

Once upon a time...

• GOAL:

Develop a statewide algal index

APPROACH:

- Model the ASCI after the CSCI
- Develop an Observed to Expected (O/E) and a Multi-Metric Index (MMI) and a combined version
- Develop for diatoms, soft-algae, and hybrid

Results

• GOAL:

Developed statewide algal indices!

• DETAILS:

- O/E models had poor precision
- Modeling did not improve MMI performance
- MMIs for diatoms, soft-algae, and hybrid assemblages all had great performance
- Genus-level diatom MMI had good, but not great, performance

Final ASCI(s)

- MMI indices were high-performing 🖒
- O/E indices had consistently poor performance for all three assemblages
- Winning MMI indices did not include any predictive metrics, thus making them standard MMI indices (like the SoCal algae IBI) _(\mathcal{V})_/\[-\]
- New algal MMIs have much less regional bias scores than the previous algal IBI therefore making them excellent options for statewide application

Refresher on O/E development

O/E – okay responsiveness, poor precision

How we developed MMIs

How we screened metrics

Description	Test	Threshold	Reference
Regional bias	ANOVA of metric values at reference sites by ecoregion (PSA)	F statistic < 3	Mazor et al., 2016
Sensitivity	t-test comparing reference/stressed site scores	t statistic > 10	Mazor et al., 2016
Frequency of Zero	Frequency of score = 0	< 33% of scores	Stoddard et al., 2008
Frequency of One	Frequency of score = 1	< 33% of scores	Stoddard et al., 2008
Range of Ref scores	Median score at reference sites	> 0	Stevenson and Zalack, 2013
Range of Stress scores	Median score at stressed sites	> 0	Stevenson and Zalack, 2013
Signal to Noise	Variance across all sites / variance at repeat site visits	>1	Stoddard et al., 2008
Repeat visit variation	ANOVA on repeat samplings of station codes	F statistic < 3	Mazor et al., 2016

Examples of metrics

Class	Example metrics
Tolerance	BCG taxa, Tolerant/Intolerant taxa
Motility	Highly motile taxa
Dissolved oxygen	Requires 10% or 30% DO
Salinity	Brackish, freshwater taxa
Saprobility	AM/AMPS taxa
Indicator classes	High N; Low P; High Cu
Diversity	Simpson; Shannon
Taxonomic group	Amphora taxa; ZHR; CRUS taxa

Examples of metrics

Class	Example metrics
Tolerance	BCG taxa, Tolerant/Intolerant taxa
Motility	Highly motile taxa
Dissolved oxygen	Requires 10% or 30% DO
Salinity	Brackish, freshwater taxa
Saprobility	AM/AMPS taxa
Indicator classes	High N; Low P; High Cu
Diversity	Simpson; Shannon
Taxonomic group	Amphora taxa; ZHR; CRUS taxa

- Generally, trait attributes are assigned to algae at the species
 - Literature
 - Observations from field/lab studies
 - Indicator species analysis for California
 - Other diatom indices (e.g. French diatom index SPI)

MMI results – better precision and responsiveness than O/E

Metrics in each MMI

Description	Diatom	Soft-algae	Hybrid	Response to stress
Count species: BCG 3 taxa	Х	х	х	Decrease
Count species: high copper indicators		X		Increase
Count species: high DOC indicators		x		Increase
Count species: low total phosphorous indicators		x		Decrease
Count species: of SPI 2 taxa				Decrease
Proportion individuals: most tolerant taxa		х		Increase
Proportion species: Cyclotella taxa	Х		х	Increase
Proportion species: Green algae		x		Increase
Proportion species: high copper indicators			X	Increase
Proportion species: high DOC indicators			x	Increase
Proportion species: low total nitrogen indicators			X	Decrease
Proportion species: low total phosphorous indicators	x			Decrease
Proportion species: NHHONF taxa	X		Х	
Proportion species: non-ref indicators		x		Increase
Proportion species: SPI 4+5 taxa				Increase
Proportion species: Suriella taxa	X		Х	Increase
Proportion species: taxa requiring at least 10% oxygen	x		x	Increase

MMI results

- Why did modeling not improve MMI performance?
 - Modeling with geographic variables helped to decrease regional bias for many metrics
 - However, for some metrics, regional bias scores were still too high even after modeling
 - Minimal geographic clustering of algal communities, difficult to predict with geographic variables (same issue with O/E)
 - Algal diversity is high across the state, low at individual sites, potentially the result of highly fragmented algal communities

Low regional bias for MMI indices ...and much lower than SoCal IBI

Response to environmental gradients at reference sites

 Low bias indicated by intercept near 1, slopes near 0

Response to stressor gradients

 Responsiveness indicated by negative slope

Explore ASCI performance

https://sites.google.com/view/asci/results/figures

Choosing the best-performing indices

				Accuracy			Precision		Responsiveness		Spearmans Correlation (Rho)		
				Mean score	F	Var	Among sites (SD)	Within sites (SD)	t	Var	TN	TP	SpCond
Index	Level	Assemblage	Туре	Cal	Cal	Cal	Cal	Cal	Cal	Cal			
OE+MMI	species	diatoms	Predictive	1.00	0.34	0.13	0.14	0.07	18.68	0.50	-0.44	-0.37	-0.48
OE+MMI	species	hybrid	Predictive	1.00	2.60	0.05	0.17	0.09	17.70	0.35	-0.40	-0.36	-0.40
OE+MMI	species	sba	Predictive	1.00	1.74	0.07	0.24	0.13	20.56	0.39	-0.40	-0.43	-0.32
O/E	genus	diatoms	Predictive	1.01	0.49	-0.13	0.18	0.11	9.5	0.30	-0.305	-0.176	-0.314
O/E	genus	hybrid	Predictive	1.01	0.48	-0.18	0.25	0.16	8.0	0.20	-0.294	-0.202	-0.266
O/E	genus	sba	Predictive	1.01	0.66	-0.11	0.38	0.29	15.7	0.27	-0.316	-0.356	-0.227
MMI	species	diatoms	Null	1.00	3.31	0.16	0.17	0.09	22.30	0.52	-0.49	-0.49	-0.59
MMI	species	hybrid	Null	1.00	2.28	0.14	0.13	0.08	27.20	0.59	-0.55	-0.51	-0.55
MMI	species	sba	Null	1.00	1.34	-0.08	0.14	0.09	21.86	0.40	-0.45	-0.33	-0.41
pMMI	genus	diatoms	Pred	1.00	1.91	-0.17	0.17	0.13	22.65	0.32	-0.42	-0.41	-0.40

(p)MMIs with strongest performance

Conclusions

We have three ASCIs (specifically, MMIs for diatoms, SBA, and hybrid) for assessing biointegrity with an algal indicator in wadeable streams in California.

- Good responsiveness, low levels of regional bias make them the best options for statewide application
- O/E indices had poor performance, are not recommended
- The diatom genus-level pMMI had good performance, although not as strong as the species-level MMIs
- Next steps: Submit manuscript, develop calculators, evaluate index performance in intermittent and channelized streams

Waterboard Charge Questions

- Comment on the adequacy of the ASCIs to serve as a statewide bioassessment index applicable to most wadeable streams across CA, specifically with respect to data, statistical approaches, evaluation of performance, and soundness of findings.
- Among the 3 proposed ASCIs, which one do the SAP members think works best for determining water quality impacts to biointegrity? What about impacts due to biostimulatory substances and/or conditions? Why?
- Do the measures of performance (i.e., the accuracy, precision, responsiveness, and sensitivity) of the ASCIs indicate that they are adequate for use in most wadeable streams in CA?
- Are there specific stream-types where performance measures indicate that the indices should not be used to assess condition (or require special consideration)?
- Are there additional performance evaluations or refinements to the index that are essential and that can be done with available data?
- Are there any caveats or cautions that should be exercised when using the ASCIs to assess biological condition?
- Are there technical ways to address stakeholder concerns?

Bonus slides

Engineered streams

- Comparing index performance in natural versus engineered streams
- Some engineered streams are able to score above the 10th percentile of reference
- Do index scores respond to stress in engineered streams?

Intermittent streams

Diatom MMI SBA MMI Hybrid MMI

- Comparing index performance in for reference sites in intermittent streams
- Are intermittent streams able to score above the 10th percentile of reference?
- Do index scores respond to stress in intermittent streams?

Genus-level MMI

Genus-level MMI

Description	Diatom	SBA	Hybrid	Diatom-genus	Response to stress
Count species: BCG 3 taxa	Х	Х	Х		Increase
Count species: high copper indicators		Х			Increase
Count species: high DOC indicators		Х			Increase
Count species: low total phosphorous indicators		Х			Decrease
Count species: of SPI 2 taxa				x	Decrease
Proportion individuals: most tolerant taxa		х			Increase
Proportion species: Cyclotella taxa	х		х	x	Increase
Proportion species: Green algae		Х			Increase
Proportion species: high copper indicators			x		Increase
Proportion species: high DOC indicators			X		Increase
Proportion species: low total nitrogen indicators			X		Decrease
Proportion species: low total phosphorous indicators	x				Decrease
Proportion species: NHHONF taxa	x		х		
Proportion species: non-ref indicators		x			Increase
Proportion species: SPI 4+5 taxa				x *	Increase
Proportion species: Suriella taxa	х		Х	х	Increase
Proportion species: taxa requiring at least 10% oxygen	x		X		Increase
Richness: NAHON taxa				х	Increase
Proportion species: Gomphonema taxa				Х	Decrease
Proportion species: least tolerant taxa				Х	Decrease

^{*}denotes predictive metric

ASCI interactive website

Algal MMIs vs. SoCal IBI

Diatom MMI scores

Soft-algae MMI scores

Hybrid MMI scores

Table 1. Performance measures to evaluate the ASCI. pMMI = predictive multimetric index, and observed (O)/ expected (E) taxa index at calibration (Cal) sites. For accuracy tests, only reference sites were used. Accuracy: mean score (ref) = mean score of reference sites (* indicates value is mathematically fixed at 1); F = F-statistic for differences in scores at reference calibration sites among 5 PSA regions (Central Valley); Var = variance in index scores explained by natural gradients at reference sites. Precision: among sites = standard deviation of scores at reference calibration and validation sites with multiple samples. Responsiveness: t = t-statistic for difference between mean scores at reference and stressed sites, var = variance in index scores explained by human-activity gradients at all sites. Red scores indicate lower (worse) performance scores for each measure.

					Accuracy		Prec	ision	Respon	siveness	Spearm	ans Correlati	on (Rho)
				Mean score	F	Var	Among sites (SD)	Within sites (SD)	t	Var	TN	TP	SpCond
Index	Level	Spp	Туре	Cal	Cal	Cal	Cal	Cal	Cal	Cal			
O/E+MMI	genus/species	diatoms	Predictive	1.00	0.34	0.13	0.14	0.07	18.7	0.50	-0.44	-0.37	-0.48
O/E+MMI	genus/species	hybrid	Predictive	1.00	2.60	0.05	0.17	0.09	17.7	0.35	-0.40	-0.36	-0.40
O/E+MMI	genus/species	soft-algae	Predictive	1.00	1.74	0.07	0.24	0.13	20.6	0.39	-0.40	-0.43	-0.32
O/E	genus	diatoms	Predictive	1.01	0.49	-0.13	0.18	0.11	9.5	0.30	-0.31	-0.18	-0.31
O/E	genus	hybrid	Predictive	1.01	0.48	-0.18	0.25	0.16	8.0	0.20	-0.29	-0.20	-0.27
O/E	genus	soft-algae	Predictive	1.01	0.66	-0.11	0.38	0.29	15.7	0.27	-0.32	-0.36	-0.23
MMI	species	diatoms	Null	1.00	3.31	0.16	0.17	0.09	22.3	0.52	-0.49	-0.49	-0.59
MMI	species	hybrid	Null	1.00	2.28	0.14	0.13	0.08	27.2	0.59	-0.55	-0.51	-0.55
MMI	species	soft-algae	Null	1.00	1.34	-0.08	0.14	0.09	21.9	0.40	-0.45	-0.33	-0.41
pMMI	genus	diatoms	Pred	1.00	1.91	-0.17	0.17	0.13	22.7	0.32	-0.42	-0.41	-0.40

AlgaeField	AlgaeValue	AlgaeValueDescr
OxygenRequirements	DO_30	>30% DO saturation
OxygenRequirements	DO_50	>50% DO saturation
OxygenRequirements	DO_75	>75% DO saturation
OxygenRequirements	DO_10	about 10% DO saturation or less
OxygenRequirements	DO_100	nearly 100% DO Saturation
Saprobity	AMPS	alpha-meso/polysaprobous
Saprobity	AM	alpha-mesosaprobous
Saprobity	BM	beta-mesosaprobous
Saprobity	OS	oligosaprobous
Saprobity	PS	polysaprobous
TrophicState	E	Eutrophic
TrophicState	I	Indifferent
TrophicState	M	Mesotrophic
TrophicState	ME	Mesotrophic-Eutrophic
TrophicState	0	Oligotrophic
TrophicState	OM	Oligotrophic-Mesotrophic
TrophicState	PH	Polytrophic (Hypereutrophic)
NitrogenUptakeMetabolism	NAHON	N-autotrophic-high organic N
NitrogenUptakeMetabolism	NALON	N-autotrophic-low organic N
NitrogenUptakeMetabolism	NHHONF	N-heterotrophic-high organic N (facultative)
NitrogenUptakeMetabolism	NHHONO	N-heterotrophic-high organic N (obligate)