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Abstract-Rules Tor assessing compliance with percentile standards commonly limit the number of 

exceedances permitted in a batch or samples taken over a defined assessment period. Such rules are 

commonly developed using classical statistical methods. Results from alternative Bayesian methods-are 

presented (using beta-distributed prior information and a binomial likelihood), resulting in "confidence of 

compliance" graphs. These allow simple reading or the wnsumer's risk and (he supplier's risks Tor any 

proposed rule. The influence or the prior assumptions required by the Bayesian technique an the 

confidence results is demonstrated, using two rererenee priors (unifom and Jeflreys') and also using 

optimistic and pessimistic user-defined priors. All four give less pessimistic results than does the classical 

technique, because interpreting classical results as "confidence 01compliance" actually invokes a Bayesian 

approach with an extreme prior distribution. Jefieys' prior is shown to be the most generally appropriate 

choice of prior distribution. Cost savings can be expected using rules based on this approach. 

8 2001 Elsevier Science Ltd. All rights reserved 
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NOMENCLATURE INTRODUCTION 

two-parameter beta distribution Percentile standards are increasingly used in environ- 
confidence of compliance mental management, e.g., for drinking-water supplies wnfidence or railure 
number of exceedances or a percentile limit (MoH, 1995), waste discharge permits (Ellis, 1989) 
number or permissible exceedances under a and toxicity standards (ANZECC & ARMCANZ, 
benefit-or-doubt stance 1999). Rules for compliance with these standar&.;rre 
number or permissible exceedances under a rail- generally derived from classical one-sided hypbthesis safe stance 
posterior distribution function tests in which the p-value is used as a weight-of-
prior probability density Function evidence measure against the tested hypothesis; ,In 
posterior probability density runction developing and in applying such ruleswe need to 
incomplele beta runction ratio consider both risks of reaching false wnclusions: the 
likelihood runction 
number of samples supplier's risk (falsely inferring a breach of standard) 

p-value or a one-sided hypothesis test and the consumer's risk (falsely inferring compli- 
variance or sample exceedance rate ance). The former risk is faced by the water supplier 
probability or exceedance or a single random or by the waste discharger; the latter is faced by the 
sample water drinker or by the receiving environment. 
samole mean exceedance rate 
cnti'cal exceedance probability (X = 0.05 Tor a 95 T h e  tested hypothesis usually posits compliance, in 
percentile standard) which case the supplier's risk is kept small-because 

this is the Type I error risk and the testing procedure 
Greeli sy,y,nbols always restricts this to he below a small value, 
a significance level typically significance level a = 5%. Accordingly, .the 

consumer's risk is rather large in cases, where the 
standard actually is in breach (it would be 95% for 
marginal non-compliance). However, though much 
less common, the tested hypothesis may be chosen to 
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g.mcbride@niwa.cri.nz this is the risk that is kept small. The Type I1 error 
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risk is then the supplier's risk and it can be large for 
marginal compliance. 

While this procedure is objective (inasmuch as 
choosing a value of a is so) it has a number of 
inherent problems. First, the assessor is often not 
aware of the possibility of reversing the role of the 
two error risks, by choosing to test either the 
hypothesis of compliance or the hypothesis of 
breach. Second, there is debate in statistical literature 
(e.g., Goodman, 1993; Harlow el al., 1997; Royall, 
1997) as to the role ofp-values as weights-of-evidence 
(the debate is strongest for two-sided tests of point 
hypotheses). Third, and most importantly, the 
procedure does not'appear to provide direct state- 
ments about the probability of compliance, as it 
considers instead the probability of gaining ranges of 
data (e.g., more exceedances than were actually 
obtained) if the tested hypothesis (e.g., compliance) 
were true. A compliance assessor or a Court may 
find this somewhat tangential to the central issue, 
i.e., balancing the probability of breach vs. the 
probability of compliance. 

Compliance assessment based on a Bayesian 
approach has the potential to address such issues 
directly, without the need to consider significance 
levels, Type I error risk and Type I1 error risk- 
indeed these are irrelevant in a Bayesian framework 
(Lee, 1989). We argue herein that they can give 
simpler and more direct information to a compliance 
assessor or to a Court, even though they do call for a 
subjective element of infomation-the assessor's 
belief as to the probability of compliance before data 
come to hand. This belief is represented as a "prior" 
distribution. If a "reference prior" is specified, 
reflecting the assessor's lack of prior knowledge, 
one obtains a simple statement of "confidence of 
compliance". Using the most appropriate (JelTreys') 
prior gives less stringent compliance rules than those 
based on classical methods. If an informative prior is 
used-reflecting the assessor's prior belief as to likely 
exceedance rates-there can be considerable dis-
crepancies between Bayesian and classical results, 
particularly for small numbers of samples. 

COMPLIANCE WITH PERCENTILE 

STANDARDS-CLASSICAL APPROACH 


Percentile standards require that a certain limit 
(e.g., of a chemical's concentration) should not be 
exceeded for more than a percentage of an assess- 
ment period. This requirement is properly stated as a 
percentage of lime in which the limit may be exceeded 
(which is always unknown), not as a percentage of 
santplcs in which that limit may be exceeded (which is 
only known once data are reported-Ellis and Lacey, 
1980). A compliance rule derived from such a 
standard generally requires that no more than a 
stated number of exceedances of the percentile limit 
should occur in a given number of samples over a 
compliance assessment period. In formulating this 

rule we do not know whether sampling error will 
cause future assessments to he in error in their 
inferences as to compliance or breach, nor is it 
known which error--supplier's or consu-
mer's-might occur. Accordingly the rule should be 
based on a consideration of both error risks (Ellis, 
1989). In doing so one must note that once the 
number of samples has been decided only one of 
these risks can be controlled (i.e., kept small). If 
compliance is in fact marginal, the other risk will be 
large. Furthermore, the risk to be controlled is 
determined by the assessor's choice of the hypothesis 
to be tested. If that hypothesis posits compliance 
(as is usual) it is the supplier's risk that will be kept 
small. But in a precautionary approach one could 
invert the tested hypothesis so that it posits that the 
standard has been breached. In that case it is the 
consumer's risk that will be controlled. These have 
been characterised by Ellis (1989) as the be~~efit of -
doubt and fail-safe approaches. 

The error risks can be quantified using classical 
one-sided hypothesis tests. The key calculation 
therein is the probability of obtaining data at least 
as extreme as was obtained iftbe tested hypothesis is 
(only just) true, i.e., compliance is "borderline". This 
is the "p-value". If this is less than the a priori 
significance level (usually taken as u = 5%), one has a 
"statistically significant" result and infers that there 
has been breach or compliance (depending on which 
hypothesis has been tested). That is, the p-value is 
used as a weight-of-evidence against the tested 
hypothesis. If that hypothesis posits compliance, 
then p is the supplier's risk; if the hypothesis posits 
hreach, then p is the consumer's risk. Because the 
tested hypothesis posits borderline compliance, these 
.risks are maximum values. 

For example, consider a permit requiring (inter 
alia) that the total inorganic nitrogen concentration 
("TIN) in the effluent from a coastal sewage 
treatment plant should be below 10gm-"or at least 
98% of a three-month summer period, based on two 
samplings every outgoing tide. Compliance with this 
98 percentile standard is therefore to be assessed 
using about n =350 samples. Denote by c the number 
of exceedances of the l ~ g m - ~  limit in these samples. 
If the supplier's risk is chosen to be the one that is 
controlled then, as above, the tested hypothesis must 
posit compliance, i.e., x < 0.02, where x is the 
probability of exceedance for any single random 
sample. We can then use the following formula to 
identify the maximum permissible number of ex-
ceedances under this benefit-of-doubt approach (ebd) 
while still reaching a verdict of "compliance": 

where A' is the value o f x  where the tested hypothesis 
is only just true (i.e., X = 0.02 in this example) and a 
is the maximum acceptable supplier's risk. The leh- 
hand-side of equation (I) gives the probability of 
ohtainingmore than exceedances when in fact the 
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effluent was just complying (i.e., x = X = 0.02)-ebd 
is to be selected as its lowest value satisfying p 5 u 
(p = a will seldom be attained because exceedance 
data are discrete, not continuous). Because the tested 
hypothesis is compliance and we are demanding 
a high standard of proof before it will be rejected 
(e.g., only a 5% significance level), the proportion 
of allowable exceedances (i.e., %din) will al~uuys 
exceed X. 

The required probability can be calculated by 
noting that for random sampling e is distributed as 
cumulative binomial (regardless of the distribution of 
the underlying process), i.e., 

where "C, is the binomial coefficient. Taking n = 350, 
X = 0.02 and a = 5% we can use available numerical 
algorithms (e.g., Press el a/., 1986) to obtain p = 
5.15% for ebd = l l and p = 2.57% for ebd = 12. 
Accordingly, from equation (I), we must allow up 
to ebd = 12 exceedances of the 1 0 g m - ~  limit in those 
350 samples (i2e., about 3.4% of the samples). 

However, if the consumer's risk is to be controlled 
(in a precautionary fail-safe approach), the tested 
hypothesis must now posit breach, i.e., x 2 0.02. 
Because we are demanding a high standard of proof 
before this hypothesis will be rejected, the proportion 
of allowable exceedances (i.e., coin) will never exceed 
X. The appropriate formula is 

where er, is its highest value satisfying p 5 u. Note 
that testing this fail-safe approach means that a 
is now the maximum acceptable consumer's risk. 
Taking n = 350, X = 0.02 and a = 5%, we obtain 
p = 2.85% and p = 7.97% for er, = 2 and 3 respec- 
tively. Accordingly we can allow up to only er, = 2 
exceedances of the l ~ g m - ~  limit in those samples 
(i.e., about 0.6% of the samples). 

COMPLIANCE WITH PPRCEhTlLE 

STANDARDS-BAYESIAN AI'PROACH 


In a Bayesian analysis we no longer assume one 
particular exceedance probability value (i.e., x = A') 
in computing probabilities; it is regarded as a 
continuous variable about which we want to make 
confidence statements. In doing so we use the actual 
data obtained (and not any data more extreme than 
that obtained) to update a prior belief to obtain a 
posrerior. belief, which we call "confidence of 
compliance". This uses Bayes' theorem. The prior 
belief or knowledge is stated as a probability density 
function (pdf) over the range of its possible values, 

and is to be decided before data come to hand 
(similarly, the significance level for a classical test 
should be stated before data are collected). Accord- 
ingly the posterior information gained is also a pdf. 
We can then get the required probabilities by 
integrating that function up to X. 

The equation for the posterior pdf, from Bayes' 
theorem (Press, 1989), takes the form 

where e is the number of exceedances in n samples; 
h(x(e, n) is the posterior pdf of x for a given value of 
e and n; L(eln, x) is the "likelihood function'' for any 
n and x; and g(x) is the prior pdf of x (independent of 
?r and e). This equation shows that the apriori belief 
about the true exceedance rate x, measured by g(x), is 
updated by the "standardised likelihood" (the term 
in brackets) to derive the required posterior prob- 
ability density h. 

For a set of 17 samples the likelihood function is 
the probability mass function for a particular value 
of c, with x (rather than e) being regarded as the 
function's parameter. It is the term being summed in 
equations (2) and (3), for any value of x (not just for 
X as in those equations), i.e., 

L(e(x,n)=' C,xG(l- x)"-' (5) 
(the sum of L over all possible values of e is unity, but 
the integral of L over all x i s  not-hence it is called a 
likelihood rather than a density). Therefore, noting 
that the binomial coefficients cancel in the standar- 
dised likelihood function, the posterior probability 
density is given by 

and the probability of compliance (i.e., "confidence 
of compliance", denoted as CC) is calculated from 
the distribution function 

CC = F(x  5 A'le, n) = h(xle, 17) dx (7) 

We also define the "confidence of failure" as CF= 
I -CC. 

Choosing a prior distribulion 

The choice of the prior density g(x) may be 
approached in two general ways. In either case it is 
highly desirable to use a "conjugate distribution". 
This guarantees that the prior and posterior prob- 
ability densities belong to the same family of 
distributions, making the calculations required by 
equations (6) and (7) much simpler. Therefore, 
noting that the likelihood function follows a bino- 
mial distribution, we choose g(x) to follow the versa- 
tile beta distribution, Be(([. b) (see the appendix), 
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because these distributions are conjugate to a 
binomial likelihood, Lee (1989). 

First, we can use a "reference prior", reflecting the 
views of someone with no particular a priori beliefs, 
as will be shown in Fig. 1. Noting that an optimal 
prior does not exist (Lee, 1989), perhaps the most 
obvious selection is the uniform prior, also known as 
"Bayes' postulate", in which g(x)= l for all possible 
values of the exceedance rate (i.e., 0 <_x5 I). It 
implies that all values of x are equally likely and is a 
special case of the beta distribution, i.e., Be(], I). 
However the U-shaped prior derived from "Jeffreys' 
rule" (Lee, 1 9 8 9 g ~ e ( &  +)--can be argued to be a 
better choice (it is invariant under any change of scale 
of measurement). It implies that extreme values of 
the exceedance Iate(i.e., O Or are more 
likely than intermediate values. 

Second, we may feel that, for example, it is very 
unlikely that x would be too much above zero, and so 
specify our own (informative) prior. For example. 
based on past experience, we could take the expected 
value of the true exceedance rate as 2=0.1 and its 
variance as s2= 0.01 .(corresponding to meeting a 90 
percentile standard). 01we could hold that the true 
exceedance rate is 2-0.01 with variance 9=0.001 
(corresponding to meeting a 99 percentile standard). 
We can then calculate a and b from the known 
expressions for the mean and variance of the beta 
distribution (Lee, 1989), i.e., Z=a/(a+ b) and s2=ab/ 
[(a+ b)'(a +b+  I)], from which we obtain 

We therefore obtain Be(0.8, 7.2) and Be(0.089, 8.81 1) 
as our prior distributions for these two cases. As we 
shall be considering 95, 98 and 99 percentiles, these 
two functions will be denoted as the pessimistic prior 
and the optimistic prior, respectively. 

Calcularing posterior probabilities 

Because h is a beta density, it follows that Ffollows 
an incomplete beta function ratio, written as ix(a, b) 
(see the appendix). Inserting the beta pdf (see the 

0 	 0.2 0.4 0.6 0.8 I 

True exceedance rate, x 

Fig. 1 .  Four prior densities compared 

appendix) into equations (6) and (7) we see that 
aponcrior=aprior+e and bpos,uio, =bprior+n-e (Lee, 
1989). Accordingly the posterior distribution func- 
tion is given by 

CC =F ( x  5 Xle,  n) 

= Ix(apri,, +e, bprior + rt-e) (9) 
This can be calculated using numerical methods 
(e.g., Press er aL, 1986). 

Confidence of Conlpliance graphs 

Figure 1 shows the shape of the four prior 
distributions discussed above. ~~~h curve encloses a 
Unit area. ~i~~~~~2 and 3 show the sensitivity of 
confidence of comoliance (and confidence of failure) 

~ ~ ~~~ ~ ~ ~ 	 ~~~~~~-. ~~~~ ~~~ 

to the choice of orior distribution. for the 99 and 95 
percentile, both reference priors and both 
informative ~h~~~ graphs, and those that 
follow, include marker lines at C C = ~ %  and 95%, 
for ,sons- ~to be exnlained. The confidences are olotted = ~ ~ . ~ . ~~ ~~.~ -~ - - ~ ~ ~~~~-~ ~~~~~ ~~ ~ ~~~ ~ ~ 

for a range of numbers of samples and exceedances. 
we base the main confidence of compliance graphs 
( ~ 46) on~ jeKIeys' prior, Be(l L) as will also be i ~ 2' 2 ' 
explained. ~h~~~ figures show graphs for three 

in common use: 99,98 and 95 percentile. 

DlSCUSSlON 

Choice and inpuence of priors 

As shown in Fig. 1, the uniform reference prior 
affords equal probability to all (equal) increments of 
x. This is not entirely reasonable, as lower exceedance 
rates can most often be expected to have a higher 
probability than do higher rates. Jeffreys' reference 
prior explicitly allows this to occur. However, 
because this (and other) reference priors are symme- 
trical on the unit x interval (Lee, 1989), it also allows 
high exceedance rates to be more likely than 
moderate values. This apparent problem turns out 
to be minimal, as will be seen. That is, if data indicate 
only low values of x, the influence of the prior near 
x = 1 is quickly extinguished. For this reason we 
choose Jeffreys' as th; reference prior. A further 
possibility, Haldane's Be(O.0) prior, acts rather 
similarly but has the unfortunate property that 
CC= 100% when no exceedances occur (because 
Ix(0, n)  1).For this reason we do not favour this 
prior, even though it is recommended by Lee (1989). 

The two informative (pessimistic and optimistic) 
priors are more reasonable in that they accord 
highest probabilities to the lowest exceedance rate, 
and decrease monotonically from there (this is a 
property of all beta distributions with a <  l and 
h > I). These priors are of course subjective, in that 
individual assessors may nominate different priors 
and so reach somewhat different conclusions. 

Figures 2 and 3 illustrate the effect of different 
priors on the computed confidences. These show 
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" 
0 100 2W m 4W m 

Wrnber of sampler, n 

Fig. 2. Confidence or Compliance Tor a 99 percentile standard, using Iour priors: (-) JeiTreys' Be(+, i), 
(- -) optimistic Be(0.089,8.811), (- -) pessimistic Be(0.8,7.2), (- -) unirorm Be(l,,l). 

0 1W 2W m 4W 

Number ofsamples, n 

Fig. 3. Confidence or compliance for a 95 percentile standard, using [our priors: (-) JeiTreys' Be(;, i), 
(--) optimistic Be(0.089,8.81 I), (--) pessimistic Be(0.8,7.2), (- -) unirorm Be(l, I). 

" 
0 100 200 3m m 5M 

Number of mrnplcs, n 

Fig. 4. Confidence or compliance ror a 99 percentile standard, using JeiTreys' prior. 

that, as expected, the optimistic prior produces the and exceedances. The divergence between the results 
highest C C  values. The uniform prior gives the lowest for these priors is most pronounced a t  the highest 
CC values, lower evCn than the pessimistic prior. S o  percentile (99 percentile), which is where the priors 
while the unifotm prior has some appearance of are most different. F o r  a 95 percentile (Fig. 3) the 
impartiality, in fact it can be argued to produce divergence is quite small, except for zero exceedances 
overly pessimistic results. The influence o r  the priors and n<20 where the optimistic prior gives much 
is most pronounced a1 smaller numbers or simples higher C C  values. 
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0 1W 2W 3W m SW 

Number of samples, n 

Fig. 5. Confidence or compliance for a 98 percentile standard, using JelTreys' prior, 

" 
0 I W  200 3W m SW 

Number of samples, n 

0 10 20 30 40 50 
Number of samples, n 

Fig. 6. Confidence or compliance for a 95 percentile standard, using Jelfreys' prior. 

Compliance of confidence graphs can be used 
when considering sampling requirements for compli- 
ance rules seeking to control either the consumer's 
risk or  the supplier's risk. Tables 1 and 2 demonstrate 
the results for a 95 percentile, withmaximum risks 
constrained to be less than 5%. Results for the 
consumer's risk using the Bayesian approach were 
obtained by reading 11 values Tor which CC first 
exceeds 95% (i.e., for which C F  first falls below 5%) .  
For Jeffrey's prior and a 95 percentile this may be 
done using the top dashed line on Fig. 6 .  (Complete 
CC figures for other priors are not shown, except that 
values for c =0& 6 can be read from Fig. 3). Results 
for the supplier's risk using the Bayesian approach 

were obtained by reading n values for which C F  first 
exceeds 95% (i.e., for which C C  first falls below 5%), 
using the bottom dashed line on the figure. The 
classical results were obtained from equations (2) and 
(3) as then values where the appropriatep-values first 
fell below 5%. (Software has also been developed to 
do these calculations for any percentile, risk and 
prior parameters.) In these tables we see that the 
uniform prior produces the most onerous sampling 
requirements of the four Bayesian options, with the 
classical approach being slightly more so. Note that 
the classical supplier's risk (equation (2)) may also be 
written as p = I,x(cbd + I, l i -chd) (see appendix), 
whereas the CC value for the uniform prior (equation 
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Table I .  Numbers of samples and maximum pmnisriblc nacdancss n d s d  to k a p  the maximum consumcr'r risk below 5% whcn assessing 
compliance with a 95% pmcsnlc standard 

Maximum permissible mcccdanccr Classical approach Bayesian approash using the following priors 

Uniform Jdfrcvr' Ootimistic Psrrimirlic 

"It is not porriblc to kccp the eansumsr's risk below 5% Y lssr than 59, 58, 38, 2 or 44 sampler arc to hand (classical approach and using the 
four Baysian priors, rcspstivsly). 

Table 2. Numbcrs of samples and minimum pcmissibls sxscsdanccr ncedcd lo keep the mrrimvm supplier's risk below 5% when asrcrsing
campliancs with a 95% perccntilc standard 

Minimum permissible sxcscdances Classical approach Bayesian approach using the followhgpriors 

Uniform Jcfrevr' 

" 
I 2-7 
2 8-16 
3 17-28 
4 2940 
5 41-53 
6 54-67 
7 68-81 
8 82-95 
9 96110 

10 111-125 

"The risk is craclly 5% in this case. 
is not possible to keep the supplier's risk below 5% in thsss cmss. 

(9), with c =Cbd) is CC =IX(CM + I, I +n-CM). 
Therefore, if we had chosen Be(l, 0) as the reference 
prior the classical and Bayesian results would have 
been identical. Such correspondences are known to 
occur for particular choices of priors in one-sided 
tests (Edwards et al., 1963; Pratt, 1965; DeGroot, 
1973; Casella and Berger, 1987; Lee, 1989). Because 
Be(l,O) concentrates all prior probability at  the most 
extreme exceedance (its pdf is everywhere zero except 
at  x = I), we see that the classical approach is the 
most pessimistic of all cases. 

Table 1 shows that using the Bayesian approach 
with Jeffreys' prior, the minimum number of 
complying samples that need to he collected to give 
95% confidence of meeting a 95 percentile standard is 
38, compared with the classical approach's require- 
ment of 59 samples. However if one transgression of 
the percentile limits occurs at  least 77 samples are 
needed (compared with 93). Therefore, using this 
reference prior, substantial reduction in sampling 
effort can he expected while still meeting the same 
confidence criteria. 

Returning to the example of the coastal sewage TIN 
discharge 98 percentile standard we note from Fig. 5 
(using Jeffreys' prior) that for n = 350 samples the 
confidence of failure first exceeds 95% whcn n = 12 

1-6 1-3 
7-15 4-11 

16-27 12-22 
28-39 23-34 
40-52 3546  
53-66 47-MI 
67-80 61-74 
81-94 75-88 
95-103 89-102 

110-124 103-117 

exmedances are allowed 

Ooumistic Pessimistic 

I 1 
2 2-7 
3-10 &I8 

11-21 19-30 
22-33 31-43 
34-46 44-57 
47-60 58-71 
61-74 72-85 
75-89 86100 
90-103 101-115 

(in agreement with the 
classical approach). However, the confidence of 
compliance first exceeds 95% when 3 exceedances are 
observed in (vs. 2 in the classical approach). So again, 
a more reasonable prior assumption (than given by the 
Be(l, 0) distribution implicit in the classical approach) 
results in less onerous compliance requirements. 

CONCLUSIONS 

Bayesian approaches give direct answers to ques- 
tions of confidence of compliance with percentile 
standards, and so enable the supplier's risk and the 
consumer's risk to be identified. This facility comes at 
the "cost" of having to state one's prior belief as to 
likely exceedance rates. However, the comparison 
between classical and Bayesian results demonstrates 
the strong similarity in their results if one uses a 
uniform reference prior distribution, and that the 
classical approach in fact gives the most pessimistic 
results. Indeed, in making a confidence statement using 
that approach one has (perhaps unwittingly) adopted 
the most pessimistic prior. Using the proposed 
Bayesian technique (with Jefreys' reference prior) 
makes compliance rules less onerous, parlicularly for 
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smaller numbers of samples, while still affording 
the desired degree of protection. Informative pr im 
belief as t o  likely performance (good or bad) can 
easily be incorporated into the technique, as shown. A t  
larger numbers of samples results for all techniques 
become more similar-the information in the data 
increasingly overwhelms that in the chosen prior 
distributions, a well-known pIbpeIty of Bayesian 
analyses. 
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APPENDIX 

Bern and bir~orninlfuncrlons 

The pdf of x -Be(=,b) is f(x; a, b) = la-'(I -x)'-'/ 
B(a, b), where O<x< 1 ,  a > 0, b > 0, Be(+ b) denotes 
the two-parameter beta distribution and B(n,b) = Jd ro-I 
(1 - dl is the beta functionj The incomplete beta 
function ratio is ix(a,b) = So f(l;a,b) dr, so that 
Ix=l(a, b) = I. It is related to the cumulative binomial 
distribution by EL,+,"C,Xi(l -X)"-'= I r (e  + l ,n  - e) 
(Abramowitz and Stegun, 1970). Limiting cases are Ix x 
(a, 0) E 0 and Iw(0, b) = I. 






