Sediment, Sediment:

Understanding and Managing Watershed Sediment
Along the U.S. West Coast
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Santa Lruz senti

“... we can bring back the coho salmon
and steelhead runs. But we need to deal with issues of

, pollution and threats to the integrity of the
riparian corridors.”

--Lois Robins, Oct. 23, 2013




Santa Lruz Senti

“Hundreds of dams on California's streams have trapped
millions of cubic yards of sand that would have been

carried to the shoreline under natural conditions and
nourished our beaches.”

--Gary Griggs, Aug. 29, 2009
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science for a changing world

Things to take home:

1. Sediment is an important part of the natural geologic cycle.

2. Sediment may both enhance and degrade river and coastal habitats.

3. Humans have disrupted U.S. West Coast sediment cycles for at least
hundreds of years.

4. Sediment is being managed in novel ways up and down our coast.

www.oceani.com
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Things to take home:

1. Sediment is an important part of the natural geologic cycle.
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The geologic cycle...

“Active tectonic margins”
are hot spots of
mountain building

and erosion

Milliman and Farnsworth (2012)







Plio-Pleistocene
Oblique Shortening against the "Big Bend"

Drawn and animated by Tanya Atwater (UCSB)
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Deposition of River Sediment in the Sea...

Moore (1969)
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Figure 22. Schematic diagram of routes of transportation of sand (solid arrows) and finer-sized detritus (dotted arrows) from
river mouth to basin floor.



Earthquakes and erosion...

2008 Sichuan Earthquake
(M = 8.0)

shoraary 19, 2003
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Earthquakes and erosion...

TriNet Rapid Instrumental Intensity Map for Northridge Earthquake
Meon Jan 17, 1984 04:30:55 AM PST ME.7 N3d.21 W11854  ID:Northridge
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Figure 1. Map showing epicenter of Northridge earthquake (star), limil of landslides triggered by the
earthquake (heavy, solid line), and area of greatest landslide concantration (shaded).
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99% of time

Floods!!!

California coastal rivers
respond to
wet winter storms.




Infrequent events are important. Average number of days per
year (d/yr)
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Santa Clara River sediment discharge (75 yr)

Infrequent years are important too...

(1950-1999)

°
La Nina Nada El Nifio

Santa Clara River
suspended-sediment
discharge (Mt/yr)

MEI ENSO Index (Dec-Mar)




Average Annual
Suspended-Sediment
Discharge from
California Rivers

(1950-1999)
Eel River
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How much sediment is 34 million tonnes per year??

These trucks can haul 25 tonnes

~1.5 million trucks/year

[approx. one every 2 seconds]

Milliman and Farnsworth (2011)
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Things to take home:

2. Sediment may both enhance and degrade river and coastal habitats.

www.oceani.com
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Substrate for Wetlands
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Can Coastal Marshes Rise Above It All?

As climate change causes sea level to rise, wetland scientists
are struggling to predict which salt marshes will drown—and
which might climb outof danger

WESTERLY, RHODE ISLAND—Biologist Marci Cole Ekberg plunges
her shovel into a particularly gloppy spot in a mucky salt marsh near
the Atlantic Ocean. Her goal:to drain one of many shallow pools that
are creating dead zones in the expanse of otherwise dense grasses, a
phenomenaon that she's recently observed in more than a dozen other
marshes around the state. She fears that the pools are an early con-
sequence of the sea-level rise thatis being driven by global warming
and an ominous “glimpse of the future™ for marshes in New Eng-
land. Rising oceans will drown the grasses, she worries, eliminating
rich habitats and leaving coastlines bare.

‘Other researchers, however, are skeptical that the pockmarks are
a result of climate change, saying winter ice or other causes may be
to blame. And Rhode Island isn't the only place where researchers
are debating what is really happening in salt marshes today and how
the wetlands will fare in a future of higher seas. There’s wide agree-
ment that these salt marshes are among the ecosystems most vulner-
able to rapid sea-level rise. But few researchers are ready to predict
the fate of specific marshes; there’s still too much to learn, they say,
about how wetlands in different regions accumulate sediments that
might allow them to outclimb rising waters and whether they can
escape by migrating inland.

Wetlands scientists are mobilizing to reduce the uncertainty.
By building improved forecasting models and better monitor-
ing systems—and stdying wetland regions already experiencing
dramatic sea-level rise—they re hoping to bring some clarity to a
murky topic and identify practical steps to protect marshes. The
overarching goal, says wetlands researcher Susan Adamowicz of
the U5, Fish and Wildlife Service in Wells, Maine, is to help
managers “give marshes the best possible chance to outpace global
sea-level rise”

2AUGUST2013 VOL3

Shovel ready. For conservationists
in Rhode lsland, restoring coastal
marshes requires boots on the ground

Wet henefit

Although they’re not the
most glamourous biomes,
the United Nations esti-
mates that wetlands are one
of the worlds most valuable
providers of “ecosystem
services,” such as storm pro-
tection, water filtering, and
seafood production. They
also help lock up as much
as 450 billion metric tons of
carbon globally, absorbing
warming compounds that
might otherwise leak into
the amaosphere.

Marshes have already
experienced centuries of
insults—such as pollution, overfishing, and draining for farming
and development—that have disrupted the ecological systems that
help keep them healthy. Now, rising temperatures are causing land-
based ice sheets to melt and seawater to expand. Such changes have
already helped push sea level up by an average of 1.4 to 3.7 milli-
meters per year since 1950, according to a 2010 study published in
Science. (Other estimates vary. ) Climate models predict that the trend
will accelerateto 1 centimeter or more per year as Earth continues to
warm. And even a few extra cenfimeters of water can mean the differ-
ence between life and drowning for marshes, which typically occupy a
narrow coastal band that ends just above the high tide line.

Faced with rising water, marshes have three options, says geol-
ogist Matthew Kirwan of the U.5. Geological Survey (USGS) in
Charlottesville, Virginia: build in place by trapping and piling up
new sediments, migrate to higher ground inland, or die. Predicting
which path a marsh might take, however, requires understanding the
interplay of a host of factors, including the biological traits of differ-
ent marsh grasses and how wetlands construct muddy yet firm foun-
dations from grains of sand, silt, and organic litter.

A sinking laboratory

To get a glimpse of how these factors might shape marsh adapt-
ability in the future, researchers have begun to scrutinize one wet-
land ecosystem already experiencing local sea-level rise: Louisi-
ana’s Mississippi delta along the Gulf of Mexico. There, natural and
human factors are causing the land to sink relatively quickly, creat-
ing a natural laboratory that simulates a sea-level rise of 1 to2 cm
per year. That could be “what it's going to be like everywhere by the
end of the century,” says ecologist James Morris of the University
in South Carolina, Columbia.

Some delta marshes are adapting better than others: While grasses
in a spot named Old Oyster Bayou have thrived, for instance, those in
nearby Bayou Chitique have been largely submerged. The difference,
researchers say, highlights the important role that an adequate sup-
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ply of fresh sediment can play in marsh survival. While Old Oyster
Bayou receives some 70 mg of fresh sediment per liter of river water,
allowing it to outclimb rising Gulf waters, Bayou Chitique's sediment
infusions are largely blocked by upstream levees, reducing the load
to just 20 mg per liter. The “natural process has been interrupted and
there’s not enough sediment,” Morris says.

A 2010 modeling study that Kirwan and his USGS colleagues
published in Geoplivsical Research Letters underscored the impor-
tance of sediment supply. In a scenario that included a rapid global
sea-level rise of 1 25 m by 2100, the outlook for the 21st century
was grim: “Most coastal wetlands worldwide will disappear,” they
concluded. But under slower scenarios, there was hope. Although
marshes with low sediment availability fared poorly in the models,
those with ample supplies often survived. A marsh’s tidal range also
played a role, the study found, with wetlands located in regions with
larger gaps between low and high tide better situated to ride out sea-
level rise, apparently because plants adapted for higher tidal ranges
better withstand drowning.

Trench warfare
For conservationists, such studies suggest that it might be possible
to help threatened wetlands adapt—for instance, by removing levees
or dams to restore sediment, or even pumping in new mud. And in
Rhode Island, the idea of ultimately aiding drowning marshes is
what motivated Cole Ekberg, a biologist with the
conservation group Save The Bay, to recently lug a
shovel into a marsh here that is pockmarked with
shallow grassless pools

The origins and meaning of the poolks is the
subject of local debate, some fierce. Cole Ekberg
and others say that their spread is arelatively recent
development, documented in just the last few years
in the higher-elevation parts of marshes in Rhode
Island, Connecticut, Massachusetts, and Maine.
And she’s been running a restoration experiment of
sorts, draining the pools to see if the grasses come
back. “It's the best part of the day when water begins
to move,” she says.

Other marsh researchers are skeptical, blam-
ing winter ice damage, invasive weeds, or geology.
Mark Bertness, a marine ecologist at Brown Univer-
sity, sees “no evidence” of sea-level rise in the pools
and says that the Save The Bay staff members are
“well-intentioned but nai

Bermess also wonders whether the focus on sea-
level rise is diverting attention from more imme-
diate threats. His own studies, for instance, have
shown that overfishing has resulted in a boom in a population of
crabs that chow on marsh grass, sometimes causing severe damage.
“1 was just dumbfounded what these crabs have done over a 2, 3-year
period” he says. “Sea-level rise is going to come along, but this is
happening now."

No escape route
All sides, however, appear toagree that ifa marsh doesn 't have a sedi-
ment source that will allow it to build up, “then the question becomes
will it be able to migrate,” Kirwan says.

Increasingly, the answer is no. Marshes around the world are
hemmed in by development that essentially blocks migration

wwwsdencemag.org SCIENCE VOL 341
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to higher ground. In many areas, the obstacles are concrete or
stone sea walls built to protect seaside homes or industrial sites.
In Europe and parts of Asia, studies have found that two-thirds or
more of many shorelines have been “armored” Even sparsely pop-
ulated sites can leave marshes little room: A 2000 smdy of Maine's
lightly inhabited Casco Bay found that one-fifth of its shoreline
was armored.

Some researchers are beginning to look at ways to clear such
obstacles. Around the Blackwater National Wildlife Refuge near
Maryland’s Chesapeake Bay, for instance, a coalition of conserva-
tion and government groups has embarked on an ambitious effort to
identify potential obstacles and protect possible migration paths. The
group is even eyeing pine forests and farm fields that may have the
righttopography and soil types to be converted to fiture marshes. The
MNature Conservancy has launched a similar effort on Long Island in
New York state, while Rhode Island officials, scientists, and activists
are working on a statewide assessment to map out risks to wetlands
under different scenarios.

It could take decades to realize such forward-thinking efforts,
planners say. In the meantime, scientists say that they need bet-
ter ways to monitor how marshes are doing now. A good start, a
team of USGS researchers argued
in an April paper in Narure Climare
Change, would be to create a global

Bayou blues. Louisiana’s
disappearing marshes
offer a glimpse of how
global wetlands may
respond to rising seas.

network of 14,000 reladvely simple devices called surface eleva-
tion table markers. Secured to the ground beneath marshes, man-
groves, and wetlands, they can register changes in the height of the
marsh surface to an accuracy of 0.01 cm, more precise than surveys,
LiDAR, or satellite readings. The authors say the network, which
might cost $8 million to create, “would allow policymakers to pri-
aritize wetland sites for intervention.”

That's a goal that Save The Bay’s Cole Ekberg supports. “Some-
one might ask what's the point of protecting salt marshes anyway, if
they're doomed in the long nm,” she says. “My answer is if we can
extend their lives 20 or 30 years, it's a valuable investment.”

—EL KINTISCH
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Can Coastal Marshes Rise Above It All?

As climate change causes sea level to rise, wetland scientists
are struggling to predict which salt marshes will drown—and
which might climb outof danger

WESTERLY, RHODE ISLAND—Biologist Marci Cole Ekberg plunges
her shovel into a particularly gloppy spot ina mucky salt marsh near
the Atlantic Ocean. Her goal:to drain one of many shallow pools that
are creating dead zones in the expanse of otherwise dense grasses, a
phenomenaon that she's recently observed in more than a dozen other
marshes around the state. She fears that the pools are an early con-
sequence of the sea-level rise thatis being driven by global warming
and an ominous “glimpse of the future™ for marshes in New Eng-
land. Rising oceans will drown the grasses, she worries, eliminating
rich habitats and leaving coastlines bare.

‘Other researchers, however, are skeptical that the pockmarks are
a result of climate change, saying winter ice or other causes may be
to blame. And Rhode Island isn't the only place where researchers
are debating what is really happening in salt marshes today and how
the wetlands will fare in a future of higher seas. There’s wide agree-
ment that these salt marshes are among the ecosystems most vulner-
able to rapid sea-level rise. But few researchers are ready to predict
the fate of specific marshes; there’s still too much to learn, they say,
about how wetlands in different regions accumulate sediments that
might allow them to outclimb rising waters and whether they can
escape by migrating inland.

Wetlands scientists are mobilizing to reduce the uncertainty.
By building improved forecasting models and better monitor-
ing systems—and stdying wetland regions already experiencing
dramatic sea-level rise—they re hoping to bring some clarity to a
murky topic and identify practical steps to protect marshes. The
overarching goal, says wetlands researcher Susan Adamowicz of
the U5, Fish and Wildlife Service in Wells, Maine, is to help
managers “give marshes the best possible chance to outpace global
sea-level rise”

“A 2010 study ... underscored the importance of sediment supply.

... Under slower (sea level rise) scenarios there was hope.
... those (marshes) with ample supplies often survived.

... if a marsh doesn’t have a sediment source that will allow it to
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Marshes have already
experienced centuries of
insults—such as pollution, overfishing, and draining for farming
and development—that have disrupted the ecological systems that
help keep them healthy. Now, rising temperatures are causing land-
based ice sheets to melt and seawater to expand. Such changes have
already helped push sea level up by an average of 1.4 to 3.7 milli-
meters per year since 1950, according to a 2010 study published in
Science. (Other estimates vary. ) Climate models predict that the trend
will accelerateto 1 centimeter or more per year as Earth continues to
warm. And even a few extra cenfimeters of water can mean the differ-
ence between life and drowning for marshes, which typically occupy a
narrow coastal band that ends just above the high tide line.

Faced with rising water, marshes have three options, says geol-
ogist Matthew Kirwan of the U.5. Geological Survey (USGS) in
Charlottesville, Virginia: build in place by trapping and piling up
new sediments, migrate to higher ground inland, or die. Predicting
which path a marsh might take, however, requires understanding the
interplay of a host of factors, including the biological traits of differ-
ent marsh grasses and how wetlands construct muddy yet firm foun-
dations from grains of sand, silt, and organic litter.

A sinking laboratory

To get a glimpse of how these factors might shape marsh adapt-
ability in the future, researchers have begun to scrutinize one wet-
land ecosystem already experiencing local sea-level rise: Louisi-
ana’s Mississippi delta along the Gulf of Mexico. There, natural and
human factors are causing the land to sink relatively quickly, creat-
ing a natural laboratory that simulates a sea-level rise of 1 to2 cm
per year. That could be “what it's going to be like everywhere by the
end of the century,” says ecologist James Morris of the University
in South Carolina, Columbia.

Some delta marshes are adapting better than others: While grasses
in a spot named Old Oyster Bayou have thrived, for instance, those in
nearby Bayou Chitique have been largely submerged. The difference,
researchers say, highlights the important role that an adequate sup-
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Kirwan (USGS) says. Increasing the answer is no.”

level rise, apparently because plants adapted for higher tidal ranges
better withstand drowning.

Trench warfare
For conservationists, such studies suggest that it might be possible
to help threatened wetlands adapt—for instance, by removing levees
or dams to restore sediment, or even pumping in new mud. And in
Rhode Island, the idea of ultimately aiding drowning marshes is
what motivated Cole Ekberg, a biologist with the
conservation group Save The Bay, to recently lug a
shovel into a marsh here that is pockmarked with
shallow grassless pools

The origins and meaning of the poolks is the
subject of local debate, some fierce. Cole Ekberg
and others say that their spread is arelatively recent
development, documented in just the last few years
in the higher-elevation parts of marshes in Rhode
Island, Connecticut, Massachusetts, and Maine.
And she’s been running a restoration experiment of
sorts, draining the pools to see if the grasses come
back. “It's the best part of the day when water begins
to move,” she says,

Other marsh researchers are skeptical, blam-
ing winter ice damage, invasive weeds, or geology.
Mark Bertness, a marine ecologist at Brown Univer-
sity, sees “no evidence” of sea-level rise in the pools
and says that the Save The Bay staff members are
“well-intentioned but naive”

Bermess also wonders whether the focus on sea-
level rise is diverting attention from more imme-
diate threats. His own smudies, for instance, have
shown that overfishing has resulted in a boom in a population of
crabs that chow on marsh grass, sometimes causing severe damage.
“1 was just dumbfounded what these crabs have done over a 2, 3-year
period.” he says. “Sea-level rise is going to come along, but this is
happening now."

No escape route
All sides, however, appear toagree that ifa marsh doesn 't have a sedi-
ment source that will allow it to build up, “then the question becomes
will it be able to migrate,” Kirwan says.

Increasingly, the answer is no. Marshes around the world are
hemmed in by development that essentially blocks migration
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are working on a statewide assessment to map out risks to wetlands
under different scenarios.

It could take decades to realize such forward-thinking efforts,
planners say. In the meantime, scientists say that they need bet-
ter ways to monitor how marshes are doing now. A good start, a
team of USGS researchers argued
in an April paper in Narure Climare
Change, would be to create a global

Bayon blues. Louisiana’s
disappeanng marshes
offer a glimpse of how
global wetlands may
respond to rising seas.

network of 14,000 reladvely simple devices called surface eleva-
tion table markers. Secured to the ground beneath marshes, man-
groves, and wetlands, they can register changes in the height of the
marsh surface to an accuracy of 0.01 cm, more precise than surveys,
LiDAR, or satellite readings. The authors say the network, which
might cost $8 million to create, “would allow policymakers to pri-
oritize wetland sites for intervention.”

That’s a goal that Save The Bay’s Cole Ekberg supports. “Some-
one might ask what's the point of protecting salt marshes anyway, if
they're doomed in the long run,” she says. “My answer is if we can
extend their lives 20 or 30 years, it's a valuable investment.”

~EUKINTISCH
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Beach Sediment

Barnard and Warrick (2009) A
Photo courtesy of the Marine Geology

California Coastal Conservancy, taken in 2005 N
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Marine Sediment
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Negative biological effects of
suspended sediment

“In water, agricultural contaminants are most
noticeable when they produce immediate, dramatic toxic
effects on aquatic life, although more subtle, sublethal
chronic effects may be just as damaging over long
periods. ...

... Although suspended sediment represents the largest volume of
aquatic contaminants, pesticides, nutrients, and organic enrichment are also
major stressors of aquatic life.”

--Cooper (1993)




Negative biological effects of
suspended sediment

(i) Effects of sediment:
-Behavioral - alarm reaction, avoidance, attraction, ...
-Physiological - respiration changes, choking, reduced filtering, ...

(ii) Effects of turbidity on light:
-Behavioral - reduced feeding, avoidance, attraction, ...
-Physiological - lower photosynthesis, ...

Results: Increased mortality, decreased growth, lower reproduction

--after Wilber and Clarke (2001)




How can we understand these biological effects?
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How can we understand these biological effects?
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Things to take home:

3. Humans have disrupted U.S. West Coast sediment cycles for at least
hundreds of years.
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DAMS

38% of the coastal CA
watershed is dammed.

~25% decrease in sand
discharge to beaches.

Willis and Griggs (2003)
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Channel Erosion Following Urbanization

Trimble (1997)




Santa Ana River
Watershed

Southern California Imagery by NASA MODIS




Suspended Sediment Rating Curve
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Suspended Sediment Rating Curve
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Discharge has increased substantially!!

SAR at Santa Ana
£ 1311 m3/sec
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Two ways “rating curves” may change...

A. Sediment source B. Discharge increase
reduction ~ ("dilution")
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What about other
Human Impacts?

Time Line:
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“Stock ... (are) forced to depend upon the scant feed
found upon the waste lands now devoted to grazing.”

-Napa Reporter (1873)

“Itis a fact to be regretted that the grass ranges are not what they formerly were
... We have not taken sufficient care of our stock and our grazing lands.”

-Los Angeles Evening Express (1873)

“During the three years from 1868 to 1871, south of Monterey

neither grass nor grain grew ... Hundreds of farms were abandoned ...

In February, 1870 not a blade of grass was to be seen over the extensive valley of
the Santa Clara ...

-Hazel Pulling (1944)
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Sediment Load
to the Bay Delta

After Ganju et al. (2008)
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Things to take home:

4. Sediment is being managed in novel ways up and down our coast.

www.oceani.com
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Active Nourishment of the California Shoreline

Beach nourishment of Imperial Beach, CA -2012
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Desilting Reservoirs
Xiaolangdi Dam
Huange He (Yellow River), China
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Dam Removal
Elwha River Dams
Washington, USA




Original Lake Mills delta area

: 9/2/2010
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Dam Removal
Elwha River Dams
Washington, USA




Beneficial Reuse
Tijuana River Estuary
California, USA
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PROJECT PARTNERS:

Government Agencies:

— California Coastal Conservancy

— California Ocean Protection Council (OPC)

— Tijuana Estuary National Research Reserve
California State Parks
California Department of Boating and Waterways (DBW)
California Sediment Management Workgroup (CSMW)
U.S. Army Corps of Engineers
U.S. Geological Survey

Private Sector and Non-Profits:
— Southwest Wetlands Interpretive Association (SWIA)
— Moffatt & Nichol Engineers

— Nordby Biological Consulting
— Nautilus Environmental

Academic Partners/Collaborators
— University of California, Santa Cruz
— University of California, San Diego
—  Delft Hydraulics (a.k.a. Deltares)

D14,D1z

U.S.-Mexico Border = —"

Naval Air
Station

Tijuana River

Tijuana




Beach Water Samples
During Beneficial Reuse Project
Tijuana River Estuary
California, USA

Warrick (2013)
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Numerical Modeling
with Deltares
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Numerical Modeling
with Deltares
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‘:,SG.WS n Concentration — Duration Relationships
(1 mg/L for 24 hours)

Enabling Delta Life
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Concentration — Duration Relationships
(100 mg/L for 24 hours)
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Closing Thoughts...

Sediment is very different from other pollutants.
Sediment supply is important for our coastal rivers and wetlands.

Management and regulation of sediment should aim to
reintroduce and mimic natural geologic and hydrologic processes.

Monitoring, analyses and open sources of data are increasing
important in this time of change and limited resources.

www.oceani.com




Thank You.

Contact:

jwarrick@usgs.gov
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Turbid Plumes from the Tijuana River

Coastal turbidity following the
17 Dec 08 discharge event from
the Tijuana River

- . R s
Coastal tu rbldlty fO”OWIng the 4 r .. San Diego Water Quality !\-Innilnrin".’

15 Dec 08 discharge event from South Bay Shorcline
the Tijuana River
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Arroyo Seco
Monterey County, CA

1977 Marble Cone Fire
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Mud Deposition on the Continental Shelf
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Santa Ana River
Sediment Budget

A Total Sediment Budget
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A. Sediment source B. Discharge increase
reduction ~ ("dilution")
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What is the story?
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