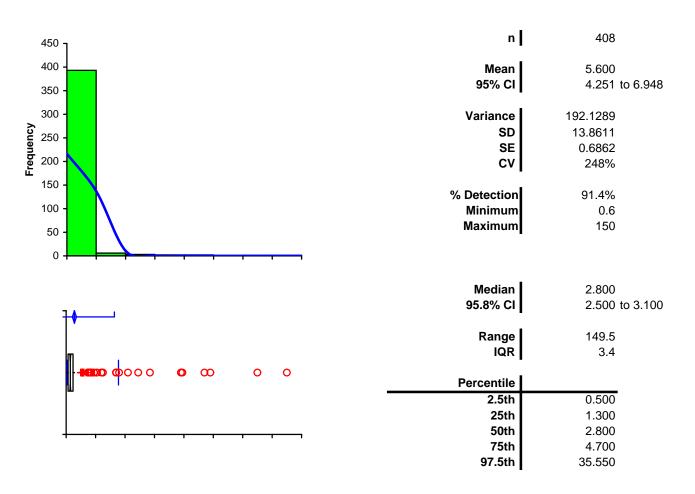


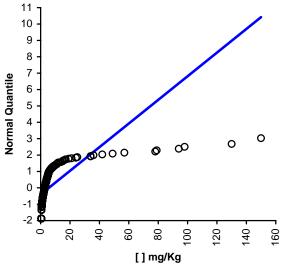

	Coefficient	р
Kolmogorov-Smirnov	0.8743	0.0636
Skewness	0.2462	0.0423
Kurtosis	0.8923	0.0049


Test	Continuous summary descriptives	
	Mercury in soil	
Performed by	ti Date	15 April 2005



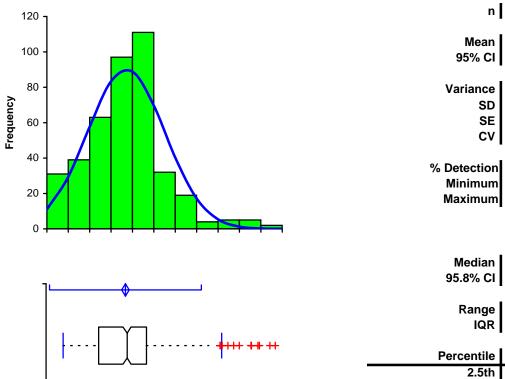
	Coefficient	р
Kolmogorov-Smirnov	9.8767	< 0.01
Skewness	9.2175	<0.0001
Kurtosis	106.7591	<0.0001



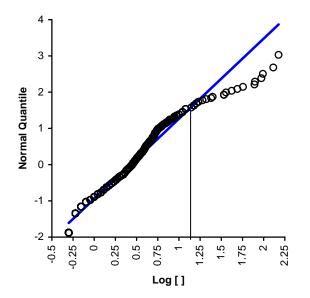


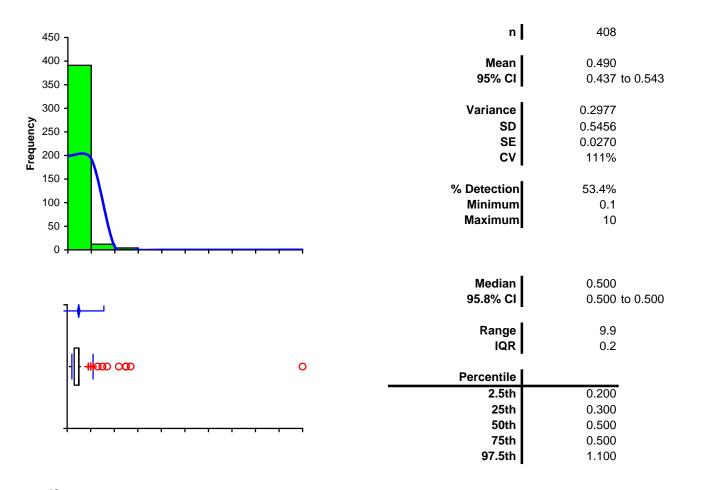
	Coefficient	р
Kolmogorov-Smirnov	9.5062	< 0.01
Skewness	3.9773	<0.0001
Kurtosis	28.6427	<0.0001

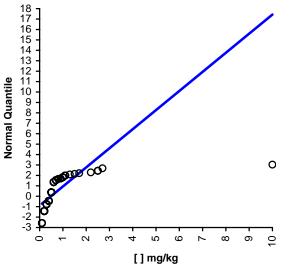
Test	Continuous summary descriptives	
Variable	Lead in soil	
Performed by	ti Date	15 April 2005



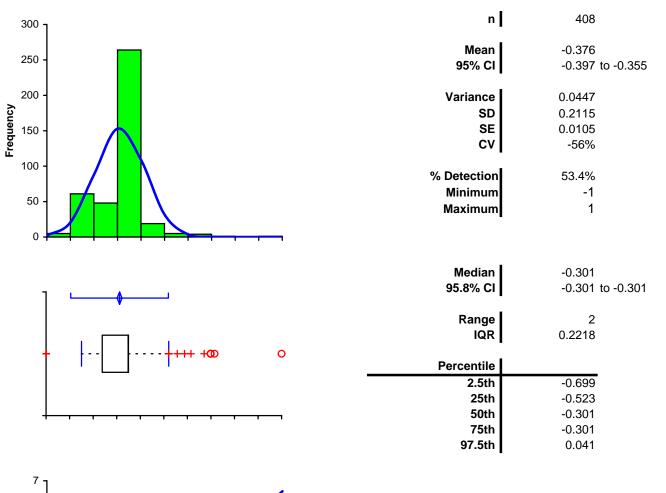
	Coefficient	р
Kolmogorov-Smirnov	7.2118	< 0.01
Skewness	6.9936	<0.0001
Kurtosis	56.4009	<0.0001

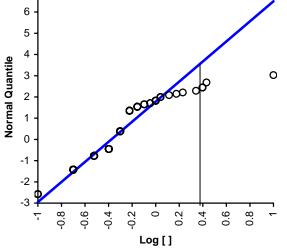

0.427


95% CI 0.383 to 0.471 Variance 0.2046 SD 0.4524 SE 0.0224 CV 106% % Detection 91.4% Minimum -0.222 Maximum 2.1761 Median 0.447 95.8% CI 0.398 to 0.491 Range 2.4771 IQR 0.5582 Percentile	Micall	0.421
Variance 0.2046 SD 0.4524 SE 0.0224 CV 106% % Detection 91.4% Minimum -0.222 Maximum 2.1761 Median 0.447 95.8% Cl 0.398 to 0.491 Range 2.4771 IQR 0.5582 Percentile	95% CI	0.383 to 0.471
SD 0.4524 SE 0.0224 CV 106% % Detection 91.4% Minimum -0.222 Maximum 2.1761 Median 0.447 95.8% CI 0.398 to 0.491 Range 2.4771 IQR 0.5582 Percentile -0.301 25th 0.114 50th 0.447 75th 0.672		0.000 10 0.111
SD 0.4524 SE 0.0224 CV 106% % Detection 91.4% Minimum -0.222 Maximum 2.1761 Median 0.447 95.8% CI 0.398 to 0.491 Range 2.4771 IQR 0.5582 Percentile -0.301 25th 0.114 50th 0.447 75th 0.672		_
SD 0.4524 SE 0.0224 CV 106% % Detection 91.4% Minimum -0.222 Maximum 2.1761 Median 0.447 95.8% CI 0.398 to 0.491 Range 2.4771 IQR 0.5582 Percentile -0.301 25th 0.114 50th 0.447 75th 0.672	Variance	0.2046
SE 0.0224 CV 106% % Detection 91.4% Minimum -0.222 Maximum 2.1761 Median 0.447 95.8% CI 0.398 to 0.491 Range 2.4771 IQR 0.5582 Percentile -0.301 25th 0.114 50th 0.447 75th 0.672		
CV 106% % Detection 91.4% Minimum -0.222 Maximum 2.1761 Median 0.447 95.8% CI 0.398 to 0.491 Range 2.4771 IQR 0.5582 Percentile -0.301 25th 0.114 50th 0.447 75th 0.672		
% Detection Minimum 91.4% Minimum -0.222 Maximum 2.1761 Median 0.447 95.8% CI 0.398 to 0.491 Range 2.4771 IQR 0.5582 Percentile -0.301 25th 0.114 50th 0.447 75th 0.672	SE	0.0224
% Detection Minimum 91.4% Minimum -0.222 Maximum 2.1761 Median 0.447 95.8% CI 0.398 to 0.491 Range 2.4771 IQR 0.5582 Percentile -0.301 25th 0.114 50th 0.447 75th 0.672	CV	106%
Minimum Maximum -0.222 2.1761 Median 95.8% CI 0.447 0.398 to 0.491 Range IQR 2.4771 0.5582 Percentile -0.301 2.5th -0.301 0.114 50th 0.447 75th 0.672		10070
Minimum Maximum -0.222 2.1761 Median 95.8% CI 0.447 0.398 to 0.491 Range IQR 2.4771 0.5582 Percentile -0.301 2.5th -0.301 0.114 50th 0.447 75th 0.672		
Maximum 2.1761 Median 0.447 95.8% CI 0.398 to 0.491 Range 2.4771 IQR 0.5582 Percentile	% Detection	91.4%
Maximum 2.1761 Median 0.447 95.8% CI 0.398 to 0.491 Range 2.4771 IQR 0.5582 Percentile	Minimum	-0 222
Median 0.447 95.8% CI 0.398 to 0.491 Range 2.4771 IQR 0.5582 Percentile		-
95.8% CI 0.398 to 0.491 Range 2.4771 IQR 0.5582 Percentile -0.301 25th -0.114 50th 0.447 75th 0.672	waximum	2.1761
95.8% CI 0.398 to 0.491 Range 2.4771 IQR 0.5582 Percentile -0.301 25th -0.114 50th 0.447 75th 0.672		
95.8% CI 0.398 to 0.491 Range 2.4771 IQR 0.5582 Percentile -0.301 25th -0.114 50th 0.447 75th 0.672		
95.8% CI 0.398 to 0.491 Range 2.4771 IQR 0.5582 Percentile -0.301 25th -0.114 50th 0.447 75th 0.672		
95.8% CI 0.398 to 0.491 Range 2.4771 IQR 0.5582 Percentile -0.301 25th -0.114 50th 0.447 75th 0.672		
95.8% CI 0.398 to 0.491 Range 2.4771 IQR 0.5582 Percentile -0.301 25th -0.114 50th 0.447 75th 0.672	Median	0.447
Range 2.4771 IQR 0.5582 Percentile -0.301 2.5th -0.301 25th 0.114 50th 0.447 75th 0.672		
IQR 0.5582 Percentile -0.301 2.5th -0.311 25th 0.114 50th 0.447 75th 0.672	95.078 CI	0.390 10 0.491
IQR 0.5582 Percentile -0.301 2.5th -0.301 25th 0.114 50th 0.447 75th 0.672		_
IQR 0.5582 Percentile -0.301 2.5th -0.301 25th 0.114 50th 0.447 75th 0.672	Range	2.4771
Percentile 2.5th -0.301 25th 0.114 50th 0.447 75th 0.672		0 5582
2.5th -0.301 25th 0.114 50th 0.447 75th 0.672	IGIN	0.0002
2.5th -0.301 25th 0.114 50th 0.447 75th 0.672		
25th 0.114 50th 0.447 75th 0.672	Percentile	
25th 0.114 50th 0.447 75th 0.672	2 5th	-0.301
50th 0.447 75th 0.672		
75th 0.672		-
	EAL	
	50th	0.447
97.301 1.301		-
	75th	0.672

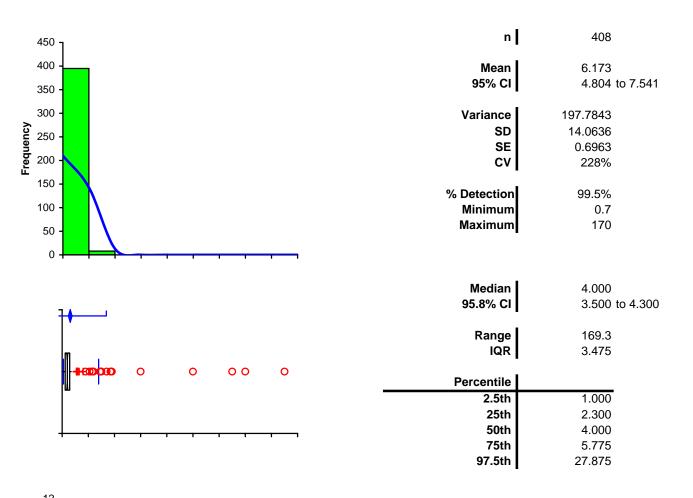

n

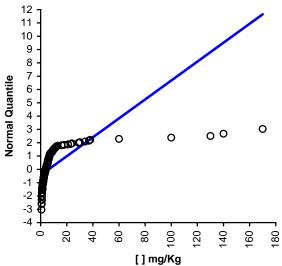
	Coefficient	р
Kolmogorov-Smirnov	1.5464	< 0.01
Skewness	0.6770	<0.0001
Kurtosis	1.3649	0.0002


Test	Continuous summary descriptives		
	Molybdenum in soil		
Performed by	tl Da	ate	15 April 2005

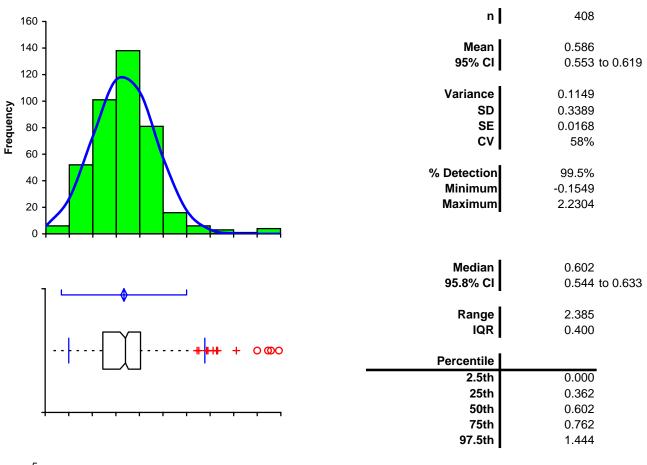


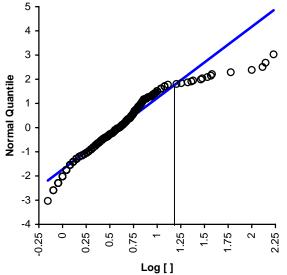
	Coefficient	р
Kolmogorov-Smirnov	7.8843	< 0.01
Skewness	13.6056	<0.0001
Kurtosis	229.0684	<0.0001


Test	Continuous summary descriptives	
Variable	Molybdenum in soil	
Performed by	tl Date	15 April 2005

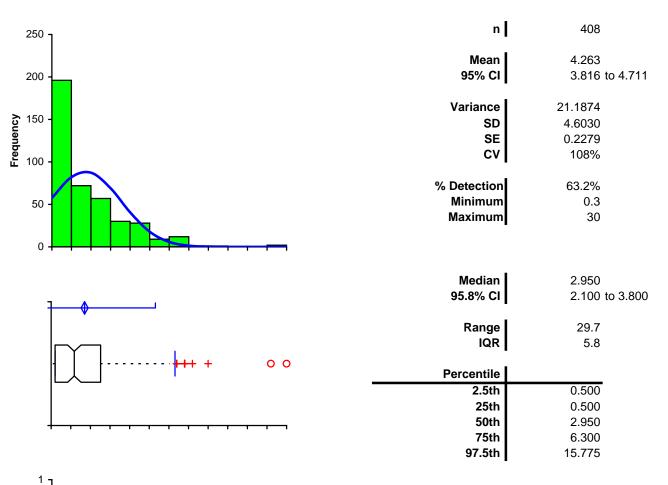


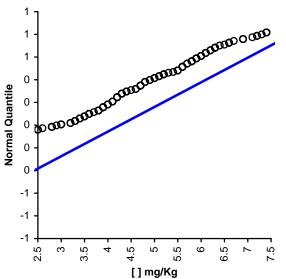
	Coefficient	р
Kolmogorov-Smirnov	5.3802	< 0.01
Skewness	0.6261	<0.0001
Kurtosis	5.7055	<0.0001


Test	Continuous summary descriptives	
Variable	Nickel in soil	
Performed by	ti Date	15 April 2005

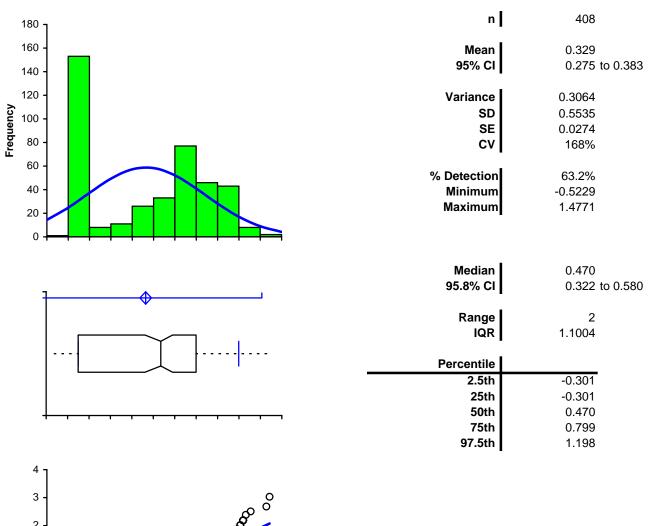


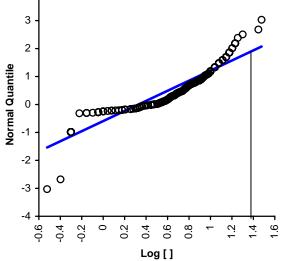
	Coefficient	р
Kolmogorov-Smirnov	7.0967	< 0.01
Skewness	8.6885	<0.0001
Kurtosis	84.0218	<0.0001



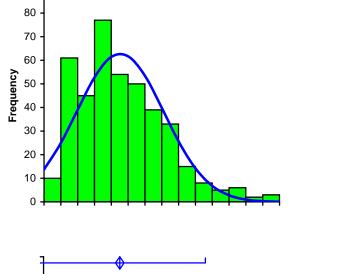


	Coefficient	р
Kolmogorov-Smirnov	1.8578	< 0.01
Skewness	1.0457	<0.0001
Kurtosis	3.7124	<0.0001


Test	Continuous summary descriptives	
Variable	Selenium in soil	
Performed by	tl Date	15 April 2005

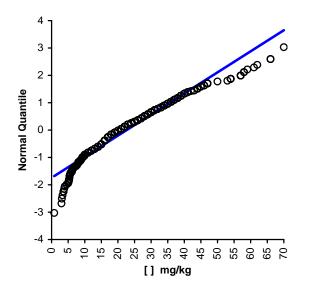


	Coefficient	р
Kolmogorov-Smirnov	4.0844	< 0.01
Skewness	1.6584	<0.0001
Kurtosis	3.9183	<0.0001


Test	Continuous summary descriptives	
	Selenium in soil	
Performed by	tl Date	15 April 2005

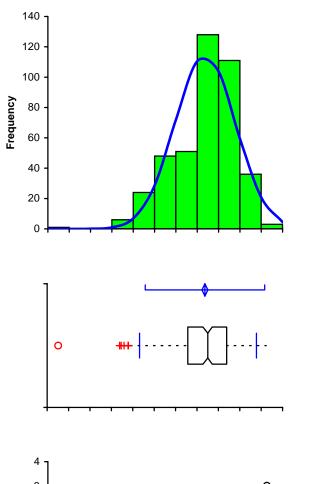
	Coefficient	р
Kolmogorov-Smirnov	5.0049	< 0.01
Skewness	0.0155	0.8971
Kurtosis	-1.5700	<0.0001

Test	Continuous summary descriptives	
	Vanadium in soil	
Performed by	ti Date	15 April 2005
22	nl	408
⁹⁰ T	1	

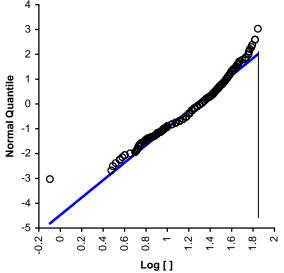


]	 	₩ ₩	+ +
_					 I		—

95% CI	21.373 to 23	1.899
Variance	168.4383	
SD	12.9784	
SE	0.6425	
CV	57%	
% Detection	100.0%	
Minimum	0.8	
Maximum	70	
Median 95.8% Cl	20.000 18.000 to 22	2.000
Range	69.2	
IQR	17	
Percentile		
2.5th	4.613	
25th	13.000	
50th	20.000	
75th	30.000	
97.5th	57.000	

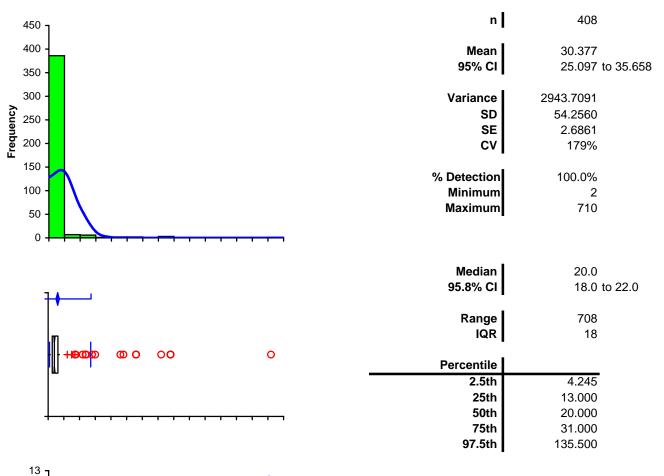

Mean

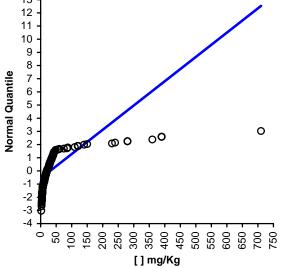
22.636



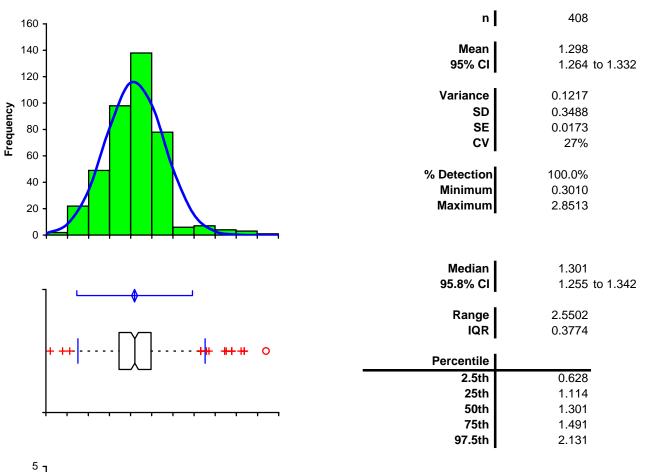
	Coefficient	р
Kolmogorov-Smirnov	1.8808	< 0.01
Skewness	0.8751	<0.0001
Kurtosis	0.6938	0.0190

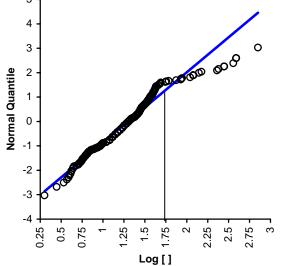
Test	Continuous summary descriptives	
Variable	Vanadium in soil	
Performed by	ti Date	15 April 2005




n	408
Mean	1.274
95% Cl	1.247 to 1.302
Variance	0.0811
SD	0.2847
SE	0.0141
CV	22%
% Detection	100.0%
Minimum	-0.0969
Maximum	1.8451
Median	1.301
95.8% Cl	1.255 to 1.342
Range	1.942008053
IQR	0.363177902
Percentile	
2.5th	0.664
25th	1.114
50th	1.301
75th	1.477
97.5th	1.756

	Coefficient	р
Kolmogorov-Smirnov	1.7008	< 0.01
Skewness	-0.7273	<0.0001
Kurtosis	0.8552	0.0064





	Coefficient	р
Kolmogorov-Smirnov	6.7671	< 0.01
Skewness	7.6780	<0.0001
Kurtosis	74.8426	<0.0001

	Coefficient	р
Kolmogorov-Smirnov	1.9110	< 0.01
Skewness	0.6076	<0.0001
Kurtosis	2.3122	<0.0001

APPENDIX B COPIES OF WASTE MANIFESTS

NON-HAZARDOUS WASTE MANIFEST

Plea	se print or type (Form designed for use on elite (1	2 pitch) typewriter)					
	NON-HAZARDOUS WASTE MANIFEST	1. Generator's US EPA ID No.	o. BR2475		Manifest Document No		2. Page 1
	3. Generator's Name and Mailing Address TDY INDUSTRIES.	ENC.	ning di Sila de ana anggi na Andrian dan pangan kata kata da ang da s	nguaarran di Bibbir kindan Bibbir kindan bir bir	Constantine for an or an o		
	1000 SIX PPG PLACE PITTS BURGH, PH 153 4. Generator's Phone (412) 395-	22-5479				anna a dharanna ann dhar Salambaranna - a tar ann a	
	5. Transporter 1 Company Name	6.	US EPA ID Number	and the second secon	A. State Trans	sporter's ID	
	OCEAN BLUE ENVIRON	UMENTALI (CHID 18360	8758	B. Transporte	1 Phone 562.62	44120
	7. Transporter 2 Company Name	8.	US EPA ID Number		C. State Trans		
	9. Designated Facility Name and Site Address	10.	US EPA ID Number		D. Transporte		
	9. Designated Facility Name and Site Address CROSBY AND CUERTO 1630 WEST 17th STR	NEET	US LFAID Number		E. State Facili		
	LONG BEACH, CA, 9	AA. A	AD 284 90	and the second se		100e	and the second se
				12. Co No.	ntainers Type	13. Total Quantity	14. Unit Wt./Vol.
	· NON-HAZARDON	-					5
		CUTTING	and the second	001	DM	000300	P
GENERAT	NON HAZARDOU						
E	«NON·HAZARDOU	E WATER)	002	DM	100/00	, G
A			SULID				-
TOR		DEBRIS)		005	bm	0 00200	P
R	d.						
	I. Additional Descriptions for Materials Listed Above I.Q. PROFILE 27825				H. Handling C	odes for Wastes Listed Above	
	116. PROFILE 24813			i.			
	IC, PRUFILE 10288						
	15. Special Handling Instructions and Additional Info	mation OB JOE	3 # SI102	S	ITE: T	DY	·
-			Contraction Contraction		A	OI N. HARBO	
					SA	N DIEGO, CA	}
	16. GENERATOR'S CERTIFICATION: I hereby cert in proper condition for transport. The materials d	ify that the contents of this ship	oment are fully and accurately des	cribed and are in	all respects		
	in proper condition for transport. The materials d	escribed on this manifest are n	ot subject to federal hazardous wa	ste regulations.			
	Printed/Typed Name		1 Charles		and the literature of the second second		Date
	EDGARD BERTAI	IT	Signature	B. T.A	n	O 7	Day Year
TR	17. Transporter 1 Acknowledgement of Receipt of M	aterials					Date
AN	Printed/Typed Name		Signature	r.		Mont	Day Year
DPC	18. Transporter 2 Acknowledgement of Receipt of M	ND	1	Sec. Martin	and the second second second	0	Data
TRANSPORTER	Printed/Typed Name		Signature		an a	Mont	ot / 02. 6244120 . 5445 3. 14 . 10 . 0 . 0 . 0 . 0 . 0 . 0 . 0
-	19. Discrepancy Indication Space			autorice - Canaer Laborities Lab			
FAC	€.						
1	20. Facility Owner or Operator; Certification of receip	ot of the waste materials covere	ed by this manifest, except as not	ed in item 19.		na se	
L I T	Printed/Typed Name	an da anar ang gang dan Mananya ang di kanar ng kang da	Signature	a gana kanang kita kanang na		Mont	Date h Day Year
Y							

NON-HAZARDOUS WASTE

	· · ·	NON-HAZAF	NDOUS V	NASTE	MANIFEST	ł
2013) 2						

ease pri	int or type (Form designed for use on elite (12	pitch) typewriter)					
\$600 A	Int or type (Form designed for use on enter (2 NON-HAZARDOUS	 Generator's US EPA ID No. 			Manifest Document No.	1727651°	Page 1
	WASTE MANIFEST	CADOO83	82475			<u> 12 105 1</u>	of /
<u></u>	Generator's Name and Mailing Address						
A 3.	TDY Industries In	۷.					
er nastAt i	1000 Six PPG Place						
	1000 SIX PPG Place PITSBUECH, PA 15222 Generators Phone (412)345-30	-5479					
		<u>556</u>	US EPA ID Number		A. State Trans	oorter's ID	
5	Transporter 1 Company Name	•		~ t	B. Transporter	1 Phone 562-624	4120
	OCEAN BUE ENVI	RONMENTAL C.	<u>イレゴズ 560 ラレノ</u> US EPA ID Number	-2	C. State Trans		······
7	7. Transporter 2 Company Name	8.	US EPA ID Number	ŀ	D. Transporter		
-		<u> </u>	and work the block of		E. State Facilit		
	9. Designated Facility Name and Site Address <u>CROSBY</u> <u>AND</u> OVERTON	10.	US EPA ID Number		E. State) aviit	y 3 10	
	CROSBY ANDOVERION			Ļ			,
	1630 WEST 17TH STREE		D - OH - GRI	a	F. Facility's Pt	432-5445	•
	LONG BEACH, (A 9	0813 CA	1002840701	<u> </u>		472 7117	14.
	11. WASTE DESCRIPTION			12. Cor		Total	Unit Wt./Vol.
				No.	Туре	Quantity	¥¥L/¥ŪL
.	a. NON-HAZARDOUS	LANTE COLU	>				
			*	-		NADIDE	P
	D. NON-HAZARIDOUS	INTERNICO)		DOS	DM	002125	
M _	(1)(10)		······································				1
G	b. NON-HAZAZIDOUS	WASIE SOLID			ŝ	0000	P
EN	1000	·D > ->		loos	DM	1000900	1
EL	· NON-HAZARDOUS V	VEBICIS)	······································			7. v.	
R	· NON-HAZARDOUS V	VASTE SOLID			5 A3		P
				000	DM	004400	
	(ASPHAL)	T, CONCRETE)					
R	& NON-HAZARDOUS W	ASTE LEQUID					G
				1003	10/1	00150	
	· (RINSE	WATER			U Handling	Codes for Wastes Listed Above	
	G. Additional Descriptions for Materials Listed Abo	ve			sit, marianing	000001011111	
	11a Profile 27885						
		SQ					
	116 Prof. 10 24 \$13 102	.00					
	lic Profile 10288						
	11d. FROFILE 24813				<u> </u>		
	15. Special Handling Instructions and Additional In	nformation	6.6.5		51	TE: TDY	
	15. Special fianding monocoust and the	nformation GIS しの引体	>+++02			2701 N. 11A	RBCKV
			51713			SAN DIEG	
						,	
				Pro	5ec+ #	SC0307-01-	
' I							
		and its that the contents of this shi	oment are fully and accurately descri	bed and are	in all respects		
	16. GENERATOR'S CERTIFICATION: I hereby in proper condition for transport. The material	is described on this manifest are n	ot subject to federal hazardous wast	e regulations	5.		
		•					Date
			Signature	· •		Mon	
	Printed/Typed Name	RTAUT	811	6	C. A	6	712710
		and the second		C ²	the second se		X Date
I	17. Transporter 1 Acknowledgement of Receipt	of Materials	Signature		. 1	/ Mói	
	Printed/Typed Name		-ongriadure) (Z	Man	$\sim d$ 0	727
	DONALD OSTRA		- Uneve				Date
ANS	DOMACO CATION	of Materials	· · · · · · · · · · · · · · · · · · ·			Mo	nth Day
ANSPO	18. Transporter 2 Acknowledgement of Receipt		Signature			V.	1
ANSPORT	18. Transporter 2 Acknowledgement of Receipt Printed/Typed Name						1 I I
ANSPORTER	18. Transporter 2 Acknowledgement of Receipt Printed/Typed Name					<u></u>	
TRANSPORTER	19. Discrepancy Indication Space			· ······			l
F	19. Discrepancy Indication Space			· · · · · · · · · · · · · · · · · · ·			<u>l</u> l
F	19. Discrepancy Indication Space					· · · · · · · · · · · · · · · · · · ·	
F	19. Discrepancy Indication Space			d in item 19.			
FACIL	19. Discrepancy Indication Space			d in item 19.			Date
FAC	19. Discrepancy Indication Space			d in item 19.		I	Date Date

÷ .

ارین محققان

	Pleas			OS WASTE IVI	AINIF	E31		
		NON-HAZARDOUS	1. Generator's US EPA ID No.		-	Manifest	2	. Page 1
		0. Concentrale Name and Mailing Address		52475			080305	of (
		TDY INPUSTRIES, IN	IC.	1975				
(and		1000 SIX PPG PLACES	5479					
(4. Generator's Phone (412) 345 - 3	3052					
		TDY TINDUSTIRIES, TNC. 1000 SIX PRG PLACES PITTS BURGH, PA 15222-54179 4. Generator's Phone (412) 345-3052 5. Transporter 1 Company Name 6. US EPA ID Number A. Sta OCEAN BLUE ENVIRONMENTAL CAD983608258 B. Transporter 2 Company Name 8. US EPA ID Number C. Sta 9. Designated Facility Name and Site Address 10. US EPA ID Number C. Sta 9. Designated Facility Name and Site Address 10. US EPA ID Number C. Sta 1. US EPA ID Number 1. US EPA ID NUMBER 1. US EPA ID NU						
					8			4127
		7. Hansporter 2 Company Name	8. 	US EPA ID Number				
		9. Designated Facility Name and Site Address	10.	US EPA ID Number		and the second design of the s	Constant and the second s	
		LINDS OVEST 17TH STRE	ET					
				DODALLAQAIQ	h			-
				0020101011	1	000	011 0 1	14.
						Туре	Total Quantity	Unit Wt./Vol.
		" NON-HAZARDO	IS WASTE	SOLID				~
		(DRIL	L CUTTING	12	DAS	DM	02250	P
	G		WASTE MANIFEST CAD008382475 Document No 080305 Weaste Main and Maling Address y TNDAT RIES, THC. Document No 080305 Decondent No 080305 Decondent No 0502205 Decondent No 080305 Decondent No 050205 NoN- HAZARDOUS WASTE SOLID Decondent No 0804000 DECON WASTE DE	1				
	E	1101	STE MANIFEST CAD008382475 Document No 080305 To Numma Multing Address The C. The Numma Multing Address The Numma Multing Address TA BLAGES THO ST. TO ST.	ODUDO	C-			
	E			and the second se	008	DEL	00900	47
		· MON-HAZARDOUS	WHASTE S	OCID	Manifest Document No.080305 2. Page of Der A. State Transporter's ID B. Transporter's ID D. Transporter's ID Der C. State Transporter's ID D. Transporter 2 Phone E. State Transporter's ID Der E. State Transporter's ID Por D. Transporter's ID D. Transporter 2 Phone E. State Transporter's ID Por E. State Facility's ID F. Facility's Phone Total No. Type Quantity P QoS D.M QoS D.M QoS D.M QoS D.M QoS D.M QoS D.M Quantity P QoS D.M SITE'. T.DY ZTO I. N. HARBOR <t< th=""><th>D</th></t<>	D		
	T	(PPE	DEBRIS)		004	UM	sporter's ID r 1 Phone $562 \cdot 624 \cdot 412^{-1}$ sporter's ID r 2 Phone ity's ID hone $432 \cdot 5445$ 13. 414 Quantity 02,250 P 00400 C P 00400 P 00400 P 00400 P 0050 00500 00500 00500 00500	Γ
	R	d.						
ST								4
VASTE		G. Additional Descriptions for Materials Listed Above				H. Handling C	codes for Wastes Listed Above	
Tr		11a. PROFILE # 278	385 (5×5	5)		U.S.		
1		116, PROFILE #248	13 (8×5	5)				
G		IIC. PROFILE # 102	38 (2×5	55)				
AR		fic.						
AZARDO		15. Special Handling Instructions and Additional Info	mation OB JOB#	F 51716	SIT	E' TDY	/	
T			-	0.114				DR.
I-NON		have needed as a set	ded for use on ellie (12 plot) typewriter) Manifest DOUS 1: Generator's US EPA ID No. CADD008382475 Document No. graddress CADD008382475 1: CADD0 A State Transporter's ID 1: MACES B. Transport Phone 562 · 1 0 0. US EPA ID Number 1: MACES B. Transport Phone 562 · 1 0 0. US EPA ID Number 1: Mandress 0. 0: Transport Phone 562 · 1 D. Transport Phone 562 · 1 0: Transport Phone 562 · 1 D. Transport Phone 562 · 1 0: The SHREET 10. US EPA ID Number 1: Containers 13. 1: Containers 13. 1: Containers 13. 2: ARDOUS WASTE 0: DM 0.2,2.5 2: ARDOUS WASTE 0: DM 0.2,2.5 0: ARDOUS WASTE 0: DM 0.0.4					
Z				PR	Manifest Document No. BOBORS DNumber A. State Transporter's ID DOBASSB B. Transporter's ID DNumber C. State Transporter's ID D.Number D. Transporter's ID D.Number E. State Transporter's ID D.Number E. State Transporter's ID D.Number E. State Transporter's ID D. Transporter 2 Phone E. State Facility's ID H. Handling School School DOS D.M. D.O. D.S. D. S. <th></th>			
				bewriter) Manifest Document No. DOO8382475 Document No. 6. US EPA ID Number TAL CAD983608258 8. US EPA ID Number C. C. State Transporter's ID B. Transporter's ID I. D. I. US EPA ID Number I. C. State Transporter's ID I. D. M. Type Unantity D. M. D.				
		 GENERATOR'S CERTIFICATION: I hereby cert in proper condition for transport. The materials d 	ify that the contents of this shipme escribed on this manifest are not s					
								Date
		Printed/Typed Name	-	Signature / D	9		Month	Day Year
	-	EDGARD BERTA		apr se	lan	X	08	0305
	T R A	17. Transporter 1 Acknowledgement of Receipt of M Printed/Typed Name	ateriais	Signature	0		Month	Date Day Year
	NS	DONALD OSTRAN	\supset	Donald	a	tranc	\bigcirc 08	03/05
	0 R	18. Transporter 2 Acknowledgement of Receipt of M	aterials					Date
	RANSPORTER	Printed/Typed Name		Signature			Month	Day Year
		19. Discrepancy Indication Space						
	FA							
	C	00 Fasility Owner - O	1. / Mar					
	Ļ	20. Facility Owner or Operator; Certification of receip	t of the waste materials covered b	y this manifest, except as noted in it	em 19.			Date
X	1	ninted/Typed Name		Signature			Month	Date Day Year
	Y		a far-the and					

-

-

	NON-HAZARDOUS	e (12 pitch) typewriter) 1. Generator's US I	EPA ID No			Manifest		20	age 1	
	WASTE MANIFEST		0083824	75	- 31	Document No	081005		of /	
	3. Generator's Name and Mailing Address	RIES	00050 = 7	12			001005			_
	3. Generator's Name and Mailing Address TOT: INDUSTI 1909 Six 4. Generator's Phone (45-3) Six 5. Transporter 1 Company Name	-SBURCH,	-C PA 1522	2-5470	î				20	
	5. Transporter 1 Company Name		6. US EF	A ID Number		A. State Trans	sporter's ID			-
	7. Transporter 2 Company Name	RONM ENTRE	CA0983	60 2252	-	B. Transporte	r 1 Phone 562 - 0	624	-4	1
	7. Transporter 2 Company Name		8. US EF	A ID Number		C. State Trans	and the second se			-
			1			D. Transporte	r 2 Phone			-
	9. Designated Facility Name and Site Address	Ŵ	10. US EI	PA ID Number		E. State Facili	ty's ID			
	1630 WESTITH STI LONG REAGI (A 90)		CADOZZ	404019		F. Facility's Pl 362 -	hone 432-544	-5		
	LONG BEACH (A 90)	/			12. Co	ntainers	13		14	ł.
					No.	Туре	Total Quantity		14 Uni Wt./	it Vo
	a. NON - HAZAR DOUS	WASTE	LIQUID	Υ.	004	DM	00200	2	G	
GEN	b.	· 2								
E R A	C.									
TO										
R	d.									50
	G. Additional Descriptions for Materials Listed Ab	oove				H. Handling C	Codes for Wastes Listed A	bove		
	G. Additional Descriptions for Materials Listed At TIG PROFILE : 24813	pove				H. Handling C	Codes for Wastes Listed A	bove		
	G. Additional Descriptions for Materials Listed At		0B#			SITE : 27	TDY DI N. HAR	Bor	Di	2
	11a PROFILE : 24813	Information OB 3		Ind accurately describ	Pa	SITE; Z7 SAN SAN		Bor	Dî 01 -	2 L
	15. Special Handling Instructions and Additional 16. GENERATOR'S CERTIFICATION: I hereby in proper condition for transport. The materia	Information OB 3	of this shipment are fully a fest are not subject to fed		Pa	SITE; Z7 SAN SAN	TDY DI N. HAR	Bor A 7 - 0	Di Ol -	2 r
	11a PROFILE ! 24813 15. Special Handling Instructions and Additional 16. GENERATOR'S CERTIFICATION: I hereby in proper condition for transport. The materia Printed/Typed Name EDGARD BERTA	Information OB 3 certify that the contents of Is described on this man		2	Pa	SITE; Z7 SAN SAN	TDY DI N. HAM DIECO. (# 5(030	A A Vonth DB	Date Day	2 F
	15. Special Handling Instructions and Additional 16. GENERATOR'S CERTIFICATION: 1 hereby in proper condition for transport. The materia Printed/Typed Name EDGARD BERTA 17. Transporter 1 Acknowledgement of Receipt of	Information OB 3 certify that the contents of Is described on this man	of this shipment are fully a fest are not subject to fed Signature	Reput !	PR red and are in regulations.	SITE; Z7 SAN SAN	TDY N. N. HAK PIEGO. (# 36030	(B)Z A (A) (A) (A) (A) (A) (A) (A) (A) (A) (Date Day	2
	11a PROFILE ! 24813 15. Special Handling Instructions and Additional 16. GENERATOR'S CERTIFICATION: I hereby in proper condition for transport. The materia Printed/Typed Name EDGARD BERTA	Information OB 3 certify that the contents of ls described on this mani-	of this shipment are fully a fest are not subject to fed	Reput !	PR red and are in regulations.	SITE; Z7 SAN SAN	TDY DIEGO.C # 36030	A A Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	Date Day	r 2 , 2
	15. Special Handling Instructions and Additional 16. GENERATOR'S CERTIFICATION: 1 hereby in proper condition for transport. The materia Printed/Typed Name EDGARD BERTA 17. Transporter 1 Acknowledgement of Receipt of Printed/Typed Name DOMINLD OSTRUM	Information OB 3 certify that the contents of ls described on this mani- states of Materials	of this shipment are fully a fest are not subject to fed Signature	Reput !	PR red and are in regulations.	SITE; Z7 SAN SAN	TDY DIEGO.C # 36030	A A A Vonth C B Vonth C B Vonth	Date Day Date Day	12
	15. Special Handling Instructions and Additional 16. GENERATOR'S CERTIFICATION: I hereby in proper condition for transport. The materia Printed/Typed Name EDGARD BERTA 17. Transporter 1 Acknowledgement of Receipt of Printed/Typed Name	Information OB 3 certify that the contents of ls described on this mani- states of Materials	of this shipment are fully a fest are not subject to fed Signature	alful .	PR red and are in regulations.	SITE; Z7 SAN SAN	TDY DIEGO.C # 5030	B > Z A A A A A A A A A A A A A A A A A A A	Date Day	2
	15. Special Handling Instructions and Additional 16. GENERATOR'S CERTIFICATION: 1 hereby in proper condition for transport. The materia Printed/Typed Name EDGARD BERTA 17. Transporter 1 Acknowledgement of Receipt of Printed/Typed Name DOMINLD OSTRUA 18. Transporter 2 Acknowledgement of Receipt of 18. Transporter 2 Acknowledgement of Receipt of	Information OB 3 certify that the contents of ls described on this mani- states of Materials	of this shipment are fully a fest are not subject to fed Signature Signature	alful .	PR red and are in regulations.	SITE; Z7 SAN SAN	TDY DIEGO.C # 5030	A A A A A A A A A Month C Month C B I I	Date Day Date Day Date Date	r ,
RAZSPORTER	15. Special Handling Instructions and Additional 15. Special Handling Instructions and Additional 16. GENERATOR'S CERTIFICATION: I hereby in proper condition for transport. The materia Printed/Typed Name EDGARD BERTA 17. Transporter 1 Acknowledgement of Receipt of Printed/Typed Name DOMALD OSTRAM 18. Transporter 2 Acknowledgement of Receipt of Printed/Typed Name	Information OB 3 certify that the contents of ls described on this mani described on this mani of Materials	of this shipment are fully a fest are not subject to fed Signature Signature Signature	Lynd I mald	Preventions.	SITE; Z7 SAN SAN	TDY DIEGO.C # 5030	A A A A A A A A A A A A A A A A A A A	Date Day Date Day Date Day Date	2
RAZSPORTER F	15. Special Handling Instructions and Additional 15. Special Handling Instructions and Additional 16. GENERATOR'S CERTIFICATION: I hereby in proper condition for transport. The materia Printed/Typed Name EDGARD BERTA 17. Transporter 1 Acknowledgement of Receipt of Printed/Typed Name DGMALD OSTRUA 18. Transporter 2 Acknowledgement of Receipt of Printed/Typed Name 19. Discrepancy Indication Space	Information OB 3 certify that the contents of ls described on this mani described on this mani of Materials	of this shipment are fully a fest are not subject to fed Signature Signature Signature	en al de la constant	Preventions.	SITE; Z7 SAN SAN	TDY DI N. HAR DIECO. () # 3(03)	A A A A A A A A A A A A A A A A A A A	Date Day Date Day Date Date	12 12

	NON-HAZARDOUS			Manifest Document No.	1105-2	2. Page 1
2		08382475		8	1105-6	of
Ľ	3. Generator's Name and Mailing Address TDY Industr 1600 Six PPG					
	Pittsburgh,	PA15222				
	4. Generator's Phone (112) 345-3052					
-	5. Transporter 1 Company Name	6. US EPA ID Number	1	A. State Trans	the second s	
	OCEAN BLUE ENVIRCMENTAL 7. Transporter 2 Company Name	CAD983608	250	B. Transporter C. State Trans	1 Phone 562-6	24-4
	7. Transporter 2 Company Name			D. Transporter		
	9. Designated Facility Name and Site Address	10. US EPA ID Number		E. State Facili	The second s	
-	Cresby And Overtan 1630 West 17th street	de la companya de la			the second s	in the second
	1650 West 17th since	And	0.0	F. Facility's Ph		
-	LONG BEACH, CA 90813 11. WASTE DESCRIPTION	CAU 02 8409	12 0	562	-432-544	and the second division of the second divisio
	The waste begonin now		No.	Type	Total Quantity	W
	a. NON-HAZAR DOUS WASTE	Liquid		1		
	The state would be the		201	Tm	00 200	G
	b.'		006	DM	00 300	
GE	0.	Y				
E						
R	С.	· 1		T		
A						
0	d.					
R	u.	de ta			127	
5	2			Carrier Contraction		
1	G. Additional Descriptions for Materials Listed Above	,	n sta Th	H. Handling C	odes for Wastes Listed Abo	ve
	11a Profile 278852481	5				
	15. Special Handling Instructions and Additional Information	+		517	E TDY	in Ro R
	OB JOB =	T DIVIB			2701 N. H	ARISCIE
	• •				701 N.H 2701 N.H SAN DIE	60,0
				Projec	+ F SCC307	-61-
-	16. GENERATOR'S CERTIFICATION: I hereby certify that the contents of in proper condition for transport. The materials described on this manife	this shipment are fully and accurately des est are not subject to federal hazardous wa	cribed and are in aste regulations.	n all respects		
					- [Data
	Printed/Typed Name	Signature			Ma	Date
	EDGARD BERTANT	Edal B	etat		\mathcal{O}	812
TR	17. Transporter 1 Acknowledgement of Receipt of Materials					Date
AN	Printed/Typed Name	Signature	0 6	LA	D Mo	nth Day
SPO	18. Transporter 2 Acknowledgement of Receipt of Materials	Donar	el U	JWC	mat c	Date
RANSPORTER	Printed/Typed Name	Signature			Ма	onth Day
Ê						
F	19. Discrepancy Indication Space	7				
À	20 	4				
1	20. Facility Owner or Operator; Certification of receipt of the waste material	s covered by this manifest except as not	ed in item 19			
1		except as hold			Г	Date
L						
LITY	Printed/Typed Name	Signature			Mo	onth Day

Sto Fo Ple	rm Ap ase p	California—Environmental Protection Agency proved OMB No. 2050–0039 (Expires 9-30-99) rint or type. Form designed for use on elite (12-pit	ch) typewriter.	ctions o	on back o	of page	6.			ent of Toxic Substances Contro acramento, California		
		UNIFORM HAZARDOUS WASTE MANIFEST	1. Generator's US EPA ID No. C A D 0 0 8 3 8 2 4 7		est Document	No.	2. Pc	age 1		n in the shaded areas ired by Federal law.		
2	3	3. Generator's Name and Mailing Address	Number 2	unber 21727935								
55	X	4. Generator's Phone († 1 2 - P+ 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5	Generator's	nerator's ID								
852-7		5. Transporter 1 Company Name	C. State Transporter's ID [<u>Reserved</u> .]									
1-800-		OCEAN BLVE ENVII 7. Transporter 2 Company Name	8. US EPA ID Number	 D. Transporter's Phone <u>5</u> <u>6</u> <u>6</u> <u>6</u> <u>6</u> <u>7</u> <u>7</u> <u>7</u> <u>7</u> <u>7</u> <u>7</u> <u>7</u> <u>7</u> <u>7</u> <u>7</u>								
135 CALL 1-800-852-755		9. Designated Facility Name and Site Address	10. US EPA ID Number			F. Transporter's Phone						
279 RNIA, 6		CROSBY AND OVERTE	Nou			G. State Facility's ID						
217279 CALIFORNIA,		LONG REACH, CA 90 11. US DOT Description (including Proper Shipp)		1011	0 9 12. Con			Sector and the	14. Unit	- it if if the		
NIN O		" HAZARDOUS WAST	ELIQUID, N.D.S., 9	1	No.	Туре	Quan	ntity	Wt/Vol	I. Waste Number		
2: WIT	GE	UN13082, PG111	(PURGE WHTER)		DIOH	om	opl	pр	G	EPA/Other		
4-8802	N E R	b					1.1.	, 1 1		State EPA/Other		
00-42	A T O	c.								State #		
CENTER 1-800-424-8802: WITHIN	R	d.						LL		EPA/Other State		
					1.1		I I	11		EPA/Other		
E		J. Additional Descriptions for Materials Listed Ab	ove			K. Handli a.	ng Codes fo	or Waste	s Listed Abov	/e		
AL RES		North Contraction				с.			d.			
ATIONAL		15. Special Handling Instructions and Additional WEAR PROPER PPE M			FDI	d has			1			
THE NA		EMERGENCY JELEPI					TIJIT	• 0.	L. ACT	DIAL A		
CALL T	-3	 GENERATOR'S CERTIFICATION: 1 hereby de marked, and labeled, and are in all respects 		5								
OR SPILL,		If I am a large quantity generator, I certify practicable and that I have selected the prac and the environment; OR, if I am a small qu available to me and that I can afford.	that I have a program in place to reduce the vol ticable method of treatment, storage, or disposa iantity generator, I have made a good faith effo	lume and to al currently ort to minimi	oxicity of wa available to ize my waste	nste generat me which r generation	ed to the d ninimizes th n and selec	legree I he prese at the be	have determi nt and future st waste man	ned to be economically threat to human health agement method that is		
ENCY O	♦	Printed/Typed Name	Signature	1 Ba	X				Mon P 1	th Day Year B 2 C S		
EMERGENCY	RANS	17. Transporter 1 Acknowledgement of Receipt o Printed/Typed Name Daki 057 RHND	t Materials	2 1	La to	ern	0		Mon	th 1 Day Year		
Ъ	P O R T E	18. Transporter 2 Acknowledgement of Receipt o Printed/Typed Name	f Materials Signature						Mon	th Day Year		
IN CASE	F	19. Discrepancy Indication Space		hê li	Sec.							
			<i>t</i>									
0	I	20. Facility Owner or Operator Certification of re Printed/Typed Name	eceipt of hazardous materials covered by this ma Signature	nifest excep	ot as noted in	Item 19.			Mon	th Day Year		
100	F.		DO NOT WRITE BELC									

Ci al

	ase print or type (Form designed for use on elite									
	NON-HAZARDOUS WASTE MANIFEST	1. Generator's US EP	AID NO. 08382475		Manifest Document No	081705	2. Page 1 of			
	3. Generator's Name and Mailing Address					0,,,00				
	TOY INDUSTR	IEr	15272	-517.	1					
	1000 SIX PI	re rend	1500	1	1					
	4. Generator's Phone (44 2) 34-5- 5. Transporter 1 Company Name		-							
					A. State Tran					
	OLEAN BLUE ENV	INNAMENTAL	CAD 98360	8253	B. Transporte	r 1 Phone 562-8	24-41			
	7. Transporter 2 Company Name		8. US EPA ID Number		C. State Tran	sporter's ID				
	O Designated Eastlife Name and Oite Address				D. Transporte		1.100			
	9. Designated Facility Name and Site Address		10. US EPA ID Number		E. State Facil	ity's ID				
	1630 WEST 17"	57			E. Excilitede D					
	LONG DEACH! LA		(A00280	454014	F. Facility's P	1-432-54	KJ			
	11. WASTE DESCRIPTION				ontainers	13. Total	14. Unit Wt./Vo			
	a. NON-HAZAMOD	AL LARCOF	112.12	No.	Туре	Quantity	Wt./Vo			
				Tu	10-11		1			
	(HIZO	HE WATER	5)	DM	004	00 200	0			
G	· MOH · HAZAZDOUS	WASTE S	IDLID							
GEN	(DEB	Dic		Da	DISZ	00100	P			
ER	(DED	1615)		UM	000	00/00	1			
	с.				-	9				
AT						1				
O R										
							o			
	G. Additional Descriptions for Materials Listed Ab		H. Handling C	odes for Wastes Listed Above						
	119 PROFILE #2481									
	116 PROFILE#1028	78 (2×5	3)							
	IID INOPICOTI									
		nformation mb -	TODAT SIJON		SIT	E: TAY				
	15. Special Handling Instructions and Additional I		1015-51/27		211	2701 N. HAD	ROD D			
	15. Special Handling Instructions and Additional I	00.				2701 N. HAR SHAW DIEGO	DCIA			
	15. Special Handling Instructions and Additional In	05.								
	15. Special Handling Instructions and Additional I					SHAW DIEGO	ACH			
	15. Special Handling Instructions and Additional In					DIAN DIEGO	y Crr			
	15. Special Handling Instructions and Additional In					2460 01250	g CH			
	 Special Handling Instructions and Additional In Special Handling Instructions and Additional In Instruction Instruction Instruction <li< td=""><td>certify that the contents of t</td><td>his shipment are fully and accurately des</td><td>scribed and are in aste regulations.</td><td>all respects</td><td>JAN GIEGO</td><td>g CH</td></li<>	certify that the contents of t	his shipment are fully and accurately des	scribed and are in aste regulations.	all respects	JAN GIEGO	g CH			
	16. GENERATOR'S CERTIFICATION: 1 hereby c	certify that the contents of t	his shipment are fully and accurately des st are not subject to federal hazardous w	scribed and are in aste regulations.	all respects	51413 01257				
	16. GENERATOR'S CERTIFICATION: I hereby of in proper condition for transport. The materials	certify that the contents of t	st are not subject to federal hazardous w	scribed and are in aste regulations.	all respects		Date			
	16. GENERATOR'S CERTIFICATION: I hereby of in proper condition for transport. The materials Printed/Typed Name	certify that the contents of t s described on this manifes	his shipment are fully and accurately des st are not subject to federal hazardous w Signature	acribed and are in aste regulations.	all respects	SLANS GIEGO	Date			
Т	16. GENERATOR'S CERTIFICATION: I hereby of in proper condition for transport. The materials Printed/Typed Name	pertify that the contents of t s described on this manifes	st are not subject to federal hazardous w	scribed and are in aste regulations. Betan	all respects		Date Day Y			
	16. GENERATOR'S CERTIFICATION: 1 hereby of in proper condition for transport. The materials Printed/Typed Name EDGARD BER	pertify that the contents of t s described on this manifes	st are not subject to federal hazardous w	Betan	2	Mont	Date			
TR	16. GENERATOR'S CERTIFICATION: 1 hereby of in proper condition for transport. The materials Printed/Typed Name EDGARD BER 17. Transporter 1 Acknowledgement of Receipt of	pertify that the contents of t s described on this manifes	st are not subject to federal hazardous w	Betan	2	Mont	Date Day Y Date Date Date			
Trazspo	16. GENERATOR'S CERTIFICATION: 1 hereby of in proper condition for transport. The materials Printed/Typed Name EDGARD 17. Transporter 1 Acknowledgement of Receipt of Printed/Typed Name	tertify that the contents of t s described on this manifes that the contents of the second the second secon	st are not subject to federal hazardous w	Betan	all respects	Mont	Date Daty Date Date Date			
Trazspo	16. GENERATOR'S CERTIFICATION: I hereby of in proper condition for transport. The materials Printed/Typed Name 5 D G A A D B E A ⁻¹ 17. Transporter 1 Acknowledgement of Receipt of Printed/Typed Name D O M A D O S T R A ⁺¹	tertify that the contents of t s described on this manifes that the contents of the second the second secon	st are not subject to federal hazardous w	Betan	2	Mont	Date Daty Y Date Date Date Date			
TRANSP	16. GENERATOR'S CERTIFICATION: 1 hereby of in proper condition for transport. The materials Printed/Typed Name EDGARD BER 17. Transporter 1 Acknowledgement of Receipt of Printed/Typed Name DONIAD OSTRAT 18. Transporter 2 Acknowledgement of Receipt of Printed/Typed Name Printed/Typed Name	tertify that the contents of t s described on this manifes that the contents of the second the second secon	Signature Signature Signature Signature	Betan	2	Monti S Monti S	Date Date Date Date Date Date			
Trazspo	16. GENERATOR'S CERTIFICATION: I hereby of in proper condition for transport. The materials Printed/Typed Name EDGARD BER 17. Transporter 1 Acknowledgement of Receipt of Printed/Typed Name DONALD OSTRAN 18. Transporter 2 Acknowledgement of Receipt of Receipt of Printed/Typed	tertify that the contents of t s described on this manifes that the contents of the second the second secon	Signature Signature Signature Signature	Betan	2	Monti S Monti S	Date Date Date Date Date Date			
TRAZSPORTUR	16. GENERATOR'S CERTIFICATION: 1 hereby of in proper condition for transport. The materials Printed/Typed Name EDGARD BER 17. Transporter 1 Acknowledgement of Receipt of Printed/Typed Name DONIAD OSTRAT 18. Transporter 2 Acknowledgement of Receipt of Printed/Typed Name Printed/Typed Name	tertify that the contents of t s described on this manifes that the contents of the second the second secon	Signature Signature Signature Signature	Betan	2	Monti S Monti S	Date Date Date Date Date Date			
TRAZSPORTER	16. GENERATOR'S CERTIFICATION: 1 hereby of in proper condition for transport. The materials Printed/Typed Name EDGARD BER 17. Transporter 1 Acknowledgement of Receipt of Printed/Typed Name DOMALD OSTRAT 18. Transporter 2 Acknowledgement of Receipt of Printed/Typed Name 19. Discrepancy Indication Space	t Materials	Signature Signature Signature Signature Signature Signature	Belan Belan	2	Monti S Monti S	Date Date Date Date Date Date			
TRAZSPORTUR	16. GENERATOR'S CERTIFICATION: 1 hereby of in proper condition for transport. The materials Printed/Typed Name EDGARD BER 17. Transporter 1 Acknowledgement of Receipt of Printed/Typed Name DONIAD OSTRAT 18. Transporter 2 Acknowledgement of Receipt of Printed/Typed Name Printed/Typed Name	t Materials	Signature Signature Signature Signature Signature Signature	Belan Belan	2	Monti S Monti S	Date Date Date Date Date Date			
ANSPORTER	16. GENERATOR'S CERTIFICATION: 1 hereby of in proper condition for transport. The materials Printed/Typed Name EDGARD BER 17. Transporter 1 Acknowledgement of Receipt of Printed/Typed Name DOMALD OSTRAT 18. Transporter 2 Acknowledgement of Receipt of Printed/Typed Name 19. Discrepancy Indication Space	t Materials	Signature Signature Signature Signature Signature Signature	Belan Belan	2	Monti S Monti S	Date			

NON-HAZARDOUS WASTE MANIFEST

	print or type (Form designed for use on elite (12 pitch) typewriter)		1. 1. 1. Ten 1.3	an and states and the	A REAL PROPERTY OF THE OWNER AND	
	NON-HAZARDOUS WASTE MANIFEST	82475		Manifest Document No	90605 2	. Page 1 of
	3. Generator's Name and Mailing Address					
	TPY Industries Inc					
	1000 Six PPG place Pitsburgh, PA 15322 - 5479 4. Generator's Phone (412) 345 - 3052					
	4. Generator's Phone (1113) 7115 - 2007)			1		
-	5. Transporter 1 Company Name 6.	US EPA ID Number		A. State Trans	portaria ID	
		AD98360825	9			11120
-			0	B. Transporte	700 001	-41dl
	7. Transporter 2 Company Name 8.	US EPA ID Number		C. State Trans	sporter's ID	
_				D. Transporte	r 2 Phone	
	9. Designated Facility Name and Site Address 10.	US EPA ID Number		E. State Facili	ty's ID	
	Crosby Andoverten 1630 West 17th Street			and the second		- Aller and the
	1630 West 17th Street			F. Facility's Pl		1.1
	LongBeach, CA 90813 C	AD028409019	7	562-0	432-5445	
-	11. WASTE DESCRIPTION			ntainers	13.	14.
			No.	Туре	Total Quantity	Unit Wt./Vol.
-	A + +++ + ++ + + + + + + + + + + + + +	\square		.,,,-		
	" NON-HAZARDOUS WASTE LIQUI		0.1		Olta	0
	(RIUSE LINTER)		(γ)	DM	001001	5
-	" NONI- HAZARDOUS WASTE SOLID		001	211	and a d	1
i i	" NON-HAZARDOUS WASTE SOLID					~
GUNUR	(PPE DEORIS)		002	NN	MANDYE	P
EL	(FIE DEDRID)		002	DI	00000	1
R	С.			20		
A T O R		79				
	d.					
						1
				×		
-	G. Additional Descriptions for Materials Listed Above			H Handling (Codes for Wastes Listed Above	
	Additional Descriptions for Materials Listed Above			H. Handling C	odes for wastes listed Above	
	119) PROFILE# 24813 116) PROFILE# 10288					
	11) DROFILE # 10288					
	116) FROM 24 10 000					
			3		-	
-	15. Special Handling Instructions and Additional Information OB JOB	#				
-	15. Special Handling Instructions and Additional Information OB JOB	#		- 22		
	15. Special Handling Instructions and Additional Information OB IOB	#	- 			
	15. Special Handling Instructions and Additional Information OB JOB	#		 		
	15. Special Handling Instructions and Additional Information OB IOB	#				
	15. Special Handling Instructions and Additional Information OB IOB	#		ter		
	 15. Special Handling Instructions and Additional Information OB JOB 16. GENERATOR'S CERTIFICATION: I hereby certify that the contents of this ship in proper condition for transport. The materials described on this manifest are not provide the content of the second second	ment are fully and accurately described	d and are in egulations.			
	16. GENERATOR'S CERTIFICATION: I hereby certify that the contents of this ship	ment are fully and accurately described	d and are in egulations.			
	16. GENERATOR'S CERTIFICATION: I hereby certify that the contents of this ship in proper condition for transport. The materials described on this manifest are no	ment are fully and accurately described t subject to federal hazardous waste re	d and are in agulations.			Date
	16. GENERATOR'S CERTIFICATION: I hereby certify that the contents of this ship in proper condition for transport. The materials described on this manifest are no Printed/Typed Name	ment are fully and accurately described	d and are in ggulations.		Month	
	16. GENERATOR'S CERTIFICATION: I hereby certify that the contents of this ship in proper condition for transport. The materials described on this manifest are no Printed/Typed Name EOLARD BERTAMT	ment are fully and accurately described t subject to federal hazardous waste re	d and are in egulations.		Month O 9	
	16. GENERATOR'S CERTIFICATION: I hereby certify that the contents of this ship in proper condition for transport. The materials described on this manifest are no Printed/Typed Name	ment are fully and accurately described t subject to federal hazardous waste re	d and are in egulations.		Month O 9	
	16. GENERATOR'S CERTIFICATION: I hereby certify that the contents of this ships in proper condition for transport. The materials described on this manifest are not printed/Typed Name Printed/Typed Name 17. Transporter 1 Acknowledgement of Receipt of Materials Printed/Typed Name	ment are fully and accurately described t subject to federal hazardous waste re	d and are in egulations.		Month Ø9 Month	Day Yea DG OS Date
	16. GENERATOR'S CERTIFICATION: I hereby certify that the contents of this ships in proper condition for transport. The materials described on this manifest are not printed/Typed Name Printed/Typed Name EOLARO BERTAUT 17. Transporter 1 Acknowledgement of Receipt of Materials	ment are fully and accurately described t subject to federal hazardous waste re Signature	d and are in egulations.		09	Day Yea DG QS Date Day Yea
	16. GENERATOR'S CERTIFICATION: I hereby certify that the contents of this ships in proper condition for transport. The materials described on this manifest are not printed/Typed Name Printed/Typed Name 17. Transporter 1 Acknowledgement of Receipt of Materials Printed/Typed Name	ment are fully and accurately described t subject to federal hazardous waste re Signature	d and are in agulations.		09	Day Yea DG QS Date Day Yea
	16. GENERATOR'S CERTIFICATION: I hereby certify that the contents of this ship in proper condition for transport. The materials described on this manifest are not printed/Typed Name Printed/Typed Name 17. Transporter 1 Acknowledgement of Receipt of Materials Printed/Typed Name Deviation OSTRAMO	ment are fully and accurately described t subject to federal hazardous waste re Signature	d and are in agulations.		09 Month 09	Day Yea OG OS Date Day Yea Date
	16. GENERATOR'S CERTIFICATION: I hereby certify that the contents of this ship in proper condition for transport. The materials described on this manifest are not printed/Typed Name Printed/Typed Name 17. Transporter 1 Acknowledgement of Receipt of Materials Printed/Typed Name DALD OSTRAMD 18. Transporter 2 Acknowledgement of Receipt of Materials	nent are fully and accurately describer t subject to federal hazardous waste re Signature Signature Signature	d and are in agulations.		09	Day Yea DG DS Date Day Yea Date Date
	16. GENERATOR'S CERTIFICATION: I hereby certify that the contents of this ships in proper condition for transport. The materials described on this manifest are not printed/Typed Name Printed/Typed Name 17. Transporter 1 Acknowledgement of Receipt of Materials Printed/Typed Name DALD OSTRAND 18. Transporter 2 Acknowledgement of Receipt of Materials Printed/Typed Name	nent are fully and accurately describer t subject to federal hazardous waste re Signature Signature Signature	d and are in agulations.		09 Month 09	Day Yea OG OS Date Day Yea Date
F	16. GENERATOR'S CERTIFICATION: I hereby certify that the contents of this ship in proper condition for transport. The materials described on this manifest are not printed/Typed Name Printed/Typed Name 17. Transporter 1 Acknowledgement of Receipt of Materials Printed/Typed Name DALD OSTRAMD 18. Transporter 2 Acknowledgement of Receipt of Materials	nent are fully and accurately describer t subject to federal hazardous waste re Signature Signature Signature	d and are in agulations.		09 Month 09	Day Yea OG OS Date Day Yea Date
F	16. GENERATOR'S CERTIFICATION: I hereby certify that the contents of this ships in proper condition for transport. The materials described on this manifest are not printed/Typed Name Printed/Typed Name 17. Transporter 1 Acknowledgement of Receipt of Materials Printed/Typed Name DALD OSTRAND 18. Transporter 2 Acknowledgement of Receipt of Materials Printed/Typed Name	nent are fully and accurately describer t subject to federal hazardous waste re Signature Signature Signature	d and are in agulations.		09 Month 09	Day Yea OG OS Date Day Yea Date
F	16. GENERATOR'S CERTIFICATION: I hereby certify that the contents of this ship in proper condition for transport. The materials described on this manifest are not printed/Typed Name Printed/Typed Name 17. Transporter 1 Acknowledgement of Receipt of Materials Printed/Typed Name DALD 18. Transporter 2 Acknowledgement of Receipt of Materials Printed/Typed Name 18. Transporter 2 Acknowledgement of Receipt of Materials Printed/Typed Name 19. Discrepancy Indication Space	nent are fully and accurately described t subject to federal hazardous waste re Signature Signature Signature Signature Signature	egulations.		09 Month 09	Day Yea OG OS Date Day Yea Date
Fa -	16. GENERATOR'S CERTIFICATION: I hereby certify that the contents of this ships in proper condition for transport. The materials described on this manifest are not printed/Typed Name Printed/Typed Name 17. Transporter 1 Acknowledgement of Receipt of Materials Printed/Typed Name DALD OSTRAND 18. Transporter 2 Acknowledgement of Receipt of Materials Printed/Typed Name	nent are fully and accurately described t subject to federal hazardous waste re Signature Signature Signature Signature Signature	egulations.		09 Month 09	Day Yea DG DS Date Day Yea Date
FA	16. GENERATOR'S CERTIFICATION: I hereby certify that the contents of this ship in proper condition for transport. The materials described on this manifest are not printed/Typed Name Printed/Typed Name 17. Transporter 1 Acknowledgement of Receipt of Materials Printed/Typed Name DALD 18. Transporter 2 Acknowledgement of Receipt of Materials Printed/Typed Name 18. Transporter 2 Acknowledgement of Receipt of Materials Printed/Typed Name 19. Discrepancy Indication Space	nent are fully and accurately described t subject to federal hazardous waste re Signature Signature Signature Signature Signature	egulations.		09 Month 09	Day Year DG DS Date Day Year Date Date
	16. GENERATOR'S CERTIFICATION: I hereby certify that the contents of this ship in proper condition for transport. The materials described on this manifest are not printed/Typed Name Printed/Typed Name 17. Transporter 1 Acknowledgement of Receipt of Materials Printed/Typed Name DALD 05TRAMD 18. Transporter 2 Acknowledgement of Receipt of Materials Printed/Typed Name 19. Discrepancy Indication Space	nent are fully and accurately described t subject to federal hazardous waste re Signature Signature Signature Signature Signature	egulations.		09 Month 09	Day Year Date Day Year Date Date Date

NON-HAZARDOUS WASTE

	Pleas	e print or type (Form designed for use on elite		RDOUS WASTE I	MANIF	EST			
	Fleas	NON-HAZARDOUS WASTE MANIFEST	1. Generator's US EPA	10 No. 8382475	H	Manifest Document No	100705	2. Pag of	je 1
			Y Industr						
			IUUUUSIXP						
		4. Generator's Phone (412) 345-3							
		5. Transporter 1 Company Name	Interes	6. US EPA ID Number	50	A. State Trans B. Transporte		011	4.00
		7. Transporter 2 Company Name	erital	8. US EPA ID Number	18	sporter's ID	2-624-4120		
				1		D. Transporte			
		9. Designated Facility Name and Site Address 10. US EPA ID Number E. State Facility's ID							
		Crosby And Overton 1630 West 17th st							
		1630 West 17th st	veet			F. Facility's Pl			
		LONG BEACH, CA, SO	2813	CAD0284 090			432-544	5	
		11. WASTE DESCRIPTION	$(\mathbf{x}_{i})^{(i)}$		12. Co No.	ntainers Type	13. Total Quantity		14. Unit Wt./Vol.
		" NON- HAZARDOU	SWASTE	SULID					
			DEBRIS)			Das	0000		P
					003	DM	00200		(1
	G E N	D. NON-HAZARDOUS		 •••					P
	N	CORILL	CUTTINGS)		002	DM	01000	C	r
	E R	· NON-HAZARDOUS	WASTE	SULID					
	A T					0.00	6 () () ()	2	D
	0	(Soi			001	DM	00028	3	r
ш	R	" NON-ITAZARDOUS	WASTE	LIQUID					Ó
ZARDOUS WASTE	-	(PU RC	AE WATER	2)	004	DM	00200		G
N		G. Additional Descriptions for Materials Listed Abo	ve			H. Handling C	Codes for Wastes Listed Abo	ve	
S		G. Additional Descriptions for Materials Listed Add 11g. PROFILE 世1028日 11b. PROFILE 井278日5 11C. PROFILE 井1028日	-						
DO		10 PROFILE #107 85							
õ		IC, FROMEST OF EUG							
AF		IIC. PRUPILE # 24813							
		15. Special Handling Instructions and Additional In	offormation OR	JOB# 51730	7				
Ξ				- , -					
H-NON									
Z								_	
		 GENERATOR'S CERTIFICATION: I hereby c in proper condition for transport. The materials 	ertify that the contents of the described on this manifest	is shipment are fully and accurately desc are not subject to federal hazardous was	ribed and are in ste regulations.	all respects			
								Da	te
		Printed/Typed Name		Signature	A		Мо	nth D	ay Year
		EDGARD BEKT	AUT	Edych	Benton	À.	ļ.	00	7 05
	R	17. Transporter 1 Acknowledgement of Receipt o	Materials					Da	
	N	DONALD OSTRA	ND	Signature	1.10	former and a second	Мо	nth D	Day Year
	PO	18. Transporter 2 Acknowledgement of Receipt o				V reacting		Da	te
	TRANSPORTER	Printed/Typed Name		Signature			Мо	onth D	Day Year
	R								
	F	19. Discrepancy Indication Space							
5	١٨								
	11	20. Facility Owner or Operator; Certification of rea	eipt of the waste materials	covered by this manifest, except as noted	d in item 19.				
								Da	ate
	T	Printed/Typed Name		Signature			Мс	onth L	Day Year
	Ľ			I					

lease	e print or type (Form designed for use on elite (STE MANIF			0.5			
	NON-HAZARDOUS WASTE MANIFEST	1. Generator's US EPA ID No. CAD008382475	×	Manifest Document No	110205.2	2. Page 1 of			
	3. Generator's Name and Mailing Address TPY Industries Inc. 1000 Six PPG Place Pittsburgh PA. 15222-5 4. Generator's Phone (4/2) 345-	479		-					
-	5. Transporter 1 Company Name	sporter's ID	194 <u>-</u>						
	Ocean Blue Environment	vtal CAD9836		B. Transporte	C P G I J D DI	4-410			
	7. Transporter 2 Company Name	Number	C. State Transporter's ID D. Transporter 2 Phone						
	9. Designated Facility Name and Site Address	10. US EPA ID	Number	E. State Faci	and the second				
	9. Designated Facility Name and Site Address Crosby And Overten 1630 West 1716 Street		0010	F. Facility's F	Phone	and the second s			
-	Long Beach, CA 902 11. WASTE DESCRIPTION	13 CAD0284		562-	432 - 5445 13. Total	14 Un			
		inde anil	No.	Туре	Quantity	Wt./			
	" NON-HAZARPOUS V	Vaste Solia	003	DM	00300	F			
G	· WOW-HAZARDOUS Wa	ste solid				-			
GEN	(soil)		001	DM	00250	P			
ERA	· NOW-HABARDOUS Was	ste Liquid			00100	(-			
A T O	(Rinsen		002	DM	00100	. C			
R	d.								
	G. Additional Descriptions for Materials Listed Abo	10		H. Handling	Codes for Wastes Listed Abov	/e			
	11a, Profile#10288								
	116. profile# 10288								
	11C, Profile # 24813								
	15. Special Handling Instructions and Additional In	formation OBJOBHSI	750						
		artify that the contents of this shipment are fully and	accurately described and are	in all respects					
	in proper condition for transport. The materials	described on this manifest are not subject to federal	hazardous waste regulations						
	Printed/Typed Name	Signature			Moi	Date hth Day			
	EDGARD BERTA	- 6	dyn B	land	- 1	102			
TR	17. Transporter 1 Acknowledgement of Receipt of	Materials Signature			A Mo	Date			
AN	Printed/Typed Name	Da	all at	nand		1 02			
	18. Transporter 2 Acknowledgement of Receipt of	Materials							
PO	Printed/Typed Name	Signature			Mo	nth Day			
PORTER									
AZSPORTER FA	19. Discrepancy Indication Space								
F		eipt of the waste materials covered by this manifest,	except as noted in item 19.			- 1 ¹⁴ 0			
F		eipt of the waste materials covered by this manifest, Signature	except as noted in item 19.			Date Inth Day			

APPENDIX C BORING LOGS AND MONITOR WELL CONSTRUCTION DIAGRAMS

G	S	BORING B120-MW4 SHEET 1 OF 1 START DATE 20 Jul 05 Ground Surface FT. FINISH DATE 20 Jul 05 PROJECT TDY LOCATION Harbor Drive PROJECT NUMBER SC0307											
DEPTH (ft)		HOLE LO	POG	CONSTR	ELL RUCTION ERIAL	ION (ft)	NUMBER		BLOWS PER 6"	RECOVERY (%)	PID READING (ppm)	TIME	COMMENTS
5	Fine Sand (SM)with shell hash, olive brown [2.5Y 4/3], loose, dry. Silty Clay (CL)with fine sand lenses, dark grayish brown [2.5Y 4/2] slightly hard, dry. @ 5', light olive brown [2.5Y 5/3], firm, moist @ 6.5', plastic, wet @ 7', with trace shell hash Silty Sand (SM)with lense of medium sand, fine, olive brown [2.5Y 4/3], wet. @ 11', dark gray [2.5Y 4/1]			 Quickrete for cover 3/1 ceme 4.5 ft³ Medium I Chips, pu Cetco 0.325 ft³ #3 RMC sand 3.0 ft³ 	e mix used r (vault), ent ratio Bentonite ure gold				3/5/5 3/4/4 2/3/5 3/6/10 1/0/0				
	Total Depth = 15.5 feet bgs. D. Sam Williams Registered Geologist No. 485				REMAR	PKS							
EQUIF DRILL DIAMI	PMENT CME-75 L MTHD Hollow-Stem Auger	NORTHING EASTING ANGLE BEARING PRINTED	Verti	ical ov 05	COORD	DINA	TE SYSTEM:		ABBREVIA	ATION	s		

BORING LOG W/WELL (SAM) SC0307.GPJ GEOSNTEC.GDT 10/11/05

	GEOSYNTEC C 11305 Rancho Bern San Diego, CA 9212 Tel: (858) 674-6559 SS FORM:	ardo Rd, S 27 Fax: (858)	Suite) 67∠	e 101 4-658		FINISH PROJE	DAT DAT CT	Harbor Driv	i i re		roun	ıd Su	SH Irface	ieet 1 of 1 ft.
	BOREH		<u>_</u>	G	<u> </u>	PROJE		IUMBER SC			_]
DEPTH (ft)	MATERIAL DESCRIPTION	SYMBOLIC LOG		MELL LOG	CONSTR	ELL RUCTION ERIAL	ELEVATION (ft)	NUMBER	SAM	PLES BLOWS PER 6"	RECOVERY (%)	PID READING (ppm)	TIME	COMMENTS
	Medium Sand (SP) with Asphalt, very dark grayish brown [2.5Y 3/2]. Fine Sand (SM) with silty clay lenses and shell hash, olive brown [2.5Y 4/3], loose, dry Sand Silty Clay (SM-CL) with asphalt. Fine Sand (SM) with major shell hash, very dark grayish brown [2.5Y 3/2]. © 5', dark grayish brown [2.5Y 3/2]. © 6.5', with silty clay lenses Total Depth = 15.5 feet bgs. Total Depth = 15.5 feet bgs. D. Sam Williams Registered Geologist No. 485	wet			 3/1 ceme 4.5 ft³ Medium If Chips, pu Cetco 0.325 ft³ #3 RMC or sand 3.25 ft³ 	e mix used (vault), ent ratio Bentonite ure gold	-			6/7/5 5/4/6 1/2/5 2/2/4 2/4/2				
EQUIF DRILL DIAMI	TRACTORH&P PMENT CME-75 LMTHD Hollow-Stem Auger ETER 8" GER B. HitchensREVIEWER	NORTHI EASTING ANGLE BEARING PRINTED	G G	Vertic 10 Nc			DINA	TE SYSTEM:		ABBREVIA	ATION	S	<u> </u>	

	GEOSYNTEC 11305 Rancho Berrr San Diego, CA 9212 Tel: (858) 674-6559	ardo Rd, 27	, Suit	e 101			DAT DAT	B120-M E 21 Jul 05 E 21 Jul 05 TDY			roun	d Su	SH rface	EET 1 OF 1 FT.
G	S FORM: DRE3 10/00 BOREI				,)			Harbor Driv UMBER SC						
DEPTH (ft)	MATERIAL DESCRIPTION		SYMBULIC LUG	MELL LOG	CONSTR	ELL RUCTION ERIAL	ELEVATION (ft)	NUMBER	SAN	IPLES BLOWS PER 6"	RECOVERY (%)	PID READING (ppm)	TIME	COMMENTS
	Fine Sand (SM)light olive brown [2.5Y 5/3], loose, dry. @ 1', with pebble clasts @ 2.5', with shell hash @ 5', moist @ 6.5', dark grayish brown [2.5Y 4/2] @ 7', dark grayish brown [2.5Y 5/3] *** @ 8.5', very dark gray [2.5Y 3/1] D. Sam Williams Registered Geologist No. 485 RACTORH&P	8			for cover 3/1 ceme 5.5 ft ³ Medium I Chips, pu Cetco 0.325 ft ³ #3 RMC sand 3.0 ft ³	e mix used (vault), nt ratio Bentonite ire gold				3/10/14 11/18/21 10/11/11 6/7/3 2/6/5 6/7/3 1/0/2		0.1 0.3 0.4 0.5 0.2 0.2		
EQUII DRILL DIAM	PMENT CME-75 - MTHD Hollow-Stem Auger	EASTIN ANGLE BEARII PRINTE	NG E NG	Vertic 10 No		COORD	DINAT	E SYSTEM:		ABBREVIA	TIONS	6		

		GEOSYNTEC CON 11305 Rancho Bernardo San Diego, CA 92127 Tel: (858) 674-6559 Fax	Rd, Su	ite 101		FINISH PROJE	DAT DAT CT		5		rour	nd Su	SH rface	IEET 1 OF 1 FT.
	SS FORM: DRE3 10/00	BOREHO	LE L	OG			-	Harbor Driv						
DEPTH (ft)	D	MATERIAL DESCRIPTION	SYMBOLIC LOG	MELL LOG		ell Ruction Erial	ELEVATION (ft)	NUMBER	SAN	1PLES "9 HEK 6" BLOWS PER 6	RECOVERY (%)	PID READING (ppm)	TIME	COMMENTS
	Silty Sand (SM) gray [2.5Y 4/1], Ic Fine Sand (SM) gray [2.5Y 4/1]. @ 4', with clay le	vith trace shell hash, dark			for cover, cement ra 5.5 ft ³ Medium If Chips, pu gold/Cetc 0.325 ft ³ #3 RMC 0 sand 3.0 ft ³	e mix used 2/1 atio Bentonite re co				3/4/5 2/9/16 9/14/20 8/11/12 6/6/12 1/1/1 0/0/1		0 0 0 0 0		∑ Groundwater encountered at approximately 6.5 ft bgs on 7/18/2005.
	D. Sam Willi	epth = 15.5 feet bgs.										0		
	FRACTORH&P PMENT CME- L MTHD Hollow ETER 8" GER B. Hitchen	75 EA /-Stem Auger AN BE	RTHING STING GLE ARING INTED	G Vertio 10 No			DINA	TE SYSTEM		ABBREVIA		' S	1	

	GEOSYNTEC C 11305 Rancho Berni San Diego, CA 9212 Tel: (858) 674-6559	ardo Rd, Su 27	uite 101		FINISH PROJE	DAT DAT CT	B131-N E 19 Jul 05 E 19 Jul 05 TDY Harbor Driv	5		roun	ıd Su	SH urface	ieet 1 of 1 ft.
	SS FORM: DRE3 10/00 BOREH	HOLE L	OG				IUMBER SC						
DEPTH (ft)	H MATERIAL DESCRIPTION	SYMBOLIC LOG	MELL LOG	CONSTR	ELL RUCTION ERIAL	ELEVATION (ft)	NUMBER	SAM ITYPE	APLES BLOWS PER 6"	RECOVERY (%)	PID READING (ppm)	TIME	COMMENTS
	Fine Sand (SM) with shell hash and silty clay lenses, gray [2.5 5/1], loose, dry. @ 3.5', grayish brown [2.5Y 5/2] with silty cla lense and shell hash. @ 5.5', moist @ 6', with shell hash, wet @ 7.5', dark gray [2.5Y 4/1] @ 9.5', very dark gray [2.5Y 3/1] @ 12', with trace shell hash			 3/1 ceme 5.5 ft³ Medium I Chips, pu Cetco 0.325 ft³ #3 RMC sand 2.5 ft³ 	te mix used r (vault), ent ratio Bentonite ure gold				3/4/12 5/10/14 9/16/14 5/6/7 6/6/6 1/1/1 1/0/0		17 15 2.4 4.5 2.7 0.3		Groundwater encountered at 7 ft bgs on 7/19/2005.
CONT			-		REMAF	RKS:					0		
EQUII DRILL DIAM	CONTRACTORH&P NORTHING EQUIPMENT CME-75 EASTING DRILL MTHD Hollow-Stem Auger ANGLE Vertical DIAMETER 8" BEARING LOGGER B. HitchensREVIEWER PRINTED 10 Nov 05 SEE KEY SHEET FOR SYMBOLS AND ABBREVIATIONS												

	GEOSYNTEC C 11305 Rancho Berna San Diego, CA 9212 Tel: (858) 674-6559	ardo Rd, Su 27	uite 101		FINISH PROJE	DAT DAT CT	B131-M E 19 Jul 05 E 19 Jul 05 TDY Harbor Driv	5		roun	ıd Su	SH Irface	ieet 1 of 1 ft.
	BS FORM: DRE3 10/00 BOREH	HOLE L	OG				IUMBER SC						
DEPTH (ft)	I MATERIAL DESCRIPTION	SYMBOLIC LOG	MELL LOG	CONSTF MATE	ELL RUCTION ERIAL	ELEVATION (ft)	NUMBER	SAM ITYPE	BLOWS PER 6"	RECOVERY (%)	PID READING (ppm)	TIME	COMMENTS
-	Silty Clay (CL)very dark gray [2.5Y 3/1], slightly hard. @ 3.5', very dark gray [2.5Y 4/1] @ 4', with trace shell hash			▼ 3/1 ceme ▼ 5.5 ft ³	e mix used r (vault), ent ratio Bentonite	-			3/3/6 4/5/13		0		
5	Fine Sand (SM)with shell hash, dark gray [2.5Y 4/1], loose, moist. @ 6', wet			Cetco 0.325 ft ³ #3 RMC sand 3.25 ft ³	_	-			9/12/12 9/9/11		0		
- 10 - -	-			2" PVC,	0.010" slot	-			5/5/9 2/2/2		5.3 0		
- - - 15 - -	Silty Sand (ML)very dark gray [2.5Y 3/1], hard, wet.					-			1/0/0		0		
	Total Depth = 15.5 feet bgs. D. Sam Williams Registered Geologist No. 4858	8											
	TRACTORH&P	NORTHIN											<u> </u>
EQUII DRILL DIAM	PMENT CME-75 L MTHD Hollow-Stem Auger IETER 8" GER B. HitchensREVIEWER	EASTING ANGLE BEARING PRINTED	Verti	ical ov 05	COORD	DINA	TE SYSTEM:		ABBREVI	ATION	s		

	GEOSYNTEC 11305 Rancho Be San Diego, CA 92 Tel: (858) 674-655	rnardo R 127 59 Fax: (8	Rd, Suit (858) 6	ite 101 74-658		FINISH PROJE	DAT DAT CT	B-131-1 E 18 Jul 05 E 18 Jul 05 TDY Harbor Driv	5		roun	id Su	SH	ieet 1 of 1 ft.
	GS FORM: DRE3 10/00 BORE	HOL	.E LC)G		PROJE		IUMBER SC]
DEPTH (ft)	DESCRIPTION		SYMBOLIC LOG	MELL LOG	CONSTR	ELL RUCTION ERIAL	ELEVATION (ft)	NUMBER	SAM	PLES BLOWS PER 6"	RECOVERY (%)	PID READING (ppm)	TIME	COMMENTS
	Silty Clay (CL) dark grayish brown [2.5Y 4/2], hard. @ 1.5', with shell hash Fine Sand (SM) with shell hash, grayish brown [2.5Y 5/2], loose, dry. @ 6', trace shell hash, wet. @ 9', very dark gray [2.5Y 3/1]				3/1 ceme 4.5 ft ³ Medium I Chips, pu Cetco 0.325 ft ³ #3 RMC sand 2.0 ft ³	e mix used r (vault), ent ratio Bentonite ure gold	-			1/0/10 3/5/7 2/6/7 5/5/1 1/1/1		203 115 46.3 100		Groundwater encountered at approximately 7 ft bgs on 7/18/2005.
	Total Depth = 15.5 feet bgs. D. Sam Williams Registered Geologist No. 48									3/4/6				
EQUIF DRILL DIAMI	Image: rest of the second s													

	11305 Ra San Dieg Tel: (858)	YNTEC CON ancho Bernardo go, CA 92127 5) 674-6559 Fax:	Rd, Sui (858) 6	ite 101 674-658		FINISH PROJE LOCAT	DAT DAT CT	Harbor Driv	i i re	G	roun	nd Su	SH Irface	ieet 1 of 1 ft.
	DRE3 10/00	BOREHOL)G		PROJE		IUMBER SC			_			
DEPTH (ft)	DESCRIPTIO	N	SYMBOLIC LOG	WEI	CONSTF MATE	ELL RUCTION ERIAL	ELEVATION (ft)	NUMBER	SAN	IPLES "9 BLOWS PER 6"	RECOVERY (%)	PID READING (ppm)	TIME	COMMENTS
 5 - - - - - - - -	Silty Sand (SM) with medium sa asphalt, dark olive brown [2.5Y 3 Fine sand (SM) with silty clay led dark gray, loose, dry. Silty Clay (CL) with fine sand, da 4/1], silty clay is slightly plastic, to loose. Fine Sand (SM) with silty clay ler [2.5Y 4/1], loose, moist. @ 6', wet @ 7.5', with shell hash	3/3]. enses, very dark gray [2.5Y fine sand is			3/1 ceme 4.5 ft ³	e mix used · (vault), ent ratio Bentonite ure gold				5/7/5 2/10/10 7/13/15 10/10/9		0.3 0.1 0.1		
10 - - - 15 -					2" PVC, (0.010" slot				8/5/10 3/4/2		7.1 0 0		
	Total Depth = 15.5 fee D. Sam Williams Registered Geologist													
[
EQUIF DRILL DIAMI	TRACTORH&P PMENT CME-75 L MTHD Hollow-Stem Auger ETER 8" GER B. HitchensREVIEWER	EAS ANG BEA	RTHING STING GLE ARING NTED	G Vertio 10 No			DINAT	TE SYSTEM:		ABBREVIA	ATION	s		

	GEOSYNTEC (11305 Rancho Berry San Diego, CA 9212 Tab. (052) 674 6550	ardo Rd, Su 7	ite 101		1	DAT DAT	B180-N E 23 Sep 0 E 23 Sep 0 TDY	5	G	rour	nd Su	SH rface	ieet 1 of 1 ft.
	Tel: (858) 674-6559 SS FORM: DRE3 10/00 BOREI				LOCAT	ION	Harbor Driv						
DEPTH (ft)	MATERIAL DESCRIPTION	SYMBOLIC LOG	MELL LOG	CONSTR	ELL RUCTION ERIAL	ELEVATION (ft)	NUMBER	SAM BAY	IPLES "9 BLOWS PER 6"	RECOVERY (%)	PID READING (ppm)	TIME	COMMENTS
- - 5 - - - - - - - - - - - - - - - - -	Sand (SW) loose, dry, strong brown [7.5YR 5/6]. Clay (CH) very cohesive, dark grayish brow [2.5Y 4/2], with pebble clasts. Silty Clay (CL) slightly cohesive, dark brow [7.5YR 3/3]. Sand (SP) medium to fine, loose, dry, olive brown [2.5Y 4/3], with shell hash. Silty Clay (CL) moderately cohesive, moist, olive brown [2.5YR 4/4]. No Recovery Sand (SP) medium to fine, loose, wet, dark gray [5Y 4/1], with trace silt and shell hash.			1/0, 2/1, Medium chips/En	000psi rapid set. 2/1, 1/0.5 viroplug 25# used Lapis 00# Bag,				3/3/6/5 5/11/16/14 4/8/7/5 4/8/7/5 2/3/4/6 4/5/5/3	50 70 70 70	0.0 0.0 0.2 0.1 0.0 0.0 0.0		∑ Groundwater encountered at 6.8' bgs on 9/23/05.
	Total Depth = 17.5 feet bgs. D. Sam Williams Registered Geologist No. 485 RACTORTri-County PMENT L MTHD Hollow-Stem Auger	NORTHING EASTING ANGLE	Verti	cal	REMAR	KKS:							
CONT EQUI DRILI DIAM	IRACTORTri-County PMENT		Verti	COORE	DINA	E SYSTEM				s			

	SS FORM: ORE 1/99	GEOSYNTEC C 11305 Rancho Berna San Diego, CA 9212 Tel: (858) 674-6559 BOREHO	ardo Rd, Suite 10 7	01 586	FINIS PROJ	NG T- T DATE 5 J H DATE 5 J ECT TDY TION Harbo ECT NUMBE	ul 05 ul 05 or Driv				SHEET 1 OF 1 ON FT Mean Seal Level	
DEPTH (ft)		MATERIAL DESCRIPTION		SVMBOLIC LOG	ELEVATION (ft)	NUMBER	SA	MPLES	RECOVERY (%)	PID READING (ppm)	COMMENTS	
5 -	Fine Sand (SM 5/2], loose. Sample Interva Fine Sand (SM 5/2], loose.) grayi <u>sh brown [2.5Y 5/2], slig</u>) with shell fragments, grayish) with shell fragments, grayish (2.5Y 4/1], wet, non-cohesive Total Depth = 11 feet bgs	brown [2.5Y brown [2.5Y			T-1-S-6B					Groundwater encountered at 7.8 ft bgs on 7/5/2005.	
CONT EQUI DRILI DIAM	D. Sam Williams Registered Geologist No. 4858 REMARKS: Backfilled with .22 cubic feet Enviroplug bentonite pellets to surface. CONTRACTORH&P NORTHING EQUIPMENT Strataprobe EASTING EASTING CONTRACTORH&P NORTHING EQUIPMENT Strataprobe EASTING EASTING CONTRACTORH&P NORTHING EQUIPMENT Strataprobe EASTING EASTING CONTRACTORH&P NORTHING EQUIPMENT Strataprobe Contract Push CORDINATE 2" BEARING											

G	SS FORM: ORE 1/99	GEOSYNTEC C 11305 Rancho Berna San Diego, CA 9212 Tel: (858) 674-6559 B BOREHO	rdo Rd, Suite 101	86	FINIS PROJ	NG T-2 T DATE 5 J H DATE 5 J ECT TDY TION Harbo ECT NUMBE	ul 05 ul 05 or Driv				SHEET 1 OF 1 ON FT Mean Seal Level
DEPTH (ft)		MATERIAL DESCRIPTION		SYMBOLIC LOG	ELEVATION (ft)	NUMBER	SAI	MPLES	RECOVERY (%)	PID READING (ppm)	COMMENTS
	Fine Sand (SM) @ 4', with some Sample Interval Fine Sand (SM) @ 10', dark gray D. Sam Will Registered) grayish brown [2.5Y 5/2], loo / [2.5Y 4/1], wet. Total Depth = 11 feet bgs. liams Geologist No. 4858	pse.			T-2-S-7T					Brick fragment/cobble found in top 1'
EQUII DRILL DIAM		aprobe t Push	BEARING	tical - Nov 05		RKS: Back face. DINATE SYS	STEM:	:			roplug bentonite pellets

	SS FORM: ORE 1/99	GEOSYNTEC (11305 Rancho Bern San Diego, CA 9212 Tel: (858) 674-6559 BOREHO	ardo Rd, Suite 10	1 586	FINIS PROJ	NG T-3 T DATE 5 J H DATE 5 J ECT TDY TION Harbo ECT NUMBE	ul 05 ul 05 or Driv				SHEET 1 OF 1 DN FT Mean Seal Level
DEPTH (ft)		MATERIAL DESCRIPTION		SYMBOLIC LOG	ELEVATION (ft)	NUMBER	SAT TYPE	MPLES BLOWS PER 6"	RECOVERY (%)	PID READING (ppm)	COMMENTS
	brown [2.5Y 3/	∬ with very few shell fragmeni se, dry.	i								
	Fine Sand (SI [2.5Y 5/2], loos	with verv few shell fragment			-	T-3-S-7.5B	X				Groundwater encountered at 8.1 ft bgs on 7/5/2005.
		d Geologist No. 485	8								
EQUI DRILI DIAM	LMTHD Dire ETER 2"	o ataprobe ct Push msREVIEWER	BEARING	rtical Nov 05		RKS: Back face. DINATE SYS	STEM:				roplug bentonite pellets

	SS FORM: BORE 1/99	GEOSYNTEC C 11305 Rancho Berna San Diego, CA 9212 Tel: (858) 674-6559 BOREHO	ardo Rd, Suite 101	86	FINIS PROJ LOCA	NG T-4 T DATE 5 J H DATE 5 J ECT TDY TION Harbo ECT NUMBE	ul 05 ul 05 or Driv				SHEET 1 OF 1 DN FT Mean Seal Level
DEPTH (ft)		MATERIAL DESCRIPTION		SYMBOLIC LOG	ELEVATION (ft)	NUMBER	SAI IAPE	MPLES "9 NAB PER 6"	RECOVERY (%)	PID READING (ppm)	COMMENTS
- - - - 5 -	b <u>rown [2.5Y_3/3</u> Fine Sand (SN loose, dry.	with few rock fragments (peb 3], <u>slightly hard, dry.</u> 1 with few shell fragments, gra e brown [2.5Y 5/3]	bles), dark olive ay [2.5¥ 6/1],		- - - - -						
	Fine Sand (SM loose, dry. @9', dark gray	" 1) with few shell fragments, gra [2.5Y 4/1], wet, 1" layer of fin Total Depth = 11 feet bgs	e sand, yellowish		-						Groundwater encounter at 8.2 ft bgs on 7/5/2005.
		l Geologist No. 485	B								
EQUI DRILI DIAM	LMTHD Dire ETER 2"	o Itaprobe ct Push msREVIEWER	NORTHING EASTING ANGLE Vert BEARING PRINTED 10 N		to sur	RKS: Back face. DINATE SY: Y SHEET FOR S	STEM	:			roplug bentonite pellets

	ES FORM:	GEOSYNTEC (11305 Rancho Bern San Diego, CA 9212 Tel: (858) 674-6559	ardo Rd, Suite 101 27 Fax: (858) 674-65	86	FINIS PROJ LOCA	T DATE 5 J H DATE 5 J ECT TDY TION Harbo	ul 05 ul 05 r Driv				SHEET 1 OF 1 DN FT Mean Seal Level
В	ORE 1/99	BOREHO		D		ECT NUMBE]
DEPTH (ft)		MATERIAL DESCRIPTION		SYMBOLIC LOG	ELEVATION (ft)	NUMBER	SAT TYPE	MPLES ⁰ BLOWS PER 6 ^a	RECOVERY (%)	PID READING (ppm)	COMMENTS
	Silty Clay (CL) light olive brown [2.5Y 5/3],	slightly hard.								
- - - 5 -		Ŋ gray [2.5Y 5/1], loose, dry. I fragments, light olive brown			- - -						
	Sample Interv				-	T-5-S-7.5B	\bowtie				
- 10 - -					-						Groundwater encountered at 8.5 ft bgs on 7/5/2005.
	0 9.5', dark gray [2.5Y 4/1] Total Depth = 11 feet bgs. D. Sam Williams Registered Geologist No. 4858										
EQUI DRILI DIAM	LMTHD Dire ETER 2"	P ataprobe cct Push ms REVIEWER	ical lov 05	to sur	RKS: Back face. CDINATE SYS	STEM:				roplug bentonite pellets	

	GS FORM: BORE 1/99	GEOSYNTEC (11305 Rancho Bern San Diego, CA 9212 Tel: (858) 674-6559 BOREHO	ardo Rd, Suite	101 1-6586		FINISI PROJ LOCA	NG T-(T DATE 5 J H DATE 5 J ECT TDY TION Harbo ECT NUMBE	ul 05 ul 05 or Driv			EVATIC TUM	SHEET 1 OF 1 ON FT Mean Seal Level
DEPTH (ft)		MATERIAL DESCRIPTION		SYMBOLICLOG		ELEVATION (ft)	NUMBER	SAL	BLOWS PER 6"	RECOVERY (%)	PID READING (ppm)	COMMENTS
- - - - 5 - -	Sample Interval <u>Fine Sand (SM)</u> with few shell fragments, gray [2.5Y 5/ loose. @ 9', dark gray [2.5Y 4/1], wet					- - - - - -	T-6-S-7.5T	X				
 - 10 -	Fine Sand (SI loose.				-						Groundwater encountered at 8.7 ft bgs on 7/5/2005.	
		d Geologist No. 485	8									
EQUI DRILI DIAM	DNTRACTORH&P NORTHING QUIPMENT Strataprobe EASTING RILL MTHD Direct Push ANGLE Vertical AMETER 2" BEARING DGGER S. WilliamsREVIEWER PRINTED 10 Nov						RKS: Back face. DINATE SYS	STEM:				roplug bentonite pellets

	GS FORM: FORE 1/99	GEOSYNTEC (11305 Rancho Bern San Diego, CA 9212 Tel: (858) 674-6559 BOREHO	ardo Rd, Suite 10	586	FINIS PROJ	NG T- T DATE 22 H DATE 22 IECT TDY NTION Harbo IECT NUMBE	Sep 0 Sep 0 or Driv	5 e		EVATIC TUM I	SHEET 1 OF 1 ON FT Mean Seal Level
		MATERIAL		SOL DG	(tt) NOI	ER		WPLES ق س	۲۲ (%)	READING (ppm)	COMMENTS
DEPTH (ft)		DESCRIPTION		SYMBOLIC LOG	ELEVATION (ft)	NUMBER	ТҮРЕ	BLOWS PER	RECOVERY (%)	PID REAI (ppm	
-	5/3]. Sand (SP), coa	_) medium, loose, dry, light ol			-					0.0	
	@ 2', becomes	fine sand, dark gray [2.5 4/1]			-					0.0 0.0	
5 -	Sand (SP), fine	v <u>cohesive, olive gray [5Y 4/2</u> <u>e, loose, dry, dark gray [2:5Y 4</u> v cohesive, olive gray [5Y 4/2]	1/1]		-					0.0	
-	Clav (CH) very	" / <u>cohesive, olive gray [5Y 4/2</u> , loose, dry, gray [2.5Y 5/1], v			-					0.0	Sudan Red = Negative
- 10 -	@ 8', becomes	wet, very dark gray [2.5Y 3/1].		-					0.0	Groundwater encountered at 8' 8" bgs on 9/22/05.
	Total Depth = 10 feet bgs.										
EQUI DRILI DIAM	ONTRACTORH&P NORTHING RUIPMENT EASTING RUIL MTHD Direct Push ANGLE Vertical AMETER 2" BEARING OGGER C. Lieder REVIEWER PRINTED 10 Nov 05					ARKS: RDINATE SY					

	GS FORM:	GEOSYNTEC C 11305 Rancho Berna San Diego, CA 9212 Tel: (858) 674-6559	ardo Rd, Suite 101 7	36	FINIS PROJ LOCA	NG T-8 T DATE 22 H DATE 22 ECT TDY TION Harbo ECT NUMBE	Sep 0 Sep 0 or Driv	5 e		EVATIC TUM I	SHEET 1 OF 1 ON FT Mean Seal Level
ШВ	ORE 1/99										
DEPTH (ft)		MATERIAL DESCRIPTION		SYMBOLIC LOG	ELEVATION (ft)	NUMBER	ТҮРЕ	BLOWS PER 6"	RECOVERY (%)	PID READING (ppm)	COMMENTS
-	Silty Clay (CL) slightly cohesive, dry, light ol	ive brown [2.5Y								
-	Clay (CH), ver	e, loose, dry, gray [2.5Y 5/1]. y cohesive, dark gray [5Y 4/1]. djum, loose, dry , dark gray [5	J	<i>.</i>	-					0.0 0.0 0.0	
5 -	Sandy Clay (0	<u>CL</u>) slightly cohesive, dry, dark	grayish brown		-					0.0	
-		e, loose, dry, gray [2.5Y 5/1], w (SC) slightly cohesive, dark gra			_					0.0	
- - - 10 -	with shell frage Sample Interve Sandy Silt (M	nents.	Y_4/1]		-					0.0 0.0	∇ Groundwater encountered at 8' bgs on 9/22/05. Sudan Red = Negative
-		Total Depth = 11 feet bgs.			-					0.0	
	D. Sam Wi Registered	lliams d Geologist No. 4858	3								
EQUI DRILI DIAM	IRACTORH& PMENT LMTHD Dire IETER 2" GER C. Liede		ical ov 05	11	RKS: DINATE SYS			REVIAT	10NS		

	GS FORM: FORE 1/99	GEOSYNTEC CO 11305 Rancho Bernar San Diego, CA 92127 Tel: (858) 674-6559 F BOREHOL	do Rd, Suite 101	36	FINISI PROJ LOCA	NG T-S T DATE 22 H DATE 22 ECT TDY TION Harbo ECT NUMBE	Sep 0 Sep 0 or Driv	5 e		EVATIC TUM I	SHEET 1 OF 1 DN FT Mean Seal Level
					<u> </u>		SA	MPLES			
DEPTH (ft)		MATERIAL DESCRIPTION		SYMBOLIC LOG	ELEVATION (ft)	NUMBER	ТҮРЕ	BLOWS PER 6"	RECOVERY (%)	PID READING (ppm)	COMMENTS
	D. Sam Wit	y cohesive, dry, dark grayish bro 2) slightly cohesive, dark grayis edium, loose, dry, dark olive bro s grayish brown [2.5Y 5/2] with s 2) slightly cohesive, very dark g e, loose, dry, dark gray [2.5Y 4/1 a) 2) slightly cohesive, moist, very 2] a, loose, wet, very dark gray [2.5 Total Depth = 11 feet bgs.	bwn [2.5Y 4/2]. sh brown [2.5Y wn [2.5Y 3/3], jrayish brown ingrayish brown ingrayish brown ingrayish ingrayish							0.0 0.0 0.0 0.0 0.0 0.0 0.0	Sudan Red = Negative Groundwater encountered at 7'5" bgs on 9/22/05.
EQUI DRILI DIAM	IRACTORH& PMENT L MTHD Dire ETER 2" 3ER C. Liede	E	ical ov 05		RKS: DINATE SYS			REVIAT			

GS FORM:	11305 Rancho Bernardo Rd, Suite 10 San Diego, CA 92127 Tel: (858) 674-6559 Fax: (858) 674-65 BOREHOLE RECOR	586	BORING T-10 SHEET 1 OF 1 START DATE 22 Sep 05 ELEVATION FT FINISH DATE 22 Sep 05 DATUM Mean Seal Level PROJECT TDY LOCATION Harbor Drive PROJECT NUMBER SC0307				DN FT		
	MATERIAL DESCRIPTION	MBOLIC LOG	EVATION (ft)	JUMBER	SAI JALE	6"	OVERY (%)	READING (ppm)	COMMENTS
[2.5Y 3/2], with I Silty Clay (CL) 5/4]. @ 2', becomes I [2.5Y 3/2]. Sand (SP) med hash. @ 4', becomes I Sample Interval Silty Clay (CL) brown [2.5Y 4/2] Sand (SP) fine, with shell hash.	bebble clast. slightly cohesive, dry, light olive brown [2.5Y moderate cohesive, very dark grayish brown ium, loose, dry, gray [2.5Y 5/1], with shell dark grayish brown [2.5Y 4/2] moderate cohesiveness, wet, dark grayish l. loose, wet, dark grayish brown [2.5Y 4/2],	20000				BLOW	RECO	0.0 0.0 0.0 0.5 2.0	Groundwater encountered at 6'4" bgs on 9/22/05. Sudan Red = Negative
Registered TRACTORH&P IPMENT L MTHD Direc	Geologist No. 4858 NORTHING EASTING t Push ANGLE Ver		REMA	RKS:					
	Sand (SW) mec [2.5Y 3/2], with r Silty Clay (CL) 5/1. @ 2', becomes r [2.5Y 3/2]. Sand (SP) med hash. @ 4', becomes r Sample Interval Silty Clay (CL) brown [2.5Y 4/2]. Sand (SP) fine, with shell hash. @ 8', becomes r Brown (SP) fine, With shell hash. @ 8', becomes r TRACTORH&P IPMENT L MTHD Direct METER 2"	BOREHOLE RECOR MATERIAL DESCRIPTION Sand (SW) medium, loose, dry, very dark grayish brown [2,5Y 3/2], with pebble clast. Silty Clay (CL) slightly cohesive, dry, light olive brown [2.5Y 5/4]. @ 2, becomes moderate cohesive, very dark grayish brown [2,5Y 3/2], with shell # 3 becomes moderate cohesive, very dark grayish brown [2,5Y 3/2], with shell # 3 becomes dark grayish brown [2,5Y 5/1], with shell [3,5Y 4/2]. Sample Interval Silty Clay (CL) moderate cohesiveness, wet, dark grayish brown [2,5Y 4/2]. Sample Interval Silty Clay (CL) moderate cohesiveness, wet, dark grayish brown [2,5Y 4/2]. Samd (SP) fine, loose, wet, dark grayish brown [2,5Y 4/2]. with shell hash. @ 8, becomes very dark gray [2,5 3/1] Total Depth = 9 feet bgs. D. Sam Williams Registered Geologist No. 4858 TRACTORH&P NORTHING IPMENT EASTING LMTHD Direct Push ANGLE Verter 2" BEARING	335 FORM: 30RE 1/99 BOREHOLE RECORD MATERIAL DESCRIPTION 000000000000000000000000000000000000	IDEAL (0.00) OF POUSDET BAL (0.00) OF POUSDET LOCA SORE 1/99 BOREHOLE RECORD PROJ MATERIAL DESCRIPTION 00 90 90 90 90 90 90 90 90 90 90 90 90 9	Control Harbornic Control (25) 120 (25	BOREHOLE RECORD LOCATION Harbor Drive BOREHOLE RECORD LOCATION Harbor Drive PROJECT NUMBER SX MATERIAL DESCRIPTION G	Lege (Using University of the Cost of	Tractor Harbor Drive BORE 1/89 Decarron Harbor Drive BOREHOLE RECORD Decarron Harbor Drive Product Number Scooar AMTERIAL DESCRIPTION MATERIAL DESCRIPTION MATERIAL DESCRIPTION MATERIAL DESCRIPTION MATERIAL DESCRIPTION MATERIAL DESCRIPTION MATERIAL DESCRIPTION Decarron Harbor Drive Scooar SAMPLES SAMPLES	TRACTORHAP NORTHUG BARENCE NORTHUGE BARENCE N

	ES FORM:	GEOSYNTEC C 11305 Rancho Bernar San Diego, CA 92127 Tel: (858) 674-6559 F	do Rd, Suite 101 ax: (858) 674-658	36	FINIS PROJ LOCA	T DATE 22 H DATE 22 ECT TDY TION Harbo	Sep 0 Sep 0 or Driv	5 e		EVATIC TUM	SHEET 1 OF 1 ON FT Mean Seal Level
	ORE 1/99	BOREHOL	E RECORI		PROJ	ECT NUMBE]
DEPTH (ft)		MATERIAL DESCRIPTION		SYMBOLIC LOG	ELEVATION (ft)	NUMBER	Түре	MPLES BLOWS PER 6"	RECOVERY (%)	PID READING (ppm)	COMMENTS
	Sand (SP), fine dark organic le	, loose, dry, light olive brown [2 nse from 1.5' -2'.	2.5Y 5/4], with		_					0.0	
- - - 5 -	5/4], with dark of 5/4], with dark of 5/4], with dark of 5/4], so the second se) slightly cohesive, dry, light oli organic lense from 2'8" to 2'10" se, dry, light olive brown [2.57 §	5/4], with shell		-					0.0 0.0 0.0	
-	 <u>Sand (SP)</u>, meaning minor lenses of Sample Interval 	l dium, loose, wet, light olive bro [.]	2.5Y 4/4], with		-					0.0	Groundwater encountered at 7' 1" on 9/22/05.
- - 10 -	4/1].	moderate cohesiveness, wet, se, wet, very dary gray [2.5Y 3/ Total Depth = 10 feet bgs.	- 		-					0.0	Sudan Red = Negative
	D. Sam Wil Registered	lliams I Geologist No. 4858									
EQUI DRILI DIAM	TRACTORH&F PMENT L MTHD Direc IETER 2" GER C. Lieder	I	ical ov 05	11	RKS: RDINATE SYS			REVIAT	10NS		

	SS FORM: ORE 1/99	GEOSYNTEC (11305 Rancho Bern San Diego, CA 9212 Tel: (858) 674-6559 BOREHO	ardo Rd, Suite ² 27	101 6586	FINIS PROJ	NG T-1 T DATE 30 H DATE 30 ECT TDY TION Harbo ECT NUMBE	Jun 0 Jun 0 r Driv	5 e		EVATIC TUM	SHEET 1 OF 1 DN FT Mean Seal Level
DEPTH (ft)		MATERIAL DESCRIPTION		SYMBOLIC LOG	ELEVATION (ft)	NUMBER	SAI	MPLES BLOWS PER 6"	RECOVERY (%)	PID READING (ppm)	COMMENTS
	Medium Sand	 light yellowish brown [2.5Y <i>sand</i> (CL-SM)gray [2.5Y 6/ and Silt (SM)gray [2.5Y 6/1] with shell hash, dark grey [2.5Y 6/1] 				T-13-S-6.5T	~			0.0 14 0.0 0.0 0.0	
- 10 - -		Total Depth = 11 feet bgs			-						
	D. Sam Wi Registerec										
CONTRACTORH&P NORTHING EQUIPMENT Strataprobe EASTING DRILL MTHD Direct Push ANGLE Vertical DIAMETER 2" BEARING COORDINA' LOGGER B. HitchensREVIEWER PRINTED 10 Nov 05 COORDINA'								:			roplug bentonite pellets

	S FORM:	GEOSYNTEC 11305 Rancho Berr San Diego, CA 9211 Tel: (858) 674-6559 BOREHO	ardo Rd, Suite 10 [.] 27	1 586	FINIS PROJ LOCA	NG T- T DATE 30 H DATE 30 ECT TDY TION Harbo ECT NUMBE	Jun 0 Jun 0 or Driv	5 e		EVATIC TUM I	SHEET 1 OF 1 ON FT Mean Seal Level
ЦВ	ORE 1/99										
DEPTH (ft)		MATERIAL DESCRIPTION		SYMBOLIC LOG	ELEVATION (ft)	NUMBER	Түре	BLOWS PER 6"	RECOVERY (%)	PID READING (ppm)	COMMENTS
	Clay and Silt	(CL) dark reddish gray [2.5Y	4/1].							0.0	
	Fine Sand an	d Silt (SM) dark reddish gray	[2.5Y 4/1].		-					0.0 0.6	
-	@ 6', become	s wet.			-	T-14-S-6B	\times			0.0	
-	@ 8', with son	ne shells, becomes dark gray.			-					0.0	
- 10) - Total Depth = 11 feet b		5.	• • • • • • • • • • • • • • • • • • •	-					0.0	
	D. Sam W Registere										
CONTRACTORH&P NORTHING EQUIPMENT Strataprobe DRILL MTHD Direct Push ANGLE Vertical BEARING LOGGER B. HitchensREVIEWER											roplug bentonite pellets

	GEOSYNTEC 11305 Rancho Berrr San Diego, CA 9211 Tel: (858) 674-6559 GS FORM: BORE 1/99 BOREHO	nardo Rd, Suite 1 27	01 6586	FINIS PROJ	NG T- T DATE 1 J H DATE 1 J ECT TDY TION Harbo ECT NUMBE	ul 05 ul 05 or Driv				SHEET 1 OF 1 ON FT Mean Seal Level
DEPTH (ft)	MATERIAL DESCRIPTION		SYMBOLIC LOG	ELEVATION (ft)	NUMBER	SA	MPLES "9 NAS PER 6" BLOWS PER 6	RECOVERY (%)	PID READING (ppm)	COMMENTS
- - - - - - - - - - - - - - - - - - -	Medium Fine Sand and Silt(SM)grayish br @ 3', mixed layers of clay, moist. @5', with shell hash, dark bluish grey [GLE		-	T-15-S-5.5T					Groundwater encountered at 6.65 ft bgs on 7/1/2005.	
10 -	- Total Depth = 11 feet bg		-							
D. Sam Williams Registered Geologist No. 4858 CONTRACTORH&P EQUIPMENT Strataprobe NORTHING EASTING DRILL MTHD Direct Push DIAMETER 2" BEARING DIAMETER 2" LOGGER B. HitchensREVIEWER PRINTED 10 Nov 05								ubic fe	et Envi	roplug bentonite pellets

	SS FORM: BORE 1/99	GEOSYNTEC 11305 Rancho Berr San Diego, CA 921 Tel: (858) 674-6559 BOREHC	nardo Rd, Suite 101 27	86	FINIS PROJ LOCA	NG T- T DATE 1 J H DATE 1 J ECT TDY TION Harbo ECT NUMBE	ul 05 ul 05 or Driv			EVATIC TUM I	SHEET 1 OF 1 ON FT Mean Seal Level
DEPTH (ft)		MATERIAL DESCRIPTION		SYMBOLIC LOG	ELEVATION (ft)	NUMBER	SAI	MPLES "9 BLOWS PER 6"	RECOVERY (%)	PID READING (ppm)	COMMENTS
5 -	[2.5Y 4/3].	E <u>Sand (SM</u>)with shell hash, Clay (SM-CL)with shell has			- - - -	T-16-S-6T	X			0.0	
- 10 -	Silty Clay (CL)	vith shell hash, greenish gra Total Depth = 11 feet bg			-					0.0	Groundwater encountered at 6.95 ft bgs on 7/1/2005.
1/05											
BORING LOG NO WELL (SAM) SC0307.GPJ GEOSNTEC.GDT 10/11/05 DO TI DO METID DO TI DO DO TI DO DO DO DO TI DO DO DO TI DO D	D. Sam Will										
CON. EQUID DIA LOG	Registered	Geologist No. 485 aprobe	tical - Nov 05		RKS: Back face. DINATE SY Y SHEET FOR S	STEM	:			roplug bentonite pellets	

	SS FORM: BORE 1/99	GEOSYNTEC 11305 Rancho Berr San Diego, CA 921 Tel: (858) 674-6555 BOREHC	nardo Rd, Suite 10 27	01	FINISI PROJ LOCA	NG T-1 T DATE 30 . H DATE 30 . ECT TDY TION Harbo ECT NUMBE	Jun 0 Jun 0 r Driv R S(5 e C0307			SHEET 1 OF 1 DN FT Mean Seal Level
DEPTH (ft)		MATERIAL DESCRIPTION		SYMBOLIC LOG	ELEVATION (ft)	NUMBER	SA	BLOWS PER 6"	RECOVERY (%)	PID READING (ppm)	COMMENTS
5 -					- - - - - - - - - -	T-17B-S-6.5B T-17B-S-6.5B DUP	\times			5.4	Groundwater encountered at 6.8 ft bgs on 6/30/2005.
10 -		Total Depth = 11 feet bg	S.		-					1.1	
17.947 GEOSNIEC.601 10/1/09											
	TRACTORH&P	Geologist No. 485 aprobe Push	ertical Nov 05			STEM	:			roplug bentonite pellets	

	GEOSYNTEC CONSULTANTS 11305 Rancho Bernardo Rd, Suite 101 San Diego, CA 92127 Tel: (858) 674-6559 Fax: (858) 674-6586 GS FORM: BORE 1/99 BOREHOLE RECORD				START DATE 30 Jun 05 ELEVATION FT FINISH DATE 30 Jun 05 DATUM Mean Seal Level PROJECT TDY LOCATION Harbor Drive PROJECT NUMBER SC0307						
DEPTH (ft)		MATERIAL DESCRIPTION		SVMBOLIC LOG	ELEVATION (ft)	NUMBER	SA	MPLES	RECOVERY (%)	PID READING (ppm)	COMMENTS
5 -	Clay (CL) with some silt lenses, olive gray [4/2 5Y], moist. Silty Sand (SM) @ 8', with shells, gray [10YR 5/1], wet. Total Depth = 11 ft bgs.				- - - - - - - - - - - - - -	T-18-S-6.5B	×			20 14 6.5 11	Groundwater encountered at 7 ft bgs at approximately 1030 on 6/30/2005.
10 -	- - -				-					0.7	
6 01											
	D. Sam Will Registered	iams Geologist No. 485	58								
	DNTRACTORH&P NORTHING QUIPMENT Strataprobe RILL MTHD Direct Push ANGLE Vertical AMETER 2" DGGER B. HitchensREVIEWER PRINTED 10 Nov 05										

	GEOSYNTEC CONSULTANTS 11305 Rancho Bernardo Rd, Suite 101 San Diego, CA 92127 Tel: (858) 674-6559 Fax: (858) 674-6586 GS FORM: BORE 1/99 BOREHOLE RECORD				BORING T-19 SHEET 1 START DATE 30 Jun 05 ELEVATION FT FINISH DATE 30 Jun 05 DATUM Mean Seal Leve PROJECT TDY LOCATION Harbor Drive PROJECT NUMBER SC0307						
DEPTH (ft)		MATERIAL DESCRIPTION		SYMBOLIC LOG	ELEVATION (ft)	NUMBER	SAI	MPLES	RECOVERY (%)	PID READING (ppm)	COMMENTS
	D. Sam Will	with interbedded shell hash nash. Total Depth = 11 ft bgs	noist, high							0 2.5 0.0 1.2 3.1 0.0	Groundwater encountered at 6.79 ft bgs at approximately 1330 on 6/30/2005.
	CONTRACTORH&P NORTHING EQUIPMENT Strataprobe EASTING DRILL MTHD Direct Push ANGLE DIAMETER 2" BEARING LOGGER B. HitchensREVIEWER PRINTED 10 Nov 05										

	GEOSYNTEC CONSULTANTS 11305 Rancho Bernardo Rd, Suite 101 San Diego, CA 92127 Tel: (858) 674-6559 Fax: (858) 674-6586 GS FORM: BORE 1/99 BOREHOLE RECORD					BORING T-20 SHEET 1 OF 1 START DATE 30 Jun 05 ELEVATION FT FINISH DATE 30 Jun 05 DATUM Mean Seal Level PROJECT TDY LOCATION Harbor Drive PROJECT NUMBER SC0307					
В	ORE 1/99	BOREHO	LE RECOR	D	PROJ	ECT NUMBE]
DEPTH (ft)		MATERIAL DESCRIPTION		SYMBOLIC LOG	ELEVATION (ft)	NUMBER	SAN BA	PLES BLOWS PER 6"	RECOVERY (%)	PID READING (ppm)	COMMENTS
- - - 5 - - - - - - - - - - - - - - - -	[10YR 5/3]. Medium Sand a brown [10YR 5/3	Ity sand lenses and minor s Ind Silt (SM)with interbedde].	 d shell hash,		-	T-20-S-6.5B	X				
	D. Sam Will Registered	Total Depth = 11 ft bgs.									
CONTRACTORH&P NORTHING EQUIPMENT Strataprobe EQUIPMENT Strataprobe DRILL MTHD DIAMETER 2" LOGGER B. HitchensREVIEWER									roplug bentonite pellets		

	GEOSYNTEC CONSULTANTS 11305 Rancho Bernardo Rd, Suite 101 San Diego, CA 92127 Tel: (858) 674-6559 Fax: (858) 674-6586 GS FORM: BORE 1/99 BOREHOLE RECORD					BORING T-21A SHEET 1 OF START DATE 6 Jul 05 ELEVATION FT FINISH DATE 6 Jul 05 DATUM Mean Seal Level PROJECT TDY LOCATION Harbor Drive PROJECT NUMBER SC0307					
DEPTH (ft)		MATERIAL DESCRIPTION		SYMBOLIC LOG	ELEVATION (ft)	NUMBER	SAI	MPLES BLOWS PER 6"	RECOVERY (%)	PID READING (ppm)	COMMENTS
		M)with asphalt-appearing mate [GLEY 1 2.5/1], dry, loose. Drilling Stopped	erial mixed in , 							3.8	
5 - - -	5 - Stopped drilling moved a few inches over and started again due to poor recovery. Rocks blocked sampling bit.				-						
	D. Sam Wi Registered	illiams d Geologist No. 485									
EQUII DRILL DIAM	L MTHD Dire IETER 2"	P ataprobe ect Push amsREVIEWER	NORTHING EASTING ANGLE Vert BEARING PRINTED 10 N			RKS: Back ce. CDINATE SY Y SHEET FOR S	STEM	:			pplug bentonite pellets to

	GEOSYNTEC CONSULTANTS 11305 Rancho Bernardo Rd, Suite 101 San Diego, CA 92127 Tel: (858) 674-6559 Fax: (858) 674-6586 GS FORM: BORE 1/99 BOREHOLE RECORD					BORING T-21B SHEET 1 O START DATE 6 Jul 05 ELEVATION FT FINISH DATE 6 Jul 05 DATUM Mean Seal Level PROJECT TDY LOCATION Harbor Drive PROJECT NUMBER SC0307					
DEPTH (ft)		MATERIAL DESCRIPTION		SYMBOLIC LOG	ELEVATION (ft)	NUMBER	SAN	MPLES BLOWS PER 6"	RECOVERY (%)	PID READING (ppm)	COMMENTS
	Silty Sand (SM) with asphalt mixed in, very dark greenish gray [GLEY1 3/1], slightly hard, dry. @ 2', with loose sand lenses, few shell fragments, and slightly hard silty sections, gray [2.5Y 6/1]. Silty Clay (CL) with few shell fragments, gray [2.5Y 6/1], slightly hard, dry. Fine Sand (SM) with very few shell fragments, dark gray [2.5Y 4/1], loose, wet. Total Depth = 11 feet bgs.					T-21B-S-7.5B		BI	RE	<u>a</u>	Groundwater encountered at 7.65 ft bgs on 7/6/2005.
		l Geologist No. 485	NORTHING								
EQUII DRILL DIAM	L MTHD Dire ETER 2"	o Itaprobe ct Push msREVIEWER	ical lov 05	11	RKS: Back face. CDINATE SYS Y SHEET FOR SY	STEM:				roplug bentonite pellets	

	GEOSYNTEC CONSULTANTS 11305 Rancho Bernardo Rd, Suite 101 San Diego, CA 92127 Tel: (858) 674-6559 Fax: (858) 674-6586 GS FORM: BORE 1/99 BOREHOLE RECORD					BORING T-22 SHEET 1 OF ' START DATE 6 Jul 05 ELEVATION FT FINISH DATE 6 Jul 05 DATUM Mean Seal Level PROJECT TDY LOCATION Harbor Drive PROJECT NUMBER SC0307					
	ORE 1/99				<u> </u>			MPLES			
DEPTH (ft)		MATERIAL DESCRIPTION		SYMBOLIC LOG	ELEVATION (ft)	NUMBER	ТҮРЕ	BLOWS PER 6"	RECOVERY (%)	PID READING (ppm)	COMMENTS
5 -	Silty Sand (SM Silty Clay (CL) hard. Fine Sand (SM Silty Clay (CL) fragments, sligh Sample Interva Fine Sand (SM 4/1], loose, wet	4/1], slightly 		-					1.4 1.2 5.1 3.1	Groundwater encountered at 7.65 ft bgs on 7/6/2005.	
CONT EQUI DRILI DIAM	IRACTORH&P PMENT Stra L MTHD Direc ETER 2"	Geologist No. 4858	NORTHING EASTING ANGLE Verti BEARING PRINTED 10 N	ical ov 05	REMA to su				ubic fe	et Envi	roplug bentonite pellets

	GEOSYNTEC CONSULTANTS 11305 Rancho Bernardo Rd, Suite 101 San Diego, CA 92127 Tel: (858) 674-6559 Fax: (858) 674-6586 GS FORM: BORE 1/99 BOREHOLE RECORD					BORING T-23 SHEET 1 O START DATE 6 Jul 05 ELEVATION FT FINISH DATE 6 Jul 05 DATUM Mean Seal Level PROJECT TDY LOCATION Harbor Drive PROJECT NUMBER SC0307					
DEPTH (ft)		MATERIAL DESCRIPTION		SYMBOLIC LOG	ELEVATION (ft)	NUMBER	SAI	MPLES	RECOVERY (%)	PID READING (ppm)	COMMENTS
5 - - - - - - - - - - - - - - - - - - -	Silty Sand (SM) Silghtly hard. Silty Sand (SM) Sand (SM) Sand (SM) Sand (SM)				-	T-223-S-7.5T				1.4 1 1.3 1.2 1.2 1.2 1.5	Groundwater encountered at 7.95 ft bgs on 7/6/2005.
CONT EQUI DRILI DIAM	TRACTORH&P PMENT Stra L MTHD Direc IETER 2"	Geologist No. 4858	NORTHING EASTING ANGLE Vert BEARING		11		STEM	:			roplug bentonite pellets

	GEOSYNTEC CONSULTANTS 11305 Rancho Bernardo Rd, Suite 101 San Diego, CA 92127 Tel: (858) 674-6559 Fax: (858) 674-6586 GS FORM: BORE 1/99 BOREHOLE RECORD					NG T-2 T DATE 6 Ju H DATE 6 Ju ECT TDY TION Harbo ECT NUMBE	ul 05 ul 05 r Driv			EVATIC TUM	SHEET 1 OF 1 ON FT Mean Seal Level
DEPTH (ft)		MATERIAL DESCRIPTION		SYMBOLIC LOG	ELEVATION (ft)	NUMBER	SAI	MPLES BLOWS PER 6"	RECOVERY (%)	PID READING (ppm)	COMMENTS
	 @ 5', with fine sand lenses, grayish brown [2.5Y 5/2] @.8', dark grayish brown [2.5Y 4/2], moist Fine Sand (SM)with few shell fragments, dark gray [2.5Y 4/1], loose, wet. 					T-24-S-7.5B				1.4 1.2 1.2 7	Groundwater encountered at 7.9 ft bgs on 7/6/2005.
	 Fine Sand (SM) with few shell fragments, dark gray [2.5Y 4/1], loose, wet. 10 - 									38	
EQUI DRILI DIAM	ONTRACTORH&P NORTHING QUIPMENT Strataprobe EASTING RILL MTHD Direct Push ANGLE Vertical IAMETER 2" BEARING DGGER S. Williams REVIEWER PRINTED 10 Nov 05										

	GEOSYNTEC CONSULTANTS 11305 Rancho Bernardo Rd, Suite 101 San Diego, CA 92127 Tel: (858) 674-6559 Fax: (858) 674-6586 GS FORM: BORE 1/99 BOREHOLE RECORD					BORING T-25 SHEET 1 OF START DATE 13 Jul 05 ELEVATION FT FINISH DATE 13 Jul 05 DATUM Mean Seal Level PROJECT TDY LOCATION Harbor Drive PROJECT NUMBER SC0307					
В	BORE 1/99	BOREHOL	E RECORI	D	PROJ	ECT NUMBE]
DEPTH (ft)		MATERIAL DESCRIPTION		SYMBOLIC LOG	ELEVATION (ft)	NUMBER	ЗАГ	BLOWS PER 6"	RECOVERY (%)	PID READING (ppm)	COMMENTS
- - - - - - - - - - - - - - - - - - -	Silty Clay (CL) very dark grayish brown [2.5Y 3/2], slightly hard, moist. Sample interval. Fine Sand (SM) light olive brown [2.5Y 5/3], slightly hard, wet. @ 8.5', with shell hash, dark gray [2.5Y 4/1], loose, wet.				-	T-25-S-7T				0.5	Groundwater encountered at 6.6 ft bgs on 7/13/2005.
CONT EQUI DRILI DIAM	TRACTORH&I PMENT Stra L MTHD Dire IETER 2"	d Geologist No. 4858	ical			STEM:				roplug bentonite pellets	

	GEOSYNTEC CONSULTANTS 11305 Rancho Bernardo Rd, Suite 101 San Diego, CA 92127 Tel: (858) 674-6559 Fax: (858) 674-6586 GS FORM: BORE 1/99 BOREHOLE RECORD					BORING T-26 SHEET 1 OF START DATE 13 Jul 05 ELEVATION FT FINISH DATE 13 Jul 05 DATUM Mean Seal Level PROJECT TDY LOCATION Harbor Drive PROJECT NUMBER SC0307					
DEPTH (ft)		MATERIAL DESCRIPTION		SYMBOLIC LOG	ELEVATION (ft)	NUMBER		MPLES	RECOVERY (%)	PID READING (ppm)	COMMENTS
	Sample interval. Fine Sand (SM)with shell hash, dark gray [2.5Y 4/1], loose, moist. Total Depth = 10 feet bgs. D. Sam Willliams Registered Geologist No. 4858					T-26-S-6.5B					Groundwater encountered at 6.85 ft bgs on 7/13/2005.
EQUI DRILI DIAM	LMTHD Dire ETER 2"	P ataprobe ct Push ensREVIEWER	rtical Nov 05	to su	RKS: Back fface. RDINATE SYS	STEM	1			roplug bentonite pellets	

	GEOSYNTEC CONSULTANTS 11305 Rancho Bernardo Rd, Suite 101 San Diego, CA 92127 Tel: (858) 674-6559 Fax: (858) 674-6586 GS FORM: BORE 1/99 BOREHOLE RECORD					START DATE 13 Jul 05 ELEVATION FT FINISH DATE 13 Jul 05 DATUM Mean Seal Level PROJECT TDY LOCATION Harbor Drive							
	BO	ORE 1/99											
DEPTH (ft)			MATERIAL DESCRIPTION			SYMBOLIC LOG	ELEVATION (ft)	NUMBER	SAI L	BLOWS PER 6"	RECOVERY (%)	PID READING (ppm)	COMMENTS
		Silty Clay (CL)v [2.5Y 4/2], slight Fine Sand (SM) Silty Clay (CL)v slightly hard, dry Sample interval Fine Sand (SM) 4/1], loose, mois Silty Clay (CL)v [2.5Y 4/2], slight Fine Sand (SM) wet.	with shell hash, gray [2.5Y vith shell hash, grayish bro with few shell fragments, d t vith few shell fragments, d ly hard, moist. with shell hash, dark gray Total Depth = 10 feet bo	rk grayish brown (5/1], loose, dry wn [2.5Y 5/2],				T-27-S-6.5T				56.3 8.5 9.2 26 6 10	Groundwater encountered at 6.8 ft bgs on 7/13/2005.
	ONTRACTORH&P NORTHING QUIPMENT Strataprobe EASTING EASTING RILL MTHD Direct Push ANGLE Vertical IAMETER 2" DGGER B. HitchensREVIEWER PRINTED 10 Nov 05												

	GEOSYNTEC CONSULTANTS 11305 Rancho Bernardo Rd, Suite 101 San Diego, CA 92127 Tel: (858) 674-6559 Fax: (858) 674-6586 GS FORM: BORE 1/99 BOREHOLE RECORD					BORING T-28 SHEET 1 OF 1 START DATE 13 Jul 05 ELEVATION FT FINISH DATE 13 Jul 05 DATUM Mean Seal Level PROJECT TDY LOCATION Harbor Drive PROJECT NUMBER SC0307					
					<u> </u>		SA	MPLES	1	1	
DEPTH (ft)		MATERIAL DESCRIPTION		SYMBOLIC LOG	ELEVATION (ft)	NUMBER	ТҮРЕ	BLOWS PER 6"	RECOVERY (%)	PID READING (ppm)	COMMENTS
	-[2.5Y 6/2], slig Fine Sand (SM Silty Clay (CL Fine Sand (SM Silty Clay (CL	with pieces of shell hash, ligh <u>tly hard.</u> <u>) gray [2.5Y 6/1], loose.</u> <u>) light brown gray [2.5Y 6/2], s</u> <u>) gray [2.5Y 6/1], loose.</u> <u>) gray [2.5Y 6/1], loose.</u> <u>) gray [2.5Y 6/2], s</u> <u>) gray ish brown [2.5Y 5/2], sli</u> <u>()</u> dark gray [2.5Y 4/1], loose,	slightly hard		- - - - - - - - - - - - - - 					3 1.2 2.7 0 0 0 0	Groundwater encountered at 6.5 ft bgs on 7/13/2005.
10 -		Total Depth = 10 feet bgs	3.							0	
Солт	RACTORH&	l Geologist No. 485		RKS: Back	filled v	vith .20 ct	ubic fe	et Envi	roplug bentonite pellets		
DRILI DIAM	_MTHD Dire ETER 2"	ntaprobe ctPush ensREVIEWER	ical ov 05	REMARKS: Backfilled with .20 cubic feet Enviroplug bentonite pellets to surface. COORDINATE SYSTEM: SEE KEY SHEET FOR SYMBOLS AND ABBREVIATIONS							

	SS FORM: ORE 1/99	GEOSYNTEC C 11305 Rancho Berna San Diego, CA 9212 Tel: (858) 674-6559 BOREHO	ardo Rd, Suite 101 7	36	FINIS PROJ LOCA	NG T-2 T DATE 1 J H DATE 1 J ECT TDY TION Harbo ECT NUMBE	ul 05 ul 05 or Driv	-			SHEET 1 OF 1 ON FT Mean Seal Level
DEPTH (ft)		MATERIAL DESCRIPTION		SYMBOLIC LOG	ELEVATION (ft)	NUMBER	SAI	BLOWS PER 6"	RECOVERY (%)	PID READING (ppm)	COMMENTS
	(@ 6", dark blac Fine Sand (SM (@ 10", gravish Silty Clay (CL) @ 2', inner bed Very Fine Sand olive brown [2:5 @ 10', dark gra @ 10', dark gra) light olive brown layer [2.5Y brown [2.5Y 5/2], with shell hash s of fine sand with shell hash. <u>d (SM)</u> with shell hash and silty Y 5/5]. y [2.5Y 4/1]. Total Depth = 11 feet bgs.			T-29-6B					Groundwater measured on 7/1/2005.	
EQUI DRILI DIAM	LMTHD Direc ETER 2"	taprobe tt Push ensREVIEWER	ical ov 05			STEM:				roplug bentonite pellets	

	SS FORM: SORE 1/99	GEOSYNTEC C 11305 Rancho Bern San Diego, CA 9212 Tel: (858) 674-6559 BOREHO	ardo Rd, Suite 101	36	FINIS PROJ LOCA	NG T- T DATE 1 J H DATE 1 J ECT TDY TION Harbo ECT NUMBE	ul 05 ul 05 or Driv			EVATIC TUM	SHEET 1 OF 1 DN FT Mean Seal Level
DEPTH (ft)		MATERIAL DESCRIPTION		SYMBOLIC LOG	ELEVATION (ft)	NUMBER	SAI	MPLES	RECOVERY (%)	PID READING (ppm)	COMMENTS
	 @ 7', very dark grayish brown [2.5Y 3/2], increasing sand. <u>Silty Sand (SM)</u>with shell hash, very dark grayish brown [2.5Y 3/2]. 					T-30-S-6T	X			0.0	∑ Groundwater measured on 7/1/2005.
	10 - [2.5Y 3/2].										
EQUI DRILI DIAM	LMTHD Dire ETER 2"	taprobe	ical ov 05		RKS: Back face. DINATE SYS	STEM:				roplug bentonite pellets	

	GS FORM: BORE 1/99	GEOSYNTEC 11305 Rancho Berr San Diego, CA 921 Tel: (858) 674-6559 BOREHC	nardo Rd, Suite 10 27	01 6586	FINIS PROJ LOCA	NG T- T DATE 1 J H DATE 1 J ECT TDY TION Harbo ECT NUMBE	ul 05 ul 05 or Driv			EVATIC TUM I	SHEET 1 OF 1 ON FT Mean Seal Level
DEPTH (ft)		MATERIAL DESCRIPTION		SYMBOLIC LOG	ELEVATION (ft)	NUMBER	SAL	BLOWS PER 6"	RECOVERY (%)	PID READING (ppm)	COMMENTS
5 -	-	grayish brown [2.5Y 5/2]. SWW with shell hash.		00000		T-31-S-6T					
- - - -	light yellowish br	vith inner beds of fine sand own [2.5Y 6/3]. with few shell fragments, d			- - - -	1-51-5-01					Groundwater encountered at approximately 6.5 ft bgs on 7/1/2005.
		Total Depth = 11 ft bgs									
T 10/11/05											
SC0307.GPJ GEOSNTEC.G	D. Sam Will Registered	iams Geologist No. 485									
ଥି EQUI ଅଧି DRIL ପ୍ରାଧାରଣ	TRACTORH&P	aprobe Push	NORTHING EASTING ANGLE Ve BEARING	ertical Nov 05		RKS: Back face. RDINATE SY Y SHEET FOR S	STEM:				roplug bentonite pellets

	SS FORM: ORE 1/99	GEOSYNTEC C 11305 Rancho Berna San Diego, CA 92127 Tel: (858) 674-6559 F BOREHO	rdo Rd, Suite 101	86	BORING T-32 START DATE 5 Jul 05 FINISH DATE 5 Jul 05 PROJECT TDY LOCATION Harbor Drive PROJECT NUMBER SC0307				SHEET 1 OF 1 ELEVATION FT DATUM Mean Seal Level		
DEPTH (ft)		MATERIAL DESCRIPTION		SYMBOLIC LOG	ELEVATION (ft)	NUMBER	SAI	BLOWS PER 6"	RECOVERY (%)	PID READING (ppm)	COMMENTS
5 -	fragments	vith inner beds of fine sand, o			- - - - - - -	T-32-S-6T					1" carbon/ash layer Groundwater encountered at 6.4 ft bgs on 7/5/2005.
10 -	@ 10', olive brov	wn [2.5Y 4/3] Total Depth = 11 feet bgs.			-						
	D. Sam Will										
	Registered Geologist No. 4858 NORTHING DNTRACTORH&P NORTHING QUIPMENT Strataprobe EASTING RILL MTHD Direct Push ANGLE Vertical AMETER 2" BEARING DGGER S. Williams REVIEWER PRINTED 10 Nov 05										

	GEOSYNTEC CONSULTANTS 11305 Rancho Bernardo Rd, Suite 101 San Diego, CA 92127 Tel: (858) 674-6559 Fax: (858) 674-6586 GS FORM: BORE 1/99 BOREHOLE RECORD				FINIS PROJ LOCA	NG T- T DATE 1 J H DATE 1 J ECT TDY TION Harbo ECT NUMBE	ul 05 ul 05 or Driv				SHEET 1 OF 1 ON FT Mean Seal Level
В	ORE 1/99										
DEPTH (ft)		MATERIAL DESCRIPTION		SYMBOLIC LOG	ELEVATION (ft)	NUMBER	BAL	MPLES "9 BLOWS PER 6"	RECOVERY (%)	PID READING (ppm)	COMMENTS
	No Recovery										
-	<u>Silty Clay (CL)</u> dark grayish bro	with interbeds of fine sand wown [2.5Y 4/2].			-						
- 5 -	5 - Fine Sand (SM)with shell hash, grayish brown [2.5Y 5/2].				-	T-33-S-6B	\times				C Groundwater encountered at 6.3' bgs at 1528 on 7/1/2005.
10 -					-						
	Total Depth = 11 feet bgs.										
	RACTORH&P			REMA	RKS: Back	filled v	vith .22 c	 ubic fe	et Envi	roplug bentonite pellets	
DRILI DIAM	LMTHD Direc ETER 2"	taprobe :t Push nsREVIEWER	tical - Nov 05		face. DINATE SYS Y SHEET FOR S	STEM	:				

	GS FORM:	GEOSYNTEC CONSULTAN 11305 Rancho Bernardo Rd, Suite 10 San Diego, CA 92127 Tel: (858) 674-6559 Fax: (858) 674-6 BOREHOLE RECOR)1 586	FINIS PROJ	NG T- T DATE 14 H DATE 14 ECT TDY TION Harbo ECT NUMBE	Jul 05 Jul 05 or Driv	e			SHEET 1 OF 1 DN FT Mean Seal Level
	BORE 1/99						MPLES			
DEPTH (ft)		MATERIAL DESCRIPTION	SYMBOLIC LOG	ELEVATION (ft)	NUMBER	TYPE	BLOWS PER 6"	RECOVERY (%)	PID READING (ppm)	COMMENTS
	with pieces of co	GM) dark olive brown [2.5Y 3/3], loose, dry, oncrete		-					392	
5	Silty Clay (CL)	with fine sand lenses, olive brown [2.5Y 4/3],		-					644	
	 Sample interval Fine Sand (SM) @ 8 ', dark gray 	olive brown [2.5Y 4/3]. [2.5Y 4/1], loose, wet.		-	T-34-S-7T	\times			64.7 0 0	Groundwater encountered at 6.9 ft bgs on 7/14/2005.
10	- - Total Depth = 11 feet bgs.		<u> </u>	-					0	
BORING FOG NO WELL (SAM) SCUSULISFU GEUSNI ELISUT 10/11/05 TO TO TO TO TO TO TO TO TO TO TO TO TO TO TO TO T	D. Sam Wil Registered	liams Geologist No. 4858								
		BEARING	rtical Nov 05	to sur		STEM	:			I roplug bentonite pellets

		GEOSYNTEC (11305 Rancho Bern San Diego, CA 9212 Tel: (858) 674-6559	aardo Rd, Suite 101 27 Fax: (858) 674-65	86	FINIS PROJ	NG T-3 T DATE 14 H DATE 14 ECT TDY NTION Harbo	Jul 05 Jul 05			EVATIC TUM	SHEET 1 OF 1 DN FT Mean Seal Level
В	S FORM: ORE 1/99	BOREHC	LE RECOR	D	PROJ]
DEPTH (ft)		MATERIAL DESCRIPTION		SYMBOLIC LOG	ELEVATION (ft)	NUMBER	SAI	MPLES	RECOVERY (%)	PID READING (ppm)	COMMENTS
	hard, dry. Fine Sand (SM loose, dry. Silty Clay (CL) [2.5Y 4/2], sligh Fine Sand (SM Sample Interva) dark grayish brown [2.5Y 4) dark grayish brown [2.5Y 4 hash.	gray [2.5Y 7/1], rrayish brown //2], loose, dry.			T-35-S-5.5T	X			4.6 5.6 11.4 2 0	Groundwater encountered at 5.8 ft bgs on 7/14/2005.
- 15 - - -					-						
20 -					-						
25 - - - -					-						
	_	Geologist No. 485	8 NORTHING		- - - -	RKS: Back	filled y	vith 20 c			
EQUI DRILI DIAM	PMENT Stra _ MTHD Direc ETER 2"		ical lov 05	to su	RKS: Back fface. RDINATE SY: Y SHEET FOR S	STEM	:			roplug bentonite pellets	

	ESS FORM:	GEOSYNTEC C 11305 Rancho Berna San Diego, CA 9212 Tel: (858) 674-6559 F BORFHO	rdo Rd, Suite 101	86	FINIS PROJ	NG T-3 T DATE 14 . H DATE 14 . ECT TDY TION Harbo ECT NUMBE	Jul 05 Jul 05 r Driv	e			SHEET 1 OF 1 DN FT Mean Seal Level
(B	ORE 1/99										
DEPTH (ft)		MATERIAL DESCRIPTION		SYMBOLIC LOG	ELEVATION (ft)	NUMBER	TYPE	MPLES BLOWS PER 6"	RECOVERY (%)	PID READING (ppm)	COMMENTS
	slightly hard, dry. Sample interval Fine Sand (SM)with minor shell hash, dark grayish brown [2.57 4/2], loose, moist. @ 8', becomes wet 10 Total Depth = 10 feet bgs. 10 Total Depth = 10 feet bgs. D. Sam Williams Registered Geologist No. 4858 CONTRACTORH&P GUIPMENT Strataprobe EASTING PRILL MTHD Direct Push ANGLE DAMETER 2"					T-36-S-6.5B				0 58 0 0 0 0	Groundwater encountered at 6.8 ft bgs on 7/14/2005.
EQUI DRILI DIAM	UIPMENT Strataprobe EASTING ILL MTHD Direct Push ANGLE Vertical				11	RKS: Back face. CDINATE SYS	STEM:				roplug bentonite pellets

		GEOSYNTEC C 11305 Rancho Berna San Diego, CA 9212 Tel: (858) 674-6559	ardo Rd, Suite 101 ?7 Fax: (858) 674-65	86	FINIS	NG T- T DATE 14 H DATE 14 ECT TDY TION Harbo	Jul 05				SHEET 1 OF 1 DN FT Mean Seal Level
	BS FORM: BORE 1/99	BOREHO	LE RECORI	D	PROJ	ECT NUMBE					J
DEPTH (ft)		MATERIAL DESCRIPTION		SVMBOLIC LOG	ELEVATION (ft)	NUMBER	BAI	MPLES	RECOVERY (%)	PID READING (ppm)	COMMENTS
- - - - - - - - - -	Medium Sand (SW) Suith few pebble clast, dark olive brown [2.5Y 3/3], loose, dry.				- - -					** 1312 89	∇
- - - 10 -	5/2], slightly ha	sh brown [2.5Y		-					17 .06 5.8	Groundwater encountered at 6 ft bgs on 7/14/2005.	
	10 Total Depth = 10 feet bgs.										** PID reading over range.
EQUI DRILI DIAM	ONTRACTORH&P NORTHING RUIPMENT Strataprobe EASTING RILL MTHD Direct Push ANGLE Vertical AMETER 2" BEARING DGGER B. HitchensREVIEWER PRINTED 10 Nov 0					RKS: Back face. DINATE SY: Y SHEET FOR S	STEM	:			roplug bentonite pellets

	GS FORM: BORE 1/99	GEOSYNTEC C 11305 Rancho Bern San Diego, CA 9212 Tel: (858) 674-6559 BOREHO	ardo Rd, Suite 101	86	FINIS PROJ	NG T- T DATE 14 H DATE 14 ECT TDY TION Harbo ECT NUMBE	Jul 05 Jul 05 or Driv	e		EVATIC TUM I	SHEET 1 OF 1 ON FT Mean Seal Level
DEPTH (ft)		MATERIAL DESCRIPTION		SYMBOLIC LOG	ELEVATION (ft)	NUMBER	SAI	MPLES "9 BLOWS PER 6"	RECOVERY (%)	PID READING (ppm)	COMMENTS
	Gravely Sand (GM)with concrete fragments, very dark gray 12.5Y 3/1], loose, dry. Medium Sand (SW), poorly sorted, yellowish brown [10YR 1 5/6/, loose, dry. 10 5 slightly hard, dry. 5 slightly hard, dry. Sample Interval 1 Sitty Sand (SM)with shell hash, grayish brown [2.5Y 5/2], hard, dry. 5 slightly hard, dry. Sample Interval Sitty Sand (SM)with minor shell hash, grayish brown [2.5Y 4/1], loose, wet. 10 Total Depth = 10 feet bgs. D. Sam Williams Registered Geologist No. 4858 CONTRACTORH&P NORTHING GUIPMENT Strataprobe EASTING SRILL MTHD Direct Push ANGLE Vertic: DIAMETER 2" BEARING					T-38-S-5.5T				89	Foundwater encountered at 5.7 ft bgs on 7/14/2005.
EQUI DRILI DIAM	IPMENT Strataprobe EASTING LL MTHD Direct Push ANGLE Vertical METER 2" BEARING				11		STEM:				roplug bentonite pellets

		GEOSYNTEC CO 11305 Rancho Bernard San Diego, CA 92127 Tel: (858) 674-6559 Fa	do Rd, Suite 101		FINIS PROJ	NG T-3 T DATE 13 H DATE 13 ECT TDY TION Harbo	Jul 05 Jul 05			EVATIC TUM I	SHEET 1 OF 1 DN FT Mean Seal Level
	SS FORM: SORE 1/99	BOREHOL	E RECORI)		ECT NUMBE	R SC	0307			
DEPTH (ft)		MATERIAL DESCRIPTION		SYMBOLIC LOG	ELEVATION (ft)	NUMBER	SAN L	BLOWS PER 6"	RECOVERY (%)	PID READING (ppm)	COMMENTS
	[2.5Y 5/2], loo: Fine Sand (SI [2.5Y 5/2], loo: No Recovery Fine Sand (SI Sample Interval Fine Sand (SI Ioose, moist.	 With minor shell fragments, grase, dry. grayish brown [2.5Y 5/2], loos al W) with shell hash, grayish brown pieces of shell fragments, dark to the state of the s	ayish brown j se, dry. [2.5Y 5/2],			T-39-S-6.5T				267 220 52.7 16.1 30.3 106 110 28.7	
Registered Geologist No. 4858											
EQUI DRILI DIAM	ONTRACTORH&P NORTHING QUIPMENT Strataprobe EASTING RILL MTHD Direct Push ANGLE Vertical IAMETER 2" BEARING OGGER B. HitchensREVIEWER PRINTED 10 Nov 05					RKS: Back fface. RDINATE SYS Y SHEET FOR SY	STEM:				roplug bentonite pellets

	GEOSYNTEC CONSULTANTS 11305 Rancho Bernardo Rd, Suite 101 San Diego, CA 92127 Tel: (858) 674-6559 Fax: (858) 674-6586 GS FORM: BORE 1/99 BOREHOLE RECORD				FINIS PROJ	NG T-4 T DATE 13 H DATE 13 ECT TDY TION Harbo ECT NUMBE	Jul 05 Jul 05 or Driv	e			SHEET 1 OF 1 DN FT Mean Seal Level
DEPTH (ft)		MATERIAL DESCRIPTION		SYMBOLIC LOG	ELEVATION (ft)	NUMBER		MPLES 8LOWS PER 6"	RECOVERY (%)	PID READING (ppm)	COMMENTS
	hard, dry. Fine Sand (SM) well-sorted, fine grained, gray [2.5Y f Sample interval. Silty Sand (SM) very dark gray [2.5Y 3/1], loose, mois shell hash. Fine sand (SM) with shell hash, grayish brown [2.5Y 5 loose, moist. Silty Sand (SM) with shell hash, grayish brown [2.5Y 5 Jose, moist. Silty Sand (SM) with shell fragments, very dark grey [2 10 3/11 slightly hard, wet. Total Depth = 10 feet bgs. D. Sam Williams Registered Geologist No. 4858 CONTRACTORH&P NORTH GUIPMENT Strataprobe EASTIN PRILL MTHD Direct Push ANGLE DAMETER 2" BEARIN		ark gray [2.5Y ht brownish gray 5Y 3/2], slightly ay [2.5Y 5/1]. ose, moist, with m [2.5Y 5/2], irk grey [2.5Y			T-40-S-6T				a. 38.1 9.7 6.4 20.8 38.1 18.4	Groundwater encountered at 6.48 ft bgs on 7/13/2005.
EQUI DRILI DIAM	UIPMENT Strataprobe EASTING ILL MTHD Direct Push ANGLE Vertical						STEM:				iroplug bentonite pellets

	GS FORM:	GEOSYNTEC C 11305 Rancho Berna San Diego, CA 92127 Tel: (858) 674-6559 F	rdo Rd, Suite 101 7 Fax: (858) 674-65	86	FINIS PROJ	T DATE 14 H DATE 14 ECT TDY TION Harbo	Jul 05 Jul 05 r Driv	e			SHEET 1 OF 1 ON FT Mean Seal Level
	BORE 1/99	BOREHO				ECT NUMBE					
DEPTH (ft)		MATERIAL DESCRIPTION		SYMBOLIC LOG	ELEVATION (ft)	NUMBER	Түре	MPLES BLOWS PER 6"	RECOVERY (%)	PID READING (ppm)	COMMENTS
-	dry. Silty Clay (CL	M well sorted, grayish brown [2])with fine sand lenses and min rown [2.5Y 4/2], slightly hard, d			-					0	
5 - 	 slightly hard, d Sample interva <u>Fine Sand (SI</u> [2.5Y 4/2], loos 	al //) with major shell hash, dark g			-	T-41-S-6.5B	\boxtimes			304 0	Groundwater encountered at 7 ft bgs on 7/14/2005.
		Total Depth = 10 feet bgs.									
	TRACTORH&I	d Geologist No. 4858	NORTHING EASTING		REMA to su	IRKS: Back	filled v	<i>r</i> ith .20 ct	ubic fe	et Envi	roplug bentonite pellets
DIAM	IETER 2"		ANGLE Vert BEARING PRINTED 10 N			COINATE SYS			REVIAT	IONS	

		GEOSYNTEC C 11305 Rancho Bernau San Diego, CA 92127 Tel: (858) 674-6559 F	rdo Rd, Suite 101 ax: (858) 674-658	36	FINIS PROJ	NG T-4 T DATE 13 H DATE 13 ECT TDY TION Harbo	Jul 05 Jul 05				SHEET 1 OF 1 DN FT Mean Seal Level
G B	ORE 1/99	BOREHOL	E RECORI	<u> </u>	PROJ	ECT NUMBE					
DEPTH (ft)		MATERIAL DESCRIPTION		SVMBOLIC LOG	ELEVATION (ft)	NUMBER	SAN JA	APLES BLOWS PER 6"	RECOVERY (%)	PID READING (ppm)	COMMENTS
	Sand (SW) with [2.5Y 5/2], loos Fine Sand (SM Silty Clay (CL hard, dry. Sample Interva Silty Clay (CL hard, semi-moi @ 8', olive brow D. Sam Wi	1) grayish brown [2.5Y 5/2], loo with shell hash, dark gray [2.5' al. with shell hash, dark gray [2.5' st. wn [2.5Y 4/3], wet. Total Depth = 10 feet bgs.	grayish brown <u>se, dry</u> Y 4/1], slightly Y 4/1], slightly			T-42-S-6.5B					Groundwater encountered at 7.15 ft bgs on 7/13/2005.
EQUII DRILL DIAM	LMTHD Dire ETER 2"	taprobe I ct Push /	NORTHING EASTING ANGLE Vert BEARING PRINTED 10 N		11	RKS: Back fface. RDINATE SYS Y SHEET FOR SY	STEM:				iroplug bentonite pellets

	GS FORM: BORE 1/99	GEOSYNTEC 11305 Rancho Berr San Diego, CA 921 Tel: (858) 674-6559 BOREHO	nardo Rd, Suite 101 27	36	FINIS PROJ LOCA	NG T- T DATE 18 H DATE 18 ECT TDY TION Harbo ECT NUMBE	Nov 0 Nov 0 or Driv	5 e		EVATIC TUM	SHEET 1 OF 1 ON FT Mean Sea Level
DEPTH (ft)		MATERIAL DESCRIPTION		SYMBOLIC LOG	ELEVATION (ft)	NUMBER	SAI	MPLES	RECOVERY (%)	PID READING (ppm)	COMMENTS
- - - 5 - - - - - - - - -	dry. <u>Sand (SP)</u> with <u>Sand.</u> <u>Clay (CL)</u> with <u>Sand (SP)</u> oliv.	(SW)with clay, dark olive brown (2.5Y) clay, dark olive brown (2.5Y) medium sand, olive brown (2) e brown (2.5Y 4/3), dry, fine e brown (2.5Y 3/2), wet	73), dry, medium							0 0 0	∑ Groundwater encountered at 6.33' bgs on 11/18/05.
		Total Depth = 9 ft bgs									
	D. Sam Wil Profession	liams al Geologist No. 4	858								
EQUI DRILI DIAM	 TRACTORH&F PMENT L MTHD Direc IETER 2" GER B. Hitche		NORTHING EASTING ANGLE Verti BEARING PRINTED 30 N		Envir	RKS: Back oplug mediur DINATE SY: Y SHEET FOR S	n Wyo STEM:	-Ben, Inc			l ap and 0.19 ft ³

APPENDIX D GROUNDWATER SAMPLING AND WELL DEVELOPMENT FIELD LOGS

Ground Water Sampling Measurements for Low-Flow Purging

	Site				1	105		Pi	oject No).:5(0307	
Ν	lor	uto	ori	ng	Well:	3LD 102. M.		Samj	pling Da	te: 7/28/05	
	San	np	le]	D	BLDIC	Da-MUZ	Sar	npler:	Dave 4	Lopon Christieder l'amine	Dole Sonther
Time	Start Purge	Readings	Start Samp.	End Samp.	Temper- ature (°C)	Conduc- tivity/m (µ\$/cm) (ATC)	pH (ATC)	Redox Potential (± mv)	Dongle	Appearance of Water	
09:14											<u> </u>
09:16	<u> </u>				25.37	.674	6.97	101	3.92	Clear Forbiaily O	-
09:20					25.23	.692	6.98	90	3.81 .	7:35 ATOC lo Loche	
09:05	_				25.45	.692	6.99	34	3.63	7.34 ltTa cater	
09:27					2556	.692	7.00	32	3.60	6.40 NTV	
69',29	1				25.60	-692	7.00	30	3.58	7.35ft Toc (cler	
29:31					25.68	0690	7.01	78	3.32	1.4 100	
09:33					25.74	0693	7.01	77	3.26	1.9 070	
09:35					25.76	2692	7.02	76	3.26	1.9 NTU	
09:37					25.77	5692	7.02	35	3-19	2.3 NTU	
09:39					27.80	.692	7.02	75	3.07	3.9 NTU (5.20	-
09:41					25.86	1692	7.03	74	2-90	4.5 NTU	>
Paramata							er Calibr	ation		Meter Number:	
Paramete pH	<u></u>			Date	e & Time Cali	brated				ation Results	
Conductivi	ity									; pH 10: (ATC)	
Redox Pot							· .			d reads (ATC)	
ICCOVITOL		lit	R	lot	ale Dunl	insta Pr	Elland.			olution reads	
Sample ID		111,	D			icate, &	Filterea	Samples		Miscellaneous	
Sample ID					Description					Depth to Water:ft	
										Turbidity:NTUs	
										Dis. Oxygen:ppm	
										Pump Rate: 300 in ml	luin.
						18		-		min, sec.	
Weather:						· · · · · · · · · · · · · · · · · · ·					
notes: (w		Tal	pln	De	-pln (7. Louler 7.1 = 105	1 FT 10C 3 1C1 Toc 11 of could	rin well	dors, problen		Romp at 1007250 ml	Iting
	4	•	Po	nd	at B	spt Toc			Sample	e labon 9:50	
			F!	nci	ral ?	some /1	L.M.		Vo	els	1

J.Raymer/GeoSyntec Consultants

. 1

2HG Condu Temp Time 9:42 .693 25.91 7.03 7-03 25.94 ·643

Sample taken 9:50 Vocis

ORP DO TURB. 72 2.90 4.2 2.87 4.2 71

Rice Al

entra entr

at a fire at

Ground Water Sampling Measurements for Low-Flow Purging

 Site:

 Project No.:
 50307

 Monitoring Well:
 BCD 100-MWA
 Sampling Date:
 710007

 Sample ID:
 BCD 100-MWA
 Sampler:
 Capting Date:
 710007

Time	Start Purge	Readings	Start Samp.	End Samp.	Temper- ature (°C)	Conduc- tivity (µS/cm) (ATC)	pli (ATC)	Redox Potential (± mv)	Do myle	Appearance of Water	
NilA	-									6.55	
16:20			-		24.66	.276	6.88	-96	3.23	109 NTU CLEAR LOGIER 655	ATT
11:99			_		24.74	.298	6.91	-103	2.90	1.3 NTU	
11:24					24.69	316	6.93	-106	2.75	1.0 NTU	l
11.26					24.67	,340	16.96	-111	2.71	-95NTU	
11:08					24.70	,358	6.99	- 115	2.74		Howateria
11:36					24.65	.370	7-01	-117	2.63	LOU NTU	ino accieria
11:38					24.63	.376	7.02	-118	2.61	45 NTU	
11:40					24.68	.381	7.03	- 119	2.59	35NTU	
11.42					24.69	286	7.04	-120	2.59	205 NTU 6.56 NT) Tor
11.441					2467	387	7.05	-122	2.62	040 NTU	
11.46					24.67	-388	7.00	-123	2:67	· 1 VTU	
				_			er Calibr	ation		Meter Number:	
Parameter pH				Date	e & Time Calib	rated			And the second	ation Results	
Conductivi	+						pH	4:		; pH 10: (ATC)	
Redox Pot.	-								the state of the second st	d reads (ATC)	
1	- 1	1.+	D	10.	Je Dunl		<u> </u>	+231 m	iv Zoebell s	olution reads	
Sample ID		m	, D			cate, &	Filtered	Samples		Miscellaneous	
Sample ID					Description					Depth to Water:ft	
										Turbidity:NTUs	
										Dis. Oxygen:ppm	
										Pump Rate: 300 ind/m	
										min, sec.	5.0
Weather:											5.67
Notes: (we		ndi	tion,	, nea	arby activities	or changes i	n land use, o	dors, problem	s, deviations	from plan, etc.)	
ha	1.0.1		ct yn [- op	of screen	19.8 ft		Sando	e Take	n at 11:50	
2.47			1	Dep	In to water	6.54 4					
					mp at	12.00 44		(124	and U	000	
1				100	ila ar.						
<u></u>			Ì).q	Ju lou	10-6054	4			· ***	

J.Raymer/GeoSyntec Consultants

6/5/98, ver.1

- (4.9)

Ground Water Sampling Measurements for Low-Flow Purging

Site: TO N. Waybor Dr. Project No.: SCO 307 Monitoring Well: <u>BID 102 - MW-5</u> Sampling Date: 8/5/5 Sample ID: _____ Sampler: DS CL

	T		1	T	1	1	1	· ˈ·····	/			
Time	Start Purge	Readings	Start Samp.	End Samp.	Temper- ature (°C)	Conduc- tivity (µS/cm) (ATC)	pli (ATÇ)	Redox Potential (± mv)	Do	Turb	Appearance	parge
14:26					20,65	.467	7.16	-114	1,09	5,6	8,03	rate
14:34					20,52	,534	7118	-115		0.35	7,65	300
14:38					20,40	1788	7,20	-143	167.	0.0	7.62	300
14:41		_			20,38	1154	7,21	-143	157	0,0	7.65	290
14:44					20,37	2.34	7,22	-141	.57	0,0	7,65	290
14,47					20,36	2,26	7,24	-139	58	0,0	7.65	290
14:50		_			20,37	2.36	7,25	-140	156	0,0	7,65	290
14:53			_		20,36	3,28	7,26	-140	.54	0,0	7,65	290
	_	_										
I		-	_									
		-	_	_								
Parameter				Data	& Time Calib		r Calibra	ation			r Number:_	L .
pH	T				a Time Callo	raled	-11	4.		ation Results		
Conductivit	y										10:	
Redox Pot.	-											
1	Spl	it	R	lan	k Dunli	cate, &]		+231 m	v Zoebell s		ids	
Sample ID	°P.		2				rmered	Samples			Miscella	
					Description							7,04 ft
											oidity:	
										Dis. (Dxygen:	ррш
									-	Pum	p Rate:	in
	·										min,	sec.
Weather:	1.000	1:4		1		_				21		
Notes: (wel	la	W	on,	nea	rby activities	or changes in	n land use, oc	lors, problem	s, deviations	from plan,	etc.)	
pump s	ef	6) 7	11.	OOC- 13	10	Start	al pump	ung &	14:24	(
			-	11	40		mover	are fu	el oba	R		

J.Raymer/GeoSyntec Consultants

GeoSyntec Consultants Pore 162

Ground Water Sampling Measurements for Low-Flow Purging

Site: $\underline{TDY V}$. Havber Dr. Project No.: $\underline{CO307}$ Monitoring Well: $\underline{BiDido-MW-l}$ Sampling Date: $\underline{\mathcal{E}/1/05}$ Sample ID: $\underline{B-Di2o-mW-l}$ Sampler: $\underline{D5}$, \underline{CL}

· ·····					······································	• • • • • • • • •					
Time	Start Purge Readings Start Samn	End Samp.	Temper- ature (°C)	Conduc- tivity (µS/cm) (ATC)	pII (ATC)	Redox Potential (± mv)	Þo	Turb	Appears	Mymin nce of W Purse vate	ater
14:41			21.04	1.55	7.06	82	176	0,0	6120		
4:44			20.97	.642	1	75	168			320	
14:47			31.06	1568	-7.04	48	168		6.37		
14:50			21,15	.665	7,00	20	:67	0.0		200	
14:53			21.16	.754	7.00	- 7	,70	0,0	-	200	
14:56			31.15	.851	7,00	-21	172	010	6.32	200	
14:59			21,13	,961	7,00	- 32	,74	0,0		190	
15:02		_	21,12	1,30	7,01	-35	,75	0,0		190	
15:05			31.12	1:31	7.02	-40	.78	010		190	
15:08			21.10	1,53	7,07	-44	,78	0.0	~	190	
15:11			21.09	1.74	7,07	-47	179	0,0	6.32	the second s	
15:14			à1,09	1.79	7,03	-49	,80	0,0		190	
Parameter		5			er Calibr	ation			er Numb	er:	
pH		Date	t & Time Calib	raled		4.		ation Result			
Conductivity	~					4:					
Redox Pot.						1071 -					
1	Split. 1	Blat	ık, Dupli	cate &	Filtered	Samples	ny Zoebell s	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	******		410
Sample ID	τ		Description	outo, to	A THOUGH	oanpies)	ŧ	····	llaneo	
					-]		ter: <u>5</u>	
				<u> </u>						······	
							<u></u>		·······		
 								Pan			
Weather:							·······	<u> </u>	mù	1,	sec.
Notes: (well	conditio	n, nea	uby activities	or changes	in land tice	dare probl-	na dastati	- <u>(</u>			
Time Te		R	oth, to	pump	15 10	5.ft	us, uevia(iofi:	s nour blan	, etc.)		
	1 1 2		pit ORP		7		rge rake				
15:17 21.	1111		7.03-57	180	······	32	190				
15:20 21,			7.03 - 54	179	8 -		190				
1 -19/1			7.04 - 55	180 (2.0		90				
1536 311	- the second	-in-Sec	7.05-54		010 6	33 1	90				
15:29 21	073.1	5	7,04 - 54	1.78	0,0 6	1.33 1	90				<i>c</i> / <i>c</i> /200
		<u> </u>									6/5/98, ver.
5	Transferrer				1						

page 2 of 2 Ground Water Sampling Measurements for Low-Flow Purging

Site: TPY N. Herber W. Project No.: SCO 307 Monitoring Well: Bid 120 MW-1 Sampling Date: 8/1/05 Sample ID: BId 130-MW-1 Sampler: CL, DS

Time	Start Purge Readings	Start Samp.	ind Samp.	Temper- ature (°C)	Conduc- tivity (μS/cm) (ATC)	рН (АТС)	Redox Potential (± mv)	PO	turb	Appeare	m1/min nce of Wal pinger Rate	
15:32		10		21,05		7,05	-55	177		-		· · · ·
1513.5		1			2,54	7,05		:79	0,0		190	
15:38		1	\square	31.05	2.48	7,06		180	010	6.32		
			\square				<u> </u>		- 10	10150	110	
									· · · · · ·	 		
										1		}
										1	ļ	
		4										
		-									ļ	
]			Mata	Califer					<u> </u>	[
Farameter			Date	& Time Calibi		er Calibra	ation	Calibr	Mete ation Result.	er Numbe	≥t: <u></u>	
рН				······································		pH	4:				(A	TC)
Conductivit	у							μS/cm flui	d reads		(ATC)
Redox Pot.							+231 m	ıv Zoebell s			`	<u></u>
	Spli	t, B	lan	ık, Dupli	cate, &]	Filtered	Samples			Misce	llaneou	IS
Sample ID]	Description		-			Dept	h to Wat	er: 51	<u>91-</u> ft
									Tur	bidity:		NTUs
	··											
			<u> </u>							min	l,	sec.
Weather:												
Notes: (wel	I cond	ition,	, nea	rby activities		n land use, or Ah 40				etc.)		
t					• .							

Ground Water Sampling Measurements for Low-Flow Purging

Site: T Dy N. How W. Monitoring Well: <u>BLis 120 - mw - 4</u> Sampling Date: <u>8/1/05</u> Sample ID: <u>Sampler: DS, CL</u>

	· · · · · · · · · · · · · · · · · · ·	1	7	1	T	J	+		·				
Time	Start Purge	Readings	Start Samp.	End Samp.	Temper- ature (°C)	Conduc- tivity (μS/cm) (ATC)	pH (ATÇ)	Redox Potential (± mv)	DO	Turb.	Appca DTW	me/ min rance of W pure rate	aler
13:01					24.80	3,17	7.21	51	,89	7.8		230	
13:04					24,82	1.27	7.17	53	,73	516		230	
13:07					24.98	.456	7.15	56	173	5,0	- Wigit	230	
13:10					25.06		7.16	56	172		6.26	11	
13:13					25,06	,369	7.15	57	,69	3,1	WIND	11	
13:16					25,09		7.15	57	,67	$\frac{1}{1}$			· ·
13:19					25,12		7,15	57	165	.90	1 107	11	
13:22					25,16		7.15	56	165	1.7	0.01		
13:25					25,18	1332	7,16	55	165		6.27	<u> </u>	
13:28						, 336	7,17	55	165	.55	<u>(101)</u>	11	
13:31					25.12		7,17	54	,66	.45		11	
1 13.34					25,12		7,17	53	165	.20	6.27	11	
							er Calibr		149		ler Num		
Farameter				Date	& Time Calib				Calibr	ation Resul			
pH							pH	4:	; pH 7:	; pI	H 10:	(ATC)
Conductivi	y				·····								
Redox Pol.								+231 n	ny Zoebell s	olution re	eads		
	Sp	lit,	В	lar	ık, Dupli	cate, &	Filtered	Samples			Misc	ellanec	us
Sample ID					Description		-			Dep	th to Wa	ater: 6.1	🛛 · ft
Į					-								Ŧ
 	. <u> </u>							·····				1;	
ļ								······································				;	
							<u></u>					in,	
Weather:													
Notes: (we	ll co	ndit	ion,	nea	rby activities	or changes	n land use, o	dors, problem	is, deviations	from plar	i, etc.)	·····	
			ı										
Time T	em.	P		'm	a PH	INSE/	Pine	at 1	V. J. Purge	1	10	=14	-5
13:37 2	5,1	4		34	9717	52	10 14	ידע לי	Purge	rate			
13:40 2	5,1	5		36	0 7.18	6000	105 0	6.2-	<u>i</u> 1				
			-	<u></u>	///8	20-41	06 0			2013/911 42mm (21.9512/2014)			·
						-		l	k				

J.Raymer/GeoSyntec Consultants

6/5/98, ver.1

Ground Water Sampling Measurements for Low-Flow Purging

\cup	Si	te:_			TDY	•		Pr	oject No).: <u> </u>	- 3 - 7		
						360 120.	MW3	Sami	oling Da	te: 7/29	105		
	Sa	mp	le	IJ	BLD	186 - M W	🗲 Sar	npler:	Dave	Skippon			
Time	Start Purge	Readings	Start Samp.	End Samp.	Temper- ature (°C)	Conduc- tivity (µS/cm) (ATC)	pli (ATC)	Redox Potential (± mv)	Doall	25%	Depth	4	
3:57				2	24.64	.505	7.45	+ 33	2.22	2.8	- UCPI-1	6	nelin
141.02					24.32	.502	7.37	+ 31	0.58	2.6	66		
14:00	-				24.38	.500	1	+ 25	0.50	1.0	6.81	- 10	me (may
14'.11		1_			24.37	.502	7.37	-15	0.55	1.6	6.88	17/2	n lmin
14:15		1_			24.93	.503	7.38	-31	0-49	1.0	6.82		1
14:19	1	1_			25.40	. 308	7.40	-30	.50	0.0	6.81		sh (nin
14'.27	>	1	1		25.46	,518	7.42	-25	.50	0.5	6.79		
14:27		1_			25.46	,521	7.43	-30	.49	0.0	6.73		
14:31					29.39	.522	7.44	-43	.40	0.0	<u> </u>		
14:35		_			25.29	.522	7.44	-63	.48	60	6.71		
141.3		-			25.35	-526	7.40	-7677	,48	0-0			(ontinue
14:3	3				25.35	.528	7.04	- 86	.49	6.0		\rightarrow	over
Danas							er Calibr	ation		Meter No	imber:		
Parame pH	ter	1		Date	e & Time Calib	rated		1.		ation Results	(1.5.5)		
Conduct	vity						рн				(ATC))	
Redox P											(ATC)		
			R	lat	k Dunli	cate, &	Filtorod			olution reads			
Sample I		5110	, <i>L</i>		Description		rmereu	Samples			scellaneous		
oumpier					Description		•				Water:		
											y:NT	Us	
<										Dis. Oxy		opm	
sk										Pump R	ate:	in	
										•	min,s	ec.	
Weather		hand	ition	ner	shy activities	orchanges							
Depla	owa	1- (e.d	26	t Toc		in land use, o			from plan, etc.))		
Total De	nta	14	- 1	C+	TOC			Slert	Ŷ				
wooder Co		3.	94 -	•		- 54	crtcd a	+ 300.	nc (min				
Pump	at	10-	to (-		- pu	and Down	N 10 3	DIAA.	-Hw3	14:55		
						Sum	pic ca	U.C. (1	0000				
		Yani	Ved	1	For UC	x, 5000	, Perc	Hocale		· · · · ·	· Fest-server		

J.Raymer/GeoSyntec Consultants

6/5/98, ver.1

Cond. Temp Time PH ORP てい Depth Flaw 20 141.96 2527 .528 0.0 6.71 7.45 -45 0.49 160 14:50 25.26 7.45 - (00 ,534 0.49 0.0 14.54 -102 35.01 7.46 147 0.0 6.71 1537 ist.

Ą

A state of the state of the

WELL DEVELOPMENT LOG

		GeoSynt 11305 R San Die	ancho I	Bernardo R	td., Sui	te 101	Project Project	Name TDY Number			Vell I.D. Blao-HW 4 Developer
				3) 674-655	9			0307		*	Dars 5killer
		Fax: (85					Weathe	r		s	Subcontractor
			-				50.		SoF		
	quipmen	t		Surging/l	Develo	pment		Develop		Ň	Water Quality Meter I.D.
Bladder F Hand Pur	-	,						35/65 oment Ci		r	Depth of Pump (ft)
	ble Pump	,					3KL	201 or	na blab		septil of 1 ump (it)
Bailer (si	-							ondition		1901	
urge Blo	ock							Good			
		Well I	Data			Conversions		Well De	evelopmen	<u>t</u>	Recovery Data
asing D	iameter (ft)		17		2" = 0.17 ft	Max De	epth/Deve	elopment (f	t)	% Recovery
orehole	Diamete	r (ft)	1	,67		4" = 0.33 ft	Total V	olume Pu	urged (gal)		
ilter Pac	k Porosit	ty (dec.)		0.25		5" = 0.42 ft			2	2	$PR = (1-(RD/MD)) \times 100$
Vell Dep				3.0		6" = 0.50 ft			•		
	Water (ft		1	192 4	.87	7'' = 0.58 ft					PR=Percent Recovery
	lumn He	• • • •		3.98	- 10 m	8'' = 0.67 ft	Contraction of the second second				RD=Residual Drawdown MD=Max Drawdown
	Volume le Volum			x WCH =	4.184	9" = 0.75 ft 10" = 0.83 ft					MD=Max Drawdown
Boreno	le volum	les (gal)	dl	55	Cum	ulative Total					
	Pu	rging Da	ata			Removed		Water C	haracteris	tics	Comments
	Tiı	me	Pump	Water		Borehole		EC	Turbidity	Temp.	1
Date	Begin	Finish	Rate	Removed	GAL	Volumes	pН	(µS/cm)		(°C)	
		Timon	(gpm)	(gal)				y,	()	(0)	
4/25/05			1					<u>A</u> :		2007	
	15:05			5	5		7.54	-96		28.47	
	1510			.5	10		7.47	1.01		26.69	Pumped Dry
	1515		45	-							rumpia bis
	15:00		3								Stent Pomp age
	15:25		.3	1.5	11.5		Joba	1.03		27.49	Stati to b age
	15:30		.3	1.5	13		7.46	1.03		27.32	11.7.A lowade.
	15:40		.25	2.5	17.5		75	1.04	650	22.49	
	15:45		. 25	1.25	18.75			1.00	2 260	28.27	
	15155		.25	2.5	20.35	1	7.46	1.03	24	39.20	
	1605		,05	2.5	02.75		7.43		12	23 20	
	1615		,25		25.35			1.15		27.40	
	16:20		.25		26.5		7.30		9.9	37.53	
	16:25		.25		27.7	t	7.40	1.06	12.0	27.34	
	16:35		125	1.25	30.35		7.22	1.07	90	26.71	Pomp Lasa
	16.33		10.3	a. 1	30.00		Tab	TUP		checti	
						14.2					
	1	I									

-

K

Field Personnel Signature:

GeoSyntec Consultants Page 1 % 2

Ground Water Sampling Measurements for Low-Flow Purging

Site: TDY N. Havbor Dr. Project No.: Sco307 Monitoring Well: BIDO-MW4 Sampling Date: 8/2/05 Sample ID: MW4 BIDO-MW4 Sampler: DS, CL

0	7	Y	1	1									
Time	Start Purge	Readings	Start Samp.	End Samp.	Temper- ature (°C)	Conduc- tivity (µS/cm) (ATC)	рН (АТС)	Redox Potential (± mv)	PO	Turb	F+ Appeara DTW	mi/min nce of Wat PW32 Twie	er
9:10					26.43	,98	7.31	78	2.06	90	6,10	800	
9:16					26,00	6,20	7,33	66	1,09	120	6.10	100	
9:21					25.46	6,27	7,31	57	,91	29	5,80	100	:
9:26					25,31	2.69	7,33	42	,68	27	5,80	230	
9:29					25.33	2.46	7,34	35	,66	22	5718	230	
9:32					25,32	2.35	7,35	26	167	24	-	230	
9:35		_			25,35	2,14	7,35	12	,66	32	5,75	230	
9:30		_			25,34	1.94	7,35	-4	.65	25	5,76	230	
9:41		_			25.34	1.76	7,35	-21	.64	30	5,77	230	
9:44		_			25,36	1.68	7.36	-39	. 63	38	-	210	
4:41		-			25,36	1,67	7,36	-50	.64		5,77	210	
9:50					25,34	and the second s	7,36	-59	164	38		210	
Parameter	r			Date	& Time Calib.		er Calibr	ation	C III		er Numbe	er:	
pH	1					licu	tрН	4:		ation Result		(17	
Conductivi	ty			1									
Redox Pot.									iv Zoebell s				······
	Sp	lit,	B	lar	ık, Dupli	cate, &	Filtered	Samples				llaneou	S
Sample ID					Description		_	1				er: <u>418</u>	
							1					1	
												^	
												,	
Weather:							******	annin maanig karan si ing kalawa kapada na pada na palangan kap					an along against and a sale
Notes: (we Total Per Pump De	m	1.1	Ne	<i>w</i> -	arby activities 2 14:44 0 ft	or changes i	in land use, o	dors, problem	ns, deviations	from plan	, ctc.)		
· · · ·													
												•	
						т . С							

J.Raymer/GeoSyntec Consultants

6/5/98, ver.1

page 2062 Ground Water Sampling Measurements for Low-Flow Purging

Site: TDY NILaber Dr. Project No.: 500307 Monitoring Well: 120-MWY Sampling Date: 8/2/05 Sample ID: Sampler: DS, CC

Time 9:53 9:56 9:59	Start Purge	Readings	Start Samp.	End Samp.	Temper- ature (°C) 25,31 25,34 25,34			Redox Potential (± mv) 70 76 - 76 - 80	DO ,65 ,65 ,64	turb 27 27 28	ft Appearance DTW 5,77 - 5,77	purge	
											0111	010	
								·					
I													
(-											
						Mete	r Calibra	ation		Mete	r Number:		
Parameter				Date	& Time Calib				Calibre	ation Results			
pH							pH	4:	; pH 7:	; pH	10:	(ATC)	
Conductivi	-						-		µS/cm flui	d reads		(ATC)	
Redox Pot.	1	117	D	1				+231 m	v Zoebell s				
	зp	111,	В			cate, &	Filtered	Samples			Miscella		
Sample ID					Description							4,86	
								<u></u>				NT	
			~									p	
												i	n I
17/ 41											min,	Se	ec.
Weather: Notes: (we	ll co	ndit	tion	nea	rby activities	or changes i	n land use of	date problem]
, , ,					pump	Peph	at 10) fi	is, deviations	Irom plan,	etc.)		
(1				Contraction
S							· · · · · ·					· And some	- 1

WELL DEVELOPMENT LOG

- River Star

	Syntec Cor				Project				Well I.D.			
		Bernardo F	Rd., Sui	te 101		Dy			BIDO-MWT			
	Diego, CA				Project	Number	r		Developer			
		8) 674-655	9			10307			Dave Skippon			
Fax:	(858) 674	-6586			Weath	~~~~	1.07		Subcontractor			
E		G	D		500		5°F		Weter Onelle Meter P			
Equipment		Surging/	Develo	pment		f Develop	oment		Water Quality Meter I.D.			
Bladder Pump Hand Pump					7/2	DG605 pment C	nitania		Depth of Pump (ft)			
Submersible Pump	1/	Deai	D			•			12.3			
Bailer (size)		11ean	Flor Pola.	~	Well C	ondition	ord Sta	DC	10.0			
Surge Block	2"1	PUC Mai	10 2			Good						
	ell Data	inter i tal	104.1	Conversions			evelopmen	t	Recovery Data			
Casing Diameter (ft)				2'' = 0.17 ft	Max D				% Recovery			
Borehole Diameter (ft)	•			4'' = 0.33 ft								
Filter Pack Porosity (de	····)	0.25		4'' = 0.33 ft 5" = 0.42 ft	10tal V	olume Pl	uigeu (gal)		$PR = (1-(RD/MD)) \times 100$			
• •		3		3' = 0.42 ft 6'' = 0.50 ft	BV-(5	$87)(CD^{2})$	$+P(BD^2 - CI)$	(WCH)				
Well Depth (ft)	-13	1.7		6'' = 0.50 ft 7'' = 0.58 ft	· · ·				PR=Percent Recovery			
Depth to Water (ft) Water Column Height		7.6		7' = 0.38 ft 8" = 0.67 ft		•			RD=Residual Drawdown			
Base intervention of the state of the sta	the second se		1 .0	8'' = 0.87 ft 9'' = 0.75 ft					MD=Max Drawdown			
Borehole Volume (gal)		x WCH =	6.00	$9^{"} = 0.75 \text{ ft}$ $10^{"} = 0.83 \text{ ft}$								
Borehole Volumes (g	ai)	8-24	C	$10^{\circ} = 0.83 \text{ ft}$ ulative Total	WCH=	(wen De	pui - Depu	rio water	<u></u>			
Purgin	g Data		100000000000000000000000000000000000000	Removed	Water Characteristics			Comments Remove 6 gallions				
Time	Pump	Water		Danahala		EC	Turkiditu	Temp.	after bailingby			
Date D	Rate	Removed	GAL	Borehole Volumes	pН	EC (μS/cm)	Turbidity (NTU)	(°C)	Hod 53			
Begin Fin	(gpm)	(gal)		volumes		(μ5/em)	(110)	(0)				
2/04/05 9:42	.5	6	6						8.4 st towald			
4:46	.5	2	8		Foll	adde	over.	29.34	9.4 ft to carde			
9:55	.5	4.5	125		7.89	.277	190	37.61				
10505	.5	515	175		7.77	,286	88.	27.61	9.8 Rt to cade			
10:45	.5	5	22.5		7.75	260	80	27.41				
101.20	05	25	25		7.72	:282	45	27.39	1000 10000k			
10'25	.5	2.5	275		7.74	.289	30-	27.28				
10130	.5	2.5	30		7.73	-294	aa	27:08	10. 2At Tac low			
10:00	050	255	325		7.81	.292	30	27.51	Generator stalled			
101.50	.5	5	375		9:70	298	21	27.49				
101.55	.5	2,5	40	1	7.69	0298	16	27.57				
11:00	.5	2.5	42.5	1	7.68	299	9	27.62				
alos	05	2.5	45	·	7.69	2993	8	27.5				
11.10	05	2.5	47.5		7.69		4.7	27.53				
				1	1	1	1		1			

Field Personnel Signature:

GeoSyntec Consultants Ground Water Sampling Measurements for Low-Flow Purging Site: TDY N. Hauber Dr. Project No.: SCO307 Monitoring Well: B120-MW5 Sampling Date: 8/2/05 Sample ID: Sampler: DS, CL Conduc-Start Purge Readings Start Samp. End Samp. Temper-Redox tivity pH ature Potential $\mathcal{D}\mathcal{O}$ Appearance of Water Turb $(\mu S/cm)$ (ATC) (°C) purge voite (± mv) DTW (ATC) 7.72 27.55 49 3.45 d 60 49 3.84 140 6,00 U 260 43 3,97 $(\mathcal{O}$ 7176 6,10 250 100 45 40 55 6.07 4.07 250 60 36 U 4,22 60 8 6,05 250 34 55 6.00 4,31 11D 250 19 30 5,95 L 45 250 81 25 ッう 50 330

18

2

24

IJ

220

= ac

1					11/	VINO	
11:23	27,57,155	7,85 13	4,5	4 30	5,95	730	
11:26	27,67 1154	7,86 16			5,95	220	
11:29	27,63 1156	7,86 7	4,6		5,95		
	Met	er Calibration			r Number:	······	!
Parameter	Date & Time Calibrated	·	C	alibration Result	r		
pH		pH 4:	; pH 7:	; pH	10:	(ATC)	
Conductivity	·			fluid reads			
Redox Pot.				ell solution re			
Ś	plit, Blank, Duplicate, &	Filtered Samp	les		Miscella		
Sample ID	Description	-				5,80	ft
		· · · · · · · · · · · · · · · · · · ·				NTU:	
					Oxygen:		
	······					in	
						sec	
Weather:							
TUMPE	condition, nearby activities or changes EP4W at 10 ft,	in land use, odors, pro	blems, devia	tions from plan,	etc.)		
Commence and the second s	Temp cond P		PO	Turb	DTW	purse r	rate
11. 100	27,68,158 7,8	Pot. 5	4,88	23	5,95	330	
						·	
, V	y						

J.Raymer/GeoSyntee Consultants

Time

0:56

0:59

1:02

11:05

11:08

:14

11.11

6/5/98, yer.1

WELL DEVELOPMENT LOG

				sultants			Project			ľ	Well I.D.		
				Bernardo R	ld., Sui	ite 101		29					
				92127	0			Number	r	1			
		Fax: (85		8) 674-655	9		Weath	3307			3100-MW6 eveloper Scire 56:3700 bcontractor		
		Fax: (63	98) 074·	-0380			2000	4 2	pt.		Subcontractor		
	quipmen	t		Surging/l	Develo	pment		Bevelop	oment		Water Quality Meter I.D.		
Bladder P	-							36105			16riba U.D		
Hand Pun					-			pment C		e Porande	Depth of Pump (ft)		
	ble Pump)		Reali	FIC	e cui		ondition		e l'acime			
Bailer (si: Surge Blo			(An PUC			Ge						
burge Die		Well I		a poc		Conversions			evelopmen	t	Recovery Data		
Pasing D	iameter (017		2'' = 0.17 ft	Max D						
	Diameter			.65									
				0.25		5'' = 0.42 ft	Total Volume Purged (gal) $PR = (1-(RD/MD)) \times 100$						
							$PR = (1-(RD/MD)) \times 100$ BV=(5.87)(CD ² +P(BD ² -CD ²))(WCH)						
•							1000 000 000 000 000 000	, ,	meter in fee				
•	lumn He			7.5		8'' = 0.67 ft		-					
	Volume	-		x WCH =	6	9'' = 0.75 ft					- AL 2022 175		
	le Volum			A 0011-									
Bortino				Cumulative Tot			WCH=(Well Depth - Depth to Water)						
	Pu	rging Da	ata			Removed		Water C	haracteris	tics	Comments		
	Tir	ne	Pump			Borehole		EC	Turbidity	Temp.			
Date	Begin	Finish	Rate	Removed	GAL	Volumes	pH	(µS/cm)		(°C)			
	-	1 mion	(gpm)	(gal)				(()	(0)			
712405	14:55				5					27.0			
	16.00		13	6.5			7.78	.505		27.8			
	15:10		. 2		35	>	2.11	172		2030	Ocnoral of Date		
~	15'20		1.3	30	200		7.41	.633		28.32			
	15:05		1		30		7.46		1 100	36.22			
	15:27		1	2	32	37.6	7.40			36.59			
	15:35	-	7	5690 Q		91	7.36			27.21			
	15:40		.7	3.5	41.1		7.39	.569	7.4	26.83			
	15:45		5	3.5	44.00		731		103	26.74			
	151.50		17	27			7.34	158	100	26.59 26.58	73-21		
	013737		1+	2.2	4	16 mb	4.20	1701	100	04.00	tould Dep		
				4	+ 35	Total							
						70100							
							<u> </u>						
			<u> </u>										

Field Personnel Signature:

Ground Water Sampling Measurements for Low-Flow Purging

Site: Toy

Project No.: 56.307

Monitoring Well: Bro-mw-6 Sampling Date: 1- Aug-05 Sample ID: $B12_3 - M\omega - 6$ Sampler: 0.5. C.L.

											N N YAU		
Time	Start Purge	Readings	Start Samp.	End Samp.	Temper- ature (°C)	Conduc- tivity (µS/cm) (ATC)	pli (ATC)	Redox Potential (± mv)	DO	DTW	Appearance o	f Water	
9:25					25.98	.246	7,14	61	1.48	6.27	Divise vale	= 400m1/min	
9:30					36.08	.259	7.22	56	1.33	-		- purge rate = 350	1
9:37					26,18	.425	7.18	51	,81	6.5		Purgerale=300	1
9:40					26,06	1	7.23	42	,78	1		purgerate = .	
9:44					25,98	.724	7,24	25	167	6.32	Turb= 550	war rate=180	milaria
9:49					26.05	1	7,23	22	.70			Diver rate =	
9:52					36,08		7.24	22	. 71	6.31	Turb= 70	purgerate =	200m1/m
9:55					26,11	えっるチ	7.24	19	,76	-	Turk= 50 0	watrate =	200 ml/m
9:58					26.11	2.34	7,24	15	. 81	-	Turb=45	11	11
10:01					26.16	2.74	7,25	12	187	-	Turb=39	11	
10:04					26.19	2.78	7,25	7	,90	-	Turb= 32	11	
10:07					26,24	2.75	7,25	3	,94	-	Turb= 27	11	
							er Calibr	ation		Me	ter Number:		
Paramete. pH	r			Date	& Time Calib	prated				ration Resu			
							pH	4:			H 10:		
Conductivi	-			:							(/	ATC)	
Redox Pot.		11.	D	1	1 5 1			+231 m	iv Zoebell :	solution r			
		111,	В	lar	ık, Dupli	icate, &	Filtered	Samples			Miscellan	eous	
Sample ID					Description					Dep	oth to Water: 6	. <u>06 f</u> t	
										Tu	rbidity:	NTUs	
										Dis.	Oxygen:	ppm	1 B
										Pu	mp Rate:	in	ж. -
											min,	sec.	
Weather:													
Notes: (we		ondi in J				or changes in 10.5	in land use, o	dors, problem	is, deviation:	s from pla		(4.7	

Time	Temp	Cond	PH	Redack Perturial	PO	Tarb	DTW		-
10:10	26,26	2.75	7.25	-3	,98	24	6132		
10:13	26.27	2.60	7,36	-6	1,00	20	6.32		
10:16	26.31	2.75	7,25	-12	1.01	20		pinge rate	= 200 m 1/min
10:19	26.24	2.74	7,26	-14	1.02	15			33. 10
10:21	26.24	in the second second	7,26	-18	1,03	13			
		150 A			N	2 7 5	614 18 174 19		
0			+						(1.00) 2 (2.00)
hady	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	and prove							1 5 4 - 17
		1	-		28.	- 9. K	8.8		
				2. - 3.0					49°.)
					N.				M
			l	l	l	l			

WELL DEVELOPMENT LOG

	Eq Bladder P Hand Pum Submersit Bailer (siz Surge Blo	quipment Pump np ble Pump ze)	San Dieg Telephor Fax: (85 t	Rancho I go, CA one: (855 58) 674-	Bernardo R 92127 8) 674-6559	Develo	pment	Weather Dor Date of Tevelop	Number Number VOS er Develop Joolo pment C ondition	807 907 oment 5 riteria	2	Well I.D. <u>BB3(- MW1</u> Developer <u>Dwc 5(C.P.Don</u> Subcontractor Water Quality Meter I.D. Water Quality Meter I.D. Depth of Pump (ft) 13.2	
	<u>0</u>		Well D				Conversions			evelopment	t	Recovery Data	1
	Casing D	iameter (fi			017		2'' = 0.17 ft	Max De			-	% Recovery	1
		Diameter	-	8	*67		4'' = 0.33 ft				the second s	/ (((((((((((((((((((1
		k Porosity	• • •		0.25		5" = 0.42 ft					$PR = (1-(RD/MD)) \times 100$	1
	Well Dept				13.2		6" = 0.50 ft	BV=(5.	87)(CD ² -	+P(BD ² -CD))(WCH)		1
		Water (ft)	, -		6.25		7" = 0.58 ft	CD=Ca	sing Dia	meter in fee	et	PR=Percent Recovery	1
	Water Co	lumn Heig	ght (ft)		6.95		8" = 0.67 ft	BD=Bo	rehole D	iameter in f	feet	RD=Residual Drawdown	
		Volume (0.00	x WCH =	5,56				1000		MD=Max Drawdown	1
	3 Borehol	e Volume	es (gal)	1	6.68		10" = 0.83 ft	WCH=	(Well De	pth - Depth	to Water)		1
	6	Pur	rging Da	ata		2 CPC2020 2 Sector COCC	ulative Total Removed		Water C	haracteris	tics	Comments	
	210	ACT I	<u>3:45</u> ne	Pump	Water							-	
	Date				Removed	GAL	Borehole Volumes	pН	EC (µS/cm)	Turbidity (NTU)	Temp.		
6		Ū	Finish	(gpm)	(gal)		Volumes				(°C)		
	7/20/05		-	MA	15	15		7.71	0.444		25.73		
		14:02		NA	205	20	· · · · · · · · · · · · · · · · · · ·		0,396		25,50		DTW
Away		141.15		\square	L	21			0.435	over	25.49	Hart Puming	20 Gun 8.50
1. 19	├ ───┤	14:20			5	36	├ ────'	7.60		329	23.42	No oder or bree	8.804
108.446	├ ───┤	14:25			° 105 ° 155	3	'	7.50	- 460		05.26 04.78	8-3ft Diw	0.0.
14.94		141:30			055	36	<u>├</u> /	7.50		98,2	24.75		1
WYXX.		141.40			5	46		7.50		82.5	24.75	CUI (1771)	1
ANTA DA		141.45			5	51		7.50		74.3	241065		
14/ 5/200		14:50		i		56		7.50	and the second s	71.5	24,61		
1/2011		14:55		1	55	61		7.53		74.6	24.61	9.35	
VIA II													
ilja y													
		L		'			<u> </u>						
		 		└── ′	└─── ┘	 '	ļ'						
	┢───┤	 		'		'	'						
		_					[']						
							· · · · · · · · · · · · · · · · · · ·						
					└─── ┘	<u> </u>	·'						4
		 		'	┝────┘	'	<u>├'</u>					+	
	Purge Wa	ater Dispo	sal:										1

Field Personnel Signature:

	C			1			yntec					
ŕ ·											w Purgi	ng
	Site	e:	-	Tì	N N). Howb	er Dr	- Pr	oject No	o.: <	10307	
Ν	lor	uto	ori	ng	Well:	B131 -	MWI	Sami	oling Da	te: 8	14/05	-
	San	np	le	ID	:		Sar	npler:	$\times 11$	· · · · · · · · · · · · · · · · · · ·		
	T		Τ.	1		1		······································		· ·····		
Time	Start Purge	Readings	Start Samp.	End Samp.	Temper- ature (°C)	Conduc- tivity (µS/cm) (ATC)	pH (ATC)	Redox Potential (± mv)	Do	Turb '	ppearance of	Vater pover vate.
9:24					24.47	1432	7.51	-103	.96	60	6,45	470
9:36					34,55	,447	7.52		178	31	6.41	470
9:28					34,56	,455	7,52	-132	165	13	6.42	410
9:30			_		24,56	,464	7,53	-135	,60	6.0	6,45	410
9:32					24,56	1473	7,53	-136	157	5,0		410
9:34					24,58	1484	7,53	-136	155	14	6.44	410
9:36					24,58	,492	7,53	-138	154	0,0	-	410
9:38		_			24,59	1494	7,53	-140	153	0,0	6144	410
9:40					24,59	,495	7,52	-141	153	0,0	6.44	410
.(-	_									
						Mete	er Calibra	tion				
Parameter	-			Date	& Time Calib		a Callura	ation	Calibr	Meter ation Results	Number:	
pH		-					pН	4:			0:	(ATC)
Conductivi	ty	-		-							(A'	hand have been been been been been been been be
Redox Pot.	1	-						+231 m	v Zoebell s			
	Sp	lit,	B	lar	ık, Dupli	cate, &	Filtered	Samples		N	liscellane	ous
Sample ID					Description		-			Depth	to Water: 6	124 ft
											dity:	
											xygen:	
										Pump	Rate:	in
											min,	sec.
Weather:							1.01					
Notes: (we Total Dy pump Si	PAU	U S	216	1. 1	Star	or changes i ted pun	n land use, od punga	dors, problem 9:22	is, deviations	from plan, e	tc.)	
						•	•					
(1				
	-				· .	2						· /····

J.Raymer/GeoSyntec Consultants

WELL DEVELOPMENT LOG

		GeoSynt 11305 R San Die	ancho I	Bernardo R	d., Su	ite 101	Project Name TDS Project Number				Well I.D. <u>B B(- HwQ</u> Developer	
				8) 674-655	9			6307			Dave Shippon	
		Fax: (85	8) 674-	6586			Weath			5	Subcontractor	
							Soc	iny :	75°F			
	quipmen	t		Surging/l	Develo	pment		f Develop	oment		Water Quality Meter I.D.	
Bladder P								35105			Horiba U 22	
Hand Pun								pment C			Depth of Pump (ft)	
Submersil Bailer (siz)					SX (ondition	Jable pr	arcim-	0.5	
Surge Blo		3	1.	.1 0	" PU	~		bood				
Surge Dio		Wall	Man	val d	FU				evelopmen	4	Recovery Data	
		Well I				Conversions						
Casing Di				17		2'' = 0.17 ft		•		the second s	% Recovery	
Borehole			0	67		4'' = 0.33 ft	Total V	olume Pu	urged (gal)			
Filter Pac		y (dec.)		0.25		5'' = 0.42 ft		2		2	$PR = (1-(RD/MD)) \times 100$	
Well Dep				3.5 1		6'' = 0.50 ft	•					
Depth to Y					d	7" = 0.58 ft	(10.00000000) (20.00000)	•			PR=Percent Recovery	
Water Co				2-31		8" = 0.67 ft					RD=Residual Drawdown	
Borehole			0.00	x WCH =	5.448						MD=Max Drawdown	
3 Borehol	Borehole Volumes (gal) 16,344					10'' = 0.83 ft WCH=(Well Depth - Depth to						
-	Purging Data				109 March 1	ulative Total Removed		Water Characteristics			Comments	
	Time		Pump	Water		Borehole		EC	Turbidity	Temp.	Tiprbidity	
Date	Begin	Finish	Rate (gpm)	Removed (gal)	GAL	Volumes	pН	(µS/cm)	(NTU)	(°C)	Turbidity Broken on Konib 9.4.47 DTW	acad
-1.1.7	Q 1 Q 1		(gpiii)	(gai)							notenorito	Tobalo
7/2305	9137		1	a	2		7.61	0.547	4	25.81	9.4 ft DTW	vieter.
	9:39		1	7	q		1	0.483	over	35.35		
	1:46		1	T S	14			0,480		85.34		
	9151 91.59		105	3	22		1	U=469		29.53		
			100	0		,				25.66		
	10:05		1	9	33		1	0.473		25.55		
	10'10		<u>``</u>	5				0.471		25.4		
	10.15		L	2	38		T.33	0960		0.2.4		
											boar.	
							-				los bran no	
											Odes	
						· · · · · · · · · · · · · · · · · · ·						
												1
												1
						<u> </u>						1
					 		1					1
												1

Field Personnel Signature:

\$.

GeoSyntec Consultants Page 1 62 Ground Water Sampling Measurements for Low-Flow Purging												
	G	ro	ur	ıd	Water S	Samplin	g Meas	uremen	its for L	ow-Fl	ow Pur	ging
5						Harbor						
\mathbb{N}	lon	ite	ori	ng	Well:	3131-	MWZ	Sami	oling Da	te:	8/4/0	E
S	Sam	ipl	le	ID	:		Sar	npler: 7	\sim	/	01110.	2
	T-1		1	1					5100			
Time	Start Purge	Readings	Start Samp.	End Samp.	Temper- ature (°C)	Conduc- tivity (µS/cm) (ATC)	pli (ATC)	Redox Potential (± mv)	DD	Turb	Appearance DWW	of Water purge rate
10:46					25,38	.333	7,29	- 90	185	65	6,8	410
10:48					25,31	,342	7,28	35	;70	45	6,85	2/10
10:50		_			25,25	1350	7,27	-51	164	37	6.85	
10:52					25,22	,364	7,26	-62	,60	31	6,86	460
10:54		_			25,21	1379	7,26	- 71	160	31	6.86	410
10:56		-			22125		7,26	- 77	158	14	·	410
10:58		_			25,19	1432	7,26	- 81	157	918	~	410
11:00		_			25,22	1442	7126	-85	157	12	6.86	410
11:02		_			25,22	1457	7,26	-90	157	8,4	6.86	400
11:02	-+	-	_		25,00	,498	7,26	-93	156	5,0	-	400
/		-			25,22	. 577	7,26	-97	157	1.9	6.86	400
11:08					25.21	1585	7,27	-100	157	0,95	6,86	400
Parameter				Date	& Time Calib.		r Calibra	ation			Number:	
pH							pH.	4:		illon Results	10.	(ATC)
Conductivit	y								µS/cm flui			(ATC)
Redox Pot.		-						+231 m	v Zoebell s			
	Spl	it,	B	lan	k, Dupli	cate, &]	Filtered	Samples			Aiscella	
Sample ID					Description			7				6.69 ft
												NTUs
											xygen:	
							·					ppul
											min,	
Weather:												
Notes: (we	ll cor	ıdit	ion,	nea	rby activities	or changes i	n land use, oc	lors, problem	s, deviations	from plan, e	etc.)	
1 CHAR D	GY	n	oh	11	Jell =	14:3A	Star	teel pin	mping	10:44		
pump s		Qu	2	10	15 A			V	• 0			
							83%) 83%					
									•			
· · · ·												

	Gra		d	Watar	JeoSy	yntec	Con	sulta	nts	Page	2062
	UI	Jul	IU	water a	Samplin	ig Meas	uremen	its for L	ow-FI	ow Purg	ing
	Site:_	T	D	Y NI	Harbo	r Dr	Pr	oject No	.: So	0307	
\mathbb{N}	Ionit	ori	ng	Well:	3131-1	NWZ	Sami	oling Da	te: 🗧	5/4/05	- 1
S	Samp	lel	ID			Sar	npler:	DS C	L	111-0	
	1-1-	Τ.				T	· · · · · · · · · · · · · · · · · · ·		1	9	
Time	Start Purge Readings	Start Samp.	End Samp.	Temper- ature (°C)	Conduc- tivity (µS/cm) (ATC)	pH (ATÇ)	Redox Potential (± mv)	Þo	Turb	Appearance o DTW	f Water Purse rask
11:10				25,19		7.27	-102	,57	1,2	-	400
11:12				25,20		7,27	-104	.57	1,00	6,86	400
11:14				25,21	. 666	7,27	-106	156	0,0	6,86	400
11:16				25,18	: 590	7,28	-107	157	010	6.86	400
11:18 35,20,712 7,28-109,57 0,0 - 400											400
11:30				25,19	708	7,28	-109	157	010		400
11:32				25,21	1709	7,28	-110	,57	010	6,86	400
·					Mata	- Calil				1	
Parameter		3	Date	& Time Calib		er Calibra	ation	Calibr	Meter ation Results	Number:	
pH						рH	4:		and the second se	10:	(ATC)
Conductivi	ty							and the ball of the second	and the second	(the second se
Redox Pot.							+231 m	v Zoebell s			
	Split	, В	lan	ık, Dupli	cate, &	Filtered	Samples			Miscellan	eous
Sample ID				Description			<u>^</u>			to Water:	
				·						idity:	
										xygen:	
										p Rate:	
					6				2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	min,	
Weather:								l		Sec.	
Notes: (we	ll condi	tion,	nea	rby activities	or changes i	n land use, oo	lors, problem	s, deviations	from plan,	etc.)	
Total De	pm	on	w	ell=1	1.34	20					
Punp s	ete	D	10	15 ft							8 ····
					· .	and the second	Contraction of the second				
								. 34			
				· .		-					· Part and an
									-		

J.Raymer/GeoSyntec Consultants

And and and a second

6/5/98, ver.1

WELL DEVELOPMENT LOG

				nsultants Bernardo F	d Su	ite 101	Project	Name			Well I.D.	
	/			92127	.u., 50			Number	r		BBI-MW3 Developer	
			•	92127 8) 674-655	0					ľ		
	and the second se	Fax: (85			1		Weath	7050			Dave Skippon	
			0) 0/4				500	nu	75°F			
	quipmen	t		Surging/	Develo	pment		Develop	oment	1	Water Quality Meter I.D.	
Bladder P	•						710	25/05			Danith of Doorney (64)	
Hand Pun Submersi								pment C			Depth of Pump (ft)	
Bailer (siz	•)	V				3x C	ondition	Statle	Faram	B.3	
Surge Blo			211	RUC M	Loora	~ \	wenc	Good				
Jurge Die		Well I		PUC I		Conversions			evelopmen	t	Recovery Data	
Casing Di	iameter (•17		2'' = 0.17 ft	Max D				% Recovery	
Borehole				,67		4'' = 0.33 ft						
Filter Pac				0.25		5'' = 0.42 ft	1 Otur V	cruine I ($PR = (1-(RD/MD)) \times 100$	
Well Dep		y (ucc.)		4.3 7	100	6'' = 0.50 ft	BV=(5.	87)(CD ² ·	+P(BD ² -CI	(WCH)		
Depth to)			icc	7'' = 0.58 ft					PR=Percent Recovery	
Water Co				7.8		8'' = 0.67 ft		-			RD=Residual Drawdown	
Borehole				x WCH =	(_ 00						MD=Max Drawdown	
3 Borehol				6.72	0.07	10'' = 0.83 ft						
5 Dorenoi				p. to	Cum	ulative Total						
	Purging Data					Removed		Water C	haracteris	stics	Comments	
	Tir	ne	Pump			Borehole		EC.	Turbidity	Temp.		
Date	Begin	Finish	10000000000000000000000000000000000000	Removed	GAL	Volumes	pH	(µS/cm)		(°C)		
	<u> </u>		(gpm)	(gal)	-				(
319565				1			7.98	.502		25.66	Gray Silt wale	- 1
	11:19		1	10	11		7.31	.575		25.38	12 0 01	
	11:25		1	6	17		723	.578		05.14	12.8.01	
	11:30		1	5	22		7.21	.50		25.48		
	11:39		<u>\</u>	9	31		7.00			25.41	10.967	
	11:45		1	E	37		7.18	.583	20.1	25.51		
	11:50			7	42		7.18	. 781	42.0	35:36	Turb questionable sa	ag
	12:00			10	52		7.19	. 582		25.54		
	12:05			5	57		715	-581		25:83	Fate Tuch bompt	
	12:10		5	2.5	59.5		File		47.4	27.72		
	12:30		.75	7.5	67	,	7.15	0557	131	86.35		
	13:30		.5	5	72.		7.14	.554	32.2	26.77		
	12:35		a5	5	77		7.18	-556	15.1	26.40		
	1240		- 5	5	82		7.11	.555	5.71	86.05	Peally Jogals re	mo
					•							6
			L									
											1 1	

Field Personnel Signature:

	G	ro	uı	ıd	Water S	JeoS Samplin	yntec	Con	sultants for I	nts .ow-Fl	page	1.063
						Norba						
N	lor	it.		ng	Well: 0	1210	Alal?	PI			050+	
	lan	10		ID	:	5131 M	0100 5	Samj	pling Da	te: 8	19/05	
g	,	чр.			•		Sat	npler:	is, cl			
Time	Start Purge	Readings	Start Samp.	End Samp.	Temper- ature (°C)	Conduc- tivity (μS/cm) (ATC)	pli (ATC)	Redox Potential (± mv)	PO	Turb	Appearance PTW	of Water purese . rate.
14:34					26.32	,483	7.21	10	1.29	Mana	6.80	400
14:36					26,11	,479	5.18	-11	178	380	Gi75.	400
14:38					25,89	,495	7,18	-47	,66.	300	-	400
14:40					25,89	,494	7,18	-78	,62	310	6,80	400
14:42		_			25,81	,495	7,18	-93	158	280	6,80	11
14'.44	_				25,81	1508	7,19	-97	157	210	6,80	t I
14:46		_			25,75	,554	7,21	-97	,54	130	6.82	11
19198		_			25,70	1597	7,21	-94	153	85	6.82	11
14:50	_				22,25	, 451	7121	-89	152	65	-	U.
14:52	_	_			25,71	. 670	7121	-87	,51	-	-	11
14:54	-	_			25,65	1720	7,20	-85	151	40	6,80	11
14:56					25,67	1716	7,20	- 84	,49	24	6.81	И
Farameter				Data	& Time Calib		er Calibra	ation			Number:	
pH	-1				a Time Callo	raiea	th	٨.		ation Results	10.	(1.70)
Conductivit	y			-				4:		and the second state of th		
Redox Pot.								1221 -	µS/cm flui			(ATC)
	Spl	lit.	B	lar	k. Dunli	cate, &	Filtered	Samples	v Zoebell s			
Sample ID		,			Description	outo, co .		Dampies			Miscella	
							-					<u>6152</u> ft
												NTUs
											xygen:	
										Pumj	Rate:	
Weather:											min,	sec.
	l con	ndit	ion	nea	rby activities	or changes i	n land use of	lors problem		C1		
Notes: (well condition, nearby activities or changes in land use, odors, problems, deviations from plan, etc.) Total Depth of well = 14,5ft glaited pumping 14:32 pump set & 10,5ft												
1 12 12												
			-		•							· · · · · · · · · · · · ·

	Gı	ou	nd		GeoS Samplir					Page ow Purgi	293
	Site	. –	DI	N	Mark		D			ow i uigi	ing
ľ	Mon	itor	ino	Well 1	2121	V Pr MAIA!	Pi	roject No	p.: <u></u>	0307	
-	Sam		6		1 11 -	- WIVV) Jam	Dling Da	te:	14/05	
				·		Sar	npler:	ps, cl			
Time	Start Purge	Start Samp.	End Samp.	Temper- ature (°C)	Conduc- tivity (μS/cm) (ATC)	pli (ATC)	Redox Potential (± mv)	DO	turb	Appearance of DTW	Water
14158				25,64	,725	7,19	-85	,49	20	-	400
15:00				25,61	,715	7,19	-86	149	19		400
15:07				25,63	685	7,18	-87	148.	19	_	400
15104	+		+	25,64	.690	7118	-88	,49	14		400
15:06	+			25,68	,632	7,18	- 89	,49	17	6,81	400
15:08	$\left - \right $			25,64	. 612	718	-90	149	15	6.82	400
15:10	+			25,66		717	- 91	,49	13	6.82	400
15.14		+-	+-	25,65		7117	-92	,48	14	6.82	400
15.16	++			25,67	1602	7,17	-93	.48	12	6.82	400
15,18		+-	+	25,66	,609	7,17	-95	148	12	6,82	400
15,20	1	+	$\left \right $	25,66	.575	41	-95	148	816	-	400
1	l		1	0,00	The second se	r Calibra	-96	148	9,5	682	400
Paramete	r		Date	& Time Calib				Calibra	Meter atlon Results	Number: '	
pH						pH 4	4:	; pH 7:		0:	(ATC)
Conductivi			:					µS/cm fluid			TC)
Redox Pot.	(+231 m	v Zoebell so	olution read		
	Spli	t, E			cate, &]	Filtered S	Samples		Ň	liscellane	ous .
Sample ID]	Description		-			Depth	to Water: 6	52 ft
		·				÷				dity:	
									Dis. O:	kygen:	ррт
									Pump	Rate:	in
										min,	sec.
Weather: Notes: (we	ll cond	lition	nea	thy activities	or changes !						
Total F	ept	h	Ha L	vell-1	or changes in	i land use, od	ors, problem	s, deviations	from plan, e	lc.)	
Total F pump:	set	()	00	1.50.	11247		•				
1	(L'	10								
					A 11					>.	
								N.			
·	·							. 8			Charlest and an and a second second

G	ieoSyntec	: Con	sulta	nts	0.1-0							
Ground Water S	ampling Meas	suremen	its for L	Low-Fl	ow Purg	zing						
Site: <u>TD</u> N. H. Monitoring Well: <u>B</u>	arbor Dr 131-MW3	Pr	oject No).: <u> </u>	<u>co 307</u>							
Sample ID:	Sar	npler:	S, CL		19105							
Time	Conduc- tivity pll (μS/cm) (ΑΤÇ) (ΑΤC)	Redox Potential (± mv)	DO	turb	Appearance	of Water purge rate						
15:34 25,64	$\frac{35,63}{25,64},\frac{557}{549},\frac{7}{17},\frac{-97}{97},\frac{148}{148},\frac{7}{63},\frac{-40}{683},\frac{40}{70}$											
		10	141		6,60	400						
	Meter Calibra	ation		Mata								
Parameter Date & Time Calibra pH	aled		Calibra	ilon Results	10:	(ATC)						
Conductivity			μS/cm fluid	d reads	(ATC)						
Redox Pot.		+231 m	v Zoebell se	olution rea	ds	-						
Split, Blank, Duplic Sample ID Description	cate, & Filtered	Samples			Miscellar							
Description				•	to Water: _(
					idity: xygen:							
					p Rate:							
					min,							
Weather:			· ·									
Notes: (well condition, nearby activities of Total Depath of Well Pump Set @ 10,5 f	or changes in land use, or $l = 14, 54$	lors, problem	s, deviations	from plan, o	ctc.)							
			۰.									
						Part's strength						

WELL DEVELOPMENT LOG

		San Die	Rancho I go, CA	Bernardo R		ite 101	Project	t Name TDY t Number X630			Well I.D. BIBI-MWY Developer Dave Skippen	
		Fax: (85	•		,		Weathe	er	75°F	;	Subcontractor	
Ec Bladder P	quipmen t Pump	t		Surging/I)evelo	pment	Date of	f Develop	oment		Water Quality Meter I.D.	
Hand Pun			Dedi	:- 410			Develop	pment Ci	riteria		Depth of Pump (ft) 13 7	
Bailer (si: Surge Blo	ize)			" DUC	Mac	nually		Condition Good				
		Well I	Data L			Conversions			evelopmen	<u>t</u>	Recovery Data	
	Diameter (1		2	5 .17		2'' = 0.17 ft		-	-		% Recovery	
	Diameter ck Porosit			.67		4'' = 0.33 ft 5'' = 0.42 ft	Total V	olume Pu	irged (gal)		$PR = (1-(RD/MD)) \times 100$	
Well Dep		y (ucc.)		1.7 Lt		5' = 0.42 ft 6'' = 0.50 ft	BV=(5.	.87)(CD ² -	+P(BD ² -CI	(WCH)		
Depth to	Water (ft)		6	.21		7" = 0.58 ft	CD=Ca	asing Dian	meter in fee	et	PR=Percent Recovery	
second and the second and the second	olumn Hei			.49		8'' = 0.67 ft	10.00				RD=Residual Drawdown	
	Volume			x WCH = 0	000	9'' = 0.75 ft 10'' = 0.83 ft					MD=Max Drawdown	
	B Borehole Volumes (gal) Purging Data Cumulative T Removed								Characteris		Comments	
	Time Pump Water					Borehole		EC	Turbidity	Temp.	-	
Date	Begin	Finish	Rate (gpm)	1000 000000	GAL	Volumes	pН	(µS/cm)		(°C)	- 19	
7123/05	9:48	-	1	5	5		7.57	1.73	Over	37.50		10.0 010
7/22/05		'	\square	7	12	 '	7048		DUC.	25.32		10. W DTW
712265	10:05			9	22		7.32	0,130	<u>444</u> 240	25.29		10015 070
1 <u>3010</u> 5	10:10		1	6	28			0.121	77.6	25.24		~
u	10:15		1	5	33			0-124	103	25-10	NO Shan	10.00 DTW
ι(10.00	'	'	5	38	'		00126	14.1	25.23	Very Gilty Pomplet	Bothm steat
()	10:25	'		7	43	 	7.32		376	25.45		Stime y
1	10:40		i	10	53		7.25	.124	862	05.45	bleand bity	Starmy
1	10:47		1	7	65		7.25		47.7		DTW 10.35 P1	
u	10:50	'		53	70	'	7.24	.123	99 92.8	25.30 25.22	ONIT	
	17.55 1 3 73 10.58 3 76					<u> </u>	7.05		24.3			the the poly
												0
	├ ───′		'	'			├ ───′	'				
	↓ ′		'	 '			'	'		 		
	<u> </u>		-									
Purge W	ater Dispo	osal:			un	<u> </u>				<u> </u>		1

Field Personnel Signature:

	G	ro	uı	ıd	Water :	JeoS Samplin	yntec	c Con	sulta	nts p	Dage (og Dw Purgir	2	
. j. a												ıg	
י א	Ann		•			Herbu	r br	Pi	roject No	o.: <u> </u>	0307		
1	1011			ng	well:	5131-N	1W4	Sam	pling Da	te: 5-	A-2-95		
1	Sam	ipi	le.	IJ	•		Sai	mpler: 1	DS, CL				
Time	Start Purge	Readings	Start Samp.	End Samp.	Temper- ature (°C)	Conduc- tivity (µS/cm) (ATC)	pll (ATC)	Redox Potential (± mv)	ÞO	Turb	Appearance of W	ater Purse Vaite	
9:18		_			25.11	,137	6.73	75	.74	280	-	450	
9:20					35.16	,138	6.74	61	172	180	6.55	450	
9:22	as,16,145 6,77 25 ,69 150 6,53 450												
9:24 9:26	25,15,154 6,79 -14 165 95 6,55 450.												
0	15,45,1636,82 -47 165 70 6,55 450												
9:38	35,15,178 6,83 - 65 166 50 6,55 460												
9:34	-	-			25,14	1203	6,88	-95	165	33	6,55	460	
9:36		+	-		2515	199	6,91	-104	164	38	6.55	460	
9:38		-+	_		25,17	10101	6191	-109	,63	1-9	6.55	460	
9:40		-	\neg		25,17	199	6.93	-11/	,63	14	6,55	460	
9:42	-	+			25,16	.185	6.95	-120	162	15	6.55	460	
					01511 4		er Calibra	-124	162	13	6.55	460	
Parameter				Date	& Time Calibi				Calibra	Meter	Number:		
pH		_					pН	4:	; pH 7:		0: (/	ATC)	
Conductivit	у	-			1		-				(AT		
Redox Pot.							:	+231 m	v Zoebell so				
	Spl	it,	B.	lan	k, Dupli	cate, &	Filtered	Samples	1		liscellaneo	US .	
Sample ID					Description				ŀ		o Water: 6.		
					·						lity:	and the second sec	
										the second se	ygen:		
											Rate:		
											min,		
Weather:													
Jack C	Notes: (well condition, nearby activities or changes in land use, odors, problems, deviations from plan, etc.) Table Republic(TD) = 13, 94 Started pumping @ 9;14 pump set @ 10,04												
									1		•		
•			21									· · · · · · · · · · · · · · · · · · ·	

J.Raymer/GeoSyntec Consultants

1

					(GeoS	yntec	Con	sulta	nts Pa	ge ag Z	
	G	ro	out	ıd							w Purgi	
ł	Site	e:	T	Dy	N. 1	tember	Dr.	Pr	oiect No	·	0307	0
N	lor	ute	ori	ng	Well:	3131-1	MWY	Sami	nling Da	te: <	15 love	
;	San	np	le	ID	:		Sar	Ouinj			15/05	·····
1		γ	7	·		T	Dui		sicc			
Time	Start Purge	Readings	Start Samp.	End Samp.	Temper- ature (°C)	Conduc- tivity (µS/cm) (ATC)	pII (ATÇ)	Redox Potential (± mv)	DO	TurbA	oppearance of V DTW	vater purse
9:44					25,16	,192	6.98	-128	,61	11	Cei 55	460
9146					25.17	,191	4.99	-132	161	8,8		460
9:48					25,20		7.01	-134	161.	8,0	6.55	460
9:50			-	-	25,20		7,02	-137	,60	7,0	6155	460.
9:52		_	-		25,23		7,04	-140	,60	515	6,55	460
9:54 9:56	$\left - \right $	_			25,27	197	7,04	-142	159	5,9	6.55	460
1.50		_			25.31	190	7,06	-144	159	Cal	6,55	460
	$\left - \right $	-										
I	$\left - \right $	-	_									
)		-	_									
						Mete	r Calibra	l		{		
Parameter				Date	& Time Calib.		a Canora	nion	Calibra	Meter 1 Illon Results	Number:	
pH		-					pH 4	1:		; pH 10). (ATC)
Conductivi	ty	~		-					µS/cm fluid		(A1	
Redox Pot.		-						+231 m		olution reads		
	Spl	it,	В	lan	k, Dupli	cate, &]	Filtered S	Samples	1		iscellaneo	
Sample ID					Description		-		- F		o Water: 6	
											ity:	
											ygen:	
											Rate:	
											_min,	
Weather:			2				1		l			
Notes: (we	ll cor	uditi	ion,	nea	rby activities	or changes in	a land use, od	ors, problem:	s, deviations	from plan, etc	c.)	
16-	1 71	7	44	-		C	ollected	Samp	les at	9:59	3	See 12
pamp	Se	A	R	10	Dioft							
						т						
									1			e.
<u></u>					•		•					
									A-111-11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-			· .

WELL DEVELOPMENT LOG

		GeoSyn			1.0	. 101	Project				Well I.D.	
				Bernardo R	d., Su	ite 101		00			BBI-MW-5	
		San Die			0			Number			Developer	
	and the second se			8) 674-655	9			10303	t		Subcontractor	
		Fax: (85	08) 674-	4				(m)				
	quipmen	t		Surging/I	Develo	pment		f Develop			Water Quality Meter I.D.	
Bladder P	•	1	6					26105			Noniba U-02	
Hand Pun				· · · ·	20			pment C			Depth of Pump (ft)	
Submersi)	(leai t	70				a Hab	C .	12.5	
Bailer (si			1	I Due	1.		well C	ondition	och			
Surge Blo	OCK			" PUC	Ma	nal			and the second		D D (ł
		Well I	Data			Conversions			evelopmen	-	<u>Recovery Data</u>	
-	iameter (6	17		2'' = 0.17 ft					% Recovery	
Borehole	Diameter	r (ft)		65		4" = 0.33 ft	Total V	olume Pu	urged (gal)			
Filter Pac	ck Porosit	y (dec.)		0.25		5" = 0.42 ft					$PR = (1-(RD/MD)) \times 100$	
Well Dep	oth (ft)			13.5		6" = 0.50 ft	BV=(5.	.87)(CD ² .	+P(BD ² -CI	(WCH))	I
Depth to	Water (ft)		7.5		7" = 0.58 ft	CD=Ca	ising Dia	meter in fee	et	PR=Percent Recovery	
	olumn He			4		8" = 0.67 ft					RD=Residual Drawdown	
Borehole		• • •		x WCH =	48	9" = 0.75 ft	P=Porc	sity of Fi	Iter Pack (decimal)	MD=Max Drawdown	
3 Boreho			140			10'' = 0.83 ft					POTMACHARI VEMBERSHIMMACHARINASHARIYA (PEDROCODIC STOCK)	1
					Cum	ulative Total						1
	Pu	rging Da	ata]	Removed		Water C	Characteris	tics	Comments	
	Tir	ne	Pump	Water		Borehole		EC	Turbidity	Temp.]	
Date	Begin	Finish	Rate	Removed	GAL	Volumes	pН	$(\mu S/cm)$		(°C)		
	Begin	FIIIISII	(gpm)	(gal)		volumes		(µS/em)		(0)		
7/allos	- 12:20		.5									
10 1 0	12:25		" 5	2.5	2.5		7:47	-533	over	27.7	9.5	
	12:30		.5	2.5	5		7.39	.559	100	27.52	9.29	0.0
	12:35			5 10							Dereradorlando	de
	12:40	-	05	2.5	10		735	.566	850	27.53		
	12:50	1.10	.5	5	15		732	.572	19	27.13		
100	10:53	6									Generator slatt	a
	13:00		.5	5	20		7-29	.573	120 %	27.49		
	13:05			25	2522	5	7.31	,578	19 27-31°	27.31		1
	13:10		25	2.5	25		7.31			27.35		1
	13:15		.5	2.5	27.5		7.30			27.26		1
	13:20		.5	2.5	30	1		,577	401	2735		1
	10.00		•)	007	0	-	NO.	,,,,,		and	Done,	1
											3.6 Total Dept	L
							144				Une logal pepin	-110
												1
												1
												1
												1
												1
						<u> </u>						1
												1

Purge Water Disposal:

Field Personnel Signature:

6

GeoSyntec Consultants Post 1.96 2 Ground Water Sampling Measurements for Low-Flow Purging													
	G	ro	ut	ıd	Water a	Sampli	ng Meas	suremen	its for L	low-Flo	w Purgi	ng	
3	Site	:	Tì.	Y	Nit	aubor 1	24.	Pi	roject No	te: 10	307		
N	lon	ite	ori	ng	Well:	5131-1	NW5	Sam	pling Da	te: Hala	VAL 8	-15h5	
	San	1p	le	ID	:		Sar	npler: D	S, CL		3-147	15-105	
	0			Τ.		Conduc-	T	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	T			
Time	Start Purge	Readings	Start Samp.	End Samp.	Temper- ature (°C)	tivity (μS/cm) (ATC)	pli (ATC)	Redox Potential (± mv)	DO	Turb A	pearance of DTW	Water Purze rate	
10:58					27,15	.561	7.31	-43.	180	190	7.72	470	
11:00					27,20	,590	7,31	-63	,67	170	7,75	470	
11:02		27.14.562 7.30 -81 163 150 7.75 470											
11:06		27.15,858 7.30 -97,60 100 - 470											
11:05	$- \frac{27.13}{7.13} \frac{1.35}{1.35} \frac{7.30}{7.30} - \frac{98}{157} \frac{157}{10} - \frac{170}{170}$												
10.10		-	-		21.16	1.08	7,30	-103	,55	85	7.76	470	
11:12		+	-	-	2712	1109	7,30	-106	155	55	7,75	460	
11:14		-	-	-	27,12	1,20	7:30	-108	154	40	7,76	460	
11:16		-			27,12	1.12	7,30	-110	154	55	7.76	460	
11:18		1			27,10	110	7,29	-112	,54	50	7.76	460	
11:20					27,12	1,07	7,30	-114	152	30	1.11	460	
						Mete	er Calibra		150	Meter N	umber: 4	460	
Parameter pH	T)	Date	& Time Calibi	raled				illon Results			
Conductivit							pH 4	1:	; pH 7:	; pH 10	((ATC)	
Redox Pot.	y									d reads		(D)	
	Spl	it	R	lan	k Dunli	anto 8:	Filtered S	+231 m	v Zoebell so	olution reads			
Sample ID	opr	,			Description	cale, α	Filtered :	Samples	ŀ		scellane		
					·						Water: 7		
											y:		
											gen:		
										Pump R	ate:		
Weather:											_min,	sec.	
	l con	diti	оп,	near	by activities	or changes i	land use od	ors problem					
infore perfor	Notes: (well condition, nearby activities or changes in land use, odors, problems, deviations from plan, etc.) afal Depth of well 2 14,7ft Started pumping @ 10:56 Pump Set @ 11,00ft												
4									1				

J.Raymer/GeoSyntec Consultants

P

					(GeoS	yntec	c Con	sulta	nts 🖡	Dage 2	67
	, C	brc	ut	ıd	Water	Samplir	1g Meas	suremer	its for L	low-Fl	ow Purg	ino
							Dr.					~~~B
(Moi	nit	ori	ng	Well: P	131-1	MWI 5	Sami	oject No	$t_{\alpha} = \mathcal{I}$	15/05	
	Sar	np	le	ID	:		Sar	nnler.		te: 8/	6/05	
	T	7	7	1			Dai		s, cl			
Time	Start Purge	Readings	Start Samp	End Samp.	Temper- ature (°C)	Conduc- tivity (μS/cm) (ATC)	рII (АТС)	Redox Potential (± mv)	Do	turb	Appearance o	Water Pusserate.
11:22					27,15	1.06	7,29	-115 .	152	29	7.76	460
11:24	-				27.11	1.04	7,29	-116	151	27	-	460
11:36					27.11	1.04	7.29	-116	151.	17		460
11:38				-	27,12	1,04	7,29	-117	151	14	7,76	.460.
11:32		-		-	27,11	1,05	7:30	-118	,52	15	7,76	460
11:34					27.06 27.06	1,05	7,30		151	12	7,76	460
11:36					27.03		7,29	-118	152	13	7,76	460
					0.7,05	1100	1,07	-11-7	152	12	7.76	460
							-					
		_										
1												
Paramet	er			Date	& Time Calib		er Calibra	ation			Number:	
pН		_				lieu	pHd	4:		illon Results	10:	
Conductiv	ity	-		-					μS/cm fluid			(ATC)
Redox Po	1							+231 m	v Zoehell so			
	Sp	lit,	B	lan	k, Dupli	cate, &	Filtered	Samples	1		Aiscellane	eous
Sample II					Description		The state				to Water: 7	
											dity:	
					• 11 e						xygen:	
						-				Pump	Rate:	in
											min,	sec.
Weather: Notes: (w	ell co	ndit	ion	Dee	thy activities	or changes !						
	1	7,	11	1		of changes i	n land use, oc	lors, problem	s, deviations	from plan, e	etc.)	
pamp	Set	6	j i	1,0	D.Ct	Ċ.						
		-			· · ·							
									n oraș			
(

.

GeoSyntec Consultants

Ground Water Sampling Measurements for Low-Flow Purging

		te:			TD	2		Project No.: 40307						
	M	oni	tori	ng	Well:	BLD 156	-MW	Sam	oling Da	te:	7/29/05			
£	Sa	m	ple	ID	BLD	156.M	<u>)</u> Sar	npler:	Dave	Skip	200			
Time	2000	Readinos	Start Samp.	End Samp.	Temper- ature (°C)	Conduc- tivity (#S/em) (ATC)	рШ (АТС)	Redox Potential (± mv)	P0 (M,12)	1771 44	Appearance MW	of Water		
11:28	Ť				27.86		7.72	4	0.05?	6.65	1 0.2	FLOW 32	· · · · · · · · · · · · · · · · · · ·	
11:30		+		-		0.214	7.65	-5	0,23	6.60	0.2.	FLOW Z	200 211-	
11:32		+			24.14	0,212	7.65	-12	0.30		02		- Jun	
U.35	-				24.13	0.210	7.65	-9	6.33		0.0			
u'.37					24.26	0.207	7.64	0.42	6.60					
11:40		+			24.30	0.205	7.64	0.46	6.60	Ö.0				
11:43		-		-	24.32	0,203	763	-B	0.51		0.0			
11045				<u> </u>	24.34	6.902	7.64	- 22	0.49	6.60	0.0			
11.49					24.30	0.201	7.65	-22	0,50	6.60	6.0			
11:57					24.39	0.200	7.65	- 29	0.50	6.60	0.0			
11:54					24.38	0.200	7.65	-98	0.52		6.0		GUE	
11.5	6				24.38	0,199	7-64	-25	0.53		0-0		\geq	
Parame	ler			Date	e & Time Calib		er Calibra	ation			r Number:_	:		
pH		Т			a a Inne Callo	raled	e II	A .		ation Results				
Conducti	vity						pri	4:	; pH /:	; pH	10:	(ATC)		
Redox P								1001				(ATC)	<u> </u>	
	S	pli	. B	lar	k Dunli	cate, &]	Filtered	+231 m	v Zoebell s					
Sample I		t	,~		Description	cate, œ j	i mereu i	Samples			Miscella			
					·		-					ft		
- Martinet V. Martinet of Land										Turb		NTUs		
							·····				xygen:	ppm		
										Pum	p Rate:	in		
											min,	sec.		
Weather		ond	ition		the activities		·							
(101001 (or changes in 5 ft . Toc	n land use, od	lors, problem	s, deviations	from plan,	etc.)			
					lon 9.6	5 Ct								
£.	•	P	5	P	4.32	Ph Toc								
12											1 1			

Time	Temp	Conau	PH	GRD	DU	DTW	TUrb
11:59	24.47	0198	7.65	-20	053	66	6-0
13:01	24.45	0148	7.65	-33	0.53		0.0
12:03	24.50	0193	7.65	-34	0.52		0.0
12:05	24,57	02(97	7-65	-36	-53		6-0

.

fotal=~2.5 gallin

GeoSyntec Consultants Ground Water Sampling Measurements for Low-Flow Purging Site: TPV N. Herver Dr. Project No.: 5603.02								
Site: TPY N. Hewber Dr. Project No.: SCO307 Monitoring Well: <u>BID-156-MW3</u> Sampling Date: <u>C/3/05</u>								
Sample ID: Sampler: \sum , CL								
Sumptor. <u>PS₁CL</u>								
Time $\frac{1}{2}$								
13:59 34,24 444 7.60 -186 84 3.2 - 4100	<u> </u>							
19.02 24.22,505 7,52 -191 ,72 2.5 6.45 400	·							
14:04 24.25 364 7.49 -191 69 2.3 6.45 1100								
14.06 24.26, 287 7.47 -191, 65 1.6 - 400								
14:08 34.27.3627.46-191 104 1.4 6.46 400								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
1111 2/20 000 11 10 100 100 100								
$\frac{9,19}{14,16} = \frac{39,32}{39,37}, \frac{300}{7,40} = \frac{179}{165}, \frac{15}{12}, \frac{146}{400}, \frac{400}{400}$								
14:15 24:40 2:40								
14/20 21/10/00/01/190 -100 008 0119 6190 900								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
Meter Calibration Meter Number:								
Parameter Date & Time Calibrated Calibration Results								
po/cm huid reads (ATC)]							
Deput to water: $\underline{Q_i}$ 33 ft								
Turbidity:NTUs	_							
Dis. Oxygen: ppm Pump Rate: in	_							
min, sec.								
Weather:								
Notes: (well condition, nearby activities or changes in land use, odors, problems, deviations from plan, etc.)								
I Wal PUPPIN = 15,344								
PLOSAN M D Q 10 5 0								
Peperh of Pump @ 10,5 fr								
Time Temp [cond] pH Redex DO TURE DTW Purgerate	1							
Pepen of pump @ 10,5 fr Time Temp (cond p#) Redox DO Turb DTW Purgerate 14:24 24.47 .2437.37 -155 173 0.0 6:46 400								
Pepen of pump @ 10,5 ft Time Temp [cond p #] Redex DO Turb DTW Purgerate 14124 24.47 .2437.37 -155 173 0.0 6.46 400 14126 24.49 .263 7.38 -150 .74 0.0 6.46 400								
Pepen of pump @ 10,5 fr Time Temp Cond p # Redox DO Turb DTW purgerrate 14:24 24.47 .2437.37 -155 173 0.0 6.46 400 14:26 24.49 .263 7.38 -150 .74 0.0 6.46 400 14:36 24.49 .263 7.40 -146 .75 0.05 6.46 400 14:30 24.49 .263 7.40 -144 .75 0.00 6.46 400								
Peper of Pump @ 10,5 fr Time Temp Cond pH Redox DO Turb DTW Purgerate 14:24 24.47 .243 7.37 -155 173 0.0 6.46 400 14:26 24.49 .263 7.35 -150 .74 0.0 6.46 400 14:26 24.49 .263 7.35 -150 .74 0.0 6.46 400	2.1							

GeoSyntec Consultants

Ground Water Sampling Measurements for Low-Flow Purging

Site: <u>TVY</u> Project No.: <u>Sco307</u> Monitoring Well: <u>BLD 156 - Mw3</u> Sampling Date: <u>10 - As, o5</u>

Sample ID: BLO-156 mw3Sampler:

-	7	T	7	7	1							
Time	Start Purge	Readings	Start Samp.	End Samp.	Temper- ature (°C)	Conduc- tivity (µS/cm) (ATC)	рН (АТС)	Redox Potential (± mv)	PO	Turb	Appearance o DTW	f Water Punge Varke.
8:58	-	-		-	23,81	126	7.33	97	1,10	1.5	6,50	430
9:00	-	-		-	23,90	127	7.45	81	,57	1.6	6,50	430
9:03		-	-	-	24.02	1125	7.47	64	,48.	1.8	6,50	430
9:05	-	_		-	24,03	197	7.46	70	147	11	6,50	430
9:07	-			_	24.08	1121	7,46	75	147	i.i	6.50	430
9:09				_	24.15	.116	7.44	77	,47	1,2	6,50	430
9:16		_	_		24,27	106	7,40	81	,59	,65	6,50	430
9:18		_	_	_	24.31	105	7,39	82	163	115	6150	430
9:20					24,31	,104	7,40	83	166	,05	6.49	430
9:22		_		_	24.34	1/03	7,39	85	169	,30	6149	430
9:24		_		_	24:35	103	7.40	86	172	0,00	6149	430
9:26					24,35	,102	7,41	86	173	6,00	6149	430
Parameter							er Calibra	tion			Number:	
pH	1			Date	& Time Calibr	aled				illon Results		
Conductivi	tv						pH 4				10:	
Redox Pot.								the subscription of the base of the subscription of the subscripti			(#	ATC)
1	1	-	D	100	I. Dull			+231 m	v Zoebell so			
Sample ID	op.	ш,	D.			cate, & j	Filtered S	Samples	S	N	Aiscellan	eous
Sample ID				. 1	Description		-			Depth	to Water: 6	.32 ft
									and the second sec	Turbi	dity:	NTUS
							1				xygen:	
											Rate:	
										-	min,	sec.
Weather:												
Notes: (we	ll con	nditi	on,	near	by activities	or changes i	n land use, od	ors, problem:	s, deviations	from plan, e	tc.)	
-	1	-D)	1	513 ft	e. 1					·	1
pump se	t	Q	1	Or	513 ft 54		Same	el junp	le alas	0136	1	
1	Tin	ne			np con	A CONTRACTOR OF THE OWNER OWNER OF THE OWNER OWN	Reden		A		and a set of the particular of the set of the	
	91	98		4	221	27.4			Turb			rate
			F					110	0.00	2 6.4	9 43	20
A			+		· · · ·		P. A.				-	- And - second

J.Raymer/GeoSyntec Consultants

6/5/98, ver.1

WELL DEVELOPMENT LOG

11305 I		Bernardo R	.d., Su	ite 101	Project		TOY		Well I.D. B180-MW-1
Telepho	-) 674-655	9		, Ť		5030	$\overline{)7}$	Developer PS, CL
Fax: (8	58) 674-6	5586			Weath	^{er} 7	<u>2°4m</u>	nus	Subcontractor ハロハヒ
Equipment Bladder Pump	110	Surging/l Surge			Date of	Develop	ment /26/0		Water Quality Meter I.D. ムームティイ0530
Hand Pump	Fran	m 14	10	to 14:30	Develo	pment Çi	riteria		Depth of Pump (ft)
Submersible Pump	<u>pura</u>	<u>d 759</u>	Ins	w/sour			stable p	armonies	14,3
Bailer (size) Surge Block	'Wa-	tena	FOO	+ Valve	weitC	onditión	Goo	d	
Well		<u>^"</u>		Conversions		-	evelopmen		Recovery Data
Casing Diameter (ft)		d					elopment (i	a) 10,0	% Recovery
Borehole Diameter (ft)		8"		4" = 0.33 ft	Total V	olume Pu	irged (gal)		
Filter Pack Porosity (dec.)		0.25		5'' = 0.42 ft	Wooler	erels	labalized	e 9,3	$PR = (1-(RD/MD)) \times 100$
Well Depth (ft)	<u>15.21</u>			6" = 0.50 ft 7" = 0.58 ft			+P(BD ² -CI		
Depth to Water (ft) Water Column Height (ft)	-	6.22 1.04		7' = 0.38 ft 8" = 0.67 ft		-	neter in feo iameter in		PR=Percent Recovery RD=Residual Drawdown
Borehole Volume (gal)		1,04 x WCH =	7 22	4			lter Pack (d		MD=Max Drawdown
3 Borehole Volumes (gal)	<u> </u>		1103	10'' = 0.83 ft		•	pth - Depth		
Purging D		· · · · · · · · · · · · · · · · · · ·		ulative Total Removed		<u>`</u>	haracteris		Comments
Time	Pump	Water		Borehole		EÇ,	Turbidity	Temp.	
Date Begin Finish	Rate (gpm)	Removed (gal)	GAL	Volumes	рН		(NTU)	(°C)	
9/26/05 15:00		Ő				<u> </u>			
1/a/105 15:15 cal	1.6	25			7.75	,559	71000	26,3	EC in S/m
1124/05 15:25 2		45			8,00		23.7	26.26	
Hau/05 15:30	2	55			8.10	598	23.7	36002	
11 15:36	1.3	63			608			85,99	
4 15 39	1.6	68			8.04	.60	22.5	20.46	
11 15:42	110	73			8,13	.598	17.3	25,86	
11 15:45 15:48	1.6	78 83		<u> </u>	8,17	.619	15.2	2635	Tusting 14 2
15:51	116	89 88		[810	.620	14.3	26.12	Tarb= 14.3
<u> </u>		00			<u>pu</u>	.400	15.0	Nello	*
					<u> </u>				
1									
				 					
		······							
	╎───┼								
	T				1				

Field Personnel Signature:

NAME

			C	JeoSy	yntec	Con	sulta	nts		
Ground Water Sampling Measurements for Low-Flow Purging										
	te:		TDY	Î	C					
		oring	Well: C	180-M	W) 1			$\frac{5}{10}$		
Sa	Monitoring Well: <u>B180-MW-1</u> Sampling Date: <u>10/4/05</u> Sample ID: <u>B180-MW-1</u> Sampler: <u>DSkippen/C, Lieder</u>									
· · · · · · · · · · · · · · · · · · ·									 	
Time d	2 S S S S S	Start Samp. End Samp.	Temper- ature	Conduc-	pH	Redox			DTW	Flow
Time d	Readings	Start Start	(°C)	ATC)	. (ATC)	Potential (± mv)	$\left(\frac{DO}{mg/L}\right)$	Turb	Appearance of	care -
9:21			26,02	· · · · · · · · · · · · · · · · · · ·	8.52	143	1,74	(MIU)	(ft) 	(in Minin
9:25			26,04	4,24	8.66	102		8617	630	500
9:30			25.96	4,39	8,66	<u>41</u>	187	84,5	6.22	<u>500</u> 400
9:33			25,98	4.48	8,67	28	178	51.3	6121	
9:36			25,99	4.37	8.67	31	,77	39,4	6.22	325
9:39			26.00	4,68	8,67	20	174	371	6.22	375
9:42			26,01	4,66	8167	23	, 78	3417	6:22	375
9:44	_		26.01	4.70	8,68	24	.69	29,9	6122	375
9:46			94,04	4.71	8,68	23	.66	25,5	6.22	375
9:48			26.05	4,73	8167	35	.63	22:3	6.22	375
9:50			36.08	4,69	8,67	37	162	19.5	6.23	375
19152			24.09	4,74	8,67	23	170	18,9	6123	375
Parameter		Dat	te & Time Calib		er Calibra	ation	0.11		Number: <u>'</u>	
pH					pH	4:	; pH 7:	ation Results	<u>0</u> .	(ATC)
Conductivity					· · · · · · · · · · · · · · · · · · ·		μS/cm flui			ATC)
Redox Pot.						+231 r	nv Zoebell s	olution read		
S	plit	, Bla	nk, Dupl	icate, &	Filtered	Samples	3		liscellan	eous
Sample ID		<u> </u>	Description			_			to Water:	
					· · ·				dity:	
									xygen:	
								Pump	Rate:	
	min,sec.									
Weather:	Weather:									
Notes: (well condition, nearby activities or changes in land use, odors, problems, deviations from plan, etc.) 104al Depth of we $pr = 15, 32, m$										
Total perpart of well = 15, 27 ft Total perpart of well = 15, 27 ft pump set @ 10,5 ft Stewled pumpung @ 9;20 Woder has no odor to it,										
Stended	Stewled program @ 9:20									
Woder 1	ras	no	odor	foit.						
1										
L						· .			<i></i>	<u> </u>

Ľ

...

	GeoSyntec Consultants Page 2 of 2											
	Gt	οι	ind	l N	Water S	Samplin	g Meas	uremen	ts for L	ow-Flow	Purging	, Г
\mathbb{N}	Site: Ioni	: ito	۲ rins	<u>ri</u> 2 1	>γ Well: β	1870-N	1142-1	Pr Sami	oject No	: <u> </u>	0307	
Time 9:54 9:56 9:58 10:00 10:07	Start Purge	·	T	·fumo prior	Temper- ature (°C) 26.11 26.11 26.11	Conduc- tivity (ATC) 4,74 4,74 4,76 4,76 4,76	p11 (ATC) 8:46 8:46 8:46 8:46 8:46 8:46	Redox Potential $(\pm mv)$ 25 26 25	DO (m5/L) 167 167 153 153 153	DTW (ft)	turb caraince of Wa (1074) 15,1 14,2	Flow or vate M1/min 375 375 375 375
i						Mete	er Calibra	ation		Meter Ni	umber: (
Paramete	r		D	ate	& Time Calib					ation Results		
pH Conductivi							pH			; pH 10:		
Redox Pot				-			·		·	d reads	(AT(<u>)</u>
		if	RI	20	k Dunl	icate &	Filtered	+231 1	ny Zoebell s	olution reads		
Sample ID					Description		rmereu	oampies)		scellaneo	
			·		·						Water:	
			· · · · · ·					· · · · · · · · · · · · · · · · · · ·			y: gen:	
					····	·		<u>.</u>		<u>_</u>	ate:	
	min, sec.											
Weather:									. <u></u>		*	
Notes: (w	ell co	ndit	ion, r	ıea	rby activitie	s or changes	in land use, o	dors, proble	ms, deviations	from plan, etc.)	
1									•	·		

. (Fro	und		JeoS Samplir				nts .ow-Flov	rze 1 o v Purgin	f 2
								:: <u>503</u>		÷.
Mo	nite	oring	Well:	GT-4	<u></u>	Sami	nling Da	te: <u>8/a</u>	100	
Sa	mpl	le ID	·	<u> </u>	Sat	npler:		ojaj	105	
<u>۲</u>	, 	rr			Uai		<u>, c</u>			
Time Time	Readings	Start Samp. End Samp.	Temper- ature (°C)	Conduc- tivity (µS/cm)	pll (ATC)	Redox Potential	Do	turb Ap	ff carance of W	mi/min ater Pural
and the second s	<u> X</u>	Start End		(ATC)		(± mv)	• • • · · · · · · · · · · · · · · · · ·	1.00.02	DAN	rate
15:38	$\left - \right $		23,44	4,00	7,13	-125	174	0105	7,19	340
15:40	+		33,31	3.68	7.16	-131	166	0100.	, 	320
15:44	$\left \right $		123,17	1.67	7,20	-/35	162	•••••	7.26	
15:46	-		23,13	1.53	7,20	-134	16	0,00	7,32	400
15:48	┨╼┥		23.09	1,29	7,27	-135	161	0,00	7,32	.406
15:50	$\left\{ - \right\}$		23,07	<u> </u>	7,33	<u>-139</u> -145	161	0,00	7.31	400
15:52	+		23,03	112	7,25	158	0100		400	
15:54			33.98	1,09	7,27	-154	,57	0,00		400
15:56			22,95	1.09	7,27	-159	,54	0,00		400
15:58	$\left - \right $		33.90	116	7,27	-163	153	0,00	h-1890m	400
16,00			32.92	1 .7 /	7,26	-165	152	0,00	ļ	400
1000			[0a] 1]]	1,36	7,27 er Calibr	-166	151	0100		400
Parameter		Dat	e & Time Calib			ation	Colibre	Meter Ni Ilon Results	umber:	
pН					pН	4:		; pH 10:		ATC)
Conductivity	-							d reads		
Redox Pot.						+231 m		olution reads		
SI	olit,	Bla	nk, Dupli	cate, &	Filtered	Samples			scellanec	US
Sample ID			Description			•			Water: 7.	{
			· · · · · · · · · · · · · · · · · · ·						ý:	8
				······					gen:	{
									ate:	
Weather:							<u>)</u>			
Notes: (well a Total Depa Pepan of p	11 11	. 1	90 2 FS	or changes i 7 (n land use, or Noclevnite	dors, problem - Guel	od <i>ør</i>	from plan, etc.)	
L				· .			÷			
			· .							1463 areas at

. (Gro	our	ıd	Water S	GeoSy Samplin	yntec 1g Meas	Con	sulta: its for L	nts .ow-Flo	Park a w Purg	く ing		
Si Mo	te:	TI ori	y ng	<u>N ، H</u> Well:	arbir GT-4	<u>br.</u>	Pr Samp	oject No oling Da	o.: <u>Sc</u> te: <u>S</u>	:0307 12/05			
58	mp	le.	D	·		Sampler: DS, CL							
Time d	Readings	Start Samp.	End Samp.	Temper- ature (°C)	Conduc- tivity (µS/cm) (ATC)	pH (ATC)	Redox Potential (± mv)	Do	Turb	Appearance of DTW	f Water Pirze		
16:02				22,87	1,45	7.27		151	1	7,34	400		
16:06				22,85 22,85	1,53	7,28	-167 -167	<u>, 51</u> , 50	0100 0100		<u>400</u> 400		
16:08				22,84	1,63			149	0100		400		
16:10	_			<u> 27'84</u>	1,67	7,28	-167	149	0100	<i></i>	400		
	_												
	_												
D.,			L			r Calibra	ation		Meter	Number: -	1		
<i>Parameter</i> pH	1		Date	& Time Calib	raied		A .	Calibre	ation Results				
Conductivity						рн	4:	; pH /:	; pH 1	.0:	(ATC)		
Redox Pot.	_								d reads olution read	(ATC)		
S	plit.	B	lar	k. Dupli	cafe &	Filtered	Samples	v Zueben s		1iscellan			
Sample ID		•		Description			oampios						
						<u> </u>				to Water: dity:	ŧ		
					**************************************					xygen:			
										Rate:			
				·····					4	min,			
Weather:													
Notes: (well)	condi	tion,	, n c a	sby activities	or changes i	n land use, oo	dors, problem	s, deviations	from plan, c	(c.)			

.

GeoSyntec Consultants

Ground Water Sampling Measurements for Low-Flow Purging

 Site: TDY
 N. Havled Dr
 Project No.:
 \$10307

 Monitoring Well:
 GT-4
 Sampling Date:
 \$8/9/05

 Sample ID:
 GT4
 Sampler:
 \$2, CL

 Image: State of the s

	Start Pu	Reading	Start Sar	End Sarr	ature (°C)	tivity (μS/cm) (ATC)	pll (ATC)	Potential (± mv)	PO	turb	Appearance of DTW	Purse rate	
15:34					23.69	,762	7,14	-117	2.06	0,00	7.40	550	
15:37					23,24	,860	7,15	-141	, 52	0,00	7,50	550	
15:41				_	23.10	1.28	7.24	-160	,58.	0,00	7,44	360	
15:43	_			-	23,09	1.42	7,21	-166	154	0,00	7,47	460	
15:45					23,06	1.58	7,21	-169	156	0.00	7,46	470	
15:47	_	_			23.07	1,69	7,21	-171	158	0,00	7.46	470	
15:49	_	_			23,04	1.81	7,21	-171	,55	0,00		470	
15:51					23,02	1.89	7,22	-171	158	0,00		470	
15:53	_	_			23,01	1,94	7,22	-171	157	0100	7,46	470	
15:58	-	_		_	22,97	2,07	7,23	-173	157	0,00	7,46	470	
16:00	_	_				2.10	7,24	-173	158	0100	7,46	470	
16:02					22.96	2111	7,24	-174	159	0,00	7.46	470	
D						Mete	r Calibra	ation		Meter	Number: '		
Parameter pH	-1			Date	& Time Calibr	raled				ation Results			
Conductivit							pH	4:	; pH 7:	; pH 1	0:	(ATC)	
Redox Pot.	y								µS/cm fluid	id reads (ATC)			
1		-	D	1				+231 m	v Zoebell s	olution read	S		
	sp	111,	B		k, Dupli	cate, &]	Filtered !	Samples		N	liscellan	eous	
Sample ID]	Description		-		ſ	Depth	to Water:	7.05 1	
	Turbidity:NTUs												
Dis. Oxygen: ppm													
Pump Rate: in													
											min,	1	
Weather:									 				
Notes: (wel Started	l con	nditi MM	ion,	nea Q	rby activities 15:32	or changes in	n land use, od	lors, problem	s, deviations	from plan, et	ic.)		

Stand punging & 15:32 Total well Depth (TD) = 15,7.fr pump set @ 11.5ft fuel ODOR collected Sample @ 16:05cel 16:10

	GeoSyntec Consultants										
	Gro	out	ıd	Water S						low Pur	ging
				N.H						×0307	
					^ .						
	Monitoring Well: Image: Sampling Date: 7/5/05 Sample ID: Sampler: DS (1/2)										
	Sample ID: Sampler: DS, CL										
Time	Start Purge Readings	Start Samp.	End Samp.	Temper- ature (°C)	Conduc- tivity (μS/cm) (ATC)	рН (АТС)	Redox Potential (± mv)	DO	Turb	Appearance DTW	of Water
15:56		_	-	22.71	,436	7,29	50	1,33	0,0	8,05	550
15:59		-	-	22.48	,443	7,28	47	161	0,0	8,10	550
16:02			4	22,66	:903	7,30	36	,60.	0,0	8,06	270
110:05				22,50	1.54	7,30	7	148	0,0	8,10	470
16:07		_		22.48	1.42	7.31	- a4	146	0,0	8,10	470
16:09				22,47	1,26	7,31	- 45	.46	0,0	8:10	476
16:11		-		22.47	1.11	7,32	-55	.45	OID	8110	470
14:13		_		22,46	1.04	7,33	-65	145	010	8,10	470
16:15				22.44	,99	7,33	-73	,45	0,0	8,10	470
16.17				22.43	1707	7,35	-76	,46	0,0	8,10	470
1619				22.41	,696	7,36	-78	146	0,0	8,10	470
16:31				22,21	1686	7,37	-81	,46	0,0	8,10	470
Parameter			Date	e & Time Calib.		er Calibra	ation			r Number:	۱
pH			Dure	a Time Carlo	raiea	тЦ	4.		ation Results		
Conductivi	ty					pm				10:	
Redox Pot.								µS/cm flui			(ATC)
	Split	B	lan	ık, Dupli	cate &	Filtered	Samples	v Zoebell s			
Sample ID		,		Description	outo, co j		Samples			Miscella	
											7,94 ft
						· · ·					NTUs
						·····				Dxygen:	
	<u> </u>								Pum		in
Weather:	min,sec.									sec.	
Notes: (we	Il condi	tion,	nea	rby activities	or changes i	n land use of	lace peoble				
10-10	104	+			Star	Led one	iors, problem	s, deviations	trom plan,	etc.)	
Pump s	D=15,2A Started pumping @ 15154 Sump set @ 11,5ft collect samples @ 16:23										
		- 1		14	Conte	Servi	par e	ileid	À		
21								·.			
				· ·	15	·					And an and

	Syntec Consultants								
Ground Water Samplin	ing Measurements for Low-Flow Purging								
Site: <u>TDy N. Heyber Dr</u> Monitoring Well: <u>P2</u> Sampling Date: <u>8/3/05</u>									
Monitoring Well: P2	Sampling Date: 8/3/05								
Sample ID: Sampler: DS, CL									
E									
Time Time Source									
13:50 23:42,386	Vare								
13:52 33,41,371	16.86 - 110.64 - 7.00 -								
13:54 23,56,366									
14:00 24,24,347	1 6183 -100 ,90 15 7.40 250								
14:03 34.40 1352									
14.14 05,02 :364									
14:14 Stopped	Sample Due to Draw down exceeded 1								
	ter Calibration Meter Number:								
Parameter Date & Time Calibrated	Calibration Results								
Conductivity	pH 4:; pH 7:; pH 10: (ATC)								
Redox Pot.	μS/cm fluid reads (ATC) +231 mv Zoebell solution reads								
Split, Blank, Duplicate, &	c Filtered Samples Miscellaneous								
Sample ID Description	Depth to Water: 6126 ft								
	Turbidity:NTUs								
	Dis. Oxygen: ppm								
	Pump Rate: in								
min, sec.									
Weather:									
Notes: (well condition, nearby activities or changes Showled pumping @ 13,045 Total PUMP Set @ 10,5ft	s in land use, odors, problems, deviations from plan, etc.) I Depen of well = 14.83 ft								

J.Raymer/GeoSyntec Consultants

6/5/98, ver.1

Ft

Groundwater Sample Collection Log

Well	ID:	PZ

	Well Data: Sample Typ Casing Elev			Groundwa			Weather: Diameter of We Diameter of Bo	v	,0		
casing.	Well Purgir Equipment: Depth to Wa Well Depth Feet of Wat	ater Surface (ft) er in Well:	14,5	6,3 8,54 x,65		55	Max. depth duri 80 percent recc Depth at time o Total Volume P	overy: f sampling (ft)	:		
		Time	pН	EC (v/S/cm)	Temp. (C)	Turbidity (NTU)	Pump Rate (gpm)	Vol. Purged (gal)	Remarks Color/Odor	Do	ORF
	Purge	11:53 12:04 12:32 12:32	6,77 6,94 7,12 7,07	.972	23.75 02.51	90 20 60 52	,222 ,222 ,222 ,222	2 4 6 7,5	DTW= 8,3 DTW= 11,00 DTW= 12,5 DTW= 14,5	154 2,12 ,48 1,35	-64 -12 -2 -14
	Sample % Recovere Purge Wate		7.14 -64 55	0.970 1.62%. CALLO	•	9, 1 Depth of F	Pump (feet):		,	1.71 Drw=1	1-9

Sample Collection:

			Crincon	V 11		
Co	llection:					@ 13:35
	Volume	Container	Filtered	Pres.	Parameters	PN @ 14:30
						PM = 14,30
						9:50
						1
						Pranodown
						- (2)
						- 5.1

Date/Time:	14:32		
Sample ID:			
COC #:	3		
Field Crew:	1		
Samplers Signature:		Ŷ	

7.6 MAX -8,4'

ORP

-64 -125 -203 -149

- 99

Comments: gauled pumping @ 11:44 Well pumped by at 12:34

							GeoS								
		· C	dro	ur	ıd	Water	Samplir	ng Meas	suremen	its for I	Low-Flo	ow Purg	ing		
-		Sit	e:	T	Py	N.I	Jan bor	br	Pr	oject No	o.: <i>S</i> (0	307	·		
and the second	l	Moi	nite	ori	ng	Well:	SDE		Samj	pling Da	ite: 🛜	307			
		Sar	np	le	ID	:		Sar	npler: 7	os, CL			-		
	Time	Start Purge	Readings	Start Samp.	End Samp.	Temper- ature (°C)	Conduc- tivity (µS/cm) (ATC)	pli (ATC)	Redox Potential (± mv)	Do	Turb	ft Appearance o DTW	mi/min Water Pwzyrate		
	9:22		-			23.37	,439	6.96	-240	168	120		120		
	9:27					23.59		7.04	-284	,59			1.20		
	9:32		1			23,81	1472	7,05	-300	155			:		
		1-			-	··									
		1			-			·					·		
	(
							Mata	er Calibr							
	Parame	ler			Date	e & Time Calil		a Canor	ation	Calibr	Meter ation Results	Number:			
	pH		-					pН	4:	; pH 7:; pH 10: (ATC)					
	Conducti							-	μS/cm fluid reads(ATC)						
	Redox Po		-	D	1	1 10 1			+231 m	ıv Zoebell s	solution read				
	Sampla II		uit,	В			icate, &	Filtered	Samples		N	Aiscellan	eous		
	Sample II					Description						to Water:			
												dity:			
											1	xygen:			
												Rate:			
	Weather	:										min,	sec.		
Idal	Notes: (v Pepth	vell co	ondit W	ion,	, nea	arby activities 9,2,4	or changes i	n land use, o	dors, problem	is, deviations	from plan, e	etc.)			
	Pean	of	Dil	m	0 1	28,01	<i>C</i> :	1152	odor						
C. Press California	Clan	6	ru 2-	1	re	2 8,01	ft in the			· 1		- A .il			
I	Signe		Sen	ng	MA	809	:35 Due	fe the	a not b	eng ab	he to 1	read the	evin		
	1500	aw		p	an	1 Herris	ing wa	s out	of was	ker Co	lemm	^	. Paul an anns		
												and the callest order the set of			

:

J.Raymer/GeoSyntec Consultants

6/5/98, ver. 1

GeoS	yntec Con	sulta	nts		
Ground Water Samplin	ng Measuremen	ts for	on-Flo	ow Purging	
Site: TDY N. Harber D.	rive Pr	oject No	o.: Sco	2017	
Monitoring Well: SDE	Samp	oling Da	te: 8/	3/05	
Sample ID:	Sampler: D	S, CL			
. I manufacture from the second secon			1		
Time Time Transformer tivity Time Transformer tivity Time Transformer tivity Transformer tivity Transformer tivity (µS/cm) (ATC)	pll Redox (ATC) Potential (± mv)	D:0	Tarb	Appearance of Water	
9.48 23.75 542	7,16 -303	2.26	>999	@ 3gallons	
9:52 33,59,589	7,18 -282		600	@ 4 gailons	
10:07 23.44.590	7,20 -281	2,87	600	@ logallong	
10:08 23.34.582	7,22-980	2180	450	@7 gallons.	
10:12 23.20,588	7,19-284	2,75	500	@ 8 gallons	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7,18 - 292	2.74	700	e q gallons	
	7.2~-277	2.77	7.6	Sample.	
11:14 23.34 -		-	-		
	er Calibration	en al la companya de la companya de La companya de la comp	Meter	Number:	-
Parameter Date & Time Calibrated	1		ation Results	1 CAL	
Conductivity	32			10: (ATC)	
Redox Pot.		µS/cm fluid			
Split, Blank, Duplicate, &	Filtered Semples	v Zoebell s			
Sample ID Description	rittered bampies			Aiscellaneous	well
	-			to Water: 68 ft	Recovered to 6,82
			and the second show the second shows	dity:NTUs	before
				xygen:ppm	Sampling
			runt	Rate: in	with
Weather:				min, sec.	pupp
Notes: (well condition, nearby activities or changes	in land use, odors, problem	s, deviations	from plan.	etc.)	· · · · · · · · · · · · · · · · · · ·
10:35 put pump Back into w	ell to callent	Damal Da	2	10 0 700	
before collection sample to Dan	se any fining	D.ol L	Kewle	PLIMAR CAMO	100
10:35 put pump Boek into w before correcting sample to pum tabing (pump was set at	8.04	eqt.	m quo	tout over	
			Con La		
	·			The argument	

J.Raymer/GeoSyntec Consultants

6/5/98, ver.1

Groundwater Sample Collection Log Well ID: $\underline{TC4} - \underline{EEP}$

Well Data: Sample Type:			Groundwa	iter	_	Weather:	Sun	n y
Casing Elevat	ion (ft):		NA		-	Diameter of W	ell (in.):	
						Diameter of Bo	rehole (in.):	
Well Purging	:		/					
Equipment:	peris	staltic.	pump /i	10Cs W/	pisperable	builter		
Depth to Wate			<u> </u>	51'	-	Max. depth dur	ing purging (ft)	: 8,00
Well Depth (ft))		9,95		_	80 percent reco	overy:	7.61
Feet of Water	in Well:		2.44		-	Depth at time of	of sampling (ft)	7,51
Borehole Volu	ıme (gal):	2.44	×1.05	= 2.5	6	Total Volume F	Purged (gal.):	4.5
	2.	56×1.5	5=3.8					
	Time	pН	EC	Temp.	Turbidity	Pump Rate	Vol. Purged	Remarks
1			(uS/cm)		/METLIN	(apm)	(apl)	Color/Odor

	lime	рн	EC	iemp.	Turbiality	Pump Rate	Vol. Purged	Remarks	DO	
.			(µS/cm)	(C)	(NTU)	(gpm)	(gal)	Color/Odor	10	ORP
	8:51	7,50	.497	32.82	12		1	DTW = 8,00	.46	-337
	9:09	7.45	1470	99.89	0	111	2.5	00,8 = WTD	.41	- 356
Purge	9:14	7.44	1474	27.83	0	<u>el]]</u>	3	Drw= 8,00	139	-360
	9:23	7.44	:477	27.81	0	111	4	DTW= 8,00	,39	-362
									-	
Sample	9:26	7.44	:476	22,82	\mathcal{O}	,(]]		171W=7151	,38	-363
% Recover		100	2		Depth of F	Pump (feet):	8,9	•		and the second se

Purge Water Disposal:

Sample Collection:

Volume	Container	Filtered	Pres.	Parameters

Date/Time:	8/9/	05			
Sample ID:	TCYF	EP			
COC #:					
Field Crew:	Chris	Lieder	k	Dowe	SKIPPON
Samplers Si	ignature:	Aft	en en		······································

12:50	101	fest	samp k	,9
トレ	X	4.70	hysic	
PAN	<u>.</u>			

Comments: Stanted pumping 8:42. 1st gallar hard Dark Sediminot. purge water has an Has oder: stapped pump after I gallon to chean flow through cell of sediment.

Groundwater Sample Collection Log

Well ID: TC4EGP

Well Data:										
Sample Typ	e:		Groundwa	ater		Weather: Diameter of We	Sam	my		
Casing Elev	vation (ft):		NA	t		Diameter of We	ell (in.): 1 ⁴	0		
						Diameter of Bo	rehole (in.): 1	1841-1		
Well Purgir	na.									
Fauipment	peristali	AL DIAMAR	INT. D	18002 Ada	hail ac	~				
Depth to Wa	ater Surface	(ft):	7.4	11	120000	Max. depth dur	ina puraina (ft)	:		
Well Depth			1.8			80 percent reco				
Feet of Wat		2.3				Depth at time o				
	olume (gal):			15-7)	.51	Total Volume P				
Boronolo ve		×1.5:			10.			.		
	aron	A113	- 2116	,						
	Time	рН	EC	Temp.	Turbidity	Pump Rate	Vol. Purged	Remarks	1	
			(uS/cm)	(C)	(NTU)	(gpm)	(gal)	Color/Odor	D.0	ORP
	10:22	6.86	84,8	26.42	12	-	12	-	5,37	-52
	11:06	6.74		26:38	25	Guess	11	Cipitana-	3,86	-71
Purge	<u> </u>	Lec (<u> </u>							
		1		1						1

Sample /

Depth of Pump (feet):

3.86

-70

Purge Water Disposal:

147

Sample Collection:

Volume	Container	Filtered	Pres.	Parameters

8

Date/Time:	
Sample ID:	
COC #:	a
Field Crew:	
Samplers Signature:	

7.35

123

29.25

Comments: Graded pumping at 10:16, well went by abor pumping for I minute, At 10:31 pumped well by to measure recoverg time, 11:10 purged well a second time, Sample time 12:47

	GeoSyntec Consultants Page 1 of 2												
	Ground Water Sampling Measurements for Low-Flow Purging												
5	Site: TDY N. Havbor Dr. Project No.: Sco307 Monitoring Well: TC4-EHP Sampling Date: 8/3/05 Sample ID: Sampler: N. (1)												
N	lonit	ori	no	Well: 1	TOULE	110	PI	oject No	0.: <u> </u>	30 +			
	Samp		ID		C7-F	πр	_ Samj	pling Da	te: <u>8</u>	5/05			
g	,		10	•		Sar	npler:	3,00					
Time	Start Purge Readings	Start Samp.	End Samp.	Temper- ature (°C)	Conduc- tivity (µS/cm) (ATC)	pli (ATC)	Redox Potential (± mv)	DO	Turb	Appearance o	E Water purge rate		
15:10				22.90	1581	7,47	13	165	2.9	7,30	520		
15:14				23,04	, 595	7.45	8	162	2.10	7,31	400		
15:16		1_		23,07	,608	7.45	2	160	2.6	7.31	400		
15:18		33.01 1416 7,45 -3 159 0.95 7,31 440											
15:20		22.97, 426 7,45 -9,580,80 - 440											
15:22		23.00 .643 7.45 -15 157 0120 - 440											
15:24		-	-	440									
15:26			-	28.98	,676	0125	-	440					
15:28		23,95,690 7,45 -31 ,54 0.0 -											
15130		-		22.96	,704	7146	-37	153	0,0	-	440		
(5232	·	-		32.95	. 730	7,45	-43	153	0,0	7-32	440		
15:34		1		23,00	1738	7,45	-49	152	0,0	-	440		
Parameter			Date	e & Time Calib		er Calibra	ation	Caliba		Number:			
pH						pH	4:	the second se	ation Results	10:	(ATC)		
Conductivit	y		-			1				(
Redox Pot.		••••••					+231 m	v Zoebell s					
	Split	, B	lar	ık, Dupli	cate, &	Filtered				Aiscellan	eous		
Sample ID				Description		-				to Water:			
										dity:			
										xygen:	1		
										Rate:			
						1 1				min,			
Weather:													
10tal 1	Pergi	V ·	-11	21 35 ++	or changes i	n land use, oo	lors, problem	is, deviations	from plan, c	etc.)			
pump 5	iet.	e	11,	ooft									
1					2			1					
											· forst announce		
L	-							· · · ·					

					C	JeoSy	yntec	Con	sulta	nts	page a	062
	G	ro	ur	ıd	Water a	Samplin	ig Meas	uremen	its for L	low-Flo	ow Purg	ing
(
N	lor	uite	ori	ng	Well:	14- t	EHD	Sami	oject No	$ta = \mathcal{Q}$	13/05	Na A A an
c.	San	np	le	ID	:		Sar	Ualing			15/05	
	T	Y	1	1	1		Uai		3,00			
Time	tart Purge	80 source ci. Temper- ature Conduc- tivity pl1 80 source remper- tivity (μS/cm) (ATC) 90 22 (°C) (ATC) 7,46							DO	Turb	Appearance o	f Water
15:36	S	R	S	ш	23,01	(ATC) 752	7,46	(± mv)	51	0,0		Parte
15:38		23.01 753 4444 -55 ,51									7,33	440
15:40					22.97	770	7.46	-66	150.	$O_i O$ $O_i O$	2,33	440
15:42					22.87	1777	7,46	-73	150	DID	-	440
15:44					22.83	11, 785	7,46	-78	150	010	-	440
15:46					12.83	1792	2,46	-83	150	0,0	7,33	440
		_										
I		_										
	1l					Mete	er Calibra	ation		Meter	Number:	
<u>Parameter</u>				Date	e & Time Calib				Calibr	ation Results		
pH		·····					pH	4:	; pH 7:	; pH	10:	(ATC)
Conductivi Redox Pot.	ty			:					μS/cm flui	d reads	(/	ATC)
1	Sn	lit	P	lot	k Dunl	cate, &	E!!	+231 m	iv Zoebell s			
Sample ID	υp	110	, D				Fillerea	Samples			Miscellan	
					Description						to Water:	· · · · · · · · · · · · · · · · · · ·
											idity:	1
											xygen:	
											Rate:	1
Weather:		******							-		min,	
Notes: (we	ll co	ndi	tion	, nea	urby activities	or changes i	n land use, o	dors, problem	is, deviations	from plan, e	etc.)	
Tatal	Dep	en	U	Z	well z	15,35f	+	•				
panp	Se	X	P	- 6	Ulilla 11	15,35 f						
					ur	•	÷.				5	
							a 1 1					

_

	GeoSyntec Consultants												
e e	brou	nd	Water S	Samplin	g Meas	uremen	ts for L	.ow-Fl	ow Pi	treine			
Sit			TDV							-			
	~~~~	ina	Welly 7	Trices	. ^	PI	oject No	·.:	$\frac{50}{2}$				
South Control	mple	Ing ID	wen. <u> </u>	C4W	<u>//~</u>	Samj	oling Da	te:	7/17	105			
	mpie	ш.		······································	San	npler:_⊳	S,CL						
Lge	S III	j.	Temper-	Conduc-		Redox	·		1				
Time d. E	Readings Start Samn.	End Sar	ature (°C)	tivity (µS/cm) (ATC)	pH (ATC)	Potential (± mv)	Ďð	Turb		Flow Rate			
11:10	<b> </b>	-	25.0	1.96	6.76	-116	5,65	3.44	7,10	250			
<u>µ:14</u>	<u> </u>	-	24,8	2.06	7,13	-124	3.28	2.93					
	┋╌┨		2418	1,98	7,15	-135	3,33						
11:30	┨┈┨┈		24,9	1.87	7,16	-160	3,05	1.30	7.12				
11:23	┨		24,9	1.52	716	-147	9.85	1,10		300			
11',26			24.8	1,73	7.16	-173	2.35	1,02	7,10	G			
11:29	╄╋		24,5	165		-174	2,20	101	7,10				
11:32	┨╌┨┈	┦╍┤	24,8	,56	7,16	-17.5	1.93	0.78	7,10	300			
11:35	┨╌┨╴			1.52	7,15	-176	1.68	0,70	7.12				
11:38	┨━┨╾		24.8	1.46	7,16	-177	1.47	0,84	7,12				
<u> 11: 4]</u>   11: 44	┨╌┨╴		2418	142	7,17	-176	407	0,80	7,12	300.			
1.7-1			d9,9	1,39	7/17	-175	110	0,72		e —			
Parameter		Date	e & Time Calib		er Calibr	ation			r Numbe	r:			
pH	1			- uicu	рН	4.		ation Results		(ATC)			
Conductivity		-				··	_µS/cm flui	and the second se					
Redox Pot.						+231 n	v Zoebell s			(AIC)			
SI	olit, I	<u> 3lar</u>	k, Dupli	icate, &	Filtered	Samples				laneous			
Sample ID			Description		<u>_</u>	<b>-</b>				r: <u>7,04</u> ft			
	<u> </u>		· · · · · · · · · · · · · · · · · · ·										
	· · · · · · · · · · · · · · · · · · ·			••••••••••••••••••••••••••••••••••••••	· · · · · · · · · · · · · · · · · · ·	<u></u>				ppm			
		**		· · · · · · · · · · · · · · · · · · ·	· ·					pput			
			<u> </u>							, sec.			
Weather:				********									
Notes: (well c Started pum	conditio	n, nea 11:08	uby activities	s or changes i P 15 Get	in land use, o @ 11 ft	dors, problen	ns, deviations	from plan,	, <del>c</del> tc.)				
Į					·								
 - -					. •					`			
í ·							•						

.

1 %

GeoSyntec Consultants												
Ground Water Samplin	ng Measu	ıremen	ts for L	ow-Flor	w Purgi	ng						
Monitoring Well: TC 4 -	WIP	Samr	oling Dat	e 9/1	9/15							
Sample ID:	<u> </u>	Project No.: $\frac{50307}{\sqrt{19/05}}$ Sampling Date: $\frac{9/19/05}{\sqrt{19}}$										
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	·P····	2/00									
Time $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \end{array} \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} $	pH (ATC)	Redox Potential (± mv)	20 2	Turb A	ppcaraince of DTW	Water Flow Rate						
11:47 24.8 1.38	7,17	-176	0.92	0.55	7.11	- hare						
11:52 2419 1.35												
11:55 24.9 1.34	24.9 1.34 7.17-176 0.66											
	24,9 1.32 7,17 -176 0.54											
	2418 1.31 7,17 - 176 0.45											
	24,9 1,31 7,17 -1760,39											
	<u>a418 1.31 7.17 -176 0.31</u>											
	2418 1130 7,18 -177 0,2											
12:16 24.9 1,28	<u>24.8 1.29 7,18 -177 0.21</u> <u>24.9 1.28 7,18 -177 0.16</u>											
12:19 24.9 1.28	1 1		0,08	0,54		700						
		170	010 0	0,17	1110	300						
Met	er Calibra	ition	L.,	Meter 1	Number:							
Farameter Date & Time Calibrated	1			ation Results								
Conductivity	pH 2			; pH 1								
Redox Pot.				d reads		.TC)						
Split, Blank, Duplicate, &	Filtered S	F231 n	ny Zoedeil s	olution read	s liscellane							
Sample ID Description		Junpico	,		o Water:							
A					lity:	' I						
		<u> </u>			ygen:	ppm						
					Rate:							
					min,							
Weather:				L <u></u>								
Notes: (well condition, nearby activities or changes in land use, odors, problems, deviations from plan, etc.) Sample Collected @ 12:30												

<u>त</u> ज

Groundwater Sample Collection Log Well ID: <u>/ 42 い ♪ P</u>

	Well Data:											
	Sample Type	e:	0									
	Casing Elev	ation (ft):		N4		-	Diameter of	5000Y fWell (in.): 1"				
							Diameter of	f Borehole (in.): 🕴	0 " ?			
					C	Tisposch	'e					
	Fauinment	y.	Poistell	in PJ	male	Bailer 1	for voc					
	Depth to Wa	ter Surface (ft):	6.84	P	-	Max. depth	during purging (ft	7.95			
	Well Depth ((ft)	· _	9.85		-))	80 percent	recovery: DAM		= 7.06		
	Feet of Wate	er in Well:	9.85 - 6.	84= 3	.01		Depth at tim	ne of sampling (ft)				
	Borehole Vo	Diameter of Borehole (in.): 10^{m} ?Purging: ment:Dispositive Pauler for Vocsnent: to Water Surface (ft):Penstalhic 										
	ſ	T	T			r		* invitati			-	_
		Time	рН	EC	Temp.	Turbidity	Pump Rat	te Vol. Purged	Remarks	Do	ORP	
				(µS/cm)	(C)	(NTU)	(gpm)	(gal)	Color/Odor		- SP	L
		11:30	7.76	291	24.52	13	,125	1	DTW 7,95	151	45	
		11:38	7,75	294	24.48	1.0	,125	2	Drw 7.95	,45	5	Г
	Purge	11:46	7,74	, 300	24,60	0,00	,125	3	DTW7,95	,43	-141	Γ
		11:54	7,74	366		0,00	1135	4	DTW7.94	.41	-157	F
7	+ see belad	12:02		387		0,00	,125	5	DTW 7,95	141	-164	F
(Sample	17:754	Tays		24.65		11/13			:45	-	\vdash
1	% Recovere	ed:	waq	- 96	1140		Pump (feet):	8.8			100	
	Purge Wate	-										
		-										
	Sample Co		Container	Filtered	Pres.	Paramete	re			1		
				1 intered	1103.		10					
	3	3×40ml	VOA	NO	HCI	830	00					
		IXIL	Stages	NO	None							
		(X SOOM)	poly	yes	HN03	me	tals					
			, ,			-						
	Date/Time:	8/8	105	12:47	1	_						
	Sample ID:	142 W	DP .			-						
	COC #:	1370	in a	N	ckin	-						
		Chris L		Dave	SKIM	n						
	Campiers O		TICA		e				× .			
	Comments	: Anded	0	01	1. 22			1]		
	d for 80°	To Recordo	Partien	5011	1:99	NOOK	Sample	parameters	or 1 d:32			
	icolumo .	to Andi	1: pora	meters	s were	eaver	10°p, St	parameters torted pump	ing more			
	Vounc	10 340000	in poro	-met G	5.							
										1	1	
-(Time	104	EC	1 Tem	0 Tu	urb pi	Amp rate	cum vol. pwas	PTW	DO	ORP	~
	12214	1-1-4	.464				0			,40	-168	5
purge		177		24.4			25	615	7,95			-
۱ <i>۰</i>	12:26	1.14	1508		the second s	00,	125	8	7,95	,39	-172	
	12:44	7.75	.556	24.5	40,	00	25	9.5	-	139	-172	-
SAmple	12:47	7.75	1587	24,6	7 01	00 11	35	1	Reeverd DTW	.42	-172	-

Groundwater Sample Collection Log

Well ID: 142006

Well Data:

Sample Type: Casing Elevation (ft): Groundwater

Weather: <u>Summer 75°</u> Diameter of Well (in.): <u>127</u> <u>1</u>" Diameter of Borehole (in.): <u>10</u>"2

Well Purging:

Equipment: <u>P</u>E Depth to Water Surface (ft): Well Depth (ft) Feet of Water in Well: Borehole Volume (gal):

 $\begin{array}{c|c} \hline P & \mathcal{E} & \mathcal$

Max. depth during purging (ft): 3.4080 percent recovery: DMMMPOMF = 1.8 = 6.96Depth at time of sampling (ft): 6.90Total Volume Purged (gal.): 5

							Paula Luca	2		
	Time	pН	EC	Temp.	Turbidity	Pump Rate	Wol. Purged	Remarks	DO	ORP
			(µS/cm)	(C)	(NTU)	(gpm)	(gal)	Color/Odor	90	
	9:38	7,40	,767	23,12	0,00	,125	1	NTW 8,31	1.58	35
	9:36	7,40	761	23,14	0.000	125	2	DTW 8,34	1.30	36
Purge	9:44	7,41	1762	23,17	0,00	.125	3	DTW 8,35	1,03	39
	9:52	7,41	.766	23,18	0,00	,125	4	DTW 8,40	.98	38
	10:01	7,41	,767	23.18	0,00	: 111	5	DTW 8,40	194	37
Sample	10:34	7.42	.768	23.27	0.00	.111	NA	NA	.92	32
% Recover	ed:	44.93	83		Depth of F	Pump (feet):	8.8			
Durgo Wat	or Disposal	ee.	1.0.1	0. 2	201	70. 0.5		_		

Purge Water Disposal: <u>C5</u> CALLON DNM ON

Sample Collection:

Volume	Container	Filtered	Pres.	Parameters
3×491	VOA	N	HU	8260
1× RIMI	P	Y	***angt	Cr6t
1× som	P	Y	HNO	pissoluce metals
1× 10	6	N		8270

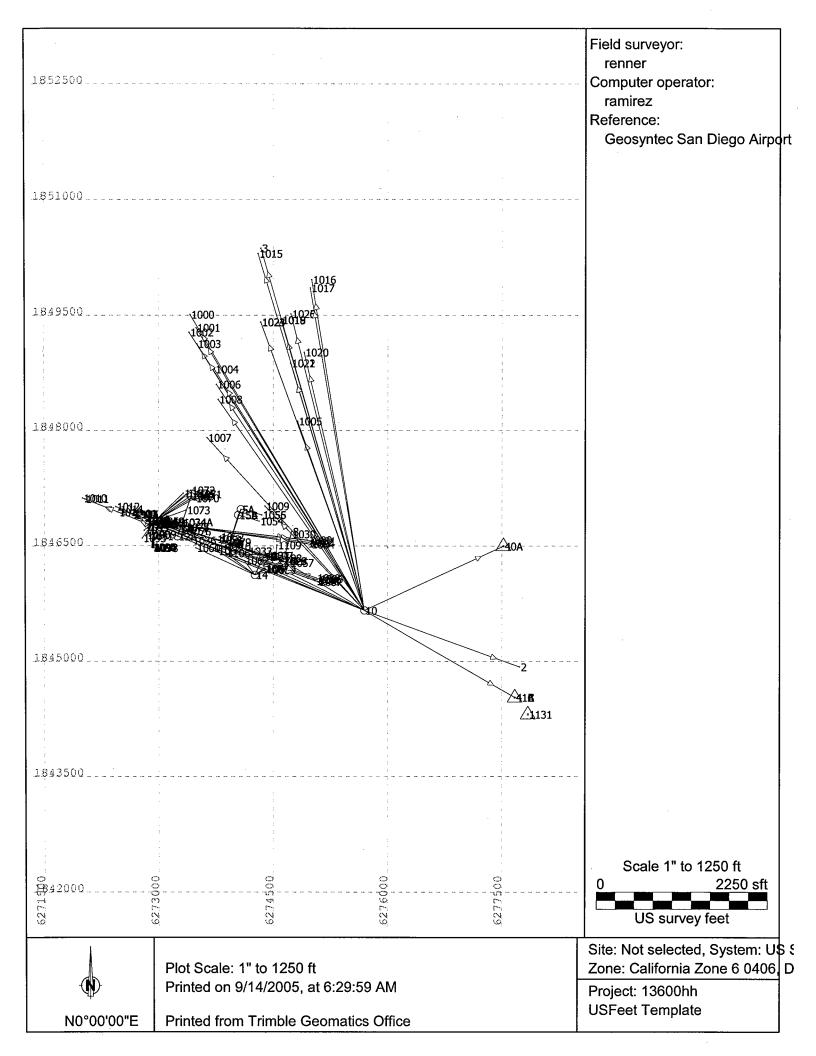
Date/Time:	818105		10:07			
Sample ID:	1420	60				
COC #:	1370					
Field Crew:	C. LIE	052 -	D. Stun	nar		
Samplers Si	gnature:	no	1	2		
			C			
Comments	Stort time 89	1:20				
	PUP1: cute	sample	e colle	ected =	Dur 4	
L						

1

1

Groundwater Sample Collection Log Well ID: <u>i4とい</u>い

	Well Data: Sample Typ Casing Elev			Groundwa	ter		Weather: Diameter of Diameter of	f Well (in.):	,, 		
	Well Depth Feet of Wat	ater Surface (ft) er in Well: blume (gal):	4.81 - 3.47	6.34	3.47			during purging (ft recovery: recovery: ne of sampling (ft) ne Purged (gal.):	10,8	ι.ε. ★182	,368 (6,43)
		Time	рН	EC (μS/cm)	Temp. (C)	Turbidity (NTU)	Pump Ra (gpm)		Remarks Color/Odor	DO	ORP.
		14:50	7.25	,123:	3.68	70	,125		DTW 6.60	,54	76
		14:58	7,26	126	23,75	14	112:		DTW 6.60	,46	64
	Purge	15:10	7,30	,170	23,67	8.3	.12:	5 3.5	DTW 6.80	142	53
		15:22	7.55	187	25,66	0,45	112:	5 5	DTW6.60	,40	44
(Sample	See Be	1.54	184	05:15	0140	110	5 717	DTN 6,60	290	42
	% Recovere		low	<u></u>		Depth of F	Pump (feet):	8,8			
	Purge Wate			CALLON	Dam				-		
	Sample Co	llection: Volume	Container	Filtered	Pres.	Paramete	rs				
		3 ~ 40ml	VOA	N	HU	826	C				
		1× josul	P	Y	HWZ	Meta	uli				
					,]	
	COC #: Field Crew:	8/8/0 142 Chris Liv ignature:	WGP edor at	Dave	Skippo	- - -					
	Comments	PVC	casing	at	30° An	ngle.	Started	primping @	14:42		
-						1		A	1	A . A	1 200
	Time	PH	EC	Temp				cum, vol. purged	DTW	139	ORP 37
purge	15:41	7,37	:312	23.5			125	7.3	6.64	138	36
purge	15:56	7,42		23.31			125	10 7	6.65	137	35
parge	110.11	1 les	1,00	A).)			103	10.8	6.62	121	
sample	16:16	7.43	.357	23.40	-	- 1	125		Recorded DTW 636	139	. 34


GEOSYNTEC CONSULTANTS

CALIBRATION LOG FOR WATER SAMPLING

							ンシ	~										
	Comments	CAL BRANT	J	CAL-GRECK	V	* Use U-13	Br conduction											
	DO (mg/L)	7.85	(ι	١	١												
ling	Turb (NTU)	1	(9.26	20.1	0.14												
Reading	Cond (uS/cm)	9804	4:48	1	ι	١												
	Нd	4.00	1	l	(١												
	DO (mg/L)	((1	(۱												
	Turb (NTU)	5	۱	100	20	0.1												
n Fluid	Cond (#S/¢m)	4.00	17	1	۱	۱												
Calibration Fluid	Hd	cc+1	14	ļ	۱	1												
	Lot #	100/05	1.	5241	45134	5237												
	Brand	Ito the	11	AAUt		-)									~ 1			
iption	Serial #	gachs cy	812022	0		~												
Instrument Description	Type	220	01-1		1	1												
Instrum	Brand	Horizon	14010	~		>												
	Time	7.2 Jen	7:30		,													
	Date	12/24ar																

-- Not Applicable

APPENDIX E SURVEY DATA

Points

Project : 13600hh

User name Coordinate System Project Datum	mramirez US State Plane 1983 NAD 1983 (Conus)	Date & Time 3 Zone	6:36:05 AM 9/14/2005 California Zone 6 0406
Vertical Datum Coordinate Units Distance Units Height Units	ngvd 29 US survey feet US survey feet US survey feet	Geoid Model	GEOID99 (Conus)
Deist listian			
Point listing			
Name	Northing Eastin	-	Feature Code
	44930.608 6277731.20		BM NEBP
	50370.977 6274341.69		4 SBP ON INLET
	46527.032 6273930.93		SCRIBE X IN CONC
	46974.696 6274078.53		? SET SCRIBE X SCRIBE X IN CONC
	46729.669 6273284.90 46309.718 6274628.87		P SET MN IN AC
	46509.718 6274628.87		SCRIBE X IN CONC
	46361.269 6274371.46		SCRIBE X IN CONC
	45664.124 6275692.77		SDUPD-010
	47142.922 6273426.70		P SET SCRIBE X
	46625.063 6273249.00		P SET SCRIBE X
	46811.430 6272933.66		FD PK IN CONC
	46124.520 6274261.37		P SET SCRIBE X
	46901.444 6274044.81		P SET SCRIBE X
	46207.509 6274379.24		SCRIBE X IN TC
	46317.645 6274531.98		P SET SCRIBE X
	46504.873 6273868.70		FD PEN X IN D
	46498.899 6277519.65		SDUPD-040
	44531.098 6277670.80		SDUPD-041
	49512.104 6273413.74		B1
	49340.490 6273493.48		B2
	49278.867 6273402.03		B2MH
	49128.868 6273503.41		B2MH180
	48798.073 6273733.34		B3
	48121.709 6274816.26		B8
1006 18	48601.777 6273760.15		в3мн200
1007 18	47906.082 6273636.83		ВЗМН900
	48404.353 6273783.19		B3MH397
1009 18	47018.218 6274392.19	7 8.444	B11
1010 18	47120.620 6272000.24	6 11.990	B24
1011 18	47110.157 6272027.96	6 11.498	B24MH30
1012 18	47011.860 6272430.61	6 10.154	B23
1013 18	46937.501 6272461.73	3 8.056	C2
1014 18	46976.789 6272477.26	9 8.161	C2-42
1015 18	50302.270 6274303.35	8 12.711	D-7
	49966.175 6275000.53		B-8
	49856.923 6274981.54		D-13
1018 18	49439.326 6274603.99	2 14.025	D-26 OUT
1019 18	49439.616 6274602.28	2 13.883	D-26 IN

 $file://M:\d_trimble_tgo\projects\13600hh\Reports\Additional\Report.html$

1020 1849019.294 6274902.130	13.324	D-13MH-842
1021 1848878.603 6274726.051	12.482	D-30 IN
1022 1848876.794 6274727.201	12.495	D-30 IN
1023 1849412.941 6274338.037	14.218	D-28 IN
1024 1849410.849 6274339.590	14.135	D-28 OUT
1025 1849520.110 6274730.008	13.504	D-22 IN
1026 1849519.582 6274731.533	13.433	D-22 OUT
1027 1846305.125 6274622.544	8.582	
1027 1846305.125 6274622.344	8.595	
		A-147 IN 18"
1029 1846306.351 6274619.091	8.587	A-147 OUT 18"
1030 1846654.722 6274734.924	8.856	A-141
1031 1846374.709 6274391.025	8.911	A-152 IN
1032 1846373.460 6274388.876	8.969	A-152 OUT
1033 1846431.103 6274169.298	8.637	A-133 TG
1034 1846808.973 6273310.069	9.520	A-63
1035 1847184.704 6273424.000	10.736	A-49
1036 1846572.153 6273436.699	9.423	A-67
1037 1846832.895 6272816.695	9.277	A-20
1038 1846789.935 6272935.156	9.460	MW B131-MW2
1039 1846653.118 6272916.366	9.196	MW B131-MW3
1040 1846823.902 6272827.732	8.995	MW B131-MW1
1041 1846776.803 6272954.302	9.962	TH T-20
1042 1846778.640 6272944.895	9.896	TH T-19
1043 1846781.499 6272933.231	9.790	TH T-18
1044 1846784.007 6272923.098	9.832	TH T-17
1045 1846847.315 6272835.909	9.646	TH T-16
1046 1846837.948 6272832.969	9.493	TH T-15
1047 1846825.371 6272831.503	9.438	TH T-14
1048 1846814.581 6272830.234	9.550	TH T-13
	9.237	A-23 IN
1049 1846821.563 6273017.327	9.221	
1050 1846821.385 6273019.609		
1051 1846582.843 6273789.263	9.088	TH T-39
1052 1846616.730 6273801.626	9.160	TH T-40
1053 1846590.022 6273756.774	9.547	TH T-41
1054 1846820.809 6274317.281	8.212	A-132
1055 1846902.124 6274349.270	8.448	A-131 OUT
1056 1846904.327 6274349.938	8.439	A-131 IN
1057 1846283.910 6274713.157	8.728	MW B120-MW6
1058 1846210.514 6274393.927	8.029	MW B120-MW-5
1059 1846188.138 6274477.135	7.071	MW B120-MW-4
1060 1846475.922 6273488.422	8.707	A-68 IN
1061 1846475.139 6273486.458	8.704	A-68 OUT
1062 1846308.861 6274122.590	7.498	A-134
1063 1846197.244 6274400.730	8.818	A-201
1064 1846436.824 6273769.891	9.620	TH T-42
1065 1846796.715 6273028.019	9.263	MW BLD156-MW1
1066 1846798.299 6273082.048	9.314	MW BLD156-MW3
1067 1847184.623 6273324.911	10.903	MW P1
1068 1847162.934 6273373.409	10.750	MW TC4WEP
1069 1847146.423 6273417.966	10.318	MW TC4EGP
1070 1847122.066 6273477.209	9.851	MW TC4EHP
1071 1847171.306 6273512.634	10.457	MW TC4EEP
1072 1847224.017 6273422.950	10.933	MW TC4MWNC
1073 1846965.230 6273360.496	9.658	MW SDE
1074 1846801.340 6273305.776	9.158	MW 142WEP
1074 1840801.340 0273303.770	9.567	MW 142EBP/WDP
1075 1846686.084 6273371.328	8.490	MW 142EBP/WDP MW 142WGP
1076 1846686.084 6273371.328	8.490 9.827	MW 142WGP MW 142NC
1078 1846747.475 6273348.573	8.917	MW GT4
1079 1846551.085 6273893.041	9.685	MW BLD102-MW3

.

1080	1846578.448	6274947.872	9.036	TH T-35
	1846565.321		8.983	TH T-36
1082	1846546.036	6274964.767	8.995	TH T-34
1083	1846534.393	6274937.589	9.264	TH T-37
1084	1846521.526	6274982.733	8.855	TH T-38
1085	1846074.526	6275096.184	8.656	TH T-30
1086	1846061.775	6275073.074	8.670	TH T-31
1087	1846036.693	6275083.528	8.718	TH T-33
1088	1846047.432	6275046.508	8.912	TH T-32
1089	1846085.647	6275058.100	9.435	TH T-29
1090	1846642.310	6272834.288	10.616	TH T-23
1091	1846627.482	6272877.708	10.511	TH T-24
	1846702.269		10.343	TH T-22
1093	1846602.390	6272782.342	10.116	MW B131-MW5
1094	1846477.935	6272916.550	8.916	MW B131-MW4
	1846486.434		9.225	TH T-25
1096	1846484.257	6272918.835	9.382	TH T-26
1097	1846477.915	6272929.519	9.598	TH T-27
1098	1846475.276	6272940.247	9.678	TH T-28
1099	1846747.753	6272822.974	10.135	TH T-21
1100	1846913.500	6272646.379	10.636	TH T-1
1101	1846920.921	6272653.779	10.648	TH T-2
1102	1846908.884	6272660.433	10.957	ТН Т-З
1103	1846915.833	6272662.755	11.002	TH T-4
1104	1846903.677	6272678.384	11.366	THT 5
1105	1846912.584	6272680.978	11.336	ТН Т-6
1106	1846409.716	6273880.231	8.831	MW BLD102-MW4
1107	1846376.743	6274438.617	8.776	WM BLD120-MW3
1108	1846341.675	6274556.652	8.867	WM BLD120-MW2
1109	1846511.908	6274547.748	8.882	MW BLD120-MW1
1110	1846489.662	6273886.536	9.533	MW BLD102-MW5
1131	1844311.240	6277841.550	11.420	SDGPS-1131
1034A	1846808.928	6273310.066	9.534	CHKIN #1034
11A	1847142.926	6273426.713	10.578	CHKIN WP-11
11B	1847142.894	6273426.745	10.571	CHKIN WP-11
12A	1846625.059	6273249.013	9.834	CHKIN WP-12
	1846811.428		9.598	BSCHK WP-13
	1846901.431		9.916	CHKIN WP-15
	1846901.429		9.928	CHKIN WP-15
	1846207.505		9.195	CHKIN WP-16
	1846207.504		9.204	CHKIN WP-16
	1846498.947		13.890	CHK SDUPD-040
	1844531.180		9.047	CHK SDUPD-041
	1844531.113		9.060	CHK SDUPD-041
	1844531.153		9.077	CHK SDUPD-041
	1846527.012		9.637	CHK WP-4
	1846527.022		9.626	CHKIN WP-4
	1846527.016		9.647	BSCHK WP-4
	1846527.027		9.636	BSCHK WP-4
	1846527.017		9.616	BSCHK WP-4
	1846527.014		9.624	BSCHK WP-4
	1846527.090		9.606	CHK WP-4
	1846527.008		9.640	BSCHK WP-4
	1846527.018		9.631	BSCHK WP-4
	1846527.012		9.644	BSCHK WP-4
	1846974.703		9.703	CHKIN WP-5
	1846729.676		9.790	CHK WP-6
	1846729.681		9.810	BSCHK WP-6
	1846729.671		9.804 9.795	BSCHK WP-6
עט	1846729.669	0213204.009	9.190	CHKIN WP-6

6E	1846729.649	6273284.883	9.726	CHK WP-6
7A	1846309.715	6274628.888	8.739	BSCHK WP-7
7B	1846309.711	6274628.876	8.705	BSCHK WP-7
7C	1846309.711	6274628.876	8.671	BSCHK WP-7
7D	1846309.745	6274628.882	8.751	CHKIN WP-7
7E	1846309.758	6274628.876	8.744	CHKIN WP-7
7F	1846309.718	6274628.878	8.733	BSCHK WP-7
9A	1846361.245	6274371.460	9.265	CHKIN WP-9
9B	1846361.275	6274371.472	9.261	BSCHK WP-9
9C	1846361.276	6274371.470	9.266	BSCHK WP-9
9D	1846361.244	6274371.451	9.281	CHKIN WP-9
А	1846482.303	6272919.262	9.382	SPT
BM1	?	?	9.774 BM NEB	? ELEV 9.774
BM2	?	?	9.774 BM NEB	? ELEV 9.774
вмз	?	?	15.271BM SBP II	N INLET ELEV 15.271

Back to top

 $file://M:\d_trimble_tgo\projects\13600h\Reports\Additional\Report.html$

		-	7		7
6/15	=		6		"
5/12	5,90	NP	<u> </u>		Ocf
b/12 V		~	HOH	Чо	11
6/13	5,40	CHK	410	14	OCP
	5,12/1,560	5 010-01 GS		0)	BASE
44	5.90	Jar B	Ŧ		064
5/12	5,90	Bm	ω	BM3	οςρ
		ſ	1045-107		Tyro
				-	
Z 5/1	5.90	BM	2	2 MB	=
01/9	5.90	CHK	4118	-	٥٢٩
 	1.539	()		10	BASE
			1000-1014		-OPO-
21/2	09.2	CHK	HIA	41	OCP
	5.21/1.587	5) UPD-010		0/	BASE
XYZ No. SATS HOLD RMS/RI	HI FT/M	CODE	DATA COLL NO.	HARD COPY NO.	STATION
RICK ENGINEERING COMPANY PTION AND LOCATION: <u>(70</u> 3600 HH-1.DC NGVD 29/ BUSS of	JOB DESCRI FILE : 1 NAO 83/	TATION		RENNE RENNE	TRIMBLE TOPCON CHN: CAL LANSTR: CAL CHIEF: R
	PTION AND L 3600 RH- 3600 RH- NOLD MOIN NOLD MOIN NOLD MOIN S/12 S/12 S/12 S/12	CRIPTION 2: 1360 h : 1360 h : 1360 h : 1360 h : 1360 h	JOB DESCRIPTION , FILE : 13600 h FILE : 13600 h SIZ/1587	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	E 4300 GPS-RTK JOB DESCRIPTION ASTEL UM JOB DESCRIPTION JOB DESCRIPTION Renno COLL NO. CODE FILE : /3600 h 10 SJUPD-000 5.2/1.587 JAD 83/ N/hu 41 41/1 CHK S.90 SJUPD-000 5.2/1.587 10 JOBD-1004 SJUPD-000 5.2/1.587 JAD 83/ N/hu 10 1000-1004 SJUPD-000 5.2/1.539 JAD 8 10 JOBD-1004 S.90 Z BM S.90 Z 10 JBB -1014 S.90 Z Bm S.90 Z BM3 3 Bm S.90 Z 1005-1014 S.90 Z S.90 Z 1005-1014 S.90 Z S.90 Z S.90 Z 1005-1014 S.90 S.90 Z S.90 Z S.90 Z 1005-1014 S.90 S.90 Z S.90 Z S.90 Z 1005 S.90 S.90 S.90 S.90

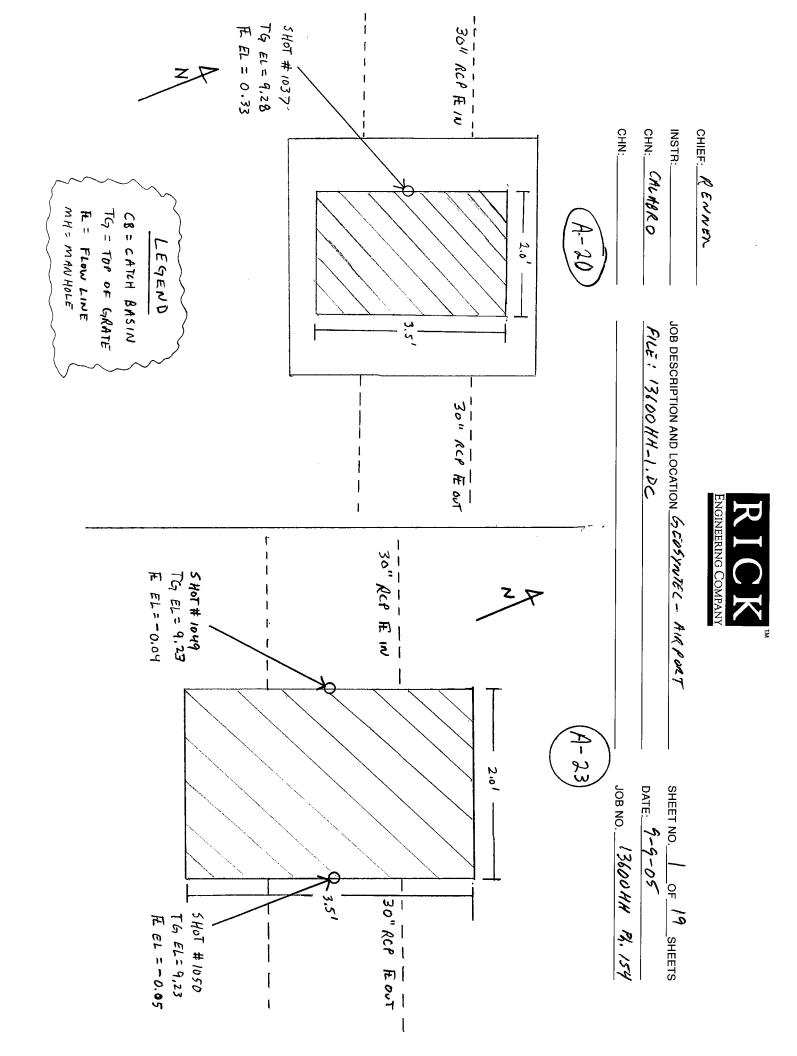
	12 SET SCRIBEX IN CONC	WP-12					12		55
		11- dm			4,99	CHKIN		-	CHK
	7				5,18	BSCHK	78	7	59
	6	wp-6			L1'5			6A	K
									5
		Tapo					1035		Theo
	1034 (A-63)	1 # 10			4.99	G.K.	1034A	# 1034	CHK
	6	- 0			5.10	BSCHK	68	6A	Sa
	11	wp-1			5,50			11	A
	n en								(
FL V34	1 SET SCRIBE X IN CONC	WP-11			4.99	WP	11		SS
-		Toro					1034-		Topo
		w P- 4			4.99	CHK IN	ЧВ	ЧA	(F
	7	wp			5.18	DSCHK	-7A	7	59
	6	wp-6	e		5.27			6A	X
			and the second		and the second				5
z	1)	WP-9			11	γJ	_0		55
FL VSH	SET SCRIBE X IN COMC	WP-8	_		4,99	WP	Ø		55
		1200				33	1027-1033		ल्ता
	L L	WP-4			4.99	CHIKIN	ЧР	2	Crlk
		mp-6			5.1	BS CHK	6A	6	58
	7	w1-7	-		5.34			L	R
	DESCRIPTION		No. SATS RMS/R1	HOL D XYZ	HI FT/M	CODE	DATA COLL NO.	HARD COPY NO.	STATION
NO.: 13600 HU PH 154	JOB NO. :							KENNER	CHIEF:
, 9-2-05	DATE	C	FILE: 13600 HH_1.DC	13600	FILE :	ļ			INSTR:
SHEET NO. : 2 OF \$ SHEETS	HIR POAT	600	AND LOCATI	RIPTION	JOB DESC			CALAGRO	CHNI C
			ENGINEERING COMPANY						-
	SAN DIEGO, CA 92110								
	5620 FRIARS ROAD								

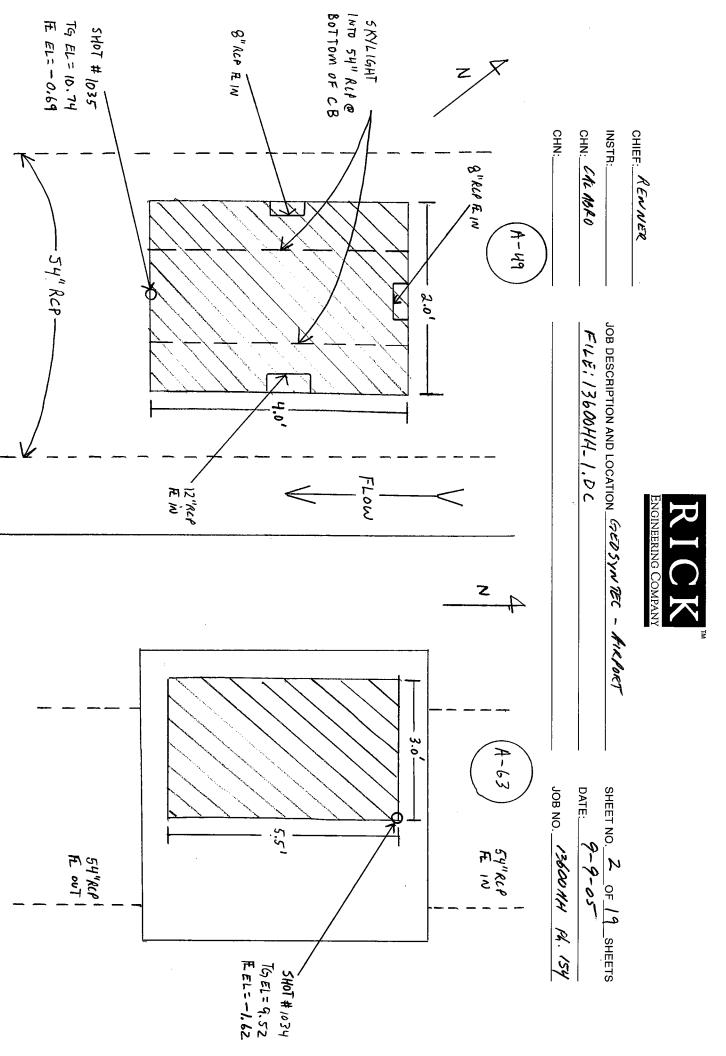
1, 1049-105p 1200	TOPO 1041-1048 TH T-26 -> T-13	FA: m	5	FROM	" 1039 MW 22,59 BIJI-MW3 SET NO	FA0.	TNPO 1038 MW 499 B131-MWZ SET N'LY	CHK 6A 6D 4.99 WP-6	4A 4C 5.17	T 13 5,40 WP-13			55 13 WP 4.99 WP-13 FD PK NAL) [637-	CHK 12 12A CHKIN 4.99	85 7 7 C BSCHK 5.18 WP-7	X 6A 5.27 WP-6		TVP0 1036 TD00	CUK 11 11B CHKIN 4.99 WP-11	BS 6A 6C BSCHK 5,10 WP-6	12	STATION COPY NO. COLL NO. CODE FT/M HOLD RMS/RI	CHIEF: NENNER	INSTR:	CALAGRO JOB DESCRIPTION AND LOCATION: GEOSYNTEC -	CALABRO JOB DESCRIPTION AND LOCATION: GET	CALABRO JOB DESCRIPTION AND LOCATION: GEOSYNTEC	CMLABAD JOB DESCRIPTION AND LOCATION: GEOSYNTEC -
		L-10	MARK ON 2" PVC Down. 78'		NEY MARK ON 2" PUC DOWN, 64'		LY MARK ON 2" AVL DOWN . 32'				CALABRO	9-06-05 Kenner	IN CONC FLUSH										DESCRIPTION	JOB NO. ; 136 00 HH PH 154	DATE: 9-02-05	SHEET NO. : J OF A SHEETS	SHEET NO. : 3 OF X8 SHEETS	SHEET NO 3 OF X8 SHEETS	SHEET NO. : 3 OF X8 SHEETS

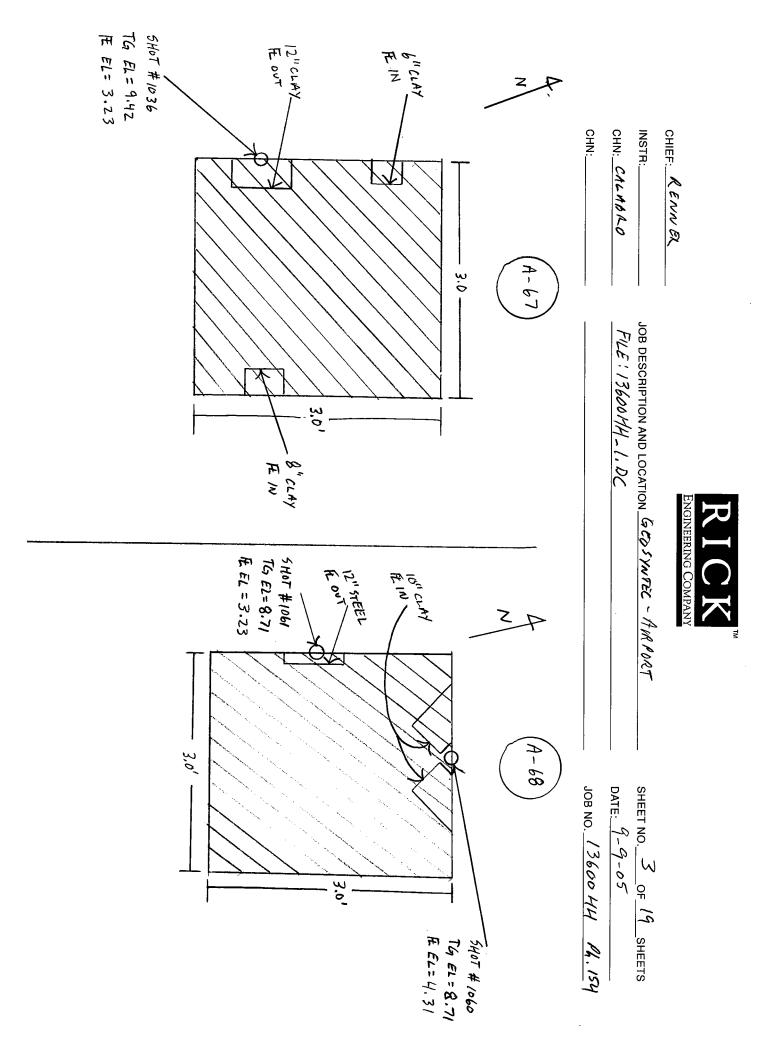
		2 Hr 58	9		1040 105	CYK 15	BS 4A 4	× ×		7000 10	CFIK 5 5	BS 4A 4	X 15		\$5	55	ia/ 0401	CHK q o	BG 13 1	AH X	STATION COPY NO. CC	CHN: CALABLO INSTR: RENNER CHIEF: RENNER
1057 1	70	YF B			1055-1056	15A C	HEI			1054	5A 0	D			51	57	1051-1053	9A C	13 A 1		DATA COLL NO.	
35	(柔)n	bschk	 			CHKIN	BSCHK	 			CHRIN	BSCHK			Wp	50		CHRIN	BSCHK		CODE	
4,99	4.99	· · ·	5.34			4,99	5.16	5.44			4.99	5.16	5.32						5.25	5,32	HI FT/M	JOB DESC
														server a server a server of the server							HOLD XYZ	RIPTION 13600H
					•																No. SATS RMS/RI	RICK SUB DESCRIPTION AND LOCATION: CHE FILE : 13600 HH - 1, DC
BIZO-MW-6 FD N'LY MARK ON 2" NC DOWN, 65 FROM LID		wp-4	p-gw		TOPO	WP-15	wo-4	$w \rho - 5$		TDP0	wfr5	wp-y	WA-15=			WP-5 SET SCRIBE X IN CONC	TH T-39 -> T-41	wp-9	wh-13	bup-4	DESCRIPTION	5620 FRIARS ROAD SAN DIEGO, CA 92110 619.291.0707 (FAX)619.291.4165 (FAX)619.291.4165 SHEET NO.: 4/- 0F SHEET NO.: 4/- 0F SHEET NO.: 4/- 0F SHEET NO.: 5/- 06 - 05 DATE: 7-06 - 05 JOB NO.: 136 00 HH OB NO.: 136 00 HH

							" " BIZO-MW-YFD NLY MARK ON Z" PUC DOWN .5-2"	Topo 105-8 MW 4.99 BIZO-MW-SFD NILY MARK ON 2" NC DOWN. 31' FROM LID	16 16A CHKIN 4.59	85 9 7 B BSCHK 5.18 WP-9	X 14 5.50 $W P - 14$		11 Lup-16	55 14 WP 4.99 WP-14 SET SCALES X ON ENCET	$\overline{\mathcal{M}}$ q 5.34 W^{2} q	STATION COPY NO. COLL NO. CODE FI/M HOLD RMS/R1 DESCRIPTION	ED SYNTEL - AIRPORT SHEET N DATE:	
							5-2' FRAM LID	1' PRom LID						FLUSH			ET NO.: <u>Σ</u> OF <u>X</u> SHEET: E: <u>9-06-05</u> NO.: <u>13600 HM</u> PH <u>ISY</u>	

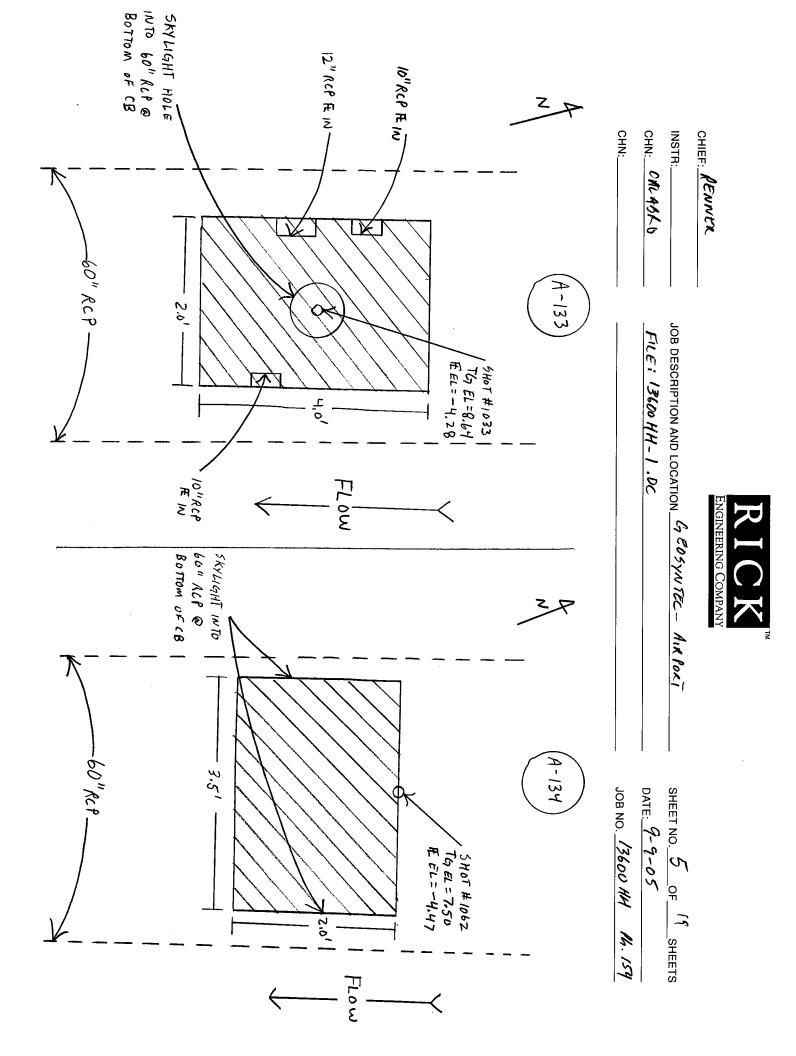
			5	1	۲,	-	1	=		-	=		H	=		-				10	=	Tapo	=	ocl	BASE	STATION COPY NO.	CHN; CALABRO INSTR; CALABRO CHIEF; LENNER
INTERCONSISTING MADILICATION MODILICATION MODILICATION MODILICATION GRADULE COMPANY (FAXISTER ALL ALL TIME COMPANY (FAXISTER ALL ALL ALL TIME COMPANY (FAXISTER ALL ALL ALL TIME COMPANY (FAXISTER ALL ALL ALL ALL ALL ALL ALL ALL ALL AL	1097-1-0	1094	1093	2601	1090-1091	1025-1089	1080-1084	1079	1078	1077	1076	1075	10 74	1073	1072	1071	1070	6901	1018	1067	1016	1065	4 46	6	13	RD DATA NO. COLL NO.	Ko VER
Image: Second statute Same Discos Constant Same Di		•	MW	TH	TH	TH	TH	1	=	=	=	=	1	-	2		×	 	5	7	=	MW	=	CHK	5		
$\frac{1}{1} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^$			3	=	-	-	=		:	=	=	=	=	3		2	2		=	7	=	"	=	5.90	19/1582	HI FT/M	108 DESCR FILE:1 NHD &3
$\frac{V_{ENNY}}{(FAX)619.291.4165} GGOSYNTEC- AIK/PAT SHEET DESCRIPTION V_{P}-I_{S} FD PK IN CONCV_{P}-I_{S} FD PK IN CONCV_{P}-I_{S} FD PK IN CONCV_{P}-I_{S} FD PK IN CONCV_{P}-I_{S} FD NOTH ON N'LY EDGE I" FUCV_{P}-I_{S} FD MARK ON N'LY EDGE I" FUCV_{P} FD MARK ON N'LY EDGE I'' VCV_{P} FD MARK ON N'LY EDGE I'' $																							6			<u> </u>	иртиом дл 36 <i>00 нН</i> / <i>N</i> 6VD
$\frac{1}{12} = \frac{1}{12} + \frac{1}{12} $																										No. SATS RMS/RI	NGINEERING (ID LOCATIC -1. DC 29/ BA
			MW5 FP MARK ON NLY EDGE OF 2"/UC	7-22	-1 - 57	29 -> 7-3	⇒ 1.	- muz " " " Down	1) II II Down	FO MARK on N'LY EDGE 4' PUL DOWN	שיאסע יי יי אי קי	P/WDP FU MARK ON N'LY EUGHE 1"PUC DOWN.	PO MARK ON N'LY EDGE I" IVC	FO NOTCH ON N'LY EDGE 2"INC	WNC FO NOTCH ON WLYEDGE 4" DUC DOWN ,	EEP FO NOTCH ON N'LY EDGE I" IVC P	EHP FD MARK ON N'LY EDGE 4" PVC DO	EGP FO NOTCH ON N'LY EDGE 1"PUC	P FD MARKON N'LY ENSE 1" PUC		- MW3 " " "	- MWI FD MARK ON N'LY EDGE OF	y , y	SET SCRIBE X IN	FD PK IN	DESCRIPTION	AFANY (FAX)619.291.0707 AFANY (FAX)619.291.4165 GODSYNTEC- AIR PORT OF COORDS PER. ROS 1666 3 JOB NO.:

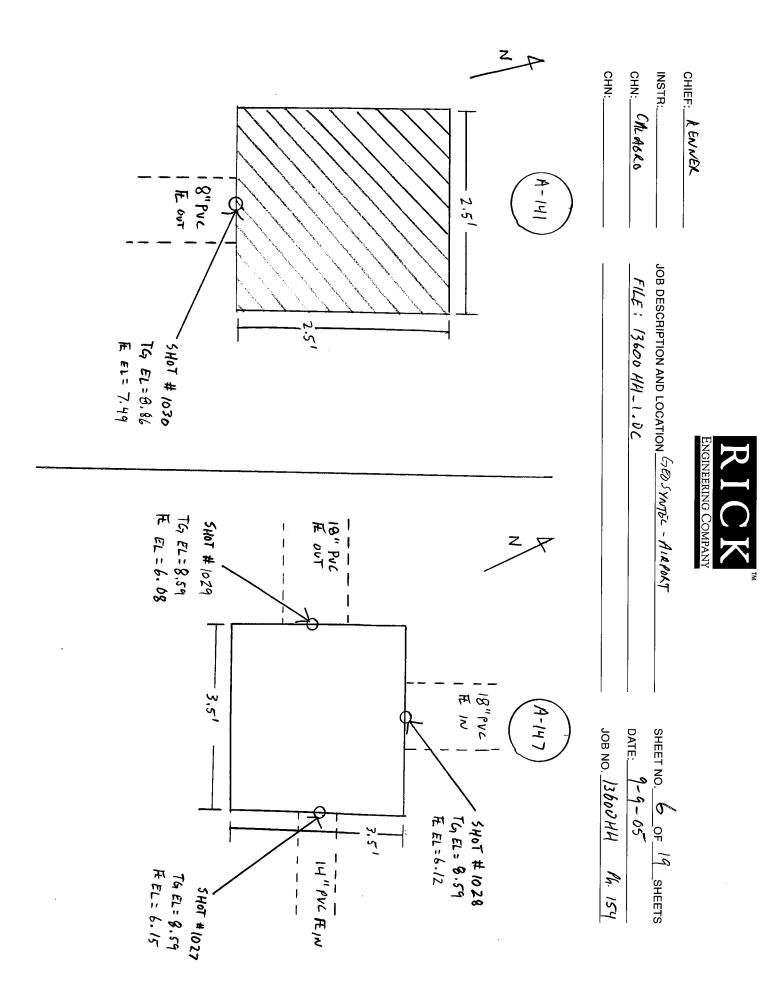

							Q V
BLDIZO-MWI FOR MARK ON N'LY SIDE 4" PUC DUWN. 42' FROM LIN			4,99	≷ ૨	1/0 9		adu
L-1M	_		ی 12	CHIKIN	36	7	CHK
Wy-4			5,22	BSCHK	Ψľ	ЧĄ	s 8°
w/-17			5,25			17	×
SET SCAIBE X IN CONC.				WP	(7		25
Down, 32' From			2	11	1108		4
BLD 120-MW3 FD MARK ON N'LY SIDE OF 4" PUC DUWN .33" FROM LID			2	MM	1107		edol
p-AM			4.99	CHKIN	9D	9	CHK
WP-4			5.22	BSOHK	ЧН	٩A	BS
wf-7			5:30			7	×
							2
BLD102-MWY FJ MAK ON N'LY SIDE OF 4" PUC DOWN .60' FROM LID				Mw	1106		Topo
wp-16			4.79	CAKIN	168	16	CHK
wp- 7			4,79	NHO SA	26	9	B 2.
wp-14			5.41			14	X
							5
$T - 1 \rightarrow T - 6$			м	1	1/00->1/05		و
$\mathcal{T} - \mathcal{Z}$			5.90	TH	1099		Tapo
wp-13			5,19/1,582			2	BASE
DESCRIPTION	No. SATS RMS/RI	XYZ HOLD	HI FT/M	CODE	DATA COLL NO.	HARD COPY NO.	STATION
JOB NO. : 13600 HH PH 154						RENNER	CHIEF:
DATE: 9-13-05	13600HH-1.Dc	: 13600	FILE:				-9
GEDSYNTEL- HIK WAT	JOB DESCRIPTION AND LOCATION: .	RIPTION	JOB DESC			(ALABAO	CHNI
\sim	ENGINEERING COMPANY						
SAN DIEGO, CA 92110	RIC						•

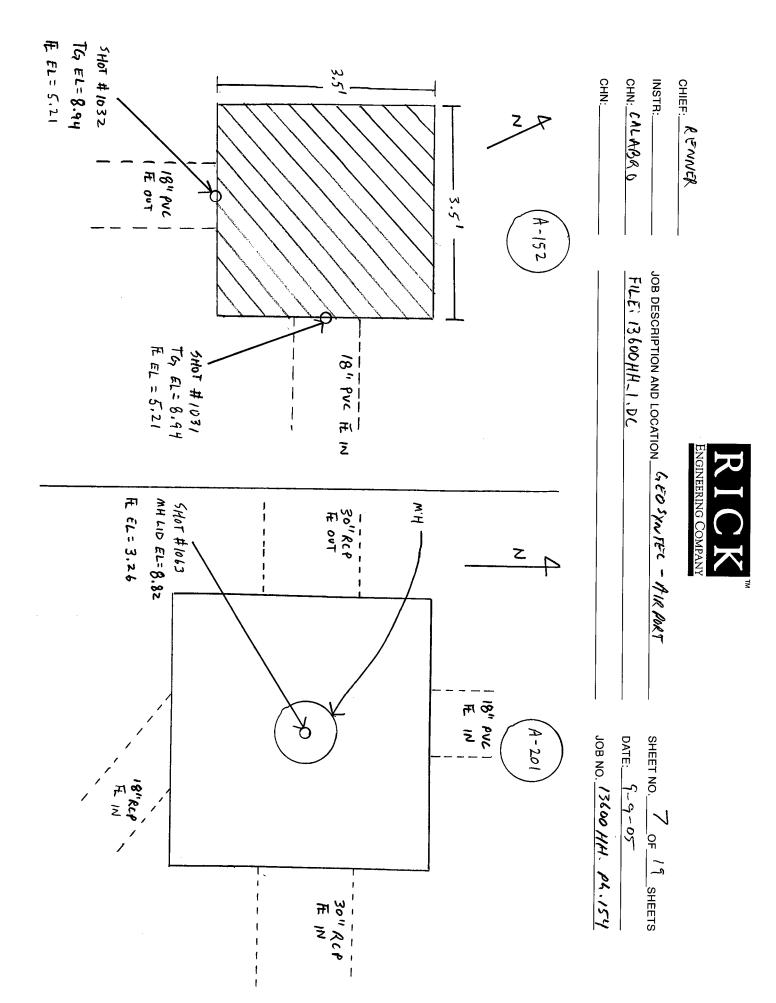

Points

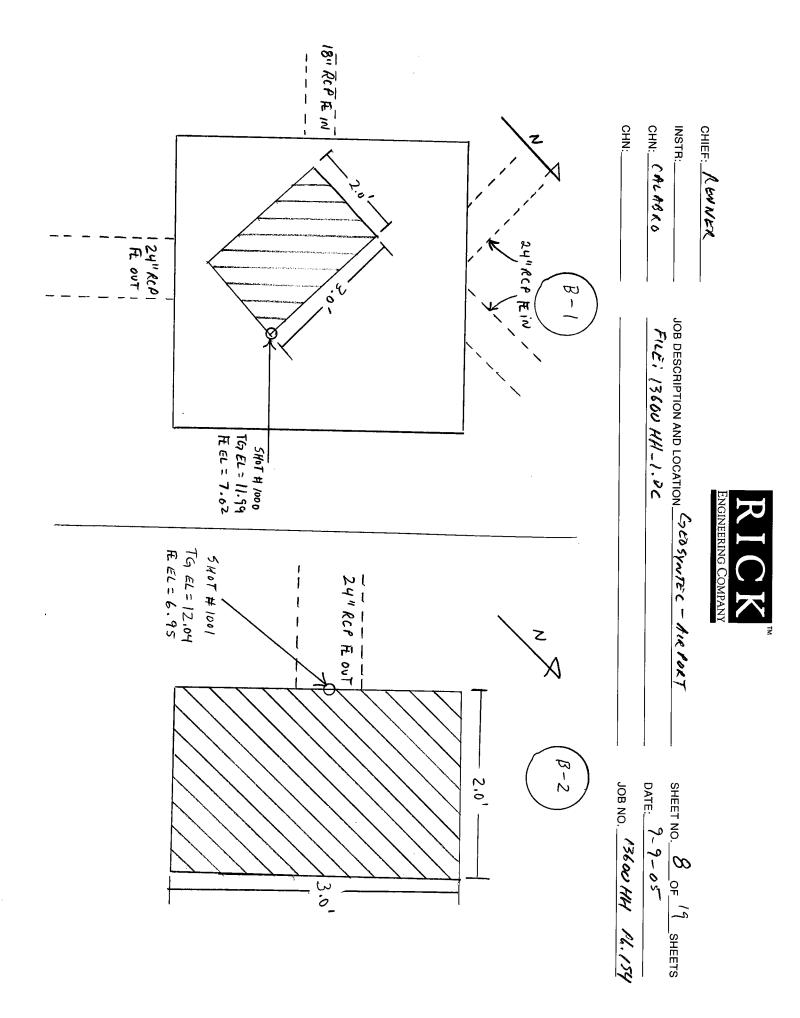

Project : 13600hh

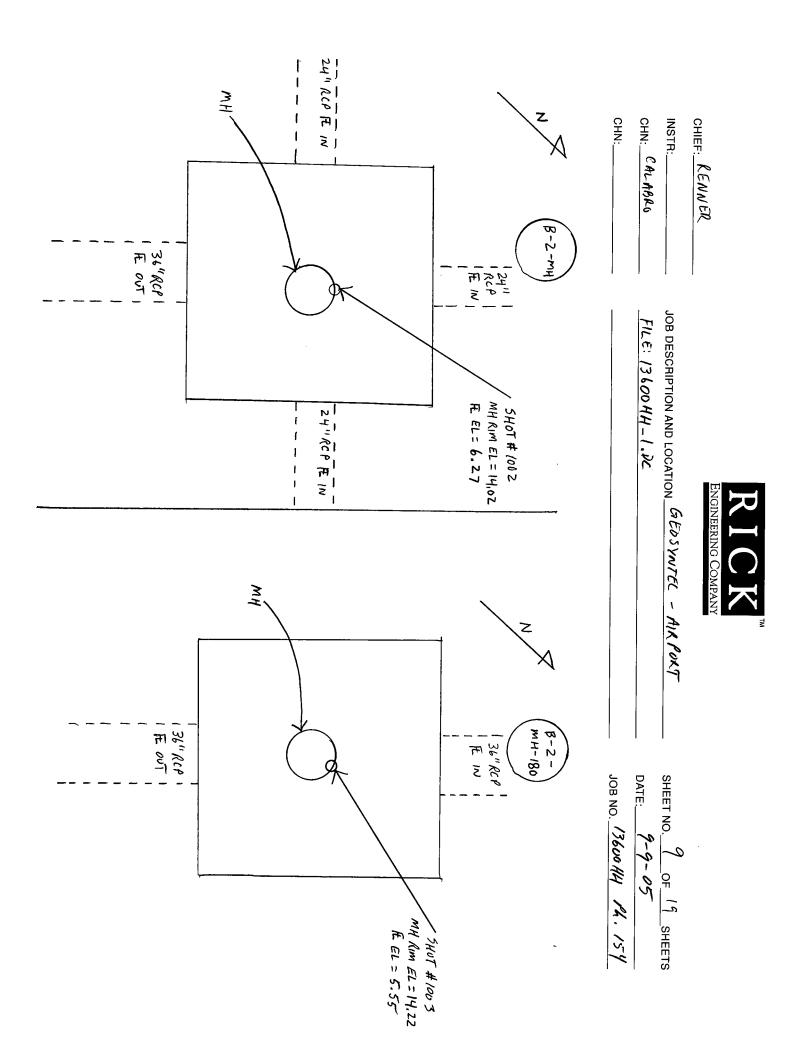

User name Coordinate Syster Project Datum Vertical Datum		z e Plane 1983 33 (Conus)	Date & Time Zone Geoid Model	1:49:12 PM 9/26/2005 California Zone 6 0406 GEOID99 (Conus)				
Coordinate Units Distance Units Height Units	US surve US surve US surve	ey feet						
Point listing								
Name	Northing	Easting	Elevation	Feature Code				
	1846527.032	-	9.504WP	SET SCRIBE X IN CONC				
	1846729.669		9.701WP	SET SCRIBE X IN CONC				
13	1846811.430	6272933.666	9.651	WP FD PK IN CONC				
	1846532.648		9.362	WP SET SCRIBE X				
20	1846411.824	6274877.986	8.991	WP SET MN IN AC				
21	1846334.870	6275179.609	8.745	WP SET MN IN AC				
1111	1847313.004	6273453.374	9.814	MW TC4-WIP				
1112	1846806.094	6274797.215	9.336	TH T-43				
	1846696.119		11.121	TH T-7				
1114	1846561.622	6272612.232	10.468	TH T-8				
1115	1846470.974	6272761.318	9.746	TH T-9				
	1846586.965		9.280	TH T-10				
1117	1845956,529	6275067.431	7.887	MW B180-MW-1				
	1846149.839		9.074	TH T-11				
20A	1846411.903	6274877.964	8.962	CHKIN WP-20				
	1846334.873		8.719	BSCHK WP-21				
	1846527.012		9.637	CHK WP-4				
4 K	1846527.049	6273930.934	9.625	CHK WP-4				
6F	1846729.704	6273284.880	9.797	CHK WP-6				
Back to top								

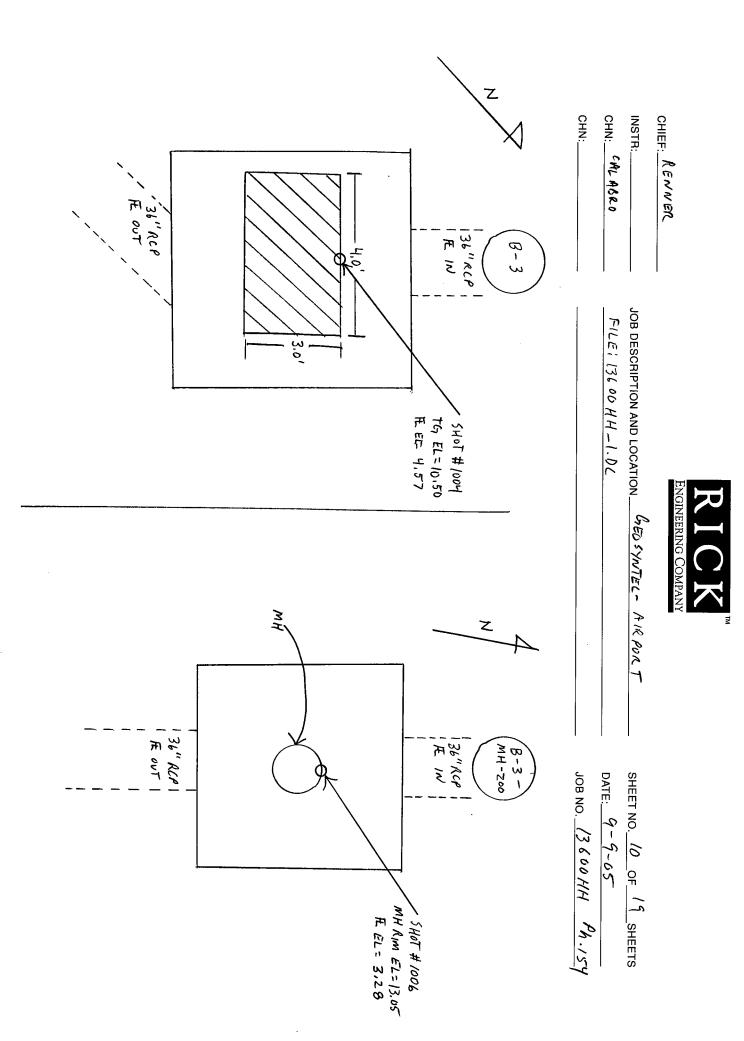

		HT 8111 20	CHK 20 ZOA CHKIN	BS ZI ZIA BSCHK	The pick of the pi		12 12 1		0CP 19 WP	" IN7 MW	11 1116 11	v1 1115 11	" " "	n []]3 n	1112 TH	TOPO 1111 MUY	our 4A 4K CHK		BASE 13 5.0%, 537	STATION COPY NO. COLL NO. CODE	CHN: CHLHBRO INSTR: CHLEF: RENNER
 		=	4.99	4.99				11	=	11	1	11	4	=	=	2	5,90	5.90		HI XYZ FT/M HOLD	RIC INGINEERING CON SOB DESCRIPTION AND LOCATION: FILE: 13600 HH-1.DL NAD 83/NGND 29/
							7	7/13 V	5								1	5/7 1		No. SATS RMS/RI	RIPTION AND LOCATION: 13600 HH-1.DC 83/NGND 29/BA
		T-11	w1-20	W/A-21	WP-19			WI-ZO SET INN IN AC FLUSH	T SCRIBE X IN CONC	BIBO - MWII SET MARK ON N'LY SIDE 2" PUC DUWN. 85 FROM LID	T-10	1-9	7-8	T-7		TCY-WIP FO N'LY MARK ON 4"PUC DOWN . B2' RIM LID	M 11	SET	WP-13 FD PK NAIL in Conc.	DESCRIPTION	5620 FRIARS ROAD SAN DIEGO, CA 92110 619.291.0707 (FAX)619.291.4165 VI CTEO SYNTEC - AIKPORT C (ADD ING DEXIST. FILE DATE: 9-26-05 SHEETS DATE: 9-26-05 SHEETS DATE: 9-26-05 SHEETS DATE: 1500 HILL PH 154

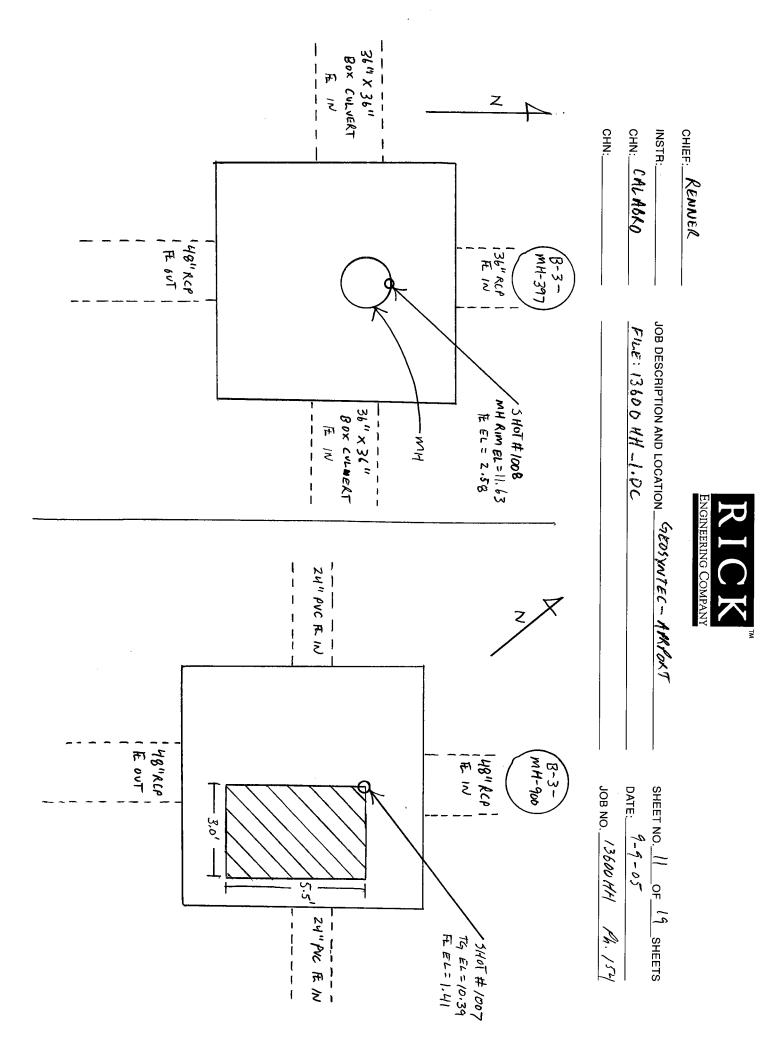


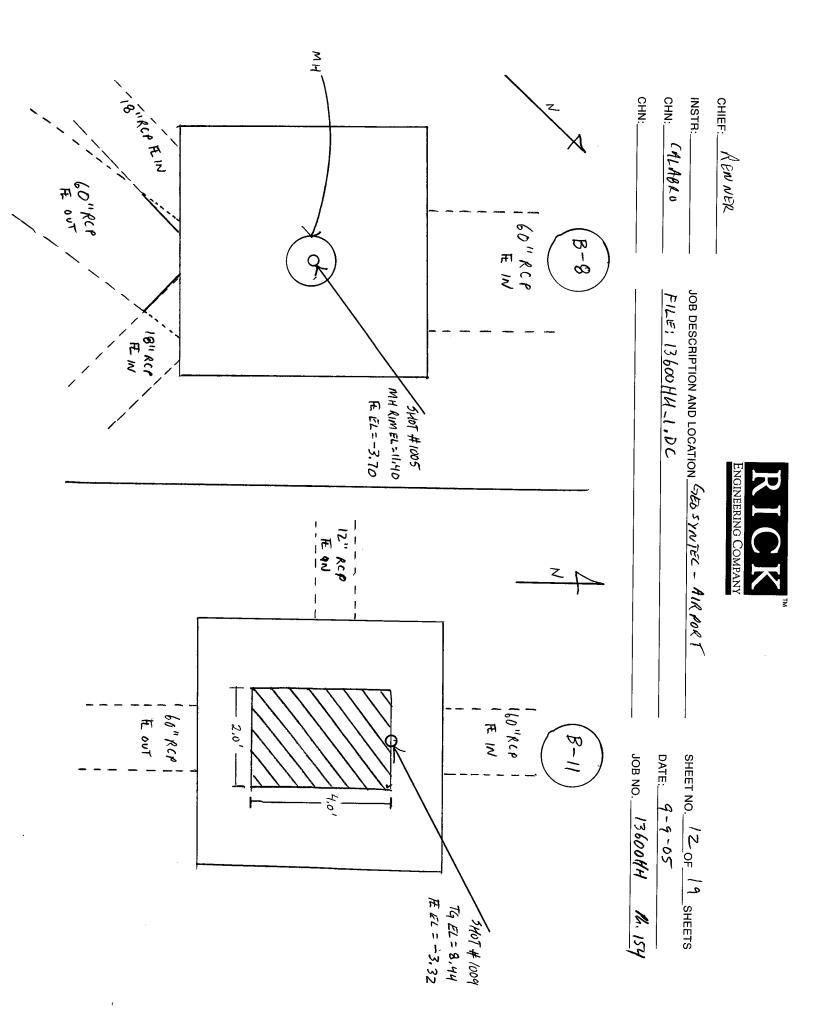


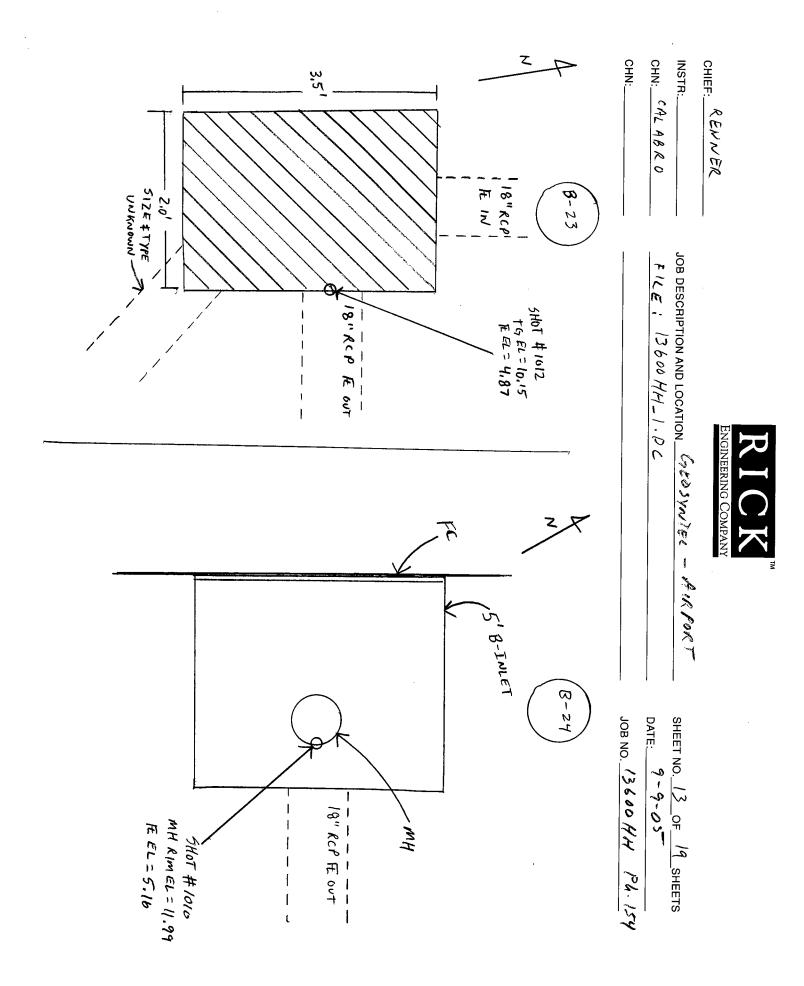


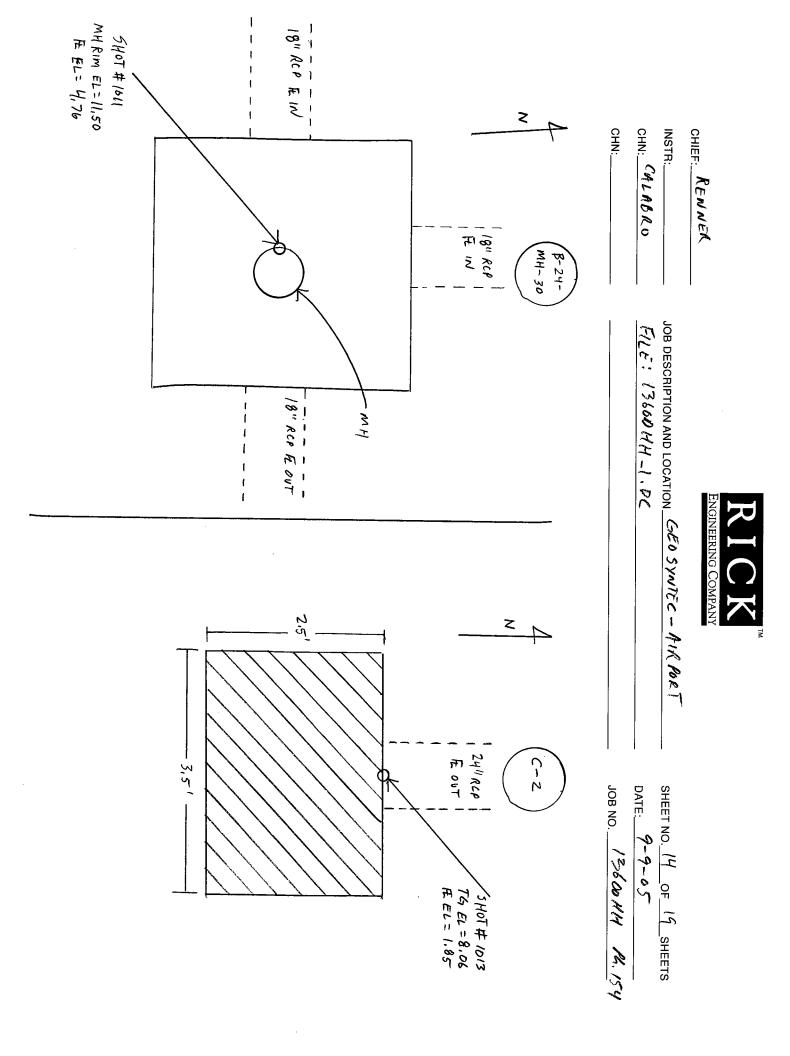


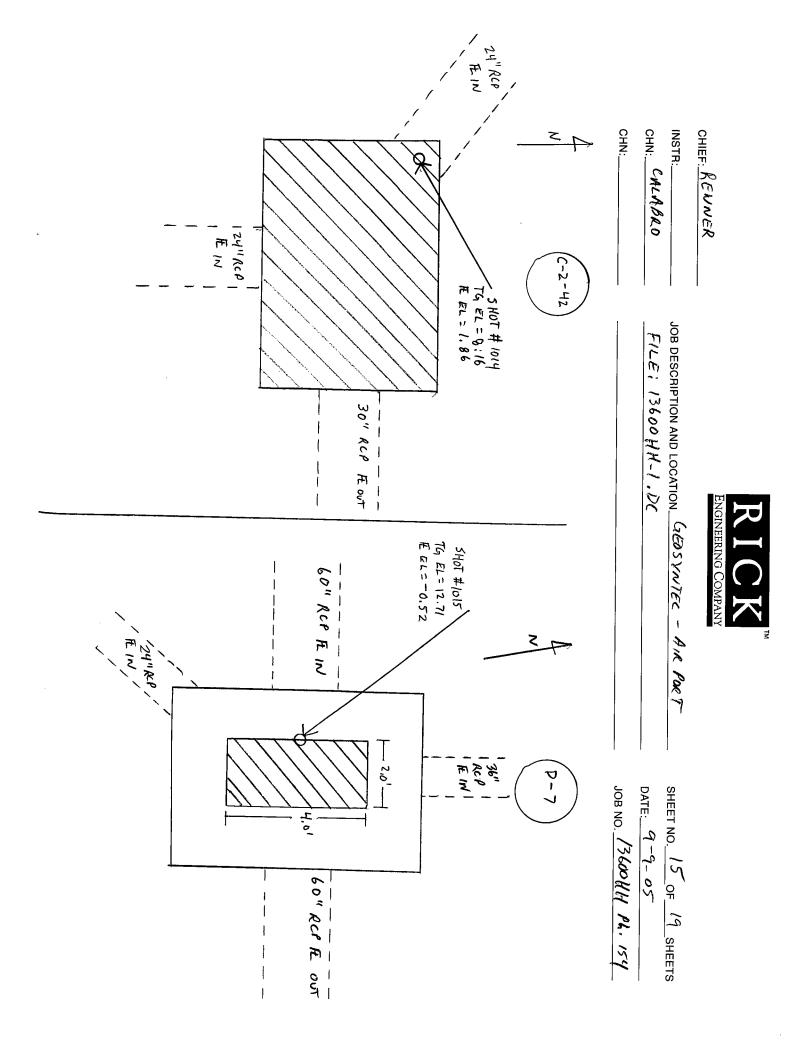


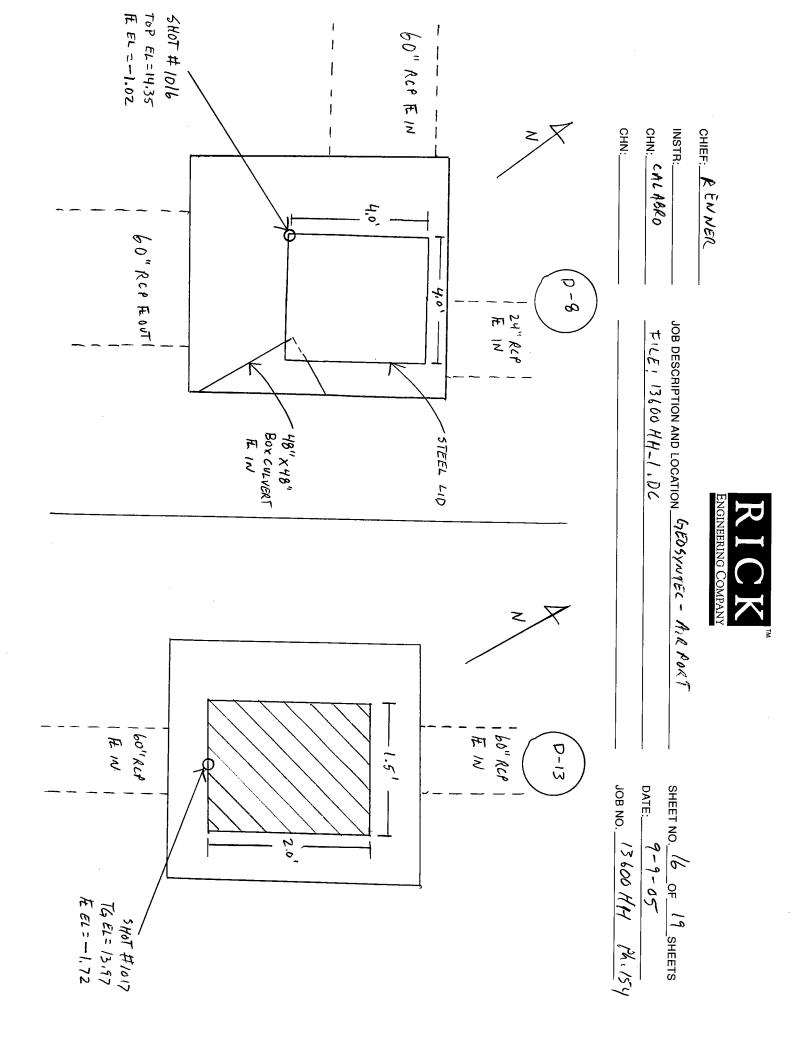


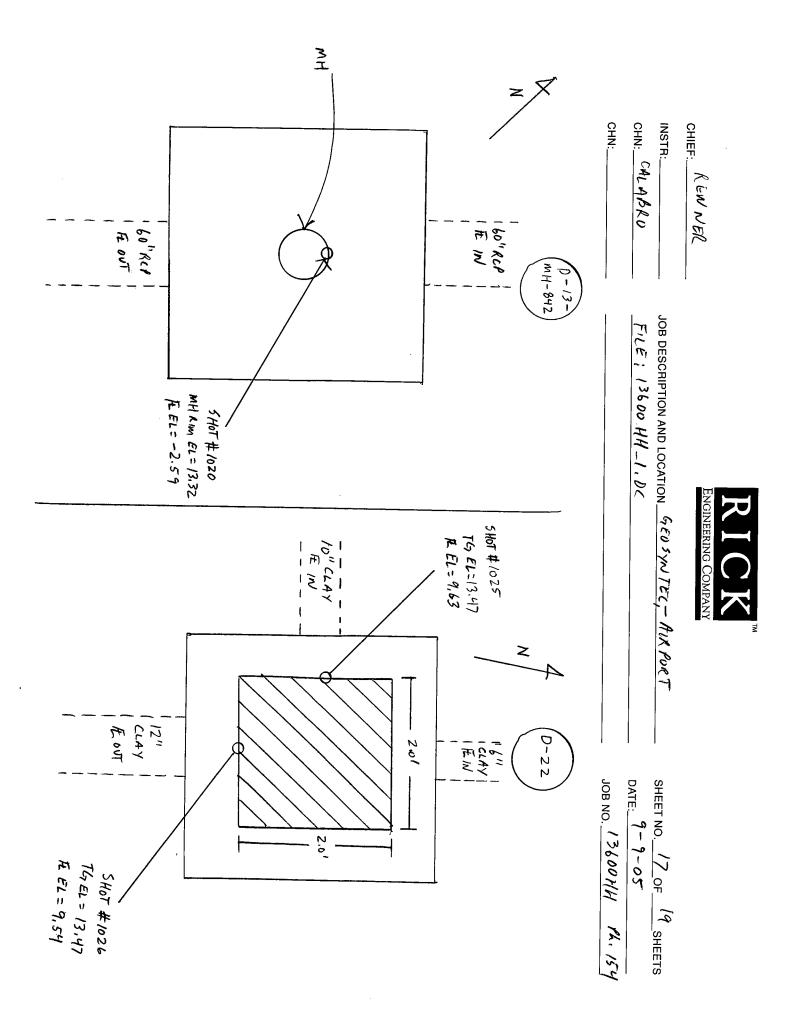


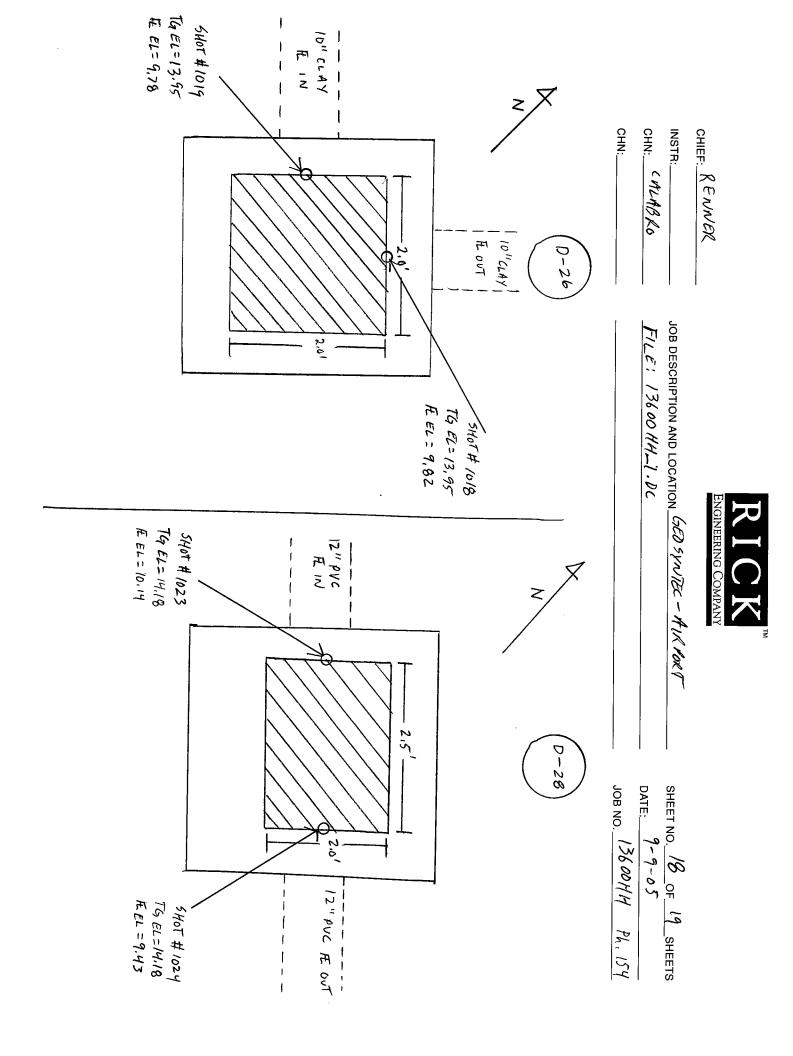


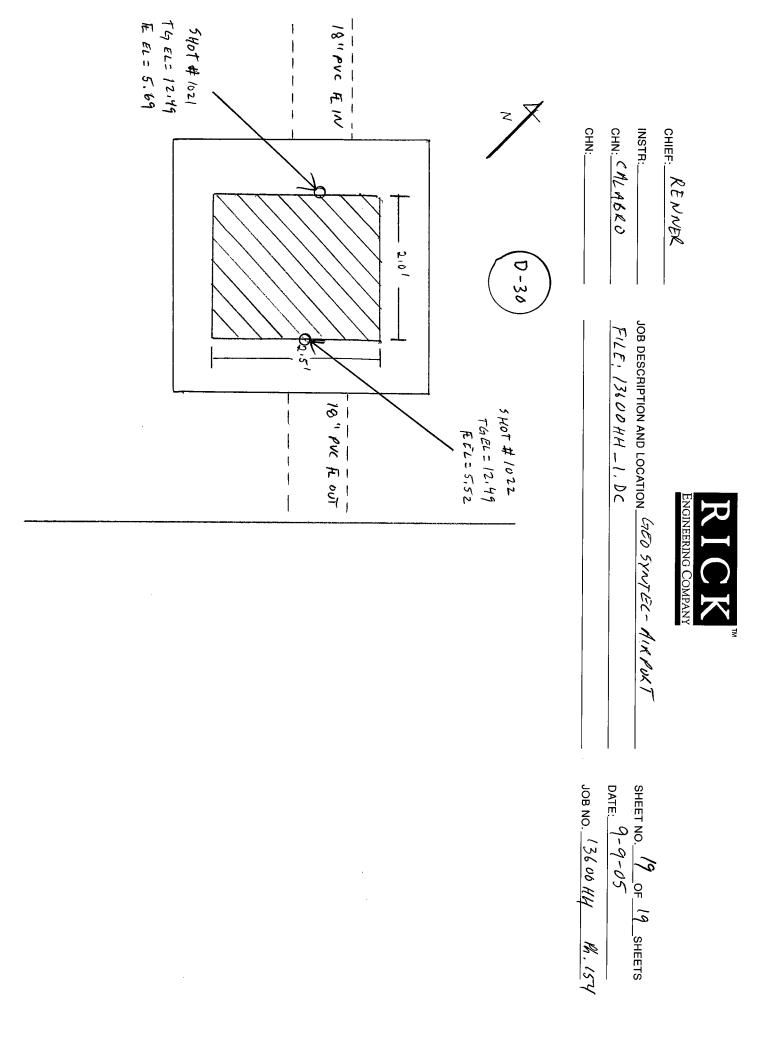












APPENDIX F GEOPHYSICAL SURVEY REPORTS

Office: (858) 481-8949 Fax: (858) 481-8998

Project / Invoice Number: 05-255

August 31, 2005

GeoSyntec Consultants 11305 Rancho Bernardo Rd., Suite 101 San Diego, CA 92127

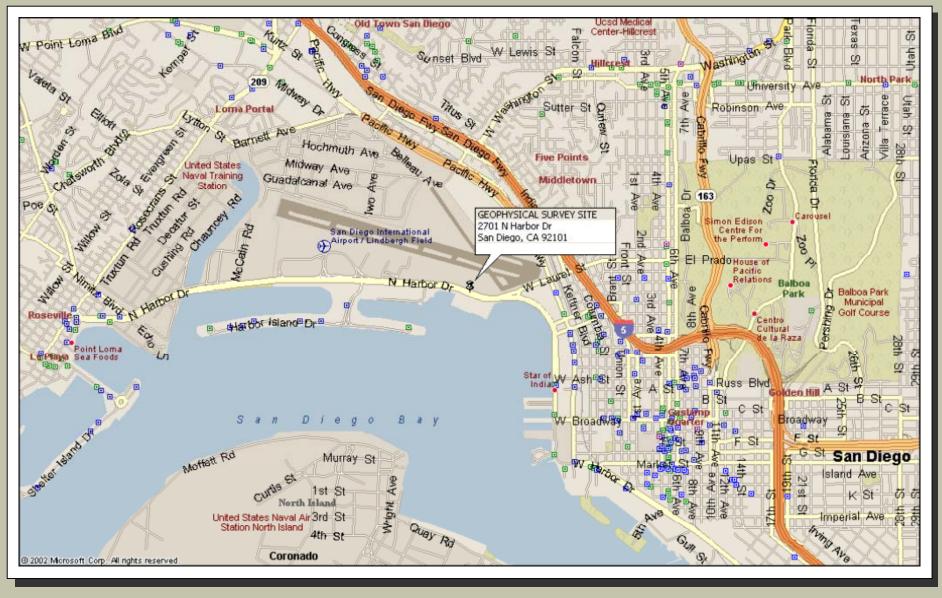
Attn: Mr. Brian Hitchens

Re: Geophysical Survey at Former Ryan Aeronautical Facility, 2701 N. Harbor Dr., San Diego, CA

This brief letter report is to present the findings of our geophysical survey conducted within various areas of the former Ryan Aeronautical facility located at 2701 North Harbor Drive in San Diego, California (Fig. 1) on June 27th and July 8th, 2005. Based on information supplied by the client, the site was once utilized as an aircraft manufacturing facility (i.e. "Spirit of St. Louis"). At present the subject property is abandoned and undergoing various environmental sampling methodologies for site assessment. The purpose of the geophysical investigation was to examine various areas with a specific emphasis on the immediate vicinity of fifty-four (54) proposed borehole samples and monitoring wells.

At any given site the situation, geologic and cultural, may be such that one or more of the instruments may record excessive "noise", the ground may not provide sufficient contrasts, or there may be overlapping anomalies, for a given instrument to be effective. Summarily stated, there are generally instrumental limits and interpretational impediments.

<u>Survey Design</u> – Within each area to be investigated geophysical instrumentation was mobilized in order to detect any, or all, subsurface obstructions that could possibly impede the drilling and sampling operations to be performed by GeoSyntec Consultants. Additionally, some areas were investigated with the geophysical instruments in order to guide the planned sampling program near to a storm drain, but not too near so as to impact the subsurface storm drain(s).


At each area, all utility risers that were accessible (without entering any building structures) were pulsed with a specific frequency in order to delineate, with a receiver, the exact route that the utility is laid in. This was of extreme importance due to the sometimes heavy concentration of proposed borehole and monitor well installations within the subject property.

Ground penetrating radar (GPR) was utilized in virtually all areas where sufficient space could be found to "scan" the subsurface for any possible obstructions to drilling operations.

A Sensors & Software Noggin Ground Penetrating Radar unit produced the radar images, a Geonics model EM-61 instrument was used for EM sampling, and the magnetic gradiometer was a Schonstedt, model GA-52C.

SITE LOCATION MAP

(N)

Brief Description of the Geophysical Methods Applied – The EM-61 instrument is a high resolution, time-domain device for detecting buried conductive objects. It consists of a powerful transmitter that generates a pulsed primary magnetic field when its coils are energized, which induces eddy currents in nearby conductive objects. The decay of the eddy currents, following the input pulse, is measured by the coils, which in turn serve as receiver coils. The decay rate is measured for two coils, mounted concentrically, one above the other. By making the measurements at a relatively long time interval (measured in milliseconds) after termination of the primary pulse, the response is nearly independent of the electrical conductivity of the ground. Thus, the instrument is a super-sensitive metal detector. Due to its unique coil arrangement, the response curve is a single well-defined positive peak directly over a buried conductive object. This facilitates quick and accurate location of targets. Conductive objects, to a depth of approximately 11 feet can be detected.

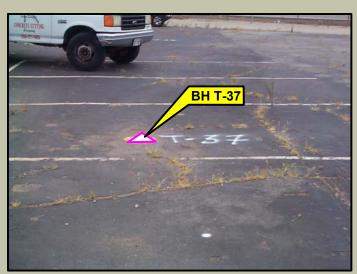
The magnetic gradiometer has two fluxgate magnetic fixed sensors that are passed closely to and over the ground. When not in close proximity to a magnetic object, that is, only in the earth's field, the instrument emits a sound signal at a low frequency. When the instrument passes over a buried iron or steel object, so that the field is significantly different at the two sensors, and locally magnetic gradient, the frequency of the emitted sound increases. Frequency is a function of the gradient between the two sensors.

Where risers are present, the utility locator transmitter can be connected to the object, and a current with a sharp frequency, 82 kHz in this instance, is impressed on the conductor, pipe conduit, etc. The receiver unit is tuned to this same frequency, and it is used to trace the pipe's surface projection away from the riser.

The GPR instrument beams energy into the ground from its transducer/antenna, in the form of electromagnetic waves. A portion of this energy is reflected back to the antenna at any boundary in the subsurface across which there is an electrical contrast. The recorder continuously makes a record of the reflected energy as the antenna is traversed across the ground surface. The greater the electrical contrast, the higher the amplitude of the returned energy. The EM wave travels at a velocity unique to the material properties of the ground being investigated, and when these velocities are known, or closely estimated from ground conductivity values and other information, two-way travel times can be converted to depth.

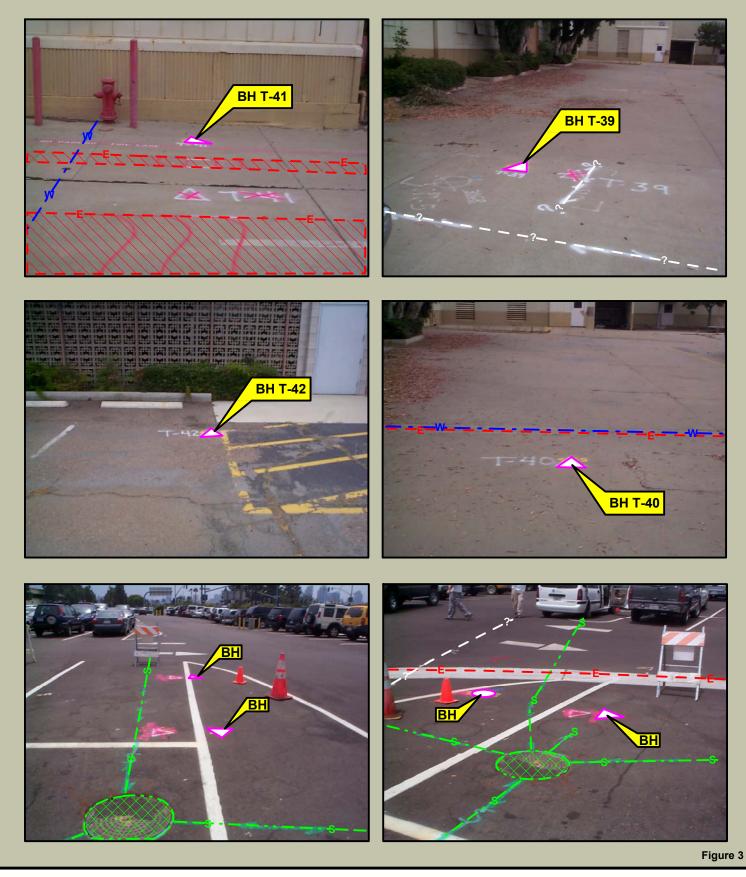
Penetration into the ground and resolution of the GPR images produced are a function of ground electrical conductivity and dielectric constant. Images tend to be graphic, even at considerable depth, in sandy soils, but penetration and resolution may be limited in drastically more conductive clayey moist ground.

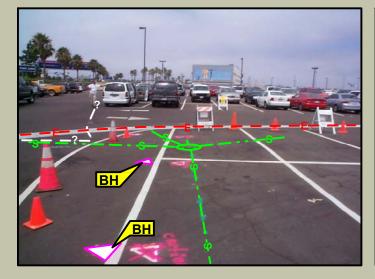
Interpretation & Conclusions - Interpretation took place in real time as the surveys progressed. Accordingly, the findings of our investigation were spray-painted (chalk spray) directly onto the rebarreinforced concrete, asphalt, dirt and grass surfaces outdoors. In addition, digital photographs were taken of all areas investigated during this geophysical survey. The intent of this document is to demonstrate the procedure, and report the findings of the work.

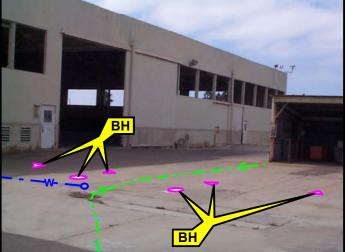

The area(s) to be searched were predetermined by the client and included areas measuring as much as 100' X 200' to as small as an individual borehole location.

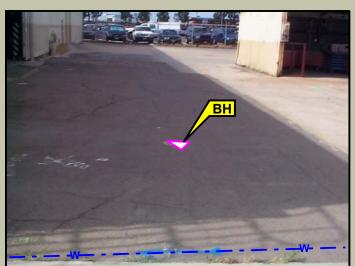
Each of the following Figures (2 through 9) show the individual boreholes and/or monitor wells investigated. Wherever possible, the GeoSyntec Consultants identifying numbers are incorporated into the photographs for ease in identifying areas examined.

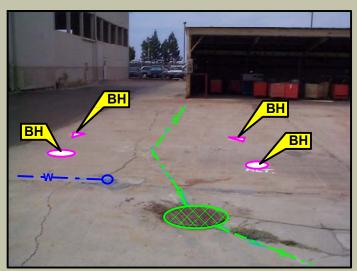
BOREHOLE PHOTOGRAPHS

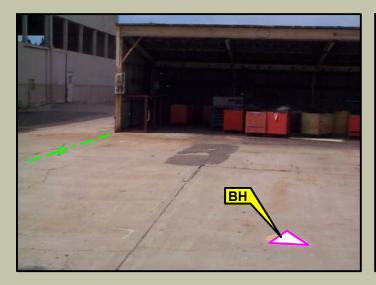


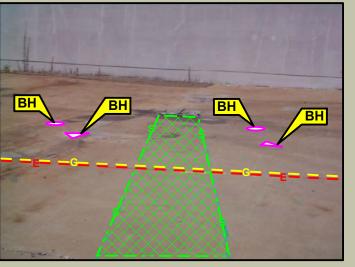


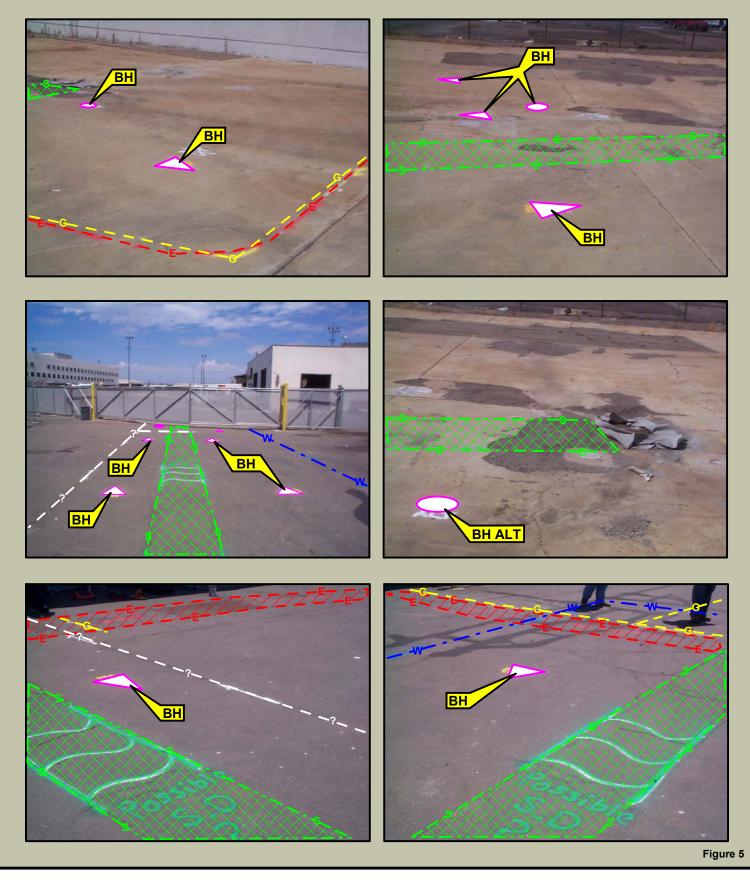


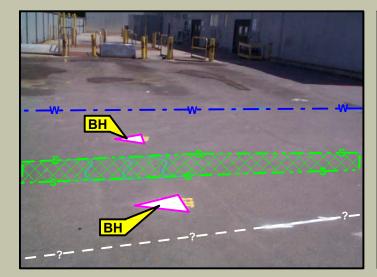

BOREHOLE PHOTOGRAPHS

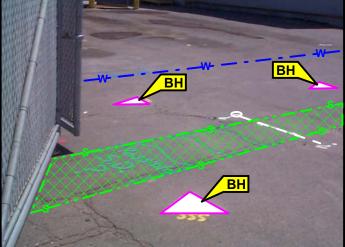


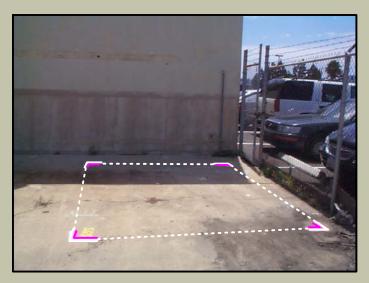

BOREHOLE PHOTOGRAPHS

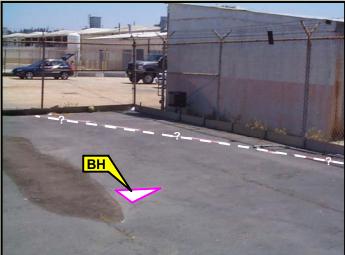


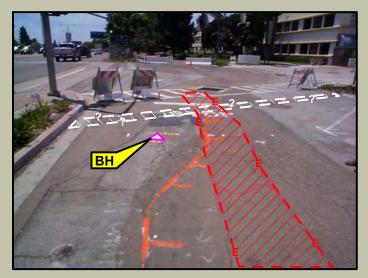


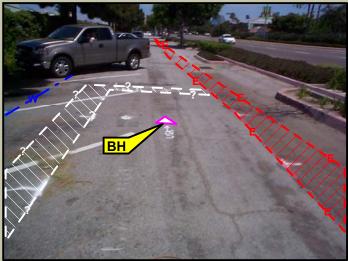


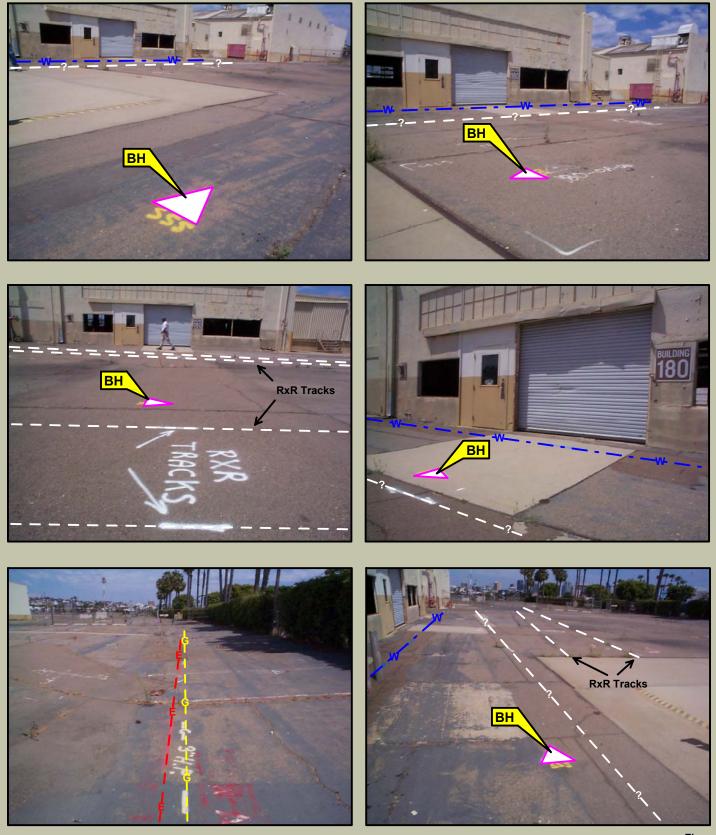


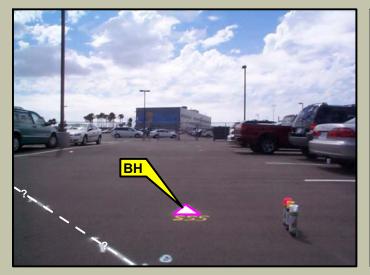

BOREHOLE PHOTOGRAPHS



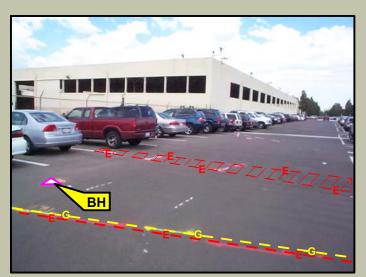

BOREHOLE PHOTOGRAPHS

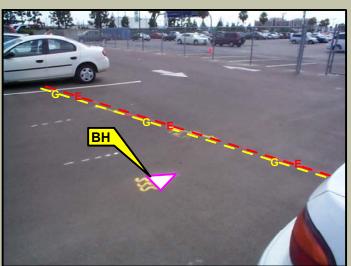




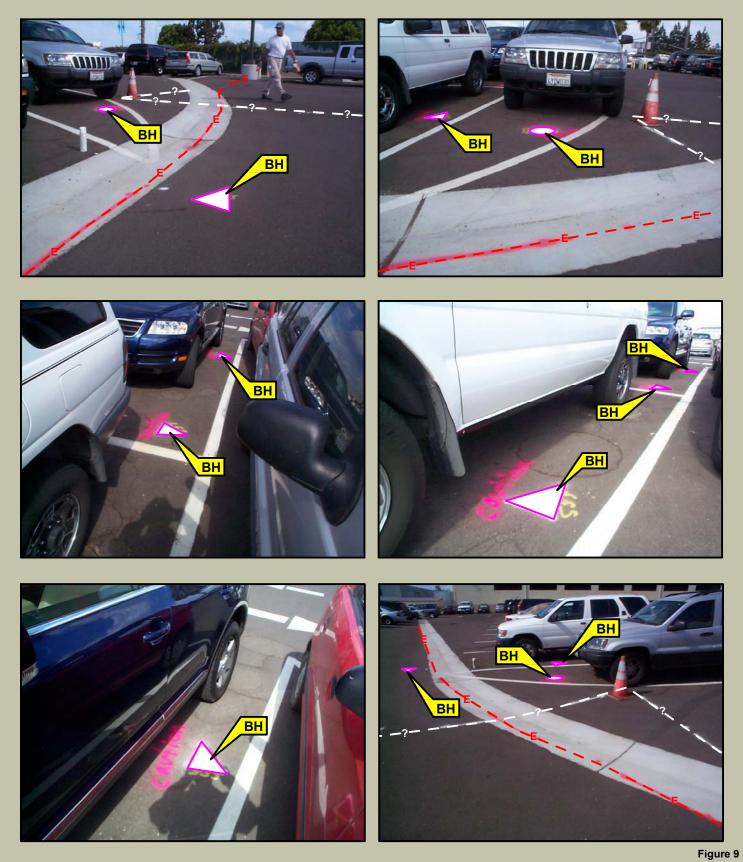


BOREHOLE PHOTOGRAPHS





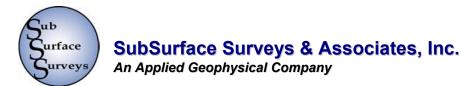
BOREHOLE PHOTOGRAPHS



BOREHOLE PHOTOGRAPHS

Each borehole or monitor well investigated during this geophysical survey was "cleared" only after a complete compliment of geophysical instruments was utilized in the immediate vicinity. After a prime location was decided upon, white paint was used to mark the location on the ground surface and a bright yellow "SSS" was then applied over the proposed borehole or monitor well location.

Hard copy of the EM and magnetic gradient data was not acquired, that is, discrete readings on the nodes of a grid were not recorded. Rather, the instrument's meter was monitored continuously during traverses to detect excursions of the readouts that might have meaning in terms of buried objects. The lack of hard copy for the magnetic data set does not degrade the quality of the survey in any way. The higher sampling rate achieved with continuous monitoring of the instruments is the best way to attempt to discriminate buried features from surface metallic objects, in sites such as this one. The GPR output, of course, is in hard copy form, and position and direction of traverses were noted on the records as they were produced.


In some cases boreholes and/or monitor well locations were marked as "ALT" indicating that the location is an alternate to the primary borehole or monitor well.

Subsurface Survey's professional personnel are trained and experienced and have completed thousands of projects since the company's inception in 1988. It is our policy to work diligently to bring this training and experience to bear to acquire quality data sets, which in turn, can provide clues useful in formulating our interpretations. Still, non-uniqueness of interpretations, methodological limitations, and non-target interferences are prevailing problems. Subsurface Surveys makes no guarantee either expressed or implied regarding the accuracy of the interpretations presented. And, in no event will Subsurface Surveys be liable for any direct, indirect, special, incidental, or consequential damages resulting from data sets, interpretations and opinions presented herewith.

All data generated on this project are in confidential file in this office, and are available for review by authorized persons at any time. The opportunity to participate in this investigation is very much appreciated. Please call, if there are questions.

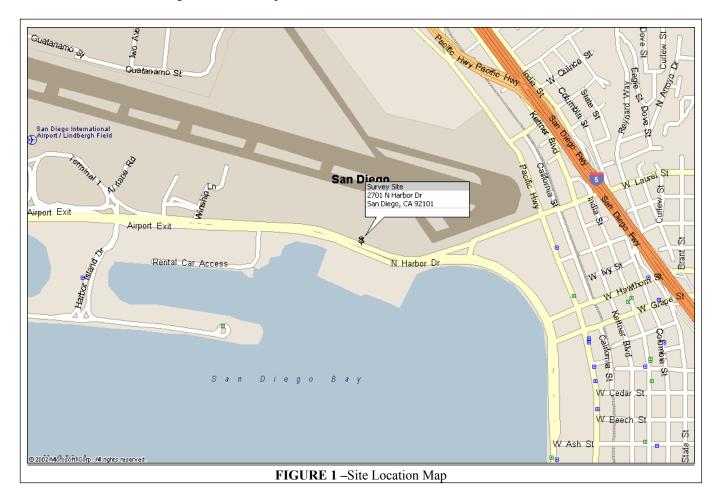
Dary W. Crosby

Leopold "Pol" Mairesse V.P., Sr. Geophysicist Gary W. Crosby, PhD, GP969 Chief Geophysicist

Office: (858) 481-8949 Fax: (858) 481-8998

September 27, 2005

Project No. 05-380


GeoSyntec Consultants 11305 Rancho Bernardo Road Suite 101 San Diego, California 92127

Attn: Brian Hitchens

Re: Geophysical Investigation, 6 Boreholes, Former Teledyne Ryan Aero, 2701 N Harbor Drive, San Diego

This report is to present the results of our geophysical survey carried out over portions of property at the former Teledyne Ryan Aero, located at 2701 North Harbor Drive in San Diego, California (Figure 1) on September 19, 2005. Purpose of the survey was to locate and identify, insofar as possible, piping, conduit, and other buried features that may exist within six areas designated for future drilling activities.

A combination of electromagnetic induction (EM), magnetometry, and ground penetrating radar (GPR) were applied to the search. A utility locator with line tracing capabilities was also brought to the field and used where risers exist onto which a signal could be impressed and traced.

Multiple methods were utilized because each instrument senses different material properties of the ground and buried objects. At any given site the situation, geologic and cultural, may be such that one or more of the instruments may record excessive "noise", the ground may not provide sufficient contrasts, or there may be overlapping anomalies, for a given instrument to be effective. Summarily stated, there are generally instrumental limits and interpretational impediments.

<u>Survey Design</u> – The general areas to be surveyed, and the locations of the individual boreholes, were indicated in the field by the client and included numerous above-ground cultural objects that could potentially cause interference with the instruments should a formal rectilinear grid for data collection be established. In situations such as this, where cultural objects limit the use of a formal rectilinear grid, the best use of time is achieved by systematically free-traversing with the instruments while monitoring them continuously to determine which responses are significant and due to true subsurface targets, and which are due to above-ground features and must be ignored. The line tracer, M-scope, EM-61, magnetic gradiometer and GPR were traversed systematically over each of the areas along the eight lines of the standard search pattern (Figure 2), wherein, there are two sets of three parallel lines, mutually orthogonal, and two diagonals, all centered on the marked drill location. Adjacent parallel lines are approximately 5 feet apart, and each line is approximately 20 feet long, access permitting. Other traverses were taken, access permitting, for detailing and confirmation where anomalous conditions were found. Multiple GPR profiles were also collected throughout the area and in specific areas for confirmation where other instruments detected anomalies.

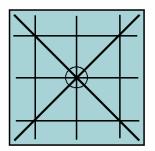


Figure 2: Standard search pattern around borehole

Hard copy of the EM data was not acquired, that is, discrete readings on the nodes of a grid were not recorded that could be put into a contoured map format. Rather, the instruments' meters were read continuously during traverses to detect excursions of the readouts that might have meaning in terms of buried objects. The lack of hard copy for EM data sets does not degrade the quality of the surveys in any way. Hard copy merely provides a basis for report documentation of these geophysical fields, if such documentation is needed.

A Fischer M-Scope was used for the EM sampling. A Sensors & Software Noggin Ground Penetrating Radar unit produced the radar images. The magnetic gradiometer was a Schonstedt GA-52, and a Metrotech 9890 utility locator rounded out the tools applied.

<u>Brief Description of the Geophysical Methods Applied</u> - The M-Scope device energizes the ground by producing an alternating primary magnetic field with AC current in a transmitting coil. If conducting materials are within the area of influence of the primary field, AC eddy currents are induced to flow in the conductors. A receiving coil senses the secondary magnetic field produced by these eddy currents, and outputs the response as anomalous conditions. The strength of the secondary field is a function of the

conductivity of the object, say a pipe, tank or cluster of drums, its size, and its depth and position relative to the instrument's two coils. Conductive objects, to a depth of approximately 7 feet below ground surface (bgs) for the M-Scope are sensed. The device is also somewhat focused; that is, it is more sensitive to conductors below the instrument than they are to conductors off to the side.

The EM61 instrument is a high resolution, time-domain device for detecting buried conductive objects. It consists of a powerful transmitter that generates a pulsed primary magnetic field when its coils are energized, which induces eddy currents in nearby conductive objects. The decay of the eddy currents, following the input pulse, is measured by the coils, which in turn serve as receiver coils. The decay rate is measured for two coils, mounted concentrically, one above the other. By making the measurements at a relatively long time interval (measured in milliseconds) after termination of the primary pulse, the response is nearly independent of the electrical conductivity of the ground. Thus, the instrument is a super-sensitive metal detector. Due to its unique coil arrangement, the response curve is a single well-defined positive peak directly over a buried conductive object. This facilitates quick and accurate location of targets.

The magnetic gradiometer has two flux gate magnetic fixed sensors that are passed closely to and over the ground. When not in close proximity to a magnetic object, that is, only in the earth's field, the instrument emits a sound signal at a low frequency. When the instrument passes over a buried iron or steel object, so that locally there is a high magnetic gradient, the frequency of the emitted sound increases. The frequency is a function of the gradient between the two sensors.

The line locator is used to passively detect energized high voltage electric lines and electrical conduit (50-60 Hz), VLF signals (14-22 kHz), as well as to actively trace other utilities. Where risers are present, the utility locator transmitter can be connected directly to the object, and a signal (9.8-82 kHz) is sent traveling along the conductor, pipe, conduit, etc. In the absence of a riser, the transmitter can be used to impress an input signal on the utility by induction. In either case, the receiver unit is tuned to the input signal, and is used to actively trace the signal along the pipe's surface projection.

The GPR instrument beams energy into the ground from its transducer/antenna, in the form of electromagnetic waves. A portion of this energy is reflected back to the antenna at a boundary in the subsurface across which there is an electrical contrast. The instrument produces a continuous record of the reflected energy as the antenna is traversed across the ground surface. The greater the electrical contrast, the higher the amplitude of the returned energy. The radar wave travels at a velocity unique to the material properties of the ground being investigated, and when these velocities are known, the two-way travel times can be converted to depth. The depth of penetration and image resolution produced are a function of ground electrical conductivity and dielectric constant.

<u>Interpretation and Conclusions</u> - The interpretation took place in real time as the survey progressed, and accordingly, the findings of our investigation were marked on the ground cover at the site, and further documented with site photographs of each of the boreholes (Figs 3-8).

The EM instruments were effective at locating and delineating metallic objects and utilities over the search areas. GPR was useful at detecting both metallic and non-metallic lines and utilities. According to principles of physics, radar penetration is a function of soil conductivity and dielectric constant. At this site, local conditions were reasonably favorable for radar penetration due to the nature of the soil and materials covering the survey areas. This resulted in radar penetration down to approximately 3.5 to 4.0 feet bgs.

The first three boring locations (Figure 3-5) were in the near vicinity to the parked vehicles which produced a

lot of "noise" when using the EM instruments. These instruments did however detect a few unknown lines which were then confirmed using the Ground Penetrating Radar. The source of these lines is unknown. The white line in Figure 4 was detected along the original boring location. To avoid this anomaly we have repositioned the borehole 3 feet from this line.

The fourth boring location (Figure 6) was positioned over reinforced concrete. Due to the location of this boring the EM instruments could not be used as there were not enough contrasts to detect any anomalous condition. The GPR was able to detect a line which was marked on the ground cover with white water-based chalk. The boring location was moved approximately one foot to avoid this anomaly.

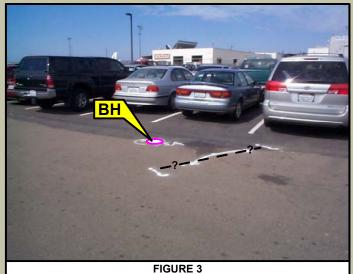
In Figure 7 there were no anomalous conditions within the vicinity of the proposed boring location. However, the fence was a limiting factor when using the EM instruments.

The last boring location had many anomalous conditions in the immediate surroundings. An electric corridor was detected along with a communications line and a corridor in which its functions were unknown. The borehole was repositioned from its original proposed location so it was at least 3 feet from this unknown anomaly.

Piping and utilities detected during the survey were marked with water-based chalk on the ground cover, using industry standard colors – red for electric, blue for water, green for sewer or storm drain, orange for communications and white for unknown. Once all detectable utilities and anomalies were accounted for, the proposed boreholes were marked in paint with a white circle and yellow "SSS".

Subsurface Survey's and Associates professional personnel are trained and experienced and have completed thousands of projects since the company's inception in 1988. It is our policy to work diligently to bring this training and experience to bear to acquire quality data sets, which in turn, can provide clues useful in formulating our interpretations. Still, non-uniqueness of interpretations, methodological limitations, and nontarget interferences are prevailing problems. Subsurface Surveys and Associates makes no guarantee either expressed or implied regarding the accuracy of the interpretations presented. And, in no event will Subsurface Surveys and Associates be liable for any direct, indirect, special, incidental, or consequential damages resulting from interpretations and opinions presented herewith.

All data acquired in these surveys are in confidential file in this office, and are available for review by your staff, or by us at your request, at any time. We appreciate the opportunity to participate in this project. Please call, if there are questions.


Bret Herman Staff Geophysicist

Dary W. Crosby

Gary W. Crosby, PhD, GP# 960 Senior Geophysicist

BOREHOLE PHOTOGRAPHS

Former Teledyne Ryan Aero 2701 North Harbor Drive San Diego, California

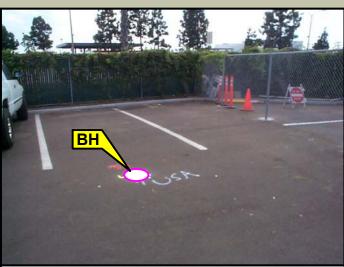


FIGURE 5

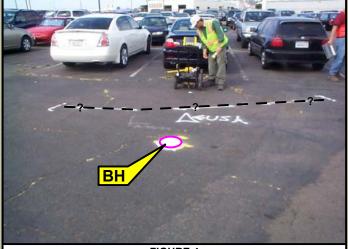


FIGURE 4

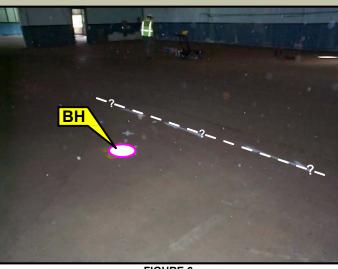
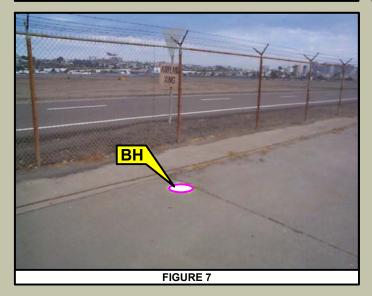
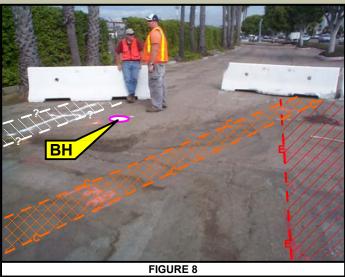
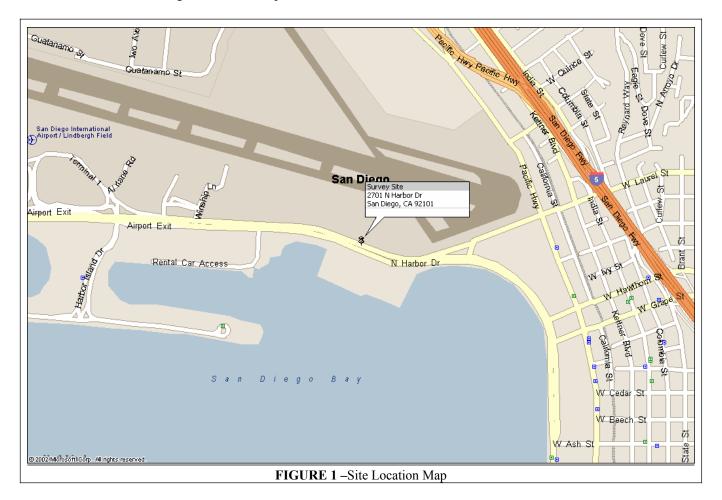




FIGURE 6

Project No. 05-342

Office: (858) 481-8949 Fax: (858) 481-8998

October 25, 2005


GeoSyntec Consultants 11305 Rancho Bernardo Road Suite 101 San Diego, California 92127

Attn: Brian Hitchens

Re: Geophysical Investigation, 1 Borehole, Former Teledyne Ryan Aero, 2701 N Harbor Drive, San Diego

This report is to present the results of our geophysical survey carried out over portions of property at the former Teledyne Ryan Aero, located at 2701 North Harbor Drive in San Diego, California (Figure 1) on September 19, 2005. Purpose of the survey was to locate and identify, insofar as possible, piping, conduit, and other buried features that may exist within one area designated for future drilling activities.

A combination of electromagnetic induction (EM), magnetometry, and ground penetrating radar (GPR) were applied to the search. A utility locator with line tracing capabilities was also brought to the field and used where risers exist onto which a signal could be impressed and traced.

Multiple methods were utilized because each instrument senses different material properties of the ground and buried objects. At any given site the situation, geologic and cultural, may be such that one or more of the instruments may record excessive "noise", the ground may not provide sufficient contrasts, or there may be overlapping anomalies, for a given instrument to be effective. Summarily stated, there are generally instrumental limits and interpretational impediments.

<u>Survey Design</u> – The general area to be surveyed, and the location of the borehole, were indicated in the field by the client and included numerous above-ground cultural objects that could potentially cause interference with the instruments should a formal rectilinear grid for data collection be established. In situations such as this, where cultural objects limit the use of a formal rectilinear grid, the best use of time is achieved by systematically free-traversing with the instruments while monitoring them continuously to determine which responses are significant and due to true subsurface targets, and which are due to above-ground features and must be ignored. The line tracer, M-scope, EM-61, magnetic gradiometer and GPR were traversed systematically over each of the areas along the eight lines of the standard search pattern (Figure 2), wherein, there are two sets of three parallel lines, mutually orthogonal, and two diagonals, all centered on the marked drill location. Adjacent parallel lines are approximately 5 feet apart, and each line is approximately 20 feet long, access permitting. Other traverses were taken, access permitting, for detailing and confirmation where anomalous conditions were found. Multiple GPR profiles were also collected throughout the area and in specific areas for confirmation where other instruments detected anomalies.

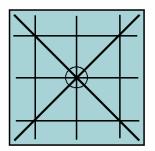


Figure 2: Standard search pattern around borehole

Hard copy of the EM data was not acquired, that is, discrete readings on the nodes of a grid were not recorded that could be put into a contoured map format. Rather, the instruments' meters were read continuously during traverses to detect excursions of the readouts that might have meaning in terms of buried objects. The lack of hard copy for EM data sets does not degrade the quality of the surveys in any way. Hard copy merely provides a basis for report documentation of these geophysical fields, if such documentation is needed.

A Fischer M-Scope and a Geonic's model EM61 were used for the EM sampling. A Sensors & Software Noggin Ground Penetrating Radar unit produced the radar images. The magnetic gradiometer was a Schonstedt GA-52, and a Metrotech 9890 utility locator rounded out the tools applied.

<u>Brief Description of the Geophysical Methods Applied</u> - The M-Scope device energizes the ground by producing an alternating primary magnetic field with AC current in a transmitting coil. If conducting materials are within the area of influence of the primary field, AC eddy currents are induced to flow in the conductors. A receiving coil senses the secondary magnetic field produced by these eddy currents, and outputs the response as anomalous conditions. The strength of the secondary field is a function of the

conductivity of the object, say a pipe, tank or cluster of drums, its size, and its depth and position relative to the instrument's two coils. Conductive objects, to a depth of approximately 7 feet below ground surface (bgs) for the M-Scope are sensed. The device is also somewhat focused; that is, it is more sensitive to conductors below the instrument than they are to conductors off to the side.

The EM61 instrument is a high resolution, time-domain device for detecting buried conductive objects. It consists of a powerful transmitter that generates a pulsed primary magnetic field when its coils are energized, which induces eddy currents in nearby conductive objects. The decay of the eddy currents, following the input pulse, is measured by the coils, which in turn serve as receiver coils. The decay rate is measured for two coils, mounted concentrically, one above the other. By making the measurements at a relatively long time interval (measured in milliseconds) after termination of the primary pulse, the response is nearly independent of the electrical conductivity of the ground. Thus, the instrument is a super-sensitive metal detector. Due to its unique coil arrangement, the response curve is a single well-defined positive peak directly over a buried conductive object. This facilitates quick and accurate location of targets.

The magnetic gradiometer has two flux gate magnetic fixed sensors that are passed closely to and over the ground. When not in close proximity to a magnetic object, that is, only in the earth's field, the instrument emits a sound signal at a low frequency. When the instrument passes over a buried iron or steel object, so that locally there is a high magnetic gradient, the frequency of the emitted sound increases. The frequency is a function of the gradient between the two sensors.

The line locator is used to passively detect energized high voltage electric lines and electrical conduit (50-60 Hz), VLF signals (14-22 kHz), as well as to actively trace other utilities. Where risers are present, the utility locator transmitter can be connected directly to the object, and a signal (9.8-82 kHz) is sent traveling along the conductor, pipe, conduit, etc. In the absence of a riser, the transmitter can be used to impress an input signal on the utility by induction. In either case, the receiver unit is tuned to the input signal, and is used to actively trace the signal along the pipe's surface projection.

The GPR instrument beams energy into the ground from its transducer/antenna, in the form of electromagnetic waves. A portion of this energy is reflected back to the antenna at a boundary in the subsurface across which there is an electrical contrast. The instrument produces a continuous record of the reflected energy as the antenna is traversed across the ground surface. The greater the electrical contrast, the higher the amplitude of the returned energy. The radar wave travels at a velocity unique to the material properties of the ground being investigated, and when these velocities are known, the two-way travel times can be converted to depth. The depth of penetration and image resolution produced are a function of ground electrical conductivity and dielectric constant.

<u>Interpretation and Conclusions</u> - The interpretation took place in real time as the survey progressed, and accordingly, the findings of our investigation were marked on the ground cover at the site. The intent of this document is to demonstrate the procedure, and report the findings of the work.

The EM instruments were effective at locating and delineating metallic objects and utilities over the search areas. GPR was useful at detecting both metallic and non-metallic lines and utilities. According to principles of physics, radar penetration is a function of soil conductivity and dielectric constant. At this site, local conditions were relatively unfavorable for radar penetration due to the nature of the soil and materials covering the survey areas. This resulted in radar penetration down to approximately 2 feet bgs. It should be noted that due to the heterogeneous nature of the soils, the depth of radar penetration might vary from one area to another.

There were utilities detected in the vicinity of the proposed boring, therefore it was moved at least three feet from the detected objects.

Piping and utilities detected during the survey were marked with water-based chalk on the ground cover, using industry standard colors – red for electric, blue for water, green for sewer or storm drain, orange for communications and white for unknown. Once all detectable utilities and anomalies were accounted for, the proposed boreholes were marked in paint with a white circle and yellow "SSS".

Subsurface Survey's and Associates professional personnel are trained and experienced and have completed thousands of projects since the company's inception in 1988. It is our policy to work diligently to bring this training and experience to bear to acquire quality data sets, which in turn, can provide clues useful in formulating our interpretations. Still, non-uniqueness of interpretations, methodological limitations, and non-target interferences are prevailing problems. Subsurface Surveys and Associates makes no guarantee either expressed or implied regarding the accuracy of the interpretations presented. And, in no event will Subsurface Surveys and Associates be liable for any direct, indirect, special, incidental, or consequential damages resulting from interpretations and opinions presented herewith.

All data acquired in these surveys are in confidential file in this office, and are available for review by your staff, or by us at your request, at any time. We appreciate the opportunity to participate in this project. Please call, if there are questions.

George E.Herman IV

Geophysicist

Garv W. Crosby, PhD, GP 969 Senior Geophysicist/Geologist

APPENDIX G VIDEO SURVEY (DVD) AND REPORTS

APPENDIX H LABORATORY ANALYTICAL REPORTS FOR 2005 INVESTIGATIONS AND DATABASE OF 2003 HISTORICAL RESULTS