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ABSTRACT 

Environmental decision-making is con~plex and often based on multiple lines of 

evidence. Integrating the infornlation from these multiple lines of evidence is rarely 
asinlplc process. We present aquantitative approach to the combination of multiple 
lines of evidence through calculation of weight-of-evidence, with reference condi- 
tions used to define a not impaired state. The approach is risk-based with measure- . . 
ment of risk computed as the probability of impairment. When data on reference 
conditions are available, there are a variety of methods for calculating this probabil- 
itv. Statistical theorv and the use of odds ratios orovide a method for combinine the 

'2 

measures of risk from the different lines of evidence. The approach is illustrated 
using data from the Great Lakes to predict the risk at potentially contaminated sites. 

KeyWords: Bayesian statistics, odds ratio, hazard ranking, combining information, 
risk assessment, ~rference conditions. 

INTRODUCTION 
Environmental decision-making is often based on multiple sets of information or 

lines of evidence. By line of evidence we mean a set of information that pertains to 
an important aspeclof the environment. For example, in the sediment quality triad 
(Chapman 1996), therc arc three lines of evidence, thc toxicity line, thc biological 
field line and the che~uisuy line. It is difficult to combine the information from 
these multiple sources into a single measure for decision-making. Weight-of-evi- 
dence (WOE) is sometimes used as an approach for combining the information, 
however it is rarely used in a quantitative manner.This paper discusses aquantitative 
approach to WOE. statistical approach is taken in which the likelihood'of the data 
is calculated under two different scenarios and a decision made based on the ratio 
of the likelihoods. Our view is that there are two states. and we must decide which 
of the states is mole likely. Examples of pairs of states common to environmental 
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decision making are (impaired, not impaired), (remediate, don't remediate), (list, 
don't list), elc. The view we take is that interest is in a single site, we collect 
information from a sample at that site and based on the information make a 
decision that the site is impaired or the site is not impaired. For practical reasons, 
we assume the simple case that there is ample information on reference conditions 
and interest is in evaluating a single new location. This gives us the ability to obtain 
a precise estimate of the probability. 

ESTIMATING WEIGHT-OF-EVIDENCE(WOE) 
A quantitative approach to WOE is based on the concept of statistical weight of 

evidence. This idea and early applications dates back to work by Alan Turing in 
World War I1 (for a more general discussion of histoly and concepts of statistical 
weight of evidence see Good 1983, 1985, 1988). In this approach, there are two 
states and we must decide which state is more likely given the data. We can view the 
states as the site is or  is not impaired. Without observing the information on the site, 
we may have opinions or  insights into the condition of the site. These insights might 
be based on previous data (condition in previous years) or  be from sites that are 
close in space. This information may be used to form a prior opinion or  prior 
probability of impairment. After the data are collected, we process the data to 
evaluate the site. This leads to a Bayesian approach in which the data are used to 
update the prior information. The lack of prior information or unwillingness to use 
this information leads to a frequentist approach where the data alone are used to 
make a decision. Either approach may be based on a single line of evidence or 
multiple lines. The individual lines of evidence are usually evaluated separately and 
by combining them we hope to make a stronger inference. 

Statistical WOE is based on a quantitative evaluation of the data and requires a 
model that describes the data. In the simplest approach, there are two states and we 
must decide which state is more likely given the data. Because it is not always easy 
to dcscribe impairment, an alternative approach is to cvaluate the risk of impair- 
ment of a site considering the baseline risk of a not impaired site. If we view the 
possible outcomes as the site is or  is not impaired, the riskis then the probabilitythat 
the site is impaired or  P(impainnm1) where we evaluate this probability after infor- 
mation is collected. 

The odds are a way to evaluate how big the probability is relative to the baseline 
risk. The odds of impairment are calculated as the ratio of the probability the site 
is impaired over the probability the site is not impaired. Although this problem is 
analogous to tossing a coin, estimating the probability of impairment is not easy 
since "impairment" is not an observable attribute of a sample. The quality or state 
of the site (impairment or no impairment) must be inferred based on information 
that is collected on both impaired and unimpaired sites. A reasonable approach is 
based on Bayes rule (Gelman el al. 1995). With no data the probabilities would be 
estimated bascd on prior information that may come from previous studics. More 
generally, we collect data to improve these estimates. Given data we have to calculate 
the probability of impairment or no impairment. However, even with data we do not 
have probabilities of impairment, only probabilities associated with observations 
givcn a model for impaired sites and not irnpaircd sites. For example, if there is 
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ample information on sites that are not impaired we may compare our data to that 
and estimate the probability the data come from that distribution. We do not have 
the probability of no impairment, only the probability that the data come from that 
distribution. Given data and information about the different groups we can calcu- 
late how likely the data are given they are from one of the groups. This probability 
must be computed based on a statistical model for the data (possibly with different 
models for each group). For example, we might specify that the model for the 
impairment sites for dissolved oxygen is r~or~nal  with mean 4 and for no impairment 
sites is normal with mean 7. If we obtain a sample with dissolved oxygen equal to 6 
and we know the variance of the dissolved oxygen measurements, we can calculate 
how likely the observation is to have come from each group by calculating the value 
of the density under each model. Bayes theorem may be used to calculate the ratio 
in terms of the probability of the data and the prior probabilities. Use of Bayes 
theorem requires knowledge of the prior probabilities. 

If the prior probabilities are taken to he equal the result is the likelihood ratio 
or Bayes Factor. The quantity measures the likelihood of the data given the site is 
in the impairment class versus the no impairnlent class. (More genetally, the Bayes 
Factor also involves parameters that are treated as random and integrated out of 
calculations; see Kass and Rafter/ [1995].) For environmental problems there may 
not he simple approaches for estimating these quantities. Building a model for the 
impaired or unimpaired sites requires informalion on how data are distributed for 
these types of sites and other factors that might influence the observations. Sites 
classified as unimpaired are often viewed as reference sites. It may not be possible 
to obtain these sites or there may be covariates that must be considered. Calculation 
of the likelihood of the data under impairment requires a definition of the impair- 
ment or model of the data that we might expect if the obselvation came from the 
impairment group. One would have to have different models for different types of 
impairments (for example, chemical toxicityvs. sedimentation). The models should 
depend on the strength of the impairment, and may r a y  in space and time. These 
models may involve a good deal of work to describe. One approach to calculating 
the ratio given a lack of information on ilnpairment is to calculate the odds as the 
ratio of the probability of the data treating the site as impaired relative to the 
probability of the data treating the site as not impaired. 

WOE is a measure of how much an observed feature in the data adds to or 
subtracts from the evidence of impairment. Numerically, it has been defined (Good 
1979) as the log (base 10) of the odds ratio. hl our applications, this would 
correspond to the weight-of-evidence for one line of evidence. A natural conse- 
quence of using logs of ratios is that the weight-of-evidence from diierent lines may 
be added together to get an overall weight of evidence. Rules for interpreting Bayes 
Factors are given in Kass and Rafter/ (1995) and may be adjusted for WOE. These 
rules are guidelines in much the same way that p-values are guidelines and other 
authors have suggested alternative views (Good 1983). From a hypothesis testing 
perspective the weight-of-evidence measures thc strength of the cvidence against the 
null hypothesis. 

Numerical calculation of WOE is not colnmon to statistics. The reason is that 
testing of hypotheses and interpretation use the more common approach of likeli- 
hood ratio testing and calculation of Bayes Factors. Using the natural log scale and 
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mice the log of the Bayes Factor leads to the same scale as likelihood ratio testing 
in general statistical theoty (where - 2log[likelihood ratio] is used to test hypoth- 
eses) and deviance measures in generalized linear models (McCullagh and Nelder 
1989). Thus,for applications of WOE in environmerltal problems a user may choose 
to summarize results in terms of a WOE measure that is based on the probability of 
impairment. Alternatively the user may simply calculate and report the actual 
probability. The value of the use of Bayes Factors and odds is that these may be 
combined easily over the different lines of evidence. 

The actual calculation of WOE for multiattribute environmental studies involves 
three general stages of analysis. We assume that the researcher has available the 
information required for making the decision. Thus, decisions have been made 
about what information needs to be collected or this information has already been 
collected. The three stages of the analysis are the data preprocessing stage, the 
processing stage and the combination of the information over the lines of evidence. 

Data Preprocessing 

The initial steo in the analvsis is the ~rewocessine of the data. This steD is . . -
required because a probability model is used to calculate the probability of impair- 
ment and we must check that the model is reasonable. Preprocessing involves . 
selection of the variables to be used in the analysis, and scaling or transforming these 
variables. Variables are selected to provide relevant statistical and scientific informa- 
tion on difFerences behveen control and impairment. Scaling and transforlnation 
are often used to meet assumptions required for analysis. The assumptions needed 
depend on the model used to calculate the probability. Two methods for this 
calculation are to assume a model (parametric approach) or to calculate the 
probability using a nonparametric approach. In the parametric approach we select 
a probability model for the data. For example, a common model is the normal or  
Gaussian model. Then there are several assumptions that need to be evaluated for 
this statistical model to provide a good estimate: 

1. Normality of the reference data. 

2. lndependence of samples in the reference set 

3. Homogeneity of variance in the reference set. 

If the normal model is not reasonable then the estimate may be poor and 
misleading. Problems such a$skewness and outliers may lead to inaccuracies in the 
probability estimate. As environmental data oftcn are not normal, we try to achieve 
normalitv via choice of a suitable transformation of the variables or  use a method 
based on the distribution of the data (i.e.,  logistic regression assumes a binomial 
distribution). The logarithm is typically used as a transformation with contaminant 
concentrations. Independence 01the reference data is required to provide a good 
estimate of the variances and covariances in the contaminants. This assumption is 
best met through choice of the reference locations and sampling occasion. Sites that 
are spatially close and repeated samples a t  the same site that are temporally close 
should be avoided. Ho~nogeneity ofthe variance in the reCerence set is required to 
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produce a good estimate of the variances and covariances. An alternative approach 
would be to allow heterogeneity but include this in the model in some manner. A 
potential concern here is with multiple sets of reference sites. If the multiple sets are 
treated as a single set then the estimates of the variances are likely to be smaller than 
data collected from different sites. Hence, detection of impairment is potentially 
overly sensitive. A useful strategy with multiple samples from a collection of sites is 
to try to match the test site with similar reference sites rather than to use all of the 
sites. This might involve forming clusters of reference sites and matching the test site 
with a cluster or using an auxiliary set of measurements (such as sediment type). 
Other potential problems include measuring a single site multiple times and the 
time of sampling. Selecting reference sites is a dfi~cult and important problem. 

The data transformation need not be a Vansfonnation of individual contami- 
nants but may also be on the set of measurements. For example, it is common to 
analyze composites of variables rather than individual variables. Two common 
approaches are to use principal components (PC) or correspondence analysis (CA) 
to form new variables. These two methods are useful when the dimensionality of 
variable space is high and variables are highly correlated. In the case of the sediment 
quality triad, the PC trarlsformation would typically be applied to the sediment 
toxicity and metal chemical variables, while correspondence analysis axes can be 
used for species composition data. Another possible data transformation could be 
computing some univariate index. For example, cotnposition data can be repre- 
sented by diversity measures or an index of biological integrity. 

When the normal assumption is not valid a possible approach is to use a distance 
measure and build a nonparametric estimate of the probability of impairment using 
a jackknife like approach (Dixon 1993). An empirical distribution of distance to 
reference is computed by removing one reference set of measurcments, calculating 
distance then replacing the measurements. Lf repeated for all observations in the 
reference set, a distribution may be estimated and used to evaluate a new set of 
measurements. For this approach to work we have similar assumptions: 

1.The reference site data arc from a common distribution 

2.The reference sites are independent 

%The distance measure is appropriate for detecting change 

If the datafor the reference sites come from a common distribution, then asiugle 
distance measure will produce reasonable estimates of how similar the test site is to 
the reference sites. When there are different sets of reference conditions the 
distance measure would have to be computed with respect to the different distribu- 
tions or with respect to the set of reference conditions most similar to the test site. 
Independence of samples implies that equal weight may be given to each of the 
samples from the reference sites. The choice of distance memure is a critical step 
as the distance measure defines the measure of impairment. One important consid- 
eration in the selection of the distance measure is the weight given to the variables 
used in computing the distance (Smith 1998). 

The choice of how to preprocess the information is critical to the analysis as it 
defines the deviations that are of interest. One should be aware of the limitations 
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associated with these choices. For example, if information on a large number of 
variables is collected then one has a better chance of detecting a broad scale 
impairment. If the impairment is only obsewed through one variable, the other 
information becomes of low utility for the detection of impairment. Thus there is 
a need to have a clear idea of what types of impairment are to be detected. For 
example, if a chemical is only toxic to fish then measuring abundance of benthic 
macroinvertebrates will not be risk informative. It is critical in selecting an approach 
LObe aware of what types of changes will or will not be well detected in the analysis 
and how likely the analysis is to detect changes of important magnitude. Methods 
such as power allalysis are useful for evaluating variables and their importance in the 
decision process. Also, trailsformation of the variables is often needed. For example, 
chemical data are often collected in erlvironmental studies. The user needs to 
decide if the original or standardized data are used. If standardized the method or 
standardization needs to be chosen. Optiolls might include an overall standardiza- 
tion, standardization relative to a reference group or standardization in terms of 
toxic units. Choice of standardization will change the magnitude of distances 
between obsewations. 

Data Processing: Estimating Probability of Impairment 

In the data processillg step, the test site is compared with reference conditions 
in order to obtain a measure of the degree of impairment. This may be an indirect 
or dircct evaluation. For example, with biotic indices (Smoger and Angcrmeier 
1999), there is often a calibration step in which the metrics that make up the index 
are scaled based on reference conditions. This scaling is an indirect estimation of 
the distance to the reference condition. A direct evaluation is based on numerically 
comparing the reference and test measurements. A statistical approach is to com- 
pute the probability of impairment through the use of the distance between refer- 
ence and test measurements. The use of distance in ecological and environmental 
impairment assessment has a long histo~y that will not be explored here. For 
example, distance from control forms the basis of outlier detection methods and 
control chart approaches that view water quality analysis as a quality control prob 
lem (Gilbert 1987). Distance also is central to many multivariate methods nsed to 
assess ecological change such as correspondence analysis (using chi-square distance, 
Legendre and Legendre 1998) or multidimellsional scaling (Smith et al. 1990;Gray 
el aL 1990). 

Combining Estimates 

Given estimates of the probability of impairment for each line of evidence the 
problem now becomes combining these together to produce a single weight-of- 
evidence estimate. We again assume that the estimate of impairment is based on the 
reference conditions. There are several options available for making the combined 
estimate. Two approaches involve combining the probabilities for the lines and 
combining the odds for each of the lines. There are several possibilities for combin- 
ing information across the different lines by combining the probabilities. These 
include using the average probability, the maximuln probability, or the product. An 
alternative approach is to combine the odds. The odds are typically multiplied 
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together or the logarithm of the odds added. From this combined estimate, it is also 
possible to calculate the combined probability. 

EXAMPLE 
As an example we consider data from the Great Lakes that were obtained via the 

BEAST software (Reynoldson el a' 1998,2000). The reference data consisted of 146 
reference samples collected in 1992. Although more data are available on different 
lines of evidence, these data have illformation from all three lines of evidence. In 
addition, there were 25 samples taken from Collingwood Harbour that we use as the 
predictive or test sample. These 25 samples were taken at nine locations in 1992, 
1995, and 1997. Collingwood Harbour is located in the south shorc of Nottawasaga 
Bay, in the southern extension of Lake Huron's Georgian Bay. The site is of interest 
as it was idenM~ed as an Area of Concern (AOC) by the International Joint Commis- 
sion but was then de-listed in November 1994, following remediation (for details see 
http://w.on.ec.gc.ca/glimr/raps/huro~~/colliood/intro.hl). Contaminants 
in the sediment resulted from use of the harbor as a location for ship repair with 
greatest colrtamination near the shipyard and in the east and west slips. The nine 
sampling locations are located as follows: 6703, 6704, and 6705 are located in the 
harbor with 6703 being farthest from the shipyard and 6705 closest. Sites 67066708 
are located in the east slip and sites 6709-671 1 are located in the west slip. For amap 
of dte locations and addiuonal details on remediation histoly see bttp://~v.ijc.orgj 
hoards/wqb/cases/collingwood/collingwood.html. 


Chemical Data 

Graphical displays of the chemical data for the rcfcrence sites suggested the data 
were not normal. Distributional plots suggested skewness of the distributions and 
odd observations. The chemical data were preprocessed using a log transformatiol~ 
for all variables. Figure 1displays the scatterplot matrix for the transformed data. 
The probability of impairment was calculated using Mahalanobis distance between 
the mean of the reference measurementsand the measurementsfor the site (Rencher 
1995). Although probability can be computed using a multivariate normal distribu- 
tion the nonpi&ketric method was used tocalcula~e an empirical distribution from 
which we calculate the impairment probability for a test site. 

Biological Data 
The probability of impairment for the biological data was computed by iifnt 

calculating new axes using correspondence analysis wid1 the reference data then 
scoring new sites on these axes. Distances were computed using the scores. Three 
axes were used in the computations as these produced stable estimates of the 
probability. 

Toxicity Data 

Plots of the toxicity data suggested skewness of the measurements. As with the 
chemical data, the log transformation gready reduced the skewness. Empirical 
distances were used to calculate the probabilities of impairment. 
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Figure 1. 	 Scatterplotmatrix of log transformed chemical reference measurements. The 
following abbreviations are used: LAS=log (arsenic), LCD=log (cadmium), 
I.CR=log (chromium), LCU=log (copper), LNI=iog (nickel), LPB=log (lead), 
and LZN=log (zinc). 

IIum. Ecol. Risk Assess. Voi. 8, No. 7, 2002 





Quantitative Weight-of-Evidence for Environmental Assessment 

Combined Estimates 
Figure 2 displays the overall impairment probabilities as well as estimates from 

individual lines. The probability of impairment is generally high. Individual impair- 
ment probabilities are highest for metals. Although there is evidence of biological 
impairment at some of the sites, the biological impairment probabilities arc not 
generally as high as for metals. 

DISCUSSION 
We have presented an approach for estimation of the probability or risk of 

impairment for a site based on multiple lines of evidence. Many variations on the 
approach are possible based on different distances and different summarization of 
the information. Decisions about distance measures and summarization are best 

-&-Odds RaUo EsUmate 

+Sediment Toxicity (BioAssayQuery, log vansformation, test: Empirical distances) 

+Metal Chemicals (Habitat, log transfornation, test: Empirical distances) 


+Species Composifion (Community, first 3 CA .test: Empirical distances) 


Figure 2. 	 Plot of probabilities for three lines of evidence and overall estimate forsites in 
test data set. The center corresponds to zero and tick marks represent tenths. 
The first four numbers in the site/sample label indicate the site number while 
the last two provide the year of sampling. 
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made in the initial stages of the study. Although the results of the weight-ofevidence 
analysis summarize impairment in terms of a single number, this approach is 
generally restrictive. A single measure attempts to summariz.e the multivariate 
degree of impairment. It is certainly possible that several different scenarios will lead 
to the same or similar measure of impairment. Hence it is important to consider the 
individual lines of evidence as well as the data themselves. Graphical display of the 
data is necessary to check for problems and assess assumptions. Biological and 
environmerltal evaluation of the collected data is also necessaty to verify that the 
evaluation is scientifically correct as well as statistically valid. The results given here 
are summaries of the different components of each line of evidence. A further, 
valuable component of an analysis would be to study which components were 
important to the individual line of evidence and why. For example, the ten toxicity 
tests used in the above analysis are all not equally irnportaut to the impairment 
estimate for toxicity. One approach would be to remove individual components 
then to evaluate the effect on the impairment probability. 111 this way the compo- 
nents mdy be evaluated in terms of importance to the probability estimate and give 
clues as to why the site might be impaired (see for an example Smith et aL 1990). 

We envision the above approach to be most useful for comparing and ranking 
sites. AS Figure 2 illustrates, it is possible to display the estimates of impairment for 
different lines and a combined estimate for several sites/times in a single display. 
The information plotted may be ordered in time or  space to look for change in 
impairment probabilities. This might be useful for restoration/recovery studies. 
The information for different sites may also be compared to identify sites with 
greatest risk or trends in impairment. For example, if the sites were located along 
a toxic gradient, then one would expect to see increases in the toxicity estimate of 
impairment and this could be displayed on the diagram. 

Although we have focused on a statistical approach based on estimation of the 
probability of impairment, other approaches are available for obiaining a combined 
estimate of impairment. One common approach is an index-oriented method. In 
this approach, the numerical values are combined, possibly after a transformation. 
One example of this approach is Wildhaber and Schmitt (1996). They combine data 
over biological, toxicological and chemical lines. To do this the chemistry data are 
standardized by calculating the ratio of the hioavdilable component of the contami- 
nant to the chronic toxicity water quality criterion. The toxicological data are 
standardized by adjusting the test endpoint for the control endpoint. Values may 
then be averaged over each of the lines of evidence. The biological data are not 
evaluated in that manner, rather tolerance values are used and a biological index 
is computed as a tolerance weighted average. The values are then combined over 
the three lines of evidence. A variation on  this approach is given in Soucck et al. 
(2000) and Cherry et aL (2001). In these papers the data are not combined within 
each line of evidence. Rather, important ~netrics from each line are selected then 
the metrics are combined into an overall index. 

An important aspect of the analysis is the choice of distance measure. Our 
approach is to use a distance measure that is directly related to a probability 
distribution. It is therefore important that the assumptions of the distribution be 
checked so the distance measure is directly related to probability. It is also important 
that the distance measure reflects impairment in that the farther away from the 
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center, the more impaired the site. One approach to achieve t l~is is to base distance 
on ordinated data rather than on actual observations. For example, when dealing 
with chemical data an approach is to calculate principal components for the data 
from the reference sites. Then decide if the location of the test site is indicative of 
impairment. A distance measure that reflects a directioi~aldistance would be appro- 
priate. Distance might be calculated as zero if the site is on the safe side of the 
distribution and the ordinary distance measure used if the site is located on the not- 
safe side. Principal components would be computed based on  standardized data to 
give all the chemicals equal weight in the derivation of the components. Addition 
details and examples are presented at mw.stat.vt.edu/facstaff/epsmith. 
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