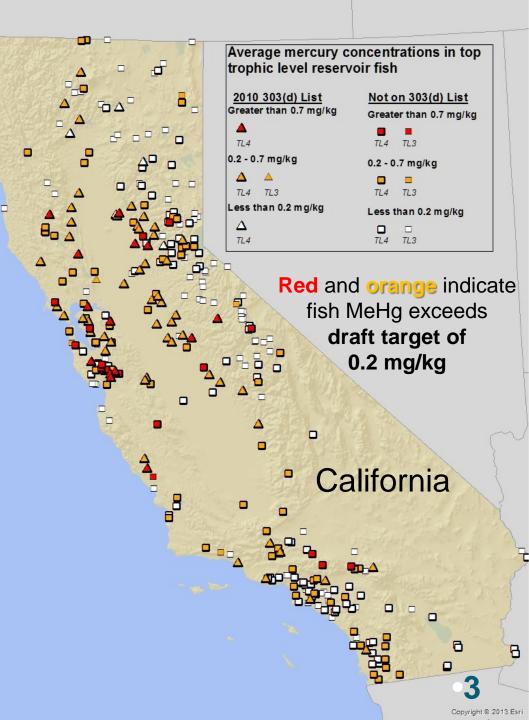
California Statewide Mercury Control Program for Reservoirs Part 1

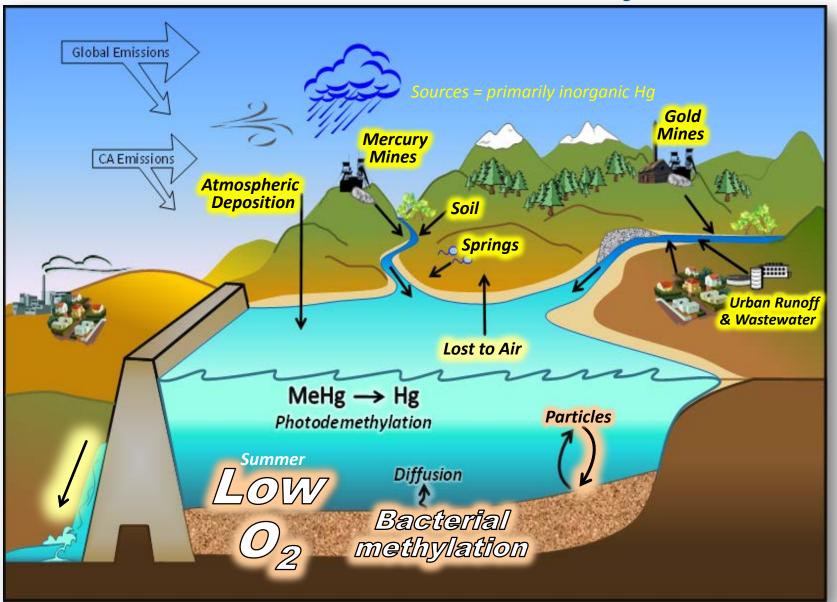
California Lake Management Society October 9, 2014

Multi-Region Team Michelle Wood, Carrie Austin, & many others

Outline

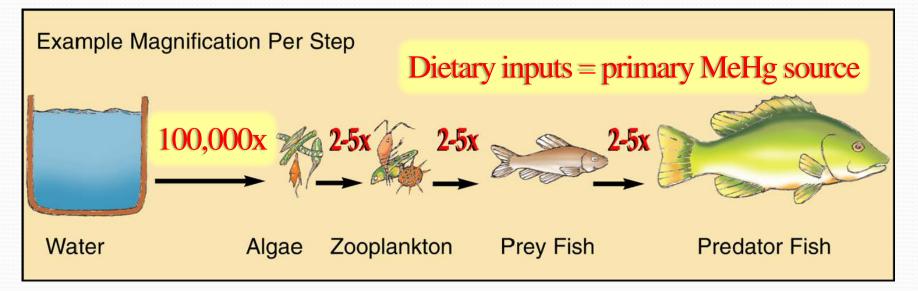


- Introduction to the California mercury problem
- Overview of mercury cycling in reservoirs
- Statistical model development
- Factors influencing reservoir fish mercury


Summary

Mercury Problem

- About ½ of the 350 reservoirs with fish data have elevated methylmercury (MeHg)
- Widespread problem
 → Statewide mercury control program



Water Chemistry

Methylmercury Biomagnification

Repeated MeHg consumption & accumulation $\rightarrow \uparrow h$ MeHg in each food chain level

Low levels ofHighest MeHgaqueous MeHg can resultis in top trophic levelin high fish MeHgfish species

Statistical Model Development

Goal: Identify driving factors for Hg bioaccumulation in CA reservoirs

Evaluated >70 Factors & >90 Reservoirs

	Reservoir	Mercury Source		
Chemical	Characteristics	Types/Rates	Land Use	
Aqueous [MeHg]	WY water level fluctuation	Atm Dep to reservoir	Latitude	
Sediment [THg]	Reservoir surface area	Wet Atm Dep to reservoir	Longitude	
Aqueous [THg]	Watershed surface area	Atm Dep to watershed	% Wetland	
[Chlorophyll-a]	Ratio of reservoir surface area to	Atm Dep to reservoir from CA	% Forests	
[Chiorophyn-a]	watershed surface area	sources	70 T OIESIS	
Upland soil [THg]	Year dam built (age)	Wet Atm Dep to watershed	% Vegetation	
[Aq MeHg]:[Chl-a]	Reservoir Elevation	Atm Dep to watershed from CA sources	% Open Water	
	Mean storage	# of Mines	% Agriculture	
	Maximum reservoir capacity	Mine Density	% Urban	
	# U/S Dams			
	Limited Data	Available	NPDES WWTP	

	Limited Data Available			
DOC	Food Chain Length	Degree of Anoxia	pН	

Statistical Model Development

- Data compilation readily available data
- 2. Fish Hg concentrations length standardized (350mm LMB)
- 3. Box-Cox power transformations
- 4. Parametric and non-parametric correlations and regressions
 - 17 predictor variables for multiple regression development
 - Predictor variables were z-score standardized

5. Best Subsets Regression

- >100,000 variable combinations
- Overall measures of quality
- Adj-R², Mallows C_p, PRESS

See Fact Sheet:

Statewide Mercury Control Program for Reservoirs

Linkage analysis

Water Board staff conducted a statistical analysis to identify the most important factors that control methylation and bioaccumulation. Overall, the analysis assessed the influence of almost 40 factors on predatory fish methylmercury concentrations "[MeHg]" in California reservoirs (Table 1). More than 90 reservoirs had a variety of data that were used in different components of the analysis. The environmental factors were initially screened using correlation coefficients similar to Table 1, and important factors were included in the multivariable model development. All data were Box-Cox power transformed to aid in the parametric statistical analyses.

Model equation:

LN [Fish methylmercury] = 0.56 x [aqueous total mercury] + 0.34 x ratio [aqueous methylmercury] / [chlorophyll-a] + 0.39 x (average water level fluctuation) - 0.91

R² = 0.83, Adjusted R² = 0.81, Predicted R² = 0.72, n = 26 reservoirs, P < 0.001

These three factors together explained the greatest amount of variability in fish methylmercury levels in California reservoirs. This model equation is supported by scientific literature and the Conceptual Model in the following ways:

- [aqueous total mercury] in reservoir water likely reflects the overall
 magnitude of mercury sources to the reservoir, and higher aqueous
 total mercury likely results in higher aqueous methylmercury
- The ratio [aqueous methylmercury] / [chlorophyll-a] represents the magnitude of methylmercury entering the food chain
- The magnitude of water level fluctuation may act upon multiple pathways of mercury cycling (methylation and bioaccumulation)

All individual coefficients were statistically significant at P<0.05, and the variables showed minimal multicollinearity (VIF<2). The model was crossvalidated using PRESS to prevent over-fitting the model. Predictor variables were z-score standardized to give them equal weights.

September 2013

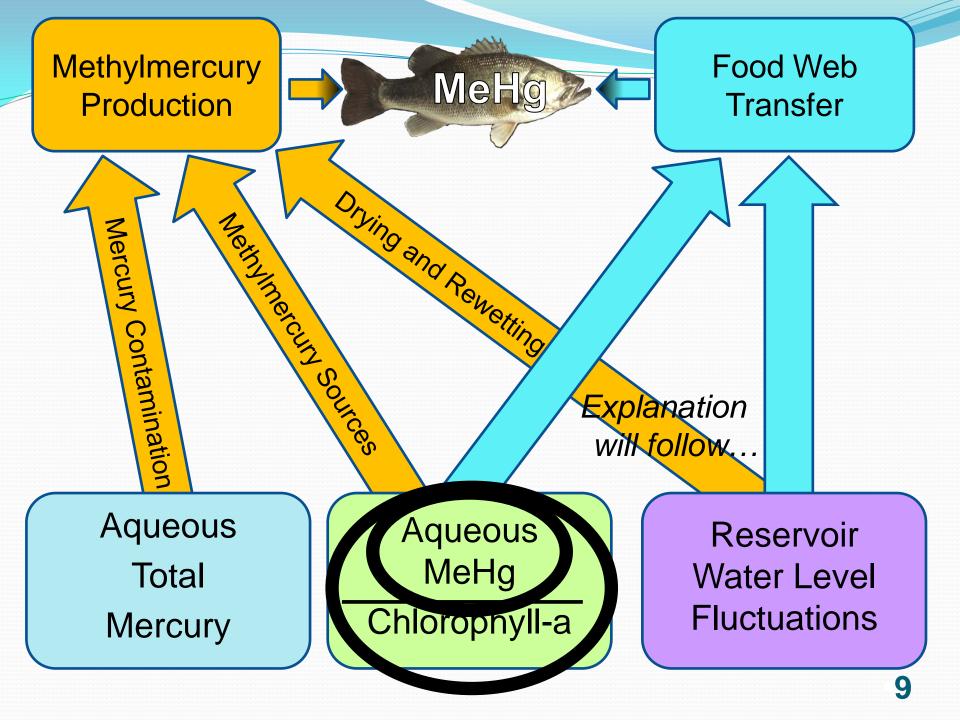
Table 1: Correlation coefficients for 350 mm standardized predatory fish [MeHg] versus reservoir and watershed factors

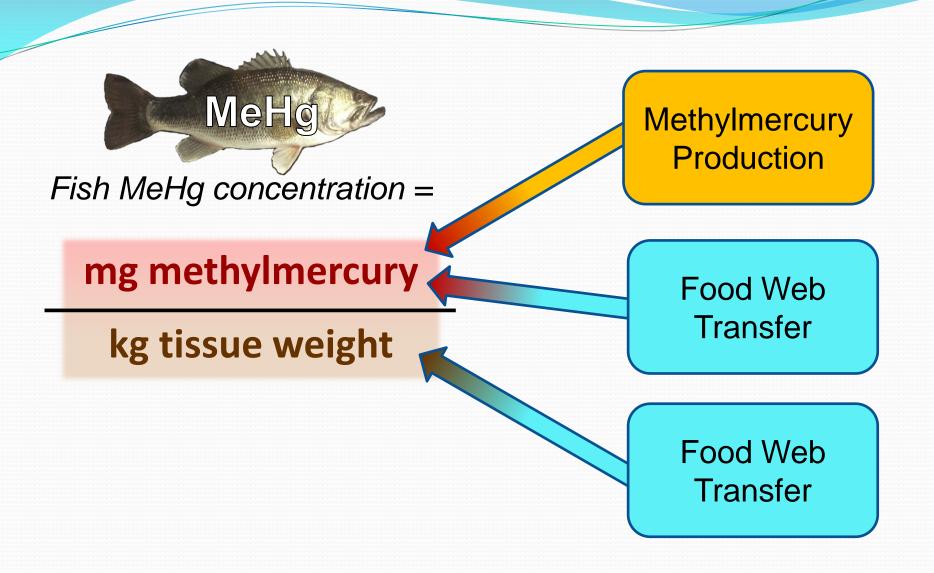
Environmental Factors*	Lambda Trans- formation	Pearson's	Spearman's Rho
Environmental Pactors		Correlation Coefficient	
[ag MeHg] Geomean / [Chl-a] Geomean	0	0.67 0.70	
Reservoir Sediment [THg] Geomean	0	0.50	0.47
Watershed Soil [THg] Geomean	0	0.40	0.44
Reservoir Longitude	5	0.39	0.40
Reservoir [Chl-a] Geomean	-0.22	0.34	0.27
Average Water Level Fluctuation	0	0.33	0.35
Watershed Percent Vegetation	3	0.32	0.29
[aq MeHg] Geomean	-0.5	-0.31	-0.38
[aq THg] Geomean	0	0.30	0.25
Watershed Percent Open Water	0	-0.27	-0.30
Reservoir Dam Height	0.5	0.25	0.34
Reservoir Elevation	0.21	-0.22	-0.27
Watershed Percent Forests	2	0.22	0.12
CA Hg Atm Dep Rate to the Watershed	0	0.19	0.17
Watershed Productive Mines per Mile	-3.77	-0.17	-0.05
Number of Mines in Watershed (PAMP)	-0.5	-0.15	-0.17
Year Dam Built	5	0.15	0.19
Watershed Mines per Mile	-2	-0.14	-0.01
Number of Dams Upstream of Reservoir	-0.22	-0.13	-0.06
Reservoir Maximum Capacity	0	0.10	0.17
Watershed Area/Reservoir Surface Area	-0.11	-0.09	-0.19
CA Hg Atm Dep Rate to the Reservoir Surface	0	0.08	0.12
Reservoir Latitude	5	0.08	0.04
Watershed Surface Area	0	-0.05	0.13
All Hg Atm Dep Rate to the Watershed	-1	-0.03	-0.02
All Hg Wet Atm Dep Rate to the Reservoir Surface	0	-0.03	0.03
Number of Productive Mines in Watershed	-0.13	-0.03	-0.002
Watershed Percent Wetlands	-5	0.02	0.002
All Hg Atm Dep Rate to the Reservoir Surface	-1	0.02	-0.05
All Hg Wet Atm Dep Rate to the Watershed	0	0.01	-0.04
Watershed Percent Agriculture	-5	0.01	0.08
Reservoir Surface Area	0	0.01	0.05
Number of Mines in Watershed (MRDS)	0	-0.002	-0.03

 Highlighted environmental factors indicate statistically significant correlations with fish tissue mercury concentrations for the parametric, non-parametric, or both analyses (using their respective two-sided tests of significance, P < 0.05).

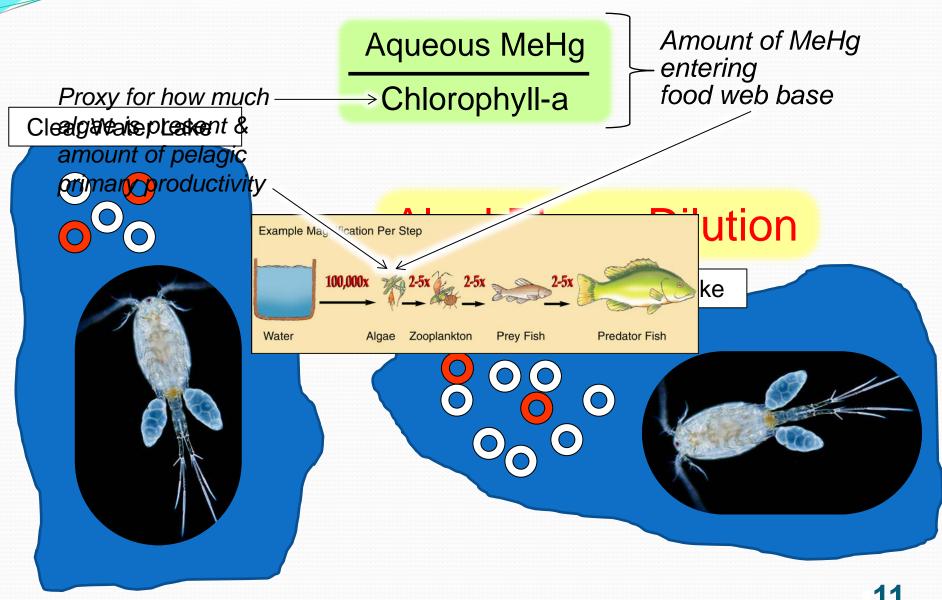
Best Fit Model Equation

LN [fish methylmercury] = 0.36 * [aqueous total Hg]

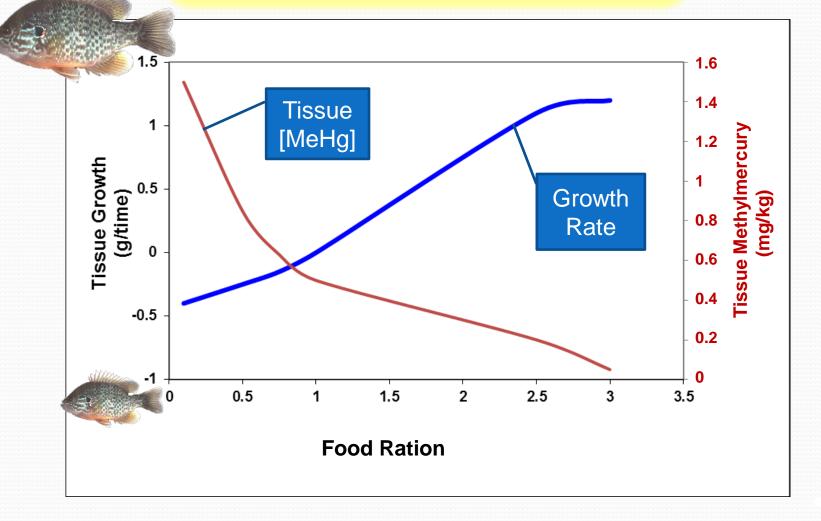

+ 0.48 * [aqueous MeHg] / [chlorophyll-a]


+ 0.35 * (annual water level fluctuation)

- 0.95


MeHg

 $R^2 = 0.85$ Adjusted $R^2 = 0.83$ Predicted $R^2 = 0.80$ n = 26 reservoirs, P < 0.001



Food Web Transfer

Food Web Transfer

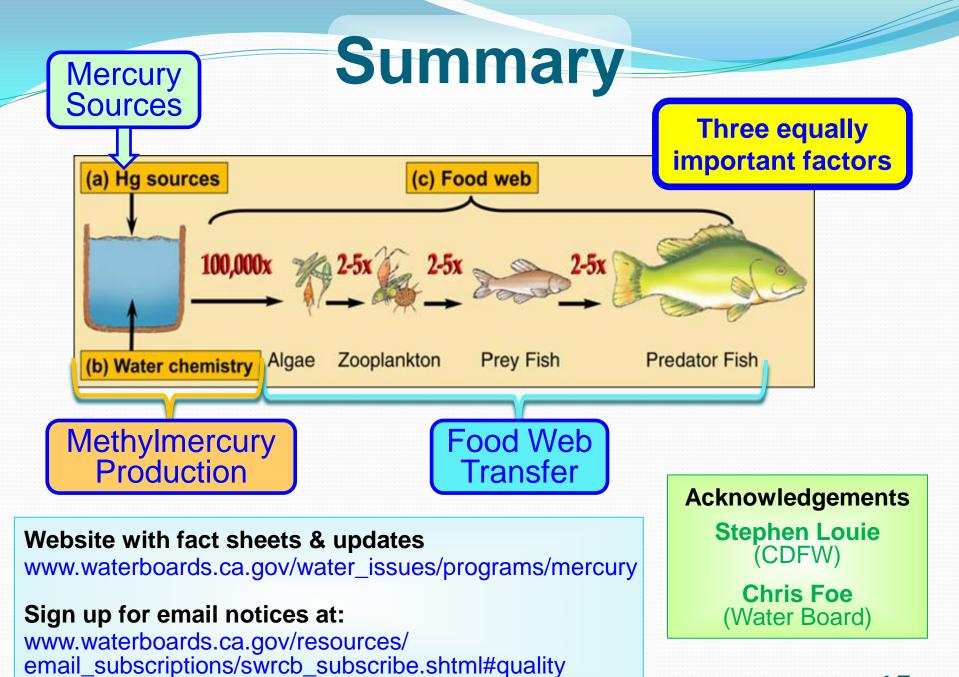
Somatic Growth Dilution

12

Food Web Transfer

Somatic Growth Dilution

- Increased primary productivity can support:
 - Higher growth rates for individuals
 - Larger abundance of organisms
- Somatic growth dilution can occur at <u>all food web levels</u>


Food Web Transfer Reservoir Water Level Fluctuations*

- Large fluctuations erode fine sediment and nutrients
- Reduces <u>benthic</u> primary productivity
- Decreases fish and invertebrate growth rates
- Opposite of somatic growth dilution

* Reservoir Water Level Fluctuations =
 WY Max Elevation – WY Min Elevation

