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Abstract—Rules for assessing compliance with percentile standards commonly limit the number of
exceedances permitted in & batch of samples taken over a defined assessment period. Such rules are

commonly developed using classical statistical methods. Results {rom alternative Bayesian methods.are. . .

presented (using beta-distributed prior information and a binomial likelihood), tesulting in “‘confidence of
compliatice” graphs. These allow simple reading of the consumers risk and the supplier’s risks for any
proposed rule. The influence of the prior assutnptions required by the Bayesian technique on the
confidence results is demonstrated, usmg two reference priors (uniform and Jeffreys”) and also using
optimistic and pessimistic user-defined priors. All four give {ess pessimistic results than does the classical
technique, because mtcrprcung classical results as “confidence of compliance” actually invokes a Bayesian
approach with an extreme prior distribution. Jefireys’ prior is shown to be the most generally appropriate
choice of prior distribution. Cost savings can be expected using rules based on this approach.
© 2001 Elsevier Science Lid. All rights reserved
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NOMENCLATURE

Be(a, ) two-parameter beta distribution
cC confidence of compliance

CF confidence of lailure

¢ number of exceedances of a percentile limit

€hd number of permissible exceedunces under a
benefit-of-doubt stance

e - number of permissible excezdances under a fail-
sale stance .

F " posterior distribution function

a(x) prior probability density function

posterior probability density function

incomplete beta funclion ratio

likelihood {enction

n number of samples

P p-value of a one-sided hypothesis test

2 variance of sample exceedance rate

x probability of exceedance of a single random
sample

X . sample mean exceedance rate

X critical exceedance probability (¥ = 0.05 for a 95

percentile standard)

Greek symbols
o significance level
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INTRODUCTION

Percentile standards are increasingly used in environ-
mental management, e.g., for drinking-water supplies
{(MoH, 1995), waste discharge permits (Ellis, 1989)
and toxicity standards (ANZECC & ARMCANZ,
1999). Rules for compliance with these standards are
generally derived from classical one-sided hypothesis
tests in which the p-value is used as a weight-of-
evidence measure against the tested hypothesis: In
developing and in applying such rules we need to
consider both risks of reaching false conclusions: the
supplier’s risk {falsely inferring a breach of standard)
and the consumer’s risk (falsely inferring compli-
ance). The former risk is faced by the water supplier
or by the waste discharger; the latter is faced by the
water drinker or by the receiving environment.

The tested hypothesis usually posits compliance, in
which case the supplier’s risk is kept small—because
this is the Type I error risk and the testing procedure
always restricts this to be below a small value,
typically significance level ¢ = 5%. Accordingly, .the
consumer’s risk is rather large in cases, where the
standard actually is in breach (it would be 95% for
marginal non-compliance). However, though much
less common, the tested hypothesis may be chosen to
posit breach (non-compliance), in which case the
Type I error risk is now the consumer’s risk and so
this is the risk that is kept small. The Type II error
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rigk is then the supplier’s risk and it can be large for
marginal compliance.

While this procedure is objective (inasmuch as
choosing a value of « is so) it has a number of
inherent problems. First, the assessor is often not
aware of the possibility of reversing the role of the
two error risks, by choosing to test either the
hypothesis of compliance or the hypothesis of
breach. Second, there is debate in statistical literature
(e.g., Goodman, 1993; Harlow e? al, 1997; Royall,
1997) as to the role of p-values as weights-of-evidence
(the debate is strongest for two-sided tests of point
hypotheses). Third, and most importantly, the
procedure does not' appear to provide direct state-
ments about the probability of compliance, as it
considers instead the probability of gaining ranges of
data (e.g.,, more exceedances than were actually
obtained) if the tested hypothesis {e.g., compliance)
were true. A compliance assessor or a Court may
find this somewhat tangential to the central issue,
i.e., balancing the probability of breach vs. the
probability of compliance.

Compliance assessment based on a Bayesian
approach has the potential to address such issues
directly, without the need to consider significance
levels, Type I error risk and Type II error risk—
indeed these are irrelevant in a Bayesian framework
(Lee, 1989). We argue -herein that they can give
simpler and more direct information to a compliance
assessor or to a Court, even though they do call for a
subjective element of information—the assessor’s
belief as to the probability of compliance before data
come to hand. This belief is represented as a “prior”
distribution. If a “reference prior™ is specified,
reflecting the assessor’s lack of prior knowledge,
one obtains a simple statetment of “confidence of
compliance”. Using the most appropriate (Jeflreys’)
prior gives less stringent compliance rules than those
based on classical methods. If an informative prior is
used—reflecting the assessor’s prior belief as to likely
exceedance rates—there can be considerable dis-
crepancies between Bayesian and classical results,
particularly for small numbers of samples.

COMPLIANCE WITH PERCENTILE .
STANDARDS—CLASSICAL APPROACH

Percentile standards require that a certain limit
(e.z., of a chemical’s concentration) should not be
exceeded for more than a percentage of an assess-
ment period. This requirement is properly stated as a
percentage of time in which the limit may be exceeded
(which is always unknown), not as a percentage of
samples in which that limit may be exceeded (which is
only known once data are reported—Ellis and Lacey,
1980). A compliance rule derived from such a
standard generally requires that no more than a
stated number of exceedances of the percentile limit
should occur in a pgiven number of samples over a
compliance assessment period. In lormulating this

rule we do not know whether sampling error will
cause future assessments to be in error in their
inferences as to compliance or breach, nor is it
known which error—supplier’s or consu-
mer’s—might occur. Accordingly the rule should be
based on a consideration of both error risks (Ellis,
1989). In doing so one must note that once the
number of samples has been decided only one of
these risks can be controlled (i.e., kept small). If
compliance is in fact marginal, the other risk will be
large. Furthermore, the risk to be controlled is
determined by the assessor’s choice of the hypothesis
to be tested. H that hypothesis posiis compliance
{as is usual) it is the supplier’s risk that wil] be kept
small. But in a precautionary approach one could
invert the tested hypothesis so that it posits that the
standard has been breached. In that case it is the
consumer’s risk that will be controlled. These have
been characterised by Ellis (1989) as the benefir of
doubt and fail-safe approaches.

The error risks can be quantified using classical
one-sided hypothesis tests. The key calculation
therein is the probability of obtaining data at least
as extreme as was obtained Jf the tested hypothesis is
{only just) true, i.e., compliance is “borderline”. This
is the “p-value”. If this is less than the a priori
significance level (usually taken as o« = 5%), one has a
“statistically significant™ result and infers that there
has been breach or compliance (depending on which
hypothesis has been tested). That is, the p-value is
used as a weight-of-evidence against the tested
hypothesis. If that hypothesis posits compliance,
then p is the supplier’s risk; if the hypothesis posits
breach, then p is the consumer’s risk. Because the
tested hypothesis posits borderline compliance, these

risks are maximum values.

For example; consider a permit requiring (inter
alia) that the total inorganic nitrogen concentration
("TIN™) in the effiuent from a coasta]l sewage
treatment plant should be below 10 gm™ for at least
98% of a three-month summer period, based on two
samplings every outgoing tide. Compliance with this
98 percentile standard is therefore to be assessed
using about » = 350 samples. Denote by ¢ the number
of exceedances of the 10 gm™ limit in these samples.
Il the supplier’s risk is chosen to be the one that is
controlled then, as above; the tested hypothesis must
posit compliance, ie, x <0.02, where x is the
probability of exceedance for any single random
sample. We can then use the following formula to
identily the maximum permissible number of ex-
ceedances under this benefit-of-doubt approach (eg)
while still reaching a verdict of “compliance™

p=Prie>englnx=X)<a (1)

where X is the value of x where the tested hypothesis
is only just troe (i.e., X = 0.02 in this example) and =
is the maximum acceptable supplier’s risk. The lefi-
hand-side of equation (1) gives the probability of
obtaining more than e,y exceedances when in fact the
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effluent was just complying (i.e., x = X = 0.02)—eng
is to be selected as its Jowest value satisfying p < o
(p =« will seldom be attained because exceedance
data are discrete, not continuous). Because the tested
hypothesis is compliance and we are demanding
a high standard of proof before it will be rejected
(e.g., only 8 5% significance level), the proportion
of allowable- exceedances (i.e., eya/n) will always
exceed X,

The required probability can be calculated by
noting that for random sampling e is distributed as
cumulative binomial (regardless of the distribution of
the underlying process), i.e.,

p= Pr(e> enln,x=X)

n
= 3 "CX(1-X)" (2)
e=ppgep ]
where * C, is the binomial coefficient. Taking n = 350,
X = 0.02 and o = 5% we can use available numerical
algorithms {(e.g., Press et al., 1986} to obtain p =
5.15% for epg=11 and p=2.57% for ep = 12.
Accordingly, from equation (1), we must allow up
to epg = 12 exceedances of the ]0gm‘3 limit in those
350 samples (i.e., about 3.4% of the samples).
However, il the consumer’s risk is to be controlled
(in a precautionary fail-safe approach), the tested
hypothesis must now posit breach, ie., x > 0.02.
Because we are demanding a high standard of proof
before this hypothesis will be rejected, the proportion
of allowable exceedances {i.e., eg /r) will never exceed
X. The appropriate formula is

p=Prie < elnx=X)
e=gn
=3 CX{(-Xy"<e (3)
=
where ey, is its highest value satisfying p < a. Note
that testing this fail-safe approach means that o
is now the maximum acceptable consumer’s risk.
Taking rn =350, ¥ =0.02 and o = 5%, we obtain
p=2.85% and p="7.97% for e, = 2 and 3 respec-
tively. Accordingly we can allow up to only ¢ =2
exceedances of the 10gm™? limit in those samples
.(i.e., about 0.6% of the samples).

COMPLIANCE WITH PERCENTILE
STANDARDS—BAYESIAN APPROACH

In a Bayesian analysis we no longer assume one
particular exceedance probability value (ie., x = .X)
in computing probabilities; it is regarded as a
continuous variable about which we want to make
confidence statements. In doing so we use the actual
data obtained (and not any data more extreme than
that obtained) to update a prior beliel to obtain a
posierior  belief, which we call *“confidence of
compliance™. This uses Bayes’ theorem. The prior
belief or knowledge is stated as a probability density
function (pdf’) over the range of its possible values,
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and is to be decided before data come to hand
(similarly, the significance level for a classical test
should be stated before data are coliected). Accord-
ingly the posterior information gained is also a pdf.
We can then get the required probabilities by
integrating that function up to X, _

The equation for the posterior pdf, from Bayes’
theorem (Press, 1989), takes the form

i _ L{eln, x) :
h(x|e,n) = [ T Lieln 2900 dx}y(l) (4)

where e is the number of exceedances in » samples;
h{x|e, n) is the posterior pdf of x for a given value of
e and n; L(e|n, x) is the “likelihood function” for any
n and x; and g{x) is the prior pdf of x (independent of
n and ¢). This equation shows that the & priori belief
about the true exceedance rate x, measured by g{x), is
updated by the “standardised likelihood” (the term
in brackets) to derive the required posterior prob-
ability density A.

For a set of n samples the likelihood function is
the probability mass function for a particular value
of e, with x (rather than &) being regarded as the
function’s parameter, It is the term being summed in
equations (2) and (3), for any value of x (not just for
X as in those equations), i.e.,

Lielx,n) =" Cox*(1 — x}"° {(5)

(the sum of L over all possible values of ¢ is unity, but
the integral of L over all x is not—hence it is called a
likelihood rather than a density). Therefore, noting
that the binomial coefficients cancel in the standar-
dised likelihood function, the posterior probability
density is given by

)ﬂ—-('

*(1—x

1 ox)  (6)
fo x5 (1 = x)"*glx) dx

and the probability of compliance (i.e., “‘confidence
of compliance™, denoted as CC) is calculated from
the distribution function

h(xle, n) = [

¥
CC=F(x < Xle,m) = f hixjeemydx  (7)
0

We also define the “confidence of failure” as CF=
1-CC.

Choosing a prior distribution

The choice of the prior density g(x) may be
approached in two general ways. In either case it is
highly desirable to use a “conjugate distribution™,
This guarantees that the prior and posterior prob-
ability densities belong to the same family of
distributions, making the calculations required by
equations (6) and (7) much simpler. Therefore,
noting that the likelihood function follows a bino-
mial distribution, we choose g(x} to follow the versa-
tile beta distribution, Be{«,b) (see the appendix),
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because these distributions are conjugate to a
binomial likelihood, Lee (1989).

First, we can use a “reference prior”, reflecting the
views of someone with no particular a priori beliefs,
as will be shown in Fig. 1. Noting that an optimal
prior does not exist {Lee, 1989), perhaps the most
obvious selection is the uniform prior, ziso known as
“Bayes’ postulate”, in which g{x)=1 for all possible
- values of the exceedance rate (ie., 0<x<1). It
implies that all values of x are equally likely and is a
special case of the beta distribution, ie., Be(l,1).
However the U-shaped prior derived from “Jeffreys’
rule” (Lee, 1989)—Be(}, )—can be argued to be a
better choice (it is invariant under any change of scale
of measurement), It implies that extreme values of
the exceedance rate (i.e.,, x — 0 or x — 1) are more
likely than intermediate values.

Second, we may feel that, for example, it is very
unlikely that x would be too much above zero, and so

specify our own (informative) prior. For example,.

based on past experience, we could take the expected
value of the true exceedance rate as ¥=0.1 and its
variance as ¢ = (.01 (corresponding to meeting a 90

percentile standard). Or we could hold that the true

exceedance rate is ¥=0.01 with variance s* = 0.001
(corresponding to meeting a 99 percentile standard).
We can then calculate a and & from the known
expressions for the mean and variance of the beta
distribution (Lee, 1989), i.e., ¥=af{a+ b) and s*= ab/
[(a+b)*a+ b+ 1), from which we obtain
a=:’u[-x(—]-fil—l]andb=a[é-—l] {8}
5 X
We therefore obtain Be(0.8, 7.2) and Be(0.089, 8.811)
as our prior distributions for these two cases. As we
shall be considering 95, 98 and 99 percentiles, these
“two functions will be denoted as the pessimistic prior
and the optimistic prior, respectively,

Caleulating posterior probabilities

Because /1 is a beta density, it {ollows that F follows
an incomplete beta function ratio, written as Iy (a, b}
(see the appendix). Inserting the beta pdf (see the
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Fig. 1. Four prior densities compared.
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appendix) inte equations (6) and (7) we see that
apgsmﬁnr = apﬁor +e and bpmmﬁor = bprior +n—¢ (Lﬁe,
1989). Accordingly the posterior distribution func-
tion is given by

CC=F{x < Xle, n)

= Iy (@prior + €, bprior + 11—e) ()]

This can be calculated using numerical methods
(e.g., Press er al., 1986),

Confidence of Compliance graphs

Figure 1 shows the shape of the four prior
distributions discussed above. Each curve encloses a
unit area. Figures 2 and 3 show the sensitivity of
confidence of compliance {(and confidence of failure)
to the choice of prior distribution, for the 99 and 95
percentile, using both reference priors and both
informative priors. These graphs, and those that
follow, inciude marker lines at CC=5% and 95%,
for reasons to be explained. The confidences are plotted
for a range of numbers of samples and exceedances.
We base the main confidence of compliance graphs
(Figs 4-6) on Jeffreys® prior, Be(}, 4), as will also be
explained. These figures show graphs for three
percentiles in common use: 99, 98 and 95 percentile.

DISCUSSION

Choice and influence of priors

As shown in Fig. 1, the uniform reference prior
affords equal probability to all (equal) incremernts of
x. This is not entirely reasonable, as lower exceedance
rates can most often be expected to have a higher
probability than do higher rates, Jeffreys’ reference
prior explicitly allows this to occur. However,
becanse this (and other) reference priors are symme-
trical on the unit x interval (Lee, 1989), it also allows
high exceedance rates to be more likely than
moderate values. This apparent problem turns out
to be minimal, as will be seen. That is, if data indicate
only low values of x, the influence of the prior near
x =1 is quickly extinguished, For this reason we
choose Jeffreys’ as the reference prior. A fusther
possibility, Haldane’s Be(0,0) prior, acts rather
similarly but has the unfortunate property that
CC=100% when no exceedances occur (because
1x(0, ) = 1). For this reason we do not favour this
prior, even though it is recommended by Lee (1989),

The two informative (pessimistic and optimistic)
priors are more reasonable in that they accord
highest probabilities to the lowest exceedance rate,
and decrease monotonically from there (this is a
property of all beta distributions with a<1 and
b > 1). These priors are of course subjective, in that
individual assessors may nominate differeni priors
and so reach somewhat different conciusions.

Figures 2 and 3 illustrate the effect of different
priors on the computed confidences. These show
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100

QObaerved no, of
excesdances, ¢

Confidence of Compllance {%}

(35} asnped Jo sauspyuoes

0 100 200

Number of samples, n

Fig. 2. Confidence of Compliance for a 99 percentile standard, using four priors: (—) Jeffreys’ Be(, 1),
{~ ) optimistic Be(0.089,8.811), (— -) pessimistic Be(0.8,7.2), (- -) uniform Be(l,I)..

F]Observed no. of

. lexceedances, & |1i . ..........4

" Confldence of Compllance (%)

(24) anijud Jo sausplIucy

300 400 500

Number of samples, n

Fig. 3. Confidence of compliance for a 95 percentile standard, using four priors: (—) Jeffreys’ Be(}, .
{—-) optimistic Be(0.089,8.811), (—-) pessimistic Be((.8,7.2), (- -) uniform Be(1, 1).

A Observed no. of F

Confidence of Compilance (%}

0 100 200

(24) aanje jo asusppuod)

Number of samples, n

Fig. 4. Confidence of compliance for a 99 percentile standard, using Jeffreys’ prior.

that, as expected, the optimistic prior produces the
highest CC values. The uniform prior gives the lowest
CC values, lower evén than the pessimistic prior. So
while the uniform prior has some appearance of
impartiality, in fact it can be argued to produce
overly pessimistic results. The influence of the priors
is most pronounced at smaller numbers of samples

and exceedances. The divergence between the results
for these priors is most pronounced at the highest
percentile (99 percentiie), which is where the priors
are most different. For a 95 percentile (Fig. 3) the
divergence is quite small, except {or zero exceedances
and n<20 where the optimistic prior gives much
higher CC values.
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Fig. 5. Confidence of compliance for a 98 percentile standard, using Jeffreys’ prior.
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Fig. 6. Confidence of compliance for a 95 percentile standard, using Jeffreys’ prior.

Compliance of confidence graphs can be used
when considering sampling requirements for compli-
ance rules seeking to control either the consumer's
risk or the supplier’s risk. Tables 1 and 2 demonstrate
the results for a 95 percentile, with ‘maximum risks
constrained to be less than 5%. Results for the
consumer’s risk using the Bayesian approach were
obtained by reading n values {or which CC first
exceeds 95% (i.e., for which CF first falls below 5%).
For Jeffrey's prior and a 95 percentile this may be
done using the top dashed line on Fig. 6. (Complete
CC figures for other priors are not shown, except that
values for ¢ = 0 & 6 can be read from Fig. 3). Results
for the supplier’s risk using the Bayesian approach

were obtained by reading » values for which CF first
exceeds 95% (i.e., for which CC first falis below 3%),
using the bottom dashed line on the figure. The
classical results were obtained from equations (2) and
(3) as the n values where the appropriate p-values first
fell below 5%. (Software has also been developed to
do these calculations for any percentile, risk and
prior parameters.) In these tables we see that the
uniform prior produces the most onerous sampling
requirements of the four Bayesian options, with the
classical approach being slightly more so. Note that
the classical supplier’s risk {equation (2)) may also be
written as p = Ix{ens + 1, n—epg) (see appendix),
whereas the CC value for the uniform prior (equation
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Table 1. Numbers of samples and maximum permissible exceedances needed to keep the maximum consumer’s risk below 5% when assessing
compliance with a 95% percentile standard

Maximum permissible exceedances Classical approach

Bayesian approach using the following priors

Uniform Jeffreys’ Optimistic Pessimistic
0 59-92° 58-01% 38-76" 2-53¢ 44-79"
1 93-123 92-122 T-108 54-87 80110
2 124-152 123-151 109-138 88-118 11139
3 153-180 152-17% 139-166 119-147 140-167
4 181207 180-206 167-193 148-174 168-195
5 208-233 207-232 194-220 175-201 196-221
6 234-259 233-238 221-246 202-228 222-247
7 260-285 259-284 247-272 229-254 248-273
8 286-310 285-309 273-298 255-279 274-298
9 311-335 310-334 299-323 280-304 299-323
10 336-360 335-35% 324-348 305-329 324-348

“Itis not possible to keep the consumer’s risk below 5% if less than 59, 58, 38, 2 or 44 samples are 1o hand (classical approach and usmg the

four Bayssian priors, respectively).

Table 2. Numbers of samples and minimum permissible exceedances needed to keep the maximum supplier’s risk below 5% when assessing
compliance with 2 95% percentile standard

Minimum permissible exceedances Classical approach

Bayesian approach using the following priors

Uniform Jeffreys' Optimistic Pessimistic

0 18 5 b b b

] -7 -6 13 1 1

2 8-16 -4 4-11 2 2-7

3 17-28 16-27 12-22 3-10 8-18
4 29-40 28-39 23-34 11-21 19-30
5 41~ 53 40-52 3546 22-33 31-43
6 54-67 53-66 47-60 3446 44-57
7 68-81 67-80 61-74 47-60 58-71

8 82-95 81-94 75-88 61-74 72-85
9 96-110 95109 20-102 T75-89 86-100
10 111-125 110-124 103-117 90-103 101-115

“The risk is exactly 5% in this case.

P1t is not possible Lo keep the supplier's risk below 5% in these cases.

(9), with e =ey) is CC=Jly(epa+1, 1 +n—epq).
Therefore, if we had chosen Be(l, 0) as the reference
prior the classical and Bayesian results would have
been identical. Such correspondences are known to
occur for particular choices of priors in one-sided
tests (Edwards er al., 1963; Pratt, 1965; DeGroot,
1973; Casella and Berger, 1987; Lee, 1989). Because
Be(1, ) concentrates all prior probability at the most
extreme exceedance (its pdf is everywhere zero except
at x == 1), we see that the classical approach is the
most pessimistic of all cases.

Table 1 shows that using the Bayesian approach
with Jeflreys’ prior, the minimum number of
complying samples that need to be collected to give
95% confidence of meeting a 95 percentile standard is
38, compared with the classical approach’s require-
ment of 59 samples. However if one transgression of
the percentile limits occurs at least 77 samples are
needed (compared with 93). Therefore, using this
reference prior, substantial reduction in sampling
effort can e expected while 5till meeting the same
confidence criteria.

Returning to the example of the coastal sewage TIN
discharge 98 percentile standard we note from Fig. 5
{(using Jeffreys’ prior) that for n = 350 samples the
confidence of failure first exceeds 95% when n =12

exceedances are allowed (in agreement with the
classical approach). However, the confidence of
compliance first exceeds 95% when 3 exceedances are
observed in (vs. 2 in the classical approach). So again,
a more reasonable prior assumption (than given by the
Be(1, 0} distribution implicit in the classical approach)
results in less onercus compliance requirements.

CONCLUSIONS

Bayesian approaches give direct answers lo ques-
tions of confidence of compliance with percentile
standards, and so enable the supplier’s risk and the
consumer's risk to be identified. This facility comes at
the *“‘cost™ of having to state one’s prier belief as to
likely exceedance rates. However, the compariscn
between classical and Bayesian results detnonstrates
the strong similarity in their results if one uses a
uniform reference prior distribution, and that the
classical approach in fact gives the most pessimistic
results. Indeed, in making a confidence statement using
that approach one has (perhaps unwittingly) adopited
the most pessimistic prior. Using the proposed
Bayesian technique (with Jeffreys’ reference prior)

- makes compliance rules less onerous, particularly for
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smaller numbers of samples, while still affording
the desired degree of protection. Informative prior
belief as to likely performance (good or bad) can
easily be incorporated into the technigue, as shown. At
larger numbers of samples results for all techniques
become more similar—the information in the data
increasingly overwhelms that in the chosen prior
distributions, a well-known property of Bayesian
analyses.
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APPENDIX

. Beta and binomial functions

(1= x)"/
B(a,b), where O<x<l, a>0, b>0, Be(a,b) denotes
the lwo Parameter beta disttibution and B(a,b) = f[,' Lt

d? is the beta I'unct:on The incomplete beta
funcnon ratio is Iy(a,b) = j;] t;a,b)dy, so that
Iy=i(a, b) = 1. Tt is related to the cumulative binomial
distribution by T "CiX (1 - XY =Iy(e+1,n-¢)
(Abramowitz and Stegun, 1970). Limiting cases are Jy x
(@, 0) = 0and Ix(0, b) = 1.

The pdf of x ~ Be(a,b) is f(x;a,b) =
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