Section A.13

City of Laguna Beach

Heisler Park Area of Special Biological Significance Compliance Plan

A.13.1	Introduction	Page 103
A.13.2	Heisler Park Area of Special Biological Significance Drainage Area Maps	Page 104
A.13.3	Non-Structural Best Management Practices	Page 109
A.13.4	Structural Best Management Practices	Page 111
A.13.5	Monitoring Plan	Page 116
A.13.6	Monitoring Data	Page 118
A.13.7	Implementation Scheduled	Page 134

A.13.1 Introduction

The State Water Resources Control Board designated the ocean adjacent to Heisler Park (Laguna Beach, CA) as an Area of Special Biological Significance (ASBS) in 1974 due to the abundance of life in the tidepools and nearshore environment. In total, there are 34 designated ASBS along the California coast. ASBS require the highest level of protection from pollutants discharged from inland sources and as such, the State's Ocean Plan prohibits the discharge of waste into designated ASBS. Storm drain discharges are considered to be a waste discharge and thus are prohibited.

The City of Laguna Beach was notified by the State Water Board in October of 2004 to either cease the discharge of storm water and nonpoint source waste into Heisler Park ASBS or request an exception to the Ocean Plan. The City formally requested an exception in December of 2004 to allow the continued discharge of storm water into the ASBS. The General Exception was approved on March 20, 2012 and the City was notified on March 20, 2012 of inclusion in the General Exception.

The General Exception requires the City of Laguna Beach to conduct ocean water monitoring and create an ASBS Compliance Plan that describes the strategy to comply with the special conditions listed in the General Exception.

The City of Laguna Beach has spent approximately \$9 million dollars to renovate Heisler Park. Many of the Park improvements were designed and incorporated to improve water quality in adjacent Heisler Park ASBS. Currently, all dry weather nuisance flows from the Park and the surrounding watershed are diverted to the sanitary sewer system through a series of sump pumps and diversion units. During the wet season storm water flows through diversion units to remove trash and large debris. The following compliance plan outlines details of the program, activities and best management practices that have been put into place to improve water quality in the Heisler Park ASBS.

A.13.2 Heisler Park Area of Special Biological Significance Drainage Area Map 1 - Heisler Park Area of Special Biological Significance and Associated Watershed

City of Laguna Beach Orange County Stormwater Program Local Implementation Plan

- Shaded green area indicates area that drains into nuisance water diversion unit.
- Red squares indicate nuisance water diversion units.
- Orange highlight area is the full extent of the Heisler Park ASBS.
- Heisler Park ASBS drainage area is mainly residential with several restaurants, hotels and light commercial business.

SampleID	SourceCode	SourceType	Longitude	Latitude	Beach Name	Туре	Material	Flow	Location	Upstream Source	Shape	Widt
HSL002	non-point	discharge	-117.79477	33.545152	Divers cove	Non-porous	concrete	When raining	On beach	urban w atershed	Rectangular	-99.0
HSL003	municipal/industrial storm drain	discharge	-117.79465	33.545033	Divers cove	non-porous	concrete	When raining	On beach	urban w atershed	Rectangular	72-inc
HSL003.1	small storm drains	discharge	-117.79428	33.544915	Divers cove	non-porous	pvc	When raining	On beach	urban w atershed	round	4-inc
HSL004	small storm drains	discharge	-117.79327	33.544418	Picnic Beach	non-porous	рус	When raining	In bluff	urban w atershed	round	4-inc
HSL004.1	small storm drains	discharge	-117.79329	33.544348	Picnic Beach	non-porous	pvc	When raining	In bluff	urban w atershed	round	12-inc
HSL006B	Heisler ASBS, 18 inch	Storm Drain	-117.79315	33.544274	Picnic Beach	non-porous	рус	intermittent	In bluff	urban w atershed	round	18-ind
Picnic Beach]
Sump Pump	In park drainage, pumped to CDS	sump pump	-117.79341	33.544604								

105

		Source											Discharges
SampleID	Source Code	Туре	Longitude	Latitude	Beach Name	Туре	Material	Flow	Location	Upstream Source	Shape	Width	Onto
HSL008.1	Small storm drain	discharge	-117.792288	33.543256	Rock Pile Beach	non-porous	PVC	When raining	In bluff	urban watershed	round	6-inch	bluff
HSL008.2	Small storm drain	discharge	-117.79222	33.543195	Rock Pile Beach	non-porous	PVC	When raining	In bluff	urban watershed	round	6-inch	bluff
HSL012B	Jasmine Heisler ASBS 18-inch	storm drain	-117.790762	33.543436	Rock Pile Beach	non-porous	PVC	Intermittent	In bluff	urban w atershed	round	18-inch	sand
HSL012.1	Non-point	discharge	-117.790556	33.543611	Rock Pile Beach	non-porous	Concrete	When raining	Sidew alk/Ramp	urban w atershed	rectangular	-99.00	sand
HSL012.2	Non-point	discharge	-117.790191	33.543505	Rock Pile Beach	non-porous	Concrete	When raining	Sidew alk/Ramp	urban w atershed	rectangular	-99.00	sand
HSL012.3	Small storm drain	discharge	-117.790506	33.543409	Rock Pile Beach	non-porous	PVC	Intermittent	Bottom of ramp	groundw ater	round	4-inch	sand
HSL019	Municipal/industrial storm drain	discharge	-117.79245	33.5435	Divers cove	non-porous	Metal	When raining	In bluff	unknow n	round	4-inch	bluff
Jasmine Restroom Sump	In park drainage, pumped to CDS	sump pump	-117.790782	33.543528									
South Monument Point Sump	In park drainage, pumped to CDS	sump pump	-117.792272	33.543224									
Myrtle Sump Pump	In park drainage, pumped to CDS	sump pump	-117.7925	33.543611									

106

Map 4 – South Heisler Park ASBS Drainage/Diversion Summary

													Discharges
SampleID	Source Code	Source Type	Longitude	Latitude	Beach Name	Туре	Material	Flow	Location	Upstream Source	Shape	Width	Onto
HSL013	municipal/industrial storm	discharge	-117.78965	33.54305	Bird Rock	non-porous	concrete	When raining	base of bluff	urban w atershed	round	24-inch	mixed
South Bird Rock													
Sump Pump	In park drainage, pumped	sump pump	-117.78829	33.542946									

City of Laguna Beach Orange County Stormwater Program Local Implementation Plan

107

Map 5 –Heisler Park ASBS Sampling Locations and Receiving Water Sampling Location

City of Laguna Beach Orange County Stormwater Program Local Implementation Plan

Map 6 -Heisler Park ASBS Prioritized discharges and associated structural BMPs (fold out map)

This map will be updated every 5 years at the same frequency of BIGHT sampling events. The City of Laguna Beach is fully built out with few opportunities for major changes in neighborhood uses or activities.

A.13.3. Non Structural Best Management Practices

The Heisler Park ASBS watershed area is located within the City of Laguna Beach which is covered under the Orange County Municipal Storm Water Permit, R9-2009-0002, (MS4 Permit). To maintain compliance with the MS4 Permit the City prepared a Local Implementation Plan (LIP). The LIP describes the programs and activities that the City implements to eliminate all non-authorized, non-stormwater runoff and meet additional MS4 Permit requirements with the goal of improving water quality. As these are similar goals for protection of the Heisler Park ASBS most of the City's programs and activities remain the same across the entire City of Laguna Beach. Additional program components and activities can be reviewed in prior sections of the City's LIP. (http://lagunabeachcity.net/cityhall/wq/clean_water_compliance_programs) The majority of the non-authorized non-storm water runoff in the Heisler Park ASBS watershed has been eliminated through the use of three urban water diversion units as described in Section A.13.4. Additional measures are documented below and within Section A.13.4.

A.13.3.1 Inspection Frequencies for the Heisler Park ASBS Watershed.

- Construction Sites -Construction program compliance details are located in Section A.8 of the LIP. Construction sites that are located within the Heisler Park watershed and meet high priority definitions will be inspected weekly during the rainy season.
- Commercial/Industrial Facilities The Commercial and Industrial Facility program compliance details are located in section A.9 of the LIP. There are no industrial businesses located within Heisler Park watershed. Light commercial Facilities located adjacent to Heisler Park will be inspected twice during the rainy season, all other facilities located within the surrounding watershed shall be inspected at the current MS4 Permit required frequency (20 percent per year)
- Stormwater Outfalls 18 inches or larger Stormwater outfalls 18 inches or larger will be inspected once prior to the beginning of the rainy season and once during the rainy season. The urban water diversion units that are located upstream of the stormwater outfalls are maintained in accordance with Section A.5 of the LIP.
- Management of pesticides and other chemicals is outlined in section A.5.6 of the LIP.

A.13.3.2 Management of Pesticides, Herbicides, and Fertilizers

• Within Heisler Park and all City of Laguna Beach Parks, the City implements BMPs to reduce the contribution of pollutants to stormwater. More information regarding BMP implementation is listed in Section A.5.6. Heisler Park has several structural BMPs, explained in detail in Section A.13.4, that reduce the potential of pollutants leaving the Park.

A.13.3.3 New Development/Redevelopment

• The City of Laguna Beach has updated the current LIP to comply with the Regional Board's fourth term MS4 Permit. As such, the City has incorporated new compliance criteria for new and redevelopment projects within the City of Laguna Beach. The new criteria require incorporation of source control BMPs, LID BMPS and in some cases treatment control BMPs. Section A.7 of the LIP gives an extensive overview of the New Development/Redevelopment compliance criteria.

A.13.3.4 Public Education/Outreach

• The City follows a robust public outreach program as outlined in Section A.6.3 of the LIP. In addition, within Heisler Park special signage has been incorporated into the park landscape regarding storm water pollution, the sensitive ASBS and best management practices for protecting the ocean. Laguna Beach also has a full time Marine Protection Officer and volunteer docents that provide education and outreach to the many visitors to Heisler Park beaches.

Photos - Examples of signage located within Heisler Park.

A.13.4 Structural Best Management Practices

The following structural best management practices have been installed within the City of Laguna Beach's Heisler Park. The structural BMPs not only control storm water runoff from Heisler Park but also from the surrounding watershed which drains into the Heisler Park ASBS. Priority pollutants of concern are bacteria, trash and nutrients. These priority pollutants are controlled or eliminated using the following structural BMPs and the aforementioned non-structural BMPs. The structural BMPs described and pictured below address not only dry weather flows but also wet weather flows. At this time it is not anticipated that any additional structural BMPs will need to be implemented. If monitoring shows ocean water degradation additional structural controls will be considered.

A.13.4.1 Heisler Park Nuisance Water Diversion Units

- As shown on the map in section A.13.2, there are four nuisance water diversion units that divert all non-authorized, non-storm water runoff away from the Heisler Park ASBS and into the sanitary sewer system. The three main diversion units located at Aster, Jasmine and Myrtle streets are continuous deflection separators (CDS Units) which remove trash, sediment and other small debris year round. The units are fully automated as of January 2013 allowing for year round operation of the units and the diversion of small storm events to the sanitary sewer. The 4th diversion simply diverts non-storm water. Within Heisler Park there are four small sump pumps that collect water from the Park's storm drain system. This water is pumped up to the CDS units for removal of trash and diversion to the sanitary sewer. Storm drain diversions are likely the single most effective method of keeping polluted water from entering the ocean.
- Maintenance of Diversion Units Diversion maintenance includes monthly inspections of each unit and quarterly cleaning. Debris in the units is measured and recorded into an annual spreadsheet. All diversion inspection and cleaning activities are tracked in the City's Lucity Computerized Maintenance Management System Database.

Photo – Jasmine Street Diversion Unit/Lid to sump pump.

A.13.4.2 Restrooms/Lift Station Rebuild Inside and Adjacent to the Heisler Park ASBS.

- Two public restrooms inside Heisler Park were rebuilt to replace aging existing facilities which posed a significant threat of failure and subsequent sewer spillage. The Main Beach lift station (located adjacent to Heisler Park) was completely rebuilt and the adjacent restroom facility was removed. A sewer spill in this heavily used beach area could have major impacts on human health due to elevated bacteria levels in the ocean. The marine habitat could also be negatively affected by the influx of organics and nutrients found in sewage. Clean and sanitary public restrooms may prevent individuals from using the ocean or surrounding park areas as toilets. Rebuilding the lift stations to provide more reliable service and adding fail-safe's to prevent backflow from the main further mitigates the risk of spills.
- Maintenance The restrooms at Heisler Park are visited daily for general maintenance and cleaning. The lift station at Main Beach is monitored continuously using a remote SCADA system. Alarms are responded to immediately 24 hours per day, 7-days per week. Each lift station within the City if visited 2 times per week to visually inspect controls and equipment. The inspections are documented in the City's Lucity Computerized Maintenance Management System Database.

Photo - Rebuilt restroom facility.

A.13.4.3 Low Impact Design (LID) Site Design BMPs

- Heisler Park completed a major renovation in 2012 which incorporated a number of LID site design BMPs including bioswales, disconnection of storm drains, tilted pathways and infiltration zones to give both nuisance water flows and storm water flows a chance to infiltrate on site prior to entering the storm drain system. The benefits of this approach to drainage include elimination of trickling dry weather flows into the storm drains, maximizing onsite capture of storm water flows prior to discharge, biofiltration of all flows, and utilization of flows to optimize irrigation efficiency.
- Maintenance The LID site design BMPs are inspected daily during staff maintenance rounds at the park. The sprinkler system is checked for broken sprinkler heads, proper spray path and efficient water use.

Photo – Bioswale terraces capture flow for biofiltration and infiltration.

Photos – Pathways and surrounding terrain are tilted toward a depressed bioswale for infiltration.

Photo- All Storm Drain inlets are disconnected from other hardscape to promote infiltration.

A.13.4.4 Smarttimer, Irrigation and Landscaping

• During the Park renovation several landscaping structural BMPS were incorporated including; replacing all irrigation lines and heads within the project area with new equipment, converting the existing timer clocks to satellite controlled Smarttimer irrigation clocks and replanting graded areas with waterwise and native plants where appropriate. The improvements to the irrigation and landscaping help prevent excess runoff by reducing water waste through leaks and over irrigation. These systems are checked daily to ensure proper operation and fixed immediately upon identification of problems.

Photos – SmartTimer irrigation controller with antennae on top, water-wise plants in landscaped area.

A.13.4.5 Bluff Erosion Control and Drainage Improvements

• The bluffs along the coast of Heisler Park were eroding rapidly due to increased sheet flows and point source discharges from both paved and landscaped areas. Wet weather events caused rapid erosion but nuisance dry-weather flows also contributed to the problem. Besides acute dangers from collapsing hillsides and rockfalls, the long term effects of sedimentation in the ASBS could be profound. The Park renovation addressed excess erosion of the bluffs by controlling access and redirecting surface flows into bioswales for infiltration using a curb and walkway along the bluff top for conveyance.

Photos – Curbs, railings and improved stairs to beach ensure visitors are not destroying the bluff tops. Tilted pathway push sheet flows to the grassy area for infiltration.

A.13.4.5 Trash Management

• Trash is managed within the Heisler Park Watershed in several ways. First, and most effectively, all nuisance and storm water flows from the entire watershed drain through CDS units which collect and settle out all trash and large debris prior to discharge. City street sweeping takes place once per week. Heisler Park has dedicated maintenance staff that are assigned to maintain Heisler Park. Staff empty trash cans and pick up loose litter on a daily basis as well as keep all facilities and equipment in good repair.

A.13.5 Monitoring

The City of Laguna Beach opted to participate in a regional monitoring program to comply with the General Exception requirements. The City partnered with the Southern California Coastal Water Research Project (SCCWRP) for BIGHT 2013.

A bight is defined as a bend in the coastline, and the Southern California Bight is the 300 km of recessed coastline between Point Conception in Santa Barbara County and Cabo Colnett, south of Ensenada, Mexico. The dramatic change in the angle of the coastline creates a large backwater eddy in which equatorial waters flow north near shore and subarctic waters flow south offshore. This unique oceanographic circulation pattern creates a biological transition zone between warm and cold waters that contains approximately 500 marine fish species and more than 5,000 invertebrate species.

The California Ocean Plan designates 14 different Areas of Special Biological Significance (ASBS) in southern California, covering roughly 280 kilometers of coastline, as water quality protected areas. The Ocean Plan stipulates that ASBS shall receive "no discharge of waste" and "maintain natural water quality". To determine natural water quality conditions for these 14 ASBS areas in the Southern California Bight, the BIGHT monitoring program was created to pool resources from all the agencies involved and develop uniform sampling plans and data analysis.

The SCCWRP coordinated and collected regional sampling for benthic marine aquatic life, bioaccumulation and reference stream studies. The City collected samples for core discharge monitoring and chronic toxicity. A summary of the samples collected by the City of Laguna Beach is outlined in Table A.13.5.1 below. Core discharge monitoring and receiving water locations are shown on Map 5 in Section 13.2 above.

Laguna Beach ASBS Monitoring																									
Cost Per Sample per Laboratory	# of Locations	# of Samples per Year	Flow	Oil and Grease	TSS	Indicator Bacteria (Fecal Coliform, Total Coliform, Enterococcus)	Chronic Toxicity - 1 species (sea urchin fertilization)	Chronic Toxicity -3 species	(sea urchin fertilization, sea urchin embryo development, giant kelp germination)	Table B- Total Metals by EPA	ivietnoa 1040 (seawater)	Total Metals by EPA Method 200.8 (Freshwater only)		PAHs (ocean plan PAHS)		Pyrethroid Pesticides		Organophosphate Pesticides	Ammonia		Nitrate as N	Total OrthoPhosphates (as P)		Location Subtotal	
Physis				\$ 40	\$ 30					\$ 27	5	\$ 115	\$	245	\$	225	\$	195	\$ 30	\$3	0 \$	\$ 30			
ABC Laboratory							\$ 430	\$	1,355																
Orange County Public Works			-			\$ 81.9											-						_		+
Locations					Parar	 neter cost	s include	fred		l 1 numbe	r of	outfalls	Ch	eck fo	rmul	afor		herof	samnl	<u>م</u>			<u> </u>		┢
Core Discharge Monitoring (Stormwater)									queriey and		Ť	outiuns								<u></u>			<u> </u>		┢
Outfalls > 18 inches (Myrtle / Jasmine)	2	2	v	\$240	¢ 190	\$101.10	\$2.870																ć	/ 791	1
Outfalls $>$ 26 inches or worst 18 inch (Astor)	1	2		\$120	\$ 00	\$7451.40	\$3,870					¢ 2//E	ć	725	ć	675	ć	EQE	¢ oo	¢ο		÷ 00	ې د	4,701	
		5		\$120	Ş 90	\$245.70	\$1,290					Ş 545	Ş	755	Ş	075	<u> </u>	202	-5-90	<u> </u>		<u> 90 </u>	ې ا	4,550	ļ
Receiving Water Monitoring																									
Ocean and Aster @ largest drain 18 inches or greater/worst case loca	ation																								
Pre storm event	1	3		\$120	\$ 90	\$245.70				\$ 82	5		\$	735	\$	675	\$	585	\$90	\$9	0 \$	\$ 90	\$	3,546	ļ
Post storm event	1	3		\$120	\$ 90	\$245.70		\$	4,065	\$82	5		\$	735	\$	675	\$	585	\$90	\$9	0 \$	\$ 90	\$	7,611	Ş
Physis Field QA Fresh Water																							\$	1,880	
Physis Field QA Seawater Water																							\$	2,040	
																				Lá	agun	a Bea	ch To	tal Cost	: \$
Reference Area (Paid by SWRCB Grant)																									
Pre storm sampling	1	3		\$120	\$ 90	\$245.70		\$	4,065	\$82	5		\$	735	\$	675	\$	585	\$90	\$9	0 \$	\$90	\$	7,611	
Post/During storm sampling	1	3		\$120	\$90	\$245.70		\$	4,065	\$82	5		\$	735	\$	675	\$	585	\$90	\$9	0 \$	\$ 90	\$	7,611	
																			Ар	proxir	nate	Tota	Shar	ed Cost	Ş
																				Арр	roxin	nate l	agun	ia Share	Ş
Totals per analyte (not including Reference Area)				\$600	\$ 450	\$ 1,229	\$5,160	\$	4,065	\$ 1,65	0	\$ 345	\$	2,205	\$ 2	2,025	\$:	1,755	\$270	\$27	0 \$	\$ 270			
Total Toxicity																							\$	9,225	
Total Chemistry																							\$	13,760	
Total Bacti																							\$1	,228.50	
																	Аррі	roxim	ate To	al ASE	3S Ch	1em/1	iox Sa	ampling	; \$
SCCWRP Costs (Laguna Beach Share)	\$		38	,024.00																					
Reference Site, El Morro Canyon - SWRCB Grant	\$			-																		_		_	
Physis Laboratory	\$		13	,760.00						Not a	II lo	ocations r	equ	ire all	the I	param	eter	s each	n samp	linge	vent	. Exar	nple	- Toxici	ty :
ABC Laboratory	\$		9	,225.00				_					0	nly re	quire	d 1 tii	me p	er loc	ation f	or cor	e mo	onitor	ing.		
Orange County Sampling Costs	\$		7	,254.90										N	ew T	otal i	s \$11	1,330.7	'0 less	than c	old to	otal			
Contingency (Additional Compliance Sampling, Misc.)	\$		7	,000.00									Re	emove	d pre	storr	n chr	ronict	ox and	Refe	rence	e Site	costs	;	
ASBS Approximate Total	\$		75	,263.90																					

Table A.13.5.1 Laguna Beach Heisler Park ASBS Monitoring Program for 2013 Bight

City of Laguna Beach Orange County Stormwater Program Local Implementation Plan

A.13.6 Monitoring Data

All required samples were collected during the 2012/2013 rainy season and are presented in the following tables. All three required reference stream sample collection events were completed by SCCWRP during the 2012/13 rainy season. SCCWRP established natural water quality guidelines by pooling reference site sampling results for Southern California and selecting the 85th percentile result as the threshold. The Heisler Park outfall meets the natural water quality guidelines as established by SCCWRP.

The following is a graphical and verbal summary of the data that was collected during the 2012/13 storm season.

Analyte	8	35 th percentile		Ocean Plan	Ocean Plan
	North	Central	South	(Daily Max)	(30d Ave)
		Genera	l (mg/L)	-	
Ammonia as N	0.01	0.025	0.015	2.4	0.6
Nitrate as N	2.88	0.01	0.374	-	-
Oil and Grease	0.5	2.5	0.5	75	25
Orthophosphate as P	0.09	0.0125	0.114	-	-
Total Suspend Solids	42.5	16	55.4	-	<u>-</u> 1
		Metal			
Arsenic	1.72	-	1.72	32	8
Cadmium	0.06	-	0.16	4	1
Chromium	4.2	-	2.6	8	2
Copper	1.8	-	1.9	12	2
Lead	0.51	-	0.72	8	2
Mercury	0.0006	-	0.0006	0.16	0.04
Nickel	4.5	-	2.2	20	5
Selenium	0.029	-	0.017	60	15
Silver	0.06	-	0.08	2.8	0.7
Zinc	9.7	-	19.0	80	20
		Organio	cs (µg/L)		
Total PAHs	0.0474	0.0625	0.0125	-	0.0088
Total OP pesticides	0.006	0.06	0.006	-	-
Total Pyrethroids	0.00675	0.00615	0.00675	-	-

Table A.13.6.1 Natural Water Quality Guidelines as calculated by SCCWRP

SCCWRP calculated the above Natural Water Quality Guidelines by using:

- The three separate sampling regions.
- Combining the Southern California 2008-09 and 2013-15 BIGHT reference results.
- Pooling the data within region sites.
- Ordering the data from smallest to largest

- NDs = $\frac{1}{2}$ detection limit
- Selecting the 85th percentile. (i.e., 39 out of 46 samples)

The SCCWRP compared the established Natural Water Quality Guidelines against the actual discharge data. This comparison determines if ASBS area discharges meet natural water quality conditions. The dashed line on the following charts represents the natural water quality condition that each ASBS discharge results should be below. The

 Metals – The metals shown above were above the natural water quality guidelines but were below the Ocean Plan established limits. The City of Laguna Beach continues to work to remove pollutants from storm water discharge. The strategic operation of the diversion units located within the Heisler Park ASBS is expected to reduce the amount of metals entering the ASBS. Dry season nuisance flows and small storm events are directed to the sanitary sewer.

• PAHs – Several PAHs were detected during the Bight 13 sampling. Likely sources of the PAHs are road runoff from the highly traveled Coast Highway and nearby parking lots. Although the PAH results were above the Ocean Plan levels, the results were just at the natural water quality guidelines. The more nuanced operation of the diversion units located within the Heisler Park ASBS is expected to reduce the amount of PAHs entering the ASBS. Dry season nuisance flows and small storm events will be directed to the sanitary sewer. The automation of these units was completed in September 2013.

- Pesticides During the Bight 13 sampling three pesticides were detected during one rain event. As shown on the charts on the prior page, although the pesticide levels were above the Ocean Plan limits, the results were within the calculated natural water quality guidelines. It is likely that a resident or business had recently applied pesticides prior to the rain event. Because pesticides are approved for use by the State of California, local jurisdictions do not have control on how or where pesticides are purchased and applied. We will continue to provide outreach and education to businesses and residents within the City of Laguna Beach regarding safe pesticide application and Integrated Pest Management.
- Bacteria From the sampling data summarized below, bacteria in the stormwater outfalls after rain events are quite high. The draining watershed is mainly residential with some input from the undeveloped open space. There are currently no identifiable sources for the fecal and enterococci bacteria. Reducing bacteria inputs is a priority throughout the watershed and South Orange County. The three urban water diversion units located in the Heisler Park ASBS have been automated to allow for the diversion of first flush storm events and small storms. It is believed operating the units to divert low flow storm events will decrease the amount of bacteria entering the Heisler Park ASBS. The City of Laguna Beach continues to work with all agencies in South Orange County to identify stormwater bacteria sources and reduce them.

							Aster					Jasmine	Stormwat	er Outfall	Myrtle S	tormwate	r Outfall
		Ocean Plan Water Quality	Aster Corr	e (Stormwat	er Qutfall)	Aster S	eawater Pr	e Storm	Aster Se	awater Po	st Storm	lasmine (ore (Stormw	vater Qutfall)	Myrtle	Core (Storr	nwater
		Criteria	Aster con	HSL013	er outraily	H	ISL013 Ocea	an	H:	SL013 Ocea	an	Jasinine Co	HSL012B	ater Outrany		HSL006B	
	Date:		2/9/2013	2/20/2013	3/8/2013	2/7/2013	2/18/2013	3/5/2013	2/9/2013	2/20/2013	3/8/2013	2/9/2013	2/20/2013	3/8/2013	2/9/2013	2/20/2013	3/8/2013
Constituent	Units																
Flow	cfs		0.06	0.021	0.564	NR	NR	NR	NR	NR	NR	0.017	0.003	0.545	DRY	0.004	0.011
	L/s		1.699	0.595	15.97	NR	NR	NR	NR	NR	NR	0.481	0.085	15.4	DRY	0.113	0.311
Chronic Toxicity																	
Chronic Urchin Fertilization	NOEC %		50%	NR	NR	NR	NR	NR	100%	100%	100%	50%	NR	NR	NR	NR	100%
	Tuc	1	2	NR	NR	NR	NR	NR	1	1	1	2	NR	NR	NR	NR	1
Chronic Urchin	NOEC %		NR	NR	NR	NR	NR	NR	100%	88.41	83.40%	NR	NR	NR	NR	NR	NR
Development/Mytilus Wate	r Tuc	1	NR	NR	NR	NR	NR	NR	1			NR	NR	NR	NR	NR	NR
Chronic Kelp Germination	NOEC %		NR	NR	NR	NR	NR	NR	100%	100%	100%	NR	NR	NR	NR	NR	NR
	Тис	1	NR	NR	NR	NR	NR	NR	1	1	1	NR	NR	NR	NR	NR	NR
Bacteria																	
Enterococcus	CFU/100ml	104	60	20000	10000	9	50	9	31000	250	9900	22000	1000	22000	NS	85000	5800
Fecal Coliforms	CFU/100ml	400	9	5200	2600	9	9	9	13500	40	1240	360	90	30000	NS	710	1000
Total Coliforms	CFU/100ml	10000	9	4600	7000	20	20	9	2500	20	7700	2700	99	32000	NS	2000	14000
General																	
Total Suspended Solids	mg/L		0.7	1.1	74.3	3.1	11.4	2.3	36.4	6	7.9	9.5	1	42	NS	5	17.4
Oil and Grease	mg/L		ND	ND	3.7	1.1	ND	1	ND	ND	ND	ND	ND	3.6	NS	ND	4.3
Ammonia-N	mg/L	6	0.4	0.57	1.01	ND	ND	0.1	ND	0.03	ND	NR	NR	NR	NS	NR	NR
Nitrate-N	mg/L		1.04	1.94	1.27	0.04	0.22	0.37	0.24	0.23	0.21	NR	NR	NR	NS	NR	NR
Total Orthophosphate as P	mg/L		0.12	0.15	0.31	ND	0.02	0.03	ND	0.02	0.03	NR	NR	NR	NS	NR	NR
Metals																	
Arsenic (As)	ug/L	80	0.46	0.73	1.40	1.42	1.33	1.86	1.44	1.54	1.41	NR	NR	NR	NS	NR	NR
Cadmium (Cd)	ug/L	10	0.11	0.09	0.17	0.03	0.03	0.04	0.03	0.03	0.00	NR	NR	NR	NS	NR	NR
Chromium (Cr)	ug/L	20	1.50	1.35	3.20	0.24	0.21	0.15	0.38	0.52	0.53	NR	NR	NR	NS	NR	NR
Copper (Cu)	ug/L	30	4.51	6.28	44.18	1.50	1.67	1.75	0.68	1.90	3.23	NR	NR	NR	NS	NR	NR
Lead (Pb)	ug/L	20	0.20	0.32	8.88	0.04	0.05	0.03	0.07	0.13	0.28	NR	NR	NR	NS	NR	NR
Mercury (Hg)	ug/L	0.4	0.00	ND	ND	ND	ND	ND	ND	ND	ND	NR	NR	NR	NS	NR	NR
Nickel (Ni)	ug/L	50	1.91	1.89	3.47	0.26	0.27	0.63	0.29	0.39	0.47	NR	NR	NR	NS	NR	NR
Selenium (Se)	ug/L	150	0.16	0.14	0.13	0.01	0.02	0.02	0.02	0.02	0.02	NR	NR	NR	NS	NR	NR
Silver (Ag)	ug/L	7	ND	ND	0.01	ND	ND	ND	ND	ND	0.02	NR	NR	NR	NS	NR	NR
Zinc (Zn)	ug/L	200	10.65	17.18	111.81	1.55	2.25	3.02	2.64	2.52	45.45	NR	NR	NR	NS	NR	NR
ND = Non Detect																	
NS = Not Sampled, Sample	could not be	collected (i	no flow)														
NR = Not Required (constit	uent not requ	ired per sa	mpling plar	n or ASBS mo	onitoring pl	an)											

A.13.6.2 Monitoring Data – Toxicity, Bacteria, General Chemistry, Metals

A.13.6.3 Monitoring Data – PAH

							Aster					Jasmine	Stormwat	ter Outfall	Myrtle S	Stormwate	r Outfall
		Ocean Plan Water													Myrtle	Core (Storn	owater
		Quality	Aster Core	(Stormwat	er Outfall)	Astor S	eawater Pr	Storm	Astor So	awater Po	st Storm	lasmine Co	ore (Stormy	vater Outfall)	iviyi ac	Outfall)	water
		Critoria	Aster Core		eroutianj			n			n					HSI MAR	
	Date:	cincenta	2/9/2013	2/20/2013	3/8/2013	2/7/2013	2/18/2013	3/5/2013	2/9/2013	2/20/2013	3/8/2013	2/9/2013	2/20/2013	3/8/2013	2/9/2013	2/20/2013	3/8/2013
Constituent	Units		2, 3, 2013	2, 20, 2013	5, 6, 2015	2, 1, 2013	2, 10, 2013	5, 5, 2015	2, 3, 2013	2, 20, 2013	, 5, 6, 2015	2, 3, 2013	2,20,2013	5/ 6/ 2015	2, 5, 2015	2,20,2013	5, 6, 2015
ΡΔΗς	b 02	lav ave 88	ng/l														
1-Methylnaphthalene	ng/l	ay ave: 0.0	ND	ND	3.7	ND	ND	ND	ND	ND	ND	NR	NR	NR	NS	NR	NR
1-Methylphenanthrene	ng/l		ND	ND	19.8	2.1	ND	ND	ND	ND	ND	NR	NR	NR	NS	NR	NR
2.3.5-Trimethylnaphthalene	ng/L		ND	ND	ND	ND	ND	ND	ND	ND	ND	NR	NR	NR	NS	NR	NR
2.6-Dimethylnaphthalene	ng/L		ND	ND	ND	ND	ND	ND	ND	ND	ND	NR	NR	NR	NS	NR	NR
2-Methylnaphthalene	ng/L		ND	ND	8.3	ND	ND	ND	ND	ND	1.1	NR	NR	NR	NS	NR	NR
Acenaphthene	ng/L		ND	ND	2	ND	ND	ND	ND	ND	ND	NR	NR	NR	NS	NR	NR
Acenaphthylene	ng/L		6.2	ND	7.8	1.3	ND	ND	ND	ND	ND	NR	NR	NR	NS	NR	NR
Anthracene	ng/L		35.2	ND	23.5	10.5	11.2	ND	ND	ND	ND	NR	NR	NR	NS	NR	NR
Benz[a]anthracene	ng/L		ND	ND	73	ND	ND	ND	ND	ND	ND	NR	NR	NR	NS	NR	NR
Benzo[a]pyrene	ng/L		ND	ND	47.8	ND	ND	ND	ND	ND	ND	NR	NR	NR	NS	NR	NR
Benzo[b]fluoranthene	ng/L		ND	ND	73.4	ND	ND	ND	ND	ND	ND	NR	NR	NR	NS	NR	NR
Benzo[e]pyrene	ng/L		ND	ND	55.8	ND	ND	ND	ND	ND	ND	NR	NR	NR	NS	NR	NR
Benzo[g,h,i]perylene	ng/L		ND	ND	33.7	ND	ND	ND	ND	ND	ND	NR	NR	NR	NS	NR	NR
Benzo[k]fluoranthene	ng/L		ND	ND	25.3	ND	ND	ND	ND	ND	ND	NR	NR	NR	NS	NR	NR
Biphenyl	ng/L		ND	ND	6.1	ND	ND	ND	ND	ND	ND	NR	NR	NR	NS	NR	NR
Chrysene	ng/L		ND	ND	182.2	ND	ND	ND	ND	ND	3.4	NR	NR	NR	NS	NR	NR
Dibenz[a,h]anthracene	ng/L		ND	ND	ND	ND	ND	ND	ND	ND	ND	NR	NR	NR	NS	NR	NR
Dibenzothiophene	ng/L		ND	ND	32.2	ND	ND	ND	ND	ND	ND	NR	NR	NR	NS	NR	NR
Fluoranthene	ug/L	15	142.1	ND	356.6	48.9	29.6	9.6	ND	ND	5.9	NR	NR	NR	NS	NR	NR
Fluorene	ng/L		ND	ND	6	ND	ND	ND	ND	ND	ND	NR	NR	NR	NS	NR	NR
Indeno[1,2,3-c,d]pyrene	ng/L		ND	ND	29.9	ND	ND	ND	ND	ND	ND	NR	NR	NR	NS	NR	NR
Naphthalene	ng/L		3.6	ND	13.2	1.5	2.1	ND	2.8	1.1	1.2	NR	NR	NR	NS	NR	NR
Perylene	ng/L		ND	ND	ND	ND	ND	ND	ND	ND	ND	NR	NR	NR	NS	NR	NR
Phenanthrene	ng/L		85.6	5.7	150.8	31.8	32.6	10.5	ND	3.2	3.4	NR	NR	NR	NS	NR	NR
Pyrene	ng/L		328.6	ND	341.7	135	51.9	15.2	ND	ND	6.4	NR	NR	NR	NS	NR	NR
ND = Non Detect																	
NS = Not Sampled, Sample of	could not be	collected (r	no flow)														
NR = Not Required (constitu	ient not requ	uired per sa	mpling plar	n or ASBS mo	onitoring pl	an)											

A.13.6.4 Monitoring Data – Organophosphorus Pesticides

							Aster					Jasmine	Stormwat	ter Outfall	Myrtle S	Stormwate	r Outfall
		Ocean															
		Plan															
		Water													Myrtle	Core (Storr	nwater
		Quality	Aster Core	e (Stormwat	er Outfall)	Aster S	eawater Pr	e Storm	Aster Se	awater Po	st Storm	Jasmine Co	ore (Stormv	vater Outfall)		Outfall)	
	_	Criteria		HSL013		H	ISL013 Ocea	in - (= (H	SL013 Ocea	n - (- (HSL012B		- /- /	HSL006B	
a	Date:		2/9/2013	2/20/2013	3/8/2013	2/7/2013	2/18/2013	3/5/2013	2/9/2013	2/20/2013	3/8/2013	2/9/2013	2/20/2013	3/8/2013	2/9/2013	2/20/2013	3/8/2013
Constituent	Units																
Organophosphorus Pesticide	S																
Bolstar (Sulprofos)	ng/L		ND	ND	ND	ND	ND	ND	ND	ND	ND	NR	NR	NR	NS	NR	NR
Chlorpyrifos	ng/L		ND	ND	ND	ND	ND	ND	ND	ND	ND	NR	NR	NR	NS	NR	NR
Demeton	ng/L		ND	ND	ND	ND	ND	ND	ND	ND	ND	NR	NR	NR	NS	NR	NR
Diazinon	ng/L		ND	ND	ND	ND	ND	ND	ND	ND	ND	NR	NR	NR	NS	NR	NR
Dichlorvos	ng/L		ND	ND	ND	ND	ND	ND	ND	ND	ND	NR	NR	NR	NS	NR	NR
Dimethoate	ng/L		ND	ND	ND	ND	ND	ND	ND	ND	ND	NR	NR	NR	NS	NR	NR
Disulfoton	ng/L		ND	ND	ND	ND	ND	ND	ND	ND	ND	NR	NR	NR	NS	NR	NR
Ethoprop (Ethoprofos)	ng/L		ND	ND	ND	ND	ND	ND	ND	ND	ND	NR	NR	NR	NS	NR	NR
Fenchlorphos (Ronnel)	ng/L		ND	ND	ND	ND	ND	ND	ND	ND	ND	NR	NR	NR	NS	NR	NR
Fensulfothion	ng/L		ND	ND	ND	ND	ND	ND	ND	ND	ND	NR	NR	NR	NS	NR	NR
Fenthion	ng/L		ND	ND	ND	ND	ND	ND	ND	ND	ND	NR	NR	NR	NS	NR	NR
Malathion	ng/L		ND	ND	274.5	ND	ND	ND	ND	ND	ND	NR	NR	NR	NS	NR	NR
Methamidophos (Monitor)	ng/L		ND	ND	ND	ND	ND	ND	ND	ND	ND	NR	NR	NR	NS	NR	NR
Methidathion	ng/L		ND	ND	ND	ND	ND	ND	ND	ND	ND	NR	NR	NR	NS	NR	NR
Methyl Parathion	ng/L		ND	ND	ND	ND	ND	ND	ND	ND	ND	NR	NR	NR	NS	NR	NR
Mevinphos (Phosdrin)	ng/L		ND	ND	ND	ND	ND	ND	ND	ND	ND	NR	NR	NR	NS	NR	NR
Phorate	ng/L		ND	ND	ND	ND	ND	ND	ND	ND	ND	NR	NR	NR	NS	NR	NR
Phosmet (Imidan)	ng/L		ND	ND	ND	ND	ND	ND	ND	ND	ND	NR	NR	NR	NS	NR	NR
Tetrachlorvinphos (Stirofos) ng/L		ND	ND	ND	ND	ND	ND	ND	ND	ND	NR	NR	NR	NS	NR	NR
Tokuthion	ng/L		ND	ND	ND	ND	ND	ND	ND	ND	ND	NR	NR	NR	NS	NR	NR
Trichloronate	ng/L		ND	ND	ND	ND	ND	ND	ND	ND	ND	NR	NR	NR	NS	NR	NR
ND = Non Detect																	
NS = Not Sampled, Sample	could not be	collected (i	no flow)														
NR = Not Required (constitu	t = Not Required (constituent not required per			or ASBS mo	onitoring pl	an)											

A.13.6.5 Monitoring Data – Pyrethroid Pesticides

							Aster					Jasmine	Stormwat	er Outfall	Myrtle S	tormwate	r Outfall
		Ocean Plan Water Quality Criteria	Aster Core	e (Stormwat HSL013	er Outfall)	Aster S	Seawater Pr HSL013 Ocea	e Storm	Aster Se H	awater Pos SL013 Ocea	st Storm n	Jasmine C	ore (Stormw HSL012B	vater Outfall)	Myrtle	Core (Storn Outfall) HSL006B	nwater
	Date:		2/9/2013	2/20/2013	3/8/2013	2/7/2013	2/18/2013	3/5/2013	2/9/2013	2/20/2013	3/8/2013	2/9/2013	2/20/2013	3/8/2013	2/9/2013	2/20/2013	3/8/2013
Constituent	Units																
Pyrethroid Pesticides																	
Allethrin	ng/L		ND	ND	ND	ND	ND	ND	ND	ND	ND	NR	NR	NR	NS	NR	NR
Bifenthrin	ng/L		ND	ND	125.7	ND	ND	ND	ND	ND	ND	NR	NR	NR	NS	NR	NR
Cyfluthrin	ng/L		ND	ND	99.1	ND	ND	ND	ND	ND	ND	NR	NR	NR	NS	NR	NR
Cypermethrin	ng/L		ND	ND	ND	ND	ND	ND	ND	ND	ND	NR	NR	NR	NS	NR	NR
Danitol	ng/L		ND	ND	ND	ND	ND	ND	ND	ND	ND	NR	NR	NR	NS	NR	NR
Deltamethrin	ng/L		ND	ND	ND	ND	ND	ND	ND	ND	ND	NR	NR	NR	NS	NR	NR
Esfenvalerate	ng/L		ND	ND	ND	ND	ND	ND	ND	ND	ND	NR	NR	NR	NS	NR	NR
Fenvalerate	ng/L		ND	ND	ND	ND	ND	ND	ND	ND	ND	NR	NR	NR	NS	NR	NR
Fluvalinate	ng/L		ND	ND	ND	ND	ND	ND	ND	ND	ND	NR	NR	NR	NS	NR	NR
L-Cyhalothrin	ng/L		ND	ND	ND	ND	ND	ND	ND	ND	ND	NR	NR	NR	NS	NR	NR
Permethrin, cis-	ng/L		ND	ND	ND	ND	ND	ND	ND	ND	ND	NR	NR	NR	NS	NR	NR
Permethrin, trans-	ng/L		ND	ND	ND	ND	ND	ND	ND	ND	ND	NR	NR	NR	NS	NR	NR
Prallethrin	ng/L		ND	ND	ND	ND	ND	ND	ND	ND	ND	NR	NR	NR	NS	NR	NR
Resmethrin	ng/L		ND	ND	ND	ND	ND	ND	ND	ND	ND	NR	NR	NR	NS	NR	NR
ND = Non Detect																	
NS = Not Sampled, Samp	S = Not Sampled, Sample could not be collected (no flow)														
NR = Not Required (cons	stituent not requ	uired per sa	mpling plar	n or ASBS mo	onitoring pl	an)											

A.13.7 Implementation Schedule

All of the Non-Structural and Structural Best Management Practices for the Heisler Park ASBS have been incorporated or constructed. During the 2013/14 storm season the three urban water diversion units will be operated automatically, allowing for the diversion of small storm events. It is believed this more nuanced operation of the diversion units will reduce the amount of bacteria, PAHs and pesticides entering the Heisler Park ASBS.

At this time there are no remaining best management practices to construct or initiate. Additional best management practices will be investigated and implemented if future monitoring indicates a problem within the Heisler Park ASBS.

