The following discharger is subject to waste discharge requirements (WDRs) set forth in this Order.

Table 1. Discharger Information

<table>
<thead>
<tr>
<th>Discharger</th>
<th>East Bay Municipal Utility District (EBMUD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facility Name</td>
<td>Special District No. 1 Main Wastewater Treatment Plant and EBMUD’s Interceptor Conveyance System</td>
</tr>
<tr>
<td>Facility Address</td>
<td>2020 Wake Avenue</td>
</tr>
<tr>
<td></td>
<td>Oakland, CA 94607</td>
</tr>
<tr>
<td></td>
<td>Alameda County</td>
</tr>
<tr>
<td>CIWQS Place Number</td>
<td>222132</td>
</tr>
</tbody>
</table>

Table 2. Discharge Locations

<table>
<thead>
<tr>
<th>Discharge Point</th>
<th>Effluent Description</th>
<th>Discharge Point Latitude (North)</th>
<th>Discharge Point Longitude (West)</th>
<th>Receiving Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>Secondary Treated Municipal Wastewater</td>
<td>37.817222</td>
<td>-122.348611</td>
<td>Central San Francisco Bay</td>
</tr>
</tbody>
</table>

Table 3. Administrative Information

<table>
<thead>
<tr>
<th>This Order was adopted on:</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>This Order shall become effective on:</td>
<td>July 1, 2015</td>
</tr>
<tr>
<td>This Order shall expire on:</td>
<td>June 30, 2020</td>
</tr>
<tr>
<td>CIWQS Regulatory Measure Number</td>
<td>TBD</td>
</tr>
<tr>
<td>The Discharger shall file a Report of Waste Discharge as an application for reissuance of WDRs in accordance with California Code of Regulations, title 23, and an application for reissuance of a National Pollutant Discharge Elimination System (NPDES) permit no later than:</td>
<td>October 4, 2019</td>
</tr>
<tr>
<td>The U.S. Environmental Protection Agency (U.S. EPA) and the California Regional Water Quality Control Board, San Francisco Bay Region, have classified this discharge as follows:</td>
<td>Major</td>
</tr>
</tbody>
</table>

I, Bruce H. Wolfe, Executive Officer, do hereby certify that this Order with all attachments is a full, true, and correct copy of the Order adopted by the California Regional Water Quality Control Board, San Francisco Bay Region, on the date indicated above.

Bruce H. Wolfe, Executive Officer
Contents

I. Facility Information ..3
II. Findings ...3
III. Discharge Prohibitions ...3
IV. Effluent Limitations and Discharge Specifications ..4
V. Receiving Water Limitations ...6
VI. Provisions ..7
 A. Standard Provisions ...7
 B. Monitoring and Reporting ...7
 C. Special Provisions ...8
 1. Reopener Provisions ..8
 2. Effluent Characterization Study and Report ..8
 3. Pollutant Minimization Program ...9
 4. Special Provisions for Municipal Facilities ...11
 5. Other Special Provisions ..13
 6. Measures to Minimize Blending ..15
 7. Standard Operating Procedures for Resource Recovery ..15
 8. Outfall Inspection ..16

Tables

Table 1. Discharger Information ... 1
Table 2. Discharge Locations ... 1
Table 3. Administrative Information .. 1
Table 4. Effluent Limitations .. 5
Table 5. Copper Action Plan ... 13
Table 6. Cyanide Action Plan ... 14
Table 7. Requirements to Minimize Blending Events ... 15

Attachments

Attachment A – Definitions ... A-1
Attachment B – Facility Map .. B-1
Attachment C – Process Flow Diagram .. C-1
Attachment E – Monitoring and Reporting Program (MRP) ... E-1
Attachment F – Fact Sheet ... F-1
Attachment H – Pretreatment Requirements ... H-1
I. FACILITY INFORMATION

Information describing East Bay Municipal Utility District’s Main Wastewater Treatment Plant and its collection system (the Facility) is summarized in Table 1 and in Fact Sheet (Attachment F) sections I and II.

II. FINDINGS

The California Regional Water Quality Control Board, San Francisco Bay Region (Regional Water Board), finds:

A. Legal Authorities. This Order serves as WDRs pursuant to California Water Code article 4, chapter 4, division 7 (commencing with § 13260). This Order is also issued pursuant to federal Clean Water Act (CWA) section 402 and implementing regulations adopted by U.S. EPA, and Water Code chapter 5.5, division 7 (commencing with § 13370). It shall serve as an NPDES permit for point source discharges from the Facility to surface waters.

B. Background and Rationale for Requirements. The Regional Water Board developed the requirements in this Order based on information the Discharger submitted as part of its application, information obtained through monitoring and reporting programs, and other available information. The Fact Sheet (Attachment F) contains background information and rationale for the requirements in this Order and is hereby incorporated into and constitutes findings for this Order. Attachments A through E, G, and H are also incorporated into this Order.

C. Provisions and Requirements Implementing State Law. No provisions and requirements in this Order are included to implement State law only.

D. Notification of Interested Parties. The Regional Water Board notified the Discharger and interested agencies and persons of its intent to prescribe these WDRs and provided an opportunity to submit written comments and recommendations. The Fact Sheet provides details regarding the notification.

E. Consideration of Public Comment. The Regional Water Board, in a public meeting, heard and considered all comments pertaining to the discharge. The Fact Sheet provides details regarding the public hearing.

THEREFORE, IT IS HEREBY ORDERED that Order No. R2-2010-0060 is rescinded upon the effective date of this Order except for enforcement purposes, and, in order to meet the provisions of Water Code division 7 (commencing with § 13000) and regulations adopted thereunder, and the provisions of the CWA and regulations and guidelines adopted thereunder, the Discharger shall comply with the requirements in this Order. This action in no way prevents the Regional Water Board from taking enforcement action for past violations of the previous order.

III. DISCHARGE PROHIBITIONS

A. Discharge of treated wastewater at a location or in a manner different from that described in this Order is prohibited.

B. Discharge at Discharge Point No. 001 is prohibited when treated wastewater does not receive an initial dilution of at least 25:1 (as modeled). Compliance shall be achieved by proper operation and
maintenance of the discharge outfall to ensure that it (or its replacement, in whole or part) is in good working order and is consistent with or can achieve better mixing than that described in Fact Sheet section IV.C.4.a. The Discharger shall address measures taken to ensure this in its application for permit reissuance.

C. The bypass of untreated or partially-treated wastewater to waters of the United States is prohibited, except as provided for in Attachment D sections I.G.2 and I.G.3 of this Order.

Blended wastewater is biologically treated wastewater blended with primary treated wastewater that has been diverted around biological treatment units or advanced treatment units. These anticipated discharges are approved under the bypass conditions when (1) the peak wet weather secondary influent flow volumes equal or exceed 150 MGD\(^1\), (2) the Discharger maximizes treatment through all secondary treatment units, (3) the discharge complies with the effluent and receiving water limitations contained in this Order, and (4) the Discharger satisfies Provision VI.C.6. Furthermore, the Discharger shall operate its facility as designed and in accordance with the Operation & Maintenance Manual developed for the facility. This means that it shall optimize storage and use of equalization units, and shall fully utilize the biological treatment units and advanced treatment units, if applicable. The Discharger shall report incidents of blended effluent discharges in routine monitoring reports, and shall conduct monitoring of this discharge as specified in the attached MRP (Attachment E).

D. The average dry weather flow, as measured at station INF-001 described in the attached MRP (Attachment E), shall not exceed 120 MGD. Actual average dry weather flow shall be determined for compliance with this prohibition over three consecutive dry weather months each year.

E. The discharge of brine downstream of secondary treatment at greater than 2 percent of secondary treated wastewater flow as a daily average is prohibited. Such brine discharge shall be at a point where it completely mixes with treated wastewater upstream of Monitoring Location EFF-001. Brine flow shall be measured at station EFF-002 as described in the attached MRP.

F. Any sanitary sewer overflow that results in a discharge of untreated or partially-treated wastewater to waters of the United States is prohibited.

IV. EFFLUENT LIMITATIONS AND DISCHARGE SPECIFICATIONS

A. The Discharger shall comply with the following effluent limitations at Discharge Point No. 001, with compliance measured at Monitoring Location EFF-001 as described in the MRP.

\(^1\) As measured at station SEC-INF-001 described in Attachment E of this Order. Blending at a flow rate less than 150 MGD, may also qualify as an approved bypass if the Discharger provides evidence that proves the reduced flow rate is a result of a short-lived hydraulic surge (e.g. when the Discharger initiates or ceases blending), or temporary failure of the Mid-Plant Pump Station that was not the result of operator error or inadequate maintenance. The Discharger shall provide such evidence as soon as practicable with the appropriate self-monitoring report.
Table 4. Effluent Limitations

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Effluent Limitations</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbonaceous Biochemical Oxygen Demand, 5-day @ 20°C (CBOD₅)</td>
<td>mg/L</td>
<td>Average Monthly: 25</td>
<td>Average Weekly: 40</td>
<td>Maximum Daily: ---</td>
<td>Instantaneous Maximum: ---</td>
<td>Instantaneous Minimum: ---</td>
</tr>
<tr>
<td>Total Suspended Solids (TSS)</td>
<td>mg/L</td>
<td>30</td>
<td>45</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Oil and Grease</td>
<td>mg/L</td>
<td>10</td>
<td>---</td>
<td>20</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>pH [¹]</td>
<td>standard units</td>
<td>---</td>
<td>---</td>
<td>6.0</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td>Total Residual Chlorine [³]</td>
<td>mg/L</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>0.0 [²]</td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td>µg/L</td>
<td>47</td>
<td>---</td>
<td>85</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Cyanide</td>
<td>µg/L</td>
<td>20</td>
<td>---</td>
<td>39</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Hexachlorobenzene</td>
<td>µg/L</td>
<td>0.0076</td>
<td>---</td>
<td>0.015</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Dioxin-TEQ</td>
<td>µg/L</td>
<td>1.4 x 10⁻⁸</td>
<td>---</td>
<td>2.8 x 10⁻⁸</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Total Ammonia</td>
<td>mg/L as N</td>
<td>84</td>
<td></td>
<td>110</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Unit Abbreviations:
- mg/L = milligrams per liter
- µg/L = micrograms per liter

Footnotes:
- [¹] If the Discharger monitors pH continuously, pursuant to 40 C.F.R. section 401.17 the Discharger shall be in compliance with this pH limitation provided that both of the following conditions are satisfied: (i) the total time during which the pH is outside the required range shall not exceed 7 hours and 26 minutes in any calendar month; and (ii) no individual excursion from the required pH range shall exceed 60 minutes.
- [²] The Discharger may elect to use a continuous on-line monitoring system for measuring or determining that residual dechlorinating agent is present. This monitoring system may be used to prove that anomalous residual chlorine exceedances measured by on-line chlorine analyzers are false positives because it is chemically improbable to have chlorine present in the presence of sodium bisulfite. If Regional Water Board staff finds convincing evidence that chlorine residual exceedances are false positives, the exceedances are not violations of this Order’s total chlorine residual limit.
- [³] Compliance with the total residual chlorine limitations shall be measured at E-001D.

B. Percent Removal. The average monthly percent removal of carbonaceous biochemical oxygen demand (CBOD₅) and total suspended solids (TSS) at Discharge Point No. 001 shall not be less than 85 percent (i.e., in each calendar month, the arithmetic mean of CBOD₅ and TSS, by concentration, for effluent samples collected at Monitoring Location EFF-001 as described in the MRP, shall not exceed 15 percent of the arithmetic mean of the CBOD₅ and TSS, by concentration, for influent samples collected at Monitoring Location INF-001 as described in the MRP at approximately the same times during the same period).

C. Enterococcus. Discharges at Discharge Point No. 001, with compliance measured at Monitoring Location EFF-001D as described in the MRP, shall meet the following enterococcus limitation. The geometric mean enterococcus bacteria concentration of all samples in a calendar month shall not exceed 35 colonies per 100 milliliters (CFU/100 mL).

D. Fecal Coliform. Discharges at Discharge Point No. 001, with compliance measured at Monitoring Location EFF-001D as described in the MRP, shall meet the following fecal coliform limitation.

(1) The 5-day geometric mean fecal coliform density shall not exceed a Most Probable Number (MPN) of fecal coliform bacteria of 500 MPN/100 mL; and
(2) The 90th percentile of the last ten values shall not exceed 1,100 MPN/100 mL.

E. Whole Effluent Acute Toxicity. Discharges at Discharge Point No. 001 shall comply with the following limitations, with compliance measured at Monitoring Location EFF-001 as described in the MRP:

1. An 11-sample median value of not less than 90 percent survival; and

2. An 11-sample 90th percentile value of not less than 70 percent survival.

These acute toxicity limitations are defined as follows:

- **11-sample median.** A bioassay test showing survival of less than 90 percent represents a violation of this effluent limit if five or more of the past ten or fewer bioassay tests also show less than 90 percent survival.

- **11-sample 90th percentile.** A bioassay test showing survival of less than 70 percent represents a violation of this effluent limit if one or more of the past ten or fewer bioassay tests also show less than 70 percent survival.

Bioassays shall be performed using the most up-to-date U.S. EPA protocols and species as specified in the MRP. If these protocols prove unworkable, the Executive Officer and the Environmental Laboratory Accreditation Program may grant exceptions in writing upon the Discharger’s request with justification.

The Discharger is authorized to pH adjust its flow-through bioassay tests to minimize interference by artifactual toxicity from un-ionized ammonia resulting from pH increases during tests.

V. RECEIVING WATER LIMITATIONS

A. Receiving water limitations are based on WQOs contained in the Basin Plan and are a required part of this Order. The discharges shall not cause the following in Central San Francisco Bay:

1. Floating material, including solids, liquids, foams, and scum, in concentrations that cause nuisance or adversely affect beneficial uses;

2. Alteration of suspended sediment in such a manner as to cause nuisance or adversely affect beneficial uses, or detrimental increase in the concentrations of toxic pollutants in sediments or aquatic life;

3. Suspended material in concentrations that cause nuisance or adversely affect beneficial uses;

4. Bottom deposits or aquatic growths to the extent that such deposits or growths cause nuisance or adversely affect beneficial uses;

5. Alteration of temperature beyond present natural background levels;

6. Changes in turbidity that cause nuisance or adversely affect beneficial uses, or increases from normal background light penetration or turbidity greater than 10 percent in areas where natural turbidity is greater than 50 nephelometric turbidity units;
7. Coloration that causes nuisance or adversely affects beneficial uses;

8. Visible, floating, suspended, or deposited oil or other products of petroleum origin; or

9. Toxic or other deleterious substances in concentrations or quantities that cause deleterious effects on wildlife, waterfowl, or other aquatic biota, or render any of these unfit for human consumption, either at levels created in the receiving waters or as a result of biological concentration.

B. The discharge shall not cause the following limits to be exceeded in receiving waters at any place within one foot of the water surface:

1. Dissolved Oxygen 5.0 mg/L, minimum
 The median dissolved oxygen concentration for any three consecutive months shall not be less than 80% of the dissolved oxygen content at saturation. When natural factors cause concentrations less than that specified above, the discharge shall not cause further reduction in ambient dissolved oxygen concentrations.

2. Dissolved Sulfide Natural background levels

3. pH The pH shall not be depressed below 6.5 or raised above 8.5. The discharge shall not cause changes greater than 0.5 pH units in normal ambient pH levels.

4. Nutrients Waters shall not contain biostimulatory substances in concentrations that promote aquatic growths to the extent that such growths cause nuisance or adversely affect beneficial uses.

C. The discharge shall not cause a violation of any water quality standard for receiving waters adopted by the Regional Water Board or State Water Board as required by the CWA and regulations adopted thereunder. If more stringent water quality standards are promulgated or approved pursuant to CWA section 303, or amendments thereto, the Regional Water Board may revise or modify this Order in accordance with the more stringent standards.

VI. PROVISIONS

A. Standard Provisions

1. The Discharger shall comply with all “Standard Provisions” in Attachment D.

2. The Discharger shall comply with all applicable provisions of the “Regional Standard Provisions, and Monitoring and Reporting Requirements for NPDES Wastewater Discharge Permits” (Attachment G).

B. Monitoring and Reporting

The Discharger shall comply with the MRP (Attachment E) and future revisions thereto, and applicable sampling and reporting requirements in Attachments D and G.
C. Special Provisions

1. Reopener Provisions

The Regional Water Board may modify or reopen this Order prior to its expiration date in any of the following circumstances as allowed by law:

a. If present or future investigations demonstrate that the discharges governed by this Order have or will have a reasonable potential to cause or contribute to, or will cease to have, adverse impacts on water quality or beneficial uses of the receiving waters.

b. If new or revised water quality objectives or total maximum daily loads (TMDLs) come into effect for San Francisco Bay and contiguous water bodies (whether statewide, regional, or site-specific). In such cases, effluent limitations in this Order may be modified as necessary to reflect the updated water quality objectives and wasteload allocations in the TMDLs. Adoption of the effluent limitations in this Order is not intended to restrict in any way future modifications based on legally-adopted water quality objectives or TMDLs or as otherwise permitted under federal regulations governing NPDES permit modifications.

c. If translator, dilution, or other water quality studies provide a basis for determining that a permit condition should be modified.

d. If State Water Board precedential decisions, new policies, new laws, or new regulations are adopted.

e. If an administrative or judicial decision on a separate NPDES permit or WDRs addresses requirements similar to this discharge.

f. If the Discharger requests adjustments in effluent limits due to the implementation of stormwater diversion pursuant to the Municipal Regional Stormwater Permit (Permit No. CAS612008) for redirecting dry weather and first flush discharges from the storm drain system to the sanitary sewer system as a storm water pollutant control strategy.

g. Or as otherwise authorized by law.

The Discharger may request a permit modification based on any of the circumstances above. With any such request, the Discharger shall include antidegradation and anti-backsliding analyses.

2. Effluent Characterization Study and Report

a. **Study Elements.** The Discharger shall continue to characterize and evaluate the discharge from the following discharge point to verify that the “no” or “unknown” reasonable potential analysis conclusions of this Order remain valid and to inform the next permit reissuance. The Discharger shall collect representative samples at the monitoring stations set forth below, as defined in the MRP, at no less than the frequency specified below:

<table>
<thead>
<tr>
<th>Discharge Point</th>
<th>Monitoring Location</th>
<th>Minimum Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>EFF-001</td>
<td>Once every calendar year</td>
</tr>
</tbody>
</table>
The samples shall be analyzed for the pollutants listed in Attachment G, Table C, except for those pollutants with effluent limitations where the MRP already requires more frequent monitoring, and except for those pollutants for which there are no water quality criteria (see Fact Sheet Table F-6). Compliance with this requirement shall be achieved in accordance with the specifications of Attachment G sections III.A.1 and III.A.2.

The Discharger shall evaluate on an annual basis if concentrations of any of these pollutants significantly increase over past performance. The Discharger shall investigate the cause of any such increase. The investigation may include, but need not be limited to, an increase in monitoring frequency, monitoring of internal process streams, and monitoring of influent sources. The Discharger shall establish remedial measures addressing any increase resulting in reasonable potential to cause or contribute to an excursion above applicable water quality objectives. This requirement may be satisfied through identification of the constituent as a “pollutant of concern” in the Discharger’s Pollutant Minimization Program, described in Provision VI.C.3.

b. Reporting Requirements

i. Routine Reporting. The Discharger shall, within 45 days of receipt of analytical results, report the following in the transmittal letter for the appropriate self-monitoring report:

(a) Indication that a sample for this characterization study was collected; and

(b) Identity of pollutants detected at or above applicable water quality criteria (see Fact Sheet Table F-6 for the criteria) and the detected concentrations of those pollutants.

ii. Annual Reporting. The Discharger shall summarize the annual data evaluation and source investigation in the annual self-monitoring report.

iii. Final Report. The Discharger shall submit a final report that presents all these data with the application for permit reissuance.

3. Pollutant Minimization Program

a. The Discharger shall continue to improve its existing Pollutant Minimization Program to promote minimization of pollutant loadings to the treatment plant and therefore to the receiving waters.

b. The Discharger shall submit an annual report no later than February 28 each year. Each annual report shall include at least the following information:

i. Brief description of treatment plant. The description shall include the service area and treatment plant processes.

ii. Discussion of current pollutants of concern. Periodically, the Discharger shall analyze its circumstances to determine which pollutants are currently a problem and
which pollutants may be potential future problems. This discussion shall include the reasons for choosing the pollutants.

iii. Identification of sources for pollutants of concern. This discussion shall include how the Discharger intends to estimate and identify pollutant sources. The Discharger shall include sources or potential sources not directly within the ability or authority of the Discharger to control, such as pollutants in the potable water supply and air deposition.

iv. Identification of tasks to reduce the sources of pollutants of concern. This discussion shall identify and prioritize tasks to address the Discharger’s pollutants of concern. The Discharger may implement the tasks by itself or participate in group, regional, or national tasks that address its pollutants of concern. The Discharger is strongly encouraged to participate in group, regional, or national tasks that address its pollutants of concern whenever it is efficient and appropriate to do so. An implementation timeline shall be included for each task.

v. Outreach to employees. The Discharger shall inform employees about the pollutants of concern, potential sources, and how they might be able to help reduce the discharge of these pollutants of concern into the treatment facilities. The Discharger may provide a forum for employees to provide input.

vi. Continuation of Public Outreach Program. The Discharger shall prepare a pollution prevention public outreach program for its service area. Outreach may include participation in existing community events, such as county fairs; initiating new community events, such as displays and contests during Pollution Prevention Week; conducting school outreach programs; conducting plant tours; and providing public information in newspaper articles or advertisements, radio or television stories or spots, newsletters, utility bill inserts, or web sites. Information shall be specific to target audiences. The Discharger shall coordinate with other agencies as appropriate.

vii. Discussion of criteria used to measure Pollutant Minimization Program and task effectiveness. The Discharger shall establish criteria to evaluate the effectiveness of its Pollutant Minimization Program. This discussion shall identify the specific criteria used to measure the effectiveness of each task in Provisions VI.C.3.b.iii, iv, v, and vi.

viii. Documentation of efforts and progress. This discussion shall detail all of the Discharger’s Pollutant Minimization Program activities during the reporting year.

ix. Evaluation of Pollutant Minimization Program and task effectiveness. This Discharger shall use the criteria established in Provision VI.C.3.b.vii to evaluate the program and task effectiveness.

x. Identification of specific tasks and timelines for future efforts. Based on the evaluation, the Discharger shall explain how it intends to continue or change its tasks to more effectively reduce the amount of pollutants flowing to the treatment plant, and subsequently in its effluent.
c. The Discharger shall develop and conduct a Pollutant Minimization Program as further described below when there is evidence that a priority pollutant is present in the effluent above an effluent limitation (e.g., sample results reported as detected but not quantified [DNQ] when the effluent limitation is less than the method detection limit [MDL], sample results from analytical methods more sensitive than those methods required by this Order, presence of whole effluent toxicity, health advisories for fish consumption, or results of benthic or aquatic organism tissue sampling) and either:

i. A sample result is reported as DNQ and the effluent limitation is less than the Reporting Level (RL); or

ii. A sample result is reported as not detected (ND) and the effluent limitation is less than the MDL, using definitions in Attachment A and reporting protocols described in the MRP.

d. If triggered by the reasons set forth in Provision VI.C.3.c, above, the Discharger’s Pollutant Minimization Program shall include, but not be limited to, the following actions and submittals:

i. Annual review and semi-annual monitoring of potential sources of the reportable priority pollutants, which may include fish tissue monitoring and other bio-uptake sampling, or alternative measures when source monitoring is unlikely to produce useful analytical data;

ii. Quarterly monitoring for the reportable priority pollutants in the influent to the Facility. The Executive Officer may approve alternative measures when influent monitoring is unlikely to produce useful analytical data;

iii. Submittal of a control strategy designed to proceed toward the goal of maintaining concentrations of the reportable priority pollutants in the effluent at or below the effluent limitation;

iv. Implementation of appropriate cost-effective control measures for the reportable priority pollutants, consistent with the control strategy; and

v. Inclusion of the following specific items within the annual report required by Provision VI.C.3.b above:

(a) All Pollutant Minimization Program monitoring results for the previous year;
(b) List of potential sources of the reportable priority pollutants;
(c) Summary of all actions undertaken pursuant to the control strategy; and
(d) Description of actions to be taken in the following year.

4. Special Provisions for Municipal Facilities

a. Pretreatment Program Requirements

(1) Pretreatment Program: The Discharger shall implement and enforce its approved pretreatment program in accordance with Federal Pretreatment Regulations (40 CFR §403); pretreatment standards promulgated under CWA Sections 307 (b), 307 (c), and
307 (d); pretreatment requirements specified at 40 CFR §122.44 (j); and the requirements in Attachment H, “Pretreatment Requirements”. The Discharger’s responsibilities include, but are not limited to:

(a) Enforcement of National Pretreatment Standards established at 40 CFR §403.5 and §403.6;

(b) Implementation of its pretreatment program in accordance with legal authorities, policies, procedures, and financial provisions described in the General Pretreatment regulations at 40 CFR §403 and its approved pretreatment program;

(c) Submission of reports to U.S. EPA, the State Water Board, and the Regional Water Board, as described in Attachment H “Pretreatment Requirements”; and

(d) Evaluate the need to revise local limits pursuant to 40 CFR §403.5 (c) (1); and within 180 days after the effective date of this Order, submit a report describing a plan and schedule for implementation.

(2) The Discharger shall implement its approved pretreatment program and the program shall be an enforceable condition of this Order. If the Discharger fails to perform the pretreatment functions, the Regional Water Board, the State Water Board, or the USEPA may take enforcement actions against the Discharger as authorized by the Clean Water Act.

b. Sludge and Biosolids Management

i. All sludge and biosolids shall be disposed of, managed, or reused in a municipal solid waste landfill; through land application; as a Class A compost; through a waste-to-energy facility; in a sludge-only landfill; or in a sewage sludge incinerator in accordance with 40 C.F.R. part 503; or another U.S. EPA-approved reuse or disposal technology or method.

ii. Sludge and biosolids treatment, storage, and disposal, or reuse, shall not create a nuisance, such as objectionable odors or flies, or result in groundwater contamination.

iii. The sludge and biosolids treatment and storage site shall have facilities adequate to divert surface runoff from adjacent areas, to protect site boundaries from erosion, and to prevent any conditions that would cause drainage from the materials in the storage site. Adequate protection is defined as protection from at least a 100-year storm and the highest possible tidal stage that may occur.

iv. Sludge or biosolids disposed in a municipal solid waste landfill shall meet the requirements of 40 C.F.R. part 258. In the annual self-monitoring report, the Discharger shall provide the amount of sludge or biosolids disposed and indicate the landfill to which it was sent.

v. This Order does not authorize permanent onsite sludge or biosolids storage or disposal. A Report of Waste Discharge shall be filed and the site brought into
compliance with all applicable regulations prior to commencement of any such activity.

c. **Collection System Management.** The Discharger shall properly operate and maintain its collection system (see Attachment D section I.D). The Discharger shall report any noncompliance (see Attachment D sections V.E.1 and V.E.2) and mitigate any discharge from its collection system that violates this Order (see Attachment D section I.C).

The *Statewide General Waste Discharge Requirements for Sanitary Sewer Systems* (General Collection System WDRs), State Water Board Order No. 2006-0003 DWQ as amended by State Water Board Order No. WQ 2013-0058-EXEC, has requirements for operation and maintenance of separate sanitary sewer collection systems and for reporting and mitigating sanitary sewer overflows from the separate sanitary sewer portion of the Discharger’s collection system. While the Discharger must comply with both the General Collection System WDRs and this Order, the General Collection System WDRs more clearly and specifically stipulate requirements for operation and maintenance and for reporting and mitigating sanitary sewer overflows. Implementation of the General Collection System WDRs for proper operation and maintenance and mitigation of sanitary sewer overflows will satisfy the corresponding federal NPDES requirements specified in Attachment D (as supplemented by Attachment G). Following the notification and reporting requirements in the General Collection System WDRs will satisfy NPDES the corresponding reporting requirements specified in Attachment D (as supplemented by Attachment G) for sanitary sewer overflows from the separate sanitary sewer portion of the collection system.

5. **Other Special Provisions**

a. **Copper Action Plan.** The Discharger shall implement source control, and pollution prevention for copper in accordance with the following tasks and time schedule:

<table>
<thead>
<tr>
<th>Table 5. Copper Action Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task</td>
</tr>
<tr>
<td>1. Review Potential Copper Sources</td>
</tr>
<tr>
<td>The Discharger shall submit an inventory of potential copper sources to the treatment plant.</td>
</tr>
</tbody>
</table>

| 2. Implement Copper Control Program | |
| The Discharger shall submit a plan for and begin implementation of a program to reduce copper sources identified in Task 1. The plan shall consist, at a minimum, of the following elements: |
| a. Provide education and outreach to the public (e.g., focus on proper pool and spa maintenance and plumbers’ roles in reducing corrosion); |
| b. If corrosion is determined to be a significant copper source, work cooperatively with local water purveyors to reduce and control water corrosivity, as appropriate, and ensure that local plumbing contractors implement best management practices to reduce corrosion in pipes; and |
| c. Educate plumbers, designers, and maintenance contractors for pools and spas to encourage best management practices that minimize copper discharges. |
| With annual Pollution Prevention Report due February 28. Plan implementation shall be ongoing. |
Task 3. Implement Additional Measures

If the Regional Water Board notifies the Discharger that the three-year rolling mean dissolved copper concentration in Central San Francisco Bay exceeds 2.2 µg/L, then within 90 days of the notification, the Discharger shall evaluate the effluent copper concentration trend and, if it is increasing, develop and begin implementation of additional measures to control copper discharges. The Discharger shall report on the progress and effectiveness of actions taken and provide a schedule for actions to be taken in the next 12 months.

Compliance Date: With next annual pollution prevention report due February 28 (at least 90 days following notification)

Task 4. Undertake Studies to Reduce Copper Pollutant Impact Uncertainties.

The Discharger shall submit an updated study plan and schedule to conduct or cause to be conducted technical studies to investigate possible copper sediment toxicity and to investigate sub-lethal effects on salmonids. Specifically, the Discharger shall include the manner in which the above will be accomplished and describe the studies to be performed with an implementation schedule. To satisfy this requirement, the Discharger may collaborate and conduct these studies as a group.

Compliance Date: Bay Area Clean Water Agencies (BACWA) submitted a study plan on January 6, 2011. BACWA is funding the RMP to better understand the impacts of copper on salmonids (BACWA letter dated January 17, 2014).

Task 5. Report Status of Copper Control Program.

The Discharger shall submit an annual report documenting copper control program implementation and addressing the effectiveness of the actions taken, including any additional copper controls required by Task 3 above, and provide a schedule for actions to be taken in the next 12 months. Additionally, the Discharger shall report the findings and results of the studies completed, planned, or in progress under Task 4. Regarding Task 4 studies, dischargers may collaborate and provide this information in a single report to satisfy this requirement for an entire group.

Compliance Date: With annual pollution prevention report due February 28 each year

b. Cyanide Action Plan

The Discharger shall implement monitoring and surveillance, source control and pollution prevention for cyanide in accordance with the following tasks and time schedule:

Table 6. Cyanide Action Plan

<table>
<thead>
<tr>
<th>Task</th>
<th>Compliance Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Review Potential Cyanide Sources
The Discharger shall submit an inventory of potential cyanide sources to the treatment plant. If no cyanide sources are identified, Tasks 2 and 3 are not required, unless the Discharger receives a request to discharge detectable levels of cyanide to the sewer. If so, the Discharger shall notify the Executive Officer and implement Tasks 2 and 3.</td>
<td>Completed July 29, 2010, with Pretreatment Report</td>
</tr>
<tr>
<td>2. Implement Cyanide Control Program
The Discharger shall continue to implement its program to minimize cyanide discharges consisting, at a minimum, of the following elements:
a. Inspect each potential source to assess the need to include that source in the control program.
b. Inspect contributing sources included in the control program annually. Inspection elements may be based on U.S. EPA guidance, such as Industrial User Inspection and Sampling Manual for POTWs (EPA 831-B-94-01).
c. Develop and distribute educational materials to sources and potential sources regarding the need to prevent cyanide discharges.
d. Prepare an emergency monitoring and response plan to be implemented if a significant cyanide discharge occurs.
For purposes of this Order, a “significant cyanide discharge” is occurring if the Plant’s influent cyanide concentration exceeds 24 µg/L.</td>
<td>With annual Pollution Prevention Report due February 28. Plan implementation shall be ongoing.
Last updated on February 28, 2014, with 2013 Pollution Prevention Report.</td>
</tr>
<tr>
<td>3. Implement Additional Measures
If the Regional Water Board notifies the Discharger that ambient monitoring</td>
<td>If required, with next annual pollution prevention report</td>
</tr>
</tbody>
</table>
show shows cyanide concentrations are 1.0 μg/L or higher in the main body of San Francisco Bay, then within 90 days of the notification, the Discharger shall commence actions to identify and abate cyanide sources responsible for the elevated ambient concentrations, and shall report on the progress and effectiveness of actions taken and provide a schedule for actions to be taken in the next 12 months.

4. **Report Status of Cyanide Control Program**
 The Discharger shall submit an annual report documenting cyanide control program implementation and addressing the effectiveness of actions taken, including any additional cyanide controls required by Task 3 above and provide a schedule for actions to be taken in the next 12 months.

6. **Measures to Minimize Blending**

 The Discharger shall comply with the following tasks and deadlines to minimize blending.

 Table 7. Requirements to Minimize Blending Events

<table>
<thead>
<tr>
<th>Tasks</th>
<th>Compliance Deadline</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Report Annual Status of Storage Basin Standard Operation Procedure (SOP). The Discharger shall provide a description of all blending events over the course of each calendar year and how they were managed. Specifically, this description shall include, for each blending event, the volume of wastewater that received secondary treatment, the volume that received primary treatment, and how the Discharger managed its storage basin to minimize the duration and magnitude of blending events (this evaluation shall also include blending events that were avoided because of the storage basin SOP). Finally, the Discharger shall evaluate and report on the progress of further enhancements to its operation of the storage basin SOP to maximize stored flow volume to reduce blending during wet weather.</td>
<td>February 1st of each year with the Annual Self-Monitoring Report required pursuant to Attachment E, Section XI.B.2</td>
</tr>
</tbody>
</table>

7. **Standard Operating Procedures for Resource Recovery**

 The Discharger shall continue to implement Standard Operating Procedures for receiving hauled-in anaerobically-digestible material for injection into its anaerobic digesters. The Standard Operating Procedures shall be evaluated annually, and updated as appropriate. Any updates shall be documented in the Discharger’s Annual Self-Monitoring Report.

 The Standard Operating Procedures shall address material handling, including unloading, screening or other processing prior to anaerobic digestion, and transportation; spill prevention; spill response; avoidance of the introduction of materials that could cause interference, pass through, or upset of the treatment processes; avoidance of prohibited material; vector control; odor control; operation and maintenance; and the disposition of any solid waste segregated from introduction to the digester. The Discharger shall train its staff on the Standard Operating Procedures and maintain records for a minimum of three years for each load received, describing the hauler, waste type, and quantity received. In addition, the Discharger shall maintain records for a minimum of three years for the disposition, location, and quantity of cumulative pre-digestion segregated solid waste hauled offsite.
8. Outfall Inspection

By July 1, 2015, the Discharger shall prepare a plan, that includes an implementation schedule, to inspect the condition of its outfall. The inspection must evaluate the physical condition of the discharge pipe and diffusers, and evaluate the extent of sediment accumulations in diffuser ports and in the vicinity of the outfall. Within 120 days of completing the inspection, the Discharger shall submit an Outfall Inspection Report that includes the results of its inspection, and any improvements that must be implemented, along with a time schedule, to ensure that the diffuser is operating as designed and complies with Prohibition III.B.
ATTACHMENT A – DEFINITIONS

Arithmetic Mean (µ)
Also called the average, the sum of measured values divided by the number of samples. For ambient water concentrations, the arithmetic mean is calculated as follows:

\[
\text{Arithmetic mean} = \mu = \frac{\sum x}{n}
\]

where: \(\sum x \) is the sum of the measured ambient water concentrations, and \(n \) is the number of samples.

Average Monthly Effluent Limitation (AMEL)
The highest allowable average of daily discharges over a calendar month, calculated as the sum of all daily discharges measured during a calendar month divided by the number of daily discharges measured during that month.

Average Weekly Effluent Limitation (AWEL)
The highest allowable average of daily discharges over a calendar week (Sunday through Saturday), calculated as the sum of all daily discharges measured during a calendar week divided by the number of daily discharges measured during that week.

Bioaccumulative
Taken up by an organism from its surrounding medium through gill membranes, epithelial tissue, or from food and subsequently concentrated and retained in the body of the organism.

Carcinogenic
Known to cause cancer in living organisms.

Coefficient of Variation
Measure of data variability calculated as the estimated standard deviation divided by the arithmetic mean of the observed values.

Daily Discharge
Either: (1) the total mass of the constituent discharged over the calendar day (12:00 am through 11:59 pm) or any 24-hour period that reasonably represents a calendar day for purposes of sampling (as specified in the permit) for a constituent with limitations expressed in units of mass; or (2) the unweighted arithmetic mean measurement of the constituent over the day for a constituent with limitations expressed in other units of measurement (e.g., concentration).

The daily discharge may be determined by the analytical results of a composite sample taken over the course of one day (a calendar day or other 24-hour period defined as a day) or by the arithmetic mean of analytical results from one or more grab samples taken over the course of the day.

For composite sampling, if 1 day is defined as a 24-hour period other than a calendar day, the analytical result for the 24-hour period is considered the result for the calendar day in which the 24-hour period ends.

Detected, but Not Quantified (DNQ)
Sample result less than the RL, but greater than or equal to the laboratory’s MDL. Sample results reported as DNQ are estimated concentrations.
Dilution Credit
Amount of dilution granted to a discharge in the calculation of a water quality-based effluent limitation, based on the allowance of a specified mixing zone. It is calculated from the dilution ratio or determined by conducting a mixing zone study or modeling the discharge and receiving water.

Effluent Concentration Allowance (ECA)
Value derived from the water quality criterion/objective, dilution credit, and ambient background concentration that is used, in conjunction with the CV for the effluent monitoring data, to calculate a long-term average (LTA) discharge concentration. The ECA has the same meaning as waste load allocation (WLA) as used in U.S. EPA guidance (*Technical Support Document For Water Quality-based Toxics Control*, March 1991, second printing, EPA/505/2-90-001).

Enclosed Bay
Indentation along the coast that encloses an area of oceanic water within a distinct headlands or harbor works. Enclosed bays include all bays where the narrowest distance between the headlands or outermost harbor works is less than 75 percent of the greatest dimension of the enclosed portion of the bay. Enclosed bays include, but are not limited to, Humboldt Bay, Bodega Harbor, Tomales Bay, Drake’s Estero, San Francisco Bay, Morro Bay, Los Angeles-Long Beach Harbor, Upper and Lower Newport Bay, Mission Bay, and San Diego Bay. Enclosed bays do not include inland surface waters or ocean waters.

Estimated Chemical Concentration
Concentration that results from the confirmed detection of the substance below the ML value by the analytical method.

Estuaries
Waters, including coastal lagoons, located at the mouths of streams that serve as areas of mixing for fresh and ocean waters. Coastal lagoons and mouths of streams that are temporarily separated from the ocean by sandbars are considered estuaries. Estuarine waters are considered to extend from a bay or the open ocean to a point upstream where there is no significant mixing of fresh water and seawater. Estuarine waters include, but are not limited to, the Sacramento-San Joaquin Delta, as defined in Water Code section 12220, Suisun Bay, Carquinez Strait downstream to the Carquinez Bridge, and appropriate areas of the Smith, Mad, Eel, Noyo, Russian, Klamath, San Diego, and Otay rivers. Estuaries do not include inland surface waters or ocean waters.

Inland Surface Waters
All surface waters of the state that do not include the ocean, enclosed bays, or estuaries.

Instantaneous Maximum Effluent Limitation
Highest allowable value for any single grab sample or aliquot (i.e., each grab sample or aliquot is independently compared to the instantaneous maximum limitation).

Instantaneous Minimum Effluent Limitation
Lowest allowable value for any single grab sample or aliquot (i.e., each grab sample or aliquot is independently compared to the instantaneous minimum limitation).
Maximum Daily Effluent Limitation (MDEL)
Highest allowable daily discharge of a pollutant, over a calendar day (or 24-hour period). For pollutants with limitations expressed in units of mass, the daily discharge is calculated as the total mass of the pollutant discharged over the day. For pollutants with limitations expressed in other units of measurement, the daily discharge is calculated as the arithmetic mean measurement of the pollutant over the day.

Median
Middle measurement in a set of data. The median of a set of data is found by first arranging the measurements in order of magnitude (either increasing or decreasing order). If the number of measurements (n) is odd, then the median = \(X_{\frac{n+1}{2}} \). If n is even, then the median = \(\frac{X_{\frac{n}{2}} + X_{\frac{n}{2}+1}}{2} \) (i.e., the midpoint between \(\frac{n}{2} \) and \(\frac{n}{2}+1 \)).

Method Detection Limit (MDL)
Minimum concentration of a substance that can be measured and reported with 99 percent confidence that the analyte concentration is greater than zero, as defined in in 40 C.F.R. part 136, Attachment B, revised as of July 3, 1999.

Minimum Level (ML)
Concentration at which the entire analytical system gives a recognizable signal and acceptable calibration point. The ML is the concentration in a sample that is equivalent to the concentration of the lowest calibration standard analyzed by a specific analytical procedure, assuming that all the method specified sample weights, volumes, and processing steps have been followed.

Mixing Zone
Limited volume of receiving water allocated for mixing with a wastewater discharge where water quality criteria can be exceeded without causing adverse effects to the overall water body.

Not Detected (ND)
Sample results less than the laboratory’s MDL.

Persistent Pollutants
Substances for which degradation or decomposition in the environment is nonexistent or very slow.

Pollutant Minimization Program
Program of waste minimization and pollution prevention actions that include, but are not limited to, product substitution, waste stream recycling, alternative waste management methods, and education of the public and businesses. The goal of the Pollutant Minimization Program is to reduce all potential sources of a priority pollutant through pollutant minimization (control) strategies, including pollution prevention measures as appropriate, to maintain the effluent concentration at or below the water quality-based effluent limitation. Pollution prevention measures may be particularly appropriate for persistent bioaccumulative priority pollutants where there is evidence that beneficial uses are being impacted. Cost effectiveness may be considered when establishing the requirements of a Pollutant Minimization Program. The completion and implementation of a Pollution Prevention Plan, if required pursuant to Water Code section 13263.3(d), is considered to fulfill Pollutant Minimization Program requirements.
Pollution Prevention
Any action that causes a net reduction in the use or generation of a hazardous substance or other pollutant that is discharged into water and includes, but is not limited to, input change, operational improvement, production process change, and product reformulation (as defined in Water Code section 13263.3). Pollution prevention does not include actions that merely shift a pollutant in wastewater from one environmental medium to another environmental medium, unless clear environmental benefits of such an approach are identified to the satisfaction of the State Water Board or Regional Water Board.

Reporting Level (RL)
ML (and its associated analytical method) chosen by the Discharger for reporting and compliance determination from the MLs included in this Order, including an additional factor if applicable as discussed herein. The MLs included in this Order correspond to approved analytical methods for reporting a sample result that are selected by the Regional Water Board either from SIP Appendix 4 in accordance with SIP section 2.4.2 or established in accordance with SIP section 2.4.3. The ML is based on the proper application of method-based analytical procedures for sample preparation and the absence of any matrix interferences. Other factors may be applied to the ML depending on the specific sample preparation steps employed. For example, the treatment typically applied in cases where there are matrix-effects is to dilute the sample or sample aliquot by a factor of ten. In such cases, this additional factor must be applied to the ML in the computation of the RL.

Source of Drinking Water
Any water designated as having a municipal or domestic supply (MUN) beneficial use.

Standard Deviation (σ)
Measure of variability calculated as follows:

\[
\sigma = \left(\frac{\sum(x - \mu)^2}{n - 1} \right)^{0.5}
\]

where:
- \(x\) is the observed value;
- \(\mu\) is the arithmetic mean of the observed values; and
- \(n\) is the number of samples.

Toxicity Reduction Evaluation (TRE)
Study conducted in a step-wise process designed to identify the causative agents of effluent or ambient toxicity, isolate the sources of toxicity, evaluate the effectiveness of toxicity control options, and then confirm the reduction in toxicity. The first steps of the TRE consist of the collection of data relevant to the toxicity, including additional toxicity testing, and an evaluation of facility operations and maintenance practices, and best management practices. A Toxicity Identification Evaluation (TIE) may be required as part of the TRE, if appropriate. A TIE is a set of procedures to identify the specific chemicals responsible for toxicity. These procedures are performed in three phases (characterization, identification, and confirmation) using aquatic organism toxicity tests.
ATTACHMENT B – FACILITY MAP
ATTACHMENT D – STANDARD PROVISIONS

I. STANDARD PROVISIONS – PERMIT COMPLIANCE

A. Duty to Comply

1. The Discharger must comply with all of the terms, requirements, and conditions of this Order. Any noncompliance constitutes a violation of the Clean Water Act (CWA) and the California Water Code and is grounds for enforcement action; permit termination, revocation and reissuance, or modification; denial of a permit renewal application; or a combination thereof. (40 C.F.R. § 122.41(a); Wat. Code §§ 13261, 13263, 13265, 13268, 13000, 13001, 13304, 13350, 13385.)

2. The Discharger shall comply with effluent standards or prohibitions established under CWA section 307(a) for toxic pollutants and with standards for sewage sludge use or disposal established under CWA section 405(d) within the time provided in the regulations that establish these standards or prohibitions, even if this Order has not yet been modified to incorporate the requirement. (40 C.F.R. § 122.41(a)(1)).

B. Need to Halt or Reduce Activity Not a Defense

It shall not be a defense for a Discharger in an enforcement action that it would have been necessary to halt or reduce the permitted activity in order to maintain compliance with the conditions of this Order. (40 C.F.R. § 122.41(c).)

C. Duty to Mitigate

The Discharger shall take all reasonable steps to minimize or prevent any discharge or sludge use or disposal in violation of this Order that has a reasonable likelihood of adversely affecting human health or the environment. (40 C.F.R. § 122.41(d).)

D. Proper Operation and Maintenance

The Discharger shall at all times properly operate and maintain all facilities and systems of treatment and control (and related appurtenances) which are installed or used by the Discharger to achieve compliance with the conditions of this Order. Proper operation and maintenance also includes adequate laboratory controls and appropriate quality assurance procedures. This provision requires the operation of backup or auxiliary facilities or similar systems that are installed by a Discharger only when necessary to achieve compliance with the conditions of this Order. (40 C.F.R. § 122.41(e).)

E. Property Rights

1. This Order does not convey any property rights of any sort or any exclusive privileges. (40 C.F.R. § 122.41(g).)

2. The issuance of this Order does not authorize any injury to persons or property or invasion of other private rights, or any infringement of state or local law or regulations. (40 C.F.R. § 122.5(c).)
F. Inspection and Entry

The Discharger shall allow the Regional Water Board, State Water Board, U.S. EPA, and/or their authorized representatives (including an authorized contractor acting as their representative), upon the presentation of credentials and other documents, as may be required by law, to (33 U.S.C. § 1318(a)(4)(B); 40 C.F.R. § 122.41(i); Wat. Code, §§ 13267, 13383):

1. Enter upon the Discharger's premises where a regulated facility or activity is located or conducted, or where records are kept under the conditions of this Order (33 U.S.C. § 1318(a)(4)(B)(i); 40 C.F.R. § 122.41(i)(1); Wat. Code, §§ 13267, 13383);

2. Have access to and copy, at reasonable times, any records that must be kept under the conditions of this Order (33 U.S.C. § 1318(a)(4)(B)(ii); 40 C.F.R. § 122.41(i)(2)); Wat. Code, §§ 13267, 13383);

3. Inspect and photograph, at reasonable times, any facilities, equipment (including monitoring and control equipment), practices, or operations regulated or required under this Order (33 U.S.C. § 1318(a)(4)(B)(ii); 40 C.F.R. § 122.41(i)(3); Wat. Code, §§ 13267, 13383); and

4. Sample or monitor, at reasonable times, for the purposes of ensuring Order compliance or as otherwise authorized by the CWA or the Water Code, any substances or parameters at any location. (33 U.S.C. § 1318(a)(4)(B); 40 C.F.R. § 122.41(i)(4); Wat. Code, §§ 13267, 13383.)

G. Bypass

1. Definitions

 a. “Bypass” means the intentional diversion of waste streams from any portion of a treatment facility. (40 C.F.R. § 122.41(m)(1)(i).)

 b. “Severe property damage” means substantial physical damage to property, damage to the treatment facilities, which causes them to become inoperable, or substantial and permanent loss of natural resources that can reasonably be expected to occur in the absence of a bypass. Severe property damage does not mean economic loss caused by delays in production. (40 C.F.R. § 122.41(m)(1)(ii).)

2. Bypass not exceeding limitations. The Discharger may allow any bypass to occur which does not cause exceedances of effluent limitations, but only if it is for essential maintenance to assure efficient operation. These bypasses are not subject to the provisions listed in Standard Provisions – Permit Compliance I.G.3, I.G.4, and I.G.5 below. (40 C.F.R. § 122.41(m)(2).)

3. Prohibition of bypass. Bypass is prohibited, and the Regional Water Board may take enforcement action against a Discharger for bypass, unless (40 C.F.R. § 122.41(m)(4)(i)):

 a. Bypass was unavoidable to prevent loss of life, personal injury, or severe property damage (40 C.F.R. § 122.41(m)(4)(i)(A));
b. There were no feasible alternatives to the bypass, such as the use of auxiliary treatment facilities, retention of untreated wastes, or maintenance during normal periods of equipment downtime. This condition is not satisfied if adequate back-up equipment should have been installed in the exercise of reasonable engineering judgment to prevent a bypass that occurred during normal periods of equipment downtime or preventative maintenance (40 C.F.R. § 122.41(m)(4)(i)(B)); and

c. The Discharger submitted notice to the Regional Water Board as required under Standard Provisions – Permit Compliance I.G.5 below. (40 C.F.R. § 122.41(m)(4)(i)(C).)

4. Approval. The Regional Water Board may approve an anticipated bypass, after considering its adverse effects, if the Regional Water Board determines that it will meet the three conditions listed in Standard Provisions—Permit Compliance I.G.3 above. (40 C.F.R. § 122.41(m)(4)(ii).)

5. Notice

a. **Anticipated bypass.** If the Discharger knows in advance of the need for a bypass, it shall submit a notice, if possible at least 10 days before the date of the bypass. (40 C.F.R. § 122.41(m)(3)(i).)

b. **Unanticipated bypass.** The Discharger shall submit notice of an unanticipated bypass as required in Standard Provisions - Reporting V.E below (24-hour notice). (40 C.F.R. § 122.41(m)(3)(ii).)

H. Upset

Upset means an exceptional incident in which there is unintentional and temporary noncompliance with technology based permit effluent limitations because of factors beyond the reasonable control of the Discharger. An upset does not include noncompliance to the extent caused by operational error, improperly designed treatment facilities, inadequate treatment facilities, lack of preventive maintenance, or careless or improper operation. (40 C.F.R. § 122.41(n)(1).)

1. **Effect of an upset.** An upset constitutes an affirmative defense to an action brought for noncompliance with such technology based permit effluent limitations if the requirements of Standard Provisions – Permit Compliance I.H.2 below are met. No determination made during administrative review of claims that noncompliance was caused by upset, and before an action for noncompliance, is final administrative action subject to judicial review. (40 C.F.R. § 122.41(n)(2).)

2. **Conditions necessary for a demonstration of upset.** A Discharger who wishes to establish the affirmative defense of upset shall demonstrate, through properly signed, contemporaneous operating logs or other relevant evidence that (40 C.F.R. § 122.41(n)(3)):

 a. An upset occurred and that the Discharger can identify the cause(s) of the upset (40 C.F.R. § 122.41(n)(3)(i));

 b. The permitted facility was, at the time, being properly operated (40 C.F.R. § 122.41(n)(3)(ii));
c. The Discharger submitted notice of the upset as required in Standard Provisions—Reporting V.E.2.b below (24-hour notice) (40 C.F.R. § 122.41(n)(3)(iii)); and

d. The Discharger complied with any remedial measures required under Standard Provisions—Permit Compliance I.C above. (40 C.F.R. § 122.41(n)(3)(iv).)

3. Burden of proof. In any enforcement proceeding, the Discharger seeking to establish the occurrence of an upset has the burden of proof. (40 C.F.R. § 122.41(n)(4).)

II. STANDARD PROVISIONS—PERMIT ACTION

A. General

This Order may be modified, revoked and reissued, or terminated for cause. The filing of a request by the Discharger for modification, revocation and reissuance, or termination, or a notification of planned changes or anticipated noncompliance does not stay any Order condition. (40 C.F.R. § 122.41(f).)

B. Duty to Reapply

If the Discharger wishes to continue an activity regulated by this Order after the expiration date of this Order, the Discharger must apply for and obtain a new permit. (40 C.F.R. § 122.41(b).)

C. Transfers

This Order is not transferable to any person except after notice to the Regional Water Board. The Regional Water Board may require modification or revocation and reissuance of the Order to change the name of the Discharger and incorporate such other requirements as may be necessary under the CWA and the Water Code. (40 C.F.R. §§ 122.41(l)(3), 122.61.)

III. STANDARD PROVISIONS—MONITORING

A. Samples and measurements taken for the purpose of monitoring shall be representative of the monitored activity. (40 C.F.R. § 122.41(j)(1).)

B. Monitoring results must be conducted according to test procedures approved under 40 C.F.R. part 136 for the analyses of pollutants unless another method is required under 40 C.F.R. subchapters N or O. In the case of pollutants for which there are no approved methods under 40 C.F.R. part 136 or otherwise required under 40 C.F.R. subchapters N or O, monitoring must be conducted according to a test procedure specified in this Order for such pollutants. (40 C.F.R. §§ 122.41(j)(4), 122.44(i)(1)(iv).)

IV. STANDARD PROVISIONS—RECORDS

A. Except for records of monitoring information required by this Order related to the Discharger's sewage sludge use and disposal activities, which shall be retained for a period of at least five years (or longer as required by 40 C.F.R. part 503), the Discharger shall retain records of all monitoring information, including all calibration and maintenance records and all original strip chart recorddings for continuous monitoring instrumentation, copies of all reports required by this Order, and records of all data used to complete the application for this Order, for a period of at least three (3) years.
from the date of the sample, measurement, report or application. This period may be extended by request of the Regional Water Board Executive Officer at any time. (40 C.F.R. § 122.41(j)(2).)

B. Records of monitoring information shall include the following:
 1. The date, exact place, and time of sampling or measurements (40 C.F.R. § 122.41(j)(3)(i));
 2. The individual(s) who performed the sampling or measurements (40 C.F.R. § 122.41(j)(3)(ii));
 3. The date(s) the analyses were performed (40 C.F.R. § 122.41(j)(3)(iii));
 4. The individual(s) who performed the analyses (40 C.F.R. § 122.41(j)(3)(iv));
 5. The analytical techniques or methods used (40 C.F.R. § 122.41(j)(3)(v)); and
 6. The results of such analyses. (40 C.F.R. § 122.41(j)(3)(vi).)

C. Claims of confidentiality for the following information will be denied (40 C.F.R. § 122.7(b)):
 1. The name and address of any permit applicant or Discharger (40 C.F.R. § 122.7(b)(1)); and
 2. Permit applications and attachments, permits, and effluent data. (40 C.F.R. § 122.7(b)(2).)

V. STANDARD PROVISIONS—REPORTING

A. Duty to Provide Information

The Discharger shall furnish to the Regional Water Board, State Water Board, or U.S. EPA within a reasonable time, any information which the Regional Water Board, State Water Board, or U.S. EPA may request to determine whether cause exists for modifying, revoking and reissuing, or terminating this Order or to determine compliance with this Order. Upon request, the Discharger shall also furnish to the Regional Water Board, State Water Board, or U.S. EPA copies of records required to be kept by this Order. (40 C.F.R. § 122.41(h); Wat. Code, §§ 13267, 13383.)

B. Signatory and Certification Requirements

1. All applications, reports, or information submitted to the Regional Water Board, State Water Board, and/or U.S. EPA shall be signed and certified in accordance with Standard Provisions—Reporting V.B.2, V.B.3, V.B.4, and V.B.5 below. (40 C.F.R. § 122.41(k).)

2. For a corporation, all permit applications shall be signed by a responsible corporate officer. For the purpose of this section, a responsible corporate officer means: (i) a president, secretary, treasurer, or vice-president of the corporation in charge of a principal business function, or any other person who performs similar policy- or decision-making functions for the corporation, or (ii) the manager of one or more manufacturing, production, or operating facilities, provided, the manager is authorized to make management decisions which govern the operation of the regulated facility including having the explicit or implicit duty of making major capital investment recommendations, and initiating and directing other comprehensive measures to assure long term environmental compliance with environmental laws and regulations; the manager can ensure that the necessary systems are established or actions
taken to gather complete and accurate information for permit application requirements; and
where authority to sign documents has been assigned or delegated to the manager in
correspondence with corporate procedures. (40 C.F.R. § 122.22(a)(1).)

For a partnership or sole proprietorship, all permit applications shall be signed by a general
partner or the proprietor, respectively. (40 C.F.R. § 122.22(a)(2).)

For a municipality, state, federal, or other public agency, all permit applications shall be
signed by either a principal executive officer or ranking elected official. For purposes of this
provision, a principal executive officer of a federal agency includes (i) the chief executive
officer of the agency, or (ii) a senior executive officer having responsibility for the overall
operations of a principal geographic unit of the agency (e.g., Regional Administrators of
U.S. EPA). (40 C.F.R. § 122.22(a)(3).)

3. All reports required by this Order and other information requested by the Regional Water
Board, State Water Board, or U.S. EPA shall be signed by a person described in Standard
Provisions – Reporting V.B.2 above, or by a duly authorized representative of that person.
A person is a duly authorized representative only if:

- The authorization is made in writing by a person described in Standard Provisions—
 Reporting V.B.2 above (40 C.F.R. § 122.22(b)(1));

- The authorization specifies either an individual or a position having responsibility for the
 overall operation of the regulated facility or activity such as the position of plant
 manager, operator of a well or a well field, superintendent, position of equivalent
 responsibility, or an individual or position having overall responsibility for environmental
 matters for the company. (A duly authorized representative may thus be either a named
 individual or any individual occupying a named position.) (40 C.F.R. § 122.22(b)(2)); and

- The written authorization is submitted to the Regional Water Board and State Water
 Board. (40 C.F.R. § 122.22(b)(3).)

4. If an authorization under Standard Provisions – Reporting V.B.3 above is no longer accurate
because a different individual or position has responsibility for the overall operation of the
facility, a new authorization satisfying the requirements of Standard Provisions—Reporting
V.B.3 above must be submitted to the Regional Water Board and State Water Board prior to
or together with any reports, information, or applications, to be signed by an authorized
representative. (40 C.F.R. § 122.22(c).)

5. Any person signing a document under Standard Provisions—Reporting V.B.2 or V.B.3
above shall make the following certification:

“I certify under penalty of law that this document and all attachments were prepared
under my direction or supervision in accordance with a system designed to assure that
qualified personnel properly gather and evaluate the information submitted. Based on
my inquiry of the person or persons who manage the system or those persons directly
responsible for gathering the information, the information submitted is, to the best of
my knowledge and belief, true, accurate, and complete. I am aware that there are
significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.” (40 C.F.R. § 122.22(d.)

C. Monitoring Reports

1. Monitoring results shall be reported at the intervals specified in the Monitoring and Reporting Program in this Order. (40 C.F.R. § 122.22(l)(4).

2. Monitoring results must be reported on a Discharge Monitoring Report (DMR) form or forms provided or specified by the Regional Water Board or State Water Board for reporting results of monitoring of sludge use or disposal practices. (40 C.F.R. § 122.41(l)(4)(i).

3. If the Discharger monitors any pollutant more frequently than required by this Order using test procedures approved under 40 C.F.R. part 136, or another method required for an industry-specific waste stream under 40 C.F.R. subchapters N or O, the results of such monitoring shall be included in the calculation and reporting of the data submitted in the DMR or sludge reporting form specified by the Regional Water Board. (40 C.F.R. § 122.41(l)(4)(ii).)

4. Calculations for all limitations, which require averaging of measurements, shall utilize an arithmetic mean unless otherwise specified in this Order. (40 C.F.R. § 122.41(l)(4)(iii).)

D. Compliance Schedules

Reports of compliance or noncompliance with, or any progress reports on, interim and final requirements contained in any compliance schedule of this Order, shall be submitted no later than 14 days following each schedule date. (40 C.F.R. § 122.41(l)(5).

E. Twenty-Four Hour Reporting

1. The Discharger shall report any noncompliance that may endanger health or the environment. Any information shall be provided orally within 24 hours from the time the Discharger becomes aware of the circumstances. A written submission shall also be provided within five (5) days of the time the Discharger becomes aware of the circumstances. The written submission shall contain a description of the noncompliance and its cause; the period of noncompliance, including exact dates and times, and if the noncompliance has not been corrected, the anticipated time it is expected to continue; and steps taken or planned to reduce, eliminate, and prevent reoccurrence of the noncompliance. (40 C.F.R. § 122.41(l)(6)(i).

2. The following shall be included as information that must be reported within 24 hours under this paragraph (40 C.F.R. § 122.41(l)(6)(ii):

b. Any upset that exceeds any effluent limitation in this Order. (40 C.F.R. § 122.41(l)(6)(ii)(B).)
3. The Regional Water Board may waive the above-required written report under this provision on a case-by-case basis if an oral report has been received within 24 hours. (40 C.F.R. § 122.41(l)(6)(iii).)

F. Planned Changes

The Discharger shall give notice to the Regional Water Board as soon as possible of any planned physical alterations or additions to the permitted facility. Notice is required under this provision only when (40 C.F.R. § 122.41(l)(1)):

1. The alteration or addition to a permitted facility may meet one of the criteria for determining whether a facility is a new source in 40 C.F.R. section 122.29(b) (40 C.F.R. § 122.41(l)(1)(i)); or

2. The alteration or addition could significantly change the nature or increase the quantity of pollutants discharged. This notification applies to pollutants that are not subject to effluent limitations in this Order. (Alternatively, for an existing manufacturing, commercial, mining, or silvicultural discharge as referenced in 40 C.F.R. section 122.42(a), this notification applies to pollutants that are subject neither to effluent limitations in this Order nor to notification requirements under 40 C.F.R. section 122.42(a)(1) (see Additional Provisions—Notification Levels VII.A.1).) (40 C.F.R. § 122.41(l)(1)(ii).)

3. The alteration or addition results in a significant change in the Discharger's sludge use or disposal practices, and such alteration, addition, or change may justify the application of permit conditions that are different from or absent in the existing permit, including notification of additional use or disposal sites not reported during the permit application process or not reported pursuant to an approved land application plan. (40 C.F.R. § 122.41(l)(1)(iii).)

G. Anticipated Noncompliance

The Discharger shall give advance notice to the Regional Water Board or State Water Board of any planned changes in the permitted facility or activity that may result in noncompliance with this Order’s requirements. (40 C.F.R. § 122.41(l)(2).)

H. Other Noncompliance

The Discharger shall report all instances of noncompliance not reported under Standard Provisions—Reporting V.C, V.D, and V.E above at the time monitoring reports are submitted. The reports shall contain the information listed in Standard Provision—Reporting V.E above. (40 C.F.R. § 122.41(l)(7).)

I. Other Information

When the Discharger becomes aware that it failed to submit any relevant facts in a permit application, or submitted incorrect information in a permit application or in any report to the Regional Water Board, State Water Board, or U.S. EPA, the Discharger shall promptly submit such facts or information. (40 C.F.R. § 122.41(l)(8).)
VI. STANDARD PROVISIONS – ENFORCEMENT

A. The Regional Water Board is authorized to enforce the terms of this permit under several provisions of the Water Code, including, but not limited to, sections 13268, 13385, 13386, and 13387.

VII. ADDITIONAL PROVISIONS—NOTIFICATION LEVELS

A. Publicly-Owned Treatment Works (POTWs)

All POTWs shall provide adequate notice to the Regional Water Board of the following (40 C.F.R. § 122.42(b)):

1. Any new introduction of pollutants into the POTW from an indirect discharger that would be subject to CWA sections 301 or 306 if it were directly discharging those pollutants (40 C.F.R. § 122.42(b)(1)); and

2. Any substantial change in the volume or character of pollutants being introduced into that POTW by a source introducing pollutants into the POTW at the time of adoption of this Order. (40 C.F.R. § 122.42(b)(2).)

3. Adequate notice shall include information on the quality and quantity of effluent introduced into the POTW as well as any anticipated impact of the change on the quantity or quality of effluent to be discharged from the POTW. (40 C.F.R. § 122.42(b)(3).)
ATTACHMENT E – MONITORING AND REPORTING PROGRAM (MRP)

Contents

I. General Monitoring Provisions ... E-2
II. Monitoring Locations ... E-2
III. Influent Monitoring Requirements .. E-2
IV. Monitoring Location SEC-INF-001 ... E-3
V. Effluent Monitoring Requirements ... E-3
 A. Whole Effluent Acute Toxicity ... E-5
 B. Whole Effluent Chronic Toxicity .. E-6
VI. Receiving Water Monitoring Requirements .. E-9
VII. Pretreatment and Biosolids Monitoring Requirements E-9
VIII. Reporting Requirements ... E-10
 A. General Monitoring and Reporting Requirements E-10
 B. Self-Monitoring Reports (SMRs) .. E-10
 C. Discharge Monitoring Reports (DMRs) .. E-12
IX. Modifications to Attachment G ... E-12
X. Modifications to Attachment H .. E-16

Tables
Table E-1. Monitoring Locations ... E-2
Table E-2. Influent Monitoring at Monitoring Location INF-001 E-3
Table E-3. Effluent Monitoring at Monitoring Location EFF-001 E-3
Table E-4. Effluent Monitoring at Monitoring Location EFF-001D E-4
Table E-5. Pretreatment and Biosolids Monitoring E-9
Table E-6. CIWQS Reporting .. E-10
Table E-7. Monitoring Periods ... E-11
ATTACHMENT E – MONITORING AND REPORTING PROGRAM (MRP)

The Clean Water Act (§ 308) and Code of Federal Regulations (40 C.F.R. §§ 122.41[h], 122.41[j]-[l], 122.44[i], and § 122.48) requires that all NPDES permits specify monitoring and reporting requirements. Water Code sections 13267 and 13383 also authorize the Regional Water Board to establish monitoring, inspection, entry, reporting, and recordkeeping requirements. This MRP establishes monitoring, reporting, and recordkeeping requirements that implement federal and State laws and regulations.

I. GENERAL MONITORING PROVISIONS

A. The Discharger shall comply with this MRP. The Executive Officer may amend this MRP pursuant to 40 C.F.R. sections 122.62, 122.63, and 124.5. If any discrepancies exist between this MRP and the “Regional Standard Provisions, and Monitoring and Reporting Requirements (Supplement to Attachment D) for NPDES Wastewater Discharge Permits” (Attachment G), this MRP shall prevail.

B. The Discharger shall conduct all monitoring in accordance with Attachment D, section III, as supplemented by Attachment G. Equivalent test methods must be more sensitive than those specified in 40 C.F.R. section 136 and must be specified in this permit.

II. MONITORING LOCATIONS

The Discharger shall establish the following monitoring locations to demonstrate compliance with the effluent limitations, discharge specifications, and other requirements in this Order:

<table>
<thead>
<tr>
<th>Table E-1. Monitoring Locations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of Sampling Location</td>
</tr>
<tr>
<td>Influent</td>
</tr>
<tr>
<td>Secondary Influent</td>
</tr>
<tr>
<td>Effluent</td>
</tr>
<tr>
<td>Effluent</td>
</tr>
<tr>
<td>Brine</td>
</tr>
<tr>
<td>Biosolids</td>
</tr>
<tr>
<td>Overflows and Bypass Station</td>
</tr>
</tbody>
</table>

III. INFLUENT MONITORING REQUIREMENTS

A. The Discharger shall monitor WWTP influent at Monitoring Location INF-001 as follows:
Table E-2. Influent Monitoring at Monitoring Location INF-001

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Sample Type</th>
<th>Minimum Sampling Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow [1]</td>
<td>MGD</td>
<td>Continuous</td>
<td>Continuous/D</td>
</tr>
<tr>
<td>Carbonaceous Biochemical Oxygen Demand, 5-day @ 20 Deg. C (CBOD\textsubscript{5})</td>
<td>mg/L</td>
<td>C-24</td>
<td>2/Week</td>
</tr>
<tr>
<td>Total Suspended Solids (TSS)</td>
<td>mg/L</td>
<td>C-24</td>
<td>2/Week</td>
</tr>
<tr>
<td>Cyanide</td>
<td>(\mu g/L)</td>
<td>Grab</td>
<td>1/Month</td>
</tr>
</tbody>
</table>

Abbreviations:
- MGD = million gallons per day
- mg/L = milligrams per liter
- \(\mu g/L\) = micrograms per liter
- Continuous = measured continuously
- C-24 = 24-hour composite sample
- Grab = grab sample
- Continuous/D = measured continuously, and recorded and reported daily
- 2/Week = twice per week
- 1/Month = once per month

Footnote:
[1] Flow shall be monitored continuously and the following information shall be reported in monthly self-monitoring reports:
- Daily average flow (MGD)
- Monthly average flow (MGD)
- Total monthly flow volume (MG)
- Maximum and minimum daily average flow rates (MGD)

B. Monitoring Location SEC-INF-001

The Discharger shall continuously monitor the flow rate to its secondary treatment units. If the Discharger blends, it shall report relevant flow information from this station in the self-monitoring report as part of its demonstration of compliance with Prohibition III.C.

IV. EFFLUENT MONITORING REQUIREMENTS

A. Monitoring Location E-001

The Discharger shall monitor plant effluent at Monitoring Location EFF-001 as follows:

Table E-3. Effluent Monitoring at Monitoring Location EFF-001

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Sample Type</th>
<th>Minimum Sampling Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow [1]</td>
<td>MGD</td>
<td>Continuous</td>
<td>Continuous/D</td>
</tr>
<tr>
<td>CBOD\textsubscript{5}</td>
<td>mg/L</td>
<td>C-24</td>
<td>2/Week</td>
</tr>
<tr>
<td>TSS</td>
<td>mg/L</td>
<td>C-24</td>
<td>4/Week</td>
</tr>
<tr>
<td>Oil and Grease [2]</td>
<td>(\mu g/L)</td>
<td>Grab</td>
<td>1/Quarter</td>
</tr>
<tr>
<td>(pH) [3]</td>
<td>standard units</td>
<td>Grab</td>
<td>2/Week</td>
</tr>
<tr>
<td>Acute Toxicity [4]</td>
<td>% Survival</td>
<td>C-24</td>
<td>1/Month</td>
</tr>
<tr>
<td>Chronic Toxicity [5]</td>
<td>TU\textsubscript{C}</td>
<td>C-24</td>
<td>1/Quarter</td>
</tr>
<tr>
<td>Ammonia, Total</td>
<td>mg/L as N</td>
<td>C-24</td>
<td>2/Month</td>
</tr>
<tr>
<td>Copper, Total</td>
<td>(\mu g/L)</td>
<td>C-24</td>
<td>1/Month</td>
</tr>
<tr>
<td>Cyanide, Total</td>
<td>(\mu g/L)</td>
<td>Grab</td>
<td>1/Month</td>
</tr>
<tr>
<td>Hexachlorobenzene</td>
<td>(\mu g/L)</td>
<td>Grab</td>
<td>1/Quarter</td>
</tr>
<tr>
<td>Dioxin-TEQ</td>
<td>(\mu g/L)</td>
<td>Grab</td>
<td>2/Year</td>
</tr>
</tbody>
</table>
Table E-4. Effluent Monitoring at Monitoring Location EFF-001D

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Sample Type</th>
<th>Minimum Sampling Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorine Residual(1)</td>
<td>mg/L</td>
<td>Continuous</td>
<td>Continuous or 1/hour</td>
</tr>
<tr>
<td>Fecal Coliform Bacteria</td>
<td>MPN/100 ml</td>
<td>Grab</td>
<td>2/Week</td>
</tr>
<tr>
<td>Enterococci Bacteria(2)</td>
<td>CFU/100 ml</td>
<td>Grab</td>
<td>2/Month</td>
</tr>
</tbody>
</table>

Footnotes for Table E-4:

1. Effluent residual chlorine concentrations shall be monitored continuously or, at a minimum, every hour. The Discharger shall describe all excursions of the chlorine limit in the transmittal letter of self-monitoring reports as required by Attachment G section V.C.1.a. If monitoring continuously, the Discharger shall report through data upload to CIWQS, from discrete readings of the continuous monitoring every hour on the hour, the maximum for each day and any other discrete hourly reading that exceed the effluent limit, and, for the purpose of mandatory minimum penalties required by Water Code section 13385(i), compliance shall be based only on these discrete readings. The Discharger shall retain continuous monitoring readings for at least three years. The Regional Water Board reserves the right to use all continuous monitoring data for discretionary enforcement.

2. The units are defined as the number of enterococci colonies per 100 mL (CFU/100mL).
C. Monitoring Location EFF-002

The Discharger shall continuously monitor the flow rate of brine discharges at Monitoring Location EFF-002 and report the maximum and daily average flow in MGD and as a percentage of plant effluent flows.

V. WHOLE EFFLUENT TOXICITY TESTING REQUIREMENTS

A. Whole Effluent Acute Toxicity

1. Compliance with the acute toxicity effluent limitations of this Order shall be evaluated by measuring survival of test organisms exposed to 96-hour continuous flow-through bioassays at Monitoring Location EFF-001.

2. Test organisms shall be rainbow trout (Onchorhynchus mykiss). Alternatively, the Executive Officer may specify a more sensitive organism or, if testing a particular organism proves unworkable, the most sensitive organism available.

3. All bioassays shall be performed according to the most up-to-date protocols in 40 C.F.R. part 136, currently Methods for Measuring the Acute Toxicity of Effluents and Receiving Water to Freshwater and Marine Organisms, 5th Edition (EPA-821-R-02-012).

4. If the Discharger demonstrates that specific identifiable substances in the discharge are rapidly rendered harmless upon discharge to the receiving water, compliance with the acute toxicity limit may be determined after test samples are adjusted to remove the influence of those substances. Written acknowledgement that the Executive Officer concurs with the Discharger’s demonstration and that the adjustment will not remove the influence of other substances must be obtained prior to any such adjustment. The Discharger is authorized to adjust the effluent pH in order to suppress the level of unionized (free) ammonia. This adjustment shall be achieved by continuously monitoring test tank pH and automatic addition of analytical grade acid as needed, using a combination of continuous pH-sensor/analyzer and pump.

5. Effluent used for fish bioassays must be dechlorinated prior to testing. If biological growth in the dechlorinated effluent sample line is a potential problem, chlorinated effluent that is dechlorinated separately from the plant dechlorination process may be used for the bioassay test. The sample may be taken from final secondary effluent prior to disinfection. Bioassay water monitoring shall include, on a daily basis, pH, dissolved oxygen, ammonia (if toxicity is observed), temperature, hardness, and alkalinity. These results shall be reported. If final or intermediate results of an acute bioassay test indicate a violation or threatened violation (e.g., the percentage of surviving test organisms is less than 70 percent), the Discharger shall initiate a new test as soon as practical and shall investigate the cause of the mortalities and report its findings in the next self-monitoring report. The Discharger shall repeat the test until a test fish survival rate of 90 percent or greater is observed. If the control fish survival rate is less than 90 percent, the bioassay test shall be restarted with new fish and shall continue as soon as practical until an acceptable test is completed (i.e., control fish survival rate is 90 percent or greater).
B. Whole Effluent Chronic Toxicity

1. Monitoring Requirements

 a. **Sampling.** The Discharger shall collect 24-hour composite effluent samples at Monitoring Location EFF-001 for critical life stage toxicity tests as indicated below. For toxicity tests requiring renewals, the Discharger shall collect 24-hour composite samples on consecutive or alternating days.

 b. **Test Species.** The test species shall be Mussel (*Mytilus sp.*), or if Mytilus sp. is unavailable, the Discharger may use Pacific Oyster (*Crassostrea gigas*) as a substitute, unless a more sensitive species is identified.

 The Discharger shall conduct a screening chronic toxicity test as described in Appendix E-1, or as described in applicable State Water Board plan provisions that become effective after adoption of this Order, following any significant change in the nature of the effluent. If there is no significant change in the nature of the effluent, the Discharger shall conduct a screening test and submit the results with its application for permit reissuance. Upon completion of the chronic toxicity screening, the Discharger shall use the most sensitive species to conduct subsequent monitoring.

 c. **Frequency.** Chronic toxicity monitoring shall be as specified below:

 i. The Discharger shall monitor routinely once per quarter.

 ii. The Discharger shall accelerate monitoring to monthly after either exceeding a three-sample median of 10 TUc or a single-sample maximum of 20 TUc. Based on the TUc results, the Executive Officer may specify a different frequency for accelerated monitoring to ensure that accelerated monitoring provides useful information.

 iii. The Discharger shall return to routine monitoring if accelerated monitoring does not exceed the trigger in ii, above.

 iv. If accelerated monitoring confirms consistent toxicity in excess of the trigger in ii, above, the Discharger shall continue accelerated monitoring and initiate toxicity reduction evaluation (TRE) procedures in accordance with section V.B.3, below.

 v. The Discharger shall return to routine monitoring after implementing appropriate elements of the TRE, and either the toxicity drops below the trigger in ii, above, or, based on the TRE results, the Executive Officer determines that accelerated monitoring would no longer provide useful information.

 Monitoring conducted pursuant to a TRE shall satisfy the requirements for routine and accelerated monitoring while the TRE is underway.

 d. **Methodology.** Sample collection, handling, and preservation shall be in accordance with U.S. EPA protocols. In addition, bioassays shall be conducted in compliance with the most recently promulgated test methods, as shown in Appendix E-1. These are *Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to*
West Coast Marine and Estuarine Organisms, currently first edition (EPA/600/R-95-136). If these protocols prove unworkable, the Executive Officer and the Environmental Laboratory Accreditation Program may grant exceptions in writing upon the Discharger’s request with justification. If the Discharger demonstrates that specific identifiable substances in the discharge are rapidly rendered harmless upon discharge to the receiving water, compliance with the chronic toxicity limit may be determined after test samples are adjusted to remove the influence of those substances. Written acknowledgement that the Executive Officer concurs with the Discharger’s demonstration and that the adjustment will not remove the influence of other substances must be obtained prior to any such adjustment.

e. Dilution Series. The Discharger shall conduct tests at 50%, 25%, 10%, 5% and 2.5%. The “%” represents percent effluent as discharged. Test sample pH may be controlled to the level of the effluent sample as received prior to being salted up.

2. Reporting Requirements

a. The Discharger shall provide toxicity test results for the current reporting period in the self-monitoring report and shall include the following, at a minimum, for each test:

i. Sample date

ii. Test initiation date

iii. Test species

iv. End point values for each dilution (e.g., number of young, growth rate, percent survival)

v. No Observable Effect Level (NOEL) values in percent effluent. The NOEL shall equal the IC25 or EC25 (see MRP Appendix E-1). If the IC25 or EC25 cannot be statistically determined, the NOEL shall equal to the No Observable Effect Concentration (NOEC) derived using hypothesis testing. The NOEC is the maximum percent effluent concentration that causes no observable effect on test organisms based on a critical life stage toxicity test.

vi. IC15, IC25, IC40, and IC50 values (or EC15, EC25, EC40, and EC50) as percent effluent

vii. TUc values (100/NOEL, where NOEL = IC25, EC25, or NOEC

viii. Mean percent mortality (±s.d.) after 96 hours in 100% effluent (if applicable)

ix. IC50 or EC50 values for reference toxicant tests

x. Available water quality measurements for each test (e.g., pH, dissolved oxygen, temperature, conductivity, hardness, salinity, and ammonia)

b. The Discharger shall provide the results of the most recent three chronic toxicity tests and the three-sample median in the self-monitoring report as TUc’s.
3. Toxidity Reduction Evaluation (TRE)

a. The Discharger shall prepare a generic TRE work plan within 90 days of the effective date of this Order to be ready to respond to toxicity events. The Discharger shall review and update the work plan as necessary so that it remains current and applicable to the discharge and discharge facilities.

b. Within 30 days of exceeding the chronic toxicity trigger in section V.B.1.c.ii, above, the Discharger shall submit a TRE work plan, which shall be the generic work plan revised as appropriate for this toxicity event after consideration of available discharge data.

c. Within 30 days of completing an accelerated monitoring test observed to exceed the trigger in section V.B.1.c.ii, above, the Discharger shall initiate a TRE in accordance with a TRE work plan that incorporates any and all comments from the Executive Officer.

d. The TRE shall be specific to the discharge and be in accordance with current technical guidance and reference materials, including U.S. EPA guidance materials. The Discharger shall conduct the TRE as a tiered evaluation as summarized below:

i. Tier 1 shall consist of basic data collection (routine and accelerated monitoring).

ii. Tier 2 shall consist of evaluation of treatment process optimization, including operational practices and in-plant process chemicals.

iii. Tier 3 shall consist of a toxicity identification evaluation (TIE).

iv. Tier 4 shall consist of evaluation of options for additional effluent treatment processes.

v. Tier 5 shall consist of evaluation of options for modifications of in-plant treatment processes.

vi. Tier 6 shall consist of implementation of selected toxicity control measures, and follow-up monitoring and confirmation of implementation success.

e. The Discharger may end the TRE at any stage if monitoring finds there is no longer consistent toxicity (i.e., compliance with Effluent Limitation IV.F of the Order).

f. The objective of the TIE shall be to identify the substance or combination of substances causing the observed toxicity. The Discharger shall employ all reasonable efforts using currently available TIE methodologies.

g. As toxic substances are identified or characterized, the Discharger shall continue the TRE by determining the sources and evaluating alternative strategies for reducing or eliminating the toxic substances from the discharge. The Discharger shall take all reasonable steps to reduce toxicity to levels below the chronic toxicity limit.

h. Many recommended TRE elements parallel required or recommended efforts related to source control, pollution prevention, and stormwater control programs. TRE efforts
should be coordinated with such efforts. To prevent duplication of efforts, evidence of complying with requirements or recommended efforts of such programs may be acceptable to demonstrate compliance with TRE requirements.

i. Chronic toxicity may be episodic and identification of causes of and reduction of sources of chronic toxicity may not be successful. Regional Water Board enforcement considerations will be based in part on the Discharger’s actions and efforts to identify and control or reduce sources of consistent toxicity.

VI. RECEIVING WATER MONITORING REQUIREMENTS

The Discharger shall continue to participate in the Regional Monitoring Program, which collects data on pollutants and toxicity in San Francisco Bay water, sediment, and biota.

VII. PRETREATMENT AND BIOSOLIDS MONITORING REQUIREMENTS

The Discharger shall comply with the following pretreatment monitoring requirements for influent (at Monitoring Location INF-001), effluent (at Monitoring Location EFF-001), and biosolids (at Monitoring Location BIO-001). The Discharger shall report summaries of analytical results in pretreatment reports in accordance with Attachment H. At its option, the Discharger may also report biosolids analytical results in its electronic self-monitoring reports by manual entry, by EDF/CDF, or as an attached file.

<table>
<thead>
<tr>
<th>Constituents</th>
<th>Sampling Frequency</th>
<th>Sample Type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Influent INF-001</td>
<td>Effluent EFF-001</td>
</tr>
<tr>
<td>VOC [2]</td>
<td>2/Year</td>
<td>2/Year</td>
</tr>
<tr>
<td>BNA [3]</td>
<td>2/Year</td>
<td>2/Year</td>
</tr>
<tr>
<td>Metals and Other Elements [4]</td>
<td>1/Month</td>
<td>1/Month</td>
</tr>
<tr>
<td>Hexavalent Chromium (VI) [5]</td>
<td>1/Month</td>
<td>1/Month</td>
</tr>
<tr>
<td>Mercury [7]</td>
<td>1/Month</td>
<td>1/Month</td>
</tr>
<tr>
<td>Cyanide</td>
<td>1/Month</td>
<td>1/Month</td>
</tr>
</tbody>
</table>

Footnotes for Table E-5:

[1] Influent and effluent monitoring conducted in accordance with Tables E-2 and E-3 may be used to satisfy these pretreatment monitoring requirements.

[4] Metals and other elements are arsenic, cadmium, copper, lead, nickel, selenium, silver, and zinc.

[5] The Discharger may elect to run total chromium instead of hexavalent chromium. Sample collection for total chromium measurements may also use 24-hour composite sampling.

[6] Sample types:

a. The biosolids sample shall be a composite of the biosolids to be disposed. Biosolids collection and monitoring shall comply with the requirements specified in Attachment H, Appendix H-4. The Discharger shall also comply with the biosolids monitoring requirements of 40 CFR part 503.

b. If an automatic compositor is used, the Discharger shall obtain 24-hour composite samples through flow-proportioned composite sampling. Alternatively, 24-hour composite samples may consist of discrete grab samples combined (volumetrically flow-weighted) prior to analysis or mathematically flow-weighted.

[7] The Discharger shall use ultra-clean sampling (USEPA Method 1669) and ultra-clean analytical methods (USEPA Method 1631) for mercury monitoring, except when expected levels are greater than 10µg/L in which case use of ultra-clean sampling and analysis would be optional.
VIII. REPORTING REQUIREMENTS

A. General Monitoring and Reporting Requirements

The Discharger shall comply with all Standard Provisions (Attachments D and G) related to monitoring, reporting, and recordkeeping, with modifications shown in section VIII, below.

B. Self-Monitoring Reports (SMRs)

1. SMR Format. The Discharger shall electronically submit SMRs using the State Water Board’s California Integrated Water Quality System (CIWQS) Web site (http://www.waterboards.ca.gov/ciwqs/index.html). The CIWQS website will provide additional information for SMR submittal in the event of a planned service interruption for electronic submittal.

2. SMR Due Dates and Contents. The Discharger shall submit SMRs by the due dates, and with the contents, specified below:

 a. Monthly SMRs — Monthly SMRs shall be due 30 days after the end of each calendar month, covering that calendar month. The monthly SMR shall contain the applicable items described in sections V.B and V.C of both Attachments D and G of this Order. See Provision VI.C.2 (Effluent Characterization Study and Report) of this Order for information that must also be reported with monthly SMRs.

 Monthly SMRs shall include all new monitoring results obtained since the last SMR was submitted. If the Discharger monitors any pollutant more frequently than required by this Order, the Discharger shall include the results of such monitoring in the calculations and reporting for the SMR.

 b. Annual SMR — Annual SMRs shall be due February 1 each year, covering the previous calendar year. The annual SMR shall contain the items described in sections V.C.1.f of Attachment G. See also Provisions VI.C.2 (Effluent Characterization Study and Report) and VI.C.4.b (Sludge and Biosolids Management) of the Order for requirements to submit reports with the annual SMR.

3. Specifications for Submitting SMRs to CIWQS — The Discharger shall submit analytical results and other information using one of the following methods:

 Table E-6. CIWQS Reporting

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Method of Reporting</th>
</tr>
</thead>
<tbody>
<tr>
<td>All parameters identified in influent, effluent, and receiving water monitoring tables (except Dissolved Oxygen and Temperature)</td>
<td>EDF/CDF data upload or manual entry</td>
</tr>
<tr>
<td>Dissolved Oxygen Temperature</td>
<td>Required for monthly maximum and minimum results only [1]</td>
</tr>
<tr>
<td>Cyanide</td>
<td>Required for all results [2]</td>
</tr>
<tr>
<td>Parameter</td>
<td>Method of Reporting</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Copper</td>
<td>Not required</td>
</tr>
<tr>
<td>Lead</td>
<td></td>
</tr>
<tr>
<td>Mercury</td>
<td></td>
</tr>
<tr>
<td>Nickel</td>
<td></td>
</tr>
<tr>
<td>Selenium</td>
<td></td>
</tr>
<tr>
<td>Silver</td>
<td></td>
</tr>
<tr>
<td>Zinc</td>
<td></td>
</tr>
<tr>
<td>Dioxins & Furans (by U.S. EPA Method 1613)</td>
<td>Encouraged</td>
</tr>
<tr>
<td>Antimony</td>
<td>Not required</td>
</tr>
<tr>
<td>Beryllium</td>
<td></td>
</tr>
<tr>
<td>Thallium</td>
<td></td>
</tr>
<tr>
<td>Other Pollutants (by U.S. EPA Methods 601, 602, 608, 610, 614, 624, and 625)</td>
<td>Encouraged</td>
</tr>
<tr>
<td>Analytical Method</td>
<td>Not required</td>
</tr>
<tr>
<td>Collection Time</td>
<td>Not required</td>
</tr>
<tr>
<td>Analysis Time</td>
<td></td>
</tr>
</tbody>
</table>

Footnotes for Table E-6:

[1] The Discharger shall continue to monitor at the minimum frequency specified in this MRP, keep records of the measurements, and make the records available upon request.

[2] These parameters require EDF/CDF data upload or manual entry regardless of whether monitoring is required by this MRP or other provisions of this Order (except for biosolids, sludge, or ash provisions).

The Discharger shall arrange all reported data in a tabular format and summarize data to clearly illustrate whether the Facility is operating in compliance with effluent limitations. The Discharger is not required to duplicate the submittal of data entered in a tabular format within CIWQS. When electronic submittal of data is required and CIWQS does not provide for entry into a tabular format, the Discharger shall electronically submit the data in a tabular format as an attachment.

4. Monitoring Periods. Monitoring periods for all required monitoring shall be as set forth below unless otherwise specified:

<table>
<thead>
<tr>
<th>Sampling Frequency</th>
<th>Monitoring Period Begins On…</th>
<th>Monitoring Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous</td>
<td>Order effective date</td>
<td>All times</td>
</tr>
<tr>
<td>1/ Hour</td>
<td>Order effective date</td>
<td>Every two-hour period, beginning at midnight (e.g., 12:00 a.m. through 1:59 a.m.)</td>
</tr>
<tr>
<td>1/Week or 2/Week</td>
<td>Sunday following Order effective date or on Order effective date if on Sunday</td>
<td>Sunday through Saturday</td>
</tr>
<tr>
<td>1/Month</td>
<td>First day of calendar month following Order effective date or on Order effective date if on first day of month</td>
<td>First day of calendar month through last day of calendar month</td>
</tr>
<tr>
<td>1/Quarter</td>
<td>Closest January 1, April 1, July 1, or October 1 following (or on) Order effective date</td>
<td>January 1 through March 31, April 1 through June 30, July 1 through September 30, October 1 through December 31</td>
</tr>
</tbody>
</table>
Sampling Frequency | Monitoring Period Begins On… | Monitoring Period
---|---|---
2/Year | Closest January 1 or July 1 before or after Order effective date | January 1 through June 30
| | | July 1 through December 31
1/Year | Closest January 1 before or after Order effective date | January 1 through December 31

5. **RL and MDL Reporting.** The Discharger shall report with each sample result the Reporting Level (RL) and Method Detection Limit (MDL) as determined by the procedure in 40 C.F.R. part 136. The Discharger shall report the results of analytical determinations for the presence of chemical constituents in a sample using the following reporting protocols:

a. Sample results greater than or equal to the RL shall be reported as measured by the laboratory (i.e., the measured chemical concentration in the sample).

b. Sample results less than the RL, but greater than or equal to the laboratory’s MDL, shall be reported as “Detected, but Not Quantified,” or DNQ. The estimated chemical concentration of the sample shall also be reported.

For purposes of data collection, the laboratory shall write the estimated chemical concentration next to DNQ. The laboratory may, if such information is available, include numerical estimates of the data quality for the reported result. Numerical estimates of data quality may be percent accuracy (+/- a percentage of the reported value), numerical ranges (low to high), or any other means the laboratory considers appropriate.

c. Sample results less than the laboratory’s MDL shall be reported as “Not Detected”, or ND.

d. The Discharger shall instruct laboratories to establish calibration standards so that the minimum level (ML) value (or its equivalent if there is differential treatment of samples relative to calibration standards) is the lowest calibration standard. At no time is the Discharger to use analytical data derived from extrapolation beyond the lowest point of the calibration curve.

6. **Compliance Determination.** Compliance with effluent limitations for priority pollutants shall be determined using sample reporting protocols defined above and in the Fact Sheet and Attachments A, D, and G. For purposes of reporting and administrative enforcement by the Regional Water Board and State Water Board, the Discharger shall be deemed out of compliance with effluent limitations if the concentration of the priority pollutant in the monitoring sample is greater than the effluent limitation and greater than or equal to the reporting level (RL).

C. **Discharge Monitoring Reports (DMRs)**

1. The Discharge shall electronically submit DMRs via CIWQS as directed by the State Water Board.

IX. **MODIFICATIONS TO ATTACHMENT G**

This MRP modifies Attachment G as indicated below:
A. Attachment G section V.C.1.c.2 is revised as follows:

2) When determining compliance with an average monthly, average weekly, or maximum daily effluent limitation, and more than one sample result is available, the Discharger shall compute the arithmetic mean unless the data set contains one or more reported determinations of detected but not quantified (DNQ) or nondetect (ND). In those cases, the Discharger shall compute the median in place of the arithmetic mean in accordance with the following procedure:

 i. The data set shall be ranked from low to high, reported ND determinations lowest, DNQ determinations next, followed by quantified values (if any). The order of the individual ND or DNQ determinations is unimportant.

 ii. The median value of the data set shall be determined. If the data set has an odd number of data points, then the median is the middle value. If the data set has an even number of data points, then the median is the average of the two values around the middle unless one or both of the points are ND or DNQ, in which case the median value shall be the lower of the two data points where DNQ is lower than a value and ND is lower than DNQ.

If a sample result, or the arithmetic mean or median of multiple sample results, is below the reporting limit, and there is evidence that the priority pollutant is present in the effluent above an effluent limitation and the Discharger conducts a Pollutant Minimization Program, the Discharger shall not be deemed out of compliance.

B. Attachment G sections V.C.1.f and V.C.1.g are revised as follows, and section V.C.1.h (Reporting data in electronic format) is deleted:

f. Annual self-monitoring report requirements

By the date specified in the MRP, the Discharger shall submit an annual report to the Regional Water Board covering the previous calendar year. The report shall contain the following:

1) Annual compliance summary table of treatment plant performance, including documentation of any blending events (this summary table is not required if the Discharger has submitted the year’s monitoring results to CIWQS in electronic reporting format by EDF/CDF upload or manual entry);

2) Comprehensive discussion of treatment plant performance and compliance with the permit (This discussion shall include any corrective actions taken or planned, such as changes to facility equipment or operation practices that may be needed to achieve compliance, and any other actions taken or planned that are intended to improve performance and reliability of the Discharger’s wastewater collection, treatment, or disposal practices.);

3) Both tabular and graphical summaries of the monitoring data for the previous year if parameters are monitored at a frequency of monthly or greater (this item is not required if the Discharger has submitted the year’s monitoring results to CIWQS in electronic reporting format by EDF/CDF upload or manual entry);
4) List of approved analyses, including the following:
 (i) List of analyses for which the Discharger is certified;
 (ii) List of analyses performed for the Discharger by a separate certified laboratory (copies of reports signed by the laboratory director of that laboratory shall not be submitted but be retained onsite); and
 (iii) List of “waived” analyses, as approved;

5) Plan view drawing or map showing the Discharger’s facility, flow routing, and sampling and observation station locations;

6) Results of annual facility inspection to verify that all elements of the SWPP Plan are accurate and up to date (only required if the Discharger does not route all stormwater to the headworks of its wastewater treatment plant); and

7) Results of facility report reviews (The Discharger shall regularly review, revise, and update, as necessary, the O&M Manual, the Contingency Plan, the Spill Prevention Plan, and Wastewater Facilities Status Report so that these documents remain useful and relevant to current practices. At a minimum, reviews shall be conducted annually. The Discharger shall include, in each Annual Report, a description or summary of review and evaluation procedures, recommended or planned actions, and an estimated time schedule for implementing these actions. The Discharger shall complete changes to these documents to ensure they are up-to-date.).

g. Report submittal

The Discharger shall submit SMRs addressed as follows, unless the Discharger submits SMRs electronically to CIWQS:

California Regional Water Quality Control Board
San Francisco Bay Region
1515 Clay Street, Suite 1400
Oakland, CA 94612
Attn: NPDES Wastewater Division

h. Reporting data in electronic format – Deleted

C. Attachment G sections V.E.2, V.E.2.a, and V.E.2.c are revised as follows, and sections V.E.2.b (24-hour Certification) and V.E.2.d (Communication Protocol) are deleted:

2. Unauthorized Discharges from Municipal Wastewater Treatment Plants¹

The following requirements apply to municipal wastewater treatment plants that experience an unauthorized discharge at their treatment facilities and supersede

¹ California Code of Regulations, Title 23, Section 2250(b), defines an unauthorized discharge to be a discharge, not regulated by waste discharge requirements, of treated, partially treated, or untreated wastewater resulting from the intentional or unintentional diversion of wastewater from a collection, treatment or disposal system.
requirements imposed on the Discharger by the Executive Officer by letter of May 1, 2008.

a. Two (2)-Hour Notification

For any unauthorized discharges that enter a drainage channel or a surface water, the Discharger shall, as soon as possible, but not later than two (2) hours after becoming aware of the discharge, notify the California Office of Emergency Services (CalOES, currently 800-852-7550), the local health officers or directors of environmental health with jurisdiction over the affected water bodies, and the Regional Water Board. Timely notification by the Discharger to CalOES also satisfies notification to the Regional Water Board. Notification shall include the following:

1) Incident description and cause;
2) Location of threatened or involved waterway(s) or storm drains;
3) Date and time the unauthorized discharge started;
4) Estimated quantity and duration of the unauthorized discharge (to the extent known), and the estimated amount recovered;
5) Level of treatment prior to discharge (e.g., raw wastewater, primary treated, undisinfected secondary treated, and so on); and
6) Identity of the person reporting the unauthorized discharge.

b. 24-hour Certification – *Deleted*

c. 5-day Written Report

Within five business days, the Discharger shall submit a written report that includes, in addition to the information required above, the following:

1) Methods used to delineate the geographical extent of the unauthorized discharge within receiving waters;
2) Efforts implemented to minimize public exposure to the unauthorized discharge;
3) Visual observations of the impacts (if any) noted in the receiving waters (e.g., fish kill, discoloration of water) and the extent of sampling if conducted;
4) Corrective measures taken to minimize the impact of the unauthorized discharge;
5) Measures to be taken to minimize the chances of a similar unauthorized discharge occurring in the future;
6) Summary of Spill Prevention Plan or O&M Manual modifications to be made, if necessary, to minimize the chances of future unauthorized discharges; and
7) Quantity and duration of the unauthorized discharge, and the amount recovered.

d. Communication Protocol – *Deleted*

X. MODIFICATIONS TO ATTACHMENT H

This MRP modifies Attachment H, as indicated below:

A. Attachment H, Appendix H-3, Signature Requirements for Pretreatment Annual and Semiannual Reports, is revised as follows.

The pretreatment annual and semiannual reports shall be signed by a principal executive officer, ranking elected official, or other duly authorized employee who is responsible for the overall operation of the Discharger (POTW - 40 CFR 403.12[m]). Signed copies of the reports shall be submitted to the State Water Board and the Regional Water Board through the electronic self-monitoring report (eSMR) module of the California Integrated Water Quality System (CIWQS). Signed copies of the reports shall also be submitted electronically to U.S. EPA at R9Pretreatment@epa.gov or as instructed otherwise.
APPENDIX E-1
CHRONIC TOXICITY
DEFINITION OF TERMS AND SCREENING PHASE REQUIREMENTS

I. Definition of Terms

A. No observed effect level (NOEL) for compliance determination is equal to IC$_{25}$ or EC$_{25}$. If the IC$_{25}$ or EC$_{25}$ cannot be statistically determined, the NOEL shall be equal to the NOEC derived using hypothesis testing.

B. Effective concentration (EC) is a point estimate of the toxicant concentration that would cause an adverse effect on a quantal, “all or nothing,” response (such as death, immobilization, or serious incapacitation) in a given percent of the test organisms. If the effect is death or immobility, the term lethal concentration (LC) may be used. EC values may be calculated using point estimation techniques such as probit, logit, and Spearman-Karber. EC$_{25}$ is the concentration of toxicant (in percent effluent) that causes a response in 25 percent of the test organisms.

C. Inhibition concentration (IC) is a point estimate of the toxicant concentration that would cause a given percent reduction in a nonlethal, nonquantal biological measurement, such as growth. For example, an IC$_{25}$ is the estimated concentration of toxicant that would cause a 25 percent reduction in average young per female or growth. IC values may be calculated using a linear interpolation method such as U.S. EPA's Bootstrap Procedure.

D. No observed effect concentration (NOEC) is the highest tested concentration of an effluent or a toxicant at which no adverse effects are observed on the aquatic test organisms at a specific time of observation. It is determined using hypothesis testing.

II. Chronic Toxicity Screening Phase Requirements

A. The Discharger shall perform screening phase monitoring:

1. Subsequent to any significant change in the nature of the effluent discharged through changes in sources or treatment, except those changes resulting from reductions in pollutant concentrations attributable to source control efforts, or

2. Prior to permit reissuance. Screening phase monitoring data shall be included in the NPDES permit application for reissuance. The information shall be as recent as possible, but may be based on screening phase monitoring conducted within 5 years before the permit expiration date.

B. Design of the screening phase shall, at a minimum, consist of the following elements:

1. Use of test species specified in Appendix E-2, attached, and use of the protocols referenced in those tables.
2. Two stages:
 a. **Stage 1** shall consist of a minimum of one battery of tests conducted concurrently. Selection of the type of test species and minimum number of tests shall be based on Appendix E-2 (attached).
 b. **Stage 2** shall consist of a minimum of two test batteries conducted at a monthly frequency using the three most sensitive species based on the Stage 1 test results.

3. Appropriate controls.

5. Dilution series of 100%, 50%, 25%, 12.5%, 6.25%, and 0%, where “%” is percent effluent as discharged, or as otherwise approved by the Executive Officer if different dilution ratios are needed to reflect discharge conditions.

C. The Discharger shall submit a screening phase proposal. The proposal shall address each of the elements listed above. If within 30 days, the Executive Officer does not comment, the Discharger shall commence with screening phase monitoring.
SUMMARY OF TOXICITY TEST SPECIES REQUIREMENTS

Table AE-1. Critical Life Stage Toxicity Tests for Estuarine Waters

<table>
<thead>
<tr>
<th>Species</th>
<th>(Scientific Name)</th>
<th>Effect</th>
<th>Test Duration</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alga</td>
<td>(Skeletonema costatum) (Thalassiosira pseudonana)</td>
<td>Growth rate</td>
<td>4 days</td>
<td>1</td>
</tr>
<tr>
<td>Red alga</td>
<td>(Champia parvula)</td>
<td>Number of cystocarps</td>
<td>7–9 days</td>
<td>3</td>
</tr>
<tr>
<td>Giant kelp</td>
<td>(Macrocystis pyrifera)</td>
<td>Percent germination; germ tube length</td>
<td>48 hours</td>
<td>2</td>
</tr>
<tr>
<td>Abalone</td>
<td>(Haliotis rufescens)</td>
<td>Abnormal shell development</td>
<td>48 hours</td>
<td>2</td>
</tr>
<tr>
<td>Oyster Mussel</td>
<td>(Crassostrea gigas) (Mytilus edulis)</td>
<td>Abnormal shell development; percent survival</td>
<td>48 hours</td>
<td>2</td>
</tr>
<tr>
<td>Echinoderms - Urchins Sand doll</td>
<td>(Strongylocentrotus purpuratus, S. franciscanus) (Dendraster excentricus)</td>
<td>Percent fertilization or larval development</td>
<td>1 hour or 72 hours</td>
<td>2</td>
</tr>
<tr>
<td>Shrimp</td>
<td>(Americamysis bahia)</td>
<td>Percent survival; growth</td>
<td>7 days</td>
<td>3</td>
</tr>
<tr>
<td>Shrimp</td>
<td>(Holmesimysis costata)</td>
<td>Percent survival; growth</td>
<td>7 days</td>
<td>2</td>
</tr>
<tr>
<td>Topsmelt</td>
<td>(Atherinops affinis)</td>
<td>Percent survival; growth</td>
<td>7 days</td>
<td>2</td>
</tr>
<tr>
<td>Silversides</td>
<td>(Menidia beryllina)</td>
<td>Larval growth rate; percent survival</td>
<td>7 days</td>
<td>3</td>
</tr>
</tbody>
</table>

Toxicity Test References:

Table AE-2. Critical Life Stage Toxicity Tests for Fresh Waters

<table>
<thead>
<tr>
<th>Species</th>
<th>(Scientific Name)</th>
<th>Effect</th>
<th>Test Duration</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fathead minnow</td>
<td>(Pimephales promelas)</td>
<td>Survival; growth rate</td>
<td>7 days</td>
<td>4</td>
</tr>
<tr>
<td>Water flea</td>
<td>(Ceriodaphnia dubia)</td>
<td>Survival; number of young</td>
<td>7 days</td>
<td>4</td>
</tr>
<tr>
<td>Alga</td>
<td>(Selenastrum capricornutum)</td>
<td>Final cell density</td>
<td>4 days</td>
<td>4</td>
</tr>
</tbody>
</table>

Toxicity Test Reference:

Table AE-3. Toxicity Test Requirements for Stage One Screening Phase

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Receiving Water Characteristics</th>
<th>Discharges to Coast</th>
<th>Discharges to San Francisco Bay[^1]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Ocean</td>
<td>Marine/Estuarine</td>
</tr>
<tr>
<td>Taxonomic diversity</td>
<td></td>
<td>1 plant</td>
<td>1 plant</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 invertebrate</td>
<td>1 invertebrate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 fish</td>
<td>1 fish</td>
</tr>
<tr>
<td>Number of tests of each salinity type: Freshwater[^2]</td>
<td>0</td>
<td>1 or 2</td>
<td></td>
</tr>
<tr>
<td>Marine/Estuarine</td>
<td>4</td>
<td>3 or 4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 fish</td>
<td></td>
</tr>
<tr>
<td>Total number of tests</td>
<td>4</td>
<td>5</td>
<td>3</td>
</tr>
</tbody>
</table>

Footnotes:
[^1] (a) Marine refers to receiving water salinities greater than 1 part per thousand (ppt) at least 95 percent of the time during a normal water year.
(b) Freshwater refers to receiving water with salinities less than 1 ppt at least 95 percent of the time during a normal water year.
(c) Estuarine refers to receiving water salinities that fall between those of marine and freshwater, as described above.
[^2] The freshwater species may be substituted with marine species if:
(a) The salinity of the effluent is above 1 ppt greater than 95 percent of the time, or
(b) The ionic strength (TDS or conductivity) of the effluent at the test concentration used to determine compliance is documented to be toxic to the test species.
ATTACHMENT F - FACT SHEET

Contents

I. Permit Information .. F-2
II. Facility Description ... F-3
 A. Wastewater and Biosolids Treatment ... F-3
 B. Discharge Point and Receiving Waters ... F-4
 C. Summary of Existing Requirements and Monitoring Data ... F-5
 D. Compliance Summary ... F-6
 E. Planned Changes ... F-6
III. Applicable Plans, Policies, and Regulations ... F-6
IV. Rationale For Effluent Limitations and Discharge Specifications ... F-8
 A. Discharge Prohibitions .. F-9
 B. Conventional and Non-Conventional Pollutant Effluent Limitations F-13
 1. Scope and Authority .. F-13
 2. Effluent Limitations ... F-13
 C. Toxic Pollutant Effluent Limitations ... F-14
 1. Scope and Authority .. F-14
 2. Beneficial Uses and Water Quality Criteria and Objectives ... F-15
 3. Need for Water Quality-Based Effluent Limitations (Reasonable Potential Analysis) .. F-16
 4. Water Quality-Based Effluent Limitations (WQBELs) .. F-20
 5. Whole Effluent Acute Toxicity ... F-28
 6. Whole Effluent Chronic Toxicity .. F-29
 D. Effluent Limitation Considerations ... F-29
V. Rationale for Receiving Water Limitations .. F-30
VI. Rationale for Provisions .. F-30
 A. Standard Provisions ... F-30
 B. Monitoring and Reporting ... F-31
 C. Special Provisions ... F-31
 1. Reopener Provisions .. F-31
 2. Effluent Characterization Study and Report ... F-31
 3. Pollutant Minimization Program ... F-31
 4. Special Provisions for Municipal Facilities ... F-31
 5. Other Special Provisions ... F-32
VII. Rationale for Monitoring and reporting program (MRP) ... F-33
VIII. Public Participation ... F-34

Tables

Table F-1. Facility Information.. F-2
Table F-2. Historic Effluent Limitations and Monitoring Data from Discharge Point No. 001......... F-5
Table F-3. Beneficial Uses... F-7
Table F-4. Wet Weather Blending and Storage Basin Use to Avoid Blending F-10
Table F-5. Secondary Treatment Requirements .. F-13
Table F-6. Reasonable Potential Analysis .. F-17
Table F-7. WQBEL Calculations ... F-23
Table F-8. Monitoring Requirements Summary ... F-34
ATTACHMENT F – FACT SHEET

This Fact Sheet includes the legal requirements and technical rationale that serve as the basis for the requirements of this Order. As described in section II.B of the Order, the Regional Water Board incorporates this Fact Sheet as findings supporting the issuance of the Order.

I. PERMIT INFORMATION

The following table summarizes administrative information related to the facility.

<table>
<thead>
<tr>
<th>Table F-1. Facility Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>WDID</td>
</tr>
<tr>
<td>CIWQS Place ID</td>
</tr>
<tr>
<td>Discharger</td>
</tr>
<tr>
<td>Facility Name</td>
</tr>
<tr>
<td>Facility Address</td>
</tr>
<tr>
<td>Facility Contact, Title, Phone</td>
</tr>
<tr>
<td>Authorized Person to Sign and Submit Reports</td>
</tr>
<tr>
<td>Mailing Address</td>
</tr>
<tr>
<td>Billing Address</td>
</tr>
<tr>
<td>Facility Type</td>
</tr>
<tr>
<td>Major or Minor Facility</td>
</tr>
<tr>
<td>Threat to Water Quality</td>
</tr>
<tr>
<td>Complexity</td>
</tr>
<tr>
<td>Pretreatment Program</td>
</tr>
<tr>
<td>Reclamation Requirements</td>
</tr>
<tr>
<td>Mercury and PCBs Requirements</td>
</tr>
<tr>
<td>Nutrients Requirements</td>
</tr>
<tr>
<td>Permitted Flow</td>
</tr>
<tr>
<td>Design Flow</td>
</tr>
<tr>
<td>Watershed</td>
</tr>
<tr>
<td>Receiving Water</td>
</tr>
<tr>
<td>Receiving Water Type</td>
</tr>
</tbody>
</table>

A. The East Bay Municipal Utility District is the owner and operator of the Special District No. 1 Main Wastewater Treatment Plant (WWTP) and Interceptor Conveyance System (collectively the Facility). For the purposes of this Order, references to the “discharger” or “permittee” in applicable federal and State laws, regulations, plans, or policy are held to be equivalent to references to the Discharger herein.

B. The Discharger is regulated pursuant to National Pollutant Discharge Elimination System (NPDES) Permit No. CA0037702. The Discharger was previously subject to Order No. R2-2010-0060 (previous order), which was adopted on March 10, 2010, and expired on April 30, 2015, but was
administratively extended by operation of law. The Facility discharges wastewater to Central San Francisco Bay, a water of the United States within the San Francisco Bay watershed. Attachment B provides maps of the area around the Facility. Attachment C provides a WWTP flow schematic.

C. The Discharger filed a Report of Waste Discharge and submitted an application for reissuance of its Waste Discharge Requirements (WDRs) and NPDES permit on October 31, 2014.

D. The Discharger is also regulated under NPDES Permit No. CA0038440 that prohibits discharge from wet weather facilities owned and operated by the Discharger. This Order does not affect this permit.

E. The discharge is also regulated under NPDES Permit Nos. CA0038849 and CA0038873, which establish requirements on mercury, polychlorinated biphenyls (PCBs), and nutrients from wastewater discharges to San Francisco Bay. This Order does not affect those permits.

II. FACILITY DESCRIPTION

A. Wastewater and Biosolids Treatment

1. Location, Service Area, and Collection System. The WWTP provides secondary treatment of wastewater from domestic, commercial and industrial sources from the cities of Alameda, Albany, Berkeley, Emeryville, Oakland, Piedmont, and the Stege Sanitary District (serving El Cerrito, Kensington, and part of Richmond). The service area has a present population of about 650,000. Each of the cities and Stege Sanitary District owns and operates its own wastewater collection system, collectively about 1,500 miles in length, which delivers wastewater to the Discharger’s Interceptor. The Interceptor transports wastewater to the WWTP. The Discharger owns and operates its Interceptor system, which includes a 29-mile long North and South interceptor, Adeline Interceptor, South Foothill Interceptor, and Alameda Interceptor. These Interceptors have a combined hydraulic capacity of 760 MGD. The Interceptor system also includes 15 pump stations, five (5) wet weather overflow structures, and a 1 million-gallon wet weather storage basin along the Alameda Interceptor. Wet weather discharges from three wet weather facilities are regulated separately under Order No. R2-2014-0044 (permit CA0038440). The Regional Water Board has also issued separate orders to seven local agencies (Alameda, Albany, Berkeley, Emeryville, Oakland, Piedmont, and Stege Sanitary District) that specify requirements prohibiting the overflow of wastewater from each agency’s collection systems.

Additionally, the WWTP receives brine solution from K2 Pure Solutions. The K2 facility went into operation in 2011 and produces chlorine gas in Pittsburg for Dow Chemical Company. The production of chlorine gas involves an electrolysis reaction that converts a salt and water solution to chlorine gas. In producing chlorine gas, the K2 facility generates brine wastewater with an estimated total dissolved solids concentration of about 200,000 parts per million. K2 delivers the brine solution to a holding tank located on EBMUD property and it is discharged to the secondary effluent channel by gravity or pump. The maximum brine flow to the channel, based on the maximum pumping rate, is approximately 100 gallons per minute; however, this may increase if K2 expands production. The brine is mixed with secondary treated wastewater prior to dechlorination as shown in Attachment C. This is to minimize the salinity of the treated wastewater for other recycle purposes.
2. **Wastewater Treatment.** The Discharger owns and operates the WWTP, a secondary wastewater treatment facility. The wastewater treatment process consists of odor control, grit removal, primary clarification, high purity oxygen activated sludge, secondary clarification, disinfection, dechlorination, and blending of primary and secondary effluent during periods of flows in excess of the secondary treatment capacity.

During peak wet weather flow conditions, the WWTP can accept up to 425 MGD of influent via five 85 MGD influent pumps. Since primary treatment design capacity is 320 MGD, wet weather flows in excess of the primary treatment capacity are stored on-site in an 11 MG wet weather concrete storage basin and returned to the plant influent when flows subside. Primary effluent may be diverted around secondary treatment, disinfected, and “blended” with disinfected secondary effluent, then both are dechlorinated prior to being discharged to Central San Francisco Bay through a deep water outfall. This discharge occurs only after fully using the maximum secondary treatment capacity which is 168 MGD under optimal conditions.

The number of wet weather flow diversion events ranged from 0 to 15 per year from 2010-2013. Most of these events are less than 10 hours in duration. During wet weather conditions, diverted primary effluent flow may compose between 0 to 48% of total effluent flow depending on the storm event magnitude.

3. **Biosolids Management.** Sludge is currently thickened, anaerobically digested and dewatered before reuse by land application or alternative daily cover in an authorized sanitary landfill.

4. **Resource Recovery.** The Discharger’s Resource Recovery Program manages the disposal of permitted trucked waste to the WWTP. Types of waste typically hauled to the WWTP include septage; food industry waste including winery, dairy, and high total dissolved solids (TDS) waste; animal processing waste; food grade fats, oils, and greases; municipal water and wastewater sludge; groundwater, storm water and food scraps. The delivered food scraps (also referred to as food waste) are processed upon receipt at the WWTP (including slurrying, size reduction and contaminant removal steps) and are then digested in the anaerobic digesters. The Resource Recovery Program diverts organic wastes that would go to landfill disposal to utilize available excess capacity and increase methane gas production that is used for renewable power generation at the WWTP.

5. **Stormwater.** All stormwater from within the plant boundary is processed through the WWTP.

B. **Discharge Point and Receiving Waters**

WWTP effluent is discharged into Central San Francisco Bay through a deep water outfall (Discharge Point No. 001) approximately 5,700 feet offshore at a depth of about 45 feet below mean lower low water (latitude 37.817222, longitude -122.348611). The diffuser has 88 ports. On the southern side of the diffuser, the 44 ports discharge in a direction of approximately 160 degrees clockwise from true north. The 44 ports on the northern side of the diffuser discharge in the opposite direction, approximately 340 degrees clockwise from true north. The port diameters range from about 9.4 inches to about 11.1 inches.
C. Summary of Existing Requirements and Monitoring Data

Effluent limitations contained in the previous order and representative monitoring data from the previous order term are presented below:

Table F-2. Historic Effluent Limitations and Monitoring Data from Discharge Point No. 001

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Effluent Limitations</th>
<th>Monitoring Data (05/10–07/14)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Monthly Average</td>
<td>Weekly Average</td>
</tr>
<tr>
<td>Carbonaceous Biochemical Oxygen Demand, 5-day @ 20°C (CBOD₅)</td>
<td>mg/L</td>
<td>25</td>
<td>40</td>
</tr>
<tr>
<td>Total Suspended Solids (TSS)</td>
<td>mg/L</td>
<td>30</td>
<td>45</td>
</tr>
<tr>
<td>Oil and Grease</td>
<td>mg/L</td>
<td>10</td>
<td>---</td>
</tr>
<tr>
<td>pH</td>
<td>standard units</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Total Residual Chlorine</td>
<td>mg/L</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Copper</td>
<td>µg/L</td>
<td>47</td>
<td>---</td>
</tr>
<tr>
<td>Cyanide</td>
<td>µg/L</td>
<td>22</td>
<td>---</td>
</tr>
<tr>
<td>Tetrachloroethylene</td>
<td>µg/L</td>
<td>84</td>
<td>---</td>
</tr>
<tr>
<td>Zinc</td>
<td>µg/L</td>
<td>460</td>
<td>---</td>
</tr>
<tr>
<td>Dioxin-TEQ</td>
<td>µg/L</td>
<td>1.4 x 10⁸</td>
<td>---</td>
</tr>
<tr>
<td>Ammonia, as N</td>
<td>mg/L as N</td>
<td>84</td>
<td>---</td>
</tr>
<tr>
<td>Fecal Coliform Bacteria</td>
<td>MPN/ 100 mL</td>
<td>5-day geometric mean not greater than 500 MPN/100 mL; and 90th percentile value not greater than 1,100 MPN/100 mL</td>
<td>490</td>
</tr>
<tr>
<td>Enterococci Bacteria</td>
<td>CFU/100 mL</td>
<td>Monthly geometric mean not greater than 35 CFU/100 mL</td>
<td>22[3]</td>
</tr>
<tr>
<td>Acute Toxicity</td>
<td>% Survival</td>
<td>Not less than 90% (11-Sample Median)</td>
<td>95[4]</td>
</tr>
<tr>
<td>Chronic Toxicity</td>
<td>TUₜ</td>
<td>No chronic toxicity in toxic amounts</td>
<td>15.9</td>
</tr>
</tbody>
</table>

Unit Abbreviations:
- mg/L = milligrams per liter
- µg/L = micrograms per liter
- mg/L as N = milligrams per liter as nitrogen

Footnotes:
[1] Maximum weekly average
[4] Minimum survival rate. The Discharger reported acute toxicity results from June through September 2010, and November 2010 through February 2011 that would have violated effluent limits, but the Regional Water Board invalidated these results by letter dated November 16, 2011. This is because the Discharger was able to demonstrate through its investigation that the cause of toxicity was dissolved carbon dioxide, which would rapidly be rendered harmless once discharged to San Francisco Bay. To eliminate the effect of carbon dioxide on acute toxicity tests, the Discharger modified the flow through test by reducing the feed rate of effluent. This modification, consistent with the method, allows enough carbon dioxide to volatilize so that carbon dioxide levels in the test water are no longer toxic to fish. Since resuming acute toxicity testing with this modification in December 2011, the Discharger has had a least 90 percent survival in each test.
D. Compliance Summary

1. **Treatment Plant.** There is no record of the Discharger violating the effluent limitations of the previous order.

2. **Collection System.** To the extent that some sanitary sewer overflows (SSOs) reached waters of the U.S., the Discharger would have violated Prohibition III.F. The last SSO from the Discharger’s Interceptor system that reached surface waters occurred in December 2014 from the Alice Street overflow structure. This SSO was caused by heavy rains and resulted in about 14,000 gallons of sewage discharging to San Francisco Bay. The collection systems that transport wastewater to the Interceptor are owned and operated by the Cities of Alameda, Albany, Berkeley, Emeryville, Oakland, and Piedmont; and the Stege Sanitary District. These collection system agencies and the Discharger are under a federal Consent Decree entered on September 22, 2014. The Consent Decree requires assessment, maintenance, and rehabilitation of the Interceptor, sewer mains, and manholes; detection and elimination of sources of inflow into the collection systems, specific rates for cleaning and inspecting sewer mains, and implementation of a private sewer lateral ordinance. These requirements will improve the condition of the Discharger’s Interceptor and the satellites’ collection systems, and reduce SSO rates.

E. Planned Changes

As a mitigation project required by the Consent Decree, the Discharger will construct an Urban Runoff Diversion Project (URDP) to the Facility for treatment during dry weather. Diversion will begin by September 30, 2017. The URDP will divert up to 0.5 MGD of urban runoff from the Alameda County Ettie Street pump station.

III. APPLICABLE PLANS, POLICIES, AND REGULATIONS

The requirements in this Order are based on the requirements and authorities described below.

A. Legal Authorities

This Order serves as WDRs pursuant to California Water Code article 4, chapter 4, division 7 (commencing with § 13260). This Order is also issued pursuant to Clean Water Act (CWA) section 402 and implementing regulations adopted by U.S. EPA, and Water Code chapter 5.5, division 7 (commencing with § 13370). It shall serve as an NPDES permit for point source discharges from this facility to surface waters.

B. California Environmental Quality Act

Under Water Code section 13389, this action to adopt an NPDES permit is exempt from the provisions of the California Environmental Quality Act, Public Resources Code division 13, chapter 3 (commencing with § 21100).

C. State and Federal Regulations, Policies, and Plans

1. **Water Quality Control Plan.** The Regional Water Board adopted the *Water Quality Control Plan for the San Francisco Bay Basin* (Basin Plan), which designates beneficial uses, establishes water quality objectives, and contains implementation programs and policies to
achieve those objectives for all waters addressed through the plan. Requirements in this Order implement the Basin Plan. In addition, this Order implements State Water Board Resolution No. 88-63, which established state policy that all waters, with certain exceptions, should be considered suitable or potentially suitable for municipal or domestic supply. Because of the marine influence on San Francisco Bay, total dissolved solids levels exceed 3,000 mg/L; therefore, San Francisco Bay meets an exception to State Water Board Resolution No. 88-63. Beneficial uses applicable to Central San Francisco Bay are as follows:

<table>
<thead>
<tr>
<th>Discharge Point</th>
<th>Receiving Water</th>
<th>Beneficial Uses</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>Central San Francisco Bay</td>
<td>Industrial Service Supply (IND)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Industrial Process Supply (PROC)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ocean, Commercial, and Sport Fishing (COMM)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shellfish Harvesting (SHELL)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Estuarine Habitat (EST)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fish Migration (MIGR)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Preservation of Rare and Endangered Species (RARE)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fish Spawning (SPWN)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wildlife Habitat (WILD)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Water Contact Recreation (REC1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Non-Contact Water Recreation (REC2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Navigation (NAV)</td>
</tr>
</tbody>
</table>

2. **Sediment Quality.** The State Water Board adopted the *Water Quality Control Plan for Enclosed Bays and Estuaries – Part 1, Sediment Quality* on September 16, 2008, and it became effective on August 25, 2009. This plan supersedes other narrative sediment quality objectives, and establishes new sediment quality objectives and related implementation provisions for specifically defined sediments in most bays and estuaries. This Order implements the sediment quality objectives of this plan.

4. **State Implementation Policy.** On March 2, 2000, the State Water Board adopted the *Policy for Implementation of Toxics Standards for Inland Surface Waters, Enclosed Bays, and Estuaries of California* (State Implementation Policy or SIP). The SIP became effective on April 28, 2000, with respect to the priority pollutant criteria U.S. EPA promulgated for California through the NTR and the priority pollutant objectives the Regional Water Board established in the Basin Plan. The SIP became effective on May 18, 2000, with respect to the priority pollutant criteria U.S. EPA promulgated through the CTR. The State Water Board adopted amendments to the SIP on February 24, 2005, that became effective on July 13, 2005. The SIP establishes implementation provisions for priority pollutant criteria and objectives, and provisions for chronic toxicity control. Requirements of this Order implement the SIP.
5. **Antidegradation Policy.** Federal regulations at 40 C.F.R. section 131.12 requires that state water quality standards include an antidegradation policy consistent with the federal policy. The State Water Board established California’s antidegradation policy through State Water Board Resolution No. 68-16, *Statement of Policy with Respect to Maintaining High Quality of Waters in California*, which is deemed to incorporate the federal antidegradation policy where the federal policy applies under federal law. Resolution No. 68-16 requires that existing water quality be maintained unless degradation is justified based on specific findings. The Basin Plan implements, and incorporates by reference, both the State and federal antidegradation policies. Permitted discharges must be consistent with the antidegradation provisions of 40 C.F.R. section 131.12 and State Water Board Resolution No. 68-16.

6. **Anti-Backsliding Requirements.** CWA sections 402(o) and 303(d)(4) and 40 C.F.R. section 122.44(l) restrict backsliding in NPDES permits. These anti-backsliding provisions require that effluent limitations in a reissued permit be as stringent as those in the previous permit, with some exceptions in which limitations may be relaxed.

D. **Impaired Waters on CWA 303(d) List**

In October 2011, U.S. EPA approved a revised list of impaired waters prepared pursuant to CWA section 303(d), which requires identification of specific water bodies where it is expected that water quality standards will not be met after implementation of technology-based effluent limitations on point sources. Where it has not done so already, the Regional Water Board plans to adopt total maximum daily loads (TMDLs) for pollutants on the 303(d) list. TMDLs establish wasteload allocations for point sources and load allocations for non-point sources and are established to achieve the water quality standards for the impaired waters.

San Francisco Bay is listed as impaired by chlordane, DDT, dieldrin, dioxin compounds, invasive species, furan compounds, mercury, PCBs, dioxin-like PCBs, and selenium. On February 12, 2008, U.S. EPA approved a TMDL for mercury in San Francisco Bay. On March 29, 2010, U.S. EPA approved a TMDL for PCBs in San Francisco Bay. The TMDLs for mercury and PCBs apply to this discharge and are implemented under NPDES Permit No. CA0038849. Also, as shown in Fact Sheet section IV.C.3, the discharge is not a significant source of chlordane, DDT, diazinon, or dieldrin because these pollutants have not been detected in the discharge. The discharge is not a source of invasive species because it is disinfected. Likewise, it is an insignificant source of nickel and selenium because discharge concentrations of these pollutants are consistently below water quality objectives.

IV. RATIONALE FOR EFFLUENT LIMITATIONS AND DISCHARGE SPECIFICATIONS

The CWA requires point source dischargers to control the amount of conventional, non-conventional, and toxic pollutants discharged into waters of the United States. The control of pollutants discharged is established through effluent limitations and other requirements in NPDES permits. There are two principal bases for effluent limitations: 40 C.F.R. section 122.44(a) requires that permits include applicable technology-based limitations and standards; and 40 C.F.R. section 122.44(d) requires that permits include water quality-based effluent limitations to attain and maintain applicable numeric and narrative water quality criteria to protect the beneficial uses of receiving waters.
A. Discharge Prohibitions

1. Discharge Prohibition III.A (No discharge other than as described in this Order): This prohibition is based on 40 C.F.R. section 122.21(a) and Water Code section 13260, which require filing an application and Report of Waste Discharge before a discharge can occur. Discharges not described in the application and Report of Waste Discharge, and subsequently in this Order, are prohibited.

2. Discharge Prohibition III.B (Minimum initial dilution ratio of 25:1): This Order is based on a dilution ratio of 25:1 for the calculation of one or more effluent limitations reflecting available information regarding the instantaneous dilution achieved at Discharge Point No. 001. Therefore, this prohibition is necessary to ensure that the assumptions used to derive the dilution credit remain substantially the same so the limitations remain protective of water quality.

3. Discharge Prohibition III.C (No bypass or overflow, except as provided for in Attachment D): This prohibition is based on 40 C.F.R. section 122.41(m) (see Attachment D section I.G).

This prohibition grants bypass of peak wet weather primary treated flows that exceed secondary treatment capacity that are recombined with secondary treatment flows and discharged at Discharge Point No. 001, because the Discharger has met the conditions at 40 CFR 122.41(m)(4)(i)(A)-(C).

Background
During intense storm events, high volumes of inflow and infiltration can overwhelm certain parts of the wastewater treatment process and may cause damage or failure of the system. Operators of wastewater treatment plants must manage these high flows to both ensure the continued operation of the treatment process and to prevent backups and overflows of raw wastewater in basements or on streets.

To address this situation, in December 2005, USEPA invited public comment on its proposed Peak Wet Weather Policy that provides interpretation that 40 CFR 122.41(m) applies to wet weather diversions that are recombined with flow from secondary treatment, and guidance by which NPDES permits may be approved. This draft policy proposed that discharges must still meet all the requirements of NPDES permits, and encouraged municipalities to make investments in ongoing maintenance and capital improvements to improve long-term performance. Though not finalized and not the basis of the requirements in this Order, the draft policy provides information on the scope and application of 40 C.F.R. section 122.41(m).

Criteria of 40 CFR 122.41(m) (4) (i) (A)-(C)
If the criteria of 40 CFR 122.41(m)(4)(i)(A)-(C) are met, the Regional Water Board can approve peak wet weather diversions that are recombined with flow from the secondary treatment. The criteria of 40 CFR 122.41(m)(4)(i) (Federal Standard Provisions, Attachment D) are (A) bypass was unavoidable to prevent loss of life, personal injury, or severe property damage; (B) there were no feasible alternatives to the bypass, such as the use of auxiliary treatment facilities, retention of untreated wastes, or maintenance during normal periods of
equipment downtime; and (C) the Discharger submitted notice to the Regional Water Board as required under Federal Standard Provision – Permit Compliance I.G.5.

On November 7, 2014, the Discharger submitted a no feasible alternatives analysis that addresses measures it has taken and plans to reduce bypasses during peak wet weather events so that such bypasses could be approved pursuant to 40 CFR122.41(m)(4). The analysis identified a storage basin Standard Operating Procedures (SOP), future enhancements to the SOP, and measures required by the Consent Decree that have or will reduce such bypasses.

According to the Discharger, during peak wet weather flow conditions, the WWTP can accept up to 425 MGD of influent via five 85-MGD influent pumps. Since primary treatment design capacity is 320 MGD, wet weather flows in excess of the primary treatment capacity are stored on-site in an 11-MG wet weather concrete storage basin and returned to the plant influent when flows subside. After primary treatment at the maximum treatment capacity, primary effluent is diverted around secondary treatment, disinfected, and “blended” with disinfected secondary effluent, then discharged to Central San Francisco Bay through a deep water outfall. This diversion occurs only after fully using the maximum secondary treatment capacity which is 168 MGD under optimal conditions.

A study conducted in 2004 by Talavera & Richardson analyzed flow data from 1948-2004 and estimated that, at the time, the average annual wet weather diversion discharge volume (i.e., diverted primary effluent) from the WWTP was 383 million gallons. This is significantly higher than the volume of blending reported from 2010-2013 as shown in Table F-4. Table F-4 also shows that the storage basin played a part in reducing the volume of blending. The last column shows the amount of primary treated wastewater routed to the storage basin and then subsequently processed through secondary treatment after wet weather inflows subsided. That volume would have been discharged as blended effluent had the storage basin not been used.

<table>
<thead>
<tr>
<th>Year</th>
<th>Blending Events</th>
<th>Bypass of Secondary Treatment (MG)</th>
<th>Storage Used to Avoid Blending (MG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>9</td>
<td>135</td>
<td>116</td>
</tr>
<tr>
<td>2011</td>
<td>8</td>
<td>191</td>
<td>34</td>
</tr>
<tr>
<td>2012</td>
<td>15</td>
<td>269</td>
<td>106</td>
</tr>
<tr>
<td>2013</td>
<td>0</td>
<td>0</td>
<td>18</td>
</tr>
</tbody>
</table>

Because the storage basin is an important component in minimizing blending, this Order continues to require implementation of wet weather storage basin SOP to reduce blending events. Provision VI.C.6 of this Order requires the Discharger to maximize use of the storage basin to store flow volumes during small-to-medium storm events. The Discharger has indicated this may include use of enhanced weather prediction and monitoring tools, such as Doppler radar, and improved integration of wet weather facility and WWTP facility operation during storm events.
The Discharger along with seven East Bay Communities that operate and own sewer collection systems tributary to the Discharger have identified a number of actions that will reduce wet weather inflow and infiltration into their respective collection systems. This will, in turn, reduce the discharge of blended wastewater from the WWTP. These actions were formalized in a Consent Decree entered on September 22, 2014, in the lawsuit **United States of America, People of the State of California ex rel. State Water Resources Control Board and Regional Water Quality Control Board, San Francisco Bay Region (Plaintiffs), San Francisco Baykeeper and Our Children’s Earth (Intervenor-Plaintiffs) v. East Bay Municipal Utility District, and United States of America, People of the State of California ex rel. State Water Resources Control Board and Regional Water Quality Control Board, San Francisco Bay Region, San Francisco Baykeeper and Our Children’s Earth v. Cities of Alameda, Albany, Berkeley, Emeryville, Oakland, and Piedmont and Stege Sanitary District, U.S. District Court, Northern District of California, Case Numbers C09-00186-RS and C09-05684-RS** (hereafter Consent Decree).

Under the Consent Decree, the East Bay Communities will rehabilitate sewer main pipes and manholes, remove sources of inflow, and continue to cooperate with the Discharger as it implements a private sewer lateral ordinance. The Discharger will also implement a Regional Technical Support Program to help identify sources of rapid inflow into the East Bay Community collection systems. These actions will reduce wet weather inflow and infiltration into the collection systems, which will, in turn, reduce blending from EBMUD’s WWTP. To estimate the expected reductions in blending from work required by the Consent Decree, the Discharger provided modeling results, dated August 1, 2014, for a dry, median, and wet weather year. This showed that by end of the Consent Decree in 2036, if the Consent Decree is successfully implemented to achieve its stated objectives and if blending occurs at flows above 150 MGD, blending is expected to be eliminated in dry years, reduced by 95 percent in median years, and reduced by 93 percent in wet years from 2011 baseline conditions.

Basis for 150 MGD Trigger for Blending

While the Discharger seeks to maximize secondary treatment using all available equipment, processing flows above the capacity of biological treatment units will risk washout of biomass critical to breaking down organic matter and ensuring compliance with technology based limits. If the Discharger maximizes flows to biological treatment units under optimal conditions, this results in about 168 MGD receiving secondary treatment. To account for suboptimal conditions, this Order allows the Discharger to blend during wet weather provided flows are above 150 MGD. Specifically, this is to account for amperage capacity of surface aerators, short-term flow and level fluctuations, and operational flexibility to protect the biological secondary treatment process during high turbidity events. In addition, this Order allows the Discharger to blend during short instances of less than 150 MGD if it can document that the reduced flow rate was short-lived due to hydraulic surges, or the result of a temporary failure of the mid-plant pump station that was not the result of operator error or inadequate maintenance. The mid-plant pump station, in particular, is critical infrastructure to maximize secondary treatment during blending events. However, even a temporary power supply interruption may cause the Discharger to blend at a flow rate of less than 150 MGD. This is because the mid-plant pump station ensures that there is adequate hydraulic pressure in the primary effluent channel (i.e., high enough water levels) to ensure that flows routed to secondary treatment are above 150 MGD. It does this by maintaining higher water levels on
one side of a flap gate that divides the primary effluent channel. If power is lost, the flap gate
will open and water levels on each side will quickly equilibrate, and this will reduce the
hydraulic pressure, and result in flows lower than 150 MGD being routed through secondary
treatment. Under such conditions, this would be an anticipated bypass. This exception is
appropriate because the Discharger has operated the mid-plant pump station as designed over
the last five years, the Consent Decree noted above requires the Discharger, along with its
satellites, to take actions that will significantly reduce or eliminate blending over the next 10
to 20 years, and the Discharger must still comply with effluent limits. Therefore, a redesign
of the mid-plant pump station is not necessary at this time.

Based on a test plan overview, dated May 2010, the Discharger conducted a secondary
treatment capacity evaluation of its treatment plant. The final report for this investigation,
dated July 24, 2014, concluded that the key hydraulic constraint in the secondary treatment
system was high water level conditions in the activated sludge reactors during peak
secondary flows, which caused amperage in the aerator motors to exceed the full load
amperage rating of 112 amps. The Discharger also found it was able to minimize amperage
exceedances by disabling flow-proportioning to clarifiers. Under these conditions, amperage
exceedances typically occurred at a flow rate of about 150 MGD. Therefore, it is appropriate
to maintain a threshold of 150 MGD for blending, except as provided above.

4. **Discharge Prohibition III.D (Average dry weather effluent flow not to exceed dry
weather design capacity):** This Order prohibits an average dry weather effluent flow greater
than 120 MGD. This prohibition is based on the design treatment capacity (i.e., the historic
and tested reliability of the treatment plant). Exceeding the average dry weather flow design
capacity could result in lowering the reliability of achieving compliance with water quality
requirements.

5. **Discharge Prohibition III.E (Maximum brine flow not to exceed 2 percent):** This Order
prohibits brine discharges greater than 2 percent of treated wastewater flows. In September
2011, the Discharger initiated a pilot program that involved bleeding in 30,000 to 70,000
gallons per day of concentrated brine solution into its secondary treated wastewater
immediately prior to discharge. These solutions were from K2 Pure Solutions and salinities
were about 200,000 parts per million. In its application for permit reissuance, the Discharger
proposed to include similar brine solutions on a permanent basis. The brine is mixed into the
discharge after secondary treatment so as to minimize salinity in the treated wastewater for
other recycling purposes. Monitoring during the pilot study showed no significant increases
in priority pollutants with the exception of hexachlorobenzene.

This prohibition is necessary to ensure that brine discharges are appropriately managed. The
2 percent upper bound is based on the Discharger’s evaluation of brine toxicity. The
Discharger conducted side by side toxicity tests of 100 percent treated wastewater and 98
percent treated wastewater with 2 percent brine. These results, dated March 12, 2015,
showed identical toxicity profiles with each test resulting in 7.3 TUc. This showed that the
addition of brine did not increase toxicity in effluent and will not significantly increase
adverse impacts to the receiving water considering the level of toxicity (maximum of 15.9
TUc) in the discharge and the conservative initial dilution achieved (25:1). If the Discharger
provides documentation that a higher percentage of brine may be mixed with treated
wastewater without adverse impact to receiving water or significant reduction in the
buoyancy of the discharge for dilution modeling purposes, the Regional Water Board may consider a higher upper bound for brine discharges.

6. **Discharge Prohibition III.F (No sewer overflows):** Basin Plan Table 4-1, Discharge Prohibition 15, and the CWA prohibit the discharge of wastewater to surface waters, except as authorized under an NPDES permit. Publicly owned treatment works must achieve secondary treatment at a minimum and any more stringent limitations necessary to meet water quality standards (33 U.S.C. § 1311[b][1][B and C]). A sanitary sewer overflow that results in the discharge of raw sewage or wastewater not meeting this Order’s effluent limitations to surface waters is therefore prohibited under the CWA and the Basin Plan.

B. Conventional and Non-Conventional Pollutant Effluent Limitations

1. **Scope and Authority**

CWA section 301(b) and 40 C.F.R. section 122.44 require that permits include conditions meeting technology-based requirements, at a minimum, and any more stringent effluent limitations necessary to meet water quality standards. The discharges authorized by this Order must meet minimum federal technology-based requirements based on the Secondary Treatment Standards at 40 C.F.R. section 133 as summarized below. In addition, the 30-day average percent removal for biochemical oxygen demand (BOD$_5$) (or carbonaceous biochemical oxygen demand, CBOD$_5$) and total suspended solids (TSS), by concentration, is not to be less than 85 percent. The Basin Plan contains additional requirements for certain pollutants.

<table>
<thead>
<tr>
<th>Table F-5. Secondary Treatment Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
</tr>
<tr>
<td>BOD$_5$ [1]</td>
</tr>
<tr>
<td>CBOD$_5$ [1]</td>
</tr>
<tr>
<td>TSS</td>
</tr>
<tr>
<td>pH</td>
</tr>
</tbody>
</table>

Footnote:
[1] CBOD$_5$ effluent limitations may be substituted for BOD$_5$ limitations.

2. **Effluent Limitations**

 a. **CBOD$_5$ and TSS.** The CBOD$_5$ and TSS effluent limitations, including the 85 percent removal requirements, are based on the Secondary Treatment Standards and Basin Plan Table 4-2.

 b. **Oil and Grease.** The oil and grease effluent limitations are based on Basin Plan Table 4-2.

 c. **pH.** The pH effluent limitations are based on the Secondary Treatment Standards and Basin Plan Table 4-2.

 d. **Total Residual Chlorine.** The total residual chlorine effluent limitation is based on Basin Plan Table 4-2. The allowance for determining false positives when using continuous devices is based on the fact that continuous instruments occasionally have
anomalous spikes, and it is chemically improbable to have free chlorine present in the presence of sodium bisulfite.

e. **Enterococcus.** The enterococcus effluent limitation is based on Basin Plan Table 4-2A, which requires this limitation for discharges to receiving waters with the water contact recreation beneficial use.

f. **Fecal Coliform.** The treated wastewater shall meet the following limitations of bacteriological quality: (1) The 5-day log mean fecal coliform density shall not exceed 500 MPN/100mL; and (2) The 90th percentile value of the last 10 values shall not exceed 1,100 MPN/100 mL.

The Basin Plan, Table 4-2, establishes effluent limitations for total coliform bacteria for all discharges from wastewater treatment facilities to inland surface waters and enclosed bays and estuaries in the Region. Fecal coliform limitations may be substituted for the limitations of the Basin Plan “provided it can be conclusively demonstrated through a program approved by the Regional Water Board that such substitution will not result in unacceptable adverse impacts on the beneficial uses of the receiving water.”

Following a study by the Discharger in 1997, the Regional Water Board amended the Discharger’s NPDES permit Order No. 94-127 with Order No. 97-142. Order No. 97-142 substituted a 5-day log mean fecal coliform effluent limitation of 500 MPN/100mL and a 90th percentile value fecal coliform effluent limitation of 1,100 MPN/100 mL for the previous total coliform effluent limitations. The fecal coliform limitations are retained by this Order.

The Discharger submitted its report on the 1997 study, entitled *Chlorine Reduction/Fecal Coliform Study Report*, to the Regional Water Board dated July 28, 1997. The report showed that at the discharge levels of 500 and 1,100 MPL/100ml, receiving water fecal coliform concentrations at the outfall stations within the zone of initial dilution, remained below the shellfish harvesting objective of a median less than 14 MPN/100mL and a 90th percentile less than 43 MPN/100mL.

C. Toxic Pollutant Effluent Limitations

1. **Scope and Authority**

 For toxic pollutants, this Order contains water quality based effluent limitations (WQBELs) that implement water quality objectives that protect beneficial uses. CWA section 301(b) and 40 C.F.R. section 122.44(d) require that permits include limitations more stringent than federal technology-based requirements where necessary to achieve applicable water quality standards. According to 40 C.F.R. section 122.44(d)(1)(i), permits must include effluent limitations for all pollutants that are or may be discharged at levels that have a reasonable potential to cause or contribute to an exceedance of a water quality standard, including numeric and narrative objectives within a standard. Where reasonable potential has been established for a pollutant, but there is no numeric criterion or objective, WQBELs must be established using (1) U.S. EPA criteria guidance under CWA section 304(a), supplemented where necessary by other relevant information; (2) an indicator parameter for the pollutant of concern; or (3) a calculated numeric water quality criterion, such as a proposed state criterion or policy interpreting a narrative
criterion, supplemented with relevant information (40 C.F.R. § 122.44[d][1][vi]). The process for determining reasonable potential and calculating WQBELs is intended to achieve applicable water quality objectives and criteria, and protect designated uses of receiving waters as specified in the Basin Plan. This Order imposes numeric effluent limitations for toxic pollutants with reasonable potential to cause or contribute to exceedances of water quality standards.

2. Beneficial Uses and Water Quality Criteria and Objectives

Discharge Point No. 001 discharges to Central San Francisco Bay. Section III.C.1, above, identifies the beneficial uses of Central San Francisco Bay. Water quality criteria and objectives to protect these beneficial uses are described below.

a. Basin Plan Objectives. The Basin Plan specifies numeric water quality objectives for 10 priority pollutants and narrative water quality objectives for toxicity and bioaccumulation. The narrative toxicity objective states, “All waters shall be maintained free of toxic substances in concentrations that are lethal to or that produce other detrimental responses in aquatic organisms.” The narrative bioaccumulation objective states, “Controllable water quality factors shall not cause a detrimental increase in concentrations of toxic substances found in bottom sediments or aquatic life. Effects on aquatic organisms, wildlife, and human health will be considered.”

b. CTR Criteria. The CTR specifies numeric aquatic life and human health criteria for numerous priority pollutants. These criteria apply to inland surface waters and enclosed bays and estuaries. Some human health criteria are for consumption of “water and organisms” and others are for consumption of “organisms only.” The criteria applicable to “organisms only” apply to Central San Francisco Bay because it is not a source of drinking water.

c. NTR Criteria. The NTR establishes numeric aquatic life and human health criteria for a number of toxic pollutants for San Francisco Bay waters upstream to and including Suisun Bay and the Sacramento-San Joaquin Delta. The NTR criteria apply to Central San Francisco Bay.

d. Sediment Quality Objectives. The Water Quality Control Plan for Enclosed Bays and Estuaries – Part I, Sediment Quality contains a narrative water quality objective: “Pollutants in sediments shall not be present in quantities that, alone or in combination, are toxic to benthic communities in bays and estuaries of California.” This objective is to be implemented by integrating three lines of evidence: sediment toxicity, benthic community condition, and sediment chemistry. The policy requires that if the Regional Water Board determines that a discharge has reasonable potential to cause or contribute to an exceedance of this objective, it is to impose the objective as a receiving water limit.

e. Receiving Water Salinity. Basin Plan section 4.6.2 (like the CTR and NTR) states that the salinity characteristics (i.e., freshwater vs. saltwater) of the receiving water are to be considered in determining the applicable water quality objectives. Freshwater criteria apply to discharges to waters with salinities equal to or less than one part per thousand (ppt) at least 95 percent of the time. Saltwater criteria apply to discharges to waters with salinities equal to or greater than 10 ppt at least 95 percent of the time in a normal water year. For discharges to waters with salinities between these two categories, or tidally...
influenced freshwaters that support estuarine beneficial uses, the water quality objectives are the lower of the salt or freshwater objectives (the latter calculated based on ambient hardness) for each substance.

Central San Francisco Bay is a saltwater environment based on salinity data generated through the Regional Monitoring Program (RMP). Salinity data were collected at the Yerba Buena (BC10) sampling location between 1993 and 2013. During that period, the average salinity was 25 ppt, with a range from 12 to 33 ppt. Because the salinity was greater than 10 ppt in 100 percent of the samples, Central San Francisco Bay is classified as saltwater, and the reasonable potential analysis and WQBELs are based on saltwater water quality criteria and objectives.

f. Site-Specific Metals Translators. Effluent limitations for metals must be expressed as total recoverable metal (40 C.F.R. § 122.45[c]). Since the water quality objectives for metals are typically expressed as dissolved metal, translators must be used to convert metals concentrations from dissolved to total recoverable and vice versa. The CTR contains default translators; however, site-specific conditions, such as water temperature, pH, total suspended solids, and organic carbon may affect the form of metal (dissolved, non-filterable, or otherwise) present and therefore available to cause toxicity. In general, dissolved metals are more available and more toxic to aquatic life than other forms. Site-specific translators can account for site-specific conditions, thereby preventing overly stringent or under-protective water quality objectives. For copper, Basin Plan Table 7.2.1-2 contains site-specific translators for deep-water discharges to Central San Francisco Bay: 0.73 and 0.87 (monthly and daily). For nickel, this Order uses site-specific translators the Clean Estuary Partnership developed, as set forth in North of Dumbarton Bridge Copper and Nickel Development and Selection of Final Translators report (March 2005): 0.65 and 0.85 (monthly and daily).

3. Need for Water Quality-Based Effluent Limitations (Reasonable Potential Analysis)

Assessing whether a pollutant has reasonable potential to exceed a water quality objective is the fundamental step in determining whether a WQBEL is required.

a. Methodology. SIP section 1.3 sets forth the methodology used for this Order for assessing whether a pollutant has reasonable potential to exceed a water quality objective. The analysis begins with identifying the maximum effluent concentration (MEC) observed for each pollutant based on available effluent concentration data and the ambient background concentration (B). SIP section 1.4.3 states that ambient background concentrations are either the maximum ambient concentration observed or, for water quality objectives intended to protect human health, the arithmetic mean of observed concentrations. There are three triggers in determining reasonable potential:

i. **Trigger 1** is activated if the maximum effluent concentration is greater than or equal to the lowest applicable water quality objective (MEC \(\geq \) water quality objective).

ii. **Trigger 2** is activated if the ambient background concentration observed in the receiving water is greater than the lowest applicable water quality objective (B \(> \) water quality objective) and the pollutant is detected in any effluent sample.
iii. Trigger 3 is activated if a review of other information indicates that a WQBEL is needed to protect beneficial uses.

b. Effluent Data. The reasonable potential analysis for this Order is based on effluent monitoring data the Discharger collected from May 2010 through August 2014. Additional ammonia data were collected July 2012 through June 2014 as a result of a Water Code section 13267 order dated March 2012 requiring nutrients information.

c. Ambient Background Data. The reasonable potential analysis for this Order is based on RMP data collected at the Yerba Buena Island station (BC10) from 1993 through 2013, and additional Bay Area Clean Water Agencies data from *San Francisco Bay Ambient Water Monitoring Interim Report (2003)* and *Ambient Water Monitoring: Final CTR Sampling Update (2004)*. These reports contain monitoring results from 2002 and 2003 for priority pollutants the RMP did not monitor at the time.

SIP section 1.4.3 requires that background water quality data be representative of the ambient receiving water that will mix with the discharge. RMP monitoring station BC10, relative to other RMP stations, fits SIP guidance for establishing background conditions.

d. Reasonable Potential Analysis for Toxic Pollutants. The maximum effluent concentrations, most stringent applicable water quality criteria and objectives, and ambient background concentrations used in the analysis are presented in the following table, along with the reasonable potential analysis results (yes or no) for each pollutant. Reasonable potential was not determined for all pollutants because there are not water quality objectives for all pollutants, and monitoring data are unavailable for others.

Hexachlorobenzene, copper, cyanide, and ammonia exhibit reasonable potential by Trigger 1. Dioxin-TEQ exhibits reasonable potential by Trigger 2. Basin Plan section 7.2.1.2 also requires copper WQBELs for all municipal and industrial wastewater treatment facilities discharging into San Francisco Bay. Likewise, Basin Plan section 4.7.2.2 requires cyanide WQBELs for municipal wastewater treatment facilities discharging into San Francisco Bay.

Table F-6. Reasonable Potential Analysis

<table>
<thead>
<tr>
<th>CTR #</th>
<th>Priority Pollutants</th>
<th>Governing criterion or objective (µg/L)</th>
<th>MEC or Minimum DL [1][2] (µg/L)</th>
<th>B or Minimum DL [1][2] (µg/L)</th>
<th>Results [3]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Antimony</td>
<td>4,300</td>
<td>0.67</td>
<td>1.8</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>Arsenic</td>
<td>36</td>
<td>3.1</td>
<td>2.8</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>Beryllium</td>
<td>No Criteria</td>
<td><0.03</td>
<td>0.22</td>
<td>U</td>
</tr>
<tr>
<td>4</td>
<td>Cadmium</td>
<td>9.36</td>
<td>1.9</td>
<td>0.13</td>
<td>No</td>
</tr>
<tr>
<td>5a</td>
<td>Chromium (III)</td>
<td>No Criteria</td>
<td>8.2</td>
<td>4.4</td>
<td>No</td>
</tr>
<tr>
<td>5b</td>
<td>Chromium (VI)</td>
<td>50</td>
<td>8.2</td>
<td>4.4</td>
<td>No</td>
</tr>
<tr>
<td>6</td>
<td>Copper</td>
<td>8.2</td>
<td>22</td>
<td>2.5</td>
<td>Yes</td>
</tr>
<tr>
<td>7</td>
<td>Lead</td>
<td>8.5</td>
<td>1.7</td>
<td>0.8</td>
<td>No</td>
</tr>
<tr>
<td>8</td>
<td>Mercury (303(d) listed) [4]</td>
<td>---</td>
<td>0.0306</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>9</td>
<td>Nickel</td>
<td>13</td>
<td>8.5</td>
<td>3.7</td>
<td>No</td>
</tr>
<tr>
<td>10</td>
<td>Selenium</td>
<td>5</td>
<td>0.68</td>
<td>0.39</td>
<td>No</td>
</tr>
<tr>
<td>11</td>
<td>Silver</td>
<td>2.2</td>
<td>0.18</td>
<td>0.052</td>
<td>No</td>
</tr>
<tr>
<td>12</td>
<td>Thallium</td>
<td>6.3</td>
<td><0.2</td>
<td>0.21</td>
<td>No</td>
</tr>
<tr>
<td>13</td>
<td>Zinc</td>
<td>86</td>
<td>84</td>
<td>5.1</td>
<td>No</td>
</tr>
<tr>
<td>14</td>
<td>Cyanide</td>
<td>2.9</td>
<td>9.8</td>
<td>< 0.4</td>
<td>Yes</td>
</tr>
<tr>
<td>CTR#</td>
<td>Priority Pollutants</td>
<td>Governing criterion or objective (µg/L)</td>
<td>MEC or Minimum DL (µg/L)</td>
<td>B or Minimum DL (µg/L)</td>
<td>Results</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>---</td>
<td>--------------------------</td>
<td>------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>15</td>
<td>Asbestos</td>
<td>No Criteria</td>
<td>Unavailable</td>
<td>Unavailable</td>
<td>U</td>
</tr>
<tr>
<td>16</td>
<td>2,3,7,8-TCDD (303(d listed))</td>
<td>1.40x10^4</td>
<td><2.6 E-7</td>
<td>8.2 x 10^-7</td>
<td>No</td>
</tr>
<tr>
<td>17</td>
<td>Acrolein</td>
<td>780</td>
<td><3.6</td>
<td><0.5</td>
<td>No</td>
</tr>
<tr>
<td>18</td>
<td>Acrylonitrile</td>
<td>0.66</td>
<td><0.31</td>
<td>0.03</td>
<td>No</td>
</tr>
<tr>
<td>19</td>
<td>Benzene</td>
<td>71</td>
<td><0.11</td>
<td><0.05</td>
<td>No</td>
</tr>
<tr>
<td>20</td>
<td>Bromoform</td>
<td>360</td>
<td><0.14</td>
<td><0.5</td>
<td>No</td>
</tr>
<tr>
<td>21</td>
<td>Carbon Tetrachloride</td>
<td>4.4</td>
<td><0.11</td>
<td>0.06</td>
<td>No</td>
</tr>
<tr>
<td>22</td>
<td>Chlorobenzene</td>
<td>21,000</td>
<td><0.12</td>
<td><0.5</td>
<td>No</td>
</tr>
<tr>
<td>23</td>
<td>Chlorodibromomethane</td>
<td>34</td>
<td><0.13</td>
<td><0.05</td>
<td>No</td>
</tr>
<tr>
<td>24</td>
<td>Chloroethane</td>
<td>No Criteria</td>
<td><0.17</td>
<td><0.5</td>
<td>U</td>
</tr>
<tr>
<td>25</td>
<td>2-Chloroethyl vinyl ether</td>
<td>No Criteria</td>
<td><0.095</td>
<td><0.5</td>
<td>U</td>
</tr>
<tr>
<td>26</td>
<td>Chloroform</td>
<td>No Criteria</td>
<td>9.7</td>
<td><0.5</td>
<td>U</td>
</tr>
<tr>
<td>27</td>
<td>Dichlorobromomethane</td>
<td>46</td>
<td>0.38</td>
<td><0.05</td>
<td>No</td>
</tr>
<tr>
<td>28</td>
<td>1,1-Dichloroethane</td>
<td>No Criteria</td>
<td><0.097</td>
<td><0.05</td>
<td>U</td>
</tr>
<tr>
<td>29</td>
<td>1,2-Dichloroethane</td>
<td>99</td>
<td><0.1</td>
<td>0.04</td>
<td>No</td>
</tr>
<tr>
<td>30</td>
<td>1,1-Dichloroethylene</td>
<td>3.2</td>
<td><0.1</td>
<td><0.5</td>
<td>No</td>
</tr>
<tr>
<td>31</td>
<td>1,2-Dichloropropane</td>
<td>39</td>
<td><0.11</td>
<td><0.05</td>
<td>No</td>
</tr>
<tr>
<td>32</td>
<td>1,3-Dichloropropane</td>
<td>1,700</td>
<td><0.1</td>
<td><0.5</td>
<td>No</td>
</tr>
<tr>
<td>33</td>
<td>Ethylbenzene</td>
<td>29,000</td>
<td><0.09</td>
<td><0.5</td>
<td>No</td>
</tr>
<tr>
<td>34</td>
<td>Methyl Bromide</td>
<td>4,000</td>
<td>0.36</td>
<td><0.5</td>
<td>No</td>
</tr>
<tr>
<td>35</td>
<td>Methyl Chloride</td>
<td>No Criteria</td>
<td>0.76</td>
<td><0.5</td>
<td>U</td>
</tr>
<tr>
<td>36</td>
<td>Methylene Chloride</td>
<td>1,600</td>
<td>1.7</td>
<td>22</td>
<td>No</td>
</tr>
<tr>
<td>37</td>
<td>1,1,2,2-Tetrachloroethane</td>
<td>11</td>
<td><0.12</td>
<td><0.05</td>
<td>No</td>
</tr>
<tr>
<td>38</td>
<td>Tetrachloroethylene</td>
<td>8.85</td>
<td>0.67</td>
<td><0.05</td>
<td>No</td>
</tr>
<tr>
<td>39</td>
<td>Toluene</td>
<td>200,000</td>
<td>3.2</td>
<td><0.3</td>
<td>No</td>
</tr>
<tr>
<td>40</td>
<td>1,2-Trans-Dichloroethylene</td>
<td>140,000</td>
<td><0.11</td>
<td><0.5</td>
<td>No</td>
</tr>
<tr>
<td>41</td>
<td>1,1,1-Trichloroethane</td>
<td>No Criteria</td>
<td><0.14</td>
<td><0.5</td>
<td>U</td>
</tr>
<tr>
<td>42</td>
<td>1,1,2-Trichloroethane</td>
<td>42</td>
<td><0.098</td>
<td><0.05</td>
<td>No</td>
</tr>
<tr>
<td>43</td>
<td>Trichloroethylene</td>
<td>81</td>
<td>0.38</td>
<td><0.5</td>
<td>No</td>
</tr>
<tr>
<td>44</td>
<td>Vinyl Chloride</td>
<td>525</td>
<td><0.09</td>
<td><0.5</td>
<td>No</td>
</tr>
<tr>
<td>45</td>
<td>2-Chlorophenol</td>
<td>400</td>
<td><0.55</td>
<td><1.2</td>
<td>No</td>
</tr>
<tr>
<td>46</td>
<td>2,4-Dichlorophenol</td>
<td>790</td>
<td><0.59</td>
<td><1.3</td>
<td>No</td>
</tr>
<tr>
<td>47</td>
<td>2,4-Dimethylphenol</td>
<td>2,300</td>
<td><0.35</td>
<td><1.3</td>
<td>No</td>
</tr>
<tr>
<td>48</td>
<td>2-Methyl-4,6-Dinitrophenol</td>
<td>765</td>
<td><0.95</td>
<td><1.2</td>
<td>No</td>
</tr>
<tr>
<td>49</td>
<td>2,4-Dinitrophenol</td>
<td>14,000</td>
<td><0.95</td>
<td><0.7</td>
<td>No</td>
</tr>
<tr>
<td>50</td>
<td>2-Nitrophenol</td>
<td>No Criteria</td>
<td><0.48</td>
<td><1.3</td>
<td>U</td>
</tr>
<tr>
<td>51</td>
<td>4-Nitrophenol</td>
<td>No Criteria</td>
<td>3.3</td>
<td><1.6</td>
<td>U</td>
</tr>
<tr>
<td>52</td>
<td>3-Methyl 4-Chlorophenol</td>
<td>No Criteria</td>
<td><0.54</td>
<td><1.1</td>
<td>U</td>
</tr>
<tr>
<td>53</td>
<td>Pentachlorophenol</td>
<td>7.9</td>
<td><0.95</td>
<td><1</td>
<td>No</td>
</tr>
<tr>
<td>54</td>
<td>Phenol</td>
<td>4,600,000</td>
<td><0.92</td>
<td><1.3</td>
<td>No</td>
</tr>
<tr>
<td>55</td>
<td>2,4,6-Trichlorophenol</td>
<td>6.5</td>
<td>2.0</td>
<td><1.3</td>
<td>No</td>
</tr>
<tr>
<td>56</td>
<td>Aacenaphthene</td>
<td>2,700</td>
<td><0.022</td>
<td>0.0019</td>
<td>No</td>
</tr>
<tr>
<td>57</td>
<td>Aacenaphthylene</td>
<td>No Criteria</td>
<td><0.031</td>
<td>0.0013</td>
<td>U</td>
</tr>
<tr>
<td>58</td>
<td>Anthracene</td>
<td>110,000</td>
<td><0.012</td>
<td>0.0006</td>
<td>No</td>
</tr>
<tr>
<td>59</td>
<td>Benzidine</td>
<td>0.00054</td>
<td><0.95</td>
<td><0.0015</td>
<td>No</td>
</tr>
<tr>
<td>60</td>
<td>Benzo(a)Anthracene</td>
<td>0.049</td>
<td><0.012</td>
<td>0.0053</td>
<td>No</td>
</tr>
<tr>
<td>61</td>
<td>Benzo(a)Pyrene</td>
<td>0.049</td>
<td><0.012</td>
<td>0.0033</td>
<td>No</td>
</tr>
<tr>
<td>62</td>
<td>Benzo(b)Fluoranthene</td>
<td>0.049</td>
<td><0.017</td>
<td>0.0046</td>
<td>No</td>
</tr>
<tr>
<td>63</td>
<td>Benzo(ghi)Perylene</td>
<td>No Criteria</td>
<td><0.023</td>
<td>0.0045</td>
<td>U</td>
</tr>
<tr>
<td>64</td>
<td>Benzo(k)Fluoranthene</td>
<td>0.049</td>
<td><0.013</td>
<td>0.0018</td>
<td>No</td>
</tr>
<tr>
<td>65</td>
<td>Bis(2-Chloroethoxy)Methane</td>
<td>No Criteria</td>
<td><0.53</td>
<td><0.3</td>
<td>U</td>
</tr>
<tr>
<td>66</td>
<td>Bis(2-Chloroethyl)Ether</td>
<td>1.4</td>
<td><0.7</td>
<td><0.00015</td>
<td>No</td>
</tr>
<tr>
<td>67</td>
<td>Bis(2-Chloroisopropyl)Ether</td>
<td>170,000</td>
<td><0.52</td>
<td>Unavailable</td>
<td>No</td>
</tr>
<tr>
<td>68</td>
<td>Bis(2-Ethylhexyl)Pthalate</td>
<td>5.9</td>
<td>4.6</td>
<td>< 0.7</td>
<td>No</td>
</tr>
<tr>
<td>CTR #</td>
<td>Priority Pollutants</td>
<td>Governing criterion or objective (µg/L)</td>
<td>MEC or Minimum DL (µg/L)</td>
<td>B or Minimum DL (µg/L)</td>
<td>Results</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>---</td>
<td>--------------------------</td>
<td>------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>69</td>
<td>4-Bromophenyl Phenyl Ether</td>
<td>No Criteria</td>
<td><0.6</td>
<td><0.23</td>
<td>U</td>
</tr>
<tr>
<td>70</td>
<td>Butylbenzyl Phthalate</td>
<td>5,200</td>
<td>3.1</td>
<td>0.0056</td>
<td>No</td>
</tr>
<tr>
<td>71</td>
<td>2-Chloronaphthalene</td>
<td>4,300</td>
<td>3.8</td>
<td><0.3</td>
<td>No</td>
</tr>
<tr>
<td>72</td>
<td>4-Chlorophenyl Phenyl Ether</td>
<td>No Criteria</td>
<td><0.57</td>
<td><0.3</td>
<td>U</td>
</tr>
<tr>
<td>73</td>
<td>Chrysene</td>
<td>0.049</td>
<td><0.017</td>
<td>0.0028</td>
<td>No</td>
</tr>
<tr>
<td>74</td>
<td>Dibenz(a,h)Anthracene</td>
<td>0.049</td>
<td><0.016</td>
<td>0.00064</td>
<td>No</td>
</tr>
<tr>
<td>75</td>
<td>1,2-Dichlorobenzene</td>
<td>17,000</td>
<td><0.13</td>
<td><0.3</td>
<td>No</td>
</tr>
<tr>
<td>76</td>
<td>1,3-Dichlorobenzene</td>
<td>2,600</td>
<td><0.17</td>
<td><0.3</td>
<td>No</td>
</tr>
<tr>
<td>77</td>
<td>1,4-Dichlorobenzene</td>
<td>2,600</td>
<td>0.28</td>
<td><0.3</td>
<td>No</td>
</tr>
<tr>
<td>78</td>
<td>3,3' Dichlorobenzidine</td>
<td>0.077</td>
<td><0.56</td>
<td><0.001</td>
<td>No</td>
</tr>
<tr>
<td>79</td>
<td>Diethyl Phthalate</td>
<td>120,000</td>
<td>1.4</td>
<td><0.21</td>
<td>No</td>
</tr>
<tr>
<td>80</td>
<td>Dimethyl Phthalate</td>
<td>2,900,000</td>
<td><0.18</td>
<td><0.21</td>
<td>No</td>
</tr>
<tr>
<td>81</td>
<td>Di-n-Butyl Phthalate</td>
<td>12,000</td>
<td>4.0</td>
<td>0.016</td>
<td>No</td>
</tr>
<tr>
<td>82</td>
<td>2,4-Dinitrotoluene</td>
<td>9.1</td>
<td><0.48</td>
<td><0.27</td>
<td>No</td>
</tr>
<tr>
<td>83</td>
<td>2,6-Dinitrotoluene</td>
<td>No Criteria</td>
<td><0.46</td>
<td><0.29</td>
<td>U</td>
</tr>
<tr>
<td>84</td>
<td>Di-n-Octyl Phthalate</td>
<td>No Criteria</td>
<td><0.95</td>
<td><0.38</td>
<td>U</td>
</tr>
<tr>
<td>85</td>
<td>1,2-Diphenylhydrazine</td>
<td>0.54</td>
<td>Unavailable</td>
<td>0.0037</td>
<td>No</td>
</tr>
<tr>
<td>86</td>
<td>Fluoranthene</td>
<td>370</td>
<td><0.027</td>
<td>0.011</td>
<td>No</td>
</tr>
<tr>
<td>87</td>
<td>Fluorene</td>
<td>14,000</td>
<td><0.02</td>
<td>0.0021</td>
<td>No</td>
</tr>
<tr>
<td>88</td>
<td>Hexachlorobenzene</td>
<td>0.00077</td>
<td>0.0048</td>
<td>0.000022</td>
<td>Yes</td>
</tr>
<tr>
<td>89</td>
<td>Hexachlorobutadiene</td>
<td>50</td>
<td>0.0071</td>
<td><0.3</td>
<td>No</td>
</tr>
<tr>
<td>90</td>
<td>Hexachlorocyclopentadiene</td>
<td>17,000</td>
<td><0.95</td>
<td><0.31</td>
<td>No</td>
</tr>
<tr>
<td>91</td>
<td>Hexachloroethane</td>
<td>8.9</td>
<td>0.0515</td>
<td><0.2</td>
<td>No</td>
</tr>
<tr>
<td>92</td>
<td>Indeno(1,2,3-cd)Pyrene</td>
<td>0.049</td>
<td><0.016</td>
<td>0.004</td>
<td>No</td>
</tr>
<tr>
<td>93</td>
<td>Isophorone</td>
<td>600</td>
<td><0.55</td>
<td><0.3</td>
<td>No</td>
</tr>
<tr>
<td>94</td>
<td>Naphthalene</td>
<td>No Criteria</td>
<td><0.033</td>
<td>0.013</td>
<td>U</td>
</tr>
<tr>
<td>95</td>
<td>Nitrobenzene</td>
<td>1,900</td>
<td><0.67</td>
<td><0.25</td>
<td>No</td>
</tr>
<tr>
<td>96</td>
<td>N-Nitrosodimethylamine</td>
<td>8.1</td>
<td><0.71</td>
<td><0.3</td>
<td>No</td>
</tr>
<tr>
<td>97</td>
<td>N-Nitrosodi-n-Propylamine</td>
<td>1.4</td>
<td><0.79</td>
<td><0.001</td>
<td>No</td>
</tr>
<tr>
<td>98</td>
<td>N-Nitrosodi-naphylamine</td>
<td>16</td>
<td><0.57</td>
<td><0.001</td>
<td>No</td>
</tr>
<tr>
<td>99</td>
<td>Phenanthrene</td>
<td>No Criteria</td>
<td><0.025</td>
<td>0.0095</td>
<td>U</td>
</tr>
<tr>
<td>100</td>
<td>Pyrene</td>
<td>11,000</td>
<td><0.018</td>
<td>0.019</td>
<td>No</td>
</tr>
<tr>
<td>101</td>
<td>1,2,4-Trichlorobenzene</td>
<td>No Criteria</td>
<td><0.48</td>
<td><0.3</td>
<td>U</td>
</tr>
<tr>
<td>102</td>
<td>Aldrin</td>
<td>0.00014</td>
<td><0.00181</td>
<td>0.0000028</td>
<td>No</td>
</tr>
<tr>
<td>103</td>
<td>Alpha-BHC</td>
<td>0.013</td>
<td><0.00285</td>
<td>0.0005</td>
<td>No</td>
</tr>
<tr>
<td>104</td>
<td>Beta-BHC</td>
<td>0.046</td>
<td><0.00192</td>
<td>0.00041</td>
<td>No</td>
</tr>
<tr>
<td>105</td>
<td>Gamma-BHC</td>
<td>0.063</td>
<td><0.0019</td>
<td>0.0007</td>
<td>No</td>
</tr>
<tr>
<td>106</td>
<td>Delta-BHC</td>
<td>No Criteria</td>
<td><0.00285</td>
<td>0.000053</td>
<td>U</td>
</tr>
<tr>
<td>107</td>
<td>Chlor dane (303d listed)</td>
<td>0.00059</td>
<td><0.0133</td>
<td>0.00018</td>
<td>No</td>
</tr>
<tr>
<td>108</td>
<td>4,4'-DDT (303d listed)</td>
<td>0.00059</td>
<td><0.00375</td>
<td>0.00017</td>
<td>No</td>
</tr>
<tr>
<td>109</td>
<td>4,4'-DDE (linked to DDT)</td>
<td>0.00059</td>
<td><0.00253</td>
<td>0.00069</td>
<td>No</td>
</tr>
<tr>
<td>110</td>
<td>4,4'-DDD</td>
<td>0.00084</td>
<td><0.0019</td>
<td>0.00031</td>
<td>No</td>
</tr>
<tr>
<td>111</td>
<td>Dieldrin (303d listed)</td>
<td>0.00014</td>
<td><0.00216</td>
<td>0.00026</td>
<td>No</td>
</tr>
<tr>
<td>112</td>
<td>Alpha-Endosulfan</td>
<td>0.0087</td>
<td><0.00192</td>
<td>0.000031</td>
<td>No</td>
</tr>
<tr>
<td>113</td>
<td>beta-Endosulfan</td>
<td>0.0087</td>
<td><0.00192</td>
<td>0.000069</td>
<td>No</td>
</tr>
<tr>
<td>114</td>
<td>Endosulfan Sulfate</td>
<td>240</td>
<td><0.0019</td>
<td>0.000082</td>
<td>No</td>
</tr>
<tr>
<td>115</td>
<td>Endrin</td>
<td>0.0023</td>
<td><0.00192</td>
<td>0.00004</td>
<td>No</td>
</tr>
<tr>
<td>116</td>
<td>Endrin Aldehyde</td>
<td>0.81</td>
<td><0.00288</td>
<td>Unavailable</td>
<td>No</td>
</tr>
<tr>
<td>117</td>
<td>Heptachlor</td>
<td>0.00021</td>
<td><0.00285</td>
<td>0.000019</td>
<td>No</td>
</tr>
<tr>
<td>118</td>
<td>Heptachlor Epoxide</td>
<td>0.00011</td>
<td><0.00192</td>
<td>0.000094</td>
<td>No</td>
</tr>
<tr>
<td>119-125</td>
<td>PCBs sum (303d listed)</td>
<td>---</td>
<td><0.019</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>126</td>
<td>Toxaphene</td>
<td>0.0002</td>
<td><0.0684</td>
<td>Unavailable</td>
<td>No</td>
</tr>
</tbody>
</table>

Total Ammonia

| | 1.27 | 52 | 0.14 | Yes |

Footnotes:
The maximum effluent concentration and ambient background concentration are the actual detected concentrations unless preceded by a “<” sign, in which case the value shown is the minimum detection level (DL).

The maximum effluent concentration or ambient background concentration is “Unavailable” when there are no monitoring data for the constituent.

RPA Results = Yes, if MEC ≥ WQC, B > WQC and MEC is detected, or Trigger 3
= No, if MEC and B are < WQC or all effluent data are undetected
= Unknown, cannot determine (U), if no criteria have been promulgated or data are insufficient.

The MEC for hexachlorobenzene was based on a flow-weighted average of brine and treated wastewater.

SIP section 1.3 excludes from its reasonable potential analysis procedure priority pollutants for which a TMDL has been developed. TMDLs have been developed for mercury and PCBs in San Francisco Bay. Mercury and PCBs from wastewater discharges are regulated by NPDES Permit No. CA0038849, which implements the San Francisco Bay Mercury and PCBs TMDLs.

Units for total ammonia are milligrams per liter as nitrogen.

e. Constituents with limited data. In some cases, reasonable potential cannot be determined because effluent data are limited or ambient background concentrations are unavailable. Provision VI.C.2 of the Order requires the Discharger to continue monitoring for these constituents in its effluent using analytical methods that provide the best feasible detection limits. When additional data become available, further analysis will be conducted to determine whether numeric effluent limitations are necessary.

f. Pollutants with No Reasonable Potential. This Order does not contain WQBELs for constituents that do not demonstrate reasonable potential; however, Provision VI.C.2 of the Order still requires monitoring for those pollutants. If concentrations are found to have increased significantly, Provision VI.C.2 of the Order requires the Discharger to investigate the sources of the increases and implement remedial measures if the increases pose a threat to receiving water quality.

g. Reasonable Potential Analysis for Sediment Quality. Pollutants in some receiving water sediments may be present in quantities that alone or in combination are toxic to benthic communities. Efforts are underway to identify stressors causing such conditions. However, to date there is no evidence directly linking compromised sediment conditions to the discharges subject to this Order; therefore, the Regional Water Board cannot draw a conclusion about reasonable potential for these discharges to cause or contribute to exceedances of the sediment quality objectives. Nevertheless, the Discharger continues to participate in the RMP, which monitors San Francisco Bay sediment and seeks to identify stressors responsible for degraded sediment quality. Thus far, the monitoring has provided only limited information about potential stressors and sediment transport. The Regional Water Board is exploring options for obtaining additional information that may inform future analyses.

4. Water Quality-Based Effluent Limitations (WQBELs)

WQBELs were developed for the pollutants determined to have reasonable potential to cause or contribute to exceedances of water quality objectives. The WQBELs are based on the procedures specified in SIP section 1.4.

a. Dilution Credits. SIP section 1.4.2 allows dilution credits for completely-mixed discharges and, under certain circumstances, incompletely-mixed discharges. In February 2008, the Discharger submitted a final report, East Bay Municipal Utility District Main Wastewater Treatment Plant Outfall Dilution Study, to determine the actual dilution. The
report estimated a minimum initial dilution of 25:1 during very conservative ambient current speeds less than 0.1 m/s and when the water column was stratified, and an initial dilution of 341:1 for effluent flow rates of 0 to 282 MGD and conservative receiving water conditions (i.e., current speeds up to 0.7 m/s).

i. **Bioaccumulative Pollutants.** For certain bioaccumulative pollutants, dilution credit is significantly restricted or denied. Specifically, these pollutants include dioxin and furan compounds, which appear on the CWA section 303(d) list for Central San Francisco Bay because, based on available data on the concentrations of these pollutants in aquatic organisms, sediment, and the water column, they impair San Francisco Bay beneficial uses. The following factors suggest insufficient assimilative capacity in San Francisco Bay for these pollutants.

Tissue samples taken from San Francisco Bay fish show the presence of these pollutants at concentrations greater than screening levels (*Contaminant Concentrations in Fish from San Francisco Bay*, May 1997). The results of a 1994 San Francisco Bay pilot study, presented in *Contaminated Levels in Fish Tissue from San Francisco Bay* (Regional Water Board, 1994) also show elevated levels of chemical contaminants in fish tissues. The Office of Environmental Health and Hazard Assessment completed a preliminary review of the data in the 1994 report and in December 1994 issued an interim consumption advisory covering certain fish species in San Francisco Bay due to the levels of some of these pollutants. The Office of Environmental Health and Hazard Assessment updated this advisory in a May 2011 report, *Health Advisory and Safe Eating Guidelines for San Francisco Bay Fish and Shellfish*, which still suggests insufficient assimilative capacity in San Francisco Bay for 303(d)-listed pollutants. Therefore, dilution credits are denied for bioaccumulative pollutants on the 303(d) list for which data are lacking on sources and significant uncertainty exists about how different sources contribute to bioaccumulation.

ii. **Ammonia.** In calculating WQBELs for total ammonia (a non-bioaccumulative and non-persistent pollutant), the estimated minimum initial dilution of 25:1 was used for the acute objective and the estimated median initial dilution 341:1 was used for the chronic objective. Actual initial dilution is used because ammonia is not a persistent pollutant and the Basin Plan states, “In most instances, ammonia will be diluted or degraded to a nontoxic state fairly rapidly.” As such, there is unlikely to be cumulative toxicity effects associated with discharges containing elevated concentrations of ammonia. Therefore, granting dilution credits based on actual initial dilution is protective of water quality.

iii. **Cyanide.** For cyanide, a non-persistent pollutant that quickly disperses and degrades like ammonia, a more conservative dilution rate of 10:1 was used to calculate the water quality based effluent limits. Whereas the action initial dilution of 25:1 was granted for ammonia, less dilution is granted for cyanide because SIP Section 1.4.2.2 dictates that mixing zones be a small as practicable. Limiting dilution is equivalent to decreasing the size of the allowed mixing zone. The different approach for cyanide (versus ammonia) reflects the fact that cyanide has been regulated in permits for decades in this region. As a result of past conservative policies and changes in policies and standards, the process for deriving effluent limits for cyanide are more
stringent than those for ammonia to comply with antidegradation. In other words, because past policies have resulted in very stringent limitations, to backslide from these limits, CWA 303(d)(4) provides that there must be compliance with antidegradation policies. The background documentation for the proposed cyanide site-specific objectives included an antidegradation analysis, which concluded that certain effluent limitations resulting from implementation of the site-specific objectives (assuming 10:1 dilution) would not degrade water quality. Therefore, the dilution credit used here is the dilution credit that results in effluent limits no greater than those identified in the site-specific objectives documents for this Discharger. This resultant dilution credit for cyanide is also in compliance with the SIP, which requires the mixing zone be as small as practicable. Additionally, consistent with the site-specific objective conclusion on antidegradation, to further ensure that water quality is not degraded, this Order requires a cyanide action plan.

iv. Non-Bioaccumulative Pollutants. For persistent non-bioaccumulative constituents, a conservative allowance of 10:1 dilution for discharges to the Bay has been assigned for protection of beneficial uses. Though this is less than the actual dilution achieved, limiting dilution credit for persistent non-bioaccumulative pollutants is based on SIP provisions, Section 1.4.2, that considers the following:

(a) San Francisco Bay is a complex estuarine system with highly variable and seasonal upstream freshwater inflows and diurnal tidal saltwater inputs. SIP section 1.4.3 allows background conditions to be determined on a discharge-by-discharge or water body-by-water body basis. A water body-by-water body approach is taken here due to inherent uncertainties in characterizing ambient background conditions in a complex estuarine system on a discharge-by-discharge basis.

(b) Because of the complex hydrology of San Francisco Bay, there are uncertainties in accurately determining an appropriate mixing zone. The models used to predict dilution do not consider the three dimensional nature of San Francisco Bay currents resulting from the interaction of tidal flushes and seasonal freshwater outflows. Being heavier and colder than freshwater, ocean saltwater enters San Francisco Bay on a twice-daily tidal cycle, generally beneath the warmer freshwater that flows seaward. When these waters mix and interact, complex circulation patterns occur due to the varying densities of the fresh and ocean waters. The complex patterns occur throughout San Francisco Bay but are most prevalent in San Pablo Bay, Carquinez Strait, and Suisun Bay. The locations of this mixing and interaction change, depending on the strength of each tide. Additionally, sediment loads from the Central Valley change on a long-term basis, affecting the depth of different parts of San Francisco Bay, resulting in alteration of flow patterns, mixing, and dilution at the outfall.

For non-bioaccumulative pollutants, the Yerba Buena Island RMP monitoring station (BC10), relative to other RMP stations, fits SIP guidance for establishing background conditions. SIP section 1.4.3 requires that background water quality data be representative of the ambient receiving water that will mix with the discharge. Because the WQBELs for non-bioaccumulative pollutants are based on a restricted
dilution credit, water quality data from the Yerba Buena Island monitoring station best represents the water that will mix with the discharge.

b. **WQBEL Calculations.** For those pollutants with reasonable potential, average monthly effluent limitations (AMELs) and maximum daily effluent limitations (MDELs) were calculated as shown in the table below.

<table>
<thead>
<tr>
<th>PRIORITY POLLUTANTS</th>
<th>Hexachlorobenzene</th>
<th>Copper</th>
<th>Cyanide</th>
<th>Dioxin-TEQ</th>
<th>Total Ammonia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Units</td>
<td>µg/L</td>
<td>µg/L</td>
<td>µg/L</td>
<td>µg/L</td>
<td>µg/L</td>
</tr>
<tr>
<td>Basis and Criteria type</td>
<td>CTR HH</td>
<td>Basin Plan SSO</td>
<td>Basin Plan SSO</td>
<td>Basin Plan Narrative</td>
<td>Basin Plan Aquatic Life (acute)</td>
</tr>
<tr>
<td>Criteria - Acute</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Criteria - Chronic</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>SSO Criteria - Acute</td>
<td>-----</td>
<td>3.9</td>
<td>9.4</td>
<td>-----</td>
<td>5.07</td>
</tr>
<tr>
<td>SSO Criteria - Chronic</td>
<td>-----</td>
<td>2.5</td>
<td>2.9</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Water Effects ratio (WER)</td>
<td>1</td>
<td>2.4</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Lowest WQO</td>
<td>0.00077</td>
<td>6.0</td>
<td>2.9</td>
<td>1.40E-08</td>
<td>5.07</td>
</tr>
<tr>
<td>Site Specific Translator - MDEL</td>
<td>-----</td>
<td>0.87</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Site Specific Translator - AMEL</td>
<td>-----</td>
<td>0.73</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Dilution Factor (D) (if applicable)</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>0</td>
<td>24</td>
</tr>
<tr>
<td>No. of samples per month</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Aquatic life criteria analysis required? (Y/N)</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>HH criteria analysis required? (Y/N)</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Applicable Acute WQO</td>
<td>-----</td>
<td>10.8</td>
<td>9.4</td>
<td>-----</td>
<td>5.07</td>
</tr>
<tr>
<td>Applicable Chronic WQO</td>
<td>-----</td>
<td>8.2</td>
<td>2.9</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>HH criteria</td>
<td>0.00077</td>
<td>-----</td>
<td>220,000</td>
<td>1.40E-08</td>
<td>-----</td>
</tr>
<tr>
<td>Background (Maximum Conc for Aquatic Life calc)</td>
<td>0.000022</td>
<td>2.55</td>
<td>0.4</td>
<td>5.32E-08</td>
<td>0.434</td>
</tr>
<tr>
<td>Background (Average Conc for Human Health calc)</td>
<td>0.000011</td>
<td>-----</td>
<td>0.4</td>
<td>2.0 E-08</td>
<td>-----</td>
</tr>
<tr>
<td>Is the pollutant on the 303d list and/or bioaccumulative (Y/N)?</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>ECA acute</td>
<td>84.6</td>
<td>90.4</td>
<td></td>
<td>116.3</td>
<td></td>
</tr>
<tr>
<td>ECA chronic</td>
<td>59.3</td>
<td>25.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECA HH</td>
<td>0.0076</td>
<td>2.20E+06</td>
<td>1.40E-08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of data points <10 or at least 80% of data reported non detect? (Y/N)</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Average of effluent data points</td>
<td>7.9</td>
<td>2.35</td>
<td></td>
<td>39.28</td>
<td></td>
</tr>
<tr>
<td>Std. Dev. of effluent data points</td>
<td>3.1</td>
<td>1.74</td>
<td></td>
<td>7.43</td>
<td></td>
</tr>
<tr>
<td>CV calculated</td>
<td>N/A</td>
<td>0.39</td>
<td>0.74</td>
<td>N/A</td>
<td>0.19</td>
</tr>
<tr>
<td>CV (Selected) - Final</td>
<td>0.6</td>
<td>0.39</td>
<td>0.74</td>
<td>0.6</td>
<td>0.19</td>
</tr>
<tr>
<td>ECA acute multi99</td>
<td>-----</td>
<td>0.45</td>
<td>0.27</td>
<td>0.66</td>
<td></td>
</tr>
<tr>
<td>ECA chronic multi99</td>
<td>-----</td>
<td>0.65</td>
<td>0.46</td>
<td>0.81</td>
<td></td>
</tr>
<tr>
<td>LTA acute</td>
<td>-----</td>
<td>38.0</td>
<td>24.2</td>
<td>76.5</td>
<td></td>
</tr>
<tr>
<td>LTA chronic</td>
<td>-----</td>
<td>38.6</td>
<td>11.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum of LTAs</td>
<td>-----</td>
<td>38.0</td>
<td>11.8</td>
<td>76.5</td>
<td></td>
</tr>
</tbody>
</table>

Attachment F – Fact Sheet
c. Calculation of Pollutant Specific WQBELs

(1) Copper

(a) Copper WQC. Copper WQC. The most stringent copper chronic and acute marine WQC of 6.0 and 9.4 μg/L are the Basin Plan SSOs for Central San Francisco Bay, expressed as dissolved metal. Regional Water Board staff converted these WQC to total recoverable metal using the Basin Plan site-specific translators of 0.73 and 0.87. The resulting chronic WQC of 8.2 μg/L and acute WQC of 11 μg/L were used in the RPA.

(b) RPA Results. This Order establishes effluent limitations for copper, because the MEC of 22 μg/L exceeds the applicable water quality criteria for this pollutant, demonstrating reasonable potential by Trigger 1, as defined previously.

(c) Copper WQBELs. WQBELs for copper, calculated according to SIP procedures, with an effluent data coefficient of variation (CV) of 0.39 and a dilution credit of D=9, are an AMEL of 51 μg/L and an MDEL of 85 μg/L. The previous permit contained a more stringent AMEL of 47 μg/L and the same MDEL of 85 μg/L. This Order retains the effluent limits from the previous permit.

(e) Anti-backsliding. This Order retains the more stringent WQBELs from the previous permit, thereby satisfying anti-backsliding requirements.
(2) Cyanide

(a) Cyanide WQC. The most stringent applicable WQOs for cyanide are the Basin Plan’s site-specific chronic and acute marine WQOs, 2.9 and 9.4 μg/L, respectively, for protection of marine aquatic life in San Francisco Bay.

(b) RPA Results. This Order establishes effluent limitations for cyanide because the MEC of 9.8 μg/L exceeds the most stringent applicable WQO of 2.9 μg/L, demonstrating Reasonable Potential by Trigger 1.

(c) Cyanide WQBELs. WQBELs for cyanide calculated according to SIP procedure using a CV of 0.74 and a dilution credit of D = 9 are an AMEL of 20 ug/L and an MDEL of 44 ug/L. The previous permit contained a less stringent AMEL of 22 μg/L and a more stringent MDEL of 39 μg/L. This Order includes the newly calculated AMEL of 20 μg/L, and retains the more stringent MDEL of 39 μg/L from the previous permit.

(d) Anti-backsliding. This Order includes more stringent effluent limits than the previous permit, thereby satisfying anti-backsliding requirements.

(3) Dioxin-TEQ

(a) Dioxin-TEQ WQO. The Basin Plan narrative water quality objective for bioaccumulative substances states, “Many pollutants can accumulate on particulates, in sediments, or bioaccumulate in fish and other aquatic organisms. Controllable water quality factors shall not cause a detrimental increase in concentrations of toxic substances found in bottom sediments or aquatic life. Effects on aquatic organisms, wildlife, and human health will be considered.”

Because it is the consensus of the scientific community that dioxins and furans associate with particulates, accumulate in sediments, and bioaccumulate in the fatty tissue of fish and other organisms, the Basin Plan’s narrative bioaccumulation water quality objective applies to these pollutants. Elevated levels of dioxins and furans in San Francisco Bay fish tissue demonstrate that the narrative bioaccumulation water quality objective is not being met. U.S. EPA has therefore placed Central San Francisco Bay on its 303(d)-list of receiving waters where water quality objectives are not being met after imposition of applicable technology-based requirements.

When the CTR was promulgated, U.S. EPA stated its support of the regulation of dioxin and dioxin-like compounds through the use of toxicity equivalencies (TEQs). U.S. EPA stated, “For California waters, if the discharge of dioxin or dioxin-like compounds has reasonable potential to cause or contribute to a violation of a narrative criterion, numeric WQBELs for dioxin or dioxin-like compounds should be included in NPDES permits and should be expressed using a TEQ scheme” (65 Fed. Reg. 31695-31696, May 18, 2000). This Order uses a TEQ scheme based on a set of toxicity equivalency factors (TEFs) the World Health Organization developed in 1998, and a set of bioaccumulation equivalency factors (BEFs) U.S. EPA developed for the Great Lakes region (40 C.F.R. part
132, Appendix F) to convert the concentration of any congener of dioxin or furan into an equivalent concentration of 2,3,7,8-tetrachlorinated dibenzo-p-dioxin (2,3,7,8-TCDD). Although the 1998 World Health Organization scheme includes TEFs for dioxin-like PCBs, they are not included in this Order’s TEQ scheme.

The CTR establishes a numeric water quality objective for 2,3,7,8-TCDD of 1.4×10^{-8} µg/L for the protection of human health when aquatic organisms are consumed. The CTR criterion is used as a criterion for dioxin-TEQ because dioxin-TEQ represents a toxicity weighted concentration equivalent to 2,3,7,8-TCDD, thus translating the narrative bioaccumulation objective into a numeric criterion.

(b) **RPA Results.** TEFs and BEFs were used to express measured concentrations of 16 dioxin congeners in effluent and background samples as equivalent 2,3,7,8-TCDD concentrations. For each sample, the sum of these equivalent concentrations is the dioxin-TEQ concentration. This Order establishes dioxin-TEQ WQBELs because the ambient background receiving water dioxin-TEQ concentration (5.3×10^{-8} µg/L) exceeds the CTR numeric criterion for 2,3,7,8-TCDD (1.4×10^{-8} µg/L) and dioxin-TEQ was detected in the effluent, demonstrating reasonable potential by Trigger 2.

(c) **WQBELs.** WQBELs for dioxin–TEQ calculated using SIP procedures using the default CV of 0.6 and no dilution credit are an AMEL of 1.4×10^{-8} and an MDEL of 2.8×10^{-8} µg/L. The previous permit included the same limits.

(d) **Anti-backsliding.** Anti-backsliding requirements are satisfied because this Order retains the limits from the previous permit.

(4) **Hexachlorobenzene**

(a) **Hexachlorobenzene WQC.** The most stringent applicable water quality criterion for hexachlorobenzene is 0.00077 µg/L, which is established from the CTR human health criteria for the consumption of organisms only.

(b) **RPA Results.** This Order establishes effluent limitations for hexachlorobenzene because the MEC of 0.0048 µg/L (based on a flow-weighted average of brine and treated wastewater) exceeds the most stringent applicable WQO of 0.00077 µg/L, demonstrating Reasonable Potential by Trigger 1.

(c) **WQBELs.** WQBELs for hexachlorobenzene calculated according to SIP procedure using a CV of 0.6 and a dilution credit of $D = 9$ are an AMEL of 0.0076 µg/L and an MDEL of 0.015 µg/L.

(d) **Anti-backsliding.** Anti-backsliding requirements are satisfied because the previous permit did not include final effluent limitations for hexachlorobenzene.
(5) Total Ammonia

(a) *Ammonia WQC.* For Central San Francisco Bay waters, Basin Plan section 3.3.20 contains water quality objectives for un-ionized ammonia of 0.025 mg/L as an annual median and 0.16 mg/L as a maximum. These objectives were translated from un-ionized ammonia concentrations to equivalent total ammonia concentrations (as nitrogen) since (1) sampling and laboratory methods are unavailable to analyze for un-ionized ammonia, and (2) the fraction of total ammonia that exists in the toxic un-ionized form depends on the pH, salinity, and temperature of the receiving water.

To translate the un-ionized ammonia objectives, pH, salinity, and temperature data were obtained from the RMP station nearest to the outfall (Yerba Buena station, BC10). The un-ionized fraction of total ammonia was calculated as follows:

\[
\text{For salinity > 10 ppt: fraction of NH}_3 = \frac{1}{1 + 10^{(pK-pH)}}
\]

Where:

\[
pK = 9.245 + 0.116(I) + 0.0324(298-T) + \frac{0.0415(P)}{(T)}
\]

\[
I = \text{Molal ionic strength of saltwater} = \frac{19.9273(S)}{(1,000 - 1.005109(S))}
\]

\[
S = \text{Salinity (parts per thousand)}
\]

\[
T = \text{Temperature (degrees Kelvin)}
\]

\[
P = \text{Pressure (one atmosphere)}
\]

The median and 90th percentile un-ionized ammonia fractions were then used to express the annual average and the daily maximum un-ionized objectives as chronic and acute total ammonia criteria. This approach is consistent with U.S. EPA guidance on translating dissolved metal water quality objectives to total recoverable metal water quality objectives (U.S. EPA, 1996, *The Metals Translator: Guidance for Calculating a Total Recoverable Limit from a Dissolved Criterion*, EPA Publication 823-B-96-007).

The equivalent total ammonia chronic and acute criteria are 1.27 mg/L and 5.07 mg/L as nitrogen.

(b) *RPA Results.* The SIP methodology was used to perform the RPA and to calculate effluent limitations, because it is consistent with the methodology used to calculate WQBELs for other toxic pollutants. This Order establishes effluent limitations for total ammonia, because the MEC of 52 mg/L exceeds the applicable water quality criteria for this pollutant, demonstrating reasonable potential by Trigger 1, as defined previously.
(c) **Total Ammonia WQBELs.** To calculate limits, some statistical adjustments were made because the Basin Plan’s chronic objective is based on an annual median instead of a 4-day average. For chronic criterion, the SIP assumes an averaging period of 4 days and a monthly sampling frequency of 4 days per month to calculate effluent limits. To use the SIP methodology to calculate effluent limits for a Basin Plan objective that is based on an annual median, an averaging period of 365 days and a monitoring frequency of 30 days per month (the maximum daily sampling frequency in a month since the averaging period for the chronic criteria is longer than 30 days) were used. These statistical adjustments are supported by USEPA’s *Water Quality Criteria; Notice of Availability; 1999 Update of Ambient Water Quality Criteria for Ammonia;* published on December 22, 1999 in the Federal Register.

Following SIP methodology as guidance, the maximum ambient background total ammonia concentration was used to calculate effluent limits based on the acute criterion. For the chronic criterion calculation, the median background total ammonia concentration was used because the Basin Plan’s chronic un-ionized ammonia objective is an annual median. Since the time-scale of this objective is over such a long period, it is more representative to use the central tendency of ambient conditions than a daily maximum.

The newly calculated limitations take into account the deep water nature of the discharge and the non-persistent nature of ammonia and therefore, are based on actual initial dilution.

WQBELs for ammonia calculated according to SIP procedure using a CV of 0.19 and a dilution credit of D = 24 are an AMEL of 86 ug/L and an MDEL of 119 ug/L. The previous permit contained a more stringent AMEL of 84 μg/L and a more stringent MDEL of 110 μg/L. This Order retains the effluent limits from the previous permit.

(d) **Anti-backsliding.** This Order retains the more stringent WQBELs from the previous permit, thereby satisfying anti-backsliding requirements.

(e) **Potential Changes to Ammonia Analysis as an Outgrowth of Nutrients Regulation.** The Regional Water Board has issued a watershed permit (NPDES Permit No. CA0038873) for all municipal wastewater dischargers to San Francisco Bay, including the Discharger, as an element of its San Francisco Bay Nutrient Management Strategy. This strategy addresses growing concerns about nutrients in the San Francisco Bay estuary. The strategy’s goal is nutrient numeric endpoints that will inform water quality-based effluent limits that the Regional Water Board may impose through NPDES Permit No. CA0038873.

5. **Whole Effluent Acute Toxicity**

This Order includes effluent limitations for whole effluent acute toxicity based on Basin Plan Table 4-3. All bioassays are to be performed according to the U.S. EPA approved method in 40 C.F.R. section 136, currently *Methods for Measuring the Acute Toxicity of Effluents and*...

Receiving Waters to Freshwater and Marine Organisms, 5th Edition (EPA-821-R-02-012). The approved test species specified in the MRP is rainbow trout (Onchorhynchus mykiss).

Based on Basin Plan section 3.3.20, if the Discharger can demonstrate that ammonia causes acute toxicity in excess of the acute toxicity limitations in this Order, and that the ammonia in the discharge complies with the ammonia effluent limitations in this Order, then such toxicity does not constitute a violation of the effluent limitations for whole effluent acute toxicity.

6. Whole Effluent Chronic Toxicity

a. Water Quality Objective. Basin Plan section 3.3.18 states, “There shall be no chronic toxicity in ambient waters. Chronic toxicity is a detrimental biological effect on growth rate, reproduction, fertilization success, larval development, population abundance, community composition, or any other relevant measure of the health of an organism, population, or community.”

b. Reasonable Potential Analysis. The Discharger conducted chronic toxicity tests twice per year during the previous order term using Mussel (Mytilus sp.). The previous order contained a chronic toxicity trigger (three-sample median of 10 TUc and single-sample maximum of 20 TUc) for accelerated chronic toxicity testing. The maximum single-sample chronic toxicity result during the previous order term was 15.9 TUc in 2014. This level of toxicity indicates no reasonable potential for chronic toxicity in the receiving water, particularly considering the minimum 25:1 initial dilution that occurs at the outfall.

c. Requirements. The MRP includes a requirement for chronic toxicity monitoring and a monitoring “trigger” for initiation of accelerated monitoring requirements when exceeded. The accelerated monitoring trigger is based on Basin Plan Table 4-5. The Discharger is required to implement a chronic toxicity reduction evaluation in some circumstances. These requirements are consistent with CTR and SIP requirements.

d. Screening Phase Study. The MRP requires the Discharger to conduct a chronic toxicity screening phase study, as described in MRP Appendix E-1, prior to permit reissuance. The Discharger’s September 8, 2014, final chronic toxicity screening report indicated that Mussel (Mytilus sp.) continues to be the most sensitive species.

D. Effluent Limitation Considerations

1. Anti-backsliding. This Order complies with the anti-backsliding provisions of CWA sections 402(o) and 303(d)(4) and 40 C.F.R. section 122.44(l), which generally require effluent limitations in a reissued permit to be as stringent as those in the previous permit. The requirements of this Order are at least as stringent as those in the previous order.

This Order does not retain effluent limits for tetrachloroethylene and zinc from the previous order because data no longer indicate reasonable potential for these pollutants to exceed water quality objectives. This is consistent with State Water Board Order WQ 2001-16.

2. Antidegradation. This Order complies with the antidegradation provisions of 40 C.F.R. section 131.12 and State Water Board Resolution No. 68-16. It continues the status quo with
respect to the level of discharge authorized in the previous order, which is the baseline by which to measure whether degradation will occur. This Order does not allow for an increase in flow, a reduced level of treatment, or less stringent effluent limitations relative to those in the previous order.

3. **Stringency of Requirements for Individual Pollutants.** This Order contains both technology-based and water quality-based effluent limitations for individual pollutants. This Order’s technology-based requirements implement minimum, applicable federal technology-based requirements. In addition, this Order contains more stringent effluent limitations as necessary to meet water quality standards. Collectively, this Order’s restrictions on individual pollutants are no more stringent than required to implement CWA requirements.

This Order’s WQBELs have been derived to implement water quality objectives that protect beneficial uses. The beneficial uses and water quality objectives have been approved pursuant to federal law and are the applicable federal water quality standards. To the extent that WQBELs were derived from the CTR, the CTR is the applicable standard pursuant to 40 C.F.R. section 131.38. The procedures for calculating these WQBELs are based on the CTR, as implemented in accordance with the SIP, which U.S. EPA approved on May 18, 2000. U.S. EPA approved most Basin Plan beneficial uses and water quality objectives prior to May 30, 2000. Beneficial uses and water quality objectives submitted to U.S. EPA prior to May 30, 2000, but not approved by U.S. EPA before that date, are nonetheless “applicable water quality standards for purposes of the CWA” pursuant to 40 C.F.R. section 131.21(c)(1). U.S. EPA approved the remaining beneficial uses and water quality objectives so they are applicable water quality standards pursuant to 40 C.F.R. section 131.21(c)(2).

V. **RATIONALE FOR RECEIVING WATER LIMITATIONS**

The receiving water limitations in sections V.A and V.B of the Order are based on Basin Plan narrative and numeric water quality objectives. The receiving water limitation in section V.C of the Order requires compliance with federal and State water quality standards in accordance with the CWA and regulations adopted thereunder.

VI. **RATIONALE FOR PROVISIONS**

A. **Standard Provisions**

Attachment D contains standard provisions that apply to all NPDES permits in accordance with 40 C.F.R. section 122.41 and additional conditions applicable to specific categories of permits in accordance with 40 C.F.R. section 122.42. The Discharger must comply with these provisions. The conditions set forth in 40 C.F.R. sections 122.41(a)(1) and (b) through (n) apply to all state-issued NPDES permits and must be incorporated into the permits either expressly or by reference.

In accordance with 40 C.F.R. section 123.25(a)(12), states may omit or modify conditions to impose more stringent requirements. Attachment G contains standard provisions that supplement the federal standard provisions in Attachment D. This Order omits federal conditions that address enforcement authority specified in 40 C.F.R. sections 122.41(j)(5) and (k)(2) because the State’s enforcement authority under the Water Code is more stringent. In lieu of these conditions, this Order incorporates Water Code section 13387(e) by reference.
B. Monitoring and Reporting

Pursuant to 40 C.F.R. section 122.48, NPDES permits must specify requirements for recording and reporting monitoring results. Water Code sections 13267 and 13383, and 40 C.F.R. sections 122.41(h) and (j), authorize the Regional Water Board to require technical and monitoring reports. This Order establishes monitoring and reporting requirements, contained in the Monitoring and Reporting Program (Attachment E), that implement federal and State requirements. For more background regarding these requirements, see Fact Sheet section VII.

C. Special Provisions

1. Reopener Provisions

These provisions are based on 40 C.F.R. sections 122.62 and 122.63 and allow modification of this Order and its effluent limitations as necessary in response to updated water quality objectives, regulations, or other new and relevant information that may become available in the future, and other circumstances as allowed by law.

2. Effluent Characterization Study and Report

This Order does not include effluent limitations for priority pollutants that do not demonstrate reasonable potential, but this provision requires the Discharger to continue monitoring for these pollutants as described in the MRP and Attachment G. Monitoring data are necessary to verify that the “no” and “unknown” reasonable potential analysis conclusions of this Order remain valid. This requirement is authorized pursuant to CWC section 13267, and is necessary to inform the next permit reissuance and to ensure that the Discharger takes timely steps in response to any unanticipated change in effluent quality during the term of this Order.

3. Pollutant Minimization Program

This provision is based on Basin Plan section 4.13.2 and SIP section 2.4.5.

4. Special Provisions for Municipal Facilities

a. Pretreatment Program Requirements. This provision requires the Discharger to implement and enforce its approved pretreatment program in accordance with federal pretreatment regulations (40 CFR §403).

b. Sludge and Biosolids Management. This provision is based on Basin Plan section 4.17 and 40 C.F.R. parts 257 and 503. “Sludge” refers to the solid, semisolid, and liquid residue removed during primary, secondary, and advanced wastewater treatment processes. “Biosolids” refers to sludge that has been treated and may be beneficially reused.

c. Collection System Management. The Discharger’s collection system is part of the Facility regulated through this Order. This provision explains this Order’s requirements as they relate to the Discharger’s collection system and promotes consistency with the
State Water Board’s *Statewide General Waste Discharge Requirements for Sanitary Sewer Systems* (General Collection System WDRs), Order 2006-0003-DWQ, as amended by WQ 2013-0058-EXEC. The General Collection System WDRs contain requirements for collection system operation and maintenance, and for reporting and mitigating sanitary sewer overflows. They also require agencies to develop sanitary sewer management plans and report all sanitary sewer overflows. The Discharger must comply with both the General Collection System WDRs and this Order.

5. **Other Special Provisions**

 a. **Copper Action Plan.** This provision is based on Basin Plan section 7.2.1.2. It is necessary to ensure that use of copper site-specific objectives is consistent with antidegradation policies. Data the San Francisco Estuary Institute compiled for 2009-2011 indicate no degradation of San Francisco Bay water quality with respect to copper (http://www.sfei.org/content/copper-site-specific-objective-3-year-rolling-averages).

 b. **Cyanide Action Plan.** This provision is based on Basin Plan section 4.7.2.2. It is necessary to ensure that use of cyanide site-specific objectives is consistent with antidegradation policies. The threshold for considering influent cyanide concentrations to indicate a possible “significant cyanide discharge” in the Discharger’s service area is set at 24 µg/L. This concentration equals the maximum cyanide concentration (24 µg/L) found in the Facility’s influent during the previous order’s term. Because influent cyanide concentrations were less than 3.0 µg/L in about 70% of the samples, a concentration more than 8 times this level (24 µg/L) means there could be a significant cyanide source.

 c. **Measures to Minimize Blending.** This provision is based on 40 CFR 122.41(m). It requires that the Discharger implement feasible alternatives to minimize blending during this permit cycle. The Discharger plans to continue implementing a wet weather storage basin standard operation procedure (SOP) and report on how it can modify its SOPs to minimize blending events.

This Order is not requiring a new no feasible alternatives analysis for blending to inform the next permit reissuance. This is because the current No Feasible Alternatives Analysis to justify blending for this Order is expected to adequately inform the next permit reissuance unless circumstances change significantly. In its No Feasible Alternatives Analysis, the Discharger evaluated options to reduce wet weather flows, and this analysis showed that reducing inflow and infiltration into its service area’s collection system would be the most cost-effective approach. Reduction in inflow and infiltration is a primary target of the actions required by the Consent Decree of the Discharger and seven East Bay Communities. The Consent Decree also requires periodic check-ins to determine if the actions required and implemented are resulting in expected reductions in wet weather flows in the collection systems. Unless the expected flow reduction targets are not met or the scope of the Consent Decree actions shifts away from inflow and infiltration reduction, these actions are expected to significantly reduce or eliminate blending over the next 10 to 20 years and at this time the required Consent Decree actions remain the most feasible alternative to minimize and eliminate blending.
d. Standard Operating Procedures Requirement for Resource Recovery. Standard Operating Procedures are required for dischargers that accept hauled waste fats, oil, and grease for injection into anaerobic digesters. The development and implementation of Standard Operating Procedures for management of these materials is intended to allow the California Department of Resources Recycling and Recovery to exempt operations from separate and redundant permitting programs. The Discharger’s most recent update, dated December 2013, *Standard Operating Procedures for Anaerobically Digestible Materials*, describes how it will manage high strength wastes for resource recovery.

e. Outfall Inspection. The Discharger has not documented the condition of its diffuser since the early 1990s. This provision is necessary to ensure that the diffuser is operating as designed and that the Discharger is achieving dilution required in Prohibition III.B and as described in its Dilution Study, dated February 2008.

VII. RATIONALE FOR MONITORING AND REPORTING PROGRAM (MRP)

CWA section 308 and 40 C.F.R. sections 122.41(h), 122.41(j)-(l), 122.44(i), and 122.48 require that NPDES permits specify monitoring and reporting requirements. Water Code sections 13267 and 13383 also authorize the Regional Water Board to establish monitoring, inspection, entry, reporting, and recordkeeping requirements. The Monitoring and Reporting Program (Attachment E) of this Order establishes monitoring, reporting, and recordkeeping requirements that implement federal and State requirements. The following provides the rationale for the MRP requirements:

A. MRP Requirements Rationale

1. **Influent Monitoring.** Influent flow monitoring is necessary to understand Facility operations. Influent CBOD5 and TSS monitoring is necessary to evaluate compliance with this Order’s 85 percent removal requirement. Basin Plan section 4.7.2.2 requires cyanide monitoring because this Order is based on site-specific cyanide water quality objectives.

2. **Effluent Monitoring.** Effluent flow monitoring is necessary to evaluate compliance with Prohibition III.D (average dry weather flow) and to understand Facility operations. Monitoring for the other parameters in MRP Table E-3 is necessary to evaluate compliance with this Order’s effluent limitations. The allowance for using only on-the-hour chlorine measurements for mandatory minimum penalty assessment purposes under Water Code section 13385.1 is based on a 2004 strategy developed between the Regional Water Board and the Bay Area Clean Water Agencies to not overly penalize continuous monitoring.

3. **Whole Effluent Toxicity Testing.** Acute whole effluent toxicity tests are necessary to evaluate compliance with acute toxicity effluent limitations. Chronic toxicity tests are necessary to evaluate whether chronic toxicity triggers the need for a TRE. The Discharger documented, in a letter dated November 30, 2006, that low acute toxicity survival rates have been caused by un-ionized ammonia resulting from pH increases in its test. The Regional Water Board approved the Discharger to pH-adjust acute flow-through bioassay tests in a letter dated December 7, 2006.

4. **Receiving Water Monitoring.** The Discharger is required to continue participating in the RMP, which involves collecting data on pollutants and toxicity in San Francisco Bay water,
sediment, and biota. This monitoring is necessary to characterize the receiving water and the effects of the discharges this Order authorizes.

5. Pretreatment and Biosolids Monitoring. The pretreatment and biosolids monitoring requirements for influent, effluent, and biosolids are necessary to evaluate compliance with the Discharger’s U.S. EPA-approved pretreatment program. Biosolids monitoring is also required pursuant to 40 CFR part 503.

B. Monitoring Requirements Summary. The table below summarizes routine monitoring requirements. This table is for informational purposes only. The actual requirements are specified in the MRP and elsewhere in this Order.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Influent INF-001</th>
<th>Effluent EFF-001</th>
<th>Biosolids BIO-001</th>
<th>Receiving Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow</td>
<td>Continuous</td>
<td>Continuous/D</td>
<td>---</td>
<td>Support RMP</td>
</tr>
<tr>
<td>CBOD₅</td>
<td>2/Week</td>
<td>2/Week</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Total Suspended Solids</td>
<td>2/Week</td>
<td>4/Week</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Oil and Grease</td>
<td>1/Quarter</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>2/Week</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Fecal Coliform Bacteria</td>
<td>2/Week</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Enterococcus</td>
<td>2/Month</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Acute Toxicity</td>
<td>1/Month</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Chronic Toxicity</td>
<td>1/Quarter</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Chlorine Residual</td>
<td>Continuous/1H</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Ammonia, Total</td>
<td>2/Month</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Copper, Total</td>
<td>1/Month</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Cyanide, Total</td>
<td>1/Month</td>
<td>1/Month</td>
<td>2/Year</td>
<td></td>
</tr>
<tr>
<td>Hexachlorobenzene</td>
<td>1/Quarter</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Dioxin-TEQ</td>
<td>2/Year</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Other priority pollutants[¹]</td>
<td>1/Year</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>VOC</td>
<td>2/Year</td>
<td>2/Year</td>
<td>2/Year</td>
<td></td>
</tr>
<tr>
<td>BNA</td>
<td>2/Year</td>
<td>2/Year</td>
<td>2/Year</td>
<td></td>
</tr>
<tr>
<td>Metals and Other Elements[²]</td>
<td>1/Month</td>
<td>1/Month</td>
<td>2/Year</td>
<td></td>
</tr>
<tr>
<td>Hexavalent Chromium</td>
<td>1/Month</td>
<td>1/Month</td>
<td>2/Year</td>
<td></td>
</tr>
<tr>
<td>Mercury</td>
<td>1/Month</td>
<td>1/Month</td>
<td>2/Year</td>
<td></td>
</tr>
</tbody>
</table>

Sampling Frequencies:
Continuous/D = measured continuously, and recorded and reported daily
Continuous/1H = measured continuously or, if infeasible, at least every hour

Footnotes:
¹ This monitoring is required by Provision VI.C.2 of the Order.
² Metals and other elements are arsenic, cadmium, copper, lead, nickel, selenium, silver, and zinc.

VIII. PUBLIC PARTICIPATION

The Regional Water Board considered the issuance of WDRs that will serve as an NPDES permit for the Facility. As a step in the WDR adoption process, Regional Water Board staff developed tentative WDRs and encouraged public participation in the WDR adoption process.

A. Notification of Interested Parties. The Regional Water Board notified the Discharger and interested agencies and persons of its intent to prescribe WDRs for the discharge and provided an
opportunity to submit written comments and recommendations. Notification was provided through *The Alameda Times-Star*. The public had access to the agenda and any changes in dates and locations through the Regional Water Board’s website at http://www.waterboards.ca.gov/sanfranciscobay.

B. Written Comments. Interested persons were invited to submit written comments concerning the tentative WDRs as explained through the notification process. Comments were to be submitted either in person or by mail to the Executive Office at the Regional Water Board at 1515 Clay Street, Suite 1400, Oakland, California 94612, to the attention of Robert Schlipf.

For full staff response and Regional Water Board consideration, the written comments were due at the Regional Water Board office by 5:00 p.m. on April 13, 2015.

C. Public Hearing. The Regional Water Board held a public hearing on the tentative WDRs during its regular meeting at the following date and time, and at the following location:

- **Date:** May 13, 2015
- **Time:** 9:00 am
- **Location:** Elihu Harris State Office Building
 1515 Clay Street, 1st Floor Auditorium
 Oakland, CA 94612

Contact: Robert Schlipf, (510) 622-2478, Robert.Schlipf@waterboards.ca.gov

Interested persons were invited to attend. At the public hearing, the Regional Water Board heard testimony pertinent to the discharge, WDRs, and permit. For accuracy of the record, important testimony was requested to be in writing.

Dates and venues change. The Regional Water Board web address is http://www.waterboards.ca.gov/sanfranciscobay, where one could access the current agenda for changes in dates and locations.

D. Reconsideration of Waste Discharge Requirements. Any aggrieved person may petition the State Water Board to review the Regional Water Board decision regarding the final WDRs. The State Water Board must receive the petition at the following address within 30 calendar days of the Regional Water Board action:

- State Water Resources Control Board
- Office of Chief Counsel
- P.O. Box 100, 1001 I Street
- Sacramento, CA 95812-0100

For instructions on how to file a petition for review, see http://www.waterboards.ca.gov/public_notices/petitions/water_quality/wqpetition_instr.shtml.

E. Information and Copying. The Report of Waste Discharge, related supporting documents, and comments received are on file and may be inspected at the address above at any time between 9:00 a.m. and 5:00 p.m., Monday through Friday. Copying of documents may be arranged by calling (510) 622-2300.
F. Register of Interested Persons. Any person interested in being placed on the mailing list for information regarding the WDRs and NPDES permit should contact the Regional Water Board, reference the Facility, and provide a name, address, and phone number.

G. Additional Information. Requests for additional information or questions regarding this Order should be directed to Robert Schlipf, at (510) 622-2478 or Robert.Schlipf@waterboards.ca.gov.
ATTACHMENT G
REGIONAL STANDARD PROVISIONS, AND MONITORING AND REPORTING REQUIREMENTS
(SUPPLEMENT TO ATTACHMENT D)

For

NPDES WASTEWATER DISCHARGE PERMITS

March 2010
I. STANDARD PROVISIONS - PERMIT COMPLIANCE... G-1
 A. Duty to Comply ... G-1
 B. Need to Halt or Reduce Activity Not a Defense ... G-1
 C. Duty to Mitigate ... G-1
 1. Contingency Plan ... G-1
 2. Spill Prevention Plan .. G-2
 D. Proper Operation & Maintenance ... G-2
 2. Wastewater Facilities Status Report .. G-2
 3. Proper Supervision and Operation of Publicly Owned Treatment Works (POTWs) G-3
 E. Property Rights .. G-3
 F. Inspection and Entry ... G-3
 G. Bypass .. G-3
 H. Upset ... G-3
 I. Other ... G-3
 J. Storm water .. G-3
 1. Storm water Pollution Prevention Plan (SWPP Plan) ... G-3
 2. Source Identification ... G-4
 3. Storm water Management Controls ... G-5
 4. Annual Verification of SWPP Plan .. G-6
 K. Biosolids Management .. G-6
II. STANDARD PROVISIONS – PERMIT ACTION ... G-7
III. STANDARD PROVISIONS – MONITORING ... G-7
 A. Sampling and Analyses ... G-7
 1. Use of Certified Laboratories .. G-7
 2. Use of Appropriate Minimum Levels ... G-7
 3. Frequency of Monitoring .. G-7
 B. Biosolids Monitoring .. G-10
 1. Biosolids Monitoring Frequency ... G-10
 2. Biosolids Pollutants to Monitor ... G-10
 C. Standard Observations .. G-10
 1. Receiving Water Observations ... G-10
 2. Wastewater Effluent Observations .. G-11
 3. Beach and Shoreline Observations .. G-11
 4. Land Retention or Disposal Area Observations ... G-11
 5. Periphery of Waste Treatment and/or Disposal Facilities Observations G-12
IV. STANDARD PROVISIONS – RECORDS .. G-12
 A. Records to be Maintained .. G-12
 B. Records of monitoring information .. G-12
 1. Analytical Information .. G-12
 2. Flow Monitoring Data ... G-12
 3. Wastewater Treatment Process Solids ... G-13
 4. Disinfection Process .. G-13
 5. Treatment Process Bypasses .. G-13
 6. Treatment Facility Overflows .. G-14
 C. Claims of Confidentiality .. G-14
V. STANDARD PROVISIONS – REPORTING ... G-14
 A. Duty to Provide Information .. G-14
B. Signatory and Certification Requirements ...G-14
C. Monitoring Reports ...G-14
 1. Self Monitoring Reports ...G-14
D. Compliance Schedules ..G-18
E. Twenty-Four Hour Reporting ..G-18
 1. Spill of Oil or Other Hazardous Material Reports ..G-18
 2. Unauthorized Discharges from Municipal Wastewater Treatment PlantsG-19
F. Planned Changes ...G-22
G. Anticipated Noncompliance ...G-22
H. Other Noncompliance ..G-22
I. Other Information ..G-22

VI. STANDARD PROVISION – ENFORCEMENT ...G-22
VII. ADDITIONAL PROVISIONS – NOTIFICATION LEVELSG-22
VIII. DEFINITIONS ..G-22
CALIFORNIA REGIONAL WATER QUALITY CONTROL BOARD
SAN FRANCISCO BAY REGION

REGIONAL STANDARD PROVISIONS, AND MONITORING AND REPORTING REQUIREMENTS
(SUPPLEMENT TO ATTACHMENT D)

FOR

NPDES WASTEWATER DISCHARGE PERMITS

APPLICABILITY

This document applies to dischargers covered by a National Pollutant Discharge Elimination System (NPDES) permit. This document does not apply to Municipal Separate Storm Sewer System (MS4) NPDES permits.

The purpose of this document is to supplement the requirements of Attachment D, Standard Provisions. The requirements in this supplemental document are designed to ensure permit compliance through preventative planning, monitoring, recordkeeping, and reporting. In addition, this document requires proper characterization of issues as they arise, and timely and full responses to problems encountered. To provide clarity on which sections of Attachment D this document supplements, this document is arranged in the same format as Attachment D.

I. STANDARD PROVISIONS - PERMIT COMPLIANCE

A. Duty to Comply – Not Supplemented

B. Need to Halt or Reduce Activity Not a Defense – Not Supplemented

C. Duty to Mitigate – This supplements I.C. of Standard Provisions (Attachment D)

1. Contingency Plan - The Discharger shall maintain a Contingency Plan as originally required by Regional Water Board Resolution 74-10 and as prudent in accordance with current municipal facility emergency planning. The Contingency Plan shall describe procedures to ensure that existing facilities remain in, or are rapidly returned to, operation in the event of a process failure or emergency incident, such as employee strike, strike by suppliers of chemicals or maintenance services, power outage, vandalism, earthquake, or fire. The Discharger may combine the Contingency Plan and Spill Prevention Plan into one document. Discharge in violation of the permit where the Discharger has failed to develop and implement a Contingency Plan as described below will be the basis for considering the discharge a willful and negligent violation of the permit pursuant to California Water Code Section 13387. The Contingency Plan shall, at a minimum, contain the provisions of a. through g. below.

 a. Provision of personnel for continued operation and maintenance of sewerage facilities during employee strikes or strikes against contractors providing services.
b. Maintenance of adequate chemicals or other supplies and spare parts necessary for continued operations of sewerage facilities.

c. Provisions of emergency standby power.

d. Protection against vandalism.

e. Expeditious action to repair failures of, or damage to, equipment and sewer lines.

f. Report of spills and discharges of untreated or inadequately treated wastes, including measures taken to clean up the effects of such discharges.

g. Programs for maintenance, replacement, and surveillance of physical condition of equipment, facilities, and sewer lines.

2. Spill Prevention Plan - The Discharger shall maintain a Spill Prevention Plan to prevent accidental discharges and minimize the effects of such events. The Spill Prevention Plan shall:

a. Identify the possible sources of accidental discharge, untreated or partially treated waste bypass, and polluted drainage;

b. Evaluate the effectiveness of present facilities and procedures, and state when they became operational; and

c. Predict the effectiveness of the proposed facilities and procedures, and provide an implementation schedule containing interim and final dates when they will be constructed, implemented, or operational.

This Regional Water Board, after review of the Contingency and Spill Prevention Plans or their updated revisions, may establish conditions it deems necessary to control accidental discharges and to minimize the effects of such events. Such conditions may be incorporated as part of the permit upon notice to the Discharger.

D. Proper Operation & Maintenance – This supplements I.D of Standard Provisions (Attachment D)

1. Operation and Maintenance (O&M) Manual - The Discharger shall maintain an O&M Manual to provide the plant and regulatory personnel with a source of information describing all equipment, recommended operational strategies, process control monitoring, and maintenance activities. To remain a useful and relevant document, the O&M Manual shall be kept updated to reflect significant changes in treatment facility equipment and operational practices. The O&M Manual shall be maintained in usable condition and be available for reference and use by all relevant personnel and Regional Water Board staff.

2. Wastewater Facilities Status Report - The Discharger shall regularly review, revise, or update, as necessary, its Wastewater Facilities Status Report. This report shall document how the Discharger operates and maintains its wastewater collection, treatment, and disposal facilities to ensure that all facilities are adequately staffed, supervised, financed, operated, maintained, repaired, and upgraded as necessary to provide adequate and reliable transport, treatment, and disposal of all wastewater from both existing and planned future wastewater sources under the Discharger's service responsibilities.
3. Proper Supervision and Operation of Publicly Owned Treatment Works (POTWs) - POTWs shall be supervised and operated by persons possessing certificates of appropriate grade pursuant to Division 4, Chapter 14, Title 23 of the California Code of Regulations.

E. Property Rights – Not Supplemented

F. Inspection and Entry – Not Supplemented

G. Bypass – Not Supplemented

H. Upset – Not Supplemented

I. Other – This section is an addition to Standard Provisions (Attachment D)

1. Neither the treatment nor the discharge of pollutants shall create pollution, contamination, or nuisance as defined by California Water Code Section 13050.

2. Collection, treatment, storage, and disposal systems shall be operated in a manner that precludes public contact with wastewater, except in cases where excluding the public is infeasible, such as private property. If public contact with wastewater could reasonably occur on public property, warning signs shall be posted.

3. If the Discharger submits a timely and complete Report of Waste Discharge for permit reissuance, this permit continues in force and effect until a new permit is issued or the Regional Water Board rescinds the permit.

J. Storm Water – This section is an addition to Standard Provisions (Attachment D)

These provisions apply to facilities that do not direct all storm water flows from the facility to the wastewater treatment plant headworks.

1. Storm Water Pollution Prevention Plan (SWPP Plan)

 The SWPP Plan shall be designed in accordance with good engineering practices and shall address the following objectives:

 a. To identify pollutant sources that may affect the quality of storm water discharges; and

 b. To identify, assign, and implement control measures and management practices to reduce pollutants in storm water discharges.

 The SWPP Plan may be combined with the existing Spill Prevention Plan as required in accordance with Section C.2. The SWPP Plan shall be retained on-site and made available upon request of a representative of the Regional Water Board.
2. Source Identification

The SWPP Plan shall provide a description of potential sources that may be expected to add significant quantities of pollutants to storm water discharges, or may result in non-storm water discharges from the facility. The SWPP Plan shall include, at a minimum, the following items:

a. A topographical map (or other acceptable map if a topographical map is unavailable), extending one-quarter mile beyond the property boundaries of the facility, showing the wastewater treatment facility process areas, surface water bodies (including springs and wells), and discharge point(s) where the facility’s storm water discharges to a municipal storm drain system or other points of discharge to waters of the State. The requirements of this paragraph may be included in the site map required under the following paragraph if appropriate.

b. A site map showing the following:

1) Storm water conveyance, drainage, and discharge structures;

2) An outline of the storm water drainage areas for each storm water discharge point;

3) Paved areas and buildings;

4) Areas of actual or potential pollutant contact with storm water or release to storm water, including but not limited to outdoor storage and process areas; material loading, unloading, and access areas; and waste treatment, storage, and disposal areas;

5) Location of existing storm water structural control measures (i.e., berms, coverings, etc.);

6) Surface water locations, including springs and wetlands; and

7) Vehicle service areas.

c. A narrative description of the following:

1) Wastewater treatment process activity areas;

2) Materials, equipment, and vehicle management practices employed to minimize contact of significant materials of concern with storm water discharges;

3) Material storage, loading, unloading, and access areas;

4) Existing structural and non-structural control measures (if any) to reduce pollutants in storm water discharges; and

5) Methods of on-site storage and disposal of significant materials.

d. A list of pollutants that have a reasonable potential to be present in storm water discharges in significant quantities.
3. Storm Water Management Controls

The SWPP Plan shall describe the storm water management controls appropriate for the facility and a time schedule for fully implementing such controls. The appropriateness and priorities of controls in the SWPP Plan shall reflect identified potential sources of pollutants. The description of storm water management controls to be implemented shall include, as appropriate:

a. Storm water pollution prevention personnel

Identify specific individuals (and job titles) that are responsible for developing, implementing, and reviewing the SWPP Plan.

b. Good housekeeping

Good housekeeping requires the maintenance of clean, orderly facility areas that discharge storm water. Material handling areas shall be inspected and cleaned to reduce the potential for pollutants to enter the storm drain conveyance system.

c. Spill prevention and response

Identify areas where significant materials can spill into or otherwise enter storm water conveyance systems and their accompanying drainage points. Specific material handling procedures, storage requirements, and cleanup equipment and procedures shall be identified, as appropriate. The necessary equipment to implement a cleanup shall be available, and personnel shall be trained in proper response, containment, and cleanup of spills. Internal reporting procedures for spills of significant materials shall be established.

d. Source control

Source controls include, for example, elimination or reduction of the use of toxic pollutants, covering of pollutant source areas, sweeping of paved areas, containment of potential pollutants, labeling of all storm drain inlets with “No Dumping” signs, isolation or separation of industrial and non-industrial pollutant sources so that runoff from these areas does not mix, etc.

e. Storm water management practices

Storm water management practices are practices other than those that control the sources of pollutants. Such practices include treatment or conveyance structures, such as drop inlets, channels, retention and detention basins, treatment vaults, infiltration galleries, filters, oil/water separators, etc. Based on assessment of the potential of various sources to contribute pollutants to storm water discharges in significant quantities, additional storm water management practices to remove pollutants from storm water discharges shall be implemented and design criteria shall be described.

f. Sediment and erosion control

Measures to minimize erosion around the storm water drainage and discharge points, such as riprap, revegetation, slope stabilization, etc., shall be described.
Employee training programs shall inform all personnel responsible for implementing the SWPP Plan. Training shall address spill response, good housekeeping, and material management practices. New employee and refresher training schedules shall be identified.

h. Inspections

All inspections shall be done by trained personnel. Material handling areas shall be inspected for evidence of, or the potential for, pollutants entering storm water discharges. A tracking or follow up procedure shall be used to ensure appropriate response has been taken in response to an inspection. Inspections and maintenance activities shall be documented and recorded. Inspection records shall be retained for five years.

i. Records

A tracking and follow-up procedure shall be described to ensure that adequate response and corrective actions have been taken in response to inspections.

4. Annual Verification of SWPP Plan

An annual facility inspection shall be conducted to verify that all elements of the SWPP Plan are accurate and up-to-date. The results of this review shall be reported in the Annual Report to the Regional Water Board described in Section V.C.f.

K. Biosolids Management – This section is an addition to Standard Provisions (Attachment D)

Biosolids must meet the following requirements prior to land application. The Discharger must either demonstrate compliance or, if it sends the biosolids to another party for further treatment or distribution, must give the recipient the information necessary to ensure compliance.

1. Exceptional quality biosolids meet the pollutant concentration limits in Table III of 40 CFR Part 503.13, Class A pathogen limits, and one of the vector attraction reduction requirements in 503.33(b)(1)-(b)(8). Such biosolids do not have to be tracked further for compliance with general requirements (503.12) and management practices (503.14).

2. Biosolids used for agricultural land, forest, or reclamation shall meet the pollutant limits in Table I (ceiling concentrations) and Table II or Table III (cumulative loadings or pollutant concentration limits) of 503.13. They shall also meet the general requirements (503.12) and management practices (503.14) (if not exceptional quality biosolids) for Class A or Class B pathogen levels with associated access restrictions (503.32) and one of the 10 vector attraction reduction requirements in 503.33(b)(1)-(b)(10).

3. Biosolids used for lawn or home gardens must meet exceptional quality biosolids limits.

4. Biosolids sold or given away in a bag or other container must meet the pollutant limits in either Table III or Table IV (pollutant concentration limits or annual pollutant loading rate limits) of 503.13. If Table IV is used, a label or information sheet must be attached to the biosolids packing that explains Table IV (see 503.14). The biosolids must also meet the Class A pathogen limits and one of the vector attraction reduction requirements in 503.33(b)(1)-(b)(8).

II. STANDARD PROVISIONS – PERMIT ACTION – Not Supplemented
III. STANDARD PROVISIONS – MONITORING

A. Sampling and Analyses – This section is a supplement to III.A and III.B of Standard Provisions (Attachment D)

1. Use of Certified Laboratories

Water and waste analyses shall be performed by a laboratory certified for these analyses in accordance with California Water Code Section 13176.

2. Use of Appropriate Minimum Levels

Table C lists the suggested analytical methods for the 126 priority pollutants and other toxic pollutants that should be used, unless a particular method or minimum level (ML) is required in the MRP.

For priority pollutant monitoring, when there is more than one ML value for a given substance, the Discharger may select any one of the analytical methods cited in Table C for compliance determination, or any other method described in 40 CFR part 136 or approved by U.S. EPA (such as the 1600 series) if authorized by the Regional Water Board. However, the ML must be below the effluent limitation and water quality objective. If no ML value is below the effluent limitation and water quality objective, then the method must achieve an ML no greater than the lowest ML value indicated in Table C. All monitoring instruments and equipment shall be properly calibrated and maintained to ensure accuracy of measurements.

3. Frequency of Monitoring

The minimum schedule of sampling analysis is specified in the MRP portion of the permit.

a. Timing of Sample Collection

1) The Discharger shall collect samples of influent on varying days selected at random and shall not include any plant recirculation or other sidestream wastes, unless otherwise stipulated by the MRP.

2) The Discharger shall collect samples of effluent on days coincident with influent sampling unless otherwise stipulated by the MRP or the Executive Officer. The Executive Officer may approve an alternative sampling plan if it is demonstrated to be representative of plant discharge flow and in compliance with all other permit requirements.

3) The Discharger shall collect grab samples of effluent during periods of day-time maximum peak effluent flows (or peak flows through secondary treatment units for facilities that recycle effluent flows).

4) Effluent sampling for conventional pollutants shall occur on at least one day of any multiple-day bioassay test the MRP requires. During the course of the test, on at least one day, the Discharger shall collect and retain samples of the discharge. In the event a bioassay test does
not comply with permit limits, the Discharger shall analyze these retained samples for pollutants that could be toxic to aquatic life and for which it has effluent limits.

i. The Discharger shall perform bioassay tests on final effluent samples; when chlorine is used for disinfection, bioassay tests shall be performed on effluent after chlorination-dechlorination; and

ii. The Discharger shall analyze for total ammonia nitrogen and calculate the amount of un-ionized ammonia whenever test results fail to meet the percent survival specified in the permit.

b. Conditions Triggering Accelerated Monitoring

1) If the results from two consecutive samples of a constituent monitored in a 30-day period exceed the monthly average limit for any parameter (or if the required sampling frequency is once per month and the monthly sample exceeds the monthly average limit), the Discharger shall, within 24 hours after the results are received, increase its sampling frequency to daily until the results from the additional sampling show that the parameter is in compliance with the monthly average limit.

2) If any maximum daily limit is exceeded, the Discharger shall increase its sampling frequency to daily within 24 hours after the results are received that indicate the exceedance of the maximum daily limit until two samples collected on consecutive days show compliance with the maximum daily limit.

3) If final or intermediate results of an acute bioassay test indicate a violation or threatened violation (e.g., the percentage of surviving test organisms of any single acute bioassay test is less than 70 percent), the Discharger shall initiate a new test as soon as practical, and the Discharger shall investigate the cause of the mortalities and report its findings in the next self monitoring report (SMR).

4) The Discharger shall calibrate chlorine residual analyzers against grab samples as frequently as necessary to maintain accurate control and reliable operation. If an effluent violation is detected, the Discharger shall collect grab samples at least every 30 minutes until compliance with the limit is achieved, unless the Discharger monitors chlorine residual continuously. In such cases, the Discharger shall continue to conduct continuous monitoring as required by its permit.

5) When a bypass occurs (except one subject to provision III.A.3.b.6 below), the Discharger shall monitor flows and collect samples on a daily basis for all constituents at affected discharge points that have effluent limits for the duration of the bypass (including acute toxicity using static renewals), except chronic toxicity, unless otherwise stipulated by the MRP.

6) Unless otherwise stipulated by the MRP, when a bypass approved pursuant to Attachment D, Standard Provisions, Sections I.G.2 or I.G.4, occurs, the Discharger shall monitor flows and, using appropriate procedures as specified in the MRP, collect and retain samples for affected discharge points on a daily basis for the duration of the bypass. The Discharger shall analyze for total suspended solids (TSS) using 24-hour composites (or more frequent increments) and for bacteria indicators with effluent limits using grab samples. If TSS exceeds 45 mg/L in any composite sample, the Discharger shall also analyze the retained samples for that discharge for all other constituents that have effluent limits, except oil and grease, mercury, dioxin-
TEQ, and acute and chronic toxicity. Additionally, at least once each year, the Discharger shall analyze the retained samples for one approved bypass discharge event for all other constituents that have effluent limits, except oil and grease, mercury, dioxin-TEQ, and acute and chronic toxicity. This monitoring shall be in addition to the minimum monitoring specified in the MRP.

c. Storm Water Monitoring

The requirements of this section only apply to facilities that are not covered by an NPDES permit for storm water discharges and where not all site storm drainage from process areas (i.e., areas of the treatment facility where chemicals or wastewater could come in contact with storm water) is directed to the headworks. For storm water not directed to the headworks during the wet season (October 1 to April 30), the Discharger shall:

1) Conduct visual observations of the storm water discharge locations during daylight hours at least once per month during a storm event that produces significant storm water discharge to observe the presence of floating and suspended materials, oil and grease, discoloration, turbidity, and odor, etc.

2) Measure (or estimate) the total volume of storm water discharge, collect grab samples of storm water discharge from at least two storm events that produce significant storm water discharge, and analyze the samples for oil and grease, pH, TSS, and specific conductance.

The grab samples shall be taken during the first 30 minutes of the discharge. If collection of the grab samples during the first 30 minutes is impracticable, grab samples may be taken during the first hour of the discharge, and the Discharger shall explain in the Annual Report why the grab sample(s) could not be taken in the first 30 minutes.

3) Testing for the presence of non-storm water discharges shall be conducted no less than twice during the dry season (May 1 to September 30) at all storm water discharge locations. Tests may include visual observations of flows, stains, sludges, odors, and other abnormal conditions; dye tests; TV line surveys; or analysis and validation of accurate piping schematics. Records shall be maintained describing the method used, date of testing, locations observed, and test results.

4) Samples shall be collected from all locations where storm water is discharged. Samples shall represent the quality and quantity of storm water discharged from the facility. If a facility discharges storm water at multiple locations, the Discharger may sample a reduced number of locations if it establishes and documents through the monitoring program that storm water discharges from different locations are substantially identical.

5) Records of all storm water monitoring information and copies of all reports required by the permit shall be retained for a period of at least three years from the date of sample, observation, or report.

d. Receiving Water Monitoring

The requirements of this section only apply when the MRP requires receiving water sampling.
1) Receiving water samples shall be collected on days coincident with effluent sampling for conventional pollutants.

2) Receiving water samples shall be collected at each station on each sampling day during the period within one hour following low slack water. Where sampling during lower slack water is impractical, sampling shall be performed during higher slack water. Samples shall be collected within the discharge plume and down current of the discharge point so as to be representative, unless otherwise stipulated in the MRP.

3) Samples shall be collected within one foot of the surface of the receiving water, unless otherwise stipulated in the MRP.

B. Biosolids Monitoring – This section supplements III.B of Standard Provisions (Attachment D)

When biosolids are sent to a landfill, sent to a surface disposal site, or applied to land as a soil amendment, they must be monitored as follows:

1. Biosolids Monitoring Frequency

Biosolids disposal must be monitored at the following frequency:

<table>
<thead>
<tr>
<th>Metric tons biosolids/365 days</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-290</td>
<td>Once per year</td>
</tr>
<tr>
<td>290-1500</td>
<td>Quarterly</td>
</tr>
<tr>
<td>1500-15,000</td>
<td>Six times per year</td>
</tr>
<tr>
<td>Over 15,000</td>
<td>Once per month</td>
</tr>
</tbody>
</table>

(Metric tons are on a dry weight basis)

2. Biosolids Pollutants to Monitor

Biosolids shall be monitored for the following constituents:

- Land Application: Arsenic, cadmium, copper, mercury, molybdenum, nickel, lead, selenium, and zinc

- Municipal Landfill: Paint filter test (pursuant to 40 CFR 258)

- Biosolids-only Landfill or Surface Disposal Site (if no liner and leachate system): arsenic, chromium, and nickel

C. Standard Observations – This section is an addition to III of Standard Provisions (Attachment D)

1. Receiving Water Observations

The requirements of this section only apply when the MRP requires standard observations of the receiving water. Standard observations shall include the following:
a. *Floating and suspended materials* (e.g., oil, grease, algae, and other macroscopic particulate matter): presence or absence, source, and size of affected area.

b. *Discoloration and turbidity*: description of color, source, and size of affected area.

c. *Odor*: presence or absence, characterization, source, distance of travel, and wind direction.

d. *Beneficial water use*: presence of water-associated waterfowl or wildlife, fisherpeople, and other recreational activities in the vicinity of each sampling station.

e. *Hydrographic condition*: time and height of corrected high and low tides (corrected to nearest National Oceanic and Atmospheric Administration location for the sampling date and time of sample collection).

f. *Weather conditions*:

1) Air temperature; and

2) Total precipitation during the five days prior to observation.

2. Wastewater Effluent Observations

The requirements of this section only apply when the MRP requires wastewater effluent standard observations. Standard observations shall include the following:

a. *Floating and suspended material of wastewater origin* (e.g., oil, grease, algae, and other macroscopic particulate matter): presence or absence.

b. *Odor*: presence or absence, characterization, source, distance of travel, and wind direction.

3. Beach and Shoreline Observations

The requirements of this section only apply when the MRP requires beach and shoreline standard observations. Standard observations shall include the following:

a. *Material of wastewater origin*: presence or absence, description of material, estimated size of affected area, and source.

b. *Beneficial use*: estimate number of people participating in recreational water contact, non-water contact, or fishing activities.

4. Land Retention or Disposal Area Observations

The requirements of this section only apply to facilities with on-site surface impoundments or disposal areas that are in use. This section applies to both liquid and solid wastes, whether confined or unconfined. The Discharger shall conduct the following for each impoundment:

a. Determine the amount of freeboard at the lowest point of dikes confining liquid wastes.

b. Report evidence of leaching liquid from area of confinement and estimated size of affected area. Show affected area on a sketch and volume of flow (e.g., gallons per minute [gpm]).
c. Regarding odor, describe presence or absence, characterization, source, distance of travel, and wind direction.

d. Estimate number of waterfowl and other water-associated birds in the disposal area and vicinity.

5. Periphery of Waste Treatment and/or Disposal Facilities Observations

The requirements of this section only apply when the MRP specifies periphery standard observations. Standard observations shall include the following:

a. *Odor*: presence or absence, characterization, source, and distance of travel.

IV. STANDARD PROVISIONS – RECORDS

A. Records to be Maintained – This supplements IV.A of Standard Provisions (Attachment D)

The Discharger shall maintain records in a manner and at a location (e.g., wastewater treatment plant or Discharger offices) such that the records are accessible to Regional Water Board staff. The minimum period of retention specified in Section IV, Records, of the Federal Standard Provisions shall be extended during the course of any unresolved litigation regarding the subject discharge, or when requested by the Regional Water Board or Regional Administrator of U.S. EPA, Region IX.

A copy of the permit shall be maintained at the discharge facility and be available at all times to operating personnel.

B. Records of monitoring information shall include – This supplements IV.B of Standard Provision (Attachment D)

1. Analytical Information

Records shall include analytical method detection limits, minimum levels, reporting levels, and related quantification parameters.

2. Flow Monitoring Data

For all required flow monitoring (e.g., influent and effluent flows), the additional records shall include the following, unless otherwise stipulated by the MRP:

a. Total volume for each day; and

b. Maximum, minimum, and average daily flows for each calendar month.
3. Wastewater Treatment Process Solids
 a. For each treatment unit process that involves solids removal from the wastewater stream, records shall include the following:
 1) Total volume or mass of solids removed from each collection unit (e.g., grit, skimmings, undigested biosolids, or combination) for each calendar month or other time period as appropriate, but not to exceed annually; and
 2) Final disposition of such solids (e.g., landfill, other subsequent treatment unit).
 b. For final dewatered biosolids from the treatment plant as a whole, records shall include the following:
 1) Total volume or mass of dewatered biosolids for each calendar month;
 2) Solids content of the dewatered biosolids; and
 3) Final disposition of dewatered biosolids (disposal location and disposal method).

4. Disinfection Process
 For the disinfection process, these additional records shall be maintained documenting process operation and performance:
 a. For bacteriological analyses:
 1) Wastewater flow rate at the time of sample collection; and
 2) Required statistical parameters for cumulative bacterial values (e.g., moving median or geometric mean for the number of samples or sampling period identified in this Order).
 b. For the chlorination process, when chlorine is used for disinfection, at least daily average values for the following:
 1) Chlorine residual of treated wastewater as it enters the contact basin (mg/L);
 2) Chlorine dosage (kg/day); and
 3) Dechlorination chemical dosage (kg/day).

5. Treatment Process Bypasses
 A chronological log of all treatment process bypasses, including wet weather blending, shall include the following:
 a. Identification of the treatment process bypassed;
 b. Dates and times of bypass beginning and end;
 c. Total bypass duration;
d. Estimated total bypass volume; and

e. Description of, or reference to other reports describing, the bypass event, the cause, the corrective actions taken (except for wet weather blending that is in compliance with permit conditions), and any additional monitoring conducted.

6. Treatment Facility Overflows

This section applies to records for overflows at the treatment facility. This includes the headworks and all units and appurtenances downstream. The Discharger shall retain a chronological log of overflows at the treatment facility and records supporting the information provided in section V.E.2.

C. Claims of Confidentiality – Not Supplemented

V. STANDARD PROVISIONS – REPORTING

A. Duty to Provide Information – Not Supplemented

B. Signatory and Certification Requirements – Not Supplemented

C. Monitoring Reports – This section supplements V.C of Standard Provisions (Attachment D)

1. Self Monitoring Reports

For each reporting period established in the MRP, the Discharger shall submit an SMR to the Regional Water Board in accordance with the requirements listed in this document and at the frequency the MRP specifies. The purpose of the SMR is to document treatment performance, effluent quality, and compliance with the waste discharge requirements of this Order.

a. Transmittal letter

Each SMR shall be submitted with a transmittal letter. This letter shall include the following:

1) Identification of all violations of effluent limits or other waste discharge requirements found during the reporting period;

2) Details regarding violations: parameters, magnitude, test results, frequency, and dates;

3) Causes of violations;

4) Discussion of corrective actions taken or planned to resolve violations and prevent recurrences, and dates or time schedule of action implementation (if previous reports have been submitted that address corrective actions, reference to the earlier reports is satisfactory);

5) Data invalidation (Data should not be submitted in an SMR if it does not meet quality assurance/quality control standards. However, if the Discharger wishes to invalidate any measurement after it was submitted in an SMR, a letter shall identify the measurement suspected to be invalid and state the Discharger’s intent to submit, within 60 days, a formal request to invalidate the measurement. This request shall include the original measurement in question, the reason for invalidating the measurement, all relevant documentation that supports invalidation [e.g., laboratory sheet, log entry, test results, etc.], and discussion of the
corrective actions taken or planned [with a time schedule for completion] to prevent recurrence of the sampling or measurement problem.);

6) If the Discharger blends, the letter shall describe the duration of blending events and certify whether blended effluent was in compliance with the conditions for blending; and

7) Signature (The transmittal letter shall be signed according to Section V.B of this Order, Attachment D – Standard Provisions.).

b. Compliance evaluation summary

Each report shall include a compliance evaluation summary. This summary shall include each parameter for which the permit specifies effluent limits, the number of samples taken during the monitoring period, and the number of samples that exceed applicable effluent limits.

c. Results of analyses and observations

1) Tabulations of all required analyses and observations, including parameter, date, time, sample station, type of sample, test result, method detection limit, method minimum level, and method reporting level, if applicable, signed by the laboratory director or other responsible official.

2) When determining compliance with an average monthly effluent limitation and more than one sample result is available in a month, the Discharger shall compute the arithmetic mean unless the data set contains one or more reported determinations of detected but not quantified (DNQ) or nondetect (ND). In those cases, the Discharger shall compute the median in place of the arithmetic mean in accordance with the following procedure:

 i. The data set shall be ranked from low to high, reported ND determinations lowest, DNQ determinations next, followed by quantified values (if any). The order of the individual ND or DNQ determinations is unimportant.

 ii. The median value of the data set shall be determined. If the data set has an odd number of data points, then the median is the middle value. If the data set has an even number of data points, then the median is the average of the two values around the middle unless one or both of the points are ND or DNQ, in which case the median value shall be the lower of the two data points where DNQ is lower than a value and ND is lower than DNQ.

 If a sample result, or the arithmetic mean or median of multiple sample results, is below the reporting limit, and there is evidence that the priority pollutant is present in the effluent above an effluent limitation and the Discharger conducts a Pollutant Minimization Program, the Discharger shall not be deemed out of compliance.

3) Dioxin-TEQ Reporting: The Discharger shall report for each dioxin and furan congener the analytical results of effluent monitoring, including the quantifiable limit (reporting level), the method detection limit, and the measured concentration. The Discharger shall report all measured values of individual congeners, including data qualifiers. When calculating dioxin-TEQ, the Discharger shall set congener concentrations below the minimum levels (ML) to zero. The Discharger shall calculate and report dioxin-TEQs using the following formula, where the MLs, toxicity equivalency factors (TEFs), and bioaccumulation equivalency factors (BEFs) are as provided in Table A:
Dioxin-TEQ = \Sigma (C_x \times TEF_x \times BEF_x) \\

where: C_x = measured or estimated concentration of congener x
TEF_x = toxicity equivalency factor for congener x
BEF_x = bioaccumulation equivalency factor for congener x

Table A
Minimum Levels, Toxicity Equivalency Factors, and Bioaccumulation Equivalency Factors

<table>
<thead>
<tr>
<th>Dioxin or Furan Congener</th>
<th>Minimum Level (pg/L)</th>
<th>1998 Toxicity Equivalency Factor (TEF)</th>
<th>Bioaccumulation Equivalency Factor (BEF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,3,7,8-TCDD</td>
<td>10</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>1,2,3,7,8-PeCDD</td>
<td>50</td>
<td>1.0</td>
<td>0.9</td>
</tr>
<tr>
<td>1,2,3,4,7,8-HxCDD</td>
<td>50</td>
<td>0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>1,2,3,6,7,8-HxCDD</td>
<td>50</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>1,2,3,7,8,9-HxCDD</td>
<td>50</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>1,2,3,4,6,7,8-HpCDD</td>
<td>50</td>
<td>0.01</td>
<td>0.05</td>
</tr>
<tr>
<td>OCDD</td>
<td>100</td>
<td>0.0001</td>
<td>0.01</td>
</tr>
<tr>
<td>2,3,7,8-TCDF</td>
<td>10</td>
<td>0.1</td>
<td>0.8</td>
</tr>
<tr>
<td>1,2,3,7,8-PeCDF</td>
<td>50</td>
<td>0.05</td>
<td>0.2</td>
</tr>
<tr>
<td>2,3,4,7,8-PeCDF</td>
<td>50</td>
<td>0.5</td>
<td>1.6</td>
</tr>
<tr>
<td>1,2,3,4,7,8-HxCDF</td>
<td>50</td>
<td>0.1</td>
<td>0.08</td>
</tr>
<tr>
<td>1,2,3,6,7,8-HxCDF</td>
<td>50</td>
<td>0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>1,2,3,7,8,9-HxCDF</td>
<td>50</td>
<td>0.1</td>
<td>0.6</td>
</tr>
<tr>
<td>2,3,4,6,7,8-HxCDF</td>
<td>50</td>
<td>0.1</td>
<td>0.7</td>
</tr>
<tr>
<td>1,2,3,4,6,7,8-HpCDF</td>
<td>50</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>1,2,3,4,7,8,9-HpCDF</td>
<td>50</td>
<td>0.01</td>
<td>0.4</td>
</tr>
<tr>
<td>OCDF</td>
<td>100</td>
<td>0.0001</td>
<td>0.02</td>
</tr>
</tbody>
</table>

d. Data reporting for results not yet available

The Discharger shall make all reasonable efforts to obtain analytical data for required parameter sampling in a timely manner. Certain analyses require additional time to complete analytical processes and report results. For cases where required monitoring parameters require additional time to complete analytical processes and reports, and results are not available in time to be included in the SMR for the subject monitoring period, the Discharger shall describe such circumstances in the SMR and include the data for these parameters and relevant discussions of any observed exceedances in the next SMR due after the results are available.
e. Flow data

The Discharger shall provide flow data tabulation pursuant to Section IV.B.2.

f. Annual self monitoring report requirements

By the date specified in the MRP, the Discharger shall submit an annual report to the Regional Water Board covering the previous calendar year. The report shall contain the following:

1) Annual compliance summary table of treatment plant performance, including documentation of any blending events;

2) Comprehensive discussion of treatment plant performance and compliance with the permit (This discussion shall include any corrective actions taken or planned, such as changes to facility equipment or operation practices that may be needed to achieve compliance, and any other actions taken or planned that are intended to improve performance and reliability of the Discharger’s wastewater collection, treatment, or disposal practices.);

3) Both tabular and graphical summaries of the monitoring data for the previous year if parameters are monitored at a frequency of monthly or greater;

4) List of approved analyses, including the following:

 (i) List of analyses for which the Discharger is certified;

 (ii) List of analyses performed for the Discharger by a separate certified laboratory (copies of reports signed by the laboratory director of that laboratory shall not be submitted but be retained onsite); and

 (iii) List of “waived” analyses, as approved;

5) Plan view drawing or map showing the Discharger’s facility, flow routing, and sampling and observation station locations;

6) Results of annual facility inspection to verify that all elements of the SWPP Plan are accurate and up to date (only required if the Discharger does not route all storm water to the headworks of its wastewater treatment plant); and

7) Results of facility report reviews (The Discharger shall regularly review, revise, and update, as necessary, the O&M Manual, the Contingency Plan, the Spill Prevention Plan, and Wastewater Facilities Status Report so that these documents remain useful and relevant to current practices. At a minimum, reviews shall be conducted annually. The Discharger shall include, in each Annual Report, a description or summary of review and evaluation procedures, recommended or planned actions, and an estimated time schedule for implementing these actions. The Discharger shall complete changes to these documents to ensure they are up-to-date.).

g. Report submittal

The Discharger shall submit SMRs to:

California Regional Water Quality Control Board
h. Reporting data in electronic format

The Discharger has the option to submit all monitoring results in an electronic reporting format approved by the Executive Officer. If the Discharger chooses to submit SMRs electronically, the following shall apply:

1) **Reporting Method:** The Discharger shall submit SMRs electronically via a process approved by the Executive Officer (see, for example, the letter dated December 17, 1999, “Official Implementation of Electronic Reporting System [ERS]” and the progress report letter dated December 17, 2000).

2) **Monthly or Quarterly Reporting Requirements:** For each reporting period (monthly or quarterly as specified in the MRP), the Discharger shall submit an electronic SMR to the Regional Water Board in accordance with the provisions of Section V.C.1.a-e, except for requirements under Section V.C.1.c(1) where ERS does not have fields for dischargers to input certain information (e.g., sample time). However, until U.S. EPA approves the electronic signature or other signature technologies, Dischargers that use ERS shall submit a hard copy of the original transmittal letter, an ERS printout of the data sheet, and a violation report (a receipt of the electronic transmittal shall be retained by the Discharger). This electronic SMR submittal suffices for the signed tabulations specified under Section V.C.1.c(1).

3) **Annual Reporting Requirements:** Dischargers who have submitted data using the ERS for at least one calendar year are exempt from submitting the portion of the annual report required under Section V.C.1.f(1) and (3).

D. **Compliance Schedules** – Not supplemented

E. **Twenty-Four Hour Reporting** – This section supplements V.E of Standard Provision (Attachment D)

1. **Spill of Oil or Other Hazardous Material Reports**

a. Within 24 hours of becoming aware of a spill of oil or other hazardous material that is not contained onsite and completely cleaned up, the Discharger shall report by telephone to the Regional Water Board at (510) 622-2369.

b. The Discharger shall also report such spills to the State Office of Emergency Services [telephone (800) 852-7550] only when the spills are in accordance with applicable reporting quantities for hazardous materials.

c. The Discharger shall submit a written report to the Regional Water Board within five working days following telephone notification unless directed otherwise by Regional Water Board staff. A report submitted electronically is acceptable. The written report shall include the following:

 1) Date and time of spill, and duration if known;
2) Location of spill (street address or description of location);

3) Nature of material spilled;

4) Quantity of material involved;

5) Receiving water body affected, if any;

6) Cause of spill;

7) Estimated size of affected area;

8) Observed impacts to receiving waters (e.g., oil sheen, fish kill, water discoloration);

9) Corrective actions taken to contain, minimize, or clean up the spill;

10) Future corrective actions planned to be taken to prevent recurrence, and schedule of implementation; and

11) Persons or agencies notified.

2. Unauthorized Discharges from Municipal Wastewater Treatment Plants¹

The following requirements apply to municipal wastewater treatment plants that experience an unauthorized discharge at their treatment facilities and are consistent with and supercede requirements imposed on the Discharger by the Executive Officer by letter of May 1, 2008, issued pursuant to California Water Code Section 13383.

a. Two (2)-Hour Notification

For any unauthorized discharges that result in a discharge to a drainage channel or a surface water, the Discharger shall, as soon as possible, but not later than two (2) hours after becoming aware of the discharge, notify the State Office of Emergency Services (telephone 800-852-7550), the local health officers or directors of environmental health with jurisdiction over the affected water bodies, and the Regional Water Board. The notification to the Regional Water Board shall be via the Regional Water Board’s online reporting system at www.wbers.net, and shall include the following:

1) Incident description and cause;

2) Location of threatened or involved waterway(s) or storm drains;

3) Date and time the unauthorized discharge started;

4) Estimated quantity and duration of the unauthorized discharge (to the extent known), and the estimated amount recovered;

¹ California Code of Regulations, Title 23, Section 2250(b), defines an unauthorized discharge to be a discharge, not regulated by waste discharge requirements, of treated, partially treated, or untreated wastewater resulting from the intentional or unintentional diversion of wastewater from a collection, treatment or disposal system.
5) Level of treatment prior to discharge (e.g., raw wastewater, primary treated, undisinfected secondary treated, and so on); and

6) Identity of the person reporting the unauthorized discharge.

b. 24-hour Certification

Within 24 hours, the Discharger shall certify to the Regional Water Board, at www.wbers.net, that the State Office of Emergency Services and the local health officers or directors of environmental health with jurisdiction over the affected water bodies have been notified of the unauthorized discharge.

c. 5-Day Written Report

Within five business days, the Discharger shall submit a written report, via the Regional Water Board’s online reporting system at www.wbers.net, that includes, in addition to the information required above, the following:

1) Methods used to delineate the geographical extent of the unauthorized discharge within receiving waters;

2) Efforts implemented to minimize public exposure to the unauthorized discharge;

3) Visual observations of the impacts (if any) noted in the receiving waters (e.g., fish kill, discoloration of water) and the extent of sampling if conducted;

4) Corrective measures taken to minimize the impact of the unauthorized discharge;

5) Measures to be taken to minimize the chances of a similar unauthorized discharge occurring in the future;

6) Summary of Spill Prevention Plan or O&M Manual modifications to be made, if necessary, to minimize the chances of future unauthorized discharges; and

7) Quantity and duration of the unauthorized discharge, and the amount recovered.

d. Communication Protocol

To clarify the multiple levels of notification, certification, and reporting, the current communication requirements for unauthorized discharges from municipal wastewater treatment plants are summarized in Table B that follows.
Table B
Summary of Communication Requirements for Unauthorized Discharges\(^1\) from Municipal Wastewater Treatment Plants

<table>
<thead>
<tr>
<th>Discharger is required to:</th>
<th>Agency Receiving Information</th>
<th>Time frame</th>
<th>Method for Contact</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Notify</td>
<td>California Emergency Management Agency (Cal EMA)</td>
<td>As soon as possible, but not later than 2 hours after becoming aware of the unauthorized discharge.</td>
<td>Telephone – (800) 852-7550 (obtain a control number from Cal EMA)</td>
</tr>
<tr>
<td></td>
<td>Local health department</td>
<td>As soon as possible, but not later than 2 hours after becoming aware of the unauthorized discharge.</td>
<td>Depends on local health department</td>
</tr>
<tr>
<td></td>
<td>Regional Water Board</td>
<td>As soon as possible, but not later than 2 hours after becoming aware of the unauthorized discharge.</td>
<td>Electronic(^2) www.wbers.net</td>
</tr>
<tr>
<td>2. Certify</td>
<td>Regional Water Board</td>
<td>As soon as possible, but not later than 24 hours after becoming aware of the unauthorized discharge.</td>
<td>Electronic(^3) www.wbers.net</td>
</tr>
<tr>
<td>3. Report</td>
<td>Regional Water Board</td>
<td>Within 5 business days of becoming aware of the unauthorized discharge.</td>
<td>Electronic(^4) www.wbers.net</td>
</tr>
</tbody>
</table>

\(^1\) California Code of Regulations, Title 23, Section 2250(b), defines an unauthorized discharge to be a discharge, not regulated by waste discharge requirements, of treated, partially treated, or untreated wastewater resulting from the intentional or unintentional diversion of wastewater from a collection, treatment or disposal system.

\(^2\) In the event that the Discharger is unable to provide online notification within 2 hours of becoming aware of an unauthorized discharge, it shall phone the Regional Water Board’s spill hotline at (510) 622-2369 and convey the same information contained in the notification form. In addition, within 3 business days of becoming aware of the unauthorized discharge, the Discharger shall enter the notification information into the Regional Water Board’s online system in electronic format.

\(^3\) In most instances, the 2-hour notification will also satisfy 24-hour certification requirements. This is because the notification form includes fields for documenting that OES and the local health department have been contacted. In other words, if the Discharger is able to complete all the fields in the notification form within 2 hours, certification requirements are also satisfied. In the event that the Discharger is unable to provide online certification within 24 hours of becoming aware of an unauthorized discharge, it shall phone the Regional Water Board’s spill hotline at (510) 622-2369 and convey the same information contained in the certification form. In addition, within 3 business days of becoming aware of the unauthorized discharge, the Discharger shall enter the certification information into the Regional Water Board’s online system in electronic format.

\(^4\) If the Discharger cannot satisfy the 5-day reporting requirements via the Regional Water Board’s online reporting system, it shall submit a written report (preferably electronically in pdf) to the appropriate Regional Water Board case manager. In cases where the Discharger cannot satisfy the 5-day reporting requirements via the online reporting system, it must still complete the Regional Water Board’s online reporting requirements within 15 calendar days of becoming aware of the unauthorized discharge.
F. Planned Changes – Not supplemented

G. Anticipated Noncompliance – Not supplemented

H. Other Noncompliance – Not supplemented

I. Other Information – Not supplemented

VI. STANDARD PROVISION – ENFORCEMENT – Not Supplemented

VII. ADDITIONAL PROVISIONS – NOTIFICATION LEVELS – Not Supplemented

VIII. DEFINITIONS – This section is an addition to Standard Provisions (Attachment D)

More definitions can be found in Attachment A of this NPDES Permit.

1. Arithmetic Calculations

a. Geometric mean is the antilog of the log mean or the back-transformed mean of the logarithmically transformed variables, which is equivalent to the multiplication of the antilogarithms. The geometric mean can be calculated with either of the following equations:

\[\text{Geometric Mean} = \text{Anti log} \left(\frac{1}{N} \sum_{i=1}^{N} \text{Log}(C_i) \right) \]

or

\[\text{Geometric Mean} = (C_1 \cdot C_2 \cdot \ldots \cdot C_N)^{1/N} \]

Where “N” is the number of data points for the period analyzed and “C” is the concentration for each of the “N” data points.

b. Mass emission rate is obtained from the following calculation for any calendar day:

\[\text{Mass emission rate (lb/day)} = \frac{8.345}{N} \sum_{i=1}^{N} Q_i C_i \]

\[\text{Mass emission rate (kg/day)} = \frac{3.785}{N} \sum_{i=1}^{N} Q_i C_i \]

In which “N” is the number of samples analyzed in any calendar day and “Q_i” and “C_i” are the flow rate (MGD) and the constituent concentration (mg/L) associated with each of the “N” grab samples that may be taken in any calendar day. If a composite sample is taken, “C_i” is the concentration measured in the composite sample and “Q_i” is the average flow rate occurring during the period over which the samples are composited. The daily concentration of a constituent measured over any calendar day shall be determined from the flow-weighted average of the same constituent in the combined waste streams as follows:
Cd = Average daily concentration = \(\frac{1}{Q_t} \sum_{i=1}^{N} Q_i C_i \)

In which “N” is the number of component waste streams and “Q” and “C” are the flow rate (MGD) and the constituent concentration (mg/L) associated with each of the “N” waste streams. “Qt” is the total flow rate of the combined waste streams.

c. **Maximum allowable mass emission rate**, whether for a 24-hour, weekly 7-day, monthly 30-day, or 6-month period, is a limitation expressed as a daily rate determined with the formulas in the paragraph above, using the effluent concentration limit specified in the permit for the period and the specified allowable flow.

d. **POTW removal efficiency** is the ratio of pollutants removed by the treatment facilities to pollutants entering the treatment facilities (expressed as a percentage). The Discharger shall determine removal efficiencies using monthly averages (by calendar month unless otherwise specified) of pollutant concentration of influent and effluent samples collected at about the same time and using the following equation (or its equivalent):

\[
\text{Removal Efficiency} \, (\%) = 100 \times \left[1 - \frac{\text{Effluent Concentration}}{\text{Influent Concentration}}\right]
\]

2. **Biosolids** means the solids, semi-liquid suspensions of solids, residues, screenings, grit, scum, and precipitates separated from or created in wastewater by the unit processes of a treatment system. It also includes, but is not limited to, all supernatant, filtrate, centrate, decantate, and thickener overflow and underflow in the solids handling parts of the wastewater treatment system.

3. **Blending** is the practice of recombining wastewater that has been biologically treated with wastewater that has bypassed around biological treatment units.

4. **Bottom sediment sample** is (1) a separate grab sample taken at each sampling station for the determination of selected physical-chemical parameters, or (2) four grab samples collected from different locations in the immediate vicinity of a sampling station while the boat is anchored and analyzed separately for macroinvertebrates.

5. **Composite sample** is a sample composed of individual grab samples collected manually or by an automatic sampling device on the basis of time or flow as specified in the MRP. For flow-based composites, the proportion of each grab sample included in the composite sample shall be within plus or minus five percent (+/-5%) of the representative flow rate of the waste stream being measured at the time of grab sample collection. Alternatively, equal volume grab samples may be individually analyzed with the flow-weighted average calculated by averaging flow-weighted ratios of each grab sample analytical result. Grab samples comprising time-based composite samples shall be collected at intervals not greater than those specified in the MRP. The quantity of each grab sample comprising a time-based composite sample shall be a set of flow proportional volumes as specified in the MRP. If a particular time-based or flow-based composite sampling protocol is not specified in the MRP, the Discharger shall determine and implement the most representative sampling protocol for the given parameter subject to Executive Officer approval.

6. **Depth-integrated sample** is defined as a water or waste sample collected by allowing a sampling device to fill during a vertical traverse in the waste or receiving water body being sampled. The Discharger shall collect depth-integrated samples in such a manner that the collected sample will be representative of the waste or water body at that sampling point.
7. **Flow sample** is an accurate measurement of the average daily flow volume using a properly calibrated and maintained flow measuring device.

8. **Grab sample** is an individual sample collected in a short period of time not exceeding 15 minutes. Grab samples represent only the condition that exists at the time the wastewater is collected.

9. **Initial dilution** is the process that results in the rapid and irreversible turbulent mixing of wastewater with receiving water around the point of discharge.

10. **Overflow** is the intentional or unintentional spilling or forcing out of untreated or partially treated wastes from a transport system (e.g., through manholes, at pump stations, and at collection points) upstream from the treatment plant headworks or from any part of a treatment plant facility.

11. **Priority pollutants** are those constituents referred to in 40 CFR Part 122 as promulgated in the Federal Register, Vol. 65, No. 97, Thursday, May 18, 2000, also known as the California Toxics Rule, the presence or discharge of which could reasonably be expected to interfere with maintaining designated uses.

12. **Storm water** means storm water runoff, snow melt runoff, and surface runoff and drainage. It excludes infiltration and runoff from agricultural land.

13. **Toxic pollutant** means any pollutant listed as toxic under federal Clean Water Act section 307(a)(1) or under 40 CFR 401.15.

14. **Untreated waste** is raw wastewater.

15. **Waste, waste discharge, discharge of waste, and discharge** are used interchangeably in the permit. The requirements of the permit apply to the entire volume of water, and the material therein, that is disposed of to surface and ground waters of the State of California.
Table C
List of Monitoring Parameters and Analytical Methods

<table>
<thead>
<tr>
<th>CTR No.</th>
<th>Pollutant/Parameter</th>
<th>Analytical Method</th>
<th>Minimum Levels* (µg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>GC</td>
<td>GCMS</td>
</tr>
<tr>
<td>1.</td>
<td>Antimony</td>
<td>204.2</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Arsenic</td>
<td>206.3</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Beryllium</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>4.</td>
<td>Cadmium</td>
<td>200 or 213</td>
<td></td>
</tr>
<tr>
<td>5a.</td>
<td>Chromium (III)</td>
<td>SM 3500</td>
<td></td>
</tr>
<tr>
<td>5b.</td>
<td>Chromium (VI)</td>
<td>SM 3500</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Copper</td>
<td>200.9</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Lead</td>
<td>200.9</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Mercury</td>
<td>1631</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>Nickel</td>
<td>249.2</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>Selenium</td>
<td>200.8 or SM 3114B or C</td>
<td>5</td>
</tr>
<tr>
<td>11.</td>
<td>Silver</td>
<td>272.2</td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>Thallium</td>
<td>279.2</td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>Zinc</td>
<td>200 or 289</td>
<td></td>
</tr>
<tr>
<td>14.</td>
<td>Cyanide</td>
<td>SM 4500</td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td>Asbestos (only required for dischargers to MUN waters)</td>
<td>0100.2</td>
<td></td>
</tr>
<tr>
<td>16.</td>
<td>2,3,7,8-TCDD and 17 congeners (Dioxin)</td>
<td>1613</td>
<td></td>
</tr>
<tr>
<td>17.</td>
<td>Acrolein</td>
<td>603</td>
<td>2.0</td>
</tr>
<tr>
<td>18.</td>
<td>Acrylonitrile</td>
<td>603</td>
<td>2.0</td>
</tr>
<tr>
<td>19.</td>
<td>Benzene</td>
<td>602</td>
<td>0.5</td>
</tr>
<tr>
<td>33.</td>
<td>Ethylbenzene</td>
<td>602</td>
<td>0.5</td>
</tr>
<tr>
<td>39.</td>
<td>Toluene</td>
<td>602</td>
<td>0.5</td>
</tr>
<tr>
<td>20.</td>
<td>Bromoform</td>
<td>601</td>
<td>0.5</td>
</tr>
<tr>
<td>21.</td>
<td>Carbon Tetrachloride</td>
<td>601</td>
<td>0.5</td>
</tr>
<tr>
<td>22.</td>
<td>Chlorobenzene</td>
<td>601</td>
<td>0.5</td>
</tr>
<tr>
<td>23.</td>
<td>Chlorodibromomethane</td>
<td>601</td>
<td>0.5</td>
</tr>
<tr>
<td>24.</td>
<td>Chloroethane</td>
<td>601</td>
<td>0.5</td>
</tr>
</tbody>
</table>

7 The suggested method is the U.S. EPA Method unless otherwise specified (SM = Standard Methods). The Discharger may use another U.S. EPA-approved or recognized method if that method has a level of quantification below the applicable water quality objective. Where no method is suggested, the Discharger has the discretion to use any standard method.
8 Minimum levels are from the State Implementation Policy. They are the concentration of the lowest calibration standard for that technique based on a survey of contract laboratories. Laboratory techniques are defined as follows: GC = Gas Chromatography; GCMS = Gas Chromatography/Mass Spectrometry; LC = High Pressure Liquid Chromatography; Color = Colorimetric; FAA = Flame Atomic Absorption; GFAA = Graphite Furnace Atomic Absorption; ICP = Inductively Coupled Plasma; ICPMS = Inductively Coupled Plasma/Mass Spectrometry; SPGFAA = Stabilized Platform Graphite Furnace Atomic Absorption (i.e., U.S. EPA 200.9); Hydride = Gaseous Hydride Atomic Absorption; CVAA = Cold Vapor Atomic Absorption; DCP = Direct Current Plasma.
9 Analysis for total chromium may be substituted for analysis of chromium (III) and chromium (VI) if the concentration measured is below the lowest hexavalent chromium criterion (11 ug/l).
10 The Discharger shall use ultra-clean sampling (U.S. EPA Method 1669) and ultra-clean analytical methods (U.S. EPA Method 1631) for mercury monitoring. The minimum level for mercury is 2 ng/l (or 0.002 ug/l).
11 MUN = Municipal and Domestic Supply. This designation, if applicable, is in the Findings of the permit.
<table>
<thead>
<tr>
<th>CTR No.</th>
<th>Pollutant/Parameter</th>
<th>Analytical Method</th>
<th>Minimum Levels<sup>*</sup> (µg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>GC</td>
</tr>
<tr>
<td>25.</td>
<td>2-Chloroethoxyvinyl Ether</td>
<td>601</td>
<td>1</td>
</tr>
<tr>
<td>26.</td>
<td>Chloroform</td>
<td>601</td>
<td>0.5</td>
</tr>
<tr>
<td>27.</td>
<td>1,2-Dichlorobenzene</td>
<td>601</td>
<td>0.5</td>
</tr>
<tr>
<td>28.</td>
<td>1,3-Dichlorobenzene</td>
<td>601</td>
<td>0.5</td>
</tr>
<tr>
<td>29.</td>
<td>1,4-Dichlorobenzene</td>
<td>601</td>
<td>0.5</td>
</tr>
<tr>
<td>30.</td>
<td>Dichlorobromomethane</td>
<td>601</td>
<td>0.5</td>
</tr>
<tr>
<td>31.</td>
<td>1,1-Dichloroethylene or 1,1-Dichloroethene</td>
<td>601</td>
<td>0.5</td>
</tr>
<tr>
<td>32.</td>
<td>1,2-Dichloropropane</td>
<td>601</td>
<td>0.5</td>
</tr>
<tr>
<td>33.</td>
<td>1,3-Dichloropropylene or 1,3-Dichloropropene</td>
<td>601</td>
<td>0.5</td>
</tr>
<tr>
<td>34.</td>
<td>Methyl Bromide or Bromomethane</td>
<td>601</td>
<td>1.0</td>
</tr>
<tr>
<td>35.</td>
<td>Methyl Chloride or Chloromethane</td>
<td>601</td>
<td>0.5</td>
</tr>
<tr>
<td>36.</td>
<td>Methylene Chloride or Dichloromethane</td>
<td>601</td>
<td>0.5</td>
</tr>
<tr>
<td>37.</td>
<td>1,1,2,2-Tetrachloroethane</td>
<td>601</td>
<td>0.5</td>
</tr>
<tr>
<td>38.</td>
<td>Tetrachloroethylene</td>
<td>601</td>
<td>0.5</td>
</tr>
<tr>
<td>39.</td>
<td>1,2-Trans-Dichloroethylene</td>
<td>601</td>
<td>0.5</td>
</tr>
<tr>
<td>40.</td>
<td>1,1,1-Trichloroethane</td>
<td>601</td>
<td>0.5</td>
</tr>
<tr>
<td>41.</td>
<td>1,1,2-Trichloroethane</td>
<td>601</td>
<td>0.5</td>
</tr>
<tr>
<td>42.</td>
<td>Trichloroethene</td>
<td>601</td>
<td>0.5</td>
</tr>
<tr>
<td>43.</td>
<td>Vinyl Chloride</td>
<td>601</td>
<td>0.5</td>
</tr>
<tr>
<td>44.</td>
<td>2-Chlorophenol</td>
<td>604</td>
<td>2</td>
</tr>
<tr>
<td>45.</td>
<td>2,4-Dichlorophenol</td>
<td>604</td>
<td>1</td>
</tr>
<tr>
<td>46.</td>
<td>2,4-Dimethylphenol</td>
<td>604</td>
<td>1</td>
</tr>
<tr>
<td>47.</td>
<td>2-Methyl-4,6-Dinitrophenol or Dinitro-2-methylphenol</td>
<td>604</td>
<td>10</td>
</tr>
<tr>
<td>48.</td>
<td>2,4-Dinitrophenol</td>
<td>604</td>
<td>5</td>
</tr>
<tr>
<td>49.</td>
<td>2-Nitrophenol</td>
<td>604</td>
<td>10</td>
</tr>
<tr>
<td>50.</td>
<td>4-Nitrophenol</td>
<td>604</td>
<td>5</td>
</tr>
<tr>
<td>51.</td>
<td>3-Methyl-4-Chlorophenol</td>
<td>604</td>
<td>5</td>
</tr>
<tr>
<td>52.</td>
<td>Pentachlorophenol</td>
<td>604</td>
<td>1</td>
</tr>
<tr>
<td>53.</td>
<td>Phenol</td>
<td>604</td>
<td>1</td>
</tr>
<tr>
<td>54.</td>
<td>2,4,6-Trichlorophenol</td>
<td>604</td>
<td>10</td>
</tr>
<tr>
<td>55.</td>
<td>Acenaphthene</td>
<td>610 HPLC</td>
<td>1</td>
</tr>
<tr>
<td>56.</td>
<td>Acenaphthylene</td>
<td>610 HPLC</td>
<td>10</td>
</tr>
<tr>
<td>57.</td>
<td>Anthracene</td>
<td>610 HPLC</td>
<td>10</td>
</tr>
<tr>
<td>58.</td>
<td>Benzo(a)Anthracene or 1,2 Benzanthracene</td>
<td>610 HPLC</td>
<td>10</td>
</tr>
<tr>
<td>59.</td>
<td>Benzo(a)Pyrene</td>
<td>610 HPLC</td>
<td>10</td>
</tr>
<tr>
<td>60.</td>
<td>Benzo(b)Fluoranthen or 3,4 Benzofluoranthene</td>
<td>610 HPLC</td>
<td>10</td>
</tr>
<tr>
<td>61.</td>
<td>Benzo(g,h,i)Perylene</td>
<td>610 HPLC</td>
<td>5</td>
</tr>
<tr>
<td>62.</td>
<td>Benzo(k)Fluoranthene</td>
<td>610 HPLC</td>
<td>10</td>
</tr>
<tr>
<td>63.</td>
<td>Dibenzo(a,h)Anthracene</td>
<td>610 HPLC</td>
<td>10</td>
</tr>
<tr>
<td>64.</td>
<td>Fluoranthene</td>
<td>610 HPLC</td>
<td>10</td>
</tr>
<tr>
<td>65.</td>
<td>Fluorene</td>
<td>610 HPLC</td>
<td>10</td>
</tr>
<tr>
<td>66.</td>
<td>Indeno(1,2,3-cd)Pyrene</td>
<td>610 HPLC</td>
<td>10</td>
</tr>
</tbody>
</table>

Regional Standard Provisions, and Monitoring and Reporting Requirements (March 2010)
<table>
<thead>
<tr>
<th>CTR No.</th>
<th>Pollutant/Parameter</th>
<th>Analytical Method</th>
<th>Minimum Levels (μg/l)</th>
<th>GC</th>
<th>GCMS</th>
<th>LC</th>
<th>Color</th>
<th>FAA</th>
<th>GFAA</th>
<th>ICP</th>
<th>ICP MS</th>
<th>SPGFAA</th>
<th>HYD</th>
<th>RIDE</th>
<th>CVAA</th>
<th>DCP</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>Pyrene</td>
<td>610 HPLC</td>
<td></td>
<td>10</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>Bis(2-Ethylhexyl)Phthalate</td>
<td>606 or 625</td>
<td></td>
<td>10</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>Butylbenzyl Phthalate</td>
<td>606 or 625</td>
<td></td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>Diethyl Phthalate</td>
<td>606 or 625</td>
<td></td>
<td>10</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>Dimethyl Phthalate</td>
<td>606 or 625</td>
<td></td>
<td>10</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>Di-n-Butyl Phthalate</td>
<td>606 or 625</td>
<td></td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>Di-n-Octyl Phthalate</td>
<td>606 or 625</td>
<td></td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>Benzidine</td>
<td>625</td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>Bis(2-Chloroethoxy)Methane</td>
<td>625</td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>Bis(2-Chloroethyl)Ether</td>
<td>625</td>
<td></td>
<td>10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>Bis(2-Chloroisopropyl)Ether</td>
<td>625</td>
<td></td>
<td>10</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>4-Bromophenyl Phenyl Ether</td>
<td>625</td>
<td></td>
<td>10</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>2-Chloronaphthalene</td>
<td>625</td>
<td></td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>4-Chlorophenyl Phenyl Ether</td>
<td>625</td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>Chrysene</td>
<td>625</td>
<td></td>
<td>10</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>3,3’-Dichlorobenzidine</td>
<td>625</td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>2,4-Dinitrotoluene</td>
<td>625</td>
<td></td>
<td>10</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>2,6-Dinitrotoluene</td>
<td>625</td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>1,2-Diphenylhydrazine (note)¹³</td>
<td>625</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>Hexachlorobenzene</td>
<td>625</td>
<td></td>
<td>5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>Hexachlorobutadiene</td>
<td>625</td>
<td></td>
<td>5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>Hexachlorocyclopentadiene</td>
<td>625</td>
<td></td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>Hexachloroethane</td>
<td>625</td>
<td></td>
<td>5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>Isophorone</td>
<td>625</td>
<td></td>
<td>10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>94</td>
<td>Naphthalene</td>
<td>625</td>
<td></td>
<td>10</td>
<td>1</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>Nitrobenzene</td>
<td>625</td>
<td></td>
<td>10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>N-Nitrosodimethylamine</td>
<td>625</td>
<td></td>
<td>10</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>97</td>
<td>N-Nitrosodi-n-Propylamine</td>
<td>625</td>
<td></td>
<td>10</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>98</td>
<td>N-Nitrosodiphenylamine</td>
<td>625</td>
<td></td>
<td>10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>Phenanthrene</td>
<td>625</td>
<td></td>
<td>5</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>1,2,4-Trichlorobenzene</td>
<td>625</td>
<td></td>
<td>1</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>Aldrin</td>
<td>608</td>
<td></td>
<td>0.005</td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>α-BHC</td>
<td>608</td>
<td></td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>β-BHC</td>
<td>608</td>
<td></td>
<td>0.005</td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>γ-BHC (Lindane)</td>
<td>608</td>
<td></td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>6-BHC</td>
<td>608</td>
<td></td>
<td>0.005</td>
<td></td>
</tr>
<tr>
<td>107</td>
<td>Chlordane</td>
<td>608</td>
<td></td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>108</td>
<td>4,4’-DDT</td>
<td>608</td>
<td></td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>109</td>
<td>4,4’-DDE</td>
<td>608</td>
<td></td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>4,4’-DDD</td>
<td>608</td>
<td></td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>Dieldrin</td>
<td>608</td>
<td></td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>Endosulfan (alpha)</td>
<td>608</td>
<td></td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>Endosulfan (beta)</td>
<td>608</td>
<td></td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>114</td>
<td>Endosulfan Sulfate</td>
<td>608</td>
<td></td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>115</td>
<td>Endrin</td>
<td>608</td>
<td></td>
<td>0.01</td>
<td></td>
</tr>
</tbody>
</table>

¹³ Measurement for 1,2-Diphenylhydrazine may use azobenzene as a screen: if azobenzene is measured at >1 ug/l, then the Discharger shall analyze for 1,2-Diphenylhydrazine.
<table>
<thead>
<tr>
<th>CTR No.</th>
<th>Pollutant/Parameter</th>
<th>Analytical Method¹</th>
<th>Minimum Levels² (µg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>GC</td>
</tr>
<tr>
<td>116.</td>
<td>Endrin Aldehyde</td>
<td>608</td>
<td>0.01</td>
</tr>
<tr>
<td>117.</td>
<td>Heptachlor</td>
<td>608</td>
<td>0.01</td>
</tr>
<tr>
<td>118.</td>
<td>Heptachlor Epoxide</td>
<td>608</td>
<td>0.01</td>
</tr>
<tr>
<td>119-125</td>
<td>PCBs: Aroclors 1016, 1221, 1232, 1242, 1248, 1254, 1260</td>
<td>608</td>
<td>0.5</td>
</tr>
<tr>
<td>126.</td>
<td>Toxaphene</td>
<td>608</td>
<td>0.5</td>
</tr>
</tbody>
</table>

² Minimum Levels are given in µg/l.
ATTACHMENT H – PRETREATMENT REQUIREMENTS

CALIFORNIA REGIONAL WATER QUALITY CONTROL BOARD
SAN FRANCISCO BAY REGION

ATTACHMENT H
PRETREATMENT PROGRAM PROVISIONS

For
NPDES POTW WASTEWATER DISCHARGE PERMITS

March 2011
(Corrected May 2011)
TABLE OF CONTENTS

I. Pretreatment Program Provisions... H-1

II. APPENDIX H-1.. H-3

 REQUIREMENTS FOR PRETREATMENT ANNUAL REPORTS
 A. Cover Sheet.. H-3
 B. Introduction.. H-3
 C. Definitions... H-4
 D. Discussion of Upset, Interference and Pass Through............................. H-4
 E. Influent, Effluent and Biosolids Monitoring Results.............................. H-4
 F. Inspection, Sampling and Enforcement Programs.................................. H-4
 G. Updated List of Regulated SIUs... H-5
 H. SIU (categorical and non-categorical) Compliance Activities.............. H-6
 I. Baseline Monitoring Report Update.. H-7
 J. Pretreatment Program Changes... H-8
 K. Pretreatment Program Budget... H-8
 L. Public Participation Summary... H-8
 M. Biosolids Storage and Disposal Practice... H-9
 N. Other Pollutant Reduction Activities.. H-9
 O. Other Subjects.. H-9
 P. Permit Compliance System (PCS) Data Entry Form............................... H-9

III. APPENDIX H-2... H-10

 REQUIREMENTS FOR JANUARY-JUNE PRETREATMENT SEMIANNUAL REPORT
 A. Influent, Effluent and Biosolids Monitoring... H-10
 B. Industrial User Compliance Status... H-10
 C. Discharger’s Compliance with Pretreatment Program Requirements........ H-11

IV. APPENDIX H-3... H-12

 SIGNATURE REQUIREMENTS FOR PRETREATMENT ANNUAL AND SEMIANNUAL REPORTS

V. APPENDIX H-4... H-13

 REQUIREMENTS FOR INFLUENT, EFFLUENT AND BIOSOLIDS MONITORING
 A. Reduction of Monitoring Frequency... H-13
 B. Influent and Effluent Monitoring... H-13
 C. Biosolids Monitoring.. H-14
Attachment H: Pretreatment Program Provisions

A. The Discharger shall be responsible and liable for the performance of all Control Authority pretreatment requirements contained in 40 CFR 403, including any regulatory revisions to Part 403. Where a Part 403 revision is promulgated after the effective date of the Discharger’s permit and places mandatory actions upon the Discharger as Control Authority but does not specify a timetable for completion of the actions, the Discharger shall complete the required actions within six months from the issuance date of this permit or six months from the effective date of the Part 403 revisions, whichever comes later.

(If the Discharger cannot complete the required actions within the above six-month period due to the need to process local adoption of sewer use ordinance modifications or other substantial pretreatment program modifications, the Discharger shall notify the Executive Officer in writing at least 60 days prior to the six-month deadline. The written notification shall include a summary of completed required actions, an explanation for why the six month deadline cannot be met, and a proposed timeframe to complete the rest of the required actions as soon as practical but not later than within twelve months of the issuance date of this permit or twelve months of the effective date of the Part 403 revisions, whichever comes later. The Executive Officer will notify the Discharger in writing within 30 days of receiving the request if the extension is not approved.)

The United States Environmental Protection Agency (U.S. EPA), the State and/or other appropriate parties may initiate enforcement action against a nondomestic user for noncompliance with applicable standards and requirements as provided in the Clean Water Act (Act).

B. The Discharger shall enforce the requirements promulgated under Sections 307(b), 307(c), 307(d) and 402(b) of the Act with timely, appropriate and effective enforcement actions. The Discharger shall cause nondomestic users subject to Federal Categorical Standards to achieve compliance no later than the date specified in those requirements or, in the case of a new nondomestic user, upon commencement of the discharge.

C. The Discharger shall perform the pretreatment functions as required in 40 CFR 403 and amendments or modifications thereto including, but not limited to:

1. Implement the necessary legal authorities to fully implement the pretreatment regulations as provided in 40 CFR 403.8(f)(1);

2. Implement the programmatic functions as provided in 40 CFR 403.8(f)(2);

3. Publish an annual list of nondomestic users in significant noncompliance as provided per 40 CFR 403.8(f)(2)(viii);

4. Provide for the requisite funding and personnel to implement the pretreatment program as provided in 40 CFR 403.8(f)(3); and

5. Enforce the national pretreatment standards for prohibited discharges and categorical standards as provided in 40 CFR 403.5 and 403.6, respectively.

D. The Discharger shall submit annually a report to U.S. EPA Region 9, the State Water Board and the Regional Water Board describing its pretreatment program activities over the previous calendar year.
In the event that the Discharger is not in compliance with any conditions or requirements of the Pretreatment Program, the Discharger shall also include the reasons for noncompliance and a plan and schedule for achieving compliance. The report shall contain, but is not limited to, the information specified in Appendix H-1 entitled, “Requirements for Pretreatment Annual Reports.” The annual report is due each year on February 28.

E. The Discharger shall submit a pretreatment semiannual report to U.S. EPA Region 9, the State Water Board and the Regional Water Board describing the status of its significant industrial users (SIUs). The report shall contain, but is not limited to, information specified in Appendix H-2 entitled, “Requirements for Pretreatment Semiannual Reports.” The semiannual report is due July 31 for the period January through June. The information for the period July through December of each year shall be included in the Annual Report identified in Appendix H-1. The Executive Officer may exempt the Discharger from the semiannual reporting requirements on a case by case basis subject to State Water Board and U.S. EPA’s comment and approval.

F. The Discharger shall conduct the monitoring of its treatment plant’s influent, effluent, and sludge (biosolids) as described in Appendix H-4 entitled, “Requirements for Influent, Effluent and Sludge (Biosolids) Monitoring.” (The term “biosolids,” as used in this Attachment, shall have the same meaning as wastewater treatment plant “sludge” and will be used from this point forward.) The Discharger shall evaluate the results of the sampling and analysis during the preparation of the semiannual and annual reports to identify any trends. Signing the certification statement used to transmit the reports shall be deemed to certify the Discharger has completed this data evaluation. A tabulation of the data shall be included in the pretreatment annual report as specified in Appendix H-4. The Executive Officer may require more or less frequent monitoring on a case by case basis.
APPENDIX H-1

REQUIREMENTS FOR PRETREATMENT ANNUAL REPORTS

The Pretreatment Annual Report is due each year on February 28 and shall contain activities conducted during the previous calendar year. The purpose of the Annual Report is to:

- Describe the status of the Discharger’s pretreatment program; and
- Report on the effectiveness of the program, as determined by comparing the results of the preceding year’s program implementation.

The report shall contain, at a minimum, the following information:

A. Cover Sheet

The cover sheet shall include:

1. The name(s) and National Pollutant Discharge Elimination Discharge System (NPDES) permit number(s) of the Discharger(s) that is part of the Pretreatment Program;

2. The name, address and telephone number of a pretreatment contact person;

3. The period covered in the report;

4. A statement of truthfulness; and

5. The dated signature of a principal executive officer, ranking elected official, or other duly authorized employee who is responsible for overall operation of the Publicly Owned Treatment Works (POTW) (40 CFR 403.12(m)).

B. Introduction

This section shall include:

1. Any pertinent background information related to the Discharger and/or the nondomestic user base of the area;

2. List of applicable interagency agreements used to implement the Discharger’s pretreatment program (e.g., Memoranda of Understanding (MOU) with satellite sanitary sewer collection systems); and

3. A status summary of the tasks required by a Pretreatment Compliance Inspection (PCI), Pretreatment Compliance Audit (PCA), Cleanup and Abatement Order (CAO), or other pretreatment-related enforcement actions required by the Regional Water Board or the U.S. EPA. A more detailed discussion can be referenced and included in the section entitled, “Program Changes,” if needed.
C. Definitions

This section shall include a list of key terms and their definitions that the Discharger uses to describe or characterize elements of its pretreatment program, or the Discharger may provide a reference to its website if the applicable definitions are available on-line.

D. Discussion of Upset, Interference and Pass Through

This section shall include a discussion of Upset, Interference or Pass Through incidents, if any, at the Discharger’s treatment plant(s) that the Discharger knows of or suspects were caused by nondomestic user discharges. Each incident shall be described, at a minimum, consisting of the following information:

1. A description of what occurred;

2. A description of what was done to identify the source;

3. The name and address of the nondomestic user responsible;

4. The reason(s) why the incident occurred;

5. A description of the corrective actions taken; and

6. An examination of the local and federal discharge limits and requirements for the purposes of determining whether any additional limits or changes to existing requirements may be necessary to prevent other Upset, Interference or Pass Through incidents.

E. Influent, Effluent and Biosolids Monitoring Results

The Discharger shall evaluate the influent, effluent and biosolids monitoring results as specified in Appendix H-4 in preparation of this report. The Discharger shall retain the analytical laboratory reports with the Quality Assurance and Quality Control (QA/QC) data validation and make these reports available upon request.

This section shall include:

1. Description of the sampling procedures and an analysis of the results (see Appendix H-4 for specific requirements);

2. Tabular summary of the compounds detected (compounds measured above the detection limit for the analytical method used) for the monitoring data generated during the reporting year as specified in Appendix H-4;

3. Discussion of the investigation findings into any contributing sources of the compounds that exceed NPDES limits; and

4. Graphical representation of the influent and effluent metal monitoring data for the past five years with a discussion of any trends.
F. Inspection, Sampling and Enforcement Programs

This section shall include at a minimum the following information:

1. Inspections: Summary of the inspection program (e.g., criteria for determining the frequency of inspections and inspection procedures);

2. Sampling Events: Summary of the sampling program (e.g., criteria for determining the frequency of sampling and chain of custody procedures); and

3. Enforcement: Summary of Enforcement Response Plan (ERP) implementation including dates for adoption, last revision and submission to the Regional Water Board.

G. Updated List of Regulated SIUs

This section shall contain a list of all of the federal categories that apply to SIUs regulated by the Discharger. The specific categories shall be listed including the applicable 40 CFR subpart and section, and pretreatment standards (both maximum and average limits). Local limits developed by the Discharger shall be presented in a table including the applicability of the local limits to SIUs. If local limits do not apply uniformly to SIUs, specify the applicability in the tables listing the categorical industrial users (CIUs) and non-categorical SIUs. Tables developed in Sections G1 and G2 can be used to present or reference this information.

1. CIUs - Include a table that alphabetically lists the CIUs regulated by the Discharger as of the end of the reporting period. This list shall include:
 a. Name;
 b. Address;
 c. Applicable federal category(ies);
 d. Reference to the location where the applicable Federal Categorical Standards are presented in the report;
 e. Identify all deletions and additions keyed to the list submitted in the previous annual report. All deletions shall be briefly explained (e.g., closure, name change, ownership change, reclassification, declasification); and
 f. Information, calculations and data used to determine the limits for those CIUs for which a combined waste stream formula is applied.

2. Non-categorical SIUs - Include a table that alphabetically lists the SIUs not subject to any federal categorical standards that were regulated by the Discharger as of the end of the reporting period. This list shall include:
 a. Name;
 b. Address;
c. A brief description of the type of business;

d. Identify all deletions and additions keyed to the list submitted in the previous annual report. All deletions shall be briefly explained (e.g., closure, name change, ownership change, reclassification, declassification); and

e. Indicate the applicable discharge limits (e.g., different from local limits) to which the SIUs are subject and reference to the location where the applicable limits (e.g., local discharge limits) are presented in the report.

H. SIU (categorical and non-categorical) Compliance Activities

The information required in this section may be combined in the table developed in Section G above.

1. Inspection and Sampling Summary: This section shall contain a summary of all the SIU inspections and sampling activities conducted by the Discharger and sampling activities conducted by the SIU over the reporting year to gather information and data regarding SIU compliance. The summary shall include:

 a. The number of inspections and sampling events conducted for each SIU by the Discharger;

 b. The number of sampling events conducted by the SIU. Identify SIUs that are operating under an approved Total Toxic Organic Management Plan;

 c. The quarters in which the above activities were conducted; and

 d. The compliance status of each SIU, delineated by quarter, and characterized using all applicable descriptions as given below:

 (1) Consistent compliance;

 (2) Inconsistent compliance;

 (3) Significant noncompliance;

 (4) On a compliance schedule to achieve compliance (include the date final compliance is required);

 (5) Not in compliance and not on a compliance schedule; and

 (6) Compliance status unknown, and why not.

2. Enforcement Summary: This section shall contain a summary of SIU compliance and enforcement activities during the reporting year. The summary may be included in the summary table developed in section H1 and shall include the names and addresses of all SIUs affected by the actions identified below. For each notice specified in enforcement action “a” through “g,” indicate whether it was for an infraction of a federal or local standard/limit or requirement.
a. Warning letters or notices of violations regarding SIUs’ apparent noncompliance with or violation of any federal pretreatment categorical standards and/or requirements, or local limits and/or requirements;

b. Administrative Orders regarding the SIUs’ apparent noncompliance with or violation of any federal pretreatment categorical standards and/or requirements, or local limits and/or requirements;

c. Civil actions regarding the SIUs’ apparent noncompliance with or violation of any federal pretreatment categorical standards and/or requirements, or local limits and/or requirements;

d. Criminal actions regarding the SIUs’ apparent noncompliance with or violation of any federal pretreatment categorical standards and/or requirements, or local limits and/or requirements;

e. Assessment of monetary penalties. Identify the amount of penalty in each case and reason for assessing the penalty;

f. Order to restrict/suspend discharge to the Discharger; and

g. Order to disconnect the discharge from entering the Discharger.

3. **July-December Semiannual Data:** For SIU violations/noncompliance during the semiannual reporting period from July 1 through December 31, provide the following information:

a. Name and facility address of the SIU;

b. Indicate if the SIU is subject to Federal Categorical Standards; if so, specify the category including the subpart that applies;

c. For SIUs subject to Federal Categorical Standards, indicate if the violation is of a categorical or local standard;

d. Indicate the compliance status of the SIU for the two quarters of the reporting period; and

e. For violations/noncompliance identified in the reporting period, provide:

 (1) The date(s) of violation(s);

 (2) The parameters and corresponding concentrations exceeding the limits and the discharge limits for these parameters; and

 (3) A brief summary of the noncompliant event(s) and the steps that are being taken to achieve compliance.

I. Baseline Monitoring Report Update

This section shall provide a list of CIUs added to the pretreatment program since the last annual report. This list of new CIUs shall summarize the status of the respective Baseline Monitoring Reports (BMR).
The BMR must contain the information specified in 40 CFR 403.12(b). For each new CIU, the summary shall indicate when the BMR was due; when the CIU was notified by the Discharger of this requirement; when the CIU submitted the report; and/or when the report is due.

J. Pretreatment Program Changes

This section shall contain a description of any significant changes in the Pretreatment Program during the past year including, but not limited to:

1. Legal authority;
2. Local limits;
3. Monitoring/inspection program and frequency;
4. Enforcement protocol;
5. Program’s administrative structure;
6. Staffing level;
7. Resource requirements;
8. Funding mechanism;
9. If the manager of the Discharger’s pretreatment program changed, a revised organizational chart shall be included; and
10. If any element(s) of the program is in the process of being modified, this intention shall also be indicated.

K. Pretreatment Program Budget

This section shall present the budget spent on the Pretreatment Program. The budget, either by the calendar or fiscal year, shall show the total expenses required to implement the pretreatment program. A brief discussion of the source(s) of funding shall be provided. In addition, the Discharger shall make available upon request specific details on its pretreatment program expense amounts such as for personnel, equipment, and chemical analyses.
L. Public Participation Summary

This section shall include a copy of the public notice as required in 40 CFR 403.8(f)(2)(viii). If a notice was not published, the reason shall be stated.

M. Biosolids Storage and Disposal Practice

This section shall describe how treated biosolids are stored and ultimately disposed. If a biosolids storage area is used, it shall be described in detail including its location, containment features and biosolids handling procedures.

N. Other Pollutant Reduction Activities

This section shall include a brief description of any programs the Discharger implements to reduce pollutants from nondomestic users that are not classified as SIUs. If the Discharger submits any of this program information in an Annual Pollution Prevention Report, reference to this other report shall satisfy this reporting requirement.

O. Other Subjects

Other information related to the Pretreatment Program that does not fit into any of the above categories should be included in this section.

P. Permit Compliance System (PCS) Data Entry Form

The annual report shall include the PCS Data Entry Form. This form shall summarize the enforcement actions taken against SIUs in the past year. This form shall include the following information:

1. Discharger’s name,
2. NPDES Permit number,
3. Period covered by the report,
4. Number of SIUs in significant noncompliance (SNC) that are on a pretreatment compliance schedule,
5. Number of notices of violation and administrative Orders issued against SIUs,
6. Number of civil and criminal judicial actions against SIUs,
7. Number of SIUs that have been published as a result of being in SNC, and
8. Number of SIUs from which penalties have been collected.
APPENDIX H-2

REQUIREMENTS FOR JANUARY-JUNE PRETREATMENT SEMIANNUAL REPORT

The pretreatment semiannual report is due on July 31 for pretreatment program activities conducted from January through June unless an exception has been granted by the Regional Water Board’s Executive Officer (e.g., pretreatment programs without any SIUs may qualify for an exception to the pretreatment semiannual report). Pretreatment activities conducted from July through December of each year shall be included in the Pretreatment Annual Report as specified in Appendix H-1. The pretreatment semiannual report shall contain, at a minimum the following information:

A. Influent, Effluent and Biosolids Monitoring

The influent, effluent and biosolids monitoring results shall be evaluated in preparation of this report. The Discharger shall retain analytical laboratory reports with the QA/QC data validation and make these reports available upon request. The Discharger shall also make available upon request a description of its influent, effluent and biosolids sampling procedures. Violations of any parameter that exceed NPDES limits shall be identified and reported. The contributing source(s) of the parameters that exceed NPDES limits shall be investigated and discussed.

B. Significant Industrial User Compliance Status

This section shall contain a list of all SIUs that were not in consistent compliance with all pretreatment standards/limits or requirements for the reporting period. For the reported SIUs, the compliance status for the previous semiannual reporting period shall be included. Once the SIU has determined to be out of compliance, the SIU shall be included in subsequent reports until consistent compliance has been achieved. A brief description detailing the actions that the SIU undertook to come back into compliance shall be provided.

For each SIU on the list, the following information shall be provided:

1. Name and facility address of the SIU;

2. Indicate if the SIU is subject to Federal Categorical Standards; if so, specify the category including the subpart that applies;

3. For SIUs subject to Federal Categorical Standards, indicate if the violation is of a categorical or local standard;

4. Indicate the compliance status of the SIU for the two quarters of the reporting period; and

5. For violations/noncompliance identified in the reporting period, provide:

 a. The date(s) of violation(s);

 b. The parameters and corresponding concentrations exceeding the limits and the discharge limits for these parameters; and
c. A brief summary of the noncompliant event(s) and the steps that are being taken to achieve compliance.

C. Discharger’s Compliance with Pretreatment Program Requirements

This section shall contain a discussion of the Discharger’s compliance status with the Pretreatment Program Requirements as indicated in the latest Pretreatment Compliance Audit (PCA) Report or Pretreatment Compliance Inspection (PCI) Report. It shall contain a summary of the following information:

1. Date of latest PCA or PCI report;
2. Date of the Discharger’s response;
3. List of unresolved issues; and
4. Plan(s) and schedule for resolving the remaining issues.
APPENDIX H-3

SIGNATURE REQUIREMENTS FOR PRETREATMENT ANNUAL AND SEMIANNUAL REPORTS

The pretreatment annual and semiannual reports shall be signed by a principal executive officer, ranking elected official, or other duly authorized employee who is responsible for the overall operation of the Discharger [POTW - 40 CFR 403.12(m)]. Signed copies of the reports shall be submitted to the U.S. EPA, the State Water Board, and the Regional Water Board at the following addresses unless the Discharger is instructed by any of these agencies to submit electronic copies of the required reports:

Pretreatment Program Reports
Clean Water Act Compliance Office (WTR-7)
Water Division
Pacific Southwest Region
U.S. Environmental Protection Agency
75 Hawthorne Street
San Francisco, CA 94105-3901

Submit electronic copies only to State and Regional Water Boards:
Pretreatment Program Manager
Regulatory Unit
State Water Resources Control Board
Division of Water Quality-15th Floor
1001 I Street
Sacramento, CA 95814
DMR@waterboards.ca.gov
NPDES_Wastewater@waterboards.ca.gov

Pretreatment Coordinator
NPDES Wastewater Division
SF Bay Regional Water Quality Control Board
1515 Clay Street, Suite 1400
Oakland, CA 94612
(Submit the report as a single Portable Document Format (PDF) file to the Pretreatment Coordinator’s folder in the Regional Water Board’s File Transfer Protocol (FTP) site. The instructions for using the FTP site can be found at the following internet address:
APPENDIX H-4

REQUIREMENTS FOR INFLUENT, EFFLUENT AND BIOSOLIDS MONITORING

The Discharger shall conduct sampling of its treatment plant’s influent, effluent and biosolids at the frequency shown in the pretreatment requirements table of the Monitoring and Reporting Program (MRP, Attachment E). When sampling periods coincide, one set of test results, reported separately, may be used for those parameters that are required to be monitored by both the influent and effluent monitoring requirements of the MRP and the Pretreatment Program. The Pretreatment Program monitoring reports as required in Appendices H-1 and H-2 shall be transmitted to the Pretreatment Program Coordinator.

A. Reduction of Monitoring Frequency

The minimum frequency of Pretreatment Program influent, effluent, and biosolids monitoring shall be dependent on the number of SIUs identified in the Discharger’s Pretreatment Program as indicated in Table H-1.

<table>
<thead>
<tr>
<th>Number of SIUs</th>
<th>Minimum Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 5</td>
<td>Once every five years</td>
</tr>
<tr>
<td>> 5 and < 50</td>
<td>Once every year</td>
</tr>
<tr>
<td>> 50</td>
<td>Twice per year</td>
</tr>
</tbody>
</table>

If the Discharger’s required monitoring frequency is greater than the minimum specified in Table H-1, the Discharger may request a reduced monitoring frequency for that constituent(s) as part of its application for permit reissuance if it meets the following criteria:

The monitoring data for the constituent(s) consistently show non-detect (ND) levels for the effluent monitoring and very low (i.e., near ND) levels for influent and biosolids monitoring for a minimum of eight previous years’ worth of data.

The Discharger’s request shall include tabular summaries of the data and a description of the trends in the industrial, commercial, and residential customers in the Discharger’s service area that demonstrate control over the sources of the constituent(s). The Regional Water Board may grant a reduced monitoring frequency in the reissued permit after considering the information provided by the Discharger and any other relevant information.

B. Influent and Effluent Monitoring

The Discharger shall monitor for the parameters using the required sampling and test methods listed in the pretreatment table of the MRP. Any test method substitutions must have received prior written Executive Officer approval. Influent and effluent sampling locations shall be the same as those sites specified in the MRP.

The influent and effluent samples should be taken at staggered times to account for treatment plant detention time. Appropriately staggered sampling is considered consistent with the requirement for collection of effluent samples coincident with influent samples in Section III.A.3.a(2) of...
Attachment G. All samples must be representative of daily operations. Sampling and analysis shall be performed in accordance with the techniques prescribed in 40 CFR 136 and amendments thereto. For effluent monitoring, the reporting limits for the individual parameters shall be at or below the minimum levels (MLs) as stated in the Policy for Implementation of Toxics Standards for Inland Surface Waters, Enclosed Bays, and Estuaries of California (2000) [also known as the State Implementation Policy (SIP)]; any revisions to the MLs shall be adhered to. If a parameter does not have a stated ML, then the Discharger shall conduct the analysis using the lowest commercially available and reasonably achievable detection levels.

The following report elements should be used to submit the influent and effluent monitoring results. A similarly structured format may be used but will be subject to Regional Water Board approval. The monitoring reports shall be submitted with the Pretreatment Annual Report identified in Appendix H-1.

1. Sampling Procedures, Sample Dechlorination, Sample Compositing, and Data Validation (applicable quality assurance/quality control) shall be performed in accordance with the techniques prescribed in 40 CFR 136 and amendments thereto. The Discharger shall make available upon request its sampling procedures including methods of dechlorination, compositing, and data validation.

2. A tabulation of the test results for the detected parameters shall be provided.

3. Discussion of Results – The report shall include a complete discussion of the test results for the detected parameters. If any pollutants are detected in sufficient concentration to upset, interfere or pass through plant operations, the type of pollutant(s) and potential source(s) shall be noted, along with a plan of action to control, eliminate, and/or monitor the pollutant(s). Any apparent generation and/or destruction of pollutants attributable to chlorination/dechlorination sampling and analysis practices shall be noted.

C. Biosolids Monitoring

Biosolids should be sampled in a manner that will be representative of the biosolids generated from the influent and effluent monitoring events except as noted in (3. below. The same parameters required for influent and effluent analysis shall be included in the biosolids analysis. The biosolids analyzed shall be a composite sample of the biosolids for final disposal consisting of:

1. Biosolids lagoons – 20 grab samples collected at representative equidistant intervals (grid pattern) and composited as a single grab, or

2. Dried stockpile – 20 grab samples collected at various representative locations and depths and composited as a single grab, or

3. Dewatered biosolids - daily composite of 4 representative grab samples each day for 5 days taken at equal intervals during the daily operating shift taken from a) the dewatering units or b) each truckload, and shall be combined into a single 5-day composite.

The U.S. EPA manual, POTW Sludge Sampling and Analysis Guidance Document, August 1989, containing detailed sampling protocols specific to biosolids is recommended as a guidance for sampling procedures. The U.S. EPA manual Analytical Methods of the National Sewage Sludge
Survey, September 1990, containing detailed analytical protocols specific to biosolids, is recommended as a guidance for analytical methods.

In determining if the biosolids are a hazardous waste, the Discharger shall adhere to Article 2, “Criteria for Identifying the Characteristics of Hazardous Waste,” and Article 3, “Characteristics of Hazardous Waste,” of Title 22, California Code of Regulations, sections 66261.10 to 66261.24 and all amendments thereto.

The following report elements should be used to submit the biosolids monitoring results. A similarly structured form may be used but will be subject to Regional Water Board approval. The results shall be submitted with the Pretreatment Annual Report identified in Appendix H-1.

- Sampling Procedures and Data Validation (applicable quality assurance/quality control) shall be performed in accordance with the techniques prescribed in 40 CFR 136 and amendments thereto. The Discharger shall make available upon request its biosolids sampling procedures and data validation methods.

- Test Results – Tabulate the test results for the detected parameters and include the percent solids.

- Discussion of Results – Include a complete discussion of test results for the detected parameters. If the detected pollutant(s) is reasonably deemed to have an adverse effect on biosolids disposal, a plan of action to control, eliminate, and/or monitor the pollutant(s) and the known or potential source(s) shall be included. Any apparent generation and/or destruction of pollutants attributable to chlorination/dechlorination sampling and analysis practices shall be noted.

The Discharger shall also provide a summary table presenting any influent, effluent or biosolids monitoring data for non-priority pollutants that the Discharger believes may be causing or contributing to interference, pass through or adversely impacting biosolids quality.