DATA VALIDATION REPORT (LDC) SWHB SURVEY

APPENDIX J

This page left intentionally blank

Appendix Table J-1. LDC Third Party Level IV Data Validation QA/QC Review Summary -Sediment Data

Sample	Compound	% of PAH data affected	Flag	Reason Code (Code)	Explanation
SWHB-07	Benzo(a)anthracene		J (all detects)		
	Chrysene				
	Benzo(b)fluoranthene				
-	Benzo(k)fluoranthene			Initial calibration	The initial calibration (ICAL) curve
SWHB-18	Benzo(e)pyrene	2.1%	UJ (all non-detects)	(r^2) (BC)	did not meet method-specified criteria.
300110-10	Benzo(a)pyrene				criteria.
	Perylene				
_	Indeno(1,2,3-cd)pyrene				
	Dibenz(a,h)anthracene				
SWHB-07	Benzo(b)fluoranthene		J	Initial calibration	Low ICV recovery. Analytical result
SWHB-18	Perylene	0.7%	UJ	verification (%D)	may be biased low.
3WHD-10	Indeno(1,2,3-cd)pyrene		UJ	(LV)	-
	Benzo(b)fluoranthene			Continuing	High continuing calibration
SWHB-18	Perylene	0.3%	J	calibration (%D)	verification (CCV) recovery. Analytical results may be biased
	Indeno(1,2,3-cd)pyrene			(CH)	high.
SWHB-07	Acenaphthene	0.2%	J, UJ	Surrogate spikes	
	Phenanthrene		-,	(%R) (LS)	
	1-Methylphenanthrene				
	Benzo(a)pyrene				
SWHB-18	Benzo(b)fluoranthene	0.7%	J, UJ	Duplicate sample	Potential analytical imprecision.
_	Benzo(e)pyrene		,	analysis (RPD) (HD)	
-	Dibenz(a,h)anthracene				
	Perylene				
SWHB-07	Naphthalene			Laboratory control	Low LCS recovery. Analytical result
SWHB-18	1-Methylnaphthalene	0.7%	J, UJ	samples (%R) (LL)	may be biased low.
3WHD-10	2-Methylnaphthalene				
SWHB-07	Naphthalene				
	1-Methylnaphthalene	0.7%	J, UJ	CRM (%) (LP)	Low CRM recovery. Analytical result may be biased low.
SWHB-18	2-Methylnaphthalene				result may be blased low.

Polynuclear Aromatic Hydrocarbons - Data Qualification Summary (1504003-001)

Chlorinated Pesticides- Data Qualification Summary- SDG 1504003-001

Sample	Compound	% of pesticide data affected	Flag	Reason Code (Code)	Explanation
SWHB-07	4.4'-DDT	0.2%	UJ	Initial calibration	The initial calibration (ICAL) curve did not meet method-specified
SWHB-18	1,1 001	0.270		(r^2) (BC)	criteria.
SWHB-18	beta-BHC	0.1%	UJ	Initial calibration verification (%D) (HV)	High initial calibration verification (ICV) recovery. Analytical results may be biased high.
SWHB-18	beta-BHC	0.2%	UJ	Continuing calibration (%D)	High continuing calibration verification (CCV) recovery.
00000-10	4,4'-DDD	0.270		(CH)	Analytical results may be biased high.

Metals - Data Qualification Summary - SDG 1504003-001

Sample	Compound	% of metal data affected	Flag	Reason Code (Code)	Explanation
SWHB-14	Aluminum				High certified reference material
SWHB-19	Antimony	1.3%	J	CRM (HP)	(CRM) recovery. Analytical results may be biased high.
SWHD-19	Iron				may be biased high.

Appendix Table J-1. LDC Third Party Level IV Data Validation QA/QC Review Summary -Sediment Data

Sample	Compound	% of PCB data affected	Flag	Reason Code (Code)	Explanation
SWHB-07		0.424	,	Initial calibration	The initial calibration (ICAL) curve
SWHB-18	PCB-169	0.1%	J, UJ	(r^2) (BC)	did not meet method-specified criteria.
SWHB-07	PCB-003				
	PCB-008				
	PCB-018				
	PCB-031				
	PCB-028				
	PCB-033	_			
	PCB-052	_			
	PCB-049	-			
	PCB-044	-			
	PCB-037	-			
	PCB-074	-			
	PCB-070 PCB-066	-			
	PCB-000 PCB-095	-			
	PCB-095	-			
	PCB-101	-			
	PCB-099	-			
	PCB-097	-			
	PCB-087	-			
	PCB-081	-			
	PCB-110	-			
	PCB-077	-			
	PCB-151	-			
	PCB-123				
	PCB-149	F (0)/		Initial calibration	High initial calibration verificatio
SWHB-18	PCB-118	5.6%	J, UJ	verification (%D) (HV)	(ICV) recovery. Analytical result may be biased high.
	PCB-114			(110)	may be blased high.
	PCB-153				
	PCB-168/132				
	PCB-105				
	PCB-141				
	PCB-138	_			
	PCB-158	-			
	PCB-187	-			
	PCB-183 PCB-128	-			
		-			
	PCB-167 PCB-174	-			
	PCB-177	-			
	PCB-156	-			
	PCB-157	-			
	PCB-199/200	-			
	PCB-180	7			
	PCB-169	7			
	PCB-170	7			
	PCB-201	7			
	PCB-189				
	PCB-195				
	PCB-206				
	PCB-209				

Polychlorinated Biphenyls as Congeners - Data Qualification Summary - SDG 1504003-001

Appendix Table J-1. LDC Third Party Level IV Data Validation QA/QC Review Summary -Sediment Data

Sample	Compound	% of PCB data affected	Flag	Reason Code (Code)	Explanation
	PCB-126				
	PCB-128				
	PCB-156				High continuing calibration
SWHB-18	PCB-169	0.5%	J, UJ	Continuing	verification (CCV) recovery.
3WHD-10	PCB-189	0.5%	3, 03	calibration (%D) (CH)	Analytical results may be biased
	PCB-195			(01)	high.
	PCB-194				
	PCB-206				
	PCB-031				
	PCB-028				
	PCB-1 01			Durlieste estrele	
SWHB-18	PCB-110	0.4%	J, UJ	Duplicate sample analysis (RPD) (HD)	Potential analytical imprecision.
	PCB-153				
	PCB-157				
	PCB-158				

J = (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non- conformances discovered during data validation.

U = (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).

UJ = (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.

Appendix Table J-2. LDC Third Party Level IV Data Validation QA/QC Review Summary -Tissue Data

Sample ID	Compound	% of PAH data affected	Flag	Reason Code (Code)	Explanation
	Benzo(b)fluoranthene			Initial calibration	Llich initial calibration varification
SWHB-27-P	Benzo(k)fluoranthene	0.2%	J	Initial calibration verification (%D)	High initial calibration verification (ICV) recovery. Analytical results
6WIIB 27 1	Benzo(e)pyrene	0.270	0	(HV)	may be biased high.
	Benzo(a)pyrene			. ,	.,
SWHB-30-CH	Benzo(b)fluoranthene				
SWHB-06-CH-Small	Benzo(a)anthracene				
SWHB-06-M	Chrysene			Continuing	Low CCV recovery. Analytical
	Benzo(k)fluoranthene	1.6%	J, UJ	calibration (%D) (LC)	result may be biased low.
SWHB-22-SP	Benzo(e)pyrene				roout may be blaced low.
3WI1D-22-01	Benzo(a)pyrene				
	Perylene				
	Benzo(a)pyrene			0 1 1	
SWHB-27-P	Benzo(b)fluoranthene	0.2%	J	Continuing calibration (%D) (LC)	Low CCV recovery. Analytical result may be biased low.
	Benzo(e)pyrene				result may be blased low.
SWHB-27-SBB	1-Methylnaphthalene	0.1%	J	Duplicate sample	Potential analytical imprecision.
3WHB-27-3BB	2,6-Dimethylnaphthalene ·	0.1%	J	analysis (RPD) (HD)	Fotential analytical imprecision.
SWHB-26-M	1-Methylnaphthalene				
SWHB-27-SBB	2,3,5-Trimethylnaphthalene				
SWHB-27-P	2,6-Dimethylnaphthalene				
SWHB-30-CH	2-Methylnaphthalene				
SWHB-06-CH-Small	Acenaphthene				
SWHB-06-M	Acenaphthylene			Laboratory control	Low LCS recovery. Analytical
	Anthracene	4.9%	U, UJ	samples (%R) (LL)	result may be biased low.
	Biphenyl				
	Dibenzothiophene				
SWHB-22-SP	Fluorene				
	Naphthalene				
	Phenanthrene				
SWHB-26-M	1-Methylnaphthalene				
SWHB-27-SBB	2,3,5-Trimethylnaphthalene				
SWHB-27-P	2,6-Dimethylnaphthalene				
SWHB-30-CH	2-Methylnaphthalene				
SWHB-06-CH-Small	Acenaphthene				
SWHB-06-M	Acenaphthylene				
	Anthracene	5.8%	U, UJ	Laboratory control	Potential analytical imprecision.
	Biphenyl	0.070	0,00	samples (RPD) (HD)	r otornar analytical improvioion.
	Dibenzothiophene	-			
SWHB-22-SP	Fluorene				
00011D 22 01	Naphthalene				
	Phenanthrene	-			
	Pyrene				l

Polynuclear Aromatic Hydrocarbons - Data Qualification Summary- SDG 1504003-002

Appendix Table J-2. LDC Third Party Level IV Data Validation QA/QC Review Summary -Tissue Data

Sample	Compound	% of pesticide data affected	Flag	Reason Code (Code)	Explanation
SWHB-26-M					
SWHB-06-CH-Small					
SWHB-06-M					The initial calibration (ICAL) curve
SWHB-27-SBB	4,4'-DDT	0.8%	UJ	Initial calibration (r^2)	did not meet method-specified
SWHB-27-P				(BC)	criteria.
SWHB-30-CH					
SWHB-22-SP					
SWHB-06-CH-Small	2,4'-DDD				High continuing calibration
SWHB-06-M		0.0%		Continuing	verification (CCV) recovery.
SWHB-30-CH	4,4'-DDD	0.9%	J, UJ	calibration (%D) (CH)	Analytical results may be biased
SWHB-22-SP					high.
SWHB-06-CH-Small					
SWHB-06-M	Tauahana	0.5%		Continuing	Low CCV recovery. Analytical
SWHB-30-CH	Toxaphene	0.5%	J, UJ	calibration (%D) (LC)	result may be biased low.
SWHB-22-SP					
	2,4'-DDD			Dualiante en acto	
SWHB-27-SBB	2,4'-DDE	0.3%	J, UJ	Duplicate sample analysis (RPD) (HD)	Potential analytical imprecision.
	alpha-Chlordane			alialysis (RFD) (HD)	

Chlorinated Pesticides - Data Qualification Summary - SDG 1504003-002

Metals- Data Qualification Summary- SDG 1504003-002

Sample	Compound	% of metals data affected	Flag	Reason Code (Code)	Explanation
SWHB-26-SBB	Mercury	1.7%	J	Matrix spike/Matrix spike duplication (%R) (HM)	High MS recovery. Analytical results may be biased high.
SWHB-26-CH					
SWHB-26-SP-Large					
SWHB-26-BP					
SWHB-27-SP	Selenium	11.9%	J	Internal standards	
SWHB-01-SBB				(%R) (*XII)	
SWHB-01-CH					
SWHB-26-SBB					

Polychlorinated Biphenyls as Congeners - Data Qualification Summary - SDG 1504003-002

Sample	Compound	% of PCB data affected	Flag	Reason Code (Code)	Explanation
SWHB-26-M					
SWHB-06-CH-Small					
SWHB-06-M					The initial calibration (ICAL) curve
SWHB-27-SBB	PCB-169	0.2%	UJ	Initial calibration (r^2) (BC)	did not meet method-specified
SWHB-27-P				(BC)	criteria.
SWHB-30-CH					
SWHB-22-SP					
SWHB-26-M	PCB-126				
SWHB-06-CH-Small	PCB-128				
SWHB-06-M	PCB-156				
SWHB-27-SBB	PCB-180				High initial calibration verification
SWHB-27-P	PCB-169	2.1%	J, UJ	Initial calibration	(ICV) recovery. Analytical results
SWHB-30-CH	PCB-170			(%D) (HV)	may be biased high.
	PCB-189	1			
SWHB-22-SP	PCB-194	1			
	PCB-206				

Appendix Table J-2. LDC Third Party Level IV Data Validation QA/QC Review Summary -Tissue Data

Sample	Compound	% of PCB data affected	Flag	Reason Code (Code)	Explanation
SWHB-30-CH	PCB-126				
SWHB-06-CH-Small	PCB-128				High continuing calibration
SWHB-06-M	PCB-177	0.8%		Continuing	verification (CCV) recovery.
	PCB-156	0.8%	J, UJ	calibration (%D) (CH)	Analytical results may be biased
SWHB-22-SP	PCB-169				high.
	PCB-170				
SWHB-27-SBB	PCB-153	0.03%	J	MS/MSD duplicate (%R) (LM)	Low MS recovery. Analytical results may be biased low.
SWHB-27-SBB	PCB-138	0.03%	J	MS/MSD duplicate (%R) (HM)	High MS recovery. Analytical results may be biased high.
	PCB-099				
	PCB-101				
	PCB-118			MS/MSD duplicate	
SWHB-27-SBB	PCB-128	1.0%	J	(RPD) (HD)	Potential analytical imprecision.
	PCB-138				
	PCB-153				
	PCB-180				
	PCB-028			Duplicate sample	
SWHB-27-SBB	PCB-044	0.1%	J	analysis (RPD) (HD)	Potential analytical imprecision.
	PCB-070				
SWHB-26-M	PCB-018				
SWHB-27-SBB					
SWHB-27-P				Laboratory control	Low LCS recovery. Analytical
SWHB-30-CH	PCB-028	0.5%	J, UJ	samples (%R) (LL)	result may be biased low.
SWHB-06-CH-Small	1 02 020				
SWHB-06-M					
SWHB-22-SP					
SWHB-26-M	PCB-018				
SWHB-27-SBB	PCB-028				
SWHB-27-P				Laboratory control	
SWHB-30-CH		0.7%	J, UJ	samples (RPD) (HD)	Potential analytical imprecision.
SWHB-06-CH-Small	PCB-044				
SWHB-06-M					
SWHB-22-SP					
SWHB-26-M					
SWHB-27-SBB					
SWHB-27-P					Low CRM recovery. Analytical
SWHB-30-CH	PCB-018	0.2%	UJ	CRM (%R) (LP)	result may be biased low.
SWHB-06-CH-Small					
SWHB-06-M					
SWHB-22-SP					

J = (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non- conformances discovered during data validation.

U = (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).

UJ = (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.

June 8, 2016

AMEC 9210 Sky Park Court, Suite 200 San Diego, CA 92123 ATTN: Mr. Rolf Schottle

SUBJECT: City of San Diego, SWBH Study, Data Validation

Dear Mr. Schottle,

Enclosed are the final validation reports for the fractions listed below. These SDGs were received on April 18, 2016. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project #36197:

SDG # Fraction

1504003-001Polynuclear Aromatic Hydrocarbons, Polybrominated Diphenyl1504003-002Ethers, Pyrethroids, Chlorinated Pesticides, Metals, Wet Chemistry,
Polychlorinated Biphenyls as Congeners

The data validation was performed under Level IV guidelines. The analyses were validated using the following documents, as applicable to each method:

- Final Quality Assurance Project Plan, Regional Harbor Monitoring Program, San Diego, California, August 2013
- USEPA, Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review, June 2008
- USEPA Contract Laboratory National Functional Guidelines for Inorganic Superfund Data Review, January 2010
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; Update IV, February 2007, Update V, July 2014

Please feel free to contact us if you have any questions.

Sincerely,

ema

Pei Geng / Project Manager/Senior Chemist

	712 pages-EM													_		hme				<u> </u>							for a			. <u> </u>									_
	Level IV Clien	t Select		LD	C #	#36	19	7 (<i>F</i>	M	EC	FW	-Sa	in [Die	go,	C	\ [Cit	y o	fS	an	Di	ego	o S	WE	3H	Stı	ıdy	')										
50	SDG#	DATE REC'D	(3) DATE DUE	PA (827	(Hs 70D)		est. 70D)	Co	CB ng. 70D)	(82	DEs 70D ICI)	oi	eyhr ds 70D)	Met	tals 20)	S (60)	e 20)	Н (24	g 5.7)	NH (45 NH:	00-	So	% lids 40B)	Lip	% oids av.)														
latrix:	Tissue/Sedimer	nt .	· · ·	1	s	10.00	s	1.	s		s		s		s		S	Т		T				Т	s	Т	s	т	s	т	s	т	s	т	s	т	s	т	
	1504003-001	04/18/16	05/09/16	1.2 Marcal		0	2	0	2	0	2	0	2	_	2		-			0	2	Ó		-	-													ļ	Ļ
в	1504003-002	04/18/16	05/09/16	7	0	7	0	7	0/	7	0	-	-	-	-	7	0	7	0	-		7	0	7	0														╞
					-	\vdash	\vdash		├	–−	-										╞	-			┣—-							-							╀
		<u>}</u>				+		-				$\left \right $		┣—								┢	+	\vdash		\vdash						<u> </u>							╀
	· •. •	· ·····		+				+		<u> </u>											<u> </u>		\mathbf{I}																┢
				1				<u> </u>		<u> </u>											\square					 													t
	_																																						t
																						<u> </u>																	Ι
		ļ			<u> </u>																					<u> </u>											_		
	- <u></u>				<u> </u>			<u> </u>	ļ	 		ļ		L									<u> </u>										<u> </u>						1
					<u> </u>	<u> </u>				<u> </u>			<u> </u>							-	<u> </u>	<u> </u>			<u> </u>								L						╀
+	- <u></u>				-		\vdash	-				┢	┼									-	-										<u> </u>						╀
		 				-		$\left \right $			+										 																		╀
		<u> </u>				+		+	╞──	┢──		┢──	┢								┢				-														┢
		t				\square	1			<u> </u>																													t
							\mathbf{T}			<u> </u>	1	1										\uparrow																	t
																																							Ī
																																							I
							ļ																	ļ															╞
		ļ		ļ	<u> </u>	<u> </u>	ļ	<u> </u>	-		_	<u> </u>										<u> </u>		ļ		<u> </u>													╞
+		 		-		-					╂──										 		-		┣														╀
				-	_		\vdash			┣	-	┢──	-									<u> </u>		<u> </u>															╀
				+	-	+	┼──	\vdash		┼──											┝		+																╀
+				+	1	+	<u> </u>	1		<u> </u>	+										-		1		-								┝─┤						t
		1				1			1	<u> </u>	1														—														t
		1																																					t
																																							T
	T/PG			7	2	7	2	7	2	7	2	0	2	0	2	7	0	7	2	0	2	7	2	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	17

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	City of San Diego SWBH Study
LDC Report Date:	May 9, 2016
Parameters:	Polynuclear Aromatic Hydrocarbons
Validation Level:	Level IV
Laboratory:	Physis Environmental Laboratories, Inc.

Sample Delivery Group (SDG): 1504003-001

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
SWHB-07	31524	Sediment	04/09/14
SWHB-18	31535	Sediment	04/08/14
SWHB-18MS	31535MS	Sediment	04/08/14
SWHB-18MSD	31535MSD	Sediment	04/08/14
SWHB-18DUP	31535DUP	Sediment	04/08/14

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with Final Quality Assurance Project Plan, Regional Harbor Monitoring Program, San Diego, California (August 2013) and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines (CLPNFG) for Superfund Organic Methods Data Review (June 2008). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polynuclear Aromatic Hydrocarbons (PAHs) by Environmental Protection Agency (EPA) SW 846 Method 8270D

All sample results were subjected to Level IV evaluation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- BC The initial calibration (ICAL) curve did not meet method-specified criteria.
- CH High continuing calibration verification (CCV) recovery. Analytical results may be biased high.
- DL The analyte concentration was between the method detection limit (MDL) and the reporting limit (RL).
- FB The analyte was detected in the sample and its associated field blank and the concentration detected in the sample is less than five times the concentration detected in the blanks.
- H Holding time.
- HD Potential analytical imprecision.
- HL High LCS recovery. Analytical results may be biased high.
- HM High MS recovery. Analytical results may be biased high.
- HP High certified reference material (CRM) recovery. Analytical results may be biased high.
- HV High initial calibration verification (ICV) recovery. Analytical results may be biased high.
- LC Low CCV recovery. Analytical result may be biased low.
- LL Low LCS recovery. Analytical result may be biased low.
- LM Low MS recovery. Analytical result may be biased low.
- LP Low CRM recovery. Analytical result may be biased low.
- LS Low Surrogate recovery. Analytical results may be biased low.
- LV Low ICV recovery. Analytical result may be biased low.
- NC Calibration verification standard concentrations were outside the calibration range.
- NQ There is lack of QC for this analyte.
- RB The analyte was detected in the sample and its associated equipment blank and the concentration detected in the sample is less than five times the concentration detected in the blank.
- TD The dissolved metals concentration is significantly higher than the total metal concentration.
- *# Unusual problems found with the data. The number following the asterisk
 (*) will indicate the section in the validation report where a description of
 the problem can be found.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met with the following exception:

Sample	Compound	Total Days From Sample Collection Until Extraction	Required Holding Time (in Days) From Sample Collection Until Extraction	Flag	A or P
SWHB-07	All TCL compounds	398	365	J (all detects) UJ (all non-detects)	Р
SWHB-18	All TCL compounds	399	365	J (all detects) UJ (all non-detects)	Р

II. GC/MS Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For compounds where average relative response factors (RRFs) were utilized, percent relative standard deviations (%RSD) were less than or equal to 20.0%.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r^2) were greater than or equal to 0.990 with the following exceptions:

Date	Compound	r²	Associated Samples	Flag	A or P
05/26/15	Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(e)pyrene Benzo(a)pyrene Perylene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene	0.98699728 0.98595152 0.97632544 0.96600546 0.98481106 0.97008131 0.98831313 0.96116178 0.97922814	All samples in SDG 1504003-001	J (all detects) UJ (all non-detects)	A

Average relative response factors (RRF) for all compounds were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all compounds with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
05/28/16	Benzo(b)fluoranthene Perylene Indeno(1,2,3-cd)pyrene	42 38 44	All samples in SDG 1504003-001	J (all detects) UJ (all non-detects)	A

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all compounds with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
05/29/15	Benzo(b)fluoranthene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene	24 52 71	SWHB-18	J (all detects) J (all detects) J (all detects)	A

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogate Spikes

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits with the following exceptions:

Sample	Surrogate	%R (Limits)	Affected Compound	Flag	A or P
SWHB-07	d10-Acenaphthene d10-Phenanthrene	46 (50-150) 48 (50-150)	Acenaphthene Phenanthrene	J (all detects) UJ (all non-detects) J (all detects) UJ (all non-detects)	Ρ

VIII. Matrix Spike/Matrix Spike Duplicates/Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Compound	MS (%R) (Limits)	MSD (%R) (Limits)	Flag	A or P
SWHB-18MS/MSD (SWHB-18)	Benzo(b)fluoranthene Dibenz(a,h)anthracene	-	174 (50-150) 158 (50-150)	J (all detects) J (all detects)	A

Relative percent differences (RPD) were within QC limits.

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable. Results were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Compound	RPD (Limits)	Flag	A or P
SWHB-18DUP (SWHB-18)	1-Methylphenanthrene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(e)pyrene Dibenz(a,h)anthracene Perylene	40 (≤25) 60 (≤25) 32 (≤25) 32 (≤25) 32 (≤25) 40 (≤25)	J (all detects) UJ (all non-detects)	A

IX. Laboratory Control Samples/Certified Reference Materials

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits with the following exceptions:

LCS ID (Associated Samples)	Compound	LCS %R (Limits)	LCSD %R (Limits)	Flag	A or P
31515-BS1/BS2 (All samples in SDG 1504003-001)	Naphthalene 1-Methylnaphthalene 2-Methylnaphthalene	54 (70-130) - -	49 (70-130) 63 (70-130) 66 (70-130)	J (all detects) UJ (all non-detects)	Р

Relative percent differences (RPD) were within QC limits.

Certified reference materials (CRM) were analyzed as required by the method. The results were within QC limits with the following exceptions:

	Compound	%R (Limits)	Associated Samples	Flag	A or P
31579-CRM	1-Methylnaphthalene 2-Methylnaphthalene Naphthalene	39 (60-140) 41 (60-140) 36 (60-140)	All samples in SDG 1504003-001	J (all detects) UJ (all non-detects)	Р

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Compound Quantitation

All compound quantitations were within validation.

All compounds reported below the reporting limit (RL) and above the minimum detection limit (MDL) were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG 1504003-001	Compound reported below the RL and above the MDL	J (all detects)	A

XIII. Target Compound Identifications

All target compound identifications were within validation criteria.

XIV. System Performance

The system performance was acceptable.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to holding time exceedance, initial calibration r^2 , ICV and continuing calibration %D, surrogate %R, MS/MSD %R, DUP RPD, LCS/LCSD %R, CRM %R, and results reported below the RL and above the MDL, data were qualified as estimated in two samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Sample results that were found to be estimated (J) are usable for limited purposes only. Based upon the data validation all other results are considered valid and usable for all purposes.

City of San Diego SWBH Study Polynuclear Aromatic Hydrocarbons - Data Qualification Summary - SDG 1504003-001

Sample	Compound	Flag	A or P	Reason (Code)
SWHB-07 SWHB-18	All TCL compounds	J (all detects) UJ (all non-detects)	Р	Technical holding time (H)
SWHB-07 SWHB-18	Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(e)pyrene Benzo(a)pyrene Perylene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene	J (all detects) UJ (all non-detects)	A	Initial calibration (r ²) (BC)
SWHB-07 SWHB-18	Benzo(b)fluoranthene Perylene Indeno(1,2,3-cd)pyrene	J (all detects) UJ (all non-detects)	A	Initial calibration verification (%D) (LV)
SWHB-18	Benzo(b)fluoranthene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene	J (all detects) J (all detects) J (all detects)	A	Continuing calibration (%D) (CH)
SWHB-07	Acenaphthene Phenanthrene	J (all detects) UJ (all non-detects) J (all detects) UJ (all non-detects)	P	Surrogate spikes (%R) (LS)
SWHB-18	Benzo(b)fluoranthene Dibenz(a,h)anthracene	J (all detects) J (all detects)	A	Matrix spike/Matrix spike duplicate (%R) (HM)
SWHB-18	1-Methylphenanthrene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(e)pyrene Dibenz(a,h)anthracene Perylene	J (all detects) UJ (all non-detects)	A	Duplicate sample analysis (RPD) (HD)
SWHB-07 SWHB-18	Naphthalene 1-Methylnaphthalene 2-Methylnaphthalene	J (all detects) UJ (all non-detects)	Р	Laboratory control samples (%R) (LL)
SWHB-07 SWHB-18	1-Methyinaphthalene 2-Methyinaphthalene Naphthalene	J (all detects) UJ (all non-detects)	Р	Certified material reference (%R) (LP)
SWHB-07 SWHB-18	Compound reported below the RL and above the MDL	J (all detects)	A	Compound quantitation (DL)

City of San Diego SWBH Study Polynuclear Aromatic Hydrocarbons - Laboratory Blank Data Qualification Summary - SDG 1504003-001

No Sample Data Qualified in this SDG

City of San Diego SWBH Study Polynuclear Aromatic Hydrocarbons - Field Blank Data Qualification Summary -SDG 1504003-001

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Level IV

Date: <u>5/3/16</u> Page: <u>of /</u> Reviewer: <u>1</u> 2nd Reviewer: <u>NE</u>

Laboratory: Physis Environmental Laboratories, Inc.

LDC #: 36197A2b

SDG #: 1504003-001

METHOD: GC/MS Polynuclear Aromatic Hydrocarbons (EPA SW 846 Method 8270D)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area				Commer	nts	
I .	Sample receipt/Technical holding times	AIN				· · · · · · · · · · · · · · · · · · ·	
II.	GC/MS Instrument performance check	. ↓					
111.	Initial calibration/ICV	IN IN	RSOS	= 20/0.	x2	101/33	5.
IV.	Continuing calibration	IN	CeV :	= 20)	0		/
V.	Laboratory Blanks	\mathbf{A}					
VI.	Field blanks	\overline{N}					
VII.	Surrogate spikes	w					
VIII.	Matrix spike/Matrix spike duplicates / @U						
IX.	Laboratory control samples / CRM	w	105/2	s. ck	N		
Х.	/ Field duplicates	\sim					
XI.	Internal standards	A					
XII.	Compound quantitation RL/LOQ/LODs	\mathbf{A}					
XIII.	Target compound identification	A					
XIV.	System performance	Å					
XV.	Overall assessment of data	A					
Note:	N = Not provided/applicable R = Rin	o compounds sate eld blank	detected	D = Duplica TB = Trip b EB = Equip		SB=Source b OTHER:	lank
	Client ID			Lab ID		Matrix	Date
1	SWHB-07			31524		Sediment	04/09/14
2	SWHB-09.18			31526 31	535	Sediment	04/09/14
3	1 MS				MS	1	
4	MSD				MSD		
5	DUP				Dup		
6	1				/		
7	· · · · · · · · · · · · · · · · · · ·						
8							
Notes			····				
				·			

LDC #: 36197A-b

VALIDATION FINDINGS CHECKLIST

Page: / of A Reviewer: _____ 2nd Reviewer: ______

Method: Semivolatiles (EPA SW 846 Method 8270D)

Validation Area	Yes	No	NA	Findings/Comments
1. Technical holding times		en Se		
Were all technical holding times met?		_		
Was cooler temperature criteria met?				
II. GC/MS Instrument performance check				
Were the DFTPP performance results reviewed and found to be within the specified criteria?	<	-		
Were all samples analyzed within the 12 hour clock criteria?				
IIIa: Initial calibration				
Did the laboratory perform a 5 point calibration prior to sample analysis?	\leq			
Were all percent relative standard deviations (%RSD) < 20% and relative response factors (RRF) within method criteria?	\leq			
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of \geq 0.990?			Male Antik	
IIIb Initial Calibration Verification				
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?	\leq			
Were all percent differences (%D) < 30% or percent recoveries (%R) 70-130%?	Maria Sara		2. art 25. 3/2	
IV. Continuing calibration				
Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?	\leq	-		
Were all percent differences (%D) \leq 20% and relative response factors (RRF) within method criteria?				
V. Laboratory Blanks				
Was a laboratory blank associated with every sample in this SDG?	\square			
Was a laboratory blank analyzed at least once every 12 hours for each matrix and concentration?	\leq			
Was there contamination in the laboratory blanks? If yes, please see the Blanks validation completeness worksheet.				
VI. Field blanks				
Were field blanks were identified in this SDG?		\langle		
Were target compounds detected in the field blanks?				
VII. Surrogate spikes				
Were all surrogate percent recovery (%R) within QC limits?		/		
If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis?		/		
If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis performed to confirm %R?				

LDC #: 36197A26

VALIDATION FINDINGS CHECKLIST

Page: ________ Reviewer: _______ 2nd Reviewer: ______

Validation Area	Yes	No	NA	Findings/Comments
VIII. Matrix spike/Matrix spike duplicates				
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.	\langle			
Was a MS/MSD analyzed every 20 samples of each matrix?	\square			
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?		/		
IX Laboratory control samples				
Was an LCS analyzed for this SDG?	/			
Was an LCS analyzed per analytical batch?	/			
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?		/		
X. Field duplicates				
Were field duplicate pairs identified in this SDG?		\square		
Were target compounds detected in the field duplicates?			\land	
XI. Internal standards				
Were internal standard area counts within -50% to +100% of the associated calibration standard?				
Were retention times within \pm 30 seconds of the associated calibration standard?	7			
XII. Compound quantitation				
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?	1			
Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?	/			
XIII. Target compound identification				
Were relative retention times (RRT's) within <u>+</u> 0.06 RRT units of the standard?				
Did compound spectra meet specified EPA "Functional Guidelines" criteria?	/			
Were chromatogram peaks verified and accounted for?				
XIV System performance				
System performance was found to be acceptable.				
XV. Overall assessment of data				
Overall assessment of data was found to be acceptable.				

VALIDATION FINDINGS WORKSHEET

METHOD: GC/MS SVOA

A. Phenol	T. 4-Chloroaniline	MM. 4-Chlorophenyl-phenyl ether	FFF. Di-n-octylphthalate	YYY. 2,3,5-Trimethylnaphthalene
B. Bis (2-chloroethyl) ether	U. Hexachlorobutadiene	NN. Fluorene	GGG. Benzo(b)fluoranthene	ZZZ. Perylene
C. 2-Chlorophenol	V. 4-Chloro-3-methylphenol	OO. 4-Nitroaniline	HHH. Benzo(k)fluoranthene	AAAA. Dibenzothiophene
D. 1,3-Dichlorobenzene	W. 2-Methylnaphthalene	PP. 4,6-Dinitro-2-methylphenol	III. Benzo(a)pyrene	BBBB. Benzo(a)fluoranthene
E. 1,4-Dichlorobenzene	X. Hexachlorocyclopentadiene	QQ. N-Nitrosodiphenylamine	JJJ. Indeno(1,2,3-cd)pyrene	CCCC. Benzo(b)fluorene
F. 1,2-Dichlorobenzene	Y. 2,4,6-Trichlorophenol	RR. 4-Bromophenyl-phenylether	KKK. Dibenz(a,h)anthracene	DDDD. cis/trans-Decalin
G. 2-Methylphenol	Z. 2,4,5-Trichlorophenol	SS. Hexachlorobenzene	LLL. Benzo(g,h,i)perylene	EEEE. Biphenyl
H. 2,2'-Oxybis(1-chloropropane)	AA. 2-Chloronaphthalene	TT. Pentachlorophenol	MMM. Bis(2-Chloroisopropyl)ether	FFFF. Retene
I. 4-Methylphenol	BB. 2-Nitroaniline	UU. Phenanthrene	NNN. Aniline	GGGG. C30-Hopane
J. N-Nitroso-di-n-propylamine	CC. Dimethylphthalate	VV. Anthracene	OOO. N-Nitrosodimethylamine	HHHH. 1-Methylphenanthrene
K. Hexachloroethane	DD. Acenaphthylene	WW. Carbazole	PPP. Benzoic Acid	IIII. 1,4-Dioxane
L. Nitrobenzene	EE. 2,6-Dinitrotoluene	XX. Di-n-butylphthalate	QQQ. Benzyl alcohol	JJJJ. Acetophenone
M. Isophorone	FF. 3-Nitroaniline	YY. Fluoranthene	RRR. Pyridine	KKKK. Atrazine
N. 2-Nitrophenol	GG. Acenaphthene	ZZ. Pyrene	SSS. Benzidine	LLLL. Benzaldehyde
O. 2,4-Dimethylphenol	HH. 2,4-Dinitrophenol	AAA. Butylbenzylphthalate	TTT. 1-Methylnaphthalene	MMMM. Caprolactam
P. Bis(2-chloroethoxy)methane	II. 4-Nitrophenol	BBB. 3,3'-Dichlorobenzidine	UUU.Benzo(b)thiophene	NNNN.
Q. 2,4-Dichlorophenol	JJ. Dibenzofuran	CCC. Benzo(a)anthracene	VVV.Benzonaphthothiophene	0000.
R. 1,2,4-Trichlorobenzene	KK. 2,4-Dinitrotoluene	DDD. Chrysene	WWW.Benzo(e)pyrene	РРРР.
S. Naphthalene	LL, Diethylphthalate	EEE. Bis(2-ethylhexyl)phthalate	XXX. 2,6-Dimethylnaphthalene	QQQQ.

VALIDATION FINDINGS WORKSHEET Technical Holding Times

Page:_	
Reviewer:	9
2nd Reviewer:	NG

All circled dates have exceeded the technical holding times.

METHOD : GC/N	IS BNA (EPA S	W 846 Method	8270D)				
Sample ID	Matrix	Preserved	Sampling Date	Extraction date	Analysis date	Total # of Days	Qualifier
1	Sed	\checkmark	4-9-14	5-12-15		398	JUN P
2	1		4-8-14			399	11
3							
4							
3 4 5			V	V			
(dots IND)							
()							
······			· · · · · · · · · · · · · · · · · · ·				
			- ·				
		·			<u> </u>		
							<u> </u>
		-					
· <u></u>	· · · · ·				<u>.</u>		

TECHNICAL HOLDING TIME CRITERIA

Water:Extracted within 7 days, analyzed within 40 days.Soil:Extracted within 14 days, analyzed within 40 days.

LDC #: 36197A-b

VALIDATION FINDINGS WORKSHEET Initial Calibration

Page: /of / Reviewer: 9 2nd Reviewer: 16

METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Y N N/A Did the laboratory conduct an acceptable 5 point calibration prior to sample analysis?

Were all percent relative standard deviations (%RSD) ≤ 20 and relative response factors (RRF) within method criteria?

N/A Was a curve fit used for evaluation?

 $\frac{1}{N}$ Did the initial calibration meet the curve fit acceptance criteria of ≥ 0.990 ?

#	Date	Standard ID	Compound	Finding %RSD (Limit: <u><</u> 15.0%)	Finding RRF (Limit: <u>></u> 0.05)	Associated Samples	Qualifications
	5/26/15	ICAL	ca	y= 98699728		M (dets+ND)	J/UN/A (BC)
			2003	0.98395152 0.97632544 0.9667054.6			
			444	0.97632544			
			ННН	0.9000546			
			WŴW	0.98481106			
 			111 222	0.97008131 0.98831313			
╠━━┥				0.98831313			
 			-NN	0.96116178			
			rkk	0.97922814			V
		· · · · · · · · · · · · · · · · · · ·					
		····					
			·				
					·····		
		· · · · · · · · · · · · · · · · · · ·					
		······					
		·····					
		·····					

LDC #:361974=6

VALIDATION FINDINGS WORKSHEET Initial Calibration Verification

Page: of Reviewer: 2nd Reviewer: N

METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was an initial calibration verification standard analyzed after each ICAL for each instrument?

YN/A Were all %D within the validation criteria of ≤ 30 %D?

#	Date	Standard ID	Compound	Finding %D (Limit: <u><</u> 30.0%)	Associated Samples	Qualifications
	5/28/16	ICV	ZZZ	42	M clets + ND)	1/11/A (2V)
	/ /	• • • • • • • • • • • • • • • • • • •		38	· · · · · · · · · · · · · · · · · · ·	1,
<u> </u>			141	44		└────┴─────
					· · · · ·	
					· · · · · · · · · · · · · · · · · · ·	

LDC #36197A=b

VALIDATION FINDINGS WORKSHEET

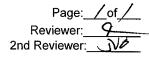
Continuing Calibration

Page: /of / Reviewer: /

METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?


Y(N) N/A Were percent differences (%D) ≤20 % and relative response factors (RRF) within the method criteria?

#	Date	Standard ID	Compound	Finding %D (Limit: <u><</u> 20.0%)	Finding RRF (Limit)	Associated Samples	Qualifications
	5=9/15	eev	44 4	24 52		# 2, 5 (dets)	-1/H/A (CH)
	/ /			52			
			EKK	71			
\square			· · · ·				
		aus					
		· · · · · · · · · · · · · · · · · · ·				····	
						· · · · · · · · · · · · · · · · · · ·	
L							
			· · · · · · · · · · · · · · · · · · ·				
				· · · · · · · · · · · · · · · · · · ·			

LDC #:361974=b

(N)N/A-

VALIDATION FINDINGS WORKSHEET Surrogate Recovery

METHOD: GC/MS BNA (EPA SW 846 Method 8270C)

Please see qualification below for all questions answered "N". Not applicable questions are identified as "N/A".

Y WIA Were percent recoveries (%R) for surrogates within QC limits?

If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis performed to confirm %R?

N/N/A / If any %R was less than 10 percent, was a reanalysis performed to confirm %R?

Date	Date	Sample ID	Surrogate	%R (Limits)	Qualifications
		/	18-5	40.4 (50-150)	
				()	
				()	
		/	d10-66	46 (57-150)	-VUN/ F (dats+N/2)
			A10-UU	46 (57-150) 48 (V)	
				()	
				()	
				()	
				()	
				()	
				()	
				()	
				()	
				()	
				()	
		· · · · · · · · · · · · · · · · · · ·		()	
				()	
				()	
				()	
	<u> </u>				
					· · · · · · · · · · · · · · · · · · ·

Base/Neutral Surrogates: (NBZ) = Nitrobenzene-d5 (FBP) = 2-Fluorobiphenyl (TPH) = Terphenyl-d14 (DCB) = 1,2-Dichlorobenzene-d4 Acid Surrogates: (PHL) = Phenol-d5 (2FP)= 2-Fluorophenol (TBP) = 2,4,6-Tribromophenol (2CP) = 2-Chlorophenol-d4

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

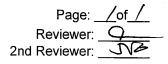
Page	:of
Reviewer:	<u>4</u>
2nd Reviewer	: NG

METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.

(KN N/A


Was a MS/MSD analyzed every 20 samples of each matrix?

W/A Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

#	Date	MS/MSD ID	Compound	MS %R (Limits)	MSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
		3/4	644	()	174 (50-150	()	2 (Lets)	Jolets A(HM)
			644 	()	158 (1)	()		
				()	()	()		
				()	()	()		
				()	()	()		
		5	HHHH	()	()	40 15151	2 (dets)	Jobs A (HO)
				()	()	60 ()		
			AAA WWW	()	()	32 () 32 ()		
				()				
			tek zzz	()	()	32()		
		······	ZZ	()	()	AO(1)		V
				()	()	()		
				()	()	()		
				()		()		
				()		()		·
				()				
				()				
		· · · · · · · · · · · · · · · · · · ·		()			· · · · · · · · · · · · · · · · · · ·	
				()				
				()		()		
				()		()	·	
		······································		()	()	()		
			1	()	()	()		
				()	()	()		
				()	()	()		
	······			()	()	()		
				()		()		

VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS)

METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

Plaase see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was a LCS required?

Y(N\N/A Were the LCS/LCSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

#	Date	LCS/LCSD ID	Compound	%R	LCS R (Limits)	ا %R	LCSD (Limits)	RPD (Limits)		Associated Samples	Qualifications
		31515-BS1/	5	54	(70-/30)	49	170-130	()	all dets+ND?	-> /H/P(22)
		-552	TTT		.)	63	()	()		
			\mathcal{N}		()	66	()	()		
					()		()	()		
					()		()	()		
		31579-CRM	TTT	39	60-140		()	()	ull (dets+ND)	J/11/A(2)
		· · · · · · · · · · · · · · · · · · ·	W	41	())		()	()	`	
			5	36	(/)		()	()		
					()		()	()		
					()		()	()		
					()		()	()		
					()		()	()		
					()		()	()		
					()		()	()		
					()		()	()		
					()		()	()		
					()		()	()		
		······································			()		()	()		
					()		()	()		
					()		()	()		
					())		
					()		() ())		
							() ()	1)		
							()) \		

LDC: 26/97 A26

Method: PAHs (EPA SW 846 Method 8270D)

Calibration Date	Analyte	Standard	(X) Concentration	(Y) Area	(X ²) Conc
5/26/2015	Naphthalene	1	0.0250	0.0282062	0.000025
		2	0.0500	0.0548671	0.00005
		3	0.1250	0.1498233	0.0001
		4	0.2500	0.2980483	0.0002
		5	0.5000	0.5702316	0.0008

Linear through the origin

	calculated	Reported
Constant	0.000000	0.0000
X Coefficient(s)	1.152617	1.15262
Correlation Coefficient	0.999800	0.99911
Coefficient of Determination (r^2)	0.999601	

LDC: 36197 A>b

Method: PAHs (EPA SW 846 Method 8270D)

Calibration Date	Analyte	Standard	(X) Concentration	(Y) Area	(X ²) Conc
5/26/2015	Benzo(g,h,i)perylene	1	0.0250	0.0269938	0.000025
		2	0.0500	0.0655381	0.00005
	Γ	3	0.1250	0.1541564	0.0001
		4	0.2500	0.2993241	0.0002
		5	0.5000	0.6249197	0.0008

Linear through the origin

	calculated	Reported
Constant	0.000000	0.0000
X Coefficient(s)	1.239282	1.23925
Correlation Coefficient	0.999836	0.99929
Coefficient of Determination (r^2)	0.999671	

LDC #:36

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page	: <u>/</u> of_/
Reviewe	r:
2nd Reviewe	r: NO

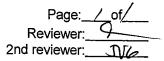
METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF RRF = $(A_x)(C_{is})/(A_{is})(C_x)$ Where: ave. RRF = initial calibration average RRF

RRF = continuing calibration RRF A, = Area of compound,

 $C_x = Concentration of compound,$


A_{is} = Area of associated internal standard

Cis = Concentration of internal standard

					Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Reference Internal Standard)	Average RRF (initial)	RRF (CC)	RRF (CC)	%D	%D
1	CeV	5/29/15	Phenol (1st internal standard)	500	474 1219	474.120	5	5
		//	Naphthalene (2nd internal standard)	V	530.5232	530.52/	6	6
			Fluorene (3rd internal standard)					
			Pentachlorophenol (4th internal standard)					
			Bis(2-ethylhexyl)phthalate (5th internal standard)					
			Benzo(a)pyrene (6th internal standard)		ļ			
2			Phenol (1st internal standard)					
			Naphthalene (2nd internal standard)					
			Fluorene (3rd internal standard)					
			Pentachlorophenol (4th internal standard)					
			Bis(2-ethylhexyl)phthalate (5th internal standard)					
			Benzo(a)pyrene (6th internal standard)					
3			Phenol (1st internal standard)			•		
			Naphthalene (2nd internal standard)					
			Fluorene (3rd internal standard)					
			Pentachlorophenol (4th internal standard)					
			Bis(2-ethylhexyl)phthalate (5th internal standard)					
			Benzo(a)pyrene (6th internal standard)					

Comments: <u>Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.</u>

VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270D)

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS * 100

Where: SF = Surrogate Found SS = Surrogate Spiked

Sample ID: /

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-05 d/0- EE	1000	462.96	51	46	5-
2-Fluorobiphenyl dilo - UI	/	47823	78	48	30
Terphenyl-d14 /12- DDD		1006.66	101	101	D
Phenol-ds d8-S		403.67	41	40	6
2-Fluorophenol					
2,4,6-Tribromophenol					
2-Chyorophenol-d4					
1-2-Bichlerobenzene-04					

Sample ID:__

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5					
2-Fluorobiphenyl					
Terphenyl-d14					
Phenol-d5					
2-Fluorophenol					
2,4,6-Tribromophenol					
2-Chlorophenol-d4					
1,2-Dichlorobenzene-d4					

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5					
2-Fluorobiphenyl					
Terphenyl-d14					
Phenol-d5					
2-Fluorophenol					
2,4,6-Tribromophenol					
2-Chlorophenol-d4					
1,2-Dichlorobenzene-d4					

LDC #: 36197 - b

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates Results Verification

Page:	<u></u>
Reviewer:	9_
2nd Reviewer:	NG

METHOD: GC/MS PAH (EPA SW 846 Method 8270D)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SSC - SC)/SA

Where: SSC = Spiked sample concentration SA = Spike added SC = Sample concentation

RPD = I MSC - MSC I * 2/(MSC + MSDC)

MSC = Matrix spike concentration

MSDC = Matrix spike duplicate concentration

MS/MSD samples:

Compound	Ad	vike ded 5/9)	Sample Concentration (1/≶/9)	ation Concentration		Matrix Spike		Matrix Spike Duplicate Percent Recovery		MS/MSD RPD	
	MS	MSD	/	MS	MSD	Reported	Recalc	Reported	Recalc	Reported	Recalculated
44	82.8	87.4	N7	62.8	τ3. ¹	76	76	84	84	10	10
22	V	l	7.7	1002	110.3	[11]	112	117	117	5	5
							· · · · · · · · · · · · · · · · · · ·				

Comments: <u>Refer to Matrix Spike/Matrix Spike Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.</u>

LDC #: 36197 A=b

VALIDATION FINDINGS WORKSHEET Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification

Page: <u>/of</u> Reviewer: <u>9</u> 2nd Reviewer: <u>JV</u>

METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270D)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SC/SA)

Where: SSC = Spike concentration SA = Spike added

RPD = I LCSC - LCSDC I * 2/(LCSC + LCSDC)

LCSC = Laboratory control sample concentration LCSDC = Laboratory control sample duplicate concentration

LCS/LCSD samples: <u>31515 - BS1/-BS =</u>

Compound	Ad	bike ded (A)	Conce	bike ntration ∽/Q)	Percent I	Recovery		SD		L CSD
		LCSD			Reported	Recalc	Reported	Recalc	Reported	Recalculated
₹€	500	500	428.	376	86	86	75	75	14	14
ZZ	l	V	528	520.9	106	106	104	10 4	2	2
					·					
· · · · · · · · · · · · · · · · · · ·										
· · · · · ·									·	
				1						
		·····								

Comments: <u>Refer to Laboratory Control Sample/Laboratory Control Sample Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.</u>

LDC #:36197A=b

VALIDATION FINDINGS WORKSHEET **Sample Calculation Verification**

Page:	of
Reviewer:	9
2nd reviewer:_	NG

METHOD: GC/MS SVOA (EPA SW 846 Method 8270D)

V N N/A	Y	N	N/A
	VX V	Ν	N/A

2.0

=

Were all reported results recalculated and verified for all level IV samples? Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

Example:

Concentration = $(A_{.})(I_{.})(V_{.})(DF)(2.0)$ $(A_{is})(RRF)(V_o)(V_i)(\%S)$

- Area of the characteristic ion (EICP) for the = A, compound to be measured
- A_{is} Area of the characteristic ion (EICP) for the specific = internal standard
- Amount of internal standard added in nanograms (ng) = l_s
- Volume or weight of sample extract in milliliters (ml) or V, = grams (g).
- Volume of extract injected in microliters (ul) V_i =
- Volume of the concentrated extract in microliters (ul) V, =
- Dilution Factor. Df =
- Percent solids, applicable to soil and solid matrices %S = only. Factor of 2 to account for GPC cleanup

Sample I.D. _____

Conc. = $\frac{26858}{(613444)}$ **2000** $\frac{2000}{(613444)}$ **1**.152 $\frac{100}{(613444)}$ **1**.152 $\frac{100}{(613444)}$ ____)

= 1.60 n8/q

#	Sample ID	Compound	Reported Concentration (パラク)	Calculated Concentration ()	Qualification
			1.6		
	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		
[]					
				·······	
			· · · · · · · · · · · · · · · · · · ·		
			<u> </u>		

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	City of San Diego SWBH Study

LDC Report Date: May 9, 2016

Parameters: Polybrominated Diphenyl Ethers

Validation Level IV Level IV

Laboratory: Physis Environmental Laboratories, Inc.

Sample Delivery Group (SDG): 1504003-001

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
SWHB-07	31524	Sediment	04/09/14
SWHB-18	31535	Sediment	04/08/14
SWHB-18MS	31535MS	Sediment	04/08/14
SWHB-18MSD	31535MSD	Sediment	04/08/14
SWHB-18DUP	31535DUP	Sediment	04/08/14

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with Final Quality Assurance Project Plan, Regional Harbor Monitoring Program, San Diego, California (August 2013) and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines (CLPNFG) for Superfund Organic Methods Data Review (June 2008). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polybrominated Diphenyl Ethers (PBDE) by Environmental Protection Agency (EPA) SW 846 Method 8270D using Negative Chemical Ionization (NCI)

All sample results were subjected to Level IV data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- BC The initial calibration (ICAL) curve did not meet method-specified criteria.
- CH High continuing calibration verification (CCV) recovery. Analytical results may be biased high.
- DL The analyte concentration was between the method detection limit (MDL) and the reporting limit (RL).
- FB The analyte was detected in the sample and its associated field blank and the concentration detected in the sample is less than five times the concentration detected in the blanks.
- H Holding time.
- HD Potential analytical imprecision.
- HL High LCS recovery. Analytical results may be biased high.
- HM High MS recovery. Analytical results may be biased high.
- HP High certified reference material (CRM) recovery. Analytical results may be biased high.
- HV High initial calibration verification (ICV) recovery. Analytical results may be biased high.
- LC Low CCV recovery. Analytical result may be biased low.
- LL Low LCS recovery. Analytical result may be biased low.
- LM Low MS recovery. Analytical result may be biased low.
- LP Low CRM recovery. Analytical result may be biased low.
- LS Low Surrogate recovery. Analytical results may be biased low.
- LV Low ICV recovery. Analytical result may be biased low.
- NC Calibration verification standard concentrations were outside the calibration range.
- NQ There is lack of QC for this analyte.
- RB The analyte was detected in the sample and its associated equipment blank and the concentration detected in the sample is less than five times the concentration detected in the blank.
- TD The dissolved metals concentration is significantly higher than the total metal concentration.
- *# Unusual problems found with the data. The number following the asterisk
 (*) will indicate the section in the validation report where a description of
 the problem can be found.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met with the following exceptions:

Sample	Compound	Total Days From Sample Collection Until Extraction	Required Holding Time (in Days) From Sample Collection Until Extraction	Flag	A or P
SWHB-07	All TCL compounds	398	365	J (all detects) UJ (all non-detects)	Ρ
SWHB-18	All TCL compounds	399	365	J (all detects) UJ (all non-detects)	Р

II. GC/MS Instrument Performance Check

Instrument performance check was not required per method.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

A curve fit, based on the initial calibration, was established for quantitation. The coefficient of determination (r^2) was greater than or equal to 0.990 with the following exceptions:

Date	Compound	r²	Associated Samples	Flag	A or P
06/14/15	PBDE 209	0.97105483	All samples in SDG 1504003-001	J (all detects) UJ (all non-detects)	A

Average relative response factors (RRF) for all compounds were within validation criteria.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all compounds with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
06/04/15	PBDE 190 PBDE 209	36.40 24.02	SWHB-18	UJ (all non-detects) UJ (all non-detects)	А

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates/Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Compound	MS (%R) (Limits)	MSD (%R) (Limits)	Flag	A or P
SWHB-18MS/MSD (SWHB-18)	PBDE 209	-	44 (50-150)	UJ (all non-detects)	А

Relative percent differences (RPD) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Compound	RPD (Limits)	Flag	A or P
SWHB-18MS/MSD (SWHB-18)	PBDE 209 PBDE 190	48 (≤25) 28 (≤25)	NA	-

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Compound	RPD (Limits)	Flag	A or P
SWHB-18DUP (SWHB-18)	PBDE 047	27 (≤25)	J (all detects)	А

IX. Laboratory Control Samples/Certified Reference Materials

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

Certified reference materials (CRM) were analyzed as required by the method. The results were within QC limits with the following exceptions:

CRM ID	Compound	%R (Limits)	Associated Samples	Flag	A or P
31519-CRM1	PBDE 100	145 (60-140)	SWHB-07	J (all detects)	A
31519-CRM1	PBDE 100	145 (60-140)	SWHB-18	NA	-
31519-CRM1	PBDE 209	49 (60-140)	All samples in SDG 1504003-001	J (all detects) UJ (all non-detects)	A

.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Compound Quantitation

All compound quantitations were within validation criteria.

All compounds reported below the reporting limit (RL) and above the minimum detection limit (MDL) were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG 1504003-001	Compound reported below the RL and above the MDL	J (all detects)	A

XIII. Target Compound Identifications

All target compound identifications were within validation criteria.

XIV. System Performance

The system performance was acceptable.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to holding time exceedance, initial calibration r^2 , continuing calibration %D, MS/MSD %R, DUP RPD, CRM %R, and results reported below the RL and above the MDL, data were qualified as estimated in two samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Sample results that were found to be estimated (J) are usable for limited purposes only. Based upon the data validation all other results are considered valid and usable for all purposes.

City of San Diego SWBH Study Polybrominated Diphenyl Ethers - Data Qualification Summary - SDG 1504003-001

Sample	Compound	Flag	A or P	Reason (Code)
SWHB-07 SWHB-18	All TCL compounds	J (all detects) UJ (all non-detects)	Ρ	Technical holding time (H)
SWHB-07 SWHB-18	PBDE 209	J (all detects) UJ (all non-detects)	А	Initial calibration (r ²) (BC)
SWHB-18	PBDE 190	UJ (all non-detects)	Α	Continuing calibration (%D) (LC)
SWHB-18	PBDE 209	UJ (all non-detects)	А	Continuing calibration (%D) (CH)
SWHB-18	PBDE 209	UJ (all non-detects)	A	Matrix spike/Matrix spike duplicate (%R) (LM)
SWHB-18	PBDE 047	J (all detects)	A	Duplicate sample analysis (RPD) (HD)
SWHB-07	PBDE 100	J (all detects)	A	Certified reference material (%R) (HP)
SWHB-07 SWHB-18	PBDE 209	J (all detects) UJ (all non-detects)	A	Certified reference material (%R) (LP)
SWHB-07 SWHB-18	Compound reported below the RL and above the MDL	J (all detects)	А	Compound quantitation (DL)

City of San Diego SWBH Study

Polybrominated Diphenyl Ethers - Laboratory Blank Data Qualification Summary - SDG 1504003-001

No Sample Data Qualified in this SDG

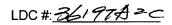
City of San Diego SWBH Study Polybrominated Diphenyl Ethers - Field Blank Data Qualification Summary - SDG 1504003-001

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Level IV

Date: <u>4/29/16</u> Page: ______ of /_____ Reviewer: ______ 2nd Reviewer: ______


SDG #: <u>1504003-001</u> Laboratory: <u>Physis Environmental Laboratories</u>, <u>Inc.</u>

LDC #: 36197A2c

METHOD: GC/MS Polybrominated Diphenyl Ethers (EPA SW 846 Method 8270D-NCI)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area				Comme	nts	
I.		AIN					
11.	GC/MS Instrument performance check	AN					
111	. Initial calibration/ICV	W/N	V 2		KeV W	as not le	parted
IV	Continuing calibration	Tw	700	<u> </u>	20		1
<u>v</u>	Laboratory Blanks	\mathbf{A}			·····		
	. Field blanks	\mathbb{N}					
VI	I. Surrogate spikes	A				· · · · · · · · · · · · · · · · · · ·	
VII	I. Matrix spike/Matrix spike duplicates /BUP	AW	_				
<u> </u>		AM	2C5/	В			
<u> </u>	Field duplicates	\mathbb{N}	·				
XI	. Internal standards	\blacksquare					
XI	. Compound quantitation RL/LOQ/LODs	\mathbf{A}					
<u></u>	I. Target compound identification	\mathbf{A}				·	
XI	/. System performance	A					
XV	. Overall assessment of data	X					
Note:	N = Not provided/applicable R = Rin	o compounds sate eld blank	detected	TB = T	uplicate Trip blank Equipment blank	SB=Source b OTHER:	blank
	Client ID			Lab ID		Matrix	Date
1	SWHB-07			31524		Sediment	04/09/14
2	SWHB-09 /8				31575	Sediment	04/09/14
3	INS				L NS		
4	V NGO				1 NSD		
5	V Duto				/ DUP	V	ď
6					· · · · · · · · · · · · · · · · · · ·		
7							
8							
Note							
-	0-7100						
$\left - \right $		<u> </u>					
$\left - \right $							
L		_004.2	<u>l_</u>				

VALIDATION FINDINGS CHECKLIST

Page: / of > Reviewer: _____ 2nd Reviewer: ______

Method: Semivolatiles (EPA SW 846 Method 8270D)			<u> </u>	
Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
Were all technical holding times met?				
Was cooler temperature criteria met?				
II. GC/MS Instrument performance check				
Were the DFTPP performance results reviewed and found to be within the specified criteria?	Ø	2.		
Were all samples analyzed within the 12 hour clock criteria?			/	
Illa. Initial calibration				
Did the laboratory perform a 5 point calibration prior to sample analysis?				
Were all percent relative standard deviations (%RSD) \leq 20% and relative response factors (RRF) within method criteria?			/	-
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of \geq 0.990?		/		
IIIb. Initial Calibration Verification				
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?				
Were all percent differences (%D) ≤ 30% or percent recoveries (%R) 70-130%?	Pauluki soverinis			
IV. Continuing calibration				
Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?		ſ		
Were all percent differences (%D) \leq 20% and relative response factors (RRF) within method criteria?				
V. Laboratory Blanks				
Was a laboratory blank associated with every sample in this SDG?				·····
Was a laboratory blank analyzed at least once every 12 hours for each matrix and concentration?	/	-		
Was there contamination in the laboratory blanks? If yes, please see the Blanks validation completeness worksheet.	Current Control of Con		ſ	
VI. Field blanks			1	
Were field blanks were identified in this SDG?			1	
Were target compounds detected in the field blanks?				
VII. Surrogate spikes				
Were all surrogate percent recovery (%R) within QC limits?		[
If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis?			<	
If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis performed to confirm %R?			/	

LDC #: 36197A2C

VALIDATION FINDINGS CHECKLIST

Page: 2 of 2 Reviewer: 9 2nd Reviewer: <u>N</u>C

Validation Area	Yes	No	NA	Findings/Comments
VIII. Matrix spike/Matrix spike duplicates				
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.	/			
Was a MS/MSD analyzed every 20 samples of each matrix?	\square			
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?				
IX. Laboratory control samples				
Was an LCS analyzed for this SDG?				
Was an LCS analyzed per analytical batch?				
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?				
X. Field duplicates				
Were field duplicate pairs identified in this SDG?		/	·	
Were target compounds detected in the field duplicates?				
XI. Internal standards				
Were internal standard area counts within -50% to +100% of the associated calibration standard?				
Were retention times within + 30 seconds of the associated calibration standard?				
XII. Compound quantitation				
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?				
Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XIII. Target compound identification				
Were relative retention times (RRT's) within <u>+</u> 0.06 RRT units of the standard?	\langle	~		
Did compound spectra meet specified EPA "Functional Guidelines" criteria?	\checkmark			
Were chromatogram peaks verified and accounted for?				
XIV, System performance				
System performance was found to be acceptable.	/			
XV. Overall assessment of data				
Overall assessment of data was found to be acceptable.				

LDC #: 36197A20

VALIDATION FINDINGS WORKSHEET Technical Holding Times

Page:_	of
Reviewer:	<u>Q</u>
2nd Reviewer:	_NB

All circled dates have exceeded the technical holding times. YNNA Were all cooler temperatures within validation criteria?

METHOD : GC/MS BNA (EPA SW 846 Method 8270C)							
Sample ID	Matrix	Preserved	Sampling Date	Extraction date	Analysis date	Total # of Days	Qualifier
1	Sed	Y	4-9-14	5-12-15		398	JULYA
	4	1	4-8-14	V		399	
3			[/		1	
4						<u> </u>	
5 (dets+NB)	V	l	+				
(dets+ND)							
		· · · · ·					
	···· •						
					·		
				·			
						1	

TECHNICAL HOLDING TIME CRITERIA

Water:Extracted within 7 days, analyzed within 40 days.Soil:Extracted within 14 days, analyzed within 40 days.

LDC #: 36197Å= C

VALIDATION FINDINGS WORKSHEET **Initial Calibration**

Page: 1of Reviewer 2nd Reviewer:

METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". (V N M/A Did the laboratory conduct an acceptable 5 point calibration prior to sample analysis?

Y N NA

Were all percent relative standard deviations (%RSD) < 20 and relative response factors (RRF) within method criteria? MN/A

Was a curve fit used for evaluation?

1n/n/a Did the initial calibration meet the curve fit acceptance criteria of \geq 0.990?

#	Date	Standard ID	Compound	Finding %RSD (Limit: <u><</u> 15.0%)	Finding RRF (Limit: <u>></u> 0.05)	Associated Samples	Qualifications
	6/4/5	1014	FBDE 209	Y2=0.9710	483	all (dets+ND)	JUN /A (BC)
						·······	
<u> </u>							
							·
							· · · · · · · · · · · · · · · · · · ·
		<u></u>					
 							
		· · · · · · · · · · · · · · · · · · ·					

LDC	#:	34	9	7A	20
-----	----	----	---	----	----

VALIDATION FINDINGS WORKSHEET

Continuing Calibration

Page: / of / Reviewer: 9 2nd Reviewer: NG

METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?

M Were percent differences (%D) \leq 20 % and relative response factors (RRF) within the method criteria?

#	Date	Standard ID	Compound	Finding %D (Limit: <u><</u> 20.0%) 36. 4.0 24. 0.2	Finding RRF (Limit)	Associated Samples	Qualifications
	6/4/15	ec.V	Compound PBDE 190 209	36.40		2,5 (NØ)	V/41/A (20)
	/ / /	(4:55)	209	24.02			1 (CH)
			/	- 			
			· · · ·				
					· · · · ·		
						···	
					1		· · · · · ·
			· · · · · ·				
				······································			
		· · · ·					
				,			
11							

LDC #: 36197A=C

VALIDATION FINDINGS WORKSHEET <u>Matrix Spike/Matrix Spike Duplicates</u>

Page:_	<u></u>
Reviewer:	9
2nd Reviewer:	NG

METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

YNN/A Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.

Was a MS/MSD analyzed every 20 samples of each matrix?

Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

#	Date	MS/MSD ID	Compound	MS %R (Limits)	MSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
		3/4	PBDK209	()	44 50-150	()	2(1/0)	VIN/A(KU)
		/	209		()	48 (325)		Jun A (LM) Janta (HD)
			V 190	()	()	28 (1/)		L'
				()	()	()		
				()	()	()		
			PBDE 047	()	()	27 (575)	2 (dets)	blet3/A (HD)
			_	()	()	()		
				()	<u> ()</u>	()		
╠				()	<u> </u>	()		
				()	()	()		
				()	()	()		
				()	()	()		
	···			()	()	()		
				()	()	()		
╟——↓				()	()	()		
		<u></u>		()	()	()		
∥				()	()	()		
∥				()	()	()		
╠╼╾┽			<u> </u>	()	<u> () </u>			
				()	()	()		
∥			_	()		()		
				()				
				()		()		
				()	()	()		
∥	···			()			<u> </u>	
∦				()		()		
┣				()	()	()		
			<u> </u>	()	<u> </u>	<u> () </u>	L	

LDC #: 36197A = C

VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS)

Page: _	
Reviewer:	9
2nd Reviewer:	N6

METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

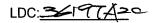
Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

 Y N N/A
 Was a LCS required?

 Y N N/A
 Were the LCS/LCSD reprint the LCSD reprint

<u>N N/A</u> Were the LCS/LCSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

#	Date	LCS/LCSD ID 31519-CRM1	Compound	ECS CPM/ %R (Limits)	LCSD %R (Limits)		RPD (Limits)	Associated Samples	Qualifications
		31519-CRM1	PBDE 100	145 70-130	()	()		bots/A(HP)
			1 209	49 (1)	()	()	(dot=+ND)	JAN/A(LP)
				()	()	()		/ / / /
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		


LDC: 361974-20-

Method: PBDE (EPA SW 846 Method 8270D)

Calibration Date	Analyte	Standard	(X) Concentration	(Y) Area	(X ²) Conc
6/14/2015	PBDE047	1	0.0050	0.0049101	0.000025
		2	0.0125	0.0125432	0.00005
		3	0.0250	0.0256778	0.0001
		4	0.0375	0.0396473	0.0002
		5	0.0500	0.0550303	0.0004
		6	0.1000	0.1145303	0.0008

Linear through the origin

	calculated	Reported
Constant	0.000000	0.0000
X Coefficient(s)	1.122488	1.12249
Correlation Coefficient	0.999440	0.99739
Coefficient of Determination (r^2)	0.998880	

Method: PBDE (EPA SW 846 Method 8270D)

Calibration Date	Analyte	Standard	(X) Concentration	(Y) Area	(X ²) Conc
6/14/2015	PBDE099	1	0.0050	0.0062902	0.000025
		2	0.0125	0.0137423	0.00005
		3	0.0250	0.0257916	0.0001
		4	0.0375	0.0386703	0.0002
		5	0.0500	0.057046	0.0004
		6	0.1000	0.1075875	0.0008

Linear through the origin

	calculated	Reported
Constant	0.000000	0.0000
X Coefficient(s)	1.081339	1.08134
Correlation Coefficient	0.999562	0.99781
Coefficient of Determination (r^2)	0.999124	

LDC #:361974=C

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page:	<u>_/of/</u>
Reviewer:	4
2nd Reviewer:	NG

METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

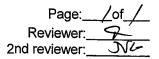
The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RF	٩F
$RRF = (A_{x})(C_{is})/(A_{is})(C_{x})$	

Where: ave. RRF = initial calibration average RRF

RRF = continuing calibration RRF

 A_x = Area of compound, C_x = Concentration of compound, A_{is} = Area of associated internal standard


 $\tilde{C_{is}}$ = Concentration of internal standard

					Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Reference Internal Standard)	Average RRF (initial)	RRF (CC)	RRF (CC)	%D	%D
1	CC1	6/4/15	Phenel (1st internal standard) - BDE047	100	97.4399	97.4396	ε N	3
		04:55	Naphthelene (2nd internal standard) V 099	100		93.4846	7	7
			Fluorene (3rd internal standard)					
			Pentachlorophenol (4th internal standard)					
			Bis(2-ethylhexyl)phthalate (5th internal standard)					
			Benzo(a)pyrene (6th internal standard)					
2			Phenol (1st internal standard)					
			Naphthalene (2nd internal standard)					
			Fluorene (3rd internal standard)					
			Pentachlorophenol (4th internal standard)					
			Bis(2-ethylhexyl)phthalate (5th internal standard)					
			Benzo(a)pyrene (6th internal standard)					
3			Phenol (1st internal standard)			•		
			Naphthalene (2nd internal standard)					
			Fluorene (3rd internal standard)					
			Pentachlorophenol (4th internal standard)					
			Bis(2-ethylhexyl)phthalate (5th internal standard)					
			Benzo(a)pyrene (6th internal standard)					

Comments: Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC #: 36197A=C

VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270D)

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS * 100

Where: SF = Surrogate Found SS = Surrogate Spiked

Sample ID: /

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference	
Nitrobenzene-05 OFPBOZ	100	83.02	83	83	0	
2-Fluorobiphenyl FTBBE	V	83.02 74.96	75	75	0	
Terphenyl/d14						
Phenol-05						
2-Fluorophenol						
2,4,6 Tribromophenol		,				
2-Chlorophenol-d4						
1/2-Dichlorobonzone=d4	1/2-Dichlorebenzene_d4					

Sample ID:____

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5					
2-Fluorobiphenyl					
Terphenyl-d14					
Phenol-d5					
2-Fluorophenol					
2,4,6-Tribromophenol					
2-Chiorophenol-d4					
1,2-Dichlorobenzene-d4					

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5					
2-Fluorobiphenyl					
Terphenyl-d14					
Phenol-d5					
2-Fluorophenol					
2,4,6-Tribromophenol					
2-Chlorophenol-d4					
1,2-Dichlorobenzene-d4					

LDC #: 361974=C

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates Results Verification

Page: ________ Reviewer: _______ 2nd Reviewer: ______

METHOD: GC/MS PAH (EPA SW 846 Method 8270D)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SSC - SC)/SA

Where: SSC = Spiked sample concentration SA = Spike added SC = Sample concentation

RPD = I MSC - MSC I * 2/(MSC + MSDC)

MSC = Matrix spike concentration

MSDC = Matrix spike duplicate concentration

MS/MSD samples: _____

Compound	Ad	ike ded 5/9)	Sample Concentration (<i>u ≤ /</i> 0)	Concer	Sample ntration (G)	Matrix Percent I	<u>Spike</u>	Matrix Spik Percent I		MS/M RPI	
	MS	MSD		MS	MSD	Reported		Reported	Recalc	Reported	Recalculated
pBOZO4T	16.95	17.49	0.13	16.1d	17.22	97	97	98	98	1	1
1 99	l	L	0.13	17.4	16.8T	104	104	96	<i>ab</i>	3	8
										1	
		· ·									
											<u> </u>

Comments: Refer to Matrix Spike/Matrix Spike Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC #: 361974 ~

VALIDATION FINDINGS WORKSHEET Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification

Reviewe 2nd Reviewer:

METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270D)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SC/SA)

Where: SSC = Spike concentration SA = Spike added

RPD = I LCSC - LCSDC I * 2/(LCSC + LCSDC)

LCSC = Laboratory control sample concentration LCSDC = Laboratory control sample duplicate concentration

LCS/LCSD samples: 0-7100

Compound	Sr Ad	bike ded 5/9)	Conce	bike ntration		CS Recovery		SD		
a an ann an Anna an Anna		I CSD	<u>1CS</u>		Reported	Recalc	Reported	Recalc_	Reported	Recalculated
PBDEAT	100	100	106.14	105.4	106	106	105	105	1	1
1 99	V	V	1061ª 114.39	113.75	114	112	114	114	0	D

Comments: <u>Refer to Laboratory Control Sample/Laboratory Control Sample Duplicates findings worksheet for list of qualifications and associated samples when reported</u> results do not agree within 10.0% of the recalculated results.

LDC #:36197A2 C

 $\widehat{}$

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:	of
Reviewer:_	9
2nd reviewer:_	Nb

METHOD: GC/MS SVOA (EPA SW 846 Method 8270D)

<u>N/A</u>	Were all reported results recalculated and verified for all level IV samples?
N N/A	Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

Concentration = $(A_{i})(I_{i})(V_{i})(DF)(2.0)$ $(A_{is})(RRF)(V_{o})(V_{i})(\%S)$

- A_x = Area of the characteristic ion (EICP) for the compound to be measured
- A_{is} = Area of the characteristic ion (EICP) for the specific internal standard
- I_s = Amount of internal standard added in nanograms (ng)
- V_o = Volume or weight of sample extract in milliliters (ml) or grams (g).
- V₁ = Volume of extract injected in microliters (ul)
- V_t = Volume of the concentrated extract in microliters (ul)
- Df = Dilution Factor.
- %S = Percent solids, applicable to soil and solid matrices only.
- 2.0 = Factor of 2 to account for GPC cleanup

Sample I.D. _ / ____ RBC

Example:

2000, 0. 210 3)(1122/88 Conc. = (2718)<u>)(___)</u>)(

= 0.1719 M8/g

#	Sample ID	Compound	Reported Concentration	Calculated Concentration	Qualification
<u> </u>				·····	
 					
ļ					
ļ					
		· · · · · · · · · · · · · · · · · · ·			

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: City of San Diego SWBH Study

LDC Report Date: May 9, 2016

Parameters: Pyrethroids

Validation Level IV

Laboratory:Physis Environmental Laboratories, Inc.

Sample Delivery Group (SDG): 1504003-001

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
SWHB-07	31524	Sediment	04/09/14
SWHB-18	31535	Sediment	04/08/14
SWHB-18MS	31535MS	Sediment	04/08/14
SWHB-18MSD	31535MSD	Sediment	04/08/14
SWHB-18DUP	31535DUP	Sediment	04/08/14

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with Final Quality Assurance Project Plan, Regional Harbor Monitoring Program, San Diego, California (August 2013) and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines (CLPNFG) for Superfund Organic Methods Data Review (June 2008). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Pyrethroids by Environmental Protection Agency (EPA) SW 846 Method 8270D using Negative Chemical Ionization (NCI)

All sample results were subjected to Level IV data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- BC The initial calibration (ICAL) curve did not meet method-specified criteria.
- CH High continuing calibration verification (CCV) recovery. Analytical results may be biased high.
- DL The analyte concentration was between the method detection limit (MDL) and the reporting limit (RL).
- FB The analyte was detected in the sample and its associated field blank and the concentration detected in the sample is less than five times the concentration detected in the blanks.
- H Holding time.
- HD Potential analytical imprecision.
- HL High LCS recovery. Analytical results may be biased high.
- HM High MS recovery. Analytical results may be biased high.
- HP High certified reference material (CRM) recovery. Analytical results may be biased high.
- HV High initial calibration verification (ICV) recovery. Analytical results may be biased high.
- LC Low CCV recovery. Analytical result may be biased low.
- LL Low LCS recovery. Analytical result may be biased low.
- LM Low MS recovery. Analytical result may be biased low.
- LP Low CRM recovery. Analytical result may be biased low.
- LS Low Surrogate recovery. Analytical results may be biased low.
- LV Low ICV recovery. Analytical result may be biased low.
- NC Calibration verification standard concentrations were outside the calibration range.
- NQ There is lack of QC for this analyte.
- RB The analyte was detected in the sample and its associated equipment blank and the concentration detected in the sample is less than five times the concentration detected in the blank.
- TD The dissolved metals concentration is significantly higher than the total metal concentration.
- *# Unusual problems found with the data. The number following the asterisk
 (*) will indicate the section in the validation report where a description of
 the problem can be found.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met with the following exceptions:

Sample	Compound	Total Days From Sample Collection Until Extraction	Required Holding Time (in Days) From Sample Collection Until Extraction	Flag	A or P
SWHB-07	All TCL compounds	398	365	J (all detects) UJ (all non-detects)	Ρ
SWHB-18	All TCL compounds	399	365	J (all detects) UJ (all non-detects)	Р

II. GC/MS Instrument Performance Check

Instrument performance check was not required per method.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

A curve fit, based on the initial calibration, was established for quantitation. The coefficient of determination (r^2) was greater than or equal to 0.990.

Average relative response factors (RRF) for all compounds were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all compounds with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
05/23/15	Prallethrin cis-Permethrin	36 50	All samples in SDG 1504003-001	UJ (all non-detects) UJ (all non-detects)	Α

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all compounds.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogate spikes were not required by the method.

VIII. Matrix Spike/Matrix Spike Duplicates/Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Compound	MS (%R) (Limits)	MSD (%R) (Limits)	Flag	A or P
SWHB-18MS/MSD (SWHB-18)	Allethrin Bitenthrin Danitolcfenpropahrin Prallethrin	215 (50-150) 220 (50-150) 182 (50-150) 157 (50-150)	162 (50-150) 183 (50-150) - -	NA	-

Relative percent differences (RPD) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Compound	RPD (Limits)	Flag	A or P
SWHB-18MS/MSD (SWHB-18)	Allethrin	28 (≤25)	NA	-

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits with the following exceptions:

LCS ID (Associated Samples)	Compound	LCS %R (Limits)	LCSD %R (Limits)	Flag	A or P
31515-BS1/BS2 (All samples in SDG 150-4003-001)	Bitenthrin	-	133 (70-130)	NA	-

Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Compound Quantitation

All compound quantitations were within validation criteria.

All compounds reported below the reporting limit (RL) and above the minimum detection limit (MDL) were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG 1504003-001	Compound reported below the RL and above the MDL	J (all detects)	А

XIII. Target Compound Identifications

All target compound identifications were within validation criteria.

XIV. System Performance

The system performance was acceptable.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to holding time exceedance, ICV %D, and results reported below the RL and above the MDL, data were qualified as estimated in two samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Sample results that were found to be estimated (J) are usable for limited purposes only. Based upon the data validation all other results are considered valid and usable for all purposes.

City of San Diego SWBH Study Pyrethroids - Data Qualification Summary - SDG 1504003-001

Sample	Compound	Flag	A or P	Reason (Code)
SWHB-07 SWHB-18	All TCL compounds	J (all detects) UJ (all non-detects)	Р	Technical holding time (H)
SWHB-07 SWHB-18	Prallethrin cis-Permethrin	UJ (all non-detects) UJ (all non-detects)	А	Initial calibration verification (%D) (LV)
SWHB-07 SWHB-18	Compound reported below the RL and above the MDL	J (all detects)	А	Compound quantitation (DL)

City of San Diego SWBH Study Pyrethroids - Laboratory Blank Data Qualification Summary - SDG 1504003-001

No Sample Data Qualified in this SDG

City of San Diego SWBH Study Pyrethroids - Field Blank Data Qualification Summary - SDG 1504003-001

No Sample Data Qualified in this SDG

LDC #: <u>36197A2d</u> SDG #: 1504003-001

VALIDATION COMPLETENESS WORKSHEET

Level IV

Laboratory: Physis Environmental Laboratories, Inc.

Prrethroids

METHOD: GC/MS Pipronil & Degregates (EPA SW 846 Method 8270D-NCI)

Date: <u>53/14</u> Page:_______ Reviewer:______ 2nd Reviewer:______

The samples listed below were reviewed for each	ch of the following validation areas.	Validation findings are noted in a	ttached
validation findings worksheets.	-	-	

	Validation Area		Comments
].	Sample receipt/Technical holding times	AIM	
11.	GC/MS Instrument performance check	N	
.	Initial calibration/ICV	AIN	γ^2 , $ e \leq 707$
IV.	Continuing calibration	ARA	CCV = 2870
<u>v.</u>	Laboratory Blanks	\mathbf{A}	
VI.	Field blanks	N.	
VII.	Surrogate spikes	N.	
VIII.	Matrix spike/Matrix spike duplicates	M/A	
IX.	Laboratory control samples	-14/	2C5/7
Х.	Field duplicates	Ň	
XI.	Internal standards	A	
XII.	Compound quantitation RL/LOQ/LODs	A	
XIII.	Target compound identification	A	
XIV.	System performance	A	
XV.	Overall assessment of data	A	

Note: A = Acceptable N = Not provided/applicable

SW = See worksheet

ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	SWHB-07	31524	Sediment	04/09/14
2	SWHB- 09 78	31526-31575	Sediment	04/09/14
3	MS	MS NS	1	
4	MŚD	USD		
5	Оир	V But		
6		(
7				
8				

Notes:

0-7100				
			_	

LDC #: 33197A>1

VALIDATION FINDINGS CHECKLIST

Page: / of 2 Reviewer: 9 2nd Reviewer: ______

Method: Semivolatiles (EPA SW 846 Method 8270D)

Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
Were all technical holding times met?				
Was cooler temperature criteria met?				
II. GC/MS Instrument performance check				
Were the DFTPP performance results reviewed and found to be within the specified criteria?			/	
Were all samples analyzed within the 12 hour clock criteria?				
IIIa, Initial calibration				
Did the laboratory perform a 5 point calibration prior to sample analysis?	\leq			
Were all percent relative standard deviations (%RSD) \leq 20% and relative response factors (RRF) within method criteria?				
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of \geq 0.990?			and the best of the second	
IIIb. Initial Calibration Verification				
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?				
Were all percent differences (%D) ≤ 30% or percent recoveries (%R) 70-130%?				
IV. Continuing calibration		se as en egen L		
Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?	\langle			
Were all percent differences (%D) \leq 20% and relative response factors (RRF) within method criteria?				
V. Laboratory Blanks				
Was a laboratory blank associated with every sample in this SDG?				
Was a laboratory blank analyzed at least once every 12 hours for each matrix and concentration?	/	-		
Was there contamination in the laboratory blanks? If yes, please see the Blanks validation completeness worksheet.		/	[
VI. Field blanks				
Were field blanks were identified in this SDG?			<u> </u>	
Were target compounds detected in the field blanks?			//	F
VII. Surrogate spikes				
Were all surrogate percent recovery (%R) within QC limits?			/	
If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis?			/	
If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis performed to confirm %R?				

VALIDATION FINDINGS CHECKLIST

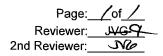
Page: -> of -> Reviewer: _______ 2nd Reviewer: _______

Validation Area	Yes	No	NA	Findings/Comments
VIII. Matrix spike/Matrix spike duplicates				
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.	/			
Was a MS/MSD analyzed every 20 samples of each matrix?				
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?			/	
IX. Laboratory control samples				
Was an LCS analyzed for this SDG?	\angle			
Was an LCS analyzed per analytical batch?	\langle			
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?		/		
X. Field duplicates				
Were field duplicate pairs identified in this SDG?		\checkmark		
Were target compounds detected in the field duplicates?				
XI. Internal standards		ing app		
Were internal standard area counts within -50% to +100% of the associated calibration standard?				
Were retention times within <u>+</u> 30 seconds of the associated calibration standard?			touting of a first	
XII. Compound quantitation				
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?				
Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XIII. Target compound identification				
Were relative retention times (RRT's) within <u>+</u> 0.06 RRT units of the standard?				
Did compound spectra meet specified EPA "Functional Guidelines" criteria?			<	
Were chromatogram peaks verified and accounted for?	\mathcal{L}		contribution of the	
XIV. System performance			4	
System performance was found to be acceptable.	/			
XV. Overall assessment of data				
Overall assessment of data was found to be acceptable.	/			

VALIDATION FINDINGS WORKSHEET Technical Holding Times

Page:_	_/of_/_
Reviewer:	9
2nd Reviewer:	NG

All circled dates have exceeded the technical holding times.


Sample DMatrixPreservedSampling Date $\overbrace{Extraction data}$ Analysis date $ordisting and the second seco$	METHOD : GC/M	AS BNA (EPA S)	N 846 Method	8270C)				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Sample ID	Matrix	Preserved	Sampling Date	Extraction date	Analysis date		Qualifier
3 1)	Sed		4-9-14	5-12-15		398	JULF
3 1	2			4-8-14			399	
Image: second	3			1				
Image: second	4							
Image: second	5							
Image: series of the series	· · · · · · · · · · · · · · · · · · ·							
Image: series of the series								
Image: series of the series								
Image: section of the section of th		1						
Image: series of the series								
Image: series of the series		<u> </u>						
Image: series of the series			· · · · ·					
Image: series of the series								
Image: series of the series	· · · · · · · · · · · · · · · · · · ·	1						
Image: second				· · · · · · · · · · · · · · · · · · ·				
Image: section of the section of th		<u> </u>						
Image: state stat								
Image: state stat		1						
Image: state stat		<u> </u>						
Image: series of the series								
Image: series of the series	· ·							
Image: state stat								
Image: state stat								
Image: state stat		+						
		<u> </u>		· · · · · · · · · · · · · · · · · · ·				╂
		<u> </u>						

TECHNICAL HOLDING TIME CRITERIA

Water:Extracted within 7 days, analyzed within 40 days.Soil:Extracted within 14 days, analyzed within 40 days.

LDC #3/197A2d

VALIDATION FINDINGS WORKSHEET Initial Calibration Verification

METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

N/A Was an initial calibration verification standard analyzed after each ICAL for each instrument?

(\mathbf{Y})	N	N/A	
T	M_	λi/Δ	

Were all %D within the validation criteria of \leq 30 %D?

#	Date	Standard ID	Compound	Finding %D (Limit: <u><</u> 30.0%)		
	5/03/15	Ier	pralethrin Eis-Permethrin	36 57	all (NO)	MAXA (LV)
	/ /		cis-Permethrin	50		, N
			· ·			
				· · · · · · · · · · · · · · · · · · ·		
-						
		······································	<u> </u>			
-		······································				
				· · · · · · · · · · · · · · · · · · ·		
				·		
-						
┣						
		<u> </u>	· · · · · · · · · · · · · · · · · · ·			
				<u> </u>		
		<u> </u>				

LDC #:36197A2d

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

Page:	of
Reviewer:	9
2nd Reviewer	: <u> </u>

METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.

<u>LN/A</u> Was a MS/MSD analyzed every 20 samples of each matrix?

N N/A Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

#	Date	MS/MSD ID	Compound	MS %R (Limits)		MSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
		3/4 A/1	ethrin	215 (7-1	9	162 (9-150)	()	2(ND)	Jolets A (HH)
		3/4 All Bite Danitol Praile Allet	nthrin	>>0()	162 (9-150) 183 (V)	()		
		Danitol	Fenpropan	isin 1821)	()	()		
		Praile.	thrin	(57)	/)	()	()		
		Allet	hrin	()	()	28 (525)		(HD)
				()	()	()		
				()	()	()	······	
				()	()	()		
╠──┽				(<u>)</u>				
				()	()			
╟──┼				()	()			
╟──┤		<u> </u>		()				
╟──┤				()				
┢──┤		<u> </u>		(
╟──┼		··· <u>·····</u> ······		(,	()	()		
				()				
				()	()			
					,	(,		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
			L	()	(<u>)</u>	()		

LDC #: 36197 Azd

VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS)

	Page: _	
Rev	viewer:	_ \
2nd Rev	viewer:	NG

METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was a LCS required?

Were the LCS/LCSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

#	Date	LCS/LCSD ID	Compound	LCS %R (Limits)	LCSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
		31515-BS1	Bi lenthrii	1 ()	133 (70-130)	()	W(ND)	lots (HL)
		-B52		()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	(')		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()	· · · ·	
				()	()	()		
				()	()	()		
				()	()	()		1
				()	()	()		
				()	()	()		
				()	()	()_		

LDC: 36197A20

Method: Pyrethroids (EPA SW 846 Method 8270D)

Calibration Date	Analyte	Standard	(X) Concentration	(Y) Area	(X ²) Conc
5/22/2015	Allethrin	1	0.025	0.0052169	0.000025
		2	0.050	0.0097019	0.00005
		3	0.100	0.0189906	0.0001
		4	0.250	0.0503372	0.0002
		5	0.500	0.1100291	0.0004
		6	1.000	0.2378036	0.0008

Linear through the origin

	calculated	Reported
Constant	0.000000	0.0000
X Coefficient(s)	0.232281	0.23200
Correlation Coefficient	0.998956	0.99800
Coefficient of Determination (r^2)	0.997913	······

LDC #: 26/97 A24

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page:_	
Reviewer:	9/
2nd Reviewer:	NB

METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF	
$RRF = (A_{x})(C_{is})/(A_{is})(C_{x})$	

Where: ave. RRF = initial calibration average RRF

RRF = continuing calibration RRF

 A_x = Area of compound, C_x = Concentration of compound, A_{is} = Area of associated internal standard

Cis = Concentration of internal standard

					Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Reference Internal Standard)	Average RRF (initial)	RRF (CC)	RRF (CC)	%D	%D
1	COV	5\$4/15	Phenol (1st internal standard) Allethyin	500	599.35	600 109	20	20
			Naphthalene (2nd internal standard)					
			Fluorene (3rd internal standard)					
			Pentachlorophenol (4th internal standard)					
			Bis(2-ethylhexyl)phthalate (5th internal standard)					
			Benzo(a)pyrene (6th internal standard)					
2			Phenol (1st internal standard)					
			Naphthalene (2nd internal standard)					
		-	Fluorene (3rd internal standard)					
			Pentachlorophenol (4th internal standard)					
			Bis(2-ethylhexyl)phthalate (5th internal standard)					
			Benzo(a)pyrene (6th internal standard)					
3			Phenol (1st internal standard)					
			Naphthalene (2nd internal standard)					
			Fluorene (3rd internal standard)					
			Pentachlorophenol (4th internal standard)					
			Bis(2-ethylhexyl)phthalate (5th internal standard)		·			
			Benzo(a)pyrene (6th internal standard)					

Comments: Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

VALIDATION FINDINGS WORKSHEET <u>Matrix Spike/Matrix Spike Duplicates Results Verification</u>

Page: / of / Reviewer: 9 2nd Reviewer: NG

METHOD: GC/MS PAH (EPA SW 846 Method 8270D)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SSC - SC)/SA

Where: SSC = Spiked sample concentration SA = Spike added

SC = Sample concentation

RPD = I MSC - MSC I * 2/(MSC + MSDC)

MSC = Matrix spike concentration

MSDC = Matrix spike duplicate concentration

MS/MSD samples: ____

Compound	Sp Add (M	ike ded 3 9)	Sample Concentration (<i>M 카 이</i>)	Concer	Spiked Sample Concentration		Matrix Spike		Matrix Spike Duplicate Percent Recovery		MS/MSD RPD	
	MS	MSD		MS	MSD	Reported	Recalc	Reported	Recalc	Reported	Recalculated	
Allethrin	82.75	87.45	NO	177.8	141.51	215	25	162	162	28	28	
									· · · · · · · · · · · · · · · · · · ·			
								· · · · ·				

Comments: Refer to Matrix Spike/Matrix Spike Duplicates findings worksheet for list of gualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC #: 36 97 20

VALIDATION FINDINGS WORKSHEET Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification

Page: / of / Reviewer: 9-2nd Reviewer: _____

METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270D)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SC/SA)

Where: SSC = Spike concentration SA = Spike added

RPD = I LCSC - LCSDC I * 2/(LCSC + LCSDC)

LCSC = Laboratory control sample concentration LCSDC = Laboratory control sample duplicate concentration

LCS/LCSD samples: <u>34515-84/135-</u>

Compound	Ad	bike Ided ✔ 9)	Conce	bike ntration 5/9)	LC Percent F	:S Recovery		SD		LCSD
	LCS	I CSD			Reported	Recalc	Reported	Recalc	Reported	Recalculated
Allethrin	90	50	515.45	52/9.2	103	103	110	110	7	7
· · · · · · · · · · · · · · · · · · ·	<u></u>									
					·····	·			·	
					· · · · · · · · · · · · · · · · · · ·					

Comments: <u>Refer to Laboratory Control Sample/Laboratory Control Sample Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.</u>

LDC #: 36197 A - d

VALIDATION FINDINGS WORKSHEET **Sample Calculation Verification**

Page:	<u>of</u>
Reviewer:	0
2nd reviewer:	NB

METHOD: GC/MS SVOA (EPA SW 846 Method 8270D)

YNNA	Were all reported results recalculated and verified for all level IV samples?			
YNNA	Were all recalculated results for detected target compounds agree within 10.0% of the reported results?			
Concentration =	(A,)(I,)(V,)(DF)(2.0)	Example:		

 $(A_{i_s})(RRF)(V_o)(V_i)(\%S)$ Area of the characteristic ion (EICP) for the A, compound to be measured

- A_{is} Area of the characteristic ion (EICP) for the specific internal standard
- Amount of internal standard added in nanograms (ng) I, =
- Volume or weight of sample extract in milliliters (ml) or v, = grams (g).
- V, Volume of extract injected in microliters (ul) =
- Volume of the concentrated extract in microliters (ul) = V, Df **Dilution Factor.** =
- %S Percent solids, applicable to soil and solid matrices = only.
- 2.0 Factor of 2 to account for GPC cleanup

Sample I.D. <u>All</u>, <u>ND</u>: #3, Allethrin

 $Conc. = \frac{(1734878)(0.1655 (000)()}{(69520485)(0.2328)()} () ()$ = 177.8 n8/q

2.0	= Factor of 2 to accou					
#	Sample ID	Compound		Reported Concentration (バラム)	Calculated Concentration ()	Qualification
				177.8		
						· · · · · · · · · · · · · · · · · · ·
			· · · · · · · · · · · · · · · · · · ·			
		· · ·				
	·····	· · · · · · · · · · · · · · · · · · ·				
		· · · · · · · · · · · · · · · · · · ·				
					L	
		· · · · · · · · · · · · · · · · · · ·				
		· · · · · · · · · · · · · · · · · · ·				

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	City of San Diego SWBH Study
--------------------	------------------------------

LDC Report Date: May 9, 2016

Parameters: Chlorinated Pesticides

Validation Level IV Level IV

Laboratory:Physis Environmental Laboratories Inc.

Sample Delivery Group (SDG): 1504003-001

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
SWHB-07	31524	Sediment	04/09/14
SWHB-18	31535	Sediment	04/08/14
SWHB-18MS	31535MS	Sediment	04/08/14
SWHB-18MSD	31535MSD	Sediment	04/08/14
SWHB-18DUP	31535DUP	Sediment	04/08/14

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with Final Quality Assurance Project Plan, Regional Harbor Monitoring Program, San Diego, California (August 2013) and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines (CLPNFG) for Superfund Organic Methods Data Review (June 2008). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Chlorinated Pesticides by Environmental Protection Agency (EPA) SW 846 Method 8270D

All sample results were subjected to Level IV data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- BC The initial calibration (ICAL) curve did not meet method-specified criteria.
- CH High continuing calibration verification (CCV) recovery. Analytical results may be biased high.
- DL The analyte concentration was between the method detection limit (MDL) and the reporting limit (RL).
- FB The analyte was detected in the sample and its associated field blank and the concentration detected in the sample is less than five times the concentration detected in the blanks.
- H Holding time.
- HD Potential analytical imprecision.
- HL High LCS recovery. Analytical results may be biased high.
- HM High MS recovery. Analytical results may be biased high.
- HP High certified reference material (CRM) recovery. Analytical results may be biased high.
- HV High initial calibration verification (ICV) recovery. Analytical results may be biased high.
- LC Low CCV recovery. Analytical result may be biased low.
- LL Low LCS recovery. Analytical result may be biased low.
- LM Low MS recovery. Analytical result may be biased low.
- LP Low CRM recovery. Analytical result may be biased low.
- LS Low Surrogate recovery. Analytical results may be biased low.
- LV Low ICV recovery. Analytical result may be biased low.
- NC Calibration verification standard concentrations were outside the calibration range.
- NQ There is lack of QC for this analyte.
- RB The analyte was detected in the sample and its associated equipment blank and the concentration detected in the sample is less than five times the concentration detected in the blank.
- TD The dissolved metals concentration is significantly higher than the total metal concentration.
- *# Unusual problems found with the data. The number following the asterisk
 (*) will indicate the section in the validation report where a description of
 the problem can be found.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met with the following exceptions:

Sample	Compound	Total Days From Sample Collection Until Extraction	Required Holding Time (in Days) From Sample Collection Until Extraction	Flag	A or P
SWHB-07	All TCL compounds	398	365	UJ (all non-detects)	Р
SWHB-18	All TCL compounds	399	365	UJ (all non-detects)	Р

II. GC Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at the required frequency.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For compounds where average calibration factors were utilized, percent relative standard deviations (%RSD) were less than or equal to 20.0%.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r^2) were greater than or equal to 0.990 with the following exceptions:

Date	Compound	r²	Associated Samples	Flag	A or P
06/03/15	4,4'-DDT	0.98565806	All samples in SDG 1504003-001	UJ (all non-detects)	A

Retention time windows were established as required by the method.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all compounds with the following exceptions:

Date	Standard	Compound	<u>%</u> D	Associated Samples	Flag	A or P
05/27/15	ICV	beta-BHC	484	All samples in SDG 1504003-001	UJ (all non-detects)	A

IV. Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all compounds with the following exceptions:

Date	Standard	Compound	%D	Associated Samples	Flag	A or P
05/29/15	00CCV	beta-BHC 4,4'-DDD	27 29	SWHB-18	UJ (all non-detects) UJ (all non-detects)	A

Retention times of all compounds in the calibration standards were within the established retention time windows.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates/Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Compound	MS (%R) (Limits)	MSD (%R) (Limits)	Flag	A or P
SWHB-18MS/MSD (SWHB-18)	Methoxychior	192 (50-150)	203 (50-150)	NA	-

Relative percent differences (RPD) were within QC limits.

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

IX. Laboratory Control Samples/Certified Reference Materials

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits with the following exceptions:

LCS ID (Associated Samples)	Compound	LCS %R (Limits)	LCSD %R (Limits)	Flag	A or P
31515-BS1/BS2 (All samples in SDG 1504003-001)	4,4'-DDT Methoxychlor	131 (70-130) 169 (70-130)	133 (70-130) 176 (70-130)	NA	-

Relative percent differences (RPD) were within QC limits.

Certified reference materials (CRM) were analyzed as required by the method. The results were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Compound Quantitation

All compound quantitations met validation criteria.

All compounds reported below the reporting limit (RL) and above the minimum detection limit (MDL) were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG 1504003-001	Compound reported below the RL and above the MDL	J (all detects)	A

XII. Target Compound Identification

All target compound identifications met validation criteria.

XIII. System Performance

The system performance was acceptable.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to holding time exceedance, initial calibration r^2 , ICV and continuing calibration %D, and results reported below the RL and above the MDL, data were qualified as estimated in two samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Sample results that were found to be estimated (J) are usable for limited purposes only. Based upon the data validation all other results are considered valid and usable for all purposes.

City of San Diego SWBH Study Chlorinated Pesticides - Data Qualification Summary - SDG 1504003-001

Sample	Compound	Flag	A or P	Reason (Code)
SWHB-07 SWHB-18	All TCL compounds	UJ (all non-detects)	Ρ	Technical holding time (H)
SWHB-07 SWHB-18	4,4'-DDT	UJ (all non-detects)	А	Initial calibration (r ²) (BC)
SWHB-18	beta-BHC	UJ (all non-detects)	A	Initial calibration verification (%D) (HV)
SWHB-18	beta-BHC 4,4'-DDD	UJ (all non-detects) UJ (all non-detects)	A	Continuing calibration (%D) (CH)
SWHB-07 SWHB-18	Compound reported below the RL and above the MDL	J (all detects)	A	Compound quantitation (DL)

City of San Diego SWBH Study

Chlorinated Pesticides - Laboratory Blank Data Qualification Summary - SDG 1504003-001

No Sample Data Qualified in this SDG

City of San Diego SWBH Study

Chlorinated Pesticides - Field Blank Data Qualification Summary - SDG 1504003-001

No Sample Data Qualified in this SDG

LDC #: <u>36197A3a</u> SDG #: 1504003-001

Level IV

Laboratory: Physis Environmental Laboratories, Inc.

METHOD: GC/MS Chlorinated Pesticides (EPA SW 846 Method 8270D)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments					
Ι.	Sample receipt/Technical holding times	AIM	1					
١١.	GC/MS Instrument performance check	A						
III.	Initial calibration/ICV	In m	RSDX	20	70. Y2	- 10	$21 \leq 3 \partial_0$	
IV.	Continuing calibration	TW	Cal 3	2	5.		/	
V.	Laboratory Blanks	Å				<u>.</u>		
VI.	Field blanks							
VII.	Surrogate spikes	A						
VIII.	Matrix spike/Matrix spike duplicates / Dup	w/A						
IX.	Laboratory control samples	-m/	10-5/D	. 0	RM			
X .	Field duplicates	Ň	/					
XI.	Internal standards	A				_		
XII.	Compound quantitation RL/LOQ/LODs	\mathbf{A}						
XIII.	Target compound identification	A			······			
XIV.	System performance	\mathbf{A}						
XV.	Overall assessment of data	A						
Note:	N = Not provided/applicable R = Rin	o compounds sate eld blank	detected	TB = '	uplicate Trip blank Equipment blank	SB=So OTHEF	urce blank R:	
	Client ID			Lab ID		Matrix	Date	
1	SWHB-07			31524		Sediment	04/09/14	
2	SWHB-09. 18			3 1526 -	31535	Sediment	04/ 09/ 14	
3	L MS	_			MS	1		
4	ust				USD			
5	DuP				1 Dut			

6

Note	es:	 		 	 	
	0-7100					
	,					

VALIDATION FINDINGS CHECKLIST

Page: / of <u>></u> Reviewer: _____ 2nd Reviewer: _____

Method: Semivolatiles (EPA SW 846 Method 8270D)

Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
Were all technical holding times met?				
Was cooler temperature criteria met?				
II. GC/MS Instrument performance check				
Were the DFTPP performance results reviewed and found to be within the specified criteria?				-
Were all samples analyzed within the 12 hour clock criteria?	Ø		/	
IIIa. Initial calibration				
Did the laboratory perform a 5 point calibration prior to sample analysis?	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $			
Were all percent relative standard deviations (%RSD) \leq 20% and relative response factors (RRF) within method criteria?	<			
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of \geq 0.990?			-	
IIIb. Initial Calibration Verification				
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?				
Were all percent differences (%D) < 30% or percent recoveries (%R) 70-130%?				
Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?				
Were all percent differences (%D) \leq 20% and relative response factors (RRF) within method criteria?			1	
V. Laboratory Blanks				
Was a laboratory blank associated with every sample in this SDG?	\square			
Was a laboratory blank analyzed at least once every 12 hours for each matrix and concentration?	/	-		
Was there contamination in the laboratory blanks? If yes, please see the Blanks validation completeness worksheet.				
VI. Field blanks		ana sata		
Were field blanks were identified in this SDG?		\square		
Were target compounds detected in the field blanks?			/	
VII. Surrogate spikes				
Were all surrogate percent recovery (%R) within QC limits?				
If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis?			1	
If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis performed to confirm %R?				·

.

LDC #: 36197839

VALIDATION FINDINGS CHECKLIST

Validation Area	Yes	No	NA	Findings/Comments
VIII. Matrix spike/Matrix spike duplicates				
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.	/			Dup
Was a MS/MSD analyzed every 20 samples of each matrix?				
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?				
IX. Laboratory control samples				
Was an LCS analyzed for this SDG?	\square			CRM
Was an LCS analyzed per analytical batch?	\square			/
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?		/		
X. Field duplicates				
Were field duplicate pairs identified in this SDG?				
Were target compounds detected in the field duplicates?			/	ſ
XI. Internal standards				
Were internal standard area counts within -50% to +100% of the associated calibration standard?	1			
Were retention times within <u>+</u> 30 seconds of the associated calibration standard?			ers Saarlinaa	
XII. Compound quantitation	la de la co F			
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?	/			
Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XIII. Target compound identification				
Were relative retention times (RRT's) within <u>+</u> 0.06 RRT units of the standard?	~			
Did compound spectra meet specified EPA "Functional Guidelines" criteria?			$\left \right $	
Were chromatogram peaks verified and accounted for?				
XIV. System performance				
System performance was found to be acceptable.	/			
XV. Overall assessment of data		/		
Overall assessment of data was found to be acceptable.				

VALIDATION FINDINGS WORKSHEET

METHOD: Pesticide/PCBs (EPA SW 846 Method 8081/8082)

A. alpha-BHC	ł. Dieldrin	Q. Endrin ketone	Y. Aroclor-1242	GG. Chlordane
B. beta-BHC	J. 4,4'-DDE	R. Endrin aldehyde	Z. Aroclor-1248	HH. Chlordane (Technical)
C. delta-BHC	K. Endrin	S. alpha-Chlordane	AA. Aroclor-1254	II. oxy-Chlordane
D. gamma-BHC	L. Endosulfan II	T. gamma-Chlordane	BB. Aroclor-1260	JJ. Mirex
E. Heptachlor	M. 4,4'-DDD	U. Toxaphene	CC. 2,4'-DDD	^{КК.} 4.4'- DD MY
F. Aldrin	N. Endosulfan sulfate	V. Aroclor-1016	DD. 2,4'-DDE	LL.
G. Heptachlor epoxide	O. 4,4'-DDT	W. Aroclor-1221	EE. 2,4'-DDT	MM.
H. Endosulfan I	P. Methoxychlor	X. Aroclor-1232	FF. Hexachlorobenzene	NN.

Notes:_____

LDC #: 39197439

VALIDATION FINDINGS WORKSHEET Technical Holding Times

Page:_	
Reviewer:	9
2nd Reviewer:	NG

All orcled dates have exceeded the technical holding times.

METHOD :G						· ····	
Sample ID	Matrix	Preserved	Sampling Date	Extraction date	Analysis date	Total # of Days	Qualifier
I (ND)	Sed	×	4-9-14	5-12-15			MAN/P (
a l			4-8-14			399	
~~ / 						1	
A š							
5	V	₩	V	V			
		ļ					
·····							
· · · · · · · · · · · · · · · · · · ·						l	
							┝────┤
				· · · · · · · · · · · · · · · · · · ·			
						-	
						<u> </u>	
·····							
						1	
						1	

TECHNICAL HOLDING TIME CRITERIA

VOLATILES:Water unpreserved:
Water preserved:
Soils:Aromatic within 7 days, non-aromatic within 14 days of sample collection.Both within 14 days of sample collection.
Both within 14 days of sample collection.

EXTRACTABLES:

Water: Soil: Extracted within 7 days, analyzed within 40 days. Extracted within 14 days, analyzed within 40 days.

Y N N/A

Y (N) N/A

Y NYNA

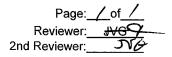
VALIDATION FINDINGS WORKSHEET **Initial Calibration**

Page:_	<u></u>
Reviewer:	9
2nd Reviewer:	NE

LDC #:<u>36197</u>A39 METHOD: <u>V</u> GC/<u>M5</u>HPLC

<u>YN N/A</u> Was a 5 point calibration curve performed? XN N/A

Was a linear fit used for evaluation? If yes, the acceptance criteria for each compound is %RSD less than or equal to 20.0%.


Was a curve fit used for evaluation? If yes, what was the acceptance criteria used for evaluation?

Did the initial calibration meet the acceptance criteria?

Was initial calibration performed at the required frequency?

#	Date	Standard ID	Column / Detector	Compound	Finding RSD Limit ≤20%	Associated Samples	Qualifications	
	6/3/15	1eA2		0	γ-2 =0.98565	806 M(IND)	A MAL	(BC)
<u> </u>								
					:			
		· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·			
Comr	l nents		I	ļ <u></u>				

VALIDATION FINDINGS WORKSHEET Initial Calibration Verification

METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

 $(Y \times NA)$ Was an initial calibration verification standard analyzed after each ICAL for each instrument? $Y \times NA$ Were all %D within the validation criteria of \leq 30 %D ?

YN MA Finding %D (Limit: <u><</u>30.0%) # Compound Standard ID **Associated Samples** Date Qualifications 5/15 MIXICV all 484 (NO) ß 'UN /A (44)

VALIDATION FINDINGS WORKSHEET

Continuing Calibration

Page:__/of___ Reviewer:_____ 2nd Reviewer:_____/&

METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

TYN N/A Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?

Y (N) N/A Were percent differences (%D) ≤20 % and relative response factors (RRF) within the method criteria?

) #	Date	Standard ID	Compound	Finding %D (Limit: <u><</u> 20.0%)	Finding RRF (Limit)	Associated Samples	Qualifications
	5/-9/15	PCB/00 CCV	В	27		275 (NO)	V/H/A (CH)
			М	29			- d
		1.197			<u> </u>		
							· · · · · · · · · · · · · · · · · · ·
I					1	1	

LDC #: 36197 A39

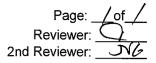
VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

Page:_	<u>_/of_/</u>
Reviewer:	<u> </u>
2nd Reviewer:	NB

METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.


<u>N/A</u> Was a MS/MSD analyzed every 20 samples of each matrix?

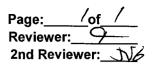
<u>N/A</u> Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

#	Date	MS/MSD ID	Compound	MS %R (Limits)	MSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
		3/4	P	19- 150-150	203 (50-15)	()	2(ND)	tets A (HH)
				()	()	()		
				()	()	()		
		<u> </u>		()	()	()		
				()	()	()		
				()	()	()		
				()	<u> ()</u>	()		
				()	()	()		
				<u> </u>	<u>()</u>	()		
				()	()	()		
		· · · · · · · · · · · · · · · · · · ·		()	()	()	· · · · · · · · · · · · · · · · · · ·	
				()	()	()		
				()	()	()		
				()	()	()		
		······································		()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		·
				()	<u> () </u>	<u> () </u>		
				()	()	()		
			<u> </u>	()	()	()		
				()	()	()	· · · · · · · · · · · · · · · · · · ·	
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				<u> </u>	()	<u> ()</u>		

VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS)

METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

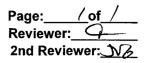

 Y
 N/A
 Was a LCS required?

 Y
 N/A
 Were the LCS/LCSD

Were the LCS/LCSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

#	Date	LCS/LCSD ID	Compound	LCS %R (Limits)	LCSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
		31515-BS1/	0	131 (70-130	133 (70-130)	()	M(CND)	Add (HL)
		-B32	ρ	169(1)	176 (1)	()	·····	
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()	· · · · · · · · · · · · · · · · · · ·	
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		

LDC#: 36197830


Method: GC/MS Pesticides (EPA SW 846 Method 8270D)

Calibration Date	System	Compound	Standard	(Y) Response	(X) Concentration
5/27/2015	Q1	4,4'-DDT	s1	0.0415327	0.050
			s2	0.1015429	0.100
			s3	0.3551243	0.250
			s4	1.0200741	0.500
			s5	2.706278	1.000

Regression Output		Reported
Constant	-0.233960	-0.232555
Std Err of Y Est		
R Squared	0.985266	0.985658
Degrees of Freedom	·····	
X Coefficient(s)	2.839133	2.860585
Std Err of Coef.		
Correlation Coefficient	0.992606	
Coefficient of Determination (r^2)	0.985266	0.985658

LDC#: 36197A3a

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Method: GC/MS Pesticides (EPA SW 846 Method 8270D)

Calibration Date	System	Compound	Standard	(Y) Response	(X) Concentration
5/27/2015	Q1	4,4'-DDMU	s1	0.0849309	0.025
			s2	0.16469	0.050
			s3	0.348635	0.100
			s4	1.0921435	0.250
			s5	2.4835837	0.500
			s6	5.683011	1.000

Regression Output		Reported
Constant	-0.206259	-0.202600
Std Err of Y Est		
R Squared	0.995686	0.995686
Degrees of Freedom		
X Coefficient(s)	5.763401	5.763406
Std Err of Coef.		
Correlation Coefficient	0.997841	
Coefficient of Determination (r^2)	0.995686	0.995686

LDC:3-197 A39

Method: Pesticides (EPA SW 846 Method 8270D)

Calibration Date	Analyte	Standard	(X) Concentration	(Y) Area	(X ²) Conc
5/27/2015	gamma-BHC	1	0.025	0.0067298	0.000025
	-	2	0.050	0.0145848	0.00005
		3	0.100	0.0262238	0.0001
		4	0.250	0.0648048	0.0002
		5	0.500	0.1473573	0.0004
		6	1.000	0.2798399	0.0008

Linear through the origin

	calculated	Reported
Constant	0.000000	0.0000
X Coefficient(s)	0.281557	0.28625
Correlation Coefficient	0.999612	0.99880
Coefficient of Determination (r^2)	0.999225	

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page:_	_/of_/_
Reviewer:	q_
2nd Reviewer:	N6

METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF	
$RRF = (A_{x})(C_{is})/(A_{is})(C_{x})$	

Where: ave. RRF = initial calibration average RRF

RRF = continuing calibration RRF

 $A_x =$ Area of compound, $C_x =$ Concentration of compound, A_{is} = Area of associated internal standard

 $\vec{C}_{is} = Concentration of internal standard$

					Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Reference Internal Standard)	Average RRF (initial)	RRF (CC)	RRF (CC)	%D	%D
1	acv	5-715	Phenel (1st internal standard)	500	460.0172	460.0185	8	B
		/ /	Naphthalene (2nd internal standard)		413.7876	44685	17	11.
			Fluorene (3rd internal standard) 4.4 - DTHU		467.0538	477.93	7	4
			Pentachlorophenol (4th internal standard)					
			Bis(2-ethylhexyl)phthalate (5th internal standard)					
			Benzo(a)pyrene (6th internal standard)					
2			Phenol (1st internal standard)					
			Naphthalene (2nd internal standard)					
			Fluorene (3rd internal standard)					
			Pentachlorophenol (4th internal standard)					
			Bis(2-ethylhexyl)phthalate (5th internal standard)					·
			Benzo(a)pyrepe (6th internal standard)					
3			Phenol (1st internal standard)					
			Naphthalene (2nd internal standard)					
			Fluorene (3rd internal standard)					
			Pentachlorophenol (4th internal standard)					
			Bis(2-ethylhexyl)phthalate (5th internal standard)					
			Benzo(a)pyrene (6th internal standard)		J			

Comments: <u>Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.</u>

LDC #: 36197439

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:_	
Reviewer:	'Q_
2nd reviewer:_	- TVE

METHOD: GC/MS SVOA (EPA SW 846 Method 8270D)

Y <u>N N/A</u> YN N/A	Were all reported results recalculated and verified for all level IV samples?
<u>Y'N N/A</u>	Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

Concentration = $(A_{y})(I_{s})(V_{t})(DF)(2.0)$ $(A_{is})(RRF)(V_o)(V_i)(\%S)$ Area of the characteristic ion (EICP) for the = A, compound to be measured Area of the characteristic ion (EICP) for the specific Ξ A_{is} internal standard Amount of internal standard added in nanograms (ng) I, = Volume or weight of sample extract in milliliters (ml) or ٧, grams (g). Volume of extract injected in microliters (ul) V, 3 Volume of the concentrated extract in microliters (ul) V_t = Dilution Factor. Df 2

%S = Percent solids, applicable to soil and solid matrices only.

Example: Sample I.D. <u>A</u>11, <u>ND</u> #3. gamma- R4 e

 $Conc. = \frac{(1637-8)(1000)(0.1655)(0.165)(0.1655)(0.165)(0.165))$

2.0 Factor of 2 to account for GPC cleanup Reported Calculated Concentration Concentration # Sample ID Compound (N-A) Qualification .9

LDC #: 3697-139

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates Results Verification

Page:___of___ Reviewer:_____ 2nd Reviewer:__<u>__N</u>

METHOD: GC/MS PAH (EPA SW 846 Method 8270D)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SSC - SC)/SA

Where: SSC = Spiked sample concentration SA = Spike added

SC = Sample concentation

RPD = I MSC - MSC I * 2/(MSC + MSDC)

MSC = Matrix spike concentration

MSDC = Matrix spike duplicate concentration

MS/MSD samples:

Compound	Ad	ike ded ⊳/G()	Sample Concentration (仏今⁄年)	Spiked Concer (1/1		<u>Matrix</u> Percent I		Matrix Spik Percent I		<u>MS/M</u> RPI	
	MS	MSD		MS	MSD	Reported	Recalc	Reported	Recaic	Reported	Recalculated
Γ	32.75	87.45	ND	73,58	77.14	89	89	88	38		
0	V			1=0.39	131.09	45	145	150	50	Ŋ	Э
						· · · · · · · · · · · · · · · · · · ·					

Comments: <u>Refer to Matrix Spike/Matrix Spike Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.</u>

LDC #:36197-139

VALIDATION FINDINGS WORKSHEET Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification

Page: / of / Reviewer: ______ 2nd Reviewer: ______

METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270D)

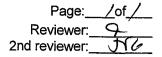
The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SC/SA)

Where: SSC = Spike concentration SA = Spike added

RPD = I LCSC - LCSDC I * 2/(LCSC + LCSDC)

LCSC = Laboratory control sample concentration LCSDC = Laboratory control sample duplicate concentration


LCS/LCSD samples: __<u>31515 - BS1 / BS2</u>

	Spike Addeg		Spike Concentration		I CS		LCSD			
Compound	(N=	3/9)	<u>(N =</u>	/9)	Percent I	Recovery	Percent Recovery		RPD	
			<u> </u>		Reported	Recalc.	Reported	Recalc	Reported	Recalculated
0	500	500	653.	665.47 463.46	13/	121	133	133	2	Z
× ×	V	1	482.95	463.46	<u>a</u> t	AT	93	93	4	4
			£							
				·						

Comments: Refer to Laboratory Control Sample/Laboratory Control Sample Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC #: 36197439

VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270D)

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS * 100

Sample ID: _

Where: SF = Surrogate Found SS = Surrogate Spiked

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-dp PCB030	400.0	28204	71	71	0
2-Fluorobiphenyl	1	28204 346.99	87	87	
Terphenyl-d 4 198		439.54	110	110	/
Phenol-d5 TCM X	l	271.31	68	68	
2-Fluorophenol		,			
2,4,6-Tribromophenol					
2-Chloophenol-d4					
1+2-Dichiorebenzene-d4					

Sample ID:___

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5					
2-Fluorobiphenyl					
Terphenyl-d14					
Phenol-d5					
2-Fluorophenol					
2,4,6-Tribromophenol					
2-Chlorophenol-d4					
1,2-Dichlorobenzene-d4					

Sample ID:_

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5					
2-Fluorobiphenyl					
Terphenyl-d14					
Phenol-d5					
2-Fluorophenol					
2,4,6-Tribromophenol					
2-Chlorophenol-d4					
1,2-Dichlorobenzene-d4					

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: City of San Diego SWBH Study

LDC Report Date: May 9, 2016

Parameters: Metals

Validation Level IV Level IV

Laboratory: Physis Environmental Laboratories, Inc.

Sample Delivery Group (SDG): 1504003-001

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
SWHB-14	31531	Sediment	04/08/14
SWHB-19	31536	Sediment	04/08/14
SWHB-14MS	31531	Sediment	04/08/14
SWHB-14MSD	31531	Sediment	04/08/14
SWHB-14DUP	31531	Sediment	04/08/14

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with Final Quality Assurance Project Plan, Regional Harbor Monitoring Program, San Diego, California (August 2013) and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review (January 2010). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Aluminum, Antimony, Arsenic, Barium, Beryllium, Cadmium, Chromium, Copper, Iron, Lead, Mercury, Nickel, Selenium, Silver, Total Phosphorus, and Zinc by Environmental Protection Agency (EPA) SW 846 Method 6020/EPA Method 245.7

All sample results were subjected to Level IV evaluation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- BC The initial calibration (ICAL) curve did not meet method-specified criteria.
- CH High continuing calibration verification (CCV) recovery. Analytical results may be biased high.
- DL The analyte concentration was between the method detection limit (MDL) and the reporting limit (RL).
- FB The analyte was detected in the sample and its associated field blank and the concentration detected in the sample is less than five times the concentration detected in the blanks.
- H Holding time.
- HD Potential analytical imprecision.
- HL High LCS recovery. Analytical results may be biased high.
- HM High MS recovery. Analytical results may be biased high.
- HP High certified reference material (CRM) recovery. Analytical results may be biased high.
- HV High initial calibration verification (ICV) recovery. Analytical results may be biased high.
- LC Low CCV recovery. Analytical result may be biased low.
- LL Low LCS recovery. Analytical result may be biased low.
- LM Low MS recovery. Analytical result may be biased low.
- LP Low CRM recovery. Analytical result may be biased low.
- LS Low Surrogate recovery. Analytical results may be biased low.
- LV Low ICV recovery. Analytical result may be biased low.
- NC Calibration verification standard concentrations were outside the calibration range.
- NQ There is lack of QC for this analyte.
- RB The analyte was detected in the sample and its associated equipment blank and the concentration detected in the sample is less than five times the concentration detected in the blank.
- TD The dissolved metals concentration is significantly higher than the total metal concentration.
- *# Unusual problems found with the data. The number following the asterisk
 (*) will indicate the section in the validation report where a description of
 the problem can be found.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met with the following exceptions:

Sample	Analyte	Total Days From Sample Collection Until Analysis	Required Holding Time (in Days) From Sample Collection Until Analysis	Flag	A or P
All samples in SDG 1504003-001	All analytes except Silver	408	365	J (all detects)	Ρ
All samples in SDG 1504003-001	Silver	434	365	J (all detects)	Р
All samples in SDG 1504003-001	Mercury	413	180	J (all detects)	Ρ

II. ICPMS Tune

The mass calibration was within 0.1 AMU and the percent relative standard deviation (%RSD) was less than or equal to 5%.

III. Instrument Calibration

Initial and continuing calibrations were performed as required by the methods.

The initial calibration verification (ICV) and continuing calibration verification (CCV) standards were within QC limits.

IV. ICP Interference Check Sample Analysis

The interference check sample (ICS) was not performed by the laboratory. The laboratory used a reaction chamber with mixed gases as well as internal equations to compensate for any interferents.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. For SWHB-14MS/MSD, no data were qualified for Aluminum and Lead percent recoveries (%R) outside the QC limits since the parent sample results were greater than 4X the spike concentration. Relative percent differences (RPD) were within QC limits.

VIII. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

IX. Serial Dilution

Serial dilution was not performed for this SDG.

X. Laboratory Control Samples/Certified Reference Materials

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

Certified reference materials (CRM) were analyzed as required by the method. The results were within QC limits with the following exceptions:

	Analyte	%R (Limits)	Associated Samples	Flag	A or P
CRM-ERA 540	Aluminum Antimony Iron	167 (80-120) 166 (80-120) 136 (80-120)	All samples in SDG 1504003-001	J (all detects) J (all detects) J (all detects)	Ρ
CRM-ERA 540	Aluminum Antimony Iron	190 (80-120) 173 (80-120) 148 (80-120)	All samples in SDG 1504003-001	J (all detects) J (all detects) J (all detects)	Р

XI. Field Duplicates

No field duplicates were identified in this SDG.

XII. Internal Standards (ICP-MS)

All internal standard percent recoveries (%R) were within QC limits.

XIII. Sample Result Verification

All sample result verifications were acceptable.

All analytes reported below the reporting limit (RL) and above the minimum detection limit (MDL) were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG 1504003-001	Analyte reported below the RL and above the MDL	J (all detects)	А

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected in this SDG.

Due to holding time exceedance, CRM %R, and results reported below the RL and above the MDL, data were qualified as estimated in two samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Sample results that were found to be estimated (J) are usable for limited purposes only. Based upon the data validation all other results are considered valid and usable for all purposes.

City of San Diego SWBH Study Metals - Data Qualification Summary - SDG 1504003-001

Sample	Analyte	Flag	A or P	Reason (Code)
SWHB-14 SWHB-19	All TCL compounds	J (all detects)	Р	Technical holding time (H)
SWHB-14 SWHB-19	Aluminum Antimony Iron	J (all detects) J (all detects) J (all detects)	Р	Certified reference material (HP)
SWHB-14 SWHB-19	Analyte reported below the RL and above the MDL	J (all detects)	A	Sample result verification (DL)

City of San Diego SWBH Study Metals - Laboratory Blank Data Qualification Summary - SDG 1504003-001

No Sample Data Qualified in this SDG

City of San Diego SWBH Study Metals - Field Blank Data Qualification Summary - SDG 1504003-001

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Level IV

Date: <u>4(27)</u> Page: <u>\of \</u> Reviewer: <u>\</u> 2nd Reviewer: ____

Laboratory: Physis Environmental Laboratories, Inc.

LDC #: 36197A4a

SDG #: 1504003-001

METHOD: Metals (EPA SW 846 Method 6020/EPA Method 245.7)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

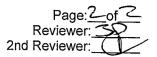
	Validation Area		Comments
l	Sample receipt/Technical holding times	SW	418/14
11.	ICP/MS Tune	A	
111.	Instrument Calibration	A	
IV.	ICP Interference Check Sample (ICS) Analysis	SW	
V.	Laboratory Blanks	SW	
VI.	Field Blanks	2	
VII.	Matrix Spike/Matrix Spike Duplicates 39	XSW	MGD= (3,4)= AI, Fe 74x
VIII.	Duplicate sample analysis	A	DUR
IX.	Serial Dilution	N	Not Performet
<u>X.</u>	Laboratory control samples	SW	LCSID & CRM
XI.	Field Duplicates	2	
XII.	Internal Standard (ICP-MS)	A	
XIII.	Sample Result Verification	A	
	Overall Assessment of Data	LA	

Note: A = Acceptable N = Not provided/applicable

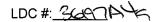
SW = See worksheet

ND = No compounds detected R = Rinsate FB = Field blank

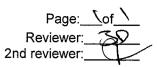
D = Duplicate
TB = Trip blank
EB = Equipment blank


SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1 2 3 4 5 6 7 8 9 10	SWHB-184 30	31532 30	Sediment	04/08/14
2	SWHB-19	31536	Sediment	04/08/14
3	#1 MS			
4	HI MSD			
5	#1MSD #1DP			
6				
7				
8				
9				
10				
11				
12				
Note	5:			

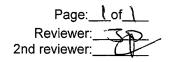

71

Method:Metals (EPA SW 846 Method 6010B/7000/6020)


Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
All technical holding times were met.				
Cooler temperature criteria was met.	/			
II. ICP/MS Tune				
Were all isotopes in the tuning solution mass resolution within 0.1 amu?	<			
Were %RSD of isotopes in the tuning solution ≤5%?	/			
III. Calibration				
Were all instruments calibrated daily, each set-up time?	$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$			
Were the proper number of standards used?	<			
Were all initial and continuing calibration verification %Rs within the 90-110% (80- 120% for mercury) QC limits?				
Were all initial calibration correlation coefficients ≥ 0.995?	/	L		
IV. Blanks				
Was a method blank associated with every sample in this SDG?	/			
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.		/		
V. ICP Interference Check Sample				
Were ICP interference check samples performed daily?		/		
Were the AB solution percent recoveries (%R) with the 80-120% QC limits?			/	-
VI. Matrix spike/Matrix spike duplicates				
Were a matrix spike (MS) and duplicate (DUP) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD or MS/DUP. Soil / Water			/	
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the 75-125 QC limits? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken.			(
Were the MS/MSD or duplicate relative percent differences (RPD) \leq 20% for waters and \leq 35% for soil samples? A control limit of +/- RL(+/-2X RL for soil) was used for samples that were \leq 5X the RL, including when only one of the duplicate sample values were \leq 5X the RL.			1	
VII. Laboratory control samples				
Was an LCS anaylzed for this SDG?				
Was an LCS analyzed per extraction batch?		_		
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the 80-120% QC limits for water samples and laboratory established QC limits for soils?				

Validation Area	Yes	No	NA	Findings/Comments
VIII. Internal Standards (EPA SW 846 Method 6020/EPA 200.8)				
Were all the percent recoveries (%R) within the 30-120% (6020)/60-125% (200.8) of the intensity of the internal standard in the associated initial calibration?				
If the %Rs were outside the criteria, was a reanalysis performed?	1			
IX. ICP Serial Dilution		_		
Was an ICP serial dilution analyzed if analyte concentrations were > 50X the MDL (ICP)/>100X the MDL(ICP/MS)?			/	
Were all percent differences (%Ds) < 10%?			(
Was there evidence of negative interference? If yes, professional judgement will be used to gualify the data.			1	
X. Sample Result Verification				
Were RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?	/			
XI. Overall assessment of data				
Overall assessment of data was found to be acceptable.	/			
XII. Field duplicates				
Field duplicate pairs were identified in this SDG.		/		
Target analytes were detected in the field duplicates.				
XIII. Field blanks	,		•	
Field blanks were identified in this SDG.		/		
Target analytes were detected in the field blanks.			J	

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

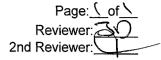


All circled elements are applicable to each sample.

Comple ID	N/~+!	
Sample ID	1 0	
1-2	Sed	AI/Sb/As/Ba/Be,Cd)Ca/Cr,)Co,(Cu/Fe,/Pb) Mg, Mn/Hg,/Ni, K,/Se, Ag) Na, TI, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Analysis Method
ICP		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
ICP-MS		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
GFAA		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		why CVAA if porformed

Comments: Mercury by CVAA if performed

VALIDATION FINDINGS WORKSHEET **Technical Holding Times**



All circled dates have exceeded the technical holding time. Y N N/A Were all samples preserved as applicable to each method ? Y N N/A Were all cooler temperatures within validation criteria?

Method:		60200 50-200.8		245.7			
Parameters:		All Analytes except Ag		Hg			
<u>Technical holding ti</u>	me:	365 Days		180 Days_			
Sample ID	Sampling date	Analysis date	Analysis date	Analysis date	Analysis date	Analysis date	Qualifier
All	04/08/14	05/21/15	408 Days				J/UJ/P (det) (H)
All	04/08/14			05/26/15	413 Days		J/R/P (det) (H)

Method:		30 200.8					
Parameters:		Ag					
Technical holding tir	ne:	365 Days					
Sample ID	Sampling date	Analysis date	Analysis date	Analysis date	Analysis date	Analysis date	Qualifier
All	04/08/14	06/16/15	434 Days				J/UJ/P (det) (H)
·							

VALIDATION FINDINGS WORKSHEET **ICP** Interference Check Sample

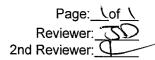
METHOD: Trace Metals (EPA SW 846 Method 6010/6020/7000)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Y N/N/A

Were ICP interference check samples performed as required?

Were the AB solution percent recoveries (%R) within the control limits of 80-120%?

LEVEL IV ONLY: Y N N N/A


Were recalculated results acceptable? See Level IV Recalculation Worksheet for recalculations.

	#	Date	ICS Identification	Analyte	Finding	Associated Samples	Qualifications
			ICSA/AB		The ICP interference check sample was not performed by the laboratory. The laboratory used a reaction chamber with mixed gases as well as internal equations to compensate for any interferents.	All	Text
	_						
	_						
	_ _						
	_						
	_						
┡	_						
$\ $							
L					<u> </u>		

Comments:

 $\mathbf{r} =$

VALIDATION FINDINGS WORKSHEET Blanks

METHOD: Trace metals (EPA SW 846 Method 6010/7000)

 		Finding	Associated Samples	Qualifications
ССВ	Hg	Closing CCB was not performed	All	Text
 				· · · · · · · · · · · · · · · · · · ·
 			: 	
 		· · · · · · · · · · · · · · · · · · ·		
 · · · · · · · · · · · · · · · · · · ·				
 		· · · · · · · · · · · · · · · · · · ·		
 		<u> </u>		
			Image: Section of the section of th	Image: Section of the section of th

Comments:_____

LDC #: 36197A4a

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

Reviewer: JD	Page:	of
	Reviewer:	Œ
2nd Reviewer:	2nd Reviewer:	9

METHOD: Trace metals (EPA SW 846 Method 6010/7000)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". /N N/A

Was a matrix spike analyzed for each matrix in this SDG? Were matrix spike percent recoveries (%R) within the control limits of 75-125? If the sample concentration exceeded the spike concentration by a factor

N N/A

of 4 or more, no action was taken.

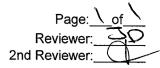
Were all duplicate sample relative percent differences (RPD) < 20% for samples?

EVEL IV ONLY:

N/N/A

'Y) N N/A

Were recalculated results acceptable? See Level IV Recalculation Worksheet for recalculations.


#		Matrix	Analyte	MS %Recovery	MSD %Recovery	RPD (Limits)	Associated Samples	Qualifications
	3/4	Sed	AI			30	1	No Qual.*
		-						
							·	
					· ·			
								<u> </u>

(3% R7D)

Comments: *Lab calculated RPD based on %R, but %R is not meaningful for AI because AI > 4X spike. RPD of ug/g results = ok. No Qual. Л

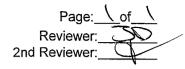
3/4: Al, Fe > 4X

VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS)

METHOD: Trace Metals (EPA SW 846 Method 6010B/6020/7000)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was a laboratory control sample (LCS) analyzed for each matrix in this SDG?


Y(N) N/A Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?

<u>V N N/A</u> Were recalculated results acceptable? See Level IV Recalculation Worksheet for recalculations.

#		Matrix	Analyte	LCS %R (limits)	LCSD %R (limits)	RPD (limits)	Associated Samples	Qualifications
	CRM-ERA 540	Sed	AI	167	n/a	n/a	All	Jdet/P (det) (HL)
			Sb	166	n/a	n/a		Jdet/P (det) (HL)
			Fe	136	n/a	n/a		Jdet/P (det) (HL)
	CRM-ERA 540	Sed	AI	190	n/a	n/a	All	Jdet/P (det) (HL)
			Sb	173	n/a	n/a		Jdet/P (det) (HL)
			Fe	148	n/a	n/a		Jdet/P (det) (HL)

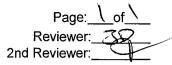
Comments:

VALIDATION FINDINGS WORKSHEET Initial and Continuing Calibration Calculation Verification

METHOD: Trace Metals (See cover)

An initial and continuing calibration verification percent recovery (%R) was recalculated for each type of analysis using the following formula:

 %R = Found x 100
 Where,
 Found = concentration (in ug/L) of each analyte measured in the analysis of the ICV or CCV solution


 True
 True = concentration (in ug/L) of each analyte in the ICV or CCV solution

		· · · · · · · · · · · · · · · · · · ·			Recalculated	Reported	
Standard ID	Type of Analysis	Element	Found (ug/L)	True (ug/L)	%R	%R	Acceptable (Y/N)
	ICP (Initial calibration)						
JCV 11:43	ICP/MS (Initial calibration)	Be	0.105 uglg	0.1 ugia	1052R	NR	Y
JUN TOUR	CVAA (Initial calibration)	Hq	959ppt	1000ppt	96%R	22	\mathcal{T}
	ICP (Continuing calibration)						
262	ICP/MS (Continuing calibration)	Cà	0-102.ug/q	0.1 vg19	102%.R	NR	Z
62J 19:07	CVAA (Contining calibration)	Ha	966 ppt	1000ppt	97. %-	NR	Ţ
	GFAA (Initial calibration)	5					
	GFAA (Continuing calibation)						

Comments: _____

LDC #: 3697A49

VALIDATION FINDINGS WORKSHEET Level IV Recalculation Worksheet

METHOD: Trace Metals (EPA SW 846 Method 6010/6020/7000)

Percent recoveries (%R) for an ICP interference check sample, a laboratory control sample and a matrix spike sample were recalculated using the following formula:

 %R = Found_x 100
 Where, Found = Concentration of each analyte measured in the analysis of the sample. For the matrix spike calculation, Found = SSR (spiked sample result) - SR (sample result).

 True
 True = Concentration of each analyte in the source.

A sample and duplicate relative percent difference (RPD) was recalculated using the following formula:

RPD = <u> S-D </u> x 100	Where,	S = Original sample concentration
(S+D)/2		D = Duplicate sample concentration

An ICP serial dilution percent difference (%D) was recalculated using the following formula:

%D = <u>|I-SDR|</u> x 100 Where, I = Initial Sample Result (mg/L) SDR = Serial Dilution Result (mg/L) (Instrument Reading x 5)

Sample ID	Type of Analysis	Element	Found / S / I (units)	True / D / SDR (units)	Recalculated	Reported %R / RPD / %D	Acceptable (Y/N)
2	ICP interference check						
10500	Laboratory control sample	Cu	2.041 vglg	Zugilg	1028.R	102%P	Z
16-10	Matrix spike	Be	(SSR-SR) 61.26 vg/q	56.306ugla	(09 %0	109% R	
00R (4:50	Duplicate	As	7.452 vglg	7.738 ugla	4%, 820	42.85	\downarrow
	ICP serial dilution						

Comments: _____

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:	<u>_of \</u>
Reviewer:	QZ,
2nd reviewer:_	

METHOD: Trace Metals (EPA SW 846 Method 6010/6020/7000)

Y N Y N Detect equati	N/A Have results N/A Are results w N/A Are all detect ted analyte results for _	be for all questions answered "N". Not apple been reported and calculated correctly? ithin the calibrated range of the instrument tion limits below the CRDL?		ear range of the IC	P?
RD FV In. Vol. Dil	(In. Vol.) = Raw data conce = Final volume (m	ntration	it ugla		
#	Sample ID	Analyte	Reported Concentration (১৯/৫)	Calculated Concentration	Acceptable (Y/N)
			0.0794	0.0994	2
	2	N:	13.06	13.06	
		· · · · · · · · · · · · · · · · · · ·			
 					
		······			
			<u> </u>	<u> </u>	

Note:_____

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: City of San Diego SWBH Study

LDC Report Date: May 9, 2016

Parameters: Wet Chemistry

Validation Level: Level IV

Laboratory: Physis Environmental Laboratories, Inc.

Sample Delivery Group (SDG): 1504003-001

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
SWHB-11	31528	Sediment	04/08/14
SWHB-14	31531	Sediment	04/08/14

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with Final Quality Assurance Project Plan, Regional Harbor Monitoring Program, San Diego, California (August 2013) and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review (January 2010). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Ammonia as Nitrogen by Standard Method 4500-NH3 D Percent Solids by Standard Method 2540B

All sample results were subjected to Level IV data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- BC The initial calibration (ICAL) curve did not meet method-specified criteria.
- CH High continuing calibration verification (CCV) recovery. Analytical results may be biased high.
- DL The analyte concentration was between the method detection limit (MDL) and the reporting limit (RL).
- FB The analyte was detected in the sample and its associated field blank and the concentration detected in the sample is less than five times the concentration detected in the blanks.
- H Holding time.
- HD Potential analytical imprecision.
- HL High LCS recovery. Analytical results may be biased high.
- HM High MS recovery. Analytical results may be biased high.
- HP High certified reference material (CRM) recovery. Analytical results may be biased high.
- HV High initial calibration verification (ICV) recovery. Analytical results may be biased high.
- LC Low CCV recovery. Analytical result may be biased low.
- LL Low LCS recovery. Analytical result may be biased low.
- LM Low MS recovery. Analytical result may be biased low.
- LP Low CRM recovery. Analytical result may be biased low.
- LS Low Surrogate recovery. Analytical results may be biased low.
- LV Low ICV recovery. Analytical result may be biased low.
- NC Calibration verification standard concentrations were outside the calibration range.
- NQ There is lack of QC for this analyte.
- RB The analyte was detected in the sample and its associated equipment blank and the concentration detected in the sample is less than five times the concentration detected in the blank.
- TD The dissolved metals concentration is significantly higher than the total metal concentration.
- *# Unusual problems found with the data. The number following the asterisk
 (*) will indicate the section in the validation report where a description of
 the problem can be found.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met with the following exceptions:

Sample	Analyte	Total Time From Sample Collection Until Analysis	Required Holding Time From Sample Collection Until Analysis	Flag	A or P
All samples in SDG 1504003-001	Percent solids	400 days	180 days	J (all detects)	Р
All samples in SDG 1504003-001	Ammonia as N	401 days	180 days	J (all detects)	Р

II. Initial Calibration

All criteria for the initial calibration of each method were met.

III. Continuing Calibration

Continuing calibration frequency and analysis criteria were met for each method when applicable with the following exceptions:

Date	Lab. Reference/ID	Analyte	%R (Limits)	Associated Samples	Flag	A or P
05/15/15	ICV	Ammonia as N	88 (90-110)	All samples in SDG 1504003-001	J (all detects)	А

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Sample Result Verification

All sample result verifications were acceptable.

All analytes reported below the reporting limit (RL) and above the minimum detection limit (MDL) were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG 1504003-001	Analyte reported below the RL and above the MDL	J (all detects)	A

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected in this SDG.

Due to holding time exceedance, calibration ICV %D, and results reported below the RL and above the MDL, data were qualified as estimated in two samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Sample results that were found to be estimated (J) are usable for limited purposes only. Based upon the data validation all other results are considered valid and usable for all purposes.

City of San Diego SWBH Study Wet Chemistry - Data Qualification Summary - SDG 1504003-001

Sample	Analyte	Flag	A or P	Reason (Code)
SWHB-11 SWHB-14	Percent solids Ammonia as N	J (all detects)	Р	Technical holding time (H)
SWHB-11 SWHB-14	Ammonia as N	J (all detects)	A	Calibration (ICV,%D) (LC)
SWHB-11 SWHB-14	Analyte reported below the RL and above the MDL	J (all detects)	А	Sample results verification (DL)

City of San Diego SWBH Study Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG 1504003-001

No Sample Data Qualified in this SDG

City of San Diego SWBH Study Wet Chemistry - Field Blank Data Qualification Summary - SDG 1504003-001

No Sample Data Qualified in this SDG

Γ

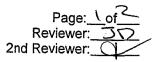
Level IV

Date:<u>Htzlie</u> Page:<u>lof</u> Reviewer:<u>5</u> 2nd Reviewer:<u>5</u>

Laboratory: Physis Environmental Laboratories, Inc.

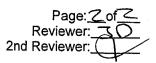
SDG #: 1504003-001

METHOD: (Analyte) Ammonia-N (SM4500-NH3 D), Percent Solids (SM2540B)


The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I.	Sample receipt/Technical holding times	SN	4108/14
11	Initial calibration	A	
Ш.	Calibration verification	SW	
īV	Laboratory Blanks	A	
V	Field blanks	\mathbb{N}	
VI.	Matrix Spike/Matrix Spike Duplicates	\mathbf{r}	CS .
VII.	Duplicate sample analysis	2	
VIII.	Laboratory control samples	A	LCSID
IX.	Field duplicates	\sim	
Х.	Sample result verification	A	
XI	OveralLassessment of data	A	

Note: A = Acceptable


N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

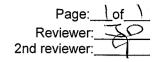
	Client ID	Lab ID	Matrix	Date
1	SWHB-11	31528	Sediment	04/08/14
2	SWHB-14	31531	Sediment	04/08/14
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
Note	PS:			

Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
All technical holding times were met.		/		
Cooler temperature criteria was met.				·
II. Calibration				
Were all instruments calibrated daily, each set-up time?				
Were the proper number of standards used?	\leq			
Were all initial calibration correlation coefficients <a> 0.995?	<	_		
Were all initial and continuing calibration verification %Rs within the 90-110% QC limits?		/		
Were titrant checks performed as required? (Level IV only)			<u> </u>	~~~
Nere balance checks performed as required? (Level IV only)	${\boldsymbol{\varkappa}}$			JD (ula)
III. Blanks				
Nas a method blank associated with every sample in this SDG?	<			
Nas there contamination in the method blanks? If yes, please see the Blanks alidation completeness worksheet.		/		·
V. Matrix spike/Matrix spike duplicates and Duplicates				
Nere a matrix spike (MS) and duplicate (DUP) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD or MS/DUP. Soil / Water.			/	
Vere the MS/MSD percent recoveries (%R) and the relative percent differences RPD) within the 75-125 QC limits? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken.			1	
Vere the MS/MSD or duplicate relative percent differences (RPD) \leq 20% for vaters and \leq 35% for soil samples? A control limit of \leq CRDL(\leq 2X CRDL for soil) vas used for samples that were \leq 5X the CRDL, including when only one of the luplicate sample values were \leq 5X the CRDL.			/	
/. Laboratory control samples				
Vas an LCS anaylzed for this SDG?	/			
Vas an LCS analyzed per extraction batch?	<			
Vere the LCS percent recoveries (%R) and relative percent difference (RPD) /ithin the 80-120% (85-115% for Method 300.0) QC limits?	/			
/I. Regional Quality Assurance and Quality Control				
Vere performance evaluation (PE) samples performed?			~	
Vere the performance evaluation (PE) samples within the acceptance limits?				

VALIDATION FINDINGS CHECKLIST

Validation Area	Yes	No	NA	Findings/Comments
VII. Sample Result Verification				
Were RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?	~			
Were detection limits < RL?				
VIII. Overall assessment of data				
Overall assessment of data was found to be acceptable.	/			
IX. Field duplicates				
Field duplicate pairs were identified in this SDG.		1		
Target analytes were detected in the field duplicates.		_	/	
X. Field blanks				
Field blanks were identified in this SDG.		/		
Target analytes were detected in the field blanks.				

VALIDATION FINDINGS WORKSHEET Sample Specific Analysis Reference


Page: 1_of 1_ 2nd reviewer:

All circled methods are applicable to each sample.

Sample ID	Parameter (1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/
~	pH TDS CI F NO3 NO2 SO4 O-PO4 Alk CN/NH/TKN TOC Cr6+ CIO4 (2. Solids)
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄

Comments:_____

VALIDATION FINDINGS WORKSHEET **Technical Holding Times**

All circled dates have exceeded the technical holding time. $\frac{\dot{Y} N N/A}{N N/A}$ Were all samples preserved as applicable to each method ? $\frac{V N N/A}{N N/A}$ Were all cooler temperatures within validation criteria?

<u>_Y/ N_N/A_</u> Were all coo				T			
Method:		SM2540B		SM4500- NH3 D			
Parameters:		Percent Solids	NH3-N				
Technical holding t	ime:	/ 87 7 Days		-28-Days			
Sample ID	Sampling date	Analysis date	Analysis date	Analysis date	Analysis date	Analysis date	Qualifier
All	04/08/14	05/13/15	400 Days				J/R/P (det) (H)
All	04/08/14			05/14/15	401 Days		J/R/P (det) (H)
	_						

LDC #: 36197A6

VALIDATION FINDINGS WORKSHEET Calibration

METHOD: Trace Metals (EPA SW 846 Method 6010/6020/7000)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

N/A Were all instruments calibrated daily, each set-up time, and were the proper number of standards used?

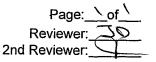
V/N/N/A Were all initial and continuing calibration verification percent recoveries (%R) within the control limits of 90-110% for all analytes except mercury (80-120%)?

NNA Was a midrange cyanide standard distilled?

 $\frac{1}{\sqrt{N}}$ Are all correlation coefficients \geq 0.995? \sqrt{N} N/A Were recalculated results acceptable?

Were recalculated results acceptable? See Level IV Initial and Continuing Calibration Recalculation Worksheet for recalculations.

#	Date	Calibration ID	Analyte	%R	Associated Samples	Qualification of Data
	05/15/15	ICV*	NH3-N	88 (90-110)	All	J/UJ/A (det) (LC)
\square						
			-	· · · · · · · · · · · · · · · · · · ·		
				· · · · · · · · · · · · · · · · · · ·		
\square						
\vdash						
\vdash						
\square						


Comments: *No time applicable

LDC #: 3097AG

VALIDATION FINDINGS WORKSHEET Level IV Recalculation Worksheet

Found = SSR (spiked sample result) - SR (sample result).

concentration of each analyte measured in the analysis of the sample. For the matrix spike calculation,

Cover METHOD: Inorganics, Method ______

Percent recoveries (%R) for a laboratory control sample and a matrix spike sample were recalculated using the following formula:

%R = <u>Found</u> x 100 Where, Found = True

True = concentration of each analyte in the source.


A sample and duplicate relative percent difference (RPD) was recalculated using the following formula:

RPD = <u> S-D </u> x 100	Where,	S =	Original sample concentration
(S+D)/2		D =	Duplicate sample concentration

	Sample ID	Type of Analysis	Element	Found / S (units)	True / D (units)	Recalculated	Reported %R / RPD	Acceptable (Y/N)	
	_CS	Laboratory control sample	NH3-N	4,19, mg/kg	3,93mg/1kg	107%E	107%4	7	
	\mathbb{N}	Matrix spike sample		(SSR-SR)					
	\mathbb{N}	Duplicate sample							
Com	Comments: JCU/CCU = all recalculated from tow data) No %R summaries provided Therefore level 4 Recalc not necessary								

LDC #: 36197 AG

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:__ ∖of **Reviewer:** 2nd reviewer:

METHOD: Inorganics, Method ____

Corer Spe

Rease see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

- Have results been reported and calculated correctly?
- Y<u>N_N/A</u> Are results within the calibrated range of the instruments? Y/ N_N/A

Y N N/A Are all detection limits below the CRQL?

NH3-N _____reported with a positive detect were Compound (analyte) results for recalculated and verified using the following equation:

Concentration =

0.126 mg/L × 50 ml (3.966g) (0.5653) Recalculation:

PD= 0.126mg FU= Jourt In w. = 596000 9. solids = 0. 565

#	Sample ID	Analyte	Reported Concentration ()	Calculated Concentration ()	Acceptable (Y/N)
	1	NHZ-N	1.87 mg/kg	1.87 malks	7
	. 2	NHZ-N %:Salids	58.3%	1.87 mg/kg 58.3%	Ţ
			· · · · · · · · · · · · · · · · · · ·		
	·				
 					
	·				

Note:

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	City of San Diego SWBH Study

LDC Report Date: May 9, 2016

Parameters: Polychlorinated Biphenyls as Congeners

Validation Level: Level IV

Laboratory:Physis Environmental Laboratories Inc.

Sample Delivery Group (SDG): 1504003-001

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
SWHB-07	31524	Sediment	04/09/14
SWHB-18	315535	Sediment	04/08/14
SWHB-18MS	315535MS	Sediment	04/08/14
SWHB-18MSD	315535MSD	Sediment	04/08/14
SWHB-18DUP	315535DUP	Sediment	04/08/14

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with Final Quality Assurance Project Plan, Regional Harbor Monitoring Program, San Diego, California (August 2013) and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines (CLPNFG) for Superfund Organic Methods Data Review (June 2008). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Biphenyls (PCBs) as Congeners by Environmental Protection Agency (EPA) SW 846 Method 8270D

All sample results were subjected to Level IV data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- BC The initial calibration (ICAL) curve did not meet method-specified criteria.
- CH High continuing calibration verification (CCV) recovery. Analytical results may be biased high.
- DL The analyte concentration was between the method detection limit (MDL) and the reporting limit (RL).
- FB The analyte was detected in the sample and its associated field blank and the concentration detected in the sample is less than five times the concentration detected in the blanks.
- H Holding time.
- HD Potential analytical imprecision.
- HL High LCS recovery. Analytical results may be biased high.
- HM High MS recovery. Analytical results may be biased high.
- HP High certified reference material (CRM) recovery. Analytical results may be biased high.
- HV High initial calibration verification (ICV) recovery. Analytical results may be biased high.
- LC Low CCV recovery. Analytical result may be biased low.
- LL Low LCS recovery. Analytical result may be biased low.
- LM Low MS recovery. Analytical result may be biased low.
- LP Low CRM recovery. Analytical result may be biased low.
- LS Low Surrogate recovery. Analytical results may be biased low.
- LV Low ICV recovery. Analytical result may be biased low.
- NC Calibration verification standard concentrations were outside the calibration range.
- NQ There is lack of QC for this analyte.
- RB The analyte was detected in the sample and its associated equipment blank and the concentration detected in the sample is less than five times the concentration detected in the blank.
- TD The dissolved metals concentration is significantly higher than the total metal concentration.
- *# Unusual problems found with the data. The number following the asterisk
 (*) will indicate the section in the validation report where a description of
 the problem can be found.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met with the following exceptions:

Sample	Compound	Total Days From Sample Collection Until Extraction	Required Holding Time (in Days) From Sample Collection Until Extraction	Flag	A or P
SWHB-07	All TCL compounds	398	365	J (all detects) UJ (all non-detects)	Ρ
SWHB-18	All TCL compounds	399	365	J (all detects) UJ (all non-detects)	Р

II. GC/MS Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at the required frequency.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

A curve fit, based on the initial calibration, was established for quantitation. The coefficient of determination (r^2) was greater than or equal to 0.990 with the following exceptions:

Date	Compound	r²	Associated Samples	Flag	A or P
05/27/15	PCB-169	0.98733282	All samples in SDG 1504003-001	UJ (all non-detects)	A

Average relative response factors (RRF) for all compounds were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all compounds with the following exceptions:

_ Date	Compound	%D	Associated Samples	Flag	A or P
05/28/15	PCB-003	50	All samples in SDG 1504003-001	J (all detects)	A
	PCB-008	49		UJ (all non-detects)	
	PCB-018	57			
	PCB-031	46			
	PCB-028	51			
	PCB-033	39			
	PCB-052	53			
	PCB-049	48			
	PCB-044	40			
	PCB-037	39			l
	PCB-074	43			
	PCB-070	58			
	PCB-066	46			
	PCB-095	55			
	PCB-056/060	47			
	PCB-101	45			
	PCB-099	41			
	PCB-097	37			
	PCB-087	33			
		38			Ì
	PCB-081				
	PCB-110	43			
	PCB-077	31			
	PCB-151	50			ļ
	PCB-123	44			i
	PCB-149	62			
	PCB-118	44			
	PCB-114	46			
	PCB-153	38			1
	PCB-168/132	45			1
	PCB-105	34			
	PCB-141	37			
	PCB-138	38			l
	PCB-158	50			
	PCB-187	42			
	PCB-183	51			
	PCB-128	41			
	PCB-167	36			ł
	PCB- 174	54			
	PCB-177	87			1
	PCB-156	62			
	PCB-157	52			1
	PCB-199/200	53]
	PCB-180	48			
	PCB-169	33			
	PCB-170	43	1		
	PCB-201	31	ļ	ļ	ļ
					1
	PCB-189	36			
	PCB-195	33	1		
	PCB-206	39			
	PCB-209	65	l	l i i i i i i i i i i i i i i i i i i i	1

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all compounds with the following exceptions:

Date		Compound	%D	Associated Samples	Flag	A or P
05/29/15	PCB-126 PCB-128 PCB-156 PCB-169 PCB-189 PCB-195 PCB-194 PCB-206		25 21 34 28 42 23 43 35	SWHB-18	UJ (all non-detects) UJ (all non-detects)	А

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates/Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

Duplicate (DUP) sample analysis was performed on an associated project sample. Relative percent differences (RPD) were within QC limits with the following exceptions:

DUP ID (Associated Samples)	Compound	RPD (Limits)	Flag	A or P
SWHB-18DUP (SWHB-18)	PCB-031 PCB-028 PCB-101 PCB-110 PCB-153 PCB-157 PCB-158	72 (≤25) 89 (≤25) 95 (≤25) 89 (≤25) 53 (≤25) 109 (≤25) 117 (≤25)	J (all detects) UJ (all non-detects)	A

VIII. Laboratory Control Samples/Certified Reference Materials

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

Certified reference materials (CRM) were analyzed as required by the method. The results were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Internal Standards

All internal standard areas and retention times were within QC limits.

XI. Compound Quantitation

All compound quantitations were within validation criteria.

All compounds reported below the reporting limit (RL) and above the minimum detection limit (MDL) were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG 1504003-001	Compound reported below the RL and above the MDL	J (all detects)	A

XII. Target Compound Identifications

All target compound identifications were within validation criteria.

XIII. System Performance

The system performance was acceptable.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to holding time exceedance, initial calibration r^2 , ICV and continuing calibration %D, DUP RPD, and results below the RL and above the MDL, data were qualified as estimated in two samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Sample results that were found to be estimated (J) are usable for limited purposes only. Based upon the data validation all other results are considered valid and usable for all purposes.

City of San Diego SWBH Study Polychlorinated Biphenyls as Congeners - Data Qualification Summary - SDG 1504003-001

Sample	Compound	Flag	A or P	Reason (Code)
SWHB-07 SWHB-18	All TCL compounds	J (all detects) UJ (all non-detects)	Р	Technical holding time (H)
SWHB-07 SWHB-18	PCB-169	UJ (all non-detects)	A	Initial calibration (r²) (BC)
SWHB-07 SWHB-18	PCB-003 PCB-008 PCB-018 PCB-031 PCB-028 PCB-033 PCB-052 PCB-049 PCB-044 PCB-070 PCB-066 PCB-095 PCB-066 PCB-095 PCB-097 PCB-087 PCB-087 PCB-097 PCB-087 PCB-087 PCB-087 PCB-081 PCB-110 PCB-171 PCB-151 PCB-153 PCB-149 PCB-149 PCB-144 PCB-153 PCB-168/132 PCB-167 PCB-177 PCB-177 PCB-156 PCB-170 PCB-199/200 PCB-199/200 PCB-195 PCB-195 PCB-201 PCB-195 PCB-206 PCB-209	J (all detects) UJ (all non-detects)	A	Initial calibration verification (%D) (HV)

Sample	Compound	Flag	A or P	Reason (Code)
SWHB-18	PCB-126 PCB-128 PCB-156 PCB-169 PCB-189 PCB-195 PCB-194 PCB-206	UJ (all non-detects) UJ (all non-detects)	A	Continuing calibration (%D) (CH)
SWHB-18	PCB-031 PCB-028 PCB-101 PCB-110 PCB-153 PCB-157 PCB-158	J (all detects) UJ (all non-detects)	A	Duplicate sample analysis (RPD) (HD)
SWHB-07 SWHB-18	Compound reported below the RL and above the MDL	J (all detects)	А	Compound quantitation (DL)

City of San Diego SWBH Study

Polychlorinated Biphenyls as Congeners - Laboratory Blank Data Qualification Summary - SDG 1504003-001

No Sample Data Qualified in this SDG

City of San Diego SWBH Study

Polychlorinated Biphenyls as Congeners - Field Blank Data Qualification Summary - SDG 1504003-001

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Level IV

Date: <u>5/3/16</u> Page: _/of _/ Reviewer: _____ 2nd Reviewer: _____<u>N</u>

Laboratory: Physis Environmental Laboratories, Inc.

LDC #: 36197A31

SDG #: 1504003-001

METHOD: GC/MS Polychlorinated Biphenyls as Congeners (EPA SW 846 Method 8270D)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area			Comm	ents					
I.	Sample receipt/Technical holding times	AIMI	· · · · · · · · · · · · · · · · · · ·							
11.	GC/MS Instrument performance check	A								
111.	Initial calibration/ICV	MI IN	Y2	1CV ≤ 30	70					
IV.										
V.	Laboratory Blanks	A		/						
V1.	Field blanks	N								
VII.	Surrogate spikes	N		, , , , , , , , , , , , , , , , , , ,						
		AW	· · · · · · · · · · · · · · · · · · ·							
IX.	Laboratory control samples /CEM	Á	LCSD	. CRM						
X .	Field duplicates	N			· · · · · · · · · · · · · · · · · · ·					
XI.	Internal standards	\mathbf{A}	,							
XII.	Compound quantitation RL/LOQ/LODs	A								
XIII		A								
xı∨	. System performance	A								
XV.	Overall assessment of data	Å	<u></u>	- <u>1. 7.2.2.</u>						
Note:	N = Not provided/applicable R = Rin	o compounds sate eld blank	detected	D = Duplicate TB = Trip blank EB = Equipment blanł	SB=Source OTHER:	e blank				
	Client ID			Lab ID	Matrix	Date				
1	SWHB-07			31524	Sediment	04/09/14				
2	SWHB-69/8			34526 31535	Sediment	08 04/09/14				
3	MS			115						
4	MSD			MSD						
5	1 Dup		,	V Dup						
6				(
7										
8										
Notes	<u>5:</u>		<u> </u>							
┝─┼		<i>v</i>								
┝─┼										

LDC #: 36197 A 31

VALIDATION FINDINGS CHECKLIST

Page:___of_ ≥ Reviewer:_____ 2nd Reviewer:_____

Method: Semivolatiles (EPA SW 846 Method 8270D)

Validation Area	Yes	No	NA	Findings/Comments
1. Technical holding times				
Were all technical holding times met?		-		
Was cooler temperature criteria met?				
II. GC/MS Instrument performance check			1912 (S). 	
Were the DFTPP performance results reviewed and found to be within the specified criteria?		-		
Were all samples analyzed within the 12 hour clock criteria?	the later the second	(all sectors)		
1/Ja: Initial calibration		n Star		
Did the laboratory perform a 5 point calibration prior to sample analysis?	/			
Were all percent relative standard deviations (%RSD) < 20% and relative response factors (RRF) within method criteria?			\sim	
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of \geq 0.990?		/	C. St. Washington	
IIIb. Initial Calibration Verification	ka lika Kazilir I			
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?	/			
Were all percent differences (%D) ≤ 30% or percent recoveries (%R) 70-130%?				
IV Continuing calibration		- -		
Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?				
Were all percent differences (%D) \leq 20% and relative response factors (RRF) within method criteria?				and the function of the second state of the second state of the second state of the second state of the second
V. Laboratory Blanks				
Was a laboratory blank associated with every sample in this SDG?				
Was a laboratory blank analyzed at least once every 12 hours for each matrix and concentration?	/			
Was there contamination in the laboratory blanks? If yes, please see the Blanks validation completeness worksheet.				
V). Field blanks			1997) 2011	
Were field blanks were identified in this SDG?				\
Were target compounds detected in the field blanks?			\leq	
VII. Surrogate spikes				
Were all surrogate percent recovery (%R) within QC limits?			/.	
If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis?			/	
If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis performed to confirm %R?				/

LDC #:<u>36197</u>43/

VALIDATION FINDINGS CHECKLIST

Page:	$2_{\text{of}} >$
Reviewer:	4
2nd Reviewer:	NG

Validation Area	Yes	No	NA	Findings/Comments
VIII. Matrix spike/Matrix spike duplicates				
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.	\bigwedge			
Was a MS/MSD analyzed every 20 samples of each matrix?				
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?				
IX Laboratory control samples				
Was an LCS analyzed for this SDG?				
Was an LCS analyzed per analytical batch?				
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?				
X. Field duplicates				
Were field duplicate pairs identified in this SDG?				
Were target compounds detected in the field duplicates?			/	-
XI. Internal standards				
Were internal standard area counts within -50% to +100% of the associated calibration standard?				
Were retention times within ± 30 seconds of the associated calibration standard?	\square			
XII. Compound quantitation				
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?	/			
Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XIII. Target compound identification			1	
Were relative retention times (RRT's) within ± 0.06 RRT units of the standard?			Ð	9
Did compound spectra meet specified EPA "Functional Guidelines" criteria?				
Were chromatogram peaks verified and accounted for?				
XIV. System performance			с. Ф.,	
System performance was found to be acceptable.	\langle			
XV/ Overall assessment of data	1	2.5	17	
Overall assessment of data was found to be acceptable.	1			

LDC #: 3419743/

VALIDATION FINDINGS WORKSHEET <u>Technical Holding Times</u>

Page:_	<u></u>
Reviewer:	<u>4</u>
2nd Reviewer:	NZ

All circled dates have exceeded the technical holding times. $\frac{N}{N}$ Were all cooler temperatures within validation criteria?

METHOD : GC/MS BNA (EPA SW 846 Method 8270D)									
Sample ID	Matrix	Preserved	Sampling Date	Extraction date) 5-/2-/5	Analysis date	Total # of Days	Qualifier		
1	Sed	Y	4-9-14	5-12-15		398	JUNA		
2 3 4 5 (dot3+ND)			4-8-14			399			
3									
4									
5		V							
(lot+ND)									
	»								
· · · · · · · · · · · · · · · · · · ·									
					-				
						-			
							<u> </u>		
······							 		
							<u> </u>		
							<u> </u>		
				 			 		

TECHNICAL HOLDING TIME CRITERIA

Water:Extracted within 7 days, analyzed within 40 days.Soil:Extracted within 14 days, analyzed within 40 days.

LDC #:3619743

N/A

N/A

VALIDATION FINDINGS WORKSHEET

Initial Calibration

Page: o Reviewer 2nd Reviewer: NZ

METHOD: GC/MS BNA (EPA SW 846 Method 8270C)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

YN NA YN WA Did the laboratory conduct an acceptable 5 point calibration prior to sample analysis?

Were percent relative standard deviations (%RSD) and relative response factors (RRF) within method criteria for all CCC's and SPCC's?

Y/N_N/A Was a curve fit used for evaluation? If yes, what was the acceptance criteria used for evaluation?

Did the initial calibration meet the acceptance criteria?

Were all %RSDs and RRFs within the validation criteria of ≤30/15 %RSD and ≥0.05 RRF ?

#	Date	Standard ID	Compound	Finding %RSD (Limit: <u><</u> 30.0/15%)	Finding RRF (Limit: <u>≥</u> 0.05)	Associated Samples	Qualifications
	5/7/15	ICAZ	PCB 169	Y= 0.98733=8	۹	M(ND)	J/W/A (BC)
				·			
				· · · · · · · · · · · · · · · · · · ·			
<u> </u>							I
╟──							
l							
					<u></u>		
				<u> </u>			
				1			<u> </u>
							<u> </u>
┣							

LDC #:<u>361974</u>3/

VALIDATION FINDINGS WORKSHEET Initial Calibration Verification

Page:_	_/of_/
Reviewer:	JVG 9
2nd Reviewer:	NG

METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

<u>YN N/A</u> Was an initial calibration verification standard analyzed after each ICAL for each instrument?

Y N/A Were all %D within the validation criteria of \leq 30 %D?

#		Standard ID	Compound	Finding %D (Limit: <u>≤</u> 30.0%)	Associated Samples	Qualifications
	5/28/15	1eV	See next		M (Lets+ND)	V/UN /ACHV?
	/ /					
					· · · · · · · · · · · · · · · · · · ·	
-				<u> </u>		l
					· · · · · · · · · · · · · · · · · · ·	
-						
						······································
-						
					······································	
	<u> </u>			<u> </u>		
					· · · · · · · · · · · · · · · · · · ·	
					<u> </u>	
 						
	<u> </u>		<u> </u>	l		

1504003-001 Southern California Coastal Water Research Project - San Diego Bay SWHB ICV Summary- PCB Congeners O-7100

	Date Analyzed	Time Analyzed	Result (ng)	True Value (ng)	Percent Drift	
PCB003	5/28/2015	2:46	150.0695	100	-50	1/11/A
PCB008	5/28/2015	2:46	148.7926	100	-49	
PCB018	5/28/2015	2:46	156.7789	100	-57	
PCB031	5/28/2015	2:46	146.0087	100	-46	
PCB028	5/28/2015	2:46	151.2177	100	-51	
PCB033	5/28/2015	2:46	138.8935	100	-39	
PCB052	5/28/2015	2:46	152.6209	100	-53	
PCB049	5/28/2015	2:46	147.9337	100	-48	
PCB044	5/28/2015	2:46	140.3380	100	-40	
PCB037	5/28/2015	2:46	139.1922	100	-39	
PCB074	5/28/2015	2:46	143.0172	100	-43	
PCB070	5/28/2015	2:46	158.2131	100	-58	
PCB066	5/28/2015	2:46	146.2953	100	-46	
PCB095	5/28/2015	2:46	155.2301	100	-55	
PCB056(060)	5/28/2015	2:46	146.8170	100	-47	
PCB101	5/28/2015	2:46	144.9960	100	-45	
PCB099	5/28/2015	2:46	140.9026	100	-41	\checkmark
PC B119	5/28/2015		126.6638	100	27	~
PCB097	5/28/2015	2:46	137.1601	100	-37	A/W/A
PCB087	5/28/2015	2:46	133.2028	100	-33	
PCB081	5/28/2015	2:46	138.4812	100	-38	
PCB110	5/28/2015	2:46	142.8046	100	-43	
PCB077	5/28/2015	2:46	131.4960	100	-31	
PCB151	5/28/2015	2:46	149.6005	100	-50	
PCB123	5/28/2015	2:46	143.8889	100	-44	
PCB149	5/28/2015	2:46	162.1329	100	-62	
PCB118	5/28/2015	2:46	144.3602	100	-44	
PCB114	5/28/2015	2:46	146.0619	100	-46	
PCB153	5/28/2015	2:46	137.9393	100	-38	
PCB168+132	5/28/2015	2:46	290.6100	200	-45	
PCB105	5/28/2015	2:46	134.3373	100	-34	
PCB141	5/28/2015	2:46	137.1614	100	-37	
PCB138	5/28/2015	2:46	138.2780	100	-38	
PCB158	5/28/2015	2:46	149.5370	100	-50	l V
P CB126	5/28/2015	2:46	129.2916	100	-29	-
PCB187	5/28/2015	2:46	141.7368	100	-42	A/M/A
PCB183	5/28/2015	2:46	151.0057	100	-51	/ / ~
PCB128	5/28/2015	2:46	141.3365	100	-41	
PCB167	5/28/2015	2:46	135.7332	100	-36	
PCB174	5/28/2015	2:46	153.5098	100	-54	

PCB177	5/28/2015	2:46	187.4373	100	-87	1/41/A
PCB156	5/28/2015	2:46	161.9775	100	-62] / [/ ~
PCB157	5/28/2015	2:46	151.8754	100	-52]
PCB199(200)	5/28/2015	2:46	152.6292	100	-53]
PCB180	5/28/2015	2:46	148.3838	100	-48] {
PCB169	5/28/2015	2:46	132.5443	100	-33	
PCB170	5/28/2015	2:46	142.6102	100	-43] [
PCB201	5/28/2015	2:46	131.4340	100	-31	
PCB189	5/28/2015	2:46	135.9974	100	-36	
PCB195	5/28/2015	2:46	132.5293	100	-33] 🕴
PCB194	5/28/2015	2:46	130.3517	100		
PCB206	5/28/2015	2:46	139.1991	100	-39	H/11/A
PCB209	5/28/2015	2:46	164.6459	100	-65]′_]′_

LDC #: 2497 7 3/

VALIDATION FINDINGS WORKSHEET

Continuing Calibration

METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?

<u>MNN/A</u> Were percent differences (%D) ≤20 % and relative response factors (RRF) within the method criteria?

#	Date	Standard ID	Compound	Finding %D (Limit: <20.0%)	Finding RRF (Limit)	Qualifications
			1	Finding %D (Limit: $\leq 20.0\%$) $2 \leq 5$ 2 $3 \leq 7$ 4 = 7 4 = 7 4 = 7 $3 \leq 7$ $3 \leq 7$	Finding RRF (Limit)	

VALIDATION FINDINGS WORKSHEET <u>Matrix Spike/Matrix Spike Duplicates</u>

Page:_	<u></u>
Reviewer:	Q
2nd Reviewer:	JVE-

METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.

<u>XN N/A</u> Was a MS/MSD analyzed every 20 samples of each matrix?

N N/A Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

#	Date	MS/MSD ID	Compound	MS %R (Limits)	MSD %R (Limits)		Associated Samples	Qualifications
		5	PCB031	()	()	TZ (575)	2 (dets)	J/UJ/A(HD
			028	()	()	89 ()	· <i>V</i>	
			101	()	()	95 ()	(ND)	
			110	()	()	89 ()	V	
			153	()	()	57 ()	(dets)	
			157	()	()	109 (,)	(NO)	
			158	()	()		(dets)	
				()	()	()		
					<u> </u>	<u> </u>		
				()	()	()		
				()	()	()	,	
		,		()	()	()		
				()	()	()		
				()	()	()	· · · · · · · · · · · · · · · · · · ·	
				()	()	()		
				()	()	()		
				()	()	()		
				()	()			
					<u> </u>			
			<u> </u>	()				
				()	()			
				()	()	()		
			┼────┤	()				
				()		()		
				()				
				()	()			
				()	()			

LDC: 36197A3

Method: PCB congeners (EPA SW 846 Method 8270D)

Calibration Date	Analyte	Standard	(X) Concentration	(Y) Area	(X ²) Conc
5/27/2015	PCB031	1	0.0100	0.0081442	0.00010
		2	0.0250	0.0192735	0.00063
		3	0.0500	0.0422875	0.00250
		4	0.0750	0.0633359	0.00563
		5	0.1000	0.0922189	0.01000
		6	0.2000	0.1926116	0.04000

Linear through the origin

	calculated	Reported
Constant	0.000000	0.0000
X Coefficient(s)	0.937503	0.93750
Correlation Coefficient	0.998870	0.99485
Coefficient of Determination (r^2)	0.997742	

LDC: 36/97A3

Method: PCB congeners (EPA SW 846 Method 8270D)

Calibration Date	Analyte	Standard	(X) Concentration	(Y) Area	(X ²) Conc
5/27/2015	PCB189	1	0.0100	0.0189185	0.00010
		2	0.0250	0.0407605	0.00063
		3	0.0500	0.0848498	0.00250
		4	0.0750	0.1175805	0.00563
		5	0.1000	0.15908	0.01000
		6	0.2000	0.3488099	0.04000

Linear through the origin

	calculated	Reported
Constant	0.000000	0.0000
X Coefficient(s)	1.698202	1.69821
Correlation Coefficient	0.999112	0.99576
Coefficient of Determination (r ²)	0.998225	

LDC #: 3617743

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page:	of
Reviewer:_	9-
2nd Reviewer:	NG

METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF RRF = $(A_x)(C_{is})/(A_{is})(C_x)$ Where: ave. RRF = initial calibration average RRF

RRF = continuing calibration RRF

 A_x = Area of compound, C_x = Concentration of compound, A_{is} = Area of associated internal standard

C_{is} = Concentration of internal standard

					Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Reference Internal Standard)	Average RRF (initial)	RRF (CC)	RRF (CC)	%D	%D
1	æ	5/9/15	Phenol (1st internal standard) PCB03	100	106.1240	106.1239	6	6
		/ /	Naphthalene (2nd internal standard) 189	V	142.3173	142.3166	42	42
			Fluorene (3rd internal standard)					
			Pentachlorophenol (4th internal standard)					
			Bis(2-ethylhexyl)phthalate (5th internal standard)					
			Benzo(a)pyrene (6th internal standard)					
2			Phenol (1st internal standard)					
			Naphthalene (2nd internal standard)					
			Fluorene (3rd internal standard)					
			Pentachlorophenol (4th internal standard)					
			Bis(2-ethylhexyl)phthalate (5th internal standard)					
			Benzo(a)pyrene (6th internal standard)					
3			Phenol (1st internal standard)					
			Naphthalene (2nd internal standard)					
			Fluorene (3rd internal standard)					
			Pentachlorophenol (4th internal standard)					
			Bis(2-ethylhexyl)phthalate (5th internal standard)					
			Benzo(a)pyrene (6th internal standard)		l			

Comments: <u>Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.</u>

LDC #:3619743/

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates Results Verification

Page:_	_/of
Reviewer:	<u>a</u>
2nd Reviewer:	NG

METHOD: GC/MS PAH (EPA SW 846 Method 8270D)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SSC - SC)/SA

Where: SSC = Spiked sample concentration SA = Spike added

SC = Sample concentation

RPD = I MSC - MSC | * 2/(MSC + MSDC)

MSC = Matrix spike concentration

MSDC = Matrix spike duplicate concentration

MS/MSD samples: ____

Compound	Spike Added (<i>VHE/9</i>)		Sample Concentration (<i>NS(G</i>)	Spiked Sample Concentration (ハラタ)		Matrix Spike Percent Recovery		Matrix Spike Duplicate Percent Recovery		MS/MSD RPD	
	MS	MSD	/	MS	MSD	Reported	Recalc	Reported	Recalc	Beported	Recalculated
FCB031	16.55	17.49	0.34	16.65	17.2	99	100	97	97	Z	2
V 189	V	1	NO	22.58	24.14	136	136	138	138	/	
											· · ·

Comments: <u>Refer to Matrix Spike/Matrix Spike Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.</u>

VALIDATION FINDINGS WORKSHEET Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification

Page: / of / Reviewer: 0/ 2nd Reviewer: ______NG

METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270D)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SC/SA)

Where: SSC = Spike concentration SA = Spike added

RPD = I LCSC - LCSDC I * 2/(LCSC + LCSDC)

LCSC = Laboratory control sample concentration LCSDC = Laboratory control sample duplicate concentration

LCS/LCSD samples: 31515-BSI /-BS-

	Spike Added		Spike Concentration				ic	SD	LCS/I CSD	
Compound	(h-	5/9)	(N-	5/9	Percent I	Recovery	Percent Recovery		RPD	
		LCSD		LCSD	Reported	Recalc	Reported	Recalc	Reported	Recalculated
7CB031	100	100	114.16	98.87 125.25	114	114	99	99	M	14
1 189		V	121.74	175.25	122	122	125	175	N	2

Comments: <u>Refer to Laboratory Control Sample/Laboratory Control Sample Duplicates findings worksheet for list of qualifications and associated samples when reported</u> results do not agree within 10.0% of the recalculated results.

LDC #: 36197A3/

VALIDATION FINDINGS WORKSHEET **Sample Calculation Verification**

Page:_	of
Reviewer:	q
2nd reviewer:	JN6

METHOD: GC/MS SVOA (EPA SW 846 Method 8270D)

N N/A N N/A Were all reported results recalculated and verified for all level IV samples? Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

Concentration =	(A,)(I,)(V,)(DF)(2.0)
(A	,;,)(RRF)(V₀)(V;)(%S)

- Area of the characteristic ion (EICP) for the A, = compound to be measured
- Area of the characteristic ion (EICP) for the specific = A_{is} internal standard
- Amount of internal standard added in nanograms (ng) l, =
- = Volume or weight of sample extract in milliliters (ml) or V, grams (g).
- Volume of extract injected in microliters (ul) V, =
- Volume of the concentrated extract in microliters (ul) V, =
- Df = Dilution Factor.
- Percent solids, applicable to soil and solid matrices %S = only.
- Factor of 2 to account for GPC cleanup 2.0 =

Example:

Conc. = (1873)(1000)(0.2/03)(1)(1)(1) (1234165)(0.9775)(1)(1)(1)(1)= 0.33 no/q

Reported Calculated Concentration Concentration (Mrs Compound # Sample ID Qualification

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	City of San Diego SWBH Study
LDC Report Date:	May 9, 2016
Parameters:	Polynuclear Aromatic Hydrocarbons
Validation Level:	Level IV
Laboratory:	Physis Environmental Laboratories, Inc.

Sample Delivery Group (SDG): 1504003-002

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
SWHB-26-M	31963	Tissue	04/22/14
SWHB-27-SBB	31966	Tissue	04/23/14
SWHB-27-P	31969	Tissue	04/23/14
SWHB-30-CH	31973	Tissue	04/23/14
SWHB-06-CH-Small	31989	Tissue	04/22/14
SWHB-06-M	31992	Tissue	04/22/14
SWHB-22-SP	32017	Tissue	04/21/14
SWHB-27-SBBMS	31966MS	Tissue	04/23/14
SWHB-27-SBBMSD	31966MSD	Tissue	04/23/14
SWHB-27-SBBDUP	31966DUP	Tissue	04/23/14

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with Final Quality Assurance Project Plan, Regional Harbor Monitoring Program, San Diego, California (August 2013) and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines (CLPNFG) for Superfund Organic Methods Data Review (June 2008). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polynuclear Aromatic Hydrocarbons (PAHs) by Environmental Protection Agency (EPA) SW 846 Method 8270D

All sample results were subjected to Level IV evaluation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- BC The initial calibration (ICAL) curve did not meet method-specified criteria.
- CH High continuing calibration verification (CCV) recovery. Analytical results may be biased high.
- DL The analyte concentration was between the method detection limit (MDL) and the reporting limit (RL).
- FB The analyte was detected in the sample and its associated field blank and the concentration detected in the sample is less than five times the concentration detected in the blanks.
- H Holding time.
- HD Potential analytical imprecision.
- HL High LCS recovery. Analytical results may be biased high.
- HM High MS recovery. Analytical results may be biased high.
- HP High certified reference material (CRM) recovery. Analytical results may be biased high.
- HV High initial calibration verification (ICV) recovery. Analytical results may be biased high.
- LC Low CCV recovery. Analytical result may be biased low.
- LL Low LCS recovery. Analytical result may be biased low.
- LM Low MS recovery. Analytical result may be biased low.
- LP Low CRM recovery. Analytical result may be biased low.
- LS Low Surrogate recovery. Analytical results may be biased low.
- LV Low ICV recovery. Analytical result may be biased low.
- NC Calibration verification standard concentrations were outside the calibration range.
- NQ There is lack of QC for this analyte.
- RB The analyte was detected in the sample and its associated equipment blank and the concentration detected in the sample is less than five times the concentration detected in the blank.
- TD The dissolved metals concentration is significantly higher than the total metal concentration.
- *# Unusual problems found with the data. The number following the asterisk
 (*) will indicate the section in the validation report where a description of
 the problem can be found.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

Sample	Compound	Total Days From Sample Collection Until Extraction	Required Holding Time (in Days) From Sample Collection Until Extraction	Flag	A or P
SWHB-26-M SWHB-06-CH-Small SWHB-06-M	All TCL compounds	402	365	J (all detects) UJ (all non-detects)	Ρ
SWHB-27-SBB SWHB-27-P SWHB-30-CH	All TCL compounds	401	365	J (all detects) UJ (all non-detects)	Ρ
SWHB-22-SP	All TCL compounds	403	365	J (all detects) UJ (all non-detects)	Р

All technical holding time requirements were met with the following exception:

II. GC/MS Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For compounds where average relative response factors (RRFs) were utilized, percent relative standard deviations (%RSD) were less than or equal to 20.0%.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r^2) were greater than or equal to 0.990.

Average relative response factors (RRF) for all compounds were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all compounds with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
06/24/15	Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(e)pyrene Benzo(a)pyrene	45.6 42.5 45.2 55.8	SWHB-27-P	J (all detects) J (all detects) J (all detects) J (all detects) J (all detects)	A

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all compounds with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
06/13/15	Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(e)pyrene Benzo(a)pyrene Perylene	34 34 54 53 59 56 58	SWHB-30-CH SWHB-06-CH-Small SWHB-06-M SWHB-22-SP	J (all detects) UJ (all non-detects)	A
06/25/15	Benzo(a)pyrene Benzo(b)fluoranthene Benzo(e)pyrene	21.4 20.9 21.5	SWHB-27-P	J (all detects) J (all detects) J (all detects)	А

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogate Spikes

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates/Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable. Results were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Compound	RPD (Limits)	Flag	A or P
SWHB-27-SBBDUP	1-Methylnaphthalene	80 (≤25)	J (all detects)	A
(SWHB-27-SBB)	2,6-Dimethylnaphthalene	34 (≤25)	J (all detects)	

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits with the following exceptions:

LCS ID (Associated Samples)	Compound	LCS %R (Limits)	LCSD %R (Limits)	Flag	A or P
31945-BS1/BS2 (All samples in SDG 1504003-002)	1-Methylnaphthalene 2,3,5-Trimethylnaphthalene 2,6-Dimethylnaphthalene 2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Biphenyl Dibenzothiophene Fluorene Naphthalene Phenanthrene	53 (70-130) - - - - - - - - - - - - - - - - -	51 (70-130) 59 (70-130) 55 (70-130) 52 (70-130) 56 (70-130) 56 (70-130) 66 (70-130) 61 (70-130) 59 (70-130) 59 (70-130) 50 (70-130) 66 (70-130)	J (all detects) UJ (all non-detects)	Ρ

Relative percent differences (RPD) were within QC limits with the following exceptions:

LCS ID (Associated Samples)	Compound	RPD (Limits)	Flag	A or P
31945-BS1/BS2 (All samples in SDG 1504003-002)	1-Methylphenantherene 2,3,5-Trimethylnaphthalene 2,6-Dimethylnaphthalene 2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Biphenyl Dibenzothiophene Fluoranthene Fluorene Naphthalene Phenanthrene Pyrene	$\begin{array}{c} 33 (\leq\!\!25) \\ 45 (\leq\!\!25) \\ 49 (\leq\!\!25) \\ 51 (\leq\!\!25) \\ 51 (\leq\!\!25) \\ 48 (\leq\!\!25) \\ 38 (\leq\!\!25) \\ 49 (\leq\!\!25) \\ 46 (\leq\!\!25) \\ 30 (\leq\!\!25) \\ 47 (\leq\!\!25) \\ 56 (\leq\!\!25) \\ 39 (\leq\!\!25) \\ 29 (\leq\!\!25) \end{array}$	J (all detects) UJ (all non-detects)	Ρ

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Compound Quantitation

All compound quantitations were within validation.

All compounds reported below the reporting limit (RL) and above the minimum detection limit (MDL) were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG 1504003-002	Compound reported below the RL and above the MDL	J (all detects)	A

XIII. Target Compound Identifications

All target compound identifications were within validation criteria.

XIV. System Performance

The system performance was acceptable.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to holding time exceedance, ICV and continuing calibration %D, DUP RPD, LCS/LCSD %R and RPD, and results reported below the RL and above the MDL, data were qualified as estimated in seven samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Sample results that were found to be estimated (J) are usable for limited purposes only. Based upon the data validation all other results are considered valid and usable for all purposes.

City of San Diego SWBH Study Polynuclear Aromatic Hydrocarbons - Data Qualification Summary - SDG 1504003-002

			<u></u>	
Sample	Compound	Flag	A or P	Reason (Code)
SWHB-26-M SWHB-06-CH-Small SWHB-06-M SWHB-27-SBB SWHB-27-P SWHB-30-CH SWHB-22-SP	All TCL compounds	J (all detects) UJ (all non-detects)	P	Technical holding time (H)
SWHB-27-P	Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(e)pyrene Benzo(a)pyrene	J (all detects) J (all detects) J (all detects) J (all detects) J (all detects)	A	Initial calibration verification (%D) (HV)
SWHB-30-CH SWHB-06-CH-Small SWHB-06-M SWHB-22-SP	Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(e)pyrene Benzo(a)pyrene Perylene	J (all detects) UJ (all non-detects)	A	Continuing calibration (%D) (LC)
SWHB-27-P	Benzo(a)pyrene Benzo(b)fluoranthene Benzo(e)pyrene	J (all detects) J (all detects) J (all detects)	A	Continuing calibration (%D) (LC)
SWHB-27-SBB	1-Methylnaphthalene 2,6-Dimethylnaphthalene	J (all detects) J (all detects)	A	Duplicate sample analysis (RPD) (HD)
SWHB-26-M SWHB-27-SBB SWHB-27-P SWHB-30-CH SWHB-06-CH-Small SWHB-06-M SWHB-22-SP	1-Methylnaphthalene 2,3,5-Trimethylnaphthalene 2,6-Dimethylnaphthalene 2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Biphenyl Dibenzothiophene Fluorene Naphthalene Phenanthrene	J (all detects) UJ (all non-detects)	Ρ	Laboratory control samples (%R) (LL)
SWHB-26-M SWHB-27-SBB SWHB-27-P SWHB-30-CH SWHB-06-CH-Small SWHB-06-M SWHB-22-SP	1-Methylphenantherene 2,3,5-Trimethylnaphthalene 2,6-Dimethylnaphthalene 2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Biphenyl Dibenzothiophene Fluoranthene Fluorene Naphthalene Phenanthrene Pyrene	J (all detects) UJ (all non-detects)	Ρ	Laboratory control samples (RPD) (HD)

Sample	Compound	Flag	A or P	Reason (Code)
SWHB-26-M SWHB-27-SBB SWHB-27-P SWHB-30-CH SWHB-06-CH-Small SWHB-06-M SWHB-22-SP	Compound reported below the RL and above the MDL	J (all detects)	A	Compound quantitation (DL)

City of San Diego SWBH Study Polynuclear Aromatic Hydrocarbons - Laboratory Blank Data Qualification Summary - SDG 1504003-002

No Sample Data Qualified in this SDG

City of San Diego SWBH Study Polynuclear Aromatic Hydrocarbons - Field Blank Data Qualification Summary -SDG 1504003-002

No Sample Data Qualified in this SDG

LDC #: <u>36197B2b</u> SDG #: <u>1504003-002</u>

VALIDATION COMPLETENESS WORKSHEET

Level IV

Date: <u>54/1</u> Page: <u>of</u> Reviewer: <u>2</u> 2nd Reviewer: <u>DZ</u>

Laboratory: Physis Environmental Laboratories, Inc.

METHOD: GC/MS Polynuclear Aromatic Hydrocarbons (EPA SW 846 Method 8270D)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area	I		Commer		
<u> </u>	Sample receipt/Technical holding times	A IW				
11.	GC/MS Instrument performance check	A				
	Initial calibration/ICV	A A	RSDS.	20/0. 12	101=30	20
IV.	Continuing calibration	m	ec/=	= 2070		,
V.	Laboratory Blanks	A		·		
VI.	Field blanks	\mathcal{N}				
VII.	Surrogate spikes	A				
VIII.	Matrix spike/Matrix spike duplicates /Dup	*/w				
IX.	Laboratory control samples	Tw	10.9 3			
<u>X.</u>	Field duplicates	\wedge	۰ ۱			
XI.	Internal standards	A				
XII.	Compound quantitation RL/LOQ/LODs	A				
XIII.	Target compound identification	A				
XIV.	System performance	A				
XV.	Overall assessment of data	A				
Note:	N = Not provided/applicable R = Rin	lo compounds isate ield blank	3 detected	D = Duplicate TB = Trip blank EB = Equipment blank	SB=Source bl OTHER:	lank
	Client ID			Lab ID	Matrix	Date
1	SWHB-26-M			31963	Tissue	04/22/14
2	SWHB-27-SBB			31966	Tissue	04/23/14

2	SWHB-27-SBB	31966	Tissue	04/23/14
3	SWHB-27-P	31969		04/23/14
4	SWHB-30-CH 1	31973	Tissue	04/23/14
5	SWHB-06-CH-Small	31989	Tissue	04/22/14
6	SWHB-06-M	31992	Tissue	04/22/14
7	SWHB-22-SP	32017	Tissue	04/21/14
8	SWHB-27-SBBMS	31966MS	Tissue	04/23/14
9	SWHB-27-SBBMSD	31966MSD	Tissue	04/23/14
10	V Dup	V DUP		d
11				
12				
13				

LDC #: 361911306

VALIDATION FINDINGS CHECKLIST

Page:_/of___ Reviewer:_____ 2nd Reviewer:_____

Method: Semivolatiles (EPA SW 846 Method 8270D)

Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
Were all technical holding times met?		/		р.
Was cooler temperature criteria met?			Energy	
JI. GC/MS Instrument performance check				
Were the DFTPP performance results reviewed and found to be within the specified criteria?				
Were all samples analyzed within the 12 hour clock criteria?		The second second second		
IIIa. Initial calibration				
Did the laboratory perform a 5 point calibration prior to sample analysis?	\leq			
Were all percent relative standard deviations (%RSD) \leq 20% and relative response factors (RRF) within method criteria?	\square			
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of \geq 0.990?		NUT PLAN STATE		
IIIb Initial Calibration Verification				
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?				
Were all percent differences (%D) ≤ 30% or percent recoveries (%R) 70-130%?		126-77	estat d	
IV. Continuing calibration		te in sta	t de la	n see haar oo haar oo haar ah
Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?	\square			
Were all percent differences (%D) \leq 20% and relative response factors (RRF) within method criteria?				
V. Laboratory Blanks				
Was a laboratory blank associated with every sample in this SDG?	/			
Was a laboratory blank analyzed at least once every 12 hours for each matrix and concentration?	/			
Was there contamination in the laboratory blanks? If yes, please see the Blanks validation completeness worksheet.	na o subconorski ta		TOLINE MANYA ANG	a manimum land 1942 Da pol ina en en su super estado a bito constructivo de constructivo de su
MJ. Field blanks				
Were field blanks were identified in this SDG?		/		
Were target compounds detected in the field blanks?		antoine an tract		an waar da rig da waaraa maa maa maa ka k
VIII: Surrogate spikes				
Were all surrogate percent recovery (%R) within QC limits?		·		
If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis?			- /	·
If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis performed to confirm %R?			/	

LDC #: 3619718-26

VALIDATION FINDINGS CHECKLIST

Page: 2 of 2Reviewer: 2 Ind Reviewer: 3 Ind 2 NL

Validation Area	Yes	No	NA	Findings/Comments
VIII. Matrix spike/Matrix spike duplicates				
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.				DuP
Was a MS/MSD analyzed every 20 samples of each matrix?				<u> </u>
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?	/			
IX Laboratory control samples				
Was an LCS analyzed for this SDG?	/			· · · · · · · · · · · · · · · · · · ·
Was an LCS analyzed per analytical batch?	/			
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?				
X Field duplicates				
Were field duplicate pairs identified in this SDG?				
Were target compounds detected in the field duplicates?				
XI: Internal standards				
Were internal standard area counts within -50% to +100% of the associated calibration standard?	[
Were retention times within ± 30 seconds of the associated calibration standard?	/			
XII. Compound quantitation				
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?	1			
Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?	/			
XIII. Target compound identification				
Were relative retention times (RRT's) within \pm 0.06 RRT units of the standard?	5			
Did compound spectra meet specified EPA "Functional Guidelines" criteria?				
Were chromatogram peaks verified and accounted for?				
XIV. System performance				
System performance was found to be acceptable.	1			
XV- Overall assessment of data	1			
Overall assessment of data was found to be acceptable.		20 AMERSON (1993)		ann an fhair ann ann ann ann ann ann ann an thairte ann ann ann ann ann ann ann ann ann an

VALIDATION FINDINGS WORKSHEET

METHOD: GC/MS SVOA

A. Phenol	T. 4-Chloroaniline	MM. 4-Chlorophenyl-phenyl ether	FFF. Di-n-octylphthalate	YYY. 2,3,5-Trimethylnaphthalene
B. Bis (2-chloroethyl) ether	U. Hexachlorobutadiene	NN. Fluorene	GGG. Benzo(b)fluoranthene	ZZZ. Perylene
C. 2-Chlorophenol	V. 4-Chloro-3-methylphenol	OO. 4-Nitroaniline	HHH. Benzo(k)fluoranthene	AAAA. Dibenzothiophene
D. 1,3-Dichlorobenzene	W. 2-Methylnaphthalene	PP. 4,6-Dinitro-2-methylphenol	III. Benzo(a)pyrene	BBBB. Benzo(a)fluoranthene
E. 1,4-Dichlorobenzene	X. Hexachlorocyclopentadiene	QQ. N-Nitrosodiphenylamine	JJJ. Indeno(1,2,3-cd)pyrene	CCCC. Benzo(b)fluorene
F. 1,2-Dichlorobenzene	Y. 2,4,6-Trichlorophenol	RR. 4-Bromophenyl-phenylether	KKK. Dibenz(a,h)anthracene	DDDD. cis/trans-Decalin
G. 2-Methylphenol	Z. 2,4,5-Trichlorophenol	SS. Hexachlorobenzene	LLL. Benzo(g,h,i)perylene	EEEE. Biphenyl
H. 2,2 ⁱ -Oxybis(1-chloropropane)	AA. 2-Chloronaphthalene	TT. Pentachlorophenol	MMM. Bis(2-Chloroisopropyl)ether	FFFF. Retene
I. 4-Methylphenol	BB. 2-Nitroaniline	UU. Phenanthrene	NNN. Aniline	GGGG. C30-Hopane
J. N-Nitroso-di-n-propylamine	CC. Dimethylphthalate	VV. Anthracene	OOO. N-Nitrosodimethylamine	HHHH. 1-Methylphenanthrene
K. Hexachloroethane	DD. Acenaphthylene	WW. Carbazole	PPP. Benzoic Acid	IIII. 1,4-Dioxane
L. Nitrobenzene	EE. 2,6-Dinitrotoluene	XX. Di-n-butylphthalate	QQQ. Benzyl alcohol	JJJJ. Acetophenone
M. Isophorone	FF. 3-Nitroaniline	YY. Fluoranthene	RRR. Pyridine	KKKK. Atrazine
N. 2-Nitrophenol	GG. Acenaphthene	ZZ. Pyrene	SSS. Benzidine	LLLL. Benzaldehyde
O. 2,4-Dimethylphenol	HH. 2,4-Dinitrophenol	AAA. Butylbenzylphthalate	TTT. 1-Methylnaphthalene	MMMM. Caprolactam
P. Bis(2-chloroethoxy)methane	II. 4-Nitrophenol	BBB. 3,3'-Dichlorobenzidine	UUU.Benzo(b)thiophene	NNNN.
Q. 2,4-Dichlorophenol	JJ. Dibenzofuran	CCC. Benzo(a)anthracene	VVV.Benzonaphthothiophene	0000.
R. 1,2,4-Trichlorobenzene	KK. 2,4-Dinitrotoluene	DDD. Chrysene	WWW.Benzo(e)pyrene	PPPP.
S. Naphthalene	LL. Diethylphthalate	EEE. Bis(2-ethylhexyl)phthalate	XXX. 2,6-Dimethylnaphthalene	QQQQ.

LDC #: 36197826

VALIDATION FINDINGS WORKSHEET <u>Technical Holding Times</u>

Page:_	_/of_/
Reviewer:	4
2nd Reviewer:	NC

All circled dates have exceeded the technical holding times.

METHOD : GC/N	IS BNA (EPA SV	V 846 Method	8270D)				
Sample ID	Matrix	Preserved	Sampling Date	Extraction date	Analysis date	Total # of Days	Qualifier
1	Tissues	\checkmark	4-22-12	5-29-15		402	
ス			4-23-12			401	
3 4 5 6			/				
5			4-22-12			402	
			4-22-12 V 4-21-14 4-23-14	· · · · · · · · · · · · · · · · · · ·		1	
			4-21-14	V		403	
8			4-23-14			40)	
9							
(0	V		V				
(detstale)	*						
			-				
- <u></u>							
							
			· <u>····································</u>				~
							+
		l		l			

TECHNICAL HOLDING TIME CRITERIA

Water:Extracted within 7 days, analyzed within 40 days.Soil:Extracted within 14 days, analyzed within 40 days.

LDC #: 361978-b

VALIDATION FINDINGS WORKSHEET Initial Calibration Verification

Page: /_of_ Reviewer: 2nd Reviewer:

METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was an initial calibration verification standard analyzed after each ICAL for each instrument?

 \sqrt{N} Were all %D within the validation criteria of \leq 30 %D?

#	Date	Standard ID	Compound	Finding %D (Limit: <u><</u> 30.0%)	Associated Samples	Qualifications
	6/54/15		বৰব	45.6 42.5 45.2	3 (dots)	VUNA(HV)
	7 7		<u> </u>	42.5		
			WWW			
			11	55.8		
∥						
				l		l
┣						
┣—-						
┣						
					·····	
 						
			-			

LDC #: 36978=6

VALIDATION FINDINGS WORKSHEET

Continuing Calibration

Page: _____ of ____ Reviewer: ______ 2nd Reviewer: ______

METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?

Y(N)/A Were percent differences (%D) ≤ 20 % and relative response factors (RRF) within the method criteria?

#	Date	Standard ID	Compound	Finding %D (Limit: <u><</u> 20.0%)	Finding RRF (Limit)	Associated Samples	Qualifications
	6/13/15	CCV.	CCC 7DDD GGGG HHH WWW	34 34 54 53		4-7 (dets+ND)	-1/4 (4C)
			222	59 56 58			
	6/5/15	ec V	NWW	2.4 20.9 21.5		3 (dets)	- MA/ # (LC)

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

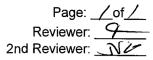
Page:_	of
Reviewer:	9
2nd Reviewer:	NZ

METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.

(<u>)</u> N/A


Was a MS/MSD analyzed every 20 samples of each matrix?

N/A Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

#	Date	MS/MSD ID	Compound	MS %R (Limits)	MSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
		10	TTT	()	()	80 (575)	2 (diates)	dets/A(HD)
			XXX	()	()	34 (1)		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	· ()		
				()	()	()		
				()	()	()		
				()				
			-	()	()	()		
				()		()		
				()		()		
						()		
						()		
		· · · · · · · · · · · · · · · · · · ·		()		()	· · · · · · · · · · · · · · · · · · ·	
				()		()		
				()	()	()		
				()	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	······································	
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
		· · · · · · · · · · · · · · · · · · ·		()	()	()		
				()	()	()		
				()	()	()		

LDC #: 36/97B-2

VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS)

METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was a LCS required?

Were the LCS/LCSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

#	Date	LCS/LCSD ID	Compound	LCS %R (Limits)		LCSD R (Limits)	RPD (Limit	is)	Associated Samples	Qua	lifications
		31945-851	TTT	53 (70-130)	51	(70-	-130	()	ul dets/ND)	JU	
		FBS2	$\gamma\gamma\gamma$	()	59	()	()			
			XXX	()	55	()	()			
			Ŵ	()	52	()	()			
			44	()	56	()	()			
			DD	()	56	()	()			
			VV	()	66	()	()			
			EEE	()	55	()	()			
			AAAA	()	61	()	()			
			NN	()	59	()	()			
			5	()	50	()	()			
			ИИ	()	66	(V)	()			
			HHHH	()		()		25)			(井力)
			$\gamma\gamma\gamma$	()		()	45 ()			/
			XXX	()		()	49 (
			W	()		()	5/ ()			
			44	()		()	5/ ()			
			DD	<u> () </u>		()	48 (
			VV	()		()	38 ()			
			EEE	()		()	49 ()			
ļ			AAAA	()		()	4646)			
			$\chi\chi$			()	30 ()			
		····	NN			()	47 ()		├────┤	
			5 ИИ			()	56 (39 (-	
			22	L	I)				<u> </u>	/
			he					29	٧		V	

LDC:3619782

Method: PAHs (EPA SW 846 Method 8270D)

Calibration Date	Analyte	Standard	(X) Concentration	(Y) Area	(X ²) Conc
6/11/2015	Naphthalene	1	0.0125	0.0133099	0.0001562
		2	0.0250	0.0259891	0.0006250
		3	0.0500	0.052762	0.0025000
		4	0.1250	0.1246596	0.0156250
		5	0.2500	0.2651601	0.0625000
		6	0.5000	0.5106450	0.2500000

	calculated	Reported
Constant	0.000000	0.0000
X Coefficient(s)	1.027890	1.02255
Correlation Coefficient	0.999865	0.99930
Coefficient of Determination (r^2)	0.999730	

LDC: 26197826

Method: PAHs (EPA SW 846 Method 8270D)

Calibration Date	Analyte	Standard	(X) Concentration	(Y) Area	(X ²) Conc
6/11/2015	Benzo(g,h,i)perylene	1	0.0125	0.0207516	0.0001562
		2	0.0250	0.0357094	0.0006250
		3	0.0500	0.0685033	0.0025000
		4	0.1250	0.167498	0.0156250
		5	0.2500	0.3311191	0.0625000
		6	0.5000	0.6637250	0.2500000

	calculated	Reported
Constant	0.000000	0.0000
X Coefficient(s)	1.328149	1.32858
Correlation Coefficient	0.999973	0.99987
Coefficient of Determination (r^2)	0.999947	

LDC 38/9782

Method: PAHs (EPA SW 846 Method 8270D)

Calibration Date	Analyte	Standard	(X) Concentration	(Y) Area	(X ²) Conc
6/24/2015	Benzo(a)pyrene	1	0.0125	0.00669168	0.0001562
	Γ	2	0.0250	0.0135001	0.0006250
		3	0.0500	0.028699463	0.0025000
		4	0.1250	0.07367835	0.0156250
	Γ	5	0.2500	0.162364147	0.0625000
		6	0.5000	0.3055086	0.2500000

· · · · · · · · · · · · · · · · · · ·	calculated	Reported
Constant	0.000000	0.0000
X Coefficient(s)	0.616800	0.61680
Correlation Coefficient	0.999619	0.99859
Coefficient of Determination (r^2)	0.999239	· · · · · · · · · · · · · · · · · · ·

LDC #:3619

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page:___of___ Reviewer:______ 2nd Reviewer:___<u>__N/6</u>___

METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

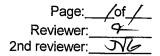
The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF RRF = $(A_x)(C_{is})/(A_{is})(C_x)$

Where: ave. RRF = initial calibration average RRF

RRF = continuing calibration RRF

 A_x = Area of compound, C_y = Concentration of compound, A_{is} = Area of associated internal standard


C_{is} = Concentration of internal standard

					Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Reference Internal Standard)	Average RRF (initial)	RRF (CC)	RRF (CC)	%D	%D
1	21-	6/13/15	Phenol (1st internal standard)	1000	1097.4245			
		7.4	Naphthalene (2nd internal standard)	500	5033481			
			Fluorene (3rd internal standard)				·····	
			Pentachlorophenol (4th internal standard)					
			Bis(2-ethylhexyl)phthalate (5th internal standard)					
			Benzo(a)pyrene (6th internal standard)					
2	CV	6/13/15	Phenol (1st internal standard)	500	546.0908	A6.0878	9	9
			Naphthalene (2nd internal standard)	V	503.348/	503.347	1	1
			Fluorene (3rd internal standard)					
			Pentachlorophenol (4th internal standard)					
			Bis(2-ethylhexyl)phthalate (5th internal standard)					
			Benzo(a)pyrene (6th internal standard)					
3	acv	6/85/15	Phenol (1st internal standard)	500	393.15	393.15	2.4	21.4
			Naphthalene (2nd internal standard)					
			Fluorene (3rd internal standard)					
			Pentachlorophenol (4th internal standard)					
			Bis(2-ethylhexyl)phthalate (5th internal standard)					
			Benzo(a)pyrene (6th internal standard)					

Comments: <u>Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.</u>

LDC #: 361978-6

VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270D)

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS * 100

Where: SF = Surrogate Found SS = Surrogate Spiked

Sample ID: /					
	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-05 /10-44	1000	985.24	99	99	0
2-Fluorobiphenyl d10-UU	· / · · ·	978.11	98	98	/
Terphenyl-114 dla - 300		740.67	74	74	
Phenol-db d8-S	V	847.33	85	35	
2-Fluorophenol					
2,4,6-Tribromophenol					
2-¢hlorophenol-d4					
4,2-Dichlorobenzene-d4	<u> </u>				

Sample ID:_____

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5					
2-Fluorobiphenyl					
Terphenyl-d14					
Phenol-d5					
2-Fluorophenol					
2,4,6-Tribromophenol					
2-Chiorophenol-d4					
1,2-Dichlorobenzene-d4					

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5					
2-Fluorobiphenyl					
Terphenyl-d14					
Phenol-d5					
2-Fluorophenol					
2,4,6-Tribromophenol					
2-Chlorophenol-d4					
1,2-Dichlorobenzene-d4					

LDC #: 361978-b

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates Results Verification

METHOD: GC/MS PAH (EPA SW 846 Method 8270D)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SSC - SC)/SA

Where: SSC = Spiked sample concentration SA = Spike added

SC = Sample concentation

RPD = I MSC - MSC I * 2/(MSC + MSDC)

MSC = Matrix spike concentration

MSDC = Matrix spike duplicate concentration

MS/MSD samples: _

Compound	Ad	ike degi 5/04)	Sample Concentration (115/9)	Spiked Concer (アラ	ntration	Matrix Percent F		Matrix Spik		MS/M	
	MS	MSD	7		MSD	Reported	Recalc	Reported	Recalc	Reported	Recalculated
ull	200.2	204!	ND	192.4	202.6	96	96	99	99	M	3
S	V	1	10.8	180	175.9	85	35	81	8/	5	5
]							
										·	

Comments: Refer to Matrix Spike/Matrix Spike Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC #:361978-6

VALIDATION FINDINGS WORKSHEET Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification

Page:___of___ Reviewer:______ 2nd Reviewer:______

METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270D)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SC/SA)

Where: SSC = Spike concentration SA = Spike added

RPD = I LCSC - LCSDC I * 2/(LCSC + LCSDC)

LCSC = Laboratory control sample concentration LCSDC = Laboratory control sample duplicate concentration

LCS/LCSD samples: <u>31945-851/-852</u>

Compound	Ad	bike Ided 3/9)	Conce	bike ntration 5/4)	Percent F		Percent I	SD		
	LCS	LCSD	LCS	LCSD	Reported	Recalc	Reported	Recalc	Reported	Recalculated
5	500	500	445.8	248.9	89	89	50	50	56	56
44	V	V	193.3	485	99	99	97	97	R	R
					. /					
·										
· · ·										

Comments: <u>Refer to Laboratory Control Sample/Laboratory Control Sample Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.</u>

LDC #: 361978-6

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:_	
Reviewer:	9
2nd reviewer:	JNG

METHOD: GC/MS SVOA (EPA SW 846 Method 8270D)

NN N/A Y/N N/A

Were all reported results recalculated and verified for all level IV samples? Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

Concentration =	(A,)(I,)(V,)(DF)(2.0)
A)	_{is})(RRF)(V _e)(Vi)(%S)

- Example:
- A_x = Area of the characteristic ion (EICP) for the compound to be measured
 A_{is} = Area of the characteristic ion (EICP) for the specific internal standard
- I = Amount of internal standard added in nanograms (ng)
- V_e = Volume or weight of sample extract in milliliters (ml) or grams (g).
- V₁ = Volume of extract injected in microliters (ul)
- V_t = Volume of the concentrated extract in microliters (ul)
- Df = Dilution Factor.
- %S = Percent solids, applicable to soil and solid matrices only.
- 2.0 = Factor of 2 to account for GPC cleanup

Sample I.D. _____ 75931 2000 1.60331 30631 1.02350 1. Conc. = (/)(______) _) Х = 19.49 18/9

2.0		nt for GPC cleanup			
#	Sample ID	Compound	Reported Concentrat (<i>い</i> ラ/タ	d Calculated ion Concentration) ()	Qualification
		5	19.3		
	·····				
	·····				
		······································			
		······································			
			<u>1</u>		<u> </u>

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	City of San Diego SWBH Study
LDC Report Date:	May 9, 2016
Parameters:	Polybrominated Diphenyl Ethers
Validation Level:	Level IV
Laboratory:	Physis Environmental Laboratories, Inc.

Sample Delivery Group (SDG): 1504003-002

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
SWHB-26-M	31963	Tissue	04/22/14
SWHB-27-SBB	31966	Tissue	04/23/14
SWHB-27-P	31969	Tissue	04/23/14
SWHB-30-CH	31973	Tissue	04/23/14
SWHB-06-CH-Small	31989	Tissue	04/22/14
SWHB-06-M	31992	Tissue	04/22/14
SWHB-22-SP	32017	Tissue	04/21/14
SWHB-27-SBBMS	31966MS	Tissue	04/23/14
SWHB-27-SBBMSD	31966MSD	Tissue	04/23/14
SWHB-27-SBBDUP	31966DUP	Tissue	04/23/14

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with Final Quality Assurance Project Plan, Regional Harbor Monitoring Program, San Diego, California (August 2013) and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines (CLPNFG) for Superfund Organic Methods Data Review (June 2008). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polybrominated Diphenyl Ethers (PBDE) by Environmental Protection Agency (EPA) SW 846 Method 8270D using Negative Chemical Ionization (NCI)

All sample results were subjected to Level IV data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- BC The initial calibration (ICAL) curve did not meet method-specified criteria.
- CH High continuing calibration verification (CCV) recovery. Analytical results may be biased high.
- DL The analyte concentration was between the method detection limit (MDL) and the reporting limit (RL).
- FB The analyte was detected in the sample and its associated field blank and the concentration detected in the sample is less than five times the concentration detected in the blanks.
- H Holding time.
- HD Potential analytical imprecision.
- HL High LCS recovery. Analytical results may be biased high.
- HM High MS recovery. Analytical results may be biased high.
- HP High certified reference material (CRM) recovery. Analytical results may be biased high.
- HV High initial calibration verification (ICV) recovery. Analytical results may be biased high.
- LC Low CCV recovery. Analytical result may be biased low.
- LL Low LCS recovery. Analytical result may be biased low.
- LM Low MS recovery. Analytical result may be biased low.
- LP Low CRM recovery. Analytical result may be biased low.
- LS Low Surrogate recovery. Analytical results may be biased low.
- LV Low ICV recovery. Analytical result may be biased low.
- NC Calibration verification standard concentrations were outside the calibration range.
- NQ There is lack of QC for this analyte.
- RB The analyte was detected in the sample and its associated equipment blank and the concentration detected in the sample is less than five times the concentration detected in the blank.
- TD The dissolved metals concentration is significantly higher than the total metal concentration.
- *# Unusual problems found with the data. The number following the asterisk
 (*) will indicate the section in the validation report where a description of
 the problem can be found.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met with the following exceptions:

Sample	Compound	Total Days From Sample Collection Until Extraction	Required Holding Time (in Days) From Sample Collection Until Extraction	Flag	A or P
SWHB-26-M SWHB-06-CH-Small SWHB-06-M	All TCL compounds	402	365	J (all detects) UJ (all non-detects)	Ρ
SWHB-27-SBB SWHB-27-P SWHB-30-CH	All TCL compounds	401	365	J (all detects) UJ (all non-detects)	Р
SWHB-22-SP	All TCL compounds	403	365	J (all detects) UJ (all non-detects)	Р

II. GC/MS Instrument Performance Check

Instrument performance check was not required per method.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

A curve fit, based on the initial calibration, was established for quantitation. The coefficient of determination (r^2) was greater than or equal to 0.990 with the following exceptions:

Date	Compound	r²	Associated Samples	Flag	A or P
06/17/15	PBDE 209	0.98570797	All samples in SDG 1504003-002	UJ (all non-detects)	А

Average relative response factors (RRF) for all compounds were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all compounds.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all compounds with the following exceptions:

Date	Cor	npound	%D	Associated Samples	Flag	A or P
06/18/15	PBDE 100 PBDE 099 PBDE 085 PBDE 154 PBDE 153 PBDE 138 PBDE 183 PBDE 180 PBDE 209		22 22 28 29 37 38 39 49 55	SWHB-27-P SWHB-30-CH SWHB-06-CH-Small SWHB-06-M SWHB-22-SP	J (all detects) UJ (all non-detects)	A

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates/Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Compound	RPD (Limits)	Flag	A or P
SWHB-27-SBBDUP (SWHB-27-SBB)	PBDE 047 PBDE 100 PBDE 153	30 (≤25) 54 (≤25) 33 (≤25)	J (all detects) J (all detects) J (all detects)	A

IX. Laboratory Control Samples/Certified Reference Materials

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits with the following exceptions:

LCS ID (Associated Samples)	Compound	LCS %R (Limits)	LCSD %R (Limits)	Flag	A or P
31945-BS1/BS2 (All samples in SDG 1504003-002)	PBDE 017	59 (70-130)	62 (70-130)	UJ (all non-detects)	Р

Relative percent differences (RPD) were within QC limits.

Certified reference materials (CRM) were analyzed as required by the method. The results were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Compound Quantitation

All compound quantitations were within validation criteria.

All compounds reported below the reporting limit (RL) and above the minimum detection limit (MDL) were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG 1504003-002	Compound reported below the RL and above the MDL	J (all detects)	A

XIII. Target Compound Identifications

All target compound identifications were within validation criteria.

XIV. System Performance

The system performance was acceptable.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to holding time exceedance, initial calibration r^2 , continuing calibration %D, DUP RPD, LCS/LCSD %R, and results reported below the RL and above the MDL, data were qualified as estimated in seven samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Sample results that were found to be estimated (J) are usable for limited purposes only. Based upon the data validation all other results are considered valid and usable for all purposes.

City of San Diego SWBH Study Polybrominated Diphenyl Ethers - Data Qualification Summary - SDG 1504003-002

Sample	Compound	Flag	A or P	Reason (Code)
SWHB-26-M SWHB-06-CH-Small SWHB-06-M SWHB-27-SBB SWHB-27-P SWHB-30-CH SWHB-30-CH SWHB-22-SP	All TCL compounds	J (all detects) UJ (all non-detects)	Ρ	Technical holding time (H)
SWHB-26-M SWHB-27-SBB SWHB-27-P SWHB-30-CH SWHB-06-CH-Small SWHB-06-M SWHB-22-SP	PBDE 209	UJ (all non-detects)	A	Initial calibration (r ²) (BC)
SWHB-27-P SWHB-30-CH SWHB-06-CH-Small SWHB-06-M SWHB-22-SP	PBDE 100 PBDE 099 PBDE 085 PBDE 154 PBDE 153 PBDE 138 PBDE 183 PBDE 190 PBDE 209	J (all detects) UJ (all non-detects)	A	Continuing calibration (%D) (LC)
SWHB-27-SBB	PBDE 047 PBDE 100 PBDE 153	J (all detects) J (all detects) J (all detects)	A	Duplicate sample analysis (RPD) (HD)
SWHB-26-M SWHB-27-SBB SWHB-27-P SWHB-30-CH SWHB-06-CH-Small SWHB-06-M SWHB-22-SP	PBDE 017	UJ (all non-detects)	Ρ	Laboratory control samples (%R) (LL)
SWHB-26-M SWHB-27-SBB SWHB-27-P SWHB-30-CH SWHB-06-CH-Small SWHB-06-M SWHB-22-SP	Compound reported below the RL and above the MDL	J (all detects)	A	Compound quantitation (DL)

City of San Diego SWBH Study Polybrominated Diphenyl Ethers - Laboratory Blank Data Qualification Summary -SDG 1504003-002

No Sample Data Qualified in this SDG

City of San Diego SWBH Study Polybrominated Diphenyl Ethers - Field Blank Data Qualification Summary - SDG 1504003-002

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Level IV

Date: <u>_____</u> Page: ___of ___ Reviewer: _____ 2nd Reviewer: ____<u>NC</u>


SDG #: <u>1504003-002</u> Laboratory: Physis Environmental Laboratories, Inc.

LDC #: 36197B2c

METHOD: GC/MS Polybrominated Diphenyl Ethers (EPA SW 846 Method 8270D-NCI)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area			Comme	nts	
 .	Sample receipt/Technical holding times	AIM				
п.	GC/MS Instrument performance check	Γ.N				
111.	Initial calibration/ICV	WA	x2	101=30	70	
IV.	Continuing calibration	Ŵ	COVE	101 = 307 207 d		
V.	Laboratory Blanks	A		/		
VI.	Field blanks	Ň				
VII.	Surrogate spikes	A	1	······································	<u></u>	
VIII.	Matrix spike/Matrix spike duplicates /OHP	+/m				
IX.	Laboratory control samples / CRM	w/A	209/D	. CRM		
X .	Field duplicates	Ń		,		
XI.	Internal standards	A				
XII.	Compound quantitation RL/LOQ/LODs	A	C707	, - , , , , , , , , , , , , , , , , , ,		
XIII.	Target compound identification	Á				
XIV.	System performance	A				
XV.	Overall assessment of data	A		<u></u>		
Note:	N = Not provided/applicable R = Rir	lo compounds nsate ield blank	s detected	D = Duplicate TB = Trip blank EB = Equipment blank	SB=Source b OTHER:	lank
	Client ID			Lab ID	Matrix	Date
1	SWHB-26-M			31963	Tissue	04/22/14
2	SWHB-27-SBB			31966	Tissue	04/23/14
3	SWHB-27-P			31969	Tissue	04/23/14
4	SWHB-30-CH			31973 Tissue		04/23/14
5	SWHB-06-CH-Small			31989	Tissue	04/22/14
6	SWHB-06-M			31992 Tissue		04/22/14
7	SWHB-22-SP		32017 Tissue 0		04/21/14	
8	SWHB-27-SBBMS		31966MS	Tissue	04/23/14	
9	SWHB-27-SBBMSD		31966MSD	Tissue	04/23/14	
10	L Dup		1 DUP	V	4	
11	1			· · · · · · · · · · · · · · · · · · ·		
12						
13	0-7118					

VALIDATION FINDINGS CHECKLIST

Page:_	<u>∕_of ≥</u>
Reviewer:	<u></u>
2nd Reviewer:	315

Method: Semivolatiles (EPA SW 846 Method 8270D)

Validation Area	Yes	No	NA	Findings/Comments
1. Technical holding times				
Were all technical holding times met?		\leq		•
Was cooler temperature criteria met?				
II. GC/MS Instrument performance check				
Were the DFTPP performance results reviewed and found to be within the specified criteria?			/	
Were all samples analyzed within the 12 hour clock criteria?	CONTRACTOR OF			
Illa-Initial calibration			n ser	
Did the laboratory perform a 5 point calibration prior to sample analysis?	\square	[
Were all percent relative standard deviations ($\%$ RSD) \leq 20% and relative response factors (RRF) within method criteria?			\leq	
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of \geq 0.990?	A CONTRACTOR OF CONTRACTOR		LISS MARKET IN	
IIIb Initial Calibration Verification	1			
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?				
Were all percent differences (%D) < 30% or percent recoveries (%R) 70-130%?				
IV. Continuing calibration				
Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?	<	-		
Were all percent differences (%D) \leq 20% and relative response factors (RRF) within method criteria?	Concession and Concession	/	- Andrewski (Martin andrewski)	
V. Laboratory Blanks				
Was a laboratory blank associated with every sample in this SDG?	\square			
Was a laboratory blank analyzed at least once every 12 hours for each matrix and concentration?		-		
Was there contamination in the laboratory blanks? If yes, please see the Blanks validation completeness worksheet.				
VJ. Field blanks	Cale A. Shi Mari aku		n en	
Were field blanks were identified in this SDG?		\square		
Were target compounds detected in the field blanks?			/	
VII. Surrogate spikes				
Were all surrogate percent recovery (%R) within QC limits?				
If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis?			/	
If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis performed to confirm %R?			/	

LDC #: 26197B2C

VALIDATION FINDINGS CHECKLIST

Page: \rightarrow of \rightarrow Reviewer: \rightarrow 2nd Reviewer: $\square B$

Validation Area	Yes	No	NA	Findings/Comments
VIII. Matrix spike/Matrix spike duplicates				
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.	/			Oup
Was a MS/MSD analyzed every 20 samples of each matrix?	\angle			
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?	/			
IX Laboratory control samples			7.1414 1.157	
Was an LCS analyzed for this SDG?	/			CAN
Was an LCS analyzed per analytical batch?				
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?		/		
X. Field duplicates			1.1.1.27 1.1.1	
Were field duplicate pairs identified in this SDG?			-	
Were target compounds detected in the field duplicates?				
XI. Internal standards				
Were internal standard area counts within -50% to +100% of the associated calibration standard?	/			
Were retention times within ± 30 seconds of the associated calibration standard?		_		
XII. Compound quantitation				
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?	/			
Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?		-		
XIII. Target compound identification				
Were relative retention times (RRT's) within \pm 0.06 RRT units of the standard?				
Did compound spectra meet specified EPA "Functional Guidelines" criteria?				
Were chromatogram peaks verified and accounted for?		2000 and 10, 200		
XIV System performance				
System performance was found to be acceptable.				
XV: Overall assessment of data				
Overall assessment of data was found to be acceptable.	\square			

VALIDATION FINDINGS WORKSHEET <u>Technical Holding Times</u>

Page:_	of
Reviewer:	4
2nd Reviewer:	NG

All circled dates have exceeded the technical holding times.

METHOD : GC/N	IS BNA (EPA S	W 846 Method	8270D)	· · · · · · · · · · · · · · · · · · ·			
Sample ID	Matrix	Preserved	Sampling Date	Extraction date	Analysis date	Total # of Days	Qualifier
1	Tissues	\checkmark	4-22-1d	5-29-15		402	-MA F
え			4-23-12			401	
3							
 			· · · · · · · · · · · · · · · · · · ·				
5			4-22-12			402	
6			1				
			4-21-14 4-23-14	V		403	
8			4-23-14			40)	
9			I				
(0 (bt3+1/0)			· /	/			
(dots that)	*						
			i 				
						-	
			·				
				· · · · · · · · · · · · · · · · · · ·			I
							ļ
							
				· · · ·			
		<u> </u>	<u> </u>		I	<u></u>	

TECHNICAL HOLDING TIME CRITERIA

Water:Extracted within 7 days, analyzed within 40 days.Soil:Extracted within 14 days, analyzed within 40 days.

LDC	# <u>:36197B</u> 2	C
-----	--------------------	----------

VALIDATION FINDINGS WORKSHEET

Initial Calibration

 \mathfrak{D}

Page:_/of_/ Reviewer:_____ 2nd Reviewer:____V6_

MET	HOD: GC/MS	BNA (EPA SW 846 Me	ethod 8270 ©)				2nd Reviewer:
Pleas	se see qualifi		estions answered "N". Not				
	NHA (N/A)	Did the laboratory condi	uct an acceptable 5 point	calibration prior to sam	ple analysis? a factora (PRE) within n	nethod criteria for all CCC's a	ad SBCC'a2
W N		Was a curve fit used for	r evaluation? If yes, what y	b) and relative response was the acceptance crit	teria used for evaluation	nethod chiena for all CCC's ar	
Y(N	λl/A	Did the initial calibration	n meet the acceptance crit	teria?			
YN	N/A	Were all %RSDs and R	RFs within the validation	criteria of ≤3 0/15 %RS I) and ≥0.05 RRF ?- 2	070 ?	
				Finding %RSD	Finding RRF		
#	Date	Standard ID	Compound	(Limit: ≤30.0/15%)	(Limit: <u>></u> 0.05)	Associated Samples	Qualifications
	6/17/15	ICAL	PBDE209	y=0.98570	797	MI (ND)	J/UJ/A (BC)
	7 /						
							·····
┢──							
	<u> </u>	· · · · · ·					

LDC #:36197B=	° C.
---------------	------

VALIDATION FINDINGS WORKSHEET

Continuing Calibration

Page: <u>of</u> Reviewer: <u>9</u> 2nd Reviewer: <u>9</u>

METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?

 $\frac{\sqrt{N}N/A}{\sqrt{N}N/A}$ Were percent differences (%D) ≤ 20 % and relative response factors (RRF) within the method criteria?

#	Date	Standard ID	Compound	Finding %D (Limit: <u><</u> 20.0%)	Finding RRF (Limit)	Associated Samples	Qualifications
				Finding %D (Limit: $\leq 20.0\%$) 22 22 22 28 29			

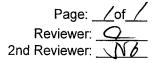
VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

Page:_	<u></u>
Reviewer:	9-
2nd Reviewer:	NB

METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

TYN N/A Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.


N N/A

Was a MS/MSD analyzed every 20 samples of each matrix?)n n/a Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

#	Date	MS/MSD ID	Compound	MS %R (Limits)	MSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
		10	pBDE047	()	()	30 (=75)	2 (det3)	Idet3/A(HD)
		•	100	()	()			
			153	()	()	54 () 33 ()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()	· · · · · · · · · · · · · · · · · · ·	
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	<u> ()</u>	<u>()</u>		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()_	()			

VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS)

METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

(YN N/A Was a LCS required?

MN/A Were the LCS/LCSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

	Date	LCS/LCSD ID	Compound	LCS %R (Limits)	LCSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
		31945-851/	PBDE017	59 (70-130	62 (70-130)	()	all (NO)	V/11/P(44)
		<u> </u>	· · · ·	()	()	()		7 7 7 7
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()			
				()	()			

LDC:36197B2C

Method: PBDE (EPA SW 846 Method 8270D)

Calibration Date	Analyte	Standard	(X) Concentration	(Y) Area	(X ²) Conc
6/17/2015	PBDE047	1	0.0050	0.0047302	0.000025
		2	0.0125	0.0121440	0.00005
		3	0.0250	0.0274772	0.0001
		4	0.0375	0.0411628	0.0002
		5	0.0500	0.0539130	0.0004
		6	0.1000	0.1139320	0.0008

	calculated	Reported
Constant	0.000000	0.0000
X Coefficient(s)	1.121144	1.13813
Correlation Coefficient	0.999642	0.99953
Coefficient of Determination (r ²)	0.999284	

LDC #: 36/9782C

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

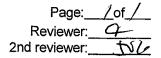
METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF RRF = $(A_x)(C_{is})/(A_{is})(C_x)$ Where: ave. RRF = initial calibration average RRF

RRF = continuing calibration RRF

 $A_x =$ Area of compound, $C_x =$ Concentration of compound, A_{is} = Area of associated internal standard


C_{is} = Concentration of internal standard

					Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Reference Internal Standard)	Average RRF (initial)	RRF (CC)	RRF (CC)	%D	%D
1	ec.V	6/18/15	Phenol (1st internal standard) PBDE047	100	87.4-297	87.4-29	43	13
		/ /	Naphthalene (2nd internal standard)					
			Fluorene (3rd internal standard)					
			Pentachlorophenol (4th internal standard)					
			Bis(2-ethylhexyl)phthalate (5th internal standard)	-				
			Benzo(a)pyrepe (6th internal standard)					
2			Phenol (1st internal standard)					
			Naphthalene (2nd internal standard)					
			Fluorene (3rd internal standard)					
			Pentachlorophenol (4th internal standard)					
			Bis(2-ethylhexyl)phthalate (5th internal standard)					
			Benzo(a)pyrene (6th internal standard)					
3			Phenol (1st internal standard)			•		
			Naphthalene (2nd internal standard)					
			Fluorene (3rd internal standard)					
			Pentachlorophenol (4th internal standard)					
			Bis(2-ethylhexyl)phthalate (5th internal standard)					
			Benzo(a)pyrene (6th internal standard)					

Comments: <u>Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.</u>

VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270D)

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS * 100

1

Where: SF = Surrogate Found SS = Surrogate Spiked

Sample ID:/	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene of DFPBDE	50.0	54.83	110	110	0
2-Fluorobiphenyl FTBDE	V	54.83 44.5-3	89	89	ъ
Terphenyl-014					
Phenol-da					
2-Fluorophenol					
2,4,6-Tribromophenol					
2-Chlorophenol-d4					
12-Dichlorobenzene-d4					

Sample ID:_____

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5					
2-Fluorobiphenyl					
Terphenyl-d14					
Phenol-d5					
2-Fluorophenol					
2,4,6-Tribromophenol					
2-Chlorophenol-d4					
1,2-Dichlorobenzene-d4					

Sample ID:_____

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5					
2-Fluorobiphenyl					
Terphenyl-d14					
Phenol-d5					
2-Fluorophenol					
2,4,6-Tribromophenol					
2-Chlorophenol-d4					
1,2-Dichlorobenzene-d4					

LDC #: 369782C

VALIDATION FINDINGS WORKSHEET <u>Matrix Spike/Matrix Spike Duplicates Results Verification</u>

Page: ________ Reviewer: _______ 2nd Reviewer: _______

METHOD: GC/MS PAH (EPA SW 846 Method 8270D)

8/9

The percent recoveries (%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SSC - SC)/SA

Where: SSC = Spiked sample concentration SA = Spike added SC = Sample concentation

RPD = I MSC - MSC I * 2/(MSC + MSDC)

MSC = Matrix spike concentration

MSDC = Matrix spike duplicate concentration

MS/MSD samples: ____

Compound	Spike Added (<i>MB</i> /9)	Sample Concentration (ハラ/위	Concer	Sample ntration		Spike	Matrix Spik		MS/M RPI	
			MS	MSD	Reported	Recalc	Reported	Recalc	Reported	Recalculated
PBDE047	40.04 40.82	2.12	46.88	52.41	11/	112	122	123	9	9
		-								
		· · ·								
	[l						

Comments: Refer to Matrix Spike/Matrix Spike Duplicates findings worksheet for list of gualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC #36197B2C

VALIDATION FINDINGS WORKSHEET Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification

Page: _______ Reviewer: ______ 2nd Reviewer: ______

METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270D)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SC/SA)

Where: SSC = Spike concentration SA = Spike added

RPD = I LCSC - LCSDC I * 2/(LCSC + LCSDC)

LCSC = Laboratory control sample concentration LCSDC = Laboratory control sample duplicate concentration

LCS/LCSD samples: 31945 - BS/-BS2

Compound	Spike Added (<i>N-</i> 5/9)		Spike Concentration (<i>INS</i> /9)		I CS Percent Recovery		I CSD Percent Recovery		L CS/L CSD RPD	
		I CSD			Reported	Recaic	Reported	Recalc	Reported	Recalculated
PBDE 047	100	100	98.38	39.98	98	98	90	90	9	9
				<u></u>						/

Comments: <u>Refer to Laboratory Control Sample/Laboratory Control Sample Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.</u>

only.

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:_	
Reviewer:	9
2nd reviewer:	Nb

METHOD: GC/MS SVOA (EPA SW 846 Method 8270D)

Were all reported results recalculated and verified for all level IV samples? Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

Concentration = $(A_{is})(I_{s})(V_{i})(DF)(2.0)$ ($A_{is})(RRF)(V_{o})(V_{i})(\%S)$						
A _x	=	Area of the characteristic ion (EICP) for the compound to be measured				
A _{is}	=	Area of the characteristic ion (EICP) for the specific internal standard				
l _s	=	Amount of internal standard added in nanograms (ng)				
V,	2	Volume or weight of sample extract in milliliters (ml) or grams (g).				
Vi	=	Volume of extract injected in microliters (ul)				
Vt	=	Volume of the concentrated extract in microliters (ul)				
Df	=	Dilution Factor.				
%S	=	Percent solids, applicable to soil and solid matrices				

Example:

 $Conc. = \frac{(68-27)(2000)(1.603)()()}{(989/90)(1.13813)} (1.000)() (0.000)(0.00$ = 1.95 n8/g

2.0	Factor of 2 to account	nt for GPC cleanup				
#	Sample ID	Compound		Reported Concentration (NSA)	Calculated Concentration ()	Qualification
		PRDE 04T		1.95		
				······································		
			· · · · · · · · · · · · · · · · · · ·			
		· · · · · · · · · · · · · · · · · · ·				
			. <u>,</u>	·····		
		· 				
					·	
			· · · · · · · · · · · · · · · · · · ·			
				L		

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	City of San Diego SWBH Study

LDC Report Date: May 9, 2016

Parameters: Chlorinated Pesticides

Validation Level: Level IV

Laboratory:Physis Environmental Laboratories Inc.

Sample Delivery Group (SDG): 1504003-002

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
SWHB-26-M	31963	Tissue	04/22/14
SWHB-27-SBB	31966	Tissue	04/23/14
SWHB-27-P	31969	Tissue	04/23/14
SWHB-30-CH	31973	Tissue	04/23/14
SWHB-06-CH-Small	31989	Tissue	04/22/14
SWHB-06-M	31992	Tissue	04/22/14
SWHB-22-SP	32017	Tissue	04/21/14
SWHB-27-SBBMS	31966MS	Tissue	04/23/14
SWHB-27-SBBMSD	31966MSD	Tissue	04/23/14
SWHB-27-SBBDUP	31966DUP	Tissue	04/23/14

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with Final Quality Assurance Project Plan, Regional Harbor Monitoring Program, San Diego, California (August 2013) and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines (CLPNFG) for Superfund Organic Methods Data Review (June 2008). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Chlorinated Pesticides by Environmental Protection Agency (EPA) SW 846 Method 8270D

All sample results were subjected to Level IV data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- BC The initial calibration (ICAL) curve did not meet method-specified criteria.
- CH High continuing calibration verification (CCV) recovery. Analytical results may be biased high.
- DL The analyte concentration was between the method detection limit (MDL) and the reporting limit (RL).
- FB The analyte was detected in the sample and its associated field blank and the concentration detected in the sample is less than five times the concentration detected in the blanks.
- H Holding time.
- HD Potential analytical imprecision.
- HL High LCS recovery. Analytical results may be biased high.
- HM High MS recovery. Analytical results may be biased high.
- HP High certified reference material (CRM) recovery. Analytical results may be biased high.
- HV High initial calibration verification (ICV) recovery. Analytical results may be biased high.
- LC Low CCV recovery. Analytical result may be biased low.
- LL Low LCS recovery. Analytical result may be biased low.
- LM Low MS recovery. Analytical result may be biased low.
- LP Low CRM recovery. Analytical result may be biased low.
- LS Low Surrogate recovery. Analytical results may be biased low.
- LV Low ICV recovery. Analytical result may be biased low.
- NC Calibration verification standard concentrations were outside the calibration range.
- NQ There is lack of QC for this analyte.
- RB The analyte was detected in the sample and its associated equipment blank and the concentration detected in the sample is less than five times the concentration detected in the blank.
- TD The dissolved metals concentration is significantly higher than the total metal concentration.
- *# Unusual problems found with the data. The number following the asterisk
 (*) will indicate the section in the validation report where a description of
 the problem can be found.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

Sample	Compound	Total Days From Sample Collection Until Extraction	Required Holding Time (in Days) From Sample Collection Until Extraction	Flag	A or P
SWHB-26-M SWHB-06-CH-Small SWHB-06-M	All TCL compounds	402	365	J (all detects) UJ (all non-detects)	Ρ
SWHB-27-SBB SWHB-27-P SWHB-30-CH	All TCL compounds	401	365	J (all detects) UJ (all non-detects)	Р
SWHB-22-SP	All TCL compounds	403	365	J (all detects) UJ (all non-detects)	Р

II. GC Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at the required frequency.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For compounds where average calibration factors were utilized, percent relative standard deviations (%RSD) were less than or equal to 20.0%.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r^2) were greater than or equal to 0.990 with the following exceptions:

Date	Compound	r ²	Associated Samples	Flag	A or P
05/27/15	4,4'-DDT	0.98565806	All samples in SDG 1504003-002	UJ (all non-detects)	A

Retention time windows were established as required by the method.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all compounds.

IV. Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all compounds with the following exceptions:

Date	Standard	Compound	%D	Associated Samples	Flag	A or P
06/13/15	ccv	2,4'-DDD 4,4'-DDD Toxaphene	21 28 23	SWHB-30-CH SWHB-06-CH-Small SWHB-06-M SWHB-22-SP	J (all detects) UJ (all non-detects)	A

Retention times of all compounds in the calibration standards were within the established retention time windows.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates/Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits with the following exceptions:

DUP ID (Associated Samples)	Compound	RPD (Limits)	Flag	A or P
SWHB-27-SBBDUP (SWHB-27-SBB)	2,4'-DDD 2,4'-DDE alpha-Chlordane	26 (≤25) 65 (≤25) 164 (≤25)	J (all detects) UJ (all non-detects)	A

IX. Laboratory Control Samples/Certified Reference Materials

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits with the following exceptions:

LCS ID (Associated Samples)	Compound	LCS %R (Limits)	LCSD %R (Limits)	Flag	A or P
31945-BS1/BS2 (All samples in SDG 1504003-002)	4,4'-DDT	136 (70-130)	-	NA	-

Relative percent differences (RPD) were within QC limits.

Certified reference materials (CRM) were analyzed as required by the method. The results were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Compound Quantitation

All compound quantitations met validation criteria.

All compounds reported below the reporting limit (RL) and above the minimum detection limit (MDL) were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG 1504003-002	Compound reported below the RL and above the MDL	J (all detects)	A

XII. Target Compound Identification

All target compound identifications met validation criteria.

XIII. System Performance

The system performance was acceptable.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to holding time exceedance, initial calibration r^2 , continuing calibration %D, DUP RPD, and results reported below the RL and above the MDL, data were qualified as estimated in seven samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Sample results that were found to be estimated (J) are usable for limited purposes only. Based upon the data validation all other results are considered valid and usable for all purposes.

١

City of San Diego SWBH Study Chlorinated Pesticides - Data Qualification Summary - SDG 1504003-002

Sample	Compound	Flag	A or P	Reason (Code)
SWHB-26-M SWHB-06-CH-Small SWHB-06-M SWHB-27-SBB SWHB-27-P SWHB-27-P SWHB-30-CH SWHB-22-SP	All TCL compounds	J (all detects) UJ (all non-detects)	Ρ	Technical holding time (H)
SWHB-26-M SWHB-06-CH-Small SWHB-06-M SWHB-27-SBB SWHB-27-P SWHB-30-CH SWHB-30-CH	4,4'-DDT	UJ (all non-detects)	A	Initial calibration (r ²) (BC)
SWHB-30-CH SWHB-06-CH-Small SWHB-06-M SWHB-22-SP	2,4'-DDD 4,4'-DDD	J (all detects) UJ (all non-detects)	A	Continuing calibration (%D) (CH)
SWHB-30-CH SWHB-06-CH-Small SWHB-06-M SWHB-22-SP	Toxaphene	J (all detects) UJ (all non-detects)	A	Continuing calibration (%D) (LC)
SWHB-27-SBB	2,4'-DDD 2,4'-DDE alpha-Chlordane	J (all detects) UJ (all non-detects)	A	Duplicate sample analysis (RPD) (HD)
SWHB-26-M SWHB-06-CH-Small SWHB-06-M SWHB-27-SBB SWHB-27-P SWHB-30-CH SWHB-22-SP	Compound reported below the RL and above the MDL	J (all detects)	A	Compound quantitation (DL)

City of San Diego SWBH Study

Chlorinated Pesticides - Laboratory Blank Data Qualification Summary - SDG 1504003-002

No Sample Data Qualified in this SDG

City of San Diego SWBH Study

Chlorinated Pesticides - Field Blank Data Qualification Summary - SDG 1504003-002

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Level IV

SDG #: <u>1504003-002</u> Laboratory: <u>Physis Environmental Laboratories, Inc.</u>

LDC #: 36197B3a

METHOD: GC/MS Chlorinated Pesticides (EPA SW 846 Method 8270D)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I.	Sample receipt/Technical holding times	AIN	
11.	GC/MS Instrument performance check	A	
111.	Initial calibration/ICV	MIA.	RSB < 20/0. Y 10/= 30/0
i۷.	Continuing calibration		$CCV \leq 20/0$
V.	Laboratory Blanks	A	
VI.	Field blanks	N	
VII.	Surrogate spikes	A	
VIII.	Matrix spike/Matrix spike duplicates /DUP	A/M	
IX.	Laboratory control samples	AN/A	LCB/D. ORM
Х.	Field duplicates	Ń	,
XI.	Internal standards	A	
XII.	Compound quantitation RL/LOQ/LODs	A	
XIII.	Target compound identification	A	
XIV.	System performance	Ă	
XV.	Overall assessment of data	A	

Note:

57

A = Acceptable N = Not provided/applicable

SW = See worksheet

ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	SWHB-26-M	31963	Tissue	04/22/14
2	SWHB-27-SBB	31966	Tissue	04/23/14
3	SWHB-27-P	31969	Tissue	04/23/14
4	SWHB-30-CH	31973	Tissue	04/23/14
5	SWHB-06-CH-Small	31989	Tissue	04/22/14
6	SWHB-06-M	31992	Tissue	04/22/14
7	SWHB-22-SP	32017	Tissue	04/21/14
8	SWHB-27-SBBMS	31966MS	Tissue	04/23/14
9	SWHB-27-SBBMSD	31966MSD	Tissue	04/23/14
10	1 OHP	31966 DU=		d
11				
12				
13	0-T118/31945-B1			

Page:	<u></u>
Reviewer:	4
2nd Reviewer:	Ne

-1

Method: Semivolatiles (EPA SW 846 Method 8270D)

Validation Area	Yes	No	NA	Findings/Comments
1. Technical holding times				
Were all technical holding times met?		\langle	ļ	۰
Was cooler temperature criteria met?		(albertania		
II. GC/MS Instrument performance check				
Were the DFTPP performance results reviewed and found to be within the specified criteria?				
Were all samples analyzed within the 1 2 hour clock criteria?		é calebra de la calebra de	and the Capital	
IIIa: Initial calibration				
Did the laboratory perform a 5 point calibration prior to sample analysis?				
Were all percent relative standard deviations (%RSD) < 20% and relative response factors (RRF) within method criteria?	<			
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of \geq 0.990?	ana an			
IIIb. Initial Calibration Verification				
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?	/			
Were all percent differences (%D) <u><</u> 30% or percent recoveries (%R) 70-130%? Ⅳ. Continuing calibration				
Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?		-		
Were all percent differences (%D) \leq 20% and relative response factors (RRF) within method criteria?			}	
V. Laboratory Blanks				
Was a laboratory blank associated with every sample in this SDG?				
Was a laboratory blank analyzed at least once every 12 hours for each matrix and concentration?		-		
Was there contamination in the laboratory blanks? If yes, please see the Blanks validation completeness worksheet.				
VJ. Field blanks	3.7			
Were field blanks were identified in this SDG?				
Were target compounds detected in the field blanks?				
VII, Surrogate spikes				
Were all surrogate percent recovery (%R) within QC limits?	\leq			
If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis?				-
If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis performed to confirm %R?				

LDC #: 3619783a

VALIDATION FINDINGS CHECKLIST

Page: →of → Reviewer: _____ 2nd Reviewer: ______

Validation Area	Yes	No	NA	Findings/Comments
VIII. Matrix spike/Matrix spike duplicates				
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.	/			DUP
Was a MS/MSD analyzed every 20 samples of each matrix?				\
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?	/			
IX Laboratory control samples		r di est Stationes Stationes		
Was an LCS analyzed for this SDG?				AM
Was an LCS analyzed per analytical batch?				
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?				
X. Field duplicates				
Were field duplicate pairs identified in this SDG?		/	^	
Were target compounds detected in the field duplicates?				
XII. Internal standards				
Were internal standard area counts within -50% to +100% of the associated calibration standard?	/			
Were retention times within \pm 30 seconds of the associated calibration standard?				
XII. Compound quantitation				
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?	\land	1		
Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XIII. Target compound identification				
Were relative retention times (RRT's) within \pm 0.06 RRT units of the standard?				
Did compound spectra meet specified EPA "Functional Guidelines" criteria?	1			
Were chromatogram peaks verified and accounted for?	/			
XIV. System performance				
System performance was found to be acceptable.	/			
XV. Overall assessment of data		k / 2	aste i	
Overall assessment of data was found to be acceptable.		Constant of Friday		

VALIDATION FINDINGS WORKSHEET

METHOD: Pesticide/PCBs (EPA_SW/ 846-Method 8081/8082)

A. alpha-BHC	I. Dieldrin	Q. Endrin ketone	Y. Aroclor-1242	GG. Chlordane
B. beta-BHC	J. 4,4'-DDE	R. Endrin aldehyde	Z. Aroclor-1248	HH. Chlordane (Technical)
C. delta-BHC	K. Endrin	S. alpha-Chlordane	AA. Aroclor-1254	II. oxy-Chlordane
D. gamma-BHC	L. Endosulfan II	T. gamma-Chlordane	BB. Aroclor-1260	JJ. Mirex
E. Heptachlor	M. 4,4'-DDD	U. Toxaphene	CC. 2,4'-DDD	^{кк.} 4.4-ЭДМИ
F. Aldrin	N. Endosulfan sulfate	V. Aroclor-1016	DD. 2,4'-DDE	LL.
G. Heptachlor epoxide	O. 4,4'-DDT	W. Aroclor-1221	EE. 2,4'-DDT	MM.
H. Endosulfan I	P. Methoxychlor	X. Aroclor-1232	FF. Hexachlorobenzene	NN.

Notes:_____

VALIDATION FINDINGS WORKSHEET <u>Technical Holding Times</u>

Page:_	<u>_/of /</u>
Reviewer:	4
2nd Reviewer:	NG

All circled dates have exceeded the technical holding times.

METHOD : GC/N	IS BNA (EPA SV	V 846 Method	8270D)				
Sample ID	Matrix	Preserved	Sampling Date	Extraction date	Analysis date	Total # of Days	Qualifier
1	Tissues	\checkmark	4-22-12	5-29-15		402	JAH ZE
λ			4-23-12			401	
3							
3 4 5 6			V				
5			4-22-12 V 4-21-14 4-23-14			402	
6			V				
7			4-21-14	V		403	
8			4-23-14			40)	
9							
(0 (dots the)	V						
(dets the)	*		•				
• •							
			······································				
					· · · · · · · · · · · · · · · · · · ·		
· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·		
·····							

TECHNICAL HOLDING TIME CRITERIA

Water:Extracted within 7 days, analyzed within 40 days.Soil:Extracted within 14 days, analyzed within 40 days.

LDC #:3619783

VALIDATION FINDINGS WORKSHEET

Initial Calibration

Page:_	
Reviewer:	9
2nd Reviewer:	NG.

METHOD: GC/MS BNA (E	EPA SW 846 Method 8270(2)
----------------------	---------------------------

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

3

Did the laboratory conduct an acceptable 5 point calibration prior to sample analysis?

Were percent relative standard deviations (%RSD) and relative response factors (RRF) within method criteria for all CCC's and SPCC's?

MANA Was a curve fit used for evaluation? If yes, what was the acceptance criteria used for evaluation?

Did the initial calibration meet the acceptance criteria?

Were all %RSDs and RRFs within the validation criteria of \leq 30/15 %RSD and \geq 0.05 RRF?

#	Date	Standard ID	Compound	Finding %RSD (Limit: <u><</u> 30.0/15%)	Finding RRF (Lim <u>it: ></u> 0.05)	Associated Samples	Qualifications
	5/57/15	ICAL	0	Y=0.985658	06	MI (NO)	V/H/A(BC)
	1 1-						
	· · ·						
	···						
							·····

LDC #: 36 TTB39

VALIDATION FINDINGS WORKSHEET

Continuing Calibration

Page: <u>of</u> Reviewer: <u>9</u> 2nd Reviewer: <u>9</u>

METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?

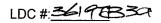
Y(N)N/A Were percent differences (%D) ≤20 % and relative response factors (RRF) within the method criteria?

` #	Date	Standard ID	Compound	Finding %D (Limit: <u><</u> 20.0%)	Finding RRF (Limit)	Associated Samples	Qualifications
	6/13/15	ecv	ec.	2		4-7 (dets+10)	-1/41/A (att)
	/ /		M	28			
			N	23			(20)
		······					
 					·		
		· · · · · · · · · · · · · · · · · · ·					
<u> </u>							
[
		· · · · ·					
		. <u></u>					
				÷			
		,					

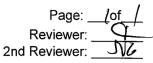
VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

Page	: <u>/</u> of <u>/</u>
Reviewer:	<u>\</u>
2nd Reviewe	r: <u> </u>

METHOD: GC/MS BNA (EPA SW 846 Method 8270D)


Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Y N/A Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.


N/A Was a MS/MSD analyzed every 20 samples of each matrix?

Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

#	Date	MS/MSD ID	Compound	MS %R (Limits)	MSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
		\$9.10	C	()	()	$26 (\leq 15)$	2 (dob+ND)	MH ACHO
		_, ,	DD	()	()	65 () (A ()		
			S	()	()	164()		
		<u></u>		()	()	()		
				()	()	()		
				()	()	()	ļ	
				()	()	()		
				()	()	()	······································	
┡══┽				()	<u>()</u>	<u>()</u>		
		<u> </u>		()	()	()		
				()		()		
		<u> </u>		()		()		
				()		()		
				()			· · · · · · · · · · · · · · · · · · ·	····
\parallel								
				()	· · · · · · · · · · · · · · · · · · ·	()		
				()		()		
				()		()		
		<u> </u>		()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
)	()	()		

VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS)

METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

N X/A Was a LCS required?

Were the LCS/LCSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

#	Date		Compound	LCS %R (Limits)	LCSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
		3645755+	``	()	()	()		
				()	()	()		
		31945-351	0	136 (70-130)	()	()	M (NO)	tots (H4)
		-BS>		()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
		·		()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	(<u>)</u>		

Method: Pesticides (EPA SW 846 Method 8270D)

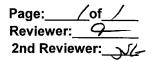
Calibration Date	Analyte	Standard	(X) Concentration	(Y) Area	(X ²) Conc
5/27/2015	Oxychlordane	1	0.025	0.00645	0.000025
		2	0.050	0.0110995	0.00005
		3	0.100	0.0196845	0.0001
		4	0.250	0.0491241	0.0002
		5	0.500	0.1043256	0.0004
		6	1.000	0.2097125	0.0008

Linear through the origin

	calculated	Reported
Constant	0.000000	0.0000
X Coefficient(s)	0.208838	0.21239
Correlation Coefficient	0.999882	0.99962
Coefficient of Determination (r^2)	0.999764	

LDC:36197839

Method: Pesticides (EPA SW 846 Method 8270D)

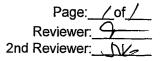

Calibration Date	Analyte	Standard	(X) Concentration	(Y) Area	(X ²) Conc
5/27/2015	4,4'-DDE	1	0.025	0.0655146	0.000025
		2	0.050	0.1322760	0.00005
		3	0.100	0.2668935	0.0001
		4	0.250	0.7433727	0.0002
		5	0.500	1.5492299	0.0004
		6	1.000	3.2876129	0.0008

Linear through the origin

	calculated	Reported
Constant	0.000000	0.0000
X Coefficient(s)	3.230938	3.24249
Correlation Coefficient	0.999423	0.99804
Coefficient of Determination (r^2)	0.998846	

LDC#: 36197839

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification


Method: GC/MS Pesticides (EPA SW 846 Method 8270D)

Calibration Date	System	Compound	Standard	(Y) Response	(X) Concentration
5/27/2015	Q1	4,4'-DDMU	s1	0.0849309	0.025
			s2	0.16469	0.050
			s3	0.348635	0.100
				1.0921435	0.250
			s5	2.4835837	0.500
			s6	5.683011	1.000

Regression Output		Reported		
Constant	-0.206259	-0.202600		
Std Err of Y Est				
R Squared	0.995686	0.995686		
Degrees of Freedom				
X Coefficient(s)	5.763401	5.763406		
Std Err of Coef.				
Correlation Coefficient	0.997841			
Coefficient of Determination (r^2)	0.995686	0.995686		

LDC #: 36/97

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

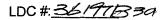
METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF	
$RRF = (A_{x})(C_{is})/(A_{is})(C_{x})$	

Where: ave. RRF = initial calibration average RRF

RRF = continuing calibration RRF A_x = Area of compound,


 $C_{x} = Concentration of compound,$

 A_{is} = Area of associated internal standard

C_{is} = Concentration of internal standard

					Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Reference Internal Standard)	Average RRF (initial)	RRF (CC)	RRF (CC)	%D	%D
1	al	6/3/15	Phenol (1st internal standard)	500	397.6829	397.6933	20	20
			Naphthalene (2nd internal standard)		497.9500	497.950	0	0
			Fluorene (3rd internal standard)		585.0594	584.4-32	17	17
			Pentachlorophenol (4th internal standard)	v			/	
			Bis(2-ethylhexyl)phthalate (5th internal standard)					
			Benzo(a)pyrene (6th internal standard)	· · · · · · · · · · · · · · · · · · ·				
2			Phenol (1st internal standard)					
			Naphthalene (2nd internal standard)					
			Fluorene (3rd internal standard)			····		
			Pentachlorophenol (4th internal standard)	: 				
			Bis(2-ethylhexyl)phthalate (5th internal standard)					
			Benzo(a)pyrene (6th internal standard)					
3			Phenol (1st internal standard)					
			Naphthalene (2nd internal standard)					
			Fluorene (3rd internal standard)					
			Pentachlorophenol (4th internal standard)					
			Bis(2-ethylhexyl)phthalate (5th internal standard)					
			Benzo(a)pyrene (6th internal standard)		IL			

Comments: <u>Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.</u>

VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270D)

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS * 100

Sample ID:

1

Where: SF = Surrogate Found SS = Surrogate Spiked

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-de pc B030	400	346.87	57	87	0
2-Fluorobiphenyl		402.12	101	101	
Terphenyl-014 198		348.47 350.59	87	87	
Phenol-ds TCMX		39.59	88	88	
2-Fluorophenol					
2,4,6 Tribromophenol					
2-Ghlorophenol-d4					
1,2-Dichlorobenzene-d4					

Sample ID:_____

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5					
2-Fluorobiphenyl					
Terphenyl-d14					
Phenol-d5					
2-Fluorophenol					
2,4,6-Tribromophenol					
2-Chlorophenol-d4					
1,2-Dichlorobenzene-d4					

Sample ID:_____

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5					
2-Fluorobiphenyl					
Terphenyl-d14					
Phenol-d5					
2-Fluorophenol					
2,4,6-Tribromophenol					
2-Chlorophenol-d4					
1,2-Dichlorobenzene-d4					

LDC #:3/971839

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates Results Verification

Page: / of / Reviewer: 9

METHOD: GC/MS PAH (EPA SW 846 Method 8270C)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SSC - SC)/SA

Where: SSC = Spiked sample concentration SA = Spike added SC = Sample concentation

RPD = I MSC - MSC I * 2/(MSC + MSDC)

MSC = Matrix spike concentration

MSDC = Matrix spike duplicate concentration

MS/MSD samples:

8/9

Compound	Spike Sample Added Concentration (W=/9) (N=/9)		Concentration Concentration			Matrix Spike Matrix Spike Duplicate Percent Recovery Percent Recovery		MS/MSD RPD			
	MS	MSD		MS	MSD	Reported	Recalc	Reported	Recalc	Reported	Recalculated
4	200.	204.1	35.51	220.01	233.8	92	92	92	QZ	D	0
11		1	the NO	161.61	162.5	8/	81	80	80	1	1
kt.	V		30.48	204.53		BT	BT	80	80	8	8
								 		· · · · · · · · · · · · · · · · · · ·	<u> </u>
	L	<u></u>			<u> </u>			l			

Comments: Refer to Matrix Spike/Matrix Spike Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC #:36197839

VALIDATION FINDINGS WORKSHEET

Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification

Page: / of / Reviewer: 9 2nd Reviewer: N/-

★ METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270¢)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SC/SA)

Where: SSC = Spike concentration SA = Spike added

RPD = I LCSC - LCSDC | * 2/(LCSC + LCSDC)

CSDC) LCSC = Laboratory control sample concentration LCSDC = Laboratory control sample duplicate concentration

LCS/LCSD samples: 3/945-BS1/-BS2

Compound	Ad	bike ded 5/9)	Spike Concentration (1/5/9)			CS		SD		LCSD
compound					Reported	Recalc	Reported	Recalc	Reported	Recalculated
J	500	500		366.08		78	73	73	7	7
11		1	445.63	403.41	89	89	8/	8/	9	9
KK.		\checkmark	437.07	393.05	87	87	79	19	10	10
										,
						[
	·····					<u> </u>				

Comments: <u>Refer to Laboratory Control Sample/Laboratory Control Sample Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.</u>

RECALC.wpd

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:___of___ Reviewer:___9____ 2nd reviewer:__<u>NC</u>___

METHOD: GC/MS SVOA (EPA SW 846 Method 8270D)

YN N/A YN N/A

LDC #:36197839

 $\begin{array}{l} \text{Concentration} = & (A_{*})(I_{*})(V_{*})(DF)(2.0) \\ (A_{is})(RRF)(V_{o})(V_{i})(\%S) \end{array}$

Were all reported results recalculated and verified for all level IV samples? Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

A _x	=	Area of the characteristic ion (EICP) for the compound to be measured
A _{is}	=	Area of the characteristic ion (EICP) for the specific internal standard
l _s	=	Amount of internal standard added in nanograms (ng)

V.	=	Volume or weight of sample extract in milliliters (ml) or
		grams (g).

V _I	=	Volume of extract injected in microliters (ul)	
----------------	---	--	--

- V_t = Volume of the concentrated extract in microliters (ul)
- Df = Dilution Factor.
- %S = Percent solids, applicable to soil and solid matrices only.
- 2.0 = Factor of 2 to account for GPC cleanup

Example: Sample I.D. ______; _____;

Conc. = (5563(1000)(1.6033(1))) (12/1997)(3.24/249)(1.6033)(1)) = 22.55 N8/2

2.0					
#	Sample ID	Compound	Reported Concentration (1/5/9)	Calculated Concentration ()	Qualification
		T	22,55		
			†		
			<u> </u>		

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	City of San Diego SWBH Study

LDC Report Date: May 9, 2016

Parameters: Metals

Validation Level IV Level IV

Laboratory: Physis Environmental Laboratories, Inc.

Sample Delivery Group (SDG): 1504003-002

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
SWHB-26-CH	31957	Tissue	04/22/14
SWHB-26-SP-Large	31959	Tissue	04/22/14
SWHB-26-BP	31960	Tissue	04/22/14
SWHB-27-SP	31968	Tissue	04/23/14
SWHB-01-SBB	31980	Tissue	04/22/14
SWHB-01-CH	31981	Tissue	04/22/14
SWHB-26-SBB	31956	Tissue	04/22/14
SWHB-26-SBBMS	31956	Tissue	04/22/14
SWHB-26-SBBMSD	31956	Tissue	04/22/14
SWHB-26-SBBDUP	31956	Tissue	04/22/14

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with Final Quality Assurance Project Plan, Regional Harbor Monitoring Program, San Diego, California (August 2013) and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review (January 2010). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Mercury and Selenium by Environmental Protection Agency (EPA) SW 846 Method 6020/EPA Method 245.7

All sample results were subjected to Level IV evaluation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- BC The initial calibration (ICAL) curve did not meet method-specified criteria.
- CH High continuing calibration verification (CCV) recovery. Analytical results may be biased high.
- DL The analyte concentration was between the method detection limit (MDL) and the reporting limit (RL).
- FB The analyte was detected in the sample and its associated field blank and the concentration detected in the sample is less than five times the concentration detected in the blanks.
- H Holding time.
- HD Potential analytical imprecision.
- HL High LCS recovery. Analytical results may be biased high.
- HM High MS recovery. Analytical results may be biased high.
- HP High certified reference material (CRM) recovery. Analytical results may be biased high.
- HV High initial calibration verification (ICV) recovery. Analytical results may be biased high.
- LC Low CCV recovery. Analytical result may be biased low.
- LL Low LCS recovery. Analytical result may be biased low.
- LM Low MS recovery. Analytical result may be biased low.
- LP Low CRM recovery. Analytical result may be biased low.
- LS Low Surrogate recovery. Analytical results may be biased low.
- LV Low ICV recovery. Analytical result may be biased low.
- NC Calibration verification standard concentrations were outside the calibration range.
- NQ There is lack of QC for this analyte.
- RB The analyte was detected in the sample and its associated equipment blank and the concentration detected in the sample is less than five times the concentration detected in the blank.
- TD The dissolved metals concentration is significantly higher than the total metal concentration.
- *# Unusual problems found with the data. The number following the asterisk
 (*) will indicate the section in the validation report where a description of
 the problem can be found.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met with the following exceptions:

Sample	Analyte	Total Days From Sample Collection Until Analysis	Required Holding Time (in Days) From Sample Collection Until Analysis	Flag	A or P
SWHB-26-CH SWHB-26-SP-Large SWHB-26-BP SWHB-01-SBB SWHB-01-CH SWHB-26-SBB	Selenium Mercury	414 419	365 180	J (all detects) J (all detects)	Ρ
SWHB-27-SP	Selenium Mercury	413 418	365 180	J (all detects) J (all detects)	Р

II. ICPMS Tune

The mass calibration was within 0.1 AMU and the percent relative standard deviation (%RSD) was less than or equal to 5%.

III. Instrument Calibration

Initial and continuing calibrations were performed as required by the methods.

The initial calibration verification (ICV) and continuing calibration verification (CCV) standards were within QC limits.

IV. ICP Interference Check Sample Analysis

The interference check sample (ICS) was not performed by the laboratory. The laboratory used a reaction chamber with mixed gases as well as internal equations to compensate for any interferents.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	MS (%R) (Limits)	MSD (%R) (Limits)	Flag	A or P
SWHB-26-SBBMS/MSD (SWHB-26-SBB)	Mercury	121 (80-120)	121 (80-120)	J (all detects)	A

Relative percent differences (RPD) were within QC limits.

VIII. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

IX. Serial Dilution

Serial dilution was not performed for this SDG.

X. Laboratory Control Samples/Standard Reference Materials

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

Standard reference materials (SRM) were analyzed as required by the method. The results were within QC limits.

XI. Field Duplicates

No field duplicates were identified in this SDG.

XII. Internal Standards (ICP-MS)

All internal standard percent recoveries (%R) were within QC limits with the following exceptions:

Sample	Internal Standard	%R (Limits)	Affected Analyte	Flag	A or P
SWHB-26-CH	Scandium-45	160.8 (30-120)	Selenium	J (all detects)	А
SWHB-26-SP-Large	Scandium-45	159.8 (30-120)	Selenium	J (all detects)	А

Sample	Internal Standard	%R (Limits)	Affected Analyte	Flag	A or P
SWHB-26-BP	Scandium-45	151.5 (30-120)	Selenium	J (all detects)	A
SWHB-27-SP	Scandium-45	144.0 (30-120)	Selenium	J (all detects)	A
SWHB-01-SBB	Scandium-45	144.1 (30-120)	Selenium	J (all detects)	A
SWHB-01-CH	Scandium-45	146.0 (30-120)	Selenium	J (all detects)	A
SWHB-26-SBB	Scandium-45	156.0 (30-120)	Selenium	J (all detects)	А

XIII. Sample Result Verification

All sample result verifications were acceptable.

All analytes reported below the reporting limit (RL) and above the minimum detection limit (MDL) were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG 1504003-002	Analyte reported below the RL and above the MDL	J (all detects)	A

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected in this SDG.

Due to holding time exceedance, MS/MSD %R, internal standard %R, and results reported below the RL and above the MDL, data were qualified as estimated in seven samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Sample results that were found to be estimated (J) are usable for limited purposes only. Based upon the data validation all other results are considered valid and usable for all purposes.

City of San Diego SWBH Study Metals - Data Qualification Summary - SDG 1504003-002

				<u> </u>
Sample	Analyte	Flag	A or P	Reason (Code)
SWHB-26-CH SWHB-26-SP-Large SWHB-26-BP SWHB-01-SBB SWHB-01-CH SWHB-26-SBB SWHB-26-SBB SWHB-27-SP	Selenium Mercury	J (all detects) J (all detects)	Ρ	Technical holding time (H)
SWHB-26-SBB	Mercury	J (all detects)	А	Matrix spike/Matrix spike duplicate (%R) (HM)
SWHB-26-CH SWHB-26-SP-Large SWHB-26-BP SWHB-27-SP SWHB-01-SBB SWHB-01-CH SWHB-26-SBB	Selenium	J (all detects)	A	Internal standards (%R) (*XII)
SWHB-26-CH SWHB-26-SP-Large SWHB-26-BP SWHB-27-SP SWHB-01-SBB SWHB-01-CH SWHB-26-SBB	Analyte reported below the RL and above the MDL	J (all detects)	A	Sample result verification (DL)

City of San Diego SWBH Study Metals - Laboratory Blank Data Qualification Summary - SDG 1504003-002

No Sample Data Qualified in this SDG

City of San Diego SWBH Study Metals - Field Blank Data Qualification Summary - SDG 1504003-002

No Sample Data Qualified in this SDG

LDC #: <u>36197B4a</u> SDG #: <u>1504003-002</u>

VALIDATION COMPLETENESS WORKSHEET

Level IV

Date: <u>4/27/14</u> Page: <u>\of</u> Reviewer: <u></u> 2nd Reviewer: <u></u>

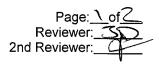
Laboratory: Physis Environmental Laboratories, Inc.

METHOD: Mercury & Selenium (EPA SW 846 Method 6020/EPA Method 245.7)

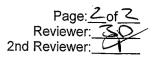
The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
Ι.	Sample receipt/Technical holding times	SW	4/22
II.	ICP/MS Tune	A	
111.	Instrument Calibration	A	
IV.	ICP Interference Check Sample (ICS) Analysis	SW	
V.	Laboratory Blanks	SW	
VI.	Field Blanks	\mathbb{N}	
VII.	Matrix Spike/Matrix Spike Duplicates	SW	(P, 3) = (Hem
VIII.	Duplicate sample analysis	A	DUR
IX.	Serial Dilution	N	
Х.	Laboratory control samples	A	LCSD'E SEM
XI.	Field Duplicates	N	
XII.	Internal Standard (ICP-MS)	SW	
XIII.	Sample Result Verification	A	
xiv.	Overall Assessment of Data	A	

Note: A = Acceptable


N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate
TB = Trip blank
EB = Equipment blank

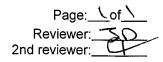

SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	SWHB-26-CH	31957	Tissue	04/22/14
2	SWHB-26-SP-Large	31959	Tissue	04/22/14
3	SWHB-26-BP	31960	Tissue	04/22/14
4	SWHB-27-SP	31968	Tissue	04/23/14
4 5 7 8 9	SWHB-01-SBB	31980	Tissue	04/22/14
6	SWHB-01-CH	31981	Tissue	04/22/14
7	SWHB-Z6-SBB	31984 56	Tissue	04/22/14
8	#7 MS			
9	1 MSD			
	#70VP			
10 11 12				
12		<u> </u>	l	
Note	S:			

Method:Metals (EPA SW 846 Method 6010B/7000/6020)				
Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
All technical holding times were met.		/		
Cooler temperature criteria was met.	/			
II. ICP/MS Tune				
Were all isotopes in the tuning solution mass resolution within 0.1 amu?	-			
Were %RSD of isotopes in the tuning solution ≤5%?	~			
III. Calibration				
Were all instruments calibrated daily, each set-up time?				
Were the proper number of standards used?				
Were all initial and continuing calibration verification %Rs within the 90-110% (80- 120% for mercury) QC limits?				
Were all initial calibration correlation coefficients ≥ 0.995?	/			
IV. Blanks				
Was a method blank associated with every sample in this SDG?	\setminus			
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.		/		
V. ICP Interference Check Sample				
Were ICP interference check samples performed daily?		/		
Were the AB solution percent recoveries (%R) with the 80-120% QC limits?			/	
VI. Matrix spike/Matrix spike duplicates				
Were a matrix spike (MS) and duplicate (DUP) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD or MS/DUP. Soil / Water.	/			
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the 75-125 QC limits? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken.	/			
Were the MS/MSD or duplicate relative percent differences (RPD) \leq 20% for waters and \leq 35% for soil samples? A control limit of +/- RL(+/-2X RL for soil) was used for samples that were \leq 5X the RL, including when only one of the duplicate sample values were \leq 5X the RL.	/			
VII. Laboratory control samples				
Was an LCS anaylzed for this SDG?	/			
Was an LCS analyzed per extraction batch?				
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the 80-120% QC limits for water samples and laboratory established QC limits for soils?				

Validation Area	Yes	No	NA	Findings/Comments			
VIII. Internal Standards (EPA SW 846 Method 6020/EPA 200.8)							
Were all the percent recoveries (%R) within the 30-120% (6020)/60-125% (200.8) of the intensity of the internal standard in the associated initial calibration?		/					
If the %Rs were outside the criteria, was a reanalysis performed?		/					
IX. ICP Serial Dilution							
Was an ICP serial dilution analyzed if analyte concentrations were > 50X the MDL (ICP)/>100X the MDL(ICP/MS)?		_	1				
Were all percent differences (%Ds) < 10%?							
Was there evidence of negative interference? If yes, professional judgement will be used to qualify the data.			1				
X. Sample Result Verification							
Were RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?	/						
XI. Overall assessment of data							
Overall assessment of data was found to be acceptable.	\mathcal{L}						
XII. Field duplicates							
Field duplicate pairs were identified in this SDG.		/					
Target analytes were detected in the field duplicates.			(
XIII. Field blanks							
Field blanks were identified in this SDG.		1					
Target analytes were detected in the field blanks.			7				

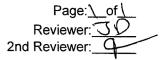
VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference


Page:___of_\ Reviewer: 30 2nd reviewer:___

All circled elements are applicable to each sample.

Sample ID	Motrix	Target Analyte List (TAL)
1-1	Tissue	Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn/Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
<u> </u>		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
QC:8-10	Tissue	Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn (Hg)Ni, K, Se)Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Analysis Method
ICP		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
CP-MS		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
GFAA		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti

Comments: Mercury by CVAA if performed


VALIDATION FINDINGS WORKSHEET **Technical Holding Times**

All circled dates have exceeded the technical holding time. <u>Y N N/A</u> Were all samples preserved as applicable to each method ? <u>Y/N N/A</u> Were all cooler temperatures within validation criteria?

Method:	200.8		245.7				
Parameters:	Se		Hg				
Technical holding ti	180 Days		Hg 180 28 Days				
Sample ID	Sampling date	Analysis date	Analysis date	Analysis date	Analysis <u>date</u>	Analysis date	Qualifier
1-3, 5-10	04/22/14	06/10/15	414 Days				J/R/P (det) (H)
4	04/23/14	06/10/15	413 Days				J/R/P (det) (H)
1-3, 5-10	04/22/14			06/15/15	419 Days		J/R/P (det) (H)
4	04/23/14			06/15/15	418 Days		J/R/P (det) (H)
	· · · · · · · · · · · · · · · · · · ·						

VALIDATION FINDINGS WORKSHEET **ICP Interference Check Sample**

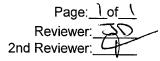
METHOD: Trace Metals (EPA SW 846 Method 6010/6020/7000)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Y/N/N/A

Were ICP interference check samples performed as required? Y N/N/A

Were the AB solution percent recoveries (%R) within the control limits of 80-120%?

LEVEL IN ONLY:


Were recalculated results acceptable? See Level IV Recalculation Worksheet for recalculations.

Y N N/À

#	Date	ICS Identification	Analyte	Finding	Associated Samples	Qualifications
		ICSA/AB		The ICP interference check sample was not performed by the laboratory. The laboratory used a reaction chamber with mixed gases as well as internal equations to compensate for any interferents.		Text
		······		l		
			- · · · · · · · · · · · · · · · · · · ·			
			· · · · · · · · · · · · · · · · · · ·			

Comments:

VALIDATION FINDINGS WORKSHEET Blanks

METHOD: Trace metals (EPA SW 846 Method 6010/7000)

#	Date	Blank ID	Analyte	Finding	Associated Samples	Qualifications
Ш		ССВ	Hg	Closing CCB was not performed	All	Text
\square						
\vdash						
\vdash				······		
H						
\square						
\vdash						
┢─┤						
Ц						
\square				······································		
H				······		
H						

Comments:____

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

Page:_	(
Reviewer:	JD _
2nd Reviewer:	9

METHOD: Trace metals (EPA SW 846 Method 6010/7000)

Rease see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was a matrix spike analyzed for each matrix in this SDG?

<u>YN N/A</u>
 <u>YN N/A</u>
 Was a matrix spike an
 <u>YN N/A</u>
 Were matrix spike per

Were matrix spike percent recoveries (%R) within the control limits of 80-120? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken.

Were all duplicate sample relative percent differences (RPD) \leq 20% for samples?

Y<u>NN/A</u>W **,EVEL IV ONLY:**

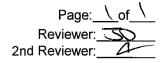
<u>/N N/A</u>

Were recalculated results acceptable? See Level IV Recalculation Worksheet for recalculations.

#	MS/MSD ID	Matrix	Analyte	MS %Recovery	MSD %Recovery	RPD (Limits)	Associated Samples	Qualifications
	8/9	Tissue	Hg	121	121		7	Jdet/A (det) (HM)
片		1	l					
\parallel								
┠─┤	<u></u>						·····	
$\left \right $								
\square								
					ļ			
	····	L	l		L		L	

Comments:

VALIDATION FINDINGS WORKSHEET Internal Standards (ICP-MS)


Page:_	<u>1_of_1_</u>
Reviewer:	30
2nd Reviewer:	9

METHOD: Metals (EPA SW 846 Method 6020C)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". $\frac{V'N}{N/A}$ Were all internal standard percent recoveries within 30-120% of the intensity of the internal standard in the initial calibration standard? $\frac{V'N}{N/A}$ If the response to either of the above questions is no, were the samples reanalyzed as required ?

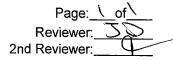
#	Date	Internal Standard	Associated Metals	%R (I imits)	Associated Samples	Qualifications
		Sc (45) [1]	Se	160.8 (30-120)	1	J/UJ/A (det)
		Sc (45) [1]	Se	159.8 (30-120)	2	J/UJ/A (det)
		Sc (45) [1]	Se	151.5 (30-120)	3	J/UJ/A (det)
		Sc (45) [1]	Se	144.0 (30-120)	4	J/UJ/A (det)
		Sc (45) [1]	Se	144.1 (30-120)	5	J/UJ/A (det)
		Sc (45) [1]	Se	146.0 (30-120)	6	J/UJ/A (det)
		52(45)[1]	Se	156.0(30-120)	7	JIUJIA (det)
					······································	

VALIDATION FINDINGS WORKSHEET Initial and Continuing Calibration Calculation Verification

METHOD: Trace Metals (See cover)

An initial and continuing calibration verification percent recovery (%R) was recalculated for each type of analysis using the following formula:

 %R = Found_x 100
 Where,
 Found = concentration (in ug/L) of each analyte measured in the analysis of the ICV or CCV solution


 True
 True = concentration (in ug/L) of each analyte in the ICV or CCV source

					Recalculated	Reported	
Standard ID	Type of Analysis	Element	Found (ug/L)	True (ug/L)	%R	%R	Acceptable (Y/N)
	ICP (Initial calibration)						
ICN	ICP/MS (Initial calibration)	Se	106ppm	looppm	1067.R	22	Y
300 17:51	CVAA (Initial calibration)	Hg	1080 ppt	(000ppt	108%.P	NR	\mathcal{T}^{1}
	ICP (Continuing calibration)						
Car	ICP/MS (Continuing calibration)	Se	103ppm	losppm	(03%R	NR	y
(CCV 18:54	CVAA (Contining calibration)	Hay	1110 807	locoppi	1119.R	NP	L
	GFAA (Initial calibration)						
	GFAA (Continuing calibation)						

Comments:

LDC #: 30197134a

VALIDATION FINDINGS WORKSHEET Level IV Recalculation Worksheet

METHOD: Trace Metals (EPA SW 846 Method 6010/6020/7000)

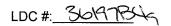
Percent recoveries (%R) for an ICP interference check sample, a laboratory control sample and a matrix spike sample were recalculated using the following formula:

 %R = Found_x 100
 Where, Found = Concentration of each analyte measured in the analysis of the sample. For the matrix spike calculation, Found = SSR (spiked sample result) - SR (sample result).

 True
 True = Concentration of each analyte in the source.

A sample and duplicate relative percent difference (RPD) was recalculated using the following formula:

RPD = <u>|S-D|</u> x 100Where,S = Original sample concentration(S+D)/2D = Duplicate sample concentration


An ICP serial dilution percent difference (%D) was recalculated using the following formula:

 %D = <u>|I-SDR|</u> x 100
 Where, I = Initial Sample Result (mg/L)

 I
 SDR = Serial Dilution Result (mg/L) (Instrument Reading x 5)

Sample ID	Type of Analysis	Element	Found / S / I (units)	True / D / SDR (units)	Recalculated	Reported %R / RPD / %D	Acceptable (Y/N)
N	ICP interference check						
18:12	Laboratory control sample	149	1130 ugia	1000 yla	1137.R	1137.R	T
MS 15:05	Matrix spike	Se	(SSR-SR)	60 .79 sglg	106%8	106%.e	
tur 12:55	Duplicate	Se	1.668vg/g	1.613 vg/g	3%.PPD	3%, RRD	1
	ICP serial dilution						

Comments: _____

VALIDATION FINDINGS WORKSHEET **Sample Calculation Verification**

Page:_	<u>\of \</u>
Reviewer:	30
2nd reviewer:	

METHOD: Trace Metals (EPA SW 846 Method 6010/6020/7000)

(YNNN YNN YNN	I/A Have results I/A Are results w I/A Are all detect ed analyte results for _	w for all questions answered "N". Not appl been reported and calculated correctly? thin the calibrated range of the instrument ion limits below the CRDL?	s and within the line	ear range of the IC	
Concentra	ation = <u>(RD)(FV)(Dil)</u> (In. Vol.)	Recalculation:			
RD FV In. Vol. Dil	 Raw data concel Final volume (ml Initial volume (m Dilution factor 		9		
#	Sample ID	Analyte	Reported Concentration (ع(م)	Calculated Concentration ((((()	Acceptable (Y/N)
	1	Se	1.891	1.891	5)
	2	He	0.1387	0.1387	
	3	Se	1.59	1.59	
	4	(tc,	0-1524	0.1524	
	2	Se	2-01	2-01	
	6	ltq	0.1846	0.1846	
	1	Se	1.613	1.613	4
		·····			
		······································			
				····-	

Note:

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	City of San Diego SWBH Study

LDC Report Date: May 9, 2016

Parameters: Wet Chemistry

Validation Level: Level IV

Laboratory: Physis Environmental Laboratories, Inc.

Sample Delivery Group (SDG): 1504003-002

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
SWHB-26-P	31962	Tissue	04/22/14
SWHB-26-M	31963	Tissue	04/22/14
SWHB-27-SBB	31966	Tissue	04/23/14
SWHB-27-CH	31967	Tissue	04/23/14
SWHB-27-P	31969	Tissue	04/23/14
SWHB-30-SBB	31972	Tissue	04/23/14
SWHB-30-BP	31974	Tissue	04/23/14
SWHB-27-SBBDUP	31966	Tissue	04/23/14

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with Final Quality Assurance Project Plan, Regional Harbor Monitoring Program, San Diego, California (August 2013) and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review (January 2010). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Percent Lipitds by Gravimetric Percent Solids by Standard Method 2540B

All sample results were subjected to Level IV data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- BC The initial calibration (ICAL) curve did not meet method-specified criteria.
- CH High continuing calibration verification (CCV) recovery. Analytical results may be biased high.
- DL The analyte concentration was between the method detection limit (MDL) and the reporting limit (RL).
- FB The analyte was detected in the sample and its associated field blank and the concentration detected in the sample is less than five times the concentration detected in the blanks.
- H Holding time.
- HD Potential analytical imprecision.
- HL High LCS recovery. Analytical results may be biased high.
- HM High MS recovery. Analytical results may be biased high.
- HP High certified reference material (CRM) recovery. Analytical results may be biased high.
- HV High initial calibration verification (ICV) recovery. Analytical results may be biased high.
- LC Low CCV recovery. Analytical result may be biased low.
- LL Low LCS recovery. Analytical result may be biased low.
- LM Low MS recovery. Analytical result may be biased low.
- LP Low CRM recovery. Analytical result may be biased low.
- LS Low Surrogate recovery. Analytical results may be biased low.
- LV Low ICV recovery. Analytical result may be biased low.
- NC Calibration verification standard concentrations were outside the calibration range.
- NQ There is lack of QC for this analyte.
- RB The analyte was detected in the sample and its associated equipment blank and the concentration detected in the sample is less than five times the concentration detected in the blank.
- TD The dissolved metals concentration is significantly higher than the total metal concentration.
- *# Unusual problems found with the data. The number following the asterisk
 (*) will indicate the section in the validation report where a description of
 the problem can be found.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met with the following exceptions:

Sample	Analyte	Total Time From Sample Collection Until Analysis	Required Holding Time From Sample Collection Until Analysis	Flag	A or P
SWHB-26-P SWHB-26-M	Percent solids	402 days	180 days	J (all detects)	Р
SWHB-27-SBB SWHB-27-CH SWHB-27-P SWHB-30-SBB SWHB-30-BP	Percent solids	401 days	180 days	J (all detects)	Ρ
SWHB-26-P SWHB-26-M	Percent lipids	408 days	180 days	J (all detects)	Р
SWHB-27-SBB SWHB-27-CH SWHB-27-P SWHB-30-SBB SWHB-30-BP	Percent lipids	407 days	180 days	J (all detects)	Ρ

II. Initial Calibration

All criteria for the initial calibration of each method were met.

III. Continuing Calibration

Continuing calibration frequency and analysis criteria were met for each method when applicable.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicates (MSD) analyses were not required by the method.

VII. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

VIII. Standard Reference Material

Standard reference materials (SRM) were analyzed as required by the method. The results were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Sample Result Verification

All sample result verifications were acceptable.

All analytes reported below the reporting limit (RL) and above the minimum detection limit (MDL) were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG 1504003-002	Analyte reported below the RL and above the MDL	J (all detects)	А

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected in this SDG.

Due to holding time exceedance and results reported below the RL and above the MDL, data were qualified as estimated in seven samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Sample results that were found to be estimated (J) are usable for limited purposes only. Based upon the data validation all other results are considered valid and usable for all purposes.

City of San Diego SWBH Study Wet Chemistry - Data Qualification Summary - SDG 1504003-002

Sample	Analyte	Flag	A or P	Reason (Code)
SWHB-26-P SWHB-26-M SWHB-27-SBB SWHB-27-CH SWHB-27-P SWHB-30-SBB SWHB-30-BP	Percent solids	J (all detects)	Ρ	Technical holding time (H)
SWHB-26-P SWHB-26-M SWHB-27-SBB SWHB-27-CH SWHB-27-P SWHB-30-SBB SWHB-30-BP	Percent lipids	J (all detects)	Ρ	Technical holding time (H)
SWHB-26-P SWHB-26-M SWHB-27-SBB SWHB-27-CH SWHB-27-P SWHB-30-SBB SWHB-30-BP	Analyte reported below the RL and above the MDL	J (all detects)	A	Sample results verification (DL)

City of San Diego SWBH Study Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG 1504003-002

No Sample Data Qualified in this SDG

City of San Diego SWBH Study Wet Chemistry - Field Blank Data Qualification Summary - SDG 1504003-002

No Sample Data Qualified in this SDG

	LDC #: <u>36197B6</u>	VALIDATION COMPLETENESS	WORKSHE
--	-----------------------	-------------------------	---------

Level IV

Date: <u>4210</u> Page: <u>(of)</u> Reviewer: <u>50</u> 2nd Reviewer:

Laboratory: Physis Environmental Laboratories, Inc.

SDG #: 1504003-002

METHOD: (Analyte) Percent Lipids (Gravimetric), Percent Solids (SM2540B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

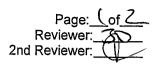
	Validation Area		Comments
I.	Sample receipt/Technical holding times	SW	4/22-23/14
П	Initial calibration	A	
111.	Calibration verification	A	
IV	Laboratory Blanks	A	
v	Field blanks	2	
VI.	Matrix Spike/Matrix Spike Duplicates	N	Not Rea
VII.	Duplicate sample analysis	A	うしつ
VIII.	Laboratory control samples	A	SRM
IX.	Field duplicates	N	
Х.	Sample result verification	A	
xi	Overall assessment of data	A	

Note: A = Acceptable

IF

N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank

υ	= Duplicate
Т	B = Trip blank
E	B = Equipment blank


ET

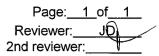
SB=Source blank OTHER:

7

	Client ID	Lab ID	Matrix	Date
1	SWHB-26-P	31962	Tissue	04/22/14
2	SWHB-26-M	31963	Tissue	04/22/14
3	SWHB-27-SBB	31966	Tissue	04/23/14
4	SWHB-27-CH	31967	Tissue	04/23/14
5	SWHB-27-P	31969	Tissue	04/23/14
6	SWHB-30-SBB	31972	Tissue	04/23/14
7	SWHB-30-BP	31974	Tissue	04/23/14
8	#30P			
9				
10				
11				
12				
13				
14				
Note	s:			

VALIDATION FINDINGS CHECKLIST

Method: Inorganics (EPA Method See Cover)				
Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
All technical holding times were met.				
Cooler temperature criteria was met.	/			
II. Calibration				· · · · · · · · · · · · · · · · · · ·
Were all instruments calibrated daily, each set-up time?				
Were the proper number of standards used?			/	
Were all initial calibration correlation coefficients ≥ 0.995?			\langle	
Were all initial and continuing calibration verification %Rs within the 90-110% QC limits?			/	
Were titrant checks performed as required? (Level IV only)	/			
Were balance checks performed as required? (Level IV only)			/	
III. Blanks				
Was a method blank associated with every sample in this SDG?	(
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.		/		
IV. Matrix spike/Matrix spike duplicates and Duplicates				
Were a matrix spike (MS) and duplicate (DUP) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD or MS/DUP. Soil / Water.	/			
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the 75-125 QC limits? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken.			/	
Were the MS/MSD or duplicate relative percent differences (RPD) \leq 20% for waters and \leq 35% for soil samples? A control limit of \leq CRDL(\leq 2X CRDL for soil) was used for samples that were \leq 5X the CRDL, including when only one of the duplicate sample values were \leq 5X the CRDL.	/			
V. Laboratory control samples				
Was an LCS anaylzed for this SDG?	/			
Was an LCS analyzed per extraction batch?	<			
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the 80-120% (85-115% for Method 300.0) QC limits?	/			
VI. Regional Quality Assurance and Quality Control				
Were performance evaluation (PE) samples performed?			_	
Were the performance evaluation (PE) samples within the acceptance limits?			_	ł

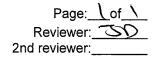

VALIDATION FINDINGS CHECKLIST

Page: <u>2of</u> Reviewer: <u>3</u>10 2nd Reviewer:

Validation Area	Yes	No	NA	Findings/Comments
VII. Sample Result Verification				
Were RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?	/			
Were detection limits < RL?				
VIII. Overall assessment of data				
Overall assessment of data was found to be acceptable.				
IX. Field duplicates				
Field duplicate pairs were identified in this SDG.		1		
Target analytes were detected in the field duplicates.				
X. Field blanks				
Field blanks were identified in this SDG.		\boldsymbol{c}		
Target analytes were detected in the field blanks.				

LDC #: 3297B6

VALIDATION FINDINGS WORKSHEET Sample Specific Analysis Reference



All circled methods are applicable to each sample.

Sample ID	Parameter // / / / / / / / / / / / / / / / / /
(-7)	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO (2 solids) (Z Lipids)
Acia	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
AC:8	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4 (States) SLipids
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
-	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
····	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH_TDS_CI_F_NO ₃ _NO ₂ _SO ₄ O-PO ₄ _Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS_CI_F_NO ₃ _NO ₂ _SO ₄ O-PO ₄ _Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS_CI_F_NO ₃ _NO ₂ _SO ₄ O-PO ₄ _Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS_CI_F_NO ₃ _NO ₂ _SO ₄ O-PO ₄ _Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄

Comments:___

VALIDATION FINDINGS WORKSHEET **Technical Holding Times**

All circled dates have exceeded the technical holding time. $\underline{M'N}$ Were all samples preserved as applicable to each method ? $\underline{M'N}$ Were all cooler temperatures within validation criteria?

Method:		SM2540B		Gravimetric			
Parameters:		Percent Solids		Percent Lipids			
<u>Technical holding ti</u>	me:	1 Days		365 Days	<u> </u>		
Sample ID	Sampling date	Analysis date	Analysis date	Analysis date	Analysis date	Analysis date	Qualifier
1-2	04/22/14	05/29/15	402 Days				J/R/P (det) (H)
3-8	04/23/14	05/29/15	401 Days				J/R/P (det) (H)
1-2	04/22/14			06/04/15	408 Days		J/UJ/P (det) (H)
3-8	04/23/14			06/04/15	407 Days		J/UJ/P (det) (H)

LDC #: 369786

VALIDATION FINDINGS WORKSHEET Level IV Recalculation Worksheet

Page: _of Reviewer: 30 2nd Reviewer:

METHOD: Inorganics, Method ______

Percent recoveries (%R) for a laboratory control sample and a matrix spike sample were recalculated using the following formula:

 $%R = Found \times 100$ Where, Found = True

concentration of each analyte measured in the analysis of the sample. For the matrix spike calculation, Found = SSR (spiked sample result) - SR (sample result).

True = concentration of each analyte in the source.

A sample and duplicate relative percent difference (RPD) was recalculated using the following formula:

RPD = <u> S-D </u> x 100	Where,	S =		Original sample concentration
(S+D)/2		D =	•	Duplicate sample concentration

Sample ID	Type of Analysis	Element	Found / S (units)	True / D (units)	Recalculated %R / RPD	Reported	Acceptable (Y/N)
SRM	Laboratory control sample	%Lipids	(1.72%	10.4%	113%8	113%.E	Z
N	Matrix spike sample		(SSR-SR)				
000	Duplicate sample	% Solids	23.0%	22.9%	0 % RD	D%RPD	y

Comments: ______

LDC i	#: <u>369786</u>		VALIDATION FINDINGS WORKSHEET Sample Calculation Verification		
METH	IOD: Inorganics, Metho	d See Cover			
Y N Y N V N Comp recalc	<u>N/A</u> Have results w <u>N/A</u> Are results w <u>N/A</u> Are all detections ound (analyte) results f	g the following equation:	ts?repc	brted with a positi	ve detect were
#	Sample ID	Analyte	Reported Concentration (%)	Calculated Concentration (2/-)	Acceptable (Y/N)
		% solids	22.9	22.5	y y
	2	1/2 Lipids	6.11	6.0	
	3	% solids	22.9	22.9	J
	4	7-Lipids	3113	3.10	Y*
	2	% Solids	22	22	3
	6	% Lipids	5.22	5.22	3
		%-solids	21.8	21.8	Y
┣					
┣					
╟					
 					
┣┡					
╟					

•••

Note:____

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	City of San Diego SWBH Study
LDC Report Date:	May 9, 2016
Parameters:	Polychlorinated Biphenyls as Congeners
Validation Level:	Level IV
Laboratory:	Physis Environmental Laboratories Inc.

Sample Delivery Group (SDG): 1504003-002

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
SWHB-26-M	31963	Tissue	04/22/14
SWHB-27-SBB	31966	Tissue	04/23/14
SWHB-27-P	31969	Tissue	04/23/14
SWHB-30-CH	31973	Tissue	04/23/14
SWHB-06-CH-Small	31989	Tissue	04/22/14
SWHB-06-M	31992	Tissue	04/22/14
SWHB-22-SP	32017	Tissue	04/21/14
SWHB-27-SBBMS	31966MS	Tissue	04/23/14
SWHB-27-SBBMSD	31966MSD	Tissue	04/23/14
SWHB-27-SBBDUP	31966DUP	Tissue	04/23/14

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with Final Quality Assurance Project Plan, Regional Harbor Monitoring Program, San Diego, California (August 2013) and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines (CLPNFG) for Superfund Organic Methods Data Review (June 2008). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Biphenyls (PCBs) as Congeners by Environmental Protection Agency (EPA) SW 846 Method 8270D

All sample results were subjected to Level IV data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- BC The initial calibration (ICAL) curve did not meet method-specified criteria.
- CH High continuing calibration verification (CCV) recovery. Analytical results may be biased high.
- DL The analyte concentration was between the method detection limit (MDL) and the reporting limit (RL).
- FB The analyte was detected in the sample and its associated field blank and the concentration detected in the sample is less than five times the concentration detected in the blanks.
- H Holding time.
- HD Potential analytical imprecision.
- HL High LCS recovery. Analytical results may be biased high.
- HM High MS recovery. Analytical results may be biased high.
- HP High certified reference material (CRM) recovery. Analytical results may be biased high.
- HV High initial calibration verification (ICV) recovery. Analytical results may be biased high.
- LC Low CCV recovery. Analytical result may be biased low.
- LL Low LCS recovery. Analytical result may be biased low.
- LM Low MS recovery. Analytical result may be biased low.
- LP Low CRM recovery. Analytical result may be biased low.
- LS Low Surrogate recovery. Analytical results may be biased low.
- LV Low ICV recovery. Analytical result may be biased low.
- NC Calibration verification standard concentrations were outside the calibration range.
- NQ There is lack of QC for this analyte.
- RB The analyte was detected in the sample and its associated equipment blank and the concentration detected in the sample is less than five times the concentration detected in the blank.
- TD The dissolved metals concentration is significantly higher than the total metal concentration.
- *# Unusual problems found with the data. The number following the asterisk
 (*) will indicate the section in the validation report where a description of
 the problem can be found.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met with the following exceptions:

Sample	Compound	Total Days From Sample Collection Until Extraction	Required Holding Time (in Days) From Sample Collection Until Extraction	Flag	A or P
SWHB-26-M SWHB-06-CH-Small SWHB-06-M	All TCL compounds	402	365	J (all detects) UJ (all non-detects)	Ρ
SWHB-27-SBB SWHB-27-P SWHB-30-CH	All TCL compounds	401	365	J (all detects) UJ (all non-detects)	Р
SWHB-22-SP	All TCL compounds	403	365	J (all detects) UJ (all non-detects)	Р

II. GC/MS Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at the required frequency.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

A curve fit, based on the initial calibration, was established for quantitation. The coefficient of determination (r^2) was greater than or equal to 0.990 with the following exceptions:

Date	Compound	r ²	Associated Samples	Flag	A or P
05/27/15	PCB-169	0.98733282	All samples in SDG 1504003-002	UJ (all non-detects)	A

Average relative response factors (RRF) for all compounds were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all compounds with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
06/12/15	PCB-126 PCB-128 PCB-156 PCB-180 PCB-169 PCB-170 PCB-189 PCB-194 PCB-206	41 36 53 35 72 31 74 64 60	All samples in SDG 1504003-002	J (all detects) UJ (all non-detects)	А

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all compounds with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
06/13/15	PCB-126 PCB-128 PCB-177 PCB-156 PCB-169 PCB-170	30 22 26 27 24 25	SWHB-30-CH SWHB-06-CH-Small SWHB-06-M SWHB-22-SP	J (all detects) UJ (all non-detects)	A

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates/Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Compound	MS (%R) (Limits)	MSD (%R) (Limits)	Flag	A or P
SWHB-27-SBBMS/MSD (SWHB-27-SBB)	PCB-018	166 (50-150)	250 (50-150)	NA	-
SWHB-27-SBBMS/MSD (SWHB-27-SBB)	PCB-153	33 (50-150)	165 (50-150)	J (all detects)	A
SWHB-27-SBBMS/MSD (SWHB-27-SBB)	PCB-138	-	170 (50-150)	J (all detects)	А

Relative percent differences (RPD) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Compound	RPD (Limits)	Flag	A or P
SWHB-27-SBBMS/MSD (SWHB-27-SBB)	PCB-018	40 (≤25)	NA	-
SWHB-27-SBBMS/MSD (SWHB-27-SBB)	PCB-099 PCB-101 PCB-118 PCB-128 PCB-138 PCB-153 PCB-153 PCB-180	41 (≤25) 28 (≤25) 51 (≤25) 28 (≤25) 87 (≤25) 130 (≤25) 40 (≤25)	J (all detects) J (all detects)	A

Duplicate (DUP) sample analysis was performed on an associated project sample. Relative percent differences (RPD) were within QC limits with the following exceptions:

DUP ID (Associated Samples)	Compound	RPD (Limits)	Flag	A or P
SWHB-27-SBBDUP (SWHB-27-SBB)	PCB-028 PCB-044 PCB-070	29 (≤25) 41 (≤25) 26 (≤25)	J (all detects) J (all detects) J (all detects)	A

VIII. Laboratory Control Samples/Certified Reference Materials

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits with the following exceptions:

LCS ID (Associated Samples)	Compound	LCS %R (Limits)	LCSD %R (Limits)	Flag	A or P
31945-BS1/BS2 (All samples in SDG 1504003-002)	PCB-018	-	61 (70-130)	J (all detects) UJ (all non-detects)	Р
	PCB-028	-	60 (70-130)	J (all detects) UJ (all non-detects)	

Relative percent differences (RPD) were within QC limits with the following exceptions:

LCS ID (Associated Samples)	Compound	RPD (Limits)	Flag	A or P
31945-BS1/BS2 (All samples in SDG 1504003-002)	PCB-018 PCB-028 PCB-044	31 (≤25) 30 (≤25) 28 (≤25)	J (all detects) UJ (all non-detects)	Р

Certified reference materials (CRM) were analyzed as required by the method. The results were within QC limits with the following exceptions:

	Compound	%R (Limits)	Associated Samples	Flag	A or P
31953-CRM1	PCB-018	59 (60-140)	All samples in SDG 1504003-002	UJ (all non-detects)	Р

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Internal Standards

All internal standard areas and retention times were within QC limits.

XI. Compound Quantitation

All compound quantitations were within validation criteria.

All compounds reported below the reporting limit (RL) and above the minimum detection limit (MDL) were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG 1504003-002	Compound reported below the RL and above the MDL	J (all detects)	A

XII. Target Compound Identifications

All target compound identifications were within validation criteria.

XIII. System Performance

The system performance was acceptable.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to holding time exceedance, initial calibration r^2 , ICV and continuing calibration %D, MS/MSD %R and RPD, DUP RPD, LCS/LCSD %R and RPD, CRM %R, and results below the RL and above the MDL, data were qualified as estimated in seven samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Sample results that were found to be estimated (J) are usable for limited purposes only. Based upon the data validation all other results are considered valid and usable for all purposes.

City of San Diego SWBH Study Polychlorinated Biphenyls as Congeners - Data Qualification Summary - SDG 1504003-002

				T
Sample	Compound	Flag	A or P	Reason (Code)
SWHB-26-M SWHB-06-CH-Small SWHB-06-M SWHB-27-SBB SWHB-27-P SWHB-30-CH SWHB-22-SP	All TCL compounds	J (all detects) UJ (all non-detects)	Ρ	Technical holding time (H)
SWHB-26-M SWHB-27-SBB SWHB-27-P SWHB-30-CH SWHB-06-CH-Small SWHB-06-M SWHB-22-SP	PCB-169	UJ (all non-detects)	A	Initial calibration (r²) (BC)
SWHB-26-M SWHB-27-SBB SWHB-27-P SWHB-30-CH SWHB-06-CH-Small SWHB-06-M SWHB-22-SP	PCB-126 PCB-128 PCB-156 PCB-180 PCB-169 PCB-170 PCB-189 PCB-194 PCB-206	J (all detects) UJ (all non-detects)	A	Initial calibration verification (%D) (HV)
SWHB-30-CH SWHB-06-CH-Small SWHB-06-M SWHB-22-SP	PCB-126 PCB-128 PCB-177 PCB-156 PCB-169 PCB-170	J (all detects) UJ (all non-detects)	A	Continuing calibration (%D) (CH)
SWHB-27-SBB	PCB-153	J (all detects)	А	Matrix spike/Matrix spike duplicate (%R) (LM)
SWHB-27-SBB	PCB-138	J (all detects)	А	Matrix spike/Matrix spike duplicate (%R) (HM)
SWHB-27-SBB	PCB-099 PCB-101 PCB-118 PCB-128 PCB-138 PCB-153 PCB-180	J (all detects) J (all detects)	A	Matrix spike/Matrix spike duplicate (RPD) (HD)
SWHB-27-SBB	PCB-028 PCB-044 PCB-070	J (all detects) J (all detects) J (all detects)	A	Duplicate sample analysis (RPD) (HD)

Sample	Compound	Flag	A or P	Reason (Code)
SWHB-26-M SWHB-27-SBB SWHB-27-P SWHB-30-CH SWHB-06-CH-Small SWHB-06-M SWHB-22-SP	PCB-018 PCB-028	J (all detects) UJ (all non-detects) J (all detects) UJ (all non-detects)	Ρ	Laboratory control samples (%R) (LL)
SWHB-26-M SWHB-27-SBB SWHB-27-P SWHB-30-CH SWHB-06-CH-Small SWHB-06-M SWHB-22-SP	PCB-018 PCB-028 PCB-044	J (all detects) UJ (all non-detects)	Ρ	Laboratory control samples (RPD) (HD)
SWHB-26-M SWHB-27-SBB SWHB-27-P SWHB-30-CH SWHB-06-CH-Small SWHB-06-M SWHB-22-SP	PCB-018	UJ (all non-detects)	Ρ	Certified reference materials (%R) (LP)
SWHB-26-M SWHB-27-SBB SWHB-27-P SWHB-30-CH SWHB-06-CH-Small SWHB-06-M SWHB-22-SP	Compound reported below the RL and above the MDL	J (all detects)	A	Compound quantitation (DL)

City of San Diego SWBH Study

Polychlorinated Biphenyls as Congeners - Laboratory Blank Data Qualification Summary - SDG 1504003-002

No Sample Data Qualified in this SDG

City of San Diego SWBH Study

Polychlorinated Biphenyls as Congeners - Field Blank Data Qualification Summary - SDG 1504003-002

No Sample Data Qualified in this SDG

VALIDATION	COMPLETENES	S WORKSHEET
------------	-------------	-------------

Level IV

Date: 5/4/16 Page: / of / Reviewer: 9 2nd Reviewer: _____

SDG #: <u>1504003-002</u> Laboratory: <u>Physis Environmental Laboratories</u>, Inc.

LDC #: 36197B31

METHOD: GC/MS Polychlorinated Biphenyls as Congeners (EPA SW 846 Method 8270D)

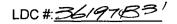
The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I .	Sample receipt/Technical holding times	AIT	
Ш.	GC/MS Instrument performance check	Á	
111.	Initial calibration/ICV	WI m	γ^2 $1 CV = 2 D_0$
IV.	Continuing calibration	TW	$\frac{\gamma^2}{ecv \leq 2070}$
V.	Laboratory Blanks	A	
VI.	Field blanks	N	
VII.	Surrogate spikes	N	
VIII.	Matrix spike/Matrix spike duplicates ///>	in	
IX.	Laboratory control samples / CRM	/w	LOS/D, CRM
Х.	Field duplicates	N	/
XI.	Internal standards	A	
XII.	Compound quantitation RL/LOQ/LODs	A	
XIII.	Target compound identification	Å	
XIV.	System performance	A	
XV.	Overall assessment of data	A	

Note:

57

A = Acceptable N = Not provided/applicable


SW = See worksheet

ND = No compounds detected
R = Rinsate
FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank

SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	SWHB-26-M	31963	Tissue	04/22/14
2	SWHB-27-SBB	31966	Tissue	04/23/14
3	SWHB-27-P	31969	Tissue	04/23/14
4	SWHB-30-CH	31973	Tissue	04/23/14
5	SWHB-06-CH-Small	31989	Tissue	04/22/14
6	SWHB-06-M	31992	Tissue	04/22/14
7	SWHB-22-SP	32017	Tissue	04/21/14
8	SWHB-27-SBBMS	31966MS	Tissue	04/23/14
9	SWHB-27-SBBMSD	31966MSD	Tissue	04/23/14
10	1 Dup	J Oup		d
11	l			
12				
13	0-7118/31945-BI			

VALIDATION FINDINGS CHECKLIST

Page: / of <u>></u> Reviewer: _____ 2nd Reviewer: ______

Method: Semivolatiles (EPA SW 846 Method 8270D)

Validation Area	Yes	No	NA	Findings/Comments
1. Technical holding times				
Were all technical holding times met?		/		1
Was cooler temperature criteria met?			Setteralized setter in	
II: GC/MS Instrument performance check			14. S.	
Were the DFTPP performance results reviewed and found to be within the specified criteria?				
Were all samples analyzed within the 12 hour clock criteria?				
IIIa Initial calibration				
Did the laboratory perform a 5 point calibration prior to sample analysis?	<u> </u>			
Were all percent relative standard deviations (%RSD) < 20% and relative response factors (RRF) within method criteria?				
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of ≥ 0.990 ?	anarch-starte for			
IIIb. Initial Calibration Verification			1999 (1999) 1999 (1999) 1999 (1999)	
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?	/	-		
Were all percent differences (%D) < 30% or percent recoveries (%R) 70-130%?			Zarazete	
IV. Continuing calibration				
Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?			-	
Were all percent differences (%D) \leq 20% and relative response factors (RRF) within method criteria?				
V. Laboratory Blanks				
Was a laboratory blank associated with every sample in this SDG?	\langle			
Was a laboratory blank analyzed at least once every 12 hours for each matrix and concentration?				
Was there contamination in the laboratory blanks? If yes, please see the Blanks validation completeness worksheet.				
VI. Field blanks				
Were field blanks were identified in this SDG?		/		
Were target compounds detected in the field blanks?				
VII. Surrogate spikes				
Were all surrogate percent recovery (%R) within QC limits?			\leq	
If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis?			\checkmark	
If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis performed to confirm %R?				

LDC #: 36197831

VALIDATION FINDINGS CHECKLIST

Page: _______ Reviewer: ______ 2nd Reviewer: ______N//

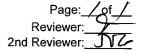
Validation Area	Yes	No	NA	Findings/Comments
VIII. Matrix spike/Matrix spike duplicates			ê CE	
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.				DUP
Was a MS/MSD analyzed every 20 samples of each matrix?	\square			\
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?		/		
IX. Laboratory control samples			n e Pa Sizana	
Was an LCS analyzed for this SDG?	(CRW
Was an LCS analyzed per analytical batch?				·····
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?				
X. Field duplicates				
Were field duplicate pairs identified in this SDG?			-	
Were target compounds detected in the field duplicates?			\land	
XI. Internal standards	4 dontan Arit Arit angle			
Were internal standard area counts within -50% to +100% of the associated calibration standard?				
Were retention times within ± 30 seconds of the associated calibration standard?				
XII. Compound quantitation				
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?				
Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?		-		
XIII. Target compound identification				
Were relative retention times (RRT's) within ± 0.06 RRT units of the standard?				
Did compound spectra meet specified EPA "Functional Guidelines" criteria?				
Were chromatogram peaks verified and accounted for?				
XIV. System performance				
System performance was found to be acceptable.				
XV. Overall assessment of data	l.e			
Overall assessment of data was found to be acceptable.				

VALIDATION FINDINGS WORKSHEET Technical Holding Times

Page:_	<u></u>
Reviewer:	<u>4</u>
2nd Reviewer:	NG

All circled dates have exceeded the technical holding times. <u>Y N N/A</u> Were all cooler temperatures within validation criteria?

METHOD : GC/N	<u>IS BNA (EPA SV</u>	V 846 Method	8270D)				
Sample ID	Matrix	Preserved		Extraction date	Analysis date	Total # of Days	Qualifier
1	Tissues	Y	4-22-12	5-29-15		402	
ス			4-23-12			401	
3							
3 4 5 6			/				
5			4-22-12			402	
6			4-22-12 V 4-21-14 4-23-14			V	
7			4-21-14	V		403	
8			4-23-14			40)	
9					··· •··		
(0	V	V	V	V			
(dotstalo)	*						
			·····				
<u></u>							
							
	· · · · · · · · · · · · · · · · · · ·						
				·	-		
·····							


TECHNICAL HOLDING TIME CRITERIA

Water:Extracted within 7 days, analyzed within 40 days.Soil:Extracted within 14 days, analyzed within 40 days.

LDC #: 36197

VALIDATION FINDINGS WORKSHEET

Initial Calibration

METHOD: GC/MS BNA (EPA SW 846 Method 8270C)

Prease see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Did the laboratory conduct an acceptable 5 point calibration prior to sample analysis?

NWA Were percent relative standard deviations (%RSD) and relative response factors (RRF) within method criteria for all CCC's and SPCC's?

Y/N_N/A Was a curve fit used for evaluation? If yes, what was the acceptance criteria used for evaluation?

N/A Did the initial calibration meet the acceptance criteria?

Were all %RSDs and RRFs within the validation criteria of \leq 30/15 %RSD and \geq 0.05 RRF ?

#	Date	Standard ID	Compound	Finding %RSD (Limit: <u><</u> 30.0/15%)	Finding RRF (Limit: <u>></u> 0.05)	Associated Samples	Qualifications
	5/1/5	ICAL	PCB169	x=0.9873320	P2	M (NO)	VMI/A (BC)
	/ ′	······					
			7				
 							
					l		
		· · · · · · · · · · · · · · · · · · ·					
┣──	·						
┣							
┣							
					1		<u> </u>
						-	
					· · · · · · · · · · · · · · · · · · ·		

LDC #: 3619783/

VALIDATION FINDINGS WORKSHEET Initial Calibration Verification

Page: Reviewer 2nd Reviewer:

METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

(Y ALN/A Was an initial calibration verification standard analyzed after each ICAL for each instrument?

 $\underline{\mathbf{Y}}$ N/N/A Were all %D within the validation criteria of ≤ 30 %D?

#	Date	Standard ID	Compound	Finding %D (Limit: <u><</u> 30.0%)	Associated Samples	Qualifications
	6/12/15	IEV	PCB 126	41	all (dets+ND)	JUN ACHV?
	/		156	36		
			180	35		
			169	72		
		<u> </u>	170			
		······································	189	31 74		
			194	64		1
			206	60		Y
				·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
		· · · · · · · · · · · · · · · · · · ·				

LDC #: 3619733/

VALIDATION FINDINGS WORKSHEET

Continuing Calibration

METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?

Y(N_N/A Were percent differences (%D) ≤20 % and relative response factors (RRF) within the method criteria?

#	Date	Standard ID	Compound	Finding %D (Limit: <u><</u> 20.0%)	Finding RRF (Limit)	Associated Samples	Qualifications
	6/13/15	CCV	POB126	30		4-7 (dots+ND)	-/ul (A (CH)
	/·/		1 128	22			
			177	26			
			156	27			
			169	24 25			
			170	25			
L							
		<u> </u>					
┣──-					· · · · · · · · · · · · · · · · · · ·		
				L			
				1			

LDC #: 36477B3/

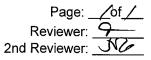
VALIDATION FINDINGS WORKSHEET <u>Matrix Spike/Matrix Spike Duplicates</u>

Page:	<u></u>
Reviewer:	9
2nd Reviewer	JV&

METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.


Was a MS/MSD analyzed every 20 samples of each matrix?

Y IN N/A Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

#	Date	MS/MSD ID	Compound	MS %R (Limits)	MSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
		8/9	PCB018	166 (50-150)	250 (50-19)	()	2(ND)	Jobets/A (HM)
	·		153		165 (,)	()	2(ND) (dets)	JUS A KM)
			138	()	170 ()	()	1	Jdets/A (HM)
			153	()	465 (B)	()		
			018	()	()	40 (<i>≈</i> 257 41 ()	(ND)	(HD)
			099	()	()	4 ()	(dets)	
			101	()	()	28 ()		
			118	()	()	5()		
┠━━┥					()			
			138	()		<u>87 ()</u>		
			153			130 ()		├ ─── │
			1180			AD ()	<u> </u>	lV
		10	PCB028			29 (275)	2 (dets)	-thate A (HO)
			1.044			41 (1)	(a_1)	A HO
			1070)	26 (/)		
				()	()			W
					()			
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
		· · · · · · · · · · · · · · · · · · ·		()	()	()		
				()	()	()	· · · · · · · · · · · · · · · · · · ·	
		l		<u> ()</u>	<u> ().</u>	<u> () </u>		

LDC #:36197831

VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS)

METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was a LCS required?

MN/A Were the LCS/LCSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

#	Date	LCS/LCSD ID	Compound	LCS %R (Limits)	LCSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
		21945-BS1/	PCB018	()	61 (70-130	()	M (Lots+ND)	V/14/P(22)
		<u>/-852</u>		()	60 (1)	()		
			018	()	()	31 (5757		(HD)
		· · · · · · · · · · · · · · · · · · ·	028	()	()	30 ()		
			1044	()	()	28 (1)		
				()	()	()		· · · · · · · · · · · · · · · · · · ·
				()	()	()		
		31953-CPMI	PCB018	59 (60-140)	()	()	M (NO)	JAILA (ZP)
				()	<u> </u>	()		
				()	()	()		
				()		()		
				()		()		
╟						()		
				()		()		·
				()		()		
				()	()	()		
		·		()	()	()		
				()	()	()		
	· · · · · · · · · · · · · · · · · · ·	·····		()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		

LDC: 36197831

Method: PCB congeners (EPA SW 846 Method 8270D)

Calibration Date	Analyte	Standard	(X) Concentration	(Y) Area	(X ²) Conc
5/27/2015	PCB052	1	0.0100	0.0084187	0.00010
		2	0.0250	0.0208292	0.00063
		3	0.0500	0.0374208	0.00250
		4	0.0750	0.0559400	0.00563
		5	0.1000	0.0727386	0.01000
		6	0.2000	0.1473598	0.04000

Linear through the origin

	calculated	Reported
Constant	0.000000	0.0000
X Coefficient(s)	0.737762	0.73776
Correlation Coefficient	0.999867	0.99932
Coefficient of Determination (r^2)	0.999733	

Method: PCB congeners (EPA SW 846 Method 8270D)

Calibration Date	Analyte	Standard	(X) Concentration	(Y) Area	(X ²) Conc
5/27/2015	PCB189	1	0.0100	0.0189185	0.00010
		2	0.0250	0.0407605	0.00063
		3	0.0500	0.0848498	0.00250
		4	0.0750	0.1175805	0.00563
		5	0.1000	0.15908	0.01000
		6	0.2000	0.3488099	0.04000

Linear through the origin

	calculated	Reported
Constant	0.000000	0.0000
X Coefficient(s)	1.698202	1.69821
Correlation Coefficient	0.999112	0.99576
Coefficient of Determination (r^2)	0.998225	

LDC #:3619183

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page:_	of
Reviewer:	9
2nd Reviewer:	NG

METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave.	RRF
$RRF = (A_{x})(C_{is})/(A_{is})(C_{x})$	

Where: ave. RRF = initial calibration average RRF

RRF = continuing calibration RRF

 A_x = Area of compound, C_x = Concentration of compound, A_{is} = Area of associated internal standard

C_{is} = Concentration of internal standard

	1			_	Reported		Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Reference Internal Standard)	Average RRF (initial)	RRF (CC)	RRF (CC)	%D	%D
1	CEV	6/13/15	Phenol (1st internal standard) PCB0 52	100	112.1763	112.1761	12	12
		/ /	Naphthalene (2nd internal standard)		113 3914	113.3995	$\overline{\mathcal{N}}$	
			Fluorene (3rd internal standard)	· · · · · · · · · · · · · · · · · · ·				
			Pentachlorophenol (4th internal standard)					
			Bis(2-ethylhexyl)phthalate (5th internal standard)					
		<u> </u>	Benzo(a)pyrene (6th internal standard)					
2			Phenol (1st internal standard)					
			Naphthalene (2nd internal standard)					
			Fluorene (3rd internal standard)					
			Pentachlorophenol (4th internal standard)					
			Bis(2-ethylhexyl)phthalate (5th internal standard)					
		<u> </u>	Benzo(a)pyrene (6th internal standard)					
3			Phenol (1st internal standard)					
			Naphthalene (2nd internal standard)	·				
			Fluorene (3rd internal standard)					
			Pentachlorophenol (4th internal standard)					
			Bis(2-ethylhexyl)phthalate (5th internal standard)					
		<u> </u>	Benzo(a)pyrene (6th internal standard)					

Comments: <u>Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.</u>

LDC #36197831

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates Results Verification

Page:	_of
Reviewer:	9-
2nd Reviewer:	NG

METHOD: GC/MS PAH (EPA SW 846 Method 8270D)

a

8

The percent recoveries (%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SSC - SC)/SA

Where: SSC = Spiked sample concentration SA = Spike added SC = Sample concentation

RPD = I MSC - MSC I * 2/(MSC + MSDC)

MSC = Matrix spike concentration

MSDC = Matrix spike duplicate concentration

MS/MSD samples:

Compound	Sp Add (1/15	ike ded 3)	Sample Concentration (M ^S /9)	Spiked Concer (1/15		Matrix Percent F		<u>Matrix Spik</u> Percent F		MS/M RPI	
	MS	MSD		MS	_MSD	Reported	_Recalc	Reported	Recalc	Reported	Recalculated
1CB	40.05		2022								
104	- A-										
/											
POBes2	40.04	40.82	19.41	54.18	5863	85	87	94	96	10	10
189	L	L	NO	19.44	45.9	123	122	112	112	9	9
										,	

Comments: <u>Refer to Matrix Spike/Matrix Spike Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.</u>

LDC #:349783/

VALIDATION FINDINGS WORKSHEET Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification

Page:_	<u>∕of</u> ∕
Reviewer:	7
2nd Reviewer:	NZ

METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270D)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SC/SA)

Where: SSC = Spike concentration SA = Spike added

RPD = I LCSC - LCSDC | * 2/(LCSC + LCSDC)

LCSC = Laboratory control sample concentration LCSDC = Laboratory control sample duplicate concentration

LCS/LCSD samples: 31945-BS1/-BS2

Compound	Spike Spike Added Concentration (からん) (からん)		I CS Percent Recovery		LCSD Percent Recovery		L CS/I CSD RPD			
			LCS			Recalc	Reported	Recalc	Reported	Recalculated
7CB052	100	100	91.59	78,24	92	92	78	78	1-6	16
1 189	V	L	91.59 122.02	121.43	122	122	121	121	/	1
/										
· · ·										

Comments: <u>Refer to Laboratory Control Sample/Laboratory Control Sample Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.</u>

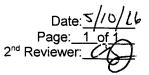
LDC #:3619783

VALIDATION FINDINGS WORKSHEET **Sample Calculation Verification**

Page:_	of
Reviewer:	9
2nd reviewer:	NG

METHOD: GC/MS SVOA (EPA SW 846 Method 8270D)

Y)N N/A $\gamma / N N/A$ Were all reported results recalculated and verified for all level IV samples? Were all recalculated results for detected target compounds agree within 10.0% of the reported results?


- Example: Concentration = $(A_{\star})(I_{\star})(V_{\star})(DF)(2.0)$ $(A_{is})(RRF)(V_{o})(V_{i})(\%S)$ Area of the characteristic ion (EICP) for the A, = compound to be measured Area of the characteristic ion (EICP) for the specific z A_{is} internal standard
- = Amount of internal standard added in nanograms (ng) I,
- Volume or weight of sample extract in milliliters (ml) or V, = grams (g).
- Volume of extract injected in microliters (ul) V, =
- V, = Volume of the concentrated extract in microliters (ul)
- Dilution Factor. Df =
- Percent solids, applicable to soil and solid matrices %S = only.
- 2.0 Factor of 2 to account for GPC cleanup

Sample I.D. ____, PCB05?

 $Conc. = \frac{1/31}{604023^{(0.73776)}(0.73776^{(0.16033)}(0.1000)} \times \frac{1.6033}{(0.1000)} \times \frac{1.603}{(0.1000)} \times \frac{1.603}{($

2.0	= Factor of 2 to accou				
#	Sample ID	Compound	Reported Concentration (<i>INSA</i>)	Calculated Concentration (ハブタ)	Qualification
		DCB052	4.OT		
	-				
	······				
	· · · · · · · · · · · · · · · · · · ·				
					· · · · · · · · · · · · · · · · · · ·
			-		
				<u> </u>	· · · · · · · · · · · · · · · · · · ·
		 		L	

EDD POPULATION COMPLETENESS WORKSHEET

	EDD Process		Comments/Action
<u> </u>	EDD Completeness		
la.	- All methods present?	Ч	
lb.	- All samples present/match report?	Ч	extra sumaples
Ic.	- All reported analytes present?	Ч	•
ld.	10% or 100% verification of EDD?	Ч	
<u>II.</u>	EDD Preparation/Entry	-	
lla.	- Carryover U/J?	Ч	
llb.	- Reason Codes used? If so, note which codes	Ч	Client
llc.	-Additional Information (QC Level, Validator, Date, Validated Y/N, etc.)	N	
	Reasonableness Checks	-	
IIIa.	- Do all qualified ND results have ND qualifier (i.e. UJ)?	Ч	
IIIb.	- Do all qualified detect results have detect qualifier (i.e. J)?	Ч	
<u>IIIc.</u>	- If reason codes used, do all qualified results have reason code field populated?	Ч	
IIId.	-Does the detect flag require changing for blank qualifiers? If so, are all U results marked ND?	NA	
llie.	- Do blank concentrations in report match EDD, where data was qualified due to blank?	ΛA	
lilf.	- Were any results rejected for overall assessment? If so, were results changed to nonreportable?	NIA	
lilg.	 Is the readme complete? If applicable, were edits or discrepancies listed in the readme? 	У	

The LDC job number listed above was entered by <u>&</u>.

Notes: _____

EDD Population Checklist.wpd

The attached zipped file contains three files:

<u>File</u>	<u>Format</u>	<u>Description</u>	is document).
1) Readme_SCCWRP_051016.docx	MS Word 2007	A "Readme" file (th	
 2) PHYSIS SCCWRP SWHS 1504003-001 EDD.xlsx 3) PHYSIS SCCWRP SWHS tissue 1504003-002 EDD 	MS Excel 2007 9.xlsx	<u>SDG</u> 1504003-001 1504003-002	<u>LDC#</u> 36197A 36197B

Although a 100% verification of the EDD was not performed, LDC observed the following discrepancies between hardcopy data packages and the electronic data deliverables:

SDG/File	Analytical Method	Discrepancy	LDC's approach to the discrepancy
All	All	Additional records are included in the EDD for samples not validated by LDC.	LDC made no changes in the EDD.

Please contact Pei Geng at (760) 827-1100 if you have any questions regarding this electronic data submittal.