# Statistical modeling responses of bioassessment indices to eutrophication stressor gradients

**Presentation to Science Panel** 

April 19, 2017



• Support decisions on numeric guidance (e.g., a numeric objective) for biostimulatory nutrients or conditions that protect biological integrity.

### Process and Approach

- Present stakeholder and regulatory advisory groups with overall approach, and ascertain key points to consider
- Review approach with science panel, and identify best ways to tackle concerns
- Present model results to advisory groups and review implications

# Measuring Biostimulatory factors and eutrophication indicators

- Nutrient concentrations: Total N and Total P
- Organic matter: Benthic chl A or AFDM, streambed algae cover

Other co-factors we may include (but don't need numeric guidance now):

- Biostimulatory conditions (temp, velocity, shading)
- Habitat quality

# Responses: measures of biological integrity

- Benthic macroinvertebrates
  - CSCI
- Benthic algae
  - Soft/Diatom indices (ASCIs)

When available, we can link ranges of index scores linked to BCG bins. (in interim, we'll use thresholds based on reference distributions)

Species-level responses

- Thresholds derived for species responses may be more protective than those derived for indices, but links to beneficial uses less clear.
- May support diagnosis and causal assessment of eutrophication impacts.

### How is our data set?

- Samples statewide collected since mid 1990s (most since 2008)
- Good representation of highscoring sites across most regions
  - Sites in poor condition mostly in South Coast, Central Valley, Bay Area

|                   | Likel | Likely biological condition |       |    |  |
|-------------------|-------|-----------------------------|-------|----|--|
| Region            | Good  | Poor                        | Other |    |  |
| North Coast       |       | 84                          | 4     | 40 |  |
| Chaparral         |       | 72                          | 30    | 58 |  |
| South Coast       |       | 70                          | 124   | 94 |  |
| Central Valley    |       | 3                           | 33    | 8  |  |
| Sierra Nevada     |       | 164                         |       | 34 |  |
| Deserts and Modoc |       | 39                          | 10    | 26 |  |

















Most of the "action" is at fairly low concentrations.



Algae likely to show a similar pattern.

# Models allow us to explore different levels of risk tolerance



### Considerations in developing a model

- Several types of models may be suitable (e.g., logistic regression, random forest, etc.)—what works well, in the panel's experience?
- Broad-scale applicability: Statistical models vs. "watershed approach"
- Probabilistic: What levels of nutrients/OM have an acceptably low probability of poor CSCI/ASCI scores?
- Interactions: Can you account for interacting effects of two or more biostimulatory stressors?
- Site-specificity: Are certain sites more responsive/resilient to nutrient inputs than others?
- Confounding: Can you disentangle biostimulation from habitat degradation or other stressors that affect bio-integrity?

#### QUESTIONS

![](_page_17_Figure_0.jpeg)

Partial Dependence on Nitrogen\_Total\_mgPerL

![](_page_18_Figure_2.jpeg)

Partial Dependence on Phosphorus\_as\_P\_mgPerL

![](_page_19_Figure_2.jpeg)

Phosphorus\_as\_P\_mgPerL

Partial Dependence on Ash\_Free\_Dry\_Mass\_mgPercm2

![](_page_20_Figure_2.jpeg)

Partial Dependence on Chlorophyll\_a\_mgPerm2

![](_page_21_Figure_2.jpeg)

Chlorophyll\_a\_mgPerm2

Partial Dependence on PCT\_MAP

![](_page_22_Figure_2.jpeg)

PCT\_MAP

#### RF model: BCG~Nutrients + organic matter

• Error rate: 38.15%

|            |       | Predicted class |      |      |       |  |  |  |
|------------|-------|-----------------|------|------|-------|--|--|--|
|            |       | BCG12           | BCG3 | BCG4 | BCG56 |  |  |  |
| True class | BCG12 | 531             | 29   | 16   | 19    |  |  |  |
|            | BCG3  | 119             | 26   | 23   | 26    |  |  |  |
|            | BCG4  | 73              | 16   | 30   | 49    |  |  |  |
|            | BCG56 | 46              | 9    | 21   | 136   |  |  |  |

![](_page_24_Figure_0.jpeg)