Algal Stream Condition Index (ASCI)

Susie Theroux
December 12, 2018

Once upon a time...

- GOAL:
- Develop a statewide algal index
- APPROACH:
- Model the ASCl after the CSCl
- Develop an Observed to Expected (O/E) and a MultiMetric Index (MMI) and a combined version
- Develop for diatoms, soft-algae, and hybrid

Results

- GOAL:

- Developed statewide algal indices!
- DETAILS:
- O/E models had poor precision
- Modeling did not improve MMI performance
- MMIs for diatoms, soft-algae, and hybrid assemblages all had great performance
- Genus-level diatom MMI had good, but not great, performance

Final ASCI(s)

- MMI indices were high-performing $\mathbb{\}}$
- O/E indices had consistently poor performance for all three assemblages 0
- Winning MMI indices did not include any predictive metrics, thus making them standard MMI indices (like the SoCal algae IBI) ${ }^{-}$_(ツ)_/-
- New algal MMIs have much less regional bias scores than the previous algal IBI therefore making them excellent options for statewide application 0$\}$

Refresher on O/E development

O/E - okay responsiveness, poor precision

How we developed MMIs

How we screened metrics

Description	Test	Threshold	Reference
Regional bias	ANOVA of metric values at reference sites by ecoregion (PSA)	F statistic < 3	Mazor et al., 2016
Sensitivity	t-test comparing reference/stressed site scores	t statistic > 10	Mazor et al., 2016
Frequency of Zero	Frequency of score $=0$	< 33% of scores	Stoddard et al., 2008
Frequency of One	Frequency of score = 1	<33\% of scores	Stoddard et al., 2008
Range of Ref scores	Median score at reference sites	>0	Stevenson and Zalack, 2013
Range of Stress scores	Median score at stressed sites	> 0	Stevenson and Zalack, 2013
Signal to Noise	Variance across all sites / variance at repeat site visits	>1	Stoddard et al., 2008
Repeat visit variation	ANOVA on repeat samplings of station codes	F statistic < 3	Mazor et al., 2016

Examples of metrics

Examples of metrics

Class	Example metrics
Tolerance	BCG taxa, Tolerant/Intolerant taxa
Motility	Highly motile taxa
Dissolved oxygen	Requires 10\% or 30\% DO
Salinity	Brackish, freshwater taxa
Saprobility	AM/AMPS taxa
Indicator classes	High N; Low P; High Cu
Diversity	Simpson; Shannon
Taxonomic group	Amphora taxa; ZHR; CRUS taxa

- Generally, trait attributes are assigned to algae at the species
- Literature
- Observations from field/lab studies
- Indicator species analysis for California
- Other diatom indices (e.g. French diatom index SPI)

MMI results - better precision and responsiveness than O/E

Metrics in each MMI

Description	Diatom	Soft-algae	Hybrid	Response to stress
Count species: BCG 3 taxa	x	x	x	Decrease
Count species: high copper indicators		x		Increase
Count species: high DOC indicators		x		Increase
Count species: low total phosphorous indicators		x		Decrease
Count species: of SPI 2 taxa				Decrease
Proportion individuals: most tolerant taxa		x		Increase
Proportion species: Cyclotella taxa	x		x	Increase
Proportion species: Green algae		x		Increase
Proportion species: high copper indicators			x	Increase
Proportion species: high DOC indicators			x	Increase
Proportion species: low total nitrogen indicators			x	Decrease
Proportion species: low total phosphorous indicators	x			Decrease
Proportion species: NHHONF taxa	x		x	
Proportion species: non-ref indicators		x		Increase
Proportion species: SPI 4+5 taxa				Increase
Proportion species: Suriella taxa	x		x	Increase
Proportion species: taxa requiring at least 10\% oxygen	x		x	Increase

MMI results

- Why did modeling not improve MMI performance?
- Modeling with geographic variables helped to decrease regional bias for many metrics
- However, for some metrics, regional bias scores were still too high even after modeling
- Minimal geographic clustering of algal communities, difficult to predict with geographic variables (same issue with O/E)
- Algal diversity is high across the state, low at individual sites, potentially the result of highly fragmented algal communities

Low regional bias for MMI indices ...and much lower than SoCal IBI

Response to environmental gradients at reference sites

- Low bias indicated by intercept near 1, slopes near 0

Response to stressor gradients

- Responsiveness indicated by negative slope

Explore ASCI performance

Relationships with environmental variables

These plots show simple correlations of index scores with selected environmental variables. The top row of relationships of the California Stream Condition Index (CSCI, macroinvertebrate infex), D18 (southern Califor (southern California soft-bodied algal index), and H2O (southern California hybrid algal index) with the select bottom panels shows relationships of the ASCI scores with the same variable. The linear fit between the ind environmental variable is shown in blue and the selected biointegrity goal for each ASCl index is shown as th squared values (proportion of explained variance) for each panel are shown in parentheses.
Select environmental variable:

https://sites.google.com/view/asci/results/figures

Choosing the best-performing indices

				Accuracy			Precision		Responsiveness		Spearmans Correlation (Rho)		
				Mean score	F	Var	Among sites (SD)	Within sites (SD)	t	Var	TN	TP	SpCond
Index	Level	Assemblage	Type	Cal									
OE+MMI	species	diatoms	Predictive	1.00	0.34	0.13	0.14	0.07	18.68	0.50	-0.44	-0.37	-0.48
$\mathrm{OE}+\mathrm{MMI}$	species	hybrid	Predictive	1.00	2.60	0.05	0.17	0.09	17.70	0.35	-0.40	-0.36	-0.40
$\mathrm{OE}+\mathrm{MMI}$	species	sba	Predictive	1.00	1.74	0.07	0.24	0.13	20.56	0.39	-0.40	-0.43	-0.32
O/E	genus	diatoms	Predictive	1.01	0.49	-0.13	0.18	0.11	9.5	0.30	-0.305	-0.176	-0.314
O/E	genus	hybrid	Predictive	1.01	0.48	-0.18	0.25	0.16	8.0	0.20	-0.294	-0.202	-0.266
O/E	genus	sba	Predictive	1.01	0.66	-0.11	0.38	0.29	15.7	0.27	-0.316	-0.356	-0.227
MMI	species	diatoms	Null	1.00	3.31	0.16	0.17	0.09	22.30	0.52	-0.49	-0.49	-0.59
MMI	species	hybrid	Null	1.00	2.28	0.14	0.13	0.08	27.20	0.59	-0.55	-0.51	-0.55
MMI	species	sba	Null	1.00	1.34	-0.08	0.14	0.09	21.86	0.40	-0.45	-0.33	-0.41
pMMI	genus	diatoms	Pred	1.00	1.91	-0.17	0.17	0.13	22.65	0.32	-0.42	-0.41	-0.40

(p)MMIs with strongest performance

Conclusions

We have three ASCIs (specifically, MMIs for diatoms, SBA, and hybrid) for assessing biointegrity with an algal indicator in wadeable streams in California.

- Good responsiveness, low levels of regional bias make them the best options for statewide application
- O/E indices had poor performance, are not recommended
- The diatom genus-level pMMI had good performance, although not as strong as the species-level MMIs
- Next steps: Submit manuscript, develop calculators, evaluate index performance in intermittent and channelized streams

Waterboard Charge Questions

- Comment on the adequacy of the ASCIs to serve as a statewide bioassessment index applicable to most wadeable streams across CA, specifically with respect to data, statistical approaches, evaluation of performance, and soundness of findings.
- Among the 3 proposed ASCIs, which one do the SAP members think works best for determining water quality impacts to biointegrity? What about impacts due to biostimulatory substances and/or conditions? Why?
- Do the measures of performance (i.e., the accuracy, precision, responsiveness, and sensitivity) of the ASCls indicate that they are adequate for use in most wadeable streams in CA?
- Are there specific stream-types where performance measures indicate that the indices should not be used to assess condition (or require special consideration)?
- Are there additional performance evaluations or refinements to the index that are essential and that can be done with available data?
- Are there any caveats or cautions that should be exercised when using the ASCIs to assess biological condition?
- Are there technical ways to address stakeholder concerns?

Bonus slides

Engineered streams

Intermittent streams

- Comparing index performance in for reference sites in intermittent streams
- Are intermittent streams able to score above the $10^{\text {th }}$ percentile of reference?
- Do index scores respond to stress in intermittent streams?

Genus-level MMI

Soft-algae

screening thresholds

Genus-level MMI

Description	Diatom	SBA	Hybrid	Diatom-genus	Response to stress
Count species: BCG 3 taxa	X	X	X		Increase
Count species: high copper indicators		x			Increase
Count species: high DOC indicators		X			Increase
Count species: low total phosphorous indicators		X			Decrease
Count species: of SPI 2 taxa				X	Decrease
Proportion individuals: most tolerant taxa		x			Increase
Proportion species: Cyclotella taxa	X		X	X	Increase
Proportion species: Green algae		X			Increase
Proportion species: high copper indicators			X		Increase
Proportion species: high DOC indicators			x		Increase
Proportion species: low total nitrogen indicators			X		Decrease
Proportion species: low total phosphorous indicators	X				Decrease
Proportion species: NHHONF taxa	x		X		
Proportion species: non-ref indicators		X			Increase
Proportion species: SPI 4+5 taxa				x*	Increase
Proportion species: Suriella taxa	X		X	X	Increase
Proportion species: taxa requiring at least 10\% oxygen	x		X		Increase
Richness: NAHON taxa				X	Increase
Proportion species: Gomphonema taxa				X	Decrease
Proportion species: least tolerant taxa				X	Decrease

*denotes predictive metric

ASCl interactive website

Algal Stream Condition Index
Select biointegrity goal:
Ref10

Score distributions

By Site types By PSA regions Static Maps
Select index:
MMI

Relationships with environmental variables
Select environmental variable:

Algal MMIs vs. SoCal IBI

Statewide algal index

Diatom MMI scores

Soft-algae MMI scores

Hybrid MMI scores

Table 1. Performance measures to evaluate the ASCI. pMMI = predictive multimetric index, and observed (O)/ expected (E) taxa index at calibration (Cal) sites. For accuracy tests, only reference sites were used. Accuracy: mean score (ref) = mean score of reference sites (* indicates value is mathematically fixed at 1); $\mathrm{F}=\mathrm{F}$-statistic for differences in scores at reference calibration sites among 5 PSA regions (Central Valley); Var = variance in index scores explained by natural gradients at reference sites. Precision: among sites = standard deviation of scores at reference sites; within sites $=$ standard deviation of within-site residuals for reference calibration and validation sites with multiple samples. Responsiveness: $t=t$-statistic for difference between mean scores at

				Accuracy			Precision		Responsiveness		Spearmans Correlation (Rho)		
				Mean score	F	Var	Among sites (SD)	Within sites (SD)	t	Var	TN	TP	SpCond
Index	Level	Spp	Type	Cal									
O/E+MMI	genus/species	diatoms	Predictive	1.00	0.34	0.13	0.14	0.07	18.7	0.50	-0.44	-0.37	-0.48
O/E+MMI	genus/species	hybrid	Predictive	1.00	2.60	0.05	0.17	0.09	17.7	0.35	-0.40	-0.36	-0.40
O/E+MMI	genus/species	soft-algae	Predictive	1.00	1.74	0.07	0.24	0.13	20.6	0.39	-0.40	-0.43	-0.32
O/E	genus	diatoms	Predictive	1.01	0.49	-0.13	0.18	0.11	9.5	0.30	-0.31	-0.18	-0.31
O/E	genus	hybrid	Predictive	1.01	0.48	-0.18	0.25	0.16	8.0	0.20	-0.29	-0.20	-0.27
O/E	genus	soft-algae	Predictive	1.01	0.66	-0.11	0.38	0.29	15.7	0.27	-0.32	-0.36	-0.23
MMI	species	diatoms	Null	1.00	3.31	0.16	0.17	0.09	22.3	0.52	-0.49	-0.49	-0.59
MMI	species	hybrid	Null	1.00	2.28	0.14	0.13	0.08	27.2	0.59	-0.55	-0.51	-0.55
MMI	species	soft-algae	Null	1.00	1.34	-0.08	0.14	0.09	21.9	0.40	-0.45	-0.33	-0.41
pMMI	genus	diatoms	Pred	1.00	1.91	-0.17	0.17	0.13	22.7	0.32	-0.42	-0.41	-0.40

AlgaeField

OxygenRequirements
OxygenRequirements
OxygenRequirements
OxygenRequirements
OxygenRequirements
Saprobity
Saprobity
Saprobity
Saprobity
Saprobity
TrophicState
TrophicState
TrophicState
TrophicState
TrophicState
TrophicState
TrophicState
NitrogenUptakeMetabolism
NitrogenUptakeMetabolism
NitrogenUptakeMetabolism
NitrogenUptakeMetabolism

AlgaeValue
DO 30
DO_50
DO_75
DO_10
DO_100
AMPS
AM
BM
OS
PS
E
I
M
ME
O
OM
PH
NAHON
NALON
NHHONF
NHHONO

AlgaeValueDescr
>30\% DO saturation
$>50 \%$ DO saturation
>75\% DO saturation
about 10\% DO saturation or less
nearly 100\% DO Saturation
alpha-meso/polysaprobous
alpha-mesosaprobous
beta-mesosaprobous
oligosaprobous
polysaprobous
Eutrophic
Indifferent
Mesotrophic
Mesotrophic-Eutrophic
Oligotrophic
Oligotrophic-Mesotrophic
Polytrophic (Hypereutrophic)
N -autotrophic-high organic N
N -autotrophic-low organic N
N -heterotrophic-high organic N (facultative)
N -heterotrophic-high organic N (obligate)

