Sediment Assessment at the Mouths of Chollas Creek and Paleta Creek

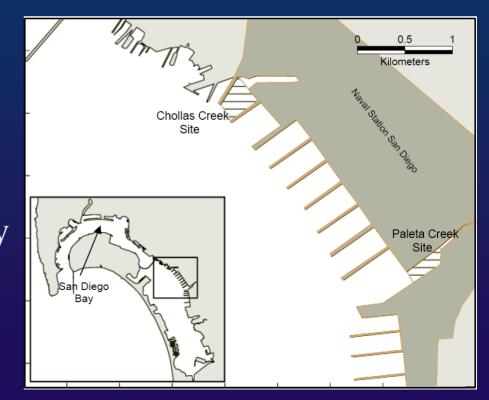
Phase I Results

One Voice.

blished 1

January 18, 2005 San Diego RWQCB

Outline


- Background
- Conceptual/Technical Approach
- Assessment Framework
- Aquatic Life Beneficial Use Assessment
- Aquatic-dependent Wildlife Beneficial Use Assessment
- Human Health Beneficial Use Assessment
- Conclusions and Recommendations

Background

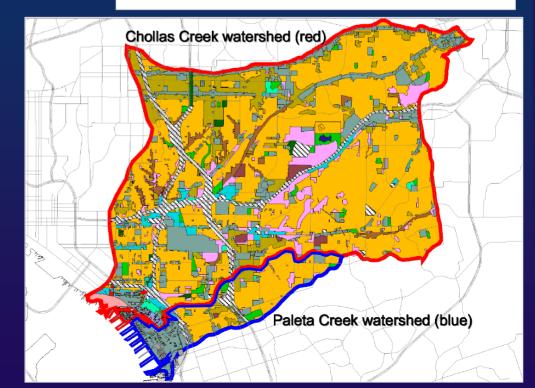
Study Background

- Chollas and Paleta Creek Toxic Hot Spots
- Areas identified in Bay Protection and Toxic Cleanup Program (1996)
- Listed on 303d in 1998
- Toxic Hot Spot Workgroup developed assessment strategy
- Initiated Phase I spatial study in 2001

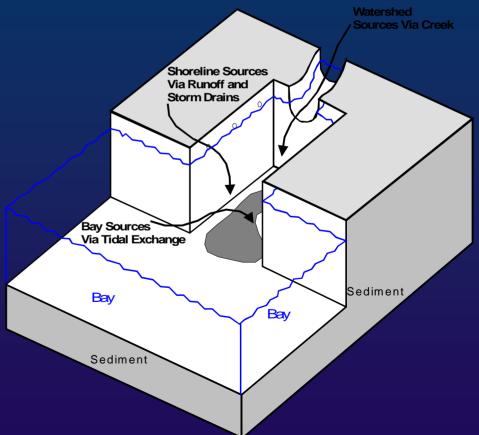
Mouth of Chollas Creek

- Site ~1.8 acres located at northern extent of Naval Station San Diego (NSSD)
- Study site expanded to include inner area
- Bounded to north by NASSCO and NSSD Pier 1 to the south
- Subject to episodic flows from Chollas Creek

Mouth of Paleta Creek

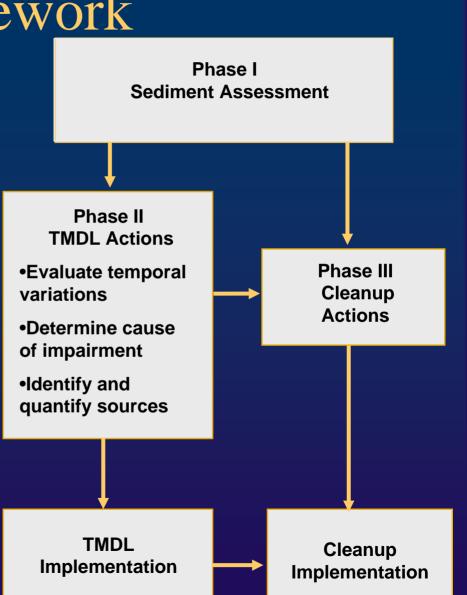

- Site ~3.7 acres located near the mid-shoreline at Naval Station San Diego (NSSD)
- Study site expanded to include outer area
- Bounded to north by NSSD pier 8 and NSSD Pier 9 to the south
- Subject to episodic flows from Paleta Creek

Paleta Creek and Chollas Creek Watersheds 1995 Landuse Residential- spaced 91-10 acres)


- Chollas ~16,000 acres
- Paleta ~1,600 acres
- Both watersheds are a mix of:
 - Residential
 - Industrial
 - Open Space
 - Roadways
 - Commercial

Potential Sources

- Wet and dry weather flows from the Creeks
- Historical releases at NSSD and neighboring industries
- Shoreline runoff and storm drains
- Incidental and accidental releases from ships
- Transport and deposition from other areas of San Diego Bay

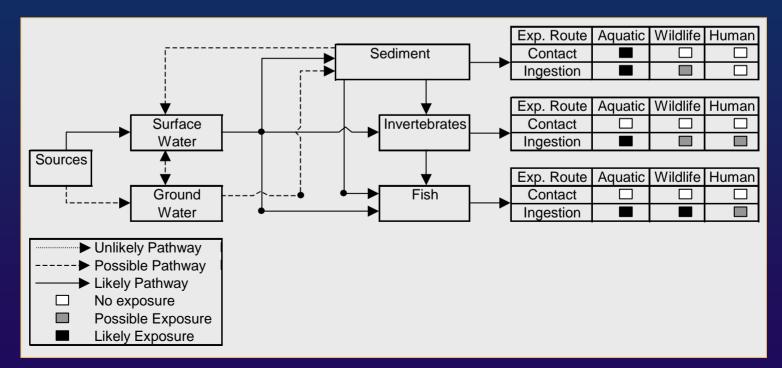


Study Approach

Program Framework

- Comprehensive program integrates requirements for:
 - THS clean up
 - TMDL source control
- Program phases allow implementation of source control while clean up requirements are determined

Phase I Study Objectives


- Spatial distribution and magnitude of sediment contamination
- Assessment of beneficial use impairment
 - Aquatic life
 - Aquatic-dependent wildlife
 - Human Health

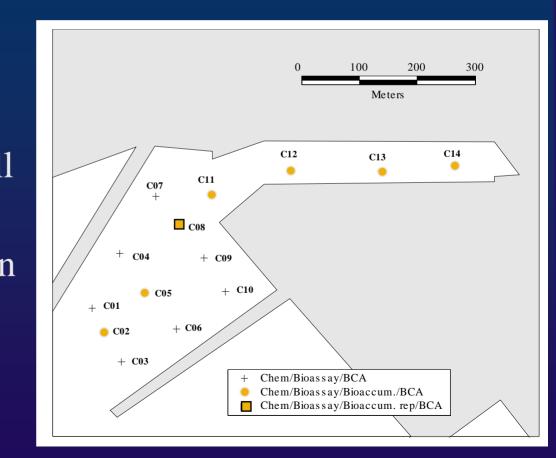
Beneficial Use Assessment

- <u>Aquatic Life Beneficial Use</u> Weight of evidence (triad) approach (sediment contaminant chemistry, toxicity, and benthic community composition)
- <u>Wildlife Beneficial Use</u> Ecological risk screening using contaminant bioaccumulation data for clams
- <u>Human Health Beneficial Use</u> Human health risk screening using contaminant bioaccumulation data for clams

Conceptual Site Model

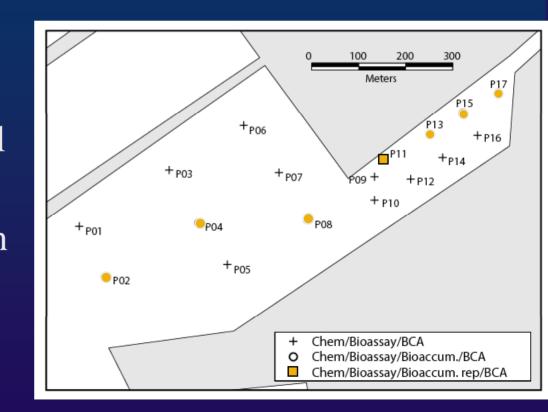
- Focuses on sediment exposure pathway for aquatic endpoints
- Incorporates exposure assessment for wildlife and human endpoints

Study Elements


- Sediment physical and chemical analyses
 - Grain Size
 - TOC
 - Target Chemicals
- Toxicity testing
 - Amphipod Mortality
 - Sea Urchin Development
 - Sea Urchin Fertilization
- Benthic community analysis
- Bioaccumulation
 - Bivalve Macoma nasuta, 28-day test

Target Chemicals

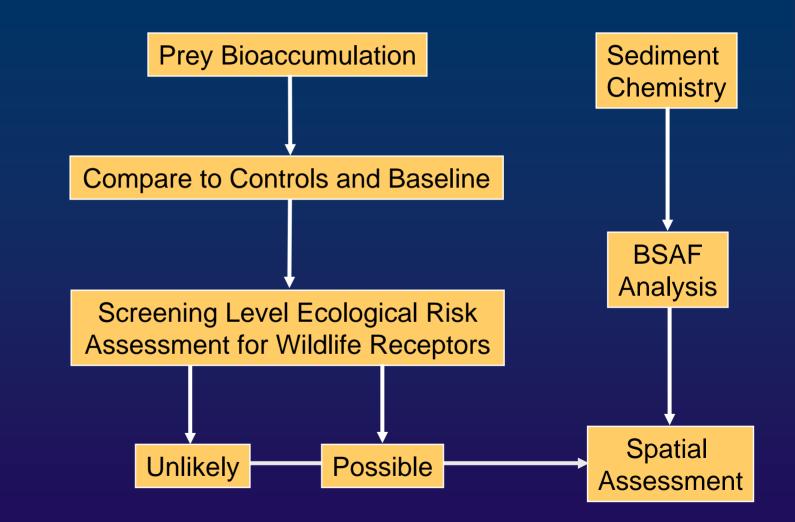
- Contaminants of potential concern (CoPCs) selected based on BPTCP and historical review
- Metals (9)
- Polynuclear Aromatic Hydrocarbons (41)
- Polychlorinated biphenyls (41 congeners)
- Chlorinated Pesticides
 - Chlordane
 - DDT, DDD, DDE


Sampling Design - Chollas

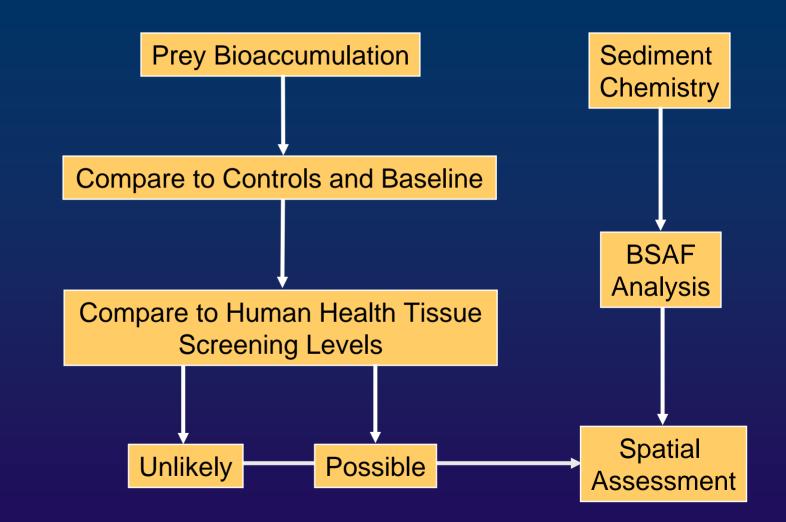
- Sampled 14 stations at ~50-100 m spacing
- Chemistry, toxicity and benthic community at all 14 stations
 Bioaccumulation at 7 stations
- Included inner site region


Sampling Design - Paleta

- Sampled 17 stations at ~50-200 m spacing
- Chemistry, toxicity and benthic community at all 17 stations ♦ Bioaccumulation at 7 stations ♦ Included outer site region



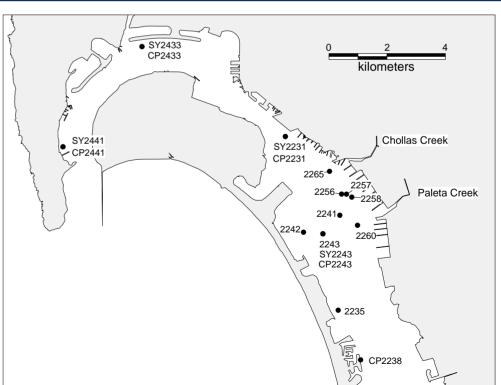
Assessment Framework


Assessment Framework-Aquatic Life Beneficial Use

Assessment Framework-Aquatic Dependent Wildlife Beneficial Use

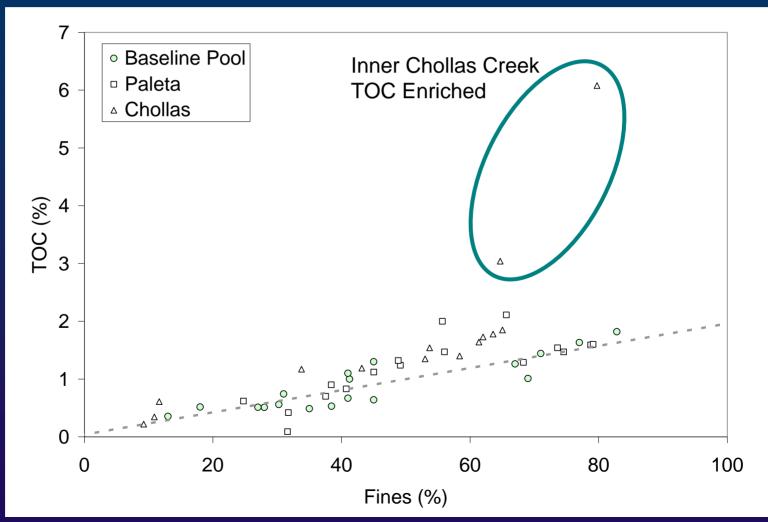
Assessment Framework - Human Health Beneficial Use

Definition of Baseline Condition


- Reference Station
 - A location remote from direct influence of contaminant sources
 - Historical data indicate low contaminant levels and toxicity
 - Similar habitat to the study site
 - Data will be representative of background chemical levels

Baseline Condition

- Existing ambient condition characterized by an unbiased pool of reference stations
- Representative of natural variability in background chemicals
- Used most recent reference station data collected during present study, from shipyard study, and from Bight98 study
- Balanced number of stations collected recently and historically


Baseline Pool Stations

- Location of reference stations included in the Baseline Pool. Stations were compiled from:
 - This study (CP)
- NASSCO Southwest study
 (SY)
- Bight98 study (no prefix)

Baseline Sediment Characteristics

 Baseline pool provides representative range for most Chollas/Paleta stations

Baseline Chemistry Conditions

 Characterized by 95% Upper Prediction Limit (UPL) for metals and organics

• <u>Metals</u>

	Metals (mg/kg)								
	Ag	As	Cd	Cr	Cu	Hg	Ni	Pb	Zn
Mean	0.55	6.0	0.16	39.1	68	0.31	10.4	29.6	127
95% UPL*	1.08	7.5	0.33	56.5	121	0.57	14.8	53.2	192
ERM	3.7	70	9.6	370	270	0.71	51.6	218	410

*Based on 50% fines

<u>Organics</u>

	Organics (ng/g)					
	PPPAH	ТРСВ	TCHLOR	TDDT		
Mean	497	40	0.6	2.6		
95% UPL	1234	84	1.3	21		
SQG	18000*	400	4.8	1000*		

*Based on 1% TOC

Baseline Toxicity & Benthic Community Conditions

◆ <u>Toxicity</u>

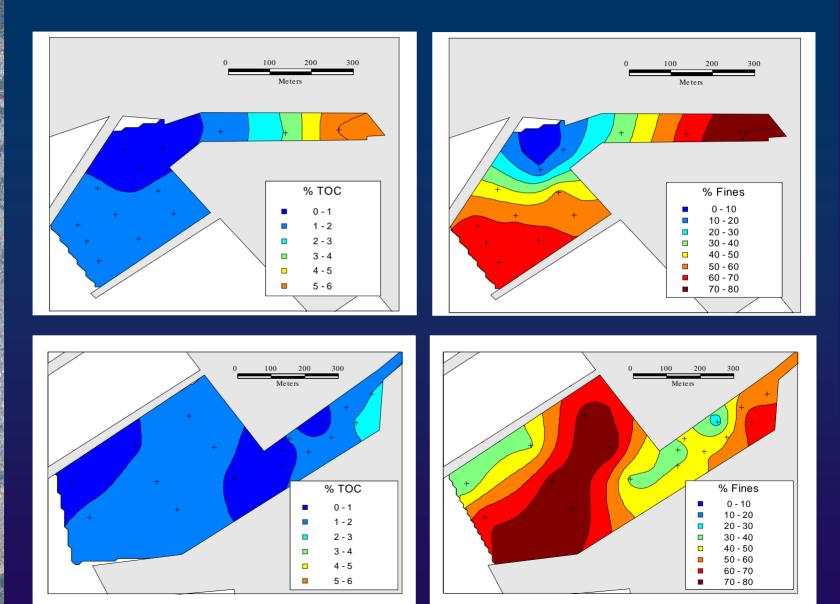
	Amphipod Survival (%)	Urchin Development (% normal)	Urchin Fertilization (%)
Mean	88	100	85
95% LPL	72.9	64.7	41.9

Benthic Community

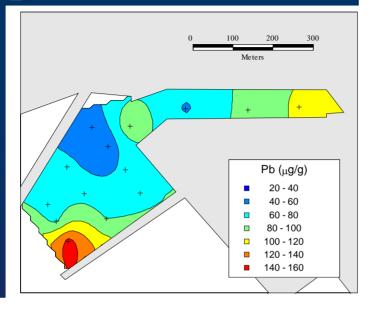
	Benthic Community Metric					
	Abundance	# Taxa	Diversity	BRI		
Mean	794	48	2.4	35.3		
95% PL	239	22	1.8	57.7		

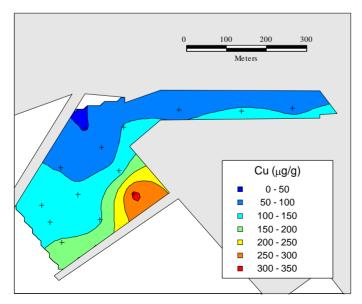
Aquatic Life Beneficial Use Assessment

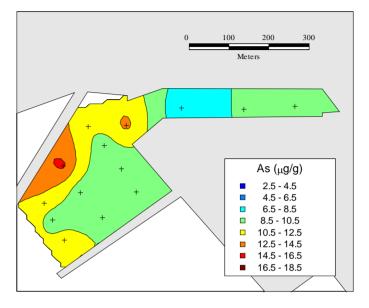
Aquatic Life Assessment Framework

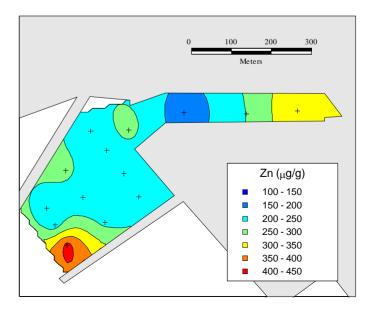

Line of Evidence (LOE)

- Measure chemical, toxicity, benthic community parameter
- Check for normality and apply transform if necessary
- Evaluate against commonly accepted benchmarks
- Evaluate against baseline condition
- Categorize potential for impact as low, moderate, or high using literature guidelines and best professional judgment

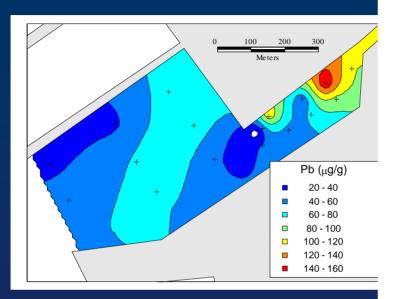

Weight of Evidence (WOE) Triad


- Evaluates beneficial use impairment from site derived CoPCs
- Integrates chemistry, toxicity, and benthic community LOE
- Applies weighting of likely, possible, or likely impairment based on literature guidelines

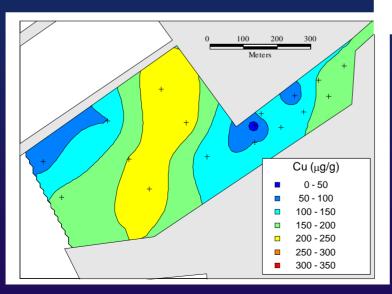

Spatial Distribution - Grain Size & TOC

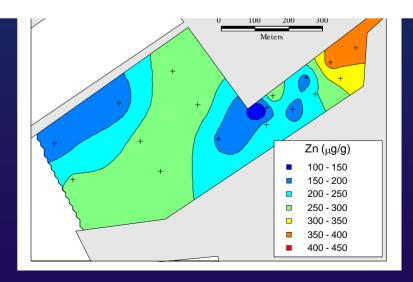


Spatial Distribution – Chollas Metals

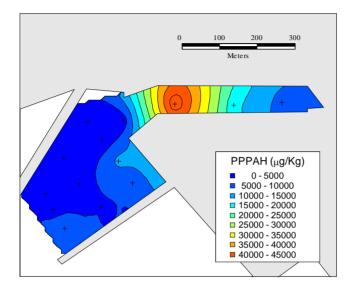


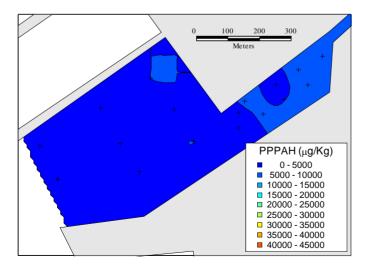


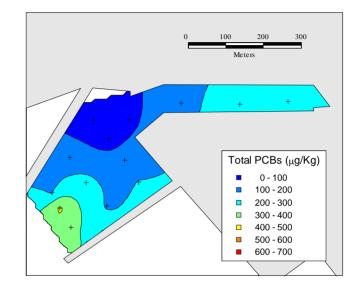


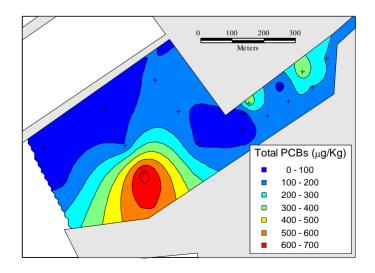


Spatial Distribution-Paleta Metals

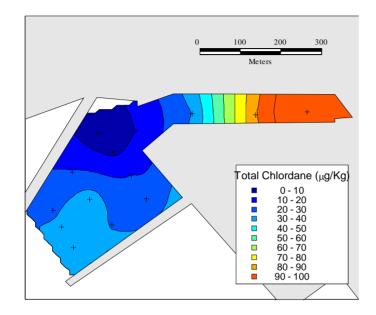


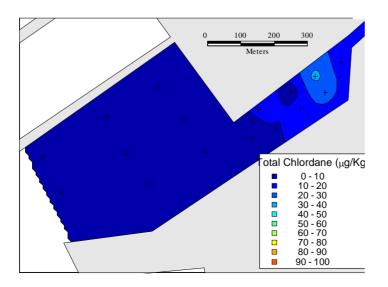


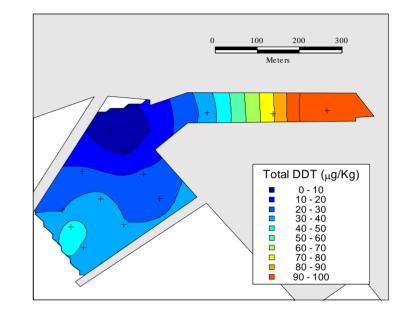


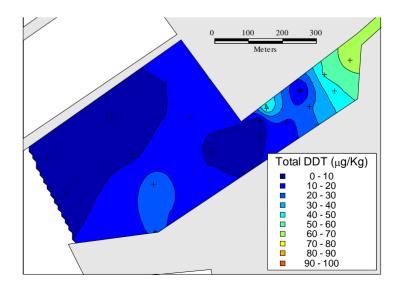


PAH and PCB Spatial Distribution









Chlordane and DDT Spatial Distribution

Chemistry Line of Evidence (LOE)

- Contamination impacts categorized based on two factors:
 - Number of individual chemicals exceeding the Baseline UPL and SQG
 - Chemical quotient (SQGQ1) exceeding the Baseline UPL and published thresholds

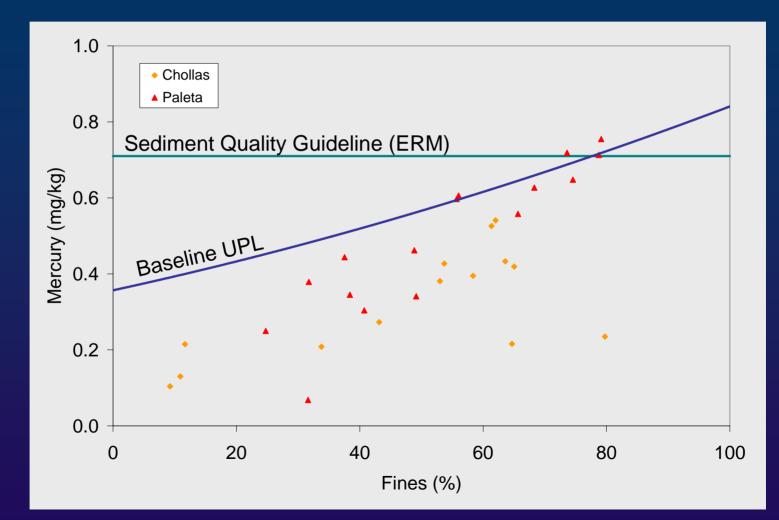
Sediment Quality Guidelines

- Metals
 - Effects Range Median (Long et al., 1995)
- PAHs
 - Consensus-based midrange effects concentration (MacDonald et al., 2000)
- PCBs
 - Consensus-based midrange effects concentration (Swartz, 1999)
- Pesticides
 - Chlordane Probable Effects Level (MacDonald et al., 1996)
 - DDT Organic carbon normalized DDT effects value (Swartz et al., 1998)
- Chemical Quotient
 - SQGQ1 quotient benchmark (Fairey et al., 2001)

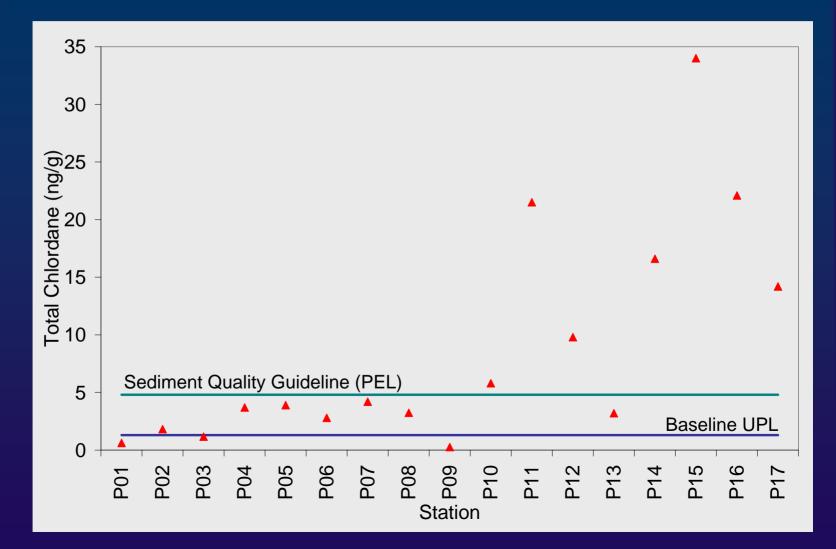
Chemistry LOE Ranking Rules

High

- SQGQ1 > 1 and Baseline UPL, or
- More than 5 chemicals exceeding individual SQG and Baseline UPL


Moderate

- SQGQ1 > 0.25 and Baseline UPL, or
- At least 1 chemical exceeding individual SQG and Baseline UPL


♦ Low

 SQGQ1<0.25 and no chemical exceeding individual SQG and Baseline UPL

Chemistry LOE - Mercury

Chemistry LOE - Chlordane

Chemistry LOE – SQGQ1

Chemistry LOE Results - Chollas

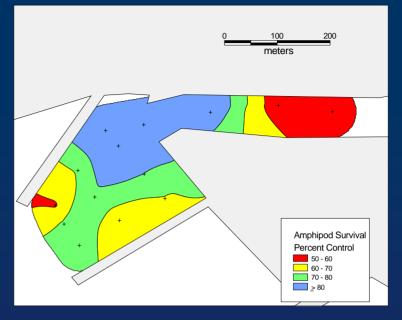
Station	# Chemicals exceeding SQG and UPL	SQGQ1 Level	SQGQ1 > Reference	Chem Class
C01	1 (TChlor)	II	+	۲
C02	1 (TChlor)	III	+	•
C03	2 (Tchlor, Zn)	III	+	•
C04	1 (TChlor)	II	+	۲
C05	1 (TChlor)	III	+	•
C06	1 (TChlor)	II	+	۲
C07	0	II	-	0
C08	1 (TChlor)	II	+	۲
C09	1 (TChlor)	II	+	۲
C10	2 (Tchlor, Cu)	II	+	۲
C11	1 (TChlor)	II	+	۲
C12	2 (TChlor, PAH)	III	+	•
C13	1 (TChlor)	III	+	•
C14	1 (TChlor)		+	•

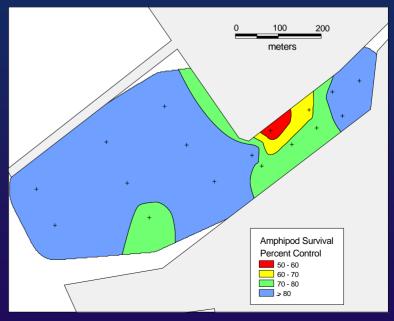
	High	SQGQ1 Level
۲	Medium	
0	Low	I <0.25; II 0.25 to 1.0; III>1.0

Chemistry LOE Results - Paleta

Station	# Chemicals exceeding SQG and UPL	SQGQ1 Level	SQGQ1 > Reference	Chem Class	
P01	0	I	-	0	
P02	0		+	\odot	
P03	0	I	-	0	
P04	0	II	+	۲	
P05	1 (PCB)	II	+	۲	
P06	1 (Hg)	II	+	۲	
P07	1 (Hg)	II	+	۲	
P08	0	II	+	۲	
P09	0	I	-	0	
P10	1 (TChlor)	II	+	۲	
P11	2 (Tchlor, Hg)		+	•	
P12	1 (TChlor)	II	+	۲	
P13	0	II	-	0	
P14	1 (TChlor)	II	+	۲	
P15	1 (TChlor)		+	•	
P16	1 (TChlor)	II	+	۲	
P17	1 (TChlor)	II	+	۲	
•	High		SQGQ1 Le	wel	
\odot	Medium	I <0.25			
0	Low	1<0.23	5; II 0.25 to	1.0, III>1.0	

Sediment Toxicity


Bulk sediment


- Amphipod survival (*Eohaustorius estuarius*)
- -2 cm sediment layer, 10 day exposure
- Pore water
 - Sea urchin fertilization
 - 40 minute exposure
- Sediment-water interface
 - Sea urchin embryo development
 - 3 day exposure

Amphipod Survival

Bulk Sediment

Sediment-Water Interface Exposure

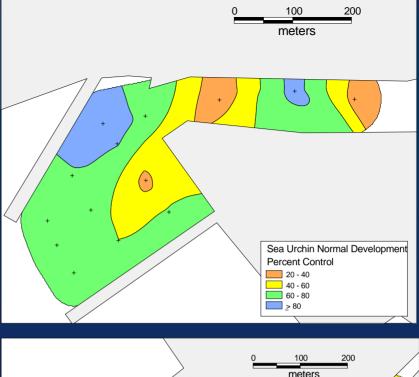
 Assess impacts from flux of constituents out of sediment

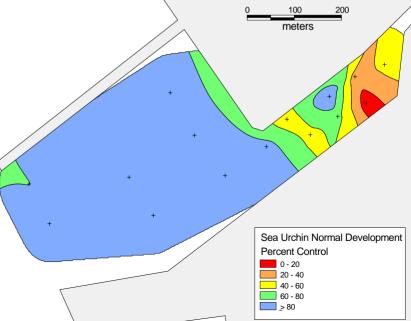
 Undisturbed sediment core **Overlying water level**

Sediment core tube

Sediment-water interface

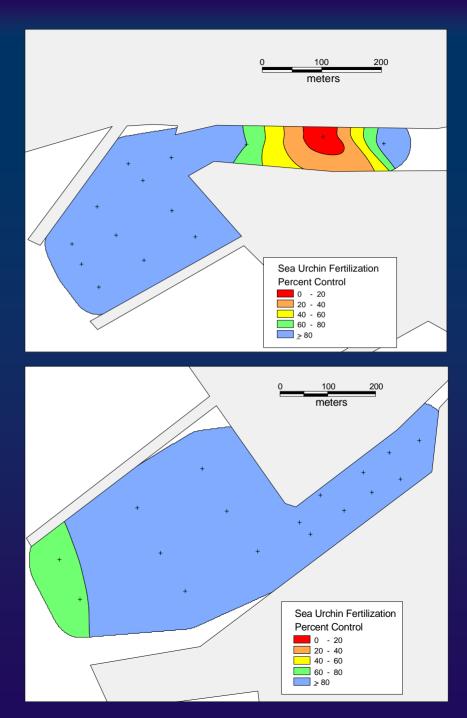
Test sediment


Polyethylene cap


Graphic: Exponent

Sea Urchin Development

Sediment-Water Interface



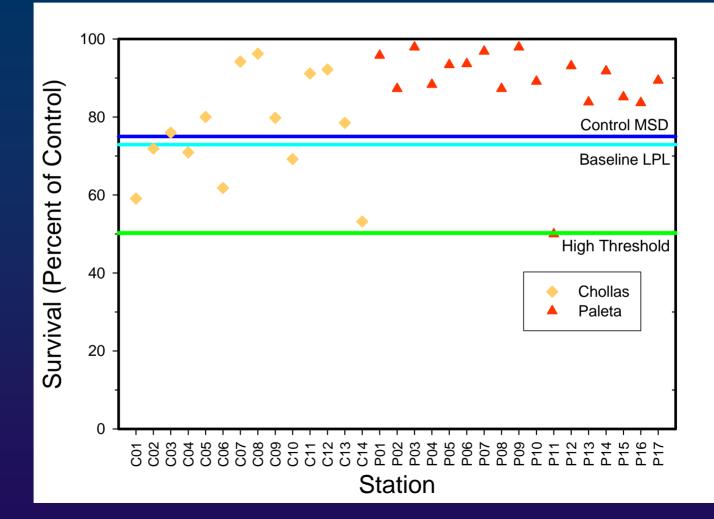
Sea Urchin Fertilization

Pore Water

Toxicity LOE

♦ Low

- All test responses not statistically different from controls, or
- No responses exceed Baseline LPL


♦ Moderate

- Any one test result is statistically different from its control and below Baseline LPL, and
- Amphipod survival is greater than 50%

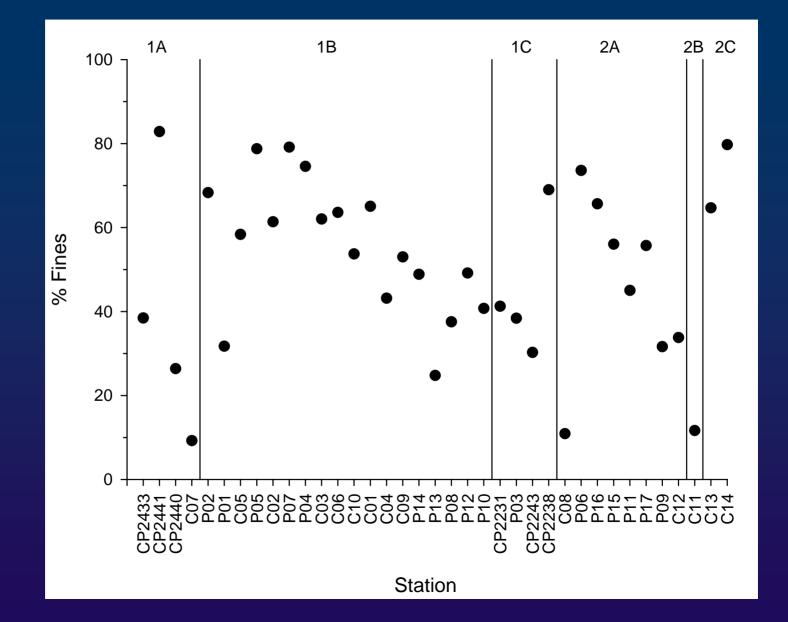
High

- Amphipod survival <50% and less than control and Baseline LPL
- Two tests are statistically different from control and below Baseline LPL

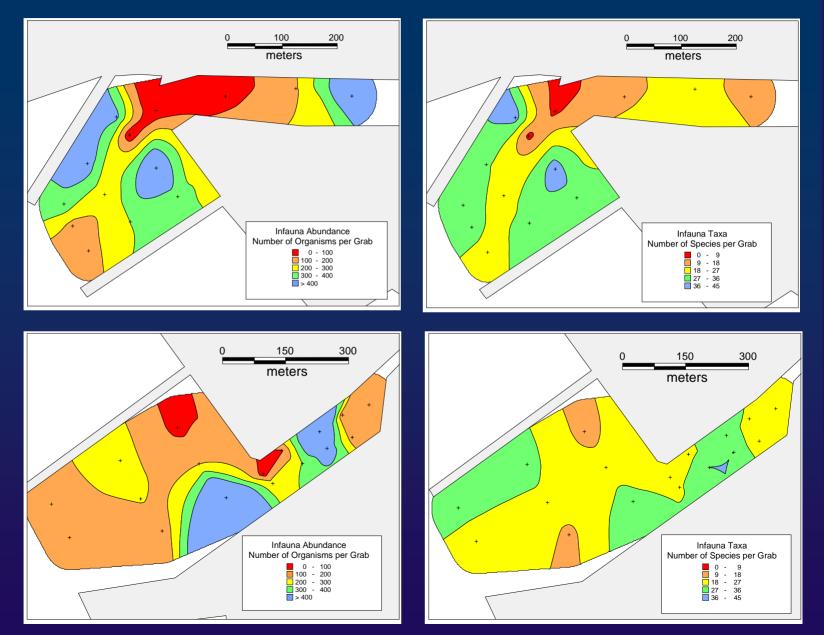
Toxicity LOE-Amphipod Survival

Toxicity LOE Results

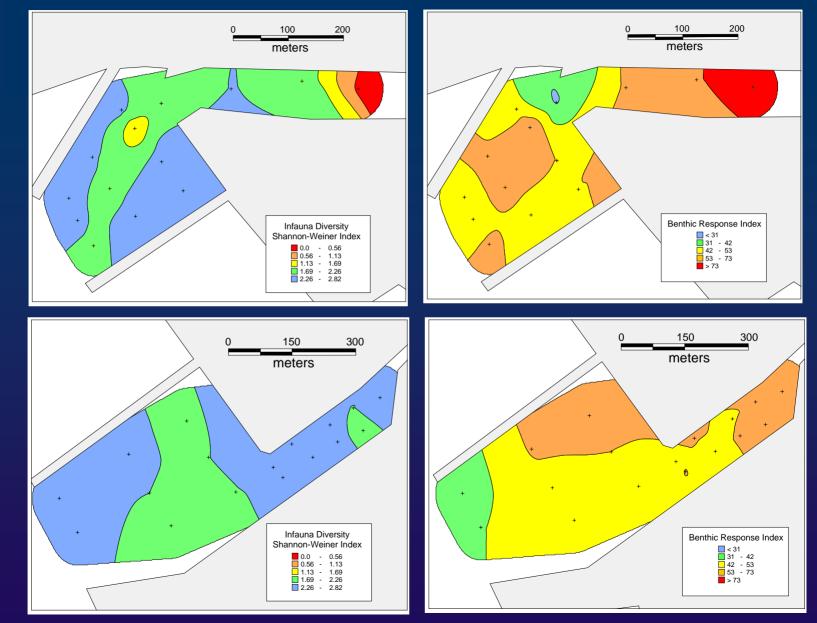
	Amphipod S	Survival	SWI Sea Urchin Development		PW Sea Urchin Fertilization		
Station	<lpl< td=""><td><50%</td><td><lpl< td=""><td><50%</td><td><lpl< td=""><td><50%</td><td>Tox Class</td></lpl<></td></lpl<></td></lpl<>	<50%	<lpl< td=""><td><50%</td><td><lpl< td=""><td><50%</td><td>Tox Class</td></lpl<></td></lpl<>	<50%	<lpl< td=""><td><50%</td><td>Tox Class</td></lpl<>	<50%	Tox Class
C01	+	-	-	-	-	-	\odot
C02	+	-	-	-	-	-	\odot
C03	-	-	÷	-	-	-	0
C04	+	-	-	-	-	-	\odot
C05	-	-	-	-	-	-	0
C06	+	-	+	-	-	-	\odot
C07	-	-	-	-	-	-	0
C08	-	-	-	-	-	-	0
C09	-	-	+	+	-	-	\odot
C10	+	-	÷	-	-	-	\odot
C11	-	-	-	-	-	-	0
C12	-	-	+	+	-	-	\odot
C13	-	-	-	-	+	+	\odot
C14	+	-	+	+	-	-	•
0	Low						
\odot	Medium						
•	High						


Toxicity LOE Results

	Amphipod Survival			SWI Sea Urchin Development		Urchin zation	
Station	<lpl< th=""><th><50%</th><th><lpl< th=""><th><50%</th><th><lpl< th=""><th><50%</th><th>Tox Class</th></lpl<></th></lpl<></th></lpl<>	<50%	<lpl< th=""><th><50%</th><th><lpl< th=""><th><50%</th><th>Tox Class</th></lpl<></th></lpl<>	<50%	<lpl< th=""><th><50%</th><th>Tox Class</th></lpl<>	<50%	Tox Class
P01	-	-	-	-	-	-	0
P02	-	-	-	-	-	-	0
P03	-	-	NA	NA	-	-	0
P04	-	-	-	-	-	-	0
P05	-	-	-	-	-	-	0
P06	-	-	-	-	-	-	0
P07	-	-	-	-	-	-	0
P08	-	-	-	-	-	-	0
P09	-	-	-	-	-	-	0
P10	-	-	NA	NA	-	-	0
P11	+	-	+	+	-	-	•
P12	-	-	+	-	-	-	0
P13	-	-	-	-	-	-	0
P14	-	-	-	-	-	-	0
P15	-	-	+	+	-	-	\odot
P16	-	-	+	+	-	-	\odot
P17	-	-	+	+	-	-	\odot
0	Low						
\odot	Medium						
•	High						


Benthic Community

Cluster Analysis
Abundance
#Taxa
Diversity
Benthic Response Index (embayment)


Cluster Analysis & Grain Size

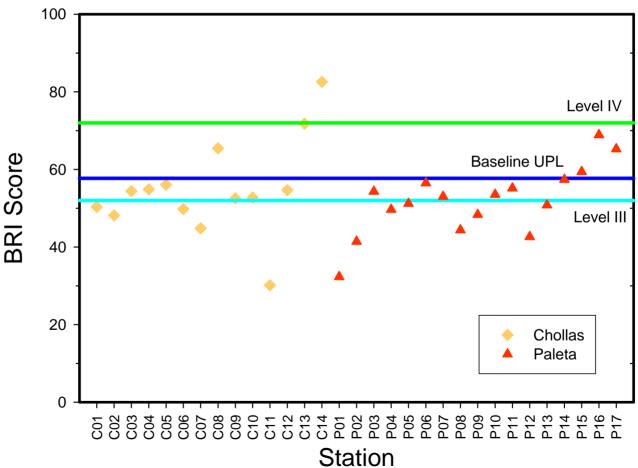
Abundance and # Taxa

Diversity and Benthic Response Index

Benthic Community Composition LOE

♦ Low

No parameters exceed Baseline prediction level


Moderate

Any one parameter exceeds Baseline prediction level

High

- BRI is at response level IV (>72), or
- Or the BRI response is at level III (>52), exceeds the baseline UPL, and at least one of the other parameters exceeds the Baseline LPL

Benthos LOE-BRI

Benthic Community LOE Results

	Abundance		Diversity			
Station	<lpl< th=""><th>Taxa <lpl< th=""><th><lpl< th=""><th>BRI>UPL</th><th>BRI Level</th><th>BCA Class</th></lpl<></th></lpl<></th></lpl<>	Taxa <lpl< th=""><th><lpl< th=""><th>BRI>UPL</th><th>BRI Level</th><th>BCA Class</th></lpl<></th></lpl<>	<lpl< th=""><th>BRI>UPL</th><th>BRI Level</th><th>BCA Class</th></lpl<>	BRI>UPL	BRI Level	BCA Class
C01	-	-	-	-	II	0
C02	+	-	-	-	II	\odot
C03	+	+	-	-	=	\odot
C04	-	-	-	-	=	0
C05	+	+	-	-	=	\odot
C06	-	-	-	-	Π	0
C07	-	-	-	-	II	0
C08	+	+	+	+	III	•
C09	-	-	-	-	III	0
C10	-	-	-	-	III	0
C11	+	+	-	-	Ref	\odot
C12	+	+	-	-	III	\odot
C13	+	-	-	+	III	•
C14	-	+	+	+	IV	•
0	Lo	W				
۲	Medi	um				
•	Hig	Jh				

Benthic Community LOE Results

Station	Abundance <lpl< th=""><th>Taxa <lpl< th=""><th>Diversity <lpl< th=""><th>BRI>UPL</th><th>BRI Level</th><th>BCA Class</th></lpl<></th></lpl<></th></lpl<>	Taxa <lpl< th=""><th>Diversity <lpl< th=""><th>BRI>UPL</th><th>BRI Level</th><th>BCA Class</th></lpl<></th></lpl<>	Diversity <lpl< th=""><th>BRI>UPL</th><th>BRI Level</th><th>BCA Class</th></lpl<>	BRI>UPL	BRI Level	BCA Class
P01	+	-	-	-	l	۲
P02	+	+	-	-	II	\odot
P03	-	-	-	-		0
P04	+	-	-	-	II	۲
P05	+	+	+	-	II	۲
P06	+	+	-	-		\odot
P07	+	+	-	-		\odot
P08	-	-	-	-	II	0
P09	+	+	-	-	II	۲
P10	-	-	-	-		0
P11	+	-	-	-		۲
P12	-	-	-	-	II	0
P13	-	-	-	-	II	0
P14	-	-	-	-	=	0
P15	+	+	-	+	=	•
P16	+	+	-	+	=	•
P17	+	+	-	+	III	•
0	Lo	W				
\odot	Medi	um				
•	Hig	Jh				

Weight of Evidence Assessment

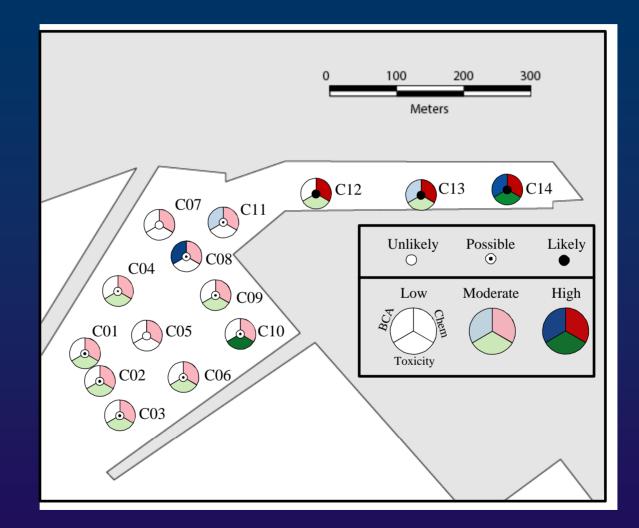
Impairment from site CoPCs:

- Unlikely
 - Low site CoPC
 - Moderate CoPC and no biological impact
- Possible
 - Moderate site CoPC and one indicator of biological impact
 - High site CoPC and no biological impact

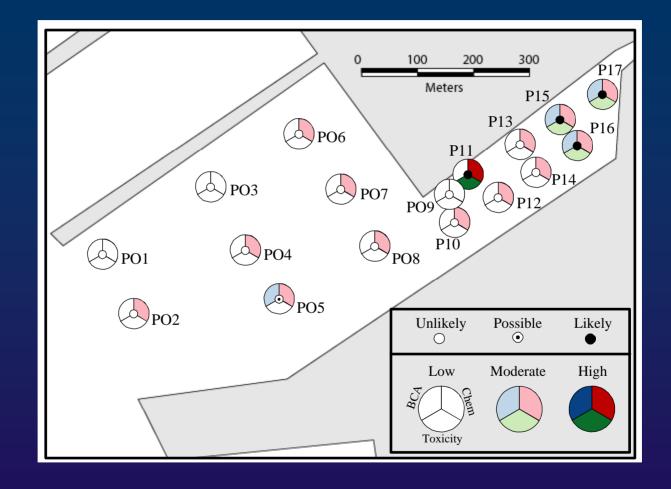
Likely

- High site CoPC and at least one indicator of biological impact
- Moderate CoPC and two indicators of biological impact

Chemistry	Toxicity	Benthic Community	Site-specific Impairment from CoPCs
•	•	•	
•	•	۲	S
•	۲	•	Likely impairment from CoPCs
۲	•	•	О г
•	•	0	fror
•	0	•	ant
•	۲	\odot	rme
۲	٠	۲	pai
۲	۲	•	Ë
۲	۲	۲	(le)
•	۲	0	Li
•	0	•	
۲	•	0	nt SS
۲	0	•	Possible Impairment from CoPCs
۲	۲	0 0 0	issi airr Co
۲	0	۲	Pc mp om
•	0	0	fr I
0	•	•	
0	•	\odot	шо
0	۲	•	it fr
0	۲	\odot	nen
0	0	•	airn ⊃Cs
0	•	0	Unlikely impairment from CoPCs
0	0	⊙ 0	i yle
0	۲	0	like
۲	0 0	0 0	'n
0	0	0	


Aquatic Life Impairment Table

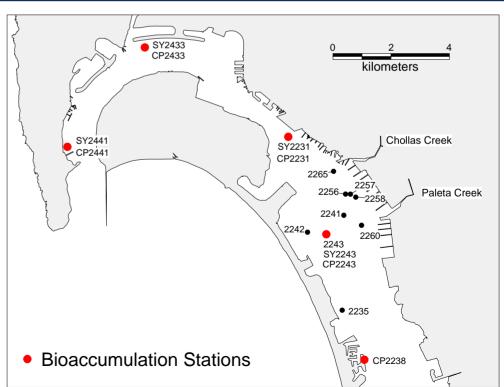
Aquatic Life Weight of Evidence Results


Aquatic Life Impairment WOE

Station	Chem Class	Tox Class	BCA Class	OVERALL WOE	Impairment from CoPC?
C01	۲	\odot	0	۲	Possible
C02	•	۲	۲	•	Likely
C03	•	0	۲	•	Likely
C04	۲	۲	0	۲	Possible
C05	•	0	۲	•	Likely
C06	۲	۲	0	۲	Possible
C07	0	0	0	0	UnLikely
C08	۲	0	•	۲	Possible
C09	۲	۲	0	۲	Possible
C10	۲	۲	0	۲	Possible
C11	۲	0	۲	٥	Possible
C12	•	۲	۲	•	Likely
C13	•	۲	•	•	Likely
C14	•	•	•	•	Likely
P01	0	0	۲	0	UnLikely
P02	۲	0	۲	Θ	Possible
P03	0	0	0	0	UnLikely
P04	۲	0	۲	۲	Possible
P05	۲	0	۲	۲	Possible
P06	۲	0	۲	۲	Possible
P07	۲	0	۲	۲	Possible
P08	۲	0	0	0	UnLikely
P09	0	0	۲	0	UnLikely
P10	۲	0	0	0	UnLikely
P11	•	•	۲	•	Likely
P12	۲	0	0	0	UnLikely
P13	0	0	0	0	UnLikely
P14	۲	0	0	0	UnLikely
P15	•	۲	•	•	Likely
P16	۲	۲	•	•	Likely
P17	۲	۲	•	٠	Likely

Aquatic Life WOE Results- Chollas

Aquatic Life WOE Results- Paleta


Aquatic-Dependent Wildlife Beneficial Use Assessment

Aquatic-Dependent Wildlife Beneficial Use Assessment Framework

- Assess impairment to representative ecological recptors in the bay based on the following procedure
- 1. Compare site clam tissue concentrations to controls
 - Determine if there is a detectable difference for the site
- 2. Compare to Baseline Condition
 - Determine if there is a difference between the maximum site concentration and the ambient condition in the bay
- 3. Calculate Screening-Level Hazard Quotients
 - Using conservative exposure assumptions, determine if there is potential risk to representative wildlife receptors including:
 - Brown Pelican
 - Least Tern
 - Western Grebe
 - Surf Scoter
 - Sea Lion
- 4. Calculate BSAF for chemicals that exceed
- 5. Evaluate spatial extent

Baseline Pool Bioaccumulation Stations

- Subset of reference stations from the overall Baseline Pool. Stations were compiled from:
- This study (CP)
- NASSCO-Southwest study (SY)
- Total of 9 indiviudal measurements from 5 areas

Baseline Bioaccumulation Conditions

 Characterized by 95% Upper Prediction Limit (UPL) for metals and organics

Metals

	Tissue Concentration (mg/kg _{dry})								
	Ag	As	Cd	Cr	Cu	Hg	Ni	Pb	Zn
Mean	0.34	20.2	0.25	2.6	13.0	0.09	3.0	2.3	77.0
Upper 95% PL	0.57	0.57 22.8 0.39 3.9 19.2 0.15 4.4 3.3 85.7							

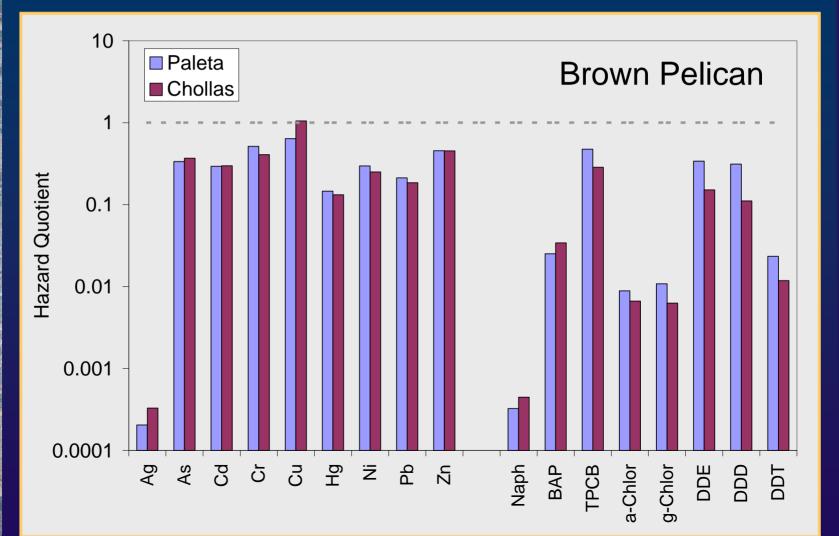
• Organics

		Tissue Concentration (μg/kg _{dry})							
	Naph	BAP	ТРСВ	α -Chlor	γ-Chlor	DDE	DDD	DDT	
Mean	7.2	65	98	0.55	0.47	7.3	2.1	0.34	
Upper 95% PL	10.4								

Wildlife Risk Assessment

 Wildlife hazard quotient (HQ) is estimated dose divided by the Toxicity Reference Value (TRV)

 $HQ = \frac{C_{tiss} \times NFR \times FR \times AE \times AUF}{TRV}$


Where

C_{tiss}: prey concentration NFR: normalized feeding rate FR: contaminated fraction AE: assimilation efficiency AUF: area use factor

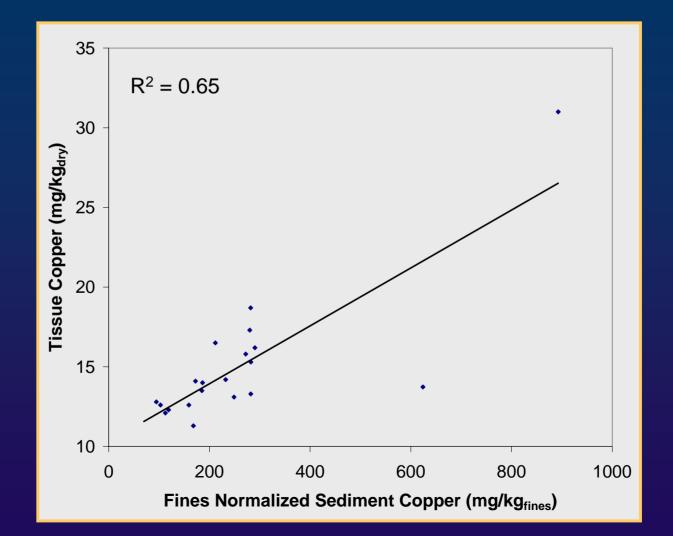
Wildlife Risk Assessment -Assumptions

- Site-maximum clam tissue concentration used as surrogate prey for all wildlife endpoints (C_{tiss})
- ◆ 100% of diet contaminated at maximum concentration (FR=1)
- ◆ 100% assimilation efficiency (AE=1)
- ◆ 100% area use factor (AUF=1)
- Use low range TRV from Region 9 BTAG or other published sources

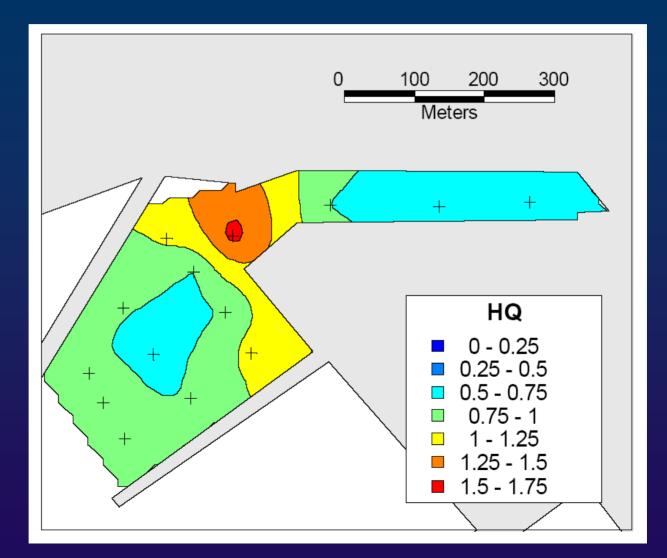
Wildlife Risk Assessment - Results

Wildlife Risk Assessment - Results

- Screening-level hazard quotients for all endpoints and all chemicals were <1 at Paleta
- Screening-level hazard quotients for all endpoints and all chemicals were <1 at Chollas with the exceptions of
 - Copper for the Least Tern (HQ = 1.6)
 - Copper for the Brown Pelican (HQ = 1.1)


Wildlife Beneficial Use Assessment - Paleta

	>Control	>Baseline	Brown Pelican HQ>1	Least Tern HQ>1	Western Grebe HQ>1	Surf Scoter HQ>1	Sea Lion HQ>1
Ag	-	-	-	-	-	-	-
As	-	-	-	-	-	-	-
Cd	-	-	-	-	-	-	-
Cr	-	+	-	-	-	-	-
Cu	+	-	-	-	-	-	-
Hg	+	-	-	-	-	-	-
Ni	-	+	-	-	-	-	-
Pb	+	+	-	-	-	-	-
Zn	-	+	-	-	-	-	-
Naph	-	+	-	-	-	-	-
BAP	+	+	-	-	-	-	-
TPCB	+	+	-	-	-	-	-
α-Chlor	+	+	-	-	-	-	-
γ-Chlor	+	+	-	-	-	-	-
DDE	+	+	-	-	-	-	-
DDD	+	+	-	-	-	-	-
DDT	-	+	-	-	-	-	-


Wildlife Beneficial Use Assessment - Chollas

	>Control	>Baseline	Brown Pelican HQ>1	Least Tern HQ>1	Western Grebe HQ>1	Surf Scoter HQ>1	Sea Lion HQ>1
Ag	-	+	-	-	-	-	-
As	-	+	-	-	-	-	-
Cd	-	-	-	-	-	-	-
Cr	-	+	-	-	-	-	-
Cu	+	+	+	+	-	-	-
Hg	-	-	-	-	-	-	-
Ni	-	-	-	-	-	-	-
Pb	+	+	-	-	-	-	-
Zn	-	+	-	-	-	-	-
Naph	-	+	-	-	-	-	-
BAP	+	+	-	-	-	-	-
TPCB	+	+	-	-	-	-	-
α-Chlor	+	+	-	-	-	-	-
γ-Chlor	+	+	-	-	-	-	-
DDE	+	+	-	-	-	-	-
DDD	+	+	-	-	-	-	-
DDT	-	+	-	-	-	-	-

Biota-Sediment Accumulation Factor for Copper

Spatial Assessment for Least Tern Copper HQ at Chollas

Human Health Beneficial Use Assessment

Human Health Beneficial Use Assessment Framework

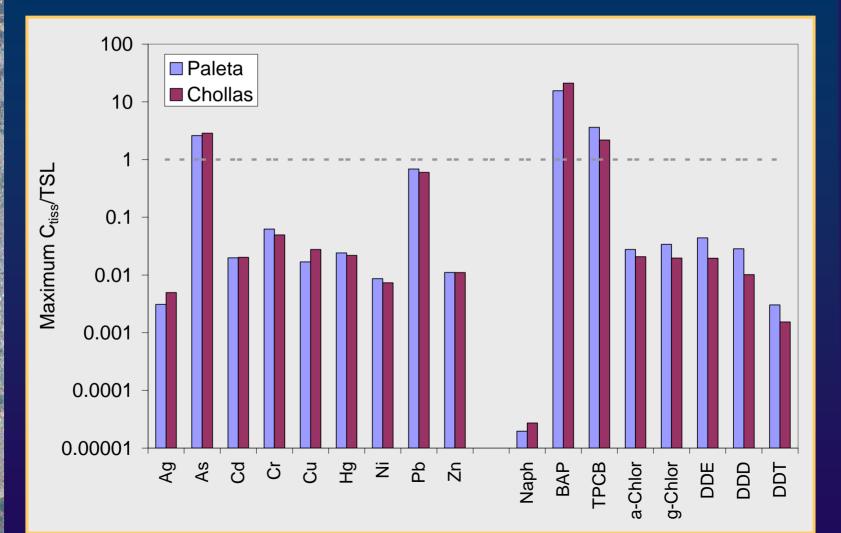
- Assess potential impairment to human health beneficial use based on fish consumption using the following procedure
- 1. Compare site clam tissue concentrations to controls
 - Determine if there is a detectable difference for the site
- 2. Compare to Baseline Condition
 - Determine if there is a difference between the maximum site concentration and the ambient condition in the bay
- 3. Compare to human health based Tissue Screening Levels
 - Using conservative exposure assumptions, determine if there is potential risk to representative anglers
- 4. Calculate BSAF for chemicals that exceed
- 5. Evaluate spatial extent

Human Health Risk Assessment

 Human health Tissue Screening Levels (TSLs) take minimum of:

$$TSL = \begin{cases} TSL_{c} = \frac{TRL \times BW}{CSF \times CR \times FI \times ABS} \\ TSL = \begin{cases} TSL_{t} = \frac{RfD \times BW}{CR \times FI \times ABS} \end{cases} \end{cases}$$

Where

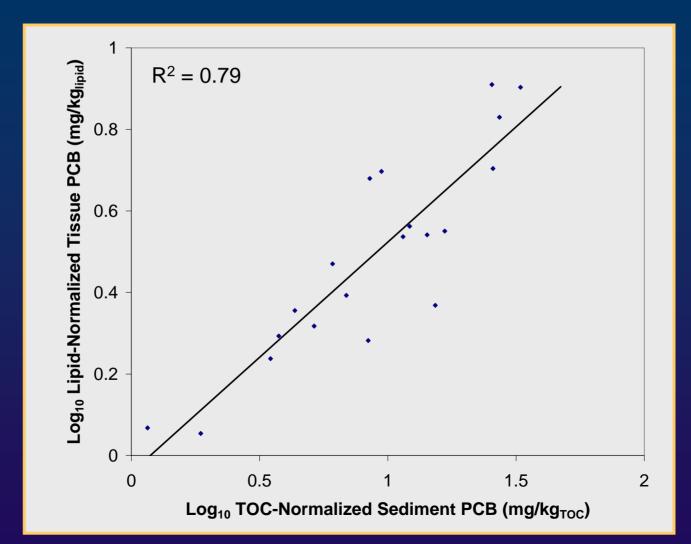

TRL: target risk level (cancer)RfD: reference dose (toxicity)CSF: cancer slope factorABS: absorbed fraction

BW: body weight CR: consumption rate FI: fraction ingested

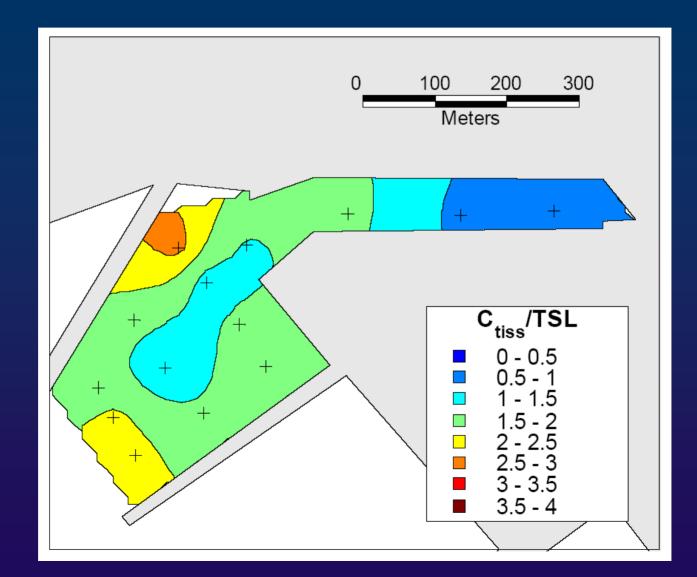
Human Health Risk Assessment -Assumptions

- Site-maximum clam tissue concentration used as surrogate for all seafood from site
- ◆ Target risk level for cancer 10⁻⁵
- RfD and CSF generally from EPA IRIS database
- ◆ 100% fraction ingested (FI=1)
- ◆ 100% absorbed (ABS=1)
- Body weight 70 kg (BW)
- Consumption rate of 21 g/day (High-end angler; OEHHA, 2001)

Human Health Risk Assessment -Results


Human Health Risk Assessment -Results

- Site-maximum tissue concentrations at Paleta were <TSL for all chemicals except
 - Arsenic (×2.6)
 - BAP (×16)
 - Total PCB (×3.6)
- Site-maximum tissue concentrations at Chollas were <TSL for all chemicals except
 - Arsenic (×2.9)
 - BAP (×21)
 - Total PCB (×2.2)


Human Health Beneficial Use Assessment

	Paleta				Chollas			
	>Control	>Baseline	>TSL _{min}	Station Analysis	>Control	>Baseline	>TSL _{min}	Station Analysis
Ag	-	-	-	no	-	+	-	no
As	-	-	+	no	-	+	+	no
Cd	-	-	-	no	-	-	-	no
Cr	-	+	-	no	-	+	-	no
Cu	+	-	-	no	+	+	-	no
Hg	+	-	-	no	-	-	-	no
Ni	-	+	-	no	-	-	-	no
Pb	+	+	-	no	+	+	-	no
Zn	-	+	-	no	-	+	-	no
Naph	-	+	-	no	-	+	-	no
BAP	+	+	+	yes	+	+	+	yes
TPCB	+	+	+	yes	+	+	+	yes
α-Chlor	+	+	-	no	+	+	-	no
γ-Chlor	+	+	-	no	+	+	-	no
DDE	+	+	-	no	+	+	-	no
DDD	+	+	-	no	+	+	-	no
DDT	-	+	-	no	-	+	-	no

Biota-Sediment Accumulation Factor for Total PCB

Spatial Assessment for Human Health Beneficial Use at Chollas

Conclusions and Recommendations

Aquatic Life Impairment - Chollas

Outer Area

- Most (7) stations classified as possibly impaired, three as likely impaired, and one unlikely impaired
- Stations categorized as possibly impaired have co-occurrence of moderate CoPC and toxicity impacts
- Stations categorized as likely impaired have co-occurrence of high CoPC and moderate benthic community impacts
- Benthic community impacts at C8 and C11 related to physical disturbance

Inner Area

- All three stations classified as likely impaired
- Gradient of impairment consistent with creek or nearby shoreline contaminant source
- High fines content indicates area is depositional
- Enriched TOC suggests loading related to urban runoff

• CoPC drivers: PAH, PCB, chlordane and DDT

Aquatic-Dependent Wildlife Impairment - Chollas

- A limited area of the Chollas site was classified as possibly impaired for effects of copper to the Least Tern and Brown Pelican
 - Three stations (C07, C10 and C11) were categorized as possibly impaired
 - Higher bioaccumulation at C07 and C11 related to low fines and TOC
 - Higher bioaccumulation at C10 related to high sediment copper concentrations

Human Health Impairment - Chollas

- The entire Chollas site was classified as possibly impaired for human health cancer risk related to the consumption of BAP in fish and shellfish
- The majority of the Chollas site was classified as possibly impaired for human health cancer risk related to the consumption of PCBs in fish and shellfish
 - Estimated risk level for BAP and TPCB exceeded their respective TSLs by a factor of 11and 1.7
 - Highest magnitude of BAP impairment in the midinner Creek area (C12-C13) and near the base of Pier 1 (C09-C10) corresponds to elevated sediment concentrations
 - Highest magnitude of TPCB impairment near the base of the NASSCO pier (C07) related to low binding and at end of Pier 1 (C02-C03) corresponds to elevated sediment concentrations

Aquatic Life Impairment - Paleta

- Outer Area
 - Five stations were classified as possibly impaired and three as unlikely impaired
 - All stations categorized as possibly impaired have cooccurrence of moderate CoPC and benthic community impacts

Inner Area

- Four stations (P11, P15, P16, and P17) were classified as likely impaired and four were classified as unlikely impaired
- The three innermost sites group together spatially and have common sediment characteristics. P11 is spatially separated, has similar sediment chemistry, but differs in biological impacts suggesting additional sources of impairment
- CoPCs drivers: lead, PAH, PCB, chlordane and DDT

Aquatic-Dependent Wildlife Impairment - Paleta

 Potential for impairment to aquatic dependent wildlife at the Paleta site was categorized as unlikely for all receptors with respect to all CoPCs

Human Health Impairment - Paleta

- The entire Paleta site was classified as possibly impaired for human health cancer risk related to the consumption of BAP and PCBs in fish and shellfish
 - Estimated risk level for BAP and TPCB exceeded their respective TSLs by a factor of 16 and 3.6
 - Highest magnitude of BAP and TPCB impairment along the northern extent of the inner Creek area (P11, P13, P15 and P17) corresponds to elevated levels in the sediment
 - TPCB impairment at station (P05) near the Mole Pier corresponds to elevated levels in the sediment

Recommendations

- Identify causes of impairment
 - Complete Phase II TIE
 - Evaluate existing data
 - Use results to guide TMDL source quantification
- Evaluate sources of contaminants of concern
 - Utilize existing data
 - Fate and transport studies
 - Aerial deposition
- Conduct cleanup studies
 - Refine risk assessments using resident animals and site specific exposure patterns
 - Develop cleanup thresholds
 - Determine potential cleanup boundaries