

Thomas H. Gries

Senior Sediment Specialist
Sediment Management Unit
Toxics Cleanup Program

360-407-7536 tgri461@ecy.wa.gov Copyright 2002 by Randy Glasbergen. www.glasbergen.com

"Before I begin, I'd just like to make it known that I didn't volunteer to do this presentation."

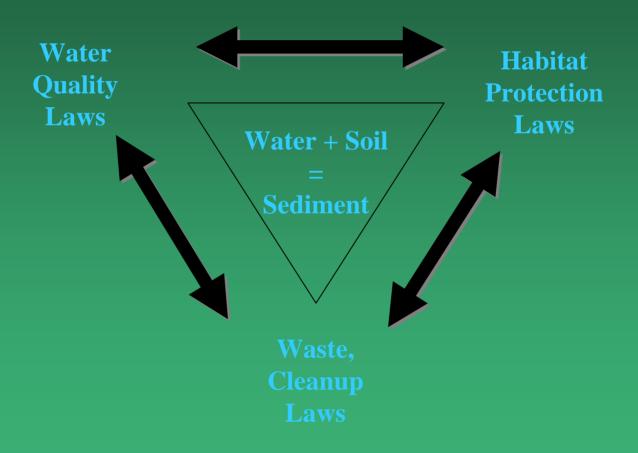
- Part 1 History
- Part 2 Overview of Sediment
- Management Standards (SMS) Rule
- Part 3 Navigation Dredging
- Part 4 Sediment Source Control
- Part 5 Sediment Cleanup
- Part 6 Lessons Learned

PART 1 - Origin #1 of SMS Rule

- "Bad news and an ugly site"
 - NOAA studies find Puget Sound flatfish have toxic compounds in tissues and organ lesions (early 1980s)
 - EPA/CERCLA lists priority sediment site Commencement Bay Tideflats (1983)
 - Led to development of sediment quality values (SQVs) for use as cleanup goals

PART 1 - Origin #2 of SMS Rule

- "Money, mandate and a plan"
 - Puget Sound Estuary Program administers
 National Estuary Program funding (1984)
 - Legislature creates Puget Sound Water Quality Authority (1985), which releases first Puget Sound Plan (1987)
 - Second plan adopted by NEP as Comp.
 Conservation & Management Plan


PART 1 - Origin #3 of SMS Rule

- "Crisis management"
 - Moratorium on disposal of dredged material from navigation projects
 - Corps/EPA fund development of interagency Puget Sound Dredged Disposal Analysis program (PSDDA Final EIS, 1988)

PART 1 - Origin #4 of SMS Rule

- "Irreproducible Crucible"
 - Crises, funding, mandate and plan ...
 - Relatively few sediment experts
 - High profile project-driven scientific advances
 - Smart, independent consultants
 - Recognition of important regulatory linkages

Sediment Management Regulatory Linkages

PART 1 - Regulatory Focus

- What should Sediment Management Standards (SMS) rule include?
 - Dredging, source control and cleanup
- What shouldn't be included?
 - Provisions having inadequate scientific basis (rule should "reserve" some sections)
 - Redundancies (rule should refer to other regulations where appropriate)

PART 1 - Process

- Clear scope and implications
- Predictability and flexibility
- Inclusive public process
- Good participation
- Clear final decision authority

PART 1 - Implementation

- SMS rule (173-204 WAC)
- Accompanying guidance documents
- Multiple funding sources
- Experienced staff
- Routine coordination
- Periodic program/rule reviews

PART 1 - Recommendations

- WA history not all applicable to CA
- Be guided by what's unique to CA today
- The obvious: recognize "drivers"; clear scope; good stakeholder involvement; sound science; listen; be responsive ...

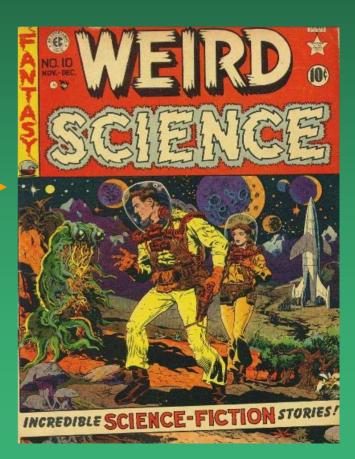
PART 1 - Recommendations

- In addition, CA "policy" should provide:
 - Clarity about level(s) of protection afforded
 - Appropriate links to related regulations
 - Narrative standards as well as ...
 - Two sets of SQOs?
 - Clear implications of policy language
 - Predictability and flexibility

PART 2 - Table of Contents

- Part I:
 - Authorities (cleanup & water quality regulations)
 - Purpose (protection of environment & human health)
 - Applicability (source control and cleanup)
 - Policies (e.g., antidegradation)
- Part II: Definitions

PART 2 - Table of Contents


- Part III: Sediment Quality Standards general features and reserved sections
- Part IV: Sediment Source Control goals and sediment impact zones
- Part V: Sediment Cleanup Standards
 - process and policies
 - creating a ranked list of sediment cleanup sites

PART 2 - Table of Contents

- Part V: Sediment Cleanup Standards
 - types of cleanups
 - cleanup studies
 - cleanup goals (SQS) and action decisions
 - sediment recovery zones
- Part VI: Sampling/Testing Plans & Records

PART 2 - "Up Front"

- Antidegradation policy
- "Latest science" not
- Incorporates PSDDA guidelines by reference

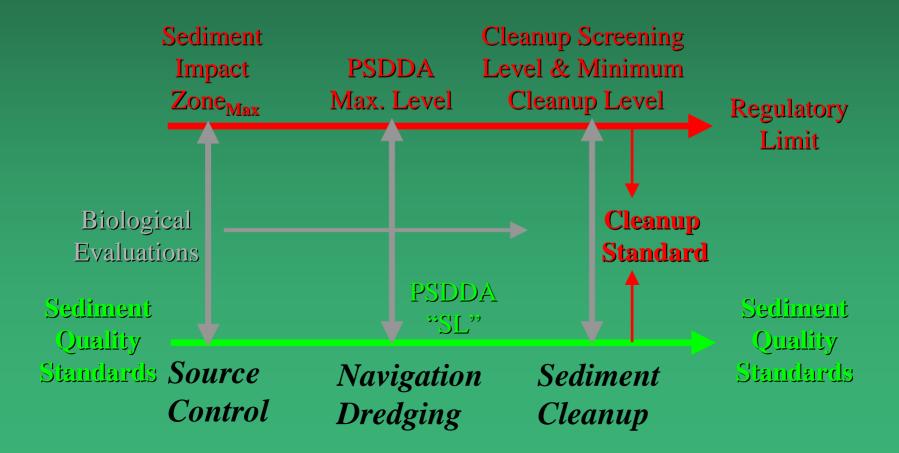
PART 2 - 'Alphabet Soup''

- Sediment Quality Benchmarks
- Sediment Quality Criteria
- Sediment Quality Guidelines
- Sediment Quality Objectives
- Sediment Quality Standards
- Sediment Quality Values

PART 2 - Development of SQVs for the SMS Rule

- Reviewed available methods
- Selected Apparent Effects Threshold (AET) approach (used to derive 1986 AETs for Commencement Bay site)
- Used 1988 AETs as basis of PSDDA guideline values and SMS sediment quality criteria

PART 2 - Why AETs?


- Preferred empirical to theoretical approach, using regional instead of national data
- Preferred relationship to regional benthic communities
- Could reflect different levels of protection, with goal of protecting 95% of all species via use of multiple sets of AETs in combination
- Predictive ability evaluated, deemed adequate

PART 2 - Regulatory Integration

- Two sets of PSDDA guidelines
 (Screening and Maximum Levels)
- Two sets of SMS criteria because of need for "Regulatory Beauty"
 - "No significant adverse effects" below lower set of guidelines/criteria
 - "Unacceptable adverse effects" above upper set of guidelines

Regulatory Beauty

"The interrelationship of sediment source control, cleanup and dredged material disposal programs"

PART 2 - Regulatory Impacts

- General
 - Costs to prepare/submit sampling and analysis plans, quality assurance project plans, etc. for agency approval
 - Costs associated with collecting sediment samples and testing for chemicals of concern
 - Costs associated with any biological testing, e.g., triggered by exceedance of SQS

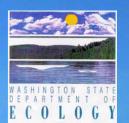
PART 2 - Regulatory Impacts

- Sediment Source Control
 - "Requirement" to sample receiving sediments (as part of NPDES or state discharge permit) *if* discharge predicted to cause significant adverse effects to benthic community
 - Areas exceeding sediment standards placed on 303(d) list of impaired water bodies, → TMDL?
 - "Requirement" to apply for Sediment Impact Zone authorization

PART 2 - Regulatory Impacts

- Sediment Cleanup
 - Areas exceeding Cleanup Screening Levels
 (CSLs) may be placed on sediment site list
 - Such areas are required to
 - conduct site investigations, e.g., RI/FS
 - cleanup down to at least the Minimum Cleanup Level (MCUL)
 - SMS used ARAR at CERCLA sediment sites

PART 3 - Navigation Dredging

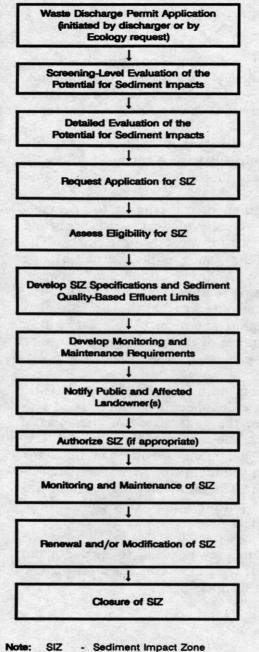

- PSDDA expanded to become Dredged Material Management Program (DMMP)
- 4 partners, U.S. Army Corps lead agency
- Predictable sediment evaluation framework
 - Standard sampling and analysis methods
 - Screening & maximum level chemical SQGs
 - Tiered biological evaluations, e.g., bioassays

PART 3 - Navigation Dredging

- Joint, weight-of-evidence determinations on suitability for open-water disposal
- Cost effective open-water disposal at one of seven permitted disposal sites
- Post-disposal, confirmatory site monitoring
- Annual program reviews
- Fifteen years of successful implementation

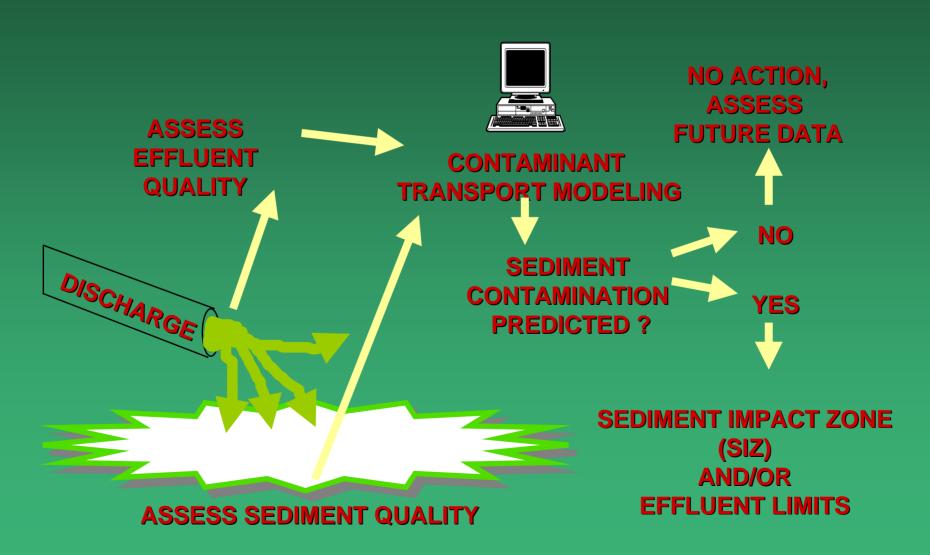
SEDIMENT MANAGEMENT ANNUAL REVIEW MEETING

May 5, 2004

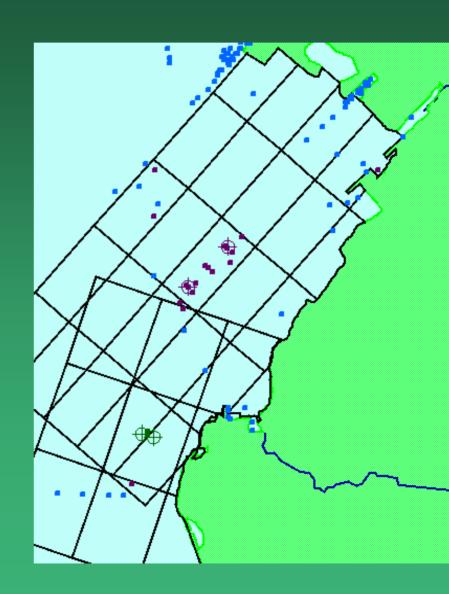


PART 4 - Sediment Source Control

A federally-approved water quality standard, SMS:

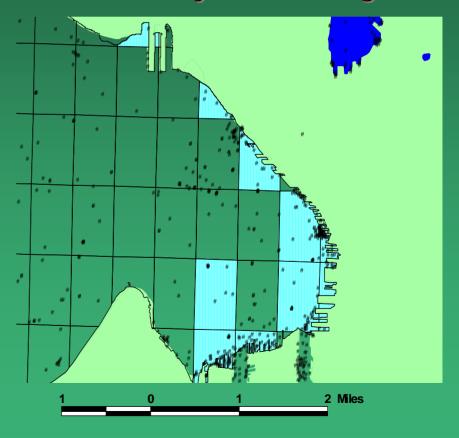

- Can influence discharge permits (NPDES or state)
- Aids in compilation/revision of 303(d) list
- Can lead to sediment TMDLs
- Can lead to authorization of sediment impact zones (SIZ)

SMU - Sediment Management Unit
WAC - Washington Administrative Code

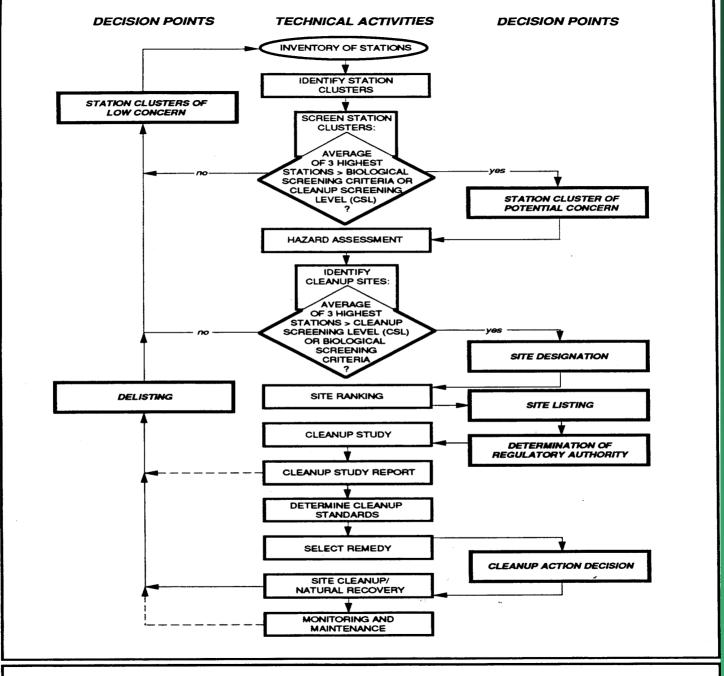

WQP - Water Quality Program

Sediment Source Control Process

Sediment Contaminant Modeling


- WASP for modeling the effects of discharges
- Used to predict future sediment concentrations based on current discharges
- Bellingham Bay

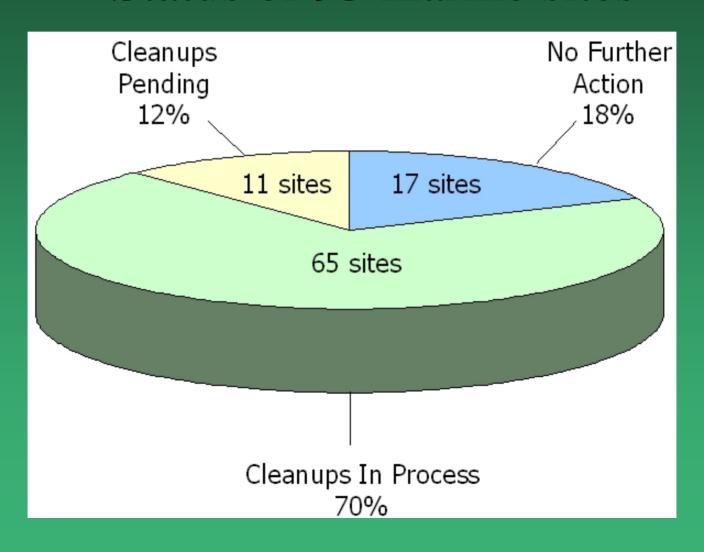
The 303d List


- Clean Water Act requirement
- List of impaired waterbodies
- Sediments are considered "water"
- Beginning of the TMDL process

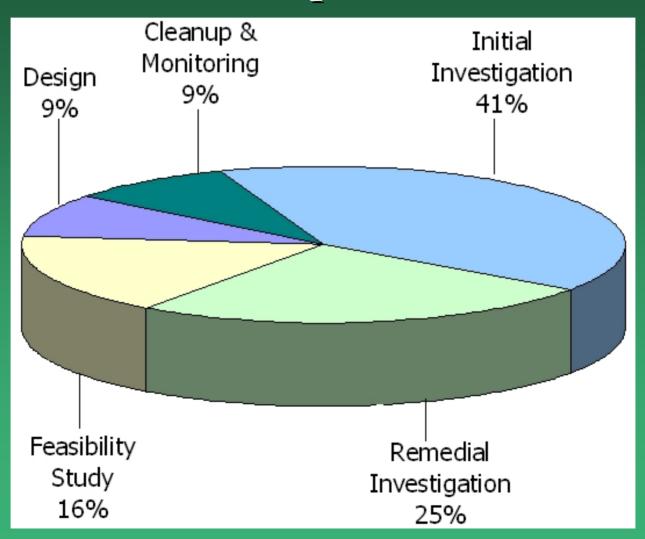
Elliot Bay 1998 listings

PART 5 - Sediment Cleanup

- Describes processes to list and rank sediment cleanup sites
- First sediment cleanup site list included 49 sites (1996)
- Approximately 120 sites now
 - 3/4 marine sediment cleanup sites
 - 1/4 freshwater sediment sites



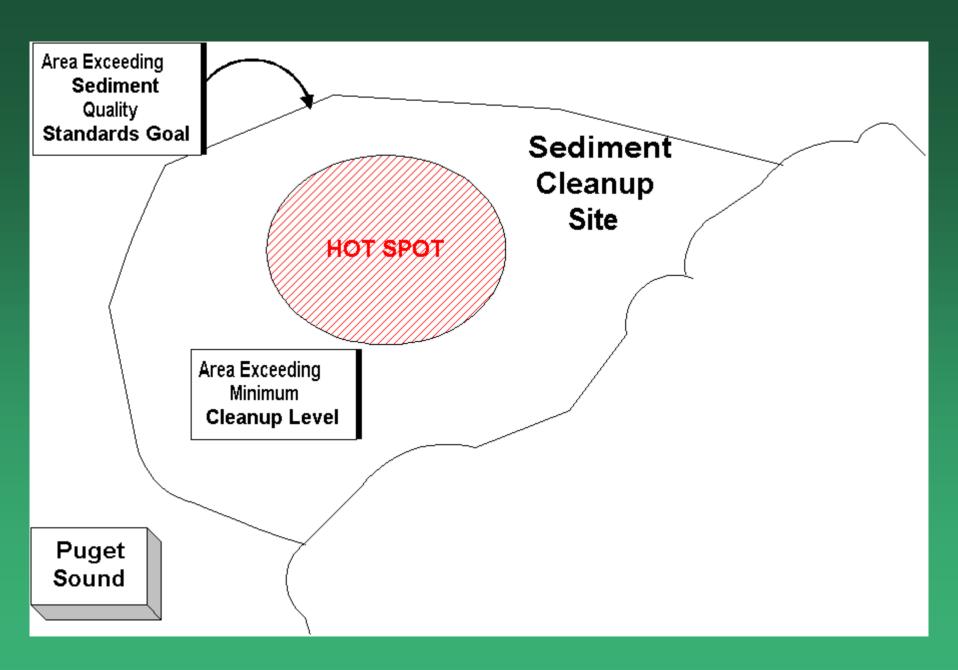
1-5

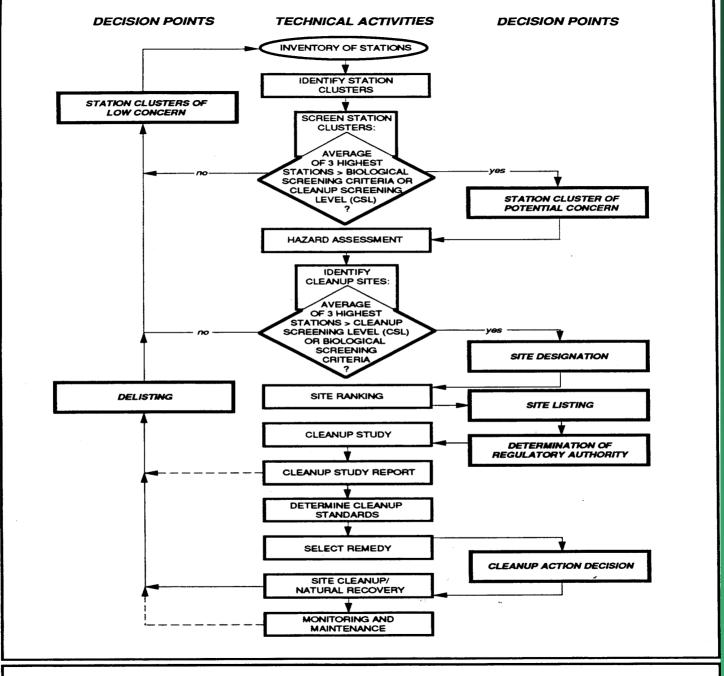

Figure 1-1. Contaminated sediments cleanup decision process.

C704-1404 6/91

Sediment Cleanup Progress Status of 93 marine sites

Sediment Cleanup Progress Phase of cleanup, 65 marine sites


PART 5 - Sediment Cleanup


- Describes a cleanup process that uses chemical and biological sediment quality standards
 - to define site and "hot spots" boundaries
 - to set remedial action objectives within an acceptable range (considerations include cost, technical feasibility and net environmental effects)

Regulatory Beauty

"The interrelationship of sediment source control, cleanup and dredged material disposal programs"

1-5

Figure 1-1. Contaminated sediments cleanup decision process.

C704-1404 6/91

PART 6 - DMMP Lessons

- Program works extremely well
- Evaluation procedures predict biological effects with low false negative error rate
- Few data difficult to interpret

PART 6 - DMMP Lessons

- >90% of all dredged material evaluated found suitable for open-water disposal
- Disposal site conditions meet goals
- "Z" sample data often important
- Need more beneficial use guidance

PART 6 - DMMP Lessons

- Program guidelines should not be used to conduct /effect cleanups
- Technical issues:
 - TBT evaluations what's the best approach?
 - Change toxicity protocols and/or guidance?
 e.g., more sensitive marine test organisms
 - Lack freshwater biological test experience
 - Need new bioaccumulation trigger values and target tissue levels

PART 6 - Source Control Lessons

- Larger outfalls often located in high energy areas so receiving sediments tend not to accumulate contaminants
- Permits for some some larger NPDES discharges do require sediment monitoring
- Smaller outfalls, especially stormwater outfalls, are another matter

PART 6 - Source Control Lessons

- What is the legally defensible way to use SQS/MCUL values to revise 303(d) list?
- How to relate sediment contamination to TMDLs?
- Case Study 1 Bellingham Bay
 - First TMDL for sediment toxics

PART 6 - Source Control Lessons

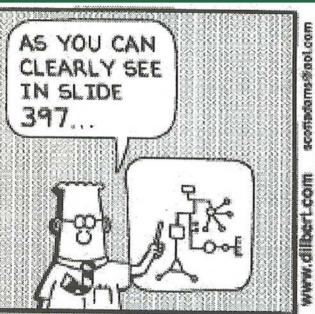
- Case Study 2 Duwamish Waterway
 - EPA cleanup lead, Ecology source control lead
 - Overall strategy (http://www.ecy.wa.gov/biblio/0409043.html)
 - 489 source control business inspections
 - Source Control Action Plans for three EPA early action sites completed or underway
 - "Hot spot" cleanup to prevent recontamination

- Need clear links between SMS rule and "parent authorities"
- Need to develop low salinity and freshwater sediment quality standards
- Sediment cleanup site decisions often being "driven" by risk to non-benthic organisms need more guidance on ecological and human health risk assessments

- Need to define how "local background" is calculated for a given contaminant?
- How to address risk to endangered species in cleanup investigations, final decisions?
- How to investigate risk at wood waste cleanup sites?

- Substantial State liability associated with contaminated sediment cleanup sites
- Has reducing cost of upland disposal affected overall time required for cleanup?
- Need for better oversight when contractors dredging contaminated sediment
- When/how to monitor for compliance with antidegradation policy?

- Major challenges to developing large-scale treatment of contaminated sediment from the Puget Sound region:
 - Unproven economies of scale and unproven markets for products
 - Unpredictable flow/supply of contaminated sediment
 - Public perception of thermal treatment


PART 6 - Bellingham Bay Pilot

- Goal to expedite environmental improvements within an urban embayment through development and implementation of a new cooperative process
 - addresses all major sediment related issues
 - involves partnerships with local government(s)
 - prioritizes cleanups, source controls, habitat protection/restoration, recreation, etc.

Bellingham Bay Demonstration Pilot

