Overview of Life Cycle Cost Assessment: Case Study of LCA Alternatives Assessment of Lead-Free Cast Brass for the Potable Water Supply Components

> WRCB Stakeholder Workgroup Meeting #3 to Support Development of Water Loss Performance Standards (SB555)

> > Metropolitan Water District September 17, 2018

Peter Sinsheimer, Ph.D, MPH Executive Director UCLA Sustainable Technology & Policy Program

What is a Product Life Cycle?

What is a Life Cycle Assessment?

What is a Life Cycle Cost (LCC) Assessment?

 Conventional LCC assessment

 Range of LCC assessments

Case Study: "Lifecycle-Based Alternatives Analysis of Lead-Free Brass Substitutes in the Potable Water Supply System"

• Final Report: June 9, 2017

•

5

- Policy Context: AB1953 (1996), Federal Reduction in Lead in Drinking Water Act (2011)
- Subject of Interest: Pb-Free Brass vs Pb-Bearing Brass for Potable Water Supply Cast Components

System	NSF/ANSI				
Location	Standard	Device			
Transmission Standard 61,		Backflow preventers	Curb stops		
and Distribution	Section 8	Pressure regulators	Water meters		
		Compression fittings	Building valves		
		Strainers	Pressure tanks		
		Expansion tanks	Corporation stops		
		Meter stops	Valves and fittings		
		Check valves	Meter couplings		
		Service saddles			
End Use	Standard 61, Section 9	Single and double handled faucets	Bubblers and water coolers		
		Hot and cold water dispensers	Residential refrigerator ice makers		
		Drinking fountains	Supply stops and endpoint control valves		

- **Research Team:** UCLA and Virginia Tech
- Research Approach: Lifecycle-Base Alternatives Analysis

Lifecycle-Based Alternatives Analysis Framework

Life Cycle Stage	Impact Criteria	Sub-Criteria	Pb Brass C83600	Bi Brass C89833/36	Si Brass C87850	Si Brass C87600/01
Beginning-of-Life	Economic	Cost extracting/processing elements	Baseline			
	Environmental	Availability; energy; CO ₂ emissions	Baseline			
	Health	Exposure	Baseline			
Materials	Economic	Alloy cost; waste recycling/disposal	Baseline			
Manufacturing	Performance	Yield; metal loss	Baseline			
	Environmental	Energy; CO ₂ emissions	Baseline			
	Health	Exposure	Baseline			
Component	Economic	Component cost; waste recycling/disposal	Baseline			
Manufacturing	Performance	Applicability; yield; metal loss; machining	Baseline			
	Environmental	Energy, CO ₂ emissions, hazardous waste	Baseline			
	Health	Exposure	Baseline			
Use	Economic	Amortized cost if different useful life; reuse/recycling/disposal	Baseline			
	Performance	Useful life of component	Baseline			
	Environmental	Env. impacts if difference in useful life	Baseline			
	Health	Toxicity metal leaching	Baseline			
End-of-Life	Economic	Reuse of components and recycling components & manufacture waste	Baseline			
	Performance	Reuse/recycle/disposal of components & manufacturer waste	Baseline			
	Environmental	Energy, CO ₂ emissions	Baseline			
	Health	Exposure	Baseline			

Figure 3.11: Cost for Primary-Sourced Elements Per 100 Kg Metal Input into Alloy Manufacturing

Figure 3.8: CO₂ Emissions Attributed to Mining and Refining Elements Per 100 Kg Metal Input into Alloy Manufacturing

Figure 4.4: Total Alloy Cost and Estimated Price

Manufacturer Waste

12

Slag

Flue Dust

Table 5.8: Alternatives Assessment of Component Manufacturing – Qualitative Evaluation of Findings

				C89833/		C87600
Process	Main Criteria	Sub-Criteria	C83600	C89836	C87850	C87610
Molding	Technical	Range of components	Baseline	z	z	22
	Performance	Pattern optimization	Baseline	æ	n	n
Casting	Technical	Alloy density	Baseline	z	+	+
	Performance	Cast dimension	Baseline	z	+	×
		Pour temperature	Baseline	-	++	+
		Melt loss	Baseline	z	++	++
		Yield	Baseline	+	+	+
		Shake out time	Baseline	-	+	~
		Furnace maintenance	Baseline	z	+	+
		Casting defect rate	Baseline	z	z	×
	Environmental	Energy use	Baseline	n	+	+
	Impact	Slag recovery and reuse	Baseline	z	z	22
		Mold sand reduce	Baseline	z	+	+
		Recyclability of elements	Baseline		n	n
		Hazardous waste generation	Baseline	+	+	+
	Human Health	Fume emissions	Baseline	z	+	+
	Impacts	Lead exposure	Baseline	×	z	z
		Silica exposure	Baseline	z	+	+
	Economic	Alloy input cost	Baseline	-	++	+
	Impacts	Operating cost	Baseline	z	+	+
		Total cost		-	++	+
Machining	Technical	Tooling	Baseline	z	z	æ
	Performance	Tool life	Baseline	z	++	-
		Machine time	Baseline	z	++	-
		Throughput time	Baseline	z	++	-
	Environmental	Energy use	Baseline	-	++	_
	Impact	Hazardous coolant disposal	Baseline	z	2	22
		Coolant volume generated	Baseline	z	+	-
		Recyclability of borings	Baseline	z	22	22
	Human Health Impacts	Lead exposure	Baseline	+	+	+
	Economic	Labor cost	Baseline	×	++	-
	Impacts	Machine operating cost	Baseline	-	+	
		Total cost	Baseline	-	++	_
Component Testing	Technical Performance	Component failure rate	Baseline	2	2	×

Table 6.16: Qualitative Alternatives Assessment Use-Phase – Qualitative Evaluation of Findings

				Bi Brass		
				Brass		Si Brass
			Pb Brass	C89833/	Si Brass	C87600/
Main Criteria	Sub-Criteria	Sub-Criteria	C83600	C89836	C87850	C87610
Technical	Range of Components	Temperature sensitivity	Standard	-	=	=
Performance	Installation	Soldering quality	Standard	=	+	+
		External forces	Standard	-	=	+
	Component Life	Dezincification	Standard	=	=	=
	Expectancy	High redux water test	Standard	=	=	=
		Low redux water test	Standard	=	=	=
		Stress corrosion	Standard	=	=	=
		cracking				
Human Health Impact	Metal Toxicity in Water		Standard	++	++	++
	Leaching		Standard	++	++	++
Environmental Impacts	Resource Impacts		Standard	=	=	=
	End-of-Life Recyclability		Standard		=	=
Economic Impacts ²⁵	Component Price		Standard	-	+	+
	Component Life Cost Impact		Standard	=	=	=
	Scrap Value		Standard		=	=

Table 7.7: Restriction/Penalties on Metal Contaminants to Secondary Copper Refining, Metallo Case Study

Fines for materials containing Cu						
Elements Tolerance		Refused	Deduction of			
As	0.0 %	1.0 %	0.2 unit Cu for 0.1 unit As			
Bi	0.0 %	0.2 %	1.0 unit Cu for 0.1 unit Bi			
Cd	0.0 %	0.5 %	0.5 unit Cu for 0.1 unit Cd			
Cl	0.5 %	2.5 %	0.2 unit Cu for 0.1 unit Cl			
Ni	0.5 %	3.0 %	0.2 unit Cu for 0.1 unit Ni			
S	0.5 %	1.5 %	0.3 unit Cu for 0.1 unit S			
Sb	0.5 %	1.0 %	0.5 unit Cu for 0.1 unit Sb			
Ве	0.0 %	always				
Cr	0.0 %	0.5 %	0.2 unit Cu for 0.1 unit Cr			
F	0.0 %	2.0 %	0.3 unit Cu for 0.1 unit F			

Figure 7.8: Scrap Recovery/Disposal Rate per 100 Kg-eq Cast Brass Potable Water Supply Components

Figure 7.19: Relative End-of-Life Avoided/Unavoidable Cost Rate per 100 Kg-eq Cast Brass Potable Water Supply Components

Figure 7.16: CO₂ Emissions per 100 kg-eq Cast Brass Potable Water Supply Components

Table 9.1: Summary Alternatives Assessment Matrix of Leaded Brass to Lead-Free Substitutes by Life Cycle Stage and Major Impact Criteria

		Pb Brass C83600	Bi Brass C89833/ C89836	Si Brass C87850	Si Brass C87600/ C87610
Beginning-of-Life	Environmental Impact	Benchmark		=	=
	HealthImpact	Benchmark	=	=	=
	EconomicImpact	Benchmark		=	=
Alloy	Technical Performance	Benchmark	=	+	+
Manufacturing	Environmental Impact	Benchmark	=	+	+
	HealthImpact	Benchmark	+	+	+
	EconomicImpact	Benchmark	-	+	+
Component	Technical Performance	Benchmark	-	+	
Manufacturing	Environmental Impact	Benchmark	+	++	++
	HealthImpact	Benchmark	+	++	++
	EconomicImpact	Benchmark	-	+	-
Use	Technical Performance	Benchmark	-	=	=
	Environmental Impact	Benchmark	=	=	=
	HealthImpact	Benchmark	++	++	++
	EconomicImpact	Benchmark	-	+	-
End-of-Life	Technical Performance	Benchmark		=	=
	Environmental Impact	Benchmark		=	=
	HealthImpact	Benchmark	+	+	+
	EconomicImpact	Benchmark		=	=
Cumulative	Environmental Impact	Benchmark		+	+

Contact Information

Peter Sinsheimer, Ph.D., MPH

Executive Director UCLA Sustainable Technology & Policy Program 21-293 Center for Health Sciences 650 Charles E. Young Drive, South Los Angeles CA 90095-1772 T: 310.794-1408

E: <u>petersinsheimer@ucla.edu</u>

Box Link to Report:

https://ucla.box.com/s/owhjy0odnp91qk9firnz4u0jf7ms8ag9