DEVELOPMENT OF SEDIMENT QUALITY OBJECTIVES FOR **CALIFORNIA BAYS AND ESTUARIES**

Stephen B. Weisberg

Southern California Coastal Water Research Project

WHERE ARE WE AT IN THE PROCESS?

- · Six months ago I talked to you about the scientific concepts
- Since then we have been conducting studies to convert concepts into assessment methodologies
- Making good progress, but not yet final
 - Additional analyses remainVetting through Stakeholders Advisory Committee
- Today is a mid-term progress report

POTENTIAL FLAWS WITH INDIVIDUAL LINES OF EVIDENCE

Chemistry

- Bioavailability poorly understood (e.g. paint chip, tar ball)
- There may be unmeasured contaminants

• Toxicity

- Confounding factors (e.g. ammonia)
- Agitation enhanced bioavailability
- Differing sensitivity among test species

· Benthic infaunal assemblages

- Physical disturbance (anchor, dredging)
- Oxygen stress

THE BASIC FRAMEWORK

- Three beneficial uses to be protected
 - Aquatic life
 - numan nealth
 - Each will be accessed concretely
- Within each beneficial use, a multiple line of evidence
 (MLOE) approach will be used
 MLOE involves demonstration of both exposure and effect
 - No single line of evidence is sufficient
- More complex than water column criteria because chemical bioavailability in sediments is poorly understood

CHALLENGE

- MLOE has been widely used in site-specific and subregional assessments
 - Has not yet found its way into sediment quality criteria
- Challenge is to create a consistent MLOE application
 Primary users will often be engineers, not Ph.D. biologists
 - Need a more standardized structure than BPJ

SCCWRP's SCIENTIFIC ACTIVITIES

- Select indicators for individual lines of evidence
 Many candidate indicators for each LOE
- Establish thresholds for each indicator
- Develop an integration framework
- Prepare methods manuals
 Recommended collection/processing methods
- Conduct a statewide assessment
 What percent of the state meets the new SQOs?

CHEMISTRY INDICATORS

- There are numerous candidate indicators for interpreting sediment chemistry data - Biggest dichotomy is empirical approach vs. equilibrium partitioning
- There are also numerous candidate empirical approaches

Our approach is to develop a California-specific data base for evaluating multiple possible approaches

CANDIDATE CHEMISTRY INDICATORS

- Existing national Sediment Quality Guidelines
 Effects range median quotient (ERMq)

 - Consensus midrange effects concentration (CMEC)
 Sediment quality guidelines quotient (SQGQ)
- National SQGs recalibrated to California data

ERMqPMAX

- New approaches
 - Mean weighted kappa
 Max-weighted kappa

CORRELATION WITH TOXICITY			
SQG	NORTH	SOUTH	
Mean Weighted Kappa	0.54	0.46	
Max Weighted Kappa	0.40	0.43	
CA ERMq	0.37	0.28	
ERMq	0.37	0.29	
CA P-Max	0.35	0.32	
СМЕС	0.29	0.22	
saga	0.28	0.25	
National P-Max	0.27	0.22	
Chronic EqP	-0.08	-0.06	
Acute EqP	-0.09	-0.08	

NEXT STEPS FOR CHEMISTRY LOE

 Evaluate candidate indicators against benthic response

- Select best chemical indicator
- · Determine thresholds for levels of effect
 - Reference condition

 - Moderate potential effect
 Severe potential for effect

TOXICITY INDICATORS

- There are many types of toxicity tests with differing sensitivity

 - Short-term development
 Long-term chronic effects
- · Various test species within a type of test
- Various test matrices
- Concerns about interlaboratory variability
- Which test(s) and thresholds to use?

CANDIDATE TOXICITY INDICATORS

- Short-term survival

Short-term/embryo development and fertilization

Chronic/sublethal response

- Amphipod

EVALUATION PROCESS

- Separate evaluation for short-term survival and sublethal test methods
- Short-term survival
 - Conducted intercalibration studies to assess sensitivity and replicability
- Sublethal tests

 - Consistency
 Confounding factors

 - SensitivityRelevanceCost

SHORT TERM SURVIVAL

- Recommended

Not recommended

- Rhepoxynius abronius
 Limited availability

 - Grain size sensitivity

- Low sensitivity
 Low test success rate
 Limited availability

SUBLETHAL TESTS

Recommended

- Polychaete growth test (*N. arenaceodentata*)
 Sediment water interface test using mussels or sea urchin embryos

Other methods not recommended mostly based on feasibility

NEXT STEPS FOR TOXICITY INDICATORS

- Develop thresholds for these tests
- Develop method for integrating multiple tests into an LOE score
 - Scientific Steering Committee recommended use of <u>both</u> an acute and a sublethal test

BENTHIC ASSESSMENT CHALLENGES

- Interpreting benthic infaunal data is complex

 - Samples may have tens of species and hundreds of organisms
 Indices provide a means of summarizing complex information
- Benthic species and abundances vary naturally with habitat
- Sampling methods vary among programs Gear type sampling area and sieve size affect species and individuals captured

Species	Abundance	Species	Abundance
Pseudopolydora paucibranchia	ita 612	Diplocirrus sp SD1	4
Exogone lourei	465	Ampithoe sp	3
Fabricinuda limnicola	240	Asthenothaerus diegensis	3
Musculista senhousia	170	Euchone limnicola	3
Caprella californica	113	Heteroserolis carinata	3
Scoletoma sp	106	Lyonsia californica	2
Scoletoma sp C	99	Neotrypaea californiensis	2
Solen rostriformis	92	Sabellidae	2
Amphideutopus oculatus	51	Acteocina inculta	1
Podocerus fulanus	50	Aplousobranchia	1
Amphipholis squamata	41	Ceriantharia	1
Prionospio heterobranchia	40	Eteone brigitteae	1
Paradexamine sp SD1	27	Glycera americana	1
Mayerella acanthopoda	23	Halcampidae	1. 1.
Spiophanes duplex	20	Heterophoxus ellisi	1
Edwardsiidae	17	Macoma sp	1
Pista percyi	17	Malmgreniella sp	1
Ericthonius brasiliensis	15	Monocorophium acherusio	cum 1
Leitoscoloplos pugettensis	14	Monocorophium insidiosur	n 1
Oligochaeta	12	Nassarius tiarula	1
Leptosynapta sp	11	Odontosyllis phosphorea	1
Mediomastus sp	11	Paranemertes californica	1
Megalomma pigmentum	10	Protohyale frequens	1
Phoronida	8	Pyromaia tuberculata	1.0
Leptochelia dubia	7	Scleroplax granulata	1
Rudilemboides stenopropodus	6	Zoobotryon pellucida	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
Theora lubrica	5	Imogine exiguus	1
Anoplodactylus erectus	4	Planoceridae	1.
30% g(5, SD Regional Board			

BENTHIC ASSESSMENT CHALLENGES

- Interpreting benthic infaunal data is complex
 Samples may have tens of species and hundreds of organisms
 Indices provide a means of summarizing complex information
- Benthic species and abundances vary naturally with habitat

- Reference condition needs to vary by habitat

Sampling methods vary among programs
 Gear type sampling area and sieve size affect species and
 individuals captured

BENTHIC INDICATOR DEVELOPMENT ACTIVITIES

Determine the number of biogeographic provinces in California

Index development to be conducted separately for each

- Select from among several possible index approaches
 There are five approaches that have been previously used in
 California
- Test for compatibility among sampling methods

APPROACH TO HABITAT DEFINITION

- Use cluster analysis to segregate species groups
- Evaluate habitat differences among the species groups

 - SalinitySubstrate type
 - Depth
 Latitude

• We used west coast-wide data

- Critters don't recognize political boundaries
 Potentially enhances size of the index development data base

IDENTIFIED EIGHT ASSEMBLAGES

- Puget Sound fine sediments
- Puget Sound coarse sediments
- Euhaline bays
- Shallow estuaries and wetlands
- Very coarse sediments
- Polyhaline San Francisco Bay
- Mesohaline San Francisco Bay
- Tidal freshwater

CANDIDATE BENTHIC INDICES			
Index	Approach		
Index of Biotic Integrity (IBI)	Community measures		
Relative Benthic Index (RBI)	Community measures		
Benthic Quality Index (BQI)	Community measures		
Benthic Response Index (BRI)	Species types		
River Invertebrate Prediction and Classification System (RIVPACS)	Presence/absence of expected species		

APPROACH

- Give each index developer a development data set
- · Withhold data for independent index evaluation

 - Classification of "known" good and bad sites
 Repeatability across replicates
 Independence from natural habitat gradients
- Sufficient data available only from two habitats

 - Euhaline baysPolyhaline San Francisco Bay

INITIAL CLASSIFICATION ACCURACY

Index	Overall (n=35)
RIVPACS	83
BRI	77
IBI	70
BQI	63
RBI	51

CONCERN WITH THE "GOLD STANDARD"

- Present gold standard is based on extremes of chemistry and toxicity
- · We noticed that many of the indices were in agreement with each other
- Asked four benthic ecologists to look at data for seven sites without giving them access to chemistry, toxicity or index data
 - Experts agreed with the indices for six of the seven sites

EFFECT OF STATUS CHANGE ON OVERALL CLASSIFICATION ACCURACY

Index	Original	After Change
RIVPACS	83	83
BRI-TC	77	89
ві	70	76
BRI-MNDF	63	74
BQI	63	80
RBI	51	63

NEXT STEPS

- Redefining a gold standard to be based on expert opinion
 - Have recently given 30 new sites to the experts for their assessment
- Continue with repeatability and gradient evaluation

SCCWRP's SCIENTIFIC ACTIVITIES

- Select indicators for individual lines of evidence
 Many candidate indicators for each LOE
- Establish thresholds for each indicator
- Develop an integration framework
- Prepare methods manuals
 Recommended collection/processing methods
- Conduct a statewide assessment
 What percent of the state meets the new SQOs?

THREE LEVELS OF ASSESSMENT

Reference condition
Slight deviation from reference
Moderate effect
Severe effect

SAMPLING STATION ASSESSMENT CATEGORIES

- Unimpacted
- Likely unimpacted
- Inclusive
- Possibly impacted
- Likely impacted
- Clearly impacted

THREE LEVELS OF ASSESSMENT

- Individual LOE
 Possibly merging multiple india
- Sampling station level
 Merging MLOE
- Water body scale
 Merging multiple sampling station

	CHEMISTRY: Reference				
			Toxicity		
		Reference	Minor deviation	Moderate effect	Severe effect
B	Reference	Unimpacted	Unimpacted	Likely Unimpacted	Inconclusive
n t h o s	Minor deviation	Unimpacted	Likely Unimpacted	Possibly Impacted	Possibly Impacted
	Moderate effect	Likely Unimpacted	Possibly Impacted	Possibly Impacted	Likely Impacted
	Severe effect	Inconclusive	Possibly Impacted	Likely Impacted	Likely Impacted

INTEGRATION AT THE WATER BODY SCALE

- Moves beyond sediment quality objectives into other programmatic areas
 - NPDES permitting
 - 303d listing
 - Dredging
- Stakeholder's Advisory Committee is developing implementation guidance for these programs
 – We are assisting them with scientific information

REMAINING FRAMEWORK CHALLENGES

- Strategy and guidance for working with imperfect information
 - Incomplete data
 - Sites without assessment tools
- Developing continuity with existing regulatory frameworks
- Identifying management actions without chemical specific criteria
 - Chemical-specific guidelines
 - Sediment HES

WHAT WE HAVEN'T YET TALKED ABOUT

- Developing the framework and selecting indicators for the other beneficial uses
- Develop methods manuals
 Accommended collection/processing methods
- Conduct a statewide assessment
- I'd be glad to come back in the future as we finish this work and develop final recommendations