Development of California Marine Sediment Quality Objectives Using a Multiple Line of Evidence Framework

Steven M. Bay Southern California Coastal Water Research Project

BACKGROUND

- For many years, scientists have advocated a triad approach for evaluating sediment quality
 - Individual lines of evidence; each have potential limitations

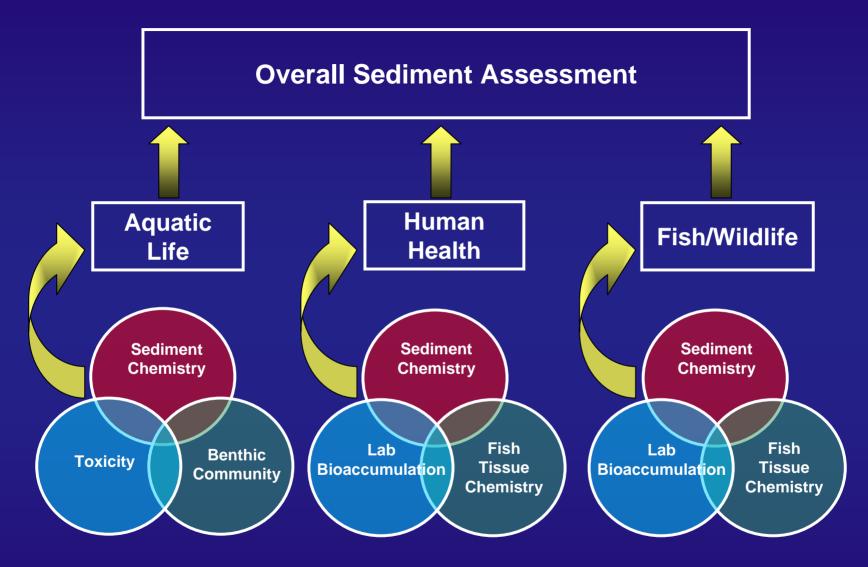
POTENTIAL FLAWS WITH INDIVIDUAL LINES OF EVIDENCE

• Chemistry

- Bioavailability poorly understood (e.g. paint chip, tar ball)
- There may be unmeasured contaminants

• Toxicity

- Confounding factors (e.g. ammonia)
- Agitation enhanced bioavailability
- Differing sensitivity among test species


Benthic infaunal assemblages

- Physical disturbance (anchor, dredging)
- Oxygen stress

BACKGROUND

- The triad has been widely used in site-specific assessments, but has not found its way into most statutory frameworks
 - Most applications are based on best professional judgment
- California's sediment quality objectives are based on multiple lines of evidence (MLOE)
 - There are many challenges in translating scientific concept into regulatory framework

SQO ASSESSMENT FRAMEWORK

CHALLENGES

 Developing methods/assessment consistency across the state

- Multiple ecoregions
- Numerous habitats
 - Initial focus on marine embayments

Standardizing data interpretation among individuals with varying expertise

- Engineers vs. Biologists

• Developing assessment thresholds

Interface between science and policy

SCIENTIFIC ACTIVITIES

• Select indicators for individual lines of evidence

- Evaluate multiple candidate indicators for each LOE
- Base recommendations on performance, conceptual basis, and practicality

• Establish thresholds for each indicator

- Quantitative
- Understand linkage to presence and severity of effects

 Develop a framework for integrating across lines of evidence

- Clear decision points
- Utility for prioritization
- Simple, yet retain scientific content

TECHNICAL REVIEW

- Indicator and assessment framework development includes several levels of technical review and input
 - Transparent process
 - Assure sound technical basis for recommendations
 - Identify issues of concern early

Scientific Steering Committee

- Experts in multiple fields
- Review methods, results interpretation, technical recommendations

Advisory Committee

- Key stakeholder groups
- Communicate conceptual models and identify implementation concerns early in development process

Agency Coordinating Committee

- Users
- Identify information needs and program conflicts

CHEMISTRY INDICATORS

- There are numerous candidate approaches and indicators for interpreting sediment chemistry data
 - Multiple empirical chemical guidelines available
 - ERM, PEL, AET, Logistic regression
 - Emphasis on mixture approaches
- Our approach is to develop a California-specific data base for evaluating multiple possible approaches
 - Includes data from more than 150 studies
 - Evaluate performance of candidates to predict toxicity and benthic community impacts

CANDIDATE CHEMISTRY INDICATORS

• Existing national Sediment Quality Guidelines

- Effects range median quotient (ERMq)
- Consensus midrange effects concentration (Consensus MEC)
- Sediment quality guidelines quotient (SQGQ1)
- Logistic regression (Pmax)

• National SQGs recalibrated to California data

- ERMq
- Pmax

New approaches

- Relationship to benthic community impacts
- Relationship to magnitude of toxicity

CHEMISTRY INDICATOR RESULTS

- Calibrated and new approaches have greater accuracy than national SQGs
 - Will recommend a combination of chemical SQGs based on toxicity and benthic community response
- Classification thresholds will be calibrated to California data
 - Greater utility and accuracy for classifying sediments
- Four categories of chemical exposure
 - Minimal potential for biological effects
 - Low potential for biological effects
 - Moderate potential for biological effects
 - High potential for biological effects

TOXICITY INDICATORS

- There are many types of toxicity tests with differing endpoints and exposure
 - Acute/survival
 - Short-term and long-term sublethal effects
- Several possible species within each type of test

Various test matrices

- Whole sediment
- Pore water, elutriate
- Sediment-water interface
- We evaluated candidate tests for suitability, feasibility, and sensitivity
 - Consistent with program objectives
 - Established methods and technically feasible
 - Likely to provide useful information

TOXICITY TEST RECOMMENDATIONS

• Use both a short-term survival and a sublethal test

• Short-term survival

- 10-day amphipod survival: *Eohaustorius, Rhepoxynius,* or *Leptocheirus*

Sublethal

- 28-day polychaete growth: Neanthes
- Embryo development/sediment water interface: Mytilus

BENTHIC ASSESSMENT CHALLENGES

Interpreting species abundances is difficult

- Samples may have tens of species and hundreds of organisms
- Indices provide a means of summarizing complex information

- Benthic species and abundances vary naturally with habitat
 - Reference condition needs to vary by habitat

• Sampling methods vary among programs

Gear type sampling area and sieve size affect species and individuals captured

BENTHIC INDICATOR DEVELOPMENT ACTIVITIES

- Determined the number of biogeographic provinces in California
 - Index calibration/validation to be conducted separately for each
 - Six habitats; defined by salinity, grain size, latitude
- Evaluated several candidate indices based on different conceptual approaches
 - Presence/abundance of indicator species
 - Community measures
 - Pollution tolerance of individual species

BENTHIC INDICATOR DEVELOPMENT RESULTS

- Calibrated and developed benthic indices for two habitats
 - Southern California embayments
 - Central San Francisco Bay
- Multiple index evaluation and validation steps
 - Classification accuracy compared to assessment by benthic ecologists
 - Repeatability across replicates
 - Independence from natural habitat gradients
- Suite of four benthic indices recommended for use

THREE LEVELS OF ASSESSMENT

Minimal exposure or no effect

Low exposure/effect

Moderate exposure/effect

High exposure/effect

THREE LEVELS OF ASSESSMENT

SAMPLING STATION ASSESSMENT CATEGORIES

- Unimpacted
- Likely unimpacted
- Possibly impacted
- Likely impacted
- Clearly impacted
- Inconclusive

THREE LEVELS OF ASSESSMENT

• Individual LOE

- Merging multiple indicators

Sampling station level

Merging MLOE

• Water body scale

- Merging multiple sampling stations
 - Uncertainty in assessment accuracy
 - Spatial variability
 - Temporal variability
 - Magnitude of impact

ADDITIONAL ASSESSMENT ELEMENTS

• Strategy for working with imperfect information

- Incomplete data
- Sites without assessment tools

• Strategy for developing chemical-specific management actions

- Chemical-specific guidelines
- Sediment TIES

• Frameworks for bioaccumulation effects assessment

- Wildlife
- Human health

Bioaccumulation Effects Case Studies

- Apply assessment framework and candidate tools to selected waterbodies
 - Demonstrate application of framework
 - Compare mechanistic model and empirical approaches
 - Refine indicators and identify key data needs

- Focus on chlorinated hydrocarbons
 - PCBs, DDT, other pesticides
 - Best understanding of linkage between sediments and tissues
 - Human health and wildlife concerns established for multiple areas

PHASE II TECHNICAL ACTIVITIES

Direct effects SQO tools for estuaries

- Update Scientific Steering, Agency, and Advisory Committees
- Compile existing sediment quality data
- Sample additional delta/estuary sites for chemistry, toxicity benthos
- Data analysis and indicator development for each LOE
- Development of indicator thresholds and data integration framework

Indirect effects SQO tools

- Compile existing tissue chemistry data
- Refine assessment framework
- Conduct case study to evaluate assessment framework and indicators