Cyanobacterial Harmful Algal Blooms

An Increasing Risk to Human Health & Ecosystem Sustainability

Ken Hudnell, PhD

US EPA, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Neurotoxicology Division

California and Oregon Workshops on Cyanobacterial Blooms in the Klamath River, November 8&9, 2005

ORD Research Center, RTP, NC

۲

RESEARCH & DEVELOPMENT

Cyanobacterial Harmful Algal Blooms (CHABS): Recent Area of Science

Number of Articles Cited in CHAB Search 1960-2004

Wayne Carmichael

۲

RESEARCH & DEVELOPMENT

The Discipline of CyanoHABs

- 1980. First International Conference On Toxic Cyanobacteria. Proceedings entitled: "The Water Environment Algal Toxins and Health". Plenum Press, 1981 (ed. by WW Carmichael).
- 1993. Bath, UK; 1995. Bornholm, DK.
- 1998. 4th ICTC. Beaufort, NC, USA.
- 2001. 5th ICTC. Noosa, Queensland, AUS.
- 2004. 6th ICTC. Bergen, Norway.

• 2005. ISOC-HAB. 1st Government Symposium

RESEARCH & DEVELOPMENT

Overview

- ISOC-HAB: The Interagency, International Symposium on Cyanobacterial Harmful Algal Blooms, September 6-10, 2005
- Legislative Drivers, Participants & Products
- Theoretical Framework
- Cyanobacteria & their Toxins
 - * Microcystin Effects
- Occurrence
- Risk Assessment
- Causes, Prevention & Mitigation
- Future

RESEARCH & DEVELOPMENT

ISOC-HAB Legislative Drivers, Participants, Topics & Products

RESEARCH & DEVELOPMENT

ISOC-HAB Legislative Drivers

Clean Water Act

* EPA authority to regulate recreational waters

Safe Drinking Water Act
 * EPA authority to regulate drinking waters
 - Cyanobacteria & their toxins are on the CCL2

 Harmful Algal Bloom and Hypoxia Research & Control (HABHRCA) Act Reauthorized & Expanded
 Now Includes Freshwater Harmful Algal Blooms
 Mandates Interagency Products on Cyanobacteria

RESEARCH & DEVELOPMENT

ISOC-HAB Participants & Topics

- > 32 Member Organizing Committee K. Hudnell, Lead
- > 200+ Attendees, 94 Invited Participants, 25 Speakers * Speaker Charges - State of the Science
- Six Main Session Topics & Workgroups
 * Workgroup Charges Identify & Prioritize Research
 - Causes, Prevention, Mitigation & Treatment
 - Toxins
 - Effects

- Occurrence of Blooms & Toxins
- Exposure Assessment
- Risk Assessment

RESEARCH & DEVELOPMENT

ISOC-HAB Products

Monograph Published by Springer Press in the Series, Advances in Experimental Medicine & Biology, Spring, 2006. Presented to HABHRCA Task Force to Help Meet Mandates

- Synopsis National Research Plan on CHABS
- 6 Workgroup Reports Research Needs
- 25 Speaker Papers State of the Science
- Multiple Poster Abstracts Latest Research

٢

RESEARCH & DEVELOPMENT

Theoretical Framework

RESEARCH & DEVELOPMENT

RESEARCH & DEVELOPMENT

Cyanobacteria & their Toxins

RESEARCH & DEVELOPMENT

Toxic Cyanobacteria Genera ~3.5 Billion Years Old **Microcystis** Unicellular, no **Prokaryotic, Asexual** heterocyst

Lyngbya, Oscillatoria Filamentous, no heterocyst

Cylindrospermopsis Anabaena, Planktothrix, Aphanizomenon Filamentous, heterocyst

RESEARCH & DEVELOPMENT

Many Genera Make the Same Toxin Many Genera Make Multiple Toxins

Anabaena, Aphanocapsa, Microcystis, Nostoc, Oscillatoria, Radiocystis, Hapalosiphon

Anabaena, Aphanizomenon, Oscillatoria

Anabaena, Oscillatoria

Aphanizomenon, Cylindrospermopsis, Umezakia

Anabaena, Aphanizomenon, Cylindrospermopsis, Lyngbya **Cyclic Peptides Microcystins Alkaloids** Anatoxin-a Anatoxin-a(s) Cylindrospermopsin Saxitoxin Neosaxitoxin

RESEARCH & DEVELOPMENT

Cyanoto	xins	s are Hig	hly Potent	
Compounds & LD ₅₀ (ug/kg)				
Saxitoxin	9	Ricin	0.02	
Anatoxin-a(s)	20	Cobra	toxin 20	
Microcystin LR	50	Curar	e 500	
Anatoxin-a	50	Strych	nnine 2000	
<u>Class</u>		MW	<u>Source</u>	
Proteins		10,000-	Culture/Extract/	
		100,000	Purify	
Cyanotoxins		50-500	Culture/Extract/	
			Purify	
Alkaloid Toxins		150-300	Synthesize	
Chemical Weap	ons	<50-300	Synthesize	
RESEARCH & DEVELOPMENT Building a scientific foundation for sound environmental decisions				

Many Cyanotoxins Unidentified

Crude Cell Extracts Always More Toxic than Pure Toxin

RESEARCH & DEVELOPMENT

MS/MS analysis of Copco Sample 222-1

RESEARCH & DEVELOPMENT

Microcystis aeruginosa

Microcystins

- > ~80 analogues
- LD50 (ip, mouse, 24hr): 50 µg/kg
- Require active uptake by "bile acid transporter" concentrates the toxin
- Inhibit protein phosphatases 1 and 2A
- Loss of regulation of cytoskeleton, cell cycle, general metabolism, apoptosis

RESEARCH & DEVELOPMENT

Microcystins and Hepatotoxicity

MICROFILAMENTS (red threads in micrographs), structural components of cells, are usually quite long, as in the rat hepatocyte at the left. But after exposure to microcystins (riaht), microfilaments collapse toward the nucleus (blue). (This cell, like many healthy hepatocytes, happens to have two nuclei.) Such collapse helps to shrink hepatocytes-which normally touch one another and touch sinusoidal capillaries (left drawing). Then the shrunken cells separate from one another and from the sinusoids (riaht drawina). The cells of the sinusoids separate as well, causing blood to spill into liver tissue. This bleeding can lead swiftly to death.

NORMAL LIVER

LIVER AFTER TOXINS ACT

Wayne Carmichael, Scientific American, January, 1994

RESEARCH & DEVELOPMENT

Human Microcystin Poisonings

- 1931: USA, Illness in 5000-8000 people drinking water from Ohio & Potomac rivers during *Microcystis* Bloom (Veldee 1931, Tisdale 1931)
- 1959: Canada, Microcystis & Anabaena bloom recreational water, animals and humans with multiplesystem illness. Organisms isolated from physician's stool sample (Dillenberg 1960)
- 1981: Australia, *Microcystis* in drinking water & elevated liver enzymes (liver damage) in population (Falconer 1983)
- 1988: Brazil, Microcystis bloom in reservoir. 2000 Gl illnesses over 42 Days, 88 Deaths (Teixeira 1993)
- 1989: England, 10 soldiers with severe illness after swimming/canoeing in *Microcystis* Bloom (Turner 1990)
- 1994: Sweden, Gl illness in 121/304, MC in drinking H20 RESEARCH & DEVELOPMENT

Evidence for Tumor Promotion by

Microcystins

•Epidemiology in China: Contaminated drinking water ↔ primary liver and colon cancer.

Injection of toxin ± initiator: Increased size/number of liver cancer precursors.

•Oral *M. aeruginosa.* extract: Skin papillomas larger/heavier. No effect on duodenal tumours or lymphoma

Andrew Humpage

RESEARCH & DEVELOPMENT

Building a scientific foundation for sound environmental decisions

Colon cancer precursors larger.

Microcystin in Aquatic Environment

RESEARCH & DEVELOPMENT

Microcystin LR Inhibits Plant Growth

Mustard seedlings, one week old, MC-LR 0--20 µg/ml

Jussi Meriluoto

RESEARCH & DEVELOPMENT

RESEARCH & DEVELOPMENT

Occurrence Worldwide

Countries Exhibiting One or More Documented CyanoHAB Events

ISOC-HAB Occurrence Workgroup, Wayne Carmichael

RESEARCH & DEVELOPMENT

Number of CHABS Reported by Continent

ISOC-HAB Occurrence Workgroup, Wayne Carmichael

RESEARCH & DEVELOPMENT

Occurrence North America

RESEARCH & DEVELOPMENT

Occurrence Northwest US

NEBRASKA EXPERIENCE Cyanobacterial Harmful Algal Blooms Steve Walker

402-471-4227

Water Quality Assessment Section Nebraska Department of Environmental Quality (NDEQ) (www.deq.state.ne.us)

RESEARCH & DEVELOPMENT

Buccaneer Bay May 4, 2004

- 2 dogs died after drinking water from buccaneer bay lake
- Lake had dense algae bloom
- Investigated by NDEQ and water samples collected
- Microcystin toxin level in water measured at 69.4 ppb
- Autopsy on dog revealed microcystin toxins in lethal concentrations

Steve Walker

RESEARCH & DEVELOPMENT

Interagency Meetings

- Nebraska Department of Environmental Quality
- Nebraska Game and Parks Commission
- Nebraska Health and Human Services System
- University of Nebraska Lincoln
- County health departments
- Natural resources districts

Steve Walker

Cyanobacteria Problems Quickly Addressed

- Excellent cooperation and quick action among government entities in Nebraska
- Monitoring and public notification strategies developed within two weeks
- ELISA lab equipment ordered and set up within two weeks

Steve Walker

RESEARCH & DEVELOPMENT

ELISA Method for Microcystin Analysis

Steve Walker

RESEARCH & DEVELOPMENT

Microcystin Analysis

۲

RESEARCH & DEVELOPMENT Building a scientific foundation for sound environmental decisions Steve Walker

Advantages of ELISA Method for Microcystin Analysis

- Semi-Quantitative Measure of Microcystin
- Quick Turnaround Times
- Relatively Easy Procedure
- Relatively Inexpensive
 - Approximately \$20/test
- Accurate & Precise
 - MDL = 0.15 ppb
 - Good Duplicate Results

Steve Walker

Cost Savings Using ELISA Tests

• NDEQ

- 700 Samples @ \$20/Sample X 2 Dilutions = \$28,000
- Contract Lab
 - Cost per Microcystin HPLC or LC/MS Analysis = \$150/Sample X 700 Samples = \$105,000
- Savings
 - **\$77,000**

۲

RESEARCH & DEVELOPMENT

Cyanobacteria Summary

- 700+ samples analyzed in 2004
 - 111 different lakes
- Health alerts (microcystins > 15 ppb)
 - 26 different lakes
- Health advisories (microcystins > 2 ppb)
 - 69 different lakes
- Longest health alert duration:
 - Carter Lake 15 weeks
 - Swan Creek Lake (5A) 14 weeks
 - Pawnee Lake 12 weeks
 - Iron Horse Trail Lake 12 weeks

Steve Walker

RESEARCH & DEVELOPMENT

Health Alerts Issued on 26 Lakes During 2004

Steve Walker

Pawnee Lake near Emerald

Steve Walker

RESEARCH & DEVELOPMENT

PAWNEE LAKE

- Observed significant bloom at east swimming beach while collecting bacteria data 7/12/04
- Microcystin analysis > 15 ppb
- Meeting with HHS and G&P
- Signs mistakenly posted at only east beach. People used the west beach and rest of lake
- Following week > 50 reports of people sick with cyanobacteria symptoms

Steve Walker

RESEARCH & DEVELOPMENT

Pawnee Lake near Emerald

Steve Walker

Building a scientific foundation for sound environmental decisions

RESEARCH & DEVELOPMENT

Florida Survey 1999-2003

J. Burns

submitted to Florida's Harmful Algal Bloom Task Force

> by the Harmful Algal Bloom Task Force Technical Advisory Group

> > and prepared by K. A. Steidinger J. H. Landsberg C. R. Tomas J. W. Burns

В

Harmful ALGAL BLOOMS ^{III} Florida

March 8 1999

RESEARCH & DEVELOPMENT Building a scientific foundation for sound environmental decisions

Microcystis Distribution

John Burns

RESEARCH & DEVELOPMENT

Microcystin YR-2000

John Burns

RESEARCH & DEVELOPMENT

Microcystins in Drinking Water Resources - Florida

* Max. environmental value = 106 ug/L

Samples

John Burns

RESEARCH & DEVELOPMENT

Exposure at the Tap?

Home Filters

Post Chloraminated Water @ WTP

RESEARCH & DEVELOPMENT

Building a scientific foundation for sound environmental decisions

John Burns

Particulate Activated Carbon

From: Gayle Newcombe, Brenton Nicholson

RESEARCH & DEVELOPMENT

Wildlife Death – St. John's Chain of Lakes in Florida

RESEARCH & DEVELOPMENT

Risk Assessment

RESEARCH & DEVELOPMENT

What are Guidelines & MCLs?

World Health Organization

"..... A guideline value represents the concentration of a constituent that does not result in any significant risk to the health of the consumer over a lifetime of consumption."

US Environmental Protection Agency

"..... The recommended maximum contaminant level must be set to prevent the occurrence of any known or anticipated health event."

RESEARCH & DEVELOPMENT

Drinking Water Guidelines

Microcystins

• WHO	1998	1 µg / L (LR)
• Brazil	2000	1 μg / L (All, Reg)
• France	2001	1 µg / L (LR)
Australia	2001	1.3 µg / L (LR Tox Eq)
Canada	2002	1.5 µg / L (LR Tox Eq)
New Zealand	2005	1 µg / L (LR Tox Eq)

Mike Burch

RESEARCH & DEVELOPMENT

Deriving the WHO Guideline for Microcystin LR

- Microcystin has been treated as a threshold toxicant – *i.e. non-genotoxic, non-carcinogenic*
- Tolerable Daily Intake (TDI) [i.e. Reference Dose (RfD] was calculated from NOAEL (40 µg/kg/day) in 13-week sub-chronic oral mouse dosing study with MC-LR
- Uncertainty Factors: x 10 intraspecies, x 10 interspecies, x 10 for limitations of data – lack of data on chronic toxicity and carcinogenicity = Total UF x 1000
- GV (MCL) = $\frac{\text{TDI x BW x P}_{\text{intake}}}{\text{Daily Consumption}} = \frac{0.04 \times 60 \text{kg x } 0.8}{2L} = 0.96}{2L}$

RESEARCH & DEVELOPMENT

Recreational Water Guidelines

Cells Microcystins or Tox Eq

 WHO Level 1 20,000 Cells/L ~ 4 µg/L ~ 1/5 TDI/100ml Level 2 100,000 Cells/L ~ 20 µg/L ~ TDI/100ml Level 3 Surface Scum ~ >>>>> TDI/100ml 'Immediate action to control scum contact' (Chorus & Bartram, 1999)
 France Same as WHO <u>Biovolume</u>

- Australia Level 1 50,000 Cells/L ~ 10 µg/L, >4 mm³/L Level 2 Biovolume > 10 mm³/L or Scum
- Netherlands 1 Level 20 µg MCY-LR/L
- Germany Level 1 <10 $\mu g/L,$ Level 2 >10-<100 $\mu g/L$ Level 3 > 100 $\mu g/L$ Mike Burch

RESEARCH & DEVELOPMENT

Causes, Prevention & Mitigation

RESEARCH & DEVELOPMENT

CHAB Control: Physical, Chemical & Biotic

Nutrient Issues

N & P enrichments are stimulatory

N:P Input ratios are important (N:P < 15 favors N₂ Fixers)

Specific chemical forms of N (i.e. nitrate, ammonium, organic N) may regulate algal community composition & toxicity

Other nutrients (Fe, trace elements)?

Hans Paerl

RESEARCH & DEVELOPMENT

Hydrodynamics

 Turbulence/Vertical Mixing (Low turbulence conditions favor cyanobacteria, especially N₂ fixers)

 Water residence time/flushing (long residence time favors cyanobacterial dominance)

Hans Paerl

RESEARCH & DEVELOPMENT

Chesapeake Bay: Remotely sensed chl-a from SeaWiFS Aircraft Simulator (SAS II) during low flow ('95) and high flow ('96) years

RESEARCH & DEVELOPMENT

Climatic Factors

 Temperature (high temperature favors cyanobacteria)

Irradiance
 (high irradiance favors most cyanobacteria)

Salinity

Selects for specific taxa

Hans Paerl

Average global surface temperatures from 1860-2000, showing deviation from the baseline 1961-1990 average temperature

CHABS: Multi-Barrier Approach To Prevention & Mitigation

Public Involvement and Awareness

Legislative and policy frameworks

Source Water Protection

Clean, safe, reliable drinking water

> Drinking Water Distribution System

Research, science and technology Drinking water Treatment Guidelines, standards, and objectives

Judy Westrick

RESEARCH & DEVELOPMENT

Watershed Approach Mike Piehler

A.Partnerships -- Those people most affected by management decisions are involved throughout and shape key decisions.

B.Geographic Focus -- Activities are directed within specific geographic areas, typically the areas that drain to surface water bodies or that recharge or overlay ground waters or a combination of both.

C.Sound Management Techniques based on Strong Science and Data --

- i.assessment and characterization of the natural resources and the communities that depend upon them;
- ii.goal setting and identification of environmental objectives based on the condition or vulnerability of resources and the needs of the aquatic ecosystem and the people within the community; iii.identification of priority problems;
- iv.development of specific management options and action plans; v.implementation; and
- vi.evaluation of effectiveness and revision of plans, as needed.

RESEARCH & DEVELOPMENT

CHABS

e.g. nutrient concentrations and/or flow regime

e.g. land use

RESEARCH & DEVELOPMENT

C-HAB prevention

Watershed conservation, restoration and rehabilitation

Terrestrial
Land-water margin
Aquatic
Atmospheric

Mike Piehler

RESEARCH & DEVELOPMENT

Recreational Water Treatment

- Watershed Management
- Aeration
- Alum addition
- Electrocoagulation
- Algicides
- Harvesting

Judy Westrick

RESEARCH & DEVELOPMENT

Drinking Water Treatment

- Treatment to remove extracellular algal toxins
 - Oxidation
 - Biologically active filters
 - Physical removal
- Treatment to remove intracellular algal toxins
 - Membrane technologies
 - Micro and ultra
 - Conventional treatment
 - Coagulation/sedimentation/filtration
 - Dissolved air floatation
 - New technologies

Judy Westrick

RESEARCH & DEVELOPMENT

Future

RESEARCH & DEVELOPMENT

ISOC-HAB Product

State of the Science
 * EPA - Sufficient for Regulatory Determination?
 - Occurrence Data

- Health Data
- Management Options Available
- * Yes
 - Risk Assessments
 - Produce Guidelines or Regulate
- * No
- > Research Priorities

ISOC-HAB Product

Research Priorities

- * Occurrence If Methods Available, Implement Unregulated Contaminate Monitoring Rule
- * Health Dose-Response Data
- * Prevention & Mitigation Watershed Management
 - Drinking Water Treatment
 - Education

National Research Plan * To CENR Task Force, to Congress * Interagency Implementation

RESEARCH & DEVELOPMENT

Thank You

RESEARCH & DEVELOPMENT