Coastkeeper/NRDC's Presentation on Feasibility of Numeric Effluent Limits for Stormwater Permits

September 14, 2005

1

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><text>

Determining Compliance with the General Permit as drafted is Resource Intensive and often Judgment Based

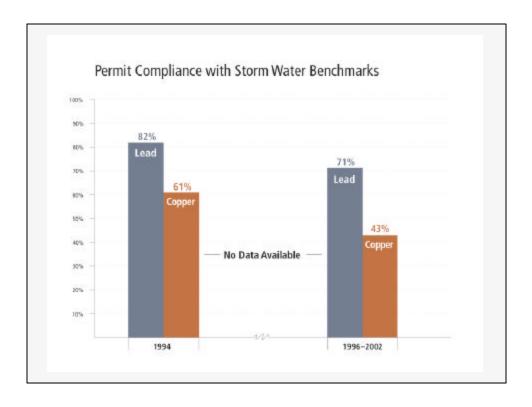
• "A determination of a violation of the Receiving Water Limitations will be site specific and may be based on various factors, including indicator monitoring results, visual observations of the site, discharges, and the receiving water, and a review of BMPs." —*Fact Sheet p. 15*

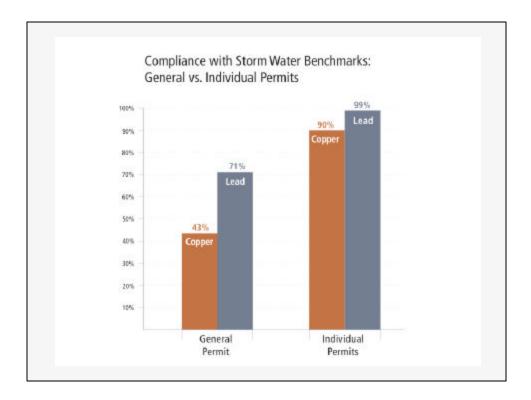
3

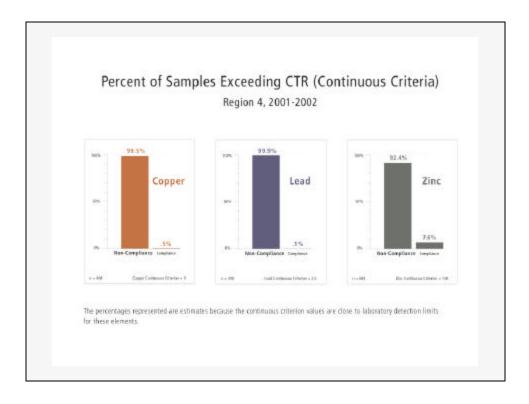
4

Benchmark Levels Do Not Determine Compliance

 "...these benchmarks are not numeric storm water effluent limits, are not related or necessarily protective of any specific receiving water, and exceedances of these benchmarks are not automatically considered permit violations."
 —Fact Sheet p.14 The "Many Factored" Judgment Based Compliance Standard Leaves Permittees in Uncertainty and Complicates Enforcement

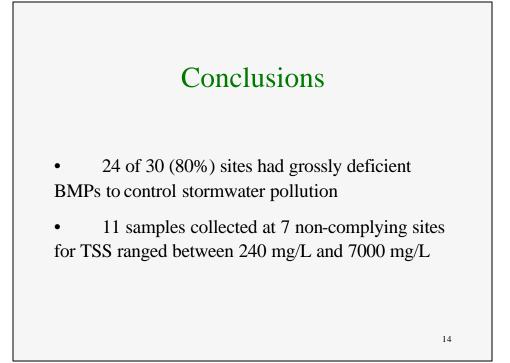

- Dischargers Will Never Know How the RWQCB Will Apply the "Various Factors" and Thus Cannot Be Certain of Compliance
- The Lack of an Objective Standard for Determining Compliance Makes Evaluating Enforcement (and thus defending it in the Courts) Complicated and Resource Intensive


5


6

The Permit is Complicated and Requires Significant Documentation and Reporting by Permittees

- The Permitees must develop and implement BMPs that both meet the BAT/BCT standard and prevent violations of Water Quality standards
- The Permit Provides Little Guidance on BAT/BCT, and No Guidance on Meeting Water Quality Standards
- The Permittee Must Generate a SWPPP, a Monitoring Program, Inspection Reports, and an Annual Report. Failure to Properly Prepare These Reports is a Violation of the Permit and the CWA



Construction Permit Implementation Survey

- February 2004—December 2004
- 30 Construction Sites in Northern California
- Conducted by Ecological Rights Foundation for the Rose Foundation

Developing Numeric Effluent Limits is not Infeasible, and Will Result in Significant Savings of Resources in Oversight and Enforcement of the Permit

- An Initial Investment of State Board PYs in Developing the Limits Will Save Tremendous Resources at the RWQCB Level Over the Life of the Permit.
- Enforcement Will Be Efficient, Certain and Fair If Based on Objective, Numeric Effluent Limits

FEASIBLE DISCHARGE LIMITS FOR CONTRUCTION PERMITTEES BASED ON BEST AVAILABLE TECHNOLOGY (BATs)

Dr. Richard Horner

16

Components

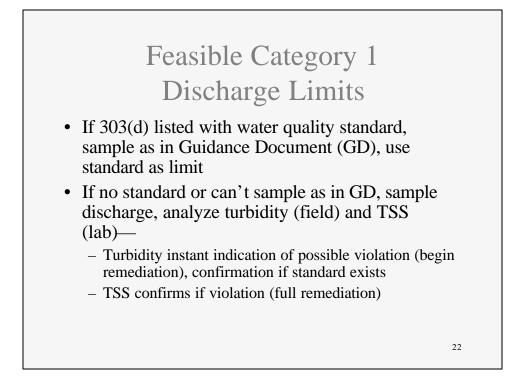
- Identification of potential pollutants
- General monitoring considerations
- Proposed discharge limits
- Background and rationale
- Remediation considerations

Identification of Potential Pollutants • Category 1: Sediments from areas subject to clearing and grading

- Categories 2-4: Materials used, stored, or with spill potential during construction
- Categories 5-9: Materials used, stored, spilled, applied, or released during past land use*
- Category 10: Materials with polluting potential incidentally present in soils*
- * Analysis of past land use activities and soil sampling and analysis required

18

General Monitoring Considerations

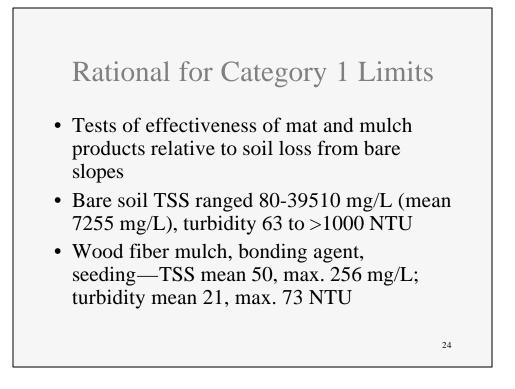

- Discharge sampling within the first hour of runoff and then every 3 hours
- Discharge limit a water quality standard or benchmark, unless options available:
 - Pre-construction baseline monitoring study
 - Reference flow sampling (if true reference, with no or minimal upstream human influence)
 - Mixing zone identification (if not 303(d) listed)

19

<section-header><list-item><list-item><list-item><list-item><list-item>

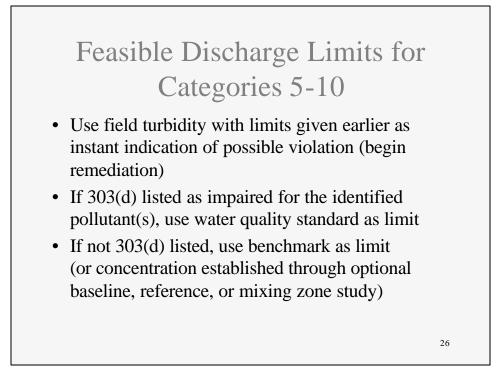
Monitoring to Establish Mixing Zone

- Discharge flow rate or volume and pollutant concentration(s)
- Flow rate or volume and pollutant concentration(s) of any flow joining discharge
- Receiving water flow rate or volume and pollutant concentration(s) outside mixing zone
- Receiving water flow rate or volume and pollutant concentration(s) inside mixing zone

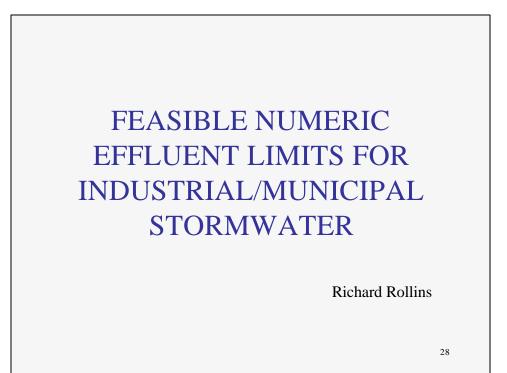


Category 1 Limits (cont'd)

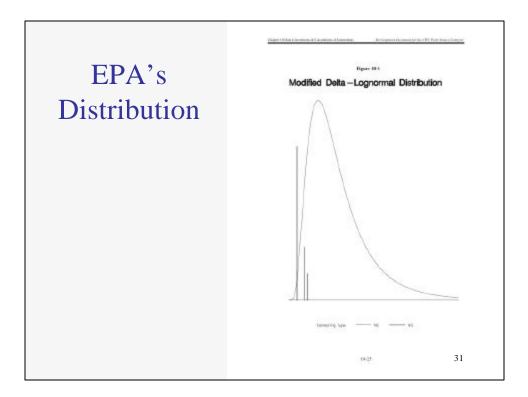
Feasible limits if no standards:


- Turbidity—25 NTU mean, 75 NTU max.
- TSS—50 mg/L mean, 260 mg/L max.

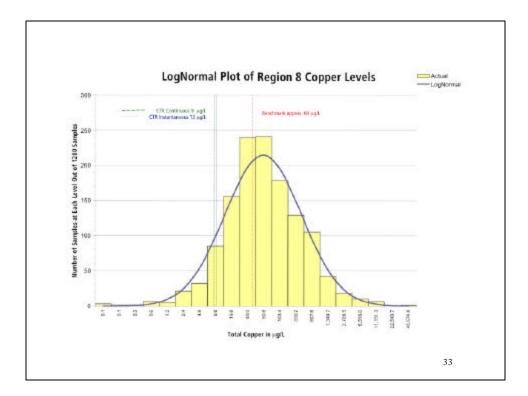
(or concentration established through optional baseline, reference, or mixing zone study)

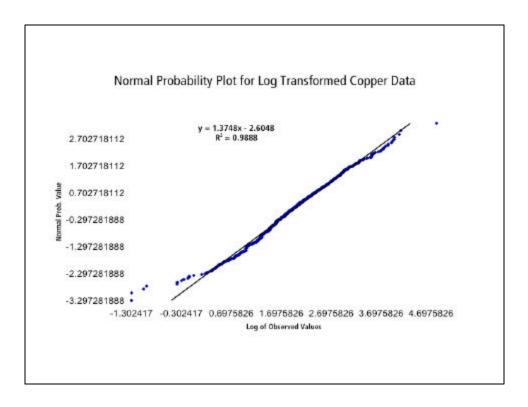

Feasible Discharge Limits for Categories 2-4

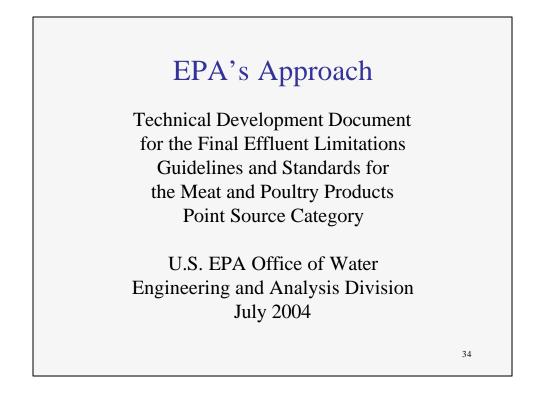
- If 303(d) listed as impaired for the identified pollutant(s), use water quality standard as limit
- If not 303(d) listed, use benchmark as limit (or concentration established through optional baseline, reference, or mixing zone study)



Remediation Considerations


- Full remediation within 2 weeks, unless laboratory results confirm no violation
- If 0.25" rain with 40% probability within 2week period, complete full remediation or apply short-term measure
- If violation, independent inspection until end of construction





14.6.2 Selection of Percentiles

EPA calculates limitations based upon percentiles chosen, on one hand, to be high enough to accommodate reasonably anticipated variability within control of the facility and, on the other hand, to be low enough to reflect a level of performance consistent with the Clean Water Act requirement that these effluent limitations be based on the "best" technologies. The daily maximum limitation is an estimate of the 99th percentile of the distribution of the *daily* measurements. The monthly average limitation is an estimate of the 95th percentile of the distribution of the *monthly* averages of the daily measurements.

Meat and Poultry Products Technical Support Document 14.6.2

35

Legal Validation

Chemical Manufacturers Association v. U.S. Environmental Protection Agency, 870 F.2d 177, 230 (5th Cir. 1989). The Court determined that:

EPA reasonably concluded that the data points exceeding the 99th and 95th percentiles represent either quality-control problems or upsets because there can be no other explanation for these isolated and extremely high discharges. If these data points result from quality-control problems, the exceedances they represent are within the control of the plant. If, however, the data points represent exceedances beyond the control of the industry, the upset defense is available. *Id.* at 230.

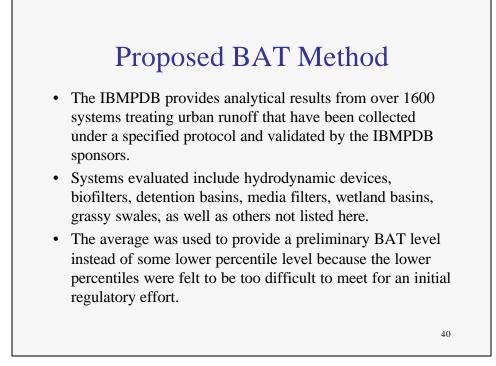
Meat and Poultry Products Tech Support Doc. Section 14.6.2

Legal Validation

This approach for the monthly average limitation was upheld in *National Wildlife Federation, et al v. EnvironmentalProtection Agency*, 286 F.3d 554 (D.C. Cir. 2002). The Court determined that:

<u>EPA rejected Industry Petitioners' claim that facilities are</u> <u>expected to operate processes and treatment systems so as</u> <u>to violate the limitations at some pre-set rate</u>... These limitations were never intended to have the rigid probabilistic interpretation that Industry Petitioners have adopted. Therefore, we reject Industry Petitioners' challenge to the effluent limitations.

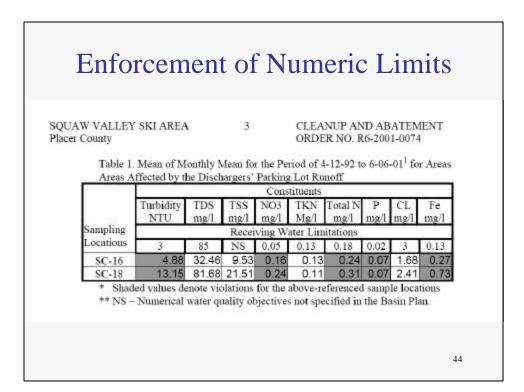
37


Meat and Poultry Products Tech Support Doc. Section 14.6.2

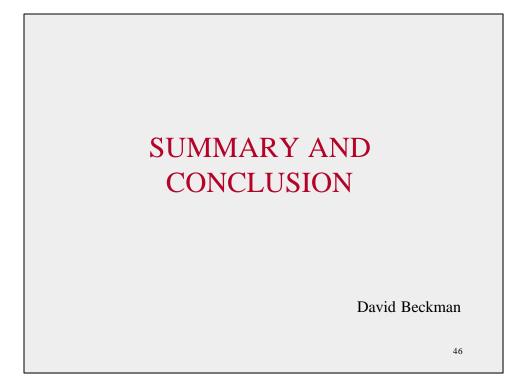
<section-header><text><text><text><text>

Historical Precedents

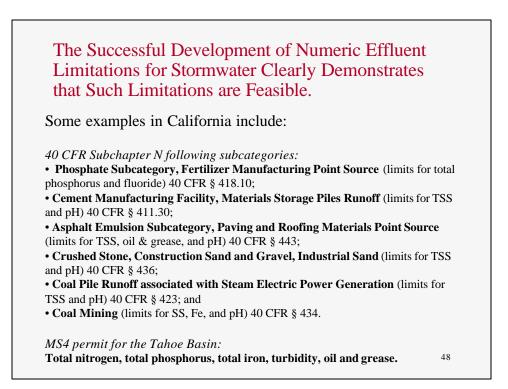
This percentile approach has been used by EPA over the last 2 decades in other Effluent Guidelines including:

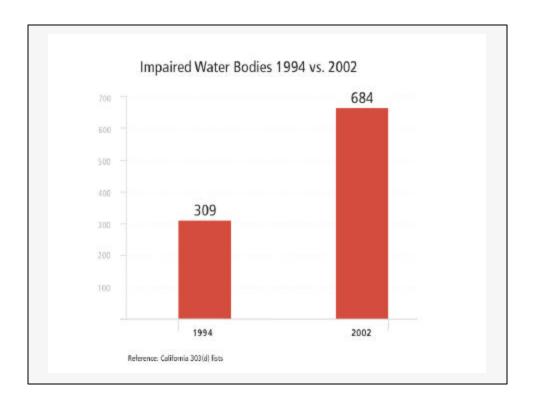

- Organic Chemicals, Plastics, and Synthetic Fibers (OCPSF, 40 CFR Part 414)
- Pulp and Paper Category (40 CFR Part 430)
- Landfills Point Source (40 CFR Part 445)
- Centralized Waste Treatment 40 CFR 437

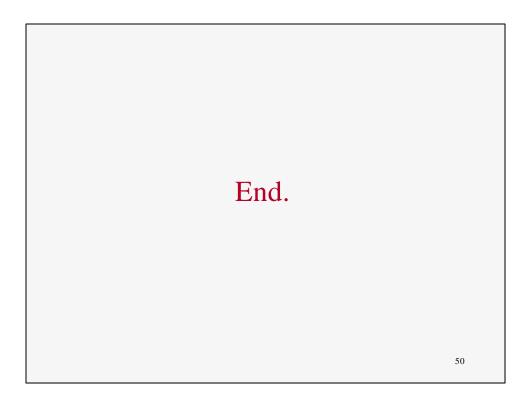
Item	Paramete r	Proposed BAT	Bench mark	CTR (see note 10)	Rationale	Alt. Prop. BAT	Alt. Rational
1.	T. Phosphorus	0.2 mg/L	2 mg/L	na	See notes 1,2, and 11	0.1 mg/L	Lahontan NPDES permit CAG61600
2.	T. Suspended Solids	50 mg /L	100 mg/L	na (Lahontan Basin Plan has limit s for turbidity, 20 NTU)	Coal Pile R unoff associated wth Steam Electric Power Generating Point Source, 40 CFR 423	25 mg/L 30 day average, 45 mg/L 7 day average; 25 mg/L (IBMPDB, See note 6)	Best Practicable Technology Colorado Sand and Gravel Discharge Permit Number Cog-500000 See note 3


Item	Parameter	Pro posed BAT	Benchma rk	CTR (see note 10)	Rationale	Alt. Prop. BAT	Alt. Rationale
3.	Total Nirogen	2 mg/L	na	na	See notes 1,2, and 12		
4.	Total Copper	15 _g/L	63.6 _g/L	3.1_g/L salt water continuous	See note 5	10 _g/L	See note 2
5.	Total Lead	15 _g/L	81.6 _g/L	2.5 _g/L fresh water conthuous	see note 9		
6.	Total Zinc	1 10 _g/L	117 _g/L	81_g/L salt water continuous	see Note 4	55 _g/L, 60 _g/L	See note 2, See note 7
7.	Oil and Grease	10 mg/L	15 mg/L	na	State Effluent Regulations, Colorado Sand and Gravel Discharge Permit Number Cog-500000 See note 3		
8.	BOD5	37 mg/L	30 mg/L	na	see Note 4		
9.	COD	40 mg/L	120 mg/L	na	see Note 8		

CIT	NICIPAL NPDES STORM W Y OF SOUTH LAKE TAHOP orado, and Placer Counties		-II- BOARD ORDER WDID NO. 6A09 NPDES NO. CAO	9110003
L	DISCHARGE SPECI	FICATIONS		
	A. Effluent Limit	ations		
	which a infiltrati	re discharged to pu	off flows generated within blicly owned or maintaine urface waters shall not con tits:	d land treatment or
		Maxim	un Concentration for Discl	harge to:
	Constituent	<u>Units®</u>	Land Treatment/ Infiltration Systems	Surface Waters
	Total Nitrogen Total Phosphorous Total Iron Tutbidity Grease and Oil *mg/L milligrams of *NTU neobelometric	mg/L as N mg/L as P mg/L NTU mg/L substance per liter turbidity units	5.0 1.0 4.0 200 40 of storm water	0.5 0.1 0.5 20.0 2.0


Example: TSS or Turbidity


Parameter	TSS (mg/L)	Turbidity (NTU)
Caltrans Retrofit Study	10	
BMP Database (Mean)	25	_
Construction (Mean)	50	25
Benchmark	100	



Numeric Effluent Limits

Best management practices (BMPs) to control or abate the discharge of pollutants when:
(3) numeric effluent limitations are infeasible
40 CFR §122.44 (k)(3)

