1 BY MS. WITKOWSKI:

 would that allocation be a load allocation or a waste-load allocation? MR. CARRIGAN: Same objections. THE WITNESS: That's dependent upon whether it's from point source or not. I don't know if there's any policy or guidance that helps us determine that. For example, if the historic discharge came from a large open area, then initially it would be considered a waste-load allocation. But I don't know if that would carry further because once it's in a specific location, it may be considered a point discharge. So it gets cloudy there, and I'm not sure that I can offer any opinion on guidance or policy as to how to determine that specifically. BY MS. WITKOWSKI: Q Have you ever worked on a TMDL that dealt with historic discharges in this way that we've discussed? A No. Q If you were working on a TMDL, hypothetically, if you were working on a TMDL to address these past 	2	Q In the scenario that you just responded to,
5 MR. CARRIGAN: Same objections. 6 THE WITNESS: That's dependent upon whether 7 it's from point source or not. I don't know if there's 8 any policy or guidance that helps us determine that. 9 For example, if the historic discharge came 10 from a large open area, then initially it would be 11 considered a waste-load allocation. 12 But I don't know if that would carry further 13 because once it's in a specific location, it may be 14 considered a point discharge. 15 So it gets cloudy there, and I'm not sure that 16 I can offer any opinion on guidance or policy as to how 17 to determine that specifically. 18 BY MS. WITKOWSKI: 19 Q Have you ever worked on a TMDL that dealt with 10 have you aware of any that have done this? 14 No. Q 15 A No. Q 16 I storic discharges in this way that we've discussed? 17 Q Are you aware of any that have done this?	3	would that allocation be a load allocation or a
 THE WITNESS: That's dependent upon whether it's from point source or not. I don't know if there's any policy or guidance that helps us determine that. For example, if the historic discharge came from a large open area, then initially it would be considered a waste-load allocation. But I don't know if that would carry further because once it's in a specific location, it may be considered a point discharge. So it gets cloudy there, and I'm not sure that I can offer any opinion on guidance or policy as to how to determine that specifically. BY MS. WITKOWSKI: Q Have you ever worked on a TMDL that dealt with historic discharges in this way that we've discussed? A No. Q Are you aware of any that have done this? A No. Q If you were working on a TMDL, hypothetically, 	4	waste-load allocation?
 it's from point source or not. I don't know if there's any policy or guidance that helps us determine that. For example, if the historic discharge came from a large open area, then initially it would be considered a waste-load allocation. But I don't know if that would carry further because once it's in a specific location, it may be considered a point discharge. So it gets cloudy there, and I'm not sure that I can offer any opinion on guidance or policy as to how to determine that specifically. BY MS. WITKOWSKI: Q Have you ever worked on a TMDL that dealt with historic discharges in this way that we've discussed? A No. Q If you were working on a TMDL, hypothetically, 	5	MR. CARRIGAN: Same objections.
 any policy or guidance that helps us determine that. For example, if the historic discharge came from a large open area, then initially it would be considered a waste-load allocation. But I don't know if that would carry further because once it's in a specific location, it may be considered a point discharge. So it gets cloudy there, and I'm not sure that I can offer any opinion on guidance or policy as to how to determine that specifically. BY MS. WITKOWSKI: Q Have you ever worked on a TMDL that dealt with historic discharges in this way that we've discussed? A No. Q Are you aware of any that have done this? A No. Q If you were working on a TMDL, hypothetically, 	6	THE WITNESS: That's dependent upon whether
 For example, if the historic discharge came from a large open area, then initially it would be considered a waste-load allocation. But I don't know if that would carry further because once it's in a specific location, it may be considered a point discharge. So it gets cloudy there, and I'm not sure that I can offer any opinion on guidance or policy as to how to determine that specifically. BY MS. WITKOWSKI: Q Have you ever worked on a TMDL that dealt with historic discharges in this way that we've discussed? A No. Q Are you aware of any that have done this? A No. Q If you were working on a TMDL, hypothetically, 	7	it's from point source or not. I don't know if there's
 from a large open area, then initially it would be considered a waste-load allocation. But I don't know if that would carry further because once it's in a specific location, it may be considered a point discharge. So it gets cloudy there, and I'm not sure that I can offer any opinion on guidance or policy as to how to determine that specifically. BY MS. WITKOWSKI: Q Have you ever worked on a TMDL that dealt with historic discharges in this way that we've discussed? A No. Q Are you aware of any that have done this? A No. Q If you were working on a TMDL, hypothetically, 	8	any policy or guidance that helps us determine that.
 considered a waste-load allocation. But I don't know if that would carry further because once it's in a specific location, it may be considered a point discharge. So it gets cloudy there, and I'm not sure that I can offer any opinion on guidance or policy as to how to determine that specifically. BY MS. WITKOWSKI: Q Have you ever worked on a TMDL that dealt with historic discharges in this way that we've discussed? A No. Q Are you aware of any that have done this? A No. Q If you were working on a TMDL, hypothetically, 	9	For example, if the historic discharge came
12 But I don't know if that would carry further 13 because once it's in a specific location, it may be 14 considered a point discharge. 15 So it gets cloudy there, and I'm not sure that 16 I can offer any opinion on guidance or policy as to how 17 to determine that specifically. 18 BY MS. WITKOWSKI: 19 Q 14 No. 15 Q 16 A 17 to determine that specifically. 18 BY MS. WITKOWSKI: 19 Q Have you ever worked on a TMDL that dealt with 10 historic discharges in this way that we've discussed? 21 A No. 22 Q Are you aware of any that have done this? 23 A No. 24 Q If you were working on a TMDL, hypothetically,	10	from a large open area, then initially it would be
 because once it's in a specific location, it may be considered a point discharge. So it gets cloudy there, and I'm not sure that I can offer any opinion on guidance or policy as to how to determine that specifically. BY MS. WITKOWSKI: Q Have you ever worked on a TMDL that dealt with historic discharges in this way that we've discussed? A No. Q Are you aware of any that have done this? A No. Q If you were working on a TMDL, hypothetically, 	11	considered a waste-load allocation.
 14 considered a point discharge. 15 So it gets cloudy there, and I'm not sure that 16 I can offer any opinion on guidance or policy as to how 17 to determine that specifically. 18 BY MS. WITKOWSKI: 19 Q Have you ever worked on a TMDL that dealt with 10 historic discharges in this way that we've discussed? 21 A No. 22 Q Are you aware of any that have done this? 23 A No. 24 Q If you were working on a TMDL, hypothetically, 	12	But I don't know if that would carry further
15So it gets cloudy there, and I'm not sure that16I can offer any opinion on guidance or policy as to how17to determine that specifically.18BY MS. WITKOWSKI:19Q19Q19Q10Have you ever worked on a TMDL that dealt with20historic discharges in this way that we've discussed?21A22Q23A23A24Q24Q25If you were working on a TMDL, hypothetically,	13	because once it's in a specific location, it may be
 I can offer any opinion on guidance or policy as to how to determine that specifically. BY MS. WITKOWSKI: Q Have you ever worked on a TMDL that dealt with historic discharges in this way that we've discussed? A No. Q Are you aware of any that have done this? A No. Q If you were working on a TMDL, hypothetically, 	14	considered a point discharge.
 to determine that specifically. BY MS. WITKOWSKI: Q Have you ever worked on a TMDL that dealt with historic discharges in this way that we've discussed? A No. Q Are you aware of any that have done this? A No. Q If you were working on a TMDL, hypothetically, 	15	So it gets cloudy there, and I'm not sure that
 BY MS. WITKOWSKI: Q Have you ever worked on a TMDL that dealt with historic discharges in this way that we've discussed? A No. Q Are you aware of any that have done this? A No. Q If you were working on a TMDL, hypothetically, 	16	I can offer any opinion on guidance or policy as to how
19QHave you ever worked on a TMDL that dealt with20historic discharges in this way that we've discussed?21ANo.22QAre you aware of any that have done this?23ANo.24QIf you were working on a TMDL, hypothetically,	17	to determine that specifically.
 historic discharges in this way that we've discussed? A No. Q Are you aware of any that have done this? A No. Q If you were working on a TMDL, hypothetically, 	18	BY MS. WITKOWSKI:
21ANo.22QAre you aware of any that have done this?23ANo.24QIf you were working on a TMDL, hypothetically,	19	Q Have you ever worked on a TMDL that dealt with
 Q Are you aware of any that have done this? A No. Q If you were working on a TMDL, hypothetically, 	20	historic discharges in this way that we've discussed?
 A No. Q If you were working on a TMDL, hypothetically, 	21	A No.
Q If you were working on a TMDL, hypothetically,	22	Q Are you aware of any that have done this?
	23	A No.
²⁵ if you were working on a TMDL to address these past	24	Q If you were working on a TMDL, hypothetically,
	25	if you were working on a TMDL to address these past

Peterson Reporting, Video & Litigation Services

historic discharges, how would you go about determining 1 2 who was responsible for those discharges? MR. LEDGER: Vague and ambiguous. 3 I'm not necessarily sure that we THE WITNESS: 4 According to water laws I understand it, water 5 would. quality laws I understand it, and regulations as I 6 understand them, if the pollutant is on your property 7 for any current owner of that property, it's their 8 9 problem. So I'm not sure that we would necessarily 10 address historic discharges unless we were specifically 11 directed by other board members or the executive 12 13 officer. 14 BY MS. WITKOWSKI: So it's possible that if you weren't directed 15 Q to specifically address historic discharges that they 16 could be left unaddressed? 17 They would be the responsibility of the current 18 Α 19 property owner. In that situation would the current property 20 0 owner be responsible for bearing the costs of any 21 22 cleanup or reduction in pollution? 23 MR. CARRIGAN: I just renew my objection --MS. NICHOLS: Calls for a legal conclusion. 24 MR. CARRIGAN: -- to this incomplete con- --25 Peterson Reporting, Video & Litigation Services

and hypothetical and these abstract questions that seem 1 2 to call for an expert opinion. MS. NICHOLS: Did you get my objection? 3 4 MR. CARRIGAN: Go ahead. THE WITNESS: Can you repeat the question? 5 6 Can you read it back, please. MS. WITKOWSKI: 7 (The pending question was read.) Calls for a legal conclusion. 8 MS. NICHOLS: As I understand water law, water 9 THE WITNESS: quality law and regulations, it would be up to them to 10 recoup whatever cost through whatever means legally they 11 12 can. 13 BY MS. WITKOWSKI: Your testimony earlier you characterize 14 Q yourself as an expert in regulatory requirements for 15 16 TMDLs; is that correct? 17 Sure. Α I'd like to -- I just have a few more questions 18 0 for you regarding your testimony earlier about metals in 19 20 Chollas Creek and the TMDL work you've done. 21 If I heard your testimony correctly, you talked about how difficult it is to remove dissolved metals 22 from water once those metals are in the water; is that 23 24 correct? 25 That's right. Α

Peterson Reporting, Video & Litigation Services

Isn't it also possible to achieve pollution 1 Q reduction by directly addressing the sources of those 2 3 pollution? 4 Yes, it is. Α Are you aware of any current source reduction 5 Q 6 measures regarding copper? There is a brake-pad partnership that I'm 7 Α Yes. aware of, a group of brake-pad manufacturers, and a 8 9 large number of other interested stakeholders, including 10 Cities and the County, that are working to replace the copper component in brakes with other components. 11 12 Are you aware of recently passed legislation in Q 13 California regarding copper in brake pads? 14 Α I'm not aware of it, no. Thank you. That's all the questions that I 15 Q 16 have today. Thank you very much. 17 Α Okay. 18 I have a few follow-ups. Everybody MR. DART: 19 had their first turn? Just have a few questions, 20 Mr. Tobler. 21 THE WITNESS: Sure. 22 23 FURTHER EXAMINATION 24 BY MR. DART: 25 Do you have Master Exhibit 2 in front of you, Q Peterson Reporting, Video & Litigation Services

1 the DTR?

5

13

25

5

2 A I do.

Q Would you turn to Page 3-9 within the BAE
4 section?

A Okay.

Q I believe you testified earlier today that you
 drafted this section?

8 A I didn't give it a complete review, but the 9 short review that I did give it made me feel that I 10 authored all of it, if not most of it.

11 Q Okay. Do you see the second paragraph under 12 Section 3.4?

A Yes.

14QCould you read the first sentence to yourself.15MS. TRACY: Counsel, what page were you on?16MR. DART: 3-9, Section 3.4, the second

¹⁷ paragraph.

18 MS. TRACY: Beginning "Pollutants"?

19 MR. DART: Yes.

20 BY MR. DART:

Q That sentence reads, "Pollutants generated at the BAE Systems facility as a result of shipyard activities include" -- and then it goes on to list a number of pollutants.

Do you see that sentence?

Peterson Reporting, Video & Litigation Services

A

1

Yes, I do.

What shipyard activities are included within 2 0 that reference of shipyard activities within that з 4 sentence? 5 The building, construction, and maintenance of Α 6 ships. 7 With respect to the pollutant PCB referenced in Q 8 that sentence, are there any other shipyard activities that you were including in that reference of shipyard 9 10 activities? 11 MS. TRACY: Objection; vague and ambiguous. 12 Calls for expert opinion. 13 THE WITNESS: PCBs are frequently associated 14 with transformers. And transformers are frequently 15 found on shipyards. 16 BY MR. DART: 17 So was it your assumption there were Q 18 transformers on BAE's facilities that led to the 19 generation of PCBs? 20 Α Yes. 21 What documents, if any, was that assumption 0

22 based upon?

4

A Our tour. I didn't see transformers -- or I
 don't recall seeing transformers particularly noted in
 any of the files or reports, but it was four or five

Peterson Reporting, Video & Litigation Services

years ago. I may have seen it in reports also. But it 1 2 was the tour. The tour where you -- maybe I didn't understand 3 Q your testimony. You did or you didn't see transformers 4 5 on your tour of the BAE facility? Α. 6 I don't recall. So going back again, were there any documents 7 0 8 that you reviewed? 9 I may have. I don't recall specifically. I'm Α assuming you were going to ask about transformers. 10 Maybe you should ask that question; I will answer it. 11 MR. CARRIGAN: He'll get at it. 12 13 THE WITNESS: Okay. 14 BY MR. DART: Did you talk to anyone at BAE Systems about 15 0 16 transformers on their property? 17 Α No. So is it safe to assume that you did not ask 18 0 them whether their transformers contained dielectric 19 20 fluid or something else? 21 That is a safe assumption. Α 22 If you turn to Page 3-10, the next page --0 23 Α Okay. 24 -- the second bullet point, would you please Q 25 read that and let me know if you drafted that as well?

Peterson Reporting, Video & Litigation Services

Α

I believe I did.

Does that statement in the second bullet point, 2 0 does that relate to the sentence we were talking about 3 on Page 3-9 regarding PCBs generated at the BAE Systems facility as a result of shipyard activities? 5 6 Yeah, it's certainly associated. Α 7 0 How so? Well, in the paragraph immediately preceding 8 Α it, I note PCBs as some of the pollutants generated in 9 shipyard activities. And then immediately following it, 10 I noted the location of where the elevated PCB 11 12 concentrations are. So assuming just a normal read of documents, 13 14 they would be associated with each other. From the allegation in that second bullet point 15 Q that there are certain elevated concentrations of PCBs 16 within the boundary of BAE Systems' leasehold, did you 17 use that as support for your statement that PCBs are 18 generated from the BAE Systems as a result of shipyard 19 20 activities? 21 Α Yes. 22 Are you familiar with when PCBs were outlawed? Q 23 Α No. So as part of your investigation as reflected 24 0 25 here in Section 3.4, did you not consider the time

Peterson Reporting, Video & Litigation Services

frames in which PCBs were outlawed? 1 2 I didn't. Α MS. TRACY: Objection; lacks foundation. 3 THE WITNESS: I didn't consider that, no. 4 5 BY MR. DART: We talked earlier or another counsel asked you 6 Q earlier about the Water Board Notice of Violations --7 no, I'm sorry. I think that was City of San Diego 8 9 Notice of Violation. Are you familiar with the Water Board Notice of 10 11 -Violations? 12 Yeah, it's a tool that we use. Α Is the discharger provided a copy of that 13 Q 14 Notice of Violation when it's issued by the Water Board? 15 Α Yes. I have no further questions. Thank you, 16 0 17 Mr. Tobler, for your time. 18 Thank you. Α 19 MR. CARLIN: I have no further questions 20 either. 21 MR. LEDGER: I have just a couple, Mr. Tobler. 22 23 FURTHER EXAMINATION 24 BY MR. LEDGER: 25 Go to --Q

Peterson Reporting, Video & Litigation Services

1	MR. CARRIGAN: Do you want to ask from there?
2	Just a couple? Okay. Go ahead.
3	MR. LEDGER: I yeah, I think so.
4	BY MR. LEDGER:
5	Q Go to 305, which is from the report from the
6	tour force.
7	A 305?
8	Q Yes.
9	A Yes.
10	Q Go to the third page, please.
11	A Okay.
12	Q Do you see the SWM heading?
13	A Yes.
14	Q Now, on the third paragraph down, it states,
15	"Trash and sheen has been observed many times at SW4
16	discharges into Bay. Shaun Halvax has video footage of
17	the discharge from SW4 with report."
18	My question is, is it true that the information
19	in that first sentence in that third paragraph was
20	something told to you and not something you personally
21	observed?
22	MR. DART: Objection; lacks foundation. Calls
23	for speculation and
24	MS. TRACY: Objection. The witness has already
25	testified he did not prepare this, so he has no

1 knowledge.

2 MR. LEDGER: Okay. Let me rephrase it. 3 BY MR. LEDGER:

4 Q You were present during the two tours, correct? 5 A Yes.

6 Q And did you observe any trash or sheen at the 7 SW4 outlet from the BAE System leasehold?

A I don't know which one the SW4 is, but -- so J'm looking here. And I did find it actually a couple of pages later on the first map. Looks like it's Picture No. 5. So I'm going to take a look at that and see if that jogs my memory.

13 And I honestly can't recall any trash or oil 14 sheen or really anything much about that specific 15 outfall.

MR. LEDGER: Okay. That's all the questions
 that I have. Thanks.

MS. NICHOLS: I have a few follow-up questions.
 If you don't mind, I will ask from here as well.

20 THE WITNESS: Please.

21

22

FURTHER EXAMINATION

23 BY MS. NICHOLS:

Q With respect to that same Exhibit 305, in the list of tour participants on SAR156648, at the bottom it

Peterson Reporting, Video & Litigation Services

1 says "City of San Diego-Port."

Do you recall for certain, Mr. Tobler, whether 2 there was any representative of the Port present for 3 4 this tour? 5 Α I don't recall. Do you recall specifically whether the Port 6 Q 7 ever received notice of this tour? In fact, I don't believe they did at that 8 No. Α 9 The Port wasn't included. point. And how is it that you recall that? 10 Q Just -- I just recall it because I know that 11 Α that at that point, the Port wasn't included, and it 12 But it's not 13 would be odd to ask them to the tour. 14 outside of possibilities, I suppose. They may have been interested. They may have heard about it. 15 So the Port typically was not notified by the 16 Q 17 Regional Board when its enforcement inspections of this 18 sort were occurring, correct? MS. TRACY: Objection; lacks foundation. 19 Calls 20 for speculation. 21 It's too broad a general THE WITNESS: 22 statement. 23 BY MS. NICHOLS: 24 In your experience? Q An inspection on NASSCO's site, for example, or 25 Α

Peterson Reporting, Video & Litigation Services

BAE's site, for example?

Yes, with respect to this site. 2 Q I don't believe that the Port would 3 Α Yeah. necessarily be called to an inspection. We wouldn't --4 we would certainly ask for a site representative to join 5 us, but we wouldn't typically ask the governing entity 6 that's leasing the facilities to the inspection. 7 And do you recall who was present from 8 Okay. 0 9 ARCO during this inspection? 10 I know there was someone from ARCO, BP, Α correct, but I don't recall the name. 11 Do you recall who was present on behalf of 12 0 13 NASSCO for the inspection? I don't recall any of the names specifically. 14 Α Okay. Up at the top of the first page of 15 0 Exhibit 305, the right -- top right-hand corner, your 16 17 handwriting that appears to say, incompletely, 18 "enforcement" and then a 03-0137 -- is that .05? 19 That's right. Α And what does that refer to, if you know? 20 Q 21 Yes, that's my handwriting. I recognize it Α because I make my sevens with the little thing in them. 22 That's a file number, and that's a file that we 23 24 would put it in the general to-file basket, and then the people that file would put it in the appropriate folder. 25

Peterson Reporting, Video & Litigation Services

1 Q So at the Regional Board, is there currently a 2 file identified as 03-0137.05?

A There may be. I don't know if they changed it since the electronic documents were all made available. They may have a new file number or just -- just eliminated this one. Or it may still be in existence. I don't know.

Q And with respect to Brennen Ott, you mentioned previously, what was his role at the Regional Board?

10 A He was a Water Resource Control Engineer that 11 came to work for the Board for only a couple of years. 12 I took over responsibilities that he had for the -- this 13 shipyard enforcement order.

He only had it for a short time prior to me.
And he left abruptly. He gave two weeks' notice and
didn't quite make that -- his mother unfortunately
passed away during that time. And so it was something
of an abrupt handoff.

19 Q So he left of his own accord?

25

20 **A Yes**.

Q You mentioned that he currently is in
 Bakersfield?

A That's the last I know of it. But that's as of
 probably three years ago that I had heard.

Q If you were to attempt to locate him now, how

Peterson Reporting, Video & Litigation Services

1 would you go about doing that?

I know his brother. I could probably -- I 2 Α loosely know his brother. I believe he still works at 3 Caltrans. He also worked at the Regional Board. His 4 name is Brian Ott. 5 He also moved from the Regional Board probably 6 a year or two after Brennen did and went to Caltrans, 7 and we kept in e-mail correspondence, just typical kind 8 of, you know, send a silly e-mail now and again. 9 But that's fallen off in the last three years 10 11 and I haven't really talked to him since then. But I 12 could probably get ahold of him. MS. NICHOLS: Thank you very much. I have no 13 14 further questions at this time, subject to my prior 15 reservation of rights. MS. TRACY: I have no further questions. 16 17 MS. WITKOWSKI: No further questions. 18 MR. CARLIN: No further questions. MR. DART: I actually do have one quick, very 19 20 quick. 21 MR. CARRIGAN: You do this every time. 22 MR. DART: I know. 23 That's all right. MR. CARRIGAN: 24 MS. TRACY: We're not going to invite you to 25 the party anymore.

Peterson Reporting, Video & Litigation Services

1	FURTHER EXAMINATION
2	
	BY MR. DART:
3	Q Very quickly.
4	A Please.
5	Q Mr. Tobler, if you would turn to 3-22, it's
6	again within the BAE Systems section, the portion of the
7	table at the top.
8	A Okay.
9	Q Do you see in the Source column some references
10	to RWQCB inspection?
11	A Yes.
12	Q Are you familiar with that source?
13	A Yes. That's the Regional Water Quality Control
14	Board Inspection. So that would come from an inspection
15	report.
16	Q And is that inspection report or a document
17	related to it sent to the alleged discharger?
. 18	A Not necessarily, if it's accompanied and let
19	me start over.
20	If the inspection reveals that there are
21	significant enough violations in order to warrant a
22	Notice of Violation or any other type of enforcement
23	action, then, yes, a copy of the inspection report would
24	go to the discharger, including the enforcement order,
25	but a copy of an inspection report does not always

Ĵ

1	necessarily go to go out to the discharger. It in
2	that case it would just go into our files.
3	Q If it doesn't meet the criteria that you laid
4	out?
5	A If it's not yeah. Right.
6	MR. DART: No further questions.
7	MR. CARRIGAN: Same stipulation as yesterday
8	MS. NICHOLS: Yes.
9	MR. CARRIGAN: for the transcript?
10	MR. DART: Yes.
11	MR. CARLIN: Agreed.
12	MR. LEDGER: Yes.
13	MR. DART: Stipulated.
14	(Whereupon, the deposition was adjourned
15	at 4:18 p.m.)
16	(Whereupon, the following stipulation
17	was previously agreed to by counsel:
18	"MR. DART: I propose that we relieve
19	the court reporter of the duty to
20	maintain custody of the original;
21	"Instead, when it's completed, I propose that
22	the transcript is sent to counsel for
23	the deponent, Mr. Carrigan, who shall
24	immediately send it to the witness for
25	review;

ł

1		"The witness shall have 30 days to	
2	• •	review the transcript, make any changes	
3		that she deems necessary, and sign the	
4		transcript, after which Mr. Carrigan	
5		will promptly notify all counsel when	
6		the transcript has been signed and	
7		provide an errata or a copy of the	
· 8		transcript that reflects the changes;	
9		"And, if the witness fails to sign the	
10	· ·	transcript within 30 days, the unsigned	
11		deposition shall be used in lieu of that	
12		and be available for use for all	
13		purposes.	
14		"Anything else?	
15		"MR. CARRIGAN: So stipulated.	
16		"MR. CARLIN: So stipulated.)"	
17	•		
18			
19			
20			
21			
22			
23			•
24			
25			

2	I, BENJAMIN TC	OBLER, declare under penalty
3	of perjury under the laws	of the State of California
4	that the foregoing is true	e and correct; that I have read
5	my deposition and have mad	de the necessary corrections,
6	additions or changes to my	y answers I deem necessary.
7		
8	Executed on this	day of,
9	2010.	
10		
		BENJAMIN TOBLER
11		
12		
1,3		
14		
15		· · · ·
16		
17		
18		
19	•	
20		
21		
22		
23		
24		
25		

ł

Peterson Reporting, Video & Litigation Services

1	
2	CERTIFICATE
3	
4	I, BRIDGET L. MASTROBATTISTA, Certified Shorthand
5	Reporter for the State of California, do hereby certify:
6	
7	That the witness in the foregoing deposition was by me
8	first duly sworn to testify to the truth, the whole
9	truth and nothing but the truth in the foregoing cause;
10	that the deposition was taken by me in machine shorthand
11	and later transcribed into typewriting, under my
12	direction, and that the foregoing contains a true record
13	of the testimony of the witness.
14 15	Dated: This 2^{0} day of 1^{10} , 20^{11} at San Diego,
16	California.
17	
18	\bigwedge
19	
20	Kalla -
21	BRIDGET L. MASTROBATTISTA
22	C.S.R. NO. 7715, RPR, RMR
23	
24	
25	

ŗ

······				
	129:10,23 130:8	agreed 29:6 133:17	72:24 75:22 85:20	66:16 75:7 76:13
<u>A</u>	130:11 138:10	165:11,17	86:23 102:1 104:3	76:15 102:17
Abatement 1:5 2:5	146:9	ahead 6:19,22	112:3 116:2	103:25 108:8
9:15,21 10:3	additions 132:6	56:11 74:5 78:9	132:23,24 134:16	116:1 120:10,14
110:5,6 123:23	167:6	85:20 119:13	144:19 148:1	120:16,23 124:21
124:5,20 125:18		124:22 134:16	155:11	120.10,25 124.21
abbreviation 9:20	address 26:25 51:7	143:2 151:4 158:2	answered 75:7	asking 33:25 67:16
ability 9:1 16:7	83:18 147:19			71:7,8,10 75:3,4,5
able 9:5 14:8,9	149:25 150:11,16	ahold 163:12	103:25 116:1	
22:13 36:12,12	addressed 27:1	aim 83:18	120:17,23 124:21	134:7,8,18 147:4 147:5
105:20,23 107:9	73:13 79:10 148:9	aisles 19:2	answers 8:20 167:6	
aboveground 88:11	addressing 93:12	Alan 132:1 142:16	anticipated 29:12	aspect 118:12
abrupt 162:18	97:25 98:8 99:14	allegation 156:15	anticipating 7:19	assemble 48:7
abruptly 162:15	103:24 104:14	allegations 41:6,25	anybody 13:16	119:21
absorbed 35:2	107:14 152:2	43:6 50:5	42:17 47:14,25	assembled 65:16
abstract 151:1	adjacent 123:2	alleged 164:17	48:2 54:4 97:12	124:13,15 142:1
academic 32:12	adjourned 165:14	Allen 4:9 107:25	99:7 102:9 104:17	assertions 56:6
accept 58:12	adjust 65:11	116:10	105:5,10 115:2	assessment 29:20
acceptable 127:4	administrative 15:9	allocated 148:22	139:15	30:11,16 39:25
accepted 58:15,23	27:14,22 45:2,4,5	allocation 84:13	anymore 25:24	40:6 67:3 89:3
accompanied	45:9,14 46:13,17	86:3 149:3,3,4,11	163:25	assign 25:22 84:1
142:12 164:18	46:21,25 47:8,17	allocations 84:11	anything's 118:14	assigned 45:6
accompanying 9:16	47:21 48:8,14,18	85:22,23 86:1,8,9	anyway 19:9	147:14
accord 162:19	59:24 65:16,18	86:12,15,17	appear 47:19	assignment 34:23
accurate 54:2 96:2	113:12,15,21	allowable 84:1	109:19	141:21
96:3 117:19	114:11,20 125:16	92:11,16	APPEARANCES	assignments 34:25
138:17	128:12	Alo 46:10 47:1	3:14:2	129:20
accurately 7:6	admit 49:2	Alps 22:8	appears 21:19 47:6	assimilate 83:21
achieve 152:1	adopted 65:15	alternative 40:14	86:12 161:17	assist 41:7
achieved 91:1	Adopting 81:24	ambiguous 51:22	appendices 125:16	assistant 23:12
acreage 51:7,13	adoption 65:14	62:9,18 63:6 73:7	appointed 34:21	44:10
action 41:2 120:1	90:19	79:3 106:24 122:3	35:4,10,23	assisted 82:18,20
164:23	advanced 65:2	122:8 147:24	appreciate 17:7	associate 106:4
actively 81:19	advice 8:7	148:10 150:3	57:7 63:20 71:18	116:12
activities 52:23 54:9	advise 6:16 49:4	154:11	90:9	associated 79:13
54:12,18,23	advised 46:8	Amended 5:14	appropriate 8:18	94:9 98:14 154:13
131:13 135:25	advisory 13:10 35:9	13:14	15:11 161:25	156:6,14
153:23 154:2,3,8	44:13 48:21 49:8	amendment 81:24	appropriately	assume 7:24 45:12
154:10 156:5,10	49:12	90:19	100:3 110:4	54:15 68:18
156:20	advocating 34:9	American 22:5	approval 65:17,18	101:19 108:24
activity 78:16 79:13	aerial 76:3,16 77:7	amount 18:24 78:21	approximately	113:16 119:4
145:19	138:8,12,14,21	84:3 100:13,19	36:18	155:18
actual 37:14 41:5	affect 8:22 9:1	147:8 148:22	Aquatic 38:23	assumed 10:14 44:5
63:4	25:24	amounts 148:24	39:21,24	46:11 53:25 102:4
add 115:9 127:17	afternoon 64:7 93:8	analyses 39:7 80:10	ARCO 146:2 161:9	assumes 124:7
127:18,19,20	126:5 146:23	analysis 38:24	161:10	134:11
141:3	agencies 23:23	39:13,22 40:3,9	area 67:11 68:9,15	assuming 47:5
added 37:23 57:1,4	ago 11:7,11 12:13	40:12 54:11 81:7	73:24 74:7,15	57:22 110:11
96:18 113:17	17:11 18:22 66:20	81:18	149:10	155:10 156:13
126:24 127:10,12	77:23 87:17 94:7	analyze 80:9	areas 15:25 69:4,5	assumption 61:20
127:13,14,15,16	101:19 113:16,25	and/or 32:8 74:7	89:5,25 90:1,4,5	61:22,23,24
128:18,24 130:11	113:25 155:1	136:14	123:18	154:17,21 155:21
133:14,19	162:24	Annual 70:20	Aristotle 78:11	Attachment 13:23
addition 82:17	agree 8:7 27:12	anodized 80:1	Arts 20:22	14:5 90:12 92:7
122:5 129:5	29:8 59:20 60:24	answer 7:5,17,19,20	Ash 3:16	attain 84:2
131:25	61:2 64:25 69:11	7:23 8:5,7 39:2	aside 18:11 27:4	attempt 162:25
additional 98:22	71:3 72:13 88:20	46:8 51:25 56:9	75:24 122:9	attention 55:6
113:9 123:22	89:2	60:4 62:4 63:13	asked 29:14 42:24	56:18 57:8 133:2
124:3 128:22	agreeable 60:13	63:14 72:20,21,22	46:2 47:9 56:10	137:1
127.3 120.22				
	•			

.

. **.**.

169

Peterson Reporting, Video & Litigation Services

	52.24.25.52.15	102.2 112.22	125.14 17 126.1 5	budgeted 149.22
attorney 8:6 11:5	52:24,25 53:15	103:2 113:23	135:14,17 136:1,5	budgeted 148:22
11:17 12:3,25	54:9,9,10,13,23	114:11 115:1	136:9,23 137:16	building 154:5
14:9 63:21 146:24	55:22,25 56:5,14	117:13 120:16	139:15,21 141:19	built 121:23
attorneys 2:12 6:7	56:15 57:9 58:19	122:19 127:14	142:8,11 145:11	bullet 88:7 155:24
63:17 107:25	58:22 59:3,4,14	132:17,19 133:4,7	150:12 157:7,10	156:2,15
audience 32:15	61:21 63:3 87:4	136:13 137:17	157:14 160:17	bundled 66:6,12
author 50:18 94:7	107:7 112:7 134:2	141:16 144:16,25	162:1,9,11 163:4	burden 148:23
132:20	134:9,10,19,24,25	146:7 153:6 156:1	163:6 164:14	business 22:2
authored 32:6 70:2	135:23 139:25	160:8 161:3 163:3	Boat 96:6,10,14	B-E-N-J-A-M-I-N
80:15 94:2,6	153:3,22 155:5,15	bell 106:3,5	99:8 105:10	6:13
126:23 133:13	156:4,17,19 159:7	bells 94:16	bodies 25:10,15	B-R-E-N-N-E-N
137:18 153:10	164:6	Benjamin 1:13 2:11	75:21	142:15
authoring 94:10	BAE's 52:2 59:6,21	5:2,14 6:1,13	body 25:10,12,24	B.A 21:21
137:21	61:18,19,20,25	13:15 167:2,10	43:1 147:9,21	·
authority 46:12	154:18 161:1	bermable 89:25	borders 67:14	<u> </u>
automatic 18:12	Bakersfield 141:20	berming 89:21	bottom 88:8 92:7	C 168:2,2
available 103:23	162:22	berms 88:10	159:25	cacophony 60:11
162:4 166:12	ballpark 91:16,18	Berth 67:24,24 68:4	boundary 156:17	California 1:1,14
Average 70:20	banks 89:18,19	68:5 95:13,13	bounded 67:23	2:1,15,17 3:6,11
avoid 60:11	barely 91:18	best 7:5 9:1,5 14:24	box 4:5 16:22 17:13	3:16,21 4:6,10,15
aware 10:20 18:7	Barker 42:20	18:7 45:24 46:1,9	Boyle 22:17,20,21	4:20 70:11 88:3
18:11 20:4 28:4,9	110:24,25 111:6,7	91:17 105:17	23:7,9,14	152:13 167:3
48:16 49:7 56:15	111:11	129:15 137:17,24	BP 38:15 52:19	168:5,16
75:24 76:15,19,21	barnacle 79:6	138:3	99:15,18 100:2,9	call 70:11 106:12
	based 18:23 27:18	better 101:5	101:15 102:10,14	128:5 151:2
77:11,20 79:1,20	37:9 61:10 73:4	beyond 20:21 59:8	123:23 124:4,15	called 84:10 115:20
89:13 97:24	75:12 76:23 83:22	123:13 132:6	130:1 161:10	161:4
101:17,18 105:18		147:23	brake 78:20,20	calls 56:7 69:19
113:9,14 122:24	88:19 89:1,7,9	bicycle 22:3	152:13	72:16 76:8 85:19
123:3,8,22 124:3	90:3 106:20 114:8		brakes 152:11	86:10 88:24 91:2
124:8 129:4 134:1	123:12 124:13	big 21:24	brake-pad 152:7,8	115:3 119:7
134:8,18,22,22	145:2 154:22	biggest 69:13		132:22 134:13
135:2,5,7,25	basically 66:25 84:6	binder 46:22	braking 78:22	
139:3,7,10,19	85:21 86:4	bioaccumulation	Brandon 142:8	143:10 147:22
140:1 149:22	basin 41:17 68:12	30:25	break 9:8 49:16	150:24 151:8
152:5,8,12,14	90:20 146:1,4,6,8	Birmingham 4:19	63:22,25 92:19	154:12 158:22
a.m 2:14	basis 82:11 118:18	bit 79:16 87:9	93:2 125:22	160:19
	126:15 128:8	130:16 131:8,9	146:16	Caltrans 163:4,7
<u> </u>	129:10 132:17	black 138:18	Brendan 142:5,11	Campbell 38:9
B 2:15 3:10,11 5:12	138:9	block 19:19	Brennen 129:25	98:14 104:7,22
5:12	basket 161:24	board 1:1 2:1 4:3,4	141:16 142:13,14	109:15,25 110:8
Bachelor 20:22,23	baton 63:21	5:15 9:14 11:19	142:15 162:8	112:7,9 116:9
back 16:25 22:10	bay 27:4 61:18	14:20 19:24 21:9	163:7	117:24
33:8 36:4 37:7,11	67:21 69:10,17	21:11,16 23:1,8	Brian 3:20 93:9	cancelled 11:12
42:2,5,25 43:1,14	74:23 80:8,11,15	23:17,25 25:8	163:5	CAO 9:18,20 10:2,8
47:1 48:10 59:12	80:16 89:20 131:2	27:2,16,17,18	Bridget 1:19 2:16	10:17 20:4 36:7
60:6,10 61:5 62:6	132:18 158:16	28:13 31:15 32:16	168:4,21	36:23 37:2 38:23
63:9 65:23 85:1	bearing 150:21	33:4,10,12,22	brief 137:9	39:17 48:22 49:25
104:25 106:19,22	began 35:3	34:12 35:16 36:1	briefly 86:16	99:9 101:15
107:23 111:11,17	beginning 93:22	43:5 48:17 49:4	bring 13:2,5,7	102:11,15
118:24 121:10	103:14 118:24	55:8,12 65:4,13	broad 64:15 160:21	CAOs 96:15
128:4 151:6 155:7	142:4 153:18	65:21 70:10 75:13	Broadway 3:5,21	capacity 23:18 25:3
background 20:19	begins 132:9	82:22 97:12 99:7	broke 35:9	28:7 83:13 88:2
67:18	behalf 13:8 161:12	104:18 105:6,11	broken 56:19	captures 74:18
backup 144:23	believe 19:6 27:6	113:10 117:18	brother 163:2,3	Cardiff-By-The-S
Bacteria 26:4 27:21	35:8 37:3 45:21	118:2 119:5,17	brought 95:18	4:20
BAE 2:12 3:8 6:7	50:8 58:22 87:22	120:5 121:12,23	BROWN 4:18	careful 12:2
38:3 50:5,21	89:10,20 94:6,15	128:11 129:13,22	budget 147:8,9,13	carefully 61:6
51:19 52:16,23,23	95:19,20 102:18	130:4 131:19	148:21	Carlin 3:4 5:6 60:17
, , -				
· · · · · · · · · · · · · · · · · · ·	•		· · · · · · · · · · · · · · · · · · ·	

Peterson Reporting, Video & Litigation Services

· · · · · · · · · · · · · · · · · ·				
63:24 64:6,8	57:22 66:13	Chee 5:21 47:1	134:17	134:2,9
67:17,19 69:22,24	119:22 165:2	87:13	clean 18:2 19:1,5,8	communication
71:7,10,15,23	cases 68:13,15	chemical 77:24	cleaned 19:7 74:4	134:5
72:2,10,19,23	catch 146:1,4,5,8	chemistry 30:5	cleanup 1:5 2:5	communications
73:10 75:10 76:11	categories 114:8	122:13	5:15 9:14,14,21	12:8 14:22 20:12
76:12,22 77:3,17	categorize 114:6	Chevron 38:13	10:3 19:1 20:5	20:16 47:15 49:8
77:22 78:9,12	category 14:5	52:18 99:15	27:3 28:5,13	49:11 117:11
	cause 168:9	100:18,21,25	34:18,21 35:5,9	134:23 135:22
79:11 82:3 84:23		145:19 146:2,2	35:11,19,24 40:15	companies 97:25
85:3,13,14 86:5	CB-1 136:15,19	chlordane 72:5	49:8 101:5,6	98:25 99:14
86:18 87:7,11,24	139:8	Chollas 5:18 26:3	110:5,6 123:12,23	104:21
89:12 91:6 92:21	cc'd 13:11			
92:24 102:23	Center 4:10	27:21 35:1,3	124:5,20 125:17	Company 3:3,14
157:19 163:18	CEQA 31:12 32:8	43:20,23,25 44:1	150:22	96:6,10,14 99:8
165:11 166:16	32:23 33:19 66:4	44:4,21,23 64:19	clear 57:18 108:11	104:6,22 105:10
Carlisle 41:22	66:8,14,16,25	65:23 66:1,4,6,22	145:1	112:12 118:3,9,20
42:17 55:5 104:19	67:5	67:4,13,20,23	clearly 7:14 39:2	comparison 99:4
105:12 110:18	certain 20:4 25:16	68:3,18,19,22	76:6	compile 54:4
111:5,11,19	43:16 69:12 73:12	69:8,16 70:2,25	client 12:3	compiled 141:24
112:19,21 118:4,8	75:14 79:4 81:21	71:3 72:4,13 73:2	clientele 23:15	compiling 45:13
118:18 129:8,9,17	84:3 90:3 119:22	73:4,6,9,14 74:11	closest 52:15	complaints 59:6
129:21 130:7	123:4 156:16	74:25 75:2,5,12	cloudy 149:15	complete 22:13 65:3
135:19 137:17,20	160:2	76:1,14,24 77:5	clutter 15:1 19:9	74:14 153:8
142:16	certainly 21:11 99:4	77:10,12,15,16,17	Coalition 146:25	completed 36:19
Carlisle's 131:21,24	106:17 115:22	77:24 78:16 79:14	Coastal 70:12	65:7 73:14 75:16
carpenter 22:7	138:19 156:6	80:7,14 81:2 82:1	Coastkeeper 4:13	110:3 165:21
carried 10:15 100:7	161:5	84:20 85:18 90:22	4:14 146:25	completely 87:3
Carrigan 4:5 6:15	certainty 69:20	96:1 102:18,22	colleague 44:9	completion 65:17
6:19,22 12:2,5,9	certification 89:2	103:3,6 122:16,21	colleagues 44:6	compliance 24:20
13:7,9 21:23	certifications 21:13	122:23,25 123:2,6	128:1	90:7,16,25 91:16
28:25 31:21 32:2	Certified 168:4	123:19 151:20	collected 78:24	91:18,22 92:10
45:17,19 56:7,11	certify 168:5	choose 6:9	collection 74:19	complied 24:13
60:1,15,20,24	cetera 23:15	Chris 92:21	89:25	component 79:5
61:4 62:1 67:16	chain-link 79:25	CHRISTIAN 4:5	collective 121:22	152:11
69:18 71:5,8,12	80:1 101:9 143:7	circumstances	collects 68:9 73:25	components 152:11
71:20 72:6,15,21	Chan 82:19	48:16	color 138:19	computer 14:17,17
78:1 85:20 86:22	chance 42:22 63:18	cities 23:22 24:12	column 59:13 164:9	17:2 19:3,17
87:19 88:22 91:3	63:18 78:10 125:4	25:1 32:18,21	combination 73:23	119:1
92:18 93:2,22	137:11 140:19	152:10	88:11	computers 15:1
95:8,10 101:22	change 62:25 86:25	citizen 22:5,5 59:5	come 22:15 37:7	16:15
102:1,9 103:25	changed 98:21	City 3:19 24:24	43:14 51:1 58:9	con 150:25
104:25 106:25	104:7 113:17,20	38:7 93:9,12	65:23 74:1 78:19	concentrations
110:22 115:3	162:3	94:21 97:5,13,16	79:18 85:24 86:2	156:12,16
116:1,22,25 119:7	changes 8:17,19	97:19 107:14	100:2 101:6	concerned 141:25
119:11 120:16,23	109:3,14,16	115:12,17,21	112:10 120:7	concerning 35:16
121:4 122:3,8	120:22 166:2,8	133:15,20,22	133:19 164:14	112:10 115:20
123:25 124:7,21	167:6	134:1,8,19,23,24	comes 61:15 67:20	117:12 118:8,15
125:3,6,25 132:19	chapter 93:11 94:14	135:5,7,9,10,18	79:17 86:3 91:23	120:11
134:6,16 138:2	94:15 96:20 99:19	135:21,22 136:6	comfortable 9:20	concluded 43:8
146:18 147:22,25	104:17,24 105:6,9	136:11 139:12,12	coming 11:7 23:8	110:4
148:11,17 149:5	chapters 94:24	139:16,20 157:8	107:5	concluding 59:1
150:23,25 151:4	97:25 98:2,8	160:1	commencing 2:13	conclusion 85:19
155:12 158:1	107:14	City's 24:19	comment 8:21	86:10 100:2 107:6
163:21,23 165:7,9	characteristics	civil 20:24 22:11	comments 42:18,21	110:13,16 143:11
165:23 166:4,15	68:23	122:9	65:5,10,12	150:24 151:8
carry 149:12	characterize 112:9	clarification 33:14	commercial 69:3	conclusions 109:19
cars 78:23	147:7 151:14	75:3	common 25:15	109:22 111:9
case 7:1,20 12:23	cheap 80:2	clarify 10:18 33:14	commonly 75:11	conclusively 144:22
15:5 16:18 47:5	checking 110:17	50:16 108:14	communicated	conduct 54:18
13.3 10.10 47.3				
	l		1 .	I

•

171

٦

Peterson Reporting, Video & Litigation Services

	· · · · · · · · · · · · · · · · · · ·			
conducted 52:23	155:19	109:19,24 118:20	craig 41:22 42:17	Dario 8 0:16
54:9 136:1 140:2	containment 88:10	Corporation 112:12	55:5 100:6 104:19	Dart 3:10 5:5 6:5,6
	contains 68:11	correct 12:7 27:7	105:12 110:18	6:15,18,20,23
146:10		29:5 37:10,17	111:5,19 112:19	12:6 13:7,13,18
confer 72:17	168:12	-	129:8 131:21,24	15:19 28:16 29:4
conference 8:11	contaminant 26:19	43:19 58:17,24		31:25 32:5 45:18
confident 17:6	26:20 88:2	59:1 64:11 66:2	132:4 135:19	
confidential 20:13	contaminants 26:16	67:21,22 68:1	137:17 138:4,7	45:23 49:20,22
configuration	83:19 136:2 139:8	82:4,8 83:16	139:18 142:15	51:24 56:12 60:3
136:15	contamination	84:12,17 85:15,21	created 96:24	61:9 62:15 63:1
confirm 35:19	136:11	90:15,18,21,24	credibility 8:22	63:15 64:2 93:3
47:24 67:13 71:10	content 12:8	95:22,23 99:16	credit 78:7,9	134:13,15 135:1
71:21,23	contents 20:16	101:16 104:14	creek 5:18 26:3	152:18,24 153:16
confirmation 102:4	context 20:12	107:13 109:9	27:21 43:20,23,25	153:19,20 154:16
confirmed 17:3	continue 125:13	110:6 111:15,24	44:1,4,21,23	155:14 157:5
confirms 76:5	147:20 148:4	114:14 119:5	64:19 65:23 66:1	158:22 163:19,22
confused 86:11	continued 4:2 148:6	120:15 122:17,21	66:4,22 67:4,13	164:2 165:6,10,13
112:14	contribute 39:7	130:22 140:4	67:20,23 68:3,18	165:18
confusion 106:20	75:25 78:17	147:15 151:16,24	68:19,22 69:8,16	dash 117:2,4
112:17	147:20 148:4	159:4 160:18	70:2 72:4,13 73:4	date 36:17 42:7
connection 31:14	contributed 12:1	161:11 167:4	73:6,9,14 74:8,12	90:22
32:16 34:11,19	29:15 39:13	corrections 167:5	74:21,25 75:2,6	dated 5:20 95:13
37:2 38:22 39:17	contributes 69:16	correctly 151:21	75:12 76:1,14,24	168:15
41:24 43:5 44:3	72:13	correspondence	77:5,10,12,16,16	dates 63:3
47:15 51:16 52:9	contribution 77:20	116:15 163:8	77:18,25 78:16	Dave 100:6 110:19
65:9 68:17 81:7	148:6,20,20	corroding 80:2,3	79:15 80:7,14	110:23,24 111:5,6
116:15 117:24	contributions 36:6	cost 91:12 151:11	81:3 82:1 84:20	111:7
122:1	contributor 73:3	costs 150:21	85:18 90:22 96:1	David 42:20
consecutively 36:2	control 1:1 2:1 4:3	counsel 4:4 6:8 8:20	102:18,22 103:3,6	day 7:9 147:1 167:8
consensus 100:5	4:4 9:13 23:20	12:2,9 13:11	122:16,21,23,25	168:15
110:15 111:4,11	24:9 81:25 121:12	43:13 46:7 67:18	123:2,6,19 151:20	days 143:17,24
consider 29:19,21	162:10 164:13	71:11 72:17 102:9	creeks 66:12 71:1	144:12 166:1,10
29:23 30:7,15,24	controlled 88:9	104:16 105:5,9	78:25	dealt 149:19
31:7 33:16 156:25	conversation	108:8 119:18	Crescent 37:21 96:6	December 12:15
157:4	129:16 134:19	121:15 153:15	96:10,14 99:8	decided 22:2
consideration 42:23	conversational	157:6 165:17,22	104:2 105:10	decision 111:16,18
considered 36:15	119:12	166:5	109:8	111:21 decisions 18:20
123:5 149:11,14	conversations 97:15	count 31:21	criteria 165:3 cross-examination	100:5 111:4
consistent 54:16	105:23 106:17	Counties 24:12	108:2	121:12
101:8	128:25 129:3	32:18,21 County 26:2 152:10	CSR 1:20 2:17	decision-making
constituents 75:11	130:7 139:11,16	County's 24:19	cubicle 14:15	46:12
77:21 construction 24:18	139:19,25 converted 114:6	couple 23:4 38:10	cubicles 19:2	declare 167:2
	converted 114.0 convey 74:25	39:4 43:15 52:7	cup 61:17	deem 167:6
24:23,25 31:9,9	conveyance 74:21	57:1 89:22 127:7	curbs 74:19	deems 166:3
32:19,20 33:11		127:7 157:21	current 12:16 16:9	defined 10:8
104:6,22 112:11	copied 47:15,25 copies 15:25 140:12	158:2 159:9	105:16,17 107:15	definitely 73:2
112:12 118:2,9,19 154:5	copper 43:20 71:2	162:11	138:20 148:20	82:20 101:25
consult 43:4	73:13 75:15 78:17	course 112:6 118:11	150:8,18,20 152:5	definition 123:3
consulted 34:3,13	78:19,21 79:2,5,8	121:7 126:20	currently 27:14	definitive 76:4
120:21	79:10 81:25 83:16	courses 21:3,8	35:19 44:10 86:20	107:5
consulting 22:22	85:18 152:6,11,13	court 7:7,12 8:12	162:1,21	degree 22:14 34:5
23:3	copy 13:16,22 15:12	81:22 84:21,25	custody 165:20	97:17 122:9
contacted 117:13	15:15,16 19:15	165:19	Cynthia 132:1	degrees 20:25 21:4
contain 62:21 89:24	80:13 83:1,3	cover 36:25 70:18	C.S.R 168:22	21:20
contained 51:1	134:3 157:13	covered 23:11	51.514K 100.22	delete 14:25 19:3
53:17 57:17 58:23	164:23,25 166:7	84:18 85:16	D	119:1 120:2,3
88:9,11 89:21	corner 161:16	107:12 125:6	D 4:19 5:1	deleted 16:14 18:17
90:4 97:24 121:16		covers 122:10	Daily 24:4	deleting 18:4,5,21
90.497.24 121.10	1 corporate 104.7			
	ł	1	1	1

				······	·
deletion	s 18:12	detrimental 25:17	168:12	118:15,17	draft 9:16,23 42:12
demand	21:25	developed 33:3,21	directive 117:17	Disney 22:18	42:12,18 50:23
densely	69:2,6	34:12 68:18 75:20	119:17	dispersed 80:7	53:4 57:12 81:9
depende	ent 39:22,25	78:3 113:10	directly 106:13	dissolved 81:25	81:14 97:23 99:13
149:6		128:25	116:12 152:2	91:8,10 151:22	101:20 108:20
dependi	ing 14:23	developing 26:12	discharge 23:21	distilled 99:25	109:4,20 110:5
62:22	- (45:14	24:6 59:17,22	distinction 46:5	111:23 112:4
depicted	d 138:15	development 22:17	63:7 68:13 74:5	112:11	113:5 118:21
	nt 165:23	25:9 36:7 43:20	74:10 78:24 84:15	distinctive 68:10	125:15,18 133:5,8
	6:24 27:7	45:1 114:13	88:21 133:3,11	distinguishing	drafted 37:16,18
depositi		development-type	145:10,18 148:3,5	77:15	38:2 50:10 53:1
· ·	5:14 6:16	22:19	148:6,13,15,21,23	District 4:8 23:15	80:6 97:9 103:23
	,12,15,22	diagram 68:4	149:9,14 158:17	108:1,3,4 111:16	104:13 107:13
	0,23 12:11	diagrams 80:20,21	discharged 74:4,11	111:24 115:25	131:19 153:7
	,24 13:15,20	diazinon 43:23	74:24 95:25 103:6	116:3 124:19	155:25
	15:18 16:5	75:16 77:23,24	132:18	125:12	drafting 37:14 41:5
	20:17 60:22	78:4,5,13	discharger 36:15	divorce 27:10	51:17 52:10 81:6
	,25 61:1	Diego 1:2,14 2:2,12	86:21 94:9 100:3	divvied 147:9	96:19 97:4 98:2,8
	16 77:7	2:15 3:6,8,11,14	102:21 103:3	DLA 3:9	99:19 126:14
	5 125:13,13	3:16,19,21 4:8,13	110:5 111:17	Dobalain 83:4,5	136:24
	5 165:14	4:14,15,17 5:15	128:16 129:10	Dock 88:13	drain 74:18 145:18
1	1 167:5	9:13 22:16 24:24	130:11 138:10	docked 89:16	drainage 89:25
168:7		26:1 27:4 28:13	157:13 164:17,24	document 5:17	draining 69:9 88:10
	ioned 11:19	38:7 55:8,12	165:1	13:24 15:5 17:2	drains 68:10 74:6
11:20		67:21 69:10,17	dischargers 24:22	17:14,21 29:5	74:20 145:15,25
	ions 10:23	80:8,11,15 88:3	25:21,23 32:14,15	45:3 59:23,25	Drive 4:19
11:12		93:9,12 94:21	35:17 36:10 51:12	70:4 71:5,9,11,13	dropped 61:18
describ		97:5,13,16,20	84:1 99:5 128:22	71:17,21,24 72:7	drugs 8:25
	,20 36:5	101:10 104:5,22	129:5,23 130:8	72:13,15 86:17	DTR 9:18,23 10:2,8
	126:13,17	107:14 108:1,4	148:24	88:23,23 114:7	10:18 12:12,14
127:2		112:11,12 118:2,8	discharges 57:9	140:10 164:16	20:5 29:15 31:18
	ed 75:4 86:8	118:19 133:15,22	58:18,22 59:2,11	documentation	36:7,9,23 37:3,24
103:2		135:6,7,9,10,18	59:21 74:1 84:20	53:25 59:5 99:22	38:23 39:18 45:4
describ		135:21 136:12	85:17,25 101:5,7	114:12,18 115:6	46:20 50:1,6
	ing 74:14	146:24 157:8	102:18 122:22	115:19	59:24 67:8 80:5
	tion 50:22	168:15	147:14,19 149:20	documents 6:20	81:8,18,20 93:11
51:6 C		Diego's 115:12,17	150:1,2,11,16	11:22 12:1,10,18	94:8 97:3,24 98:9
	31:2 40:21	115:22	158:16	12:21 13:2,5,8,12	99:9,13,19 103:24
designa		Diego-Port 160:1	discharging 61:25	14:1,6,16,18,21	104:14,17 107:15
	28:4,7,9	Diehl 80:16	122:20	15:12,20 16:4	107:15 108:12,16
	ation 5:16	dielectric 155:19	disclose 20:16	17:1,4 18:6,16	108:24 114:14,16
28:14		differences 54:11	discuss 90:6 118:5	45:11 46:22 53:6	117:16 120:22
	ed 125:17	differentiate 54:20	118:11 129:9	53:10,15,21 55:15	123:4 124:14,18
Despite		difficult 89:23 91:9	146:3	59:9 90:15 98:7	153:1
detail 3	•	98:21 105:19	discussed 62:3	114:5,6,24 115:10	DTRs 97:7,8
	ration 78:20	107:9,11 151:22	83:15 104:16,19	119:19,22,23	due 24:22
deterno		digging 113:2,3	104:20 105:9	121:10 154:21	duly 6:2 168:8
	4 128:8	digitized 113:23	118:4,7,10 129:4	155:7 156:13	duties 25:7
136:1		115:11	149:20	162:4	duties 25:7 duty 64:25 165:19
	inations	Dilution 25:14	discusses 146:1	document-speaks	
95:24		direct 55:6 56:18	discussing 129:23	62:2	E
	ine 18:15	57:8 70:17 92:6	146:6	doing 16:9 22:19	E 3:5 5:1,12,12
	1 58:18 59:2	133:1 137:1	discussion 64:3	24:11 31:22,22,23	168:2,2
		1.101.121.1		42:10 44:19 80:6	earlier 8:16 14:12
		dimented 70.14			
• •	4 118:19	directed 79:14	84:24 105:13		
146:1	4 118:19 10 148:19	119:23 150:12,15	107:19 126:1	108:3 116:8 140:6	27:6 35:18 46:20
146:1 149:8	4 118:19 10 148:19 3,17	119:23 150:12,15 directing 134:24	107:19 126:1 130:16	108:3 116:8 140:6 163:1	27:6 35:18 46:20 65:25 72:12 82:6
146:1 149:8 determ	4 118:19 10 148:19 3,17 .ining 37:5	119:23 150:12,15 directing 134:24 direction 112:20,25	107:19 126:1 130:16 discussions 97:17	108:3 116:8 140:6 163:1 door 34:8,8	27:6 35:18 46:20 65:25 72:12 82:6 83:15 95:20
146:1 149:8 determ	4 118:19 10 148:19 3,17	119:23 150:12,15 directing 134:24	107:19 126:1 130:16	108:3 116:8 140:6 163:1	27:6 35:18 46:20 65:25 72:12 82:6

Peterson Reporting, Video & Litigation Services

_ 				<u> </u>
153:6 157:6,7	140:23 143:24	109:6,15 149:9	e-mails 12:22,25	141:25
early 94:21,23	entirely 89:24 96:11	160:25 161:1	13:3,9 14:11	fate 95:21
	•	exceedance 92:11	16:23 17:13,16,20	fault 42:9
108:15 129:18	99:10 106:5			feasibility 30:19,22
easier 7:2	108:11	92:16	47:20,25 48:2	
easily 114:8	entities 53:12 65:11	exceeds 88:3	119:1 120:2	40:9,12
ecological 30:10	74:1 84:18 85:16	excellent 70:9,12	124:25	federal 26:14 75:20
ecology 29:24	86:7 106:21 107:7	exception 36:14	F	feel 8:17 98:24
economic 30:18	110:1,2 111:10	120:18		100:21 153:9
40:11	112:8 142:23	exceptions 86:14	F 168:2	feet 35:12 36:5 41:9
ecotoxicology 30:8	entitled 5:17 45:24	exclude 61:24 62:13	face 55:17 58:3,12	45:8 114:12,18,24
education 20:20	46:8 57:9 70:1,20	excluded 120:8	58:16 59:8 136:14	115:9,11,14 116:4
effective 90:22	71:25 80:14 81:2	excluding 123:4	facilities 52:15 87:1	116:5 121:10
104:8	131:12 133:2	excuse 105:5	101:10 140:3,7	fell 98:25
effort 35:2	137:24 140:10	Executed 167:8	154:18 161:7	felt 100:8,13,22
efforts 35:2 101:5,6	entity 84:15 161:6	executive 44:11	facility 5:22 50:22	101:12 115:11,14
123:12	environment 74:2	49:4 150:12	51:6,13 52:2	fence 80:1 130:25
eight 33:22	74:16,17	exhibit 10:16,17	59:21 61:25 63:4	fenced 130:24
either 12:19 27:22	environmental 5:21	13:14,17,19 28:12	101:10 123:1	fences 143:7
57:3 74:23 87:3	22:23,25 30:4	28:15,18 46:24	136:19 140:2,6,10	fencing 79:25 101:9
107:15 116:7	33:6 34:1,4,6,15	49:24 50:1 67:8	143:9,12 144:12	Fernstrum 116:10
117:19,23 120:9	67:5 87:13 146:25	69:23,25 81:2,22	153:22 155:5	116:15 117:8,11
157:20	equal 72:9	82:2 87:10,12	156:5	field 22:25 29:21,24
		116:20,20,23	fact 8:3 56:24 66:23	30:8,16,21,25
Electric 3:14	equally 101:5	126:9 131:10	72:24 91:23	31:7 33:17,18
electronic 13:21,22	errata 166:7		113:18,19 114:13	39:5
15:15,16 16:3,4	ESQ 3:4,5,10,10,15	140:15 152:25		fields 31:13 32:7,10
16:25 114:7 162:4	3:20 4:5,9,14,19	159:24 161:16	115:19 128:15	-
electronically 15:8	estate 138:24	exhibits 5:13 10:13	134:1,22 160:8	fifth 141:2
15:10 17:20	estimate 44:25	10:21,21,24 49:24	factors 122:11	figure 67:10 95:6,7
elevated 156:11,16	45:24 46:1,9	existence 162:6	facts 124:7 134:11	98:19
eliminated 78:5	137:20,22,24	existing 147:14	factual 43:6 50:4	file 15:11,17 16:14
162:6	138:3	experience 21:18,21	51:1,20 52:10	17:19 48:5,5 53:7
else's 47:14,25 48:2	estimates 79:17	23:22 33:11 48:12	56:6,16 112:6	57:23 130:20
Embarcadero 4:10	et 23:15	89:6 121:23,24	118:18 120:11	161:23,23,25
employed 23:25	event 88:4	160:24	fails 166:9	162:2,5
employees 129:22	eventually 74:20	expert 6:17 27:24	fair 106:19 119:14	filed 14:22,23 15:2
136:23	everybody 60:13	28:1,10 29:9,13	147:7,12,16	15:3,4 16:13
encouraged 19:1,5	152:18	29:19,21,23 30:7	fairly 57:14 65:2	19:11 48:7 114:8
ended 22:4 42:10,10	evidence 36:11,11	30:15,24 31:8	90:2 131:6	files 14:17 16:16
Energy 3:14,15	37:12 41:5 57:20	33:17 76:8 95:21	fallen 163:10	17:22 18:4,21
enforcement 4:4	100:1,8 101:12	147:22 151:2,15	falls 72:8 73:24	19:3,5,7,8,11
120:1 160:17	113:9 123:22	154:12	74:15 78:23	35:15 51:3,5,10
161:18 162:13	124:3,7,9,13	expertise 29:10	false 144:20	53:5,25 57:20
164:22,24	130:21 134:12	31:14 33:1,2,15	familiar 9:18,19	98:11 99:6,20,24
		33:21 34:12,16	23:16 37:22 39:14	100:15,20 128:10
engineer 23:20 24:9	evidentiary 36:20	39:5 64:10 76:9	48:21,23,24 56:25	128:12 130:13
162:10	37:3 44:22 46:19	147:4	57:3,5,6 62:16	154:25 165:2
engineered 74:17	ex 49:7,11	1		filing 15:6,13 48:6
engineering 20:24	exact 115:15	expired 21:17	70:6,14 82:20	filter 91:14
21:2 22:11,17,20	exactly 42:4 52:5	explain 32:13,21,23	85:6 98:1 104:5	
22:21 88:17	EXAMINATION	42:2	109:9 116:12	filters 91:14,14,15
122:10	5:4 6:4 64:5 93:6	ext 4:16	126:21 128:15,19	91:17
Engineer's 89:1	107:21 126:3	extent 14:10 19:11	131:15 136:15	Finally 31:4
English 22:9	146:21 152:23	104:1 113:3	156:22 157:10	find 14:8,9 16:22
ensure 24:12 64:15	157:23 159:22	118:17 123:11	164:12	36:12 57:19 73:20
64:25	164:1	142:21	familiarity 68:19	83:1 90:4 97:11
ensuring 26:13	example 10:16	extremely 91:9,12	familiarize 11:25	105:19 130:14,20
enters 15:18	15:21 32:18 45:25	e-mail 17:8,9,25	81:5	159:9
entire 36:2 92:16	46:23 57:25 59:14	46:24 47:1,3,6,12	far 26:9 27:25	Finding 93:17,21
94:14,15 115:6	61:17 74:3 101:8	47:14 163:8,9	114:21 130:14	94:13 103:12
		· · ·		
	•	·	-	

 \approx

1

Peterson Reporting, Video & Litigation Services

109:7,7 126:9,10	forgot 56:10	F.415.837.1516	143:2 144:1 150:1	H
126:15,18	form 141:14	4:11	151:4 157:25	H 5:12
findings 42:13,19	formal 18:10,11	F.619.223.3676	158:2,5,10 163:1	
128:9 144:2	20:20	4:16	164:24 165:1,1,2	half 61:17 92:24
fine 31:23	formally 18:9	F.619.696.7124	God 101:24	halfway 44:6 64:20
finish 7:17,18 92:24	format 96:24 114:7	3:22	goes 45:4 58:6	Halvax 145:9,18,22
	former 106:1,7	F.619.696.7419 3:7	153:23	158:16
finished 44:8,20,24	forth 39:8,13 68:24	F.619.699.5189	going 7:4,24 10:1,2	hand 34:5 98:11
fire 74:3 first 5:14 6:2 10:11	fortunate 23:1	3:17	12:7 13:13 16:25	handed 47:13
10:12 13:14 21:1	forward 85:7 148:6	F.619.764.6620	22:9 24:19 31:21	141:21
24:8 34:23,24,25	forwarded 12:25	3:12	34:8 36:4 39:10	handle 147:9
37:8 41:15 55:7	forward-looking	F.760.633.4427	42:2 46:23 49:14	handoff 162:18
63:25 82:24 87:25	147:17	4:21	52:14 60:1,18	hands 98:21 105:16
88:7 94:13 103:11	fouling 79:6	F.916.539.1819 4:7	63:16,21 71:20,23	handwriting 140:22
104:4 108:7,12,21	found 12:22 13:1	F.)X0.359.1012 1.7	71:24 93:24	140:25 141:1,2,6
108:24 113:12,15	14:8,18 16:23,24	G	118:24 125:23	141:8 161:17,21 handwritten 19:16
113:22 124:18	22:22 42:6 57:22	gap 21:19	126:8 130:25	
127:6 129:19	58:1 75:11 113:4	Gas 3:14	131:9 148:3 155:7	140:24 142:5 happen 83:3
132:8,12 135:8	113:6 136:2	general 17:13 53:9	155:10 159:11	happened 46:21
141:1 145:6	154:15	66:16 68:23 84:5	163:24	54:19 61:19,19
152:19 153:14	foundation 56:8	84:8 91:16 93:25	good 6:6 32:4 45:16	78:3 94:25
158:19 159:10	65:6 67:18 69:18	100:24 123:7,10	64:7 92:18 93:8	happens 120:8
161:15 168:8	72:16 78:1 86:22	147:5 160:21	94:7 100:25	happy 7:23 63:24
five 16:19 24:3,5	88:22 119:8	161:24	125:24 126:5	hard 15:12,25
25:8 94:7 113:20	134:15 157:3	generally 15:16	127:23 130:16	19:15 51:8 107:5
146:18 154:25	158:22 160:19	18:23 19:15 20:19	133:5 142:24	hard-copy 15:20
five-minute 63:25	four 12:22 13:9	45:6 46:6 68:8	146:23	hazy 106:14
fix 91:13	14:11 16:19,23	70:15 121:16	GORDON 3:20	head 22:13 79:22
flattered 128:2	17:16 94:7 113:25	123:8 148:2	Gorham 44:16	89:19 94:8
Floor 4:10	154:25	generated 52:25	Gorham-Test 132:1	heading 158:12
flow 74:18	frame 138:14	54:10 153:21	gotten 16:17	health 30:16 40:2,6
flows 68:16 74:16	frames 157:1	156:4,9,19	governing 161:6	146:25
75:8	Francisco 4:10	generation 154:19	Graving 88:13	healthy 83:22
fluid 155:20	frankly 79:25	getting 91:11	gravity 74:19 75:8	hear 7:21,25 33:13
focus 44:21 130:13	131:15	127:23	great 22:12 31:22	136:3
focused 104:24	free 46:7	Gibson 100:6	31:23 93:10	heard 97:15 102:8
folder 16:9,11	frequently 19:9	110:19,23 111:5	140:14	104:2 110:25
161:25	61:13 74:3 79:18	give 7:5 9:1,5 25:6	greater 71:4 72:4	151:21 160:15
folders 16:8,13 17:9	89:6 154:13,14	45:16,20 46:1	ground 7:2	162:24
17:10	fresh 108:9	65:13 68:21 80:13 84:4 119:11 125:4	group 11:18 18:5 34:4,6,24 52:6	hearing 29:6,10
follow 108:7	freshen 19:3	04.4 117.11 123.4		1 65.17
		134.16 153.8 0		65:14
following 21:19,21	front 49:24 50:2	134:16 153:8,9 given 12:13 18:24	131:24 133:8	hearings 27:16,17
following 21:19,21 156:10 165:16	front 49:24 50:2 75:23 83:4 104:17	given 12:13 18:24	131:24 133:8 152:8	hearings 27:16,17 held 64:3 107:19
following 21:19,21 156:10 165:16 follows 6:2	front 49:24 50:2 75:23 83:4 104:17 116:19 152:25	given 12:13 18:24 32:11 41:23 52:7	131:24 133:8 152:8 groups 34:15	hearings 27:16,17 held 64:3 107:19 126:1
following 21:19,21 156:10 165:16 follows 6:2 follow-up 63:17	front 49:24 50:2 75:23 83:4 104:17 116:19 152:25 full 82:24 90:16,25	given 12:13 18:24 32:11 41:23 52:7 72:11 100:16	131:24 133:8 152:8 groups 34:15 GroupWise 16:7,7	hearings 27:16,17 held 64:3 107:19 126:1 help 7:2
following 21:19,21 156:10 165:16 follows 6:2 follow-up 63:17 71:25 159:18	front 49:24 50:2 75:23 83:4 104:17 116:19 152:25 full 82:24 90:16,25 132:8,12	given 12:13 18:24 32:11 41:23 52:7 72:11 100:16 go 6:15,19,22 7:2	131:24 133:8 152:8 groups 34:15 GroupWise 16:7,7 growth 79:6	hearings 27:16,17 held 64:3 107:19 126:1 help 7:2 helps 149:8
following 21:19,21 156:10 165:16 follows 6:2 follow-up 63:17 71:25 159:18 follow-ups 152:18	front 49:24 50:2 75:23 83:4 104:17 116:19 152:25 full 82:24 90:16,25 132:8,12 fully 125:14	given 12:13 18:24 32:11 41:23 52:7 72:11 100:16 go 6:15,19,22 7:2 9:9 14:4 16:4	131:24 133:8 152:8 groups 34:15 GroupWise 16:7,7 growth 79:6 guess 14:7 23:24	hearings 27:16,17 held 64:3 107:19 126:1 help 7:2 helps 149:8 He'll 155:12
following 21:19,21 156:10 165:16 follows 6:2 follow-up 63:17 71:25 159:18	front 49:24 50:2 75:23 83:4 104:17 116:19 152:25 full 82:24 90:16,25 132:8,12 fully 125:14 further 53:24 59:10	given 12:13 18:24 32:11 41:23 52:7 72:11 100:16 go 6:15,19,22 7:2	131:24 133:8 152:8 groups 34:15 GroupWise 16:7,7 growth 79:6	hearings 27:16,17 held 64:3 107:19 126:1 help 7:2 helps 149:8 He'll 155:12 high 20:21 21:4
following 21:19,21 156:10 165:16 follows 6:2 follow-up 63:17 71:25 159:18 follow-ups 152:18 foolproof-type 18:13	front 49:24 50:2 75:23 83:4 104:17 116:19 152:25 full 82:24 90:16,25 132:8,12 fully 125:14 further 53:24 59:10 63:15 66:21	given 12:13 18:24 32:11 41:23 52:7 72:11 100:16 go 6:15,19,22 7:2 9:9 14:4 16:4 22:10 25:12,20	131:24 133:8 152:8 groups 34:15 GroupWise 16:7,7 growth 79:6 guess 14:7 23:24 45:15,16,17,22	hearings 27:16,17 held 64:3 107:19 126:1 help 7:2 helps 149:8 He'll 155:12 high 20:21 21:4 68:14 73:16
following 21:19,21 156:10 165:16 follows 6:2 follow-up 63:17 71:25 159:18 follow-ups 152:18 foolproof-type 18:13 footage 145:10,12	front 49:24 50:2 75:23 83:4 104:17 116:19 152:25 full 82:24 90:16,25 132:8,12 fully 125:14 further 53:24 59:10	given 12:13 18:24 32:11 41:23 52:7 72:11 100:16 go 6:15,19,22 7:2 9:9 14:4 16:4 22:10 25:12,20 29:18 35:12 36:8	131:24 133:8 152:8 groups 34:15 GroupWise 16:7,7 growth 79:6 guess 14:7 23:24 45:15,16,17,22 46:3 50:20 68:16	hearings 27:16,17 held 64:3 107:19 126:1 help 7:2 helps 149:8 He'll 155:12 high 20:21 21:4 68:14 73:16 historic 148:3,5,13
following 21:19,21 156:10 165:16 follows 6:2 follow-up 63:17 71:25 159:18 follow-ups 152:18 foolproof-type 18:13 footage 145:10,12 145:17,21 158:16	front 49:24 50:2 75:23 83:4 104:17 116:19 152:25 full 82:24 90:16,25 132:8,12 fully 125:14 further 53:24 59:10 63:15 66:21 112:15 120:11	given 12:13 18:24 32:11 41:23 52:7 72:11 100:16 go 6:15,19,22 7:2 9:9 14:4 16:4 22:10 25:12,20 29:18 35:12 36:8 36:22 37:8 43:1	131:24 133:8 152:8 groups 34:15 GroupWise 16:7,7 growth 79:6 guess 14:7 23:24 45:15,16,17,22 46:3 50:20 68:16 90:5 94:20 130:17	hearings 27:16,17 held 64:3 107:19 126:1 help 7:2 helps 149:8 He'll 155:12 high 20:21 21:4 68:14 73:16 historic 148:3,5,13 148:15,21,23
following 21:19,21 156:10 165:16 follows 6:2 follow-up 63:17 71:25 159:18 follow-ups 152:18 foolproof-type 18:13 footage 145:10,12	front 49:24 50:2 75:23 83:4 104:17 116:19 152:25 full 82:24 90:16,25 132:8,12 fully 125:14 further 53:24 59:10 63:15 66:21 112:15 120:11 125:10 144:23	given 12:13 18:24 32:11 41:23 52:7 72:11 100:16 go 6:15,19,22 7:2 9:9 14:4 16:4 22:10 25:12,20 29:18 35:12 36:8 36:22 37:8 43:1 49:20 56:11 61:4	131:24 133:8 152:8 groups 34:15 GroupWise 16:7,7 growth 79:6 guess 14:7 23:24 45:15,16,17,22 46:3 50:20 68:16 90:5 94:20 130:17 137:17,19,22	hearings 27:16,17 held 64:3 107:19 126:1 help 7:2 helps 149:8 He'll 155:12 high 20:21 21:4 68:14 73:16 historic 148:3,5,13
following 21:19,21 156:10 165:16 follows 6:2 follow-up 63:17 71:25 159:18 follow-ups 152:18 foolproof-type 18:13 footage 145:10,12 145:17,21 158:16 footprint 40:18	front 49:24 50:2 75:23 83:4 104:17 116:19 152:25 full 82:24 90:16,25 132:8,12 fully 125:14 further 53:24 59:10 63:15 66:21 112:15 120:11 125:10 144:23 146:13 149:12 152:23 157:16,19 157:23 159:22	given 12:13 18:24 32:11 41:23 52:7 72:11 100:16 go 6:15,19,22 7:2 9:9 14:4 16:4 22:10 25:12,20 29:18 35:12 36:8 36:22 37:8 43:1 49:20 56:11 61:4 63:24 64:2 71:17 74:5 78:9 85:20 88:15 89:19 93:3	131:24 133:8 152:8 groups 34:15 GroupWise 16:7,7 growth 79:6 guess 14:7 23:24 45:15,16,17,22 46:3 50:20 68:16 90:5 94:20 130:17 137:17,19,22 138:2 guidance 118:13 149:8,16	hearings 27:16,17 held 64:3 107:19 126:1 help 7:2 helps 149:8 He'll 155:12 high 20:21 21:4 68:14 73:16 historic 148:3,5,13 148:15,21,23 149:9,20 150:1,11
following 21:19,21 156:10 165:16 follows 6:2 follow-up 63:17 71:25 159:18 follow-ups 152:18 foolproof-type 18:13 footage 145:10,12 145:17,21 158:16 footprint 40:18 123:20	front 49:24 50:2 75:23 83:4 104:17 116:19 152:25 full 82:24 90:16,25 132:8,12 fully 125:14 further 53:24 59:10 63:15 66:21 112:15 120:11 125:10 144:23 146:13 149:12 152:23 157:16,19	given 12:13 18:24 32:11 41:23 52:7 72:11 100:16 go 6:15,19,22 7:2 9:9 14:4 16:4 22:10 25:12,20 29:18 35:12 36:8 36:22 37:8 43:1 49:20 56:11 61:4 63:24 64:2 71:17 74:5 78:9 85:20 88:15 89:19 93:3 119:13 124:22	131:24 133:8 152:8 groups 34:15 GroupWise 16:7,7 growth 79:6 guess 14:7 23:24 45:15,16,17,22 46:3 50:20 68:16 90:5 94:20 130:17 137:17,19,22 138:2 guidance 118:13 149:8,16 gutter 74:7	hearings 27:16,17 held 64:3 107:19 126:1 help 7:2 helps 149:8 He'll 155:12 high 20:21 21:4 68:14 73:16 historic 148:3,5,13 148:15,21,23 149:9,20 150:1,11 150:16
following 21:19,21 156:10 165:16 follows 6:2 follow-up 63:17 71:25 159:18 follow-ups 152:18 foolproof-type 18:13 footage 145:10,12 145:17,21 158:16 footprint 40:18 123:20 force 158:6 foregoing 167:4 168:7,9,12	front 49:24 50:2 75:23 83:4 104:17 116:19 152:25 full 82:24 90:16,25 132:8,12 fully 125:14 further 53:24 59:10 63:15 66:21 112:15 120:11 125:10 144:23 146:13 149:12 152:23 157:16,19 157:23 159:22 163:14,16,17,18 164:1 165:6	given 12:13 18:24 32:11 41:23 52:7 72:11 100:16 go 6:15,19,22 7:2 9:9 14:4 16:4 22:10 25:12,20 29:18 35:12 36:8 36:22 37:8 43:1 49:20 56:11 61:4 63:24 64:2 71:17 74:5 78:9 85:20 88:15 89:19 93:3 119:13 124:22 125:25 127:3	131:24 133:8 152:8 groups 34:15 GroupWise 16:7,7 growth 79:6 guess 14:7 23:24 45:15,16,17,22 46:3 50:20 68:16 90:5 94:20 130:17 137:17,19,22 138:2 guidance 118:13 149:8,16 gutter 74:7 gutters 74:20	hearings 27:16,17 held 64:3 107:19 126:1 help 7:2 helps 149:8 He'll 155:12 high 20:21 21:4 68:14 73:16 historic 148:3,5,13 148:15,21,23 149:9,20 150:1,11 150:16 historical 19:23
following 21:19,21 156:10 165:16 follows 6:2 follow-up 63:17 71:25 159:18 follow-ups 152:18 foolproof-type 18:13 footage 145:10,12 145:17,21 158:16 footprint 40:18 123:20 force 158:6 foregoing 167:4 168:7,9,12 foresight 42:9	front 49:24 50:2 75:23 83:4 104:17 116:19 152:25 full 82:24 90:16,25 132:8,12 fully 125:14 further 53:24 59:10 63:15 66:21 112:15 120:11 125:10 144:23 146:13 149:12 152:23 157:16,19 157:23 159:22 163:14,16,17,18 164:1 165:6 future 68:2 147:14	given 12:13 18:24 32:11 41:23 52:7 72:11 100:16 go 6:15,19,22 7:2 9:9 14:4 16:4 22:10 25:12,20 29:18 35:12 36:8 36:22 37:8 43:1 49:20 56:11 61:4 63:24 64:2 71:17 74:5 78:9 85:20 88:15 89:19 93:3 119:13 124:22 125:25 127:3 128:4 130:19	131:24 133:8 152:8 groups 34:15 GroupWise 16:7,7 growth 79:6 guess 14:7 23:24 45:15,16,17,22 46:3 50:20 68:16 90:5 94:20 130:17 137:17,19,22 138:2 guidance 118:13 149:8,16 gutter 74:7 gutters 74:20 guy 66:25	hearings 27:16,17 held 64:3 107:19 126:1 help 7:2 helps 149:8 He'll 155:12 high 20:21 21:4 68:14 73:16 historic 148:3,5,13 148:15,21,23 149:9,20 150:1,11 150:16 historical 19:23 35:15 41:5 43:6 50:5 54:23 129:7 131:12 132:9,13
following 21:19,21 156:10 165:16 follows 6:2 follow-up 63:17 71:25 159:18 follow-ups 152:18 foolproof-type 18:13 footage 145:10,12 145:17,21 158:16 footprint 40:18 123:20 force 158:6 foregoing 167:4 168:7,9,12	front 49:24 50:2 75:23 83:4 104:17 116:19 152:25 full 82:24 90:16,25 132:8,12 fully 125:14 further 53:24 59:10 63:15 66:21 112:15 120:11 125:10 144:23 146:13 149:12 152:23 157:16,19 157:23 159:22 163:14,16,17,18 164:1 165:6	given 12:13 18:24 32:11 41:23 52:7 72:11 100:16 go 6:15,19,22 7:2 9:9 14:4 16:4 22:10 25:12,20 29:18 35:12 36:8 36:22 37:8 43:1 49:20 56:11 61:4 63:24 64:2 71:17 74:5 78:9 85:20 88:15 89:19 93:3 119:13 124:22 125:25 127:3	131:24 133:8 152:8 groups 34:15 GroupWise 16:7,7 growth 79:6 guess 14:7 23:24 45:15,16,17,22 46:3 50:20 68:16 90:5 94:20 130:17 137:17,19,22 138:2 guidance 118:13 149:8,16 gutter 74:7 gutters 74:20	hearings 27:16,17 held 64:3 107:19 126:1 help 7:2 helps 149:8 He'll 155:12 high 20:21 21:4 68:14 73:16 historic 148:3,5,13 148:15,21,23 149:9,20 150:1,11 150:16 historical 19:23 35:15 41:5 43:6 50:5 54:23 129:7

Peterson Reporting, Video & Litigation Services

	-			<u> </u>
				64 15 100 15 05
historically 54:19	16:12	121:20 129:7	investigation 36:20	64:15 100:15,25
102:21	impression 107:4	135:9 144:21,23	37:4,13 43:5	jobs 22:16
history 128:24	Improper 88:22	158:18	44:22 46:19 52:10	jogs 159:12
hold 115:15,25	improvements	infrastructure	54:18 105:21	join 60:1,2,20
119:18,23	91:21	23:16 87:5 91:21	112:6 114:13	134:13 161:5
holding 19:25,25	inaccurate 144:17	initially 96:24	116:9 118:11,15	joins 60:11
home 15:21	inadvertent 97:2	128:16,17 149:10	120:11 133:17	joke 31:25 32:1
honestly 110:7	include 79:5 100:9	input 66:17	136:1,6,9 138:9	judgment 14:24,25
159:13	115:23 133:17	inquire 55:22	139:7 146:10	18:8
	153:23	inquiries 56:14	156:24	Julie 82:19
Honma 132:1		inside 31:25 146:4	investigations	July 103:15 104:5,8
hope 94:17	included 45:3,10		139:10 145:3	June 5:20 87:12
hot 123:13	85:23 124:6,12	insofar 112:7 134:3		
hour 2:14 49:14	130:2,12 154:2	inspect 90:2	investigative 117:14	jurisdiction 97:21
92:25	160:9,12	inspection 5:22	invite 163:24	V
house 46:3,5	includes 50:12,17	24:15 53:11 59:5	involve 20:6 24:15	<u> </u>
housecleaning 22:1	121:24	90:3 133:16,20	involved 23:2 24:10	keep 6:21 14:25
huh 127:24	including 20:5 32:7	136:13 140:2,10	24:17,21 27:3	15:12,15,20,25
hull 79:5	45:11 65:11 70:18	141:14 144:2,5	36:14 43:16,19,25	17:8 18:1 19:15
human 30:13,16	74:9,19 80:20	160:25 161:4,7,9	44:16 45:1 52:6	19:17,19 80:1
40:2,5	124:15 141:6	161:13 164:10,14	81:19 96:18 97:16	84:6 113:1 125:22
hundred 121:9	152:9 154:9	164:14,16,20,23	97:20 98:15	147:1
hydrologic 122:10	164:24	164:25	106:22 107:7	keeping 80:2
hypothetical 147:25	inclusion 99:8	inspections 24:17	108:19 111:13	keeps 79:5
151:1	100:21 123:18,19	24:18 55:21 57:2	114:2 122:11	KELLY 3:5
		89:7 160:17	126:14 129:4	Ken 73:1
hypothetically	incomplete 147:25		136:23 137:20	Kenneth 70:3,6
149:24	150:25	inspectors 55:8,13		80:15
hypotheticals 147:6	incompletely	installed 87:5	involvement 36:24	
	161:17	instance 120:19	37:4,10,13,25	kept 113:3 163:8
<u>_</u>	Incorporate 81:25	instructed 41:13,14	38:22,23 39:6,18	kids 22:10
idea 45:20 80:3	independent 136:5	41:19 54:17 120:1	40:5,14,23 66:22	kind 17:24 25:14
ideas 22:13	independently	120:3	115:22 117:15,15	46:5 99:22 100:5
identification 59:17	53:16,23,24 57:17	instruction 11:14	137:13	102:4,6 106:14
identified 25:18	57:18,24	11:24 21:3,8 55:4	involving 38:2	107:5 126:17
77:4,7 78:19	indicated 27:6	111:19,20	Island 79:9	163:8
162:2	58:22 64:18 65:25	instructions 41:23	issuance 136:6	knew 23:23 104:21
identify 25:10,21	indicates 47:2 59:14	instructs 8:6	issue 26:16 84:10	know 9:9 12:9 15:9
59:21 63:3 75:1	88:1,8 92:10	intend 29:9	86:11 124:18	16:19 19:2,25
86:16 129:3	individual 18:15	interested 66:15	125:1 133:12	27:25 28:7,21
136:22	industrial 69:3	152:9 160:15	134:24 136:16	34:10 35:10 42:11
identity 107:6	Industries 38:9	interesting 21:23	issued 120:4 133:22	45:15 46:4 47:6
illegal 74:5	109:25 112:8,9	interim 92:2	157:14	49:2,3 50:13,18
imagine 43:11	Industry 104:7	interject 77:14	issues 23:13 26:9	51:8 53:1 56:5,9
immediately 123:1	informal 8:10	interjection 119:12	43:15,17 104:21	57:20 59:11,16,18
156:8,10 165:24		internal 24:19	issuing 24:21 135:6	61:12 63:2,12
,	information 47:10		Items 90:13	70:8 73:11,12,17
impact 67:5	50:17 51:1,3,5	Internet 51:4,11,14	1	73:18 75:14,15,18
impaired 25:10,11	53:3,6,17,23 54:5	99:21	iteration 10:3 37:2	
impairing 25:13	55:13,15,17,23	interpose 119:11	38:22 39:17 46:20	78:8,15 79:4
impairment 25:19	56:1,23 57:12,15	interpreting 90:15	T	81:10,16,18 85:7
38:24 39:22 40:3	57:17,23,24 58:8	interrupt 92:19	$\frac{J}{J}$	86:23 87:18,21
147:20 148:4	58:9,12,16,21,23	interview 51:16	James 44:10,12	94:19,19 95:2,2,3
impairments 73:18	59:19 66:25 83:23	54:4 57:25	82:7,9,15	96:22 97:9,20
implement 90:20	98:4,22,24 99:2,3	introduce 6:9	Jeff 64:8 92:18	99:22 106:6
implementation	99:23 100:16	introduced 10:13	JEFFREY 3:4	107:13,16 109:2,5
41:2 67:3		introductory 99:22	Jill 3:15 4:14 126:5	109:11,15 111:20
41.207.5	102:10,13 103:2,4	Inci ou deven j >> .==		
		investigate 109:24	146:24	111:21 112:1
implemented 83:16	103:21,23 104:13		146:24 Jimmy 82:15 83:8	111:21 112:1 113:18,19,21
implemented 83:16 87:2	103:21,23 104:13 106:21 111:22	investigate 109:24 112:15	Jimmy 82:15 83:8	113:18,19,21
implemented 83:16 87:2 implies 134:4	103:21,23 104:13 106:21 111:22 112:10,20,25	investigate 109:24 112:15 investigating	Jimmy 82:15 83:8 job 7:5 22:16,24	
implemented 83:16 87:2	103:21,23 104:13 106:21 111:22	investigate 109:24 112:15	Jimmy 82:15 83:8	113:18,19,21 114:18,21 116:11

 $\frac{1}{2}$

Peterson Reporting, Video & Litigation Services

			· · · · · · · · · · · · · · · · · · ·	
119:12 120:4,7	43:21 44:5 64:13	licensure 23:11	98:15 159:9	112:12 118:2,8,19
123:1,11,13,15	64:18,24 65:8	lieu 166:11	looks 46:25 57:5	128:18 129:2,5,13
127:21 131:1,18	73:12 75:14 79:12	Life 38:24	72:25 73:2 80:16	Marine's 54:12
133:8 136:18,25	79:13,16,21 82:1	liking 22:23	96:23 104:5	mark 13:13 28:12
		limit 21:8 25:18	126:21,23 159:10	46:23 69:22 87:9
137:15 138:8,20	82:7 83:11,16			140:9
139:15 142:6,7	85:18	60:24 83:20,22,25	looming 11:12	
143:13 144:16	learned 33:12	84:14	loosely 163:3	marked 5:13 13:17
145:2,11,13,24	leasehold 106:22	limited 32:8 66:23	Los 26:5,8,16	28:15 69:23,25
146:9,25 149:7,12	107:7 156:17	89:24 99:2,3	lot 24:17 33:10	81:22 82:2 87:10
155:25 159:8	159:7	line 55:7 92:19	91:21,21 106:20	87:12 140:15
160:11 161:10,20	leasing 161:7	Lisa 4:19 132:1	115:14 144:21	married 22:10
162:3,7,23 163:2	leave 142:8	list 25:25 29:18	lowest 74:16	Marriott 22:18
163:3,9,22	leaving 141:22	37:8 70:23 75:19	luck 142:24	master 10:13,16,17
	lectured 32:10,12	75:20 153:23	lucky 115:1	10:21 49:24,24,25
knowledge 71:22				67:7 81:1 116:20
75:12,13 76:23	led 154:18	159:25	lunch 92:19 93:4	
86:20 87:22 96:9	Ledger 3:20 5:7	listed 37:5 59:12	b	126:9 131:9
102:2 114:22	15:18 60:11 61:3	73:17	<u> </u>	152:25
115:5,5,8 117:22	62:5 69:19 73:7	Listen 61:6	M 3:20	Mastrobattista
119:10,16 128:14	76:10,25 78:11	listening 60:7	machine 48:3	1:19 2:16 168:4
146:12 147:23	84:25 86:10 88:24	listing 13:24 82:24	168:10	168:21
159:1	93:7,9,18,19 94:4	litigation 119:18	Madam 8 4:25	material 50:12
knowledgeable	95:6,9,12 102:7	little 36:8 39:2	mailman 22:7	materials 45:11
	102:25 104:9	79:16 87:8 112:13	main 15:17 79:24	46:16 52:24 54:9
69:13 122:12		116:4 131:8	80:4	54:12
known 96:16	105:3 107:2,3,17			1
	108:9 109:6	161:22	maintain 165:20	Matkins 4:9 107:25
L	134:11 135:3	live 22:15 74:2	maintenance 16:14	Matt 6:6
L 1:19 2:16 4:9 5:12	146:16 147:24	living 69:2	130:25 143:14	matter 1:4 2:4 6:7
168:4,21	148:10,18 150:3	LLP 3:4,9,20	154:5	6:17 10:12 15:13
labeled 67:11,24	157:21,24 158:3,4	load 71:3 72:4	major 25:21 26:1	17:9 27:4,14,15
lack 42:9 106:20	159:2,3,16 165:12	84:11,13 85:23	73:3 84:1	29:7,12 31:15
lacking 23:24	Ledger's 111:3	86:3,7,9,17 149:3	making 32:1 56:14	34:19,22 35:6,17
lacks 56:7 69:18	left 7:7 18:15 71:2	loads 24:4 70:20,23	78:17 138:13	36:17 45:2 48:19
72:16 78:1 86:22	106:13 108:9	70:25	managed 23:12	116:16
		local 17:2	management 31:9	matters 18:19,24
88:22 119:7	116:7 150:17		45:7 84:9 87:2	19:16 27:19
134:15 157:3	162:15,19	locally 17:1 19:10		
158:22 160:19	legal 12:24 49:5	locate 162:25	manager 23:10	MATTHEW 3:10
Lagoon 26:6	85:19 86:10	located 139:4 146:1	mandated 92:12,14	Maximum 24:4
laid 165:3	106:21 107:6	location 149:13	manually 17:23	mean 15:2 19:23
land 69:3 78:15	109:18 143:10	156:11	18:1	21:10 41:12 42:3
79:13 133:3	150:24 151:8	long 16:20 18:2	manufacturers	57:18,19 61:16
Landfills 24:6	legally 151:11	106:17 147:1	152:8	84:13 103:1
land-type 85:25	legislation 152:12	longer 18:16 141:18	map 159:10	128:21
large 23:14 149:10		look 41:13,14,19	maps 141:4 144:23	meaning 9:21 99:1:
-	legitimate 54:1		March 63:8	means 84:14 151:1
152:9	length 45:25 46:2	43:1 50:25 51:9		
largely 65:8	115:10	56:25 59:9 63:19	MARCO 97:25	measured 70:24
largest 69:9	Leslie 83:4	67:10 71:2,16	98:1,8,13,22 99:1	measurement
late 108:15 142:10	lessees 138:25	72:1,3 75:19,21	103:24 104:14,23	115:15
latest 125:17	lessen 148:23	80:17,19 81:2	105:19 106:1,5	measures 87:2
LATHAM 3:4	lessened 148:25	87:25 89:4 90:11	109:25 110:4,7,10	152:6
law 8:12 65:18	letter 5:20 87:13,16	93:25 126:19	112:9 116:9	mechanisms 74:13
151:9,10	87:22 88:1,1,8,19	131:15 148:15	117:23	mediation 20:6,8,1
19191910		159:11	MARCO's 117:15	36:21 120:19
	117:7,10	looked 16:6 22:15		123:16
lawns 74:3	1.4.06 11 04 10	1 IOOKED 10'0 22'15	MARCO/Campbell	
lawns 74:3 laws 22:23 150:5,6	let's 26:11 34:18		00.11	
lawns 74:3 laws 22:23 150:5,6 167:3	50:21 93:2 125:25	51:14 126:22	38:11	medications 8:25
lawns 74:3 laws 22:23 150:5,6 167:3	50:21 93:2 125:25 128:4,5	51:14 126:22 130:25 143:6	margin 91:19	meet 11:3 25:23,23
lawns 74:3 laws 22:23 150:5,6 167:3 lawsuits 84:6	50:21 93:2 125:25	51:14 126:22	margin 91:19 marine 2:13 3:8	meet 11:3 25:23,23 83:25 93:10 165:
lawns 74:3 laws 22:23 150:5,6	50:21 93:2 125:25 128:4,5	51:14 126:22 130:25 143:6	margin 91:19	medications 8:25 meet 11:3 25:23,23 83:25 93:10 165: meeting 11:11,16

Peterson Reporting, Video & Litigation Services

<u> </u>				
42:22,24 66:14	mission 25:17	98:17 112:13	127:23 132:22	oath 8:11
91:16 101:1	misspoke 111:6	141:3 161:14	140:12,14 141:17	object 62:8 134:11
meetings 124:17	misstates 87:19	naming 97:13	143:10 150:24	objection 51:22
meets 26:13	110:23	111:10,10 123:23	151:3,8 159:18,23	55:22,25 56:3,15
Melbourn 13:10	misunderstood	128:22 129:4,10	160:23 163:13	59:23 60:12,13
16:23	134:6	129:23 130:8	165:8	62:2,18 63:6 71:5
member 9:13 21:15	Modeling 5:17 70:1	138:10	nine 33:22 127:7	72:6,15 73:7 76:8
33:6 34:1 35:19	mom 22:6	NASSCO 16:17	non-point 147:10	76:20,25 77:1,15
35:23 44:12 49:12	moment 77:23	38:5 52:13,14	normal 118:11	102:23 103:25
members 49:9 65:4	93:24 137:5	64:8 68:2 86:20	156:13	121:4 125:3
65:14 119:5	140:17	87:4,23 88:3,20	north 67:24 96:1	132:19 135:3
139:20 150:12	moments 17:11	88:20 89:8,10,14	146:2	143:10 148:18
memberships 21:17	monitoring 5:17	89:20 103:7	notation 145:9	150:23 151:3
memoranda 124:25	31:5 40:24 70:1	122:20,23,24	notations 140:24	154:11 157:3
memorized 73:19	Monji 132:1 142:16	123:5 128:18	note 19:17 156:9	158:22,24 160:19
memory 143:5	month 11:11 12:13	129:1,6,12 161:13	noted 144:2,4	objections 7:25 8:2
159:12	morning 6:6 64:9	NASSCO's 102:21	145:22 154:24	51:19 56:5,14
mention 76:16	99:11	160:25	156:11	135:1 149:5
mentioned 36:4	mother 162:16	National 3:3	notes 19:16,17,19	objects 60:21
72:12 77:23	mouth 44:1 66:1,3,6	natural 69:4	19:23 63:19	obligation 8:5
118:25 122:19	66:22 67:4,20,23	natural-type 74:21	133:22 141:23,25	observation 55:9
125:11 133:20	68:3 77:16 122:25	nature 91:8 105:22	142:2,4,5 143:19	observations 131:5
162:8,21	123:2,6,19	Navy 38:19 52:20	144:4,7,10,13,15	observe 159:6
mercury 72:8	move 85:7	103:5	144:17,21 145:6	observed 55:8
Merit 1:20 2:16	moved 16:12 25:3	near 131:1	145:14 146:3,6	145:4 158:15,21
message 106:13	44:7,7 163:6	necessarily 61:8	notice 5:14 13:14	occasion 119:1
116:8	Moving 38:21	73:25 89:7,17	13:16,20,24 16:5	121:11
met 11:13 91:22	MS4 85:6,7,9,17	119:21 144:22	17:4 101:15 120:4	occasionally 18:3
metal 73:12 76:24	115:20,23,24	150:4,10 161:4	120:6 133:22	occur 73:6 106:9
77:5	133:11	164:18 165:1	134:4,19 157:7,9	occurring 160:18
metals 26:3 27:21	MS4s 86:2	necessary 166:3	157:10,14 160:7	ocean 74:23
35:1,3 44:4,21,23	Multiple 85:5	167:5,6	162:15 164:22	October 26:10
64:19,25 65:23	municipal 23:21	need 9:8 22:10	notices 24:22 25:1	90:17,23 168:15
68:18 73:5,14	84:19,23 85:4,5	25:23 84:2 148:24	notification 105:20	odd 160:13
75:15,25 76:13	mutual 52:17	needed 35:12 83:25	notified 135:20	offer 29:9 149:16
77:10,12 83:12	mystery 79:16	112:15	160:16	offering 6:17 offers 21:6
84:18 85:16 90:7	N	never 18:9,10 46:4	notify 166:5	offhand 75:19
90:16,23 91:8,9		56:3 95:24 96:17	noting 144:8	144:9
91:10,10,15	N 5:1	104:2 119:23	NOV 134:2,25	office 4:4 15:22
122:17 151:19,22	nails 80:3	120:1,3,6	135:6,11,18,21,23 136:2,6,12,14,16	16:1 18:4 19:1
151:23 Michael 2:10 99:16	name 6:6,11 28:17	new 50:17,17 60:7 99:9 101:15 102:3	136:20 139:12,17	65:17,18
Michael 3:10 88:16	34:7 47:2 64:7 93:8 96:6,11	102:6,11,15	139:21	officer 44:11 49:4
89:2 middle 68:13,14,14	97:25 99:1,1,10	109:11 123:4	November 63:8	150:13
midway 103:14	104:7 106:2	124:8 162:5	NPDES 23:21 24:10	offices 19:25
mid-1950s 138:17	107:24 111:16	Nice 93:10	24:13 31:12 32:8	official 14:21 65:19
migration 95:25	116:11 126:5	Nichols 4:9 5:8 60:2	33:18 41:17	Oh 11:17 82:5
Mike 47:1 60:20	141:17 142:22	60:16,22 75:7	number 10:25 15:5	86:25 134:10,14
87:13	146:23 161:11	76:8,20 77:1,14	22:4 42:11 46:25	oil 99:14 159:13
mind 146:7 159:19	163:5	79:3 85:11,19	48:5,6 62:23	okay 9:10,11 10:4,5
mine 100:7	named 94:9,21,23	87:20 91:2 93:17	115:10 152:9	10:9 12:4,5 13:19
minute 29:17 50:20	96:14 100:3	101:25 106:24	153:24 161:23	29:2,3,21,22
71:16 80:18 81:5	101:16,19,20	107:1,22,24 111:1	162:5	31:22 34:19,20
87:14,17 90:8,13	102:4,11,14 110:4	115:4 116:6,23	numbered 70:19	36:9,25 37:8
146:17	110:7,10,11	117:1 119:9,14,15		39:12,16 43:17,18
minutes 11:7 43:14	116:10 124:4,19	120:20 121:1,6	0	46:9 50:7,19,20
49:14,18	128:16 142:23	122:6,14 124:1,2	O 5:12 31:20	56:11 57:7 63:25
missed 42:8 89:5	names 38:10 83:2	124:10,24 125:9	OAL 65:18	66:13 67:9 70:22
1				1

1

(* *

έ.

Peterson Reporting, Video & Litigation Services

70:23 71:16 72:3	opposed 44:16 86:8	96:4 103:9 116:19	partnership 70:10	picks 74:8
81:4,13 85:10	order 1:5 2:5 9:15	117:8 126:10,10	152:7	picture 146:7
-	9:21 10:4 53:4	126:25 127:3,3,6	party 3:3 37:15	159:11
86:19 87:15,25	1	128:4 132:8 133:2	97:14 102:14	pictures 141:7,7,24
90:10,14 92:9	83:25 110:6		163:25	pier 67:24,25 68:2,4
93:1,14 94:5	117:14 123:24	133:21 137:2		
95:10,11,16,20	124:5,20 125:18	141:2,3,14 142:18	pass 63:21	95:17 96:1
96:5,13,19 97:1	162:13 164:21,24	143:19 144:1	passed 152:12	pipe 146:3,11
97:23 98:18	Oregon 20:23 34:6	145:6,14,22 153:3	162:17	PIPER 3:9
100:18 102:19	organization 33:7	153:15 155:22,22	pathway 136:18	pipes 103:6
103:8,10,20,21	organizations 34:1	156:4 158:10	patterns 89:25	place 18:12 129:16
104:10 105:2,13	origin 146:4	161:15	PCB 154:7 156:11	148:3
106:15,19 111:2	original 114:16	pages 58:6 82:24	PCBs 72:5 154:13	placed 46:13
118:6,24 119:25	165:20	90:12 140:22	154:19 156:4,9,16	places 16:1
126:7,11 127:1,6	originally 124:4	141:1,15 159:10	156:18,22 157:1	plan 41:17 81:25
128:4 131:8,11	OSPER 34:6,8	paint 61:17,20	penalty 167:2	90:20
132:7,14,16 133:6	Ott 129:25 141:16	paints 79:4,10,21	Penasquitos 26:6,8	plant 88:12 128:7
134:17 137:3,9,15	141:18 142:8,11	Paleta 5:18 66:7,9	26:17 64:14	131:2
137:25 138:6	142:15 162:8	70:2,25 71:4 72:5	pending 27:14 61:7	plants 22:1
139:3,7,23 140:9	163:5	72:14	62:7,11 63:11	play 96:19,23 97:3
140:18,20 141:12	Ott's 142:5	paper 15:5 19:15,19	85:2 151:7	97:4
142:18 143:23	outfall 159:15	papers 12:24	people 11:18 52:6	please 6:11,12 7:22
144:3,6,19 145:5	Outflow 81:3	paragraph 90:8	69:1 82:24 83:2	48:10 50:6,13,18
145:8,16 146:14	outlawed 78:4	103:11,14,19	129:13 161:25	53:19 58:20 60:5
		132:8,12 146:1	percent 92:3,4,11	60:6 62:6,10
152:17 153:5,11	156:22 157:1	153:11,17 156:8	92:15 113:19	63:10 87:14
155:13,23 158:2	outlet 159:7	· ·		108:14 131:14
158:11 159:2,16	outlines 36:10	158:14,19	performed 143:14	
161:8,15 164:8	outreach 24:17	paragraphs 28:21	perimeter 88:9	151:6 155:24
old 99:19	32:25	127:7,7	period 35:22 36:2	158:10 159:20
older 19:7	outside 19:24 43:4	part 11:24 12:23	92:1,2,16 106:23	164:4
Olivenhain 23:15	57:24 76:9 160:14	16:14 18:9 19:6	periods 143:20	Pleasure 125:21
once 25:18 115:2	overall 88:2 100:24	32:13,24 35:5	perjury 167:3	plume 80:21
149:13 151:23	overbroad 62:5	41:4 45:5 48:6	permit 62:22	plumes 80:7,9,11
149:13 151:23 ones 16:24 27:1	overbroad 62:5 63:7	41:4 45:5 48:6 91:25 93:23	permits 24:10,14	point 44:6 65:2
	63:7			
ones 16:24 27:1 47:21 98:10 99:5	63:7 oversprinkling 74:2	91:25 93:23 103:23 114:12	permits 24:10,14	point 44:6 65:2
ones 16:24 27:1 47:21 98:10 99:5 ongoing 34:10	63:7 oversprinkling 74:2 overview 25:6	91:25 93:23	permits 24:10,14 41:17 62:23	point 44:6 65:2 74:16,24 75:2 84:19,23 85:17 86:6 88:7 91:11
ones 16:24 27:1 47:21 98:10 99:5 ongoing 34:10 open 131:1 149:10	63:7 oversprinkling 74:2 overview 25:6 68:22	91:25 93:23 103:23 114:12 128:20,21 138:9 141:22 142:12	permits 24:10,14 41:17 62:23 permittee 101:1 permittees 31:12	point 44:6 65:2 74:16,24 75:2 84:19,23 85:17
ones 16:24 27:1 47:21 98:10 99:5 ongoing 34:10 open 131:1 149:10 opened 131:2	63:7 oversprinkling 74:2 overview 25:6 68:22 owl 34:9	91:25 93:23 103:23 114:12 128:20,21 138:9 141:22 142:12 144:13 156:24	permits 24:10,14 41:17 62:23 permittee 101:1 permittees 31:12 person 7:15 37:5	point 44:6 65:2 74:16,24 75:2 84:19,23 85:17 86:6 88:7 91:11
ones 16:24 27:1 47:21 98:10 99:5 ongoing 34:10 open 131:1 149:10 opened 131:2 operating 62:22,24	63:7 oversprinkling 74:2 overview 25:6 68:22 owl 34:9 owned 54:20	91:25 93:23 103:23 114:12 128:20,21 138:9 141:22 142:12 144:13 156:24 parte 49:7,11	permits 24:10,14 41:17 62:23 permittee 101:1 permittees 31:12 person 7:15 37:5 45:6,13 82:9	point 44:6 65:2 74:16,24 75:2 84:19,23 85:17 86:6 88:7 91:11 103:19 106:19 116:5 127:7
ones 16:24 27:1 47:21 98:10 99:5 ongoing 34:10 open 131:1 149:10 opened 131:2 operating 62:22,24 143:8,12	63:7 oversprinkling 74:2 overview 25:6 68:22 owl 34:9 owned 54:20 owner 105:16 106:1	91:25 93:23 103:23 114:12 128:20,21 138:9 141:22 142:12 144:13 156:24 parte 49:7,11 participants 142:19	permits 24:10,14 41:17 62:23 permittee 101:1 permittees 31:12 person 7:15 37:5 45:6,13 82:9 115:1 116:7	point 44:6 65:2 74:16,24 75:2 84:19,23 85:17 86:6 88:7 91:11 103:19 106:19 116:5 127:7 147:10 149:7,14
ones 16:24 27:1 47:21 98:10 99:5 ongoing 34:10 open 131:1 149:10 opened 131:2 operating 62:22,24 143:8,12 operation 101:2	63:7 oversprinkling 74:2 overview 25:6 68:22 owl 34:9 owned 54:20 owner 105:16 106:1 106:1,7 150:8,19	91:25 93:23 103:23 114:12 128:20,21 138:9 141:22 142:12 144:13 156:24 parte 49:7,11 participants 142:19 142:22 159:25	permits 24:10,14 41:17 62:23 permittee 101:1 permittees 31:12 person 7:15 37:5 45:6,13 82:9 115:1 116:7 personal 14:22 67:2	point 44:6 65:2 74:16,24 75:2 84:19,23 85:17 86:6 88:7 91:11 103:19 106:19 116:5 127:7 147:10 149:7,14 155:24 156:2,15
ones 16:24 27:1 47:21 98:10 99:5 ongoing 34:10 open 131:1 149:10 opened 131:2 operating 62:22,24 143:8,12 operation 101:2 128:6	63:7 oversprinkling 74:2 overview 25:6 68:22 owl 34:9 owned 54:20 owner 105:16 106:1 106:1,7 150:8,19 150:21	91:25 93:23 103:23 114:12 128:20,21 138:9 141:22 142:12 144:13 156:24 parte 49:7,11 participants 142:19 142:22 159:25 participate 20:8	permits 24:10,14 41:17 62:23 permittee 101:1 permittees 31:12 person 7:15 37:5 45:6,13 82:9 115:1 116:7 personal 14:22 67:2 102:1	point 44:6 65:2 74:16,24 75:2 84:19,23 85:17 86:6 88:7 91:11 103:19 106:19 116:5 127:7 147:10 149:7,14 155:24 156:2,15 160:9,12
ones 16:24 27:1 47:21 98:10 99:5 ongoing 34:10 open 131:1 149:10 opened 131:2 operating 62:22,24 143:8,12 operation 101:2 128:6 operations 104:6	63:7 oversprinkling 74:2 overview 25:6 68:22 owl 34:9 owned 54:20 owner 105:16 106:1 106:1,7 150:8,19 150:21 owners 105:17	91:25 93:23 103:23 114:12 128:20,21 138:9 141:22 142:12 144:13 156:24 parte 49:7,11 participants 142:19 142:22 159:25 participate 20:8 participated 67:6	permits 24:10,14 41:17 62:23 permittee 101:1 permittees 31:12 person 7:15 37:5 45:6,13 82:9 115:1 116:7 personal 14:22 67:2 102:1 personally 120:10	point 44:6 65:2 74:16,24 75:2 84:19,23 85:17 86:6 88:7 91:11 103:19 106:19 116:5 127:7 147:10 149:7,14 155:24 156:2,15 160:9,12 policy 18:5,10,11
ones 16:24 27:1 47:21 98:10 99:5 ongoing 34:10 open 131:1 149:10 opened 131:2 operating 62:22,24 143:8,12 operation 101:2 128:6 operations 104:6 122:20,25 130:10	63:7 oversprinkling 74:2 overview 25:6 68:22 owl 34:9 owned 54:20 owner 105:16 106:1 106:1,7 150:8,19 150:21 owners 105:17 107:10,10	91:25 93:23 103:23 114:12 128:20,21 138:9 141:22 142:12 144:13 156:24 parte 49:7,11 participants 142:19 142:22 159:25 participate 20:8 participated 67:6 82:25 83:2 111:15	permits 24:10,14 41:17 62:23 permittee 101:1 permittees 31:12 person 7:15 37:5 45:6,13 82:9 115:1 116:7 personal 14:22 67:2 102:1 personally 120:10 158:20	point 44:6 65:2 74:16,24 75:2 84:19,23 85:17 86:6 88:7 91:11 103:19 106:19 116:5 127:7 147:10 149:7,14 155:24 156:2,15 160:9,12 policy 18:5,10,11 149:8,16
ones 16:24 27:1 47:21 98:10 99:5 ongoing 34:10 open 131:1 149:10 opened 131:2 operating 62:22,24 143:8,12 operation 101:2 128:6 operations 104:6 122:20,25 130:10 130:15,17	63:7 oversprinkling 74:2 overview 25:6 68:22 owl 34:9 owned 54:20 owner 105:16 106:1 106:1,7 150:8,19 150:21 owners 105:17 107:10,10 ownership 98:14,20	91:25 93:23 103:23 114:12 128:20,21 138:9 141:22 142:12 144:13 156:24 parte 49:7,11 participants 142:19 142:22 159:25 participate 20:8 participated 67:6 82:25 83:2 111:15 124:17	permits 24:10,14 41:17 62:23 permittee 101:1 permittees 31:12 person 7:15 37:5 45:6,13 82:9 115:1 116:7 personal 14:22 67:2 102:1 personally 120:10 158:20 persons 84:17 85:15	point 44:6 65:2 74:16,24 75:2 84:19,23 85:17 86:6 88:7 91:11 103:19 106:19 116:5 127:7 147:10 149:7,14 155:24 156:2,15 160:9,12 policy 18:5,10,11 149:8,16 pollutant 25:12,19
ones 16:24 27:1 47:21 98:10 99:5 ongoing 34:10 open 131:1 149:10 opened 131:2 operating 62:22,24 143:8,12 operation 101:2 128:6 operations 104:6 122:20,25 130:10 130:15,17 operator 63:4	63:7 oversprinkling 74:2 overview 25:6 68:22 owl 34:9 owned 54:20 owner 105:16 106:1 106:1,7 150:8,19 150:21 owners 105:17 107:10,10 ownership 98:14,20 105:15,15 128:6	91:25 93:23 103:23 114:12 128:20,21 138:9 141:22 142:12 144:13 156:24 parte 49:7,11 participants 142:19 142:22 159:25 participate 20:8 participated 67:6 82:25 83:2 111:15 124:17 particular 15:13	permits 24:10,14 41:17 62:23 permittee 101:1 permittees 31:12 person 7:15 37:5 45:6,13 82:9 115:1 116:7 personal 14:22 67:2 102:1 personally 120:10 158:20 persons 84:17 85:15 85:17	point 44:6 65:2 74:16,24 75:2 84:19,23 85:17 86:6 88:7 91:11 103:19 106:19 116:5 127:7 147:10 149:7,14 155:24 156:2,15 160:9,12 policy 18:5,10,11 149:8,16 pollutant 25:12,19 25:22,24 70:20,23
ones 16:24 27:1 47:21 98:10 99:5 ongoing 34:10 open 131:1 149:10 opened 131:2 operating 62:22,24 143:8,12 operation 101:2 128:6 operations 104:6 122:20,25 130:10 130:15,17 operator 63:4 operators 61:25	63:7 oversprinkling 74:2 overview 25:6 68:22 owl 34:9 owned 54:20 owner 105:16 106:1 106:1,7 150:8,19 150:21 owners 105:17 107:10,10 ownership 98:14,20 105:15,15 128:6 O'NEAL 4:19	91:25 93:23 103:23 114:12 128:20,21 138:9 141:22 142:12 144:13 156:24 parte 49:7,11 participants 142:19 142:22 159:25 participate 20:8 participated 67:6 82:25 83:2 111:15 124:17 particular 15:13 17:9 18:5 32:17	permits 24:10,14 41:17 62:23 permittee 101:1 permittees 31:12 person 7:15 37:5 45:6,13 82:9 115:1 116:7 personal 14:22 67:2 102:1 personally 120:10 158:20 persons 84:17 85:15 85:17 pertain 14:16	point 44:6 65:2 74:16,24 75:2 84:19,23 85:17 86:6 88:7 91:11 103:19 106:19 116:5 127:7 147:10 149:7,14 155:24 156:2,15 160:9,12 policy 18:5,10,11 149:8,16 pollutant 25:12,19 25:22,24 70:20,23 71:3 72:4 84:14
ones 16:24 27:1 47:21 98:10 99:5 ongoing 34:10 open 131:1 149:10 opened 131:2 operating 62:22,24 143:8,12 operation 101:2 128:6 operations 104:6 122:20,25 130:10 130:15,17 operator 63:4 operators 61:25 139:3	63:7 oversprinkling 74:2 overview 25:6 68:22 owl 34:9 owned 54:20 owner 105:16 106:1 106:1,7 150:8,19 150:21 owners 105:17 107:10,10 ownership 98:14,20 105:15,15 128:6	91:25 93:23 103:23 114:12 128:20,21 138:9 141:22 142:12 144:13 156:24 parte 49:7,11 participants 142:19 142:22 159:25 participate 20:8 participated 67:6 82:25 83:2 111:15 124:17 particular 15:13 17:9 18:5 32:17 37:15 43:11 80:24	permits 24:10,14 41:17 62:23 permittee 101:1 permittees 31:12 person 7:15 37:5 45:6,13 82:9 115:1 116:7 personal 14:22 67:2 102:1 personally 120:10 158:20 persons 84:17 85:15 85:17 pertain 14:16 pesticide 78:13	point 44:6 65:2 74:16,24 75:2 84:19,23 85:17 86:6 88:7 91:11 103:19 106:19 116:5 127:7 147:10 149:7,14 155:24 156:2,15 160:9,12 policy 18:5,10,11 149:8,16 pollutant 25:12,19 25:22,24 70:20,23 71:3 72:4 84:14 150:7 154:7
ones 16:24 27:1 47:21 98:10 99:5 ongoing 34:10 open 131:1 149:10 opened 131:2 operating 62:22,24 143:8,12 operation 101:2 128:6 operations 104:6 122:20,25 130:10 130:15,17 operator 63:4 operators 61:25 139:3 opinion 29:9,13	63:7 oversprinkling 74:2 overview 25:6 68:22 owl 34:9 owned 54:20 owner 105:16 106:1 106:1,7 150:8,19 150:21 owners 105:17 107:10,10 ownership 98:14,20 105:15,15 128:6 O'NEAL 4:19 O-T-T 141:18	91:25 93:23 103:23 114:12 128:20,21 138:9 141:22 142:12 144:13 156:24 parte 49:7,11 participants 142:19 142:22 159:25 participate 20:8 participated 67:6 82:25 83:2 111:15 124:17 particular 15:13 17:9 18:5 32:17 37:15 43:11 80:24 105:19 106:6,22	permits 24:10,14 41:17 62:23 permittee 101:1 permittees 31:12 person 7:15 37:5 45:6,13 82:9 115:1 116:7 personal 14:22 67:2 102:1 personally 120:10 158:20 persons 84:17 85:15 85:17 pertain 14:16 pesticide 78:13 Peter 106:3	point 44:6 65:2 74:16,24 75:2 84:19,23 85:17 86:6 88:7 91:11 103:19 106:19 116:5 127:7 147:10 149:7,14 155:24 156:2,15 160:9,12 policy 18:5,10,11 149:8,16 pollutant 25:12,19 25:22,24 70:20,23 71:3 72:4 84:14 150:7 154:7 pollutants 25:11,15
ones 16:24 27:1 47:21 98:10 99:5 ongoing 34:10 open 131:1 149:10 opened 131:2 operating 62:22,24 143:8,12 operation 101:2 128:6 operations 104:6 122:20,25 130:10 130:15,17 operator 63:4 operators 61:25 139:3 opinion 29:9,13 76:9 100:20,25	63:7 oversprinkling 74:2 overview 25:6 68:22 owl 34:9 owned 54:20 owner 105:16 106:1 106:1,7 150:8,19 150:21 owners 105:17 107:10,10 ownership 98:14,20 105:15,15 128:6 O'NEAL 4:19 O-T-T 141:18 	91:25 93:23 103:23 114:12 128:20,21 138:9 141:22 142:12 144:13 156:24 parte 49:7,11 participants 142:19 142:22 159:25 participate 20:8 participated 67:6 82:25 83:2 111:15 124:17 particular 15:13 17:9 18:5 32:17 37:15 43:11 80:24 105:19 106:6,22 119:25 122:7	permits 24:10,14 41:17 62:23 permittee 101:1 permittees 31:12 person 7:15 37:5 45:6,13 82:9 115:1 116:7 personal 14:22 67:2 102:1 personally 120:10 158:20 persons 84:17 85:15 85:17 pertain 14:16 pesticide 78:13 Peter 106:3 philosophers 21:25	point 44:6 65:2 74:16,24 75:2 84:19,23 85:17 86:6 88:7 91:11 103:19 106:19 116:5 127:7 147:10 149:7,14 155:24 156:2,15 160:9,12 policy 18:5,10,11 149:8,16 pollutant 25:12,19 25:22,24 70:20,23 71:3 72:4 84:14 150:7 154:7 pollutants 25:11,15 26:24 69:16 71:17
ones 16:24 27:1 47:21 98:10 99:5 ongoing 34:10 open 131:1 149:10 opened 131:2 operating 62:22,24 143:8,12 operation 101:2 128:6 operations 104:6 122:20,25 130:10 130:15,17 operator 63:4 operators 61:25 139:3 opinion 29:9,13 76:9 100:20,25 117:17 123:21	63:7 oversprinkling 74:2 overview 25:6 68:22 owl 34:9 owned 54:20 owner 105:16 106:1 106:1,7 150:8,19 150:21 owners 105:17 107:10,10 ownership 98:14,20 105:15,15 128:6 O'NEAL 4:19 O-T-T 141:18 P P 3:4	91:25 93:23 103:23 114:12 128:20,21 138:9 141:22 142:12 144:13 156:24 parte 49:7,11 participants 142:19 142:22 159:25 participate 20:8 participate 20:8 participate 67:6 82:25 83:2 111:15 124:17 particular 15:13 17:9 18:5 32:17 37:15 43:11 80:24 105:19 106:6,22 119:25 122:7 123:18	permits 24:10,14 41:17 62:23 permittee 101:1 permittees 31:12 person 7:15 37:5 45:6,13 82:9 115:1 116:7 personal 14:22 67:2 102:1 personally 120:10 158:20 persons 84:17 85:15 85:17 pertain 14:16 pesticide 78:13 Peter 106:3 philosophers 21:25 philosophy 20:22	point 44:6 65:2 74:16,24 75:2 84:19,23 85:17 86:6 88:7 91:11 103:19 106:19 116:5 127:7 147:10 149:7,14 155:24 156:2,15 160:9,12 policy 18:5,10,11 149:8,16 pollutant 25:12,19 25:22,24 70:20,23 71:3 72:4 84:14 150:7 154:7 pollutants 25:11,15 26:24 69:16 71:17 72:14 73:5,9,11
ones 16:24 27:1 47:21 98:10 99:5 ongoing 34:10 open 131:1 149:10 opened 131:2 operating 62:22,24 143:8,12 operation 101:2 128:6 operations 104:6 122:20,25 130:10 130:15,17 operator 63:4 operators 61:25 139:3 opinion 29:9,13 76:9 100:20,25	63:7 oversprinkling 74:2 overview 25:6 68:22 owl 34:9 owned 54:20 owner 105:16 106:1 106:1,7 150:8,19 150:21 owners 105:17 107:10,10 ownership 98:14,20 105:15,15 128:6 O'NEAL 4:19 O-T-T 141:18 	91:25 93:23 103:23 114:12 128:20,21 138:9 141:22 142:12 144:13 156:24 parte 49:7,11 participants 142:19 142:22 159:25 participate 20:8 participated 67:6 82:25 83:2 111:15 124:17 particular 15:13 17:9 18:5 32:17 37:15 43:11 80:24 105:19 106:6,22 119:25 122:7	permits 24:10,14 41:17 62:23 permittee 101:1 permittees 31:12 person 7:15 37:5 45:6,13 82:9 115:1 116:7 personal 14:22 67:2 102:1 personally 120:10 158:20 persons 84:17 85:15 85:17 pertain 14:16 pesticide 78:13 Peter 106:3 philosophers 21:25 philosophy 20:22 21:1,21 34:5	point 44:6 65:2 74:16,24 75:2 84:19,23 85:17 86:6 88:7 91:11 103:19 106:19 116:5 127:7 147:10 149:7,14 155:24 156:2,15 160:9,12 policy 18:5,10,11 149:8,16 pollutant 25:12,19 25:22,24 70:20,23 71:3 72:4 84:14 150:7 154:7 pollutants 25:11,15 26:24 69:16 71:17 72:14 73:5,9,11 73:17,19,24 74:9
ones 16:24 27:1 47:21 98:10 99:5 ongoing 34:10 open 131:1 149:10 opened 131:2 operating 62:22,24 143:8,12 operation 101:2 128:6 operations 104:6 122:20,25 130:10 130:15,17 operator 63:4 operators 61:25 139:3 opinion 29:9,13 76:9 100:20,25 117:17 123:21	63:7 oversprinkling 74:2 overview 25:6 68:22 owl 34:9 owned 54:20 owner 105:16 106:1 106:1,7 150:8,19 150:21 owners 105:17 107:10,10 ownership 98:14,20 105:15,15 128:6 O'NEAL 4:19 O-T-T 141:18 <u>P</u> P 3:4 pads 78:20,21 152:13	91:25 93:23 103:23 114:12 128:20,21 138:9 141:22 142:12 144:13 156:24 parte 49:7,11 participants 142:19 142:22 159:25 participate 20:8 participated 67:6 82:25 83:2 111:15 124:17 particular 15:13 17:9 18:5 32:17 37:15 43:11 80:24 105:19 106:6,22 119:25 122:7 123:18 particularly 90:13 154:24	permits 24:10,14 41:17 62:23 permittee 101:1 permittees 31:12 person 7:15 37:5 45:6,13 82:9 115:1 116:7 personal 14:22 67:2 102:1 personally 120:10 158:20 persons 84:17 85:15 85:17 pertain 14:16 pesticide 78:13 Peter 106:3 philosophers 21:25 philosophy 20:22 21:1,21 34:5 phone 106:12	point 44:6 65:2 74:16,24 75:2 84:19,23 85:17 86:6 88:7 91:11 103:19 106:19 116:5 127:7 147:10 149:7,14 155:24 156:2,15 160:9,12 policy 18:5,10,11 149:8,16 pollutant 25:12,19 25:22,24 70:20,23 71:3 72:4 84:14 150:7 154:7 pollutants 25:11,15 26:24 69:16 71:17 72:14 73:5,9,11 73:17,19,24 74:9 75:17,18,21 83:21
ones 16:24 27:1 47:21 98:10 99:5 ongoing 34:10 open 131:1 149:10 opened 131:2 operating 62:22,24 143:8,12 operation 101:2 128:6 operations 104:6 122:20,25 130:10 130:15,17 operator 63:4 operators 61:25 139:3 opinion 29:9,13 76:9 100:20,25 117:17 123:21 124:12 147:22	63:7 oversprinkling 74:2 overview 25:6 68:22 owl 34:9 owned 54:20 owner 105:16 106:1 106:1,7 150:8,19 150:21 owners 105:17 107:10,10 ownership 98:14,20 105:15,15 128:6 O'NEAL 4:19 O-T-T 141:18 <u>P</u> P 3:4 pads 78:20,21 152:13	91:25 93:23 103:23 114:12 128:20,21 138:9 141:22 142:12 144:13 156:24 parte 49:7,11 participants 142:19 142:22 159:25 participate 20:8 participate 20:8 participate 49:7,11 24:25 83:2 111:15 124:17 particular 15:13 17:9 18:5 32:17 37:15 43:11 80:24 105:19 106:6,22 119:25 122:7 123:18 particularly 90:13	permits 24:10,14 41:17 62:23 permittee 101:1 permittees 31:12 person 7:15 37:5 45:6,13 82:9 115:1 116:7 personal 14:22 67:2 102:1 personally 120:10 158:20 persons 84:17 85:15 85:17 pertain 14:16 pesticide 78:13 Peter 106:3 philosophers 21:25 philosophy 20:22 21:1,21 34:5	point 44:6 65:2 74:16,24 75:2 84:19,23 85:17 86:6 88:7 91:11 103:19 106:19 116:5 127:7 147:10 149:7,14 155:24 156:2,15 160:9,12 policy 18:5,10,11 149:8,16 pollutant 25:12,19 25:22,24 70:20,23 71:3 72:4 84:14 150:7 154:7 pollutants 25:11,15 26:24 69:16 71:17 72:14 73:5,9,11 73:17,19,24 74:9
ones 16:24 27:1 47:21 98:10 99:5 ongoing 34:10 open 131:1 149:10 opened 131:2 operating 62:22,24 143:8,12 operation 101:2 128:6 operations 104:6 122:20,25 130:10 130:15,17 operators 61:25 139:3 opinion 29:9,13 76:9 100:20,25 117:17 123:21 124:12 147:22 149:16 151:2	63:7 oversprinkling 74:2 overview 25:6 68:22 owl 34:9 owned 54:20 owner 105:16 106:1 106:1,7 150:8,19 150:21 owners 105:17 107:10,10 ownership 98:14,20 105:15,15 128:6 O'NEAL 4:19 O-T-T 141:18 <u>P</u> P 3:4 pads 78:20,21	91:25 93:23 103:23 114:12 128:20,21 138:9 141:22 142:12 144:13 156:24 parte 49:7,11 participants 142:19 142:22 159:25 participate 20:8 participated 67:6 82:25 83:2 111:15 124:17 particular 15:13 17:9 18:5 32:17 37:15 43:11 80:24 105:19 106:6,22 119:25 122:7 123:18 particularly 90:13 154:24 parties 6:8 8:2,20 10:14 13:11 20:4	permits 24:10,14 41:17 62:23 permittee 101:1 permittees 31:12 person 7:15 37:5 45:6,13 82:9 115:1 116:7 personal 14:22 67:2 102:1 personally 120:10 158:20 persons 84:17 85:15 85:17 pertain 14:16 pesticide 78:13 Peter 106:3 philosophers 21:25 philosophy 20:22 21:1,21 34:5 phone 106:12	point 44:6 65:2 74:16,24 75:2 84:19,23 85:17 86:6 88:7 91:11 103:19 106:19 116:5 127:7 147:10 149:7,14 155:24 156:2,15 160:9,12 policy 18:5,10,11 149:8,16 pollutant 25:12,19 25:22,24 70:20,23 71:3 72:4 84:14 150:7 154:7 pollutants 25:11,15 26:24 69:16 71:17 72:14 73:5,9,11 73:17,19,24 74:9 75:17,18,21 83:21 95:25 121:16 133:3,11 153:18
ones 16:24 27:1 47:21 98:10 99:5 ongoing 34:10 open 131:1 149:10 opened 131:2 operating 62:22,24 143:8,12 operation 101:2 128:6 operations 104:6 122:20,25 130:10 130:15,17 operator 63:4 operators 61:25 139:3 opinion 29:9,13 76:9 100:20,25 117:17 123:21 124:12 147:22 149:16 151:2 154:12 opinions 97:18	63:7 oversprinkling 74:2 overview 25:6 68:22 owl 34:9 owned 54:20 owner 105:16 106:1 106:1,7 150:8,19 150:21 owners 105:17 107:10,10 ownership 98:14,20 105:15,15 128:6 O'NEAL 4:19 O-T-T 141:18 <u>P</u> P 3:4 pads 78:20,21 152:13 page 5:4 28:21 50:6	91:25 93:23 103:23 114:12 128:20,21 138:9 141:22 142:12 144:13 156:24 parte 49:7,11 participants 142:19 142:22 159:25 participate 20:8 participated 67:6 82:25 83:2 111:15 124:17 particular 15:13 17:9 18:5 32:17 37:15 43:11 80:24 105:19 106:6,22 119:25 122:7 123:18 particularly 90:13 154:24 parties 6:8 8:2,20	permits 24:10,14 41:17 62:23 permittee 101:1 permittees 31:12 person 7:15 37:5 45:6,13 82:9 115:1 116:7 personal 14:22 67:2 102:1 personally 120:10 158:20 persons 84:17 85:15 85:17 pertain 14:16 pesticide 78:13 Peter 106:3 philosophers 21:25 philosophy 20:22 21:1,21 34:5 phone 106:12 photographs 131:4	point 44:6 65:2 74:16,24 75:2 84:19,23 85:17 86:6 88:7 91:11 103:19 106:19 116:5 127:7 147:10 149:7,14 155:24 156:2,15 160:9,12 policy 18:5,10,11 149:8,16 pollutant 25:12,19 25:22,24 70:20,23 71:3 72:4 84:14 150:7 154:7 pollutants 25:11,15 26:24 69:16 71:17 72:14 73:5,9,11 73:17,19,24 74:9 75:17,18,21 83:21 95:25 121:16
ones 16:24 27:1 47:21 98:10 99:5 ongoing 34:10 open 131:1 149:10 opened 131:2 operating 62:22,24 143:8,12 operation 101:2 128:6 operations 104:6 122:20,25 130:10 130:15,17 operator 63:4 operators 61:25 139:3 opinion 29:9,13 76:9 100:20,25 117:17 123:21 124:12 147:22 149:16 151:2 154:12 opinions 97:18 100:7 121:21	63:7 oversprinkling 74:2 overview 25:6 68:22 owl 34:9 owned 54:20 owner 105:16 106:1 106:1,7 150:8,19 150:21 owners 105:17 107:10,10 ownership 98:14,20 105:15,15 128:6 O'NEAL 4:19 O-T-T 141:18 <u>P</u> P 3:4 pads 78:20,21 152:13 page 5:4 28:21 50:6 55:6 56:18 57:8	91:25 93:23 103:23 114:12 128:20,21 138:9 141:22 142:12 144:13 156:24 parte 49:7,11 participants 142:19 142:22 159:25 participate 20:8 participated 67:6 82:25 83:2 111:15 124:17 particular 15:13 17:9 18:5 32:17 37:15 43:11 80:24 105:19 106:6,22 119:25 122:7 123:18 particularly 90:13 154:24 parties 6:8 8:2,20 10:14 13:11 20:4	permits 24:10,14 41:17 62:23 permittee 101:1 permittees 31:12 person 7:15 37:5 45:6,13 82:9 115:1 116:7 personal 14:22 67:2 102:1 personally 120:10 158:20 persons 84:17 85:15 85:17 pertain 14:16 pesticide 78:13 Peter 106:3 philosophers 21:25 philosophy 20:22 21:1,21 34:5 phone 106:12 photographs 131:4 132:9,13 138:9,12	point 44:6 65:2 74:16,24 75:2 84:19,23 85:17 86:6 88:7 91:11 103:19 106:19 116:5 127:7 147:10 149:7,14 155:24 156:2,15 160:9,12 policy 18:5,10,11 149:8,16 pollutant 25:12,19 25:22,24 70:20,23 71:3 72:4 84:14 150:7 154:7 pollutants 25:11,15 26:24 69:16 71:17 72:14 73:5,9,11 73:17,19,24 74:9 75:17,18,21 83:21 95:25 121:16 133:3,11 153:18 153:21,24 156:9 pollution 147:8,8,11
ones 16:24 27:1 47:21 98:10 99:5 ongoing 34:10 open 131:1 149:10 opened 131:2 operating 62:22,24 143:8,12 operation 101:2 128:6 operations 104:6 122:20,25 130:10 130:15,17 operator 63:4 operators 61:25 139:3 opinion 29:9,13 76:9 100:20,25 117:17 123:21 124:12 147:22 149:16 151:2 154:12 opinions 97:18 100:7 121:21 123:17	63:7 oversprinkling 74:2 overview 25:6 68:22 owl 34:9 owned 54:20 owner 105:16 106:1 106:1,7 150:8,19 150:21 owners 105:17 107:10,10 ownership 98:14,20 105:15,15 128:6 O'NEAL 4:19 O-T-T 141:18 P P 3:4 pads 78:20,21 152:13 page 5:4 28:21 50:6 55:6 56:18 57:8 57:13 67:7 70:18 70:19 81:1,12	91:25 93:23 103:23 114:12 128:20,21 138:9 141:22 142:12 144:13 156:24 parte 49:7,11 participants 142:19 142:22 159:25 participate 20:8 participate 20:8 participated 67:6 82:25 83:2 111:15 124:17 particular 15:13 17:9 18:5 32:17 37:15 43:11 80:24 105:19 106:6,22 119:25 122:7 123:18 particularly 90:13 154:24 parties 6:8 8:2,20 10:14 13:11 20:4 36:13 37:17,18	permits 24:10,14 41:17 62:23 permittee 101:1 permittees 31:12 person 7:15 37:5 45:6,13 82:9 115:1 116:7 personal 14:22 67:2 102:1 personally 120:10 158:20 persons 84:17 85:15 85:17 pertain 14:16 pesticide 78:13 Peter 106:3 philosophers 21:25 philosophy 20:22 21:1,21 34:5 phone 106:12 photographs 131:4 132:9,13 138:9,12 138:15,22	point 44:6 65:2 74:16,24 75:2 84:19,23 85:17 86:6 88:7 91:11 103:19 106:19 116:5 127:7 147:10 149:7,14 155:24 156:2,15 160:9,12 policy 18:5,10,11 149:8,16 pollutant 25:12,19 25:22,24 70:20,23 71:3 72:4 84:14 150:7 154:7 pollutants 25:11,15 26:24 69:16 71:17 72:14 73:5,9,11 73:17,19,24 74:9 75:17,18,21 83:21 95:25 121:16 133:3,11 153:18 153:21,24 156:9
ones 16:24 27:1 47:21 98:10 99:5 ongoing 34:10 open 131:1 149:10 opened 131:2 operating 62:22,24 143:8,12 operation 101:2 128:6 operations 104:6 122:20,25 130:10 130:15,17 operator 63:4 operators 61:25 139:3 opinion 29:9,13 76:9 100:20,25 117:17 123:21 124:12 147:22 149:16 151:2 154:12 opinions 97:18 100:7 121:21 123:17 opportunity 7:11	63:7 oversprinkling 74:2 overview 25:6 68:22 owl 34:9 owned 54:20 owner 105:16 106:1 106:1,7 150:8,19 150:21 owners 105:17 107:10,10 ownership 98:14,20 105:15,15 128:6 O'NEAL 4:19 O-T-T 141:18 P P 3:4 pads 78:20,21 152:13 page 5:4 28:21 50:6 55:6 56:18 57:8 57:13 67:7 70:18 70:19 81:1,12 88:8,15 92:6,8	91:25 93:23 103:23 114:12 128:20,21 138:9 141:22 142:12 144:13 156:24 parte 49:7,11 participants 142:19 142:22 159:25 participate 20:8 participated 67:6 82:25 83:2 111:15 124:17 particular 15:13 17:9 18:5 32:17 37:15 43:11 80:24 105:19 106:6,22 119:25 122:7 123:18 particularly 90:13 154:24 parties 6:8 8:2,20 10:14 13:11 20:4 36:13 37:17,18 41:6,25 42:15 43:11 51:20	permits 24:10,14 41:17 62:23 permittee 101:1 permittees 31:12 person 7:15 37:5 45:6,13 82:9 115:1 116:7 personal 14:22 67:2 102:1 personally 120:10 158:20 persons 84:17 85:15 85:17 pertain 14:16 pesticide 78:13 Peter 106:3 philosophers 21:25 philosophy 20:22 21:1,21 34:5 phone 106:12 photographs 131:4 132:9,13 138:9,12 138:15,22 photos 141:9 phrase 25:15	point 44:6 65:2 74:16,24 75:2 84:19,23 85:17 86:6 88:7 91:11 103:19 106:19 116:5 127:7 147:10 149:7,14 155:24 156:2,15 160:9,12 policy 18:5,10,11 149:8,16 pollutant 25:12,19 25:22,24 70:20,23 71:3 72:4 84:14 150:7 154:7 pollutants 25:11,15 26:24 69:16 71:17 72:14 73:5,9,11 73:17,19,24 74:9 75:17,18,21 83:21 95:25 121:16 133:3,11 153:18 153:21,24 156:9 pollution 147:8,8,11 147:13 150:22
ones 16:24 27:1 47:21 98:10 99:5 ongoing 34:10 open 131:1 149:10 opened 131:2 operating 62:22,24 143:8,12 operation 101:2 128:6 operations 104:6 122:20,25 130:10 130:15,17 operator 63:4 operators 61:25 139:3 opinion 29:9,13 76:9 100:20,25 117:17 123:21 124:12 147:22 149:16 151:2 154:12 opinions 97:18 100:7 121:21 123:17	63:7 oversprinkling 74:2 overview 25:6 68:22 owl 34:9 owned 54:20 owner 105:16 106:1 106:1,7 150:8,19 150:21 owners 105:17 107:10,10 ownership 98:14,20 105:15,15 128:6 O'NEAL 4:19 O-T-T 141:18 P P 3:4 pads 78:20,21 152:13 page 5:4 28:21 50:6 55:6 56:18 57:8 57:13 67:7 70:18 70:19 81:1,12	91:25 93:23 103:23 114:12 128:20,21 138:9 141:22 142:12 144:13 156:24 parte 49:7,11 participants 142:19 142:22 159:25 participate 20:8 participated 67:6 82:25 83:2 111:15 124:17 particular 15:13 17:9 18:5 32:17 37:15 43:11 80:24 105:19 106:6,22 119:25 122:7 123:18 particularly 90:13 154:24 parties 6:8 8:2,20 10:14 13:11 20:4 36:13 37:17,18 41:6,25 42:15	permits 24:10,14 41:17 62:23 permittee 101:1 permittees 31:12 person 7:15 37:5 45:6,13 82:9 115:1 116:7 personal 14:22 67:2 102:1 personally 120:10 158:20 persons 84:17 85:15 85:17 pertain 14:16 pesticide 78:13 Peter 106:3 philosophers 21:25 philosophy 20:22 21:1,21 34:5 phone 106:12 photographs 131:4 132:9,13 138:9,12 138:15,22 photos 141:9	point 44:6 65:2 74:16,24 75:2 84:19,23 85:17 86:6 88:7 91:11 103:19 106:19 116:5 127:7 147:10 149:7,14 155:24 156:2,15 160:9,12 policy 18:5,10,11 149:8,16 pollutant 25:12,19 25:22,24 70:20,23 71:3 72:4 84:14 150:7 154:7 pollutants 25:11,15 26:24 69:16 71:17 72:14 73:5,9,11 73:17,19,24 74:9 75:17,18,21 83:21 95:25 121:16 133:3,11 153:18 153:21,24 156:9 pollution 147:8,8,1

ंग

Peterson Reporting, Video & Litigation Services

ponds 130:17	124:18 131:13	proceeding 20:5	46:17 47:21 49:23	quick 89:22 131:14
132:18 138:13	preparing 81:20	28:3 32:16,17	114:19 161:24,25	163:19,20
132:18 158:15	108:19 137:13	48:22 49:6 126:6	puts 15:10	quickly 35:1 164:3
populated 69:2,6	present 112:4	128:16,22 129:11	putting 45:5	quite 24:23,25 34:7
port 4:8,17 36:14	113:13 114:23	129:24 130:9	p.m 165:15	68:25 69:6 79:25
37:19 97:20 108:1	120:15 143:17	138:11 140:3	P.O 4:5	82:25 113:15
108:3,3,4 111:16	144:12 159:4	proceedings 27:23	P.415.837.1515	162:16
111:24 115:25	160:3 161:8,12	60:7 64:8 105:18	4:11	102.10
116:3 124:19	presentation 65:3	process 19:6 48:7	P.619.230.7729	R
125:12 160:3,6,9	65:13 66:8,17,19	64:20 75:5,6	3:22	R 5:12 168:2
160:12,16 161:3	69:25 82:22	114:2	P.619.236.1234 3:6	rain 73:23,24,25
portion 31:18 52:23	presentations 24:18	processes 15:10	P.619.699.3620	78:24
54:5 89:13 94:8	27:17 32:11,20	processing 15:8	3:12	rainfall 68:10,11
124:14 131:17	39:4,5 66:11	produced 7:10 45:3	P.619.699.5112	reach 109:21
133:13 164:6	presented 66:15	124:4	3:17	110:16
portions 11:25	presented 00.15	production 13:8	P.760.633.4485	reached 110:14
29:15 33:11 99:13	114:3 118:12,14	professional 18:8	4:20	read 14:7 28:20,25
109:8 114:14	123:10 129:18	21:12,15 23:11	P.916.322.3626 4:6	60:6,9 61:5,7 62:6
123:5 126:22,23	131:6 145:2	88:17 89:1		62:7,11 63:9,11
127:2,4 133:14	previous 103:24	program 25:9 40:24	Q	63:14 85:1,2
posed 85:1,12	107:10,10	prohibition 41:18	qualify 45:20 46:7	87:14,15 103:18
position 22:25 24:1	previously 109:9	49:7	quality 1:1 2:1 9:13	103:20,22 132:10
possession 12:22	121:14 122:15	prohibitive 91:13	39:19 81:24 150:6	132:16 151:6,7
possibilities 160:14	162:9 165:17	project 23:10 70:12	151:10 164:13	153:14 155:25
possibility 61:24	primarily 78:19	projects 18:6 22:19	question 7:17,19,21	156:13 167:4
62:12 76:17	primary 78:23	23:12 26:1 27:3	7:23,24 8:6,7 9:23	reading 131:16
possible 41:17	print 47:4,10	promptly 166:5	26:21 29:1 30:1,4	reads 153:21
62:13 76:2 90:25	printed 14:16 47:3	proper 107:6	30:10,13,18,21	real 131:14 138:24
91:4,13,20,22	47:7,11,13,20	property 61:19,20	31:2,4 33:13,25	realized 22:9
94:22 118:15	prior 11:7,13 12:14	139:1,4 150:7,8	39:1,21,24 40:2,8	really 19:14 94:10
130:20 133:13	23:8 50:10 65:5	150:19,20 155:16	40:11,17,20 41:1	123:11 131:15
150:15 152:1	96:14 97:3,7,8,9	propose 165:18,21	53:19,20 56:13	159:14 163:11
potential 28:10	97:24 98:5,8	Proposed 40:17	58:20 60:6,9 61:5	realm 62:12
76:19 77:11 80:6	99:13,19 104:13	propriety 123:18	61:7 62:7,11	reason 9:4 47:11
139:8	107:7,15 145:22	prospective 147:17	63:11 66:5 71:21	73:1 88:25 89:10
potentially 101:18	162:14 163:14	protocol 145:2	71:25 72:20 75:22	91:25 119:24
power 128:7	private 22:16,19	provide 27:19 42:18	77:17 79:12 81:6	143:13 144:25
powerful 137:22	23:5 141:19	67:17 87:2 117:14	85:1,2,11,13	reasonable 113:16
practical 121:24	probable 69:14	166:7	98:20 105:2 124:1	reasons 130:1
practice 14:19	91:5,23 131:23	provided 13:10	133:10 134:7	recall 12:15 18:20
15:25 18:3 141:19	probably 16:18	14:9 27:9,13,17	139:24 144:20	19:11,13 24:24
practices 54:15	18:25 19:8 23:4	42:21 53:12,13,15	151:5,7 155:11	34:7 36:15 38:10
84:9	24:25 42:8 45:16	157:13	158:18	41:14 42:4 47:9
preceding 156:8	46:10 47:4 57:1	provides 16:7	questioning 92:20	51:13 52:7,12,13
predecessor 54:24	69:11 72:8 89:3	public 23:14 65:5	121:15	52:20 53:6,9 56:2
Preliminary 40:20	90:3,4 91:5,23	65:11	questions 6:10 7:4	56:22 64:22 66:19
preparation 11:9	92:4 99:21 108:15	publications 32:6	10:19 27:18 29:14	68:25 69:1 79:22
11:22 12:10,19	108:18 113:1	Publicly 9:15	39:11 57:2 63:15	80:6,10,22,23,23
114:13	115:14 116:5	published 108:21	63:17,18 102:17	81:6 82:17 83:6
preparatory 39:4	127:6,9,12,15	113:12,15,22	107:17 108:8	94:10,23 97:18,22
prepare 11:3 58:5	129:18 132:5	pull 94:2	111:3 125:10	98:4,7,21,23
65:13 66:14	135:19 139:18	pump 75:9	126:8 128:1	99:12,18 100:8,24
111:22 128:5	142:10 144:9	pumping 88:10	146:13 147:2,3,5	101:8 103:4,7,21
137:4 144:13	162:24 163:2,6,12	purpose 48:24 49:1	151:1,18 152:15	106:2,12,15
158:25	problem 79:24	purposes 11:10	152:19 157:16,19	109:23 110:7
prepared 8:15 28:1	91:13 94:18	49:3 166:13	159:16,18 163:14	112:13,20,22,24
108:24 109:3,12	112:22 125:19	pursued 22:11	163:16,17,18	113:24 116:9,14
113:5 118:22	150:9	put 23:21 36:12	165:6	116:18 118:1
				-

Peterson Reporting, Video & Litigation Services

·				<u></u>
121:17 122:22	recoup 151:11	22:25 23:8,17,25	106:12 129:25	requested 13:24
124:15 126:22	reduce 148:25	25:8 27:2 31:14	133:12,15 135:10	requesting 134:24
124:13 120:22	reduced 25:20	32:16 33:3,10,12	138:18 140:8	requests 14:2,7
128:24 129:1,15	reduction 83:25	33:22 34:11 35:15	remove 91:9 148:12	require 59:16
133:18 135:21	92:12 123:12	36:1 43:5 65:4	151:22	required 32:24
		70:10 75:13	removed 48:17	59:18 63:3 65:12
136:21 137:12	147:13 150:22	113:10 118:2	removing 48:17	72:24 84:2 90:17
138:12,13,14,21	152:2,5		148:15	requirement 24:6
140:6 142:17,22	reductions 25:22	119:5,17 120:5	renew 125:3 150:23	33:2 36:10 61:13
142:25 143:2,4	84:2 92:2	121:23 128:10	renotice 125:13	64:10
144:7,9 145:20	REES 3:20	129:22 130:4		
154:24 155:6,9	refer 10:6,20 67:7	131:19 135:14,17	Repair 2:13 3:8	requirements 24:13
159:13 160:2,5,6	68:2 81:1 90:7	136:1,5,9,23	repeat 7:22 47:23	26:13,14 31:10,11
160:10,11 161:8	95:4 108:2 161:20	137:15 139:15,20	84:22 151:5	32:7,11,14,19,21
161:11,12,14	reference 9:14	142:8,11 145:11	rephrase 7:22 76:11	33:17 49:5 62:16
recalled 114:8	39:19 45:11 95:8	160:17 162:1,9	85:13 98:6 107:2	62:20,24 66:16
receipt 117:10	154:3,9	163:4,6 164:13	124:1 136:4 159:2	84:16 101:1
135:18	referenced 8:16	Region-Wide 26:4	replace 152:10	151:15
receive 51:19 55:25	14:11 17:17 21:5	Registered 1:20	replaced 44:6	requires 32:23 requiring 92:3
135:8	27:23 45:8 53:18	2:16 88:17 89:1	report 5:22 6:17	
	• 58:16 115:18	Regulating 24:12	9:17,24 28:1	rescue 91:24
47:22 59:24	154:7	regulation 101:3	59:14 61:11,18	research 70:12
119:16 145:12	references 54:8	regulations 150:6	72:25 73:2 76:4	99:18 100:14,19
160:7	164:9	151:10	82:23 101:20	110:3
receiving 56:13	referencing 54:22	regulator 89:4	109:20 113:5	researching 100:15
112:24 116:14,18	referred 82:15	regulatory 22:22	118:21 125:15,18	reservation 163:15
recess 49:21 93:4	referring 10:2,7,21	23:2 31:10,11	133:16,20 136:14	reserve 63:16
146:19	10:24 11:15 33:15	32:7,14 33:2,17	140:2,10,17,23,24	reserves 125:12
recognize 50:8 94:1	65:21 68:3 87:16	49:5 64:10 151:15	141:14,24 145:10	reservoirs 23:16
95:16 161:21	94:12 108:4	relate 36:23 49:5	145:18,21 158:5	residential 69:3
recollection 87:8	114:16 115:18	120:2 147:3 156:3	158:17 164:15,16	resolution 5:19
94:3 95:18 96:13	117:7 133:24	related 12:23 18:6	164:23,25	81:23,24 90:12
100:22 129:16	reflect 59:21		reported 1:19 113:4	resolved 112:23 resource 23:13,20
146:5	reflected 51:6 54:5	21:10,16 31:19	reporter 1:20 2:16	24:9 162:10
recommendation	55:15,23 58:5,8	33:18 35:14 37:14	7:7,12 49:23	
100:10 101:13	58:21 63:2 156:24	50:5 51:20 66:3	81:22 84:21,25	Resources 4:3,4
124:16	reflective 127:11	112:7 118:18	165:19 168:5	121:11
recommendations	reflects 166:8	125:15 140:3,7	reports 53:11,11,13	respect 9:23 18:5,19
84:5,8	refresh 87:8	164:17	53:17 59:5,6,16	26:21 30:1,4,10
record 6:12,21 8:2	regard 108:23	relates 130:17	59:20,24 62:3,17	30:13,18,21 31:2
9:10 35:16 45:2,4	112:21 115:25	relating 32:19	62:20 63:2,7	31:4 39:1,21,24
45:5,9,14 46:14	118:14 121:19	111:23 136:2	108:20 109:4	40:2,8,11,17,20 40:23 41:1 52:22
46:18,21,25 47:8	regarding 41:24	relatively 8:10	111:23 112:4	
47:17,21 48:8,14	55:13,21 56:1	released 9:15 12:14	121:25 154:25	53:20 54:11 55:20 57:15 58:8 62:2
48:18 49:20 59:25	80:11 95:25 97:5	relevant 18:16	155:1	
64:2,3 65:16	97:13 98:25 99:2	27:11	represent 37:23	74:24 109:14,18
72:18 84:24 93:3	99:4,8 105:6	relied 98:7	64:8 66:10 70:25	110:21 111:9
107:19,23 113:12	106:21 107:6	relieve 165:18	93:9 126:6	112:3,25 113:11
113:15,21 114:11	109:7 111:9	rely 53:21	representative	114:10 115:17,24
114:20 125:11,16	122:15 126:9	relying 121:20	143:5 160:3 161:5	116:7 119:25
126:1 128:13	128:6 130:8,9	remain 83:21	representatives	120:21 121:19
144:14 168:12	134:2 135:23	remained 65:3	52:19 139:12,16	122:4 130:16
records 14:20 20:1	139:12,17,21	remaining 16:17	139:20,25	139:24 154:7
24:20 35:13,14	145:21 151:19	remedial 31:2,4	representing 6:8	159:24 161:2
36:5 41:9 43:2	152:6,13 156:4	40:18,21,24 41:1	8:1 117:23	162:8
57:23,25 58:2,3	REGION 1:2 2:2	remediation 30:19	reputation 70:9,13	respond 61:6 65:10
58:10,23 59:4	Regional 1:1 2:1	30:22	72:11	responded 65:4
138:25	9:13 11:18 14:20	remember 52:14	request 12:23 14:6	117:16 149:2
recounted 117:8	19:24 21:9,11,16	97:19 104:8	17:14,21 119:18	response 42:18
	1	1		1

Peterson Reporting, Video & Litigation Services

54:22 61:10 111:2	76:18 77:6,9	3:16,19,21 4:8,10	130:3,10,18	57:10 59:13 70:24
121:14	78:10,13,14 83:17	4:13,14,15,17	132:18 134:18,25	72:3 88:5,7,14,16
responsibilities	91:17 95:19 98:14	5:15 9:13 22:16	135:6,21 136:7,10	93:15,16 94:2
25:7 162:12	104:15 109:12,13	24:24 26:1 27:4	136:19 138:10,12	95:13 96:6 103:11
responsibility 82:10	110:20 111:25	28:13 38:7 55:8	139:5,9,13 142:25	103:16 126:19
109:21,23 150:18	114:15,17 116:19	55:12 67:21 69:10	143:4	130:13 133:21
responsible 37:5	116:21,25 117:9	69:17 80:8,11,14	SDG&E's 130:10	153:11,25 154:23
45:13 84:19 85:17	119:3 122:18	88:3 93:9,12	130:15	155:4 158:12
86:7 97:14 102:14	128:23 129:19	94:21 97:5,13,16	search 12:21,25	159:12 164:9
150:2,21	131:5,10 137:23	97:20 101:10	14:1,4,11,14	seeing 94:24 138:12
responsive 14:2	141:11 142:20	104:5,22 107:14	15:24 16:3,4,21	154:24
16:4 17:3,13,21	151:25 161:16,19	108:1,4 112:11,12	17:5,19,24 51:4	seen 13:19 18:10
117:17	163:23 165:5	115:12,17,22	99:21	46:4 70:4 76:4
rest 96:24 104:12	rights 63:16 125:12	118:2,8,19 133:15	searched 14:7,15,16	80:21 87:22 96:17
128:18	163:15	133:22 135:6,7,9	17:2,12,22	120:6 124:25
result 17:16 153:22	right-hand 161:16	135:10,18,21	second 16:25 21:2	155:1
156:5,19	ring 94:16 106:3,5	136:12 146:24	34:25 88:15	selection 39:18
results 14:10	risk 30:10,16 39:25	157:8 160:1	119:11 132:10,15	self-contained 87:3
retain 19:10 119:19	40:6	168:15	145:17 153:11,16	87:6 89:11,14,16
119:21	river 26:6 74:23	sand 91:14,14,15,17	155:24 156:2,15	self-containment
retaining 14:19	RMR 168:22	Sandi 4:9 107:24	second-to-last	87:23
reveals 164:20	role 9:12 26:8 34:18	SAR 46:25	28:20	Sempra 3:14,15
review 7:11 8:17	44:3 64:14,19,24	SAR156644 140:11	section 36:24 50:11	send 15:13 105:20
11:22 12:10,18	65:8 67:2 82:7	SAR156646 142:4	50:22,23 51:2,17	163:9 165:24
13:23 42:8,23	96:19,23 97:2,4,4	SAR156648 142:18	51:20 55:7,20	SENIOR 4:4
47:14 48:2 50:25	114:4 162:9	145:15 159:25	56:6 57:9,16 81:2	sense 68:6
62:19 65:21 66:4	room 8:11 11:8	saved 17:1	81:14 93:20,25	sent 17:19,20,20
66:8 88:19 90:8	15:18 35:16	saw 13:21 39:4,6	103:22 104:12	19:12 47:22 65:16
99:24 115:12,13	Roosevelt 4:15	47:12 52:18 56:3	105:10 113:5	65:20 164:17
115:19,21 121:7	roughly 44:5	131:1	126:10 128:9	165:22
121:11 125:14	DDD 160.00			
	RPR 168:22	saying 95:18	131:12,13,19	sentence 87:25
128:11 130:13	rule 8:3	says 55:7 71:9,11,14	132:20 133:2,5,8	103:15 104:4
128:11 130:13 131:14 137:5,9,11	rule 8:3 rules 7:2	says 55:7 71:9,11,14 71:21,24 72:7	132:20 133:2,5,8 133:10 136:24	103:15 104:4 132:10,10,12,15
128:11 130:13 131:14 137:5,9,11 138:24 140:17	rule 8:3 rules 7:2 run 17:23	says 55:7 71:9,11,14 71:21,24 72:7 103:15 141:3	132:20 133:2,5,8 133:10 136:24 137:2,5,6,12,13	103:15 104:4 132:10,10,12,15 133:21 145:17
128:11 130:13 131:14 137:5,9,11 138:24 140:17 142:1 144:15	rule 8:3 rules 7:2 run 17:23 runoff 73:22,23	says 55:7 71:9,11,14 71:21,24 72:7 103:15 141:3 142:18 145:17	132:20 133:2,5,8 133:10 136:24 137:2,5,6,12,13 137:21 144:1	103:15 104:4 132:10,10,12,15 133:21 145:17 153:14,21,25
128:11 130:13 131:14 137:5,9,11 138:24 140:17 142:1 144:15 153:8,9 165:25	rule 8:3 rules 7:2 run 17:23 runoff 73:22,23 74:11,25 75:4,12	says 55:7 71:9,11,14 71:21,24 72:7 103:15 141:3 142:18 145:17 160:1	132:20 133:2,5,8 133:10 136:24 137:2,5,6,12,13 137:21 144:1 145:25 153:4,7,12	103:15 104:4 132:10,10,12,15 133:21 145:17 153:14,21,25 154:4,8 156:3
128:11 130:13 131:14 137:5,9,11 138:24 140:17 142:1 144:15 153:8,9 165:25 166:2	rule 8:3 rules 7:2 run 17:23 runoff 73:22,23 74:11,25 75:4,12 75:24 76:6,14,23	says 55:7 71:9,11,14 71:21,24 72:7 103:15 141:3 142:18 145:17 160:1 scan 50:12 52:25	132:20 133:2,5,8 133:10 136:24 137:2,5,6,12,13 137:21 144:1 145:25 153:4,7,12 153:16 156:25	103:15 104:4 132:10,10,12,15 133:21 145:17 153:14,21,25 154:4,8 156:3 158:19
128:11 130:13 131:14 137:5,9,11 138:24 140:17 142:1 144:15 153:8,9 165:25 166:2 reviewed 12:16	rule 8:3 rules 7:2 run 17:23 runoff 73:22,23 74:11,25 75:4,12 75:24 76:6,14,23 77:4,25 78:18	says 55:7 71:9,11,14 71:21,24 72:7 103:15 141:3 142:18 145:17 160:1 scan 50:12 52:25 SCCWRP 70:11	132:20 133:2,5,8 133:10 136:24 137:2,5,6,12,13 137:21 144:1 145:25 153:4,7,12 153:16 156:25 164:6	103:15 104:4 132:10,10,12,15 133:21 145:17 153:14,21,25 154:4,8 156:3 158:19 separate 66:7 84:19
128:11 130:13 131:14 137:5,9,11 138:24 140:17 142:1 144:15 153:8,9 165:25 166:2 reviewed 12:16 14:5 42:6 47:25	rule 8:3 rules 7:2 run 17:23 runoff 73:22,23 74:11,25 75:4,12 75:24 76:6,14,23 77:4,25 78:18 79:14 88:9,11	says 55:7 71:9,11,14 71:21,24 72:7 103:15 141:3 142:18 145:17 160:1 scan 50:12 52:25 SCCWRP 70:11 scenario 149:2	132:20 133:2,5,8 133:10 136:24 137:2,5,6,12,13 137:21 144:1 145:25 153:4,7,12 153:16 156:25 164:6 sections 29:16 36:9	103:15 104:4 132:10,10,12,15 133:21 145:17 153:14,21,25 154:4,8 156:3 158:19 separate 66:7 84:19 84:23
128:11 130:13 131:14 137:5,9,11 138:24 140:17 142:1 144:15 153:8,9 165:25 166:2 reviewed 12:16 14:5 42:6 47:25 53:22,23 58:10,24	rule 8:3 rules 7:2 run 17:23 runoff 73:22,23 74:11,25 75:4,12 75:24 76:6,14,23 77:4,25 78:18 79:14 88:9,11 121:16 122:2	says 55:7 71:9,11,14 71:21,24 72:7 103:15 141:3 142:18 145:17 160:1 scan 50:12 52:25 SCCWRP 70:11 scenario 149:2 Schedule 41:2	132:20 133:2,5,8 133:10 136:24 137:2,5,6,12,13 137:21 144:1 145:25 153:4,7,12 153:16 156:25 164:6 sections 29:16 36:9 37:14,18 38:2	103:15 104:4 132:10,10,12,15 133:21 145:17 153:14,21,25 154:4,8 156:3 158:19 separate 66:7 84:19 84:23 September 1:15
128:11 130:13 131:14 137:5,9,11 138:24 140:17 142:1 144:15 153:8,9 165:25 166:2 reviewed 12:16 14:5 42:6 47:25 53:22,23 58:10,24 59:4 80:24 98:4	rule 8:3 rules 7:2 run 17:23 runoff 73:22,23 74:11,25 75:4,12 75:24 76:6,14,23 77:4,25 78:18 79:14 88:9,11 121:16 122:2 rust 80:4	says 55:7 71:9,11,14 71:21,24 72:7 103:15 141:3 142:18 145:17 160:1 scan 50:12 52:25 SCCWRP 70:11 scenario 149:2 Schedule 41:2 scheduled 11:19,20	132:20 133:2,5,8 133:10 136:24 137:2,5,6,12,13 137:21 144:1 145:25 153:4,7,12 153:16 156:25 164:6 sections 29:16 36:9 37:14,18 38:2 42:12,19 43:13	103:15 104:4 132:10,10,12,15 133:21 145:17 153:14,21,25 154:4,8 156:3 158:19 separate 66:7 84:19 84:23 September 1:15 2:14 9:16 121:3
128:11 130:13 131:14 137:5,9,11 138:24 140:17 142:1 144:15 153:8,9 165:25 166:2 reviewed 12:16 14:5 42:6 47:25 53:22,23 58:10,24 59:4 80:24 98:4 98:12 99:6,20	rule 8:3 rules 7:2 run 17:23 runoff 73:22,23 74:11,25 75:4,12 75:24 76:6,14,23 77:4,25 78:18 79:14 88:9,11 121:16 122:2 rust 80:4 RWQCB 164:10	says 55:7 71:9,11,14 71:21,24 72:7 103:15 141:3 142:18 145:17 160:1 scan 50:12 52:25 SCCWRP 70:11 scenario 149:2 Schedule 41:2 scheduled 11:19,20 Schiff 70:3,6,8 73:1	132:20 133:2,5,8 133:10 136:24 137:2,5,6,12,13 137:21 144:1 145:25 153:4,7,12 153:16 156:25 164:6 sections 29:16 36:9 37:14,18 38:2 42:12,19 43:13 50:10,17 52:10,22	103:15 104:4 132:10,10,12,15 133:21 145:17 153:14,21,25 154:4,8 156:3 158:19 separate 66:7 84:19 84:23 September 1:15 2:14 9:16 121:3 143:21,21
128:11 130:13 131:14 137:5,9,11 138:24 140:17 142:1 144:15 153:8,9 165:25 166:2 reviewed 12:16 14:5 42:6 47:25 53:22,23 58:10,24 59:4 80:24 98:4 98:12 99:6,20 114:12,24 115:2,6	rule 8:3 rules 7:2 run 17:23 runoff 73:22,23 74:11,25 75:4,12 75:24 76:6,14,23 77:4,25 78:18 79:14 88:9,11 121:16 122:2 rust 80:4 RWQCB 164:10 R9-2007-0043 5:19	says 55:7 71:9,11,14 71:21,24 72:7 103:15 141:3 142:18 145:17 160:1 scan 50:12 52:25 SCCWRP 70:11 scenario 149:2 Schedule 41:2 scheduled 11:19,20 Schiff 70:3,6,8 73:1 80:15	$\begin{array}{c} 132:20 \ 133:2,5,8\\ 133:10 \ 136:24\\ 137:2,5,6,12,13\\ 137:21 \ 144:1\\ 145:25 \ 153:4,7,12\\ 153:16 \ 156:25\\ 164:6\\ \textbf{sections} \ 29:16 \ 36:9\\ 37:14,18 \ 38:2\\ 42:12,19 \ 43:13\\ 50:10,17 \ 52:10,22\\ 53:1,4,21 \ 54:5,8\\ \end{array}$	103:15 104:4 132:10,10,12,15 133:21 145:17 153:14,21,25 154:4,8 156:3 158:19 separate 66:7 84:19 84:23 September 1:15 2:14 9:16 121:3 143:21,21 series 7:4 10:12
128:11 130:13 131:14 137:5,9,11 138:24 140:17 142:1 144:15 153:8,9 165:25 166:2 reviewed 12:16 14:5 42:6 47:25 53:22,23 58:10,24 59:4 80:24 98:4 98:12 99:6,20 114:12,24 115:2,6 115:7 138:8	rule 8:3 rules 7:2 run 17:23 runoff 73:22,23 74:11,25 75:4,12 75:24 76:6,14,23 77:4,25 78:18 79:14 88:9,11 121:16 122:2 rust 80:4 RWQCB 164:10 R9-2007-0043 5:19 81:23	says 55:7 71:9,11,14 71:21,24 72:7 103:15 141:3 142:18 145:17 160:1 scan 50:12 52:25 SCCWRP 70:11 scenario 149:2 Schedule 41:2 scheduled 11:19,20 Schiff 70:3,6,8 73:1 80:15 Schiff's 70:14 72:11	$\begin{array}{c} 132:20 \ 133:2,5,8\\ 133:10 \ 136:24\\ 137:2,5,6,12,13\\ 137:21 \ 144:1\\ 145:25 \ 153:4,7,12\\ 153:16 \ 156:25\\ 164:6\\ \textbf{sections} \ 29:16 \ 36:9\\ 37:14,18 \ 38:2\\ 42:12,19 \ 43:13\\ 50:10,17 \ 52:10,22\\ 53:1,4,21 \ 54:5,8\\ 56:16,19 \ 80:5\\ \end{array}$	103:15 104:4 132:10,10,12,15 133:21 145:17 153:14,21,25 154:4,8 156:3 158:19 separate 66:7 84:19 84:23 September 1:15 2:14 9:16 121:3 143:21,21 series 7:4 10:12 126:8
128:11 130:13 131:14 137:5,9,11 138:24 140:17 142:1 144:15 153:8,9 165:25 166:2 reviewed 12:16 14:5 42:6 47:25 53:22,23 58:10,24 59:4 80:24 98:4 98:12 99:6,20 114:12,24 115:2,6 115:7 138:8 140:20 144:19	rule 8:3 rules 7:2 run 17:23 runoff 73:22,23 74:11,25 75:4,12 75:24 76:6,14,23 77:4,25 78:18 79:14 88:9,11 121:16 122:2 rust 80:4 RWQCB 164:10 R9-2007-0043 5:19 81:23 R9-2011-0001 1:5	says 55:7 71:9,11,14 71:21,24 72:7 103:15 141:3 142:18 145:17 160:1 scan 50:12 52:25 SCCWRP 70:11 scenario 149:2 Schedule 41:2 scheduled 11:19,20 Schiff 70:3,6,8 73:1 80:15 Schiff's 70:14 72:11 Schmidt 106:3	$\begin{array}{c} 132:20 \ 133:2,5,8\\ 133:10 \ 136:24\\ 137:2,5,6,12,13\\ 137:21 \ 144:1\\ 145:25 \ 153:4,7,12\\ 153:16 \ 156:25\\ 164:6\\ \textbf{sections} \ 29:16 \ 36:9\\ 37:14,18 \ 38:2\\ 42:12,19 \ 43:13\\ 50:10,17 \ 52:10,22\\ 53:1,4,21 \ 54:5,8\\ 56:16,19 \ 80:5\\ 97:5 \ 108:23 \ 109:2\\ \end{array}$	103:15 104:4 132:10,10,12,15 133:21 145:17 153:14,21,25 154:4,8 156:3 158:19 separate 66:7 84:19 84:23 September 1:15 2:14 9:16 121:3 143:21,21 series 7:4 10:12 126:8 sessions 20:6,9
128:11 130:13 131:14 137:5,9,11 138:24 140:17 142:1 144:15 153:8,9 165:25 166:2 reviewed 12:16 14:5 42:6 47:25 53:22,23 58:10,24 59:4 80:24 98:4 98:12 99:6,20 114:12,24 115:2,6 115:7 138:8 140:20 144:19 155:8	rule 8:3 rules 7:2 run 17:23 runoff 73:22,23 74:11,25 75:4,12 75:24 76:6,14,23 77:4,25 78:18 79:14 88:9,11 121:16 122:2 rust 80:4 RWQCB 164:10 R9-2007-0043 5:19 81:23	says 55:7 71:9,11,14 71:21,24 72:7 103:15 141:3 142:18 145:17 160:1 scan 50:12 52:25 SCCWRP 70:11 scenario 149:2 Schedule 41:2 scheduled 11:19,20 Schiff 70:3,6,8 73:1 80:15 Schiff's 70:14 72:11 Schmidt 106:3 school 20:21 21:4	$\begin{array}{c} 132:20 \ 133:2,5,8\\ 133:10 \ 136:24\\ 137:2,5,6,12,13\\ 137:21 \ 144:1\\ 145:25 \ 153:4,7,12\\ 153:16 \ 156:25\\ 164:6\\ \textbf{sections} \ 29:16 \ 36:9\\ 37:14,18 \ 38:2\\ 42:12,19 \ 43:13\\ 50:10,17 \ 52:10,22\\ 53:1,4,21 \ 54:5,8\\ 56:16,19 \ 80:5\\ 97:5 \ 108:23 \ 109:2\\ 109:3\\ \end{array}$	103:15 104:4 132:10,10,12,15 133:21 145:17 153:14,21,25 154:4,8 156:3 158:19 separate 66:7 84:19 84:23 September 1:15 2:14 9:16 121:3 143:21,21 series 7:4 10:12 126:8 sessions 20:6,9 set 25:18 39:8,13
128:11 130:13 131:14 137:5,9,11 138:24 140:17 142:1 144:15 153:8,9 165:25 166:2 reviewed 12:16 14:5 42:6 47:25 53:22,23 58:10,24 59:4 80:24 98:4 98:12 99:6,20 114:12,24 115:2,6 115:7 138:8 140:20 144:19 155:8 reviewing 37:12	rule 8:3 rules 7:2 run 17:23 runoff 73:22,23 74:11,25 75:4,12 75:24 76:6,14,23 77:4,25 78:18 79:14 88:9,11 121:16 122:2 rust 80:4 RWQCB 164:10 R9-2007-0043 5:19 81:23 R9-2011-0001 1:5 2:5 9:15	says 55:7 71:9,11,14 71:21,24 72:7 103:15 141:3 142:18 145:17 160:1 scan 50:12 52:25 SCCWRP 70:11 scenario 149:2 Schedule 41:2 scheduled 11:19,20 Schiff 70:3,6,8 73:1 80:15 Schiff's 70:14 72:11 Schmidt 106:3 school 20:21 21:4 22:10	132:20 133:2,5,8 133:10 136:24 137:2,5,6,12,13 137:21 144:1 145:25 153:4,7,12 153:16 156:25 164:6 sections 29:16 36:9 37:14,18 38:2 42:12,19 43:13 50:10,17 52:10,22 53:1,4,21 54:5,8 56:16,19 80:5 97:5 108:23 109:2 109:3 sediment 10:6,8	103:15 104:4 132:10,10,12,15 133:21 145:17 153:14,21,25 154:4,8 156:3 158:19 separate 66:7 84:19 84:23 September 1:15 2:14 9:16 121:3 143:21,21 series 7:4 10:12 126:8 sessions 20:6,9 set 25:18 39:8,13 83:22 115:6 147:8
128:11 130:13 131:14 137:5,9,11 138:24 140:17 142:1 144:15 153:8,9 165:25 166:2 reviewed 12:16 14:5 42:6 47:25 53:22,23 58:10,24 59:4 80:24 98:4 98:12 99:6,20 114:12,24 115:2,6 115:7 138:8 140:20 144:19 155:8 reviewing 37:12 41:4 80:10 144:22	rule 8:3 rules 7:2 run 17:23 runoff 73:22,23 74:11,25 75:4,12 75:24 76:6,14,23 77:4,25 78:18 79:14 88:9,11 121:16 122:2 rust 80:4 RWQCB 164:10 R9-2007-0043 5:19 81:23 R9-2011-0001 1:5 2:5 9:15 <u>S</u>	says 55:7 71:9,11,14 71:21,24 72:7 103:15 141:3 142:18 145:17 160:1 scan 50:12 52:25 SCCWRP 70:11 scenario 149:2 Schedule 41:2 scheduled 11:19,20 Schiff 70:3,6,8 73:1 80:15 Schiff's 70:14 72:11 Schmidt 106:3 school 20:21 21:4 22:10 Science 20:23	132:20 133:2,5,8 133:10 136:24 137:2,5,6,12,13 137:21 144:1 145:25 153:4,7,12 153:16 156:25 164:6 sections 29:16 36:9 37:14,18 38:2 42:12,19 43:13 50:10,17 52:10,22 53:1,4,21 54:5,8 56:16,19 80:5 97:5 108:23 109:2 109:3 sediment 10:6,8 20:1 26:6,7,9,18	103:15 104:4 132:10,10,12,15 133:21 145:17 153:14,21,25 154:4,8 156:3 158:19 separate 66:7 84:19 84:23 September 1:15 2:14 9:16 121:3 143:21,21 series 7:4 10:12 126:8 sessions 20:6,9 set 25:18 39:8,13 83:22 115:6 147:8 sets 83:20
128:11 130:13 131:14 137:5,9,11 138:24 140:17 142:1 144:15 153:8,9 165:25 166:2 reviewed 12:16 14:5 42:6 47:25 53:22,23 58:10,24 59:4 80:24 98:4 98:12 99:6,20 114:12,24 115:2,6 115:7 138:8 140:20 144:19 155:8 reviewing 37:12 41:4 80:10 144:22 reviews 42:13	rule 8:3 rules 7:2 run 17:23 runoff 73:22,23 74:11,25 75:4,12 75:24 76:6,14,23 77:4,25 78:18 79:14 88:9,11 121:16 122:2 rust 80:4 RWQCB 164:10 R9-2007-0043 5:19 81:23 R9-2011-0001 1:5 2:5 9:15 <u>S</u> 3:10 5:12	says 55:7 71:9,11,14 71:21,24 72:7 103:15 141:3 142:18 145:17 160:1 scan 50:12 52:25 SCCWRP 70:11 scenario 149:2 Schedule 41:2 scheduled 11:19,20 Schiff 70:3,6,8 73:1 80:15 Schiff's 70:14 72:11 Schmidt 106:3 school 20:21 21:4 22:10	132:20 133:2,5,8 133:10 136:24 137:2,5,6,12,13 137:21 144:1 145:25 153:4,7,12 153:16 156:25 164:6 sections 29:16 36:9 37:14,18 38:2 42:12,19 43:13 50:10,17 52:10,22 53:1,4,21 54:5,8 56:16,19 80:5 97:5 108:23 109:2 109:3 sediment 10:6,8 20:1 26:6,7,9,18 26:19,23 28:3	103:15 104:4 132:10,10,12,15 133:21 145:17 153:14,21,25 154:4,8 156:3 158:19 separate 66:7 84:19 84:23 September 1:15 2:14 9:16 121:3 143:21,21 series 7:4 10:12 126:8 sessions 20:6,9 set 25:18 39:8,13 83:22 115:6 147:8
128:11 130:13 131:14 137:5,9,11 138:24 140:17 142:1 144:15 153:8,9 165:25 166:2 reviewed 12:16 14:5 42:6 47:25 53:22,23 58:10,24 59:4 80:24 98:4 98:12 99:6,20 114:12,24 115:2,6 115:7 138:8 140:20 144:19 155:8 reviewing 37:12 41:4 80:10 144:22 reviews 42:13 revised 125:15	rule 8:3 rules 7:2 run 17:23 runoff 73:22,23 74:11,25 75:4,12 75:24 76:6,14,23 77:4,25 78:18 79:14 88:9,11 121:16 122:2 rust 80:4 RWQCB 164:10 R9-2007-0043 5:19 81:23 R9-2011-0001 1:5 2:5 9:15 <u>S</u> 3:10 5:12 Sacramento 4:6	says 55:7 71:9,11,14 71:21,24 72:7 103:15 141:3 142:18 145:17 160:1 scan 50:12 52:25 SCCWRP 70:11 scenario 149:2 Schedule 41:2 scheduled 11:19,20 Schiff 70:3,6,8 73:1 80:15 Schiff's 70:14 72:11 Schmidt 106:3 school 20:21 21:4 22:10 Science 20:23 scientific 65:6 82:11 83:22	132:20 133:2,5,8 133:10 136:24 137:2,5,6,12,13 137:21 144:1 145:25 153:4,7,12 153:16 156:25 164:6 sections 29:16 36:9 37:14,18 38:2 42:12,19 43:13 50:10,17 52:10,22 53:1,4,21 54:5,8 56:16,19 80:5 97:5 108:23 109:2 109:3 sediment 10:6,8 20:1 26:6,7,9,18	103:15 104:4 132:10,10,12,15 133:21 145:17 153:14,21,25 154:4,8 156:3 158:19 separate 66:7 84:19 84:23 September 1:15 2:14 9:16 121:3 143:21,21 series 7:4 10:12 126:8 sessions 20:6,9 set 25:18 39:8,13 83:22 115:6 147:8 sets 83:20 setting 8:10 32:12
128:11 130:13 131:14 137:5,9,11 138:24 140:17 142:1 144:15 153:8,9 165:25 166:2 reviewed 12:16 14:5 42:6 47:25 53:22,23 58:10,24 59:4 80:24 98:4 98:12 99:6,20 114:12,24 115:2,6 115:7 138:8 140:20 144:19 155:8 reviewing 37:12 41:4 80:10 144:22 reviews 42:13 revised 125:15 revisions 108:20	rule 8:3 rules 7:2 run 17:23 runoff 73:22,23 74:11,25 75:4,12 75:24 76:6,14,23 77:4,25 78:18 79:14 88:9,11 121:16 122:2 rust 80:4 RWQCB 164:10 R9-2007-0043 5:19 81:23 R9-2011-0001 1:5 2:5 9:15 <u>5</u> S 3:10 5:12 Sacramento 4:6 65:17,20	says 55:7 71:9,11,14 71:21,24 72:7 103:15 141:3 142:18 145:17 160:1 scan 50:12 52:25 SCCWRP 70:11 scenario 149:2 Schedule 41:2 scheduled 11:19,20 Schiff 70:3,6,8 73:1 80:15 Schiff's 70:14 72:11 Schmidt 106:3 school 20:21 21:4 22:10 Science 20:23 scientific 65:6 82:11	132:20 133:2,5,8 133:10 136:24 137:2,5,6,12,13 137:21 144:1 145:25 153:4,7,12 153:16 156:25 164:6 sections 29:16 36:9 37:14,18 38:2 42:12,19 43:13 50:10,17 52:10,22 53:1,4,21 54:5,8 56:16,19 80:5 97:5 108:23 109:2 109:3 sediment 10:6,8 20:1 26:6,7,9,18 26:19,23 28:3 29:7 30:1,19,22	103:15 104:4 132:10,10,12,15 133:21 145:17 153:14,21,25 154:4,8 156:3 158:19 separate 66:7 84:19 84:23 September 1:15 2:14 9:16 121:3 143:21,21 series 7:4 10:12 126:8 sessions 20:6,9 set 25:18 39:8,13 83:22 115:6 147:8 sets 83:20 setting 8:10 32:12 sevens 161:22
128:11 130:13 131:14 137:5,9,11 138:24 140:17 142:1 144:15 153:8,9 165:25 166:2 reviewed 12:16 14:5 42:6 47:25 53:22,23 58:10,24 59:4 80:24 98:4 98:12 99:6,20 114:12,24 115:2,6 115:7 138:8 140:20 144:19 155:8 reviewing 37:12 41:4 80:10 144:22 reviews 42:13 revised 125:15 revisions 108:20 RICHARDSON 3:5	rule 8:3 rules 7:2 run 17:23 runoff 73:22,23 74:11,25 75:4,12 75:24 76:6,14,23 77:4,25 78:18 79:14 88:9,11 121:16 122:2 rust 80:4 RWQCB 164:10 R9-2007-0043 5:19 81:23 R9-2011-0001 1:5 2:5 9:15 <u>S</u> 3:10 5:12 Sacramento 4:6 65:17,20 safe 84:6 155:18,21	says 55:7 71:9,11,14 71:21,24 72:7 103:15 141:3 142:18 145:17 160:1 scan 50:12 52:25 SCCWRP 70:11 scenario 149:2 Schedule 41:2 scheduled 11:19,20 Schiff 70:3,6,8 73:1 80:15 Schiff's 70:14 72:11 Schmidt 106:3 school 20:21 21:4 22:10 Science 20:23 scientific 65:6 82:11 83:22 scientifically 26:15 64:16 65:1	132:20 133:2,5,8 133:10 136:24 137:2,5,6,12,13 137:21 144:1 145:25 153:4,7,12 153:16 156:25 164:6 sections 29:16 36:9 37:14,18 38:2 42:12,19 43:13 50:10,17 52:10,22 53:1,4,21 54:5,8 56:16,19 80:5 97:5 108:23 109:2 109:3 sediment 10:6,8 20:1 26:6,7,9,18 26:19,23 28:3 29:7 30:1,19,22 31:15 35:4 36:17	103:15 104:4 132:10,10,12,15 133:21 145:17 153:14,21,25 154:4,8 156:3 158:19 separate 66:7 84:19 84:23 September 1:15 2:14 9:16 121:3 143:21,21 series 7:4 10:12 126:8 sessions 20:6,9 set 25:18 39:8,13 83:22 115:6 147:8 sets 83:20 setting 8:10 32:12 sevens 161:22 sewer 84:20
128:11 130:13 131:14 137:5,9,11 138:24 140:17 142:1 144:15 153:8,9 165:25 166:2 reviewed 12:16 14:5 42:6 47:25 53:22,23 58:10,24 59:4 80:24 98:4 98:12 99:6,20 114:12,24 115:2,6 115:7 138:8 140:20 144:19 155:8 reviewing 37:12 41:4 80:10 144:22 reviews 42:13 revised 125:15 revisions 108:20 RICHARDSON 3:5 rid 16:17	rule 8:3 rules 7:2 run 17:23 runoff 73:22,23 74:11,25 75:4,12 75:24 76:6,14,23 77:4,25 78:18 79:14 88:9,11 121:16 122:2 rust 80:4 RWQCB 164:10 R9-2007-0043 5:19 81:23 R9-2011-0001 1:5 2:5 9:15 <u>5</u> S 3:10 5:12 Sacramento 4:6 65:17,20	says 55:7 71:9,11,14 71:21,24 72:7 103:15 141:3 142:18 145:17 160:1 scan 50:12 52:25 SCCWRP 70:11 scenario 149:2 Schedule 41:2 scheduled 11:19,20 Schiff 70:3,6,8 73:1 80:15 Schiff's 70:14 72:11 Schmidt 106:3 school 20:21 21:4 22:10 Science 20:23 scientific 65:6 82:11 83:22 scientifically 26:15	132:20 133:2,5,8 133:10 136:24 137:2,5,6,12,13 137:21 144:1 145:25 153:4,7,12 153:16 156:25 164:6 sections 29:16 36:9 37:14,18 38:2 42:12,19 43:13 50:10,17 52:10,22 53:1,4,21 54:5,8 56:16,19 80:5 97:5 108:23 109:2 109:3 sediment 10:6,8 20:1 26:6,7,9,18 26:19,23 28:3 29:7 30:1,19,22 31:15 35:4 36:17 39:19 45:2 48:18	103:15 104:4 132:10,10,12,15 133:21 145:17 153:14,21,25 154:4,8 156:3 158:19 separate 66:7 84:19 84:23 September 1:15 2:14 9:16 121:3 143:21,21 series 7:4 10:12 126:8 sessions 20:6,9 set 25:18 39:8,13 83:22 115:6 147:8 sets 83:20 setting 8:10 32:12 sevens 161:22 sewer 84:20 Shaun 145:9,18,21
128:11 130:13 131:14 137:5,9,11 138:24 140:17 142:1 144:15 153:8,9 165:25 166:2 reviewed 12:16 14:5 42:6 47:25 53:22,23 58:10,24 59:4 80:24 98:4 98:12 99:6,20 114:12,24 115:2,6 115:7 138:8 140:20 144:19 155:8 reviewing 37:12 41:4 80:10 144:22 reviews 42:13 revised 125:15 revisions 108:20 RICHARDSON 3:5 rid 16:17 right 7:7 8:21 17:18	rule 8:3 rules 7:2 run 17:23 runoff 73:22,23 74:11,25 75:4,12 75:24 76:6,14,23 77:4,25 78:18 79:14 88:9,11 121:16 122:2 rust 80:4 RWQCB 164:10 R9-2007-0043 5:19 81:23 R9-2011-0001 1:5 2:5 9:15 <u>S</u> S 3:10 5:12 Sacramento 4:6 65:17,20 safe 84:6 155:18,21 safety 91:19	says 55:7 71:9,11,14 71:21,24 72:7 103:15 141:3 142:18 145:17 160:1 scan 50:12 52:25 SCCWRP 70:11 scenario 149:2 Schedule 41:2 scheduled 11:19,20 Schiff 70:3,6,8 73:1 80:15 Schiff's 70:14 72:11 Schmidt 106:3 school 20:21 21:4 22:10 Science 20:23 scientific 65:6 82:11 83:22 scientifically 26:15 64:16 65:1 scope 29:10 39:10	$\begin{array}{c} 132:20 \ 133:2,5,8\\ 133:10 \ 136:24\\ 137:2,5,6,12,13\\ 137:21 \ 144:1\\ 145:25 \ 153:4,7,12\\ 153:16 \ 156:25\\ 164:6\\ \textbf{sections} \ 29:16 \ 36:9\\ 37:14,18 \ 38:2\\ 42:12,19 \ 43:13\\ 50:10,17 \ 52:10,22\\ 53:1,4,21 \ 54:5,8\\ 56:16,19 \ 80:5\\ 97:5 \ 108:23 \ 109:2\\ 109:3\\ \textbf{sediment} \ 10:6,8\\ 20:1 \ 26:6,7,9,18\\ 26:19,23 \ 28:3\\ 29:7 \ 30:1,19,22\\ 31:15 \ 35:4 \ 36:17\\ 39:19 \ 45:2 \ 48:18\\ 48:22 \ 67:11,14\\ \end{array}$	103:15 104:4 132:10,10,12,15 133:21 145:17 153:14,21,25 154:4,8 156:3 158:19 separate 66:7 84:19 84:23 September 1:15 2:14 9:16 121:3 143:21,21 series 7:4 10:12 126:8 sessions 20:6,9 set 25:18 39:8,13 83:22 115:6 147:8 sets 83:20 setting 8:10 32:12 sevens 161:22 sewer 84:20 Shaun 145:9,18,21 158:16
128:11 130:13 131:14 137:5,9,11 138:24 140:17 142:1 144:15 153:8,9 165:25 166:2 reviewed 12:16 14:5 42:6 47:25 53:22,23 58:10,24 59:4 80:24 98:4 98:12 99:6,20 114:12,24 115:2,6 115:7 138:8 140:20 144:19 155:8 reviewing 37:12 41:4 80:10 144:22 reviews 42:13 revised 125:15 revisions 108:20 RICHARDSON 3:5 rid 16:17	rule 8:3 rules 7:2 run 17:23 runoff 73:22,23 74:11,25 75:4,12 75:24 76:6,14,23 77:4,25 78:18 79:14 88:9,11 121:16 122:2 rust 80:4 RWQCB 164:10 R9-2007-0043 5:19 81:23 R9-2011-0001 1:5 2:5 9:15 <u>S</u> 3:10 5:12 Sacramento 4:6 65:17,20 safe 84:6 155:18,21 safety 91:19 sale 78:5	says 55:7 71:9,11,14 71:21,24 72:7 103:15 141:3 142:18 145:17 160:1 scan 50:12 52:25 SCCWRP 70:11 scenario 149:2 Schedule 41:2 scheduled 11:19,20 Schiff 70:3,6,8 73:1 80:15 Schiff's 70:14 72:11 Schmidt 106:3 school 20:21 21:4 22:10 Science 20:23 scientific 65:6 82:11 83:22 scientifically 26:15 64:16 65:1 scope 29:10 39:10 65:8 147:23	$\begin{array}{c} 132:20 \ 133:2,5,8\\ 133:10 \ 136:24\\ 137:2,5,6,12,13\\ 137:21 \ 144:1\\ 145:25 \ 153:4,7,12\\ 153:16 \ 156:25\\ 164:6\\ \textbf{sections} \ 29:16 \ 36:9\\ 37:14,18 \ 38:2\\ 42:12,19 \ 43:13\\ 50:10,17 \ 52:10,22\\ 53:1,4,21 \ 54:5,8\\ 56:16,19 \ 80:5\\ 97:5 \ 108:23 \ 109:2\\ 109:3\\ \textbf{sediment} \ 10:6,8\\ 20:1 \ 26:6,7,9,18\\ 26:19,23 \ 28:3\\ 29:7 \ 30:1,19,22\\ 31:15 \ 35:4 \ 36:17\\ 39:19 \ 45:2 \ 48:18\\ 48:22 \ 67:11,14\\ 74:9 \ 108:13,17\\ \end{array}$	103:15 104:4 132:10,10,12,15 133:21 145:17 153:14,21,25 154:4,8 156:3 158:19 separate 66:7 84:19 84:23 September 1:15 2:14 9:16 121:3 143:21,21 series 7:4 10:12 126:8 sessions 20:6,9 set 25:18 39:8,13 83:22 115:6 147:8 sets 83:20 setting 8:10 32:12 sevens 161:22 sewer 84:20 Shaun 145:9,18,21 158:16 Shaw 5:21 87:13
128:11 130:13 131:14 137:5,9,11 138:24 140:17 142:1 144:15 153:8,9 165:25 166:2 reviewed 12:16 14:5 42:6 47:25 53:22,23 58:10,24 59:4 80:24 98:4 98:12 99:6,20 114:12,24 115:2,6 115:7 138:8 140:20 144:19 155:8 reviewing 37:12 41:4 80:10 144:22 reviews 42:13 revised 125:15 revisions 108:20 RICHARDSON 3:5 rid 16:17 right 7:7 8:21 17:18 25:5 27:8 33:20	rule 8:3 rules 7:2 run 17:23 runoff 73:22,23 74:11,25 75:4,12 75:24 76:6,14,23 77:4,25 78:18 79:14 88:9,11 121:16 122:2 rust 80:4 RWQCB 164:10 R9-2007-0043 5:19 81:23 R9-2011-0001 1:5 2:5 9:15 <u>S</u> 3:10 5:12 Sacramento 4:6 65:17,20 safe 84:6 155:18,21 safety 91:19 sale 78:5 sampling 24:15	says 55:7 71:9,11,14 71:21,24 72:7 103:15 141:3 142:18 145:17 160:1 scan 50:12 52:25 SCCWRP 70:11 scenario 149:2 Schedule 41:2 scheduled 11:19,20 Schiff 70:3,6,8 73:1 80:15 Schiff's 70:14 72:11 Schmidt 106:3 school 20:21 21:4 22:10 Science 20:23 scientific 65:6 82:11 83:22 scientific 65:6 82:11 83:22 scientific 65:6 82:11 scope 29:10 39:10 65:8 147:23 scoping 66:14 SDG&E 38:17 52:19 126:6	132:20 133:2,5,8 133:10 136:24 137:2,5,6,12,13 137:21 144:1 145:25 153:4,7,12 153:16 156:25 164:6 sections 29:16 36:9 37:14,18 38:2 42:12,19 43:13 50:10,17 52:10,22 53:1,4,21 54:5,8 56:16,19 80:5 97:5 108:23 109:2 109:3 sediment 10:6,8 20:1 26:6,7,9,18 26:19,23 28:3 29:7 30:1,19,22 31:15 35:4 36:17 39:19 45:2 48:18 48:22 67:11,14 74:9 108:13,17 113:11 120:12 123:4,20 see 16:22 24:20	103:15 104:4 132:10,10,12,15 133:21 145:17 153:14,21,25 154:4,8 156:3 158:19 separate 66:7 84:19 84:23 September 1:15 2:14 9:16 121:3 143:21,21 series 7:4 10:12 126:8 sessions 20:6,9 set 25:18 39:8,13 83:22 115:6 147:8 sets 83:20 setting 8:10 32:12 sevens 161:22 sewer 84:20 Shaun 145:9,18,21 158:16 Shaw 5:21 87:13 sheen 158:15 159:6 159:14 Shelter 79:9
128:11 130:13 131:14 137:5,9,11 138:24 140:17 142:1 144:15 153:8,9 165:25 166:2 reviewed 12:16 14:5 42:6 47:25 53:22,23 58:10,24 59:4 80:24 98:4 98:12 99:6,20 114:12,24 115:2,6 115:7 138:8 140:20 144:19 155:8 reviewing 37:12 41:4 80:10 144:22 reviews 42:13 revised 125:15 revisions 108:20 RICHARDSON 3:5 rid 16:17 right 7:7 8:21 17:18 25:5 27:8 33:20 35:8 37:20 43:3	rule 8:3 rules 7:2 run 17:23 runoff 73:22,23 74:11,25 75:4,12 75:24 76:6,14,23 77:4,25 78:18 79:14 88:9,11 121:16 122:2 rust 80:4 RWQCB 164:10 R9-2007-0043 5:19 81:23 R9-2011-0001 1:5 2:5 9:15 <u>S</u> 3:10 5:12 Sacramento 4:6 65:17,20 safe 84:6 155:18,21 safety 91:19 sale 78:5 sampling 24:15 55:21 57:2	says 55:7 71:9,11,14 71:21,24 72:7 103:15 141:3 142:18 145:17 160:1 scan 50:12 52:25 SCCWRP 70:11 scenario 149:2 Schedule 41:2 scheduled 11:19,20 Schiff 70:3,6,8 73:1 80:15 Schiff's 70:14 72:11 Schmidt 106:3 school 20:21 21:4 22:10 Science 20:23 scientific 65:6 82:11 83:22 scientific 65:6 82:11 83:22 scientifically 26:15 64:16 65:1 scope 29:10 39:10 65:8 147:23 scoping 66:14 SDG&E 38:17	$\begin{array}{c} 132:20 \ 133:2,5,8\\ 133:10 \ 136:24\\ 137:2,5,6,12,13\\ 137:21 \ 144:1\\ 145:25 \ 153:4,7,12\\ 153:16 \ 156:25\\ 164:6\\ \textbf{sections} \ 29:16 \ 36:9\\ 37:14,18 \ 38:2\\ 42:12,19 \ 43:13\\ 50:10,17 \ 52:10,22\\ 53:1,4,21 \ 54:5,8\\ 56:16,19 \ 80:5\\ 97:5 \ 108:23 \ 109:2\\ 109:3\\ \textbf{sediment} \ 10:6,8\\ 20:1 \ 26:6,7,9,18\\ 26:19,23 \ 28:3\\ 29:7 \ 30:1,19,22\\ 31:15 \ 35:4 \ 36:17\\ 39:19 \ 45:2 \ 48:18\\ 48:22 \ 67:11,14\\ 74:9 \ 108:13,17\\ 113:11 \ 120:12\\ 123:4,20\\ \end{array}$	103:15 104:4 132:10,10,12,15 133:21 145:17 153:14,21,25 154:4,8 156:3 158:19 separate 66:7 84:19 84:23 September 1:15 2:14 9:16 121:3 143:21,21 series 7:4 10:12 126:8 sessions 20:6,9 set 25:18 39:8,13 83:22 115:6 147:8 sets 83:20 setting 8:10 32:12 sevens 161:22 sewer 84:20 Shaun 145:9,18,21 158:16 Shaw 5:21 87:13 sheen 158:15 159:6 159:14

39.

1

Peterson Reporting, Video & Litigation Services

	· · · · · · · · · · · · · · · · · · ·			1
Shipbuilding 3:3	size 68:23,25	102:14,18 139:8	113:10 119:4	4:5,15 74:7 95:16
ships 89:16 154:6	sketch 36:6 68:21	147:10,10 152:2	120:8	96:1 143:7
shipyard 10:6,7	slash 143:19	south 67:14,25	stakeholders 66:15	streets 78:23
18:19,21,24 19:7	slide 70:17	103:5 143:2	152:9	strike 53:14 55:11
19:10 20:1 27:4	slow 78:20	Southern 70:11	stamp 88:17 89:1	97:23 99:12
27:15 28:3 29:6	slowly 7:13 78:22	Southwest 2:13 3:8	stamped 88:16	striking 48:13
31:15 34:19 35:2	slows 68:4	54:12 55:1 128:17	standard 131:7	struck 48:17
35:4,6 36:17	small 69:4 89:5	129:2,5,13	stands 144:20	studies 80:10
44:19,20 45:2	smaller 146:3	space-age 91:12	Star 37:21 96:6,9	121:20,25
48:18,22 67:11,14	Smith 44:10,12 82:7	speak 7:13,14 97:12	96:13 99:8 104:2	Studios 22:18
88:3 104:6 108:13	82:9,15,15,17	102:9 106:11	105:9 109:8	study 76:4 80:13,24
108:17 113:11	smoothly 7:3	112:16	start 10:24 35:1	stuff 16:8 48:7 51:4
120:11 123:3,20	societies 21:15	speaking 106:13	50:21 108:8	80:21
153:22 154:2,3,8	sold 104:6	116:10 118:1	164:19	subject 29:12
154:9 156:5,10,19	sole 44:21	148:2	started 22:1,24 23:5	136:11,19 163:14 sublessees 138:25
162:13	solely 10:23 53:21	speaks 59:25 71:5 72:15 88:23	42:25 46:10 83:9	submitted 15:6 59:6
shipyards 16:16	soliciting 66:25 solution 25:14	special 122:1,4,7	108:12,12 129:1 142:9	submitting 42:12
47:11,13 109:15		specific 41:13 42:7	starting 93:18	subsections 55:21
154:15 short 49:16 147:2	somebody 19:12 35:12 48:9 94:16	42:25 51:8 59:4	126:25 132:12	subsequent 12:20
153:9 162:14	105:24	62:19 77:17 84:15	141:3	37:25 109:4
shortens 116:4	somewhat 9:19 57:5	112:24 113:14	state 2:17 4:3,4 6:11	subsequently 57:4
shorthand 168:4,10	68:20 99:1,3	118:16 122:22	21:6 65:21 84:6	65:15 126:24
Shortly 142:9	sorry 33:8,13 54:6	149:13 159:14	121:11 167:3	subsets 33:1,18
shoulders 41:10	56:19 57:6 63:13	specifically 52:14	168:5	substantive 8:19
show 46:23 52:15	81:17 84:21 94:11	56:24 79:9 84:7	stated 29:5	success 78:6
70:19	94:17 95:7 97:11	99:4 101:8 103:5	statement 145:20	succession 109:24
showing 138:25	98:5 104:24 105:1	113:1 130:2	156:2,18 160:22	successor 118:20
shown 109:6	109:7 110:22	139:19,22 149:17	states 158:14	successorship
side 146:2	111:8 112:2	150:11,16 155:9	station 15:21	109:19
sign 166:3,9	116:23 117:2	160:6 161:14	stations 39:19 75:9	sufficient 100:8,13
signed 88:16 141:13	125:5 131:20	specificity 80:22	stayed 24:2	100:17
166:6	133:5,9 135:15	specifics 122:12	Steel 3:3	Suite 2:15 3:5,11,21
significant 14:24,25	136:25 137:19	130:9	Steven 80:15	4:15,19
67:4 76:6,24	138:16 141:17	speculate 95:1	stick 131:9	sum 72:9
77:20 78:21 79:1	142:14 143:3	speculating 18:23	sticker 48:4,5	sunny 22:15
90:5 110:16	157:8	speculation 18:9	stickers 48:6	supervision 101:2
133:18 164:21	sort 19:17 24:10,16	56:7 69:19 72:16	stipulate 60:15,18	supervisor 41:20
silly 163:9	31:11 68:21	76:2,10 79:17,17	stipulated 60:14,16	55:3 82:19 100:6
Silvergate 128:7	160:18	88:24 91:2 115:3	60:17 165:13	104:20 110:17
simply 94:13	sorts 109:21	119:7 132:22	166:15,16	111:4,19 112:18
sir 32:3 138:1	sound 26:15 64:16	134:13 158:23	stipulation 60:12,23	118:13 129:8
sit 124:11	65:1 138:17	160:20	165:7,16 stop 9:9 108:16	132:4 supervisors 54:17
site 10:6,7,8 20:2	sounds 32:12	speculative 76:16 77:8	stopped 132:4	101:14
28:3 29:7 54:19 54:23 67:14 89:14	source 56:22 59:3	spell 6:11	storage 88:12	support 123:23
89:20,23 106:22	59:13,17,22 63:4 63:5 74:24 75:2	spill 59:14,16,20,24	store 16:8	124:5,15 125:17
108:13,17 112:7	76:7,13,24 77:4,8	61:11,18 62:17,20	stored 15:17	156:18
113:11 117:12,24	78:5,16,23 80:4	63:2	stories 78:6	supporting 126:18
120:2,12 123:4,5	84:19,23 85:17	spilled 61:20	storm 74:20 80:14	suppose 62:14
123:20 130:22,23	136:2,10 138:21	spoke 17:10 105:5	84:20 88:4 145:15	160:14
131:3,9 142:12	146:10 149:7	106:16,18 116:8	145:25	supposed 62:20
143:6 160:25	152:5 164:9,12	116:11	stormwater 80:7,9	supposedly 79:5
161:1,2,5	sourced 53:7,10	spoken 99:7 117:22	80:11 86:21 88:2	sure 21:22 28:23
sites 24:18,23,25	sources 17:2 51:9	spots 123:13	88:8,21 89:15,17	33:9 37:1 39:3
89:8	58:19 75:25 76:15	spotted 34:9	91:9 122:2	45:10 46:19,21
situation 150:20	76:19 77:11 78:17	stacks 114:5	strategizing 105:14	47:11 49:17,19
six 117:2,4	79:1 85:25 86:4	staff 4:4 15:9	street 2:15 3:11,16	52:6 57:14 64:1
				1

b

Peterson Reporting, Video & Litigation Services

				1.
66:7 68:9 71:12	49:21 80:19 93:4	158:25	134:17	73:15 75:15,16
82:25 87:1 94:1	146:19 168:10	testify 27:23 29:6	three 4:10 16:19	78:3,7 79:8 82:4,7
94:22 106:4	talk 6:20 7:1 9:12	168:8	24:2,8 25:2 41:11	82:13,18 83:6,10
107:13 110:17	20:19 29:16 34:18	testifying 8:11	41:12 42:3,5,10	83:11,12,15,18,20
112:18 113:20	43:11,13 50:4,11	testimony 9:2,5	52:22 53:21 55:20	84:16,18 85:16
122:6 125:8	55:12 155:15	27:9,13,17,20	66:11,20 73:16	86:6,13 90:7,8,16
127:10 131:6,16	talked 12:3 18:3	32:2 35:7 37:9	99:25 111:13	90:23 92:7 122:16
137:7 138:7	37:12 42:15 76:14	45:20 87:19	113:25 114:25	122:17 123:6,19
144:18 145:1,2	112:18 151:21	110:23 115:25	117:6 162:24	147:7,16,19 148:9
149:15 150:4,10	157:6 163:11	121:19 151:14,19	163:10	148:16 149:19,24
151:17 152:21	talking 7:15 61:5	151:21 155:4	throw 19:22	149:25 151:20
surface 74:15	62:17 85:8 156:3	168:13	thumbnail 36:6	TMDLs 25:9 26:7,9
suspect 73:1	tanks 88:12	testing 24:15	68:21	31:12,17,19 32:8
Swiss 22:5,8	taught 22:8	Thank 6:18 17:7	tie 36:24	32:22 33:18 44:19
Switzer 5:17 66:6,8	team 9:14 13:10	86:19 93:16 95:6	Tijuana 26:6,9,22	44:20 64:14,15
70:1,25 71:4 72:5	20:5 26:4 28:5	107:18 113:8	26:23 64:14	81:25 86:2 90:20
72:14	34:18,21 35:5,9	116:24 125:20	time 6:10 7:15,25	91:1,25 132:4
Switzerland 22:4	35:11,20,24 44:13	126:12 127:22	7:25 9:8 16:20	142:9 147:4,5
SWM 145:7,23	48:21 49:8,9,12	128:2 132:7 137:8	18:25 19:4 24:11	151:16
158:12	Team's 5:15 28:13	137:10 138:6	26:25 35:22 36:15	Tobler 1:13 2:11
sworn 6:2 168:8	technical 9:16,24	139:23 140:21	36:16,20 41:15,21	5:2,13,14 6:1,6,13
SW4 145:10,18	23:12 65:6 82:11	145:5 146:15	45:9 46:11 47:9,9	6:13,16,24 10:24
158:15,17 159:7,8	82:23 108:20	152:15,16 157:16	51:23 58:20 62:9	13:14,15,17,19,19
system 17:8,25 18:1	109:4,20 111:23	157:18 163:13	62:10 63:7,10,16	28:12,15,17 49:23
18:14 19:18 23:23	112:4 113:5	Thanks 115:16	63:20 66:21 77:2	63:20 64:7 69:23
74:19,21 84:20	118:21 125:15,18	159:17	78:9 84:3 92:18	82:2 87:10 93:8
88:2 89:21 91:14	technically 26:14	thing 24:16 51:15	92:23 94:17 98:21	107:24 125:10
115:20,23,24	64:16 65:1	128:25 161:22	101:2 102:23	126:5 133:1
119:2 159:7	technological 30:22	things 7:2 15:8	104:20 106:20,23	140:15 144:11
systems 2:12 3:8 6:7	40:8	22:18 41:13 42:25	107:1,5 113:11	146:23 152:20
50:5 52:23,24,25	technology 91:12	48:17 51:13 79:7	114:23 118:25,25	157:17,21 160:2
53:16 54:13,23	91:23 92:4	89:22 110:15	119:20,20 125:11	164:5 167:2,10
55:22 57:9 58:22	tell 12:2 36:16	113:16,20	128:23 135:20	today 7:5 8:25 9:2,6
74:3 153:22	63:22 68:8 84:4	think 9:4 11:20,21	136:3 138:14	9:12 10:1,23 11:4
155:15 156:4,17	101:22	21:17 23:19 25:5	143:9,15,19,20,24	13:2,5,8 20:17
156:19 164:6	telling 31:24 135:22	35:18 43:8 47:20	156:25 157:17	35:23 95:20 96:12
	tells 89:6	50:12 52:13,17	162:14,17 163:14	101:17 104:2
	temper 86:25	56:2 81:21 85:21	163:21	118:7 124:11
T 5:12,12 168:2,2	template 127:10	87:4 89:9,23	times 41:11,12 42:3	147:3 152:16
table 46:1,3,5 56:19	ten 49:18 92:3	90:25 91:4 92:21	42:5,10 54:21	153:6
56:25 57:12,16	121:22	92:24 94:20	99:25 114:25	today's 11:23 12:19
58:5,9,16,21	Tennessee 20:24	102:24 103:1	158:15	147:1
59:12,14 63:3,8	tentative 1:5 2:5	104:12 106:14,18	timing 90:6	told 101:21,23
68:14 90:13 92:7	9:14 96:15 124:5	107:12,17 110:10	tire 79:18	113:1 118:3 129:1
92:10 95:4 164:7	tenure 132:6	110:22 120:8	tired 22:2	129:12,25 158:20 Tom 46:10 47:1
tables 133:18	ten-year 92:1	123:16 128:17	tires 79:19	
take 7:8,15 8:7 9:8	term 85:6 122:4	129:7,12 130:15	title 23:20	tool 17:24 157:12
18:2,12 21:3	terms 14:19 16:3	134:7 135:8 138:7	titles 23:9 TMDL 24:3 25:3,8	top 33:14 47:2 70:25 71:2 79:22
45:21 49:15 50:11	17:8 18:21 34:15	141:19 142:15 157:8 158:3	26:1,3,4,6,12,17	89:19 103:11
50:20 55:11,17	41:23 43:16 46:13	thinking 89:18	26:22 27:21,21	111:18 141:8
63:22 67:10 71:2	54:8 64:15 100:24	third 141:2 158:10	34:24 35:1,4	161:15,16 164:7
71:16 78:7,9	testified 6:2 33:16	2	-	topic 38:21 122:7
80:17 81:5 87:14	37:3 64:9,13 82:6	158:14,19 third-to-last 28:21	43:20,23,25 44:4	topics 29:18 36:22
90:8,11 93:24 125:22 137:5	95:20 104:1 118:7	thorough 17:5	64:10,14,19,24	36:25 37:7
140:17 141:23	121:14 122:5,6,15	99:24 100:15,20	65:1,6,9,12,19,24	Total 24:4
146:16,18 159:11	128:5 132:20 133:4,7 137:4	thought 33:16 64:9	66:1,4,22,24 67:4	tour 52:9,12,18,20
taken 2:12 10:11	144:11 153:6	110:25 130:1	68:18 73:4,13,14	87:23 130:22
ancii 2.12 10.11	144.11 155.0	110.23 130.1	00.10 / J.4,13,14	07.23 130.22

Peterson Reporting, Video & Litigation Services

131:9 140:6,8	167:4 168:12	understanding 49:1	valleys 68:11	84:13 85:24 86:8
141:23 142:12,19	truth 31:24 168:8,9	66:10,24 69:8,15	value 55:18 58:3,13	94:17
143:5,17 144:12	168:9	73:5 84:17 85:15	58:16 59:8 136:14	wastes 54:12
143.3,17 144.12	truthfully 7:6	102:20	various 22:19 32:14	wastewater 88:12
158:6 159:25		understood 7:24	41:6 51:12 53:12	139:4
	try 7:13,16,18 147:1 trying 47:24 67:17	111:2	65:11 68:11 74:1	waste-load 85:22
160:4,7,13 tours 52:7 159:4	98:19	undertake 54:10	83:20 104:20	86:1,12,15 149:4
	tunnels 131:1	unfamiliar 96:11	verifies 88:1	149:11
toxic 73:6,8 133:3 133:11	turn 50:6 81:12	99:10	verify 17:1 53:16,23	water 1:1 2:1 4:3,4
Toxicity 80:14	93:11 96:4 103:8	unfortunately	53:24 57:17,19,19	5:15 9:13 23:13
5		70:18 162:16	57:24 59:9	23:15,20 24:8
toxicology 30:2,13 to-file 161:24	152:19 153:3 155:22 164:5	Unified 4:8 108:1,4	version 10:17 12:14	25:10,10,12,15,24
		unit 23:22 24:4,6,7	12:16 37:24 49:25	28:13 55:8,12
track 105:14,16,17	turns 102:5 117:19	25:4,8 44:7,15,16	50:1	65:21 68:14,16
105:24,25 107:9 107:11	two 18:25 20:25	44:18,18 83:10	versions 50:10 97:3	70:12 74:6,8
tracked 106:6	21:4,20 27:22 43:12 49:24 51:9	129:19	97:10,24 98:9	75:21 80:14 81:24
tracking 98:22	52:8 66:20 79:22	Universal 22:18	107:15	83:21 91:10
Tracy 3:10,15 5:9	104:21 110:1,2	University 20:23,24	versus 54:13 123:19	121:11 122:13
31:20 32:1 51:22	116:22,24 141:1	unknown 146:4	video 145:10,12,17	129:22 132:17
		unnecessary 19:4	145:21 158:16	147:9,20 150:5,5
59:23 60:14,18	159:4 162:15 163:7	unregulated 86:3	viewed 39:14	151:9,9,23,23
61:1 62:8,18 63:6 63:13 92:23 93:1	type 52:18 53:9	unsigned 166:10	violation 25:1	157:7,10,14
95:5 125:22 126:4	74:6 76:4 78:15	updates 125:16	133:23 134:4,20	162:10 164:13
126:6 127:24,25	79:13 120:6	upper 83:20,22,25	157:9,14 164:22	waterfront 52:16
128:3 132:25	164:22	84:14	violations 24:22,24	watering 22:1
134:7,7,21 135:4	types 14:15 15:24	up-to-date-type	41:15,16,18 100:1	watershed 5:17
138:5 140:13,16	79:7 84:8	51:15	130:14 144:4,7	68:8,9,19,22 69:7
142:3 143:16	typewriting 168:11	urban 69:6 73:21	157:7,11 164:21	69:9,9,16,17 70:1
146:13,15 153:15	typewritten 144:15	73:23,24 74:2,6,7	visit 52:2	73:18 74:22 78:16
			visualizing 46:2	
153:18 154:11	145:6,14	74:10,11,16,17,21	visualizing 46:2 voice 37:6	watersheds 5:18
153:18 154:11 157:3 158:24	145:6,14 typical 86:13 163:8	74:10,11,16,17,21 74:25 75:4,11,24	visualizing 46:2 voice 37:6	watersheds 5:18 68:15 70:2
153:18 154:11 157:3 158:24 160:19 163:16,24	145:6,14 typical 86:13 163:8 typically 32:23	74:10,11,16,17,21 74:25 75:4,11,24 76:6,14,23 77:4	1 –	watersheds 5:18 68:15 70:2 WATKINS 3:4
153:18 154:11 157:3 158:24 160:19 163:16,24 traded 105:15	145:6,14 typical 86:13 163:8 typically 32:23 61:11 74:15,17,22	74:10,11,16,17,21 74:25 75:4,11,24	voice 37:6	watersheds 5:18 68:15 70:2
153:18 154:11 157:3 158:24 160:19 163:16,24 traded 105:15 trained 89:4 127:24	145:6,14 typical 86:13 163:8 typically 32:23 61:11 74:15,17,22 75:8 85:25 86:2	74:10,11,16,17,21 74:25 75:4,11,24 76:6,14,23 77:4 77:25 78:18,24 79:14 121:16	voice 37:6	watersheds 5:18 68:15 70:2 WATKINS 3:4 way 39:15 74:8
153:18 154:11 157:3 158:24 160:19 163:16,24 traded 105:15 trained 89:4 127:24 training 21:6,7,10	145:6,14 typical 86:13 163:8 typically 32:23 61:11 74:15,17,22 75:8 85:25 86:2 92:1 134:4 160:16	74:10,11,16,17,21 74:25 75:4,11,24 76:6,14,23 77:4 77:25 78:18,24 79:14 121:16 122:2	voice 37:6 W wait 7:16,18 walls 88:10	watersheds 5:18 68:15 70:2 WATKINS 3:4 way 39:15 74:8 78:17 79:14 80:2
153:18 154:11 157:3 158:24 160:19 163:16,24 traded 105:15 trained 89:4 127:24	145:6,14 typical 86:13 163:8 typically 32:23 61:11 74:15,17,22 75:8 85:25 86:2 92:1 134:4 160:16 161:6	74:10,11,16,17,21 74:25 75:4,11,24 76:6,14,23 77:4 77:25 78:18,24 79:14 121:16	voice 37:6 <u>W</u> wait 7:16,18	watersheds 5:18 68:15 70:2 WATKINS 3:4 way 39:15 74:8 78:17 79:14 80:2 100:23 118:24
153:18 154:11 157:3 158:24 160:19 163:16,24 traded 105:15 trained 89:4 127:24 training 21:6,7,10 122:1,4,7 transcribed 168:11	145:6,14 typical 86:13 163:8 typically 32:23 61:11 74:15,17,22 75:8 85:25 86:2 92:1 134:4 160:16	74:10,11,16,17,21 74:25 75:4,11,24 76:6,14,23 77:4 77:25 78:18,24 79:14 121:16 122:2 URS 23:7,9	voice 37:6 W wait 7:16,18 walls 88:10 want 6:20,21 12:9	watersheds 5:18 68:15 70:2 WATKINS 3:4 way 39:15 74:8 78:17 79:14 80:2 100:23 118:24 123:7 148:12
153:18 154:11 157:3 158:24 160:19 163:16,24 traded 105:15 trained 89:4 127:24 training 21:6,7,10 122:1,4,7 transcribed 168:11 transcript 7:10 8:15	145:6,14 typical 86:13 163:8 typically 32:23 61:11 74:15,17,22 75:8 85:25 86:2 92:1 134:4 160:16 161:6 typo 112:14 T-O-B-L-E-R 6:14	74:10,11,16,17,21 74:25 75:4,11,24 76:6,14,23 77:4 77:25 78:18,24 79:14 121:16 122:2 URS 23:7,9 use 10:22 17:24 36:11 46:6 78:15	voice 37:6 W wait 7:16,18 walls 88:10 want 6:20,21 12:9 13:13 28:12 29:18	watersheds 5:18 68:15 70:2 WATKINS 3:4 way 39:15 74:8 78:17 79:14 80:2 100:23 118:24 123:7 148:12 149:20
153:18 154:11 157:3 158:24 160:19 163:16,24 traded 105:15 trained 89:4 127:24 training 21:6,7,10 122:1,4,7 transcribed 168:11	145:6,14 typical 86:13 163:8 typically 32:23 61:11 74:15,17,22 75:8 85:25 86:2 92:1 134:4 160:16 161:6 typo 112:14	74:10,11,16,17,21 74:25 75:4,11,24 76:6,14,23 77:4 77:25 78:18,24 79:14 121:16 122:2 URS 23:7,9 use 10:22 17:24	voice 37:6 W wait 7:16,18 walls 88:10 want 6:20,21 12:9 13:13 28:12 29:18 29:20 36:22 43:13	watersheds 5:18 68:15 70:2 WATKINS 3:4 way 39:15 74:8 78:17 79:14 80:2 100:23 118:24 123:7 148:12 149:20 WDR 24:6
153:18 154:11 157:3 158:24 160:19 163:16,24 traded 105:15 trained 89:4 127:24 training 21:6,7,10 122:1,4,7 transcribed 168:11 transcript 7:10 8:15 9:9 165:9,22	145:6,14 typical 86:13 163:8 typically 32:23 61:11 74:15,17,22 75:8 85:25 86:2 92:1 134:4 160:16 161:6 typo 112:14 T-O-B-L-E-R 6:14 T.619.758.7743	74:10,11,16,17,21 74:25 75:4,11,24 76:6,14,23 77:4 77:25 78:18,24 79:14 121:16 122:2 URS 23:7,9 use 10:22 17:24 36:11 46:6 78:15 79:13 88:22	voice 37:6 W wait 7:16,18 walls 88:10 want 6:20,21 12:9 13:13 28:12 29:18 29:20 36:22 43:13 45:20 46:22 50:4	watersheds 5:18 68:15 70:2 WATKINS 3:4 way 39:15 74:8 78:17 79:14 80:2 100:23 118:24 123:7 148:12 149:20 WDR 24:6 weak 101:13
153:18 154:11 157:3 158:24 160:19 163:16,24 traded 105:15 trained 89:4 127:24 training 21:6,7,10 122:1,4,7 transcribed 168:11 transcript 7:10 8:15 9:9 165:9,22 166:2,4,6,8,10	145:6,14 typical 86:13 163:8 typically 32:23 61:11 74:15,17,22 75:8 85:25 86:2 92:1 134:4 160:16 161:6 typo 112:14 T-O-B-L-E-R 6:14 T.619.758.7743	74:10,11,16,17,21 74:25 75:4,11,24 76:6,14,23 77:4 77:25 78:18,24 79:14 121:16 122:2 URS 23:7,9 use 10:22 17:24 36:11 46:6 78:15 79:13 88:22 156:18 157:12	voice 37:6 W wait 7:16,18 walls 88:10 want 6:20,21 12:9 13:13 28:12 29:18 29:20 36:22 43:13 45:20 46:22 50:4 62:1 63:22 77:14	watersheds 5:18 68:15 70:2 WATKINS 3:4 way 39:15 74:8 78:17 79:14 80:2 100:23 118:24 123:7 148:12 149:20 WDR 24:6 weak 101:13 websites 51:12
153:18 154:11 157:3 158:24 160:19 163:16,24 traded 105:15 trained 89:4 127:24 training 21:6,7,10 122:1,4,7 transcribed 168:11 transcript 7:10 8:15 9:9 165:9,22 166:2,4,6,8,10 transferred 24:5	145:6,14 typical 86:13 163:8 typically 32:23 61:11 74:15,17,22 75:8 85:25 86:2 92:1 134:4 160:16 161:6 typo 112:14 T-O-B-L-E-R 6:14 T.619.758.7743 4:16	74:10,11,16,17,21 74:25 75:4,11,24 76:6,14,23 77:4 77:25 78:18,24 79:14 121:16 122:2 URS 23:7,9 use 10:22 17:24 36:11 46:6 78:15 79:13 88:22 156:18 157:12 166:12	voice 37:6 W wait 7:16,18 walls 88:10 want 6:20,21 12:9 13:13 28:12 29:18 29:20 36:22 43:13 45:20 46:22 50:4 62:1 63:22 77:14 92:19 108:7 125:22 130:10 158:1	watersheds 5:18 68:15 70:2 WATKINS 3:4 way 39:15 74:8 78:17 79:14 80:2 100:23 118:24 123:7 148:12 149:20 WDR 24:6 weak 101:13 websites 51:12 Wednesday 2:14
153:18 154:11 157:3 158:24 160:19 163:16,24 traded 105:15 trained 89:4 127:24 training 21:6,7,10 122:1,4,7 transcribed 168:11 transcript 7:10 8:15 9:9 165:9,22 166:2,4,6,8,10 transferred 24:5 transformers	145:6,14 typical 86:13 163:8 typically 32:23 61:11 74:15,17,22 75:8 85:25 86:2 92:1 134:4 160:16 161:6 typo 112:14 T-O-B-L-E-R 6:14 T.619.758.7743 4:16 U	74:10,11,16,17,21 74:25 75:4,11,24 76:6,14,23 77:4 77:25 78:18,24 79:14 121:16 122:2 URS 23:7,9 use 10:22 17:24 36:11 46:6 78:15 79:13 88:22 156:18 157:12 166:12 USEPA 78:4	voice 37:6 W wait 7:16,18 walls 88:10 want 6:20,21 12:9 13:13 28:12 29:18 29:20 36:22 43:13 45:20 46:22 50:4 62:1 63:22 77:14 92:19 108:7 125:22 130:10 158:1 wanted 6:16 10:20	watersheds 5:18 68:15 70:2 WATKINS 3:4 way 39:15 74:8 78:17 79:14 80:2 100:23 118:24 123:7 148:12 149:20 WDR 24:6 weak 101:13 websites 51:12 Wednesday 2:14 weeks 34:8 162:15 weight 100:7 weights 79:18
153:18 154:11 157:3 158:24 160:19 163:16,24 traded 105:15 trained 89:4 127:24 training 21:6,7,10 122:1,4,7 transcribed 168:11 transcript 7:10 8:15 9:9 165:9,22 166:2,4,6,8,10 transferred 24:5 transformers 154:14,14,18,23 154:24 155:4,10 155:16,19	145:6,14 typical 86:13 163:8 typically 32:23 61:11 74:15,17,22 75:8 85:25 86:2 92:1 134:4 160:16 161:6 typo 112:14 T-O-B-L-E-R 6:14 T.619.758.7743 4:16 U Uh-huh 55:10 141:5 ultimate 111:21 ultimately 68:12	74:10,11,16,17,21 74:25 75:4,11,24 76:6,14,23 77:4 77:25 78:18,24 79:14 121:16 122:2 URS 23:7,9 use 10:22 17:24 36:11 46:6 78:15 79:13 88:22 156:18 157:12 166:12 USEPA 78:4 uses 69:4 usually 68:12 74:18 74:20	voice 37:6 W wait 7:16,18 walls 88:10 want 6:20,21 12:9 13:13 28:12 29:18 29:20 36:22 43:13 45:20 46:22 50:4 62:1 63:22 77:14 92:19 108:7 125:22 130:10 158:1 wanted 6:16 10:20 22:12,15 42:6	watersheds 5:18 68:15 70:2 WATKINS 3:4 way 39:15 74:8 78:17 79:14 80:2 100:23 118:24 123:7 148:12 149:20 WDR 24:6 weak 101:13 websites 51:12 Wednesday 2:14 weeks 34:8 162:15 weight 100:7 weights 79:18 went 22:15 42:5,25
153:18 154:11 157:3 158:24 160:19 163:16,24 traded 105:15 trained 89:4 127:24 training 21:6,7,10 122:1,4,7 transcribed 168:11 transcript 7:10 8:15 9:9 165:9,22 166:2,4,6,8,10 transferred 24:5 transformers 154:14,14,18,23 154:24 155:4,10	145:6,14 typical 86:13 163:8 typically 32:23 61:11 74:15,17,22 75:8 85:25 86:2 92:1 134:4 160:16 161:6 typo 112:14 T-O-B-L-E-R 6:14 T.619.758.7743 4:16 U Uh-huh 55:10 141:5 ultimate 111:21 ultimately 68:12 84:10 100:6	74:10,11,16,17,21 74:25 75:4,11,24 76:6,14,23 77:4 77:25 78:18,24 79:14 121:16 122:2 URS 23:7,9 use 10:22 17:24 36:11 46:6 78:15 79:13 88:22 156:18 157:12 166:12 USEPA 78:4 uses 69:4 usually 68:12 74:18	voice 37:6 W wait 7:16,18 walls 88:10 want 6:20,21 12:9 13:13 28:12 29:18 29:20 36:22 43:13 45:20 46:22 50:4 62:1 63:22 77:14 92:19 108:7 125:22 130:10 158:1 wanted 6:16 10:20 22:12,15 42:6 67:13 129:13	watersheds 5:18 68:15 70:2 WATKINS 3:4 way 39:15 74:8 78:17 79:14 80:2 100:23 118:24 123:7 148:12 149:20 WDR 24:6 weak 101:13 websites 51:12 Wednesday 2:14 weeks 34:8 162:15 weight 100:7 weights 79:18 went 22:15 42:5,25 51:11 52:5,18
153:18 154:11 157:3 158:24 160:19 163:16,24 traded 105:15 trained 89:4 127:24 training 21:6,7,10 122:1,4,7 transcribed 168:11 transcript 7:10 8:15 9:9 165:9,22 166:2,4,6,8,10 transferred 24:5 transformers 154:14,14,18,23 154:24 155:4,10 155:16,19 transgressing 84:16 transport 95:21	145:6,14 typical 86:13 163:8 typically 32:23 61:11 74:15,17,22 75:8 85:25 86:2 92:1 134:4 160:16 161:6 typo 112:14 T-O-B-L-E-R 6:14 T.619.758.7743 4:16 U Uh-huh 55:10 141:5 ultimate 111:21 ultimately 68:12 84:10 100:6 105:23	74:10,11,16,17,21 74:25 75:4,11,24 76:6,14,23 77:4 77:25 78:18,24 79:14 121:16 122:2 URS 23:7,9 use 10:22 17:24 36:11 46:6 78:15 79:13 88:22 156:18 157:12 166:12 USEPA 78:4 uses 69:4 usually 68:12 74:18 74:20	voice 37:6 W wait 7:16,18 walls 88:10 want 6:20,21 12:9 13:13 28:12 29:18 29:20 36:22 43:13 45:20 46:22 50:4 62:1 63:22 77:14 92:19 108:7 125:22 130:10 158:1 wanted 6:16 10:20 22:12,15 42:6 67:13 129:13 133:16	watersheds 5:18 68:15 70:2 WATKINS 3:4 way 39:15 74:8 78:17 79:14 80:2 100:23 118:24 123:7 148:12 149:20 WDR 24:6 weak 101:13 websites 51:12 Wednesday 2:14 weeks 34:8 162:15 weight 100:7 weights 79:18 went 22:15 42:5,25 51:11 52:5,18 114:10 130:22
153:18 154:11 157:3 158:24 160:19 163:16,24 traded 105:15 trained 89:4 127:24 training 21:6,7,10 122:1,4,7 transcribed 168:11 transcript 7:10 8:15 9:9 165:9,22 166:2,4,6,8,10 transferred 24:5 transformers 154:14,14,18,23 154:24 155:4,10 155:16,19 transgressing 84:16 transport 95:21 trash 26:7,23	145:6,14 typical 86:13 163:8 typically 32:23 61:11 74:15,17,22 75:8 85:25 86:2 92:1 134:4 160:16 161:6 typo 112:14 T-O-B-L-E-R 6:14 T.619.758.7743 4:16 U Uh-huh 55:10 141:5 ultimate 111:21 ultimately 68:12 84:10 100:6 105:23 umbrella 99:1	74:10,11,16,17,21 74:25 75:4,11,24 76:6,14,23 77:4 77:25 78:18,24 79:14 121:16 122:2 URS 23:7,9 use 10:22 17:24 36:11 46:6 78:15 79:13 88:22 156:18 157:12 166:12 USEPA 78:4 uses 69:4 usually 68:12 74:18 74:20 utilities 23:14 utilize 31:13	voice 37:6 W wait 7:16,18 walls 88:10 want 6:20,21 12:9 13:13 28:12 29:18 29:20 36:22 43:13 45:20 46:22 50:4 62:1 63:22 77:14 92:19 108:7 125:22 130:10 158:1 wanted 6:16 10:20 22:12,15 42:6 67:13 129:13 133:16 warrant 164:21	watersheds 5:18 68:15 70:2 WATKINS 3:4 way 39:15 74:8 78:17 79:14 80:2 100:23 118:24 123:7 148:12 149:20 WDR 24:6 weak 101:13 websites 51:12 Wednesday 2:14 weeks 34:8 162:15 weight 100:7 weights 79:18 went 22:15 42:5,25 51:11 52:5,18 114:10 130:22 141:19 163:7
153:18 154:11 157:3 158:24 160:19 163:16,24 traded 105:15 trained 89:4 127:24 training 21:6,7,10 122:1,4,7 transcribed 168:11 transcript 7:10 8:15 9:9 165:9,22 166:2,4,6,8,10 transferred 24:5 transformers 154:14,14,18,23 154:24 155:4,10 155:16,19 transgressing 84:16 transport 95:21 trash 26:7,23 158:15 159:6,13	145:6,14 typical 86:13 163:8 typically 32:23 61:11 74:15,17,22 75:8 85:25 86:2 92:1 134:4 160:16 161:6 typo 112:14 T-O-B-L-E-R 6:14 T.619.758.7743 4:16 U Uh-huh 55:10 141:5 ultimate 111:21 ultimately 68:12 84:10 100:6 105:23 umbrella 99:1 unaddressed	74:10,11,16,17,21 74:25 75:4,11,24 76:6,14,23 77:4 77:25 78:18,24 79:14 121:16 122:2 URS 23:7,9 use 10:22 17:24 36:11 46:6 78:15 79:13 88:22 156:18 157:12 166:12 USEPA 78:4 uses 69:4 usually 68:12 74:18 74:20 utilities 23:14 utilize 31:13 <u>V</u>	voice 37:6 W wait 7:16,18 walls 88:10 want 6:20,21 12:9 13:13 28:12 29:18 29:20 36:22 43:13 45:20 46:22 50:4 62:1 63:22 77:14 92:19 108:7 125:22 130:10 158:1 wanted 6:16 10:20 22:12,15 42:6 67:13 129:13 133:16 warrant 164:21 warranted 100:21	watersheds 5:18 68:15 70:2 WATKINS 3:4 way 39:15 74:8 78:17 79:14 80:2 100:23 118:24 123:7 148:12 149:20 WDR 24:6 weak 101:13 websites 51:12 Wednesday 2:14 weeks 34:8 162:15 weight 100:7 weights 79:18 went 22:15 42:5,25 51:11 52:5,18 114:10 130:22 141:19 163:7 weren't 33:11 94:22
153:18 154:11 157:3 158:24 160:19 163:16,24 traded 105:15 trained 89:4 127:24 training 21:6,7,10 122:1,4,7 transcribed 168:11 transcript 7:10 8:15 9:9 165:9,22 166:2,4,6,8,10 transferred 24:5 transformers 154:14,14,18,23 154:24 155:4,10 155:16,19 transgressing 84:16 transport 95:21 trash 26:7,23 158:15 159:6,13 travel 22:3	145:6,14 typical 86:13 163:8 typically 32:23 61:11 74:15,17,22 75:8 85:25 86:2 92:1 134:4 160:16 161:6 typo 112:14 T-O-B-L-E-R 6:14 T.619.758.7743 4:16 U Uh-huh 55:10 141:5 ultimately 68:12 84:10 100:6 105:23 umbrella 99:1 unaddressed 150:17	74:10,11,16,17,21 74:25 75:4,11,24 76:6,14,23 77:4 77:25 78:18,24 79:14 121:16 122:2 URS 23:7,9 use 10:22 17:24 36:11 46:6 78:15 79:13 88:22 156:18 157:12 166:12 USEPA 78:4 uses 69:4 usually 68:12 74:18 74:20 utilities 23:14 utilize 31:13 <u>V</u> vague 51:22 62:8,18	voice 37:6 W wait 7:16,18 walls 88:10 want 6:20,21 12:9 13:13 28:12 29:18 29:20 36:22 43:13 45:20 46:22 50:4 62:1 63:22 77:14 92:19 108:7 125:22 130:10 158:1 wanted 6:16 10:20 22:12,15 42:6 67:13 129:13 133:16 warrant 164:21 warranted 100:21 wasn't 21:24 28:11	watersheds 5:18 68:15 70:2 WATKINS 3:4 way 39:15 74:8 78:17 79:14 80:2 100:23 118:24 123:7 148:12 149:20 WDR 24:6 weak 101:13 websites 51:12 Wednesday 2:14 weeks 34:8 162:15 weight 100:7 weights 79:18 went 22:15 42:5,25 51:11 52:5,18 114:10 130:22 141:19 163:7 weren't 33:11 94:22 102:4,6 120:14
153:18 154:11 157:3 158:24 160:19 163:16,24 traded 105:15 trained 89:4 127:24 training 21:6,7,10 122:1,4,7 transcribed 168:11 transcript 7:10 8:15 9:9 165:9,22 166:2,4,6,8,10 transferred 24:5 transformers 154:14,14,18,23 154:24 155:4,10 155:16,19 transgressing 84:16 transport 95:21 trash 26:7,23 158:15 159:6,13 travel 22:3 treatment 88:12	145:6,14 typical 86:13 163:8 typically 32:23 61:11 74:15,17,22 75:8 85:25 86:2 92:1 134:4 160:16 161:6 typo 112:14 T-O-B-L-E-R 6:14 T.619.758.7743 4:16 U Uh-huh 55:10 141:5 ultimately 68:12 84:10 100:6 105:23 umbrella 99:1 unaddressed 150:17 Unauthorized	74:10,11,16,17,21 74:25 75:4,11,24 76:6,14,23 77:4 77:25 78:18,24 79:14 121:16 122:2 URS 23:7,9 use 10:22 17:24 36:11 46:6 78:15 79:13 88:22 156:18 157:12 166:12 USEPA 78:4 uses 69:4 usually 68:12 74:18 74:20 utilities 23:14 utilize 31:13 <u>V</u> vague 51:22 62:8,18 63:6 73:7 79:3	voice 37:6 W wait 7:16,18 walls 88:10 want 6:20,21 12:9 13:13 28:12 29:18 29:20 36:22 43:13 45:20 46:22 50:4 62:1 63:22 77:14 92:19 108:7 125:22 130:10 158:1 wanted 6:16 10:20 22:12,15 42:6 67:13 129:13 133:16 warrant 164:21 warranted 100:21 wasn't 21:24 28:11 32:13 34:24 36:15	watersheds 5:18 68:15 70:2 WATKINS 3:4 way 39:15 74:8 78:17 79:14 80:2 100:23 118:24 123:7 148:12 149:20 WDR 24:6 weak 101:13 websites 51:12 Wednesday 2:14 weeks 34:8 162:15 weight 100:7 weights 79:18 went 22:15 42:5,25 51:11 52:5,18 114:10 130:22 141:19 163:7 weren't 33:11 94:22 102:4,6 120:14 131:18 138:19
153:18 154:11 157:3 158:24 160:19 163:16,24 traded 105:15 trained 89:4 127:24 training 21:6,7,10 122:1,4,7 transcribed 168:11 transcript 7:10 8:15 9:9 165:9,22 166:2,4,6,8,10 transferred 24:5 transformers 154:14,14,18,23 154:24 155:4,10 155:16,19 transgressing 84:16 transport 95:21 trash 26:7,23 158:15 159:6,13 travel 22:3 treatment 88:12 trial 27:9	145:6,14 typical 86:13 163:8 typically 32:23 61:11 74:15,17,22 75:8 85:25 86:2 92:1 134:4 160:16 161:6 typo 112:14 T-O-B-L-E-R 6:14 T.619.758.7743 4:16 U Uh-huh 55:10 141:5 ultimately 68:12 84:10 100:6 105:23 umbrella 99:1 unaddressed 150:17 Unauthorized 133:3,10	74:10,11,16,17,21 74:25 75:4,11,24 76:6,14,23 77:4 77:25 78:18,24 79:14 121:16 122:2 URS 23:7,9 use 10:22 17:24 36:11 46:6 78:15 79:13 88:22 156:18 157:12 166:12 USEPA 78:4 uses 69:4 usually 68:12 74:18 74:20 utilities 23:14 utilize 31:13 <u>V</u> vague 51:22 62:8,18 63:6 73:7 79:3 91:3 102:23	voice 37:6 W wait 7:16,18 walls 88:10 want 6:20,21 12:9 13:13 28:12 29:18 29:20 36:22 43:13 45:20 46:22 50:4 62:1 63:22 77:14 92:19 108:7 125:22 130:10 158:1 wanted 6:16 10:20 22:12,15 42:6 67:13 129:13 133:16 warrant 164:21 warranted 100:21 wasn't 21:24 28:11 32:13 34:24 36:15 45:5 46:14 94:21	watersheds 5:18 68:15 70:2 WATKINS 3:4 way 39:15 74:8 78:17 79:14 80:2 100:23 118:24 123:7 148:12 149:20 WDR 24:6 weak 101:13 websites 51:12 Wednesday 2:14 weeks 34:8 162:15 weight 100:7 weights 79:18 went 22:15 42:5,25 51:11 52:5,18 114:10 130:22 141:19 163:7 weren't 33:11 94:22 102:4,6 120:14 131:18 138:19 150:15
153:18 154:11 157:3 158:24 160:19 163:16,24 traded 105:15 trained 89:4 127:24 training 21:6,7,10 122:1,4,7 transcribed 168:11 transcript 7:10 8:15 9:9 165:9,22 166:2,4,6,8,10 transferred 24:5 transformers 154:14,14,18,23 154:24 155:4,10 155:16,19 transport 95:21 trash 26:7,23 158:15 159:6,13 travel 22:3 treatment 88:12 trial 27:9 trier 8:3	145:6,14 typical 86:13 163:8 typically 32:23 61:11 74:15,17,22 75:8 85:25 86:2 92:1 134:4 160:16 161:6 typo 112:14 T-O-B-L-E-R 6:14 T.619.758.7743 4:16 U Uh-huh 55:10 141:5 ultimately 68:12 84:10 100:6 105:23 umbrella 99:1 unaddressed 150:17 Unauthorized 133:3,10 understand 7:22	74:10,11,16,17,21 74:25 75:4,11,24 76:6,14,23 77:4 77:25 78:18,24 79:14 121:16 122:2 URS 23:7,9 use 10:22 17:24 36:11 46:6 78:15 79:13 88:22 156:18 157:12 166:12 USEPA 78:4 uses 69:4 usually 68:12 74:18 74:20 utilities 23:14 utilize 31:13 <u>V</u> vague 51:22 62:8,18 63:6 73:7 79:3 91:3 102:23 106:24,25 122:3,8	voice 37:6 W wait 7:16,18 walls 88:10 want 6:20,21 12:9 13:13 28:12 29:18 29:20 36:22 43:13 45:20 46:22 50:4 62:1 63:22 77:14 92:19 108:7 125:22 130:10 158:1 wanted 6:16 10:20 22:12,15 42:6 67:13 129:13 133:16 warrant 164:21 warranted 100:21 wasn't 21:24 28:11 32:13 34:24 36:15 45:5 46:14 94:21 97:16 101:17	watersheds 5:18 68:15 70:2 WATKINS 3:4 way 39:15 74:8 78:17 79:14 80:2 100:23 118:24 123:7 148:12 149:20 WDR 24:6 weak 101:13 websites 51:12 Wednesday 2:14 weeks 34:8 162:15 weight 100:7 weights 79:18 went 22:15 42:5,25 51:11 52:5,18 114:10 130:22 141:19 163:7 weren't 33:11 94:22 102:4,6 120:14 131:18 138:19 150:15 West 3:5,21
153:18 154:11 157:3 158:24 160:19 163:16,24 traded 105:15 trained 89:4 127:24 training 21:6,7,10 122:1,4,7 transcribed 168:11 transcript 7:10 8:15 9:9 165:9,22 166:2,4,6,8,10 transferred 24:5 transformers 154:14,14,18,23 154:24 155:4,10 155:16,19 transport 95:21 trash 26:7,23 158:15 159:6,13 travel 22:3 treatment 88:12 trial 27:9 trier 8:3 triggers 143:5	145:6,14 typical 86:13 163:8 typically 32:23 61:11 74:15,17,22 75:8 85:25 86:2 92:1 134:4 160:16 161:6 typo 112:14 T-O-B-L-E-R 6:14 T.619.758.7743 4:16 U Uh-huh 55:10 141:5 ultimately 68:12 84:10 100:6 105:23 umbrella 99:1 unaddressed 150:17 Unauthorized 133:3,10 understand 7:22 8:8,13,23 11:1	74:10,11,16,17,21 74:25 75:4,11,24 76:6,14,23 77:4 77:25 78:18,24 79:14 121:16 122:2 URS 23:7,9 use 10:22 17:24 36:11 46:6 78:15 79:13 88:22 156:18 157:12 166:12 USEPA 78:4 uses 69:4 usually 68:12 74:18 74:20 utilities 23:14 utilize 31:13 <u>V</u> vague 51:22 62:8,18 63:6 73:7 79:3 91:3 102:23 106:24,25 122:3,8 123:25 147:24	voice 37:6 W wait 7:16,18 walls 88:10 want 6:20,21 12:9 13:13 28:12 29:18 29:20 36:22 43:13 45:20 46:22 50:4 62:1 63:22 77:14 92:19 108:7 125:22 130:10 158:1 wanted 6:16 10:20 22:12,15 42:6 67:13 129:13 133:16 warrant 164:21 warranted 100:21 wasn't 21:24 28:11 32:13 34:24 36:15 45:5 46:14 94:21 97:16 101:17 117:19 120:24	watersheds 5:18 68:15 70:2 WATKINS 3:4 way 39:15 74:8 78:17 79:14 80:2 100:23 118:24 123:7 148:12 149:20 WDR 24:6 weak 101:13 websites 51:12 Wednesday 2:14 weeks 34:8 162:15 weight 100:7 weights 79:18 went 22:15 42:5,25 51:11 52:5,18 114:10 130:22 141:19 163:7 weren't 33:11 94:22 102:4,6 120:14 131:18 138:19 150:15 West 3:5,21 we'll 29:16 36:8
153:18 154:11 157:3 158:24 160:19 163:16,24 traded 105:15 trained 89:4 127:24 training 21:6,7,10 122:1,4,7 transcribed 168:11 transcript 7:10 8:15 9:9 165:9,22 166:2,4,6,8,10 transferred 24:5 transformers 154:14,14,18,23 154:24 155:4,10 155:16,19 transgressing 84:16 transport 95:21 trash 26:7,23 158:15 159:6,13 travel 22:3 treatment 88:12 trial 27:9 trier 8:3 triggers 143:5 true 45:18 100:18	145:6,14 typical 86:13 163:8 typically 32:23 61:11 74:15,17,22 75:8 85:25 86:2 92:1 134:4 160:16 161:6 typo 112:14 T-O-B-L-E-R 6:14 T.619.758.7743 4:16 U Uh-huh 55:10 141:5 ultimately 68:12 84:10 100:6 105:23 umbrella 99:1 unaddressed 150:17 Unauthorized 133:3,10 understand 7:22 8:8,13,23 11:1 15:7 20:11,15,18	74:10,11,16,17,21 74:25 75:4,11,24 76:6,14,23 77:4 77:25 78:18,24 79:14 121:16 122:2 URS 23:7,9 use 10:22 17:24 36:11 46:6 78:15 79:13 88:22 156:18 157:12 166:12 USEPA 78:4 uses 69:4 usually 68:12 74:18 74:20 utilities 23:14 utilize 31:13 <u>V</u> vague 51:22 62:8,18 63:6 73:7 79:3 91:3 102:23 106:24,25 122:3,8 123:25 147:24 148:10,11,17	voice 37:6 W wait 7:16,18 walls 88:10 want 6:20,21 12:9 13:13 28:12 29:18 29:20 36:22 43:13 45:20 46:22 50:4 62:1 63:22 77:14 92:19 108:7 125:22 130:10 158:1 wanted 6:16 10:20 22:12,15 42:6 67:13 129:13 133:16 warrant 164:21 warranted 100:21 wasn't 21:24 28:11 32:13 34:24 36:15 45:5 46:14 94:21 97:16 101:17 117:19 120:24 128:19 135:2	watersheds 5:18 68:15 70:2 WATKINS 3:4 way 39:15 74:8 78:17 79:14 80:2 100:23 118:24 123:7 148:12 149:20 WDR 24:6 weak 101:13 websites 51:12 Wednesday 2:14 weeks 34:8 162:15 weight 100:7 weights 79:18 went 22:15 42:5,25 51:11 52:5,18 114:10 130:22 141:19 163:7 weren't 33:11 94:22 102:4,6 120:14 131:18 138:19 150:15 West 3:5,21 we'll 29:16 36:8 37:7,7 43:11,13
153:18 154:11 157:3 158:24 160:19 163:16,24 traded 105:15 trained 89:4 127:24 training 21:6,7,10 122:1,4,7 transcribed 168:11 transcript 7:10 8:15 9:9 165:9,22 166:2,4,6,8,10 transferred 24:5 transformers 154:14,14,18,23 154:24 155:4,10 155:16,19 transgressing 84:16 transport 95:21 trash 26:7,23 158:15 159:6,13 travel 22:3 treatment 88:12 trial 27:9 trier 8:3 triggers 143:5 true 45:18 100:18 112:3 119:4 121:2	145:6,14 typical 86:13 163:8 typically 32:23 61:11 74:15,17,22 75:8 85:25 86:2 92:1 134:4 160:16 161:6 typo 112:14 T-O-B-L-E-R 6:14 T.619.758.7743 4:16 U Uh-huh 55:10 141:5 ultimate 111:21 ultimately 68:12 84:10 100:6 105:23 umbrella 99:1 unaddressed 150:17 Unauthorized 133:3,10 understand 7:22 8:8,13,23 11:1 15:7 20:11,15,18 60:9 108:5 150:5	74:10,11,16,17,21 74:25 75:4,11,24 76:6,14,23 77:4 77:25 78:18,24 79:14 121:16 122:2 URS 23:7,9 use 10:22 17:24 36:11 46:6 78:15 79:13 88:22 156:18 157:12 166:12 USEPA 78:4 uses 69:4 usually 68:12 74:18 74:20 utilities 23:14 utilize 31:13 <u>V</u> vague 51:22 62:8,18 63:6 73:7 79:3 91:3 102:23 106:24,25 122:3,8 123:25 147:24 148:10,11,17 150:3 154:11	voice 37:6 W wait 7:16,18 walls 88:10 want 6:20,21 12:9 13:13 28:12 29:18 29:20 36:22 43:13 45:20 46:22 50:4 62:1 63:22 77:14 92:19 108:7 125:22 130:10 158:1 wanted 6:16 10:20 22:12,15 42:6 67:13 129:13 133:16 warrant 164:21 warranted 100:21 wasn't 21:24 28:11 32:13 34:24 36:15 45:5 46:14 94:21 97:16 101:17 117:19 120:24 128:19 135:2 143:8,12 160:9,12	watersheds 5:18 68:15 70:2 WATKINS 3:4 way 39:15 74:8 78:17 79:14 80:2 100:23 118:24 123:7 148:12 149:20 WDR 24:6 weak 101:13 websites 51:12 Wednesday 2:14 weeks 34:8 162:15 weight 100:7 weights 79:18 went 22:15 42:5,25 51:11 52:5,18 114:10 130:22 141:19 163:7 weren't 33:11 94:22 102:4,6 120:14 131:18 138:19 150:15 West 3:5,21 we'll 29:16 36:8 37:7,7 43:11,13 60:9,20,21 65:23
153:18 154:11 157:3 158:24 160:19 163:16,24 traded 105:15 trained 89:4 127:24 training 21:6,7,10 122:1,4,7 transcribed 168:11 transcript 7:10 8:15 9:9 165:9,22 166:2,4,6,8,10 transferred 24:5 transformers 154:14,14,18,23 154:24 155:4,10 155:16,19 transgressing 84:16 transport 95:21 trash 26:7,23 158:15 159:6,13 travel 22:3 treatment 88:12 trial 27:9 trier 8:3 triggers 143:5 true 45:18 100:18 112:3 119:4 121:2 121:5 144:24	145:6,14 typical 86:13 163:8 typically 32:23 61:11 74:15,17,22 75:8 85:25 86:2 92:1 134:4 160:16 161:6 typo 112:14 T-O-B-L-E-R 6:14 T.619.758.7743 4:16 U Uh-huh 55:10 141:5 ultimate 111:21 ultimately 68:12 84:10 100:6 105:23 umbrella 99:1 unaddressed 150:17 Unauthorized 133:3,10 understand 7:22 8:8,13,23 11:1 15:7 20:11,15,18 60:9 108:5 150:5 150:6,7 151:9	$74:10,11,16,17,21$ $74:25 75:4,11,24$ $76:6,14,23 77:4$ $77:25 78:18,24$ $79:14 121:16$ $122:2$ URS 23:7,9 use 10:22 17:24 36:11 46:6 78:15 79:13 88:22 156:18 157:12 166:12 USEPA 78:4 uses 69:4 usually 68:12 74:18 74:20 utilities 23:14 utilize 31:13 \boxed{V} vague 51:22 62:8,18 63:6 73:7 79:3 91:3 102:23 106:24,25 122:3,8 123:25 147:24 148:10,11,17 150:3 154:11 valid 89:3	voice 37:6 W wait 7:16,18 walls 88:10 want 6:20,21 12:9 13:13 28:12 29:18 29:20 36:22 43:13 45:20 46:22 50:4 62:1 63:22 77:14 92:19 108:7 125:22 130:10 158:1 wanted 6:16 10:20 22:12,15 42:6 67:13 129:13 133:16 warrant 164:21 warranted 100:21 wasn't 21:24 28:11 32:13 34:24 36:15 45:5 46:14 94:21 97:16 101:17 117:19 120:24 128:19 135:2 143:8,12 160:9,12 waste 24:6 52:24	watersheds 5:18 68:15 70:2 WATKINS 3:4 way 39:15 74:8 78:17 79:14 80:2 100:23 118:24 123:7 148:12 149:20 WDR 24:6 weak 101:13 websites 51:12 Wednesday 2:14 weeks 34:8 162:15 weight 100:7 weights 79:18 went 22:15 42:5,25 51:11 52:5,18 114:10 130:22 141:19 163:7 weren't 33:11 94:22 102:4,6 120:14 131:18 138:19 150:15 West 3:5,21 we'll 29:16 36:8 37:7,7 43:11,13 60:9,20,21 65:23 85:7
153:18 154:11 157:3 158:24 160:19 163:16,24 traded 105:15 trained 89:4 127:24 training 21:6,7,10 122:1,4,7 transcribed 168:11 transcript 7:10 8:15 9:9 165:9,22 166:2,4,6,8,10 transferred 24:5 transformers 154:14,14,18,23 154:24 155:4,10 155:16,19 transgressing 84:16 transport 95:21 trash 26:7,23 158:15 159:6,13 travel 22:3 treatment 88:12 trial 27:9 trier 8:3 triggers 143:5 true 45:18 100:18 112:3 119:4 121:2	145:6,14 typical 86:13 163:8 typically 32:23 61:11 74:15,17,22 75:8 85:25 86:2 92:1 134:4 160:16 161:6 typo 112:14 T-O-B-L-E-R 6:14 T.619.758.7743 4:16 U Uh-huh 55:10 141:5 ultimate 111:21 ultimately 68:12 84:10 100:6 105:23 umbrella 99:1 unaddressed 150:17 Unauthorized 133:3,10 understand 7:22 8:8,13,23 11:1 15:7 20:11,15,18 60:9 108:5 150:5	74:10,11,16,17,21 74:25 75:4,11,24 76:6,14,23 77:4 77:25 78:18,24 79:14 121:16 122:2 URS 23:7,9 use 10:22 17:24 36:11 46:6 78:15 79:13 88:22 156:18 157:12 166:12 USEPA 78:4 uses 69:4 usually 68:12 74:18 74:20 utilities 23:14 utilize 31:13 <u>V</u> vague 51:22 62:8,18 63:6 73:7 79:3 91:3 102:23 106:24,25 122:3,8 123:25 147:24 148:10,11,17 150:3 154:11	voice 37:6 W wait 7:16,18 walls 88:10 want 6:20,21 12:9 13:13 28:12 29:18 29:20 36:22 43:13 45:20 46:22 50:4 62:1 63:22 77:14 92:19 108:7 125:22 130:10 158:1 wanted 6:16 10:20 22:12,15 42:6 67:13 129:13 133:16 warrant 164:21 warranted 100:21 wasn't 21:24 28:11 32:13 34:24 36:15 45:5 46:14 94:21 97:16 101:17 117:19 120:24 128:19 135:2 143:8,12 160:9,12	watersheds 5:18 68:15 70:2 WATKINS 3:4 way 39:15 74:8 78:17 79:14 80:2 100:23 118:24 123:7 148:12 149:20 WDR 24:6 weak 101:13 websites 51:12 Wednesday 2:14 weeks 34:8 162:15 weight 100:7 weights 79:18 went 22:15 42:5,25 51:11 52:5,18 114:10 130:22 141:19 163:7 weren't 33:11 94:22 102:4,6 120:14 131:18 138:19 150:15 West 3:5,21 we'll 29:16 36:8 37:7,7 43:11,13 60:9,20,21 65:23

÷,

1

Peterson Reporting, Video & Litigation Services

	00 5 6 01 7 02 12	150 0 161 2 165.5	45:8 114:12,18,24	2028 90:17
45:24 46:8 92:3	80:5,6 81:7 83:12	158:3 161:3 165:5	115:9,11,14 116:4	2028 90.17 22 12:15
107:25 163:24	94:19.98:2 100:4	year 18:25,25 22:8		
we've 49:14 62:17	109:9 122:16	23:17 25:5 64:22	121:7	22nd 90:23
149:20	126:18 151:20	92:11 163:7	14 104:8	23rd 143:21
white 138:19	162:11	years 16:19 18:22	140 5:22	24th 143:21
Wildlife 39:22,25	worked 16:18 18:24	20:6,25 22:4 23:5	146 5:10	24-hour 88:4
Williams 88:16 89:3	22:1,7,7,17 23:23	24:2,5,8 25:2,8	15 9:16 49:14	28 5:15
WINTERS 4:18	25:25 26:1,3,4	33:23 34:10 50:9	152 5:5	28th 95:16 96:1
Witkowski 4:14	31:18 34:3,5,8,13	52:8 66:20 90:19	157 5:7	2820 4:15
5:10 146:22,24	36:17 44:20 46:17	91:1,21 92:3,13	159 5:8	29 1:15 2:14
148:8,14 149:1,18	50:9 52:8 70:10	92:15 94:7 101:19	16 14:6	
150:14 151:6,13	75:15 82:4 83:7	105:15 113:16,20	1600 3:21	3
163:17	94:25 127:3,5	113:25,25 121:22	164 5:5	3 5:20 50:21 56:18
witness 5:2,16 12:4	149:19 163:4	155:1 162:11,24	17 90:13	140:22 141:15
13:8 21:24 27:24	working 19:16	163:10	1700 2:15 3:11	3rd 87:12
28:4,13:29:2	23:13,22 24:3	yesterday 125:12	1800 3:5	3-1 56:19
31:24 32:4 56:10	26:5 32:18 33:3	165:7	19 92:15	3-10 155:22
61:8 62:6,10,12	35:3 46:11 75:13		1972 103:15 104:8	3-19 57:8
62:19 63:9,12	83:6 94:24 108:12	Z	107:8	3-2 50:6
64:1 69:20 71:13	108:16 128:23	zinc 43:21 73:12	1989 21:1	3-22 164:5
71:22 72:1,7,17	149:24,25 152:10	75:14 79:23,24	1996 70:21	3-4 58:6,9,21
73:8 75:8 76:9,21	works 92:22 163:3	80:1 82:1 83:16	1998 21:2	3-6 55:6 59:14 63:3
	works 92.22 105.5	85:18 101:7	1770 21.2	63:8
77:2,19 78:2 79:4	worn 78:22	Zinc-coated 80:3	2	3-8 56:19
85:21 86:11,24		Zime-coated ov.5	2 10:17 28:21 50:1	3-9 153:3,16 156:4
87:21 88:25 91:4	wouldn't 73:15 90:5	0	67:8 81:2 95:13	3.1 50:21
93:24 95:11	110:15 120:7	03-013 7 161:18	116:23 126:9	3.3 54:6
101:24 102:3,24	161:4,6			3.3.1 51:2,17 54:6
104:1,4 105:1	write 19:19 93:20	03-0137.05 162:2	131:10 140:22	3.3.2 52:23
110:25 116:3,24	131:17 141:23	05 161:18	141:14 152:25	
120:18,24 121:5	write-up 141:14	068177 46:25	20 11:7 90:19 91:1	3.3.3 52:24 54:5
122:9 124:8,23	written 134:23	· · · · · · · · · · · · · · · · · · ·	91:20 92:11,i5	3.3.4 52:24 54:6
125:5,8,24 128:2	145:3		20-year 92:2	3.3.5 55:7,20 56:6
132:21,23 134:10	wrote 98:5	1 10:16 14:6 31:20	200A 4:15	3.3.5.1 57:2
134:14,17 135:2		49:24 90:13 92:13	200,000 69:1	3.3.5.3 57:3
138:3 141:18	X	95:13 116:20	2000 23:4	3.4 153:12,16
143:12 146:14	X 5:1,12	140:22 143:19	2001 23:19	156:25
147:23 148:2,12		1st 26:10	2002 47:1 63:8	3.6 57:9,16
148:19 149:6	Y	1-1 67 :10 95:5,6,7	2003 5:20 87:13	3:00 143:19
150:4 151:5,9	yeah 11:19,24 17:5	141:10	2004 25:3 34:23	30 166:1,10
152:21 154:13	17:10,22 18:18	1-3 67:7 95:9 141:9	64:23 106:10	300 5:14 10:25
155:13 157:4	19:8 21:22 23:14	1.1 95:4	108:15 121:10	13:14,17,20
158:24 159:20	25:5 38:12,12,20	1:00 143:20	129:18 131:25	301 5:15 28:12,15
160:21 165:24	42:4 47:4 48:11	10 92:11,15	140:3,7 142:10,10	28:18
166:1,9 168:7,13	53:20 60:15,24	10-92 81:1	143:21,21	302 5:17 69:22,23
WLAs 92:11	69:14 72:1,21	10.10.1 81:2	2005 44:25 70:21,24	
wondering 112:14	80:19 87:20 95:9	10:06 2:14	106:10 108:15,25	303 5:19 81:22 82:2
word 85:24	95:19 96:16,17	100 4:5 116:5	111:12,17 112:4	303D 75:19
words 91:17 104:5	97:8 98:10 99:3	100-year 88:4	121:10	304 5:20 87:9,10,12
143:4	99:20 100:17	1001 4:5	2006 36:19 43:9	305 5:22 140:9,15
work 14:20 15:21	104:11 106:10	101 3:16,21	2007 36:19 43:9	158:5,7 159:24
16:6,9,11,12 18:6	107:10,11 110:2	107 5:8	108:18 120:15,22	161:16
	110:10,12 111:8	109 4:16	132:5	31 70:17
21:9,11,16,18,20	111:13 112:18	110-F 4:19	2008 90:23 132:5	
23:3 24:10 31:14		12th 4:10	2008 90:25 132:5 2009 12:15 120:22	4
34:11 35:5 41:4,7	116:3,13 118:17	120 4:19	121:2	4 90:13 93:11,17,21
41:24 43:8 44:15	123:16 130:23	126 5:9	2010 1:15 2:14 9:16	94:13 104:17,24
44:19 50:13 64:24				104:25 105:6
66:1,3 68:17	140:20 146:8	13 5:14 90:8	121:3 167:9	
70:14 72:11 73:4	156:6 157:12	130 35:12 36:5 41:9	168:15	109:7 140:23
		1	<u> </u>	l
- Contraction and the state of	THAN IN ADDITION OF A DESCRIPTION OF A D	ورزوار ومصاددة فالمرارية ويرود ويروز والأرار فيطرحونه والوارية وتغرين	يريح والمتعادية فترافيه فترك فتتنا فالمحاجين وروافيه والتها	<u>in na sana kana kana kana kana kana kana </u>

Peterson Reporting, Video & Litigation Services

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
4:18 165:15 95812 4:6 401 2:15 3:11 96 70:24	
401 2:15 3:11 96 70:24 5 98 63:8 99 113:19 5 67:24 68:4 92:6,8 96:20 103:12 105:9 109:7 141:15 159:11 5.1 96:4 103:9 6 6 5:5 67:24 68:5 90:12	
401 2:15 3:11 96 70:24 5 98 63:8 96:20 103:12 99 113:19 105:9 109:7 141:15 159:11 5.1 96:4 103:9	
$ \begin{array}{c} \underline{5} \\ 567:24\ 68:4\ 92:6,8 \\ 99\ 113:19 \\ \hline 567:24\ 68:4\ 92:6,8 \\ 99\ 113:19 \\ \hline 105:9\ 109:7 \\ 141:15\ 159:11 \\ \hline 5.1\ 96:4\ 103:9 \\ \hline \hline \hline 6 \\ \hline 6\ 5:5\ 67:24\ 68:5 \\ 90:12 \\ \end{array} $	
$ \begin{array}{c c} 5 \\ 567:24 68:4 92:6,8 \\ 96:20 103:12 \\ 105:9 109:7 \\ 141:15 159:11 \\ 5.1 96:4 103:9 \\ \hline \hline 6 \\ $	
$ \frac{567:2468:492:6,8}{96:20103:12} \\ 105:9109:7 \\ 141:15159:11 \\ 5.196:4103:9 \\ \hline 6 \\ 65:567:2468:5 \\ 90:12 \\ $	
$96:20\ 103:12 \\105:9\ 109:7 \\141:15\ 159:11 \\5.1\ 96:4\ 103:9 \\\hline\hline 6 \\5:5\ 67:24\ 68:5 \\90:12 \\\hline$	
$ \begin{array}{c} 105:9 \ 109:7 \\ 141:15 \ 159:11 \\ 5.1 \ 96:4 \ 103:9 \\ \hline \hline 6 \\ \overline{6 \ 5:5 \ 67:24 \ 68:5 } \\ 90:12 \\ \end{array} $	
$ \begin{array}{r} 141:15 159:11 \\ 5.1 96:4 103:9 \\ \hline $	
5.1 96:4 103:9 <u>6</u> <u>6</u> <u>6</u> <u>6</u> <u>5:5 67:24 68:5</u> <u>90:12</u>	
$ \frac{6}{65:567:2468:590:12} $	
6 5:5 67:24 68:5 90:12	
6 5:5 67:24 68:5 90:12	
90:12	2
6-3 116:19 117:5,8	
600 3:5	
64 5:6	
69 5:17	
7	11111
790:12	
7th 168:15	
72 104:5	di d
7715 1:20 2:17	
168:22	
8	
80 92:3,4	
82 5:19	
87 5:20	
89 21:21	
9	
9 92:13 126:9,10,15	
126:18	-
9-1 126:10,25 127:6	
128:4	
9-11 133:2	
9-13 133:21	
9-16 137:2	
9-3 132:8,11	
9.0 128:6,9	
9.1 127:9	
9.10 127:19 137:6	
9.2 127:10	
9.3 127:12 131:12	
9.4 127:13	
9.5 127:14	
9.6 127:15	
9.7 127:16	
9.8 127:17 133:2	
9.9 127:18 133:10	
136:24 137:2,12	
150.24 157.2,12	

÷.,

() e

÷.

Peterson Reporting, Video & Litigation Services

. .

.

.

÷

MICHAEL S. TRACY (Bar No. 101456) AMY G. NEFOUSE (Bar No. 159880) MATTHEW B. DART (Bar No. 216429) ERIN O. DOYLE (Bar No. 260646) DLA PIPER LLP (US) 401 B Street, Suite 1700 San Diego, CA 92101-4297 Telephone: 619.699.2700 Facsimile: 619.699.2701	EXHIBIT 1739 3000 1000 1000 1000 1000 1000 1000 10
Anomeys for Designated Party BAE Systems San Diego Ship Repair Inc. CALIFORNIA REGIONAL WATE	R QUALITY CONTROL BOARD
SAN DIEG	D REGION
IN THE MATTER OF:	BAE SYSTEM'S FIRST AMENDED NOTICE OF DEPOSITION OF
TENTATIVE CLEANUP AND ABATEMENT ORDER NO. R9-2010-0002	BENJAMIN TOBLER
	Date: September 29, 2010 Time: 10:00 a.m.
	Dept: DLA Piper LLP (US) 401 B Street, Suite 1700 San Diego, CA 92101-4297
	Sali Diego, CA 72101-4277
TO ALL PARTIES AND THEIR COUNSEL OF NOTICE IS HEREBY GIVEN that, pursu	RECORD:
Cleanup and Abatement Order No. R9-2010-0002	2 and Associated Draft Technical Report dated
February 18, 2010, the Order of Presiding Officer	King dated July 16, 2010, and the Stipulation
Regarding Discovery, that on September 29, 201	9 at 10:00 a.m., BAE Systems San Diego Ship
Repair Inc. ("BAE Systems") will take the depos	ition of Benjamin Tobler ("Deponent"). This
deposition will take place at the law offices of DI	A Piper LLP (US), 401 B Street, Suite 1700,
San Diego, California 92101-4297, upon oral exa	mination before a Certified Shorthand Reporter
duly authorized to administer oaths, and will cont	tinue from day to day, Saturdays, Sundays and
holidays excepted, until completed.	
	 AMY G. NEFOUSE (Bar No. 159880) MATTHEW B. DART (Bar No. 216429) ERIN O. DOYLE (Bar No. 260646) DLA PIPER LLP (US) 401 B Street, Suite 1700 San Diego, CA 92101-4297 Telephone: 619.699.2701 Attorneys for Designated Party BAE Systems San Diego Ship Repair Inc. CALIFORNIA REGIONAL WATE SAN DIEGO IN THE MATTER OF: TENTATIVE CLEANUP AND ABATEMENT ORDER NO. R9-2010-0002 TO ALL PARTIES AND THEIR COUNSEL OF NOTICE IS HEREBY GIVEN that, pursu Cleanup and Abatement Order No. R9-2010-0002 February 18, 2010, the Order of Presiding Officer Regarding Discovery, that on September 29, 2010 Repair Inc. ("BAE Systems") will take the depos deposition will take place at the law offices of DI San Diego, California 92101-4297, upon oral exa duly authorized to administer oaths, and will cont

FIRST AMENDED NOTICE OF DEPOSITION OF BENJAMIN TOBLER no é à

....

DLA PIPER LLP (US)

PLEASE TAKE FURTHER NOTICE that the deposition may also be videotaped, stenographically recorded, and recorded through such means as to provide the instant display of the testimony. BAE Systems reserves the right to use any videotaped portion of the deposition testimony at a hearing in this matter.

PLEASE TAKE FURTHER NOTICE that Deponent shall produce and permit inspection and copying of the documents identified in Attachment A to this Notice at the place, date, and time specified above.

-2-

Dated: September <u>14</u>, 2010

1

2

3.

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18 19

20

21 22

23 24

-25

26

27

DLA PIPER LLP (US)

Michael S. Tracy

Michael S. Fracy Amy G. Nefouse Matthew B. Dart Erin O. Doyle Attorneys for Designated Party BAE Systems San Diego Ship Repair Inc.

28 DLA PIPER LLP (US) SAN DIRGO

OF BENJAMIN TOBLER

FIRST AMENDED NOTICE OF DEPOSITION

ATTACHMENT A TO THE NOTICE OF DEPOSITION FOR 1 **2 BENJAMIN TOBLER** INSTRUCTIONS 3 4 Please produce DOCUMENTS as they are kept in the usual course of business or 1. 5 organize and label them to correspond with the categories in these requests. In the event any requested DOCUMENT has been destroyed, lost, discarded or 6 2. 7 otherwise disposed of, please identify such DOCUMENT as completely as possible, including 8 without limitation the following information: (a) date of disposal; (b) manner of disposal; and 9 (c) person approving of the disposal. 10 II. DEFINITIONS The following definitions shall apply to each category of documents set forth below: 11 "ADVOCACY TEAM" shall mean and refer to the Advocacy Team of the 12 1: 13 California Regional Water Quality Control Board, San Diego Region ("Regional Board"), 14 specially formed in response to and for purposes of advising the Regional Board in connection 15 with its consideration of the TENTATIVE ORDER, and its agents, employees, attorneys, 16 investigators, consultants, affiliates, or anyone acting on its behalf. 17 2. "COMMUNICATIONS" shall mean and refer to the written or verbal exchange of 18 information by any means, including, without limitation, telephone, telecopy, facsimile, or other 19 electronic medium (including e-mail), letter, memorandum, notes or other writing method. 20 meeting, discussion, conversation or other form of verbal expression. 21 "DOCUMENT(S)" shall mean and refer to any and all written, printed, 3. typewritten, photographic, graphic, or recorded materials (by tape, video or otherwise), however 22 23 produced or reproduced, including data stored in a computer, data stored on removable magnetic and optical media (e.g., magnetic tape, floppy disks, and recordable optical disks), e-mail, and 24 voice mail, which relate or pertain in any way to the subject matter to which the Interrogatory 25 refers. "DOCUMENT(S)" shall further include, without limitation, all preliminary, intermediate 26 27 and final drafts or versions of any DOCUMENT, as well as any notes, comments, and marginalia 28 appearing on any DOCUMENT, and shall not be limited in any way with respect to the process

DLA PIPER LLP (US)

-3--

FIRST AMENDED NOTICE OF DEPOSITION OF BENJAMIN TOBLER by which any DOCUMENT was created, generated, or reproduced, or with respect to the medium in which the document is embodied. DOCUMENT(S) shall include all "writing" and tangible forms of expression falling within the scope of California Evidence Code § 250, within YOUR custody, possession or control.

4. "ENVIRONMENTAL GROUPS" shall mean and refer to any and all non-profit and/or advocacy organizations focused on environmental causes and issues, including but not limited to members of the San Diego Bay Council, including but not limited to Designated Parties San Diego Coastkeeper (formerly San Diego Baykeeper) and Environmental Health Coalition.

5. "PERSON(S)" shall mean and refer to any natural person, proprietorship, public or private corporation, limited or general partnership, trust, joint venture, firm, association, organization, board, authority, governmental entity, or any other entity, including a representative of such PERSON(S).

6. "RELATING TO" shall mean and refer to relating to, pertaining to, referring to,
 evidencing, in connection with, reflecting, respecting, concerning, based upon, stating, showing,
 establishing, supporting, bolstering, contradicting, refuting, diminishing, constituting, describing,
 recording, noting, embodying, memorializing, containing, mentioning, studying, analyzing,
 discussing, specifying, identifying, or in any other way bearing on the matter addressed in the
 request, in whole or in part.

7. "SITE" shall mean and refer to the Shipyard Sediment Site, as described in the
TENTATIVE ORDER and TECHNICAL REPORT.

8. "TECHNICAL REPORT" shall mean and refer to the Draft Technical Report for the TENTATIVE ORDER, publicly released on December 22, 2009, including but not limited to the prior drafts released publicly on August 24, 2007, and April 4, 2008, and any other versions released prior to the date of deposition.

9. "TENTATIVE ORDER" shall mean and refer to Tentative Cleanup and Abatement Order R9-2010-0002, publically released on December 22, 2009, including but not limited to the prior drafts released publicly on April 29, 2005, August 24, 2007, and April 4, 2008, and any other versions released prior to the date of deposition.

DLA PIPER LLP (US)

1

2

3

4

5

6 7

8

9

10

11

12

21

22

Ż3

24

25

26

27

28.

FIRST AMENDED NOTICE OF DEPOSITION OF BENJAMIN TOBLER

"YOU" or "YOUR" shall mean the Deponent, including without limitation YOUR 10 employer or prior employer and its agents, employees, representatives, attorneys, accountants, investigators, and insurance companies, and their employees, and anyone else acting on your behalf). With respect to YOUR DOCUMENTS, it includes any DOCUMENTS in YOUR possession, custody or control.

"PERSON" shall mean any entity or natural person. 11.

DOCUMENT REQUESTS

All DOCUMENTS RELATING TO any work YOU performed regarding the human health risk assessment utilized in connection with the proposed cleanup levels and/or remediation of the SITE.

All DOCUMENTS RELATING TO any work YOU performed regarding the 11. 2. ecological risk assessment utilized in connection with the proposed cleanup levels and/or 12 remediation of the SITE. 13

All DOCUMENTS RELATING TO any work YOU performed regarding the 14 3. economic feasibility analysis utilized in connection with the proposed cleanup levels and/or 15 remediation of the SITE. 16

All DOCUMENTS RELATING TO any work YOU performed regarding the 4 technological feasibility analysis utilized in connection with the proposed cleanup levels and/or 18 remediation of the SITE. 19

All DOCUMENTS RELATING TO any work YOU performed regarding the cost 5. analysis utilized in connection with the proposed cleanup levels and remediation of the SITE.

All DOCUMENTS RELATING TO any work YOU performed regarding the б. remedy selection alternatives analysis utilized in connection with the proposed cleanup levels and/or remediation of the SITE.

All DOCUMENTS RELATING TO any work YOU performed regarding the 7.. aquatic life impairment analysis utilized in connection with the proposed cleanup levels and/or remediation of the SITE.

-5-

FIRST AMENDED NOTICE OF DEPOSITION

OF BENJAMIN TOBLER

1411

1

2

3

4

5

6

7

8

9

10

17

20

21

22

23

24

25

26

27

28

A PIPER LLP (US) SAN DIRGO

8. All DOCUMENTS RELATING TO any work YOU performed regarding the aquatic-dependent wildlife impairment analysis utilized in connection with the proposed cleanup levels and/or remediation of the SITE.

9. All DOCUMENTS RELATING TO any work YOU performed regarding the bioavailability analysis utilized in connection with proposed cleanup levels and/or remediation of the SITE.

10. All DOCUMENTS RELATING TO any work YOU performed regarding any alternative sediment cleanup levels analysis utilized in connection with the proposed cleanup levels and/or remediation of the SITE.

11. All DOCUMENTS RELATING TO any work YOU performed regarding any remedial monitoring analysis utilized in connection with the proposed cleanup levels and/or remediation of the SITE.

12. All DOCUMENTS RELATING TO any work YOU performed regarding the analysis of the contribution of stormwater to sediment contamination in the San Diego Bay, utilized in connection with the proposed cleanup levels and/or remediation of the SITE.

13. All DOCUMENTS RELATING TO any COMMUNICATIONS between YOU and ENVIRONMENTAL GROUPS RELATING TO the TENTATIVE ORDER and/or TECHNICAL REPORT.

14. All DOCUMENTS RELATING TO any COMMUNICATIONS between YOU and any local, state or federal agency RELATING TO the TENTATIVE ORDER and/or TECHNICAL REPORT.

15. All DOCUMENTS RELATING TO any COMMUNICATIONS between YOU and the ADVISORY TEAM RELATING TO the TENTATIVE ORDER and/or TECHNICAL REPORT.

16. All DOCUMENTS RELATING TO any COMMUNICATIONS between YOU and any PERSON, other than a member of the CLEANUP TEAM, RELATING TO the TENTATIVE ORDER and/or TECHNICAL REPORT.

-6-

28 DLA Piper LI.P (US) SAN DIFOU

1

2

3

4

5

Ż

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

FIRST AMENDED NOTICE OF DEPOSITION OF BENJAMIN TOBLER

PROOF OF SERVICE

I am a resident of the State of California, over the age of eighteen years, and not a party to the within action. My business address is DLA Piper LLP (US), 401 B Street, Suite 1700, San Diego, California 92101-4297. On September 14, 2010, I served the within documents:

BAE SYSTEMS' FIRST AMENDED NOTICE OF DEPOSITION OF BENJAMIN TOBLER

X

1

2

3

:4

5

6

7

8

9

10

11

12

13

14

15

16

17 18

19

20

21 22

23

24

25

26 27

28

DLA PIPER LLP (US) SAN DIRGO

WEST\21870452.1

by transmitting via e-mail the document(s) listed above to the recipient(s) set forth below on this date

SEE ATTACHED SERVICE LIST

I am readily familiar with the firm's practice of collection and processing correspondence for mailing. Under that practice it would be deposited with the U.S. Postal Service on that same day with postage thereon fully prepaid in the ordinary course of business. I am aware that on motion of the party served, service is presumed invalid if postal cancellation date or postage meter date is more than one day after date of deposit for mailing in affidavit.

I declare under penalty of perjury under the laws of the State of California that the above is true and correct.

Executed on September 14, 2010, at San Diego, California.

X To X NATHINE NELSON

Service List

In re Shipyard Sediment Site Cleanup Project and Tentative Cleanup & Abatement Order No. R9-2010-0002

Catherine Hagan, Esq. Frank Melbourn, Esq. California RWQCB, San Diego Region 9174 Sky Park Court, Suite 100 San Diego, CA 92123-4340 <u>chagan@waterboards.ca.gov</u> fmelbourn@waterboards.ca.gov T: (858) 467-2958 F: (858) 571-6972

Jessica M. Newman, Staff Counsel Office of the Chief Counsel State Water Resources Control Board 10001 I Street, 22nd Floor Sacramento, CA 95814-2828 jmnewman@waterboards.ca.gov T: (916) 341-5168 F: (916) 341-5199

Robert M. Howard, Esq. Kelly E. Richardson, Esq. Latham & Watkins LLP 600 W. Broadway, Suite 1800 San Diego, CA 92101-3375 robert.howard@lw.com kelly.richardson@lw.com T: (619) 236-1234 F: (619) 696-7419 Counsel for National Steel & Shipbuilding Company (NASSCO)

Michael McDonough, Esq. Bingham McCutchen LLP 355 South Grand Avenue, Suite 4400 Los Angeles, CA 90071 -3106 michael.mcdonough@bingham.com T: (213) 680-6600 F: (213) 680-6499 Counsel for BP West Coast Products LLC Brian Ledger, Esq. Kristin Reyna, Esq. Gordon & Rees LLP 101 West Broadway, Suite 1600 San Diego, CA 92101 <u>bledger@gordonrees.com</u> kreyna@gordonrees.com T: (619) 230-7729 F: (619) 696-7124 Counsel for City of San Diego

Christopher McNevin, Esq. Pillsbury Winthrop Shaw Pittman LLP 725 South Figueroa Street, Suite 2800 Los Angeles, CA 90017-5406 chrismcnevin@pillsburylaw.com T: (213) 488-7507 F; (213) 629-1033 Counsel for Chevron USA, Inc.

Christian Carrigan, Esq. Senior Staff Counsel Office of Enforcement, State Water Resources Control Board P.O. Box 100 Sacramento, CA 95812-0100 ccarrigan@waterboards.ca.gov T: (916) 322-3626 F: (916) 341-5896

Marco A. Gonzalez, Esq. Coast Law Group LLP 1140 South Coast Highway 101 Encinitas, California 92024 T: 760-942-8505 ext 102 F: 760-942-8515 marco@coastlawgroup.com Counsel for Environmental Health Coalition & San Diego Coastkeeper Service List

In re Shipyard Sediment Site Cleanup Project and Tentative Cleanup & Abatement Order No. R9-2010-0002

Jill Tracy, Esq. Senior Environmental Counsel Sempra Energy 101 Ash Street San Diego, CA 92101 jtracy@sempra.com T: (619).699-5112 F: (619) 699-5189 Counsel for San Diego Gas & Electric

Leslie FitzGerald, Esq. Deputy Port Attorney San Diego Unified Port District PO Box 120488 San Diego, CA 92112 Ifitzger@portofsandiego.org T: (619) 686-7224 F: (619) 686-6444

Laura Hunter, Esq. Environmental Health Coalition 401 Mile of Cars Way, Suite 310 National City, CA 91950 laurah@environmentalhealth.org T: (619) 474-0220 F: (619) 474-1210

Tom Stahl, Esq. AUSA Chief, Civil Division Office of the U.S. Attorney 880 Front Street, Room 6293 San Diego, CA 92101-8893 thomas.stahl@usdoj.gov T: (619) 557-7140 F: (619) 557-5004

James Handmacher, Esq. Morton McGoldrick, P.S. PO Box 1533 Tacoma, WA 98401 jvhandmacher@bvmm.com T: (253) 627-8131 F: (253) 272-4338 Counsel for Marine Construction & Design Co. and Campbell Industries, Inc. Sharon Cloward Executive Director San Diego Port Tenants Association 2390 Shelter Island Drive, Suite 210 San Diego, CA 92106 sharon@sdpta.com T: (619) 226-6546 F: (619) 226-6557

Nate Cushman, Esq. Roslyn Tobe, Esq. Associate Counsel U.S. Navy SW Div, Naval Facilities Engineering Command 1220 Pacific Hwy San Diego, CA 92132-5189 <u>nate.cushman@navy.mil</u> roslyn.tobe@navy.mil T: (619) 532-2511 F: (619) 532-1663

Gabe Solmer, Esq. Legal Director San Diego Coastkeeper 2820 Roosevelt Street, Suite 200A San Diego, CA 92106-6146 gabe@sdcoastkeeper.org T: (619) 758-7743, ext. 109 F: (619) 223-3676

William D. Brown, Esq. Brown & Winters 120 Birmingham Drive, Suite 110 Cardiff By The Sea, CA 92007 bbrown@brownandwinters.com T: (760) 633-4485 F: (760) 633-4427 Counsel for San Diego Unified Port District

Sandi Nichols, Esq. Allen Matkins 3 Embarcadero Center, 12th Floor San Francisco, CA 94111 snichols@allenmatkins.com T: (415) 837-1515 F: (415) 837-1516 Counsel for San Diego Unified Port District

CALIFORNIA REGIONAL WATER QUALITY CONTROL BOARD SAN DIEGO REGION

In the matter of Tentative Cleanup and Abatement Order No. R9-2010-0002 (Shipyard Sediment Cleanup) San Diego Water Board Cleanup Team's Witness Designations

TO ALL PARTIES AND TO THEIR ATTORNEYS OF RECORD HEREIN;

PLEASE TAKE NOTICE that, pursuant to the Presiding Officer's February 18, 2010 Order Issuing Final Discovery Plan Etc., Designated Party the California Regional Water Quality Control Board, San Diego Region Cleanup Team ("Cleanup Team") hereby designates the following witnesses who may testify in the above-referenced proceeding.

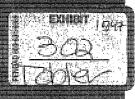
- David Gibson Executive Officer, Former Branch Chief of the Water Quality Restoration Standards Branch and an Environmental Program Manager 1.
- David Barker Branch Chief of the Surface Waters Basins Branch and a Supervising Water Resource Control Engineer.
- Julie Chan Branch Chief of the Ground Water Basins Branch and a Supervising Engineering Geologist.
- Craig Carlisle Senior Engineering Geologist.
- Tom Alo Water Resource Control Engineer.
- Alan Monji Environmental Scientist.

Dated: July 19, 2010

Respectfully submitted,

CALIFORNIA REGIONAL WATER QUALITY CONTROL BOARD, SAN DIEGO REGION CLEANUP TEAM

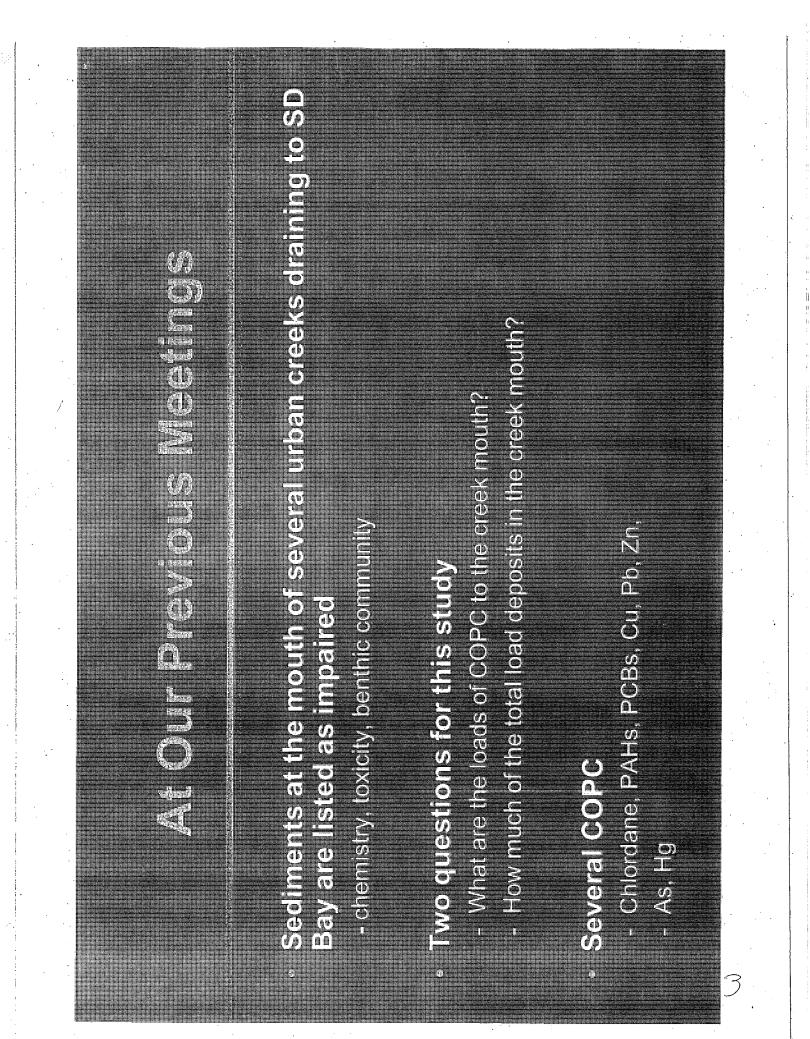
By: /s/


Christian Carrigan

1. 2%

Kenneth Schiff

Southern California Coastal Water Research Project


www.sccwrp.org

(L) Casa Javana Javana

Overview from previous meatings

- Review wet season empirical results
- Demonstrate success at building watershed models
- Assessment guidance so SCCWRP can write final report **1**9

Chollas Creek watershed

- Paleta and Switzer Creek watersheds

Runoff directly to the Chollas Creek i

· Navy, NASSCO

Atmospheric deposition to the creek mouth

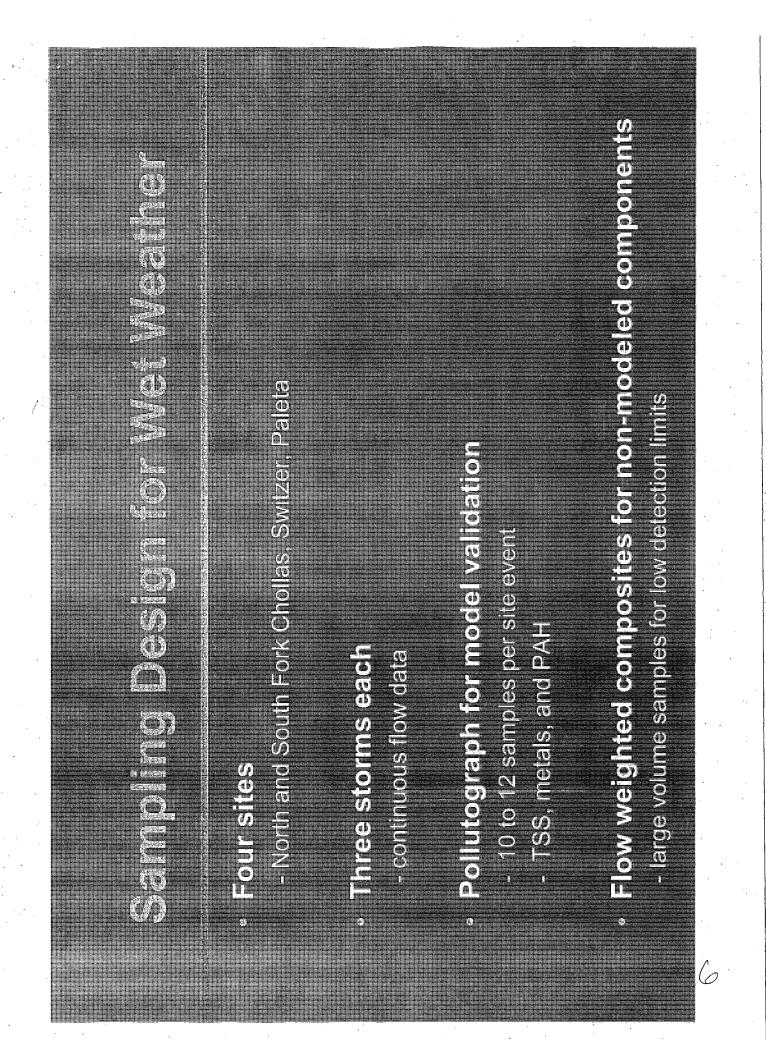
San Diego Bay

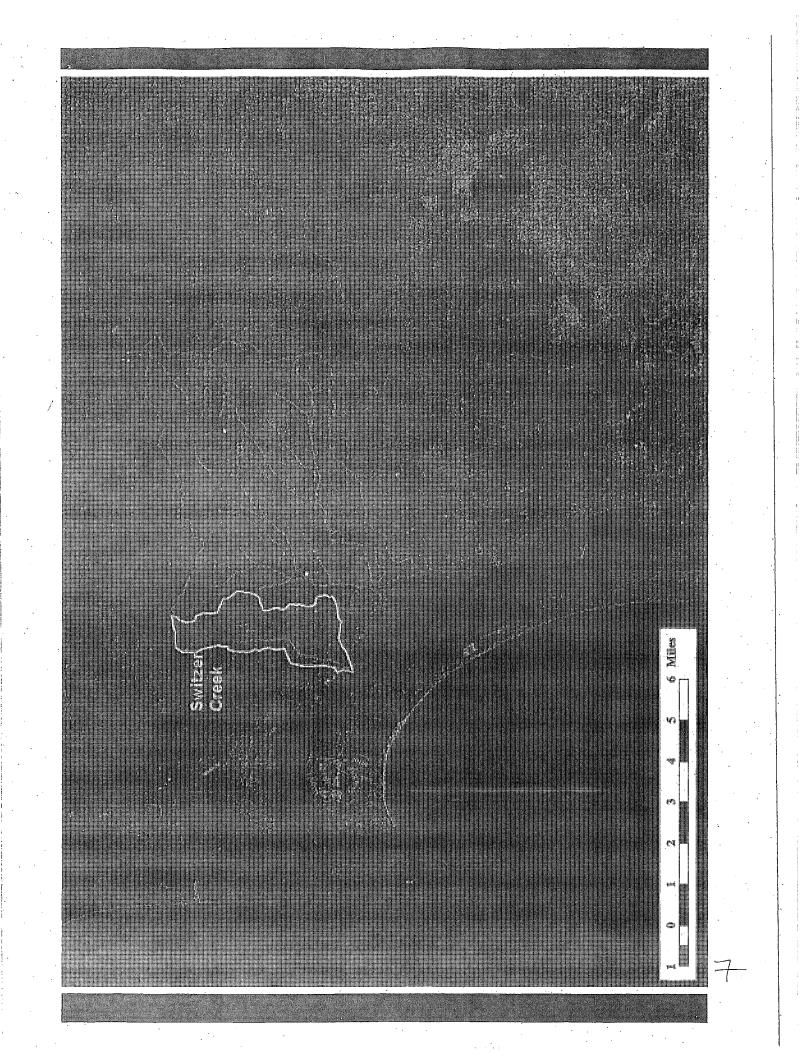
- tidal inputs

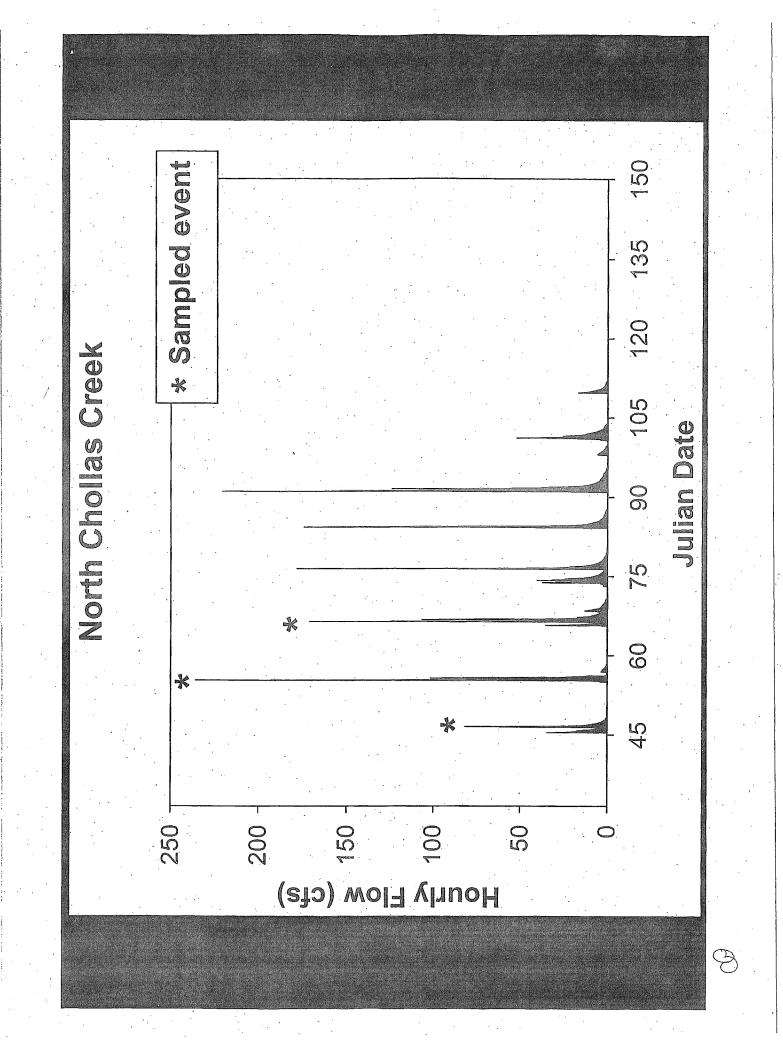
Watershed Input's

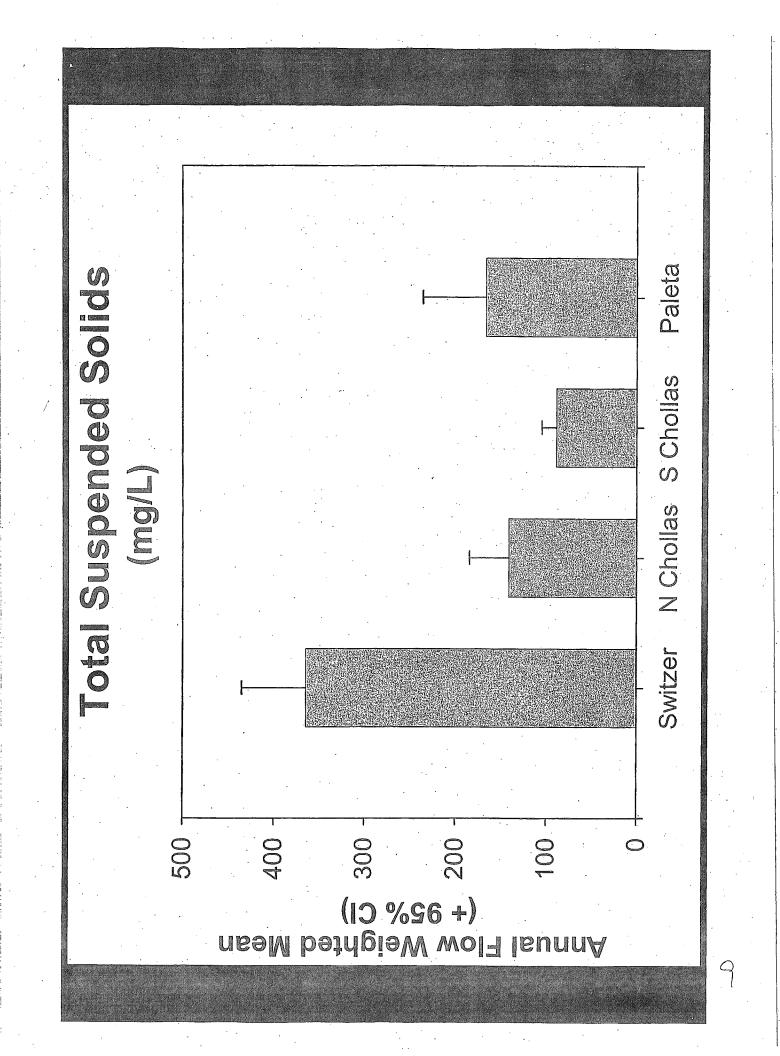
Break into two parts

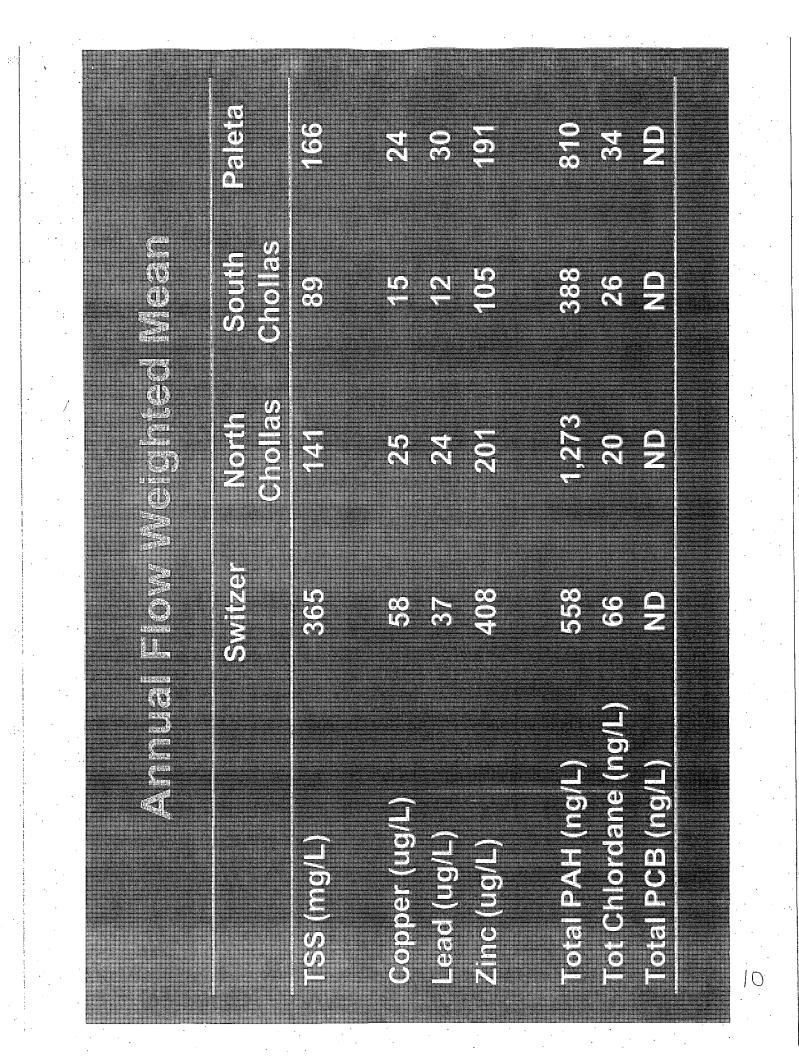
Use combination of empirical data and wet weather modeling

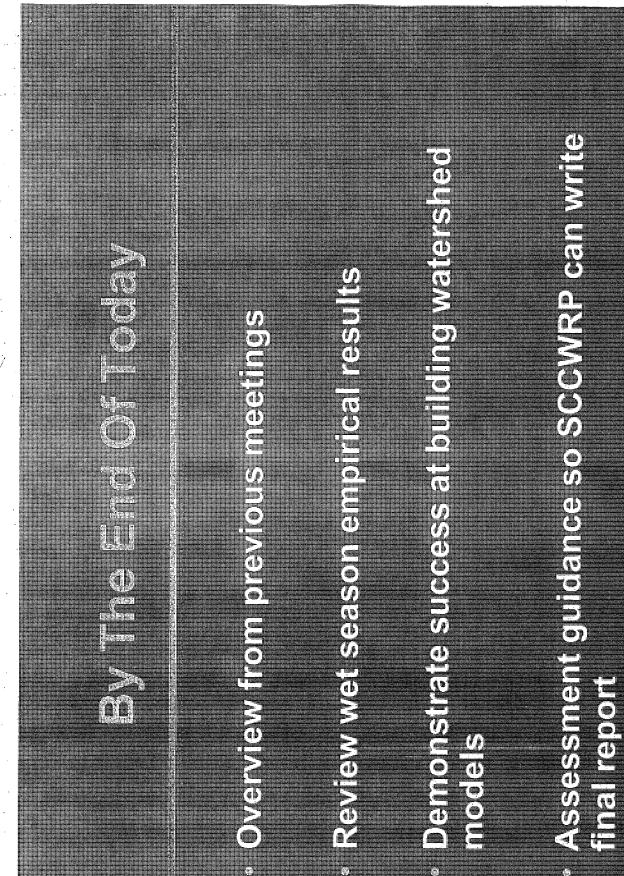

- TSS, metals, PAHs

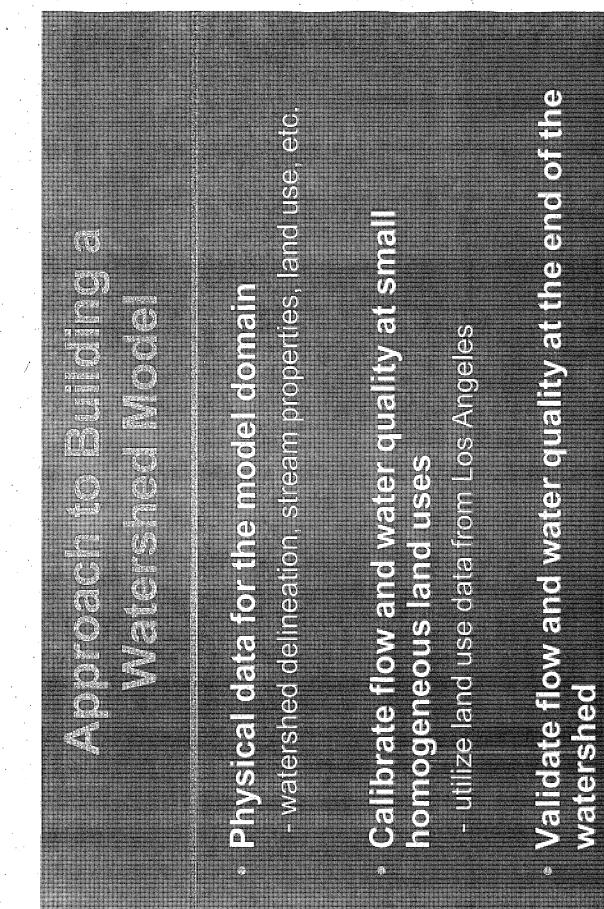

Can we predict changes in loads and concentrations?

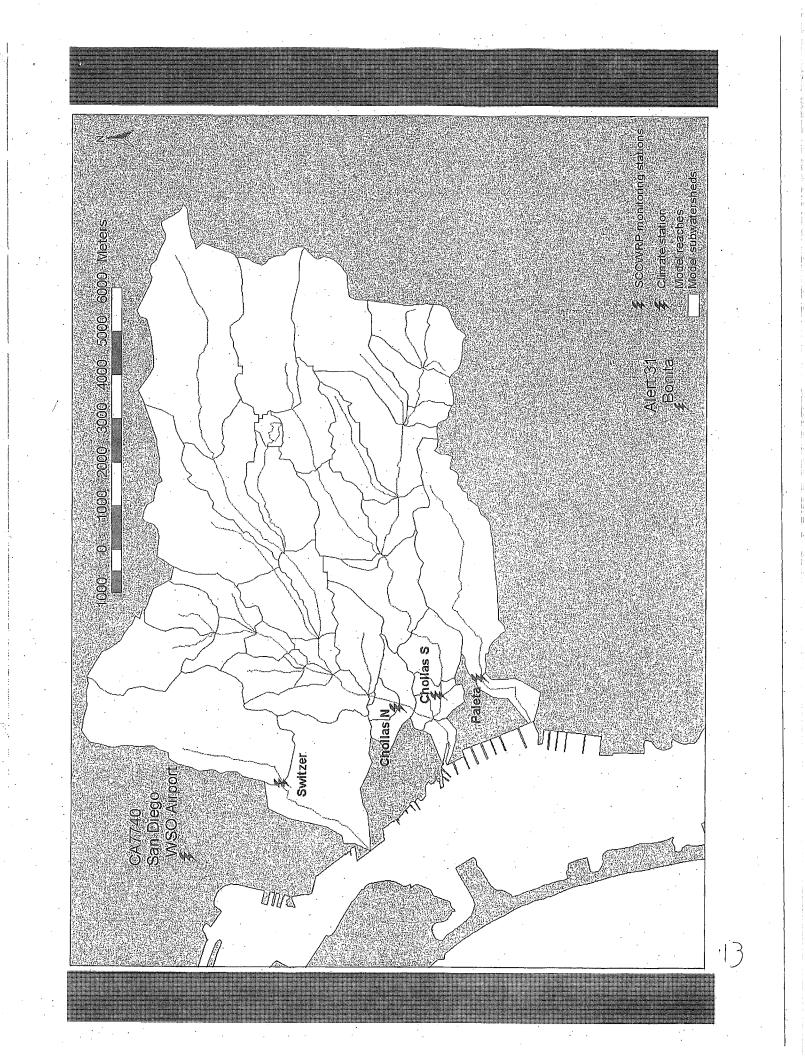

Use empirical data

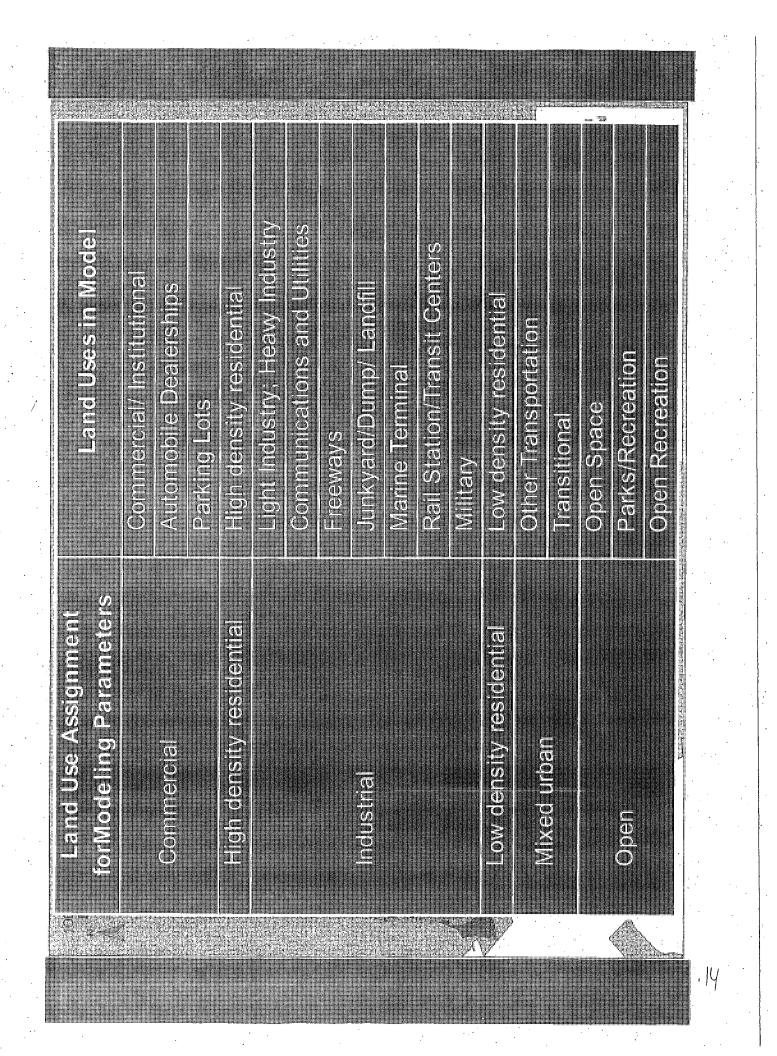

- Chlorinated hydrocarbons

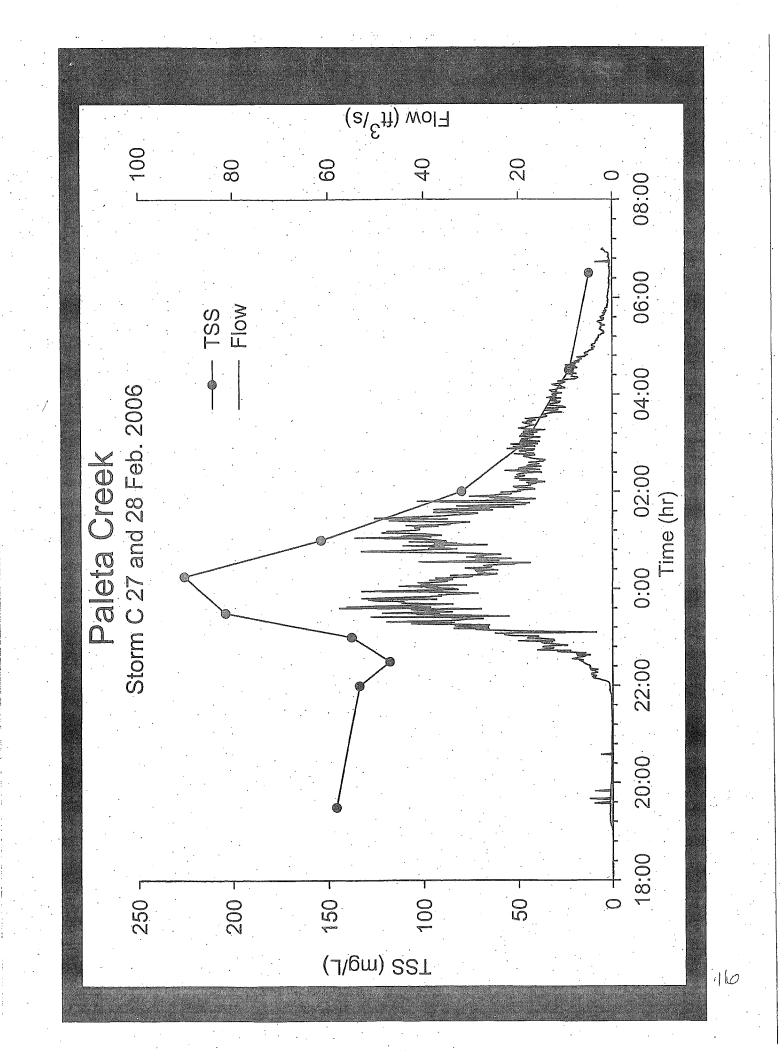

Can we detect loads or concentrations? l

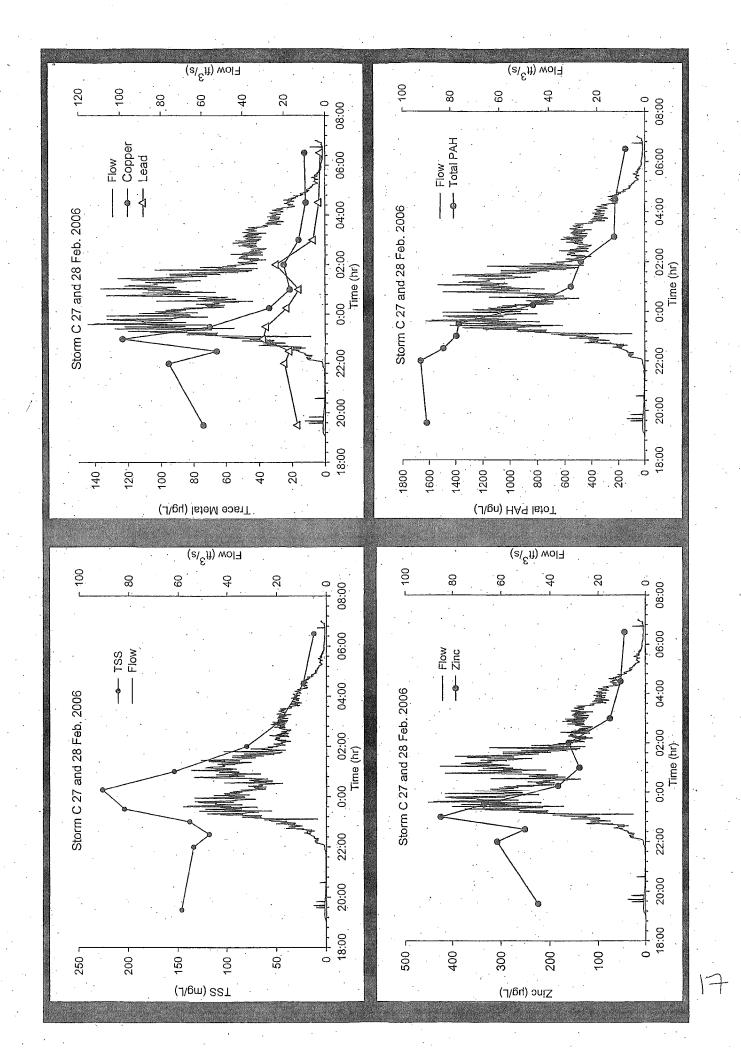






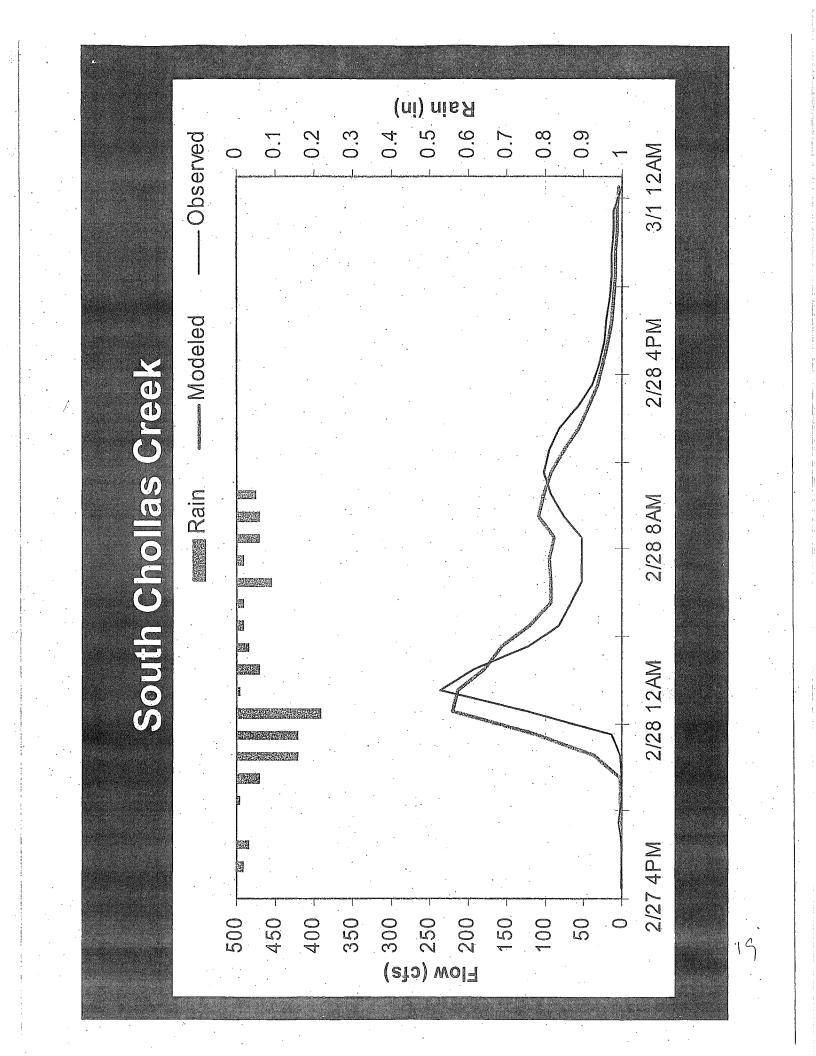


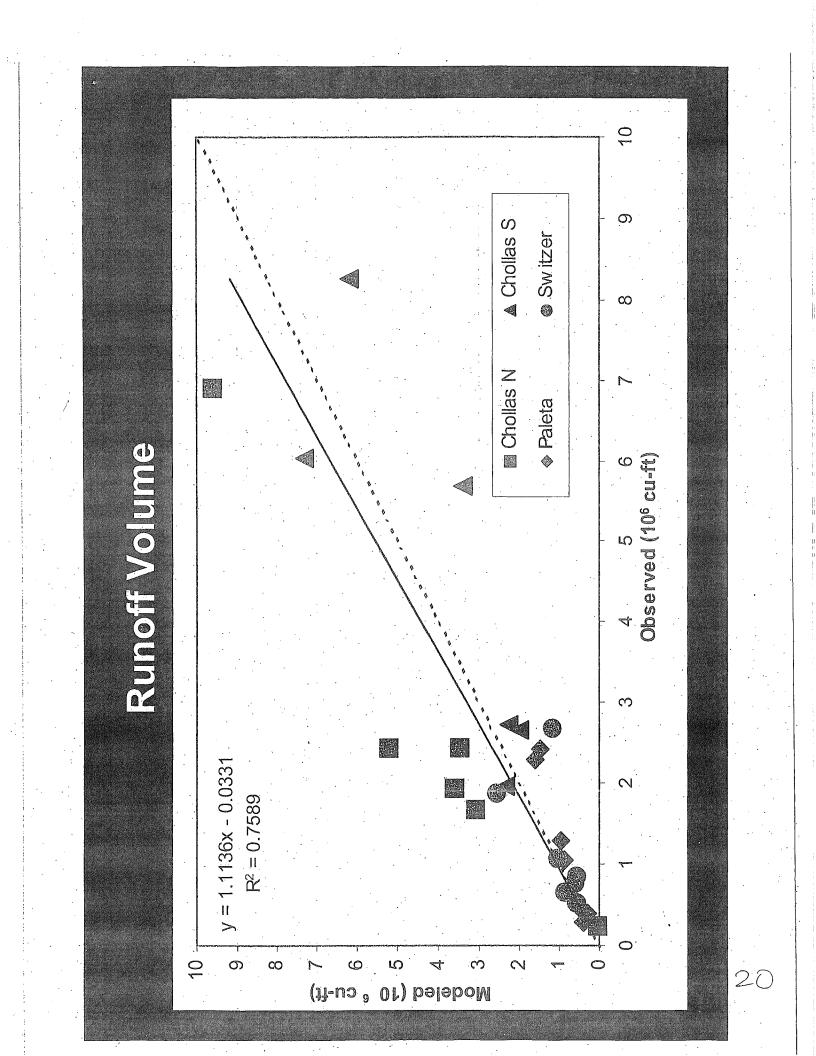


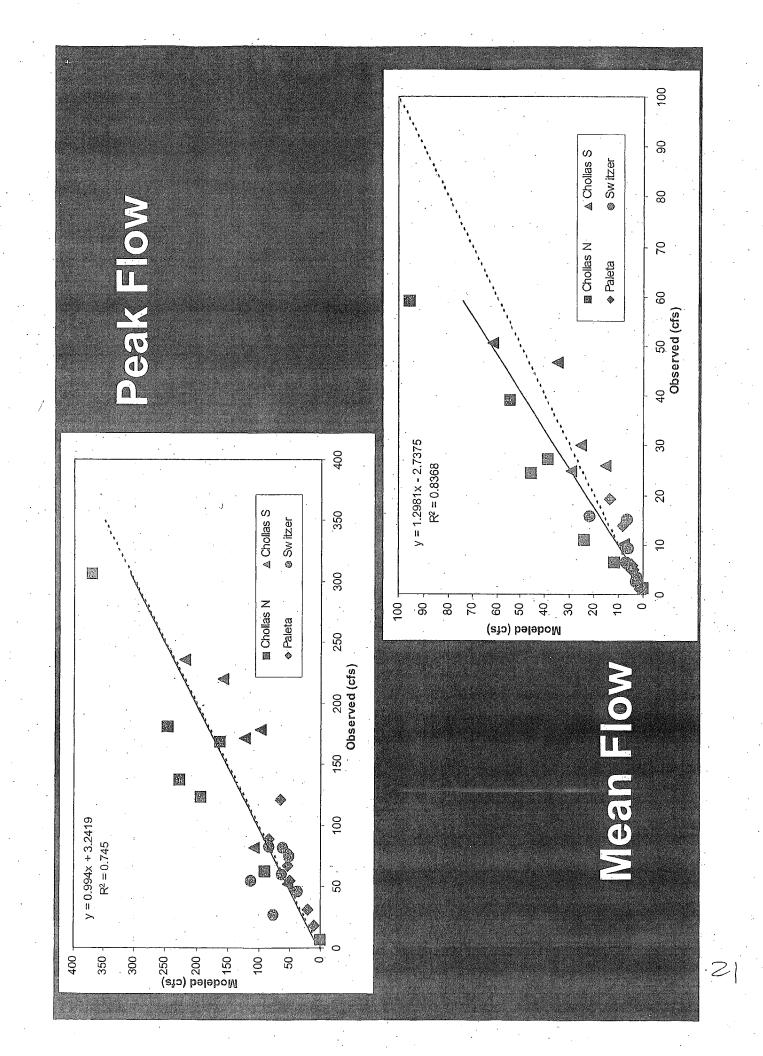

cumulative of all land uses

Modeled at hourly time steps

- Hourly averages


Hydrographs


Hydrograph simulations


4

Assess accuracy, bias, precision

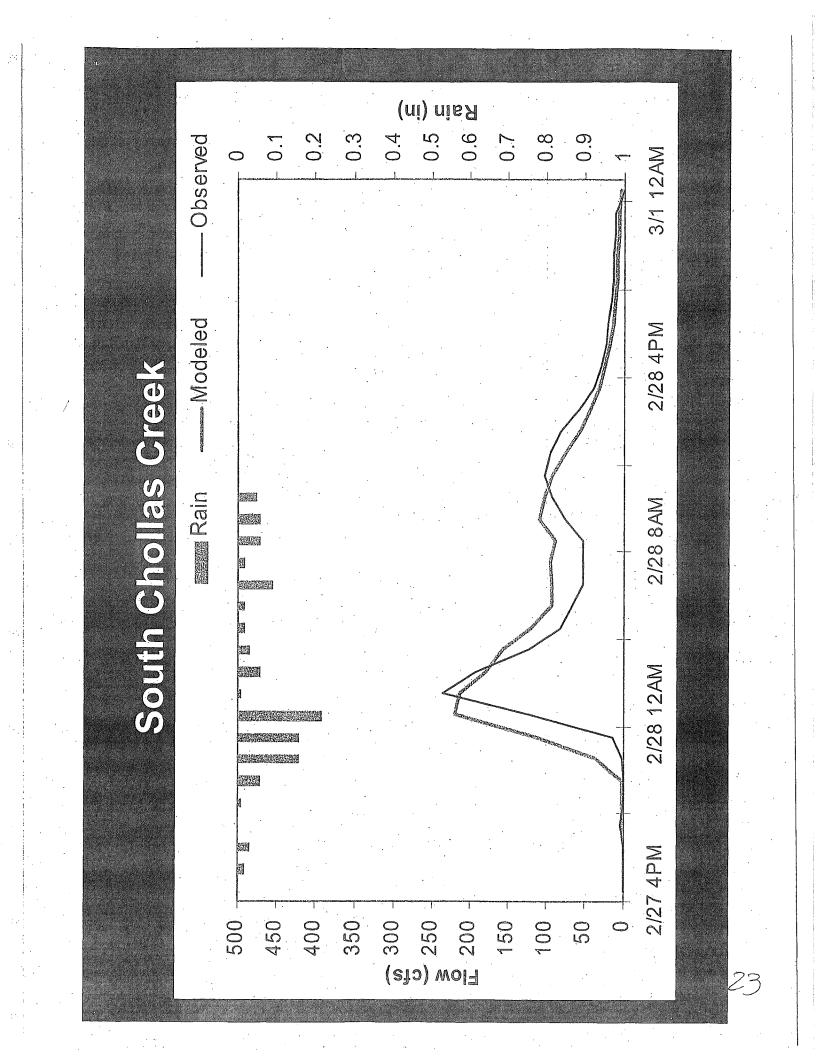
10

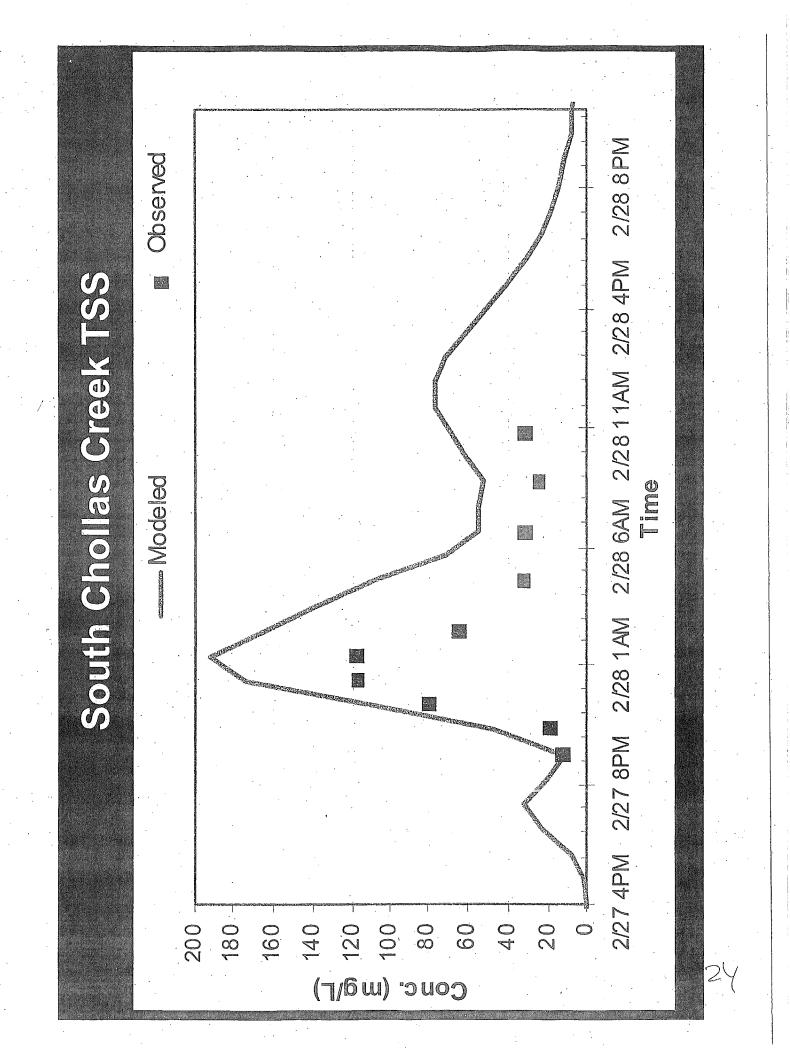
Event mean concentrations

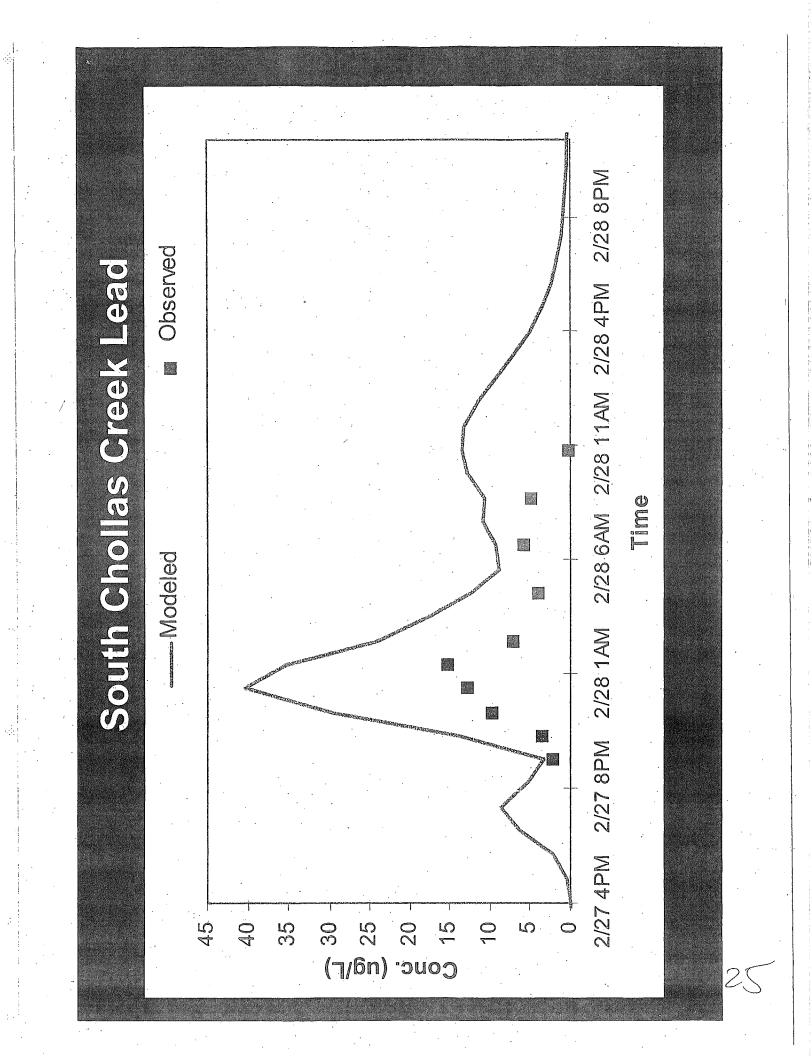
Cambration and Valuation

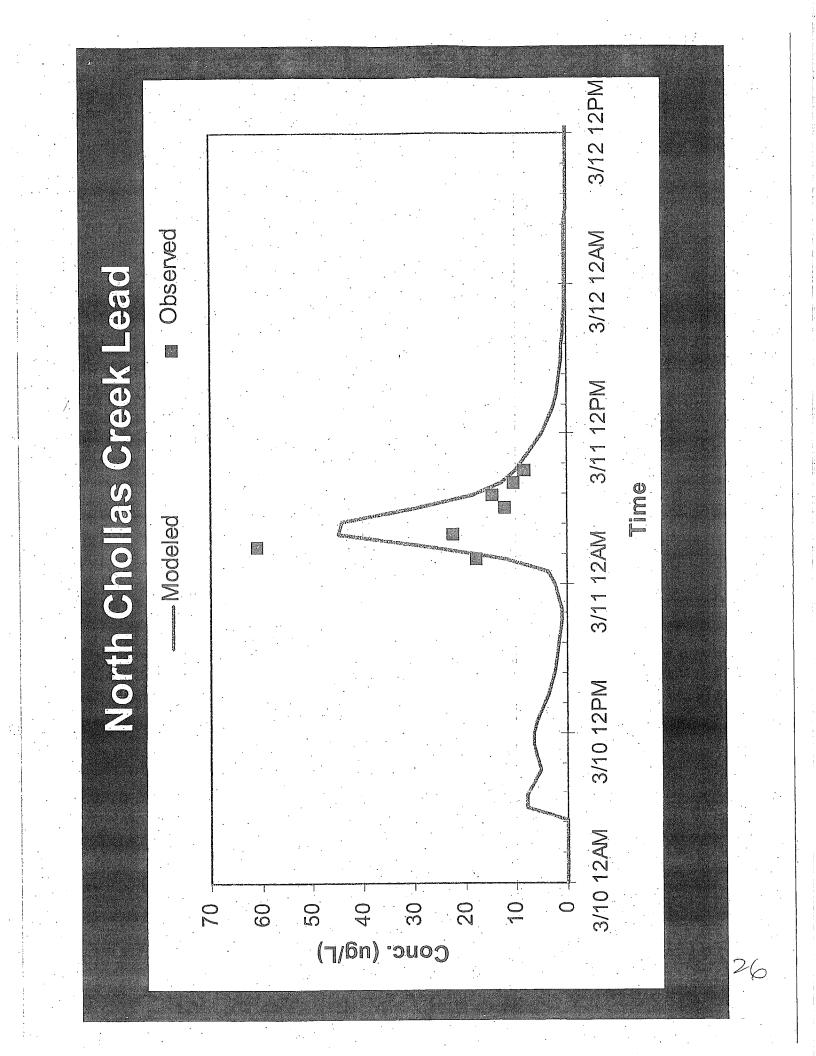
Vater Ol

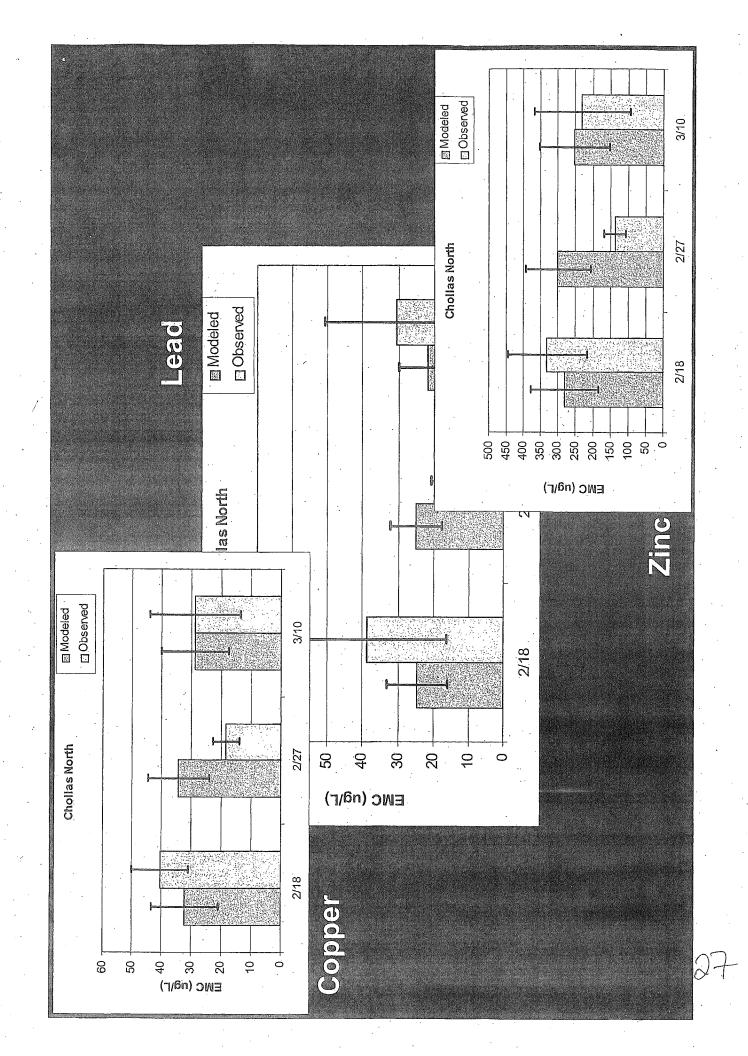
Modeled at hourly time steps

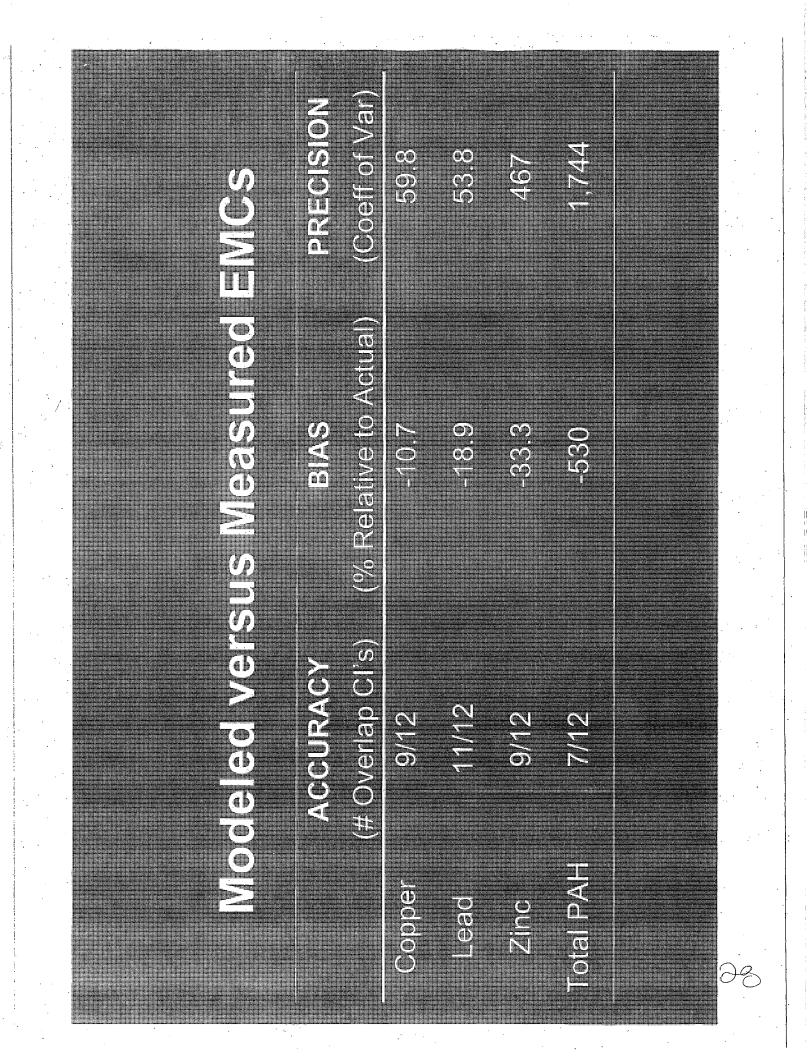

.e.s

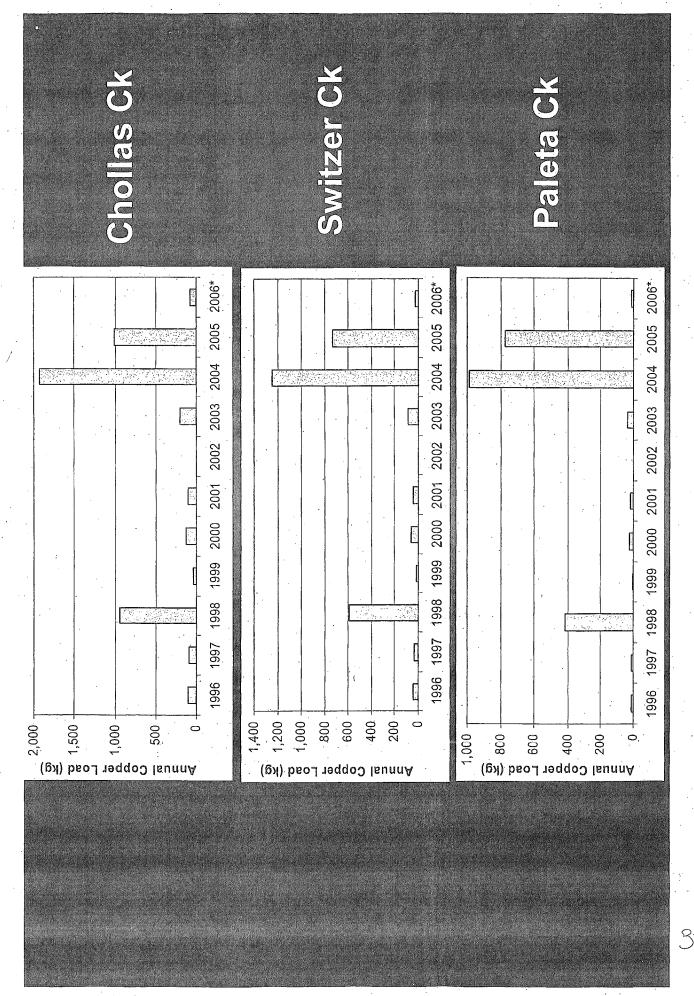

Hourly averages

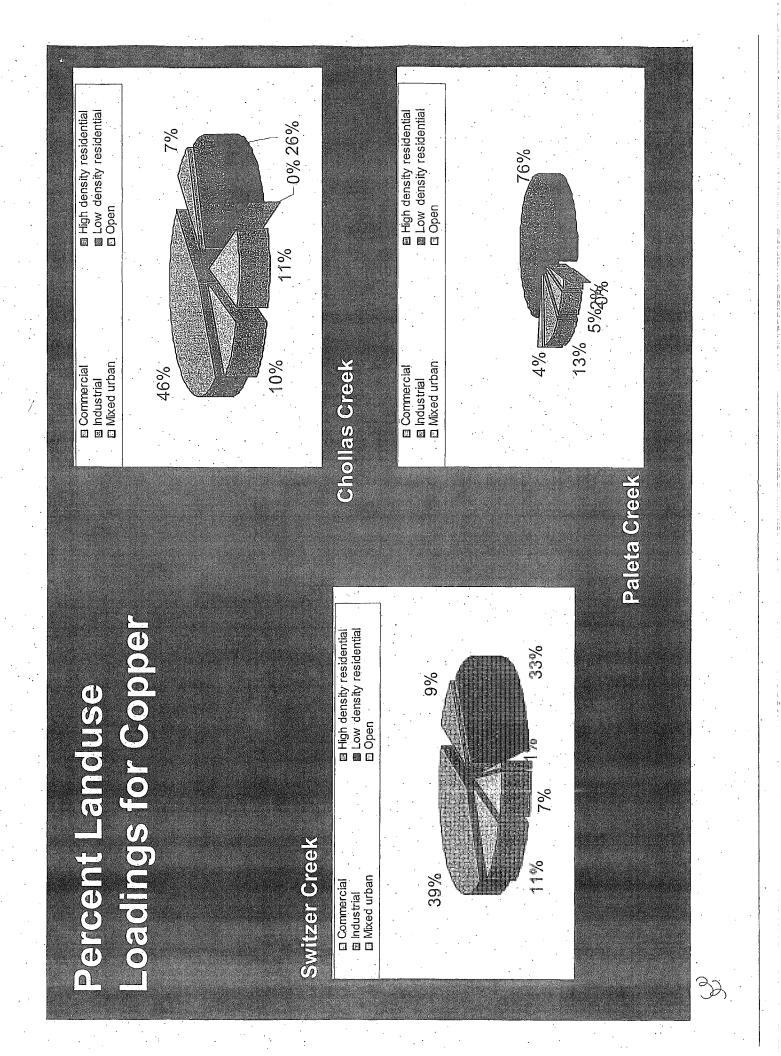

Pollutographs

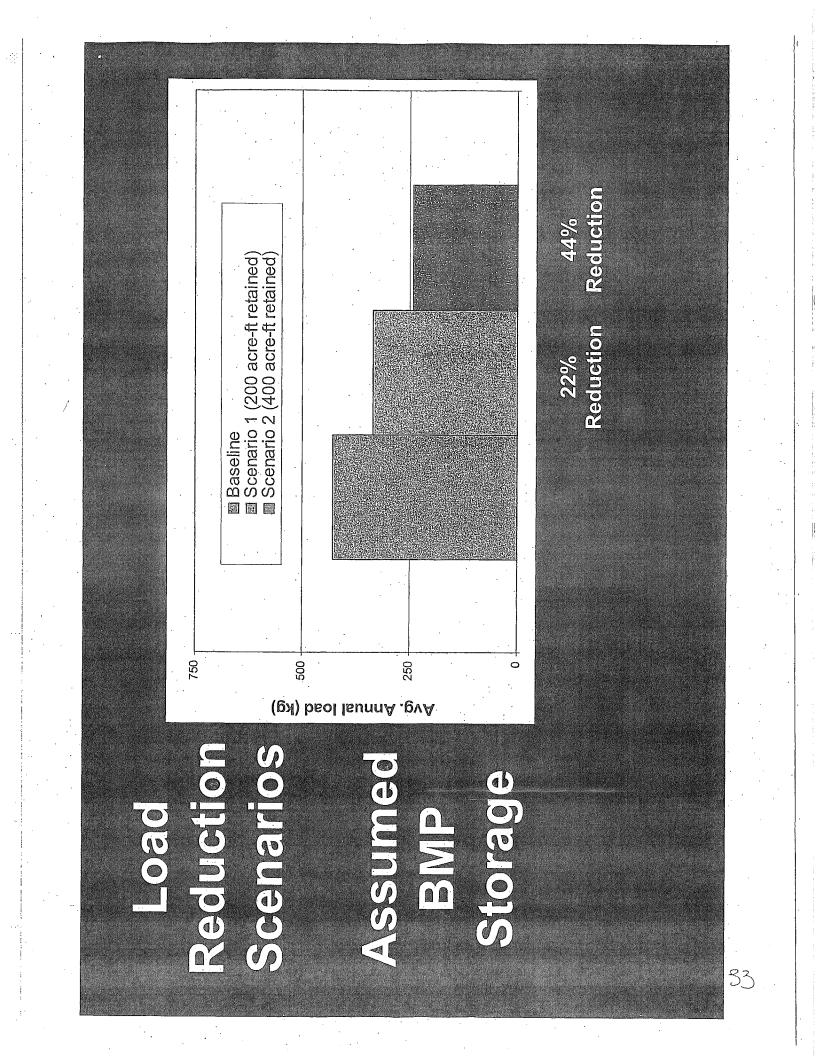

(§)


- simulations









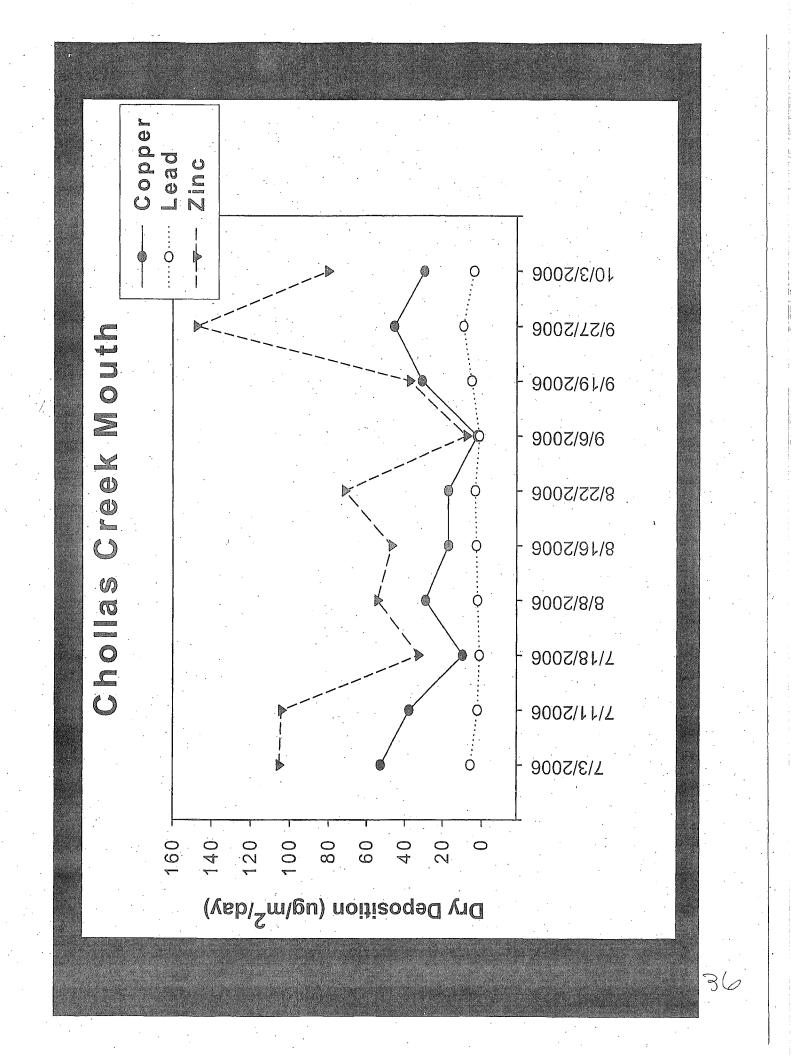
 what other simulations do we want? ong Term Nodel All four watersheds **Decadal simulation** Example output All constituents - 1996 to 2006 Ø 49 dille.

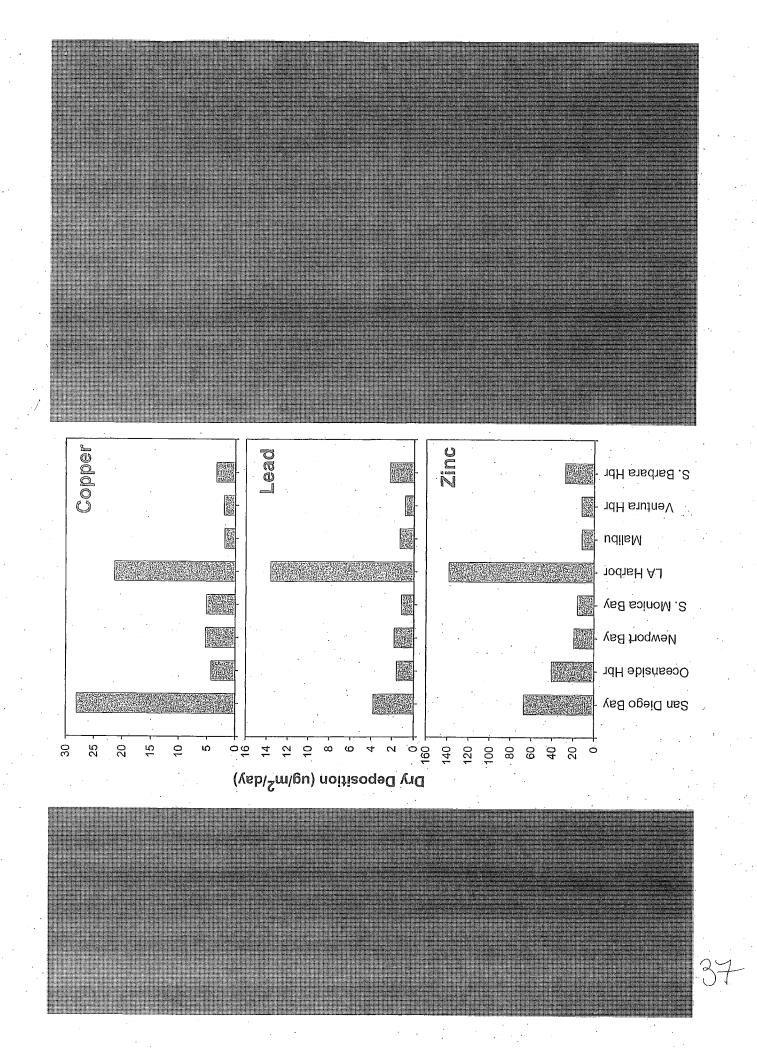
Average	Amnual P 1996-2(Vollutant l 005	Loads
Pollutant	Chollas	Paleta	Switzer
Copper (kg)	428.8	273.3	229.2
Lead (kg)	301.2	189.2	109.8
Zinc (kg)	2905.9	1915.4	929.5
PAHs (kg)	2.69	0.20	0.36
Chlordane (g)	20.15	13.04	73.46
PCBs (g)	0.42	0.25	1.03
Arsenic (kg)	0.85	0.31	0.69
Mercury (kg)	0.08	0.05	0.08

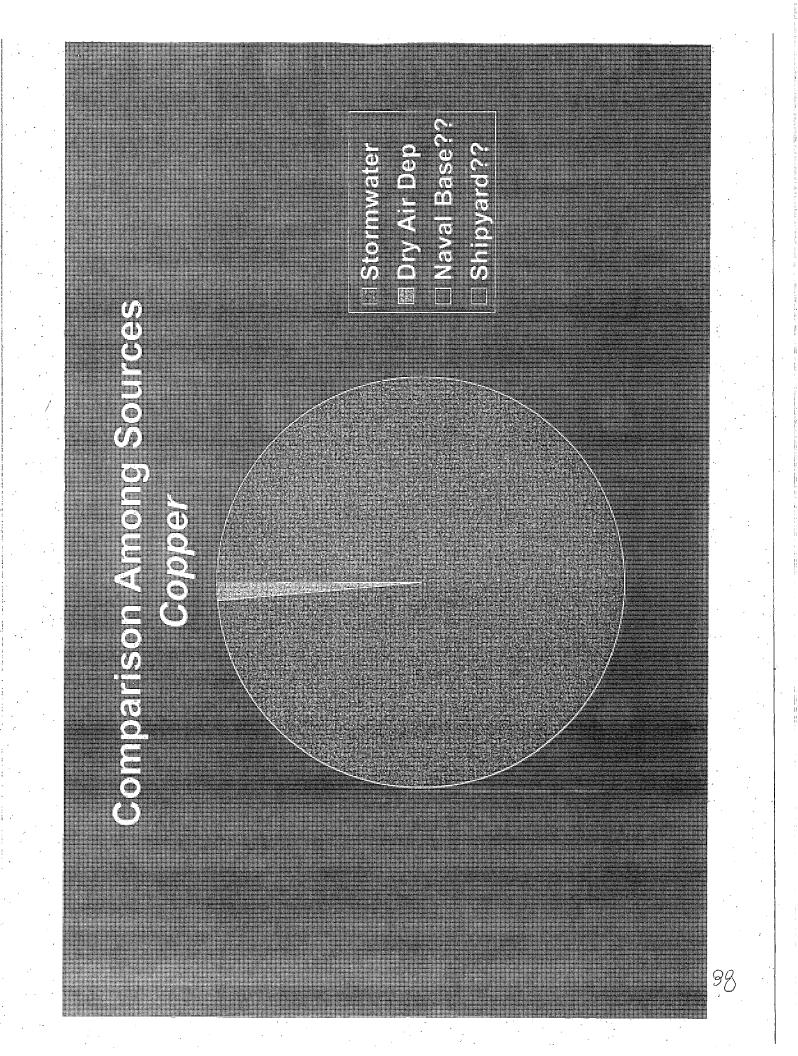
Runoff directly to the Chollas Creek mout Sources of COPC - Paleta and Switzer Creek watersheds **Chollas Creek watershed** Navy, NASSCO

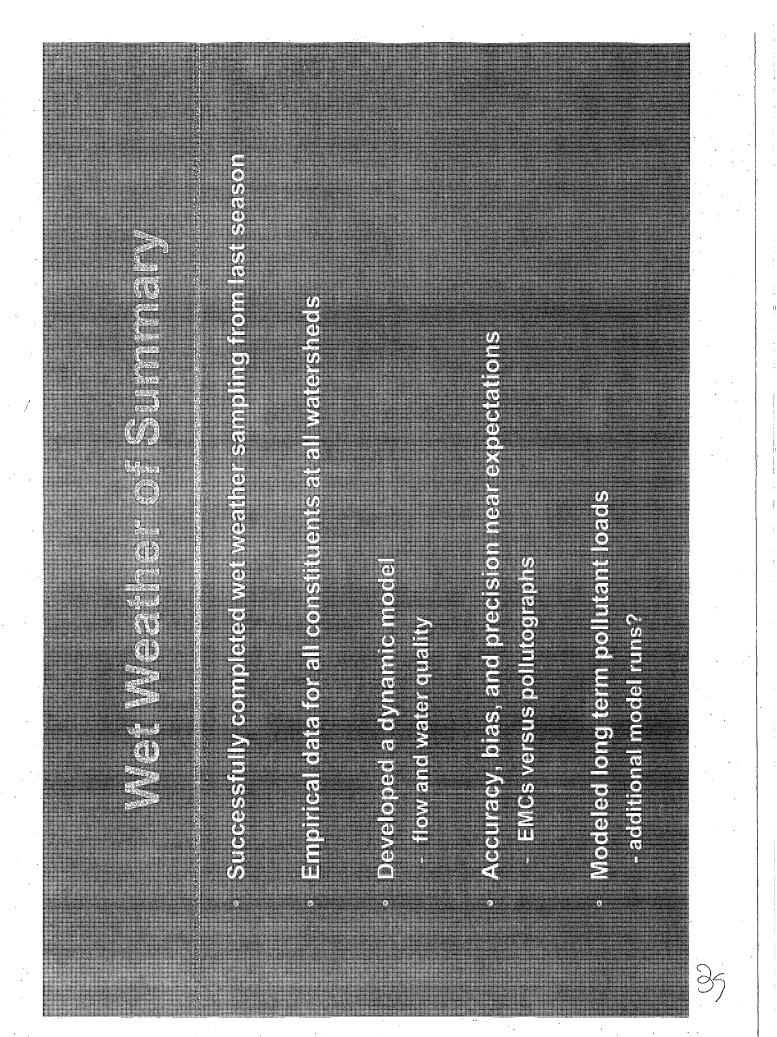
Atmospheric deposition to the creek mouth

San Diego Bay - tidal inputs

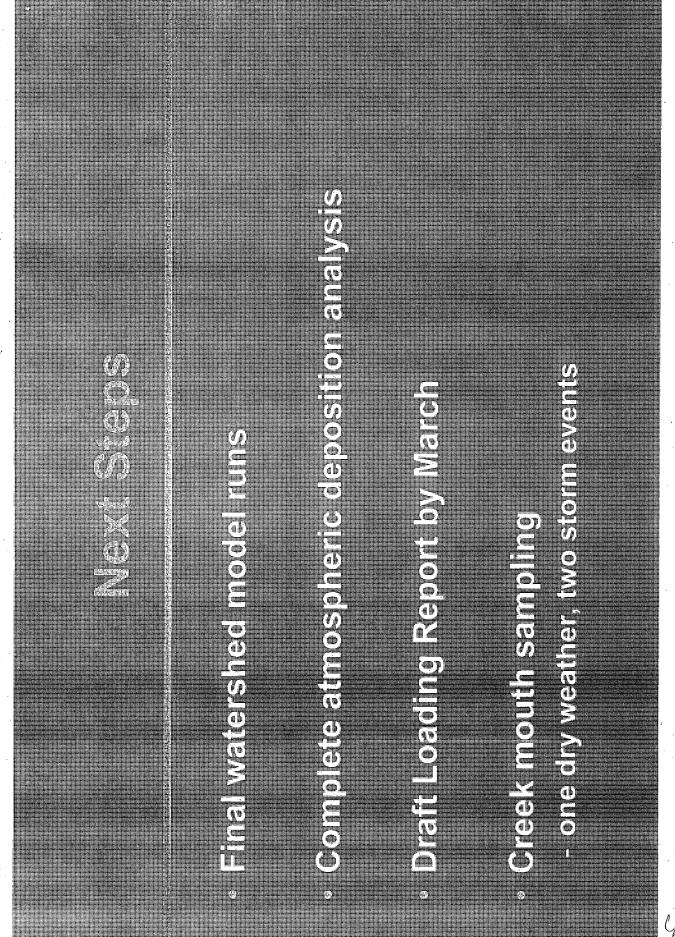

E OCUS WEIS CEPOSITION ON TO THE WATER SURFICE OF CREAK dama And And And Anna Anna Anna orani orano orano imospheric Dep

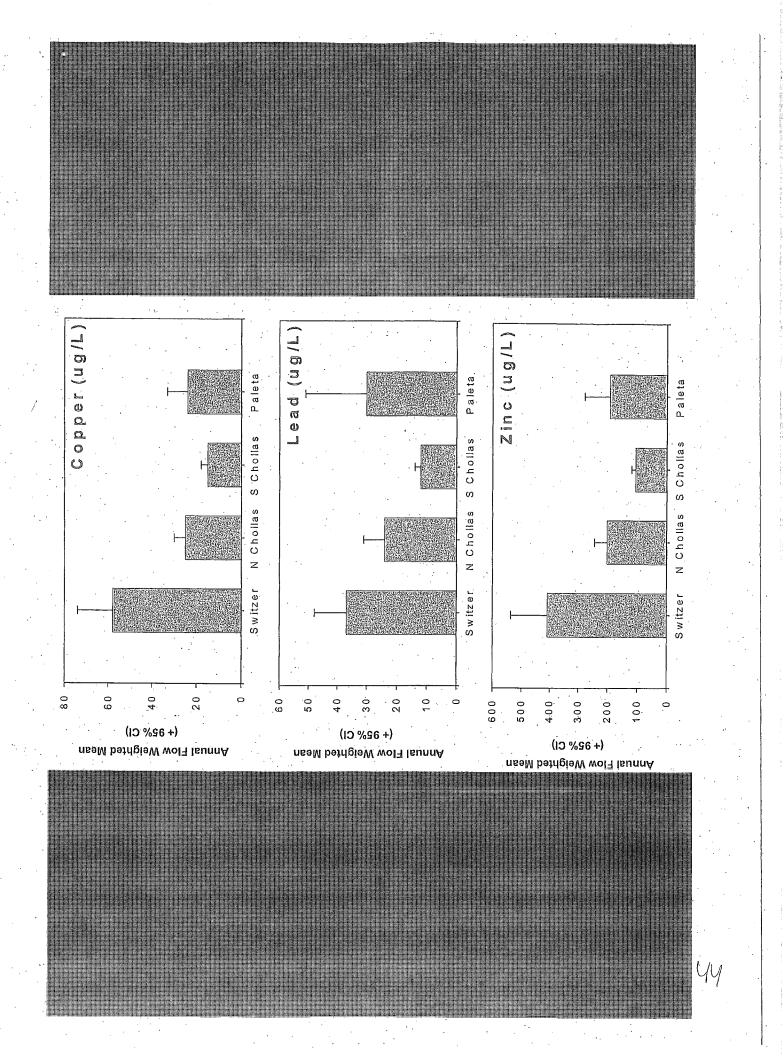

One site as close to creek mouth as possible

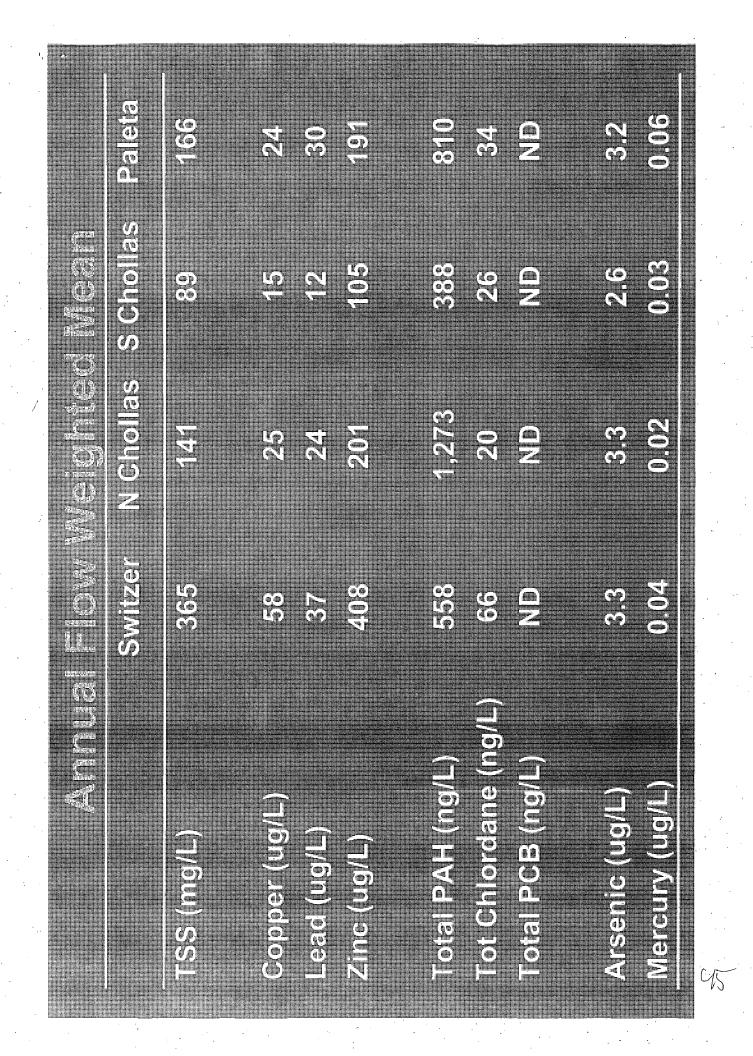

- Minimum of 8 sample events

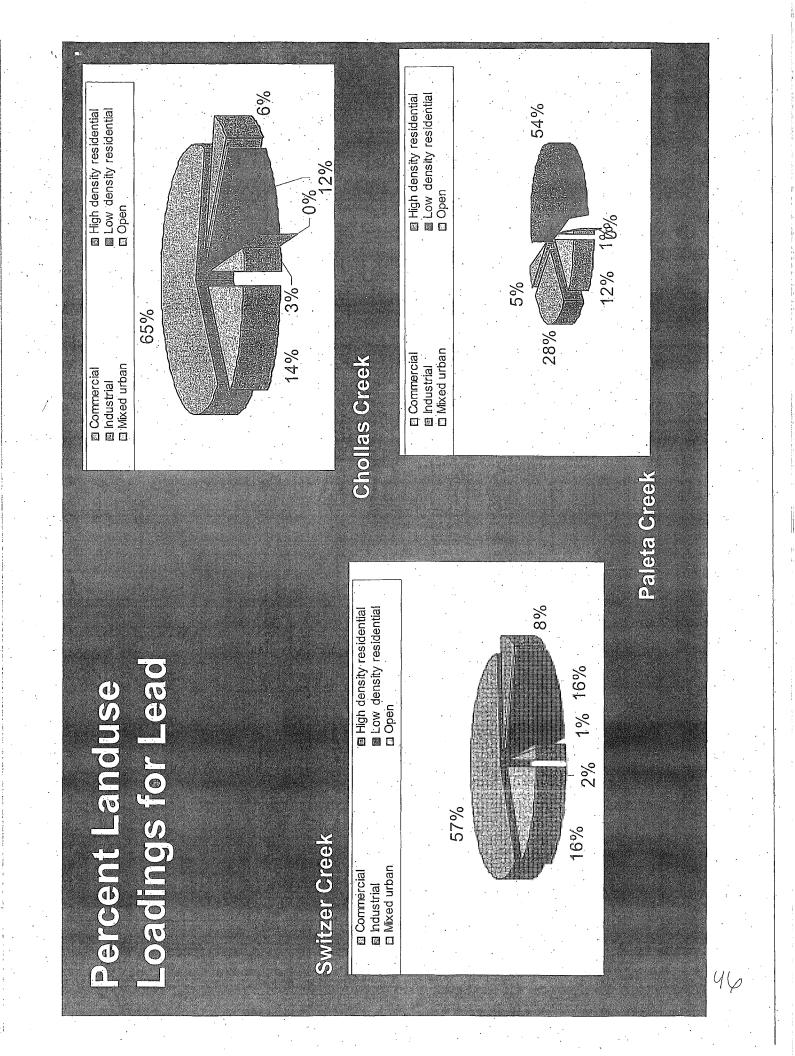

(P)Use surrogate surfaces for meta

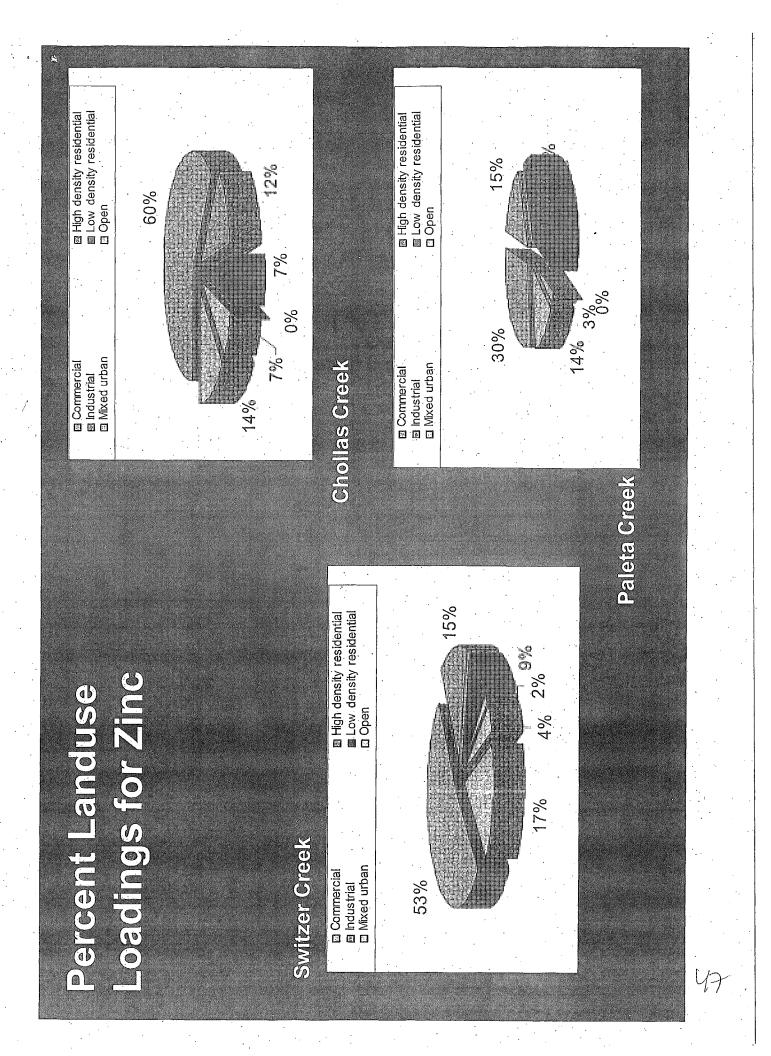
Supplement with water samples for diffusion estimates Use high volume samplers for organics








Large volume samples for particle separation and COPC analysis Wet Season Gampling Creek mouth sampling for particle dynamics Creek mouth sampling for hydrodynamics Large volume samples for low detection limits Wet weather runoff from Chollas Ch Creek mouth sampling for COPCs Three dimensional plume mapping - in situ particle size measurements


R

CALIFORNIA REGIONAL WATER QUALITY CONTROL BOARD . SAN DIEGO REGION

RESOLUTION NO. R9-2007-0043

A RESOLUTION ADOPTING AN AMENDMENT TO THE WATER QUALITY CONTROL PLAN FOR THE SAN DIEGO BASIN (9) TO INCORPORATE TOTAL MAXIMUM DAILY LOADS FOR DISSOLVED COPPER, LEAD, AND ZINC IN CHOLLAS CREEK, TRIBUTARY TO SAN DIEGO BAY,

AND TO REVISE THE TOXIC POLLUTANTS SECTION OF CHAPTER 3 TO REFERENCE THE CALIFORNIA TOXICS RULE

WHEREAS, The San Diego Regional Water Quality Control Board (hereinafter, San Diego Water Board), finds that:

- BASIN PLAN AMENDMENT: Total Maximum Daily Loads (TMDLs) and allocations for pollutants that exceed water quality objectives in waterbodies that do not meet water quality standards under the conditions set forth in section 303(d) of the Clean Water Act [33 U.S.C. 1250, et seq., at 1313(d)] ("Water Quality Limited Segments") should be incorporated into the Water Quality Control Plan for the San Diego Basin (9) (Basin Plan) pursuant to Article 3, commencing with section 13240, of Chapter 4 of the Porter-Cologne Water Quality Control Act, as amended, codified in Division 7, commencing with section 13000, of the Water Code.
- 2. CLEAN WATER ACT SECTION 303(d): The lowest 1.2 miles of Chollas Creek (from the mouth of Chollas Creek at San Diego Bay to 1.2 miles inland) were placed on the List of Water Quality Limited Segments in 1996 due to levels of dissolved copper, lead, and zinc (metals) in the water column that exceeded numeric water quality objectives for copper, lead, and zinc, and narrative water quality objectives for toxicity, as required by Clean Water Act (CWA) section 303(d).
- 3. BENEFICIAL USE IMPAIRMENTS: Two beneficial uses exist in Chollas Creek that are sensitive to, and subject to impairment by elevated concentrations of dissolved metals in the water column. Warm Freshwater Habitat (WARM) and Wildlife Habitat (WILD) require water quality suitable for the protection of aquatic life and aquatic dependent wildlife. Dissolved metals are toxic to aquatic life and aquatic dependent wildlife at relatively low concentrations. Concentrations of dissolved metals in Chollas Creek exceed the water quality necessary to support the WARM and WILD beneficial uses of Chollas Creek.
- 4. NECESSITY STANDARD [Government Code section 11353(b)]: Amendment of the Basin Plan to establish and implement TMDLs for Chollas Creek is necessary because the existing water quality in the lowest 1.2 miles of Chollas Creek does not meet applicable water quality objectives for copper, lead, zinc, or toxicity. CWA section 303(d) requires the establishment and implementation of TMDLs under the conditions that exist in Chollas

Resolution No. R9-2007-0043

Creek. TMDLs for copper, lead, and zinc are necessary to ensure attainment of applicable water quality objectives and restoration of water quality needed to support the beneficial uses designated for Chollas Creek.

5. WATER QUALITY OBJECTIVES: The United States Environmental Protection Agency (USEPA) has established numeric criteria for toxic pollutants which are applicable water quality objectives for dissolved copper, lead, and zinc in the inland surface waters, enclosed bays, and estuaries of California through promulgation of the California Toxics Rule (CTR). [40 CFR 131.38]. These water quality criteria, presented below, are applicable to Chollas Creek.

Metal	Numeric Target for Acute Conditions: Criteria Maximum Concentration	Numeric Target for Chronic Conditions: Criteria Continuous Concentration
Copper	(1) * (0.96) * {e^ [0.9422 * ln (hardness) - 1.700]}	(1) * (0.96) * {e^[0.8545 * ln (hardness) - 1.702]}
Lead	(1) * {1.46203 - [0.145712 * 1n (hardness)]} * {e^ [1.273 * 1n (hardness) - 1.460]}	(1) * {1.46203 - [0.145712 * ln (hardness)]} {e^[1.273 * ln (hardness) - 4.705]}
Zinc	(1) * (0.978) * {e^ [0.8473 * In (hardness) + 0.884]}	(1) * (0.986) * {e^[0.8473.* ln (hardness) + 0.884]}

Water Quality Criteria for dissolved metals in Chollas Creek.

Hardness is expressed as milligrams per liter.

Calculated concentrations should have two significant figures [40 CFR 131.38(b)(2)]. The natural log and exponential functions are represented as "ln" and "e," respectively.

In addition, the Basin Plan establishes the following narrative water quality objective for "toxicity" to ensure the protection of the WARM and WILD beneficial uses.

Toxicity Objective: All waters shall be maintained free of toxic substances in concentrations that are toxic to, or that produce detrimental physiological responses in human, plant, animal, or aquatic life. Compliance with this objective will be determined by use of indicator organisms, analyses of species diversity, population density, growth anomalies, bioassays of appropriate duration, or other appropriate methods as specified by the San Diego Water Board.

The survival of aquatic life in surface waters subjected to a waste discharge or other controllable water factors, shall not be less than that for the same water body in areas unaffected by the waste discharge or, when necessary, for other control water that is consistent with requirements specified in USEPA, State Water Resources Control Board (State Board) or other protocol authorized by the San Diego Water Board. As a minimum, compliance with this objective as stated in the previous sentence shall be evaluated with a 96-hour acute bioassay.

In addition, effluent limits based upon acute bioassays of effluents will be prescribed where appropriate, additional numerical receiving water objectives for specific toxicants will be established as sufficient data become available, and source control of

June 13, 2007

toxic substances will be encouraged.

- 6. NUMERIC TARGETS: Numeric targets are established for the purposes of calculating TMDLs. Since the numeric targets are equal to the water quality criteria in the CTR for dissolved copper, lead, and zinc cited in finding 5, attainment of TMDLs will ensure attainment of these water quality criteria.
- 7. SOURCES OF DISSOLVED METALS: Many land uses and activities associated with urbanization are sources of copper, lead, and zinc to Chollas Creek. Freeways and commercial/industrial land uses are major contributors. Automobiles are a significant source of all three metals. Water supply systems, pesticides, industrial metal recyclers and other industrial activities also contribute to levels of copper, lead, and zinc in excess of water quality criteria for Chollas Creek. Metals released to the environment by different land uses and activities are washed off of the land surface by urban runoff and storm flows and conveyed to Chollas Creek through municipal separate storm sewer systems. Quantification of bacteria loading in all watersheds is necessary to calculate the load reductions required to meet TMDLs.
- 8. WATER QUALITY OBJECTIVE VIOLATIONS: Concentrations of dissolved copper, lead, and zinc have frequently exceeded numeric water quality criteria contained in the CTR. Furthermore, in a Toxicity Identification Evaluation performed in 1999, Chollas Creek stormwater concentrations of zinc and to a lesser extent copper, were identified as causing or contributing to reduced fertility in the purple sea urchin.
- 9. ADVERSE EFFECTS OF COPPER, LEAD, AND ZINC: Concentrations of copper, lead, and zinc in excess of CTR criteria entail increased risk of adverse toxic effects in aquatic organisms exposed to them. Copper, lead, and zinc may bioaccumulate within lower organisms, however they do not biomagnify up the food chain. Of these three metals, copper is considered the most potent toxin at environmentally relevant aqueous concentrations.
- 10. TOTAL MAXIMUM DAILY LOADS AND ALLOCTIONS: TMDLs for dissolved copper, lead, and zinc are equal to the total assimilative or loading capacity of Chollas Creek for dissolved copper, lead, and zinc. The loading capacities are defined as the maximum amount of each dissolved metal that Chollas Creek can assimilate and still attain water quality criteria needed for the protection of designated beneficial uses. Each TMDLS must accommodate all known sources of a pollutant, whether from natural background, nonpoint sources, or point sources, and must include a margin of safety (MOS) to preclude pollutant loading from exceeding the actual assimilative capacities of Chollas Creek. The TMDL calculations also account for seasonal variations and critical conditions and were developed in a manner consistent with guidelines published by the USEPA. The TMDLs for dissolved copper, lead, and zinc are equal to the Waste Load Allocations (WLAs) which are 90 percent of the CTR Criteria Continuous Concentration (CCC) and Criteria Maximum Concentration (CMC) equations. Discharges of dissolved copper, lead, and zinc are the allocations.

June 13, 2007

Resolution No. R9-2007-0043

- 11. IMPLEMENTATION PLAN: The technical report entitled Total Maximum Daily Loads for Dissolved Copper, Lead and Zinc in Chollas Creek, Tributary to San Diego Bay dated June 13, 2007, presents a summary of measures that, if adopted by the San Diego Water Board, the State Water Resources Control Board (State Water Board), and local governmental agencies, will promote attainment of the load reductions needed to keep discharges of metals at or below the TMDLs calculated for Chollas Creek. Section 303 of the CWA and the federal National Pollutant Discharge Elimination System (NPDES) regulations direct the USEPA and authorized states to impose requirements consistent with TMDLs for point source discharges to "impaired" waterbodies. When the San Diego Water Board and the State Water Board re-issue or revise NPDES requirements for municipal; construction, and industrial stormwater discharges of "small MS4s," they will have to include requirements that will implement all TMDLs applicable to waters affected by the regulated discharges.
- COMPLIANCE MONITORING: Water quality monitoring will be necessary to assess progress in achieving WLAs and compliance in Chollas Creek with the water quality objectives for dissolved copper, lead, and zinc.
- 13. COMPLIANCE SCHEDULE: Full implementation of the TMDLs for dissolved copper, lead, and zinc shall be completed within 20 years from the effective date of the Basin Plan amendment. The compliance schedule for implementing the wasteload reductions required under these TMDLs is structured in a phased manner, with 80 percent of reductions required in 10 years, and 100 percent of reductions required within 20 years. The 20-year compliance schedule is contingent upon the dischargers implementing integrated controls to achieve required copper, lead, zinc, indicator bacteria, diazinon, and trash reductions.
- 14. SCIENTIFIC PEER REVIEW: The scientific basis of this TMDL has undergone external peer review pursuant to Health and Safety Code section 57004. The San Diego Water Board has considered and responded to all comments submitted by the peer review panel and has enhanced the Technical Report appropriately. No change to the fundamental approach to TMDL calculations was necessary as a result of this process.
- 15. STAKEHOLDER AND PUBLIC PARTICIPATION: Interested persons and the public have had reasonable opportunity to participate in review of the proposed TMDL. Efforts to solicit public review and comment included five public workshops held between April 1999 and April 2005, including a CEQA scoping meeting held on March 21, 2003; a public review and comment period of 45 days preceding the San Diego Water Board public hearing in May 2005; a two week extension of the comment period after the public hearing in May 2005; a two week extension of the comment period after the public hearing in May 2005; a two week extension of the comment period of 45 days commencing in July 2006; a third public review and comment period of 45 days commencing on March 9, 2007; and a public hearing on April 25, 2007. Notices for all meetings were sent to interested parties including cities and San Diego County with jurisdiction in Chollas Creek. All of the written comments submitted to the San Diego Water Board during the review and comment periods have been considered, and written responses provided in Appendix M to the Technical Report.

Resolution No. R9-2007-0043

June 13, 2007

- 16. CEQA REQUIREMENTS: Pursuant to Public Resources Code section 21080.5, the Resources Agency has approved the Regional Water Boards' basin planning process as a "certified regulatory program" that adequately satisfies the California Environmental Quality Act (CEQA) (Public Resources Code, section 21000 et seq.) requirements for preparing environmental documents. [14 CCR section 15251(g); 23 CCR section 3782] As such, the San Diego Water Board's basin planning documents together with an Environmental Checklist are the "substitute documents" that contain the required environmental documentation under CEQA. [23 CCR section 3777] The substitute documents for this project include the Environmental Checklist, the detailed technical report entitled Total Maximum Daily Loads for Dissolved Copper, Lead, and Zinc in Chollas Creek, Tributary to San Diego Bay, responses to comments raised during the development of the TMDL, and this resolution. The project itself is the establishment of TMDLs for toxic metals in Chollas Creek where water quality has been listed as "impaired" by the State Water Board pursuant to section 303(d) of the CWA, as required by that section. While the San Diego Water Board has no discretion to not establish a TMDL (the TMDL is required by federal law) the San Diego Water Board does exercise discretion in assigning wasteload allocations; determining the program of implementation, and setting various milestones in achieving the water quality objectives for Chollas Creek,
- 17. PROJECT IMPACTS: The accompanying CEQA substitute documents satisfy the requirements of substitute documents for a Tier 1 environmental review under CEQA, pursuant to Public Resources Code section 21159 and CCR Title 14, section 15187. Nearly all of the compliance obligations anticipated to be necessary to implement the TMDLs for copper, lead, and zinc in Chollas Creek will be undertaken by public agencies that will have their own obligations under CEQA for implementation projects that could have significant environmental impacts (e.g., installation and operation of structural best management practices). Project level impacts will need to be considered in any subsequent environmental analysis performed by other public agencies pursuant to Public Resources Code section 21159.2.
 - If not properly mitigated at the project level, implementation and compliance measures undertaken could have significant adverse environmental impacts. The substitute documents for this TMDL, and in particular the environmental checklist and responses to comments, identify broad mitigation approaches that should be considered at the project level. The San Diego Water Board does not engage in speculation or conjecture regarding the projects that may be used to implement the TMDLs and only considers the reasonably foreseeable alternative methods of compliance, the reasonably foreseeable feasible environmental impacts of the these methods of compliance, and the reasonably foreseeable mitigation measures which would avoid or eliminate the identified impacts, all from a broad general perspective consistent with the uncertainty regarding how the TMDLs, ultimately, will be implemented. The lengthy implementation period allowed by the TMDLs will allow persons responsible for compliance with wasteload allocations to develop and pursue many compliance approaches and mitigation measures.

white and and uningenou mense

June 13, 2007

- 18. PROJECT MITIGATION: The proposed amendment to the Basin Plan to establish TMDLs for copper, lead, and zinc in Chollas Creek could have a significant adverse effect on the environment. However, there are feasible alternatives, feasible mitigation measures, or both, that would substantially lessen any significant adverse impact. The public agencies responsible for implementation measures needed to comply with the TMDLs can and should incorporate such alternatives and mitigation into any projects or project approvals that they undertake for the impaired creek. Possible alternatives and mitigation are described in the CEQA substitute documents, specifically the Technical Report and the environmental checklist. To the extent the alternatives, mitigation measures, or both, are not deemed feasible by those agencies, the necessity of implementing the TMDLs that is mandated by the federal Clean Water Act and removing the copper, lead, and zinc impairments in Chollas Creek (an action required to achieve the express, national policy of the Clean Water Act) outweigh the unavoidable adverse environmental effects identified in the substitute documents.
- 19. ECONOMIC ANALYSIS: The San Diego Water Board has considered the costs of the reasonably foreseeable methods of compliance with the wasteload reductions specified in these TMDLs. The most reasonably foreseeable methods of compliance involve implementation of structural and non-structural controls. Surface water monitoring to evaluate the effectiveness of these controls will be necessary.
- 20. NO ADVERSE ENVIRONMENTAL EFFECTS: This Basin Plan amendment will result in ho adverse effect, either individually or cumulatively, on wildlife.
- 21. REVISION TO BASIN PLAN: The USEPA promulgated a final rule prescribing water quality criteria for toxic pollutants in inland surface waters, enclosed bays, and estuaries in California in 2000 (The California Toxics Rule or "CTR;" [40 CFR 131.38]). CTR criteria constitute applicable water quality objectives in California. In addition to the CTR, certain criteria for toxic pollutants in the National Toxics Rule [40 CFR 131.36] constitute applicable water quality objectives in California as well. The section in Chapter 3 of the Basin Plan titled "Toxic Pollutants" should be revised to be consistent with the current federal rules. The subsection entitled "Water Quality Objectives for Toxic Pollutants" in Chapter 3 of the Basin Plan needs to be deleted. This subsection is redundant since the CTR and certain NTR criteria constitute applicable water quality entities applicable water quality.

NOW, THEREFORE, BE IT RESOLVED that

- 1. AMENDMENT ADOPTION: The San Diego Water Board hereby adopts the amendment to the Basin Plan to incorporate the TMDLs for dissolved copper, lead, and zinc in Chollas Creek and to revise the Basin Plan to reference the California Toxics Rule as set forth in Attachment A hereto.
- TECHNICAL REPORT APPROVAL: The San Diego Water Board hereby approves the Technical Report entitled Total Maximum Daily Loads for Dissolved Copper, Lead, and Zinc in Chollas Creek, Tributary to San Diego Bay, dated May 30, 2007.

Resolution No. R9-2007-0043

- June 13, 2007
- 3. CERTIFICATE OF FEE EXEMPTION: The Executive Officer is authorized to sign a Certificate of Fee Exemption.
- AGENCY APPROVALS: The Executive Officer is directed to submit this Basin Plan amendment to the State Water Board for approval in accordance with Water Code section 13245.
- 5. NON-SUBSTANTIVE CORRECTIONS: If, during the approval process for this amendment, the State Water Board, San Diego Water Board, or OAL determines that minor, non-substantive corrections to the language of the amendment are needed for clarity or consistency, the Executive Officer may make such changes, and shall inform the San Diego Water Board of any such changes.
- 6. ENVIRONMENTAL DOCUMENT CERTIFICATION: The substitute environmental documents prepared pursuant to Public Resources Code section 21080.5 are hereby certified, and the Executive Officer is directed to file a Notice of Decision with the Resources Agency after State Water Board and OAL approval of the Basin Plan Amendment, in accordance with section 21080.5(d)(2)(E) of the Public Resources Code and the California Code of Regulations, title 23, section 3781.

I, John H. Robertus, Executive Officer, do hereby certify the foregoing is a full, true and correct copy of a Resolution adopted by the California Regional Water Quality Control Board, San Diego Region, on June 13, 2007.

JOHN H. ROBERTUS EXECUTIVE OFFICER

ATTACHMENT A TO RESOLUTION NO. R9-2007-0043

AMENDMENT TO THE WATER QUALITY CONTROL PLAN FOR THE SAN DIEGO BASIN (9) TO INCORPORATE TOTAL MAXIMUM DAILY LOADS FOR DISSOLVED COPPER, LEAD, AND ZINC IN CHOLLAS CREEK, TRIBUTARY TO SAN DIEGO BAY,

AND TO REVISE THE TOXIC POLLUTANTS SECTION OF CHAPTER 3 TO REFERENCE THE CALIFORNIA TOXICS RULE

This Basin Plan amendment establishes a Total Maximum Daily Load (TMDL) and associated load and wasteload allocations for copper, lead and zinc in Chollas Creek, and revises the Toxic Pollutants section of Chapter 3 to reference the California Toxics Rule. This amendment includes a program to implement the TMDL and monitor its effectiveness. Chapters 2, 3, and 4 of the Basin Plan are amended as follows:

Chapter 2, Beneficial Uses

Table 2-2. Beneficial Uses of Inland Surface Waters

Add the following footnote 3 to Chollas Creek

³Chollas Creek is designated as an impaired water body for copper, lead and zinc pursuant to Clean Water Act section 303(d). A Total Maximum Daily Load (TMDL) has been adopted to address this impairment. See Chapter 3, Water Quality Objectives for Toxicity and Toxic Pollutants and Chapter 4, Total Maximum Daily Loads.

Chapter 3, Water Quality Objectives

Inland Surface Waters, Enclosed Bays and Estuaries, Coastal Lagoons, and Ground Waters

Water Quality Objectives for Toxicity: Add a fifth paragraph as follows:

> Chollas Creek is designated as a water quality limited segment for dissolved copper, lead, and zinc pursuant to Clean Water Act section 303(d). Total Maximum Daily Loads have been adopted to address these impairments. See Chapters 2, Table 2-2, *Beneficial Uses* of Inland Surface Waters, Footnote 3 and Chapter 4, Total Maximum Daily Loads.

TOXIC POLLUTANTS:

Revise as follows:

The USEPA promulgated a final rule prescribing water quality criteria for toxic pollutants in inland surface waters, enclosed bays, and estuaries in California on May 18, 2000 (The California Toxics Rule or "CTR;" [40 CFR 131.38]). CTR criteria constitute applicable water quality criteria in California. In addition to the CTR,

certain criteria for toxic pollutants in the National Toxics Rule [40 CFR 131.36] constitute applicable water quality criteria in California as well.

Chollas Creek is designated as a water quality limited segment for dissolved copper, lead, and zinc pursuant to Clean Water Act section 303(d). Total Maximum Daily Loads have been adopted to address these impairments. See Chapters 2, Table 2-2, Beneficial Uses of Inland Surface Waters, Footnote 3 and Chapter 4, Total Maximum Daily Loads.

Federal Register, Volume 57, Number 246 amended Title 40, Code of Federal Regulations, Part 131.36 (40 CFR 131.36) and established numeric criteria for a limited number of priority toxic pollutant for inland surface waters and estuaries in California. USEPA promulgated these criteria on December 22, 1992, to bring California into full compliance with section 303(c)(2)(B) of the Clean Water Act. California is not currently in full compliance with this section of the Clean Water Act. California is not currently in full compliance with this section of the Clean Water Act due to the invalidation of the Water Quality Control Plan for Inland Surface Waters of California and the Water Quality Control Plan for Bays and Estuaries of California. However, the criteria established in 57 FR 60848 (December 22, 1992) (specifically pages 60920 60921) are still applicable to surface waters in the Region.

Water-Quality Objectives for Toxic Pollutants:

Inland surface waters, enclosed bays, and esituaries shall not contain toxic pollutants in excess of the numerical objectives applicable to California specified in 40 CFR 131:36 (§131:36 revised at 57 FR 60848, December 22, 1992).

Chapter 4, Implementation

After the subsection on the TMDL for Dissolved Copper, Shelter Island Yacht Basin, San Diego Bay add the following subsection:

Total Maximum Daily Loads for Copper, Lead, and Zinc in Chollas Creek

On June 13, 2007, the Regional Board adopted Resolution No. R9-2007-0043, Amendment to the Water Quality Control Plan for the San Diego Region to Incorporate Total Maximum Daily Loads for Dissolved Copper, Lead and Zinc in Chollas Creek, Tributary to San Diego Bay. The TMDL Basin Plan Amendment was subsequently approved by the State Water Resources Control Board on [Insert Date], the Office of Administrative Law on [Insert Date], and the USEPA on [Insert Date].

Problem Statement

Dissolved copper, lead and zinc concentrations in Chollas Creek violate numeric water quality criteria for copper, lead, and zinc promulgated in the California Toxics Rule, and the narrative objective for toxicity. Concentrations of these metals in Chollas Creek threaten and impair the designated beneficial uses of warm freshwater habitat (WARM), and wildlife habitat (WILD).

,

June 13, 2007

()

Numeric Targets

The TMDL numeric targets for copper, lead, and zinc are set equal to the numeric water quality criteria as defined in the California Toxics Rule (CTR) and shown below. Because the concentration of a dissolved metal causing a toxic effect varies significantly with hardness, the water quality criteria are expressed in the CTR as hardness based equations. The numeric targets are equal to the loading capacity of these metals in Chollas Creek.

Table 4 [insert number] Water Quality Criteria /Numeric Targets for dissolved metals in Chollas.

Metal	Numeric Target for Acute Conditions: Criteria Maximum Concentration	Numeric Target for Chronic Conditions: Criteria Continuous Concentration
Copper	(1) * (0.96) * {e^ [0.9422 * In (hardness) - 1.700]}	(1) * (0.96) * {e^[0.8545 * ln (hardness) - 1.702]}
Lead	(1) * $\{1,46203 - [0.145712 * \ln (hardness)]\}$ * $\{e^{1.273 * \ln (hardness) - 1.460]\}$	(1) * {1.46203 - [0.145712 * ln (hardness)]} ' {e^[1.273 * ln (hardness) - 4.705]}
Zinc	(1) * (0.978) * {e^ [0.8473 * ln (hardness) + 0.884]}	(1) * (0.986) * {e^[0.8473 * ln (hardness) + 0.884]}

Hardness is expressed as milligrams per liter.

Calculated concentrations should have two significant figures [40 CFR 131.38(b)(2)].

The natural log and exponential functions are represented as "In" and "e," respectively.

Source Analysis

The vast majority of metals loading to Chollas Creek are believed to come through the storm water conveyance system. An analysis of source contributions reveals many land uses and activities associated with urbanization to be potential sources of copper, lead and zinc to Chollas Creek. Modeling efforts point toward freeways and commercial/industrial land uses as the major contributors

Total Maximum Daily Loads

The TMDLs for dissolved copper, lead and zinc in Chollas Creek are concentration-based and set equal to 90 percent of the numeric targets/loading capacity.

Margin of Safety

The TMDL includes an explicit margin of safety (MOS). Ten percent of the loading capacity was reserved as an explicit MOS.

Allocations and Reductions

The source analysis showed that nonpoint sources and background concentrations of metals are insignificant, and thus, were set equal to zero in the TMDL calculations. The wasteload allocations are set equal to 90 percent of the numeric targets/loading capacity. Concentrations of

dissolved copper, lead and zinc require significant reductions from current concentrations to meet the loading capacity.

TMDL Implementation Plan

Persons whose point source discharges contribute to exceedance of Water Quality Criteria (WQC) for copper, lead, and zinc in Chollas Creek will be required to meet the WLA hardness dependant concentrations in their urban runoff discharges before it is discharged to Chollas Creek. Actions to meet the WLAs in discharges to Chollas Creek will be required in WDRs that regulate MS4 discharges, industrial facility and construction activity stormwater discharges, and groundwater extraction discharges in the Chollas Creek watershed. The following orders may be reissued or revised by the Regional Board to include requirements to meet the WLAs. Alternatively, the Regional Board may issue new WDRs to meet the WLAs.

Order No. 2007-0001, NPDES No. CAS0108758, Waste Discharge Requirements for Discharges of Urban Runoff from the Municipal Separate Storm Sewer Systems Draining the Watersheds of the County of San Diego, the Incorporated Cities of San Diego County, and the San Diego Unified Port District, or subsequent superceding NPDES renewal orders.

Order No. 2000-90, NPDES No. CAG19001, General Waste Discharge Requirements for Temporary Groundwater Extraction and Similar Waste Discharges to San Diego Bay and Storm Drains or other Conveyance Systems Tributary Thereto, or subsequent superceding NPDES renewal orders.

Order No. 2001-96, NPDES No. CAG 919002, General Waste Discharge Requirements for Groundwater Extraction Waste Discharges from Construction, Remediation and Permanent Groundwater Extraction Projects to Surface Waters within the San Diego Region Except for San Diego Bay or subsequent superceding NPDES renewal orders.

Order No. 97-11, General Waste Discharge Requirements for Post-Closure Maintenance of Inactive Nonhazardous Waste Landfills within the San Diego Region or subsequent superceding NPDES renewal orders.

The Regional Board shall request the State Water Resources Control Board amend the following statewide orders:

Order No. 99-06-DWQ, NPDES No. CAS000003, National Pollutant Discharge Elimination System (NPDES) Permit, Statewide Storm Water Permit, and Waste Discharge Requirements (WDRs) for the State of California, Department of Transportation (Caltrans), or subsequent superceding NPDES renewal orders.

Order No. 97-03-DWQ, NPDES No. CAS 000001, Waste Discharge Requirements for Discharges of Storm Water Associated with Industrial Activities Excluding Construction Activities, or subsequent superceding NPDES renewal orders.

June 13, 2007 ·

Order No. 2003-0005-DWQ, NPDES No. CAS000004, Waste Discharge Requirements for Storm Water Discharges from Small Municipal Separate Storm Sewer Systems, or subsequent superceding NPDES renewal orders.

Order No. 99-08-DWQ, NPDES No. CAS000002, General Permit for Storm Water Discharges Associated with Construction Activity, or subsequent superceding NPDES renewal orders.

The Regional Board shall require the U.S. Navy to submit a Notice of Intent to enroll the Naval Base San Diego facility under statewide Order No. 2003-005-DWQ or subsequent superseding NPDES renewal orders.

Implementation Monitoring Plan

The dischargers will be required to monitor Chollas Creek and provide monitoring reports to the Regional Board for the purpose of assessing the effectiveness of the management practices implemented to meet the TMDL allocations. The Regional Board shall amend the following order to include a requirement that the cities of San Diego, Lemon Grove, and La Mesa, the County of San Diego, the San Diego Unified Port District, and CalTrans investigate excessive levels of metals in Chollas Creek and feasible management strategies to reduce metal loadings in Chollas Creek, and conduct additional monitoring to collect the data necessary to refine the watershed wash-off model to provide a more accurate estimate of the mass loads of copper, lead and zinc leaving Chollas Creek each year.

Order No. R9-2004-0277, California Department of Transportation and San Diego Municipal Separate Storm Sewer System Copermittees Responsible for the Discharge of Diazinon into the Chollas Creek Watershed, San Diego, California.

Schedule of Compliance

Concentrations of metals in urban runoff shall only be allowed to exceed the WLAs by a certain percentage for the first nineteen years after initiation of this TMDL. Allowable concentrations shall decrease as shown in Table 4 *[insert number]*. For example, if the measured hardness in year ten dictates the WLA for copper in urban runoff is $10 \mu g/l$; the maximum allowable measured copper concentration would be $12.0 \mu g/L$. By the end of the twentieth year of this TMDL, the WLAs of this TMDL shall be met. This will ensure that copper, lead and zinc water quality objectives are being met at all locations in the creek during all times of the year.

		Exceedance of the ble percentage abo	
Compliance Year	Copper	Lead	Zinc
1	100%	100%	100%
10	20%	20%	20%
20	0%	0%	. 0%

Table 4 [insert number] Interim goals for achieving Wasteload Allocations

Compliance with the interim goals in this schedule can be assessed by showing that dissolved metals concentrations in the receiving water exceed the WQC for copper, lead, and zinc by no

June 13, 2007

13

more than the allowable exceedances for WLAs shown in the table above. Regulated groundwater discharges to Chollas Creek must meet the WLAs at the initiation of the discharge. No schedule to meet interim goals will be allowed in the case of groundwater discharges.

The compliance schedule for implementation of the TMDLs shall be as follows in Table 4 [insert number].

	In the II was applemented a destruction of the		A CONTRACTOR OF THE OWNER OF THE
1	Effective date of Chollas Creek Metals	San Diego Water Board,	
1 .	TMDL Waste Load Allocations.	Municipal Dischargers,	October 22, 2008 ¹
		Caltrans, Navy,	·
		Industrial Stormwater	
· .		Dischargers,	
		Construction	
		Stormwater	
		Dischargers, Landfill	
·		Stormwater Dischargers	
2	Recommend High Priority for grant funds,	San Diego Water Board	Immediately after
			effective date
3	Submit annual Progress Report to San Diego	Municipal Dischargers	Annually after reissue
4	Water Board due January 1 of each year.		of NPDES WDRs.
. 4.	Submit annual Progress Report to San Diego	Caltrans	Annually after reissue
5	Water Board due April 1 of each year,		of NPDES WDRs.
	Submit annual Progress Report to San Diego	Industrial Stormwater	Annually after reissue
6	Water Board due July 1 of each year.	Dischargers	of NPDES WDRs.
	Submit annual Progress Report to San Diego	Construction	Annually after reissue
7	Water Board due July 1 of each year.	Stormwater Dischargers	of NPDES WDRs.
	Municipal NPDES WDRs shall be issued,	San Diego Water Board	Within 5 years of
1 1 -	relssued, or revised to include WQBELs		effective date
	consistent with the assumptions and		
8	requirements of the Chollas Creek WLAs,		
	Caltrans NPDES WDRs shall be issued, reissued, or revised to include WQBELs	State Water Board	Within 5 years of
1	consistent with the assumptions and		effective date
	requirements of the Chollas Creek WLAs.		
.9	Construction NPDES WDRs shall be issued,	State Water Board	
	reissued, or revised to include WQBELs	Drate Water Board	Within 5 years of
1	consistent with the assumptions and		effective date
	requirements of the Chollas Creek WLAs.		
10	Industrial NPDES WDRs shall be issued,	State Water Board	117/41.1. B
ŀ	reissued, or revised to include WQBELs	Sume Water Duald	Within 5 years of
	consistent with the assumptions and		effective date
L	requirements of the Chollas Creek WLAs.		

Table 4 [insert number] Compliance Schedule

¹ Upon approval of by Office of Administrative Law.

June 13, 2007

Resolution No. R9-2007-0043 Attachment A

•			
sitient:	intolementation Autom State	Figure 10 16 Databased	Les Dates and the
11 .	Amend Orders No. 2000-90, and No. 2001-	San Diego Water Board	Within 5 years of
	96 (or superseding renewal orders) which		effective date
	regulates temporary groundwater extraction		
•	discharges to San Diego Bay and its		· · · ·
	tributaries to include WQBELs consistent		
	with the assumptions and requirements of		•
	the Chollas Creek WLAs,	• • • • • • •	
12	Municipal and Navy WDR Order No. R9-	San Diego Water Board	Within 5 years of
	2004-0277 shall amended to require		effective date
	additional monitoring for metals and		
. •	hardness.		
13	Landfill NPDES WDR Order No. 97-11 (or	San Diego Water Board	Within 5 years of
:	superseding renewal orders) shall be issued,		effective date
	reissued, or revised to monitor for metals		
	and hardness.		
14	Navy and all other Phase II small MS4	San Diego Water Board	Immediately after
	permittees in the Chollas Creek watershed		effective date.
	shall be enrolled in Order No. 2003-0005-		
•	DWQ (or superseding renewal orders).		
15	Take enforcement actions	San Diego Water Board	As needed after
			effective date.
16	Meet 80% Chollas Creek Metals TMDL	Municipal Dischargers,	10 years after effective
	WLA reductions.	Caltrans, Navy,	date.
· ·		Industrial Stormwater	
		Dischargers,	
		Construction	
1		Stormwater	
		Dischargers, Landfill	
		Stormwater Dischargers	
17	Meet 100% Chollas Creek Metals TMDL	Municipal Dischargers,	20 years after effective date:
	WLA reductions.	Caltrans, Navy, Industrial Stormwater	uate.
		Dischargers, Construction	
		Stormwater	
ľ.		Dischargers, Landfill	
		Stormwater Dischargers	
L]	1. DIDLIMATEL DISCURISEIS	l

i -

304

Shaw Environmental, Inc.

1230 Columbia Street, Sulte 1200 San Dlego, CA 92101 619.239.1690 Fax: 619.239.1238

Shaw Project 831459

Shaw Environmental, Inc.

June 3, 2003

Mr. Mike Chee, Environmental Manager NASSCO PO Box 85278, MS 22A Harbor Drive and 28th Street San Diego, CA 92113

> Letter of Certification Stormwater Containment NASSCO Shipyard

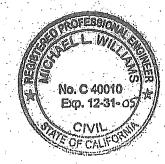
Dear Mr. Chee:

Shaw Environmental, Inc. (Shaw) has prepared this Letter of Certification that verifies that the capacity of the overall stormwater containment system at the NASSCO Shipyard in San Diego, California, exceeds the 100-year, 24-hour storm event. Shaw originally performed an analysis of the containment system and prepared a report that contained recommendations and costs for various improvements that, if implemented, could contain a 2-, 5-, 10-, 25-, 50-, or 100-year, 24-hour storm event, depending on which improvements were selected. This analysis was based upon engineering calculations, discussions with NASSCO personnel, visual observations, surveying, and equipment information provided by NASSCO. Since then, improvements either have been made in accordance with this report or in accordance with similar improvements suggested by NASSCO resulting in the system's current capacity. Record drawings of the improvements are attached.

The implemented improvements resulted in the following:

 Stormwater runoff is now contained or controlled by perimeter containment berms or walls, and by pumping or draining the contained runoff to a combination of aboveground storage tanks, the waste water treatment plant, and to the Graving Dock.

The Graving Dock and Ways 3 and 4 have sufficient stormwater storage capacity in excess of a 100-year, 24-hour storm event.


A Shaw Group Company

If you have any questions or need additional information, please call the undersigned at . 619.533.7313.

Sincerely, Shaw Environmental, Inc.

Prepared by: MAUN

Michael L. Williams, P.E. Civil Engineer

Reviewed by:

Qumark V. Jaman Leonard O. Yamamoto, P.E. Business Line Manager

2

Page 2 of 2

force ment 03-0137 CALIFORNIA REGIONAL WATER QUALITY CONTROL BOARD - SAN DIEGO REGION WATERSHED MANAGEMENT PROGRAM **FACILITY INSPECTION REPORT** 9/23/04 2 9/24/04 TIME: 9-3 WDID: N/A INSPECTION DATE: FACILITY REPRESENTATIVE(S) PRESENT DURING INSPECTION: 500 attaction Attached Hackers Spe. OWNER CONTACT NAME AND PHONE # OF OWNER, AGENCY OR PARTY RESPONSIBLE FOR DISCHARGE NAME FACILITY OR DEVELOPER NAME (if different from owner) FACILITY OR DEVELOPER CONTACT NAME AND PHONE # .1 .11 FACILITY STREET ADDRESS FACILITY CITY AND STATE APPLICABLE WATER QUALITY LICENSING REQUIREMENTS MS4 URBAN RUNOFF REQUIREMENTS NPDES NOS. CAS0108756, CAS0108740 or CAS0108766 GENERAL PERMIT ORDER NO. 99-08-DWQ, NPDES NO. CAS000002 - CONSTRUCTION GENERAL PERMIT ORDER NO. 99-06-DWQ, NPDES NO. CAS000003 - CALTRANS **GENERAL OR INDIVIDUAL WASTE DISCHARGE REQUIREMENTS** GENERAL OR INDIVIDUAL WAIVER OF WASTE DISCHARGE REQUIREMENTS SECTION 401 WATER QUALITY CERTIFICATION CWC SECTION 13264 Other - Enforcement Investigation N INSPECTION TYPE (Check One) "A" type compliance--Comprehensive inspection in which samples are taken. (EPA Type S) A1 _ "B" type compliance -- A routine nonsampling inspection. (EPA Type C) B1 Noncompliance follow-up-Inspection made to verify correction of a previously identified violation. 02 03 Enforcement follow-up--Inspection made to verify that conditions of an enforcement action are being met. 04 _____ Complaint-Inspection made in response to a complaint. Pre-requirement--Inspection made to gather info. relative to preparing, modifying, or rescinding requirements. 05 No Exposure Certification (NEC) - verification that there is no exposure of industrial activities to storm water. 06 Notice of termination request for industrial facilities or construction sites - verification that the facility or construction site is not 07 _ subject to permit requirements (Type, NOT I or NOT C - circle one). Compliance Assistance Inspection - Outreach inspection due to discharger's request for compliance assistance. 08 **INSPECTION FINDINGS** Were violations noted during this inspection? (Yes/No/Pending Sample Results) M Were samples taken? (N=no) If YES then, G= grab or C= Composite and attach a copy of the sample results/chain of custody form COMPLIANCE HISTORY: CHIBIT 1815 See File

'ILITY:	(WDID)	INSPECTION DATE	۱ <u></u>
;			· •
FINDINGS			
See Attached			
			· · · · · · · · · · · · · · · · · · ·
		••••••••••••••••••••••••••••••••••••••	, , , , , , , , , , , , , , , , , , ,
	ى ئەرىپى ئەركىيە (1996-1991-1991-1996-1996-1996-1996-1996		
	ne <u>n en ser en s</u>	<u>.</u>	
		y na shannini ni ni ni ni ni na shan ya sha na sha na sha na sha sha sha sha sha sha sha sha sha sh	
	and a start of the second s		1994. 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 19 97 - 199
		and the second	Charles and the second s
	an a faire an ann an		
· · · · · · · · · · · · · · · · · · ·			
			· _ ·
		an a	, , ,
			Construction of the second
	· · · ·		
·			•
	\cdot	· · · ·	
SIGNATURE SECTION			
2		1 2.7	9/23/04
SENJAMIN TOBLER	SIGNATURE		
AFF INSPECTOR	GRIVALUNE		9/2.4/04
(Corinternal line only)			r
. (For internal use only)			
vlewed by Supervisor:		Date	
; Jeremy Johnstone (EPA), John Nor	ton (SWRCB), <u>Citv</u>		Storm Drain Enforce
		4)	5)
Inter-office Referral: 1) 2 My Documents/Forms/Inspection Report.doc(v			

2

Tour of NASSCO, SWM, SDG&E, ARCO, Chevron, and Storm Drains 9/23/04 and 9/24/04

Field observations and

Notes based an information & rounded by property owner & tenant representations

SWM

SWM last dredged their site in the early '90s. The sediment went to LA5 for ocean disposal.

SWM started collecting storm water runoff off the piers in 2001/2.

Trash and sheen has been observed many times at SW4 discharges into Bay. Shaun Halvax has video footage of discharge from SW4 with report.

Old ARCO lines (run underneath SWM property and under pier 4) from ARCO's pier and wharf have not been used since 1979. ARCO used these lines for fueling ships (mostly diesel) and delivery of fuel. The majority of the fuel changed from ship loading to pipeline in the 1960s with the installation of the Kinder Morgan pipeline that is currently used today by ARCO and Chevron. SWM has converted these lines into use for its fire protection system, sewage, and potable water (in early 80's). Three of the four old ARCO lines are used by SWM. The water in the fire protection lines is tested for copper.

Berms around property to keep storm water from flowing into bay installed 1997-1998.

SDG&E

Silver Gate Power Plant was run on natural gas, with some oil.

All equipment was cleaned of PCBs in the '90's. Mineral oil was mostly used in equipment because it was cheaper then PCB oil.

Waste water ponds now a parking lot at SWM (covered by asphalt). Wastewater went to the ponds for evaporation and settling.

Don't want to be named in CAO. Would rather us tell them do a full site assessment investigation, and if the results show them to be dischargers, be named in the CAO later. SDG&E feels that the sediment directly offshore from their leasehold and at the north end of SWM is not fully characterized and needs more samples to determine if SDG&E contributed to the contamination.

Tunnels from plant to the bay are currently not sealed. Still open to tidal influences.

Plant is currently slated for demolition to begin in November 2004.

Maintenance crews are routinely sent in to the property to clean up trash, paint chips, and other debris from property. Did anyone ask about testing of this material? PCBs or metals in the old paint?

Run-off from transformer area collected and tested, then transferred to storm water pipes.

<u>ARCO</u>

Capture all storm water on site. Only discharged once in past 3(?) years. Don't get enough rain. Runoff evaporates in ponds/holding tanks. Test visually for sheen and send to lab for btex, oil and grease, TSS.

Did a bay water study and found no tidal influence on their property or remediation wells.

Groundwater flows north into tank farm. This flow took the contaminant plume there, thus no groundwater or soil contamination bayside of Belt Street. All product is localized on ARCO property. Currently skimming product off the top of groundwater.

<u>NASSCO</u>

Exponent labeled SW3 wrong in report. Only SW9 is a city drain on NASSCO.

Building 6 groundwater contamination roughly 200 yards from the Bay. Monitoring wells are being placed by DTSC to see if plume is in the Bay.

RB (Ben) requested documentation of the changes to the storm water/sewer system. Diversion of storm water from old system to the capping of some outlets and the complete diversion to sewer?

Chevron

Did a bay water study and found no tidal influence on their property or remediation wells. Only ½ to ¼ foot of tidal influence at Belt Street. This will affect all the Chevron wells on the NASSCO leasehold. There is no tidal influence at the Upper Tank Farm (across the street from ARCO). It is 10 ft to groundwater at MW-9 (Belt Street) and 20 ft to groundwater at the Upper tank farm.

Storm water goes through a 3-stage clarifier. Visual inspection for sheen upon release to storm drain (SW4?).

Former lower tank farm (between SWM and NASSCO) received closure notice from County in 2002. All equipment since moved to Upper Tank Farm.

Free gasoline product near NASSCO gate 14. This is the site of the pipeline rupture caused by the City driller. Chevron not named in CAO. Recovery is ongoing at this site (MW-9).

Gasoline product is found at MW-19 (on NASSCO leasehold). Initially over 1 foot of product, now less then half a foot.

Diesel recovery at C-2 (near ARCO).

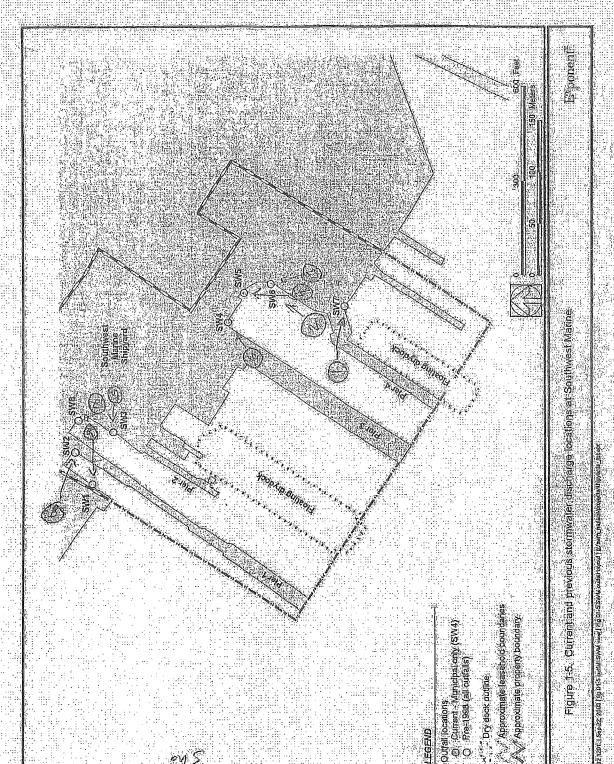
MW-20 on NASSCO leaschold is clean.

MW-21 on NASSCO leasehold has diesel 200 - 300 ppb.

Old Chevron fuel pier is dismantled. Operation stopped in the mid 1970's. Was located south of SW1.

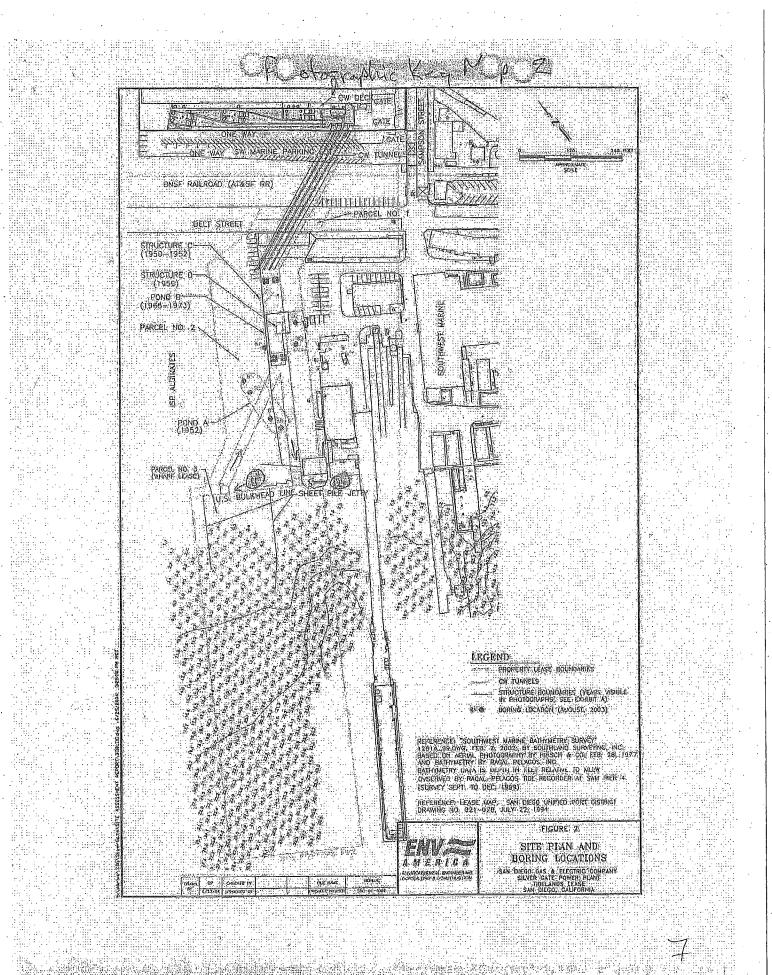
<u>Storm Drains</u>

Send a 13267 to the City to figure out if SW4 at SWM is a municipal outfall?


Get video footage and report from Shaun Halvax on discharge from SW4 drain (chevron activity).

Catch basin, located on the north side of Chevron, between ARCO and Chevron, has two pipes discharging into it. Large pipe is from Chevron. Smaller pipe inside catch basin is of unknown origin. Chevron says it's not theirs. Is it a City drain? Appears to connect to SW4 at SWM. There was no grate for the outfall. City storm drain discharges in this area too – north side of street, next to ARCO. It discharges into this larger drain near Chevron. Chevron put in riprap between the City's drain (with a grate) and the Chevron drain. 13267 should be sent to figure out RP for the small drain inside culvert.

Tour Participants Regional Board ADD NAMES SDGE South West Marine NASSCO Arco Chevron Levine - Fricke City of San Diego - Port

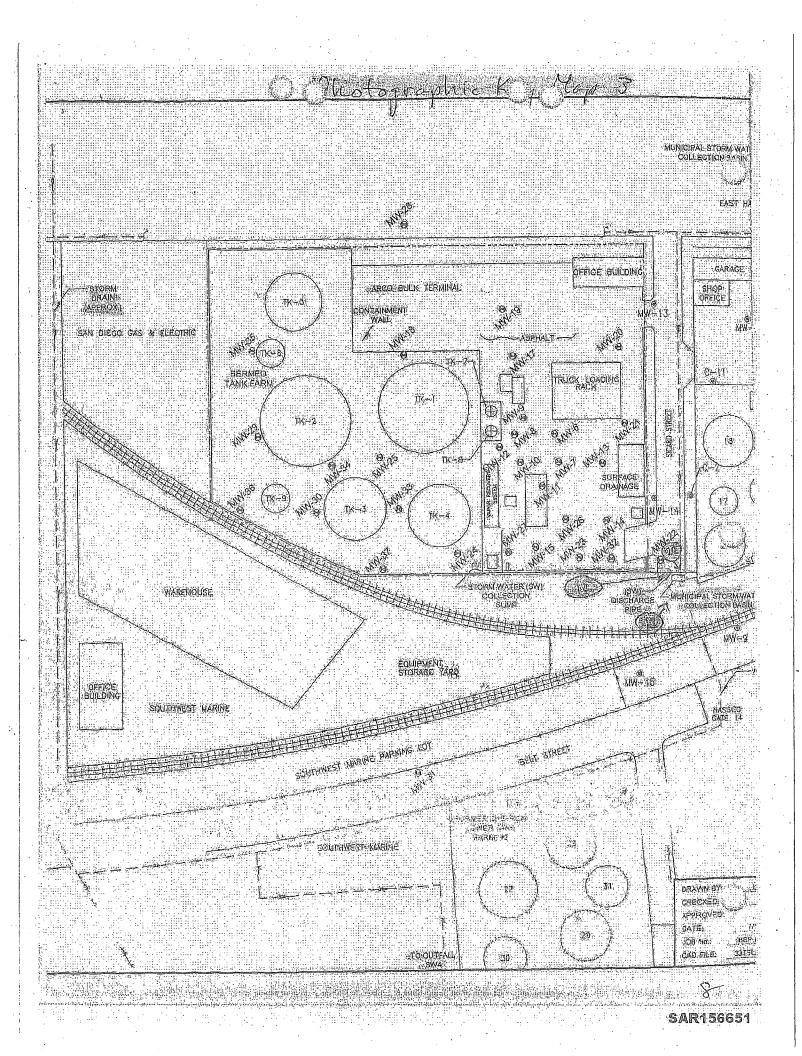

ey S

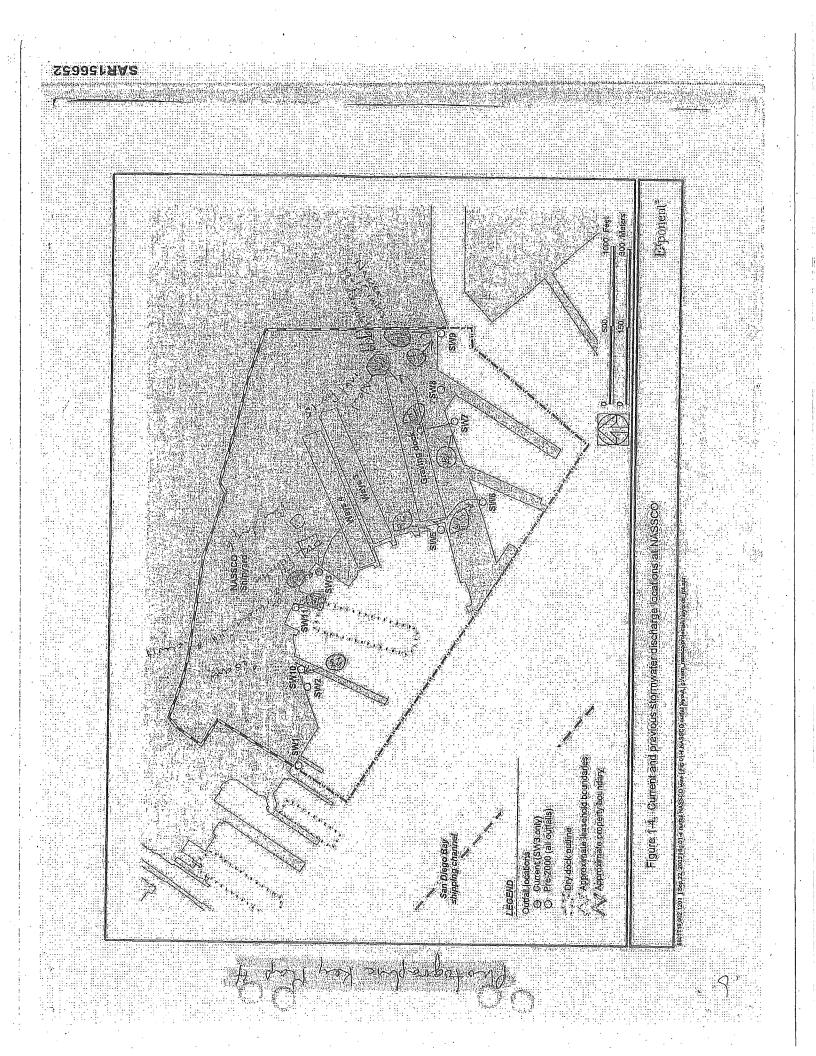
Ĩ,

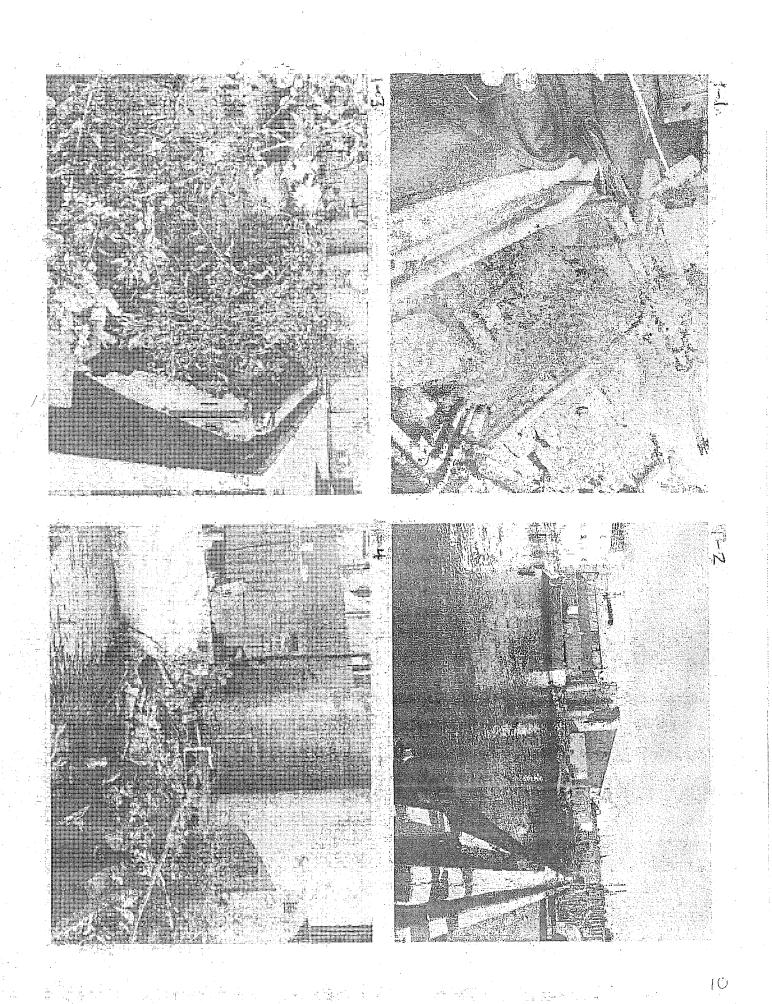
1

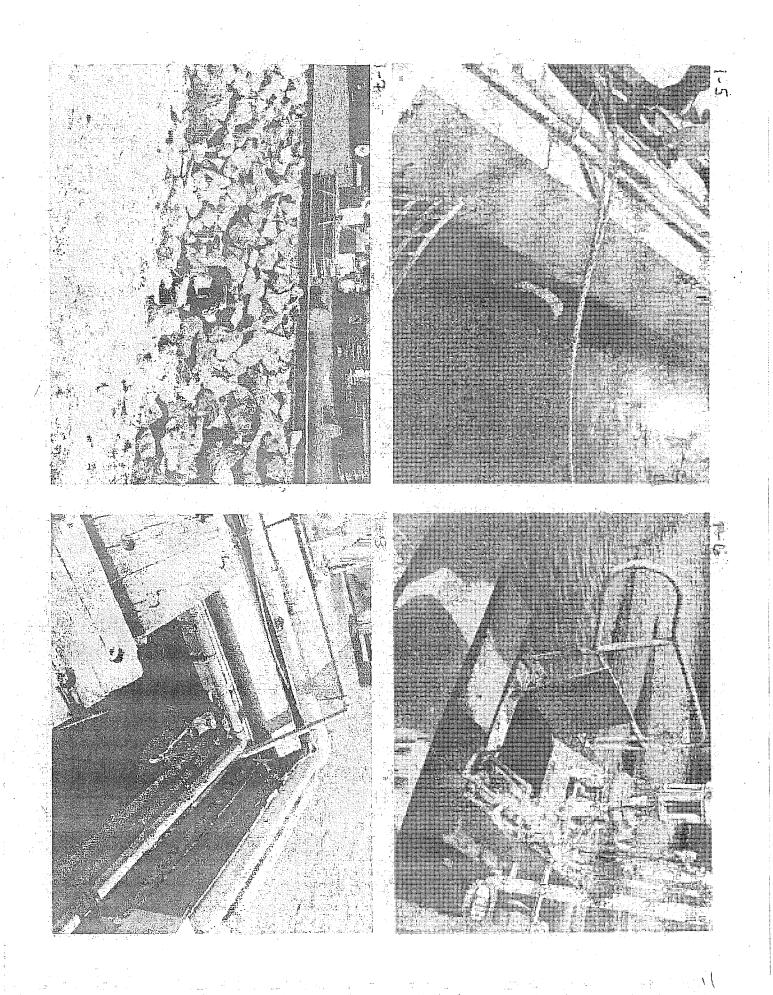
LEGEND

-Sind- - B offer A

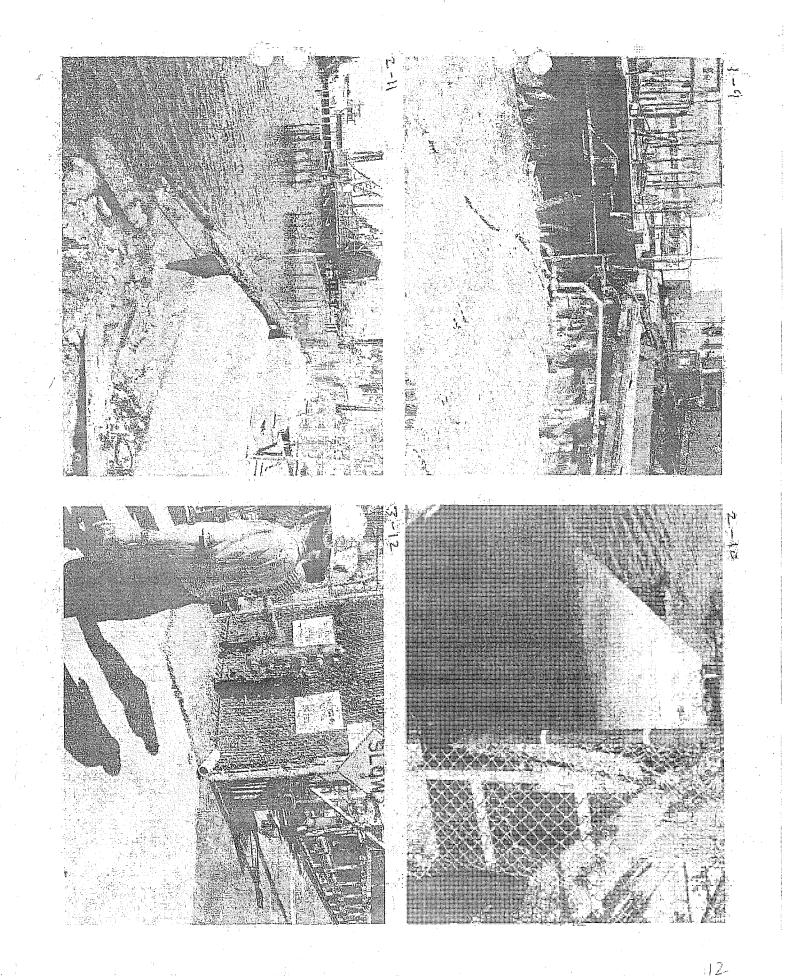


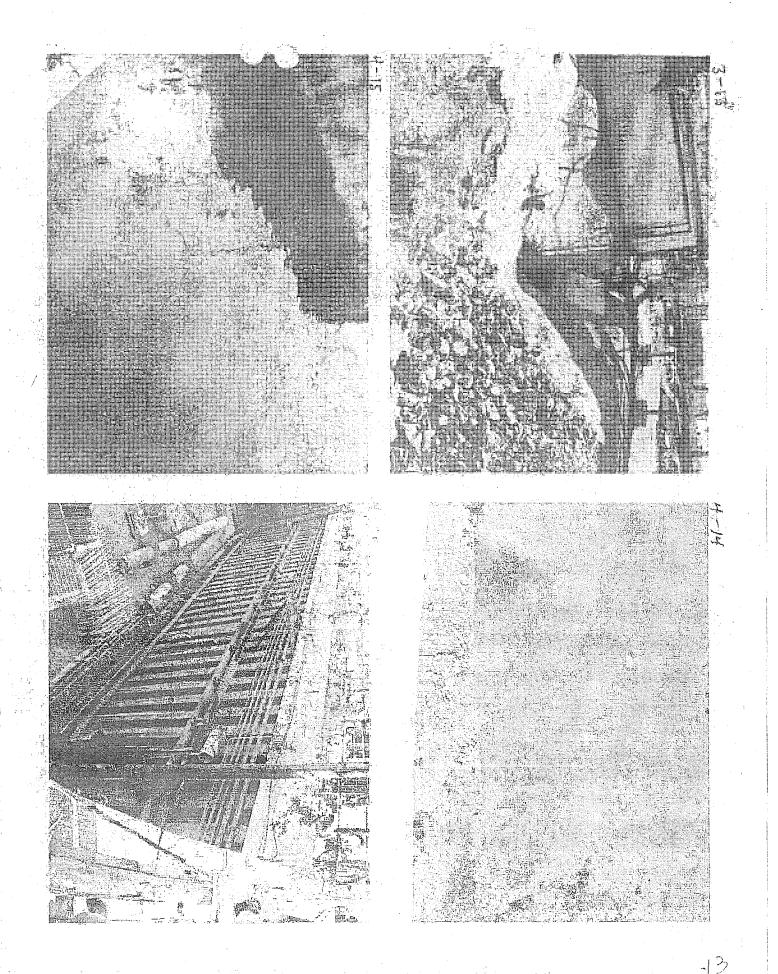

de charait

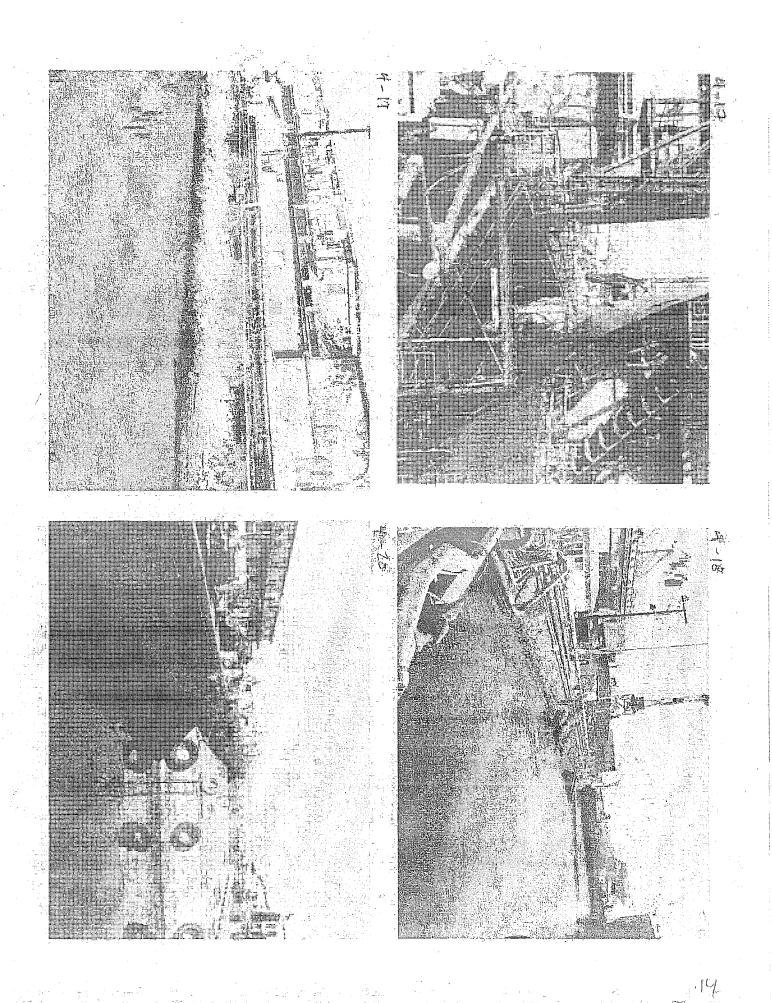

. Anna SAR156650

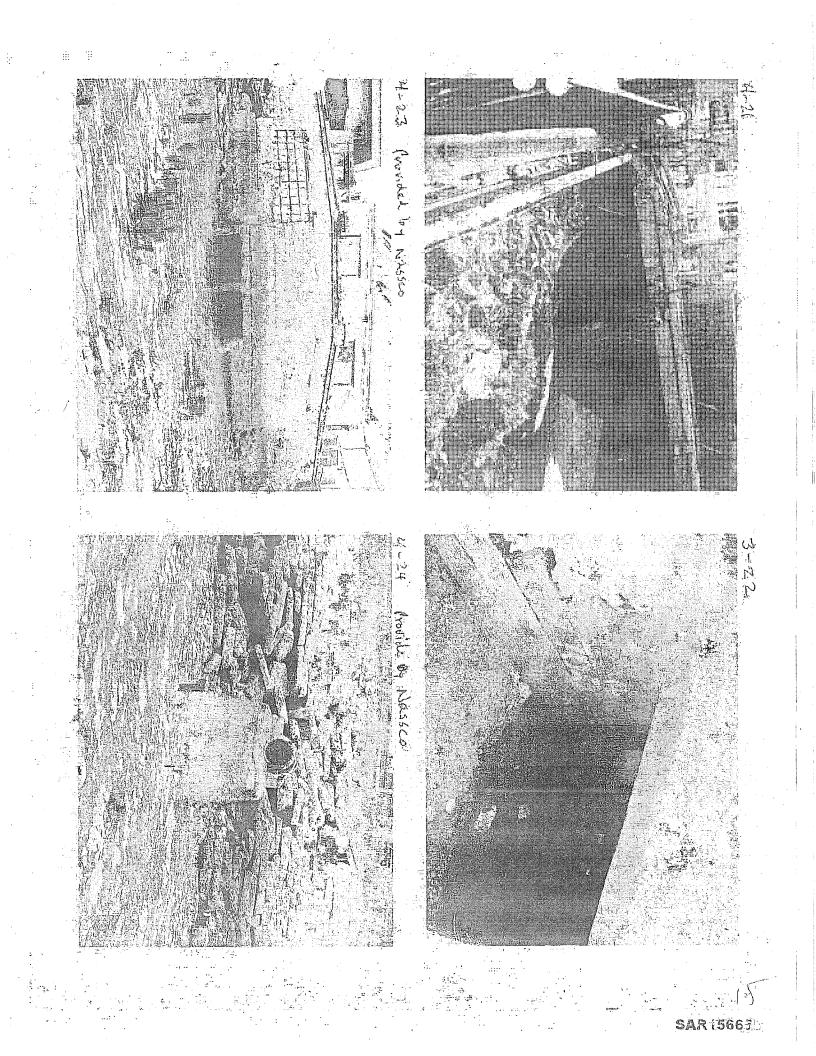

194

. 30






SAE156654


SAR156655

SAR156656

SAR156657

SITE INVESTIGATION AND CHARACTERIZATION REPORT FOR 401 WATER QUALITY CERTIFICATION

BAE SYSTEMS, INC. (FORMERLY SOUTHWEST MARINE, INC.) BULKHEAD EXTENSION AND YARD IMPROVEMENT PHASE 2 ACTIVITIES

Submitted to

California Regional Water Quality Control Board San Diego Region

File # 04C-097

Submitted by

BAE Systems, Inc. 2205 E. Belt Street San Diego, California 92113

Prepared by

Anchor Environmental, CA LP 3914 Murphy Canyon Road, Suite A242 San Diego, California 92123

Revised August 2005

SITE INVESTIGATION AND CHARACTERIZATION REPORT FOR 401 WATER QUALITY CERTIFICATION

BAE SYSTEMS, INC. (FORMERLY SOUTHWEST MARINE, INC.) BULKHEAD EXTENSION AND YARD IMPROVEMENT PHASE 2 ACTIVITIES

Submitted to

California Regional Water Quality Control Board San Diego Region

Submitted by

BAE Systems, Inc. 2205 E. Belt Street San Diego, California 92113

Prepared by

Anchor Environmental, CA LP 3914 Murphy Canyon Road, Suite A242 San Diego, California 92123

Revised August 2005

Table of Contents

運行会議

潮

観空臨

構成の構成

1 OVERVIEW	
1.1 Project Description and History	
1.2 Purpose of this Report	
1.3 Development and Sequence of Previous Submittals	
1.4 Structure of this Report	
2 SUMMARY OF PREVIOUSLY AVAILABLE INFORMATION	6
2.1 Site Layout and History	6
2.2 Geology and Groundwater	7
2.3 Waste Characterization of Existing Sediments	8
2.4 Data Gaps	9
3 SAMPLING PROGRAM	
3.1 Overview of Sampling Design	
3.2 Field Methodologies	
3.2.1 Sample Locations and Numbers	
3.2.2 Sample Collection	
3.2.3 Sample Processing and Record Keeping	15
3.2.4 Field Quality Control Sample Procedures	
3.2.5 Field Documentation and Chain-of-Custody Forms	
4 CHEMICAL ANALYSES	17
4.1 Soil/Sediment Chemistry	
4.2 Groundwater Chemistry	
4.3 Data Validation	
5 SITE CHARACTERIZATION	19
5.1 Geological Characterization	
5.2 Groundwater Flow Characterization	
5.3 Waste Constituent Characterization	20
5.4 Source Characterization	
5.5 Site Conceptual Model	23
6 FATE AND TRANSPORT	
6.1 Modeling Approach	25
6.1 Modeling Approach	25
 6.1 Modeling Approach 6.2 Parameters and Assumptions 6.3 Results 	
6.1 Modeling Approach6.2 Parameters and Assumptions	
 6.1 Modeling Approach 6.2 Parameters and Assumptions 6.3 Results 	

i

Site Investigation and Characterization Report BAE Systems Bulkhead Extension and Yard Improvement

August 2005 020193-01

Table of Contents

List of Tables

Table 1	Bulk Sediment Chemistry – Sediment Cores SW04 and SW08
Table 2	Chemical Concentrations Measured in 1998 Confirmatory Sampling Event
Table 3	Chemical Concentrations Measured in Well Point Samples
Table 4	Sediment Chemistry Results
Table 5	Groundwater Chemistry Results
Table 6	Summary of Measured Water Levels
Table 7	Summary of Modeling Parametric Analyses
Table 8	Fate and Transport Modeling Input Parameters
Table 9	Fate and Transport Modeling Results

List of Figures

Figure 1	Project Location Plan
Figure 2	Project Site Plan and Sampling and Well Locations
Figure 3	Cross-Section A-A' and Sequence of Planned Construction Events
Figure 4	Typical Pre-packed Well Screen
Figure 5	Low Tide Piezometric Surface - Shallow Monitoring Wells (Recent Sediments)
Figure 6	Low Tide Piezometric Surface – Deep Monitoring Wells (Bay Point Formation)
Figure 7	High Tide Piezometric Surface - Shallow Monitoring Wells (Recent Sediments)
Figure 8	High Tide Piezometric Surface – Deep Monitoring Wells (Bay Point Formation)
Figure 9	Distribution of Waste Constituents - Plan View
Figure 10	Distribution of Waste Constituents - Cross-Sectional View

ü

List of Appendices

Appendix A	Coring and Well Installation Logs
Appendix B	Data Validation Review Reports
Appendix C	Fate and Transport Modeling Results

Site Investigation and Characterization Report BAE Systems Bulkhead Extension and Yard Improvement

August 2005 020193-01

1 OVERVIEW

1.1 Project Description and History

BAE Systems, Inc. (formerly known as Southwest Marine, Inc.) is planning to reconfigure a portion of its San Diego Ship Repair yard, currently occupied by three abandoned marine railways, by constructing a new section of sheetpile bulkhead. Material will then be placed in the area behind the sheetpile bulkhead to create additional upland yard space for the facility. Figure 1 identifies the general location of the proposed bulkhead extension and yard improvement project (henceforth, project) relative to BAE Systems' shipyard and facilities. Figures 2 and 3 present detailed plan and cross-sectional views of the bulkhead improvement area and proposed construction activities. The project will be performed in two phases; the general sequence of construction is illustrated as a typical cross-section on Figure 2.

Phase 1 of the project will be accomplished by removing marine structures from the area and installing a new section of sheetpile bulkhead across the face of the abandoned railways. BAE Systems has received a 401 Water Quality Certification (WQC; File No.03C-065) from the California Regional Water Quality Control Board, San Diego Region (SDRWQCB) for Phase 1 activities. All other permits have been received, including an approved mitigation plan, a Phase 1 Water Quality Monitoring Plan (WQ Plan), and a provisional U.S. Army Corps of Engineers (Corps) permit.

After completion of Phase 1, Phase 2 construction activities will commence, involving removal of selected sediments from the project footprint, and backfilling within-the project site with clean material. First, a wedge of impacted sediments immediately inside the new bulkhead alignment will be removed (Figure 3), along with any near-surface sediments that have chemical concentrations exceeding the criteria established in California Code of Regulations (CCR) section 66261.24, in Title 22, Division 4.5, Chapter 11, Article 3). Second, the excavated area and the remainder of the bulkhead-enclosed area will be backfilled with imported, clean, granular fill to the elevation of the surrounding grade (approximately +12 feet Mean Lower Low Water [MLLW]). After adequate settlement, the area will be paved to support yard operations.

1

Site Investigation and Characterization Report BAE Systems Bulkhead Extension and Yard Improvement

August 2005 020193-01

The provisional Corps permit for the overall project is contingent on receipt of the 401 WQC for Phase 2 construction activities, so receipt of the Phase 2 WQC, and subsequently, the Corps permit, will allow construction to commence. In support of obtaining a 401 WQC for Phase 2 construction activities, BAE Systems met with the SDRWQCB on November 12, 2004 to finalize data collection and evaluation requirements. A previous version of this Site Investigation and Characterization Report (henceforth, "Report") was submitted in January 2005, presentings the required information, evaluations, and conclusions. Following review of the January 2005 Report by the SDRWQCB and subsequent discussions with BAE Systems on August 5, 2005, the Report has been revised to be fully consistent with the SDRWQCB's expectations and requirements regarding removal of excavated sediments from the project area.

1.2 Purpose of this Report

This Report was prepared for the SDRWQCB to support BAE Systems' application for a 401 WQC from the SDRWQCB for Phase 2 construction activities. This Report provides information specifically requested by the SDRWQCB in their evaluation of the proposed project, as documented in a letter dated September 14, 2004, as discussed during a meeting on November 12, 2004, and in subsequent communications on August 5, 2005, which followed submittal of the original version of this Report in January 2005. This Report supplements previous submittals to the SDRWQCB, as indicated below.

1.3 Development and Sequence of Previous Submittals

In August 2004, BAE Systems submitted to the SDRWQCB a Data Evaluation Report (DER) for Phase 2 Activities (Anchor 2004a), that provided information supporting issuance of a 401 WQC and Waste Discharge Requirements (WDR) for Phase 2 of the work. Specifically, the DER included a detailed evaluation of the long-term potential for impacts to the surface waters of San Diego Bay associated with the placement of imported fill over impacted sediments behind the sheetpile wall. The DER documented the results of analytical testing of two groundwater samples obtained from chemically impacted sediments in the project area, and presented modeling results of tidally influenced groundwater flow and resulting potential water quality impacts from the project. The DER also included a revised WQ Plan to address both Phase 1 and Phase 2 activities.

2

Site Investigation and Characterization Report BAE Systems Bulkhead Extension and Yard Improvement August 2005 020193-01

After reviewing the DER, the SDRWQCB issued a letter dated September 14, 2004, in which the SDRWQCB requested additional site investigation and characterization activities to better define the lateral and vertical extent of waste impacts at the site, and further evaluation of mechanisms of waste transport through soil and groundwater. This letter also required BAE Systems to submit the proposed methods and approach for this investigation in a Site Investigation Workplan (henceforth, "Workplan") prior to initiating field activities. BAE Systems prepared and submitted the requested Workplan in November 2004.

BAE Systems subsequently met with SDRWQCB staff on November 12, 2004 to discuss comments on the Workplan. At this meeting, the SDRWQCB requested the following modifications to the Workplan, necessary for BAE Systems to receive a 401 WQC:

- Additional soil sampling from the underlying Bay Point Formation from each planned sediment core sample location
- Subdivision of sediment cores into a maximum of 2-foot intervals for chemical analyses, rather than compositing all sediment into a single sample from each core

The requested changes were made to the Workplan, and BAE Systems carried out the field investigation program in late November and early December of 2004. The September 14, 2004 letter from the SDRWQCB required that the results of the investigation be documented in a Site Investigation and Characterization Report. (The field investigation program and related chemical analyses are described in further detail in Section 3 of this Report.) This Report was originally submitted to the SDRWQCB in January of 2005, fulfillings the SDRWQCB's requests, and prepared in full accordance with the requirements documented in the September 14 letter. Specifically, the Report identified the nature and extent of existing site sediments, and evaluated the proposed project's overall protectiveness of site surface water and groundwater.

After the SDRWQCB reviewed the January 2005 Report, they prepared a letter to BAE Systems, dated April 1, 2005, defining the proposed project as a discharge of waste to land. This would put the project under the purview of section 13260 of the California Water Code, requiring submittal of a Report of Waste Discharge and application for Waste Discharge Requirements.

3

Site Investigation and Characterization Report BAE Systems Bulkhead Extension and Yard Improvement

August 2005 020193-01

Subsequent discussions between BAE Systems and the SDRWQCB on August 5, 2005, resulted in the understanding that the project would not be subject to these requirements if the following actions were accomplished before filling the project area:

- All sediments excavated out from behind the bulkhead (creating the clean sand buffer described in Section 5.5) to be disposed off-site.
- Any sediments containing chemical concentrations in excess of levels established in CCR section 66261.24 (Title 22, Division 4.5, Chapter 11, Article 3) to be excavated and disposed off-site, subject to confirmatory sampling.

This Report is a modified version of the January 2005 Report, incorporating the above requirements.

1.4 Structure of this Report

This Report addresses the study objectives and concerns documented in the SDRWQCB letter dated September 14, 2004. The study objectives include the following specific elements, listed with the corresponding section where they are addressed in this Report:

- Site Conceptual Model updated based on the results of the investigation (documented in Section 5.5)
- Source Characterization results of an investigation of all potential sources of waste constituent discharges to the soil, groundwater, and stormwater conveyance systems, based on historical records of operations, site reconnaissance, and previous and current studies (documented in Section 5.4)
- Geologic Characterization subsurface materials at the site, including the hydrogeologic characteristics and identification of geologic features that may affect groundwater flow and contaminant migration, are presented (documented in Section 5.1)
- Groundwater Flow Characterization the magnitude and direction of groundwater flow at the site, in both the horizontal and vertical directions, for all water bearing units potentially affected by the waste constituents (documented in Section 5.2)
- Waste Constituent Characterization characterization of the lateral and vertical extent of waste constituents in soil, sediment, and groundwater relative to existing "background" conditions (documented in Section 5.3, and in Tables 1 through 5).

4

Site Investigation and Characterization Report BAE Systems Bulkhead Extension and Yard Improvement

August 2005 020193-01

- Fate and Transport assessment of the movements, dispositions, and transformations of waste constituents within and between environmental media, such as soil, surface water, groundwater, and biota (documented in Section 6, and in Tables 7 through 9)
- Description of Field Methodologies used for the investigation and characterization study (documented in Section 3.2)
- Chemical Analyses description of the analytical methods used for each environmental medium, adequate to identify the full range of waste constituents that may occur (documented in Section 4)
- Sample Locations and Numbers the locations, type, and number of samples identified and shown on a site map and cross-sections; sufficient to identify the nature of waste constituent sources, to define the distribution of waste constituents in the subsurface, and to provide data for fate and transport evaluation, risk assessment, remedy selection, and remedial design, if necessary (documented in Section 3.1 and 3.2.1)

5

Site Investigation and Characterization Report BAE Systems Bulkhead Extension and Yard Improvement

August 2005 020193-01

2 SUMMARY OF PREVIOUSLY AVAILABLE INFORMATION

2.1 Site Layout and History

BAE Systems' San Diego shipyard is located on the eastern shore of San Diego Bay, approximately 1 mile south of the Coronado Bridge. The shipyard has been leased by BAE Systems (formerly Southwest Marine, Inc.) from the San Diego Unified Port District since 1979, during which time BAE Systems has provided ship repair, alteration, and overhaul services for various commercial and government customers (the Navy being a prominent example).

The bulkhead extension project area under consideration will be constructed across the mouth of an intertidal embayment around the landward end of Pier 1. The embayments are occupied by abandoned shipway marine railways: Ways 1 on the northwest side of Pier 1, and Ways 2 and 3 on the southeast side (see Figure 2).

A history of the BAE Systems property area is summarized and documented in Woodward-Clyde (1995), E*ponent (2003), and the San Diego Unified Port District (2004). The subject site has been used for industrial operations since the early 20th century, when the current shoreline was created by filling between 1906 and 1914. The property area was subsequently used by San Diego Marine Construction Corporation for marine vessel construction, repair, and maintenance. Historical evidence (San Diego Unified Port District 2004) indicates that marine railways were present in the project area since approximately the beginning of San Diego Marine Construction Corporation's use of the site. From this time through to the mid-1970s, sandblast and paint wastes were discharged directly to the Bay from upland and drydock areas.

Between 1952 and 1974, a pair of wastewater settling ponds were present on the adjacent San Diego Gas and Electric (SDG&E) property for separation of oil and water from the SDG&E power plant. These ponds may have contributed machine oils, hydraulic fluid, and possibly polychlorinated biphenyls (PCBs) to the subsurface (San Diego Unified Port District 2004). The approximate locations and extents of these previously existing settling ponds are shown on Figure 2.

6

Site Investigation and Characterization Report BAE Systems Bulkhead Extension and Yard Improvement

During the 1980s and 1990s, the three marine railways in the project area generally accommodated about one to seven vessels annually for repair and maintenance, with abrasive sandblasting activities common (SWM 2004). The railways were abandoned in 1992 (Ways 1) and 1997 (Ways 2 and 3). Comprehensive pollution prevention programs and best management practices have been in place since the mid-1980s, preventing releases of contaminants from construction activities or from stormwater runoff (E*ponent 2003).

2.2 Geology and Groundwater

Prior to the field investigation documented in this Report, the main source of information on sediment conditions at the site was the result of a detailed site sediment investigation conducted by the former Southwest Marine and the adjoining NASSCO shipyard in 2002 and 2003 to determine the existence and extent of potential chemical contamination associated with historical operations at the shipyards. This investigation, documented by E^xponent (2003) in the report entitled, "NASSCO and Southwest Marine Detailed Sediment Investigation," was conducted in response to SDRWQCB Resolution Nos. 2001-02 and 2001-03 and subsequent Water Code Section 13267 letters issued to the shipyards. The investigation involved a series of surface and core samples taken from site sediments throughout both shipyards' leasehold areas and beyond. Figures 1 and 2 identify the locations of cores and sediment surface samples taken during the 2002/2003 investigation.

Information on subsurface geology and groundwater characteristics was provided by the site sediment investigation prepared by E^{*}ponent (2003) described above, and by a series of soil probes and borings advanced for geotechnical design of the bulkhead (Christian-Wheeler 2002).

These data sources indicate that the site is underlain by the following sequence of soil/sediment types:

Upland areas are underlain by fill materials originally placed when the site land was constructed in the early 20th century. More recent sand fill areas within landward portions of the original railway embayment (Figure 2) were created during a 1998 remedial action undertaken by the former Southwest Marine under SDRWQCB oversight.

7

Site Investigation and Characterization Report BAE Systems Bulkhead Extension and Yard Improvement

- Three to 11 feet of soft, geologically recent, surface sediments were observed throughout the offshore areas by E^xponent (2003) and by Christian-Wheeler (2002). These surface sediments consist of interbedded silts, clayey silts, and sandy silts, and contain the elevated chemical concentrations observed in the study.
- The offshore surface sediments and upland fill materials are underlain by the firmer Bay Point Formation, which is Quaternary in age and consists of intermixed, medium dense to dense sands and silty sands, and stiff to hard silty to sandy clays.

Groundwater at the site is tidally influenced, responding to the tidal action of San Diego Bay. The ground surface elevation at the site is approximately 12 feet MLLW, while tidal levels fluctuate roughly between elevations -1 and 7 feet MLLW. Borings conducted by Christian-Wheeler (2002) indicated groundwater at depths of 8.5 to 10 feet below ground surface (bgs) in upland areas. Work conducted by ENV America on the neighboring SDG&E parcel indicated groundwater at approximately 15 feet bgs in upland areas (ENV America 2002).

2.3 Waste Characterization of Existing Sediments

Sediments along and in the vicinity of the planned bulkhead are best represented by cores SW04 and SW08, which represent sediments in close proximity to the alignment of the bulkhead (Figure 2). Sediment chemistry from various depth intervals in these cores are summarized in Table 1. Impacted sediments were identified in both cores to a depth of about 4 feet (although core SW04 could not be penetrated beyond this depth because refusal was reached, so deeper materials could not be sampled at this location).

The primary constituents of concern (COCs) in the impacted sediments include elevated metals, PCBs, and polycyclic aromatic hydrocarbons (PAHs). It is likely that these chemicals exist as sorbed phases on clays and carbon-rich particulate matter in the fine-grained sediments, thus limiting their bioavailability. This is supported by bioassay testing and microbial analysis by E^xponent (2003), which indicate that the sediments do not exhibit significant toxicity.

In 1998, under the SDRWQCB's oversight, the former- Southwest Marine dredged chemically impacted sediments from the landward (northeastern) portions of this

8

Site Investigation and Characterization Report BAE Systems Bulkhead Extension and Yard Improvement

August 2005 020193-01

embayment, and replaced the dredged material with clean sand fill. Pursuant to Order No. 98-38, the action was required to remove sediments to depths sufficient to reach mandated sediment cleanup levels for copper (810 mg/kg), lead (231 mg/kg), mercury (4.2 mg/kg), zinc (820 mg/kg), and PCBs (0.95 mg/kg). Figure 2 identifies the areas where sediments were removed and clean sand fill placed (shown on the figure as "Sand Fill Areas"), and Figure 3 shows a typical section through the sand fill in cross-section. Confirmation grab samples of surface sediments were obtained at regularly spaced intervals after dredging these areas to confirm that all sediments exceeding the relevant cleanup standards were removed. The locations of the confirmation surface samples are shown on Figure 2. The analytical results from these samples are summarized in Table 2, and demonstrate that sediments remaining below the sand fill have bulk concentrations well below the cleanup levels mandated by Order 98-38 (SWM 1998). Table 2 also compares the confirmation sediment concentrations to reference background concentration levels (E^xponent 2002; see further discussion of background concentrations in Section 4.1).

As part of BAE Systems' DER for Phase 2 activities (Anchor 2004a), a pair of temporary well points were installed within the upper 3 feet of site sediments near the alignment of the planned bulkhead wall. Porewater samples were obtained from each well point and analyzed for metals, PAHs, and PCBs. The locations of these two well point samples are shown on Figure 2, and the chemistry results are documented in Table 3.

The well point samples detected dissolved metals (arsenic, cadmium, chromium, lead, nickel, selenium, silver, and zinc) and PCBs. PAHs were not detected in the well point samples. These concentrations were used to predict porewater concentrations entering surface waters from the completed bulkhead project, accounting for tidal mixing behind the bulkhead wall. Results of this evaluation were presented in the previous DER and indicate that porewater expressed from the project footprint will have chemical concentrations below chronic water quality criteria upon entry into site surface waters, and are not expected to impact ambient surface water quality.

2.4 Data Gaps

This previously available site information has been supplemented by the current site investigation and characterization program requested by the SDRWQCB and presented in

9

Site Investigation and Characterization Report BAE Systems Bulkhead Extension and Yard Improvement

this Report. At the request of the SDRWQCB, the site investigation has been designed to address the following data gaps:

1. Sec. 1. Sec

構成の構

L.

病性の後

権があ

- Characterize lateral and horizontal extent of waste constituents within and below the chemically impacted surface sediments.
- Evaluate the presence and extent (if any) of chemical impacts to upland fill soils outside the perimeter of the project area and in the underlying Bay Point Formation.
- Document the groundwater flow regime and gradient in the immediate project area and adjacent areas.

Site Investigation and Characterization Report BAE Systems Bulkhead Extension and Yard Improvement 10

August 2005 020193-01

3 SAMPLING PROGRAM

3.1 Overview of Sampling Design

This site investigation provides additional vertical and lateral characterization of COCs in the soil, sediment, and groundwater at the BAE Systems bulkhead extension/yard improvement area. All field and laboratory work has been performed in accordance with the methods and procedures described in the Workplan and accompanying Quality Assurance Project Plan (QAPP; Anchor 2004b), while incorporating additional requirements requested by the SDRWQCB during a meeting with BAE Systems representatives on November 12, 2004.

Continuous core samples were collected at three stations (labeled 1, 2, and 3 on Figure 2) to sample the upland fill and underlying Bay Point Formation. Composite samples from the Bay Point Formation at Stations 1 and 2 were analyzed for total organic carbon (TOC), metals, PCBs, and PAHs (Table 4). Samples from distinct geologic layers within the overlying material were also collected and archived for future analysis, if needed. At Station 3, samples were also collected from distinct geologic layers within the upland fill and the Bay Point Formation. The Bay Point Formation sample from Station 3 was archived and the upland fill samples were analyzed for TOC, metals, PCBs, and PAHs (Table 3).

Two additional core samples were collected near the previous well point sample locations (July 2004), and are labeled Stations 4 and 5 on Figure 2. Composite samples were collected from distinct geologic layers (determined visually), or every 2 feet if the material appeared homogeneous, for the sediment overlying the Bay Point Formation. These samples were analyzed for metals, PCBs, and PAHs. In addition, the upper 2 feet of the Bay Point Formation was also collected for sediment characterization analyses at Stations 4 and 5.

To determine the spatial extent of the chemical concentrations and the hydrologic characteristics of the site groundwater regime, a pair of nested temporary monitoring wells (piezometers) were installed at sample Stations 1, 2, and 3 (Figure 2). Groundwater was sampled from both the Bay Point Formation (well number 1 in each pair) and from the overlying upland fill and surface sediments (well number 2 in each pair). Each groundwater sample was analyzed for metals, PCBs, and PAHs (Table 5).

11

Site Investigation and Characterization Report BAE Systems Bulkhead Extension and Yard Improvement

Logs of all cores and diagrams depicting the monitoring well installations are provided in Appendix A. Note that the logs indicate "gaps" for some depth intervals, resulting from the fact that incomplete sediment recovery was obtained for some of the cores.

Groundwater elevations were also measured during ebb, low, flood, and high tidal conditions to document hydrologic gradients for the upland fill, surface sediments, and underlying Bay Point Formation.

3.2 Field Methodologies

Detailed methods for sample collection, handling, and shipping are described in the Workplan (Anchor 2004b), and summarized in this section. Procedures for the following tasks are included:

- Locations of sampling stations
- Collecting and compositing sediment core samples
- Collecting groundwater samples and groundwater elevation measurements
- Sample packaging, handling, and shipping procedures
- Completing standard forms to document the collection effort and field conditions

3.2.1 Sample Locations and Numbers

Five sample locations are shown on Figure 2. Monitoring well and core locations were assigned designations corresponding to their station number (i.e., monitoring wells MW-1.1 and MW-1.2 at Station 1; sediment core SW-4 at Station 4, etc). In the monitoring well designations, the first number indicates the sample station and the second number identifies whether it is the deeper well (1) or the shallower well (2).

At three stations (Stations 1, 2, and 3), a continuous core sample was taken and two monitoring wells installed. Stations 1 and 2 (continuous cores SW-1 and SW-2 and wells MW-1.1, MW-1.2, MW-2.1, and MW-2.2) are located in the sand fill areas near the railways' shoreward terminus where impacted sediments were previously removed. Station 3 (continuous core SW-3 and wells MW-3.1 and MW-3.2) is located in the paved uplands area immediately east of the project area. Stations 4 and 5 (cores only; labeled SW-4 and SW-5) were co-located as close as possible to previous well point stations (WP-1 and WP-2) sampled in July 2004. Station 4 (core SW-4) is within surface

12

Site Investigation and Characterization Report BAE Systems Bulkhead Extension and Yard Improvement

sediments between Marine Railway Number 2 and Number 3. Station 5 (core SW-5) is located to the east of Pier 1 within the existing ship cradles.

Station locations were chosen relative to existing conditions in the field and as close as possible to locations described in the Workplan. Stations 1 and 2 were located by measuring the distance across the sand fill areas and placing the stations equidistant from either side of the enclosed area. Station 3 was moved slightly upland from the original location to avoid utility lines underneath the pavement. Stations 4 and 5 were placed as close as possible to the previous well point stations described above. Due to restrictions with the coring equipment, Station 4 was relocated between marine railways 2 and 3 at the water's edge at low tide, moving the original location slightly shoreward. Station 5, also restricted due to the coring equipment, was relocated slightly seaward of the original location to provide a safe and stable platform for the equipment and field crew. All of the station locations were measured in the field relative to existing landmarks, and are shown to scale on Figure 2.

3.2.2 Sample Collection

3.2.2.1 Direct-Push Continuous Cores

Continuous soil cores were collected from each station using a direct-push sampling rig, to a target depth of at least 4 feet into the Bay Point Formation or until refusal. Five foot acetate core liners were decontaminated immediately prior to use following the procedures outlined in the QAPP (Anchor 2004b). Care was taken during sampling to avoid contact of the sample tube with potentially contaminated surfaces. Push core equipment (i.e., sample tubes and extension rods) was steam cleaned prior to use and between stations.

Each core was split open vertically, photographed, and geologically characterized into a core log. In cases of incomplete recovery, the top of the recovered sediment was assumed to correlate to the top of the cored interval. The core was sectioned into two distinct geologic layers, the upland fill or surface sediment layer, and the underlying Bay Point Formation. At sampling Stations 1 and 2, a composite sample was collected from the Bay Point Formation layer and analyzed for TOC, trace metals, PCBs, and PAHs. Samples from the overlying material were archived.

Site Investigation and Characterization Report BAE Systems Bulkhead Extension and Yard Improvement 13

August 2005 020193-01

At Station 3, two composite samples were collected that represented distinct geologic layers of the upland fill material. A sample was also collected from the underlying Bay Point Formation and archived.

At Stations 4 and 5, composite samples were collected from four distinct layers that were visually determined from the overlying sediment along with a composite sample from the upper 2 feet of the Bay Point Formation. Each composite sample was split into 50-gram glass containers for laboratory analysis of TOC, trace metals, PCBs, and PAHs.

At all stations, sampling information, including sample identifier, sample location, date and time of sampling, requested analysis, and sampler name, was recorded on a chain-of-custody form and on the sampling jar label. Following collection, samples were placed immediately on ice in a cooler and taken to Federal Express for delivery to CRG Laboratory the next business day by 10:30 a.m. Chain-of-custody forms were filled out as the samples were placed in the coolers and were kept with the samples in Ziplock bags at all times. The coolers were tracked the next business day using the Federal Express tracking numbers to ensure arrival at the lab.

3.2.2.2 Groundwater

Upon completion of the continuous-push cores at Stations 1, 2, and 3, two temporary monitoring wells were installed at each station. One well was installed into the same location the core sample was taken from and the other was installed approximately 1 meter from the first. Both were installed using direct-push methods. The monitoring wells consisted of 0.75-inch pre-packed well screens as per the typical detail shown on Figure 4. One screen was set approximately 1 foot below the upper boundary of the Bay Point Formation materials, and the other was placed in the overlying fill material just above the underlying Bay Point Formation materials. This process was used to determine vertical and horizontal groundwater gradients in each material type.

Groundwater elevations were measured in each monitoring well during ebb, low, flood, and high tidal conditions to characterize hydrologic gradients for the upland

Site Investigation and Characterization Report BAE Systems Bulkhead Extension and Yard Improvement 14

fill, surface sediments, and underlying Bay Point Formation. Groundwater elevations were measured using a decontaminated, electronic well probe and tape measure lowered into each well and recorded on a data sheet. The maximum tidal exchange in San Diego Bay for the day of the water level monitoring (December 6, 2004) was 3.2 feet.

Groundwater samples were collected from each well and analyzed for salinity, total dissolved solids (TDS), PAHs, dissolved metals, and PCBs. Groundwater samples were collected 24 hours after each of the wells were installed using a peristaltic pump with disposable tubing. To ensure maximum potential for groundwater inclusion, all sampling was conducted as close to low tide as possible, particularly in the wells located near the shore. Wells were purged of at least three well volumes of groundwater prior to collecting samples, which were collected by discharging water from the peristaltic pump directly into the laboratory-provided sample jars. All samples collected for dissolved metals analyses were filtered with a 0.45 µm in-line filter prior to placement in the sampling bottles. Sampling information, including sample identifier, sample location, date and time of sampling, requested analysis, and sampler name, was recorded on a chain-of-custody form and on the sampling jar label. Following collection, samples were placed immediately in a cooler on ice and delivered to the laboratory as described above.

3.2.3 Sample Processing and Record Keeping

All sample handling, labeling, packaging, documentation, chain-of-custody forms, and shipping were accomplished and recorded in full accordance with the procedures detailed in the Workplan and associated QAPP (Anchor 2004b). Sample station duplicates were obtained and analyzed as described in the QAPP to ensure project quality control objectives were met.

Results of chemical analyses, and validation of the chemistry data, are presented in the next section.

Site Investigation and Characterization Report BAE Systems Bulkhead Extension and Yard Improvement 15

August 2005 020193-01

3.2.4 Field Quality Control Sample Procedures

The following quality control samples were collected in the field and analyzed in the testing laboratory with the other samples:

 Station Location Duplicates – Field duplicate samples are collected to assess the variability of chemical concentrations at the station location and provide a measure of the total analytical bias (field and laboratory variance). One field duplicate was collected from core SW-5 at depth interval 5 feet to 6 feet 5 inches and monitoring well MW 2.2, which was located in the overlying surface sediments.

3.2.5 Field Documentation and Chain-of-Custody Forms

A field log book was maintained throughout the study to document daily field activities and field observations. Core logs were produced for each continuous-push core collected. Photo documentation of each core was collected and identified in the field book with sample identification and photograph number. Repositioned station locations were noted during field sampling to update the station location map after sampling was completed.

Sample labels were completed for each sample, and included station identification, date, and time, sampling personnel, preservative, and analysis required. All labels were completed using indelible ink and covered with clear tape to prevent smearing.

Chain-of-custody forms were completed at the end of each sampling day to trace samples from collection to final disposition. The chain-of-custody form included sample identification, collection date and time, matrix, analysis requested, number of containers, and preservative. Chain-of-custody forms were completed in triplicate with one copy retained in the field notebook.

16

Site Investigation and Characterization Report BAE Systems Bulkhead Extension and Yard Improvement

CHEMICAL ANALYSES

4.1 Soil/Sediment Chemistry

A total of 14 soil/sediment samples were analyzed for chemical constituents from the five sampling stations (Figure 2), and represent upland fill, overlying sediment, and Bay Point Formation material. Table 4 presents the sediment chemistry results for metals, PAHs, and PCBs measured in each of the soil/sediment samples.

For comparison purposes, and to comply with SDRWQCB guidance, chemical concentrations measured in this study have been compared to "background" chemical concentrations. In this Report, reference pool sediment concentrations as determined by E*ponent in their 2003 study are considered to be reasonably representative of "background" conditions, and are included in the first column of Table 4 for comparison purposes.

Measured chemical concentrations have also been compared against State of California Total Threshold Limit Concentration (TTLC) bulk chemistry values, which, if exceeded, are one basis by which materials qualify as California hazardous waste (per CCR 66261.24, in Title 22, Division 4.5, Chapter 11, Article 3). The applicable TTLC values are included in the second column of Table 4.

Metal concentrations measured in the upland fill material at core SW-3 and in the Bay Point Formation material in cores 1 and 2 were all below background concentrations (Table 4). Metal concentrations were consistently measured above background concentrations in the upper surface sediment layers in cores SW-4 and SW-5, but were below detection limits in underlying sediment and Bay Point Formation samples. Elevated metal concentrations were identified to a depth of 5 feet 9 inches in core SW-4, and to 2 feet in core SW-5.

Elevated concentrations were also noted in these near-surface (upper two feet) samples for copper, lead, and zinc, with maximum concentrations of 6,950 mg/kg, 955 mg/kg, and 6,630 mg/kg, respectively. In these near-surface samples, measured concentrations of copper exceeded TTLC criteria in cores SW-4 and SW-5, as did the measured concentration of zinc in core SW-4. No exceedances of TTLC criteria were encountered for any other analytes, nor in any other samples.

17

Site Investigation and Characterization Report BAE Systems Bulkhead Extension and Yard Improvement

August 2005 020193-01

Total PCB concentrations were detected above reference concentrations in the same surface sediment layers containing elevated metals concentrations. The maximum total PCB concentration measured was 5,198 μ g/kg in core SW-4, between depths of 2 feet 1 inch, and 3 feet 6 inches; this is above the reference concentration of 170 μ g/kg. Elevated total PCB concentrations were identified to the same depths in these cores as for metals (to 5 feet 9 inches in core SW-4, and to 2 feet in core SW-5). PCB concentrations did not exceed TTLC criteria (50 mg/kg).

PAHs were also detected in the same samples where metals and total PCBs were elevated (Table 4); however, reference values do not exist for PAHs, so no comparison is provided.

4.2 Groundwater Chemistry

Three pairs of temporary monitoring wells, at Stations 1, 2, and 3, were sampled for groundwater within the project area (Figure 2). The results of the groundwater chemistry analyses are shown in Table 5 along with California Toxic Rule (CTR) water quality criteria for comparison. These results show that low concentrations of dissolved metals were detected in all six wells. However, only nickel exceeded the CTR criteria in well MW-2.1 (screened in the Bay Point Formation) and copper and nickel exceeded the criteria in well MW-3.1 (also screened in the Bay Point Formation).

All other detected concentrations were below the CTR criteria. Low concentrations of some PAHs were also reported in all six wells, however, several were below the analytical detection limits. PCBs were detected only in well MW-1.1 (screened in the Bay Point Formation), where the total PCB concentration exceeded the CTR criteria of 0.03 µg/L (see Table 5).

4.3 Data Validation

Data validation and review were performed on the seven water samples and 14 sediment samples submitted to Anchor by CRG Marine Laboratories of Torrance, California. The two matrices are reported in separate data validation reports, attached to this Report in Appendix B.

Site Investigation and Characterization Report BAE Systems Bulkhead Extension and Yard Improvement 18 August 2005 020193-01

5 SITE CHARACTERIZATION

A site conceptual model is a representation of the site's potential chemical sources, eaffected media, potential pathways to exposure, and receptors.

5.1 Geological Characterization

Figure 2 depicts a typical cross-section through the site and the geological layers observed in the field investigation. Geologic logs from the soil borings taken as part of this investigation are shown in Appendix A. These logs confirm earlier conclusions about the geology of the site discussed in Section 2.2. The following details specific to the proposed project area supplement and/or verify the information summarized in Section 2.2:

- Up to 6.5 feet of recent sand fill was observed in cores SW-1 and SW-2, representing backfilling of areas remediated by the former Southwest Marine in 1998.
- Fill materials and sediments overlying the Bay Point Formation in the upland area (core SW-3) are approximately 15 feet thick.
- Eleven to 18 feet of soft, geologically recent, surface sediments were observed in the offshore areas (cores SW-4 and SW-5). These surface sediments were dominated by gray silty sands.
- The offshore surface sediments and upland fill materials are underlain by the firmer Bay Point Formation at all sampling stations.

5.2 Groundwater Flow Characterization

Water levels were measured in each monitoring well under ebb, low, flood, and high tide conditions to determine the magnitude and direction of groundwater flow at the site. Table 6 provides a summary of the water level information. In general, saturated conditions were observed approximately 7 feet bgs in upland areas of the project area, typical of tidally influenced conditions.

The water level information from upland and offshore monitoring wells was used to generate piezometric surface maps for the project area for shallow and deep geologic units. Examples of these maps at low tide and high tide conditions are shown in Figures 5 through Figure 8.

The following provides a summary of the findings from the water level monitoring:

Site Investigation and Characterization Report BAE Systems Bulkhead Extension and Yard Improvement 19

1.2

August 2005 020193-01

- The maximum observed groundwater gradient was 0.0047, and occurred during low tide with flow in a South/Southwest direction. This direction is essentially orthogonal to the uplands shoreline areas with flow towards the Bay. Gradient and flow were consistent for formational and fill materials.
- A complete reversal of flow during high tide was not observed during the monitoring described here, but the gradient essentially fell to a value of zero for groundwater flow from land to the Bay during high tide. It is likely there is a complete reversal of gradient during extreme tides.
- The vertical gradient between formation and fill materials was very low and reversed from net downward at low tide to net upward during high tide.

Because of the tidal action at the site, there is a small net flow of water emanating from upland areas to San Diego Bay through sediments bordering the site. The data from the monitoring wells show there is not a significant difference in the flow characteristics of groundwater in upper formational sediments and recent sediments. These data indicate the system can be functionally treated as one water-bearing unit.

5.3 Waste Constituent Characterization

Concentrations of COCs in sediments, soil, and groundwater are summarized here for the upland fill, surface sediment, and Bay Point Formation, to describe both the vertical and spatial extent of COCs in each. This information supplements the results of confirmational sampling that was done following the former Southwest Marine's 1998 sediment removal project (described in Section 2.3).

Distinct spatial gradients of sediment chemical concentrations were found both vertically and horizontally in the improvement area. Figures 9 and 10 illustrate, in plan view and in cross-sectional view, the distribution of chemically impacted sediments and groundwater at the project site. The general observed trends include:

- Concentrations of constituents measured in groundwater samples were generally below CTR concentrations in both the upland fill and Bay Point Formation wells.
- The horizontal distribution of COCs above relevant criteria was confined to the seaward portions of the project area, in the upper near-surface sediment at Stations 4 and 5 (Figures 9 and 10).

20

Site Investigation and Characterization Report BAE Systems Bulkhead Extension and Yard Improvement

The vertical distribution of COCs above relevant criteria, including California TTLC criteria, was confined to the upper 2 feet of near-surface sediment at Stations 4 and 5 (Figures 9 and 10).

The few COCs that were measured in groundwater at concentrations marginally above CTR values (nickel, copper, and total PCBs) were from the Bay Point Formation (wells MW-2.1 and MW-3.1; Table 5). Groundwater samples from the wells located in upper fill material did not have any elevated concentrations of COCs.

The horizontal distribution of elevated COCs in the project area was confined to the seaward sediment samples at Stations 4 and 5 (cores SW-4 and SW-5; refer to Figure 9). These stations represent the western extent of the project area both north and south of Pier 1 (Figure 2). Concentrations measured in these sediment cores are consistent with results found by E×ponent in 2003 at core SW08 (Table 1), which also detected elevated COC concentrations in this area. The upland sampling station, Station 3, did not have elevated COCs in the upland fill material (Table 4). In the sand fill area where Stations 1 and 2 are located, the 1998 cleanup actions described previously removed sediment with elevated COCs to depths ranging from 3.5 to 12 feet; the excavated areas were subsequently filled with clean sand fill material (as described in Section 2.3).

Elevated COC concentrations are confined to the upper surface sediment layers at Stations 4 and 5 (Figure 10). Concentrations of metals and total PCBs are above background concentrations (as defined by E*ponent 2003), above a depth of 5 feet 9 inches at Station 4 and above a depth of 2 feet at Station 5 (Table 4). The sediment layers below these depths extending down to the Bay Point Formation material do not show elevated COC concentrations. The upland fill material at Station 3 also did not have elevated concentrations of COCs, nor did Stations 1 and 2, as previously described. Bay Point Formation material had low concentrations of metals and generally no detected organics at all the sampling stations. The metal concentrations detected likely represent natural background levels.

Sediment with detected metals concentrations in excess of California TTLC limits are confined to the upper 2 feet of cores SW-4 and SW-5. Concentrations measured in nearby

21

Site Investigation and Characterization Report BAE Systems Bulkhead Extension and Yard Improvement

core SW08 (by E*ponent, 2003), however, did not exceed TTLC criteria (see Table 1). This indicates that sediments exceeding TTLC criteria are limited to specific areas. These specific areas are presented on Figure 9, and have a total volume estimated as approximately 1,000 cubic yards, though confirmation sampling will be performed during removal to confirm the vertical and horizontal extent of sediments exceeding the TTLC criteria.

5.4 Source Characterization

Cores taken during the E×ponent (2003) site investigation in 2002 and 2003, and those taken during this study, indicate that chemical concentrations were generally highest in the surface sediment and decreased with depth. Elevated chemical concentrations in soil and sediment are seen to be concentrated in shallow, near-surface sediment layers (Figures 9 and 10), as follows:

- To a depth of 4 feet in cores SW04 and SW08 taken in 2002/2003 (Exponent 2003)
- To depths ranging from 3.5 to 12 feet excavated and sampled during the former Southwest Marine's remediation of the landward portions of the site (SWM 1998)
- To depths of 5 feet 9 inches and 2 feet in cores SW-4 and SW-5 sampled during this study

In each case, underlying sediments have been shown to be free of chemical concentrations above background concentrations. This is consistent with the fact that the surface sediments were deposited in recent industrial times in the vicinity of the marine railway. The nature of the elevated chemical concentrations (metals and PCBs) is consistent with past industrial uses of the marine railways (repair, maintenance, and sandblasting). Therefore, the potential sources of waste constituent discharges at the project site appear to be, overall, primarily confined to historical ship repair and maintenance activities.

There does not appear to be chemical impacts to shallow porewater from the sediment bulk chemistry observed in this investigation. As is discussed in Section 5.3, more chemical detections were noted in the deeper monitoring wells screened in the Bay Point Formation, than from the shallower wells screened in overlying sediment. The concentrations of some metals observed in wells screened in the Bay Point Formation likely reflect ambient conditions.

Site Investigation and Characterization Report BAE Systems Bulkhead Extension and Yard Improvement 22

August 2005 020193-01

BAE Systems has controlled all stormwater runoff from the site since the mid-1980s, routing all surface water runoff into a site stormwater collection and treatment system. As a result, site groundwater chemistry is unaffected by site surface water influences. This is supported by the relatively low concentrations of chemicals observed in shallow monitoring wells during this study.

5.5 Site Conceptual Model

Since the surface sediments are laterally bounded by timber and steel bulkhead walls that form the perimeter of the project area, near-surface sediments with elevated chemical concentrations in the project area are not continuous with adjacent upland soils. Neither the 2002/2003 site investigation nor the 1998 remedial action involved samples taken from upland areas immediately around the bulkhead extension project area. Samples taken from Station 3 for this study indicate that the upland fill materials are free of significant chemical impacts to sediment and to groundwater.

Based on groundwater measurements made as part of this study, groundwater at the site moves in a generally horizontal direction from the uplands toward the Bay. Within and adjacent to the project site, groundwater is influenced both by overall regional gradients and by tidal action.

The potential receptor of concern for this project is the surface waters of San Diego Bay. The primary route for possible water-quality impacts is potential contaminant release from sediments behind the bulkhead, as a result of groundwater seepage through and under the sheetpile, via a sediment to groundwater to surface (Bay) water pathway. Porewater, driven by tidal flushing and groundwater gradients, could move through, around, or under the sheetpile bulkhead, thereby coming in contact with the surface water. Infiltration and percolation of surface water will be relatively insignificant because the site will be paved.

Construction of the project will provide both horizontal and vertical isolation and confinement of the existing contaminated sediments underlying the area, restricting the potential for contaminants to leach into the surrounding environment. Vertical confinement will be provided by placement of up to 15 feet of fill and an impervious asphalt surface. Horizontal confinement will be provided by the installation of sheetpiling across the front of

Site Investigation and Characterization Report BAE Systems Bulkhead Extension and Yard Improvement 23

the former shipways to a depth of about 20 to 25 feet below existing mudline and about 8 to 10 feet into the relatively impermeable Bay Point Formation, which underlies the more recent surface sediments. The presence of the sheetpile wall as a relatively impervious barrier to water flow will significantly restrict flow of aqueous contaminants into receiving waters.

To provide for additional protection, the project has been designed with a clean, imported sand buffer between impacted sediments and the bulkhead wall (Figure 3). Approximately 500 cubic yards of Himpacted sediments along the interior of the bulkhead will be excavated, removed from the site, and replaced with imported, clean, granular fill sand. This sand buffer will both increase the distance the porewater must move and will increase tidal attenuation, adsorption, and partitioning of the migrating water within the sand as it approaches the bulkhead and surface waters of San Diego Bay.

Modeling of tidal attenuation presented in the DER for Phase 2 activities (Anchor 2004a) indicates that the overall effect of the project's design features (sheetpile bulkhead and clean sand buffer) will be to decrease concentrations in the groundwater/porewater at least 400-fold before surface waters are reached. Based on this evaluation, porewater expressed from the project site via the sediment-groundwater-surface water pathway is predicted to have chemical concentrations well below chronic WQC upon entry into site surface waters, and thus is not expected to impact ambient surface water quality.

As requested by the SDRWQCB, additional modeling has been performed using the results of this site investigation program and the updated Site Conceptual Model, to supplement and verify the conclusions cited above from the previous DER. The methods, assumptions, and results of this additional modeling are presented in the next section.

Site Investigation and Characterization Report BAE Systems Bulkhead Extension and Yard Improvement 24

August 2005 020193-01

6 FATE AND TRANSPORT

Consistent with SDRWQCB requirements as documented in the letter dated September 14, 2004, this section presents a rigorous and updated evaluation of the sediment to groundwater to surface water chemical transport pathway, thus providing an assessment of the movements, dispositions, and transformations of waste constituents in soil, sediment, and groundwater within and between environmental media (soil, sediment, groundwater, surface water, and potentially biota).

Information collected during the current site investigation was combined with data collected during previous site investigations and the Site Conceptual Model (Section 5.5), to determine the fate and transport of waste constituents using a standard flow and partitioning model (Reible 1998, promulgated by the Corps). The end result of this modeling was to quantify potential water quality impacts to surface waters, to update the Site Conceptual Model (Sections 5.4 and 5.5), and to update conclusions cited in the DER (Anchor 2004a).

6.1 Modeling Approach

One-dimensional chemical transport modeling (Reible 1998) was used to conservatively assess the long-term effectiveness of the sheetpile wall as a horizontal barrier, in conjunction with clean fill placed behind the wall, to mitigate the potential transport of chemicals via the sediment-groundwater-surface water pathway to the surface waters of San Diego Bay. Reible's (1998) modeling approach is described in an appendix to nationally recognized Corps guidance on the design of sediment caps: *Guidance for Subaqueous Dredged Material Capping* (Palermo et al. 1998). Results predicted from this conservative modeling approach have then been evaluated against actual groundwater concentrations to assess the overall protectiveness of the project.

The model described by Equation B32 of Reible (1998) was executed in Microsoft Excel. This model describes advective/diffusive transport of a dissolved chemical through a homogeneous porous media, such as clean quarried sand or dredged material. The output of the model is expressed as the concentration of the COCs in porewater at specified times as it exits the project limits and enters surrounding surface waters. The model conservatively assumes no biodegradation of the chemical takes place over time.

Site Investigation and Characterization Report BAE Systems Bulkhead Extension and Yard Improvement 25

August 2005 020193-01

For this assessment, copper, lead, zinc, and total PCBs were selected as COC's for modeling due to their relatively high concentrations in the project area. Although groundwater samples indicated virtually no significant chemical impacts to site groundwater at Stations 1, 2, and 3, theoretical porewater concentrations for each constituent were conservatively calculated using bulk sediment concentrations (defined as the 95% upper confidence limit [UPL] from all samples), divided by appropriate adsorption distribution coefficients (K_{oc} for PCBs; Ka for metals), and calculated for the medium through which groundwater would move (i.e., fill placed behind the sheetpile bulkhead). The planned removal of sediments exceeding TTLC criteria has been accounted for in the development of the theoretical porewater concentrations. The partitioning coefficient (K_{oc}) for PCBs was calculated using the measured organic carbon content of site sediments. A range of K_ds were considered from low literature-derived values to high, site-specific values estimated from Exponent's previous work (2003; Table 7). A conservative estimate of Kd was chosen from the low end of the range and used to calculate initial porewater concentrations. The model was used to predict porewater concentrations for each COC at a point 10 centimeters behind the sheetpile wall, at 25-, 50-, and 100-year intervals after bulkhead construction.

6.2 Parameters and Assumptions

Table 8 presents the input parameters required by the model and the input values used for each COC. The model assumes a homogeneous layer of clean fill placed behind the bulkhead and over the impacted sediments within the project area. Two different types of fill materials were assessed to estimate their overall effectiveness for restricting COC migration through the different materials. The first clean fill material analyzed was a clean quarried sand with a low TOC fraction. This low TOC fraction does not allow for PCBs to adsorb to cap material and is, therefore, theoretically not as effective at controlling any PCB migration. The second clean fill material analyzed was dredged material with a higher TOC fraction, which more effectively controls PCB migration. Using Kds, any modeled metals migration will not be affected by the differing TOC levels in these potential fill materials.

The horizontal advection of groundwater through sediment and overlying materials is a key factor in the rate of chemical migration and, therefore, is a particularly significant parameter for this model. As a result, field measurements of groundwater flow and gradient (documented in Section 5.2) were used in defining this parameter. The advection rate was

Site Investigation and Characterization Report BAE Systems Bulkhead Extension and Yard Improvement 26

August 2005 020193-01

calculated from Darcy's law which used the hydraulic gradient (calculated using site specific data), the hydraulic conductivity, and the effective porosity of the isolating material. For this modeling, conservative estimates of both hydraulic conductivity and effective porosity were used.

Values for all other model input parameters were obtained from standard sources noted in Table 8, including values for cap porosity, specific gravity of cap material, cap material organic carbon content, partition coefficients for PCBs, and molecular diffusion coefficients for PCBs in water.

6.3 Results

Results of cap effectiveness modeling are presented in Table 9 in terms of mg/L of COCs in isolated material porewater. The results are compared to CTR surface water criteria. Table 9 shows the dissolved concentrations of the selected COCs in porewater expressed from the project area 25, 50, and 100 years after the project is complete. All modeled COCs are well below CTR criteria well after 100 years (and for several centuries beyond in most cases). Expressed dissolved concentrations of total PCBs are below CTR criteria when quarried sand material is used as backfill, and are seen to be at even lower concentrations when a fill material with higher TOC content – such as dredged Bay sediment – is used for construction.

In summary, the modeling results demonstrate that the use of either fill material would be effective over the long term in isolating COCs from San Diego Bay waters. Notably, actual water quality impacts would be significantly less even than those predicted by the model, because measured concentrations of COCs in site groundwater (as documented in Tables 3 and 5) are lower than those that were input to the model.

Thus, the highly conservative modeling approach presented here shows no significant impacts to surface water quality, and verifies that the planned project will be fully protective of water quality.

Site Investigation and Characterization Report BAE Systems Bulkhead Extension and Yard Improvement 27

August 2005 020193-01

7 CONCLUSIONS

This study addresses questions and requirements documented by the SDRWQCB in their letter dated September 14, 2004 (as well as input obtained during BAE Systems' subsequent communications with the SDRWQCB on August 5, 2005), necessary to support a 401 WQC for Phase 2 activities.

Additional coring and groundwater sampling at the site, in conjunction with past sampling events, indicate that significant chemical impacts to site sediments are confined to near-surface sediments surrounding the now defunct marine railways. The nature of chemical impacts to site sediments (namely, high metals and PCB concentrations in the upper several feet) are consistent with past industrial uses of these railways (i.e., repair, maintenance, sandblasting).

An upland sampling station (continuous core SW-3 and monitoring wells MW-3.1 and 3.2) did not show significant impacts to subsurface materials. Walls bounding the project site on the north and south separate the marine railway area from adjacent upland fills.

Chemical impacts to groundwater appears to be largely restricted to shallow depths, corresponding to the highest chemical detections in site sediment.

A standard groundwater flow and chemical partitioning model was used to predict potential long-term effects to water quality in the adjacent waters of San Diego Bay. Conservative input parameters were used, as were conservative upper 95 percent limits of measured sediment concentrations. Even with "worst case" assumptions made for model inputs, the modeling results indicate that chemical breakthrough of site COCs is not expected for time durations on the order of well over 100 years, which is consistent with typical cap design projects in San Diego and elsewhere. This model does not account for tidal mixing, which (as discussed in the DER and Anchor 2004a) would reduce water quality impacts by additional orders of magnitude.

Altogether, this study indicates that the proposed project will be fully protective of adjacent surface waters after construction, and that chemical concentrations will not exceed existing surface water quality criteria along the bulkhead wall after construction.

Site Investigation and Characterization Report BAE Systems Bulkhead Extension and Yard Improvement 28

August 2005 020193-01

As an added measure, and to meet post-closure maintenance requirements for inactive nonhazardous waste landfills (SDRWQCB 1997 and 2000), long-term monitoring of groundwater quality will be instituted at this site. The long-term water quality monitoring plan for the site is presented in the Data Evaluation Report (Anchor 2004a).

-

教室に読

御言言語

29

8 REFERENCES

- Anchor, 2004a. Data Evaluation Report, in support of Water Quality Certification for Southwest Marine Bulkhead Extension and Yard Improvement Phase 2 Activities. August 2004.
- Anchor, 2004b. Site Investigation Workplan, for 401 Water Quality Certification, Southwest Marine Bulkhead Extension and Yard Improvement Phase 2 Activities. Includes Quality Assurance Project Plan (QAPP). November 2004.
- Aziz N., P. Schroeder, A. Sumeri, C. Ruiz, and K. Tate, 2001. Assessment of Contaminant Isolation at the Duwamish Subaqueous Capping Site. Journal of Dredging Engineering, Western Dredging Association. Volume 3, No. 1, pp. 21-34.
- Christian-Wheeler Engineering, 2002. Geotechnical Recommendations and Design Criteria, Proposed Quay Wall Construction Project, Southwest Marine Facilities, San Diego, California. Prepared for Triton Engineers, April 4, 2002.
- ENV America, 2002. Workplan for Site Assessment, Former Wastewater Ponds, Silver Gate Power Plant. Prepared for San Diego Gas and Electric Company, August 21, 2002.
- Exponent, 2003. NASSCO and Southwest Marine Detailed Sediment Investigation, prepared for NASSCO and Southwest Marine, September 2003.
- Palermo, M.R., J.E. Clausner, M.P. Rollings, G.L. Williams, T.E. Meyers, T.J. Fredette, and R.E.
 Randall, 1998. Guidance for Subaqueous Dredged Material Capping. Technical Report
 DOER-1 U.S. Army Engineer Waterways Experiment Station, Vicksburg, Mississippi.
- Reible, D. D., 1998. Appendix B Model for Chemical Containment by a Cap. Appendix to Guidance for Sub-Aqueous Dredged Material Capping: Palermo, M.R., J.E. Clausner, M.P. Rollings, G.L. Williams, T.E. Meyers, T.J. Fredette, and R.E. Randall. 1998.

30

Risk Assessment Information System (RAIS), 2004. Risk Assessment Information System Website <u>http://risk.lsd.ornl.gov/index.shtml</u>

Site Investigation and Characterization Report BAE Systems Bulkhead Extension and Yard Improvement

August 2005 020193-01

San Diego Unified Port District, 2004. Historical Study, San Diego Bay Waterfront, Sampson Street to 28th Street, San Diego, California. Prepared by Susan E. Booth, REA-I, RG for the San Diego Unified Port District. June 30, 2004.

SDRWQCB (California Regional Water Quality Control Board, San Diego Region), 1997. Order No. 97-11, General Waste Discharge Requirements for Post-Closure Maintenance of Inactive Nonhazardous Waste Landfills Within the San Diego Region. Adopted April 9, 1997.

SDRWQCB, 2000. Addendum No. 1 to Order No. 97-11. Adopted June 14, 2000.

Southwest Marine, Inc. (SWM), 1998. Letter dated September 1, 1998 to John H. Robertus of the California Regional Water Quality Control Board, with attachments.

Southwest Marine, Inc. (SWM), 2004. Electronic correspondence from Shaun Halvax, Tabulated Summary of vessel use at Marine Railways 1, 2, and 3. Transmitted December 6, 2004.

Triton Engineers, 2002. Plans set entitled "Southwest Marine Inc. – Quay Wall Extension, San Diego, California". May 20, 2002.

URS, 2002. Inventory of Waterfront Structures, BAE Shipyard, July 25, 2002.

U.S. EPA, 2000. 40 CFR, Part 131.38. Water Quality Standards, Establishment of Numeric
 Criteria for Priority Toxic Pollutants for the State of California. Federal Register, Vol. 65, No.
 97, May 18, 2000.

Woodward-Clyde, 1995. Historical occupancy search, Southwest Marine, foot of Sampson Street, San Diego, California. Prepared for Southwest Marine, Inc. by Woodward-Clyde Consultants.

Site Investigation and Characterization Report BAE Systems Bulkhead Extension and Yard Improvement 31

TABLES

and the second s

Table 1 Bulk Sediment Chemistry - Sediment Cores SW04 and SW08

Analyte of Concern	A	and the second of the second o			the first second s		全人で見たりには、「おとう」というには、「ない」という	- 二日本町の市町の市町町町町町町町町町町町町町町町町町町町町町町町町町町町町町町町町	A REAL PROPERTY AND A REAL	The second secon				Control of the second se
Analyte of Concern	Jueuneec	TLC	8/1/2001	9/10/2002	8/27/2002	8/27/2002	Depth	8/8/2001	8/28/2002	8/28/2002	8/28/2002	8/28/2002	8/28/2002	nepm .
	Concentrations	Criteria ⁴	0-2 cm	0-2 cm	0-2 ft	24.1 ft	Averaged	0-2 cm	0-2 ft	0-2 ft	2-4 TL	4-6 TL	11C.0-0	Averageo
Conventionals														
Fines content (%)			31.8	-			31.8	68.8		ť	, <u>-</u>			0.00
TOC (% dry)			1.59	- 1	0.91	1.8	1.37	3.35	1.5		1.1	0.12	•	5.co
Metals (mg/kg)														A CONTRACTOR
Arsenic	5	500	95.5	1	67.7	107	89.65	25.5	26.6	•	13.2	4.V	•	10,10
Cadmium	0.29	100	2.35	ſ	0.79	3.17	2.05	0.67	1.13	1	0.86	0.07		0.09
Chromistm	57	2500	64.7	e	25.5	97.2	63.36	77.8	110	•	109	7.4	-	76:00
Copper	120	2500	1880		370	2170	1325.60	1030	1540	1	1480	49	•	1029.94
load	48	1000	482	•	154	413	295.73	248	343		341	10.6	•	233.26
Maraunt	0.56	200	1 10	5	1 14	74	4.36	2.53	4.97	-	5.95	0.3		376
NGCOUP	2000 1	2000	20.1		c. d	ΨU	24.87	22.7	16.8		9.1	2.6		9.71
NICKEI		2007	3			P e	UP G		194		141	1211		1.6 U
Selenium	0.72	00L	7.L	-			<u>6.13</u>	200	201		0 40	0.03	1	<u>0.53</u>
Silver	-	200	1./2	-	AC'0	7-	1.04	1.00			201			
Zinc	210	5000	4550	•	699	1450	1158.31	829	1410	•	00/	23.1	•	ALALI
PCB (ug/kg)		a.					a transferration and							
Aroclor 1016			190 U	,	150 U	1500 U	1500 U	330 U	1900 U	950 U	1400 U	130 U	12 U	- 006L
Arochar 1221			370 U		290 U	2900 U	2900 U	650 U	3800 U	1900 U	2800 U	250 U	24 U	3800.U
Arochar 1232			190 U		150 U	1500 U	1500-U	330 U	1900 U	950 U	1400 U	130 U	12 U	1900 U
Arodor 1042			19011		150 11	1500 U	1500 U	330 U	1900 U	950 U	1400 U	130 U	12 U	1800.0
					1300	16000	REGA	060	9300	12000	15000	1100	12 U	6223
Aracior 1248			190.0			12000	7160	JAND	20002	8700	12000	600	12 U	6303
Araclar 1254			2400	1	1700	13000		2400		0010	COOL ST	000	1211	26Pb
Aroclor 1260			600	1	610	6500	Nos	040	4100	4400	0000	1000	240	17064
Total PCBs	170	5000	3000		3110	35500	1938f	4030	20400	00107	00000	0621		
PAHs (µg/kg)			_								1			
2-Methylnaphthalene			31	•	10	460	240	32	18	4	20	0.10	1	
Acenaphthene			110	-	22	3100	1594	83	54		110	6.1 U	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	00
Acenaphthylene		and the second se	120	•	47	190	122	280	100	1	84	6.1 U	3	99
Anthracene			710		150	2400	1312	1500	360	1	360	10	-	50G
Benz(a)anthracene		the second se	1100	-	370	3400	1937	2300	770	4	950	17		- eut
Benzolalovrene			1500		1100	5800	3627	2900	2600	-	3000	85	-	1918
Benzo(b)fluoranthene			1600	1	950	5800	3456	3500	2900		3000	88	•	2025
Benzo(abi)nervlene		and a second sec	640		630	2100	1393	1300	970	1	1000	26	•	677
Benzo(k)flincanthene			1300		790	5200	3065	2400	2600	1	2900	85	•	1880
Christiana		· · · · · · · · · · · · · · · · · · ·	1800		580	4500	2615	4900	1200		1200	38		862
Dihonzola hjanthracena			230		120	650	395	450	310		370	8.4	•	1 233
			2400		200	10001	EARS	3500	1000		1200	25	-1	924
riuoramiene	and the second se		2017		2	1500	708	000	17	-	120	611	4	- 20
Fluorene			180	1	40 24	0000	100	1000	1100		1200	34		427
Indeno[1,2,3-cd]pyrene			880	-	750	2600	<u>IVI</u>	1800	1400	-	000	1 2	_	
Naphthalene		-	38		20	3800	1949.	38	16		20	0.10	1 1 1 1	29
Phenanthrene			1100		260	5000	2699	1300	490	-	620	2	-	601. 1000
Pyrene			2000	•	1400	18000	6906	2600	6000	-	8400	6		40¢0
Total PAHs			15439		7933	74500	42191	29103	20868		24722	510.9	-	1961

U = analyte not detected at the indicated detection limit Notes:

From E^xponent (2003)

¹ Background sediment concentrations defined as 95% UPL Final Reference Pool levels from E ^xponent (2003) 2 TTLC = Total Threshold Limit Concentration, per CCR Title 22, Division 4.5, Chapter 11, Article 3.

Site Investigation and Characterization Report BAE Systems Bulkhead Extension and Vard Improvement

				en la	8 10 U 0U 86 0.28 0.28	00		
				Ni Ni Ni Baineda alan 3.5 ft	625 56 8.2 0.0 4.14 0.66 270 290			
	2.03 8 827/1998 5.0	650 0 U 450	no 	6 814/908 814/908	59 0.66 620	0		
	02 18 8/25/199 6/1	1.5 0 U 7.7	00	Ma - 826(199	29 0.68 8.3	00		
	01 88 8.07038 8.07038	0.U 0.07 11	D C	H Social H	0 0 0 0 0 0 0 0 0 0 0 0 0 0	00		
	88 807/199 81	49 39 0.97 47	0	96 8/1/19 8.11	61 26 25 25	no		
pling Event	88 824196 411	22 6.8 31	0	98 92409 7.5 A	144 42 0.97 87	530		
atory Sam	1914 C1 1918 8/191988 1	1.4 0 U 8.4	0	63 52413	6.5 0.4 17	0	`	
98 Confirm	838 80770 938 80770 1 5.51	3.7 0 U 340		100 SICIO	7.9 9.1 18			
Table 2 Chemical Concentrations Measured in 1998 Confirmatory Sampling Event	81 82 83 8191998 81911998 81171996 611 358 55.0	1 69 J 7.9 V 0U		608 860 1 101 1	1 12 1 0U 5 27		n an	
rations Mea	88	5 3.1 7 0U 8 17	68	3 F1 1998 8220119 ft 82519	0 24 8 8.1 44 0U	0	ant (2003)	
al Concenti	**	6 85 12 9.7 0U 0.27 16 520	0 U 914	2 (1) 1998 (entral) 11 (entral)	67 510 20 78 0.38 0.44 91 61	207 810	Reference Pool levels from É'ponent (2003)	
Chemic	A1 A2 7/1996 8/13/198 60f 8.f	8.0 0.0 14 10 10	0	19 80-19 11998 8/12 2/1 13	47 6 6.2 2 0 U 0. 76 9	125 21	. Pool levels	
	8			р 1 812 212			I Reference	
	Backgrown Sediment Concentration	120 48 0.56 210	110	 Background Sedingen Concentration 	120 48 0.56 210	170 Is	: 95% UPL Fina	
	1908 Sediment Cleandp Criteria (per Order 38-38)	810 231 4.2 820	380	1998 Sedfment - Chemip Criteria (Der Corder 98-38)	810 231 4.2 820	950 950 e sediment concentration e indicated detection lim	icentrations defined as	
	reda Parameter Matala (moleci)	Mercury (total) Mercury (total) Zino	Pccs (tgrag) Total PCBs	Paratra (mol ko) Paratra (mol ko) Metals (mol ko)	Copper Lead Mercury (total) Zinc	Total PCBs 950 Total PCBs 950 Bold values exceed reference sediment concentrations U = analyte not detected at the indicated detection limit	¹ Background sediment concentrations defined as 95% UPL Finel	
A starting of the start of t							·····	 Marine ¹ space and

Site Investigation and Characterization Report BAE Systems Bulkhead Extension and Yard Improvement

Table 3 Chemical Concentrations Measured in Well Point Samples

	Well Point 1	Well Point 2	Ambient Concentrations 1	Ambient Concentrations Measured in Site Surface Water	Water Quality Criteria in pg/L (Dissolved)	u hili/r (missolver
	ASW-WP1	ASW-WP2	ASW-SW1			
Chemical	µg/L (Dissolved)	ug/L (Dissolved)	Ambient ¹	Ambient ²	Acute	Chronic
Conventionals						
Total Suspended Solids (mg/L)	24	120	15			
Salinity (ppt)	33	30	33			
Fines content (%)						
TOC (% dry)			an ann an Ann an Ann Ann Ann Ann Ann Ann	•		
Metals (mg/kg or µg/L)						
Arsenic	1.03	14.4	1.35	8.8 J	69	30
Cadmium	0.215	0.33	0.1	1.2 U	42	9.3
Chromium ⁴	1.18	2.06	0.99	2.1 J	1100	50
Copper	2.005	0.98	5.42	വ	4.8	ંજં
Lead	0.32	0.36	0.07	0.55 J	210	8.1
Mercury	0.1 U	.01 U	.01 U	0.1 U	0.4	0.04
Nickel	1.545	0.98	1.05	5 U	74	8.2
Selenium	0.035	0.01	0.02	11	290	И
Silver	0.36	0.33	0.27	1.2 U	1.9	
Zinc	7.22	18.8	9.03	18	90	81
Butyltins (µg/kg)						
Tributyltin				15.43		
PCB (µg/kg or µg/L)						
Aroclor 1016	0.15 U ⁵	0.15 U ⁵	1 U	0.5 U		
Aroclor 1221	0.10 U	0.10 U	10	0.5 U		Contraction of the second
Aroclor 1232	0.10 U	0.10 U	11	0.5 U		
Aroclor 1242	0.10 U	0.10 U	10	0.5 U		
Aroclar 1248	1.3	0.63	1 U	0.5 U		
Aroclor 1254	0.10 U	0.10 U	1 U	0.5 U		
Aroclor 1260	1.1	0.63	0.1 U	0.5 U		
Aroclor 1262	0.10 U	0.10 U				
Aroclor 1268	0.024 U	0.024 U				2 2 2 2 2
Total PCBs ⁸	2.7 ⁶	1.6 ⁶	10	-	10.	0.03
PAHs (µg/kg or µg/L)	-					
2-Methylnaphthalene	1.0 U	1.0 U	1.0 U			
Acenaphthene	1.0 U	1.0 U	1.0 U	٦ ۲		
Acenaphthylene	1.0 U	1.0 U	1.0 U	5.U		
Anthracene	1.0 U	1.0 U	1.0 U	5 U		
Ranz(a)anthracana	101	1.0 U	1.0 U	5 U		

Site Investigation and Characterization Report BAE Systems Bulkhead Extension and Yard Improvement

	Scheentranees		ALL DESCRIPTION OF THE OWNER OWNE		100 100 H 100 B			1	101 213 2 4 B 3 4	ALCOLAR ST			A CONTRACTOR OF		BU - 59	10121-1101-1101-1101-1101-1101-1101-110
otal Organic Carbon (percent)	1		. V04	200	0.72	610	1 48	0.0	0.21	000	0.03	0.45	PM C	0.09	003	000
etaite (morken)				-												
Arsenic	a	200	3,65	1.15	3.46	9.6	154	35.4	62.9	1.42	1.56	117	3.57	3.13	262	6.42
Cadmium	0.29	9	0.05 J	0.04 J	0.05 J	0.07	3.13	0.73	1.13	0.05.J	0.04.J	2.83	0.08	0.08	0.06	90.06
Chromium	57	2500	9.6	12.3	6.46	3.89	173	138	75.2	3.22	224	192	8,7	5.4	21.4	4.73
	120	2500	5,175	5.57	4.76	11.3	100 100 100 100 100 100 100 100 100 100	981	1040	2.4	12.6	231010000000000000000000000000000000000	12.7	5.85	14.1	4.52
Lead	\$	1000	0.81	21	5.39	4.04	668	352	326	0.73	3.75	965	21.4	5.25	3.96	104
TV (botal)	0.56	8	0.03 J	0.01 U	0.05.J	0.03 J	0.69.J	24.1	0.7.0	L 10.0	L E0.0	0.91 J	0.24 J	0.1 J	0.01 U	0.01 U
Nickel	17	2000	2.06	6.22	2.29	1.74	25.9	10.6	12	2.02	10.1	28.1	3.7	2.1	8.17	3.58
Salaninen	0.72	ŧ	0.13	0.15	03	0.0	2.91	97	1.24	0.68	0.25	3.52	50	0.09	0.05 J	0.8
	-	905 105	0.05 U	0.05 U	0.05 U	0.05 U	177.1	0.55.1	0.76.J	0.05 U	0.18.0	2.1.J	0.28 J	0.15.J	0.04 J	0.05 U
700	210	emn	1.812	1.9.55	17.8.1	13.7.1	The second s	1560.3	2250.3	6.18.1	42.1 J	4470 J	28.8.J	19.3.1	49.3 J	F 11.5
AHa (im/ko)		-														
1-Mathwinachthatene			1 50	50	50	2.30 J	29.90	22.30	20,40	50	50	50	50	5.00 U	5.00 U	50
wintenanthrane			20	51	50	2.80.1	102	15.50	\$ 10	50	50	50	1.20.J	5.00 U	5.00 U	50
Trimethylnanhthalene			50	50	50	2.40.5	44.50	13.30	12.80	50	50	50	50	5.00 U	5.00 U	50
2.6-Dimethylnaphthalene			50	50	50	1.0.1	34,80	22.70	19.0	50	50	50 -	5.0 -	5.00 U	5.00 U	50
2-Methylmachthalana			. 50	50	54	1.70.1	38.40	32.60	29.40	50	1.0.1	50	1.10.1	5.00 U	5.00 U	50
Acenanthene			50	50	50	2.90	50	62.90	66.50	50	50	50	50	5.00 U	5.00 U	5U
nhthdane			50	50	50	6.80	35.70	31.90	17.60	199	50	54	1.40 J	1.20.1	5.00 U	60
Anthracene			50	50	50	13.90	50	50	50	· 5U	50	5U	C07.2	2.20.5	5.00 U	50
sianthracene			50	2.30.1	1.10 J	46.30	50	50	5U	5.0	50	50	440 J	7.20.1	5.00 U	50
(a)pyrene			50	50	1.50 J	103	50	50	50.	50	6U -	50	6.70	16:30 J	5:00 U	5U
(b)fluoranthene			50	50	1.40.1	81.80	. 50	50	50	96	50	50	5.30	16.40 J	5.00 U	5U
Benzo(e)pyrene			50	50	1.30 J	87.90	50	5.0	50	50	50	5U	4.0.1	6.70	5.00 U	5U
Benzo(ghi)penylene				50	1.40 J	101.0	50	50	50	5U	5.0	50	5.40	14:00.3	5.00 U	50
Benzo(k)fluoranthene			50	50	1.20.4	77.40	50	50	50	5 U	54	50	4.80 J	15.30 J	5.00 U	29
JA I			50	50	6U	1.90.1	15.60	13.10	10.60	5 U	5U	50	50	5.00 U	5:00 U	60
Chrysene			50	1.40.1	1.30 J	62.30	50	5.0	50	50	5 U	50	6.10	8.00	5.00 U	90
Olbenzo(a,h)anthracene			50	50	5 U	11.50	50	50	50	50	50	510	51	1.50.1	5.00 U	50
Fluoranthene			. 50	1.20.1	2.60 J	168	5U	50	50	50	1.20 J	1 50	7.90	16.10	5.00 U	50
			50	50	50	2.10.1	5U	58.10	5U	50	50	50	51	5.00 U	5.00 U	6U
V1.2.3-colovrene			5U	50	50	69.68	50	5.0	50	50	D 5	50.	4.30 J	11:90.1	5.00 U	9.0
Naphthalene			5U	sU	99	14.90	39.10	31.30	31.70	50	1.20.1	50	1.10.J	5.00 U	5.00 U	6U
10 I			. 50	50	90	28.30	50	50	50	50	50	50 1	3.20 J	4.40.5	5:00 U	60
nthreae			1101	1.30.1	1.60.1	14.70	50	50	50	50	1.40.1	50	4.70 J	5.00	5.00 U	. 50
			130.1	10.90	8.20	178	50	5U	50	6.50	1.30.1	50	130	29.60	5.00 U	90
Total PAHs			1-240.1	17.02	21.60	1102.50	339.80	303.90	242.20	6.50	6.10	0	194,10	159.40	000	•
-CBs (µgikg)																
r 1016			20 U	20 0	200	20 0	20 U	20.0	20 0	201	200	20.0	D DZ	20.00 U	0.000	20.00
Arodor 1221			200	20 U	0.00	0.02	20 U	20.0	20 U	20.0	20 U	20 U	20.0	20.00 U	20:00 U	20.00 U
r 1232			20 U	20.0	20 0	20 U	20.0	20.0	20.0	20 U	20.0	20 U	280	20.00 U	20.00 U	20.00 0
v 1242			20 U	20 U	20 0	20 U	379	2410	459	20	500	452	20.0	20.00 U	O DTOZ	20.00 0
r 1248			20 U	20 U	2010	20 (1	20 U	20 U	20.0	20.0	20 U	20.0	20 U	20.00 U	20.00 U	20:00
Arador 1254	~		20 U	20 G	20 U	20 U	1270	2260.	1100	20 12	20 U	851.0	20 0	20.00 U	20.00 U	20.00 U
1260			. 20 U	20 0	n R	n 02	20 U	20 ()	20 0	20 U	20.0	20 U	20 U	20.00 U	20.00 U	20.00.02
Total DCDo //	170	FOOD	-	-	-	-	0027	£108 40	1894 BD - 2	-	ç	1240 80	•	-	200	000

Table 4 Sediment Chemistry Results

Site Investigation and Characterization Report BAE Systems Builthead Extension and Yard Improvement

変にいる。

Table 5 Groundwater Chemistry Results

		Station		Station 2	A second se		
	California Toxic Rule Water	MW-1.1 Bay Point Formation		MW-2.1 Bay Point Formation	MW-2.2 Upland Fill	MW-3.1 Bay Point Formation	
Parameter	Quality Criteria	18-23 feet	10-15 feet	22-27 feet	15-20 feet	18-23 feet	12-17 feet
Conventionals							
Salinity (PSU) Total discolved solids (moli)		16.0	12.0	25.0	9.7 6.010	574	60 60
Metals (uo/L)			222	2.0.1	2	-	
Arsenic	36	1.67	1.01	3.70	0.50	5.20	23.20
Cadmium	9.3	0.01 U	0.01 U	0.03	0.01	0.01 U	0.01 U
Chromium		0.71	0.47	0.95	0,46	7.77	2.22
Copper	3.1	0.38	0.18	0.91	0.009 E	3.34	0.97
Lead	8,1	0.03	0.02	0.05	0.01	0.50 U	0.38 E
Mercury (total)		0.006 E	0.01 U	0.01 U	0.006 E	0.10 U	0.10 U
Nickel	8.2	24.5	6.19	11,2	1.58	8.25	4.73
Selenium	71	0.13	0.22	0.01 U	0.01 U	3.85	-
Silver		0.04	0.05	0.07	0.06	0.20 U	0.20 U
Zinc	81	6.88	4.57	4.86	1.88	8,84	3.52
PAHs (µg/L)							51
1-Methylnaphthalene		0.015	0.006	0.005 U	0.005 U	0.006	0.011
1-Methylphenanthrene		0.057	0.035	0.005 U	0.005 U	0.012	0.028
2,3,5-Trimethylnaphthalene		0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U
2,6-Dimethylnaphthalene		0.010	0.010	0.005 U	0.005 U	0.006	0.005
2-Methylnaphthalene		0.016	0.012	0.005 U	0,01	0.009	0.015
Acenaphthene		1.19	0.051	0.005 U	0.01	0.030	0.116
Acenaphthylene		0.005 U	0.005 U	0.005 U	0.005 U	0.005	0.049
Anthracene		0.057	0.018	0:060	0.12	0.038	0.111
Benz(a)anthracene		0.028	0.005 U	0.005 U	0.15	0.008	0.276
Berzo(a)pyrene		0.010	0.010	0.005 U	0.005 U	0.005 U	0.485
Benzo(b)fluoranthene		0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.422
Benzo(e)pyrene		0.008	0.008	0.005 U	0.005 U	0.005 U	0.286
Benzo(ghi)penylene		0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0,432
Benzo(k)fluoranthene		0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.344
Biphenyl		0.006	0.005 U	0.005 U	0.01	0.005 U	0.011
Chrysene		0.022	0.005 U	0.005 U	0.09	0.012	0.313
Dibenzo(a,h)anthracene		0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.086
Fluoranthene		0.452	0.039	0.08	1.14	0.088	1.020
Fluorene		0.053	0.007	0:005 U	0.005 U	0.005 U	0.015
Indeno[1,2,3-cd]pyrene		0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.504
Naphthalene		0.024	0.010	0.005 U	0.02	0.01	0.040
Perylene		0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.192
Phenanthrene		0.113	0.032	0.005 U	0.03	0.024	0.056
Pyrene		0.382	0.039	2.76	2.97	0.185	1.640
PCBs (µg/L)							11000
Arocior 1016	And a second	0.02 U	0.02 U	0.02 U	0.02 U	0.02 0	0.02 0
Arocior 1221	AN ADDRESS AND ADDRESS AND A DRESS AND ADDRESS ADDRESS ADDRESS ADDRESS ADDRESS ADDRESS ADDRESS ADDRESS ADDRESS	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 0
Arocior 1232	and any other states of the second	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 0
Arocior 1242		0.1	0.02 U	0.02 U	0.02 U	0.02 0	0.02 0
Aroclor 1248		0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Arociar 1254		0.0233	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Aroclor 1260	and the set of strategies with the set of th	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Total DORe // I=0)	0.03	0.1233	0	0	0	0	C

Notes: U = analyte not detected at the indicated detection limit E = estimated value Bold values exceed water quality criteria

Silu Investigation and Characterization Report BAE Systems Buikhead Extension and Yard Improvement

Table 6 Summary of Measured Water Levels

		Water Lo	evel (MLLW)	and the second second
	Ebb Tide	Low Tide	Flood Tide	High Tide
Deep Piezometers	· · ·	· · ·		<u></u>
Station 1	4.05	3.57	3.94	4.21
Station 2	3.99	3.46	3.88	4.53
Station 3	4.31	4.13	4.21	4.36
Shallow Piezometers	· · · · · · · · · · · · · · · · · · ·	·		
Station 1	4.08	3.6	3.97	4.24
Station 2	4.16	3.65	4.03	4.36
Station 3	4.44	4.21	4.22	4.31

Site Investigation and Characterization Report BAE Systems Bulkhead Extension and Yard Improvement

August 2005 020193-01

際

新たい福

Table 7

Summary of Modeling Parametric Analyses

Parameter	Co (mg/kg)	Kd (L/kg)	ço (mg/L)	Co (mg/L) Information Source
Copper	331	20,452	0.02	Calculated from E ^x ponent sediment partitioning equations (2003).
	331	85	3.89	Calculated from sediment 95 percent UCL and Kd's from Aziz et al. 2001.
Lead	108	15402	0,01	Calculated from Exponent sediment partitioning equations (2003).
	108	1150	0.09	Calculated from sediment 95 percent UCL and Kd's from Aziz et al. 2001.
Zinc	373	20067	0.02	Calculated from E ^x ponent sediment partitioning equations (2003).
	373	140	2.66	Calculated from sediment 95 percent UCL and Kd's from Aziz et al. 2001.
PCBs	1.35	60.2	0.022	(TOC = 0.001) ² weighted average of Aroclors 1254 and 1242 Koc (RAIS 2004).
~	1,35	602	0.002	$(TOC = 0.01)^2$ weighted average of Aroclors 1254 and 1242 Koc (RAIS 2004).
	1.35	820	0.002	$(TOC = 0.001)^2$ using total PCB Koc (RAIS 2004).
	1.35	8200	0.0002	(TOC = 0.01) ² using total PCB Koc (RAIS 2004).

Notes:

¹ Calculated as 95% Upper Confidence Limit of all samples taken within project footprint

² TOC = Total Organic Carbon, pertaining to range measured in native site sediment

Site Investigation and Characterization Report BAE Systems Bulkhead Extension and Yard Improvement

の方法の 報告に語

Table 8 Fate and Transport Modeling Input Parameters

Units Copper Lead Zinc er NA Sand Sand Sand Sand s cm 90 90 90 90 90 y unitless 0.4 0.4 0.4 0.4 0.4 ap g/cm ³ 2.5 2.5 2.5 2.5 2.5 cap g/cm ³ 1.5 1.5 1.5 1.5 1.5 L/kgoc 0.001 0.001 0.001 0.001 0.001 0.001 ge Velocity cm/yr 17.79 17.79 17.79 2.00 200	Copper Leat Sand San 90 90 90 90 2.5 2.5 1.5 1.5	Zinc To Sand Se 90 90 2.5 1.5 1.5	and / lower	Total PCBs	Total PCBs Total PCBs Information Source
g Cap LayerNASandSandIowerr Thicknesscm90909090r Thicknesscm90909090rial Porosityunitless 0.4 0.4 0.4 0.4 rial Porosityunitless 0.4 0.4 0.4 0.4 stavity of Capg/cm ³ 2.5 2.5 2.5 2.5 k Density Capg/cm ³ 1.5 1.5 1.5 1.5 k Density Capg/cm ³ 1.5 1.5 1.5 1.5 k Density Capg/cm ³ 1.5 1.5 1.5 0.001 L/kgoc 0.001 0.001 0.001 0.001 0.001 L/kgoc 1.0 $1,200$ 200 60.2 ter Seepage Velocitycm/yr 17.79 17.79	Sand 90 0.4 2.5 1.5		and / lower	Sadimant /	
g Cap Layer NA Sand Sand TOC r Thickness cm 90 90 90 90 rial Porosity unitless 0.4 0.4 0.4 0.4 iravity of Cap g/cm^3 2.5 2.5 2.5 2.5 k Density g/cm^3 1.5 1.5 1.5 1.5 k Density cap g/cm^3 2.5 2.5 2.5 2.5 k Density cap g/cm^3 1.5 1.5 1.5 1.5 k Density cap g/cm^3 1.5 1.5 1.5 0.4 L/kgoc 1.5 1.5 1.5 1.5 0.200 60.200 L/kg 100 $1,200$ 200 60.200 60.2 0.200 ter Seepage Velocity cm/yr 17.79 17.79 17.79 17.79 17.79	Sand 90 0.4 2.5 1.5	Sand 90 0.4 2.5 1.5	TOOT		
r Thickness cm 90 90 90 rial Porosity unitless 0.4 0.4 0.4 sravity of Cap g/cm ³ 2.5 2.5 2.5 k Density Cap g/cm ³ 1.5 1.5 1.5 k Density Cap g/cm ³ 1.5 1.5 1.5 L/kgoc 0.001 0.001 0.001 0.001 L/kg 100 1,200 200 ter Seepage Velocity cm/yr 17.79 17.79	90 0.4 1.5	90 0.4 2.5 1.5)	higher TOC	Possible cap alternatives.
r Thickness cm 90 90 90 rial Porosity unitless 0.4 0.4 0.4 iravity of Cap g/cm^3 2.5 2.5 2.5 k Density Cap g/cm^3 1.5 1.5 1.5 k Density Cap g/cm^3 1.5 1.5 1.5 k Density Cap g/cm^3 1.5 1.5 1.5 L/kgoc 0.001 0.001 0.001 0.001 L/kg 100 $1,200$ 200 ter Seepage Velocity cm/yr 17.79 17.79	90 0.4 1.5	90 0.4 2.5 1.5	 International and a statement of the stateme		Assumed effective thickness was 100 cm less 10
rial Porosity unitless 0.4 0.4 0.4 0.4 iravity of Cap g/cm ³ 2.5 2.5 2.5 2.5 Ik Density Cap g/cm ³ 1.5 1.5 1.5 1.5 Content ¹ fraction 0.001 0.001 0.001 L/kgoc 1.70 1,200 200 L/kg 100 1,200 200 ter Seepage Velocity cm/yr 17.79 17.79 17.79	0.4 2.5 5.	0.4 2.5 1.5 0.001	06	06	cm at bioturbation.
rial Porosity unitiess 0.4 0.4 0.4 0.4 ravity of Cap g/cm ³ 2.5 2.5 2.5 2.5 Content ¹ fraction 0.001 0.001 0.001 0.001 content ¹ L/kgoc 1.5 1.5 1.5 1.5 1.5 1.5 traction direction 0.001 0.001 0.001 content ¹ 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	0.4 2.5 1.5	0.4 2.5 1.5 0.001			Typical values for placed sand and clean sediment
iravity of Cap g/cm ³ 2.5 2.5 2.5 Ik Density Cap g/cm ³ 1.5 1.5 1.5 Content ¹ fraction 0.001 0.001 0.001 L/kgoc L/kgoc 1.00 1,200 200 ter Seepage Velocity cm/yr 17.79 17.79	2.5 1.5	2.5 1.5 0.001	4.0	0.4	that may be used.
Ik Density Cap g/cm ³ 1.5 1.5 1.5 1.5 Content ¹ fraction 0.001 0.001 0.001 L/kgoc L/kgoc 1.00 1,200 200 L/kg 100 1,200 200 ter Seepage Velocity cm/yr 17.79 17.79	1.5	1.5 0.001	2.5	2.5	Typical values for these materials.
Ik Density Cap g/cm ³ 1.5 1.5 1.5 1.5 Content ¹ fraction 0.001 0.001 0.001 0.001 L/kgoc L/kgoc 1.00 1,200 200 200 ter Seepage Velocity cm/yr 17.79 17.79 17.79 17.79	1.5	1.5			Calculated from porosity and specific gravity per
Content ¹ fraction 0.001 0.001 0.001 L/kgoc L/kgoc 1,200 200 200 L/kg 100 1,200 200 200 ater Seepage Velocity cm/yr 17.79 17.79 17.79		000	1.5	1.5	page B24 of Reible (1998).
L/kgoc L/kg 100 1,200 200 L/kg to 1,200 200 ater Seepage Velocity cm/yr 17.79 17.79 17.79	0.001	- 00.0	0,001	0.01	Typical values for these materials.
L/kgoc L/kgoc 200 L/kg 100 1,200 200 ater Seepage Velocity cm/yr 17.79 17.79					Weighted average of Aroclors found in sediment
L/kg 100 1,200 200 ater Seepage Velocity cm/yr 17.79 17.79 17.79	L/kgoc		60,200	60,200	(1242 and1254; RAIS 2004).
L/kg 100 1,200 200 ater Seepage Velocity cm/yr 17.79 17.79 17.79					PCB $K_d = K_{oc}^*$ TOC; Copper, Lead, and Zinc Kds
ater Seepage Velocity cm/yr 17.79 17.79 17.79	100	200	60.2	602	from Aziz et al. 2001.
cm/yr 17.79 17.79 17.79					
cm/yr 17.79 17.79 17.79					$Vx = Q/(n_e^*A)$, where $Q = discharge and A = cross-$
cm/yr 17.79 17.79 17.79					sectional area. Or: $Vx = (kdh)/(n_edl)$ Assume K =
	cm/yr 17.79	17.79	17.79	17.79	0.00003 cm/sec, ne = 0.25 , dh/dl = 0.0047 .
	ļ				Conservatively high value from range of diffusion
21 221 221					coefficients for PCBs (RAIS 2004); For metals D =
225 267 222	cm ² /yr 225 267	222	190	190	(RT/F2)(lambda/charge of the ion).
Porewater Concentration in					95 percent UCL porewater concentration
Underlying Sediments ⁴ mg/L 3.89E+00 9.39E-02 2.66E+00 2.244E-02	er)		.244E-02	2.244E-03	calculated from bulk chemistry cores.

Notes:

¹ TOC - Total Organic Carbon. Varies based on possible types of backfill (cap) materials used

² Koc - Organic Carbon Partitioning Coefficient

³ Kd - Calculated partitioning equilibrium coefficient

⁴ Calculated as shown in Table 7, using the most conservative (highest) value

Site Investigation and Characterization Report

BAE Systems Bulkhead Extension and Yard Improvement

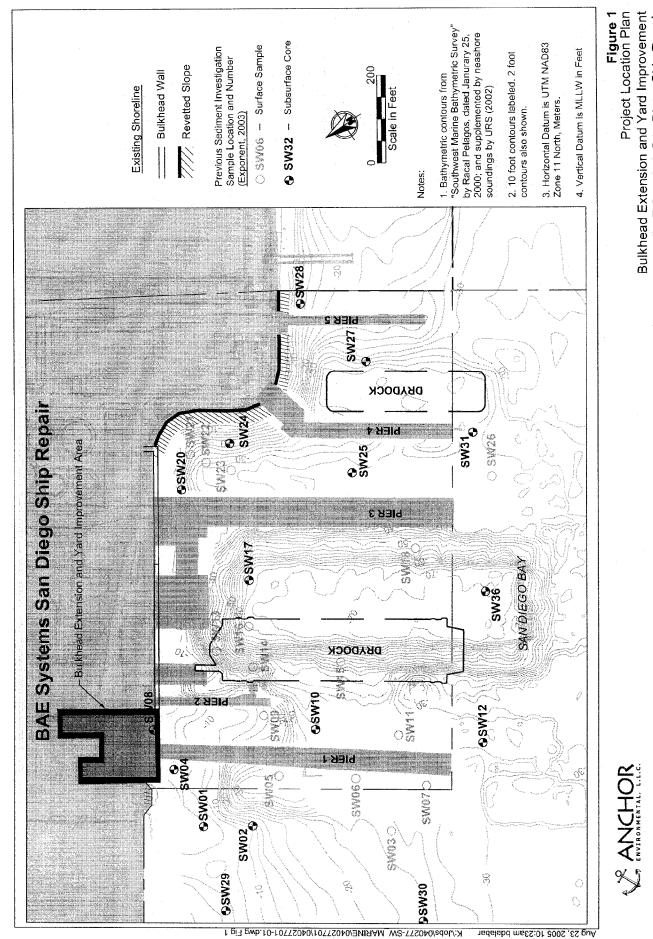
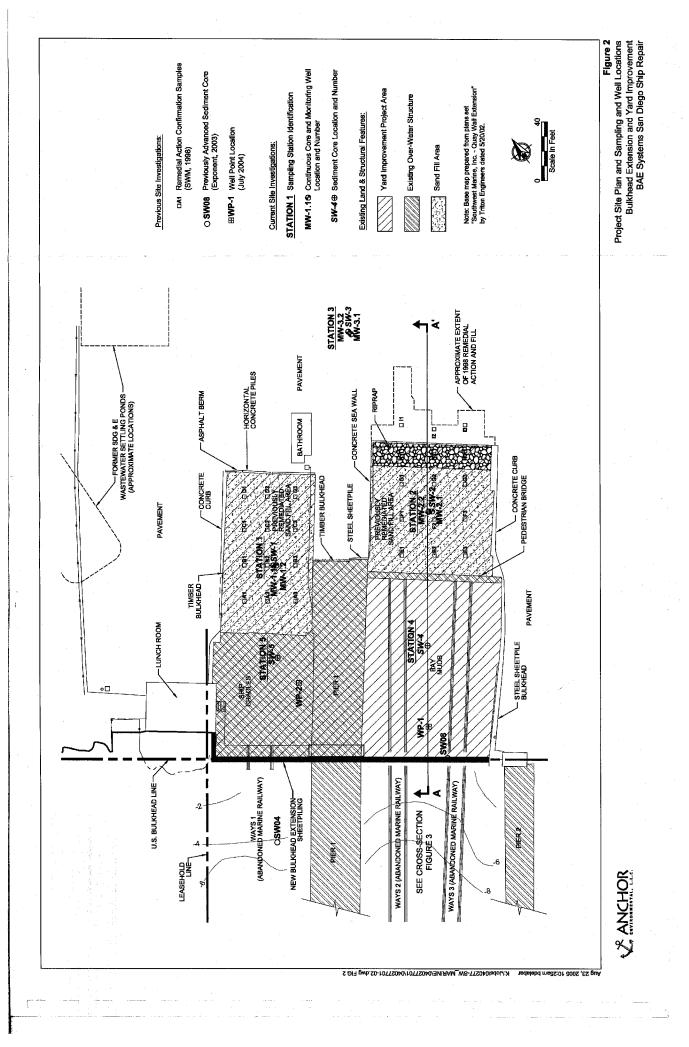

August 2005 020193-01

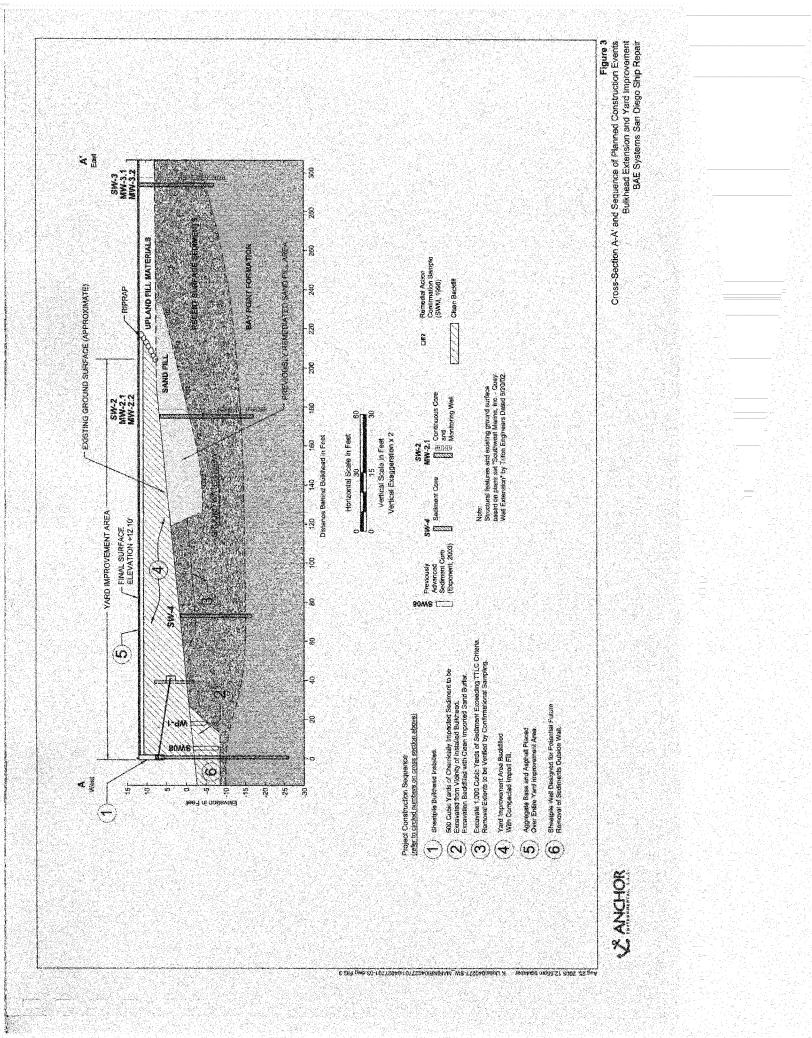
Table 9 Fate and Transport Modeling Results

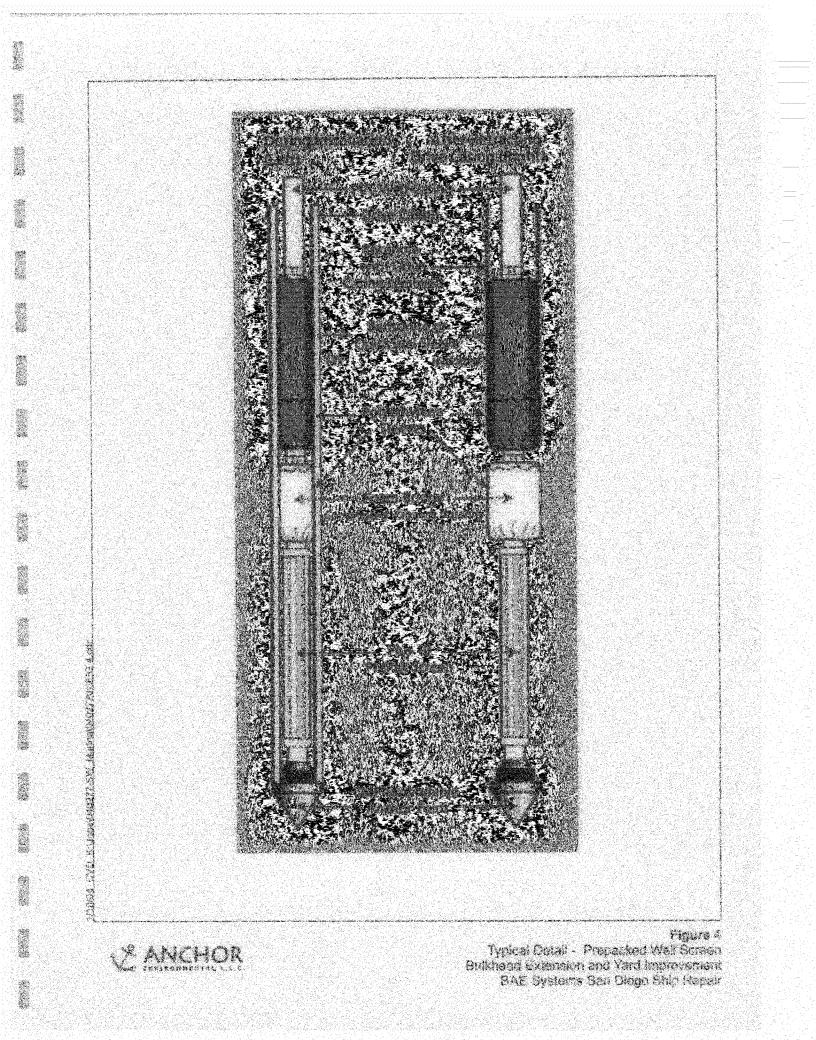
Hermonie - Albert Architecture	Years a	fter Constructi	on (mg/L)	Galifornia Toxics Rule	Years until predicted
Chemical	25	50	100	WQ Criteria (mg/L)	breakthrough
Copper	0	0	0	3.10E-03	690
Lead	0	0	0	8.10E-03	13,600
Zinc	0	0	0	8.10E-02	1,760
Total PCBs (clean sediment cap)	0	0	0	3.00E-05	2,280
Total PCBs (quarry sand cap)	0	0	3.84E-10	3.00E-05	185

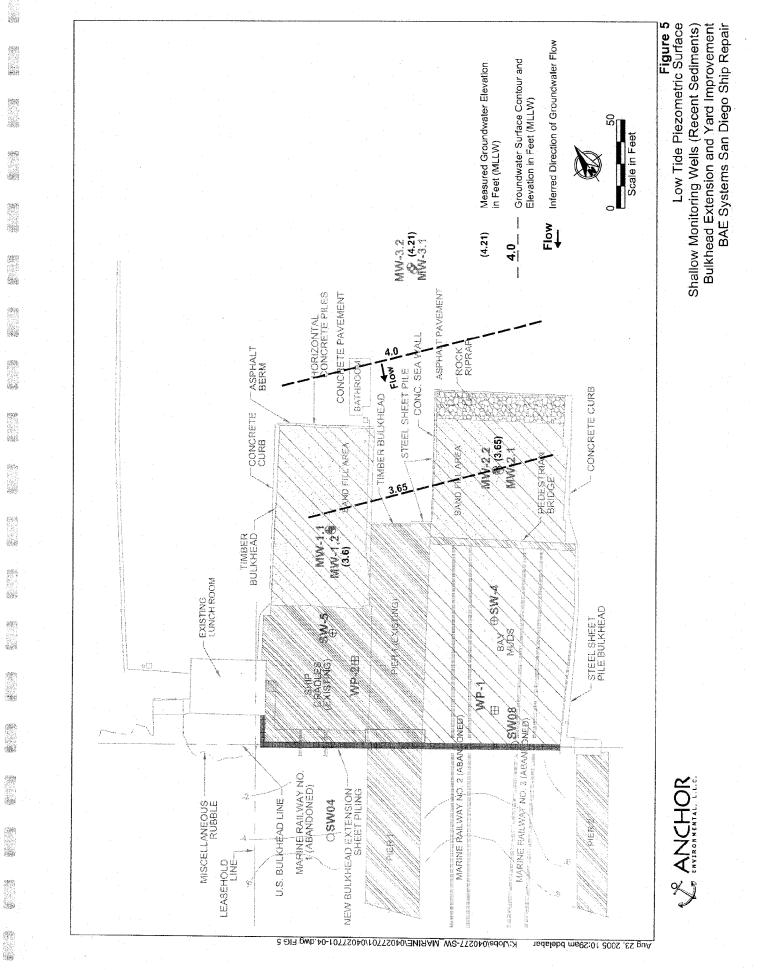
Site Investigation and Characterization Report BAE Systems Bulkhead Extension and Yard Improvement

FIGURES

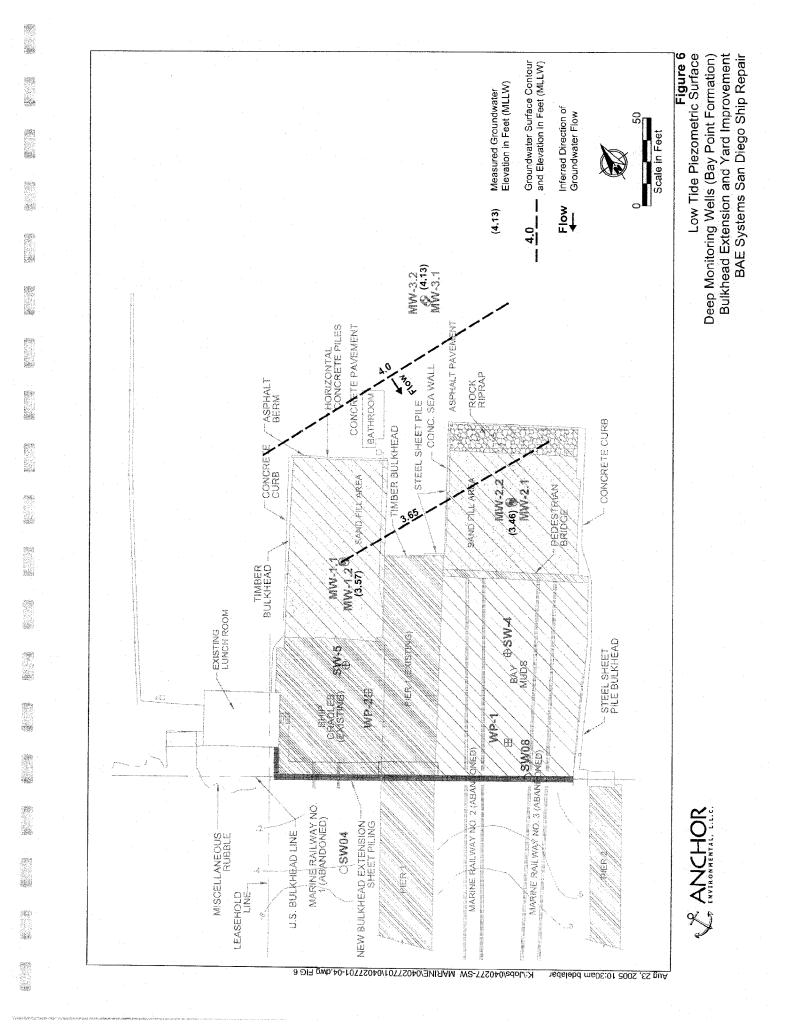

のたい

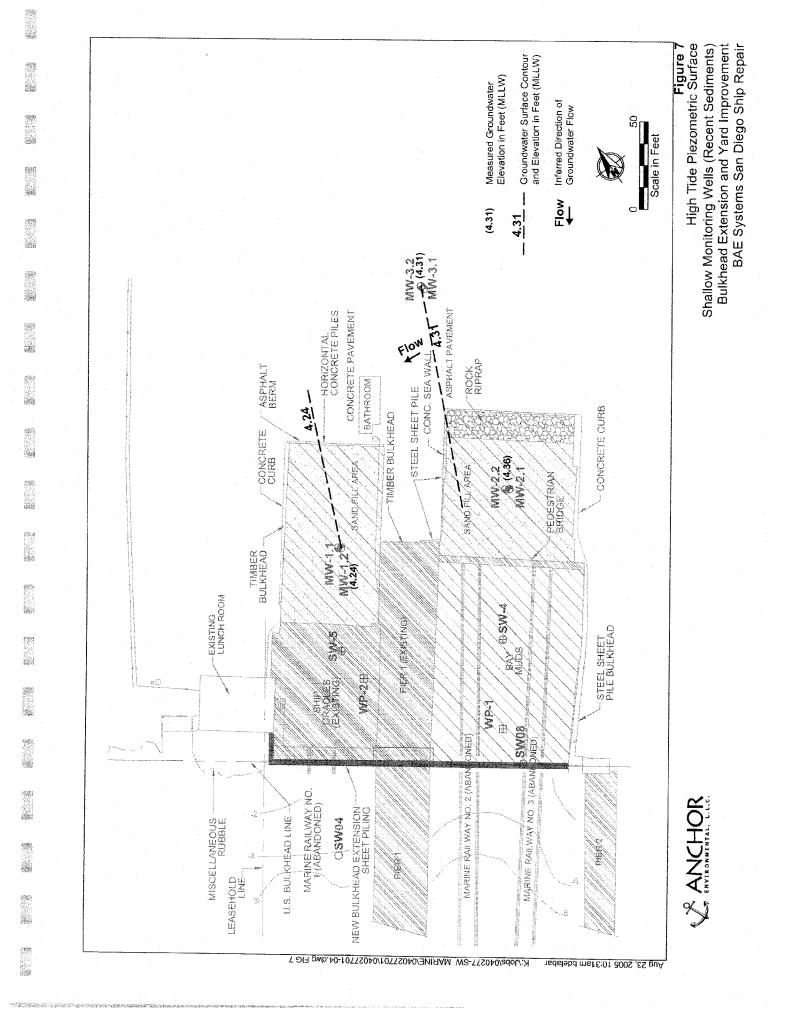

読みる

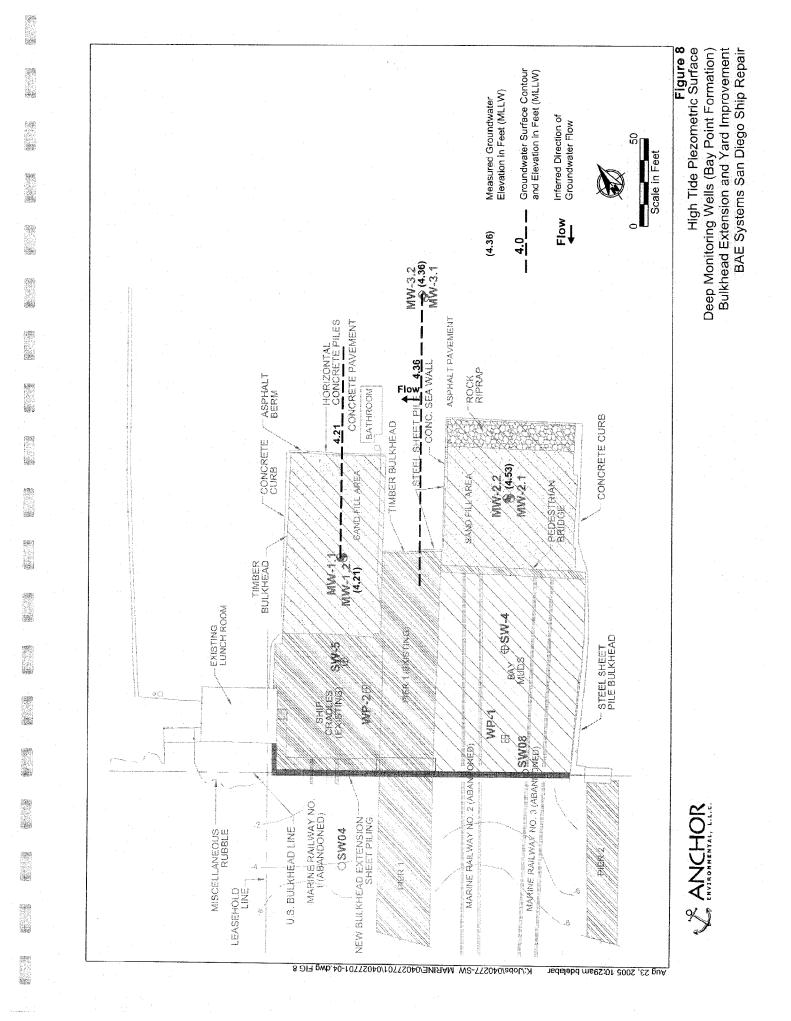

腳

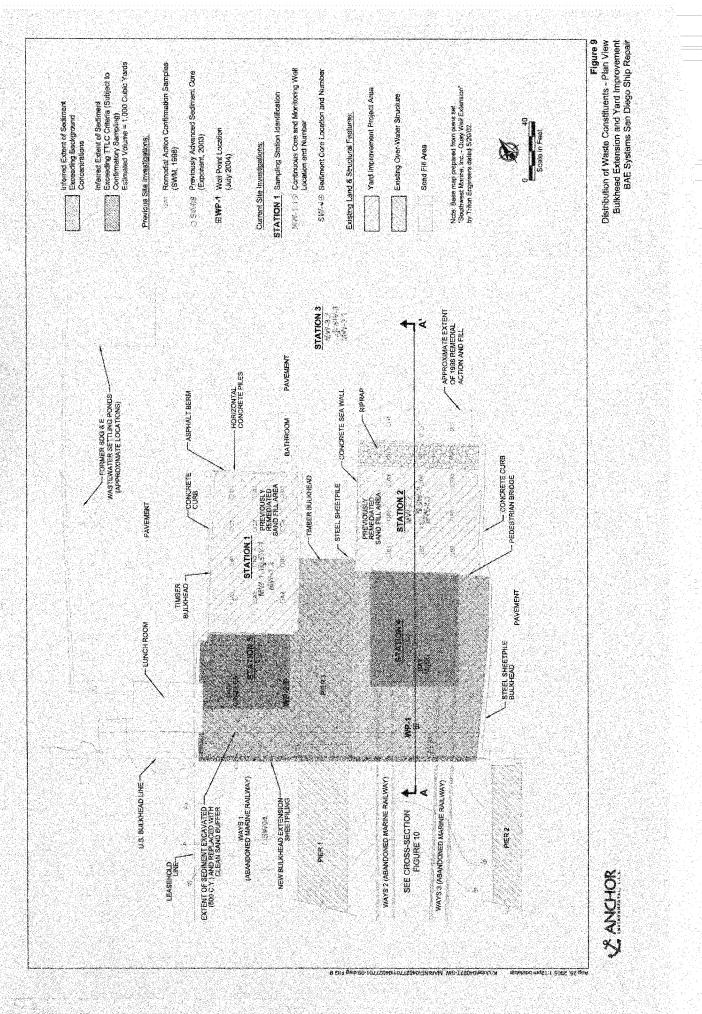

1

Bulkhead Extension and Yard Improvement BAE Systems San Diego Ship Repair

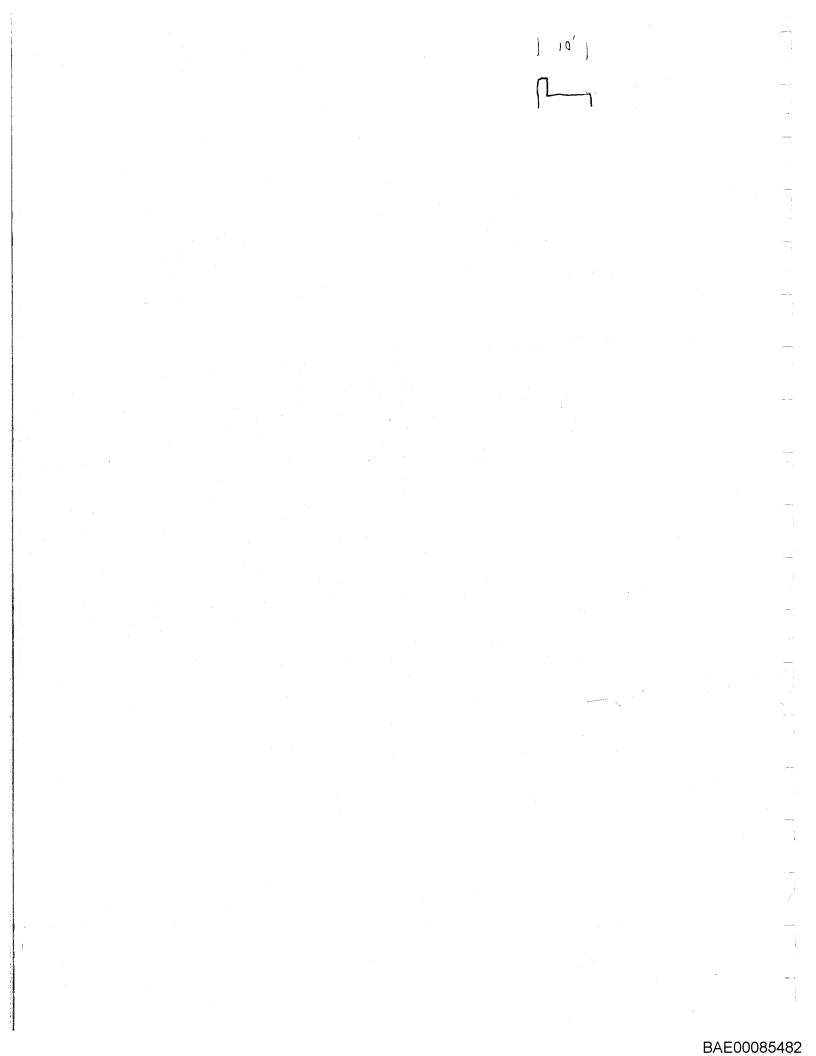


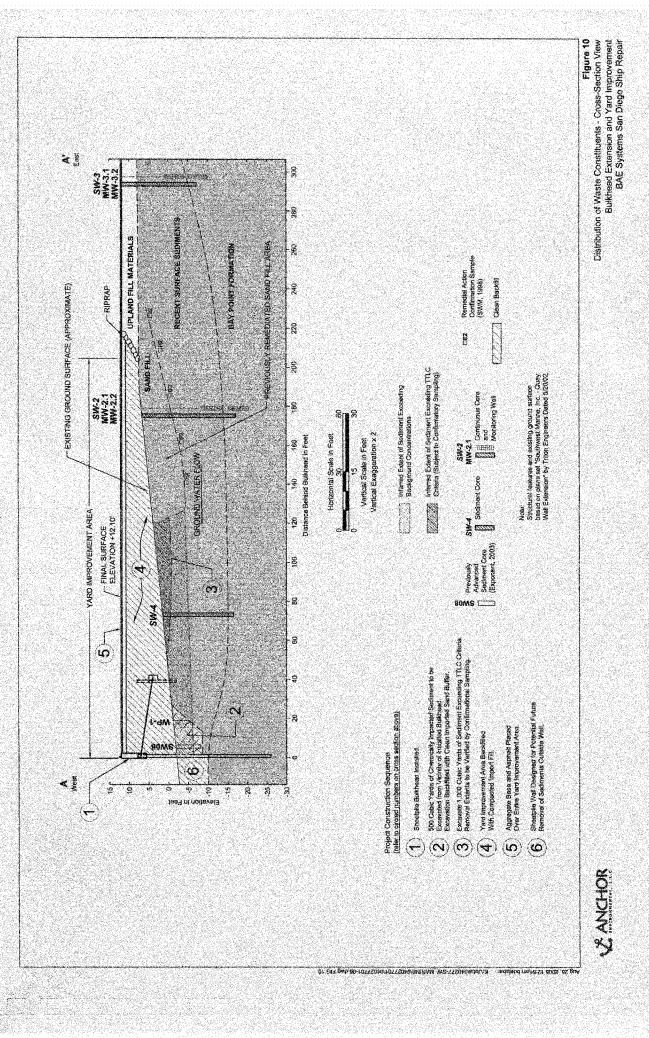






1891)s postantenten





からの見たの

APPENDIX A

(#B)

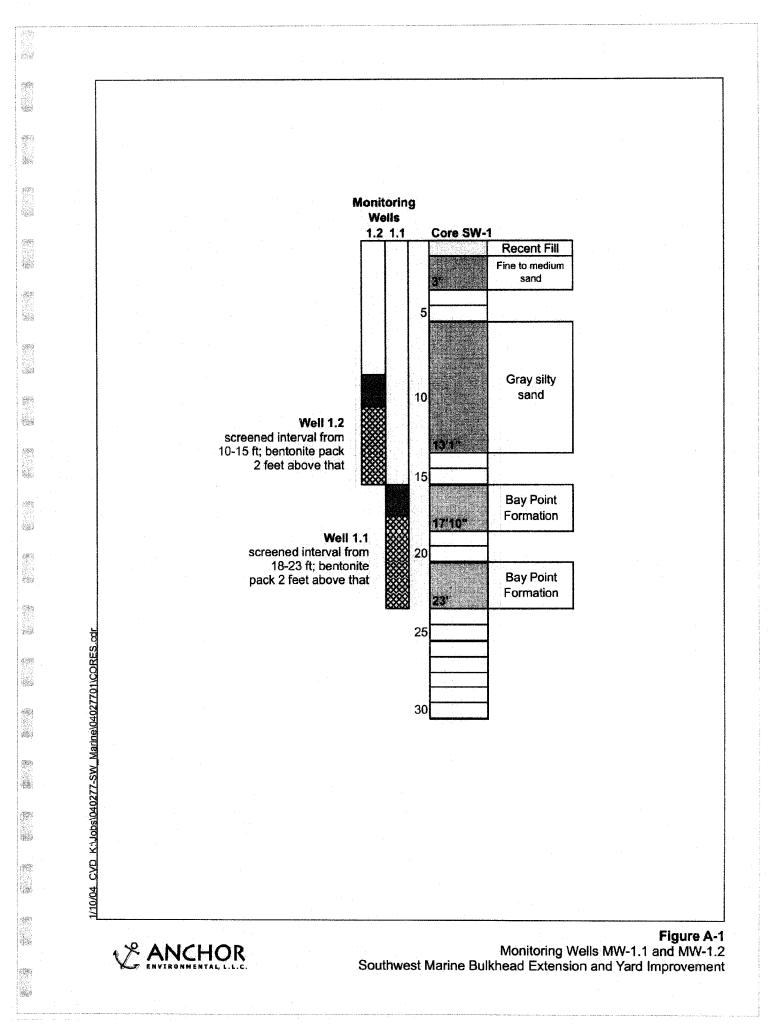
(1) 波道

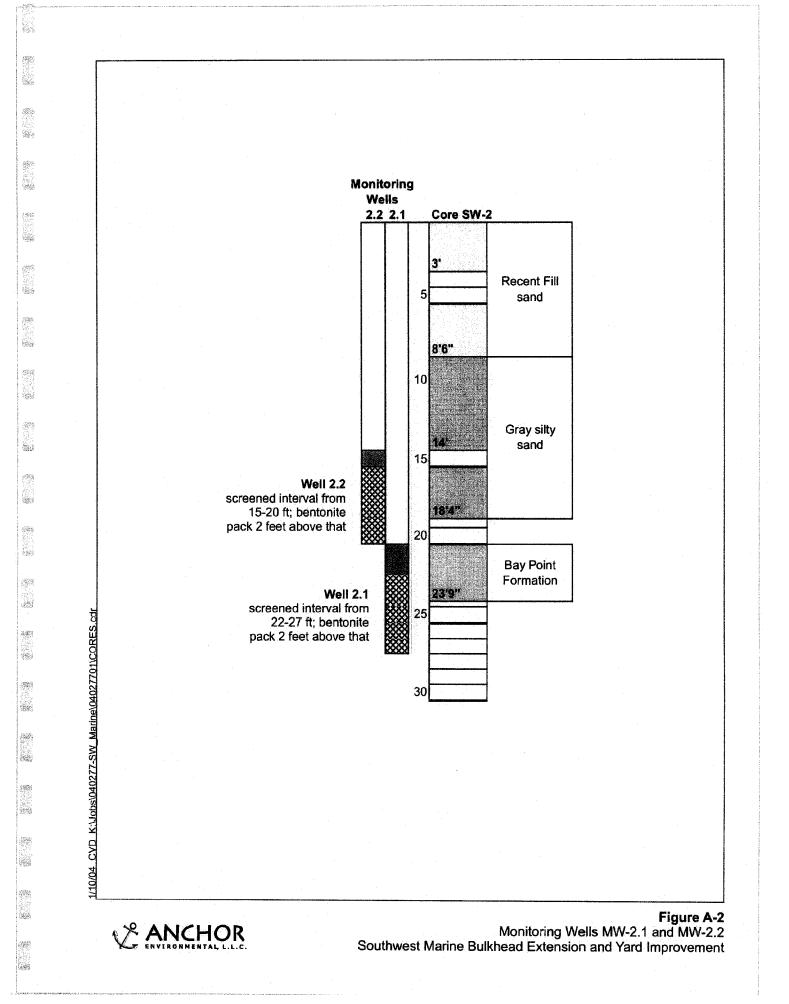
896 122

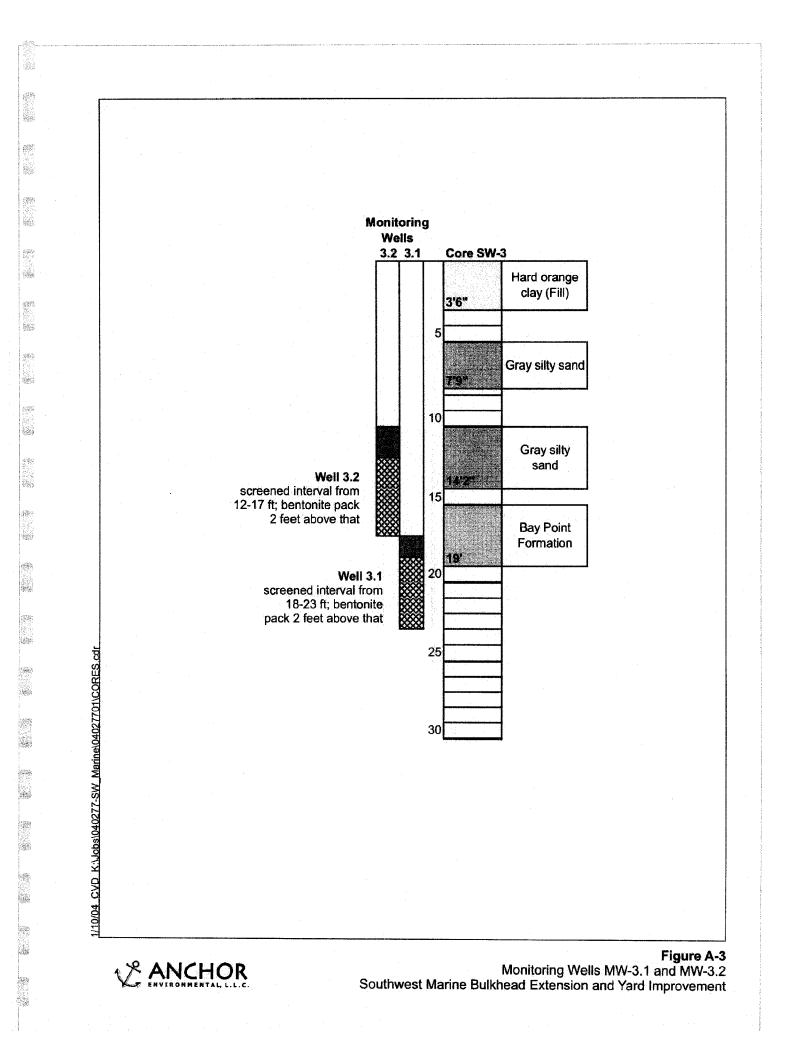
潮行。

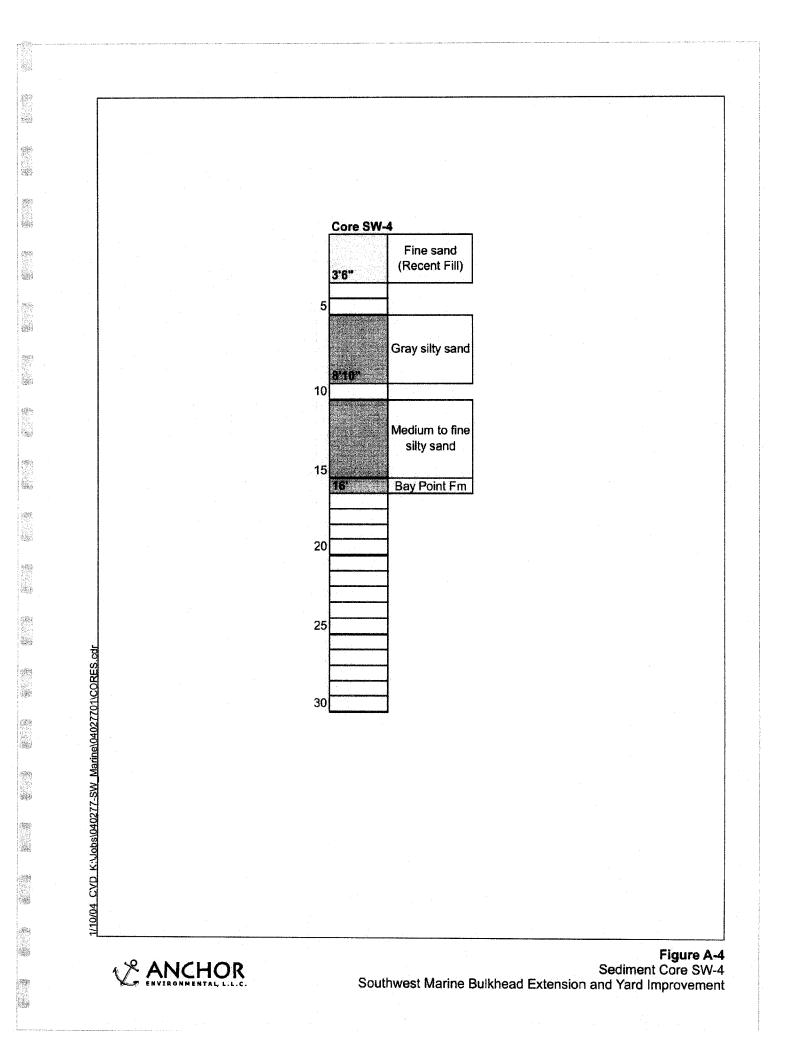
際に公論

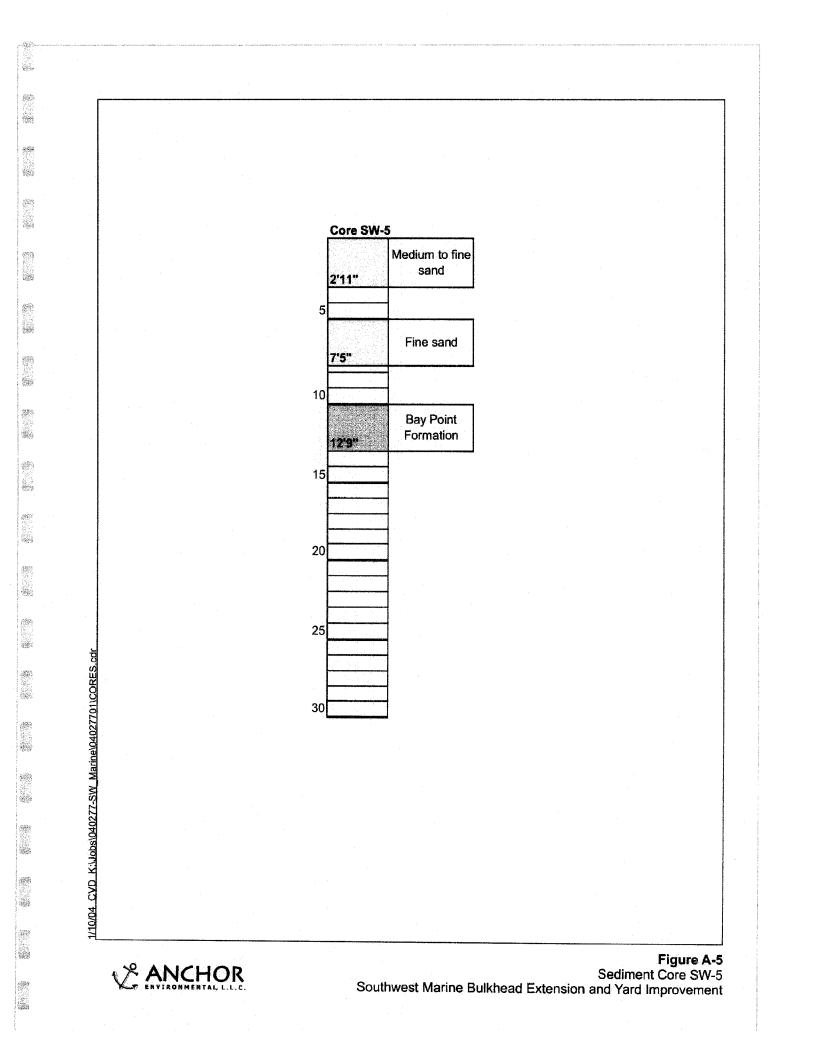
際に認識


際部である


-Parts


e e


CORING AND WELL INSTALLATION LOGS


BULKHEAD EXTENSION AND YARD IMPROVEMENT PROJECT PHASE 2 ACTIVITIES

APPENDIX B

後には認

の言語

物心藏

DATA VALIDATION REVIEW REPORTS

BULKHEAD EXTENSION AND YARD IMPROVEMENT PROJECT PHASE 2 ACTIVITIES

DATA VALIDATION REVIEW REPORT FOR GROUNDWATER SAMPLES

調査の

の記録

のないない

際に適

SOUTHWEST MARINE BULKHEAD EXTENSION

Prepared for

SW Marine, Inc. 2205 E. Belt Street San Diego, California 92113

Prepared by

Anchor Environmental, L.L.C. 1423 Third Avenue, Suite 300 Seattle, Washington 98101

January 2005

This report summarizes the review of analytical results for seven water samples collected on December 3, 2004 at the Southwest Marine site in San Diego, California. Samples were collected by Anchor Environmental, LLC and submitted to CRG Marine Laboratories, Inc. (CRG) in Torrance, California. Samples were analyzed for total dissolved solids (TDS) by SM 2450-C, Chromium (CR) +6 by SM3500-CR, salinity by SM 2510, metals by United States Environmental Protection Agency (USEPA) Method 1640 or 200.8, polychlorinated biphenyls (PCBs) and congeners by USEPA Method 625, and polycyclic aromatic hydrocarbons (PAHs) by USEPA Method 625. CRG project ID P24152 and P24153c were reviewed.

Sample ID	Location	Lab ID	Matrix	Analysis Requested
SWM-Well 2-27-22	Station 2, MW-2.1	21498	Water	TDS, CR+6, salinity, metals, PCB, congeners, and PAH
SWM-Well 2-15-20	Station 2, MW-2.2	21499	Water	TDS, CR+6, salinity, metals, PCB, congeners, and PAH
SWM-Well 2-15-20 DUP	u	21500	Water	TDS, CR+6, salinity, metals, PCB, congeners, and PAH
SWM-Well 3-18-23	Station 3, MW-3.1	21388	Water	TDS, CR+6, salinity, metals, PCB, congeners, and PAH
SWM-Well 3-12-17	Station 3, MW-3.2	21389	Water	TDS, CR+6, salinity, metals, PCB, congeners, and PAH
SWM-Well 1-18-23	Station 1, MW-1.1	21386	Water	TDS, CR+6, salinity, metals, PCB, congeners, and PAH
SWM-Well 1-10-5	Station 1, MW-1.2	21387	Water	TDS, CR+6, salinity, metals, PCB, congeners, and PAH

DATA VALIDATION AND QUALIFICATIONS

鏈

The following comments refer to the laboratory's performance in meeting the quality assurance/quality control (QA/QC) guidelines outlined in the data quality objective section of the Quality Assurance Project Plan (QAPP; Anchor 2004). Laboratory results were reviewed following USEPA guidelines (USEPA 1999 and 2004). Unless noted in this report, laboratory results for the samples listed above were within QC criteria.

1

Laboratory Data Package and Field Documentation

Field documentation was checked for completeness and accuracy. The following was noted by CRG at the time of sample receipt: the samples were received in good condition and were consistent with the accompanying Chain-of-Custody form as documented on the Sample Receipt Form.

Holding Times and Sample Preservation

Samples were appropriately preserved and analyses were conducted within holding times. No data were qualified.

LABORATORY METHOD BLANKS

Laboratory method blanks were analyzed at the required frequencies. No analytes were detected in the laboratory method blanks.

FIELD QUALITY CONTROL

Field Duplicates

One field duplicate pairs was collected: SWM Well 2-15-20/SWM Well 2-15-20-DUP. The field duplicate pairs were comparable. No data were qualified due to these results.

SURROGATE RECOVERIES

There were no surrogate recoveries reported for the PCB or congener analyses. The surrogate recoveries for the semivolatile organics (PAH) analyses were performed at the required frequencies. Surrogate recoveries were within the QAPP-specified control limits, except for the following:

 d8-Naphthalene in samples SWM-Well 1-18-23, SWM-Well 1-10-15, SWM-Well 3-18-23, SWM-Well 3-12-17, and the method blank. The recoveries for the surrogate were below the QAPP-specified control limit. As the method allows for up to one surrogate to be outside the control limit for each sample, no data were qualified based on the surrogate recoveries.

MATRIX SPIKE (MS) AND MATRIX SPIKE DUPLICATE

Matrix spike (MS) and matrix spike duplicate (MSD) samples, were analyzed at the required frequency for the inorganic analyses. The following exceptions were noted:

- The inorganic MS and MSD percent recoveries (%Rs) were within the QAPP-specified control limits, except for hexavalent chromium MS on sample SWM-Well 3-12-17. As the MSD was within the QAPP-specified control limits no data were qualified.
- There were no MS or MSD analyzed for the organic analyses: PCBs, congeners, or PAH.

LABORATORY CONTROL SAMPLE, LCS DUPLICATE, AND SAMPLE REPLICATES

Laboratory control samples (LCS) for the inorganics were analyzed at the required frequencies. All LCS and LCS Duplicate (LCSD) %Rs were within QAPP-specified control limits, with the following exceptions:

- Trace metals recoveries for Antimony, iron, and manganese were outside the QAPPspecified control limits low in Method USEPA 1640 LCS. Iron and manganese were also outside the QAPP-specified control limit for Relative Percent Difference (RPD) in the LCSD. All associated data were flagged with the "J" flag for estimated.
- Cadmium RPD was above the QAPP-specified control limit in both the sample replicate (SWM-Well 2-27-22) and the dissolved LCS control limit.
- Titanium was above the sample replicate RPD control limit in sample SWM-Well 2-27-22.
- Selenium and mercury were not reported in the dissolved LCS or in the sample replicate analysis.
- Antimony and beryllium were above the RPD limit in the sample replicates for sample SWM-Well 1-18-23. Data associated with these recoveries will be qualified with the "J" flag to indicate the values reported are estimates.
- Aluminum and cadmium in the LCS and LCSD were above the QAPP-specified control limit for RPDs in USEPA method 1640 analyzed on December 13, 2004. Associated sample data will be qualified with the "J" flag to indicate the values reported are estimates.
- There were no laboratory control samples analyzed for the PCB, congener, or PAH analyses.

3

3.52

METHOD REPORTING LIMITS

Sample results were reported using the QAPP method reporting limits. Reporting limits were acceptable unless noted below:

 Samples SWM-Well 3-18-23 and SWM-Well 3-12-17 were analyzed using USEPA Method 200.8 rather than USEPA Method 1640. This resulted in a reporting limit of ten times the QAPP requirement.

OVERALL ASSESSMENT

The inorganic data are judged to be acceptable for their intended use. Due to the lack of surrogates for the PCB and congener analyses, it was difficult to access whether this data met minimal acceptance criteria. This compounded with the lack of any precision or accuracy data for the PCB, congener, or PAH data qualifies the data as estimated.

4

PRECISION, ACCURACY, AND COMPLETENESS

Precision:All precision goals were not met.Accuracy:All accuracy goals were not met.

Completeness:

Completeness was 100 percent for all inorganic data, these data are useable as qualified. For the organic data, completeness cannot be determined.

BAE00085495

REFERENCES

- Anchor, 2004. Site Investigation Workplan, for 401 Water Quality Certification, Southwest Marine Bulkhead Extension and Yard Improvement Phase 2 Activities. Includes Quality Assurance Project Plan (QAPP). November 2004.
- USEPA. 2004. USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response. EPA 540/R-94/013. February.
- USEPA. 1999. USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response. EPA 540/R-99/008. October.

DATA VALIDATION REVIEW REPORT FOR SEDIMENT SAMPLES

たいない

潮空影

SOUTHWEST MARINE BULKHEAD EXTENSION

Prepared for

SW Marine, Inc. 2205 E. Belt Street San Diego, California 92113

Prepared by

Anchor Environmental, L.L.C. 1423 Third Avenue, Suite 300 Seattle, Washington 98101

January 2005

This report summarizes the review of analytical results for 14 sediment samples collected on November 29 and December 2, 2004, at the Southwest Marine site in San Diego, California. Samples were collected by Anchor Environmental, LLC and submitted to CRG Marine Laboratories, Inc. (CRG) in Torrance, California. Samples were analyzed for total organic carbon (TOC), trace metals by United States Environmental Protection Agency (USEPA) Method 6020, polychlorinated biphenyls (PCBs) and congeners by USEPA Method 8270C, and polycyclic aromatic hydrocarbons (PAHs) by USEPA Method 8270C. CRG project ID P24152b was reviewed.

Sample ID	Location	Lab ID	Matrix	Analysis Requested
SWM-Core 2-18-20	Station 2, core SW-2	21439	Sediment	TOC, Metals, PCB, congeners, and PAH
SWM-Core 1-17.2-20	Station 1, core SW-1	21440	Sediment	TOC, Metals, PCB, congeners, and PAH
SWM-Core 3-13-15	Station 3, core SW-3	21441	Sediment	TOC, Metals, PCB, congeners, and PAH
SWM-Core 3-5-10	u	21442	Sediment	TOC, Metals, PCB, congeners, and PAH
SWM-Core 4-6.11-10	Station 4, core SW-4	21443	Sediment	TOC, Metals, PCB, congeners, and PAH
SWM-Core 4-0-2	u	21444	Sediment	TOC, Metals, PCB, congeners, and PAH
SWM-Core 4-19-20	ц	21445	Sediment	TOC, Metals, PCB, congeners, and PAH
SWM-Core 4-6.2-6.11	u	21446	Sediment	TOC, Metals, PCB, congeners, and PAH
SWM-Core 4-2-3.4	ť	21447	Sediment	TOC, Metals, PCB, congeners, and PAH
SWM-Core 5-2.1-2.3	Station 5, core SW-5	21448	Sediment	TOC, Metals, PCB, congeners, and PAH
SWM-Core 5-2.3-4.1	ĸ	21449	Sediment	TOC, Metals, PCB, congeners, and PAH
SWM-Core 5-4.1-5.0	ů .	21450	Sediment	TOC, Metals, PCB, congeners, and PAH
SWM-Core 5-7.7-9	ť	21451	Sediment	TOC, Metals, PCB, congeners, and PAH
SWM-Core 5-9-10	K	21452	Sediment	TOC, Metals, PCB, congeners, and PAH
SWM-Core 5-12.3-15	ана стана стана И	21470	Sediment	TOC, Metals, PCB, congeners, and PAH

DATA VALIDATION AND QUALIFICATIONS

The following comments refer to the laboratory's performance in meeting the quality assurance/quality control (QA/QC) guidelines outlined in the data quality objective section of

the Quality Assurance Project Plan (QAPP; Anchor 2004). Laboratory results were reviewed following USEPA guidelines (USEPA 1999 and 2004). Unless noted in this report, laboratory results for the samples listed above were within QC criteria.

Laboratory Data Package and Field Documentation

Field documentation was checked for completeness and accuracy. The following were noted by CRG at the time of sample receipt: the samples were received in good condition and were consistent with the accompanying Chain-of-Custody forms as documented on the Sample Receipt Form.

Holding Times and Sample Preservation

Samples were appropriately preserved and analyses were conducted within holding times. No data were qualified.

LABORATORY METHOD BLANKS

Laboratory method blanks were analyzed at the required frequencies. No analytes were detected in the laboratory method blanks.

FIELD QUALITY CONTROL

Field Duplicates

No.

No field duplicates were taken with this data set.

SURROGATE RECOVERIES

There were no surrogate recoveries reported for the PCB or congener analyses. The surrogate recoveries for the semivolatile organics (PAH) analyses were performed at the required frequencies. Surrogate recoveries were within the QAPP-specified control limits, except for the following:

 d8-Naphthalene in the method blank, samples SWM-Core 5-7.7-9, SWM-Core 5-12.3-15, and SWM-Core 1-17.2-20 (matrix spike [MS]). The recovery for the surrogates were below the QAPP-specified control limit. As the method allows for up to one surrogate to be outside the control limit for each sample, no data were qualified based on the surrogate recoveries.

 Surrogates d8-Naphthalene and d12-perylene in sample SWM-Core 5-9-10. The recovery for the surrogates were below the QAPP-specified control limit. As the sample was non-detect for all analytes of interest, no data qualifications were made.

MATRIX SPIKE AND MATRIX SPIKE DUPLICATE

MS and matrix spike duplicate (MSD) samples, were analyzed at the required frequency for the inorganic analyses. The following exceptions were noted:

- The MS and MSD for sample SWM-Core 5-12.3-15 has numerous analytes outside the QAPP-specified control limits of 75 to 125 percent recovery (%R) in the PAH analysis. All relative percent difference (RPDs) were within the QAPP-specified control limits. Since the second MS and MSD set were within QAPP-specified control limits, the low recoveries were attributed to matrix effects rather than poor laboratory performance. No data were qualified based on these recoveries.
- The MS RPD for strontium and titanium were outside the QAPP-specified control limit. Results associated with these MSs were qualified with a "J" to indicate the values associated with this data are estimates.
- The MSD recovery for sample SWM-Core 5-12.3-15 has PCB congener PCB189 below the QAPP-specified control limit. Since this was the only congener that fell below the QC criteria, no data qualifications were made based on this recovery. All associated RPDs were within the control limits.

SAMPLE REPLICATES

- A sample replicate was performed on sample SWM-Core 5-2.3-4.1. The resulting RPDs for manganese, silver, and vanadium were above the QAPP-specified control limits.
- The sample replicate for SWM-Core 5-12.3-15 was missing data for mercury analysis.
- The sample replicate for SWM-Core 5-12.3-15 for PCB analysis does not match that of the original analysis. The replicate appears to have been done on sample SWM-Core 4-0-2 based on the congener results. The replicate data for this sample should not be used in any evaluation until further clarification can be ascertained.

3

LABORATORY CONTROL SAMPLE AND LCS DUPLICATE

Laboratory control samples (LCS) for the inorganics were analyzed at the required frequencies. All LCS and LCS Duplicate (LCSD) %Rs were within QAPP-specified control limits, with the following exceptions:

- Trace metals recoveries for Antimony, iron, strontium, and zinc were outside the QAPP-specified control limits low in the LCS and LCSD. Titanium recovery was also outside the QAPP-specified control limit in the LCSD. All associated data were qualified with the "J" flag for estimated.
- There were no laboratory control samples analyzed for the PCB, congener or PAH analyses.

METHOD REPORTING LIMITS

翶

Sample results were reported using the QAPP method reporting limits. Reporting limits were acceptable.

OVERALL ASSESSMENT

The data are judged to be acceptable for their intended use. Due to the lack of surrogates for the PCB and congener analyses, it was difficult to access whether this data met all acceptance criteria. Since the resulting precision and accuracy data met the criteria, assessment was based on these recoveries.

PRECISION, ACCURACY, AND COMPLETENESS

For the organic analyses precision and accuracy were judged from the matrix spike data.

Precision:All precision goals were met.Accuracy:All accuracy goals were met.Completeness:As the TOC data had not been submitted at the time of publication,
completeness was not evaluated for it at this time.

が

96.

St.

20

ġ.

部三部

- Anchor, 2004. Site Investigation Workplan, for 401 Water Quality Certification, Southwest Marine Bulkhead Extension and Yard Improvement Phase 2 Activities. Includes Quality Assurance Project Plan (QAPP). November 2004.
- USEPA. 2004. USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response. EPA 540/R-94/013. February.
- USEPA. 1999. USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response. EPA 540/R-99/008. October.

5

APPENDIX C

- 第二十二十二

開いる

「「「「「「「「」」」

FATE AND TRANSPORT MODELING RESULTS

第二の第

の言語

Modeling Results for Copper

	mg/kg Canc. Seds	-		0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0:00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	mg/L mg/kg Conc. (Cpw) Canc. Seds			0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0:00E+00
	Comb			0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.0000+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	Fac2	-	1 1 1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	D:00E+00	0.00E+00
Model Calculation and Results	EF	1.84E+08	1.84E+08	1.84E+08	1.84E+08	1.84E+08	1.84E+08	1.84E+08	1.84E+08	1.84E+08	1.84E+08	1.84E+08	1.84E+08	1.84E+08	1.84E+08	1.84E+08	1.84E+08	1.84E+08	1.84E+08	1.84E+08	1.84E+08
alculation a	Fact		•	0.00E+00	0.00E+D0	0.00E+00.0	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00								
Model C	Years Time (t)	5	10	15	20	25	œ	35	4	45	50	55	60	65	70	75	80	85	6	35	100

部門に新

Modeling Reults for Lead

								>	B							
								Lotte								
								2	5	047	:					
								Drow		0	5					
								d41m		lb/db	j					
								stant		25.0						
								, onei	į	0 	,					
									1	10	5					
								ai de	2	,m/se						
								viter o		003						
								g g	5	0.0 =						
								fied.		A						
								Kd .	2	CI ISS						
								"(tios	-	4						
								ett.	į	(10)	•					
								o t	i i	n)/(d)						
								conte		(<u>동</u>						
								time i	2	Š	-07	5				
								mois		٩. م	2 66E-07					
								etric	2	are	~	1				
		%0	2					olum		tiona	10					
		0 - 5)					soit/v	ahor	s-sec	RT/	í	1			
		de 2	ו ו ו					tv of	ion In	cros	(noi	motic				
		el rar		>				lensi	for b	4	of the	ISSE				
		ŭ. Ne∖		0sit				835	E C	ance	arcie (eldie				
		- 0	b	5												
		nd or o	5	X nor				ulk m	t pu	harge	a/ch:	ğ				
		d sand or o		ravity X nor				drv bulk m	cap and 1	- discharge	- mbda/ch	1961 (Re				
		sorted sand or o		ific gravity X nor				: 1+ (drv bulk m	hick cap and 1	e Q = discharge	F ²)(lambda/ch	Juirk 1961 (Re				
		Well sorted sand or o		Specific gravity X por				dor = 1 + (drv bulk m)	Dom thick cap and 1	where Q = discharge	(RT/F ²)(Jambda/ch	and Outrk 1961 (Re				
		988. Well sorted sand or o		itv = Specific gravity X por				on factor = 1+ (drv bulk m	a 100cm thick cap and 1	*A), where Q = discharge	s D = (RT/F ²)(lambda/ch	aton and Outrk 1961 (Re				
		er, 1988. Well sorted sand or o		density = Specific gravity X nor				rdation factor = 1+ (drv bulk m	mes a 100cm thick cap and 1	Q/(ne*A), where Q = discharge	$retals D = (RT/F^2)(lambda/ch)$	dillington and Quirk 1961 (Re				
		Drever, 1988. Well sorted sand or gravel range 25 - 50%		Bulk density = Specific gravity X nor				Retardation factor = 1+ (drv bulk m	Assumes a 100cm thick cap and 1	$Vx = Q/(n_a^*A)$, where $Q = discharge$	For metals D = (RT/F ²)(lambda/ch	Per Millington and Outrk 1961 (Re				
		Drever, 1988. Well sorted sand or o		4) Bulk density = Specific gravity X por		-		Relation factor = 1+ (dry bulk mass density of solity/of undertic moisture content of the solity/of Relate exercision is not consistent with Draws or Easter	1	$Vx = Q_i(n_x^*A_i)$ where $Q = discharge and A = cross-sectional area. Or: Vx = (kdh /(n_zdl)) Assume K = 0.0003 cm/sec. n = 0.76 -(h/di = 0.0013$	For metals $D = (RT/F^2)(lambda/charge of the ion) RT/F^2 =$	Per Millington and Outrk 1961 (Reible assumption)	•			
		Drever, 1988. Well sorted sand or o		e B24) Bulk density = Specific gravity X nor		-		Retardation factor = 1+ (drv bulk m	1	$Vx = Q/(n_a^*A)$, where Q = discharge	ľ	Per Millington and Outrk 1961 (Re				provide the second s
		Drever, 1988. Well sorted sand or o		r page B24) Bulk density = Specific gravity X nomsity				Retardation factor = 1+ (drv bulk m	ion depth)		n water	Per Millington and Outrk 1961 (Re				
		Drever, 1988. Well sorted sand or o		s (per page B24) Bulk density = Specific gravity X nor					ion depth)		n water	Per Millington and Outrk 1961 (Re		Its		
		Drever, 1988. Well sorted sand or o		ments (per page B24) Bulk density = Specific gravity X nor		11	ient		ion depth)		n water	Per Millington and Ourry 1961 (Re		liments		
		Drever, 1988. Well sorted sand or o		sediments (per page B24) Bulk density = Specific gravity X nor		ontert	oefficient		ion depth)		n water			g sediments		
				f cap sediments (per page B24) Bulk density = Specific gravity X nor		on Content	ion coefficient		ion depth)		n water			anying sediments	sults	
				sity of cap sediments (per page B24) Bulk density = Specific gravity X nor		Carbon Content	tribution coefficient		ion depth)		n water			underlying sediments	or results	
				t density of cap sediments (per page B24) Bulk density = Specific gravity X nor		anic Carbon Contert	in distribution coefficient		ion depth)		n water			nc. of underlying sediments	step for results	
	15.			iment density of cap sediments (per page B24) Bulk density = Specific gravity X por		I Organic Carbon Content	orption distribution coefficient		ion depth)		n water			er conc. of underlying sediments	ime step for results	
	nments			c sediment density of cap sediments (per page B24) Bulk density = Specific gravity X nor		Total Organic Carbon Content	adsorption distribution coefficient.		ion depth)		n water			awater conc. of underlying sediments	ired time step for results	
	Comments			Bulk sediment density of cap sediments (per page B24) Bulk density = Specific gravity X nor		Cap Total Organic Carbon Content	Cap adsorption distribution coefficient		1		n water		Diffusion/Dispersion combined coefficient	Porewater conc. of underlying sediments	Desired time step for results	
	uts Comments			m3 Bulk sediment density of cap sediments (per page B24) Bulk density = Specific gravity X nor		tion Cap Total Organic Carbon Content	kg Cap adsorption distribution coefficient		Effective cap depth (total cap minus bioturbation depth)	Seepage velocity (not Darcy velocity)	n water		Diffusion/Dispersion combined coefficient	y/L Porewater conc. of underlying sediments	ars Desired time step for results	
	Units Comments		g/cm3 Specific gravity of cap sediments	g/cm3 Bulk sediment density of cap sediments (per page B24) Bulk density = Specific gravity X nor		fraction Cap Total Organic Carbon Content	L/kg Cap adsorption distribution coefficient	Initiess Retardation factor calculated per Eq. B3	ion depth)		n water	cm2/yr Effective diffusion through cap	cm2/yr Diffusion/Dispersion combined coefficient	mg/L Porewater conc. of underlying sediments	years	
	e Units Comments			1.50 g/cm3 Bulk sediment density of cap sediments (per page B24) Bulk density = Specific gravity X nor	L/kgOC Organic carbon partitioning coefficient	001 fraction [Cap Total Organic Carbon Content	L/kg	Initiess Retardation factor calculated per Eq. B3	Effective cap depth (total cap minus bioturbation depth)	cm/yr Seepage velocity (not Darcy velocity)	n water		Diffusion/Dispersion combined coefficient	-02 mg/L Porewater conc. of undentying sediments	years	
lead	Value Units Comments	0.4 unitless Porosity of cap sediments	g/cm3 Specific gravity of cap sediments	g/cm3 Bulk sediment density of cap sediments (per		0.001 fraction Cap Total Organic Carbon Content	1200 L/kg Cap adsorption distribution coefficient		Effective cap depth (total cap minus bioturbation depth)	cm/yr Seepage velocity (not Darcy velocity)	ľ	cm2/yr Effective diffusion through cap	cm2/yr Diffusion/Dispersion combined coefficient	3.39E-02 mg/L Porewater conc. of undenying sediments	100 years Desired time step for results	
	Va		g/cm3 Specific gravity of cap sediments	g/cm3 Bulk sediment density of cap sediments (per		0.001 fraction [Cap Total Organic Carbon Content	L/kg	Initiess Retardation factor calculated per Eq. B3	Effective cap depth (total cap minus bioturbation depth)	Seepage velocity (not Darcy velocity)	n water	cm2/yr Effective diffusion through cap	cm2/yr Diffusion/Dispersion combined coefficient	mg/L	years	mg/L 8.10E-03
inputs lead	Va		g/cm3 Specific gravity of cap sediments	g/cm3 Bulk sediment density of cap sediments (per		TOC 0.001 fraction Cap Total Organic Carbon Content	L/kg	Initiess Retardation factor calculated per Eq. B3	Effective cap depth (total cap minus bioturbation depth)	cm/yr Seepage velocity (not Darcy velocity)	n water	79 cm2/yr Effective diffusion through cap	cm2/yr Diffusion/Dispersion combined coefficient	30 9.39E-02 mg/L Porewater conc. of underlying sediments	years	mg/L 8.10E-03
	Symbol Value (Units Comments		g/cm3 Specific gravity of cap sediments	g/cm3 Bulk sediment density of cap sediments (per	L/kgOC Organic carbon partitioning coefficient	TOC 0.001 fraction [Cap Total Organic Carbon Content	L/kg	Initiess Retardation factor calculated per Eq. B3	Effective cap depth (total cap minus bioturbation depth)	cm/yr Seepage velocity (not Darcy velocity)	n water	cm2/yr Effective diffusion through cap	cm2/yr Diffusion/Dispersion combined coefficient	Co 9.39E-02 mg/L Porewater conc. of undentying sediments	years	

0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	EF Fac2	Comb	mg/L Conc. (Cow)	mg/kg Conc. Seds
0.000E+00 11.000E+00 11.000E+00 11.000E+00 11.000E+00 11.000E+00 10.000E+00 1000E+00 10.000E+00 10.000E+000E+000E+0000E+000E+0000E+000E+	+07 -			-
0.00E+00 0.000E+00 0.000E+00 0.00E+00 0.000E+00 0.00E+00 0.000E+000E+	- 01			•
0.006+00 0.006+00 0.006+00 0.006+00 0.006+00 0.006+00 0.006+00 0.006+00 0.006+00 0.006+00 0.006+00 0.006+00 0.006+00 0.0000000000	- 20+	,	•	. '
0.00E+00 1 0.00E+00 1 0.000E+00 1 0.000E+0000E+00000000000000000000000000	- 20+	ı.	1	
0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00	- 20+		•	,
0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00	+07 0.00E+00	0.00E+00	0.00E+00	0.00E+00
0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00	+07 0.00E+00	0.00E+00	0.00E+00	0,00E+00
0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00	+07 0.00E+00	0.00E+00	0.00E+00	0.00E+00
0.00E+00 1 0.00E+00 1 0.00E+00 1 0.00E+00 1 0.00E+00 1 0.00E+00 1 0.00E+00 1	+07 0.00E+00	0.00E+00	0.00E+00	0.00E+00
0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00	+07 0.00E+00	0.00E+00	0.00E+00	0.00E+00
0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00	+07 0.00E+00	0.00E+00	0.00E+00	0.00E+00
0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00	+07 0.00E+00	0.00E+00	0.00E+00	0.00E+00
0.00E+00 1 0.00E+00 1 0.00E+00 1 0.00E+00 1	+07 0.00E+00	0.00E+00	0.00E+00	0.00E+00
0.00E+00 0.00E+00 0.00E+00	+07 0.00E+00	0.00E+00	0.00E+00	0.00E+00
0.00E+00 1 0.00E+00 1	+07 0.00E+00	0.00E+00	0.00E+00	0.00E+00
0.00E+00 1	+07 0.00E+00	0.00E+00	0.00E+00	0.00E+00
	+07 0.00E+00	0.00E+00	0.00E+00	0.00E+00
1800 0.00E+00 1.60E+07	+07 0.00E+00	0.00E+00	0.00E+00	0.00 <u>E</u> +00
1900 0.00E+00 1.60E+07	+07 0.00E+00	0.00E+00	0.00E+00	0.00E+00

ling Results for Zinc		
ing Results 1		linc
ing Resul		fer2
		Results
Mode		

開いた場

構成に対象

離りる

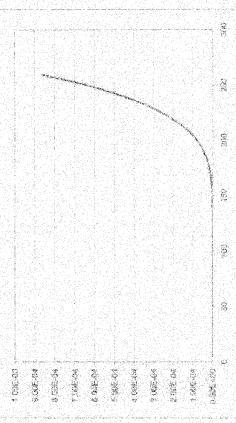
		00%						Retardation factor = 1+ (dry bulk mass density of soil/volumetric moisture content of the soil)*Kd Reible equation is not consistent with Drever or Fatter.		Vx = $\Omega(n_s^*A)$, where Q = discharge and A = cross-sectional area. Or: Vx = (kdh)($n_s dh$) Assume K = 0.0003 cm/sec, he = 0.25, dh/dl = 0.0047	RT/F ² = 2.66E-07					
		Drever, 1988. Well sorted sand or gravel range 25 - 50%		Bulk density = Specific gravity X porosity				Retardation factor = 1 + (dry bulk mass density of soil/v	urbation depth) Assumes a 100cm thick cap and 10 cm for bioturbation	$Vx = Q/(n_o^*A)$, where Q = discharge and A = cross-sec	For metals $D = (RT/F^2)(lambda/charge of the ion)$ $RT/F^2 =$	Per Millington and Quirk, 1961. (Reible assumption)				
	Units Comments	unitiess [Porosity of cap sediments	g/cm3 Specific gravity of cap sediments	g/cm3 Bulk sediment density of cap sediments (per page B24) E		0.0011 fraction Cap Total Organic Carbon Content	L/kg Cap adsorption distribution coefficient	751 unitiess Retardation factor calculated per Eq. B3	cm [Effective cap depth (total cap minus bioturbation depth)]	17.786304 cm/yr Seepage velocity (not Darcy velocity)	cm2/yr Molecular diffusion for chemical of interest in water	cm2/yr Effective diffusion through cap	Diffusion/Dispersion combined coefficient	Porewater conc. of underlying sediments	Desired time step for results	
and the second se	Units	0.4 unitiess	2.5 g/cm3	1.50 g/cm3	L/kgOC	001 fraction	200 L/kg	751 unitiess	81.4 cm	304 cm/yr	222 cm2/yr	65 cm2/yr	83 cm2/yr	mg/L	10 years	8.10E-02
Zinc	Value		and the second secon			0.0			50	17.786.				2.66E+00		tng/L
puts	Symbol		A second second			U U	-					ff -				Criteria

Model Calculation and Results

mg/kg Conc. Seds		с 	. •	•	0.00E+00	0:00E+00	0.00E+00													
Conc. (Cpw) Conc. Seds		ı			0.00E+00	0.00E+00	0:00E+00	0.00E+00												
Comb		•			0.00E+00															
Fac2			,		0.00E+00															
EF	3.67E+07	3.67E+07	3.67E+07	3.67E+07	3.67E±07	3.67E+07														
Fact				0.00E+00	0,00E+00	0.00E+D0	0.00E+00	0,00E+00												
rears fime (t)	10	20	30	40	50	60	170	80	06	100	110	120	130	140	150	160	170	180	190	200

Madeling Results for PCDs (quarry pand)

No. 18


和認識

Received.

な問題

(antes)	A state 1	Contar 7	Asset 1. Units : Scottanting.
		idi si an	
0		10005	
152.		CLON	COURS PHOTOMAN DOUNDLAK SED SHARTHING (DOI: DADE 524)
203	00 2001	2002	Constants barrents in the second s
121	LINE I	LONG	- Cat Ters Catabase Catabase (Cathase
[Kd	12/04		Cop substitution distributions to the first of
1.1	11.7	14000201	
		1227	Prestry the restry (addition states banumaten deoth)
	TAN REGIST	12122	A CALENDARY AND A CALE
		Carlor and	
E M		States.	
23	14	Con Segur	Contraction of the second of the extension of the second se
63		Marine Marine	A THE ALL AND A THE A
10		Vetes S	
現ておおい	100 100 2 3	1110	

A MARIN					- Shu	Station.
1 9 14 A 19 19 1	100 A		A Sector		Core Repeat	COMP. NAME
122	000000000	\$07490 C	024-00-0	0.595-500	0012400	CHARGO -
	0.000.000	2.6474.05	0.00000	0.0001/19	C CARAGO	い。 - 1873 つ
5t	0.005-300	100-10-00 C	0.6429-35	0,305,100	0.0023400	O NEE CO
90. 1	0.000-00	NARYON .	00000	CONENDS	C. Marine S.	00-100 C
Net.	00424000	2.04HAGS	0042600	00438700	00/2000	C CANE-DO
	0.0000000	2.645.400	CONSERVICE	0.000-000	104/10/0	0.2051400
(4) (1)	G.OCEPUL	00+U+0.0	0.006400	0.044400	2.0000-000	UMPE-TAU
0	0.0055460	2.642-09	3,028,420	00+360.0	CONSTRUCT CONSTRUCT	0.005-200
\$¥	0.0384-00	2.645+09	0,605+900	0.005100	0.158+90	C.SOEACC
	0.005+000	5. 660+000	0,005-30	0.000-400	0.000,300,0	0.002400
	1.1 11.10	2.84£*00	0.60E+00	の一部です。	1,255-16	7,605.17
8	2,446-75	2.846+09	0.002-00	2,245.35	2.74章-17	1.035 16
10	5,316-14	2.846+69	0.5500	0.638.14	なが、現代的、な	21/12/07/07
	N. 1998 N	2 4:4:2*03	のうねぎつ	S1-2018 B	000000	CLARKS .
963 196	会で現代の	2.646.469	0.202.00	0.35612	1.056-10	C: 332 9
980 2	19421	2.642.403	0.0000	N. Starting	8.22.5	4,595-11
ų.	01-0205-10	ない大手をやい	0.000-000	01-362-10	2000 P	ので成果の、の
S.	2,245-35	10-510 V	0040000	100 Mar 2	2.5/878-1	1.522-05
8	9,436,09	20+440M	90-300 0	5,635,03	1.200-10	50 AL 05

観天王の歴

Modeling Results for PCBs (clean sediment)

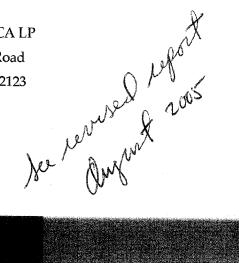
Inputs			PCBs (clean sediment cap)
Symbol	Value	Units	Comments
0	0.4	unitiess	Porosity of cap sediments
SG	2.5	g/cm3	Specific gravity of cap sand
Pb	1.50	g/cm3	Bulk sediment density of cap sediments (per page B24)
Koc	60,200	L/kgOC	Organic carbon partitioning coefficient
<u>10C</u>	0.010	fraction	Cap Total Organic Carbon Content
Kd	602	L/kg	Cap adsorption distribution coefficient
Rf	903	unitless	Retardation factor calculated per Eq. B3
L L	06	cm	Effective cap depth (total cap minus bioturbation depth)
0	17.786304	cm/yr	Seepage velocity (not Darcy velocity)
Do	190	cm2/yr	Molecular diffusion for chemical of interest in water
Deff	56	cm2/yr	Effective diffusion through cap
0	74	cm2/yr	Diffusion/Dispersion combined coefficient
S	2.246-03	mg/L	PW conc. of underlying sediments
TS	25	years	Desired time step for results
Criteria	3.00E-05	mg/L	Porewater criteria at top of isolation cap

Model Calc	Model Calculation and Results	Results				
Years Time (1)	Fact	L B	Fac2	Comb	mg/L Conc. (Cpw)	mg/kg Conc. Seds
25	1	2.64E+09				
20	1	2.64E+09			•	•
75	ı	2.64E+09	1			
100	ı	2.64E+09	•	I.	л	Ч.
125	ı	2.64E+09		·	ı	ł
150	,	2.64E+09		ī		
175	0.00E+00	2.64E+09	0.00E+00	0.00E+00	0.00E+00	0.00E+00
200	0.00E+00	2.64E+09	0.00E+00	0.00E+00	0.00E+00	0.00E+00
225	0.00E+00	2.64E+09	0.00E+00	0.00E+00	0.00E+00	0.00E+00
250	0.00E+00	2.64E+09	0.00E+00	0.00E+00	0.00E+00	0.00E+00
275	0.00E+00	2.64E+09	0.00E+00	0.00E+00	0.00E+00	0.00E+00
300	0.00E+00	2.64E+09	0.00E+00	0.00E+00	0.00E+00	0.00E+00
325	0.00E+00	2.64E+09	0.00E+00	0.00E+00	0.00E+00	0.00E+00
350	0.00E+00	2.64E+09	0.00E+00	0.00E+00	0.00E+00	0.00E+00
375	0.00E+00	2.64E+09	0.00E+00	0.00E+00	0.00E+00	0.00E+00
400	0.00E+00	2.64E+09	0.00E+00	0.00E+00	0.00E+00	0.00E+00
425	0.00E+00	2.64E+09	0.00E+00	0.00E+00	0.00E+00	0.00E+00
450	0.00E+00	2.64E+09	0.00E+00	0.00E+00	0,00E+00	0.00E+00
475	0.00E+00	2.64E+09	0.00E+00	0.00E+00	0.00E+00	0.00E+00
200	0.00E+00	2.64E+09	0.00E+00	0.00E+00	0.00E+00	0.00E+00

SITE INVESTIGATION AND CHARACTERIZATION REPORT FOR 401 WATER QUALITY CERTIFICATION

SOUTHWEST MARINE BULKHEAD EXTENSION AND YARD IMPROVEMENT PHASE 2 ACTIVITIES

Submitted to


California Regional Water Quality Control Board San Diego Region

Submitted by

Southwest Marine, Inc. 2205 East Belt Street San Diego, California 92113

Prepared by

Anchor Environmental, CA LP 3914 Murphy Canyon Road San Diego, California 92123

January 2005

SITE INVESTIGATION AND CHARACTERIZATION REPORT FOR 401 WATER QUALITY CERTIFICATION

THE OWNER

14 14

SOUTHWEST MARINE BULKHEAD EXTENSION AND YARD IMPROVEMENT PHASE 2 ACTIVITIES

Submitted to California Regional Water Quality Control Board San Diego Region

Submitted by

Southwest Marine, Inc. 2205 E. Belt Street San Diego, California 92113

Prepared by

Anchor Environmental, CA LP 3914 Murphy Canyon Road San Diego, California 92123

January 2005

Table of Contents

1	OVE	RVIEW	1
-	1.1	Project Description and History	
	1.1	Purpose of this Report	
	1.2 1.3	Structure of this Report	
	1.0	Structure of this Report	4
2	SUM	MARY OF PREVIOUSLY AVAILABLE INFORMATION	
	2.1	Site Layout and History	
	2.2	Geology and Groundwater	7
	2.3	Waste Characterization of Existing Sediments	8
	2.4	Data Gaps	9
3	SAM	PLING PROGRAM	
	3.1	Overview of Sampling Design	
	3.2	Field Methodologies	
	3.2.1		
	3.2.2	1	
	3.2.3	-	
	3.2.4		
	3 .2. 5		
4	CHE	MICAL ANALYSES	17
*	4.1	Soil/Sediment Chemistry	
	4.2	Groundwater Chemistry	
	4. 3	Data Validation	
	1.0		10
5	SITE	CHARACTERIZATION	
ļ	5.1	Geological Characterization	
	5.2	Groundwater Flow Characterization	
	5.3	Waste Constituent Characterization	
	5.4	Source Characterization	
	5.5	Site Conceptual Model	
6	FATE	E AND TRANSPORT	
	6.1	Modeling Approach	
(6.2	Parameters and Assumptions	
	6.3	Results	
7	CON	CLUSIONS	
8	REFE	RENCES	

i

BAE00085873

10

A the second

Table of Contents

List of Tables

物的論

が行うない

ii di

313

Table 1	Bulk Sediment Chemistry – Sediment Cores SW04 and SW08
Table 2	Chemical Concentrations Measured in 1998 Confirmatory Sampling Event
Table 3	Chemical Concentrations Measured in Well Point Samples
Table 4	Sediment Chemistry Results
Table 5	Groundwater Chemistry Results
Table 6	Summary of Measured Water Levels
Table 7	Summary of Modeling Parametric Analyses
Table 8	Fate and Transport Modeling Input Parameters
Table 9	Fate and Transport Modeling Results

List of Figures

Figure 1	Project Location Plan
Figure 2	Project Site Plan and Sampling and Well Locations
Figure 3	Cross-Section A-A' and Sequence of Planned Construction Events
Figure 4	Typical Pre-packed Well Screen
Figure 5	Low Tide Piezometric Surface – Shallow Monitoring Wells (Recent Sediments)
Figure 6	Low Tide Piezometric Surface – Deep Monitoring Wells (Bay Point Formation)
Figure 7	High Tide Piezometric Surface – Shallow Monitoring Wells (Recent Sediments)
Figure 8	High Tide Piezometric Surface – Deep Monitoring Wells (Bay Point Formation)
Figure 9	Distribution of Waste Constituents – Plan View
Figure 10	Distribution of Waste Constituents – Cross-Sectional View

ii

List of Appendices

Appendix A	Coring and Well Installation Logs
Appendix B	Data Validation Review Reports
Appendix C	Fate and Transport Modeling Results

Site Investigation and Characterization Report SWM Bulkhead Extension and Yard Improvement January 2005 020193-01