


## Surface Water Ambient Monitoring Program (SWAMP) Report on the Pueblo San Diego Hydrologic Unit

January 2008



# SURFACE WATER AMBIENT MONITORING PROGRAM (SWAMP) REPORT ON THE PUEBLO SAN DIEGO HYDROLOGIC UNIT

Raphael D. Mazor Ken Schiff

Southern California Coastal Water Research Project 3535 Harbor Blvd., Suite 110 Costa Mesa, CA 92626 www.sccwrp.org

Prepared for the California Regional Water Quality Control Board, San Diego Region (Region 9).

This project was funded by the Surface Water Ambient Monitoring Program.

Technical Report 527\_PuebloSanDiego

# TABLE OF CONTENTS

| 1. Abstract                                                 | 1      |
|-------------------------------------------------------------|--------|
| 2. Introduction                                             |        |
| 2.1 Geographic Setting                                      | 3      |
| 2.1.1 Climate                                               |        |
| 2.1.2 Hydrology                                             |        |
| 2.1.3 Land Use within the Watershed                         | 5      |
| 2.1.4 Beneficial Uses and Known Impairments in the Watershe | ed6    |
| 3. Methods                                                  |        |
| 3.1 Indicators                                              | 8      |
| 3.1.1 Water chemistry                                       | 8      |
| 3.1.2 Toxicity                                              | 9      |
| 3.1.3 Tissue                                                | -      |
| 3.1.4 Bioassessment                                         | 9      |
| 3.1.5 Physical Habitat                                      |        |
| 3.2 Data Analysis                                           | 10     |
| 3.2.1 Thresholds                                            | 10     |
| 3.2.2 Quality Assurance and Quality Control (QA/QC)         | 13     |
| 4. Results                                                  |        |
| 4.1 Water Chemistry                                         | 15     |
| 4.2 Toxicity                                                | 24     |
| 4.3 Tissue                                                  | 25     |
| 4.4 Bioassessment                                           | 26     |
| 4.5 Physical Habitat                                        |        |
| 5. Discussion                                               |        |
| 6. Literature Cited                                         |        |
| 7. Appendices                                               |        |
| APPENDIX I                                                  |        |
| APPENDIX II                                                 | II - 1 |
| APPENDIX III                                                |        |

# LIST OF FIGURES

| Figure 1.  | Location of the Pueblo San Diego HU                                  | 3  |
|------------|----------------------------------------------------------------------|----|
| Figure 2.  | Rainfall and sampling events at two stations in the San Diego region | n  |
|            |                                                                      | 4  |
| •          | The Pueblo San Diego watershed, including major waterways            |    |
| Figure 4.  | Land use within the Pueblo San Diego HU                              | 6  |
| Figure 5.  | Location SWAMP and non-SWAMP sampling locations                      | 8  |
| Figure 6.  | Aquatic life threshold exceedances for water chemistry at SWAMP      |    |
| sites.     |                                                                      | 23 |
| Figure 7.  | Map of human health exceedances for water chemistry at SWAMP         |    |
| sites.     |                                                                      | 24 |
| Figure 8.  | Frequency of toxicity at SWAMP sites                                 | 25 |
| Figure 9.  | IBI scores at sites in the Pueblo San Diego HU                       | 26 |
| Figure 10. | Mean IBI scores at each bioassessment site and each season?          | 27 |
| Figure 11. | IBI values for each year and site                                    | 28 |
| Figure 12. | Summary of the ecological health of SWAMP sites.                     | 32 |
| -          | · · · · · · · · · · · · · · · · · · ·                                |    |

## LIST OF TABLES

| Table 1. Watersheds monitored under the SWAMP program                       | 2   |
|-----------------------------------------------------------------------------|-----|
| Table 2. Sources of data used in this report                                |     |
| Table 3: SWAMP sampling site locations                                      | 7   |
| Table 4. Non-SWAMP sampling site locations                                  | 7   |
| Table 5. Threshold sources                                                  | 11  |
| Table 6. Water chemistry thresholds for aquatic life and human health       |     |
|                                                                             | 12  |
| Table 7. Number of anthropogenic organic compounds detected at each sit     | te  |
|                                                                             | 15  |
| Table 8. Frequency of detection of anthropogenic organic compounds          |     |
| Table 9. Frequency of water chemistry threshold exceedances                 |     |
| Table 10. Number of constituents exceeding thresholds at each SWAMP si      | te. |
|                                                                             | 22  |
| Table 11. Frequency of toxicity detected for each endpoint and at each site |     |
| Table 12. Mean and standard deviation of IBI scores at bioassessment site   | S   |
| within the Pueblo San Diego HU                                              | 26  |
| Table 13. Summary of the ecological health for five SWAMP sites in Pueble   | С   |
| San Diego HU                                                                | 31  |

## **1. ABSTRACT**

In order to assess the ecological health of the Pueblo San Diego Hydrologic Unit (San Diego County, CA), water chemistry, water and sediment toxicity, and benthic macroinvertebrate communities were assessed at multiple sites on Chollas and Paradise Creeks. Water chemistry, toxicity, and bioassessment samples were assessed under SWAMP between 2005 and 2006. Bioassessment samples were also collected under other programs between 2003 and 2005. Although impacts to human health were assessed, the goal of this monitoring program was to examine impacts to aquatic life in the watershed. Most of these ecological indicators showed evidence of widespread impacts to the watershed. For example, water chemistry constituents at both sites exceeded aquatic life thresholds. Toxicity was evident at both sites, with the alga Selenastrum capricornutum indicating toxicity at both Paradise and Chollas Creeks. Bioassessment samples collected at 2 sites on Chollas Creek were all in poor or very poor condition. Mean annual IBIs ranged from 10.0 at the downstream site to 19.5 at the upstream site, indicating that benthic assemblages were typical of impacted communities. Multiple stressors, including contaminated water, were likely responsible for the poor health of the watershed. Despite limitations of this assessment (e.g., uncertain spatial and temporal variability, low levels of replication, non-probabilistic sampling, and lack of thresholds for several indicators), multiple lines of evidence support the conclusion that these sites in the Pueblo San Diego HU are in poor ecological condition.

## 2. INTRODUCTION

The Pueblo San Diego hydrologic unit (HU 908) is in southern San Diego County and is home to about 500,000 people and represents an important water resource in one of the most arid regions of the nation (SANDAG 1998). Despite strong interest in the surface waters of the Pueblo San Diego HU, a comprehensive assessment of the ecological health of these waters has not been conducted. The purpose of this study was to assess the health of the watershed using data collected in 2005 and 2006 under the Surface Water Ambient Monitoring Program (SWAMP), and data collected by other programs. such as monitoring by National Pollution Discharge Elimination System (NPDES) permittees and by the California Department of Fish and Game (DFG). SWAMP monitoring efforts rotated among sets of watersheds, ensuring that each HU is monitored once every 5 years (Table 1). These programs collected data to describe water chemistry, water and sediment toxicity, and macroinvertebrate community structure. By examining data from multiple sources, this report provides a measure of the ecological integrity of the Pueblo San Diego HU.

| Year (Fiscal year) | Sample collection | Hydrologic unit | HUC     |
|--------------------|-------------------|-----------------|---------|
| 1 (2000-2001)      | 2002              | Carlsbad        | 904     |
|                    |                   | <b>–</b> ~      | ~ ~ ~ ~ |

Table 1. Watersheds monitored under the SWAMP program.

| ··· ( ··· )·· ) |           |                  |     |
|-----------------|-----------|------------------|-----|
| 1 (2000-2001)   | 2002      | Carlsbad         | 904 |
|                 | 2002      | Peñasquitos      | 906 |
| 2 (2001-2002)   | 2002-2003 | San Juan         | 901 |
|                 | 2003      | Otay             | 910 |
| 3 (2002-2003)   | 2003      | Santa Margarita  | 902 |
|                 | 2003      | San Dieguito     | 905 |
| 4 (2003-2004)   | 2004-2005 | San Diego        | 907 |
|                 | 2004-2005 | San Luis Rey     | 903 |
| 5 (2004-2005)   | 2005-2006 | Pueblo San Diego | 908 |
|                 | 2005-2006 | Sweetwater       | 909 |
|                 | 2005-2006 | Tijuana          | 911 |

There are two objectives for this assessment: 1) To evaluate the condition of SWAMP sites; and 2) To evaluate the overall condition of the watershed. Evaluations were based on multiple indicators of ecological integrity, including water chemistry, water and sediment toxicity, and benthic macroinvertebrate communities.

This report is organized into four sections. The first section (Introduction) describes the geographic setting in terms of climate, hydrology, and land use within the watershed. The second section (Methods) describes the approach to data collection, assessment indicators, and data analysis. The third section (Results) contains the results of these analyses. The fourth section (Discussion) integrates evidence of impact from multiple indicators, describes the limitations of this assessment, and summarizes the overall health of the watershed.

### 2.1 Geographic Setting

The Pueblo San Diego HU is a collection of coastal watersheds in southern San Diego County draining into San Diego Bay (Figure 1). Located entirely within San Diego County, the watershed covers 56 mi<sup>2</sup> and ranges from Paradise Mountains, in the interior, to the Pacific Coast.

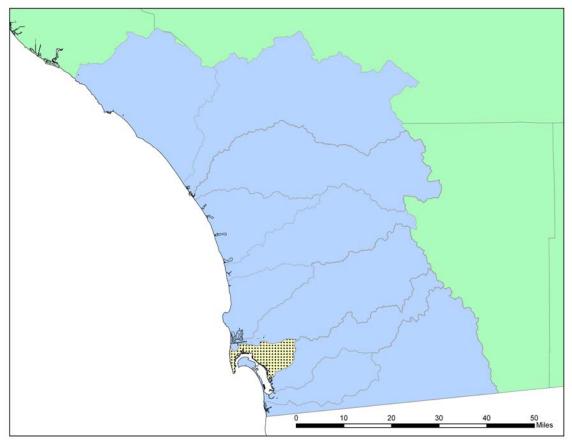



Figure 1. San Diego region (purple) includes portions of San Diego, Riverside, and Orange counties. The Pueblo San Diego HU (tan, shaded) is located entirely within San Diego County.

### 2.1.1 Climate

The Pueblo San Diego HU, like the entire San Diego region, is characterized by a mediterranean climate, with hot dry summers and cool wet winters. Average monthly rainfalls measured at the Lindberg Airport (SDG) in San Diego, California between 1905 and 2006 show that nearly all rain fell between the months of October and April, with hardly any falling between the months of May and September (California Department of Water Resources 2007). The wettest month was January, with an average rainfall of 2.05"). Average annual rainfall at this station was 10.37". Daily rainfall measured at Sea World (near the inland end of the HU) and at La Mesa (near the interior of the HU) shows considerable variability in rainfall throughout the HU (National Oceanic and Atmospheric Administration 2007) (Figure 2).

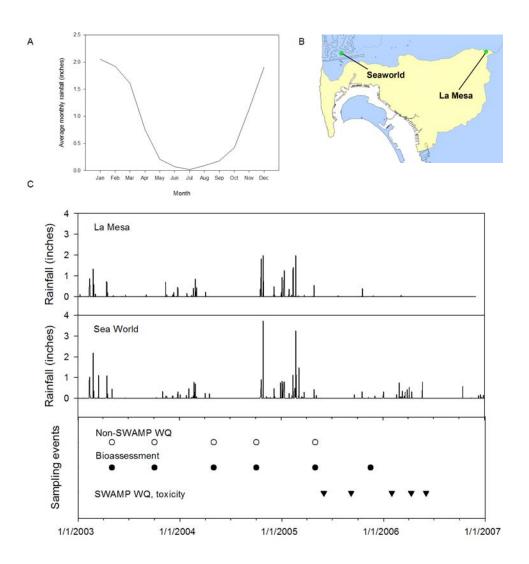



Figure 2. Rainfall and sampling events at stations in the San Diego region. A. Average precipitation for each month at the Lindberg Station (DWR station code SDG), based on data collected between January 1905 and November 2006. B. Location of the Seaworld and La Mesa gauges. C. Storm events and sampling events in the Pueblo San Diego HU. The top two plots show daily precipitation between 2003 and 2007 at the two stations. The bottom plot shows the timing of sampling events. Non-SWAMP water chemistry is shown as white circles. Non-SWAMP bioassessment is shown as black circles. SWAMP water chemistry and toxicity is shown as black downward triangles.

#### 2.1.2 Hydrology

The Pueblo San Diego HU consists of four major watersheds which drain to San Diego Bay: Chollas Creek, Paradise Creek, Powerhouse Creek, and Paleta Creek (Figure 3). The largest watershed is Chollas Creek, which consists of two major tributaries.

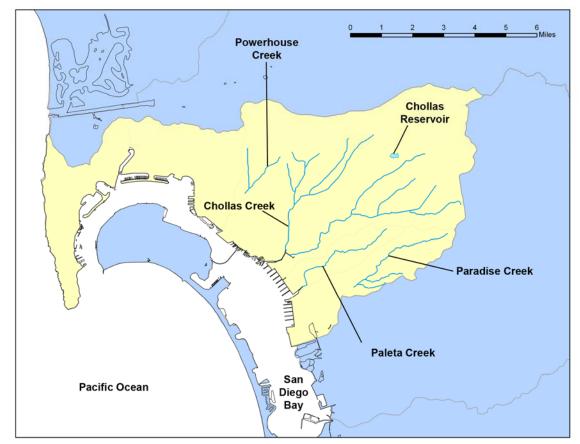



Figure 3. The Pueblo San Diego watershed, including major waterways.

#### 2.1.3 Land Use within the Watershed

Several municipalities have jurisdiction over portions of the watershed. The City of San Diego occupies the largest portion of the watershed (83.6%), followed by National City (7.0%), Lemon Grove (4.6%), and La Mesa (4.5%). The watershed is extensively developed, with urban and industrial land uses covering 88% of the area. Open parklands occupy 12%; agricultural lands do not occupy a significant portion of the watershed. The largest protected area is Balboa Park (1.9 mi<sup>2</sup>), which contains portions of Powerhouse Creek. Portions of Chollas Creek are protected by small riverside parks managed by the City of San Diego, such as Chollas Lake Park. Caltrans is a major landowner within the HU, and it has jurisdiction of all major freeways and highways (SANDAG 1998).

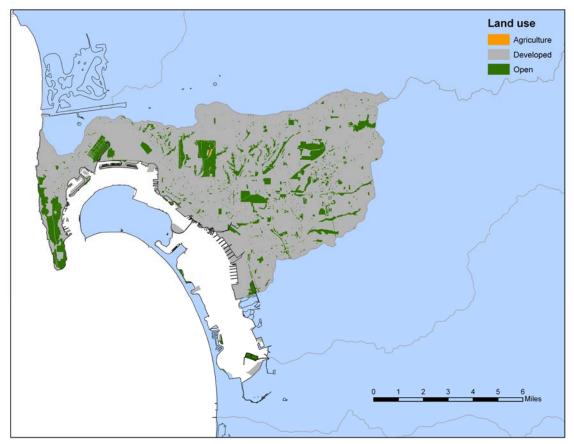



Figure 4. Land use within the Pueblo San Diego HU. Undeveloped open space is shown as green. Agricultural areas are shown as orange. Urban and developed lands are shown as dark gray.

#### 2.1.4 Beneficial Uses and Known Impairments in the Watershed

The Pueblo San Diego HU is designated to support beneficial uses related to aquatic life and human health. Beneficial uses in the watershed include recreation; warm freshwater habitat; wildlife habitat. All streams in the Pueblo San Diego HU have been exempted from municipal uses (Appendix Ia).

Chollas Creek in the Pueblo San Diego HU is listed as impaired on the 303(d) list of water quality limited segments, affecting a total of 3.5 stream miles. Known stressors include copper, indicator bacteria, lead, zinc, and diazinon from nonpoint and point sources (Appendix Ib).

## 3. METHODS

This report combines data collected under SWAMP with data collected under other programs by the Regional Board, and under NPDES monitoring (Table 2). Two sites of interest were sampled under SWAMP in the Pueblo San Diego HU in 2005: Chollas Creek and Paradise Creek (Table 3; Figure 5). Water chemistry and water and sediment toxicity were measured at both sites. Bioassessment samples were collected in 2005 and 2006 under SWAMP and other programs by the San Diego Water Board at Chollas Creek. Bioassessment samples and limited water chemistry (e.g., temperature, conductivity, dissolved oxygen) were collected at a second site on Chollas Creek by the Regional Board, and by the County of San Diego as part of its NPDES monitoring (Table 4; Figure 5). Physical habitat and fish tissues were not assessed in the Pueblo San Diego HU.

| Table 2. Sources of data used in this report. |                                          |           |  |  |  |  |
|-----------------------------------------------|------------------------------------------|-----------|--|--|--|--|
| Project                                       | Indicators                               | Years     |  |  |  |  |
| SWAMP                                         | Water chemistry, toxicity, bioassessment | 2005-2006 |  |  |  |  |
| Regional board monitoring                     | Bioassessment                            | 2005      |  |  |  |  |
| San Diego County NPDES                        | Water chemistry, bioassessment           | 2003-2005 |  |  |  |  |

# Table 3. SWAMP sampling site locations. Bioassessment samples were collected at the locations marked with an asterisk (\*).

| Site        | Description      | •        | Longitude (°E) |
|-------------|------------------|----------|----------------|
| 0.10        | I                |          |                |
| 1 908PPAR04 | Paradise Creek 4 | 32.66943 | -117.10279     |
| 2 CHL4*     | Chollas Creek 4  | 32.69584 | -117.12226     |

# Table 4. Non-SWAMP sampling site locations. W = sites where conventional water chemistry was sampled. B = sites where benthic macroinvertebrates were sampled.

|        |                         | SWAMP site   |                            |   |   |               |               |
|--------|-------------------------|--------------|----------------------------|---|---|---------------|---------------|
| Site [ | Description             | within 500 m | Sources                    | W | В | Lattitude (N) | Longitude (E) |
| 1 (    | Chollas Creek tributary | None         | Regional Board (908CCTNFA) |   | Х | 32.7273       | -117.06977    |
| r      | near Federal Avenue     |              | NPDES (CC-FB)              | Х | Х |               |               |
| 2 (    | Chollas Creek above     | CHL4         | Regional Board (908CLCANB) |   | Х | 32.69629      | -117.12237    |
| 1      | National Boulevard      |              |                            |   |   |               |               |

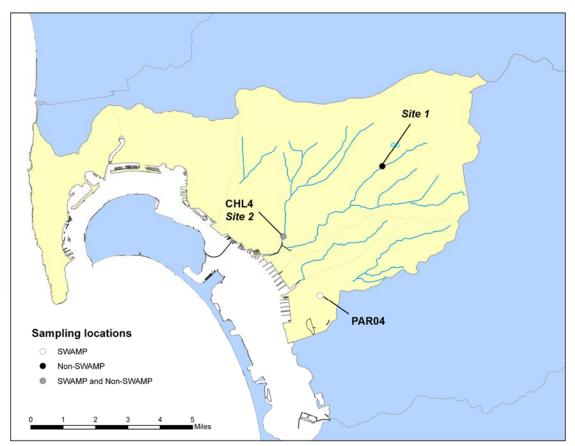



Figure 5. Sampling locations in the Pueblo San Diego HU. White circles represent sites sampled under SWAMP. Black circles represent sites sampled under non-SWAMP programs. Gray circles represent sites sampled under both SWAMP and non-SWAMP programs.

### 3.1 Indicators

Multiple indicators were used to assess the sites in the Pueblo San Diego HU. Water chemistry, water and sediment toxicity, and benthic macroinvertebrate communities.

### 3.1.1 Water chemistry

To assess water chemistry, samples were collected at each site. Water chemistry was measured as per the SWAMP Quality Assurance Management Plan (QAMP) (Puckett 2002). Measured indicators included conventional water chemistry (e.g., pH, temperature dissolved oxygen, etc.), inorganics, herbicides, pesticides, polycyclic aromatic hydrocarbons (PAHs), dissolved metals, pesticides, and polychlorinated biphenyls (PCBs). Appendix II contains a complete list of constituents that were measured.

Limited water chemistry was collected under non-SWAMP NPDES monitoring as well. This monitoring was restricted to physical parameters, and

followed procedures described in annual reports to the California Regional Water Quality Control Board, San Diego Region (e.g., Weston Solutions Inc. 2007).

#### 3.1.2 Toxicity

To evaluate water and sediment toxicity to aquatic life in Chollas and Paradise Creeks, toxicity assays were conducted on samples from each site as per the SWAMP QAMP (EPA 1993, Puckett 2002). Water toxicity was evaluated with 7-day exposures on the water flea, *Ceriodaphnia dubia*, and 96-hour exposures to the alga *Selenastrum capricornutum*. Both acute and chronic toxicity to *C. dubia* was measured as decreased survival and fecundity (i.e., eggs per female) relative to controls, respectively. Chronic toxicity to *S. capricornutum* was measured as changes in total cell count relative to controls. Sediment toxicity was evaluated with 10-day exposures on the amphipod *Hyallela azteca*. Both acute and chronic toxicity to *H. azteca* was measured as decreased survival and growth (mg per individual) relative to controls, respectively. Chronic toxicity endpoints (i.e., *C. dubia* fecundity, *H. azteca* growth, and *S. capricornutum* total cell count) were used to develop a summary index of toxicity at each site.

All indicators were measured from one sample per site. All samples from Chollas Creek were collected on June 2, 2006. Water samples were collected at Paradise Creek on September 6, 2005. Sediment samples from Paradise Creek were collected on April 10, 2006.

#### 3.1.3 Tissue

Fish tissues were not assessed in the Pueblo San Diego HU.

### 3.1.4 Bioassessment

To assess the ecological health of the streams in Pueblo San Diego HU, benthic macroinvertebrate samples were collected at 2 sites on Chollas Creek. Samples were collected using SWAMP-comparable protocols, as per the SWAMP QAMP (Puckett 2002). Three replicate samples were collected from riffles at each site; 300 individuals were sorted and identified from each replicate, creating a total count of 900 individuals per site. Using a Monte Carlo simulation, all samples were reduced to 500 count for calculation of the Southern California Index of Biotic Integrity (IBI; Ode et al. 2005), a composite of seven metrics summed and scaled from 0 (poor condition) to 100 (good condition).

### 3.1.5 Physical Habitat

Physical habitat was not assessed in the Pueblo San Diego HU.

#### 3.2 Data Analysis

To evaluate the extent of human impacts to water chemistry in streams in the Pueblo San Diego HU, two frequency-based approaches were employed to detecting impacts. First, established aquatic life and human health thresholds for individual constituents were evaluated for frequency of exceedances. Second, the frequency of detection for anthropogenic constituents (such as PCBs, pesticides, and PAHs) was also evaluated.

To evaluate the overall health of each site and of the watershed, three indicators were selected for analysis: number of constituents exceeding aquatic life water chemistry thresholds; frequency of chronic toxicity to *S. capricornutum, C. dubia,* and *H. azteca*; and mean IBI score. These results were plotted on a map of the watershed, indicating the severity and distribution of human impacts.

Although non-SWAMP sources of water chemistry data were used, this report focuses on SWAMP data in order to maintain consistency of sampling methods and parameters measured at each site. Analyses of non-SWAMP water chemistry data is presented separately. In contrast, bioassessment data from multiple sources is analyzed together because of the high compatibility of sampling protocols used in different programs, and because of the limited availability of bioassessment data from a single source. Toxicity data were only available from SWAMP monitoring.

#### 3.2.1 Thresholds

In order to use the data to assess the health of the watershed, thresholds were established for each indicator: water quality, toxicity, and bioassessment. Exceedance of appropriate thresholds was considered evidence for impact on watershed health.

Water chemistry data from this study were compared to water quality objectives established by state and federal agencies to protect the most sensitive beneficial uses designated in the Pueblo San Diego HU. Therefore, the most stringent water quality objectives (e.g., municipal drinking water, aquatic life, etc.) for the measured constituents were used as threshold points to evaluate the data.

The Water Quality Control Plan for the San Diego Basin (BP) was the primary source of water chemistry thresholds. Other sources for standards used in water chemistry thresholds included the California Toxics Rule (CTR), the Environmental Protection Agency National Aquatic Life Criteria (EPA), the National Academy of Sciences Health Advisory (NASHA), United States Environmental Protection Agency Integrated Risk Information System (IRIS), Total Maximum Daily Loads (TMDLs) for Chollas Creek, and the California Code of Regulations §64449 (CCR). The sources for thresholds used in this study are shown in Table 5.

| Indicator       | Source                                                                                | Citation                                                                                                                                                                                                                                |
|-----------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Water chemistry | Water Quality Control Plan<br>For the San Diego Basin<br>(BP)                         | California Regional Water Quality Control Board, San<br>Diego Region. 1994. Water quality control plan for the<br>San Diego Region. San Diego, CA.<br><u>http://www.waterboards.ca.gov/sandiego/programs/basi</u><br><u>nplan.html</u>  |
|                 | California Toxics Rule<br>(CTR)                                                       | Environmental Protection Agency. 1997. Water quality standards: Establishment of numeric criteria for priority toxic pollutants for the state of California: Proposed Rule. <i>Federal Register</i> 62:42159-42208.                     |
|                 | EPA National Aquatic Life<br>Criteria (EPA)                                           | Environmental Protection Agency. 2002. National recommended water quality criteria. EPA-822-R-02-047. Office of Water. Washington, DC.                                                                                                  |
|                 | National Academy of<br>Sciences Health Advisory<br>(NASHA)                            | National Academy of Sciences. 1977. Drinking Water<br>and Health. Volume 1. Washington, DC.                                                                                                                                             |
|                 | US Environmental<br>Protection Agency<br>Integrated Risk Information<br>System (IRIS) | Environmental Protection Agency (EPA). 2007.<br>Integrated Risk Information System.<br><u>http://www.epa.gov/iris/index.html</u> . Office of Research<br>and Development. Washington, DC.                                               |
|                 | California Code of<br>Regulations §64449 (CCR)                                        | California Code of Regulations. 2007. Secondary<br>drinking water standards. Register 2007, No. 8. Title<br>22, division 4, article 16.                                                                                                 |
|                 | Total Maximum Daily Loads<br>(TMDL) for Chollas Creek                                 | California Regional Water Quality Control Board, San<br>Diego Region. 2007. Total Maximum Daily Loads for<br>Dissolved Copper, Lead, and Zinc in Chollas Creel,<br>Tributary to San Diego Bay.<br>http://www.swrcb.ca.gov/rwqcb9/tmdls/ |
| Bioassessment   | Ode et al. 2005                                                                       | Ode, P.R., A.C. Rehn and J.T. May. 2005. A quantitative tool for assessing the integrity of southern California coastal streams. <i>Environmental Management</i> 35:493-504.                                                            |

 Table 5.
 Threshold sources

Although human health thresholds (e.g., drinking water standards) were applied to relevant water chemistry data, this report focuses on aquatic life, and does not address the risks to human health in the Pueblo San Diego HU. When multiple thresholds were applicable to a single constituent, the most stringent threshold was used. Water chemistry thresholds for aquatic life and human health standards used in this study are presented in Table 6. Impacts were assessed as the total number of constituents exceeding threshold, as opposed to the fraction of constituents. The fraction of constituents exceeding thresholds is not an ecologically meaningful statistic because the number of constituents below thresholds does not degrade or improve the ecological health of a site.

Table 6. Water chemistry thresholds for aquatic life and human health standards. San Diego Basin Plan (BP); California Toxics Rule (CTR); Environmental Protection Agency National Aquatic Life Standards (EPA); National Academy of Science Health Advisory (NASHA); Environmental Protection Agency Integrated Risk Information System (IRIS); California Code of Regulations §64449 (CCR). Total Maximum Daily Load for Copper, Lead and Zinc in Chollas Creek (TMDL)—applies only to Chollas Creek.

|            |                                                   | Aquatic life  |              | Human health |           |      |        |
|------------|---------------------------------------------------|---------------|--------------|--------------|-----------|------|--------|
| Category   | Constituent                                       | Threshold     | Unit         | Source       | Threshold | Unit | Source |
| Inorganics | Alkalinity as CaCO3                               | 20000         | mg/l         | EPA          | none      | mg/l | none   |
| Inorganics | Ammonia as N                                      | 0.025         | mg/l         | BP           | none      | mg/l | none   |
| Inorganics | Nitrate + Nitrite as N                            | 10            | mg/l         | BP           | none      | mg/l | none   |
| Inorganics | Phosphorus as P,Total                             | 0.1           | mg/l         | BP           | none      | mg/l | none   |
| Inorganics | Selenium, Dissolved                               | 5             | µg/L         | CTR          | none      | µg/L | none   |
| Inorganics | Chloride                                          | none          | mg/l         | BP           | 230       | mg/l | EPA    |
| Metals     | Aluminum, Dissolved                               | 1000          | µg/L         | BP           | none      | µg/L | none   |
| Metals     | Arsenic, Dissolved                                | 50            | µg/L         | BP           | 150       | µg/L | CTR    |
| Metals     | Cadmium, Dissolved                                | 5             | µg/L         | BP           | 2.2       | μg/L | CTR    |
| Metals     | Chromium, Dissolved                               | 50            | μg/L         | BP           | none      | μg/L | none   |
| Metals     | Copper, Dissolved                                 | 9             | μg/L         | CTR          | 1300      | μg/L | CTR    |
| Metals     | Copper, Dissolved (CHL4 only)                     | 8.8           | μg/L         | TMDL*        | none      | μg/L | none   |
| Metals     | Lead, Dissolved                                   | 2.5           | μg/L         | CTR          | none      | μg/L | none   |
| Metals     | Lead, Dissolved (CHL4 only)                       | 2.2           | μg/L         | TMDL*        | none      | μg/L | none   |
| Metals     | Nickel, Dissolved                                 | 52            | µg/L         | CTR          | 610       | μg/L | CTR    |
| Metals     | Silver, Dissolved                                 | 3.4           | µg/L         | CTR          | none      | µg/L | none   |
| Metals     | Zinc,Dissolved                                    | 120           | µg/L         | CTR          | none      | µg/L | none   |
| Metals     | Zinc, Dissolved (CHL4 only)                       | 53            | µg/L         | TMDL*        | none      | µg/L | none   |
| PAHs       | Acenaphthene                                      | none          | µg/L         | none         | 1200      | µg/L | CTR    |
| PAHs       | Anthracene                                        | none          | μg/L         | none         | 9600      | µg/L | CTR    |
| PAHs       | Benz(a)anthracene                                 | none          | μg/L         | none         | 0.0044    | µg/L | CTR    |
| PAHs       | Benzo(a)pyrene                                    | 0.0002        | μg/L         | BP           | 0.0044    | µg/L | CTR    |
| PAHs       | Benzo(b)fluoranthene                              | none          | μg/L         | none         | 0.0044    | μg/L | CTR    |
| PAHs       | Benzo(k)fluoranthene                              | none          | µg/L         | none         | 0.0044    | μg/L | CTR    |
| PAHs       | Chrysene                                          | none          | μg/L         | none         | 0.0044    | μg/L | CTR    |
| PAHs       | Dibenz(a,h)anthracene                             | none          | μg/L         | none         | 0.0044    | µg/L | CTR    |
| PAHs       | Fluoranthene                                      | none          | μg/L         | none         | 300       | µg/L | CTR    |
| PAHs       | Indeno(1,2,3-c,d)pyrene                           |               | μg/L         |              | 0.0044    | μg/L | CTR    |
| PAHs       | Pyrene                                            | none          | µg/∟<br>µg/L | none         | 960       |      | CTR    |
| PCBs       | PCBs                                              | none<br>0.014 |              | none<br>CTR  | 0.00017   | µg/L | CTR    |
| Pesticides | Aldrin                                            | 3             | µg/L         | CTR          | 1.3E-07   | µg/L | CTR    |
|            |                                                   |               | µg/L         |              |           | µg/L |        |
| Pesticides | Alpha-BHC                                         | none          | µg/L         | none         | 0.0039    | µg/L | CTR    |
| Pesticides | Beta-BHC                                          | none          | µg/L         | none         | 0.014     | µg/L | CTR    |
| Pesticides | Gamma-BHC (Lindane)                               | 0.95          | µg/L         | CTR          | 0.019     | µg/L | CTR    |
| Pesticides | ,                                                 | none          | µg/L         | none         | 60        | µg/L | EPA    |
| Pesticides | Atrazine                                          | 3             | µg/L         | BP           | 0.2       | µg/L | OEHHA  |
|            | Azinphos ethyl                                    | none          | µg/L         | none         | 87.5      | µg/L | NASHA  |
|            | Azinphos methyl                                   | none          | µg/L         | none         | 87.5      | µg/L | NASHA  |
|            | Chlordanes                                        | 0.0043        | µg/L         | CTR          | 0.00057   | µg/L | CTR    |
|            | DDD(p,p')                                         | none          | µg/L         | none         | 0.00083   | µg/L | CTR    |
| Pesticides |                                                   | none          | µg/L         | none         | 0.00059   | µg/L | CTR    |
| Pesticides |                                                   | none          | µg/L         | none         | 0.00059   | µg/L | CTR    |
| Pesticides |                                                   | none          | µg/L         | none         | 0.00014   | µg/L | CTR    |
| Pesticides |                                                   | none          | µg/L         | none         | 1.4       | µg/L | IRIS   |
| Pesticides | Endosulfan sulfate                                | none          | µg/L         | none         | 110       | µg/L | CTR    |
| Pesticides |                                                   | 0.002         | µg/L         | BP           | 0.76      | µg/L | CTR    |
|            | Endrin Aldehyde                                   | none          | µg/L         | none         | 0.76      | µg/L | CTR    |
|            | Endrin Ketone                                     | none          | µg/L         | none         | 0.85      | µg/L | CTR    |
|            | Heptachlor<br>scholds for conner lead, and zinc a | 0.0038        | µg/L         | CTR          | 0.00021   | µg/L | CTR    |

\* TMDL thresholds for copper, lead, and zinc apply to Chollas Creek, and assume a hardness of 100 mg/L CaCO<sub>3</sub>.

|            |                        |           | Aquatic life |        |           | Human health |        |  |
|------------|------------------------|-----------|--------------|--------|-----------|--------------|--------|--|
| Category   | Constituent            | Threshold | Unit         | Source | Threshold | Unit         | Source |  |
| Pesticides | Heptachlor epoxide     | 0.0038    | µg/L         | CTR    | 0.0001    | µg/L         | CTR    |  |
| Pesticides | Hexachlorobenzene      | 1         | µg/L         | BP     | 0.00075   | µg/L         | CTR    |  |
| Pesticides | Methoxychlor           | 40        | µg/L         | BP     | none      | µg/L         | none   |  |
| Pesticides | Molinate               | 20        | µg/L         | BP     | none      | µg/L         | none   |  |
| Pesticides | Oxychlordane           | none      | µg/L         | none   | 0.000023  | µg/L         | CTR    |  |
| Pesticides | Simazine               | 4         | µg/L         | BP     | none      | µg/L         | none   |  |
| Pesticides | Thiobencarb            | 70        | µg/L         | BP     | none      | µg/L         | none   |  |
| Pesticides | Toxaphene              | 0.0002    | µg/L         | CTR    | 0.0002    | µg/L         | CTR    |  |
| Physical   | Oxygen, Dissolved      | 5         | mg/L         | BP     | none      | mg/L         | none   |  |
| Physical   | рН                     | >6 and <8 | pН           | BP     | none      | pН           | none   |  |
| Physical   | Specific Conductivity  | 1600      | µS/cm        | CCR    | none      | mS/cm        | none   |  |
| Physical   | Turbidity (PAR04 only) | 20        | NTU          | BP     | none      | NTU          | none   |  |

Several anthropogenic water chemistry constituents had no applicable threshold (e.g., malathion), and impacts from these constituents would not be detected using the threshold-based approach described above. To assess the impact from these constituents, the number of organic constituents (i.e., PAHs, PCBs, and pesticides) detected at each site were calculated. The total number of sites at which these compounds were detected was recorded.

Thresholds for toxicity assays were determined by comparing study samples to control samples (non-toxic reference samples). Samples meeting the following criteria were considered toxic: 1) treatment responses significantly different from controls, as determined by a statistical t-test; and 2) endpoints less than 80% of controls. To summarize the toxicity at a site using multiple endpoints, the frequency of toxic samples was calculated. To assign equal weight to all three indicators, a single endpoint of chronic toxicity per indicator was used (*C. dubia*: fecundity, *H. azteca*: growth, and *S. capricornutum*: total cell count).

Thresholds for bioassessment samples were based on a benthic macroinvertebrate index of biological integrity (IBI) that was developed specifically for southern California (Ode et al. 2005). The results of the IBI produces a measure of impairment with scores scaled from 0 to 100, 0 representing the poorest health and 100 the best health. Based on the IBI, samples with scores equal to or below 40 are considered to be in "poor" condition, and samples below 20 are considered to be in "very poor" condition. Therefore, in this study samples with an IBI below 40 were considered impacted.

#### 3.2.2 Quality Assurance and Quality Control (QA/QC)

The SWAMP QAMP guided QA/QC for all data collected under SWAMP (See SWAMP QAMP for detailed descriptions of QA/QC protocols, Puckett 2002). QA/QC officers flagged non-compliant water chemistry and toxicity. No chemistry, toxicity, or tissue data were excluded as a result of QA/QC violations.

QA/QC procedures for NPDES water chemistry data were similar to those used in SWAMP (Weston Solutions Inc. 2007) Non-SWAMP bioassessment samples were screened for samples containing fewer than 450 individuals. No bioassessment sample was excluded from this analysis.

### 4. RESULTS

#### 4.1 Water Chemistry

Analysis of water chemistry at SWAMP sites indicated widespread impact to water guality for multiple constituents. Across the entire watershed, 4 pesticides and 25 PAHs were detected (Table 7). No anthropogenic constituents were detected in Chollas Creek, although a small number of constituents were assessed at that site. PCBs were never detected at either site. Means and standard deviations of all constituents are presented in Appendix II.

Several compounds were frequently detected at Paradise Creek. For example, diazinon was detected in 3 of 4 samples collected, and dioxathion was detected in half the samples at Paradise Creek. Similarly, dibenzothiophenes, fluoranthene, naphthalenes, and phenanthrenes were detected in half of the Paradise Creek samples. Twenty other PAHs were also detected (Table 8).

Comparison with applicable aquatic life and human health thresholds support the conclusion that water quality is impacted in the Pueblo San Diego watershed (Table 9). Both sites showed similar results, suggesting that impacts are not restricted to a single location within the watershed (Figure 6, 7).. Total phosphorus exceeded aquatic life thresholds in every sample. Furthermore, selenium, ammonia-N, benzo(a)pyrene, pH, and specific conductivity exceeded standards at Paradise Creek. Some of these constituents (selenium and total phosphorus) exceeded thresholds in every sample from Paradise Creek. Furthermore, several PAHs exceeded human health thresholds at Paradise Creek, but not Chollas Creek.

Results from NPDES water chemistry monitoring at Chollas Creek were similar to results from SWAMP (Table 9C). For example, specific conductivity exceeded aquatic life thresholds in every sample. In addition, pH exceeded aquatic life thresholds on one date. However, dissolved oxygen and turbidity were always within thresholds.

| ,    | each site in Pueblo San Diego HU. |        |          |        |          |            |          |  |  |  |
|------|-----------------------------------|--------|----------|--------|----------|------------|----------|--|--|--|
| PAHs |                                   |        |          | Р      | CBs      | Pesticides |          |  |  |  |
|      |                                   | Tested | Detected | Tested | Detected | Tested     | Detected |  |  |  |
|      | CHL4                              | 20     | 0        | 7      | 0        | 15         | 0        |  |  |  |
|      | 908PPAR04                         | 48     | 25       | 50     | 0        | 79         | 4        |  |  |  |
|      | Both sites                        | 52     | 25       | 57     | 0        | 81         | 4        |  |  |  |

Table 7. Number of anthropogenic organic compounds detected at

|       |                            | CHL4     |        | 908PP/   | AR04   |
|-------|----------------------------|----------|--------|----------|--------|
| Class | Constituent                | Detected | Tested | Detected | Tested |
| PAHs  | Acenaphthene               |          | 1      |          | 4      |
| PAHs  | Acenaphthylene             |          | 1      |          | 4      |
| PAHs  | Anthracene                 |          | 1      |          | 4      |
| PAHs  | Benz(a)anthracene          |          | 1      | 0.25     | 4      |
| PAHs  | Benzo(a)pyrene             |          | 1      | 0.25     | 4      |
| PAHs  | Benzo(b)fluoranthene       |          | 1      | 0.25     | 4      |
| PAHs  | Benzo(e)pyrene             |          | 1      |          | 4      |
| PAHs  | Benzo(g,h,i)perylene       |          | 1      | 0.25     | 4      |
| PAHs  | Benzo(k)fluoranthene       | nt       | 0      | 0.25     | 4      |
| PAHs  | Biphenyl                   | nt       | 0      |          | 4      |
| PAHs  | Chrysene                   |          | 1      | 0.25     | 4      |
| PAHs  | Chrysenes, C1 -            | nt       | 0      |          | 4      |
| PAHs  | Chrysenes, C2 -            | nt       | 0      |          | 4      |
| PAHs  | Chrysenes, C3 -            | nt       | 0      |          | 4      |
| PAHs  | Dibenz(a,h)anthracene      |          | 1      | 0.25     | 4      |
| PAHs  | Dibenzothiophene           | nt       | 0      | 0.25     | 4      |
| PAHs  | Dibenzothiophenes, C1 -    | nt       | 0      | 0.50     | 4      |
| PAHs  | Dibenzothiophenes, C2 -    | nt       | 0      | 0.50     | 4      |
| PAHs  | Dibenzothiophenes, C3 -    | nt       | 0      | 0.25     | 4      |
| PAHs  | Dichlofenthion             | nt       | 0      |          | 4      |
| PAHs  | Dimethylnaphthalene, 2,6-  | nt       | 0      | 0.25     | 4      |
| PAHs  | Dimethylphenanthrene, 3,6- | nt       | 0      |          | 4      |
| PAHs  | Fluoranthene               |          | 1      | 0.50     | 4      |
| PAHs  | Fluoranthene/Pyrenes, C1 - | nt       | 0      |          | 4      |
| PAHs  | Fluorene                   |          | 1      |          | 4      |
| PAHs  | Fluorenes, C1 -            | nt       | 0      |          | 4      |
| PAHs  | Fluorenes, C2 -            | nt       | 0      |          | 4      |
| PAHs  | Fluorenes, C3 -            | nt       | 0      | 0.25     | 4      |
| PAHs  | Indeno(1,2,3-c,d)pyrene    |          | 1      | 0.25     | 4      |
| PAHs  | Methyldibenzothiophene, 4- | nt       | 0      | 0.25     | 4      |
| PAHs  | Methylfluoranthene, 2-     | nt       | 0      |          | 4      |
| PAHs  | Methylfluorene, 1-         | nt       | 0      |          | 4      |
| PAHs  | Methylnaphthalene, 1-      | nt       | 0      |          | 4      |
| PAHs  | Methylnaphthalene, 2-      | nt       | 0      |          | 4      |
| PAHs  | Methylphenanthrene, 1-     | nt       | 0      |          | 4      |
| PAHs  | Naphthalene                |          | 1      | 0.25     | 4      |
| PAHs  | Naphthalenes, C1 -         | nt       | 0      |          | 4      |
| PAHs  | Naphthalenes, C2 -         | nt       | 0      | 0.25     | 4      |
|       |                            |          |        |          |        |

 Table 8. Frequency of detection of anthropogenic organic compounds at Chollas and Paradise Creeks in the Pueblo San Diego HU. Constituent not detected in any sample (--).

 CLIL 4
 000DDAD04

| each site.   |                               | CHL4 908PPAR04 |        |          |        |
|--------------|-------------------------------|----------------|--------|----------|--------|
| Class        | Constituent                   |                |        | Detected |        |
| PAHs         | Naphthalenes, C3 -            | nt             | 0      | 0.50     | 4      |
| PAHs         | Naphthalenes, C4 -            | nt             | 0      | 0.25     | 4      |
| PAHs         | Perylene                      | nt             | 0      |          | 4      |
| PAHs         | Phenanthrene                  |                | 1      | 0.50     | 4      |
| PAHs         | Phenanthrene/Anthracene, C1 - | nt             | 0      | 0.50     | 4      |
| PAHs         | Phenanthrene/Anthracene, C2 - | nt             | 0      | 0.50     | 4      |
| PAHs         | Phenanthrene/Anthracene, C3 - | nt             | 0      | 0.25     | 4      |
| PAHs         | Phenanthrene/Anthracene, C4 - | nt             | 0      |          | 4      |
| PAHs         | Pyrene                        |                | 1      | 0.25     | 4      |
| PAHs         | Trimethylnaphthalene, 2,3,5-  | nt             | 0      |          | 4      |
| Pesticide    | alpha-BHC                     |                | 1      | nt       | 0      |
| Pesticide    | beta-BHC                      |                | 1      | nt       | 0      |
| Pesticide    | delta-BHC                     |                | 1      | nt       | 0      |
| Pesticide    | gamma-BHC (Lindane)           |                | 1      | nt       | 0      |
| PCBs         | PCB 005                       | nt             | 0      |          | 4      |
| PCBs         | PCB 008                       | nt             | 0      |          | 4      |
| PCBs         | PCB 015                       | nt             | 0      |          | 4      |
| PCBs         | PCB 018                       | nt             | 0      |          | 4      |
| PCBs         | PCB 027                       | nt             | 0      |          | 4      |
| PCBs         | PCB 028                       | nt             | 0      |          | 4      |
| PCBs         | PCB 020                       | nt             | 0      |          | 4      |
| PCBs         | PCB 023                       | nt             | 0      |          | 4      |
| PCBs         | PCB 033                       |                |        |          | 4      |
| PCBs         | PCB 033                       | nt             | 0      |          |        |
| PCBs         | PCB 049                       | nt<br>nt       | 0<br>0 |          | 4<br>4 |
| PCBs         | PCB 052                       | nt             | 0      |          | 4      |
| PCBs         |                               |                |        |          | 4      |
| PCBS         | PCB 056<br>PCB 060            | nt             | 0      |          | -      |
| PCBS         | PCB 066                       | nt             | 0      |          | 4      |
|              |                               | nt             | 0      |          | 4      |
| PCBs         | PCB 070                       | nt             | 0      |          | 4      |
| PCBs         | PCB 074                       | nt             | 0      |          | 4      |
| PCBs<br>PCBs | PCB 087                       | nt             | 0      |          | 4      |
|              | PCB 095                       | nt             | 0      |          | 4      |
| PCBs         | PCB 097                       | nt             | 0      |          | 4      |
| PCBs         | PCB 099                       | nt             | 0      |          | 4      |
| PCBs         | PCB 101                       | nt             | 0      |          | 4      |
| PCBs         | PCB 105                       | nt             | 0      |          | 4      |
| PCBs         | PCB 110                       | nt             | 0      |          | 4      |
| PCBs         | PCB 114                       | nt             | 0      |          | 4      |
| PCBs         | PCB 118                       | nt             | 0      |          | 4      |
| PCBs         | PCB 128                       | nt             | 0      |          | 4      |
| PCBs         | PCB 137                       | nt             | 0      |          | 4      |
| PCBs         | PCB 138                       | nt             | 0      |          | 4      |
| PCBs         | PCB 141                       | nt             | 0      |          | 4      |
| PCBs         | PCB 149                       | nt             | 0      |          | 4      |
| PCBs         | PCB 151                       | nt             | 0      |          | 4      |
| PCBs         | PCB 153                       | nt             | 0      |          | 4      |
| PCBs         | PCB 156                       | nt             | 0      |          | 4      |

Table 8, continued. Frequency of detection of anthropogenic organic compounds at each site.

| Table 8, coi | Table 8, continued. Frequency of detection of anthropogenic organic compounds. |        |        |           |        |  |  |  |  |
|--------------|--------------------------------------------------------------------------------|--------|--------|-----------|--------|--|--|--|--|
|              |                                                                                | CHI    |        | 908PPAR04 |        |  |  |  |  |
| Class        | Constituent                                                                    |        |        | Detected  |        |  |  |  |  |
| PCBs         | PCB 157                                                                        | nt     | 0      |           | 4      |  |  |  |  |
| PCBs         | PCB 158                                                                        | nt     | 0      |           | 4      |  |  |  |  |
| PCBs         | PCB 170                                                                        | nt     | 0      |           | 4      |  |  |  |  |
| PCBs         | PCB 174                                                                        | nt     | 0      |           | 4      |  |  |  |  |
| PCBs         | PCB 177                                                                        | nt     | 0      |           | 4      |  |  |  |  |
| PCBs         | PCB 180                                                                        | nt     | 0      |           | 4      |  |  |  |  |
| PCBs         | PCB 183                                                                        | nt     | 0      |           | 4      |  |  |  |  |
| PCBs         | PCB 187                                                                        | nt     | 0      |           | 4      |  |  |  |  |
| PCBs         | PCB 189                                                                        | nt     | 0      |           | 4      |  |  |  |  |
| PCBs         | PCB 194                                                                        | nt     | 0      |           | 4      |  |  |  |  |
| PCBs         | PCB 195                                                                        | nt     | 0      |           | 4      |  |  |  |  |
| PCBs         | PCB 200                                                                        | nt     | 0      |           | 4      |  |  |  |  |
| PCBs         | PCB 201                                                                        | nt     | 0      |           | 4      |  |  |  |  |
| PCBs         | PCB 203                                                                        | nt     | 0      |           | 4      |  |  |  |  |
| PCBs         | PCB 206                                                                        | nt     | 0      |           | 4      |  |  |  |  |
| PCBs         | PCB 209                                                                        | nt     | 0      |           | 4      |  |  |  |  |
| PCBs         | PCB-1016                                                                       |        | 1      | nt        | 0      |  |  |  |  |
| PCBs         | PCB-1221                                                                       |        | 1      | nt        | 0      |  |  |  |  |
| PCBs         | PCB-1232                                                                       |        | 1      | nt        | 0      |  |  |  |  |
| PCBs         | PCB-1242                                                                       |        | 1      | nt        | 0      |  |  |  |  |
| PCBs         | PCB-1248                                                                       |        | 1      | nt        | 0      |  |  |  |  |
| PCBs         | PCB-1254                                                                       |        | 1      | nt        | 0      |  |  |  |  |
| PCBs         | PCB-1260                                                                       |        | 1      | nt        | 0      |  |  |  |  |
| Pesticide    | Toxaphene                                                                      |        | 1      | nt        | 0      |  |  |  |  |
| Pesticides   | •                                                                              |        | 1      |           | 4      |  |  |  |  |
| Pesticides   | Aspon                                                                          | nt     | 0      |           | 4      |  |  |  |  |
|              | Azinphos ethyl                                                                 | nt     | 0      |           | 4      |  |  |  |  |
|              | Azinphos methyl                                                                | nt     | 0      |           | 4      |  |  |  |  |
| Pesticides   |                                                                                | nt     | 0      |           | 4      |  |  |  |  |
|              | Carbophenothion                                                                | nt     | 0      |           | 4      |  |  |  |  |
|              | Chlordane, cis-                                                                | nt     | 0      |           | 4      |  |  |  |  |
|              | Chlordane, trans-                                                              | nt     | 0      |           | 4      |  |  |  |  |
|              | Chlordene, alpha-                                                              | nt     | 0      |           | 4      |  |  |  |  |
|              | Chlordene, gamma-                                                              | nt     | 0      |           | 4      |  |  |  |  |
|              | Chlorfenvinphos                                                                | nt     | 0      |           | 4      |  |  |  |  |
|              | Chlorpyrifos                                                                   | nt     | 0      |           | 4      |  |  |  |  |
|              | Chlorpyrifos methyl                                                            | nt     | 0<br>0 |           | 4      |  |  |  |  |
| Pesticides   |                                                                                | nt     | 0<br>0 |           | 4      |  |  |  |  |
|              | Coumaphos                                                                      | nt     | 0      |           | 4      |  |  |  |  |
| Pesticides   | •                                                                              | nt     | 0<br>0 |           | 4      |  |  |  |  |
| Pesticides   |                                                                                | nt     | 0      |           | 4      |  |  |  |  |
| Pesticides   |                                                                                |        | 1      |           | 4      |  |  |  |  |
| Pesticides   |                                                                                | nt     | 0      |           | 4      |  |  |  |  |
| Pesticides   |                                                                                |        | 1      |           | 4      |  |  |  |  |
|              | DDH(p,p')                                                                      | nt     | 0      |           | 4      |  |  |  |  |
| Pesticides   |                                                                                | nt     | 0      |           | 4      |  |  |  |  |
| Pesticides   |                                                                                |        | 1      |           | 4<br>4 |  |  |  |  |
|              | Demeton-s                                                                      | <br>nt | 0      |           | 4      |  |  |  |  |
| resucides    |                                                                                | nt     | 0      |           | 4      |  |  |  |  |

| Table 8, continued. Frequency of detection of anthropogenic organic compo           CHL4         908PPAR0 |                    |    |        |          |        |  |  |
|-----------------------------------------------------------------------------------------------------------|--------------------|----|--------|----------|--------|--|--|
|                                                                                                           | Oractificant       |    |        |          |        |  |  |
| Class                                                                                                     | Constituent        |    |        | Detected |        |  |  |
| Pesticides                                                                                                |                    | nt | 0      | 0.75     | 4      |  |  |
|                                                                                                           | Dichlorvos         | nt | 0      |          | 4      |  |  |
|                                                                                                           | Dicrotophos        | nt | 0      |          | 4      |  |  |
| Pesticides                                                                                                |                    |    | 1      |          | 4      |  |  |
|                                                                                                           | Dimethoate         | nt | 0      |          | 4      |  |  |
|                                                                                                           | Dioxathion         | nt | 0      | 0.50     | 4      |  |  |
| Pesticides                                                                                                |                    | nt | 0      | 0.25     | 4      |  |  |
|                                                                                                           | Endosulfan I       |    | 1      |          | 4      |  |  |
|                                                                                                           | Endosulfan II      |    | 1      |          | 4      |  |  |
|                                                                                                           | Endosulfan sulfate |    | 1      |          | 4      |  |  |
| Pesticides                                                                                                |                    |    | 1      |          | 4      |  |  |
|                                                                                                           | Endrin Aldehyde    |    | 1      |          | 4      |  |  |
|                                                                                                           | Endrin Ketone      | nt | 0      |          | 4      |  |  |
| Pesticides                                                                                                |                    | nt | 0      |          | 4      |  |  |
| Pesticides                                                                                                |                    | nt | 0      |          | 4      |  |  |
| Pesticides                                                                                                | •                  | nt | 0      |          | 4      |  |  |
| Pesticides                                                                                                | Fenchlorphos       | nt | 0      |          | 4      |  |  |
| Pesticides                                                                                                | Fenitrothion       | nt | 0      |          | 4      |  |  |
| Pesticides                                                                                                | Fensulfothion      | nt | 0      |          | 4      |  |  |
| Pesticides                                                                                                | Fenthion           | nt | 0      |          | 4      |  |  |
| Pesticides                                                                                                | Fonofos            | nt | 0      |          | 4      |  |  |
| Pesticides                                                                                                | HCH, alpha         | nt | 0      |          | 4      |  |  |
| Pesticides                                                                                                | HCH, beta          | nt | 0      |          | 4      |  |  |
| Pesticides                                                                                                | HCH, delta         | nt | 0      |          | 4      |  |  |
| Pesticides                                                                                                | HCH, gamma         | nt | 0      |          | 4      |  |  |
|                                                                                                           | Heptachlor         |    | 1      |          | 4      |  |  |
|                                                                                                           | Heptachlor epoxide |    | 1      |          | 4      |  |  |
|                                                                                                           | Hexachlorobenzene  | nt | 0      |          | 4      |  |  |
| Pesticides                                                                                                | Leptophos          | nt | 0      |          | 4      |  |  |
| Pesticides                                                                                                |                    | nt | 0      |          | 4      |  |  |
| Pesticides                                                                                                | Merphos            | nt | 0      |          | 4      |  |  |
|                                                                                                           | Methidathion       | nt | 0      |          | 4      |  |  |
|                                                                                                           | Methoxychlor       |    | 1      |          | 4      |  |  |
|                                                                                                           | Mevinphos          | nt | 0      |          | 4      |  |  |
| Pesticides                                                                                                |                    | nt | 0      |          | 4      |  |  |
| Pesticides                                                                                                |                    | nt | 0      |          | 4      |  |  |
| Pesticides                                                                                                |                    | nt | 0      |          | 4      |  |  |
|                                                                                                           | Nonachlor, cis-    | nt | 0      |          | 4      |  |  |
|                                                                                                           | Nonachlor, trans-  | nt | 0<br>0 |          | 4      |  |  |
|                                                                                                           | Oxadiazon          | nt | 0<br>0 | 0.75     | 4      |  |  |
|                                                                                                           | Oxychlordane       | nt | 0<br>0 |          | 4      |  |  |
|                                                                                                           | Parathion, Ethyl   | nt | 0      |          | 4      |  |  |
|                                                                                                           | Parathion, Methyl  | nt | 0      |          | 4      |  |  |
| Pesticides                                                                                                |                    | nt | 0      |          | 4      |  |  |
| Pesticides                                                                                                |                    | nt | 0      |          | 4      |  |  |
|                                                                                                           | Phosphamidon       | nt | 0      |          | 4<br>4 |  |  |
|                                                                                                           | •                  | nt | 0      |          | 4<br>4 |  |  |
| Pesticides<br>Pesticides                                                                                  |                    |    |        |          |        |  |  |
|                                                                                                           |                    | nt | 0      |          | 4      |  |  |
| Pesticides                                                                                                | TEIDUIOS           | nt | 0      |          | 4      |  |  |

Table 8, continued. Frequency of detection of anthropogenic organic compounds.

|            | , continued. I requeitcy of detection | Jogenne  | organic co | mpounda   |        |
|------------|---------------------------------------|----------|------------|-----------|--------|
|            |                                       |          | _4         | 908PPAR04 |        |
| Class      | Constituent                           | Detected | Tested     | Detected  | Tested |
| Pesticides | Tetrachlorvinphos                     | nt       | 0          |           | 4      |
| Pesticides | Thiobencarb                           | nt       | 0          |           | 4      |
| Pesticides | Thionazin                             | nt       | 0          |           | 4      |
| Pesticides | Tokuthion                             | nt       | 0          |           | 4      |
| Pesticides | Trichlorfon                           | nt       | 0          |           | 4      |
| Pesticides | Trichloronate                         | nt       | 0          |           | 4      |
|            |                                       |          |            |           |        |

Table 8, continued. Frequency of detection of anthropogenic organic compounds.

Table 9. Frequency of water chemistry threshold exceedances. A) Frequency of aquatic life threshold exceedances at SWAMP sites. B) Frequency of human health threshold exceedances at SWAMP sites. C) Frequency of aquatic life threshold exceedances at non-SWAMP sites. No human health thresholds applied to constituents measured at non-SWAMP sites. Freq = Frequency of samples exceeding applicable thresholds at each site. AL = Aquatic life. HH = Human health. -- = Constituent never exceeded threshold. NA = No applicable thresholds at that site. nt = constituent was not measured at the site.

| 908PPAR04 CHL4 |                         |              |              |   |              | CHL4         |     |
|----------------|-------------------------|--------------|--------------|---|--------------|--------------|-----|
| Class          | Constituent             | Aquatic life | Human health | n | Aquatic life | Human health | n n |
| Inorganics     | Alkalinity as CaCO3     |              | NA           | 4 |              | NA           | 1   |
| Inorganics     | Ammonia as N            | 0.75         | NA           | 4 |              | NA           | 1   |
| Inorganics     | Nitrate + Nitrite as N  | NA           |              | 4 | NA           |              | 1   |
| Inorganics     | Nitrate as NO3 (either) | NA           |              | 4 | NA           |              | 1   |
| 0              | Nitrite as N            | NA           |              | 4 | NA           |              | 1   |
| Inorganics     | Phosphorus as P,Total   | 1.00         | NA           | 4 | 1.00         | NA           | 1   |
| -              | Selenium,Dissolved      | 1.00         | NA           | 4 | nt           | NA           | 0   |
| 0              | Total N                 |              | NA           | 4 |              | NA           | 1   |
| Metals         | Aluminum, Dissolved     |              | NA           | 4 |              | NA           | 1   |
| Metals         | Arsenic, Dissolved      |              |              | 4 |              |              | 1   |
| Metals         | Cadmium,Dissolved       |              |              | 4 |              |              | 1   |
| Metals         | Chromium, Dissolved     |              | NA           | 4 |              | NA           | 1   |
| Metals         | Copper, Dissolved       | 0.50         |              | 4 |              |              | 1   |
| Metals         | Lead, Dissolved         |              | NA           | 4 |              | NA           | 1   |
| Metals         | Nickel, Dissolved       |              |              | 4 |              |              | 1   |
| Metals         | Silver, Dissolved       |              | NA           | 4 |              | NA           | 1   |
| Metals         | Zinc, Dissolved         |              | NA           | 4 |              | NA           | 1   |
| PAHs           | Acenaphthene            | NA           |              | 4 | NA           |              | 1   |
| PAHs           | Anthracene              | NA           |              | 4 | NA           |              | 1   |
| PAHs           | Benz(a)anthracene       | NA           | 0.25         | 4 | NA           |              | 1   |
| PAHs           | Benzo(a)pyrene          | 0.25         | 0.25         | 4 |              |              | 1   |
| PAHs           | Benzo(b)fluoranthene    | NA           | 0.25         | 4 | NA           |              | 1   |
| PAHs           | Benzo(k)fluoranthene    | NA           | 0.25         | 4 | NA           | nt           | 0   |
| PAHs           | Chrysene                | NA           | 0.25         | 4 | NA           |              | 1   |
| PAHs           | Dibenz(a,h)anthracene   | NA           | 0.25         | 4 | NA           |              | 1   |
| PAHs           | Fluoranthene            | NA           |              | 4 | NA           |              | 1   |
| PAHs           | Indeno(1,2,3-c,d)pyrene | NA           |              | 4 | NA           |              | 1   |
| PAHs           | Pyrene                  | NA           |              | 4 | NA           |              | 1   |
| PCBs           | PCBs                    |              |              | 4 |              |              | 1   |
| Pesticide      | Toxaphene               | nt           | nt           | 0 |              |              | 1   |
| Pesticides     | Aldrin                  | NA           |              | 4 | NA           |              | 1   |
| Pesticides     | alpha-BHC               | NA           | nt           | 0 | NA           |              | 1   |
|                | Azinphos ethyl          | NA           |              | 4 | NA           | nt           | 0   |
|                | Azinphos methyl         | NA           |              | 4 | NA           | nt           | 0   |
| Pesticides     | beta-BHC                | NA           | nt           | 0 | NA           |              | 1   |
| Pesticides     | Chlordanes              |              |              | 4 |              |              | 1   |

A. Aquatic life and human health thresholds at SWAMP sites.

| A, c       | A, continued. Aquatic life and human health thresholds at SWAMP sites. |              |              |   |              |              |   |  |  |  |
|------------|------------------------------------------------------------------------|--------------|--------------|---|--------------|--------------|---|--|--|--|
|            |                                                                        | 908PPAR04    |              |   | CHL4         |              |   |  |  |  |
| Class      | Constituent                                                            | Aquatic life | Human health | n | Aquatic life | Human health | n |  |  |  |
| Pesticides | DDD(p,p')                                                              | NA           |              | 4 | NA           |              | 1 |  |  |  |
| Pesticides | DDE(p,p')                                                              | NA           |              | 4 | NA           |              | 1 |  |  |  |
| Pesticides | DDT(p,p')                                                              | NA           |              | 4 | NA           |              | 1 |  |  |  |
| Pesticides | Dieldrin                                                               | NA           |              | 4 | NA           |              | 1 |  |  |  |
| Pesticides | Dimethoate                                                             | NA           |              | 4 | NA           | nt           | 0 |  |  |  |
| Pesticides | Endosulfan sulfate                                                     | NA           |              | 4 | NA           |              | 1 |  |  |  |
| Pesticides | Endrin                                                                 |              |              | 4 |              |              | 1 |  |  |  |
| Pesticides | Endrin Aldehyde                                                        | NA           |              | 4 | NA           |              | 1 |  |  |  |
| Pesticides | Endrin Ketone                                                          | NA           |              | 4 | NA           | nt           | 0 |  |  |  |
| Pesticides | gamma-BHC (Lindane)                                                    | nt           | nt           | 0 | NA           | NA           | 1 |  |  |  |
| Pesticides | Heptachlor                                                             |              |              | 4 |              |              | 1 |  |  |  |
| Pesticides | Heptachlor epoxide                                                     |              |              | 4 |              |              | 1 |  |  |  |
| Pesticides | Hexachlorobenzene                                                      |              |              | 4 | nt           | nt           | 0 |  |  |  |
| Pesticides | Methoxychlor                                                           |              | NA           | 4 |              | NA           | 1 |  |  |  |
| Pesticides | Molinate                                                               |              | NA           | 4 | nt           | NA           | 0 |  |  |  |
| Pesticides | Oxychlordane                                                           | NA           |              | 4 | NA           | nt           | 0 |  |  |  |
| Pesticides | Thiobencarb                                                            |              | NA           | 4 | nt           | NA           | 0 |  |  |  |
| Physical   | Oxygen, Dissolved                                                      |              | NA           | 4 | nt           | NA           | 0 |  |  |  |
| Physical   | pH                                                                     | 0.75         | NA           | 4 | nt           | NA           | 0 |  |  |  |
| Physical   | Specific conductivity                                                  | 0.50         | NA           | 4 | nt           | NA           | 0 |  |  |  |
| Physical   | Turbidity                                                              |              | NA           | 4 | nt           | NA           | 0 |  |  |  |

Table 9, continued. Frequency of water chemistry threshold exceedances. A, continued. Aquatic life and human health thresholds at SWAMP sites.

#### C. Aquatic life thresholds at the non-SWAMP site (CC-FB).

| Constituent                   | Frequency | n |
|-------------------------------|-----------|---|
| Dissolved oxygen (mg/l)       | 0.0       | 5 |
| рН                            | 0.2       | 5 |
| Specific conductivity (mS/cm) | 1.0       | 5 |
| Turbidity (NTU)               | 0.0       | 1 |

 Table 10. Number of constituents exceeding thresholds at each SWAMP site.

|           | Aquat         | ic life        | Human health  |                |  |  |
|-----------|---------------|----------------|---------------|----------------|--|--|
| Site      | # exceedances | # constituents | # exceedances | # constituents |  |  |
| 908PPAR04 | 7             | 29             | 6             | 36             |  |  |
| CHL4      | 2 23          |                | 0             | 33             |  |  |

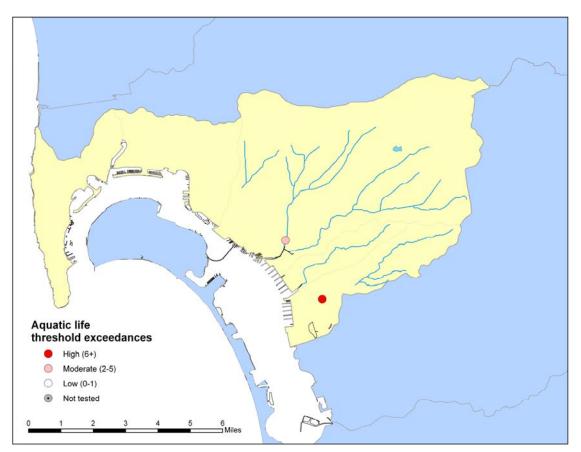



Figure 6. Map of aquatic life threshold exceedances for water chemistry at SWAMP sites. White circles indicate sites with one or fewer exceedances (this value did not occur in this watershed). Pink circles indicate sites with 2 to 5 exceedances. Red circles indicate sites with 6 to 9 exceedances. At Paradise Creek, 29 constituents were assessed. At Chollas Creek, 23 constituents were assessed.

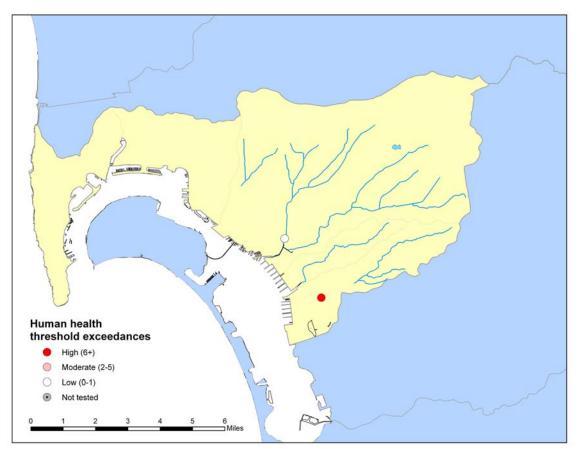



Figure 7. Map of human health exceedances for water chemistry at SWAMP sites. White circles indicate sites with one or fewer exceedances. Pink circles indicate sites with 2 to 5 exceedances. Red circles indicate sites with 6 to 9 exceedances (this value did not occur in this watershed). At Paradise Creek, 36 constituents were assessed. At Chollas Creek, 33 constituents were assessed.

### 4.2 Toxicity

Toxicity was evident at all sites within the watershed, although results varied among sites and indicators (Table 11). Water samples were toxic to two indicators at Chollas Creek: the alga *S. capricornutum* and the crustacean *C. dubia.* In contrast, water samples from Paradise Creek were only toxic to *S. capricornutum.* Sediment samples from both sites were not toxic to the crustacean *H. azteca.* (Figure 8).

Table 11. Frequency of toxicity detected for each endpoint and at each site. A sample was considered toxic if the percent control of the endpoint was less than 80% of reference samples, and the difference was considered significant at 0.05. One sample was assessed for each assay.

| 908PPAR04           |                  |                    |                   |           | 908PCHL4 |                |              |                 |
|---------------------|------------------|--------------------|-------------------|-----------|----------|----------------|--------------|-----------------|
|                     |                  | 9/6/2005 4/10/2006 |                   |           | 6/2/2006 |                |              |                 |
| Species             | Endpoint         | % Control p        | o Toxicity        | % Control | р        | Toxicity       | % Control p  | Toxicity        |
| C. dubia            | Survival         | 84.2 (             | 0.16 Not detected |           |          |                | 0.0 < 0.05   | Detected        |
| C. dubia            | Young / Female   | 90.5               | 0.25 Not detected |           |          |                | No survivaln | ot tested       |
| H. azteca           | Survival         |                    |                   | 107.7     | 0.85     | 5 Not detected | 110.0 >0.05  | Not detected    |
| H. azteca           | Growth           |                    |                   | 82.65     | 0.15     | 5 Not detected | 137.7 >0.05  | Not detected    |
| S. capricornutum    | Total cell count | 82.2 (             | 0.00 Detected     |           |          |                | 32.8 < 0.05  | Detected        |
| Multiple indicators |                  |                    | Frequen           | cy = 0.33 |          |                | Frequency    | <i>i</i> = 0.66 |

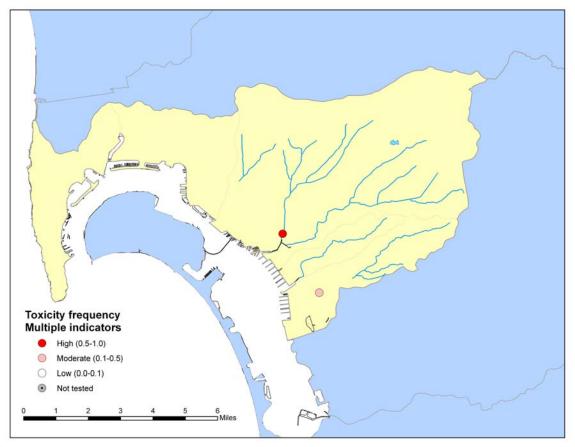



Figure 8. Frequency of toxicity (*C. dubia* fecundity, *H. azteca* growth, and *S. capricornutum* total cell count) at SWAMP sites. White circles indicate low frequency (0.0 to 0.1) of toxicity (this value did not occur in this watershed). Pink circles indicate moderate frequency (0.1 to 0.5) of toxicity. Red circles indicate high (0.5 to 1.0) frequency of toxicity (this value did not occur in this watershed).

#### 4.3 Tissue

Fish tissues were not assessed in the Pueblo San Diego HU.

#### 4.4 Bioassessment

Biological health was poor or very poor for all samples and all seasons in the Pueblo San Diego HU. Mean IBI scores were 19.5 at site 1 (the upstream site on Chollas Creek), and 10 at site 2 (CHL4) (Figure 9). Mean values for spring and fall samples were identical at site 1, suggesting that poor biological condition persisted during all seasons of the study (Table 12; Figure 10). No bioassessment samples were collected at Paradise Creek.

Table 12. Mean and standard deviation of IBI scores at bioassessment sites on Chollas Creek in the Pueblo San Diego HU. Number of samples collected within each season (n). Range from first to last year of sampling at each site (Years). Frequency of poor or very poor IBI scores (IBI <40) at each site and season (Frequency).

|        |         |   | IBI       |      |     |           |      |  |
|--------|---------|---|-----------|------|-----|-----------|------|--|
| Site   | Season  | n | Years     | Mean | SD  | Condition | Freq |  |
| Site 1 | Average | 6 | 2003-2005 | 19.5 | 0.0 | Very poor | 1.00 |  |
|        | Fall    | 3 | 2003-2005 | 19.5 | 5.9 | Very poor | 1.00 |  |
|        | Spring  | 3 | 2003-2005 | 19.5 | 6.8 | Very poor | 1.00 |  |
| CHL4   | Fall    | 1 | 2005      | 10.0 |     | Very poor | 1.00 |  |

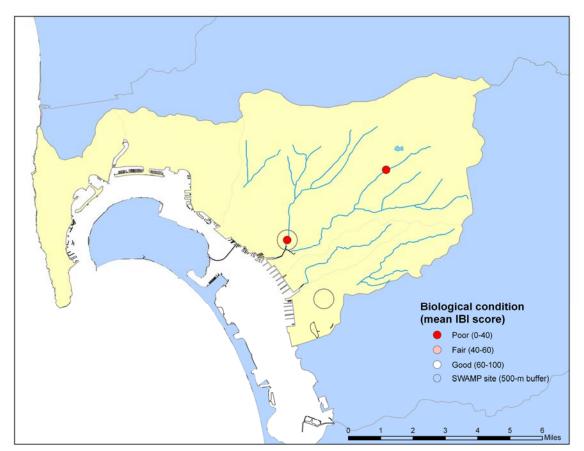



Figure 9. IBI scores at sites in the Pueblo San Diego HU. White circles indicate good or very good (60 to 100) IBI scores (this value did not occur in this watershed). Pink circles indicate fair (40 to 60) IBI scores (this value did not occur in this watershed). Red circles indicate poor (0 to 40) IBI scores. Open circles represent 500-m buffers around SWAMP sites; one of these buffers included bioassessment sites, and one did not.

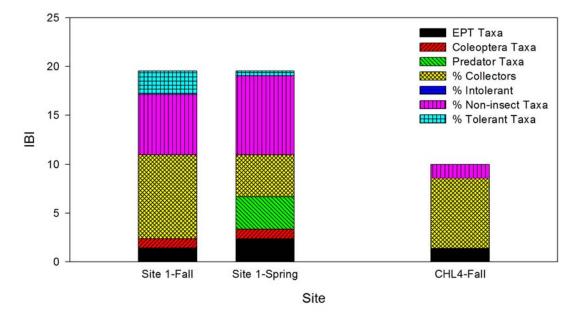



Figure 10. Mean IBI scores at each bioassessment site and each season. The height of the bar indicates the mean IBI score, and the size of each component of the bar represents the contribution of each metric to the IBI.

Mean values of the metrics that make up the IBI indicated very poor biological health. For example, pollution-sensitive taxa (used to calculate the % Intolerant metric) were nearly absent from all samples. The % Collectors metric was the largest component of IBIs measured in the Fall at both sites, and % Noninsect Taxa was the largest component of IBIs measured in the Spring at site 1. (Appendix III; Figure 10).

Examination of IBI scores over time at site 1 indicated a very weak trend towards deteriorating biological condition (Figure 11). However, variability was too high for this trend to be statistically significant. IBI scores fluctuated above and below the threshold between poor and very poor condition. No seasonal trends were evident, as both samples collected in Spring or Fall had mean IBI scores of 19.5.

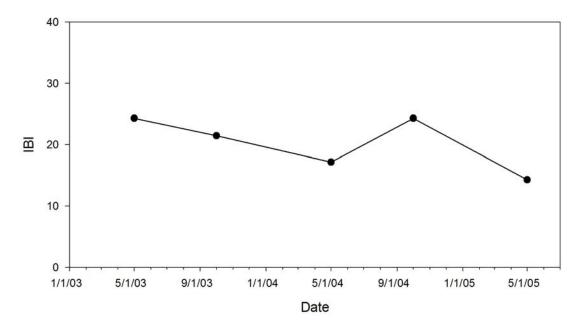



Figure 11. IBI values at Chollas Creek at Federal Boulevard (Site 1). Each symbol represents a single sample.

#### 4.5 Physical Habitat

Physical habitat was not assessed in the Pueblo San Diego HU.

## **5. DISCUSSION**

The data collected by this study cannot be used to evaluate the overall health of the Pueblo San Diego HU because only two sites in the watershed were sampled. Although the data were inadequate to confidently infer about the condition of the entire watershed, they were sufficient to evaluate the two sites selected for monitoring.

The two sites in the Pueblo San Diego HU showed evidence of impact from multiple indicators (Table 13, Figure 12). For example, both sites exceeded aquatic life thresholds for multiple water chemistry constituents. Toxicity was evident at both sites. Furthermore, bioassessment samples collected at one site (Chollas Creek) was in very poor biological condition. Therefore, the data collected under SWAMP support the conclusion that ecological health of Chollas and Paradise Creeks is poor. Different indicators suggested different levels of impairment at the two creeks. For example, toxicity was more severe at Chollas Creek (toxicity to two indicator species) than at Paradise Creek (toxicity to one indicator species). However, more water chemistry constituents exceeded aquatic life thresholds at Paradise Creek (2) than at Chollas Creek. This discrepancy may be explained by the fact that fewer constituents were assessed at Chollas Creek (24 versus 30 at Paradise Creek), and water chemistry was assessed only once at Chollas Creek, versus four times at Paradise Creek. These differences may have caused the underestimation of water chemistry impacts at Chollas Creek. These differences, plus the fact that bioassessment samples were not collected at Paradise Creek, impede comparisons of the two sites.

Despite the fact that Chollas Creek is included on the 303(d) list of impaired waterbodies for lead, copper, and zinc, these constituents were not found in excess of the thresholds established by the TMDL. However, all SWAMP monitoring occurred during dry weather, and the peak concentrations of these constituents could not be estimated. Monitoring by NPDES permittees in wet weather showed that these metals regularly exceeded TMDL thresholds in Chollas Creek (Woodward-Clyde 1998).

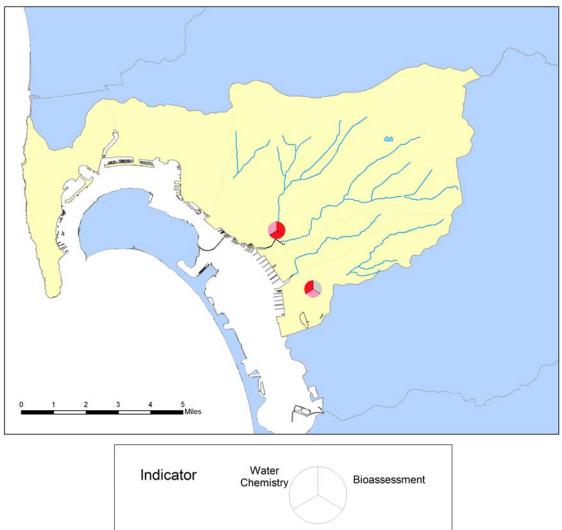
This study's assessment of the Pueblo San Diego HU suggests that the two sites in the watershed were in poor ecological health. Multiple lines of evidence support this conclusion. For example, several water chemistry constituents exceeded aquatic life thresholds, toxicity was observed at both sites, and bioassessment of macroinvertebrate communities were in poor or very poor condition at every sampling event.

Although these impacts were in some cases severe, this study showed that, at least for water chemistry indicators, impacts were limited to certain constituents, such as nutrients and physical parameters. In contrast, all metals were below applicable thresholds at both sites, as were all pesticides. However, no water qualities were collected immediately after storm events, and peak concentrations of these constituents may have been inderestimated.

Despite the strength of the evidence, limitations of this study affect the assessment. These limitations include difficulties integrating data from SWAMP and non-SWAMP sources, the non-randomization of sample sites, small sample size, and the lack of applicable thresholds for several indicators. Although these limitations require that results be interpreted with caution, it is unlikely that they would alter the fundamental finding that these sites in the Pueblo San Diego watershed are in poor health, as explained at the end of this section.

The geographical approach to integrating SWAMP and non-SWAMP data relies on assumptions about the spatial and temporal variability of the variables measured by these programs. For example, bioassessment data may have been collected up to 500 meters away and up to 2 years before water chemistry and toxicity data were collected. This study assumes that anthropogenic impacts do not change across these distances or over these spans of time. There is little published research on either of these assumptions, although there may be greater support for the assumptions about spatial variability (e.g., Gebler 2004) than for temporal variability (e.g., Sandin and Johnson 2000, Bêche et al. 2006).In this study, bioassessment data were observed to be highly variable, and the use of data collected before water chemistry data is questionable.

The targeted selection of sites monitored under the SWAMP program facilitated integration of pre-existing data from non-SWAMP sources, but this non-probabilistic approach severely limits the extrapolation of data from these sites to the rest of the watershed. Non-random sampling violates assumptions underlying most statistical analyses, and the sites selected in this study cannot be assumed to represent the entire watershed (Olsen et al. 1999, Stevens Jr. and Olsen 2004).


The small number of sites monitored under SWAMP also limits the certainty of this study's assessment. The low level of replication (i.e., 2) of sites in the Pueblo San Diego HU severely limits the ability to infer about the condition about the watershed as a whole. Although SWAMP has produced a wealth of data about the Pueblo San Diego HU using limited resources, some indicators (especially those with high variability) require more extensive sampling to produce more precise and accurate assessments. A larger number of sites will be necessary to evaluate the health of the Pueblo San Diego HU with greater certainty.

Thresholds are an essential tool for assessing water quality and ecological health. However, their use is limited to indicators that have been well studied, and they cannot provide a holistic view of watershed health. This limitation is exacerbated by the fact that many constituents and indicators lack applicable thresholds. For example, of the 165 water chemistry constituents, only 59 (36%) had applicable water quality objectives that could be used as thresholds for water quality. Furthermore, thresholds applied to IBI scores and toxicity were based on statistical distributions and professional judgment (respectively), rather than on risks to ecological health. For example, the 80% threshold used to identify toxic samples is based on the assumption that this level is ecologically meaningful, although this assumption has not been verified in the field. The development of biocriteria to establish meaningful thresholds for bioassessment is subject of active interest in California (Bernstein and Schiff 2002).

Despite these limitations, the data gathered under SWAMP and other programs strongly support the conclusion that the Pueblo San Diego HU is in poor ecological health. Some of these limitations (such as the lack of applicable thresholds and the small sample size) may in fact have caused this assessment to underestimate the severity of degradation in the watershed. All indicators showed signs of human impacts. Multiple stressors, including degraded water quality, sediment, and physical habitat are the likely cause of the impact. Future research (see final report on the SWAMP monitoring program for further study recommendations) is necessary to determine which stressors are responsible for the impacts seen in the watershed.

Table 13. Summary of the ecological health for five SWAMP sites in Pueblo San Diego HU. Aquatic life (AL). Human health (HH). Toxicity frequency is frequency of toxicity for three chronic toxicity endpoints: *C. dubia* (fecundity), *H. azteca* (growth), and *S. capricornutum* (total cell count). Biology frequency is the frequency of IBIs below 40. n.t. = Indicator not tested.

|                  |                          | Paradise Creek 4 | Chollas Creek 4 |
|------------------|--------------------------|------------------|-----------------|
| Indicator        | Measurement              | 908PPAR04        | CHL4            |
| Water chemistry  | Aquatic life exceedances | 7                | 2               |
|                  | Human health exceedances | 6                | 0               |
| Fish tissue      | OEHHA exceedances        | n.t.             | n.t.            |
| Toxicity         | Frequency                | 0.33             | 0.66            |
| Biology          | Frequency                | n.t.             | 1.00            |
| Physical habitat | Mean score               | n.t.             | n.t.            |



|            | Water chemistry<br>(# aquatic life | Toxicity<br>(Frequency of | Bioassessment |
|------------|------------------------------------|---------------------------|---------------|
| Severity   | exceedences)                       | toxicity)                 | (IBI Score)   |
| Low        | 0-1                                | 0.0-0.1                   | 60-100        |
| Moderate   | 2-5                                | 0.1-0.5                   | 40-60         |
| High       | 6+                                 | 0.5-1.0                   | 0-40          |
| Not tested |                                    |                           |               |

Figure 12. Summary of the ecological health of SWAMP sites in the Pueblo San Diego HU, as determined by water chemistry, toxicity, and bioassessment indicators. Each pie slice corresponds to a specific indicator, as described in the inset, with darker colors corresponding to more degraded conditions (unmeasured indicators are shown in cross-hatched gray). The top-left slice corresponds to the number of water chemistry constituents exceeding aquatic life thresholds. The bottom slice corresponds to the frequency of toxicity among three endpoints: *C. dubia* (fecundity), *H. azteca* (growth), and *S. capricornutum* (total cell count). The top-right slice corresponds to the IBI of bioassessment samples.

### 6. LITERATURE CITED

Bêche, L.A., E.P. McElravy and V.H. Resh. 2005. Long-term seasonal variation in the biological traits of benthic-macroinvertebrates in two Mediterranean climate streams in California, USA. *Freshwater Biology* 51:56-75.

Bernstien, B. and Schiff, K. 2002. Stormwater research needs in Southern California. Technical Report 358. Southern California Coastal Water Research Project. Westminster, CA.

California Code of Regulations. 2007. Barclay's Official California Code of Regulations. Title 22. Social Security Division 4. Environmental Health Chapter 15. Domestic Water Quality and Monitoring Regulations Article 16. Secondary Drinking Water Standards. §64449.

California Department of Fish and Game. 2003. California Stream Bioassessment Procedure: Protocol for Biological and Physical/Habitat Assessment in Wadeable Streams. Available from www.dfg.ca.gov/cabw/cabwhome.html.

California Department of Water Resources. 2007. <u>http://www.water.ca.gov/</u>. Environmental Protection Agency (EPA). 1993. Methods for measuring acute toxicity of effluents and receiving waters to freshwater and marine organisms, Fourth Edition. EPA 600/4-90/027. US Environmental Protection Agency, Environmental Research Laboratory. Duluth, MN.

Environmental Protection Agency (EPA). 1997. Water quality standards: Establishment of numeric criteria for priority toxic pollutants for the state of California: Proposed Rule. *Federal Register* 62:42159-42208.

Environmental Protection Agency (EPA). 2002. National recommended water quality criteria. EPA-822-R-02-047. Environmental Protection Agency Office of Water. Washington, DC.

Environmental Protection Agency (EPA). 2007. Integrated Risk Information System. <u>http://www.epa.gov/iris/index.html</u>. Office of Research and Development. Washington, DC.

Gebler, J.B. 2004. Mesoscale spatial variability of selected aquatic invertebrate community metrics from a minimally impaired stream segment. Journal of the North American Benthological Society 23:616-633.

National Academy of Sciences. 1977. Drinking Water and Health. Volume 1. Washington, DC.

National Oceanic and Atmospheric Administration. 2007. National Weather Service data. Available from http://www.wrh.noaa.gov/sgx/obs/rtp/rtpmap.php?wfo=sgx

Ode, P.R., A.C. Rehn and J.T. May. 2005. A quantitative tool for assessing the integrity of southern California coastal streams. *Environmental Management* 35:493-504.

Olsen, A.R., J. Sedransk, D. Edwards, C.A. Gotway, W. Liggett, S. Rathburn, K.H. Reckhow and L.J. Young. 1999. Statistical issues for monitoring ecological and natural resources in the United States. *Environmental Management and Assessment* 54:1-45.

Puckett, M. 2002. Quality Assurance Management Plan for the State of California's Surface Water Ambient Monitoring Program: Version 2. California Department of Fish and Game, Monterey, CA. Prepared for the State Water Resources Control Board. Sacramento, CA.

California Regional Water Quality Control Board, San Diego Region. 1994. Water quality control plan for the San Diego Region. San Diego, CA. http://www.waterboards.ca.gov/sandiego/programs/basinplan.html

SANDAG. 1998. Watersheds of the San Diego Region. SANDAG INFO.

Sandin, L. and R.K. Johnson. 2000. The statistical power of selected indicator metrics using macroinvertebrates for assessing acidification and eutrophication of running waters. *Hydrobiologia* 422/423:233-243.

Stevans, Jr., D.L. and A.R. Olsen. 2004. Spatially balanced sampling of natural resources. *Journal of the American Statistical Association: Theory and Methods* 99:262-278.

Weston Solutions, Inc. 2007. San Diego County Municipal Copermittees 2005-2006 Urban Runoff Monitoring. Final Report. County of San Diego. San Diego, CA. Available at <u>http://www.projectcleanwater.org/html/wg\_monitoring\_05-06report.html</u>.

Woodward-Clyde. 1998. 1997-1998 City of San Diego and Co-Permittees NPDES Stormwater Monitoring Program Report. Prepared for the City of San Diego, Engineering & Development Department. San Diego, CA.

# 7. APPENDICES

#### **APPENDIX I**

A. Beneficial uses of streams in the Pueblo San Diego HU (California Regional Water Quality Control Board, San Diego Region 1994). B. Streams on the 303(d) list of impaired water bodies in the Pueblo San Diego HUC. HUC = Hydrologic Unit Code. MUN = Municipal and domestic supply. REC1 = Contact recreation. REC2 = Non-contact recreation. WARM = Warm freshwater habitat. WILD = Wildlife habitat. X = Exempted from municipal supply. E = Existing beneficial use. P = Potential beneficial use.

| A. Beneficial uses of streams in the Pueblo San Diego H | U. |
|---------------------------------------------------------|----|
|---------------------------------------------------------|----|

| A. Demenicial uses of streams in the Fue | DIO Sali Di | A. Demencial uses of streams in the Fueblo San Diego no. |      |      |      |      |  |  |  |  |  |  |  |
|------------------------------------------|-------------|----------------------------------------------------------|------|------|------|------|--|--|--|--|--|--|--|
| Pueblo San Diego                         | HUC         | MUN                                                      | REC1 | REC2 | WARM | WILD |  |  |  |  |  |  |  |
| San Diego County Coastal Streams         |             |                                                          |      |      |      |      |  |  |  |  |  |  |  |
| Unnamed intermittent coastal streams     | 908.10      | Х                                                        | Р    | E    | E    | E    |  |  |  |  |  |  |  |
| Powerhouse Canyon                        | 908.21      | Х                                                        | Р    | Е    | Е    | E    |  |  |  |  |  |  |  |
| Chollas Creek                            | 908.22      | Х                                                        | Р    | E    | Е    | E    |  |  |  |  |  |  |  |
| South Chollas Valley                     | 908.22      | Х                                                        | Р    | E    | E    | E    |  |  |  |  |  |  |  |
| Unnamed intermittent streams             | 908.31      | Х                                                        | Р    | E    | Е    | E    |  |  |  |  |  |  |  |
| Paradise Creek                           | 908.32      | Х                                                        | Р    | E    | Е    | E    |  |  |  |  |  |  |  |
| Paradise Vallley                         | 908.32      | Х                                                        | Р    | Е    | E    | Е    |  |  |  |  |  |  |  |

#### B. 303(d)-listed streams in the Pueblo San Diego HU.

| Name          | HUC    | Stressor           | Potential source      | Affected length |
|---------------|--------|--------------------|-----------------------|-----------------|
| Chollas Creek | 908.22 | Copper             | Nonpoint/point source | 3.5 miles       |
|               |        | Indicator bacteria | Nonpoint/point source | 3.5 miles       |
|               |        | Lead               | Nonpoint/point source | 3.5 miles       |
|               |        | Zinc               | Nonpoint/point source | 3.5 miles       |
|               |        | Diazinon           | Nonpoint/point source | 3.5 miles       |

#### **APPENDIX II**

Means, standard deviations (SD), and number of samples (n) of water chemistry constituents in (A) SWAMP sites and (B) Non-SWAMP (NPDES) sites. The watershed average was calculated as the mean of the site averages. Blank cells indicate that the constituent was not analyzed at that site. -- = Constituent not detected at that site. SWAMP sites were monitored in 2002. Non-SWAMP sites were monitored in Spring and Fall between 2002 and 2005.

#### A. SWAMP sites.

| A. SWAMP s       | sites.                   |              | 0005 | PAR04 | 1 |           | IL4              |
|------------------|--------------------------|--------------|------|-------|---|-----------|------------------|
| Tune             | Constituent              | Units        | Mean |       |   | Mean      |                  |
| Type<br>Bacteria | Enterococcus             | MPN/100mL    |      | 50    | 0 | 11        | <u>SD n</u><br>1 |
| Bacteria         | Fecal Coliform           | MPN/100mL    |      |       | 0 | 900       | 1                |
| Bacteria         | Total Coliform           | MPN/100mL    |      |       | 0 | 1600      | 1                |
|                  | Alkalinity as CaCO3      | mg/L         | 187  | 11.6  |   | 210       | 1                |
| -                | Ammonia as N             | mg/L         |      | 0.051 |   | 210       | 1                |
| •                | Nitrate as N             | mg/L         |      | 0.051 |   |           | 1                |
| •                | Nitrate as NO3           | mg/L         | 0.49 | 0.457 | 4 |           | 1                |
|                  | Nitrite as N             | mg/L         | 0.02 | 0.02  | - |           | 1                |
|                  | Nitrogen, Total Kjeldahl | mg/L         |      | 0.02  |   | 2.4       | 1                |
|                  | o-phosphate as P         | mg/L         | 1.07 | 0.555 | 4 | 2.4       | 1                |
| -                | Phosphorus as P,Total    | mg/L         | 0.25 | 0.076 |   | 0.22      | 1                |
| •                | Selenium, Dissolved      | µg/L         |      | 115.8 |   | 0.22      | 0                |
| Inorganics       |                          | µg/∟<br>mg/L |      | 454.4 |   | 460       | 1                |
| Metals           | Aluminum, Dissolved      | µg/L         |      | 1.527 |   | 400<br>24 | 1                |
| Metals           | Arsenic, Dissolved       | µg/∟<br>µg/L | 1.96 |       |   | 4.7       | 1                |
| Metals           | Cadmium, Dissolved       | µg/∟<br>µg/L |      | 0.024 |   |           | 1                |
| Metals           | Chromium, Dissolved      | µg/∟<br>µg/L |      | 0.656 |   | 0.24      | 1                |
| Metals           | Copper, Dissolved        | μg/L         |      | 3.044 |   | 3         | 1                |
| Metals           | Lead, Dissolved          | µg/∟<br>µg/L |      | 0.059 |   | 1         | 1                |
| Metals           | Manganese, Dissolved     | µg/∟<br>µg/L |      | 63.66 |   | 130       | 1                |
| Metals           | Nickel, Dissolved        | μg/L         | 2.81 | 1.134 |   | 8.7       | 1                |
| Metals           | Silver, Dissolved        | µg/L         | 0.01 | 0.01  |   | 0.61      | 1                |
| Metals           | Zinc,Dissolved           | μg/L         |      | 4.142 |   | 20        | 1                |
| PAHs             | Acenaphthene             | µg/L         |      |       | 4 |           | 1                |
| PAHs             | Acenaphthylene           | µg/L         |      |       | 4 |           | 1                |
| PAHs             | alpha-BHC                | µg/L         |      | •     | 0 |           | 1                |
| PAHs             | Anthracene               | μg/L         |      | 0     | 4 |           | 1                |
| PAHs             | Benz(a)anthracene        | µg/L         | 0    | 0.008 |   |           | 1                |
| PAHs             | Benzo(a)pyrene           | µg/L         |      | 0.012 |   |           | 1                |
| PAHs             | Benzo(b)fluoranthene     | µg/L         |      | 0.015 |   |           | 1                |
| PAHs             | Benzo(e)pyrene           | µg/L         |      |       | 4 |           | 1                |
| PAHs             | Benzo(g,h,i)perylene     | µg/L         | 0.01 | 0.015 |   |           | 1                |
| PAHs             | Benzo(k)fluoranthene     | µg/L         |      | 0.015 |   |           | 0                |
| PAHs             | beta-BHC                 | µg/L         |      |       | 0 |           | 1                |
| PAHs             | Biphenyl                 | µg/L         |      | 0     | 4 |           | 0                |
| PAHs             | Chrysene                 | µg/L         | 0.01 | 0.011 |   |           | 1                |
| PAHs             | Chrysenes, C1 -          | µg/L         |      |       | 4 |           | 0                |
| PAHs             | Chrysenes, C2 -          | µg/L         |      |       | 4 |           | 0                |
| PAHs             | Chrysenes, C3 -          | µg/L         |      | 0     | 4 |           | 0                |
|                  | -                        |              |      |       |   |           |                  |

| Appendix I | Appendix IIa, continued. Means and standard deviations of water chemistry constituents. |              |                        |     |      |     |  |
|------------|-----------------------------------------------------------------------------------------|--------------|------------------------|-----|------|-----|--|
|            |                                                                                         |              | 908PPAR                |     |      | HL4 |  |
| Туре       | Constituent                                                                             | Units        | Mean SD                |     | Mean |     |  |
| PAHs       | delta-BHC                                                                               | µg/L         |                        | 0   |      | 1   |  |
| PAHs       | Dibenz(a,h)anthracene                                                                   | µg/L         | 0.01 0.01              |     |      | 1   |  |
| PAHs       | Dibenzothiophene                                                                        | µg/L         | 0 0.00                 | 74  |      | 0   |  |
| PAHs       | Dibenzothiophenes, C1 -                                                                 | µg/L         | 0.02 0.03              | 34  |      | 0   |  |
| PAHs       | Dibenzothiophenes, C2 -                                                                 | µg/L         | 0.04 0.06              | 54  |      | 0   |  |
| PAHs       | Dibenzothiophenes, C3 -                                                                 | µg/L         | 0 0.00                 | 34  |      | 0   |  |
| PAHs       | Dichlofenthion                                                                          | µg/L         |                        | 04  |      | 0   |  |
| PAHs       | Dimethylnaphthalene, 2,6-                                                               | µg/L         | 0 0.00                 | 74  |      | 0   |  |
| PAHs       | Dimethylphenanthrene, 3,6-                                                              | µg/L         |                        | 04  |      | 0   |  |
| PAHs       | Fluoranthene                                                                            | µg/L         | 0.01 0.00              | 74  |      | 1   |  |
| PAHs       | Fluoranthene/Pyrenes, C1 -                                                              | µg/L         |                        | 04  |      | 0   |  |
| PAHs       | Fluorene                                                                                | µg/L         |                        | 04  |      | 1   |  |
| PAHs       | Fluorenes, C1 -                                                                         | µg/L         |                        | 04  |      | 0   |  |
| PAHs       | Fluorenes, C2 -                                                                         | µg/L         |                        | 04  |      | 0   |  |
| PAHs       | Fluorenes, C3 -                                                                         | µg/L         | 0.02 0.03              | 54  |      | 0   |  |
| PAHs       | gamma-BHC (Lindane)                                                                     | µg/L         | 0.02 0.00              | 0   |      | 1   |  |
| PAHs       | Indeno(1,2,3-c,d)pyrene                                                                 | µg/L         | 0.01 0.01              | -   |      | 1   |  |
| PAHs       | Methyldibenzothiophene, 4-                                                              | μg/L         | 0 0.00                 |     |      | 0   |  |
| PAHs       | Methylfluoranthene, 2-                                                                  | μg/L         |                        | 04  |      | 0   |  |
| PAHs       | Methylfluorene, 1-                                                                      | μg/L         |                        | 04  |      | 0   |  |
| PAHs       | Methylnaphthalene, 1-                                                                   | μg/L         |                        | 04  |      | 0   |  |
| PAHs       | Methylnaphthalene, 2-                                                                   | µg/∟<br>µg/L |                        | 04  |      | 0   |  |
| PAHs       | Methylphenanthrene, 1-                                                                  | µg/∟<br>µg/L |                        | 04  |      | 0   |  |
| PAHs       | Naphthalene                                                                             | µg/∟<br>µg/L | 0 0.00                 |     |      | 1   |  |
| PAHs       | Naphthalenes, C1 -                                                                      | µg/∟<br>µg/L | 0 0.00                 | 04  |      | 0   |  |
| PAHs       | Naphthalenes, C2 -                                                                      |              | 0 0.0                  | 1 4 |      | 0   |  |
| PAHs       | Naphthalenes, C2 -                                                                      | µg/L         | 0.01 0.00              |     |      | 0   |  |
| PAHS       | •                                                                                       | µg/L         | 0.01 0.00              |     |      | 0   |  |
| PAHS       | Naphthalenes, C4 -                                                                      | µg/L         | 0 0.00                 |     |      |     |  |
|            | Perylene<br>Phenanthrene                                                                | µg/L         |                        | 04  |      | 0   |  |
| PAHs       |                                                                                         | µg/L         | 0.01 0.00<br>0.01 0.00 |     |      | 1   |  |
| PAHs       | Phenanthrene/Anthracene, C1 -                                                           | µg/L         |                        |     |      | 0   |  |
| PAHs       | Phenanthrene/Anthracene, C2 -                                                           | µg/L         | 0.01 0.01              |     |      | 0   |  |
| PAHs       | Phenanthrene/Anthracene, C3 -                                                           | µg/L         | 0 0.00                 |     |      | 0   |  |
| PAHs       | Phenanthrene/Anthracene, C4 -                                                           | µg/L         |                        | 04  |      | 0   |  |
| PAHs       | Pyrene                                                                                  | µg/L         | 0 0.00                 |     |      | 1   |  |
| PAHs       | Trimethylnaphthalene, 2,3,5-                                                            | µg/L         |                        | 04  |      | 0   |  |
| PCBs       | PCB 005                                                                                 | µg/L         |                        | 04  |      | 0   |  |
| PCBs       | PCB 008                                                                                 | µg/L         |                        | 04  |      | 0   |  |
| PCBs       | PCB 015                                                                                 | µg/L         |                        | 04  |      | 0   |  |
| PCBs       | PCB 018                                                                                 | µg/L         |                        | 04  |      | 0   |  |
| PCBs       | PCB 027                                                                                 | µg/L         |                        | 04  |      | 0   |  |
| PCBs       | PCB 028                                                                                 | µg/L         |                        | 04  |      | 0   |  |
| PCBs       | PCB 029                                                                                 | µg/L         |                        | 04  |      | 0   |  |
| PCBs       | PCB 031                                                                                 | µg/L         |                        | 04  |      | 0   |  |
| PCBs       | PCB 033                                                                                 | µg/L         |                        | 04  |      | 0   |  |
| PCBs       | PCB 044                                                                                 | µg/L         |                        | 04  |      | 0   |  |
| PCBs       | PCB 049                                                                                 | µg/L         |                        | 04  |      | 0   |  |
| PCBs       | PCB 052                                                                                 | µg/L         |                        | 04  |      | 0   |  |
|            |                                                                                         |              |                        |     |      |     |  |

| Appendix IIa | n, continued. Means and standard c | leviations of wa |      |       |   | nstituents. |   |
|--------------|------------------------------------|------------------|------|-------|---|-------------|---|
|              |                                    |                  |      | PAR04 | ŀ | CHL4        |   |
| Туре         | Constituent                        | Units            | Mean | SD    | n | Mean SD     | n |
| PCBs         | PCB 056                            | µg/L             |      | 0     |   |             | 0 |
| PCBs         | PCB 060                            | µg/L             |      | 0     | 4 |             | 0 |
| PCBs         | PCB 066                            | µg/L             |      | 0     | 4 |             | 0 |
| PCBs         | PCB 070                            | µg/L             |      | 0     | 4 |             | 0 |
| PCBs         | PCB 074                            | µg/L             |      | 0     | 4 |             | 0 |
| PCBs         | PCB 087                            | µg/L             |      | 0     | 4 |             | 0 |
| PCBs         | PCB 095                            | µg/L             |      | 0     | 4 |             | 0 |
| PCBs         | PCB 097                            | µg/L             |      | 0     | 4 |             | 0 |
| PCBs         | PCB 099                            | µg/L             |      | 0     | 4 |             | 0 |
| PCBs         | PCB 101                            | µg/L             |      | 0     | 4 |             | 0 |
| PCBs         | PCB 105                            | µg/L             |      | 0     | 4 |             | 0 |
| PCBs         | PCB 110                            | µg/L             |      | 0     | 4 |             | 0 |
| PCBs         | PCB 114                            | µg/L             |      | 0     | 4 |             | 0 |
| PCBs         | PCB 118                            | µg/L             |      | 0     | 4 |             | 0 |
| PCBs         | PCB 128                            | µg/L             |      | 0     | 4 |             | 0 |
| PCBs         | PCB 137                            | µg/L             |      | 0     | 4 |             | 0 |
| PCBs         | PCB 138                            | µg/L             |      | 0     | 4 |             | 0 |
| PCBs         | PCB 141                            | µg/L             |      | 0     | 4 |             | 0 |
| PCBs         | PCB 149                            | μg/L             |      | 0     | 4 |             | 0 |
| PCBs         | PCB 151                            | µg/L             |      | 0     | 4 |             | 0 |
| PCBs         | PCB 153                            | µg/L             |      | 0     | 4 |             | 0 |
| PCBs         | PCB 156                            | µg/L             |      | 0     | 4 |             | 0 |
| PCBs         | PCB 157                            | μg/L             |      | 0     | 4 |             | 0 |
| PCBs         | PCB 158                            | μg/L             |      | 0     | 4 |             | 0 |
| PCBs         | PCB 170                            | μg/L             |      |       | 4 |             | 0 |
| PCBs         | PCB 174                            | μg/L             |      | 0     | 4 |             | 0 |
| PCBs         | PCB 177                            | µg/L             |      | 0     | 4 |             | 0 |
| PCBs         | PCB 180                            | µg/L             |      |       | 4 |             | 0 |
| PCBs         | PCB 183                            | µg/L             |      | 0     | 4 |             | 0 |
| PCBs         | PCB 187                            | µg/L             |      | 0     | 4 |             | 0 |
| PCBs         | PCB 189                            | µg/L             |      | 0     | 4 |             | 0 |
| PCBs         | PCB 194                            | µg/L             |      | 0     | 4 |             | 0 |
| PCBs         | PCB 195                            | μg/L             |      | 0     | 4 |             | 0 |
| PCBs         | PCB 200                            | µg/L             |      | 0     | 4 |             | 0 |
| PCBs         | PCB 201                            | µg/L             |      |       | 4 |             | 0 |
| PCBs         | PCB 203                            | µg/L             |      | 0     | 4 |             | 0 |
| PCBs         | PCB 206                            | μg/L             |      | 0     | 4 |             | 0 |
| PCBs         | PCB 209                            | µg/L             |      | 0     |   |             | 0 |
| PCBs         | PCB-1016                           | μg/L             |      |       | 0 |             | 1 |
| PCBs         | PCB-1221                           | µg/L             |      |       | 0 |             | 1 |
| PCBs         | PCB-1232                           | µg/L             |      |       | 0 |             | 1 |
| PCBs         | PCB-1242                           | µg/L             |      |       | 0 |             | 1 |
| PCBs         | PCB-1248                           | µg/L             |      |       | 0 |             | 1 |
| PCBs         | PCB-1254                           | µg/L             |      |       | 0 |             | 1 |
| PCBs         | PCB-1260                           | µg/L             |      |       | 0 |             | 1 |
| Pesticide    | Toxaphene                          | µg/L             |      |       | 0 |             | 1 |
| Pesticides   | •                                  | µg/L             |      | 0     |   |             | 1 |
|              |                                    |                  |      | 2     |   |             | - |

| Appendix IIa, continued. Means and standard deviations of water chemistry constituents. |                     |      |      |       |   |      |     |   |
|-----------------------------------------------------------------------------------------|---------------------|------|------|-------|---|------|-----|---|
| _                                                                                       |                     |      |      | PAR0  |   |      | HL4 |   |
| Туре                                                                                    | Constituent         |      | Mean |       |   | Mean | SD  | n |
| Pesticides                                                                              | •                   | µg/L |      |       | 4 |      |     | 0 |
|                                                                                         | Azinphos ethyl      | µg/L |      |       | 4 |      |     | 0 |
|                                                                                         | Azinphos methyl     | µg/L |      | 0     | - |      |     | 0 |
| Pesticides                                                                              |                     | µg/L |      | 0     | - |      |     | 0 |
|                                                                                         | Carbophenothion     | µg/L |      | 0     | 4 |      |     | 0 |
|                                                                                         | Chlordane (tech)    | µg/L |      |       | 0 |      |     | 1 |
|                                                                                         | Chlordane, cis-     | µg/L |      | 0     |   |      |     | 0 |
|                                                                                         | Chlordane, trans-   | µg/L |      | 0     |   |      |     | 0 |
|                                                                                         | Chlordene, alpha-   | µg/L |      | 0     |   |      |     | 0 |
|                                                                                         | Chlordene, gamma-   | µg/L |      | 0     | 4 |      |     | 0 |
|                                                                                         | Chlorfenvinphos     | µg/L |      | 0     | 4 |      |     | 0 |
|                                                                                         | Chlorpyrifos        | µg/L |      | 0     | 4 |      |     | 0 |
| Pesticides                                                                              | Chlorpyrifos methyl | µg/L |      | 0     | 4 |      |     | 0 |
| Pesticides                                                                              | Ciodrin             | µg/L |      | 0     | 4 |      |     | 0 |
| Pesticides                                                                              | Coumaphos           | µg/L |      | 0     | 4 |      |     | 0 |
| Pesticides                                                                              | Dacthal             | µg/L |      | 0     | 4 |      |     | 0 |
| Pesticides                                                                              | DDD(o,p')           | µg/L |      | 0     | 4 |      |     | 0 |
| Pesticides                                                                              | DDD(p,p')           | µg/L |      | 0     | 4 |      |     | 1 |
| Pesticides                                                                              | DDE(o,p')           | µg/L |      | 0     | 4 |      |     | 0 |
| Pesticides                                                                              | DDE(p,p')           | µg/L |      | 0     | 4 |      |     | 1 |
|                                                                                         | DDMU(p,p')          | µg/L |      | 0     | 4 |      |     | 0 |
| Pesticides                                                                              |                     | µg/L |      | 0     | 4 |      |     | 0 |
| Pesticides                                                                              |                     | μg/L |      | 0     | 4 |      |     | 1 |
| Pesticides                                                                              | Demeton-s           | µg/L |      | 0     | 4 |      |     | 0 |
| Pesticides                                                                              | Diazinon            | μg/L | 0.03 | 0.029 | 4 |      |     | 0 |
| Pesticides                                                                              | Dichlorvos          | µg/L |      | 0     | 4 |      |     | 0 |
| Pesticides                                                                              | Dicrotophos         | μg/L |      | 0     | 4 |      |     | 0 |
| Pesticides                                                                              | •                   | μg/L |      | 0     | 4 |      |     | 1 |
| Pesticides                                                                              | Dimethoate          | μg/L |      | 0     | 4 |      |     | 0 |
| Pesticides                                                                              | Dioxathion          | μg/L | 0.07 | 0.094 | 4 |      |     | 0 |
| Pesticides                                                                              |                     | μg/L | 0.01 | 0.027 | 4 |      |     | 0 |
| Pesticides                                                                              | Endosulfan I        | μg/L |      | 0     | 4 |      |     | 1 |
| Pesticides                                                                              | Endosulfan II       | μg/L |      | 0     | 4 |      |     | 1 |
|                                                                                         | Endosulfan sulfate  | μg/L |      |       | 4 |      |     | 1 |
|                                                                                         | Endrin Aldehyde     | μg/L |      | 0     | 4 |      |     | 1 |
|                                                                                         | Endrin Ketone       | μg/L |      | 0     | 4 |      |     | 0 |
| Pesticides                                                                              |                     | μg/L |      | 0     | 4 |      |     | 1 |
| Pesticides                                                                              |                     | µg/L |      | 0     | 4 |      |     | 0 |
| Pesticides                                                                              |                     | µg/L |      |       | 4 |      |     | 0 |
| Pesticides                                                                              |                     | µg/L |      |       | 4 |      |     | 0 |
|                                                                                         | Fenchlorphos        | µg/L |      | 0     | 4 |      |     | 0 |
|                                                                                         | Fenitrothion        | µg/L |      | -     | 4 |      |     | 0 |
|                                                                                         | Fensulfothion       | μg/L |      | -     | 4 |      |     | Õ |
| Pesticides                                                                              |                     | μg/L |      | 0     | • |      |     | 0 |
| Pesticides                                                                              |                     | μg/L |      | 0     | - |      |     | 0 |
|                                                                                         | HCH, alpha          | μg/L |      | 0     | - |      |     | 0 |
|                                                                                         | HCH, beta           | μg/L |      | -     | 4 |      |     | 0 |
|                                                                                         | HCH, delta          | μg/L |      | -     | 4 |      |     | 0 |
|                                                                                         | HCH, gamma          | μg/L |      |       | 4 |      |     | 0 |
| r coucides                                                                              | non, ganna          | μg/L |      | 0     | 4 |      |     | U |

| Appendix IIa | a, continued. Means and stai | ndard deviations of w |      |         |        |     |
|--------------|------------------------------|-----------------------|------|---------|--------|-----|
|              |                              |                       |      | PAR04   | Cł     | HL4 |
| Туре         | Constituent                  | Units                 | Mean | SD r    | n Mean |     |
|              | Heptachlor epoxide           | µg/L                  |      | 0 4     |        | 1   |
|              | Heptachlor                   | µg/L                  |      | 0 4     |        | 1   |
| Pesticides   | Hexachlorobenzene            | µg/L                  |      | 0 4     | 4      | 0   |
| Pesticides   | Leptophos                    | µg/L                  |      | 0 4     | 4      | 0   |
| Pesticides   | Malathion                    | µg/L                  |      | 0 4     | 4      | 0   |
| Pesticides   |                              | µg/L                  |      | 0 4     | 4      | 0   |
| Pesticides   | Methidathion                 | µg/L                  |      | 0 4     | 4      | 0   |
| Pesticides   | Methoxychlor                 | µg/L                  |      | 0 4     | 4      | 1   |
| Pesticides   | Mevinphos                    | µg/L                  |      | 0 4     | 4      | 0   |
| Pesticides   |                              | µg/L                  |      | 0 4     | 4      | 0   |
| Pesticides   | Molinate                     | µg/L                  |      | 0 4     | •      | 0   |
| Pesticides   | Naled                        | µg/L                  |      | 0 4     | 4      | 0   |
|              | Nonachlor, cis-              | µg/L                  |      | 0 4     | 4      | 0   |
| Pesticides   | Nonachlor, trans-            | µg/L                  |      | 0 4     | 4      | 0   |
| Pesticides   | Oxadiazon                    | µg/L                  | 0.02 | 0.016   | 4      | 0   |
| Pesticides   | Oxychlordane                 | µg/L                  |      | 0 4     | 4      | 0   |
| Pesticides   | Parathion, Ethyl             | µg/L                  |      | 0 4     | 4      | 0   |
| Pesticides   | Parathion, Methyl            | µg/L                  |      | 0 4     | 4      | 0   |
| Pesticides   | Phorate                      | µg/L                  |      | 0 4     | 4      | 0   |
| Pesticides   | Phosmet                      | µg/L                  |      | 0 4     | 4      | 0   |
| Pesticides   | Phosphamidon                 | µg/L                  |      | 0 4     | 4      | 0   |
| Pesticides   | Sulfotep                     | μg/L                  |      | 0 4     | 4      | 0   |
| Pesticides   | Tedion                       | µg/L                  |      | 0 4     | 4      | 0   |
| Pesticides   | Terbufos                     | µg/L                  |      | 0 4     | 4      | 0   |
| Pesticides   | Tetrachlorvinphos            | µg/L                  |      | 0 4     | 4      | 0   |
| Pesticides   | Thiobencarb                  | µg/L                  |      | 0 4     | 4      | 0   |
| Pesticides   | Thionazin                    | µg/L                  |      | 0 4     | 4      | 0   |
| Pesticides   | Tokuthion                    | µg/L                  |      | 0 4     | 4      | 0   |
| Pesticides   | Trichlorfon                  | μg/L                  |      | 0 4     | 4      | 0   |
| Pesticides   | Trichloronate                | μg/L                  |      | 0 4     | 4      | 0   |
| Physical     | Oxygen, Dissolved            | mg/L                  | 113  | 198.9 4 | 4      | 0   |
| Physical     | Oxygen, Saturation           | %                     | 175  | 98.1 4  | 4      | 0   |
| Physical     | рН                           | pH units              | 8.78 | 0.754   | 4      | 0   |
| Physical     | Salinity                     | ppt                   | 4.19 | 5.655   | 4      | 0   |
| Physical     | Specific conductivity        | µS/cm                 | 6925 | 9619 4  | 4      | 0   |
| Physical     | Suspended Solids, Total      | mg/L                  | 39.5 | 48.82   | 4 31   | 1   |
| Physical     | Temperature                  | °C                    | 25.7 | 5.42 4  | 4      | 0   |
| Physical     | Turbidity                    | NTU                   | 8.32 | 7.491 3 | 3      | 0   |

|                               | Sit  | te 1 (CC-FI | 3) |
|-------------------------------|------|-------------|----|
|                               | Mean | SD          | n  |
| Dissolved oxygen (mg/l)       | 9.8  | 2.2         | 5  |
| рН                            | 7.7  | 0.3         | 5  |
| Specific conductivity (mS/cm) | 4.5  | 1.2         | 5  |
| Turbidity (NTU)               | 8    |             | 1  |
| Water Tempurature (°C)        | 21.4 | 2.0         | 5  |

Appendix II, continued. Means and standard deviations of water chemistry constituents. B. Non-SWAMP sites.

#### **APPENDIX III**

Mean IBI and metric scores for bioassessment sites in the Pueblo San Diego HU. Note that the number listed under IBI is the mean IBI for each site, and not the IBI calculated from the mean metric values.

|        |         |             |          | EPT     | Coleoptera | Predator |              |              | % Non-insect | % Tolerant |
|--------|---------|-------------|----------|---------|------------|----------|--------------|--------------|--------------|------------|
|        |         |             | IBI      | Таха    | Таха       | Таха     | % Collectors | % Intolerant | Таха         | Таха       |
| Site   | Season  | n Years     | Mean SD  | Mean SD | Mean SD    | Mean SD  | Mean SD      | Mean SD      | Mean SD      | Mean SD    |
| Site 1 | Average | 6 2003-2005 | 19.5 0.0 | 1.3 0.5 | 0.7 0.0    | 1.2 1.6  | 4.5 2.1      | 0.0 0.0      | 5.0 0.9      | 1.0 0.9    |
|        | Fall    | 3 2003-2005 | 19.5 5.9 | 1.0 0.0 | 0.7 1.2    | 0.0 0.0  | 6.0 3.6      | 0.0 0.0      | 4.3 1.5      | 5 1.7 1.5  |
|        | Spring  | 3 2003-2005 | 19.5 6.8 | 1.7 0.6 | 0.7 1.2    | 2.3 0.6  | 3.0 3.5      | 0.0 0.0      | 5.7 1.5      | 5 0.3 0.6  |
| CHL4   | Fall    | 1 2005      | 10.0     | 1.0     | 0.0        | 0.0      | 5.0          | 0.0          | 1.0          | 0.0        |