STAFF REPORT VOLUME I

REVISION OF THE CLEAN WATER ACT SECTION 303(d) LIST OF WATER QUALITY LIMITED SEGMENTS

APRIL 2002

DIVISION OF WATER QUALITY STATE WATER RESOURCES CONTROL BOARD CALIFORNIA ENVIRONMENTAL PROTECTION AGENCY

STATE WATER RESOURCES CONTROL BOARD DIVISION OF WATER QUALITY

STAFF REPORT

REVISION OF THE CLEAN WATER ACT SECTION 303(d) LIST OF WATER QUALITY LIMITED SEGMENTS

VOLUME I

April 2, 2002 DRAFT

Preface

The State Water Resources Control Board (SWRCB) is required to review, make changes as necessary, and submit the Clean Water Act section 303(d) list to the U.S. Environmental Protection Agency (USEPA) by October 1, 2002.

This document presents the proposals for additions, deletions, and changes to the 1998 California 303(d) List as well as recommendations for Total Maximum Daily Load (TMDL) priorities, development of a Watch List, and development of a TMDLs Completed List. The report provides a summary of the recommended list changes and the SWRCB staff analysis of the data and information as well as the Regional Water Quality Control Board (RWQCB) recommendations.

This Staff Report has three parts: (1) Volume I which contains the listing methodology and a summary of the proposed additions, deletions, changes, and priorities; (2) Volume II which contains summaries of the proposals for the North Coast, San Francisco Bay, Central Coast, and Los Angeles Regional Water Quality Control Boards (RWQCBs); and (3) Volume III which contains summaries of the proposals for the Central Valley, Lahontan, Colorado River Basin, Santa Ana, and San Diego RWQCBs. Each proposal is presented in a water body fact sheet.

The SWRCB will accept testimony at northern and southern California hearings on the proposed changes to the 1998 section 303(d) list. After responses to comments are developed, the SWRCB will consider approval of the 2002 section 303(d) list submittal. Once approved by the SWRCB, the list and supporting information will be submitted to USEPA.

Table of Contents

PREFACE	I
TABLE OF CONTENTS	II
LIST OF ABBREVIATIONS	
INTRODUCTION	
BACKGROUND	
METHODOLOGY USED TO DEVELOP THE LIST	
Assumptions	
RWQCB ANALYSIS AND RECOMMENDATIONS	
SWRCB REVIEW OF RWQCB RECOMMENDATIONS SETTING PRIORITIES AND SCHEDULES FOR COMPLETING TMDLS	
PUBLIC PARTICIPATION CONDUCTED BY THE SWRCB	
ADDITIONS, DELETIONS, AND CHANGES TO THE SECTION 303(D) LIST	6
WATCH LIST	6
PRIORITIES AND SCHEDULES	7
TMDLS COMPLETED LIST	7
ADMINISTRATIVE RECORD	
TABLE 1: PROPOSED ADDITIONS TO THE SECTION 303(D) LIST	
TABLE 2: PROPOSED DELETIONS FROM THE 1998 SECTION 303(D) LIST TABLE 2: PROPOSED DELETIONS FROM THE 1998 SECTION 303(D) LIST	DELETIONS-1
TABLE 3: CHANGES PROPOSED FOR THE 1998 SECTION 303(D) LIST TABLE 4: PROPOSED WATCH LIST	WATCH LIST 1
TABLE 4: PROPOSED WATCH LIST TABLE 5: PROPOSED PRIORITIES AND COMPLETION DATES FOR THE 2002 SECTION 303(D) LIST	PRIORITIES_1
TABLE 5: TADLS COMPLETED LIST	TMDLs Completed-1
APPENDIX: 1998 CALIFORNIA 303(D) LIST AND TMDL PRIORITY SCHEDULE	APPENDIX-1

List of Abbreviati	ons
BMP	
BMF	Best Management Practice Basin Plan
BPTCP	
	Bay Protection and Toxic Cleanup Program Beneficial Use
BU C	
-	Celsius
CalEPA	California Environmental Protection Agency
CAO	Cleanup and Abatement Order
CCAMP	Central Coast Ambient Monitoring Program
CCC	Criteria Continuous Concentration
CCR	California Code of Regulations
CEQA	California Environmental Quality Act
CERCLA	Comprehensive Environmental Response, Compensation, and Liability
07.07	Act
CFCP	Coastal Fish Contamination Program
CFR	Code of Federal Regulations
CHEM A Pesticides	Aldrin, dieldrin, chlordane, endrin, heptachlor epoxide,
	hexachlorocyclohexane (including lindane), endosulfan, and toxaphene
CMC	Criteria Maximum Concentration
CSO	Combined Sewer Overflow
CWA	Clean Water Act
DCE	Dichloroethylene
DDE	Dichlorodiphenyldichloroethylene
DDT	Dichlorodiphenyltrichloroethane
DFG	Department of Fish and Game
DHS	Department of Health Services
DPR	Department of Pesticide Regulation
EBMUD	East Bay Municipal Utilities District
EDL	Elevated Data Level
EIR	Environmental Impact Report
EQIP	Environmental Quality Incentives Program
ERL	Effects Range Low
ERM	Effects Range Median
FDA	U.S. Food and Drug Administration
GeoWBS	Geographic Water Body System
GROUP A Pesticides	Aldrin, dieldrin, chlordane, endrin, heptachlor epoxide,
	hexachlorocyclohexane (including lindane), endosulfan, and toxaphene
GVWTP	Grass Valley Wastewater Treatment Plant
HCH	hexachlorocyclohexane
HU	Hydrologic Unit
IR	Installation Restoration
kg	kilogram(s)
MBNMP	Morro Bay National Monitoring Program
MCL	Maximum Contaminant Level
mg/kg	milligrams per kilogram (parts per million)
mg/l	milligrams per liter (parts per million)
MPN	Most Probable Number

iii

	Matheul & hustril athan
MTBE	Methyl t-butyl ether
MTRL	Maximum Tissue Residue Level
MWAT	Maximum Weekly Average Temperature
MWMT	Maximum Weekly Maximum Temperature
NAS	National Academy of Sciences
ng/l	nanograms per liter (parts per trillion)
NMFS	National Marine Fisheries Service
NOAA	National Oceanic and Atmospheric Administration
NPDES	National Pollutant Discharge Elimination System
NPS	Nonpoint Source
NRCS	Natural Resources Conservation Service
NWRAQ	National Water Recommended Ambient Quality
OAL	Office of Administrative Law
ОЕННА	Office of Environmental Health Hazard Assessment
OP	Organophosphorous Pesticides
РАН	polynuclear aromatic hydrocarbon
PCB	polychlorinated biphenyl
PCE	tetrachloroethylene
PEL	Probable Effects Level
PMP	Pesticide Management Plan
POTW	Publicly Owned Treatment Works
QA/QC	Quality Assurance/Quality Control
QAPP	Quality Assurance Procedure Plan
RB	Regional Board
RBI	Relative Benthic Index
RMP	
	Regional Monitoring Program
RWQCB	Regional Water Quality Control Board
SBCPHD	Santa Barbara County Public Health Department
SCRWA	South County Regional Wastewater Authority
SFEI	San Francisco Estuary Institute
SMWP	State Mussel Watch Program
SSO	Site Specific Objective
SWAMP	Surface Water Ambient Monitoring Program
SWPPP	Storm Water Pollution Prevention Plan
SWRCB	State Water Resources Control Board
SWRP	Sacramento River Watershed Program
TBT	Tributyltin
TCE	Tetrichloroethylene
TDS	Total Dissolved Solids
THS	Toxic Hot Spot
TIE	Toxicity Identification Evaluation
TMDL	Total Maximum Daily Load
ТРН	Total Petroleum Hydrocarbon
TSMP	Toxic Substance Monitoring Program
TSS	Total Suspended Solids
TU	Toxic Unit
UCD	University of California Davis
USDHHS-ATSDR	Agency for Toxic Substance and Disease Registry
USEPA	U.S. Environmental Protection Agency
UJBI A	0.6. Environmental Flotection Agency

₽

	USFS	U.S. Forest Service		
	USFWS	U.S. Fish and Wildlife Service		
	USGS	U.S. Geological Survey		
	VOC	Volatile organic carbon		
•	WDR	Waste Discharge Requirement		
	WER	Water Effect Ratio	,	
	WL	Watch List	· •	
	WMI	Watershed Management Initiative		
	WQ	Water Quality		
	WQO	Water Quality Objective		
	WR	Water Rights		
	WWTP	Waste Water Treatment Plant		

v

.

Staff Report by the Division of Water Quality State Water Resources Control Board

REVISION OF THE CLEAN WATER ACT SECTION 303(d) LIST OF WATER QUALITY LIMITED SEGMENTS

Volume I

Introduction

The State of California is required under Clean Water Act (CWA) section 303(d) and federal regulations (40 CFR 130) to prepare a list of and set priorities for water quality limited segments still requiring Total Maximum Daily Loads (TMDLs). The section 303(d) list was last revised in 1998. Federal regulations require the section 303(d) list to be updated every two years. The U.S. Environmental Protection Agency (USEPA) has extended the date for submission of the updated section 303(d) list to October 1, 2002.

The purpose of this Staff Report is to present proposals for revision of the State's section 303(d) list and to present recommendations for TMDL priorities, development of a Watch List, and development of a TMDLs Completed List.

Background

CWA section 303(d) requires states to identify waters that do not meet applicable water quality standards with technology-based controls alone. As defined in the CWA and federal regulations, water quality standards include the designated uses of a water body, the adopted water quality criteria, and the State's antidegradation policy. As defined in the Porter-Cologne Water Quality Control Act, water quality standards are beneficial uses to be made of a water body, the established water quality objectives (both narrative and numeric), and the State's nondegradation policy (SWRCB Resolution No. 68-16).

The section 303(d) list must include a description of the pollutants causing the violation of water quality standards (40 CFR 130.7(b)(iii)(4)) and a priority ranking of the water quality limited segments for the purpose of development of TMDLs. A TMDL is the sum of the individual wasteload allocations for point sources and load allocations for nonpoint sources and natural background, tributaries, or adjacent segments. A water quality limited segment is "any segment [of a water body] where it is known that water quality does not meet applicable water quality standards, and/or is not expected to meet applicable water quality standards, even after application of technology-based effluent limitations required by CWA Sections 301(b) or 306."

The states are required to review in even-numbered years the section 303(d) list, make changes as necessary, and submit the list to USEPA for approval. Federal regulation exempted the requirement for the list to be submitted in 2000, and extended the date for submission of the next section 303(d) list to October 1, 2002.

The SWRCB is in the process of developing a Water Quality Control Policy for guidance on the development of the CWA section 303(d) list of water quality limited segments. The Policy will address the solicitation of all readily available data and information, evaluation of the data and information, an approach for considering the weight of evidence for identifying water quality limited segments, listing and delisting factors for determining attainment of standards or beneficial uses, priority setting, and other topics. This policy, once developed, will be used to develop all future lists.

Methodology Used to Develop the List

The SWRCB is required to provide USEPA a description of the methodology used to develop the section 303(d) list (40 CFR 130.7(b)(6)(i)). This section presents the SWRCB methodology for developing the 2002 section 303(d) list.

The SWRCB and RWQCB staff have evaluated each addition, deletion, and change to the section 303(d) based on all the data and information available for each water body and pollutant. These recommendations are based upon "all existing and readily available data and information" (40 CFR 130.7(b)(5)). In developing the recommendations, the SWRCB staff has used the recommendations and analysis of the RWQCBs as a basis of its analysis. Each recommendation to the SWRCB is an independent assessment of each water body and pollutant. SWRCB staff took into account both general considerations (e.g., what factors the SWRCB should consider) and facts relating to individual water bodies and pollutants (e.g., how the RWQCBs looked at certain data or the significance of a particular water in the region).

Assumptions

In developing the SWRCB staff recommendations it was assumed that:

- 1. The 1998 section 303(d) list (Appendix) forms the basis for the 2002 list submittal.
- 2. RWQCB recommendations to change existing listings would be considered by the SWRCB.

3. If there is insufficient available data and information to list, water bodies will be placed on a "Watch List". The Watch List is not a recognized part of the section 303(d) list but it will be sent to USEPA.

Solicitation

Beginning March 14, 2001, the RWQCBs solicited other State agencies, Federal agencies, and the public for all readily available data and information to support the update of the section 303(d) list. The solicitation was closed on May 15, 2001.

RWQCB Analysis and Recommendations

The RWQCBs assembled and evaluated all existing and readily available water quality-related data and information to develop the list (40 CFR 130.7(b)(5)) and provided an assessment and documentation to list or not to list a state's waters (40 CFR 130.7(b)(6)). RWQCB staff prepared draft staff reports, fact sheets (in many cases), and summaries of the additions, deletions and changes to section 303(d) list. Three RWQCBs prepared Watch Lists; one RWQCB described constituents/water bodies of potential concern.

RWQCB documents were made available for public comment. Each RWQCB held public Workshops and/or Board meetings to consider the recommendations for revising the section 303(d) list. Many of the RWQCBs received substantial public comments (including comments from USEPA); responded to the comments; and revised their reports/lists based on public comments or submitted data.

The RWQCBs assigned priorities of high, medium, or low for completion of TMDLs for the pollutants or stressors identified in their proposals for the section 303(d) list. Dates for completing the TMDLs were assigned.

Each of the RWQCBs submitted staff reports and lists to SWRCB, along with copies of public submittals, data and information, and documents referenced in the submittal. The information about the section 303(d) list was also entered into the Geographical Water Body System (GeoWBS) by RWQCB and SWRCB staff.

SWRCB Review of RWQCB Recommendations

The SWRCB staff reviewed the RWQCB recommendations and either concurred with the recommendation or identified the reasons for not concurring. SWRCB staff developed fact sheets for each proposal to add water bodies, delete water bodies, and change the section 303(d) list. Fact sheets were not prepared for the waters that were recommended by the RWQCBs to be placed on the Watch List. The data and information used to support the placement of these waters on the Watch List are described in the RWQCB staff reports. Fact sheets were also prepared for many of the waters where (1) data and information were reviewed but no action was taken or (2) the listing was not changed even though pertinent data and information were submitted.

The record and fact sheets contain the rationale for decisions to use or not to use any existing and readily available data and information (40 CFR 130.7(b)(6)(iii)). The SWRCB staff also identified and set priorities for the listed water quality limited segments still requiring TMDLs (40 CFR 130.7(b)).

SWRCB staff has reviewed each RWQCB proposal on a case-by-case basis. Staff identified and/or assessed the following factors for each water body-pollutant combination:

- 1. Watershed/Water Body
- 2. Stressor (pollutant)/Medium (Water, sediment, or tissue data)/Beneficial Use
- 3. Assessment of data quality. Extent to which data quality requirements are met.
- 4. Linkage between measurements and beneficial use or standard.
- 5. Utility of measure for judging if standards or uses are not attained.
- 6. Water Body-specific information.
- 7. Data used to assess water quality.
- 8. Spatial representation.
- 9. Temporal representation.
- 10. Data type.
- 11. Use of standard method.
- 12. Source of pollutant.
- 13. Availability of an alternative enforceable program.

For each of these factors, SWRCB staff prepared a written description of how the RWQCBs addressed the water body. Each recommendation to the SWRCB was developed based on strength, value, and believability of all the data and information available. Staff considered all existing readily available data and information in making recommendations. SWRCB management reviewed the recommendations for additions to the list, deletions from the list, waters excluded from the list, waters to be placed on the watch list, and priorities.

In Volumes II and III of the Staff Report, the SWRCB staff have presented for each RWQCB: (1) a summary of the section 303(d) recommendations, (2) water body fact sheets (for each decision) outlining the SWRCB evaluation of the available data and information, and (3) a reference listing of all the data and information used.

The SWRCB is required by the CWA and federal regulations to provide EPA the following information as part of the section 303(d) list:

- Water quality limited segments (40 CFR 130.7(b)(1))
- Pollutants (40 CFR 130.7(b)(4))
- Priority ranking (40 CFR 130.7(b)(4))
- Identification of waters targeted for TMDL development in the next two years (40 CFR 130.7(b)(4))

The SWRCB shall, in addition, provide:

- Region
- Type of water body
- Calwater watershed (instead of hydrologic unit)
- Potential source(s) of pollutant, if known
- A preliminary estimate of the size (area or length) of water body affected

Please note: For the 1998 303(d) list, the "size affected" was an estimated value. Since 1998 there has been an ongoing effort by SWRCB and RWQCB staff to more clearly represent all 303(d)-listed waters spatially. The "size affected" values for the 2002 303(d) list submittal shall be changed to reflect more precise measurements obtained from the GIS database (GeoWBS). Therefore, many of the size affected values on the 2002 303(d) list will ultimately differ from those shown on the 1998 303(d) list (Appendix). In addition, due to our lack of understanding of the full impact of a pollutant until TMDLs are developed, the values for "size affected" may not reflect the true area of impact.

Setting Priorities and Schedules for Completing TMDLs

A priority ranking is required for listed waters to guide TMDL planning for the next two years (40 CFR 130.7(b)(4)). The schedule for TMDL development is based on the budgeted staff and contract resources available to the SWRCB and RWQCBs. TMDLs were ranked into high, medium, and low priority categories based on:

- Water body significance (such as importance and extent of beneficial uses, threatened and endangered species concerns, and size of water body).
- Degree that water quality standards are not met or beneficial uses are not attained or threatened (such as the severity of the pollution or number of pollutants/stressors of concern) (40 CFR 130.7(b)(4)).
- Availability of funding and information to address the water quality problem
- Overall need for an adequate pace of TMDL development for all listed waters over the next two years.

Those waters given a high priority are targeted for TMDL completion in the next two years (by 2004). Medium and low priorities will be completed after 2004.

Public Participation Conducted by the SWRCB

The SWRCB has scheduled a public hearing to receive comment on the proposed section 303(d) list. The first part of the hearing will be held in northern California (on May 23 and 24, 2002) and the second part will be held in southern California (May 30, 2002). The SWRCB staff will respond in writing to all comments received.

Additions, Deletions, and Changes to the Section 303(d) List

The basis for the 2002 Section 303(d) list is the 1998 list (Appendix). The SWRCB staff proposes to add 195 water quality limited segments with 303 pollutants or stressors to the section 303(d) list (Table 1). SWRCB staff also proposes that 70 water bodies be removed from the section 303(d) list (Table 2). Several changes to the listings are proposed (Table 3).

Watch List

Many of the RWQCBs identified waters where minimal, contradictory, or anecdotal information suggests standards are not met but either (1) the available data or information are inadequate to draw a conclusion, or (2) a regulatory program is in place to control the pollutant but data are not available to demonstrate that the program is successful. In many cases, the data or information is not of adequate quality and quantity to support a listing and subsequent TMDL regulatory process. In these cases, a finding is warranted that water quality appears impacted and more information must be collected to resolve whether standards and beneficial uses are attained. The waters on the Watch List are of high priority for SWRCB and RWQCB monitoring before the next section 303(d) list is completed. SWRCB staff proposes a Watch List that contains approximately 177 water bodies (Table 4).

The Watch List should not be considered part of the section 303(d) list, however, the Watch List will be submitted to USEPA.

Priorities and Schedules

In developing the 2002 section 303(d) submittal, the SWRCB staff reassessed the priorities established in the 1998 list. Based on the budgeted resources currently available to the SWRCB, it is proposed that the TMDLs targeted for development be changed to the priorities and schedules presented in Table 5. Only waters with a priority of high or medium are presented in Table 5; all other waters, not listed, will be assigned a low priority. TMDLs are scheduled to be completed for high priority waters by 2004.

TMDLs Completed List

A number of TMDLs have been completed. A complete TMDL includes a technical TMDL report, implementation plan, adoption by the RWQCBs, and approval by SWRCB, the Office of Administrative Law (OAL) and USEPA. Several TMDLs are in various stages of the approval process.

To show progress in developing TMDLs, the SWRCB staff proposes to create a list of TMDLs completed. At present, it is assumed that even though the TMDL has been completed that water quality standards or beneficial uses are not yet attained. Once it has been shown that standards are achieved and/or beneficial uses are attained the water bodies will be removed from this list.

The TMDLs Completed List should not be considered part of the section 303(d) list. In addition, the TMDLs Completed List will be submitted to USEPA.

Administrative Record

Copies of the SWRCB and RWQCB documents supporting the 2002 list submittal are posted on the SWRCB website at:

http://www.swrcb.ca.gov/303dupdate.html

The administrative record supporting the proposed 2002 Section 303(d) list is housed in the Division of Water Quality, State Water Resources Control Board, 1001 I Street, 15th Floor, Sacramento, California. To make an appointment to review the record, please call (916) 341-5566.

Table 1: Proposed Additions to the Section 303(d) List

Region Water Body

Pollutant/Stressor

Potential Pollutant Source(s)

1			
	Jacoby Creek		
		Sediment	Unknown
	Laguna de Santa Rosa		
		Dissolved Oxygen	Unknown
	·	Nutrients	Unknown
	Russian River		
		Pathogens	Unknown
	Santa Rosa Creek		
		Pathogens	Unknown
	Stemple Creek/Estero de S		······································
	-	Sediment	Soil Erosion, Nonpoint Source
	Tule Lake and the Lower K	Clamath	
	National Wildlife Refuge	-U	Unknown
		рН	Unknown
2			
	Arroyo Las Positas		
	-	Diazinon	Urban Runoff/Storm
	A may a Masha		Sewers
	Arroyo Mocho	Diazinon	Urban Runoff/Storm
		DIAZIDUI	Sewers
	Central Basin/Pacific Ocea Beach	n at Baker	
		High Coliform Count	Urban Runoff/Storm Sewers, Combined Sewer Overflows
	San Mateo Coastal Basin/P at China Beach	acific Ocean	<u> </u>
		Beach Closures	Urban Runoff/Storm Sewers, Combined Sewer Overflows
	San Mateo Coastal Basin/P at Fitzgerald Marine Reserv		
		Beach Closures	Nonpoint Source
		High Coliform Count	Nonpoint Source
	San Mateo Coastal Basin/Pa at Fort Funston Beach	acific Ocean	
		Beach Closures	Urban Runoff/Storm Sewers, Combined Sewer

egion	Water Body	Pollutant/Stressor	Potential Pollutant Source(s
	San Mateo Coastal Ba	sin/Pacific Ocean	
	at Ocean Beach		
		Beach Closures	Urban Runoff/Storm Sewers, Combined Sewer Overflows
	San Mateo Coastal Ba	sin/Pacific Ocean	
	at Pacifica State Beach San Pedro Beach)	a (Linda Mar or	
		Beach Closures	Urban Runoff/Storm Sewers, Nonpoint Source
		High Coliform Count/Water/REC-1	Urban Runoff/Storm Sewers, Nonpoint Source
	San Mateo Coastal Bar at Pillar Point Beach		
	at I mai I omt Deach	Beach Closures	Nonpoint Source
		High Coliform Count	Nonpoint Source
	San Mateo Coastal Ba at Rockaway Beach	sin/Pacific Ocean	
		High Coliform Count	Urban Runoff/Storm Sewers, Nonpoint Source
	San Mateo Coastal Bas at San Gregorio Beach		
		High Coliform Count	Nonpoint Source
	San Mateo Coastal Bas at Sharp Park Beach	sin/Pacific Ocean	
		Beach Closures	Urban Runoff/Storm Sewers
	San Mateo Coastal Bas at Surfer's Beach	sin/Pacific Ocean	
		Beach Closures	Nonpoint Source
	Que Maria Que da I Der	Total Coliform	Nonpoint Source
	San Mateo Coastal Bas at Venice Beach		
		Beach Closures	Urban Runoff/Storm Sewers
		High Coliform	Nonpoint Source
	San Mateo Coastal Bas Creek	sin/Pomponino	
		High Coliform Count	Nonpoint Source
	San Mateo Coastal Bas Creek	-	
		High Coliform Count	Nonpoint Source
	San Mateo Coastal Bas Creek	in/San Pedro	
			Urban Runoff/Storm
		High Coliform Count	Sewers, Nonpoint Source
	San Mateo Coastal Bas Creek		

Additions-2

.

Region	Water Body	Pollutant/Stressor	Potential Pollutant Source(s
		Diazinon	Urban Runoff/Storm Sewers
	San Pablo Basin/Petalu portion)	ıma River (tidal	
		Nickel	Municipal Point Sources, Urban Runoff/Storm Sewers, Atmospheric Deposition
	San Pablo Basin/San P	ablo Reservoir	
		Mercury	Atmospheric Deposition
	South Bay Basin/Marin Mateo Co.)	na Lagoon (San	
		High Coliform Count	Urban Runoff/Storm Sewers, Nonpoint Source
3			
	Alamo Creek	Fecal coliform	Natural sources, Agriculture, Range Land
	Alisal Creek	Fecal coliform	Urban Runoff, Natural Sources, Nonpoint sources, Agriculture
	Atascadero Creek	Dissolved Oxygen	Agriculture, Urban Runoff, Unknown Sources
	Blosser Channel/Creek	Fecal coliform	Agriculture, Pasture Lands, Urban Runoff, Storm water, Natural Sources
	Bradley Canyon Creek	Fecal coliform	Agriculture, Pasture Lands , Urban Runoff, Storm water, Natural Sources
	Cholame Creek	Fecal coliform	Pasture lands, nonpoint sources, natural sources
	Gabilan Creek	Fecal coliform	Urban Runoff, Natural Sources, Nonpoint sources
	Llagas Creek	Chloride	Nonpoint and point
		Dissolved Oxygen	sources Nonpoint and point
		Fecal coliform	sources, Unknown sources Pasture lands, nonpoint
		Sodium	sources, natural sources Nonpoint and unknown sources
		TDS	Nonpoint and point sources

Los Osos Creek

.

.

•

.

Region	Water Body	Pollutant/Stressor	Potential Pollutant Source(s
		Dissolved Oxygen	Agriculture, Urban Runoff, Pasture Lands, Unknown Sources
	Main Street Canal	Nutrients (nitrate)	Agriculture, Nonpoint Sources and Urban Runoff
	Nipomo Creek	Fecal coliform	Urban Runoff, Agriculture, Natural Sources
	Olso Flaco Lake	Nutrients (Nitrate)	Agriculture and nonpoint sources
	Orcutt Solomon Creek	Fecal coliform	Pasture lands, nonpoint sources, natural sources and Agriculture
	Pajaro River	Fecal coliform	Pasture lands, Agriculture, and natural sources
	Quail Creek	Fecal coliform	Pasture lands, Agriculture, and natural sources
	Salinas Reclamation Cana	l Fecal coliform	Urban runoff, Pasture Lands, Natural Sources and Agriculture
	Salinas River (Upper)		
		Chloride	Agriculture, Urban Runoff, Pasture Lands
		Sodium	Agriculture, Urban Runoff, Pasture Lands
	San Lorenzo Creek	Fecal coliform	Agriculture, Urban Runoff, Pasture Lands and Natural Sources
	San Lorenzo River Waters Creek	shed -Bean	
		Sedimentation/Siltation	Improper/illegal grading of private roads and home sites, lack of vegetation around home sites, residential use, roads, quarry
	San Lorenzo River Waters Creek	shed-Bear	
		Sedimentation/Siltation	Improper/illegal grading of private roads and home sites, lack of vegetation around home sites, residential use, recreation and timber

Additions-4

.

.

legion	Water Body	Pollutant/Stressor	Potential Pollutant Source(s
		Sedimentation/Siltation	Improper/illegal grading of private roads and home sites, lack of vegetation around home sites, residential use, vineyards and timber
	San Lorenzo River Wat	tershed-	
	Branciforte Creek	Sedimentation/Siltation	Logging in upper watershed, improper/illegal
	San Lorenzo River Wat	tershed-Fall Creek	
		Sedimentation/Siltation	Trail system in Fall State Park (stream mile 1 and above), bank erosion/slumping, Residential use, road, trails
	San Lorenzo River Wat	ershed-Kings	
	Creek	-	
		Sedimentation/Siltation	Improper/illegal grading of private roads and home sites, lack of vegetation around home sites, residential use, roads and timber
	San Lorenzo River Wat Creek	ershed-Love	
		Sedimentation/Siltation	Improper/illegal grading of private roads and home sites, lack of vegetation around home sites, agriculture, residential use, roads and timber
	San Lorenzo River Wat Charlie Gulch	ershed-Mountain	
	<u></u>	Sedimentation/Siltation	Residential use, timber, roads
	San Lorenzo River Wat Creek (Upper)		
		' Sedimentation/Siltation	Improper/illegal grading of private roads and home sites, lack of vegetation around home sites, agriculture, residential use, roads and timber
	San Lorenzo River Wat Creek	ershed-Zayante	
		Sedimentation/Siltation	Improper/illegal grading of private roads and home sites, lack of vegetation around home sites, agriculture, residential

Santa Maria River

.

.

.

.

•

Region	Water Body	Pollutant/Stressor	Potential Pollutant Source(s
		Fecal coliform	Pasture Lands, Urban Runoff, Agriculture, Natural Sources
		Nutrients (nitrate)	Urban Runoff, Agriculture and Pasture Lands
	South Coast/Pacific Ocea Creek (East Beach)	an @ Mission	
	· · · · · · · · · · · · · · · · · · ·	Fecal coliform	Urban Runoff, Agriculture, Natural Source, Non point sources and unknown sources
	South Coast/Pacific Ocea Quemado Beach	an @ Arroyo	
	`	Fecal coliform	Pasture Lands, Agriculture, Nonpoint and natural sources
		Total coliform	Pasture Lands, Agriculture, Nonpoint and natural sources
	South Coast/Pacific Ocea Beach	in @ Jalama	
		Fecal coliform	Pasture Lands, Agriculture, Nonpoint and natural sources
		Total coliform	Pasture Lands, Agriculture, Nonpoint and natural sources
	South Coast/Pacific Ocea Creek (East Beach)	n @ Mission	
		Total coliform	Urban Runoff, Non point sources, Unknown sources, Agriculture
	Tembladero Slough		
		Fecal coliform	Pasture Lands, Urban Runoff, Agriculture, Natural Sources
	Tesquita Slough		
		Fecal coliform	Agriculture, Nonpoint Sources and Natural Sources
4	····		
	Avolon Beach-Santa Cata		
	Dallana Casta Water 1, 1	Bacteria counts	Point and nonpoint sources
	Ballona Creek Watershed		Nonnoint sources
		Dissolved copper Dissolved lead	Nonpoint sources Nonpoint sources
		Dissolved Zinc	Nonpoint sources (possible sources include urban and stormwater runoff)

÷

.

...

•

Water Body	Pollutant/Stressor	Potential Pollutant Source(s
	рН	Nonpoint sources (possible sources include urban and stormwater runoff)
	Total Selenium	Nonpoint sources (Stormwater)
Calleguas Creek R10 (Co Hill Canyon)	onejo Creek,	
•	Chloride	Point and nonpoint sources
	Fecal Coliform	Nonpoint sources
Calleguas Creek R11, Ar	royo Santa Rosa	
	Fecal Coliform	Point and nonpoint sources
Calleguas Creek R13, Co South Fork	onejo Creek,	
	Chloride	Point and nonpoint sources
Calleguas Creek R2		•
5	DDT	Nonpoint sources
	Dissolved Copper	Nonpoint sources
	Fecal Coliform	Point and nonpoint sources
Calleguas Creek R4		
5	Fecal Coliform	Farms, septic, percolation
Calleguas Creek R4, Rev	olon Slough	
5	Boron	Nonpoint sources
	Chloride	Nonpoint sources
	Nitrate as Nitrate	Point and nonpoint sources
	Sulfate	Nonpoint sources
	TDS	Nonpoint sources
Calleguas Creek R6, Arro	oyo Las Posas	
	Fecal Coliform	Point and nonpoint sources
	Nitrate as Nitrate	Point and nonpoint sources
Calleguas Creek R9A, Ca Diversion (Conejo Creek		
	Fecal Coliform	Point and nonpoint sources
	Nitrate as Nitrate	Point and nonpoint sources
	Nitrate as Nitrogen	Point and nonpoint sources
	Nitrite as Nitrogen	Point and nonpoint sources
Calleguas Creek R9B, Co Main Stem	onejo Creek	
	Fecal Coliform	Point and nonpoint sources
Calleguas Creek-Arroyo	Simi R7	
	Fecal Coliform	Nonpoint sources
	Aonica Bay	
Castlerock Beach-Santa N		Manual data and a second se
Castlerock Beach-Santa N	Total Coliform	Nonpoint sources
Castlerock Beach-Santa N Channel Islands Harbor B Hobie Beach		Nonpoint sources

Additions-7

T.

.

legion	Water Body	Pollutant/Stressor	Potential Pollutant Source(s)
		Chlordane	Historical use of
		Dieldrin	pesticides and lubricants. Historical use of
		НСН	pesticides and lubricants. Historical use of
		PCBs	pesticides and lubricants. Historical use of pesticides and lubricants.
	Hopper Creek Tributary River Reach 4 (Fillmore		pesticides and ruorieants.
	Gauging Station	770.0	Defect and some first second
		TDS	Point and nonpoint sources
	Hopper Creek Tributary River Reach 4 (Fillmore Gauging Station)		
		Sulfate	Point and nonpoint sources
	Los Angeles River Estu Bay)		•
	24,7,7	Chlordane	Historical use of pesticides and lubricants
		DDT	Historical use of pesticides and lubricants
		Lead	Historical use of pesticides and lubricants
	Los Angeles River R2-1 Creek	McCoy Canyon	
		Fecal Coliform	Nonpoint sources
		Nitrate as Nitrogen	Runoff from natural and urban sources
	Los Angeles River R2-M Creek	McCoy Canyon	
		Nitrate as Nitrogen	Nonpoint sources
		Total Selenium	Natural and urban sources
	Los Angeles River Read		Datat and assure interview
		Dissolved Cadmium Dissolved Copper	Point and nonpoint sources
		Dissolved Copper Dissolved Zinc	Point and nonpoint sources Point and nonpoint sources
		Total Aluminum	Point and nonpoint sources
	Los Angeles Watershed Creek		
		Fecal Coliform	Natural and urban sources
		Total Selenium	Nonpoint sources
	Los Cerritos Channel	Chlordane	Unknown
	Malibu Creek Watershe	d	
		Sedimentation	Unknown
	Malibu Creek Watershe Las Virgenes Creek, Tri Medea Creek)		
	Medica Officky	Sedimentation	Unknown

•

•

•

Water Body	Pollutant/Stressor	Potential Pollutant Source(s
 Malibu Creek Watershed-	Malibu Lagoon	
	рH	Unknown (potential
	•	sources septic systems,
		storm drains and birds)
Marina del Rey Harbor-Ba	ack Basin	
	PCBs	Historical use of
		pesticides, stormwater
		runoff/aerial deposition
		from urban areas.
McGrath Lake		
	Fecal Coliform	Agriculture, landfill runoff
		and natural sources
McGrath Lake Estuary		
	PCBs	Historical use of
		pesticides and lubricants,
		stormwater runoff/aerial
		deposition from agriculture fields.
Ormond (Industrial Drain-		agriculture netus.
Ormond (Industrial Drain-		District and an and
D 1 1 D 1 // 00000	Beach Postings	Point and nonpoint sources
Peninsula Beach #23000		
	Beach Postings	Point and nonpoint sources
Blue Cut Gauging Station)	•	
. Blue Cut Gauging Station)	рН	Nonpoint sources and Conservation Discharge Releases
	рН	Conservation Discharge
Pole Creek/Canyon Tribut Clara River R3 (Freeman I	pH ary to Santa	Conservation Discharge
Pole Creek/Canyon Tribut	pH ary to Santa Diversion to	Conservation Discharge Releases
Pole Creek/Canyon Tribut Clara River R3 (Freeman I	pH ary to Santa Diversion to Sulfate	Conservation Discharge Releases Nonpoint sources
Pole Creek/Canyon Tribut Clara River R3 (Freeman I Fillmore Street A)	pH ary to Santa Diversion to Sulfate TDS	Conservation Discharge Releases
Pole Creek/Canyon Tribut Clara River R3 (Freeman I Fillmore Street A) Revolon Slough Main Bran	pH ary to Santa Diversion to Sulfate TDS nch: Mugu	Conservation Discharge Releases Nonpoint sources
Pole Creek/Canyon Tribut Clara River R3 (Freeman I Fillmore Street A)	pH ary to Santa Diversion to Sulfate TDS nch: Mugu	Conservation Discharge Releases Nonpoint sources Nonpoint sources
Pole Creek/Canyon Tribut Clara River R3 (Freeman I Fillmore Street A) Revolon Slough Main Bran	pH ary to Santa Diversion to Sulfate TDS nch: Mugu	Conservation Discharge Releases Nonpoint sources Nonpoint sources Historical use of
Pole Creek/Canyon Tribut Clara River R3 (Freeman I Fillmore Street A) Revolon Slough Main Bran Lagoon to Central Avenue	pH ary to Santa Diversion to Sulfate TDS nch: Mugu Dacthal	Conservation Discharge Releases Nonpoint sources Nonpoint sources
Pole Creek/Canyon Tribut Clara River R3 (Freeman I Fillmore Street A) Revolon Slough Main Bran	pH ary to Santa Diversion to Sulfate TDS nch: Mugu Dacthal	Conservation Discharge Releases Nonpoint sources Nonpoint sources Historical use of pesticides and lubricants.
Pole Creek/Canyon Tribut Clara River R3 (Freeman I Fillmore Street A) Revolon Slough Main Bran Lagoon to Central Avenue Rincon Beach (Flagpole-#	pH ary to Santa Diversion to Sulfate TDS nch: Mugu Dacthal	Conservation Discharge Releases Nonpoint sources Nonpoint sources Historical use of
Pole Creek/Canyon Tribut Clara River R3 (Freeman I Fillmore Street A) Revolon Slough Main Bran Lagoon to Central Avenue	pH ary to Santa Diversion to Sulfate TDS nch: Mugu Dacthal 1050) Beach Postings	Conservation Discharge Releases Nonpoint sources Nonpoint sources Historical use of pesticides and lubricants. Point and nonpoint sources
Pole Creek/Canyon Tribut Clara River R3 (Freeman I Fillmore Street A) Revolon Slough Main Bran Lagoon to Central Avenue Rincon Beach (Flagpole-# San Buenventure Beach	pH ary to Santa Diversion to Sulfate TDS nch: Mugu Dacthal 1050) Beach Postings Total Coliform	Conservation Discharge Releases Nonpoint sources Nonpoint sources Historical use of pesticides and lubricants.
Pole Creek/Canyon Tribut Clara River R3 (Freeman I Fillmore Street A) Revolon Slough Main Bran Lagoon to Central Avenue Rincon Beach (Flagpole-#	pH ary to Santa Diversion to Sulfate TDS nch: Mugu Dacthal 1050) Beach Postings Total Coliform	Conservation Discharge Releases Nonpoint sources Nonpoint sources Historical use of pesticides and lubricants. Point and nonpoint sources
Pole Creek/Canyon Tribut Clara River R3 (Freeman I Fillmore Street A) Revolon Slough Main Bran Lagoon to Central Avenue Rincon Beach (Flagpole-# San Buenventure Beach San Gabriel River Watersh	pH ary to Santa Diversion to Sulfate TDS nch: Mugu Dacthal 1050) Beach Postings Total Coliform	Conservation Discharge Releases Nonpoint sources Nonpoint sources Historical use of pesticides and lubricants. Point and nonpoint sources
Pole Creek/Canyon Tribut Clara River R3 (Freeman I Fillmore Street A) Revolon Slough Main Bran Lagoon to Central Avenue Rincon Beach (Flagpole-# San Buenventure Beach San Gabriel River Watersh	pH ary to Santa Diversion to Sulfate TDS nch: Mugu Dacthal 1050) Beach Postings Total Coliform red-Coyote	Conservation Discharge Releases Nonpoint sources Nonpoint sources Historical use of pesticides and lubricants. Point and nonpoint sources Nonpoint sources
Pole Creek/Canyon Tribut Clara River R3 (Freeman I Fillmore Street A) Revolon Slough Main Bran Lagoon to Central Avenue Rincon Beach (Flagpole-# San Buenventure Beach San Gabriel River Watersh	pH ary to Santa Diversion to Sulfate TDS nch: Mugu Dacthal 1050) Beach Postings Total Coliform red-Coyote Dissolved copper	Conservation Discharge Releases Nonpoint sources Nonpoint sources Historical use of pesticides and lubricants. Point and nonpoint sources Nonpoint sources Nonpoint sources
Pole Creek/Canyon Tribut Clara River R3 (Freeman I Fillmore Street A) Revolon Slough Main Bran Lagoon to Central Avenue Rincon Beach (Flagpole-# San Buenventure Beach San Gabriel River Watersh	pH ary to Santa Diversion to Sulfate TDS nch: Mugu Dacthal 1050) Beach Postings Total Coliform red-Coyote Dissolved copper Dissolved Lead	Conservation Discharge Releases Nonpoint sources Nonpoint sources Historical use of pesticides and lubricants. Point and nonpoint sources Nonpoint sources Nonpoint sources Nonpoint sources
Pole Creek/Canyon Tribut Clara River R3 (Freeman I Fillmore Street A) Revolon Slough Main Bran Lagoon to Central Avenue Rincon Beach (Flagpole-# San Buenventure Beach San Gabriel River Watersh	pH ary to Santa Diversion to Sulfate TDS nch: Mugu Dacthal 1050) Beach Postings Total Coliform ned-Coyote Dissolved copper Dissolved Lead Dissolved Zinc Total Selenium	Conservation Discharge Releases Nonpoint sources Nonpoint sources Historical use of pesticides and lubricants. Point and nonpoint sources Nonpoint sources Nonpoint sources Nonpoint sources Nonpoint sources Nonpoint sources
Pole Creek/Canyon Tribut Clara River R3 (Freeman I Fillmore Street A) Revolon Slough Main Bran Lagoon to Central Avenue Rincon Beach (Flagpole-# San Buenventure Beach San Gabriel River Watersh Creek	pH ary to Santa Diversion to Sulfate TDS nch: Mugu Dacthal 1050) Beach Postings Total Coliform ned-Coyote Dissolved copper Dissolved Lead Dissolved Zinc Total Selenium led-Reach 2	Conservation Discharge Releases Nonpoint sources Nonpoint sources Historical use of pesticides and lubricants. Point and nonpoint sources Nonpoint sources Nonpoint sources Nonpoint sources Nonpoint sources Nonpoint sources Nonpoint sources Nonpoint sources Nonpoint sources
Pole Creek/Canyon Tribut Clara River R3 (Freeman I Fillmore Street A) Revolon Slough Main Bran Lagoon to Central Avenue Rincon Beach (Flagpole-# San Buenventure Beach San Gabriel River Watersh Creek	pH ary to Santa Diversion to Sulfate TDS nch: Mugu Dacthal 1050) Beach Postings Total Coliform ned-Coyote Dissolved copper Dissolved Lead Dissolved Zinc Total Selenium	Conservation Discharge Releases Nonpoint sources Nonpoint sources Historical use of pesticides and lubricants. Point and nonpoint sources Nonpoint sources Nonpoint sources Nonpoint sources Nonpoint sources Nonpoint sources

Region	Water Body	Pollutant/Stressor	Potential Pollutant Source(s
	San Gabriel River Wa	tershed-San Jose	
	Creek		
		pH	Point and nonpoint sources
	San Gabriel Watershe	d- Estuary	
		Ammonia as Nitrogen	Point sources
	Santa Clara River R 3	(Freeman	
	Diversion to Fillmore	Street A)	
		Nitrite as Nitrogen	Point and nonpoint sources
	Seaside Park		
		Total Coliform	Nonpoint sources
	Sespe Creek Tributary		
	River Reach 3 (Freem	an Diversion to	
	Fillmore Street A)		
		Chloride	Nonpoint sources
		pH	Nonpoint sources
	Surfer's Point (Stables		- · · ·
		Beach Postings	Point and nonpoint sources
	Todd Barranca-Wheel		
	Tributary to Santa Cla		
	(Freeman Diversion to		Namaint
		Sulfate TDS	Nonpoint sources Nonpoint sources
	Ventura Estuary	105	Nonpoint sources
	V Chitura Estuary	Fecal coliform	Stables and horse property
		Total coliform	Stables and horse property
	Ventura River Waters		
		Dissolved Oxygen	Nonpoint sources
		Fecal Coliform	Horse stables, land use,
			cattle, wildlife
	Ventura River Waters	hed-San Antonio	
	Creek		
		Total nitrogen	Nonpoint sources
5			
5			
	Arcade Creek	Conner	Listen Dune Close me
		Copper	Urban Runoff/Storm Sewers
	Avena Drain		
		Ammonia	Agriculture/Dairies
		Ammonia	(manure carried in
			wastewater to Avena Drain).
		Pathogens	Agriculture/Dairies (manure carried in wastewater to Avena
			Drain).
	Bear Creek	Mercury	Extraction/Abandoned Mines

-

•

•

•

Region	Water Body	Pollutant/Stressor	Potential Pollutant Source(s)
		Mercury	Resource Extraction (abandoned mines)
	Butte Slough	Diazinon	Agriculture (Diazinon Spray used on dormant almond and stonefruit crops)
		Molinate	Agriculture (Molinate Aerial Spray used on rice fields)
	Camanche Reservoir	Aluminum	Resource Extraction (abandoned mines)
	Camp Far West Reservoir	Mercury	Resource Extraction (abandoned mines)
	Clover Creek	Fecal Coliform	Human and/or Livestock Sources
	Colusa Basin Drain	Azinphos-methyl	Agriculture (Used to control insects on almonds, walnuts and other crops).
		Diazinon Molinate	Agriculture Agriculture (Molinate Aerial Spray used on rice fields)
	Del Puerto Creek	Chlorpyrifos	Agriculture (application on orchards and field crops)
		Diazinon	Agriculture
	Don Pedro Lake	Mercury	Resource Extraction (abandoned mines)
	Five Mile Slough	Low Dissolved Oxygen	Urban Runoff/Storm Sewers
	Ingram/Hospital Creek	Pathogens	Urban Runoff/Recreation
		Chlorpyrifos Diazinon	Agriculture Agriculture
	Jack Slough	Diazinon	Agriculture (application on orchards and field crops)
	Lake Combie		
	Lake Englebright	Mercury	Unknown Resource Extraction (abandoned mines)

•

•

-

,

legion	Water Body	Pollutant/Stressor	Potential Pollutant Source(s
	Little Deer Creek		
	Entre Door Crook	Mercury	Resource Extraction
			(abandoned mines)
	Lower Bear River		
		Diazinon	Agriculture (Diazinon Spray used on dormant
			almond and stonefruit
			crops)
	Lower Calaveras River	Low Dissolved Owegan	Lishan Dunoff/Storm
		Low Dissolved Oxygen	Urban Runoff/Storm Sewers
		Pathogens	Urban Runoff/Recreation
	Lower Mokelume River		
		Aluminum	Resource Extraction
	Lower Putah Creek		(abandoned mines)
	Lower Futan Creek	Mercury	Mining, unknown source.
	Lower San Joaquin River	.noroury	maning, anknown source,
	Source Sur Souquin River	Mercury	Resource Extraction
			(abandoned mines)
	Lower Stanislaus River		
		Mercury _	Resource Extraction (abandoned mines)
	Mormon Slough	··	(abanuoneu mines)
	mornin biougn	Low Dissolved Oxygen	Urban Runoff/Storm
		,	Sewers
		Pathogens	Urban Runoff/Recreation
	Mosher Slough		
		Low Dissolved Oxygen	Urban Runoff/Storm Drains.
		Pathogens	Urban Runoff/Storm
			Sewers
	Newman Wasteway		
		Chlorpyrifos Diazinon	Agriculture
		Diazinon	Agriculture (Used on nut and fruit orchards in
			winter months)
	Oak Run Creek		
		Fecal Coliform	Human and/or Livestock
	Orestimba Creek		Sources
	Orestinition Creek	A fundamental I	A - Junta and Allandar
		Azinphos-methyl	Agriculture (Used to control insects on
			almonds, walnuts and
		DDF	other crops).
		DDE	Historical Agriculture (prior to being banned in
			1972)
	Rollins Reservoir		
		Mercury	Resource Extraction

Region	Water Body	Pollutant/Stressor	Potential Pollutant Source(s
		Mercury	Resource Extraction (abandoned mines)
	Smith Canal	Low Dissolved Oxygen	Urban Runoff/Storm
		Organophosphorus Pesticides	Sewers Urban Runoff
		Pathogens	Urban Runoff/Recreation
	South Cow Creek	Fecal Coliform	Human and/or Livestock Sources
	Stockton Deep Water (Channel	
		Pathogens	Urban Runoff/Recreation
	Sutter Bypass	Diazinon	Agriculture
	Upper Bear River		
	oppor Dom raver	Mercury	Resource Extraction (abandoned mines)
	Walker Slough	Pathogens	Urban Runoff/Recreation
	Wolf Creek		Orban Ruhold Recreation
		Fecal Coliform	Urban Runoff/Recreation/Agricul ture
6			<u> </u>
	Big Meadow Creek (Tr Tahoe)	ributary to Lake	
		Pathogens	Waste from livestock grazing believed to be primary source.
	Blackwood Creek (Trib Tahoe)	outary to Lake	
		Iron (plant nutrient)	Erosion from severely disturbed areas (logging, gravel mining)
		Nitrogen	Sources are atmospheric deposition, erosion, stormwater
		Phosphorus	Erosion from severely disturbed areas (logging, gravel mining), atmospheric, deposition, stormwater, forest fire.
	Buckeye Creek		
		Pathogens	High bacterial counts coincide with months when livestock are present. Natural sources of

,

East Walker River above Bridgeport Reservoir

,

Region	Water Body	Pollutant/Stressor	Potential Pollutant Source(s)
		Pathogens	Fecal coliform counts were highest during grazing season.
	East Walker River bel Reservoir	ow Bridgeport	
		Nitrogen	Reservoir releases, stormwater, erosion
		Phosphorus	Release from Bridgeport Reservoir
	General Creek (Tribut	ary to Lake Tahoe)	
	·	Iron (plant nutrient)	Major sources from erosion, stormwater
		Phosphorus	Major sources from erosion, atmospheric deposition, stormwater
	Heavenly Valley Cree	k between USFS	
	boundary and conflue Creek		
		Sediment	Source is erosion from upstream developments.
	Indian Creek		
		Pathogens -	Fecal coliform counts were highest during grazing season.
	Monitor Creek		
		Sulfate	Source is acid mine drainage.
		TDS	Source is acid mine drainage.
	Robinson Creek		
		Pathogens	High coliform counts coincide with months when livestock are present.
	Searles Lake		
		Petroleum Hydrocarbons	Source is IMCC Chemical mineral extraction operation.
	Swauger Creek		
		Pathogens	Livestock, wildlife, septic systems, human recreational users.
		Phosphorus	Partially natural sources
	Tallac Creek (Tributar		
		Pathogens	Livestock wastes are primary source.
	Trout Creek (Tributary	to Lake Tahoe)	
		Iron (plant nutrient)	Natural loading has increased due to increased erosion and stormwater runoff due to land disturbance.

Region	Water Body	Pollutant/Stressor	Potential Pollutant Source(s
		Nitrogen	Source are natural as well as anthropogenic, including atmospheric deposition, stormwater, fertilizer use, livestock grazing, septic systems, wastewater disposal to land.
		Pathogens	Livestock wastes are primary source.
		Phosphorus	Sources are erosion, stormwater, atmospheric, Deposition due to wetland and riparian disturbance.
	Upper Truckee River (Tahoe)	(Tributary to Lake	
	,	Iron (plant nutrient)	Natural background, increased loading due to land disturbance, stormwater.
		Pathogens	Waste from livestock grazing believed to be primary source.
		Phosphorus	Erosion, fertilizer use, stormwater
	Ward Creek (Tributary	y to Lake Tahoe)	
	```	Iron (plant nutrient)	Iron is naturally present in soil, but loading has increased due to erosion from land disturbance.
		Nitrogen	Natural (nitrogen fixation) and anthropogenic (atmospheric, deposition, erosion, stormwater)
		Phosphorus	Erosion, stormwater, atmospheric deposition
	West Fork Carson Riv Woodfords	ver, Headwaters to	
		Nitrogen	Sources may be septic systems, erosion, stormwater, historic livestock grazing, and natural nitrogen fixation.
		Percent sodium	Road salt, septic systems, natural
	_	Phosphorus	Sources are erosion, stormwater, atmospheric, deposition.
	West Fork Carson Riv Paynesville	er, Woodfords to	
	-	Nitrogen	Pasture runoff, stormwater, erosion,
		Pathogens	atmospheric deposition Partially natural sources (i.e. wildlife). Primary source is believed to be livestock waste.

.....

,

Region	Water Body	Pollutant/Stressor	Potential Pollutant Source(s)
		Percent sodium	Road salt, septic systems, natural
7			
	New River	······································	
		1,2,4-trimethylbenzene	Untreated and improperly treated industrial waste discharges from Mexico.
		Chloroform	Untreated and improperly treated industrial waste discharges from Mexico.
		Dissolved oxygen	5-20 million gallons per day of raw sewage from Mexico discharged to New River.
		m,p,-Xylenes	Untreated and improperly treated industrial waste discharges from Mexico.
		o-Xylenes	Untreated and improperly treated industrial waste discharges from Mexico.
		p-Cymene	Untreated and improperly treated industrial waste discharges from Mexico.
		p-DCB	Untreated and improperly treated industrial waste discharges from Mexico.
		Toluene	Untreated and improperly treated industrial waste discharges from Mexico.
		Trash	Anthropogenic sources

8

Huntington State Beach-from Avenue to Santa Ana River	Newland	
Avenue to Santa Alla River	Bacteria (wet season)	Unknown
Newport Beach, 1000 feet do		
Santa Ana River		
	Bacteria (wet season)	Unknown
Pelicari Hill Waterfall		
	Total and Fecal coliform	Unknown
Pelican Point Creek		
	Total and Fecal coliform	Unknown
Pelican Point Middle Creek		
	Total and Fecal coliform	Unknown
San Diego Creek, Reach 1		
	Fecal coliform	Unknown
Santa Ana Delhi Channel		
	Fecal coliform	Unknown
Seal Beach, San Gabriel Rive Main St. Pier	r Mouth to	
	Bacteria (wet season)	Unknown

.

.

Region	Water Body	Pollutant/Stressor	Potential Pollutant Source(s
9			
	Agua Hedionda Creek		
		Diazinon	Urban and agricultural runoff
		Total dissolved solids	Anthropogenic sources, imported water, evaporation, and natural salt sources. Also, urban runoff, agriculture runoff, other point sources, and nonpoint sources.
	Aliso Creek		
		Enterococci	Urban runoff, other point sources and nonpoint sources
		Escherichia coli	Urban runoff, other point sources and nonpoint sources
		Fecal coliform	Urban runoff, other point sources and nonpoint sources
		Phosphorus	Urban runoff, other point sources and nonpoint sources
		Toxicity	Organophosphate pesticides are a significant component of the aquatic toxicity in storm samples. Organophosphate pesticides are found in urban and agricultural run- off.
	Cloverdale Creek		······································
		Phosphorus	Urban runoff, other point sources and nonpoint sources
		Total dissolved solids	Anthropogenic sources, imported water, evaporation, and natural salt sources. Also, urban runoff, agriculture runoff, other point sources, and nonpoint sources.
	Dana Point Harbor		······································
		Bacterial indicators total/fecal coliform, enterococcus	Sewage spills/leaks, urban runoff, other point sources, nonpoint sources, and domestic/wild animals.
		Dissolved copper	RWQCB staff has knowledge of antifouling (Cu-containing) paint use in Dana Point Harbor.

Felicita Creek

.

٠

.

.

Region	Water Body	Pollutant/Stressor	Potential Pollutant Source(s)
		Total dissolved solids	Anthropogenic sources, imported water, evaporation, and natural salt sources. Also, urban runoff, agriculture runoff, other point sources, and nonpoint sources.
	Forrester Creek		
		Fecal coliform	Urban runoff, other point sources, nonpoint sources, and sewage spills
		рH	Industrial spills, urban runoff, other point sources, nonpoint sources, lack of shade cover, light penetration, (solar) heating of the water, increased photosynthesis, leached concrete components.
		Total dissolved solids	Anthropogenic sources, imported water, evaporation, and natural salt sources. Also, urban runoff, agriculture runoff, other point sources, and nonpoint sources.
	Green Valley Creek		
	·	Sulfate	Urban runoff, other point sources, nonpoint sources, and natural sources
	Kit Carson Creek		
		Total dissolved solids	Anthropogenic sources, imported water, evaporation, and natural salt sources. Also, urban runoff, agriculture runoff, other point sources, and nonpoint sources.
	Lake Hodges (Hodges R	eservoir)	
		Color	Urban runoff, other point sources and nonpoint sources
		Nitrogen	Urban runoff, local dairies, agriculture, orchards, other point sources and nonpoint
		Phosphorus	sources Urban runoff, local dairies, agriculture, orchards, other point sources and nonpoint sources

••

•

Region	Water Body	Pollutant/Stressor	Potential Pollutant Source(s)
		Total dissolved solids	Anthropogenic sources, imported water, evaporation, and natural salt sources. Also, urban runoff, agriculture runoff, other point sources, and nonpoint sources.
	Lake Sutherland (Sutherlan	d Reservoir)	
		Color	Excessive algae growth, urban runoff, other point sources, and nonpoint sources
	Murrieta Creek		
		Phosphorus	Urban runoff, other point sources and nonpoint sources
	Pacific Ocean Shoreline (To State Beach/Miramar Reser		
		Bacterial indicators	Sewage spills/leaks, urban runoff, other point sources, nonpoint sources, and domestic/wild animals.
	Pine Valley Creek (Upper)		
		Enterococci	From horse stables, cattle grazing in and near the creek, and human encampments
	Prima Deshecha Creek		
		Phosphorus	Urban runoff, other point sources and nonpoint sources
		Turbidity	Channelization, increased water velocity, undercutting of banks; increased turbidity; current/historic construction
	San Diego Bay (Switzer Cro	eek)	
		Degraded benthos	Elevated concentrations of chlordane, lindane, polynuclear aromatic hydrocarbons (PAHs), and polychlorinated biphenyls (PCBs), current/historic shipyard activity, historic PAH and garbage dumping, urban runoff, other point sources, and nonpoint sources.

•

.

.

Region	Water Body	Pollutant/Stressor	Potential Pollutant Source(s)
		Toxicity	Elevated concentrations of chlordane, lindane, polynuclear aromatic hydrocarbons (PAHs), and polychlorinated biphenyls (PCBs), current/historic shipyard activity, historic PAH and garbage dumping, urban runoff, other point sources, and nonpoint sources.
	San Diego River (lower)		
		Dissolved oxygen	Bacterial loading, subsequent decomposition of organic matter, urban runoff, other point sources, and nonpoint sources.
		Fecal coliform	Urban runoff, other point sources, nonpoint sources, and sewage.
		Phosphorus	Urban runoff, other point sources, and nonpoint sources.
		Total dissolved solids	Anthropogenic sources, imported water, evaporation, and natural salt sources. Also, urban runoff, agriculture runoff, other point sources, and nonpoint sources.
	San Luis Rey River		
		Chloride	Urban runoff, other point sources and nonpoint sources
		Total dissolved solids	Anthropogenic sources, imported water, evaporation, and natural salt sources. Also, urban runoff, agriculture runoff, other point sources, and nonpoint sources.
	Sandia Creek		
		Total dissolved solids	Anthropogenic sources, imported water, evaporation, and natural salt sources. Also, urban runoff, agriculture runoff, other point sources, and nonpoint sources.
	Santa Margarita River (upper)		
		Phosphorus	Urban runoff, other point sources and nonpoint sources
	Segunda Deshecha Creek		
	-	Phosphorus	Urban runoff, other point sources and nonpoint sources

•

.

-

.

-

Region	Water Body	Pollutant/Stressor	Potential Pollutant Source(s)
		Turbidity	Channelization, increased water velocity, undercutting of banks; increased turbidity, current/historic construction
	Tijuana Estuary		
		Dissolved oxygen	Massive bacterial loading from raw sewage flows cause oxygen depletion, decaying organic matter, urban runoff, other point sources, and nonpoint sources.

Additions-21

.

# Table 2: Proposed Deletions from the 1998 Section 303(d) List

Region	Water Body	Pollutant/Stressor
2		
	Arroyo Hondo	
	·	Diazinon
	Central Basin/San Francisco Bay, Central	
	· · · · · · · · · · · · · · · · · · ·	Copper
	San Pablo Basin/San Pablo Bay	
	•	Copper
		Nickel
	Santa Clara Basin/San Francisco Bay, South	
		Nickel
	South Bay Basin/San Francisco Bay, Lower	
		Copper
		Nickel
	Suisun Basin/Sacramento-San Joaquin Delta	
		Copper
		Nickel
	Suisun Basin/Suisun Bay	
		Copper
		Nickel
,	Suisun/San Pablo Basins/Carquinez Strait	_
		Copper Nickel
		NICKEI
3		
	Chorro Creek	
		Metals
	Estero Bay/Los Osos Creek	
		Priority organics
	San Lorenzo River Lagoon	
		Sediment/Siltation
4		······
	Arroyo Simi R1 (Moorpark Fwy (23) to Brea Canyon)	
	• /	Chromium
		Nickel
		Selenium
		Silver
		Zinc

Deletions-1

Water Body	Pollutant/Stressor
Ballona Creek	
	Arsenic
	Copper
	Lead
	Silver
	TBT
Ballona Wetland	
	Arsenic
Calleguas Creek R1 (estuary to 0.5 mi	
South of Broome Rd.) and R2 (0.5 mi	
South Broome Rd to Potrero Rd)	
	Dacthal
Calleguas Creek R10 (Conejo Creek, Hill	
Canyon)	
•	Dissolved Oxygen
Calleguas Creek R11, Arroyo Santa Rosa	
- · ·	Dissolved Oxygen
Callegues Creak B2	
Calleguas Creek R2	
	Stressor unknown
Calleguas Creek R9A, Camrosa Diversion	
(Conejo Creek)	-
(	Dissolved Oxygen
Coloreda Lassar	Dissource Oxygen
Colorado Lagoon	
	Lead
Conejo Creek R1, R2, R3, R4	
	Coloria de la
	Cadmium
	Chromium
	Dacthal
	Nickel
	Silver
Covote Creek	
Coyote Creek	
	Silver
LA Harbor-Consolidated Slip	
	TDT
	TBT
	Zinc
Lake Calabasas	
	Conner
	Copper Zinc
	(100
	200
Los Angeles River R5 (within Senulveda	
Los Angeles River R5 (within Sepulveda	
Los Angeles River R5 (within Sepulveda Basin)	
Basin)	Chlorpyrifos
Basin)	Chlorpyrifos
Basin)	Chlorpyrifos Copper
Basin) Malibou Lake	Chlorpyrifos
Basin)	Chlorpyrifos Copper
Basin) Malibou Lake	Chlorpyrifos Copper
Basin) Malibou Lake	Chlorpyrifos Copper PCB

_

.

•

.

...

•

Deletions-2

egion	Water Body	Pollutant/Stressor
		Lead
		ТВТ
		Zinc
	Mugu Lagoon	
		Dacthal
	Port Hueneme (back basins)	
	(,	PAHs
		твт
		Zinc
	Rio de Santa Clara/Oxnard Drain #3	
		Chem A
	San Gabriel River Watershed- Estuary	
	Sall Gabrier River Watershed- Estuary	<b>4</b>
	Santa Clara Direc Estuary Basah	Arsenic
	Santa Clara River Estuary Beach	
		Fecal Coliform
	Venture Data	Total Coliform
	Ventura Estuary	
		DDT
	Ventura River R1 (Estuary to Main Street) and R2 (Main Street to Weldon Canyon)	_
		Copper
		Selenium
	· · ·	Silver
	Westlake Lake	Zinc
	westiake Lake	
		Chlordane
		Соррег
5		
	American River Lower	
		Group A Pesticides
/	······································	
6	······	
	Big Springs	
		Arsenic
	Crowley Lake	··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ·· ··· ·· ·· ·· ··· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·
		Arsenic
		· ·
	East Fork Carson River	
	East Fork Carson River	Nutrients
	East Fork Carson River East Walker River	Nutrients
		<u></u>
	East Walker River	Nutrients Metals
		Metals
	East Walker River Grant Lake	<u></u>
	East Walker River	Metals Arsenic
	East Walker River Grant Lake Hot Creek	Metals
	East Walker River Grant Lake	Metals Arsenic

Deletions-3

.

-

Region	Water Body	Pollutant/Stressor
	Middle Alkali Lake	
		Salinity, TDS, Chlorides
	Mojave River	
		Priority Organics
	Mojave River between Upper and Lower Narrows	
	INAFFORMS	Chlorida
		Chloride Sulfate
		TDS
	Mono Lake	
	Mono Bako	Salinity, TDS, Chlorides
	Owens Lake	ouning, 100, enorides
	Civella Lake	Solinity TDS Chlorider
	Owens River	Salinity, TDS, Chlorides
	Owens River	
		Arsenic
	Snow Creek	
		Habitat Alterations
	Stampede Reservoir	
		Pesticides (lindane)
	Tinemaha Reservoir	
		Arsenic
	Top Spring	
	· · •	Radiation
	Upper Alkali Lake	
	- FF	Salinity, TDS, Chlorides
	Wendel Hot Springs, Amedee Hot Springs,	
	Hot Creek, Fales Hot Springs, Little Hot	
	Creek, Little Alkali Lake, Deep Springs	
	Lake, Keogh Hot Springs, Amaragosa	
	River	
	· · · · · · · · · · · · · · · · · · ·	Salinity, metals, arsenic
8		
	Lower Newport Bay	
	• •	Fecal coliform
		Nutrients
		Siltation
	San Diego Creek, Reach 1	
		Nutriente
		Nutrients
	San Diego Crook Basch 2	Siltation
	San Diego Creek, Reach 2	· · · · ·
		Nutrients
		Siltation
	Santa Ana River, Reach 3	
	·	Nitrogen
		Total Dissolved Solids

Deletions-4

Region	Water Body	Pollutant/Stressor
	Upper Newport Bay	· · · · · · · · · · · · · · · · · · ·
		Fecal coliform
		Nutrients
		Siltation
9		
	Pacific Ocean Shoreline (Coronado Beach)	
		Bacterial indicators

Deletions-5

## Table 3: Changes Proposed for the Section 303(d) List

Region	Water Body	Pollutant	Recommended Change
2			
	Lake Merritt	······	
		Trash	Change in listed water
			body. Change pollutant
			from Floating Material to Trash.
	Tomales Bay		
		Mercury	Change in listed water
			body. Change pollutant from Metals to Mercury.
	Walker Creek		
		Mercury	Change in listed water
			body. Change pollutant from Metals to Mercury.
4			
	McGrath Lake Estuary		
		Total pesticides	Change in listing,
			(Chemicals can be listed individually)
5			
	Cache Creek		
		Mercury and Unknown	Change in Total Size and
	Camanche Reservoir	Toxicity	Size Affected.
	Califanciie Reservoir	Соррег	Change in listing to include
		or from	reservoir on list separate
		Zinc	from the river. Change in listing to include
		Zine	reservoir on list separate from the river.
	Delta Waterways		······································
		Chlorpyrifos, DDT,	Change in Total Size and
		Diazinon, Group A pesticides, Mercury, and Unknown Toxicity.	Size Affected.
		Dissolved Oxygen	Change in Total Size and Size Affected.
	Dunn Creek		
		Mercury and Metals.	Change in Total Size and Size Affected.
	Fall River		······································
		Sedimentation and Siltation	Change in size affected.

Changes-1

Region	Water Body	Pollutant	Recommended Change
		Bacteria	Change in Total Size and Size Affected.
	Horse Creek		
		All metals (Cadmium, Copper, Lead, Zinc)	Change in size affected.
	Humbug Creek		
		Sedimentation and Siltation, Mercury, Copper, and Zinc.	Change in size affected.
	James Creek		
		Nickel and Mercury	Change in Total Size and Size Affected.
	Lower Mokelumne River		
		Copper	Change in areal extent.
		Zinc	Change in areal extent.
	Lower Stanislaus River		
		Diazinon, Group A Pesticides, Unknown toxicity	Change in Total Size and Size Affected.
	Lower Toulumne River		
		Diazinon -	Change in Total Size and Size Affected.
		Group A Pesticides, Unknown Toxicity	Change in Total Size and Size Affected.
	Marsh Creek		
		Mercury	Change in Total Size and Size Affected.
		Metals	Change in Total Size and Size Affected.
	Mosher Slough		
		Diazinon and Chlorpyrifos	Change in Total size affected.
	San Carlos Creek		
		Mercury	Change in Total Size and Size Affected.
6			
Č.	<u> </u>	<u> </u>	
	Eagle Lake		Ohana liatia ( 1
		Low Dissolved Oxygen	Change listing from low dissolved oxygen to separate listings for nitrogen and phosphorus.
	Lake Tahoe	·····	
		Nutrients	Clarify previous listing for nutrients. Replace nutrient listing with separate listings for nitrogen and phosphorus.

٠

•

-

•

Changes-2

Region	Water Body	Pollutant	Recommended Change
		Metals	Clarify metals listing. Replace metals listing with listings for 4 specific metals - iron, silver, aluminum, manganese.
7			
	Coachella Valley Stormwater Channel	Change listing from bacteria	Change pollutant
		to pathogens	description.
	New River	Change listing from bacteria	Change pollutant
	Palo Verde Outfall	to pathogens	description.
	Drain	Change listing from bacteria to pathogens	Change pollutant description.
9			
	Pacific Ocean Shoreline (Ocean Beach)		
		Bacterial indicators	Add specific location to 1998 listing within same hydrologic area.
	Pacific Ocean Shoreline (San Onofre State Beach/San Mateo Creek Outlet)		
	( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )	Bacterial indicators	Add specific location to 1998 listing within same hydrologic area.
	Pacific Ocean Shoreline (South Capistrano State Beach)		
		Bacterial indicators	Add specific location to 1998 listing within same hydrologic area.
	San Diego Bay Kellog Street Beach (Pueblo San Diego HU [908.00] and Sweetwater HU [909.00])		
		Bacterial indicators	Add specific location to 1998 listing within same hydrologic area.
	San Diego Bay Shelter Island Shoreline Park (Pueblo San Diego 908.00 and Sweetwater)		
		Bacterial indicators	Add specific location to 1998 listing within same hydrologic area.

Changes-3

## Table 4: Proposed Watch List

Region	Water Body	Pollutant/Stressor
1		<u> </u>
•	Alder Creek	
		Sediment and Temperature
	Beith Creek	
		Sediment
	Big River	
	C	Temperature
	Brush Creek	
		Sediment
	Casper Creek	
		Pathogens
	Cottaneva Creek	
		Sediment
	Dehaven Creek	
	Benaven ereek	Sediment
	East Fork Trinity River	
	Bast Fork Trinity Rever	Mercury
	Elk Creek	
		Sediment
	Greenwood Creek	
	Greenwood Creek	Sediment and Temperature
	Grotzman Creek	
	CICIEINIII CICOR	Sediment
	Gualala River	
	Statiana Novel	Temperature
	Hardy Creek	
	Hardy Creek	Sediment
	Howard Creek	Seument
		Sediment
	Humboldt Bay	Seumen
	Tumbolut Day	PCPs and Diald-in
		PCBs and Dieldrin Sediment
	Juan Creek	<u>Soument</u>
		Sediment
	Klamath River	Sedment
		Sediment
	Laguna de Santa Rosa	Sediment
	Daguna de Danta Nosa	Chromium, Copper, and Zinc
		Diazinon
	Lake Mendocino	

Region	Water Body	Pollutant/Stressor
		Mercury
	Lake Sonoma	
		Mercury
	Mad River	
		Temperature
	Mad River Slough	
		PCBs
	Mallo Pass Creek	
	Dudding Creats	Sediment
	Pudding Creek	Pathogana
	Redwood Creek	Pathogens
	Neuwoou Cicek	Tamperatura
	Russian River	Temperature
		Diazinon
		Temperature
	Santa Rosa Creek	
		Chromium, Copper, and Zinc
		Diazinon
	Schooner Gulch	~
		Sediment
	Shasta River	
		Sediment and Nutrients
	Ten Mile River	
		Temperature
	Tule Lake and Lower Klamath Lake	
	National Wildlife Refuge	Dissolved Oppose and University
		Dissolved Oxygen and Unionized Ammonia
	Usal Creek	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
		Sediment
	Virgin Creek	
	-	Pathogens
	Wages Creek	······································
	-	Sediment
2		<u> </u>
~	Carquinez Strait	
	Sandaman Suma	Copper
		Nickel
		NICKEI PAHs, PBDEs
	Central Basin/Stege Marsh	
	5	Sediment Toxicity and Benthic
		Community Effects
	Lake Merced	
		Low Dissolved Oxygen

Region	Water Body	Pollutant/Stressor
	Lake Merritt	
		Low Dissolved Oxygen
	Novato Creek below Stafford Dam	· · · · · · · · · · · · · · · · · · ·
		Sedimentation and Siltation
	Pilarcitos Creek below Pilarcitos Reservoir	
		Sedimentation and Siltation
	Richardson Bay	
	Richardson Day	PAHs, PBDEs
	Sacramento-San Joaquin Delta	
	Sacramento-San Joaquin Dena	Corner
		Copper Nickel
		PAHs, PBDEs
	San Francisco Bay, Central	1/110,10023
	Sall Mancisco Bay, Central	Conner
		Copper PAHs, PBDEs
	San Francisco Bay, Lower	
	Sull Fulloises Buy, Leviel	Copper
		Nickel
		PAHs, PBDEs
	San Francisco Bay, South	·
	•	Соррег
		Nickel
		PAHs, PBDEs
	San Pablo Basin/Castro Cove, Richmond	
		Toxicity
	San Pablo Bay	
		Copper
		Nickel
		PAHs, PBDEs
	South Bay Basin/Central Basin, San	
	Francisco	
		Toxicity
	South Bay Basin/Islais Creek	
		Sediment Toxicity and Benthic Community Effects
	South Bay Basin/Mission Creek	Community Effects
	South Day Dashi/MISSION CICCK	Sediment Toxicity and Benthic
		Community Effects
	South Bay Basin/Oakland Inner Harbor	
	(Fruitvale site)	
	·	Toxicity
	South Bay Basin/Oakland Inner Harbor	
	(Pacific Dry-dock Yard 1 site)	
		Toxicity
	South Bay Basin/Redwood Creek, tidal	
	portion (San Mateo County)	
		E. coli

Region	Water Body	Pollutant/Stressor
	South Bay Basin/San Leandro Bay	
		Toxicity
	Suisun Basin/Peyton Slough	
	, ,	Sediment Toxicity and Benthic
		Community Effects
	Suisun Bay	
		Copper
		Nickel
		PAHs, PBDEs
	Urban Creeks, Lakes, and Shorelines	
		Trash
3		
	San Luis Obispo Creek at the mouth	
		Polychlorinated biphenyls (PCBs)
4		- + + ·····
	Calleguas Creek Watershed-Conejo Creek	
	R9B	
		Unnatural Foam and Scum
	Calleguas Creek R10 (Conejo Creek, Hill	
	Canyon)	Nitrate as Nitrogen
	Calleguas Creek Watershed	Nutate as Nutogen
	Calleguas Creek watershed	Sedimentation
	Dominguez Channel Estuary (to Vermont)	Seumentation
	Dominguez Channel Estuary (10 Vermont)	Chlordone
		Chlordane Copper
		PCBs
		Unknown pollutant
	LA Harbor-Consolidated Slip	
		Arsenic
		Cadmium
		Copper
		Dieldrin
		Mercury
		Nickel
		Toxaphene
	Los Angeles River Estuary (Queensway	
	Bay)	DOD.
		PCBs
	Malibu Creek Watershed-Cold Creek	
		Algae
	Malibu Creek Watershed-Malibu Creek	
		Total Selenium
	McGrath Lake Estuary	
		Dieldrin

....

.

-

Region	Water Body	Pollutant/Stressor
	Mugu Lagoon	· · ·
		Dieldrin
	San Gabriel River Estuary	
	•	Trash
	Santa Clara River R 3 (Freeman Diversion	
	to Fillmore Street A)	
		Nitrite and Nitrate as Nitrogen
5		
5		
	Lower Putah Creek	
		Unknown Toxicity
	Upper Putah Creek	
		Unknown Toxicity
6	······································	
U		
	Buckeye Creek	
		Phosphorus
	Cold Stream	
		Sediment
	Donner Creek	-
		Sediment
	Donner Lake	
		Boat Fuel Constituents
		Pathogens
	Eagle Lake	
	-	Mercury
	Emerson Creek	· · · · · · · · · · · · · · · · · · ·
		Sediment
	Heavenly Valley Creek	
		Chloride
	Heavenly Valley Creek, within USFS	
	boundary	
	•	Phosphorus
	Lake Tahoe	· · · · · · · · · · · · · · · · · · ·
		Boat fuel constituents
		Iron
		Lead in sediment
		Mercury in sediment
		Pesticides (40 different compounds)
	Lassen Creek	
		Sediment
	Lily Lake	
		Nutrients
	Little Truckee River	
		Sediment
	Long Valley Creek	

Region	Water Body	Pollutant/Stressor
		Sediment
	Martis Creek	
		Nutrients
	Pine Creek	
		Nutriente
	Raider Creek	Nutrients
	Raiuer Cleek	Sadiment
	Debinson Create Hum 205 to Dridgement	Sediment
	Robinson Creek, Hwy 395 to Bridgeport Reservoir	
	NG361 VUII	Nitrogen
	Squaw Creek Meadow Wetlands	
	Squaw Creek Meauow Wellanus	Perticiden
	Stompado Decemici-	Pesticides
	Stampede Reservoir	
		Chlordane, lindane
	Summit Creak	Pesticides (lindane)
	Summit Creek	
		Petroleum products
	Susan River d/s of Paiute Creek	
		Mercury
		Nickel
	0	PCBs
	Susan River u/s of Susanville	
		Mercury
		Nickel
	Tahoe Keys Sailing Lagoon	
		PCBs
	Trada a Orași	Toxaphene
	Taylor Creek	
		Pesticides (8 different compounds)
	Truckee River	
		Chloride
		TDS
	Unnamed creek (aka Hidden Valley Creek)	
		Chloride
		Phosphorus
	Upper Angora Lake	
		Pesticides (16 different compounds)
8		
	Anaheim Bay	
	. manonin Day	Reviewed data from Coastal Fish
		Contamination Program (CFCP),
		Orange County PFRD/tissue and
		water/fish consumption, human health

٠

٠

-

Bolsa Chica

Region	Water Body	Pollutant/Stressor		
		Orange County PFRD data for metals, beach postings/water/human health		
	Chino Creek			
		Reviewed water quality data from Orange County Water District		
	Cucamonga Creek	Reviewed water quality data from		
	Thursday Thurbon	Orange County Water District		
	Huntington Harbor	Orange County PFRD data for metals, State Mussel Watch Program data for pesticides, organics/water and tissue/fish consumption		
	Little Corona Beach	······································		
		Bacteria		
	Mill Creek (Prado Area)	Reviewed water quality data from Orange County Water District		
	Ocean Waters			
		Reviewed data from Coastal Fish Contamination Program		
	San Jacinto River North Fork (Reach 7)			
		Reviewed water quality data from Lake Hemet Municipal Water District		
	San Jacinto River South Fork (Reach 7)			
		Reviewed water quality data from Lake Hemet Municipal Water District		
	Santa Ana River (Reaches 4 and 5)			
		Reviewed water quality data from Orange County Water District		
	Strawberry Creek			
		Reviewed water quality data from Lake Hemet Municipal Water District		
	Temescal Creek			
		Reviewed water quality data from Orange County Water District		
9				
	Agua Hedionda Creek			
		Benthic community degradation Eutrophication		
	Agua Hedionda Lagoon	Incised channel		
		Caulerpa taxifolia		
		Copper (dissolved)		
	Aliso Creek	Selenium		
		Chlordane		

,

.

.

Region	Water Body	Pollutant/Stressor
		Dieldrin
		Heptachlorepoxide
		PCB
	Alvarado Creek	
		Benthic community degradation
		Eutrophication
		Sedimentation/Siltation
		Trash
	Beach and Bay Shorelines displaying a Permanent Health Risk sign	
		Unknown constituents that may
		effect human health
	Boulder Creek	
,		Exotic vegetation (Tamarisk sp.)
		Hydromodification (scour from
		reservoir release)
	Buena Vista Creek	
		Benthic community degradation
		Eutrophication
	Chocolate Creek	
		Eutrophication
		Sedimentation/Siltation
	Chollas Creek	
		Total chlordane
		Total PCB
		Trash
		Turbidity
	Cloverdale Creek	
		Eutrophication
		Sedimentation/Siltation
	Cottonwood Creek	
		Diazinon
		Eutrophication
		Exotic vegetation (Tamarisk sp.)
		Hydromodification (scour from reservoir release)
	Deluz Creek	
	Deluz Creek	0.10
		Sulfate
	Delaure Carela	Total dissolved solids
	Delzura Creek	
		Erosion
		Eutrophication
		Incised channel
		Sedimentation/Siltation
	Encinitas Creek	
		Diazinon
		Eutrophication
		Malathion

••

.

.

...

-

Region	Water Body	Pollutant/Stressor
	Escondido Creek	
		Benthic community degradation
		Diazinon
	· · ·	Eutrophication
		Sulfate
		Total dissolved solids
	Fallbrook Creek	
		Iron
		Manganese
		Phosphorus
	Famosa Slough	
	Taniosa Sibugh	Dialdaia
		Dieldrin Total chlordane
		Total DDT
		Total PCB
	Forrester Creek	
	Pollester Cleek	<b>17</b> . <b>1</b>
		Eutrophication
	Course Valley Course	Trash
	Green Valley Creek	
		Benthic community degradation
		Eutrophication
		Phosphorus Sedimentation/Siltation
		Trash
	Hatfield Creek	
	Hatheld Creek	Distance is for all and
		Eutrophication Incised channel
	King Creek	
	King Creek	
		Eutrophication
	Laguna Lakes	
	<u> </u>	Bacterial indicators
	Lake Hodges	
		MTBE
	Loma Alta Creek	
		Benthic community degradation
		Eutrophication
	Los Penasquitos Creek	
		Sedimentation/Siltation
	Lower Otay Reservoir	Continentation Stration
	Lower Otay Reservoir	Color
		Color
	Minere Press in	Odor
	Miramar Reservoir	
		Bromodichloromethane
		Chlorodibromomethane
		Chloroform
		Total dissolved solids

Murray Reservoir

.

.

Region	Water Body	Pollutant/Stressor
		Bromodichloromethane
		Chloride
		Chloroform
		Dibromochloromethane
		Phosphorus
		Sodium
		Sulfate
	Murrieta Creek	
		Iron
		Manganese
		Total dissolved solids
	Oceanside Harbor	
		Copper (dissolved)
	Oso Creek	n
		Chloride
		Phosphorus
		Sulfate
		Total dissolved solids
		Turbidity
	Pacific Ocean Shoreline (Coronado Beach)	
		Bacterial indicators
	Pacific Ocean Shoreline (Emerald Bay)	
		Bacterial indicators
	Padre Barona Creek	
		Eutrophication
		Incised channel
	Prima Deshecha Channel	
	i mila positorna Chaimer	Cadmium
		Cadmium
		Nickel
	Proctor Valley Creek	
		Trash
	Rainbow Creek	
		Sediment toxicity
		Sulfate
		Total dissolved solids
		Trash
	Reidy Creek	
		Nitrogen
		Phosphorus
	Rose Creek	
	NUSE CIEEN	Redimentation (Ritesian
		Sedimentation/Siltation
	San Diego Bay at Mouth of Switzer Creek	
		Chlordane
		Lindane
		РАН
	San Diego Bay at America's Cup Harbor	
		Copper (dissolved)
		FL: (###21.4#)

....

.

-

.

Region	Water Body	Pollutant/Stressor
	San Diego Bay at B Street Pier	······································
		Chlordane
		Lindane
		РАН
	San Diego Bay at Harbor Island (East Basin)	
	,	Arsenic
		Cadmium
		Copper (dissolved)
	San Diego Bay at Harbor Island (West Basin)	
	<u></u>	Copper (dissolved)
	San Diego Bay at Laurel Street	
		Arsenic
		Cadmium
		Copper (dissolved)
	San Diego Bay at Marriott Marina	
		Copper (dissolved)
	San Diego Bay at North Island Aircraft Platform	
		Arsenic
		Cadmium
		Copper (dissolved)
	San Diego Bay at Shelter Island Yacht Harbor	
		Arsenic
		Cadmium
	San Diego Bay at South Bay Power Plant	
		Chlorine
		Thermal warming
		Turbidity
	San Diego River	
		Benthic community degradation
		Benzene
		Chlordane
		Eutrophication
		Exotic vegetation (Water Hyacinth, Arundo sp., Tamarisk sp.)
		Methyl tertiary-butyl ether (MTBE)
		Trash
	San Juan Creek	
		Erosion
		Incised channel
		PCB
		Sedimentation/Siltation
	San Luis Rey River	
		Calcium
		Eutrophication

1

Region	Water Body	Pollutant/Stressor
		Magnesium
		Phosphorus
	San Marcos Lake	
		Dissolved oxygen
	San Mateo Creek	
		Introduced (non-native) amphibian species: bullfrogs
		Introduced (non-native) fish species: black bullhead, bluegill, channel catfish, green sunfish, largemouth
		bass, mosquito fish Introduced (non-native) invertebrate species: non-native crayfish
		Introduced (non-native) plant species: saltcedar, other exotic vegetation
	Que l'a Que la	Total dissolved solids
	Sandia Creek	
		Lead
	Santa Mananita Diana (antina and	Sulfate
	Santa Margarita River (entire and tributaries)	
÷	,	Sedimentation/Siltation
	Santa Margarita River (Lower)	
		Iron
		Manganese
		Sulfate
		Total dissolved solids
	Santa Margarita River (Upper)	
		Iron
		Manganese
		Sulfate
		Total dissolved solids
	Santa Maria Creek	
		Bacterial indicators
		Exotic vegetation (Tamarisk sp.)
	Santa Ysabel Creek	
		Exotic vegetation (Arundo sp. and Tamarisk sp.)
	Scove Creek	
		Bacterial indicators
		Incised channel
		Nutrients
	Sorrento (Carroll Canyon) Valley Creek	
		Eutrophication
	Sycamore Canyon Creek	
		Eutrophication Exotic vegetation (Arundo donax) Phosphorus
		rnosphorus

.

••

-

Region	Water Body	Pollutant/Stressor	
		Trash	
	Tecolote Creek		
		Sedimentation/Siltation	
	Tijuana River Estuary		
		Turbidity	

,8

## Table 5: Proposed TMDL Priorities and Completion Dates for the 2002 Section 303(d) List

Region	Water Body	Pollutant/Stressor	Priority	TMDL Completion Date
				·
-	Albion River			
		Sedimentation/Siltation	High	2003
	Big River	<u>, , , , , , , , , , , , , , , , , , , </u>		
		Sedimentation/Siltation	High	2003
	Bodega HU, Estero De San Antonio/Stemple Creek			
	•	Nutrients	Medium	
	Eel River Delta			
		Sedimentation/Siltation	Medium	
		Temperature	Medium	
	Eel River, Middle Fork			
	,	Sedimentation/Siltation	Medium	
		Temperature	Medium	
	Eel River, Middle Main			
		Sedimentation/Siltation	Medium	
		Temperature	Medium	
	Eel River, North Fork			
		Sedimentation/Siltation	Medium	
		Temperature	Medium	
	Eel River, South Fork			
		Sedimentation/Siltation	Medium	
		Temperature	Medium	
	Eel River, Upper Main (Includes Tomki Creek)			
	(,	Sedimentation/Siltation	Medium	
		Temperature	Medium	
	Eel River, Upper Main, Tomki Creek			
		Sedimentation/Siltation	Medium	
	Garcia River			
		Sedimentation/Siltation	High	2002
	Gualala River	Sedimentation/Siltation	High	2004
	Klamath River HU, Lost	Sedimentation		2004
	River HA, Clear Lake HSA, Boles HSA			
		Nutrients	Medium	

egion	Water Body	Pollutant/Stressor	Priority	TMDL Completion Date
	Klamath River HU, Lost River HA, Tule Lake HSA, Mt. Dome HSA			
		Nutrients	Medium	
		Temperature	Medium	
	Klamath River HU, Lower HA, Klamath Glen HSA			
		Nutrients	Medium	
		Organic enrichment/Low D.O.	Medium	
		Temperature	Medium	
	Klamath River HU, Middle and Lower HAs, Orleans HSA, Ukonom HSA, Happy Camp HSA, Seiad HSA			
		Nutrients	Medium	
		Organic enrichment/Low D.O.	Medium	
		Temperature	Medium	
	Klamath River HU, Middle HA, Beaver Creek HSA, Hornbrook HSA			
		Nutrients	Medium	
		Organic enrichment/Low D.O.	Medium	
		Temperature	Medium	
	Klamath River HU, Middle HA, Iron Gate HSA, Copco HSA			
		Nutrients	Medium	
		Temperature	Medium	
	Klamath River HU, Salmon River HA			
		Nutrients	Medium	
		Temperature	Medium	
	Mattole River			
		Sedimentation/Siltation	High	2004
	New ning	Temperature	High	2004
	Navarro River	On the station (Official	TT2 - 1-	2004
		Sedimentation/Siltation	High High	2004 2004
	Neuromo Diura Dalta	Temperature	High	
	Navarro River Delta	Sedimentation/Siltation	High	2004
	Novo Pivor	Segmentation/Siliation	High	2004
	Noyo River	Cadimentation (Citeration	Wieh	2002
	Redwood Creek (Above Redwood National Park Boundary)	Sedimentation/Siltation	High	2003
		Sedimentation/Siltation	Medium	
	Redwood Creek (Below Redwood National Park Boundary)			

.

-

.

Region	Water Body	Pollutant/Stressor	Priority	TMDL Completion Dat
		Sedimentation/Siltation	Medium	
	Scott River			
		Sedimentation/Siltation	Medium	
		Temperature	Medium	
	Shasta River			
		Organic enrichment/Low D.O.	Medium	
		Temperature	Medium	
	Ten Mile River			
		Sedimentation/Siltation	High	2003
	Trinity River, Lower			
		Sedimentation/Siltation	Medium	
	Trinity River, Middle			
		Sedimentation/Siltation	Medium	
	Trinity River, South Fork			
		Sedimentation/Siltation	Medium	
	Trinity River, Upper			
	V. D. Dim (11)	Sedimentation/Siltation	Medium	
	Van Duzen River (tributary to Eel River)			
	to Eer River)	Sedimentation/Siltation	Medium	
		Sedimentation	Wedluitt	
2			-	
	Alameda Creek	······		
	i numeda ereek	Diazinon	High	2004
	Alamitos Creek			
		Mercury	Medium	
	Arroyo Corte Madera Del			
	Presidio			
		Diazinon	High	2004
	Arroyo De La Laguna			
	·····	Diazinon	High	2004
	Arroyo Del Valle			
		Diazinon	High	2004
	Arroyo Hondo			
		Diazinon	High	2004
	Butano Creek			
		Sedimentation/Siltation	Medium	
	Calabazas Creek	<b></b>		0004
	Calero Reservoir	Diazinon	High	2004
	Calero Reservoir	Marour	Madium	
	Carquinez Strait	Mercury	Medium	
	Surgumez Stratt	Chlordane/DDT/Dieldrin	Medium	
		Copper	High	2004
		Diazinon	Medium	
		Exotic Species	Medium	
		Exotic species		
		Mercury	High	2002

,

.

Region	Water Body	Pollutant/Stressor	Priority	TMDL Completion Date
		PCBs/PCBs (dioxin-like)	High	2004
	Corte Madera Creek			
		Diazinon	High	2004
	Coyote Creek (Marin County)			
	Coyote Creek (Santa Clara	Diazinon	High	2004
	Coyole Creek (Santa Clara Co.)			
		Diazinon	High	2004
	Gallinas Creek			
		Diazinon	High	2004
	Guadalupe Creek			
	Curdaluma Damaria	Mercury	Medium	
	Guadalupe Reservoir	Margun	Medium	
	Guadalupe River	Mercury	Medium	
	Guadalupe River	Diazinon	High	2004
		Mercury	Medium	
	Lagunitas Creek			
	-	Nutrients	Medium	
		Pathogens	Medium	
	Laurel Creek	Sedimentation/Siltation	Medium	
	Laurei Creek	Diazinon	High	2004
	Ledgewood Creek			
		Diazinon	High	2004
	Los Gatos Creek (R2)			
		Diazinon	High	2004
	Matadero Creek			
		Diazinon	High	2004
	Miller Creek	Diazinon	High	2004
	Mt. Diablo Creek	Diazinon	ttign	2004
	MI. Diablo Creek	Diazinon	High	2004
	Napa River		<u> </u>	
		Nutrients	Medium	
		Pathogens	Medium	
		Sedimentation/Siltation	Medium	
	Novato Creek		•••	<b>•</b> •••
		Diazinon	High	2004
	Permanente Creek	Dission	Hist	2004
		Diazinon	High	2004
	Pescadero Creek	Sedimentation/Siltation	Madium	
	Petaluma River	Sequence atton Smatton	Medium	
	i sululla ivitel	Nutrients	Medium	
		Pathogens	Medium	
		Sedimentation/Siltation	Medium	

-

٩.

- (

-+

gion	Water Body	Pollutant/Stressor	Priority	TMDL Completion Dat
	Pine Creek			
		Diazinon	High	2004
	Pinole Creek	······································		
		Diazinon	High	2004
	Richardson Bay			
		Chlordane/DDT/Dieldrin	Medium	
		Exotic Species	Medium	
		Mercury	High	2002
		PCBs/PCBs (dioxin-like)	High	2004
	Rodeo Creek	····	· · · · · · · · · · · · · · · · · · ·	
		Diazinon	High	2004
	Sacramento San Joaquin Delta		<u></u>	
		Chlordane/DDT/Dieldrin	Medium	
		Copper	High	2004
		Diazinon	Medium	
		Exotic Species	Medium	
		Mercury	High	2002
		Nickel	High	2004
		PCBs/PCBs (dioxin-like)	High	2004
	San Antonio Creek			
		Diazinon	Higħ	2004
	San Felipe Creek			
		Diazinon	High	2004
	San Francisquito Creek			
	Sun Francisquito Creek	Diazinon	High	2004
		Sedimentation/Siltation	Medium	
	San Gregorio Creek			
		Sedimentation/Siltation	Medium	
	San Leandro Creek			
		Diazinon	High	2004
	San Leandro Creek, Lower			
	Sun Beandro Creek, Bowei	Diazinon	High	2004
	San Lorenzo Creek	Diazinon		
	San Lorenzo Creek	Diazinon	Wigh	2004
	San Mateo Creek	Diazinon	High	2004
	San Mateo Creek	D'autor	11:-1	2004
	Can Dable Davi	Diazinon	High	2004
	San Pablo Bay			
		Chlordane/DDT/Dieldrin	Medium	2004
		Copper Diazinon	High Medium	2004
		Exotic Species	Medium	
		Mercury	High	2002
		Nickel	High	2002
		PCBs/PCBs (dioxin-like)	High	2004
	San Pablo Creek			
	Sull'I WOID CICCR	Diazinon	High	2004
	San Rafael Creek		111511	
	San Kalaci Ureck	Diaginan	Lliak	2004
		Diazinon	High	2004

,

egion	Water Body	Pollutant/Stressor	Priority	TMDL Completion Dat
	Saratoga Creek		N	
		Diazinon	High	2004
	SF Bay Central			
		Chlordane/DDT/Dieldrin	Medium	
		Copper	High	2004
		Diazinon	Medium	
		Exotic Species	Medium	
		Mercury	High	2002
		PCBs/PCBs (dioxin-like)	High	2004
	SF Bay Lower			
		Chlordane/DDT/Dieldrin	Medium	
		Copper	High	2004
		Diazinon	Medium	
		Exotic Species	Medium	
		Mercury	High	2002
		Nickel	High	2004
		PCBs/PCBs (dioxin-like)	High	2004
	SF Bay South			
		Chlordane/DDT/Dieldrin	Medium	
		Diazinon	Medium	
		Exotic Species	Medium	
		Mercury	High	2002
		PCBs/PCBs (dioxin-like)	High	2004
	Sonoma Creek			
		Nutrients	Medium	
		Pathogens	Medium	
	,	Sedimentation/Siltation	Medium	
	South San Francisco Bay			
		Copper	High	2003
		Nickel	High	2003
	Stevens Creek			
		Diazinon	High	2004
	Suisun Bay			
		Chlordane/DDT/Dieldrin	Medium	
		Copper	High	2004
		Diazinon	Medium	
		Exotic Species	Medium	
		Mercury	High	2002
		Nickel	High	2004
		PCBs/PCBs (dioxin-like)	High	2004
	Suisun Slough			
		Diazinon	High	2004
	Tomales Bay			
	2	Mercury (Metals)	Medium	,
			Medium	
		Nutrients Pathogens	High	2004
		Sedimentation/Siltation	Medium	2007
	Walkar Crack	Southentation/Sittation	ivicalulii	
	Walker Creek	Manager (Master)	Madian	
		Mercury (Metals)	Medium	
		Nutrients	Medium	

4

•

•

Region	Water Body	Pollutant/Stressor	Priority	TMDL Completion Dat
		Sedimentation/Siltation	Medium	
	Walnut Creek			
	Wildcat Creek	Diazinon	High	2004 -
	w lideat Creek	Diazinon	High	2004
-				
3 .				
	Aptos Creek			
		Pathogens	Medium	
		Pathogens	Medium	
	Blanco Drain		•	
		Pesticides	Medium	
	Carbonera Creek	·		
		Pathogens	Medium	
		Sedimentation/Siltation	High	2003
	Chorro Creek			
		Metals	High	2002
		Metals	High	2002
		Nutrients	High	2003
		Sedimentation/Siltation	High	2003
	Clear Creek			
		Mercury	Medium	
	Espinosa Slough	<b>N</b>	<b>N</b> <i>A</i> 11	
		Pesticides	Medium Medium	
	Hernandez Reservoir	Priority Organics	Medium	
		Marauzi	Medium	
	.)	Mercury Mercury	Medium	
	Las Tablas Creek			
		Metals	High	2003
	Las Tablas Creek, North			
	Fork			
		Metals	High	2003
	Las Tablas Creek, South			· · · · · · · · · · · · · · · · · · ·
	Fork			
		Metals	High	2003
	Llagas Creek			
	U U	Nutrients	Medium	
		Sedimentation/Siltation	Medium	
	Lompico Creek			
		Pathogens	Medium	
		Sedimentation/Siltation	High	2003
	Los Osos Creek			
		Nutrients	High	2003
		Priority Organics	High	2002
		Sedimentation/Siltation	High	2003
	Monterey Harbor			
		Metals	Medium	

,

•

gion	Water Body	Pollutant/Stressor	Priority	TMDL Completion Date
	Moro Cojo Slough			
		Pesticides	Medium	
	Morro Bay			
		Metals	Medium	
		Pathogens	High	2004
		Sedimentation/Siltation	High	2003
	Nacimiento Reservoir			
		Metals	High	2003
		Metals	High	2003
	Old Salinas River Estuary	NI A L A		
		Nutrients Pesticides	Medium Medium	
	Pajaro River	resticides	Medium	
	Fajalo River	Nutrients	Medium	
		Sedimentation/Siltation	Medium	
	Rider Gluch Creek	Sedmentation/Sintation	Medium	
	Rulei Gluen ereek	Sedimentation/Siltation	Medium	
	Salinas Reclamation Canal	beamentation	Mourum	
	Sannas Reclamation Canar	Pesticides	Medium	
		Priority Organics	Medium	
		Priority Organics	Medium	
	Salinas River		~	
		Nutrients	Medium	
		Pesticides	Medium	
		Sedimentation/Siltation	Medium	
	Salinas River Lagoon (North)			
		Nutrients	Medium	
		Pesticides	Medium	
		Sedimentation/Siltation	Medium	
	Salinas River Refuge Lagoon (South)			
		Nutrients	Medium	
		Pesticides	Medium	
	San Benito River			
		Sedimentation/Siltation	Medium	
	San Lorenzo River			
		Pathogens	Medium	
	······································	Sedimentation/Siltation	High	2003
	San Lorenzo River Estuary			
		Pathogens	Medium	
		Sedimentation/Siltation	High	2003
	San Luis Obispo Creek			
	(Below W. Marsh Street)			
		Nutrients	High	2004
		Pathogens	High	2004
		Priority Organics	High	2002
	Schwan Lake			
		Pathogens	Medium	

-

.

- (

-

Region	Water Body	Pollutant/Stressor	Priority	TMDL Completion Date
	Shingle Mill Creek			
		Sedimentation/Siltation	High	2003
	Soquel Lagoon	· · · · · · · · · · · · · · · · · · ·		
		Pathogens	Medium	
		Pathogens	Medium	
	Tembladero Slough			
	-	Pesticides	Medium	
	Valencia Creek	· · · · · · · · · · · · · · · · · · ·		
		Pathogens	Medium	
		Pathogens	Medium	
	Watsonville Slough	-		· · · · · · · · · · · · · · · · · · ·
	······································	Metals	Medium	
		Oil and grease	Medium	
		Pathogens	Medium	
		Pathogens	Medium	
		Sedimentation/Siltation	Medium	
4				
	Abalone Cove Beach			
		Beach Closures	High	2002
	Aliso Canyon Wash			
		Selenium	High	2003
	Arroyo Las Posas Reach 1 (Lewis Somis Rd to Fox Barranca)			
	Surrailou)	Ammonia	High	2002
		Chloride	High	2002
		DDT	Medium	
		Sulfates	High	2003
		Total Dissolved Solids	High	2003
	Arroyo Las Posas Reach 2 (Fox Barranca to Moorpark Fwy (23))			
		Ammonia	High	2002
		Chloride	High	2002
		DDT	Medium	
		Nitrate and Nitrite	High	2002
		Sulfates	High	2003
		Total Dissolved Solids	High	2003
	Arroyo Seco Reach 1 (LA River to West Holly Ave.)			
		Algae	High	2002
		High Coliform Count	High	2002
	Arroyo Seco Reach 2 (Figueroa St. to Riverside Drive)			
	<i>,</i>	Algae	High	2002
		High Coliform Count	High	2002

on	Water Body	Pollutant/Stressor	Priority	TMDL Completion Dat
	Arroyo Simi Reach 1 (Moorpark Frwy (23) to			
	Brea Canyon) and 2			
		Ammonia	High	2002
		Boron	High	2003
		Chloride	High	2002
		Chromium	Medium	
		Nickel	Medium	
		Selenium	Medium	
		Silver	Medium	
		Sulfates	High	2003
		Total Dissolved Solids	High	2003
		Zinc	Medium	
	Ashland Avenue Drain			
	t	High Coliform Count	High	2002
	Ballona Creek			
		Arsenic	High	2003
		Cadmium	High	2003
		Chem A	High	2004
		Chlordane	High	2004
		Copper	High	2003
		DDT	High	2004
		Dieldrin	High	2004
		Enteric Viruses	High	2003
		High Coliform Count	High	2003
		Lead	High	2003
		PCBs	High	2004
		Sediment Toxicity	High	2004
		Silver	High	2003
		Toxicity	High	2003
	Ballona Creek Estuary			
		Arochlor	High	2004
		Chlordane	High	2004
		DDT	High	2004
		High Coliform Count	High	2003
		Lead	High	2003
		PCBs	High	2004
		Sediment Toxicity	High	2004
		Shellfish Harvesting Advisory	High	2003
		Zinc	High	2003
	Ballona Creek Wetlands		······································	
		Arsenic	High	2003
	Beardsley Channel (Above			
	Central Avenue)			
	contra intenacy	A.l	Uich	2002
		Algae	High	2002
		Chem A	Medium	
		Chlordane	Medium	2003
		Chlorpyrifos	High	2003
		Dacthal	Medium	
		DDT	Medium	
		Dieldrin	Medium	

-

on	Water Body	Pollutant/Stressor	Priority	TMDL Completion Date
		Endosulfan	Medium	
		Nitrogen	High	2002
		PCBs	Medium	
		Toxaphene	Medium	
		Toxicity	High	2004
	Bell Creek			
		High Coliform Count	High	2002
	Big Rock Beach			
	-	Beach Closures	High	2002
		High Coliform Count	High	2002
	Bluff Cove Beach			
		Beach Closures	High	2002
	Brown Barranca/Long			
	Canyon			
		Nitrate and Nitrite	High	2003
	Burbank Western Channel			
	Burbank western Channel	Alman	High	2002
		Algae Ammonia	High High	2002
		Cadmium	High	2002
		Odors	High	2003
		Scum/Foam-unnatural	High	2002
	Cabrillo Beach (Inner) LA Harbor Area	Bound Can annatata	-	
		Beach Closures (Coliform)	High	2003
		DDT	Medium	
		PCBs	Medium	
	Cabrillo Beach (Outer)			
		Beach Closures	High	2002
		High Coliform Count	High	2002
	Calleguas Creek Reach 1 and 2 (Estuary to Potrero Rd.)	9		
		Chem A	Medium	
		Chlordane	Medium	
		DDT	Medium	
		Endosulfan	Medium	
		Nitrogen	High	2002
		PCBs	Medium	
		Sediment Toxicity	Medium	2004
	Calleguas Creek Reach 1 and 2Estuary to Potrero Rd.	Toxicity	High	2004
	-	Ammonia	High	2002
	Calleguas Creek Reach 3 (Potrero to Somis Rd.)			
	· · · · · · · · · · · · · · · · · · ·	Chloride	High	2002
		Nitrate and Nitrite	High	2002
		Total Dissolved Solids	High	2003
	Carbon Beach	Beach Closures	High	2002
		Beach Closures	High	2002

Region	Water Body	Pollutant/Stressor	Priority	TMDL Completion Date
	Castlerock Beach	······		
		Beach Closures	High	2002
	Channel Islands Harbor			
		Lead	Medium	
		Zínc	Medium	
	Colorado Lagoon			
	-	Chlordane	Medium	
		DDT	Medium	
		Dieldrin	Medium	
		Lead	Medium	
		PAHs	Medium	
		PCBs	Medium	
		Sediment Toxicity	Medium	
		Zinc	Medium	
	Compton Creek			
		Copper	High	2003
		High Coliform Count	High	2002
		Lead	High	2003
		pH	High	2002
	Conejo Creek Reach 1 (Confluence Call to Santa Rosa Rd.)		•	
	,	Algae	High	2002
		Ammonia	High	2002
		Cadmium	Medium	
		Chromium	Medium	
		Nickel	Medium	
		Organic enrichment/Low D.O.	High	2002
		Silver	Medium	
		Sulfates	High	2003
		Total Dissolved Solids	High	2003
		Toxicity	High	2004
	Conejo Creek Reach 2 (Santa Rosa Rd. to Thousand Oaks City Limit			
	-	Cadmium	Medium	
		Chloride	High	2002
		Chromium	Medium	
		Nickel	Medium	
		Sulfates	High	2003
		Total Dissolved Solids	High	2003
		Toxaphene	Medium	
		Toxicity	High	2004
	Conejo Creek Reach 2			
	(Santa Rosa Rd. to			
	Thousand Oaks City Limit)	•		
	mousand Oaks City Millt)	Algae	High	2002
		Ammonia	High	2002
		Organic enrichment/Low D.O.	High	2002
		Silver	Medium	

1	Water Body	Pollutant/Stressor	Priority	TMDL Completion Dat
	Conejo Creek Reach 3 (Thousand Oaks City Limit to Lynn Rd.)		<u>, , , , , , , , , , , , , , , , , , , </u>	
	• •	Algae	High	2002
		Ammonia	High	2002
		Chem A	Medium	
		Dacthal	Medium	
		DDT	Medium	
		Endosulfan	Medium	
		Organic enrichment/Low D.O.	High	2002
		Sulfates	High	2003
		Total Dissolved Solids	High	2003
		Toxaphene	Medium	
		Toxicity	High	2004
	Conejo Creek Reach 3 (Thousand Oaks City Limit)			
	to Lynn Rd.)			
		Cadmium	Medium	
		Chromium	Medium	
		Nickel	Medium	
		Silver	Medium	
	Conejo Creek Reach 4 (Above Lynn Rd.)		~	
		Algae	High	2002
		Ammonia	High	2002
		Chem A	Medium	
		Chloride	High	2002
		Dacthal	Medium	
		DDT	Medium	
		Endosulfan	Medium	
		Organic enrichment/Low D.O.	High	2002
		Sulfates	High	2003
		Total Dissolved Solids	High	2003
		Toxaphene	Medium	
		Toxicity	High	2004
	Conejo Creek/Arroyo Conejo North Fork			
		Ammonia	High	2002
		Chlordane	Medium	
		DDT	Medium	
		Sulfates	High	2003
		Total Dissolved Solids	High	2003
	Coyote Creek		N 4 11	
		Abnormal Fish Histology	Medium	<b>6</b> /00
		Algae	High	2003
		Ammonia	High	2003
		High Coliform Count	High	2003
		Silver	Medium	
	Crystal Lake	0	N.C. 11	
		Organic enrichment/Low D.O.	Medium	

.

gion	Water Body	Pollutant/Stressor	Priority	TMDL Completion Date
	Dan Blocker Memorial		·····	•
	(Coral) Beach			
		High Coliform Count	High	2002
	Dockweiler Beach			
		Beach Closures	High	2002
		High Coliform Count	High	2002
	Dominguez Channel (above Vermont)			
	·	Aldrin	Medium	
		Ammonia	Medium	
		Chem A	Medium	
		Chlordane	Medium	
		Chromium	Medium	
		Copper	Medium	
		DDT	Medium	
		Dieldrin	Medium	
		High Coliform Count	High	2002
		Lead	Medium	
		PAHs	Medium	
		PCBs	Medium	
	Dominguez Channel			
	(Estuary to Vermont)		-	
		Aldrin	Medium	
		Ammonia	Medium	
		Benthic Community Effects	Medium	
		Chem A	Medium	
		Chlordane	Medium	
		Chromium	Medium	
		Copper	Medium	
		DDT	Medium	
		Dieldrin	Medium	2002
		High Coliform Count	High Medium	2002
		Lead	Medium	
		PAHs PCBs	Medium	
		Zinc	Medium	
	Duck Pond Agricultural Drains/Mugu Drain/Oxnard Drain No. 2			
		Chem A	Medium	
		Nitrogen	High	2002
		Toxicity	High	2004
	Duck Pond Agricultural Drains/Mugu Drain/Oxnard Drain No. 3			
		Chlordane	Medium	
	Duck Pond Agricultural Drains/Mugu Drain/Oxnard Drain No. 4			
		DDT	Medium	

.

•

Priorities-14

1

Region	Water Body	Pollutant/Stressor	Priority	TMDL Completion Dat
	Duck Pond Agricultural Drains/Mugu Drain/Oxnard Drain No. 5			
		Sediment Toxicity	Medium	
	Duck Pond Agricultural Drains/Mugu Drain/Oxnard Drain No. 6			
		Toxaphene	Medium	
	El Dorado Lakes			
		Algae	Medium	
		Ammonia	Medium	
		Copper	Medium	
		Eutrophic	Medium	
		Lead	Medium	
		Mercury	Medium	
		pH	Medium	
	Elizabeth Lake			
		Eutrophic	Medium	
		Organic enrichment/Low D.O.	Medium	
		pH	Medium	
		Trash	Medium	· · · · · · · · · · · · · · · · · · ·
	Escondido Beach			
		Beach Closures	High	2002
	Flat Rock Point Beach Area			
		Beach Closures	High	2002
	Fox Barranca			
		Boron	High	2003
		Nitrate and Nitrite	High	2002
		Sulfates	High	2003
		Total Dissolved Solids	High	2003
	Hermosa Beach			
		Beach Closures	High	2002
	Inspiration Point Beach			
		Beach Closures	High	2002
	La Costa Beach			
		Beach Closures	High	2002
	LA Fish Harbor			
		DDT	Medium	
		PAHs	Medium	
	LA Harbor Consolidated Slip	PCBs	Medium	
	LA Harbor Consolidated Shi	Benthic Community Effects	Madian	
		Chlordane	Medium	
		Chromium	Medium Medium	
		DDT	Medium	
		Lead	Medium	
		PAHs	Medium	
		PCBs	Medium	
			*************	

-

٠

٠

•

、 •

on	Water Body	Pollutant/Stressor	Priority	TMDL Completion Dat
		Zinc	Medium	
	LA Harbor Inner Breakv	vater		
		DDT	Medium	
		PAHs	Medium	
		PCBs	Medium	
	LA Harbor Main Channe			
		Beach Closures	High	2003
		Copper	Medium	
		DDT	Medium	
		PAHs	Medium	
		PCBs	Medium	
		Sediment Toxicity	Medium	
		Zinc	Medium	
	LA Harbor Southwest SI	ip		
		DDT	Medium	
		PCBs	Medium	
		Sediment Toxicity	Medium	
	Lake Calabasas			
		Copper	Medium	
		Zinc	Medium	
	Lake Hughes			
		Algae	Medium	
		Eutrophic	Medium	
		Fish Kills	Medium	
		Odors	Medium	
		Trash	Medium	
	Lake Lindero			
		Algae	High	2002
		Eutrophic	High	2002
		Odors	High	2002
		Selenium	Medium	
		Trash	Medium	
	Lake Sherwood			
		Algae	High	2002
		Ammonia	High	2002
		Eutrophic	High	2002
		Mercury	Medium	
		Organic enrichment/Low D.O.	High	2002
	Las Flores Beach			
		High Coliform Count	High	2002
	Las Tunas Beach	andar 2 ⁵ talan dalama		
		Beach Closures	High	2002
	Las Virgenes Creek		<u> </u>	
	Das virgenes Creek	High Coliform Count	High	2002
		-		
		Nutrients (Algae)	High	2002
		Organic enrichment/Low D.O.	High	2002
		Scum/Foam-unnatural	High	2002
		Selenium	Medium	
		Trash	Medium	

.

.

.

Legg Lake

.

Water Body	Pollutant/Stressor	Priority	TMDL Completion Dat
	Ammonia	Medium	
	Copper	Medium	
	Lead	Medium	
	Odors	Medium	
	рН	Medium	
Leo Carillo Beach (South of County Line)	· ·		
	Beach Closures	High	2002
	High Coliform Count	High	2002
Lindero Creek Reach 1			
	Algae	High	2002
	High Coliform Count	High	2002
•	Selenium	Medium	
	Trash	Medium	
Lindero Creek Reach 2			
	Scum/Foam-unnatural	High	2002
Lindero Creek Reach 2 (Above Lake)			
. ,	Algae	High	2002
	High Coliform Count	High	2002
	Scum/Foam-unnatural	High	2002
	Selenium	Medium	
	Trash	Medium	
Channel, SE, W Basin, Pier J, Breakwater	Benthic Community Effects	Medium	
	Benthic Community Effects	Medium Medium	
	DDT	Medium	
	DDT PAHs	Medium Medium	
	DDT PAHs PCBs	Medium	r
J, Breakwater	DDT PAHs	Medium Medium Medium	
	DDT PAHs PCBs	Medium Medium Medium Medium	2002
J, Breakwater	DDT PAHs PCBs Sediment Toxicity	Medium Medium Medium	2002 2002
J, Breakwater	DDT PAHs PCBs Sediment Toxicity Beach Closures	Medium Medium Medium Medium High	
J, Breakwater Long Point Beach Los Angeles River Reach 1	DDT PAHs PCBs Sediment Toxicity Beach Closures	Medium Medium Medium Medium High	
J, Breakwater Long Point Beach Los Angeles River Reach 1	DDT PAHs PCBs Sediment Toxicity Beach Closures High Coliform Count	Medium Medium Medium High High	2002
J, Breakwater Long Point Beach Los Angeles River Reach 1	DDT PAHs PCBs Sediment Toxicity Beach Closures High Coliform Count	Medium Medium Medium High High High	2002
J, Breakwater Long Point Beach Los Angeles River Reach 1	DDT PAHs PCBs Sediment Toxicity Beach Closures High Coliform Count Ammonia High Coliform Count	Medium Medium Medium High High High High	2002 2002 2002 2003 2003
J, Breakwater Long Point Beach Los Angeles River Reach 1	DDT PAHs PCBs Sediment Toxicity Beach Closures High Coliform Count Ammonia High Coliform Count Lead Nutrients (Algae) pH	Medium Medium Medium High High High High High	2002 2002 2002 2003 2002 2002
J, Breakwater Long Point Beach Los Angeles River Reach 1 (Estuary to Carson Street)	DDT PAHs PCBs Sediment Toxicity Beach Closures High Coliform Count Ammonia High Coliform Count Lead Nutrients (Algae)	Medium Medium Medium High High High High High High High	2002 2002 2002 2003 2003
J, Breakwater Long Point Beach Los Angeles River Reach 1	DDT PAHs PCBs Sediment Toxicity Beach Closures High Coliform Count Ammonia High Coliform Count Lead Nutrients (Algae) pH	Medium Medium Medium High High High High High High High High	2002 2002 2002 2003 2002 2002
J, Breakwater Long Point Beach Los Angeles River Reach 1 (Estuary to Carson Street) Los Angeles River Reach 2	DDT PAHs PCBs Sediment Toxicity Beach Closures High Coliform Count Ammonia High Coliform Count Lead Nutrients (Algae) pH	Medium Medium Medium High High High High High High High High	2002 2002 2002 2003 2002 2002
J, Breakwater Long Point Beach Los Angeles River Reach 1 (Estuary to Carson Street) Los Angeles River Reach 2	DDT PAHs PCBs Sediment Toxicity Beach Closures High Coliform Count Ammonia High Coliform Count Lead Nutrients (Algae) pH Scum/Foam-unnatural	Medium Medium Medium High High High High High High High High	2002 2002 2002 2003 2002 2002 2002 2002
J, Breakwater Long Point Beach Los Angeles River Reach 1 (Estuary to Carson Street) Los Angeles River Reach 2	DDT PAHs PCBs Sediment Toxicity Beach Closures High Coliform Count Ammonia High Coliform Count Lead Nutrients (Algae) pH Scum/Foam-unnatural Ammonia High Coliform Count Lead	Medium Medium Medium High High High High High High High High	2002 2002 2002 2003 2002 2002 2002 2002
J, Breakwater Long Point Beach Los Angeles River Reach 1 (Estuary to Carson Street) Los Angeles River Reach 2	DDT PAHs PCBs Sediment Toxicity Beach Closures High Coliform Count Ammonia High Coliform Count Lead Nutrients (Algae) pH Scum/Foam-unnatural Ammonia High Coliform Count Lead Nutrients (Algae)	Medium Medium Medium High High High High High High High High	2002 2002 2002 2003 2002 2002 2002 2002
J, Breakwater Long Point Beach Los Angeles River Reach 1 (Estuary to Carson Street) Los Angeles River Reach 2	DDT PAHs PCBs Sediment Toxicity Beach Closures High Coliform Count Ammonia High Coliform Count Lead Nutrients (Algae) pH Scum/Foam-unnatural Ammonia High Coliform Count Lead	Medium Medium Medium High High High High High High High High	2002 2002 2002 2003 2002 2002 2002 2002

_

,

Priorities-17

•

gion	Water Body	Pollutant/Stressor	Priority	TMDL Completion Dat
	Los Angeles River Reach 3 (Figueroa St. to Riverside Drive)			
		Ammonia	High	2002
		Nutrients (Algae)	High	2002
		Odors	High	2002
		Scum/Foam-unnatural	High	2002
	Los Angeles River Reach 4 (Sepulveda Drive to Sepulveda Dam)			
		Ammonia	High	2002
		High Coliform Count	High	2002
		Lead	High	2003
		Nutrients (Algae)	High	2002
		Odors	High	2002
		Scum/Foam-unnatural	High	2002
	Los Angeles River Reach 5 (at Sepulveda Basin)			
		Ammonia	High	2002
		Chem A	Medium	
		Nutrients (Algae)	High	2002
		Odors	High	2002
		Scum/Foam-unnatural	High	2002
	Los Angeles River Reach 6 (Above Sepulveda Flood Control Basin)			
		High Coliform Count	High	2002
	Los Cerritos Channel			
		Ammonia	Medium	
		Copper	Medium	
		High Coliform Count	Medium	
		Lead	Medium	
		Zinc	Medium	***
	Machado Lake (Harbor Park Lake)			
		Chem A	Medium	
		Trash	Medium	
	Malaga Cove Beach	Beach Closures	High	2002
	Malibu Beach			
		Beach Closures	High	2002
	Malibu Creek	<u></u>		
		High Coliform Count	High	2002
		Nutrients (Algae)	High	2002
		Scum/Foam-unnatural	High	2002
		Trash	Medium	
	Malibu Lagoon	1 rash	ivieulum	
	Manuu Lagoon	Enteric Viruses	High	2002
			-	2002
		Eutrophic High Californ Count	High	2002
		High Coliform Count	High	2002

.

•

٠

on	Water Body	Pollutant/Stressor	Priority	TMDL Completion Date
		Shellfish Harvesting Advisory	High	2002
		Swimming Restrictions	High	2002
	Malibu Lagoon Beach (Surfrider)	· .		
		Beach Closures	High	2002
		High Coliform Count	High	2002
	Malibu Lake			
		Algae	High	2002
		Copper	Medium	
		Eutrophic	High	2002
		Organic enrichment/Low D.O.	High	2002
	Mandalay Beach			
	•	Beach Closures	High	2002
	Manhattan Beach			
	Mannatian Beach	Beach Closures	High	2002
	Marina del Rey Harbor -	Bolon closures	- Then	
	Back Basins			
		Benthic Community Effects	High	2004
		Chlordane	High	2004
		Copper	High	2004
		DDT	High	2004
		Dieldrin	High	2004
		Fish Consumption Advisory	High	2004
		High Coliform Count	High	2003
		Lead	High	2004
		PCBs	High	2004
		Sediment Toxicity	High	2004
		Zinc	High	2004
	Marina del Rey Harbor Beach			
		Beach Closures	High	2003
		High Coliform Count	High	2003
	McGrath Beach			
		Beach Closures	High	2002
		High Coliform Count	High	2002
	McGrath Lake (Estuary)			
		Chlordane	Medium	
		DDT	Medium	
		Pesticides	Medium	
		Sediment Toxicity	Medium	
	Medea Creek Reach 1 (Lake to Confluence with Lindero)			
		Algae	High	2002
		High Coliform Count	High	2002
		Selenium	Medium	
		Trash		
	Medea Creek Reach 2	1185/1	Medium	
	(Above Confluence with Lindero)			
	Linderoi			

.

.

egion	Water Body	Pollutant/Stressor	Priority	TMDL Completion Dat
		High Coliform Count	High	2002
		Selenium	Medium	
		Trash	Medium	
	Mint Canyon Creek Reach (Confluence to Rowler)	1		
	Canyon)			
		Nitrate and Nitrite	High	2003
	Monrovia Canyon Creek			
		Lead	High	2003
	Moorpark Fwy			
		Organic enrichment/Low D.O.	Medium	
		PCBs	Medium	
	Mugu Lagoon			
		Chlordane	Medium	
		Copper	Medium	
		Dacthal	Medium	
		DDT	Medium	
		Endosulfan	Medium	
		Mercury	Medium	
		Nickel	Medium	
		Nitrogen	High	2002
		PCBs	Medium	
		Sediment Toxicity Sedimentation/Siltation	Medium	
			Medium	
		Zinc	Medium	
	Munz Lake			
		Eutrophic	Medium	
		Trash	Medium	
	Nicholas Canyon Beach			
		Beach Closures	High	2002
	Palo Comado Creek			
		High Coliform Count	High	2002
	Palo Verde Shoreline Park			
	Beach			
		Pathogens	High	2002
	Paradise Cove Beach	¥		
		Beach Closures	High	2002
		High Coliform Count	High	2002
	Pico Kenter Drain		Ų	
	Itemet Brun	Copper	Medium	
		Enteric Viruses	High	2002
		High Coliform Count	High	2002
		Lead	Medium	
		Toxicity	Medium	
	Doint Dumo Deach			· · · · · · · · · · · · · · · · · · ·
	Point Dume Beach			
		Beach Closures	High	2002
	Point Fermin Park Beach			
		Beach Closures	High	2002

.

-

•

.

ion	Water Body	Pollutant/Stressor	Priority	TMDL Completion Dat
		Beach Closures	High	2002
	Port Hueneme Harbor			
		Chlordane	Medium	
		DDT	Medium	
		Dieldrin	Medium	
		PCBs	Medium	
	Port Hueneme Harbor (Back Basins)	5		
	,	DDT	Medium	
		PAHs	Medium	
		PCBs	Medium	
		Tributyltin	Medium	
		Zinc	Medium	
	Portuguese Bend Beach			، <del>په د د رو</del> در اور د
	<u> </u>	Beach Closures	High	2002
	Puddingstone Reservoir			
		Chlordane	Medium	
		DDT	Medium	
		Mercury	Medium	
	Puerco Beach			
		Beach Closures	High	2002
	Redondo Beach		-	
		Beach Closures	High	2002
		High Coliform Count	High	2002
	Resort Point Beach			
		Beach Closures	High	2002
	Revolon Slough Main Branch (Mugu Lagoon to Central Avenue)			
		Algae	High	2002
		Chem A	Medium	
		Chlordane	Medium	
		Chlorpyrifos	High	2004
		Dacthal	Medium	
		DDT	Medium	
		Dieldrin	Medium	
		Endosulfan	Medium	
		Nitrogen	High	2002
		PCBs	Medium	
		Selenium	Medium	
		Toxaphene	Medium	
		Toxicity	High	2004
	Rio De Santa Clara/Oxnard Drain No. 3			
		Chlordane	Medium	
	Rio De Santa Clara/Oxnard	·····		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	Drain No. 3	Chem A	Medium	
		Chem A DDT	Medium Medium	

gion	Water Body	Pollutant/Stressor	Priority	TMDL Completion Date
		PCBs	Medium	
		Sediment Toxicity	Medium	
		Toxaphene	Medium	·····
	Rio Hondo Reach 1 (Confluence LA River to Santa Ana Fwy)			
	• /	Ammonia	High	2002
		Copper	High	2003
		High Coliform Count	High	2002
		Lead	High	2003
		рН	High	2002
		Zinc	High	2003
	Rio Hondo Reach 2 (At Spreading Grounds)			
		Ammonia	High	2002
		High Coliform Count	High	2002
	Robert H. Meyer Memorial Beach			
		Beach Closures	High	2002
	Rocky Point Beach			
		Beach Closures	High	2002
	Royal Palms Beach		-	
		Beach Closures	High	2002
	San Gabriel River Estuary			
		Abnormal Fish Histology	Medium	
		Arsenic	Medium	
	San Gabriel River Reach 1 (Estuary to Firestone)			
		Abnormal Fish Histology	Medium	
		Algae	High	2003
		Ammonia	High	2003
		High Coliform Count	High	2003
		Toxicity	High	2003
	San Gabriel River Reach 2 (Firestone to Whittier Narrows Dam)			
	· ·····,	Ammonia	High	2003
		High Coliform Count	High	2003
		Lead	Medium	
	San Gabriel River Reach 3			
	(Whittier Narrows to Ramona)			
	(whitter Narrows to Ramona)	Toxicity	High	2003
	Ramona)	Toxicity	High	2003
	Ramona)		High High High	2003 2003 2003

•

.

*

Region	Water Body	Pollutant/Stressor	Priority	TMDL Completion Dat
	San Jose Creek Reach 2 (Temple to I-10 at White Ave.)	······································		
		Algae	High	2003
		Ammonia	High	2003
		High Coliform Count	High	2003
	San Pedro Bay Near/Off Shore Zones - Cabrillo Pier Area			
		DDT	Medium	
		PAHs	Medium	
		PCBs	Medium	
		Sediment Toxicity	Medium	
	Santa Clara River Estuary			
		Chem A	Medium	
		High Coliform Count	Medium	
		Toxaphene	Medium	
	Santa Clara River Estuary Beach-Surfers Knoll			
		High Coliform Count	High	2002
	Santa Clara River Reach 3 (Dam to Above Sp Creek/Blw Timber Canyon)		-	
	• •	Ammonia	High	2003
		Chloride	High	2002
	Santa Clara River Reach 7 (Blue Cut to West Pier Hwy 99)			
		Ammonia	High	2003
		Chloride	High	2002
		High Coliform Count	Medium	
	Santa Clara River Reach 8 (W Pier Hwy 99 to Bouquet Canyon Rd.)			
		Ammonia	High	2003
		Chloride	High	2002
		High Coliform Count	Medium	
		Nitrate and Nitrite	High	2003
		Organic enrichment/Low D.O.	High	2003
	Santa Clara River Reach 9 (Bouquet Canyon Rd. to above Lang Gag)			
	Livie Lung Oug)	High Coliform Count	Medium	
	Santa Fe Dam Park Lake		weardin	
		Copper	Medium	
		Lead		
		Lead	Medium	

Offshore/Nearshore

٠

•

.

•

Water Body	Pollutant/Stressor	Priority	TMDL Completion Date
	Cadmium	High	2004
	Chlordane	Medium	
	Copper	High	2004
	Lead	High	2004
	Mercury	High	2004
	Nickel	High	2004
	Silver	High	2004
	Zinc	High	2004
Santa Monica Beach			
	Beach Closures	High	2002
	High Coliform Count	High	2002
Santa Monica Canyon			
	High Coliform Count	High	2002
	Lead	Medium	
Sea Level Beach			
	Beach Closures	High	2002
Sepulveda Canyon			
	High Coliform Count	High	2002
	Lead	Medium	
Stokes Creek	<u></u>		
	High Coliform Count	High	2002
Tapo Canyon Reach 1	<u> </u>		
	Boron	High	2003
	Chloride	High	2002
Tapo Canyon Reach 2			
rupo canyon reach 2	Sulfates	High	2003
Tapo Canyon Reach 3	Sundos		
Tapo Canyon Reach 3	Texal Disasland Calida	Ulah	2003
	Total Dissolved Solids	High	2003
Topanga Beach			
	Beach Closures	High	2002
	High Coliform Count	High	2002
Topanga Canyon Creek			
	Lead	Medium	
Torrance Beach			
	Beach Closures	High	2002
	High Coliform Count	High	2002
Torrance Carson Channel			
	Copper	Medium	
	High Coliform Count	High	2002
	Lead	Medium	
Torrey Canyon Creek			
	Nitrate and Nitrite	High	2003
Trancas Beach (Broad			
Beach)			
Deaeiry		110-1	2002
	Beach Closures	High	2002
	High Coliform Count	High	2002
Triunfo Canyon Creek Reach 1			
	Lead	Medium	

Priorities-24

.

.

Region	Water Body	Pollutant/Stressor	Priority	TMDL Completion Date
	Triunfo Canyon Creek	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
	Reach 2			
		Lead	Medium	
		Mercury	Medium	
	Triunfo Canyon Creek Reach 3			
		Mercury	Medium	
	Tujunga Wash (LA River to Hansen Dam)			
		Ammonia	High	2002
		Copper	High	2003
		High Coliform Count	High	2002
		Odors	High	2002
		Scum/Foam-unnatural	High	2002
	Venice Beach			
		Beach Closures	High	2002
		High Coliform Count	High	2002
	Ventura Harbor: Ventura Keys			
		High Coliform Count	Medium	
	Ventura River Estuary			
		Algae	Medium	
		DDT	Medium	
		Eutrophic	Medium	
		Trash	Medium	
	Ventura River Reach 1 and 2 (Estuary to Weldon Canyon)			
			Medium	
		Algae	Medium	
		Copper	Medium	
		Selenium	Medium	
		Silver	Medium	
		Zinc	Medium	
	Ventura River Reach 3			
	(Weldon Canyon to			
	Confluence w/ Coyote Creek)			
		Pumping	Medium	
		Water Diversion	Medium	
	Ventura River Reach 4 (Coyote Creek to Camino Cielo Rd)			
		Pumping	Medium	
		Water Diversion	Medium	
	Verdugo Wash Reach 1 (LA River to Verdugo Rd.)			
		Algae	High	2002
		High Coliform Count	High	2002

٠

•

a

.

Priorities-25

•

Verdugo Wash Reach 2 (Above Verdugo Road) Walnut Creek Wash (Drains from Puddingstone Res) Westlake Lake	Algae High Coliform Count pH Toxicity	High High	2002 2002
Walnut Creek Wash (Drains from Puddingstone Res)	High Coliform Count		
from Puddingstone Res)	High Coliform Count		
from Puddingstone Res)	pH	High	2002
from Puddingstone Res)			
Westlake Lake			
Westlake Lake	Toxicity	High	2003
Westlake Lake		High	2003
	Algae	High	2002
	Ammonia	High	2002
	Copper	Medium	
	Eutrophic	High	2002
	Lead	Medium	
	Organic enrichment/Low D.O.	High	2002
Wheeler Canyon/Todd Barranca			
	Nitrate and Nitrite	High	2003
Whites Point Beach			
	Beach Closures	High	2002
Will Rogers Beach		B	
Will Rogers Deach	Peach Closures	Hich	2002
		-	2002
Wilmin etc. Drein	High Collionin Count	mgn	2002
winnington Drain		M F	
			2002
	•	•	2002
Zuma Beach (Westward Beach)	Leau	Medium	
Dealen	Beach Closures	High	2002
			······································
Arcade Creek			
	Chlorpyrifos	High	2003
	Diazinon	-	2003
Cache Creek			
	Mercury	High	2004
Casha Creak Lower	morodiy		
Cache Creek, Lower	Manager	Madium	
	Mercury	Medium	
Chicken Ranch Slough			
			2003
·	Diazinon	High	2003
Clear Lake			
	Mercury	High	2003
	•		
Elder Creek			
Lief Civer	Chlorpyrifos	High	2003
		-	2003
	Barranca Whites Point Beach Will Rogers Beach Wilmington Drain	Lead         Organic enrichment/Low D.O.         Wheeler Canyon/Todd         Barranca         Nitrate and Nitrite         Whites Point Beach         Beach Closures         Will Rogers Beach         Beach Closures         Will Rogers Beach         Beach Closures         Will Rogers Beach         Beach Closures         Willmington Drain         Ammonia         Copper         High Coliform Count         Lead         Zuma Beach (Westward         Beach Closures         Arcade Creek         Chlorpyrifos         Diazinon         Cache Creek         Mercury         Cache Creek, Lower         Mercury         Chicken Ranch Slough         Chlorpyrifos         Diazinon         Clear Lake         Mercury	Lead         Medium           Organic enrichment/Low D.O.         High           Wheeler Canyon/Todd         Barranca           Nitrate and Nitrite         High           Whites Point Beach         Beach Closures         High           Whites Point Beach         Beach Closures         High           Will Rogers Beach         Beach Closures         High           Will Rogers Beach         Beach Closures         High           Willmington Drain         Ammonia         Medium           Copper         Medium         Medium           Zuma Beach (Westward Beach)         Beach Closures         High           Zuma Beach (Westward Beach)         Beach Closures         High           Cache Creek         Chlorpyrifos         High           Cache Creek         Mercury         High           Cache Creek, Lower         Mercury         Medium           Chicken Ranch Slough         Chlorpyrifos         High           Clear Lake         Mercury         Medium           Elder Creek         Chlorpyrifos         High

.

1

•

o <b>n</b>	Water Body	Pollutant/Stressor	Priority	TMDL Completion Date
	Elk Grove Creek			
		Diazinon	High	2003
	Feather River, Lower			
	,	Diazinon	High	2003
		Diazinon	Medium	
	Merced River			
		Chlorpyrifos/Diazinon	Medium	
	Morrison Creek			
		Diazinon	High	2003
	Natomas East Main			
	Drainage Canal			
		Diazinon	High	2003
	Sacramento Delta Waterwa	iys		
		Chlorpyrifos	Medium	
		Diazinon	Medium	
		Mercury	High	2004
		Mercury	Medium	
		Organic Enrichment/ Low D.O.	High	2004
	Sacramento River (Red Bluff to Delta)			
		Mercury	Medium	
	Sacramento River, Red Blu Delta	ff		
		Diazinon	High	2003
	Sacramento River, Red Blu to Delta	ff		
		Diazinon	Medium	
	Sacramento River, Shasta Dam to Red Bluff			
		Cadmium	High	2002
		Copper	High	2002
		Zinc	High	2002
	San Joaquin River			
		Boron	High	2003
		Chlorpyrifos	High	2003
		Chlorpyrifos Diazinon	Medium	2003
		Diazinon	High Medium	2003
		Electrical Conductivity	High	2003
	Stanislaus River	Distantial Conductivity	····	2005
	Stanishuds Herver	Chlorpyrifos/Diazinon	Medium	
	Strong Ranch Slough	Chiefpyrrios Diazinon		······································
	Strong Ration Stough	Chlorpyrifos	High	2003
		Diazinon	High	2003
	Sulphur Creek			
	Salphar Crook	Mercury	High	2004
		Mercury	Medium	2001
·	Tuolumne River			
		Chlorpyrifos/Diazinon	Medium	

Region	Water Body	Pollutant/Stressor	Priority	TMDL Completion Date
6		·	8 . <u></u>	
-	Bear Creek	······································		
	Dear Creek	Sedimentation/Siltation	Medium	
	Blackwood Creek			
		Sedimentation/Siltation	Medium	
	Bodie Creek			
		Metals	Medium	
	Bridgeport Reservoir			
		Nutrients	Medium	
		Sedimentation/Siltation	Medium	·
	Bronco Creek			
	<u>Ciala Cara Sarian</u>	Sedimentation/Siltation	Medium	
	Cinder Cone Springs	N	M. J.	
		Nutrients Salinity/TDS/Chlorides	Medium Medium	
	Clearwater Creek	Sannity i DS/Chlorides	Wedialit	
	Clear water Creek	Sedimentation/Siltation	Medium	
	Crowley Lake	Sedimentation/Sintation	Weddull	
	Clowley Lake	Arsenic	Medium	
		Nutrients	Medium	
	Gray Creek			
		Sedimentation/Siltation	Medium	
	Green Valley Lake Creek			
		Priority Organics	Medium	
	Haiwee Reservoir			······································
		Copper	High	2003
	Horseshoe Lake (2)		····	
		Sedimentation/Siltation	Medium	
	Hot Springs Canyon			
		Sedimentation/Siltation	Medium	
	Indian Creek Reservoir			
		Nutrients	High	2002
	Lake Tahoe			
		Nutrients	Medium	
		Sedimentation/Siltation	Medium	
	Pleasant Valley Reservoir			
		Organic enrichment/Low D.O.	Medium	
	Skedaddle Creek			
		High Coliform Count	Medium	
	Squaw Creek			
		Sedimentation/Siltation	Medium	· · · · · · · · · · · · · · · · · · ·
	Susan River			
		Unknown Toxicity	Medium	
	Tinemaha Reservoir			······································
		Metals	Medium	
	Topaz Lake	·····		

.

1

•

Region	Water Body	Pollutant/Stressor	Priority	TMDL Completion Date
	Truckee River			
		Sedimentation/Siltation	Medium	
	Ward Creek			
		Sedimentation/Siltation	Medium	
7				
	Coachella Valley Storm			
	Channel			
		Pathogens	Medium	
	Imperial Valley Drains			
		Sedimentation/Siltation	High	2004
	New River			
		Dissolved Organic Matter/DO	Medium	
		Silt	High	2002
		Trash	Medium	
	Palo Verde Outfall Drain			
		Pathogens	Medium	
	Salton Sea			
		Nutrients	High	2004
8				
0	Big Bear Lake			
	Dig Dear Lake	Metals (copper, mercury and	Medium	
		others)	NICUIUM	
		Nutrients/noxious aquatic plants	Medium	
		Sediment/Siltation	Medium	
	Canyon Lake			
		Organic. enrichment/low D.O.	High	2004
		Pathogens	High	2004
	Chino Creek, Reach 1			
		nitrogen	Medium	
		Pathogens	Medium	
	Chino Creek, Reach 2			
		Pathogens	Medium	
	Cucamonga Creek, Valley			
	Reach			
		Pathogens	Medium	
	Grout Creek		N - 1.	
		Metals (copper, mercury and others)	Medium	
		Nutrients/noxious aquatic plants	Medium	
	Knickerbocker Creek			
		Metals (copper, mercury and others)	Medium	
		Pathogens	Medium	
	Lake Elsinore			
		Nutrients	High	2004
		Sediment/siltation	High	2004
		Unknown toxicity	High	2004

-

•

w

•

× .

Region	Water Body	Pollutant/Stressor	Priority	TMDL Completion Dat
	Lower Newport Bay Rhine Channel			
		Other toxics as identified by USEPA	Medium	
		Selenium	High	2004
	Mill Creek (Prado area)			
		nitrogen	Medium	
		Pathogens	Medium	
	Prado Park Lake	Suspended Solids	Medium	
	Prado Park Lake	Dethogens	Medium	
	Rathbone Creek	Pathogens	Medium	
	Ratibolie Creek	Nutriants/novious aquatic plants	Medium	
		Nutrients/noxious aquatic plants Sediment/Siltation	Medium	
	San Diego Creek, Reach 1	ScanicitoSitation	wedum	
	San Diego Creek, Reach 1	Chlorpyrifos/diazinon	High	2003
		Other toxics as identified by	Medium	2005
		USEPA		
		Selenium	High	2004
	San Diego Creek, Reach 2			
	-	Chlorpyrifos/diazinon	High	2003
		Other toxics as identified by USEPA	Medium	
		Selenium	High	2004
	Santa Ana River, Reach 3			
		Pathogens	Medium	
	Summit Creek			
		Nutrients/noxious aquatic plants	Medium	
	Upper Newport Bay			
		Chlorpyrifos/diazinon	High	2003
		Other toxics as identified by	Medium	
		USEPA		
		Selenium	High	2004
9				
	Aliso Creek (mouth)			
		Coliform	Medium	
	Aliso Creek 901.13			
		Coliform	Medium	
	Chollas Creek 908.22			
		Coliform	Medium	
		Metals (Cd, Cu, PBS, Zn)	High	2004
		Toxicity (Diazinon)	High	2002
	Mission Bay		<del>_</del>	
	· · · · · · · · · · · · · · · · · · ·	Coliform	Medium	
	Pacific Ocean Shoreline,			<u></u>
	Aliso Beach HSA 901.13			
	Auso Deach HSA 901.13	Coliform	Medium	
		Comorni	Medium	

-

-

~

.

Priorities-30

,

2002
2002

Priorities-31

,

Region	Water Body	Pollutant/Stressor	Priority	TMDL Completion Date
	San Diego Bay; north of 24th Street Marine Terminal			
		Degraded Benthic Community and Sediment Toxicity	Medium	
	San Diego Bay; San Diego Naval Station			
		Degraded Benthic Community and Sediment Toxicity	Medium	
	San Diego Bay; Seventh Street Channel			· · · · ·
		Degraded Benthic Community and Sediment Toxicity	Medium	
	San Diego Bay; Shelter Island Yacht Basin			
		Metals (dissolved Cu)	High	2003
	San Juan Creek (mouth) 901.20			
		Coliform	Medium	
	San Juan Creek, lower			
		Coliform	Medium	
	Tecolote Creek, 906.50		<u> </u>	
		Coliform	Medium	

.

.

۲

.

Region	Water Body	Pollutant/Stressor	Year TMDL Complete
1			<u> </u>
	TMDL Completed		
	Garcia River	Sediment	2002
	Laguna de Santa Rosa	Nitrate	1995
	TMDL Established by USEPA Under Consent De	cree	
	South Fork Trinity River/ Hayfork Cre	ek Sediment	
	Van Duzen River/ Yager Creek	Sediment	
	Noyo River	Sediment	
	South Fork Eel River	Sediment and Temperat	ure
	Ten Mile River	Sediment	
	Navarro River Gualala River	Sediment and Temperate Sediment	ure
	Redwood Creek	Sediment	
3			
5	TMDL Adopted by the RWQCB and returned to R	WQCB for clarification	n.
	San Lorenzo River	Nitrate	
	TMDL Pending RWQCB Approval		· · · · · · · · · · · · · · · · · · ·
		Sediment	
4	Мопо Вау	Scannent	
4	TMDL Approved by the SWRCB and Pending OA	Approval	
	Los Angeles River	Trash	
	Ballona Creek	Trash	
	TMDL Completed		
	Upper San Gabriel River	Trash	2000
	TMDL Pending RWQCB Approval		
	Santa Monica Beaches	Pathogens	
	Santa Clara River	Chloride	
	Los Angeles River	Mercury	
	Calleguas Creek	Chloride	
5	······································		
	TMDL Completed		
	Salt Slough	Selenium	1996
	Grasslands	Selenium	1996
6			
	TMDL Adopted by the RWQCB, Approved by the	SWRCB and returned	to the RWQCB
	for clarification before OAL Approval		
	Heavenly Valley	Sediment	
	TMDL Pending RWQCB Approval		
	Indian Creek	Phosphorus	

TMDLs Completed-1

*

Region	Water Body	Pollutant/Stressor	Year TMDL Complete									
7												
	TMDL Adopted by the RWQCB and Pend	ing SWRCB Approval										
	New River	Pathogen										
	TMDL Adopted by the RWQCB and Pending SWRCB Approval											
	Alamo River	Sediment										
8												
-	TMDL Completed											
	Santa Ana River	Nutrients	1998									
	Newport Bay/San Diego Cree	k Fecal Coliform	1999									
	Newport Bay/San Diego Cree	k Sediment	1999									
	Newport Bay/San Diego Cree	k Phosphorus	1999									
	Newport Bay/San Diego Cree	k Nitrogen	1999									

*

.

_

,

TMDLs Completed-2

# Appendix: 1998 California 303(d) List and TMDL Priority Schedule

*Please Note*: For clarity, the additions, deletions, changes, priorities, and schedules presented in Tables 1, 2, 3, and 5 are not been incorporated into the Appendix. When the SWRCB considers adoption of the 2002 California section 303(d) list all changes will be included.

The Watch List (Table 4) and the TMDLs Completed List (Table 6) will be attached at the end of the section 303(d) list.

REGION	TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSOR*	SOURCE PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
1	E	EEL RIVER DELTA	111.110						_
				Sedimentation/Siltation	Low	6350	Acres	0204	1206
				Nonpo	pint Source				
				Range					
				Silvicu	llture				
				Temperature	Low	6350	Acres	0204	120
				Nonpo	int Source				
1	Е	ESTERO AMERICANO	115.300						
				Nutrients	Medium	692	Acres	0497	020
			objectives, as was done in the	egy is attempting to increase voluntary meas Estero de San Antonio / Stemple Creek TM egional Water Quality Control Board at the D	DL Water Quality	Attainment			
				Manur	e Lagoons				
					re Land				
				Sedimentation/Siltation	Medium	692	Acres	0497	020
					Estero de San Antonio / Stemple Creek TM egional Water Quality Control Board at the D			Strategy,	
				Erosio	on/Siltation				
				Hydroi	modification				
				Nonpo	bint Source				
				Remov	val of Riparian Vegetation				
				Riparia	an Grazing				
				Stream	nbank Modification/Destabilization				
1	E	NAVARRO RIVER DELTA	113.500						
				Sedimentation/Siltation	Medium	20	Acres	0298	120
				Erosio	on/Siltation				
1	L	LAKE PILLSBURY	111.630						
	L	LARE FILLSBURT	111.030	Mercury	Low	2280	Acres	1209	121
				-	al Sources	2200	AGICS	1205	
				Matore					
1	R	ALBION RIVER	113.400	<b>•</b> • • • • • • • •	<b></b>				
				Sedimentation/Siltation	Medium	14	Miles	0299	120
				Nonpo	JIIIL JUUI LE				
				USEPA is preparing TMDL for					

Approved by USEPA: 12-May-99

.

٠

,

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

.

Approved by USEPA: 12-May-99

• •

REGION	TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSOR* SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
1	R	AMERICANO CREEK	115.300						
				Nutrients (See Estero Americano)	Medium	7	Miles	0497	0206
				Animal Operation	S				
				Dairies	-				
				Manure Lagoons					
				Pasture Land					
				Riparian Grazing					
				Upland Grazing					
1	R	BIG RIVER	113.300						
				Sedimentation/Siltation	Medium	40	Miles	0299	1201
				Nonpoint Source Silviculture					
	_			Siviculuie					
1	R	EEL RIVER, MIDDLE FORK	111.700	<b>0</b> - Ji /01/4-4!	•			0004	4000
				Sedimentation/Siltation USEPA will develop a TMDL for Eel River	. Middle Fork.	64	Miles	0201	1203
			Erosion/Siltation						
				Temperature	Low	64	Miles	0201	1203
				USEPA will develop a TMDL for Eel River					
				Nonpoint Source					
1	R	EEL RIVER, MIDDLE MAIN FORK	111.70						
				Sedimentation/Siltation USEPA will develop a TMDL for Eel River	Low	1075.38	Miles	0203	1205
				Nonpoint Source					
				Range Land					
				Silviculture					
				Temperature	Low	1075.38	Miles	0203	1205
				USEPA will develop a TMDL for Eel River					
				Nonpoint Source					
1	R	EEL RIVER, NORTH FORK	111.500						
				Sedimentation/Siltation USEPA will develop TMDL for Eel River, I	Low	41	Miles	0200	1202
				Erosion/Siltation					
					onstruction/Maintenance				
				Nonpoint Source					
				Silviculture					
				Temperature	Low	41	Miles	0200	1202
				USEPA will develop TMDL for Eel River, I					
				Nonpoint Source					

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

.

٠

Approved by USEPA: 12-May-99

٠

.

REGION	TYPE		HYDRO UNIT	POLLUTANT/STRESSOR*	SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
1	R	EEL RIVER, SOUTH FORK	111.300							
				(1) the area tributary to a	DL for Eel River, South Fork. Sedi nd including the South Fork of the E h For of the Eel River below Garber	el River abov				1299
				•	rosion/Siltation					
				FI	ow Regulation/Modification					
					ydromodification					
				Lo	ogging Road Construction/Mainte	enance				
				N	onpoint Source					
				R	ange Land					
				R	emoval of Riparian Vegetation					
				R	esource Extraction					
					ilviculture					
				Temperature	101 for Col Diver South Forth	Low	85	Miles	0297	129
				• -	DL for Eel River, South Fork.					
					ow Regulation/Modification					
					ydromodification					
					onpoint Source					
					emoval of Riparian Vegetation					
4	R	EEL RIVER, UPPER MAIN FORK	111.60							
1	ĸ	EEL RIVER, UFFER MAIN FORK	111.00	Sedimentation/Siltation		Low	1154.24	Miles	0202	120
					IDL for Eel River, Upper Main Fork.		1154.24	Miles	0202	120
					onpoint Source					
				R	ange Land					
				Si	ilviculture					
				Temperature USEPA will develop a TN	IDL for Eel R ⁱ ver, Upper Main Fork	Low	1154.24	Miles	0202	1204
				N	onpoint Source					
1	R	ELK RIVER	110.000							
-	•••			Sedimentation/Siltation		Medium	87.53	Miles	0207	2009
				Sedimentation, threat of s impaired spawning habita Water Board and Californ	sedimentation, impaired irrigation w at, increased rate and depth of flood nia Department of Forestry staff are is possible that compliance will bri	ater quality, in ding due to se involved in or	diment, property on agoing efforts to a	supply wat lamage.  R ttain adher	ter quality, legional ance to	
				E	rosion/Siltation			-		
				н	arvesting, Restoration, Residue	Management				
				L	ogging Road Construction/Maint	enance				
				N	onpoint Source					
				R	emoval of Riparian Vegetation					
					ilviculture					
				S	treambank Modification/Destabil	ization				

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA: 12-May-99

.

•

REGION	TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSOR*	SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
1	R	FRESHWATER CREEK	110.000							
				impaired spawning habita Water Board and Californ Forest Practice Rules. It	sedimentation, impaired irri at, increased rate and depth nia Department of Forestry is possible that compliance rosion/Siltation	h of flooding due to sed staff are involved in on	iment, property o going efforts to a	lamage. R ttain adher	egional	1210
				н	arvesting, Restoration, R	esidue Management				
				L	ogging Road Constructio	n/Maintenance				
				N	onpoint Source					
				s	ilviculture					
1	R	GARCIA RIVER	113.700							
•				sediment control on the (	rd is involved in extended p Garcia River. In January, 1 for sediment on the Garcia	998, USEPA issued pu				1297
				С	hannel Erosion					
				E	rosion/Siltation					
				н	arvesting, Restoration, R	esidue Management				
				L	ogging Road Constructio	n/Maintenance				
				N	ionpoint Source					
				R	emoval of Riparian Veget	tation				
				R	liparian Grazing					
				S	ilviculture					
				S	treambank Modification/	Destabilization				
				(Pardaloe Creek), 113.70 the estuary, which includ Board is working to adop	npacting coldwater fisherie 0011, 12, 13, 14, 20, 21, an les that portion of 113.7002 t a TMDL for sediment on t IDL will improve conditions	nd the entire mainstem 22, 23, 24, 25, and 26. The Garcia River. It is p	Garcia River fron February 1998 - oossible that volu	n Pardaloe The Regioi ntary comp	Creek to nal Water liance	2000
				н	labitat Modification					
				N	Ionpoint Source					
				R	Removal of Riparian Vege	tation				

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

•

•

Appendix -4

-

#### HYDRO SIZE START END **REGION TYPE** NAME POLLUTANT/STRESSOR* SOURCE PRIORITY AFFECTED UNIT UNIT DATE DATE R **GUALALA RIVER** 113.800 1 1201 35 Miles 0499 Sedimentation/Siltation Medium Disturbed Sites (Land Develop.) **Erosion/Siltation** Harvesting, Restoration, Residue Management Land Development Logging Road Construction/Maintenance Nonpoint Source Road Construction Silviculture **Specialty Crop Production** R KLAMATH RIVER 105.000 1 190 0402 0404 Nutrients Medium Miles Nutrient TMDLs will be developed for the area tributary to and including: Clear Lake Reservoir Area Lost River/Tule Lake to Oregon border Oregon border to iron Gate dam Iron Gate Darn to Scott River Scott River to Trinity River Trinity River to the Ocean **Agricultural Return Flows Irrigated Crop Production Municipal Point Sources Nonpoint Source** Org. enrichment/Low D.O. Medium 180 Miles 0202 1204 Dissolved oxygen levels do not meet Basin Plan Objective. Fisheries habitat is impaired due to low dissolved oxygen levels. Dissolved Oxygen TMDL will be developed for the mainstem of the Klamath River. **Agricultural Return Flows** Flow Regulation/Modification **Municipal Point Sources** 190 Miles 0402 0404 Temperature Medium Temperature TMDLs will be developed for the area tributary to and including: Clear Lake Reservoir Area Lost River/Tule Lake to Oregon border Oregon border to iron Gate dam Iron Gate Dam to Scott River Scott River to Trinity River Trinity River to the Ocean Dam Construction/Operation Flow Regulation/Modification **Habitat Modification Nonpoint Source** Water Diversions

#### 1998 CALIFORNIA 303(d) LIST AND TMDL PRIORITY SCHEDULE

Approved by USEPA: 12-May-99

Approved by USEPA: 12-May-99

•

.

REGION	TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSOR*	SOURCE	PRIORITY	SIZE AFFECTED		START DATE	END DATE
1	R	MADRIVER	109.000							
					DL for the Mad River. Sedir ver (North Fork), (2) the Ma				<b>0205</b> • to and	0207
				N	onpoint Source					
		•		R	esource Extraction					
				S	ilviculture					
				Turbidity		Low	90	Miles	0205	0207
					leveloped for the area tribu 3) the Mad River (Middle).	tary to and including: (1	) the Mad River	(North Fork	), (2) the	
				N	onpoint Source					
				R	esource Extraction					
				s	ilviculture					
1	R	MATTOLE RIVER	112.300							
				Sedimentation/Siltation		Medium	56	Miles	0200	1202
				E	rosion/Siltation					
				н	abitat Modification					
				н	ydromodification					
				N	onpoint Source					
				R	ange Land					
				R	emoval of Riparian Veget	tation				
				R	liparian Grazing					
				S	ilviculture					
				S	pecialty Crop Production					
				S	treambank Modification/	Destabilization				
				Temperature		Medium	56	Miles	0200	120
				н	labitat Modification					
				N	Ionpoint Source					
				R	lemoval of Riparian Vegel	tation				
				S	ilviculture					

~

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

.

•

Appendix -6

_

REGION	TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSOR*	SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
1	R	NAVARRO RIVER	113.500							
				Sedimentation/Siltation Sediment TMDLs will be d	eveloped for: (1) the area	Medium a tributary to and includi	<b>25</b> ng the Navarro F	Miles River above	0298 Philo and	1200
				(2) the area tributary to an	-	River below Philo.				
				•	riculture					
				-	riculture-grazing					
					annel Erosion					
					nstruction/Land Develo	•				
					turbed Sites (Land Dev					
					ainage/Filling Of Wetlan	nds				
					osion/Siltation					
				Flo	w Regulation/Modificat	tion				
				Ha	bitat Modification					
				Ha	rvesting, Restoration, F	Residue Management				
				Hig	hway/Road/Bridge Cor	nstruction				
				lrri	gated Crop Production					
				La	nd Development					
				Lo	gging Road Construction	on/Maintenance				
				No	nirrigated Crop Produc	tion				
				No	npoint Source					
				Ra	nge Land					
				Re	moval of Riparian Vege	tation				
				Re	source Extraction					
				Rij	oarian Grazing					
				Ro	ad Construction					
				Sit	vicultural Point Source	s				
				Sil	viculture					
				Sp	ecialty Crop Production	n				
					eambank Modification/					
				Up	land Grazing					
				•	ater Diversions					

Approved by USEPA: 12-May-99

.

.

.

.

.

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA: 12-May-99

.

REGION	TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSOR*	SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
		·····			be developed for: (1) the ar		25 uding the Navarr	Miles o River abo	0298 ove Philo	1200
					to and including the Navarr	o River below Philo.				
					gricultural Return Flows					
					gricultural Water Diversio	n				
		-			griculture	_				
					ainage/Filling Of Wetland					
					ow Regulation/Modification	on				
					abitat Modification					
					onpoint Source	- 41				
					emoval of Riparian Vegeta esource Extraction	ation				
					reambank Modification/D	ostabilization				
					ater Diversions	estabilization				
1	R	NOYO RIVER	113.200							
				Sedimentation/Siltation		Medium	35	Miles	0698	1299
					onpoint Source					
				51	lviculture					
1	R	REDWOOD CREEK	107.000							
					ng developed for: (1) the a coundary and (2) for the are					1298
				N	onpoint Source					
				R	ange Land					
				Si	ilviculture					

٠

-

.

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA: 12-May-99

.

٩

۹

.

REGION	TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSOR*	SOURCE	PRIORITY	SIZE A <u>FFECTED</u>	UNIT	START DATE	END DATE
1	R	RUSSIAN RIVER	114.100							
				Sedimentation/Siltation		Medium	105	Miles	0209	1211
				increased rate and dept Aggradation in the main Endangered Species Ac	y tributaries.] sedimentation, siltation, turbi o of flooding due to sediment, stem Russian River. Sonom t habitat assessment. This p ation and attainment strategi	property damage, in a County Water Ager roject should arrive a	Russian River and Ri	nd tributarie comprehen	es. sive	
					griculture-storm runoff					
				C C	hannel Erosion					
				c	hannelization					
				c	onstruction/Land Develop	ment				
				ſ	isturbed Sites (Land Devel	ор.)				
				E	Prainage/Filling Of Wetland	S				
				E	rosion/Siltation					
				F	low Regulation/Modificatio	n				
				ł	labitat Modification					
				1	larvesting, Restoration, Re	sidue Management				
				ł	lighway/Road/Bridge Cons	truction				
				ł	lydromodification					
				L	and Development					
				L	ogging Road Construction	/Maintenance				
				1	Ionpoint Source					
					Ather Urban Runoff					
				Ŧ	Removal of Riparian Vegeta	tion				
				F	Riparian Grazing					
				5	load Construction					
				5	Silviculture					
				5	pecialty Crop Production				•	
				5	itreambank Modification/De	estabilization				
				l	Jpland Grazing					
1	R	SCOTT RIVER	105.400							
•	••			Sedimentation/Siltation		Low	68	Miles	0203	0405
					rrigated Crop Production					
					Aine Tailings					
					Nonpoint Source					
					Pasture Land					
					Resource Extraction					
					Silviculture					

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

*

•

Approved by USEPA: 12-May-99

.

4

REGION	TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSOR*	SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
					Agricultural Return Flows Drainage/Filling Of Wetlands Habitat Modification Irrigated Crop Production Nonpoint Source Pasture Land Removal of Riparian Vegetation Silviculture Streambank Modification/Destabi Water Diversions	Low	68	Miles	0203	0405
1	R	SHASTA RIVER	105.500							
					Agricultural Return Flows Flow Regulation/Modification Riparian Grazing	Low	52	Miles	0203	0905
				Temperature	Agricultural Water Diversion Agriculture-irrigation tailwater Drainage/Filling Of Wetlands Habitat Modification Nonpoint Source Removal of Riparian Vegetation Water Diversions	Low	52	Miles	0203	0905
1	R	STEMPLE CREEK	115.400		nt was relisted by USEPA. Manure Lagoons Nonpoint Source Pasture Land	Low	17	Miles	0496	0498
1	R	TEN MILE RIVER	113.130	Sedimentation/Siltation USEPA is developing T	Pasture Land MDL for Ten Mile River. Nonpoint Source Silviculture	Low	10	Miles	0298	1200

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

.

3

Approved by USEPA: 12-May-99

.

14

REGION	TYPE	NAME		POLLUTANT/STRESSOR*	SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
1	R	TOMKI CREEK	111.620							
				Sedimentation/Siltation USEPA will develop TMDI Eel River, has been listed Restoration effort has targ 303(d) list.		ction 303(d) due to the	effects of sedim	entation.		1204
				Er	osion/Siltation					
				No	onpoint Source					
				Ra	inge Land					
				Sil	viculture					
1	R	TRINITY RIVER	106.000							
				Sedimentation/Siltation		Medium	170	Miles	0199	1201
				USEPA will develop TMDI including: (1) the Trinity R Mi No Ra Ra	L for Trinity River. Sedimen iver (Upper), (2) the Trinity ne Tailings onpoint Source ange Land esource Extraction lviculture	nt TMDLs will be deve	loped for the area	a tributary to	o and	
				51	iviculture					
1	1 R TRINITY RIV	TRINITY RIVER, SOUTH FORK	106.200							
				tributary to and including I Trinity River except Hayfo No	TMDL for South Fork Trin Hayfork/Corral Creeks and rk/Corral Creeks onpoint Source parian Grazing					1298
•					lviculture					
				Temperature Elevated temperatures im Ha Re Ri St	pact coldwater fisheries. U abitat Modification emoval of Riparian Vegeta parian Grazing reambank Modification/D ater Diversions	tion	80 ing TMDL for Sol	Miles uth Fork Tri	0206 nity River.	1208
1	R	VAN DUZEN RIVER	111.200							
·				to and including Yager Cr (3) areas tributary to and Er No Ra	DL for Van Duzen River. S eek, (2) areas tributary to including the Van Duzen R rosion/Siltation onpoint Source ange Land ilviculture	and including the Van				1299

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

.

.

.

Approved by USEPA: 12-May-99

•

ť

REGION	TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSOR*	SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
2	в	CARQUINEZ STRAIT	207.100				<u> </u>			
				Chlordane		Low	6560	Acres		
				This listing was made by U	ISEPA.					
				No	npoint Source					
				Copper		Medium	6560	Acres	2003	2008
				Exceedance of California and sediment tissue levels		teria and National Toxic R	ules total crite	ia; elevateo	d water	
				Atr	nospheric Deposition					
				Mu	inicipal Point Sources					
				Ot	her					
				hU	ban Runoff/Storm Sewe	ers				
				DDT		Low	6560	Acres		
				This listing was made by U						
				No	npoint Source					
				Diazinon		Medium	6560	Acres	2000	2005
				Diazinon levels cause wat application in late winter a						
				spring, early summer. Chi					male	
					npoint Source		,			
				Dieldrin		Low	6560	Acres		
				This listing was made by L	JSEPA.					
				No	npoint Source					
				Dioxin compounds*	-	High	6560	Acres		
				* The specific compounds 1,2,3,7,8,9-HxCDD, 1,2,3,			HxCDD, 1,2,3	6,7,8-HxCl	DD,	
				This listing was made by l	JSEPA.					
				At	mospheric Deposition					
				Exotic Species		High	6560	Acres	1998	2003
				Disrupt natural benthos; c	hange pollutant availabili	ity in food chain; disrupt fo	od availability	to native sp	ecies.	
				Ba	llast Water					
				Furan compounds*		High	6560	Acres		
				* The specific compounds 1,2,3,6,7,8-HxCDF, 1,2,3, OCDF.					)F, and	
				This listing was made by l	JSEPA.					
				• ·	mospheric Deposition					

.

•

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA: 12-May-99

•

•

REGION TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSOR*	SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
			mining sediments and loc	consumption and wildlife consu al mercury mining; most signific ate to low level inputs from poin	ant ongoing sourc				2003
				mospheric Deposition					
				dustrial Point Sources					
				unicipal Point Sources					
				atural Sources					
				onpoint Source					
				esource Extraction					
			Nickel	Toxic Rules dissolved criteria a	Low nd National Toxic	6560 Rules total criter	Acres ria; elevated	<b>2006</b> water	2010
			м	unicipal Point Sources					
			Of	ther					
			U	ban Runoff/Storm Sewers					
			PCBs This listing covers non did Interim health advisory fo	oxin-like PCBs. r fish; uncertainty regarding wat	Medium er column concen	6560 tration data.	Acres	2003	2008
			Ŭ	nknown Nonpoint Source					
			HxCB (169), 2,3,3',4,4'-P	PCBs are 3,4,4',5-TCB (81), 3,3 9CB (105), 2,3,4,4',5-PeCB (11- 2,3,3',4,4',5'-HxCB (157), 2,3',4,	1), 2,3',4,4',5-PeC	B (118), 2',3,4,4'	5-PeCB (12	3),	
			This listing was made by	USEPA.					
			U	nknown Nonpoint Source					
			significant contributions fi rivers); exotic species ma	h of the food chain; most sensil rom oil refineries (control progra ny have made food chain more s effect for scaup and scoter (divis	m in place) and a susceptible to accu	griculture (carried umulation of sele	d downstrea nium; healtl	m by n	2010
				griculture					
			In	dustrial Point Sources					
2 B RIC	HARDSON BAY	203.130							
2 B RIC	HARDSON BAY	203.130	Chlordane This listing was made by N		Low	2560	Acres		
2 B RIC	HARDSON BAY	203.130	This listing was made by N DDT This listing was made by	onpoint Source	Low Low	2560 2560	Acres Acres		

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

• •

Approved by USEPA: 12-May-99

.

٠

REGION	TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSOR*	SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	
					s are: 2,3,7,8-TCDD, 1,2,3 ,4,6,7,8-HpCDD, and OCD		<b>2560</b> 8-HxCDD, 1,2,3,	Acres 6,7,8-HxCDI	D,	
				This listing was made by	USEPA.					
				• •	mospheric Deposition					
				Exotic Species		High	2560	Acres	1998	20
				•	change pollutant availability allast Water	/ in food chain; endange	er food availabili	y to native s	pecies.	
					s are: 2,3,7,8-TCDF, 1,2,3, ,7,8,9-HxCDF, 2',3,4,6,7,8-				, and	
				This listing was made by	USEPA					
					tmospheric Deposition					
				High Coliform Count Affected area, Waldo Poi	nt Harbor, is less than 10% tems in some houseboat a					20
				B	oat Discharges/Vessel W	astes				
					eptage Disposal rban Runoff/Storm Sewei	rs				
				effect for multiple fish spe	consumption and wildlife of ecies including striped bass ; most significant ongoing uts from point sources.	s and shark. Major sou	rce is historic: g	old mining s	ediments	20
				A	tmospheric Deposition					
				м	lunicipal Point Sources					
				N	atural Sources					
					onpoint Source					
					esource Extraction					
					oxin-like PCBs. or fish; uncertainty regardin Inknown Nonpoint Source	•	2560 tration data.	Acres	2003	20
				PCBs (dioxin-like)*	inknown Nonpoint Source	e High	2560	Acres		
				<ul> <li>The specific dioxin-like HxCB (169), 2,3,3',4,4'-P</li> </ul>	PCBs are 3,4,4',5-TCB (8 PeCB (105), 2,3,4,4',5-PeCl 2,3,3',4,4',5'-HxCB (157), 2	1), 3,3',3,3'-TCB (77), 3 B (114), 2,3',4,4',5-PeC	,3',4,4',5-PeCB ( B (118), 2',3,4,4'	126), 3,3',4, 5-PeCB (12	23),	
				This listing was made by	USEPA.					
					nknown Nonpoint Source	e				
2	в	SAN FRANCISCO BAY, CENTRAL	203.120							
-	-			Chlordane This listing was made by	USEPA	Low	67700	Acres		
					lonpoint Source					
		esented under each pollutant/stressor a			Appendix -14					

Water Act Section 303(d). In a few cases, they provide necessary information.

.

•

Approved by USEPA: 12-May-99

EGION TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSOR*	SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
			Copper		Medium	67700	Acres	2003	200
			••	a Toxic Rules dissolved criter	ria and National Toxic	Rules total crite	ria; elevated	d water	
			and sediment tissue lev	els.					
				Atmospheric Deposition					
				Municipal Point Sources			'		
				Other					
				Urban Runoff/Storm Sewers	3				
			DDT		Low	67700	Acres		
			This listing was made b	y USEPA.					
				Nonpoint Source			•		
			Diazinon		Medium	67700	Acres	2000	200
			application in late winte	vater column toxicity. Two pa r and pulse from residential la Chlorpyrifos may also be the c	nd use areas linked to	o homeowner pe	sticide use i		
				Nonpoint Source	ause of toxicity, more	uala necucu, n	UNCVEI.		
				Nonpoint Source	I	67700			
			Dieldrin This listing was made b	VIISEPA	Low	67700	Acres		
			•	Nonpoint Source					
	1		Dioxin compounds*	Nonpoint Source	High	67700	Acres		
			* The specific compoun	ds are: 2,3,7,8-TCDD, 1,2,3, ,3,4,6,7,8-HpCDD, and OCDI	7,8-PeCDD, 1,2,3,4,7,			DD,	
			This listing was made b	y USEPA.					
				Atmospheric Deposition					
			Exotic Species		High	67700	Acres	1998	200
			Disrupt natural benthos	; change pollutant availability	in food chain; endang	ier food availabil	ity to native	species.	
				Ballast Water					
			Furan compounds*		High	67700	Acres		
				ds are: 2,3,7,8-TCDF, 1,2,3, ,3,7,8,9-HxCDF, 2',3,4,6,7,8-I				)F, and	
			This listing was made b						
			5	•					
				Atmospheric Deposition	18-6	67700		4000	200
			Mercury	sh consumption and wildlife c	High	67700	Acres	1998 advisory in	200
			effect for multiple fish s and local mercury mini	pecies including striped bass ng; most significant ongoing s nputs from point sources.	and shark. Major sou	ırce is historic: g	old mining	sediments	
				Atmospheric Deposition					
				Industrial Point Sources					
				Municipal Point Sources					
				Natural Sources					
				Nonpoint Source					
				Resource Extraction					

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

..

Approved by USEPA: 12-May-99

•

•

REGION	TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSOR*	SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
				PCBs		Medium	67700	Acres	2003	2008
				This listing covers non dio.						
				•	fish; uncertainty regarding wa	ater column concen	tration data.			
					known Nonpoint Source					
				HxCB (169), 2,3,3',4,4'-Pe	PCBs are 3,4,4',5-TCB (81), 3 iCB (105), 2,3,4,4',5-PeCB (1 2,3,3',4,4',5'-HxCB (157), 2,3',	14), 2,3',4,4',5-PeC	B (118), 2',3,4,4	5-PeCB (1	23),	
				This listing was made by U	USEPA.					
				Un	known Nonpoint Source					
				Selenium		Low	67700	Acres	2006	2010
				significant contributions fro rivers); exotic species may	h of the food chain; most sens om oil refineries (control progr y have made food chain more ffect for scaup and scoter (div	ram in place) and a susceptible to accu	griculture (carrie umulation of sele	d downstrea nium; healt	am by h	
				Ag	riculture					
				Ex	otic Species					
				Inc	dustrial Point Sources					
				Na	itural Sources					
2	в	SAN FRANCISCO BAY, LOWER	204.100							
				Chlordane		Low	79900	Acres		
				This listing was made by l	USEPA.					
				Na	onpoint Source					
				Copper		Medium	79900	Acres	2003	2008
				Exceedance of California and sediment tissue levels	Toxic Rules dissolved criteria s.	and National Toxic	Rules total crite	ria; elevate	d water	
					mospheric Deposition	•				
					unicipal Point Sources				-	
					ther					
				Ur	ban Runoff/Storm Sewers					
				DDT		Low	79900	Acres		
				This listing was made by	USEPA.					
				No	onpoint Source					
				application in late winter a	ter column toxicity. Two patte and pulse from residential lanc lorpyrifos may also be the cal	d use areas linked t	o homeowner pe	sticide use		200
					norpyinos may also be the car onpoint Source	use of toxicity, more				
				Dieldrin	onpoint aource	Low	79900	Acres		
				This listing was made by	USEPA	LOW	19900	Acres		

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

.

.

Approved by USEPA: 12-May-99

•

٠

.

REGION TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSOR*	SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
			Dioxin compounds* * The specific compounds	am: 2378-TCDD 123	High	79900 8-HyCDD 1 2 3	Acres		
			1,2,3,7,8,9-HxCDD, 1,2,3,4			041XODD, 1,2,3	,0,7,0-HXOL	<i></i> ,	
			This listing was made by U	ISEPA.					
				nospheric Deposition					
			Exotic Species		High	79900	Acres	1998	2003
			Disrupt natural benthos; ch Ba	lange pollutant avallability llast Water	y in food chain; endange	er 1000 availabil	ty to native	species.	
			Furan compounds*		High	79900	Acres		
			* The specific compounds 1,2,3,6,7,8-HxCDF, 1,2,3,7 OCDF.					)F, and	
			This listing was made by L	ISEPA.					
				nospheric Deposition					
			Mercury		High	79900	Acres	1998	2003
			Current data indicate fish o effect for multiple fish spec and local mercury mining; moderate to low level inpu elevated fissue levels.	ies including striped bass most significant ongoing s	s and shark. Major sou source is erosion and d	rce is historic: g rainage from ab	old mining : andoned mi	sediments ines;	
				nospheric Deposition					
			Ind	lustrial Point Sources					
			Mu	nicipal Point Sources					
			Na	tural Sources					
			No	npoint Source					
			Re	source Extraction					
			Nickel		Medium	79900	Acres	2003	200
			Exceedance of California and sediment tissue levels		eria and National Toxic	Rules total crite	ria; elevate	d water	
			Atr	nospheric Deposition					
			Mu	inicipal Point Sources					
			Ot	her					
			Url	ban Runoff/Storm Sewe	rs				
			PCBs		Medium	79900	Acres	2003	200
			This listing covers non dio. Interim health advisory for		a water ookumn oonoon	testion data			
			•	known Nonpoint Source	-	u auvn uala.			
			PCBs (dioxin-like)*	known Nonpoint Source	e High	79900	Acres		
			* The specific dioxin-like   HxCB (169), 2,3,3',4,4'-Pe 2,3,3',4,4',5-HxCB (156), 2	CB (105), 2,3,4,4',5-PeC	1), 3,3',3,3'-TCB (77), 3 B (114), 2,3',4,4',5-PeC	,3',4,4',5-PeCB B (118), 2',3,4,4	(126), 3,3',4 '',5-PeCB (1	23),	
			This listing was made by U	ISEPA					
			rins isony was made by (						

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

.

...

٦

Approved by USEPA: 12-May-99

•

REGION	TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSOR*	SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
2	в	SAN FRANCISCO BAY, SOUTH	205.100							
				Chlordane		Low	24500	Acres		
				This listing was made by U	JSEPA.					
				No	npoint Source					
				Copper Exceedance of California and sediment tissue levels		High eria and National Toxic	24500 Rules total criter	Acres ria; elevated	1998 d water	2003
				At	mospheric Deposition					
				Mu	inicipal Point Sources					
				Ot	her					
				Ur	ban Runoff/Storm Sewe	rs				
				DDT		Low	24500	Acres		
				This listing was made by l	JSEPA.					
				No	onpoint Source					
				Diazinon	•	Medium	24500	Acres	2000	2005
				Diazinon levels cause wat application in late winter a spring, early summer. Ch No	nd pulse from residential	land use areas linked to	homeowner pe	sticide use		
				Dieldrin	•	Low	24500	Acres		
				This listing was made by l	USEPA.					
				No	onpoint Source					
				Dioxin compounds* * The specific compounds 1,2,3,7,8,9-HxCDD, 1,2,3,			<b>24500</b> 8-HxCDD, 1,2,3,	Acres .6,7,8-HxCl	DD,	
				This listing was made by l	USEPA.					
					mospheric Deposition					
				Exotic Species Disrupt natural benthos; c		High ly in food chain; endange	<b>24500</b> er food availabili	Acres ity to native	1998 species.	2003
				Furan compounds*	mugi 410/61	High	24500	Acres		
				* The specific compounds 1,2,3,6,7,8-HxCDF, 1,2,3, OCDF.		3,7,8-PcCDF 2,3,4,7,8-P	eCDF, 1,2,3,4,7	,8-HxCDF,	)F, and	
				This listing was made by	USEPA.					
					mospheric Deposition					
					- •					

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

a

.

Approved by USEPA: 12-May-99

٩

٠

REGION	TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSOR*	SOURCE	PRIORITY	SIZE AFFECTED		START DATE	END DATE
				effect for multiple fish spec and local mercury mining;	consumption and wildlife cor cies including striped bass a most significant ongoing so its from point sources; water	nd shark. Major sour urce is erosion and di	ce is historic: g rainage from aba	old mining s andoned mi	sediments nes;	2003
				At	mospheric Deposition					
					dustrial Point Sources					
					unicipal Point Sources					
					tural Sources					
				No	onpoint Source					
					source Extraction					
				Nickel		High	24500	Acres	1998	200
					Toxic Rules dissolved criteri s.					
				Mu	unicipal Point Sources					
				Ot	her					
				Ur	ban Runoff/Storm Sewers					
				PCBs		Medium	24500	Acres	2003	200
				This listing covers non dio Interim health advisory for	oxin-like PCBs. • fish; uncertainty regarding v	vater column concent	tration data.			
				Un	nknown Nonpoint Source					
				HxCB (169), 2,3,3',4,4'-Ре	PCBs are 3,4,4',5-TCB (81), pCB (105), 2,3,4,4',5-PeCB ( 2,3,3',4,4',5'-HxCB (157), 2,3	114), 2,3',4,4',5-PeCl	3 (118), 2',3,4,4'	,5-PeCB (1)	23),	
				This listing was made by l	USEPA.					
				Ur	nknown Nonpoint Source					
				Selenium	•	Low	24500	Acres	2006	201
				A formal health advisory h	has been issued by OEHHA ly establishes that water con are not fully met.	for benthic-feeding di	ucks in South Sa	an Francisco		
				Ac	ariculture					
				Do	omestic Use of Ground Wa	ter				
2	B SA	N PABLO BAY	206.100							
2	B SAI	TADLU DAT	200.100	Chiordane		Low	74200	A		
				This listing was made by t	USEPA	Low	71300	Acres		
					onpoint Source					
				Copper	Supoint Source	Medium	71300	Acres	2003	200
					Toxic Rules dissolved criter					200
				At	mospheric Deposition					
					unicipal Point Sources ther					
				U	rban Runoff/Storm Sewers					

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

٠

۲

Approved by USEPA: 12-May-99

.

.

REGION TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSOR*	SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
`			DDT		Low	71300	Acres		
			This listing was made by l	USEPA.					
			No	onpoint Source	•				
			Diazinon		Medium	71300	Acres	2000	2005
			application in late winter a	ter column toxicity. Two pat and pulse from residential la lorpyrifos may also be the c	nd use areas linked to	homeowner pes	sticide use i		
			No	onpoint Source					
			Dieldrin		Low	71300	Acres		
			This listing was made by	USEPA.					
			No	onpoint Source					
			Dioxin compounds*		High	71300	Acres		
				are: 2,3,7,8-TCDD, 1,2,3,1 ,4,6,7,8-HpCDD, and OCDL		8-HxCDD, 1,2,3,	6,7,8-HxCL	DD,	
			This listing was made by	USEPA.					
				mospheric Deposition					
			Exotic Species	• •	High	71300	Acres	1998	2003
			Disrupt natural benthos; c	hange pollutant availability . Allast Water		food availability l	o native sp	ecies.	
			Furan compounds*		High	71300	Acres		
				s are: 2,3,7,8-TCDF, 1,2,3,7 7,8,9-HxCDF, 2',3,4,6,7,8-F				F, and	
			This listing was made by	USEPA.					
			At	mospheric Deposition					
			Mercury		High	71300	Acres	1998	2003
			effect for multiple fish spe	consumption and wildlife co cies including striped bass ; most significant ongoing so uts from point sources.	and shark. Major sou	rce is historic: g	old mining :	sediments	
			At	mospheric Deposition					
			M	unicipal Point Sources					
			N	atural Sources					
			N	onpoint Source					
			R	esource Extraction					
			Nickel		Low	71300	Acres	2006	2010
			Exceedance of California and sediment tissue level	Toxic Rules dissolved crite. ls.	ria and National Toxic	Rules total crite	ria; elevate	d water	
			M	unicipal Point Sources					
			0	ther					
			U	rban Runoff/Storm Sewers	5				
			PCBs This listing covers non did	oxin-like PCBs. r fish; uncertainty regarding	Medium	71300	Acres	2003	2008
			•		water countin concern	a abon udld.			
			U	nknown Nonpoint Source					

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

.

4

-

Approved by USEPA: 12-May-99

۰.

•

REGION	TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSOR*	SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
				HxCB (169), 2,3,3',4,4'-Pe	PCBs are 3,4,4',5-TCB (81) CB (105), 2,3,4,4',5-PeCB ;3,3',4,4',5'-HxCB (157), 2,	(114), 2,3',4,4',5-PeCB	<b>71300</b> 3',4,4',5-PeCB ( 3 (118), 2',3,4,4',	5-PeCB (12	, <b>4',4,4'-</b> 23),	
				This listing was made by L	ISEPA.					
				Un	known Nonpoint Source					
				significant contributions fro rivers); exotic species may	n of the food chain; most se m oil refineries (control pro v have made food chain mo ffect for scaup and scoter (	ogram in place) and ag ore susceptible to accu	riculture (carried mulation of sele	l downstrea nium; healt	am by h	201
				Ag	riculture					
				Ex	otic Species					
				Ind	lustrial Point Sources					
				Na	tural Sources					
2	в	SUISUN BAY	207.100							
				Chlordane		Low	25000	Acres		
				This listing was made by L						
					npoint Source					
				Copper Exceedance of California and sediment tissue levels	Toxic Rules dissolved crite	Medium ria and National Toxic	25000 Rules total critei	Acres ia; elevate	2003 d water	200
				Atı	nospheric Deposition					
				Mu	inicipal Point Sources					
				Ot	her					
				Ur	ban Runoff/Storm Sewers	\$				
				DDT		Low	25000	Acres		
				This listing was made by U						
					onpoint Source	<b>N a</b> alterna	25000		2000	200
				application in late winter a	er column toxicity. Two pa nd pulse from residential la lorpyrifos may also be the	and use areas linked to	homeowner pe	sticide use		200
					onpoint Source					
				Dieldrin This listing was made by (	USEPA.	Low	25000	Acres		
					onpoint Source					
					are: 2,3,7,8-TCDD, 1,2,3, 4,6,7,8-HpCDD, and OCD		25000 8-HxCDD, 1,2,3	<b>Acres</b> , 6, 7, 8-HxC	DD,	
				This listing was made by	USEPA.					
				- ,	mospheric Deposition					

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

.

٠

Approved by USEPA: 12-May-99

4

REGION TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSOR*	SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
			Exotic Species		High	25000	Acres	1998	2003
				change pollutant availability		food availability i			
			E	Ballast Water					
				ls are: 2,3,7,8-TCDF, 1,2,3,7 3,7,8,9-HxCDF, 2',3,4,6,7,8-F				F, and	
			This listing was made by	USEPA.					
			ļ.	Atmospheric Deposition					
			mining sediments and lo abandoned mines; mode	h consumption and wildlife co cal mercury mining; most sig erate to low level inputs from	nificant ongoing sour				200:
				Atmospheric Deposition					
			-	ndustrial Point Sources					
				Natural Sources					
				Nonpoint Source					
				Resource Extraction	•	25000		2000	
			Nickel Exceedance of Californi and sediment tissue leve	a Toxic Rules dissolved crite els.	Low ria and National Toxic	25000 Rules total crite	Acres ria; elevated	2006 d water	20 ⁻
				Municipal Point Sources Other					
				Jrban Runoff/Storm Sewen	S				
			PCBs		Medium	25000	Acres	2003	200
			This listing covers non a Interim health advisory f	lioxin-like PCBs. for fish; uncertainty regarding	water column concer	ntration data.			
			L L L L L L L L L L L L L L L L L L L	Unknown Nonpoint Source					
			HxCB (169), 2,3,3',4,4'-I	e PCBs are 3,4,4',5-TCB (81, PeCB (105), 2,3,4,4',5-PeCB , 2,3,3',4,4',5-HxCB (157), 2	(114), 2,3',4,4',5-PeC	B (118), 2',3,4,4	,5-PeCB (1)	23),	
			This listing was made by	V USEPA					
			•	Unknown Nonpoint Source					
			Selenium		Low	25000	Acres	2006	201
			Affected use is one brar significant contributions rivers); exotic species rr	nch of the food chain; most so from oil refineries (control pr nay have made food chain mu n effect for scaup and scoter	ensitive indicator is ha ogram in place) and a ore susceptible to acc	tchability in nest griculture (carrie umulation of sele	ing diving b d downstrea nium; healt	irds, am by h	_0.
			ł	Exotic Species					
			1	Industrial Point Sources					
				Natural Sources					

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

•

.

			HYDRO				SIZE		START	END
REGION	TYPE		UNIT	POLLUTANT/STRESSOR*	SOURCE	PRIORITY	AFFECTED	UNIT	DATE	DATE
2	в	TOMALES BAY	201.110							
				and Walker Creek, must b	s part of evolving watershe e managed first. Additiona ne Tailings			Acres Is, Lagunita	<b>2002</b> s Creek	200
				Nutrients TMDL will be developed as and Walker Creek, must b	s part of evolving watershe e managed first. Additiona riculture			Acres s, Lagunita	<b>2002</b> s Creek	200
				Pathogens TMDL will be developed as	s part of evolving watershe			Acres is, Lagunita	<b>2002</b> s Creek	200
				An	e managed first. Additiona imal Operations ptage Disposal	i nonionig and asse.	ssment needed.			
					s part of evolving watershe e managed first. Additiona			Acres Is, Lagunita	<b>2002</b> s Creek	200
				Ag	riculture stream Impoundment	5				
2	E	SACRAMENTO SAN JOAQUIN DELTA	207.100							
				Chlordane This listing was made by L No	JSEPA. Inpoint Source	Low	15000	Acres		
				Copper		Medium	15000	Acres	2003	20
				Exceedance of California and sediment tissue levels	Toxic Rules dissolved crite s.	ria and National Toxic	Rules total criter	ia; elevateo	l water	
					mospheric Deposition					
					inicipal Point Sources					
					her ban Runoff/Storm Sewer	~				
				DDT This listing was made by t		Low	15000	Acres		
				• •	onpoint Source					
				Diazinon Diazinon levels cause wat application in late winter a	er column toxicity. Two pa nd pulse from residential k lorpyrifos may also be the	and use areas linked to	o homeowner pes	sticide use i		20
				No	onpoint Source					
				Dieldrin This listing was made by t	USEPA.	Low	15000	Acres		
				No	onpoint Source					

#### 1008 CALIEODNIA 202/d) LIST AND TMDL DDIODITY SCHEDULE

٠

.

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

.

•

Approved by USEPA: 12-May-99

•

.

REGION TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSOR*	SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
				s are: 2,3,7,8-TCDD, 1,2,3 ,4,6,7,8-HpCDD, and OCD		15000	Acres 6,7,8-HxCE		
			This listing was made by						
				tmospheric Deposition					
			•	change pollutant availability allast Water	High / in food chain; endang	<b>15000</b> er food availabili	Acres ty to native	1998 species.	200:
				s are: 2,3,7,8-TCDF, 1,2,3, ,7,8,9-HxCDF, 2',3,4,6,7,8-				F, and	
			This listing was made by	USEPA					
			• • •	tmospheric Deposition					
			Mercury Current data indicate fish mining sediments and loc	consumption and wildlife of all mercury mining; most si rate to low level inputs from	ignificant ongoing sourc				200
			A	tmospheric Deposition					
			In	dustrial Point Sources					
			M	unicipal Point Sources					
			N	onpoint Source					
			R	esource Extraction					
			Nickel Exceedance of California and sediment tissue leve	Toxic Rules dissolved crit	Low eria and National Toxic	15000 Rules total crite	Acres ria; elevate	2006 d water	201
				lunicipal Point Sources ther					
				rban Runoff/Storm Sewe	re				
			PCBs	Iban Kunon otonn oewe	Medium	15000	Acres	2003	200
			This listing covers non di	oxin-like PCBs. or fish; uncertainty regardin			AUCS	2000	200
			. U	nknown Nonpoint Source	e				
			HxCB (169), 2,3,3',4,4'-P	PCBs are 3,4,4',5-TCB (8 eCB (105), 2,3,4,4',5-PeCI 2,3,3',4,4',5'-HxCB (157), 3	3 (114), 2,3',4,4',5-PeC	B (118), 2',3,4,4	,5-PeCB (1	23),	
			This listing was made by	USEPA					
				nknown Nonpoint Source	e				

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

•

٠

Approved by USEPA: 12-May-99

REGION	TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSOR*	SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
				significant contributions fr rivers); exotic species ma	h of the food chain; most sensitiv om oil refineries (control program y have made food chain more su effect for scaup and scoter (diving	in place) and agi sceptible to accur	riculture (carried nulation of selen	downstrean ium; health	n by	2010
				E	griculture kotic Species dustrial Point Sources					
					atural Sources					
2	L	CALERO RESERVOIR	205.400							
_	-			monitoring and assessme		High Vatershed Manag	<b>350</b> ement Initiative.	Acres Additional	1998	2003
					ine Tailings urface Mining					
2	L	GUADALUPE RESERVOIR	205.400							
ž	L	GUADALUFE RESERVOIR	203.400	<b>Mercury</b> TMDL will be developed a monitoring and assessme	as part of the Santa Clara Basin V ant is needed.	High Vatershed Manag	<b>80</b> ement Initiative.	Acres Additional	1998	2003
				M	ine Tailings					
				S	urface Mining					
2	Ĺ	LAKE HERMAN	207.210							
				•	l assessment needed. Problem d urface Mining	Low ue to historical m	110 ining.	Acres	2005	2010
2	L	MERRITT LAKE	204.200							
				Floating Material This listing was made by	USEPA. onpoint Source	Low	160	Acres		
				Org. enrichment/Low D.O. This listing was made by		Low	160	Acres		
	-		004 000	N	onpoint bource					
2	R	ALAMEDA CREEK	204.300	Diazinon This listing was made by		Low	50.77	Miles		
				U	rban Runoff/Storm Sewers					
2	R	ALAMITOS CREEK	205.400	M		117. L	~		4000	
				Mercury TMDL will be developed monitoring and assessme	as part of the Santa Clara Basin V ent is needed.	High Watershed Manag	21 gement Initiative.	Miles Additional	1998	2003
				N	line Tailings					

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

.

٠

Approved by USEPA: 12-May-99

. .

REGION	TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSOR*	SOURCE	PRIORITY	SIZE AFFE <u>CTE</u> D		START DATE	END DATE
2	R	ARROYO CORTE MADERA DEL PRESIDIO	203.200							
				Diazinon This listing was made by U	USEPA. Irban Runoff/Storm Sewers	Low	3.2	Miles		
2	R	ARROYO DE LA LAGUNA	204.300	Diazinon		Low	7.4	Miles		
				This listing was made by U	USEPA. Irban Runoff/Storm Sewers					
2	R	ARROYO DEL VALLE	204.300	Diazinon		Low	48.7	Miles		
				This listing was made by	[,] USEPA. Irban Runoff/Storm Sewers		40.7	Whies		
2	R	ARROYO HONDO	204.300	Dississs		Low	0.00	Miles		
				Diazinon This listing was made by U	[,] USEPA. Irban Runoff/Storm Sewers	Low	9.23	miles		
2	R	BUTANO CREEK	202.400			Madisen		Miles	2000	2005
				Sedimentation/Siltation Impaiment to steelhead N	habitat. Ionpoint Source	Medium	1	Miles	2000	2005
2	R	CALABAZAS CREEK	206.401							
				Diazinon This listing was made by L	/ USEPA. Jrban Runoff/Storm Sewers	Low	4.7	Miles		
2	R	CORTE MADERA CREEK	203.200					•		
				Diazinon This listing was made by L	/ USEPA. Jrban Runoff/Storm Sewers	Low	4.12	Miles		
2	R	COYOTE CREEK (MARIN CO)	203.200							
				Diazinon This listing was made by	/ USEPA. Jrban Runoff/Storm Sewers	Low	2.62	Miles		
2	R	COYOTE CREEK (SANTA CLARA CO.)	205.300							
				Diazinon This listing was made by L	/ USEPA. Jrban Runoff/Storm Sewers	Low	<b>68.63</b>	Miles		
2	R	GALLINAS CREEK	206.200							
				Diazinon This listing was made by L	/ USEPA. Jrban Runoff/Storm Sewers	Low	2.4	Miles		

Water Act Section 303(d). In a few cases, they provide necessary information.

٠

.

.

				303(0) LIST AND				Approved L	OY USEPA:	12-May-9
REGION	TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSOR*	SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
2	R	GUADALUPE CREEK	205.400	Mercury TMDL will be developed as monitoring and assessmen Mir		High asin Watershed Manag	6 ement Initiative	Miles a. Additional	1998	2003
2	R	GUADALUPE RIVER	205.400	Diazinon This listing was made by U	ISEPA.	Low	18.21	Miles		
				Urt Mercury TMDL will be developed as monitoring and assessmen	ean Runoff/Storm Sewers part of the Santa Clara B t is needed.	High	30 ement Initiative	Miles 6. Additional	1998	2003
2	R	LAGUNITAS CREEK	201.130	Nutrients Tributary to Tomales Bay.		Medium as part of evolving wate	22 ershed manage	Miles ement effort.	2002	2007
				•	riculture oan Runoff/Storm Sewer	Medium	22 ershed manage	Miles ament effort.	2002	2007
				Additional monitoring and a Agi Urt			22	Miles	2002	2007
				•		as part of evolving wat			2002	2007
2	R	LAUREL CREEK	207.230	Diazinon This listing was made by U Urt	ISEPA. ban Runoff/Storm Sewer	Low	3.02	Miles		
2	R	LEDGEWOOD CREEK	207.230	Diazinon This listing was made by L Un	ISEPA. ban Runoff/Storm Sewer	Low	12.44	Miles		
2	R	LOS GATOS CREEK (REG 2)	205.400	Diazinon This listing was made by L Url	/SEPA. ban Runoff/Storm Sewer	Low	25.72	Miles		

.

Approved by USEPA: 12-Mav-99

.

•

4

.1

Approved by USEPA: 12-May-99

.

.

REGION	TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSOR*	SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
2	R	MATADERO CREEK	205.500	Diazinon This listing was made by	y USEPA. Urban Runoff/Storm Sewers	Low	7.34	Miles		
2	R	MILLER CREEK	206.200	Diazinon This listing was made by	y USEPA. Urban Runoff/Storm Sewers	Low	9.03	Miles		
2	R	MT. DIABLO CREEK	207.310	Diazinon This listing was made by	y USEPA. Urban Runoff/Storm Sewers	Low	12.63	Miles		
2	R	NAPA RIVER	206.500	assessment needed.	l as part of ongoing watershed ma	Medium anagement effort.	55 Additional monit	Miles oring and.	2000	2005
				Pathogens TMDL will be developed assessment needed.	Agriculture I as part of ongoing watershed ma Agriculture	Medium anagement effort.	55 Additional monit	Miles oring and	2000	2005
				Sedimentation/Siltation TMDL will be developed assessment needed.	Urban Runoff/Storm Sewers I as part of ongoing watershed ma Agriculture Construction/Land Developmen Urban Runoff/Storm Sewers	•	55 Additional monit	Miles oring and	1998	2003
2	R	NOVATO CREEK	206.200	Diazinon This listing was made by		Low	18.74	Miles		
2	R	PERMANENTE CREEK	205.500	Diazinon This listing was made by		Low	13.1	Miles		
2	R	PESCADERO CREEK (REG 2)	202.400	Sedimentation/Siltation Impairment to steelhead	d habitat. Nonpoint Source	Medium	21	Miles	2000	2005

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

.

•

Appendix -28

÷

Approved by USEPA: 12-May-99

,

REGION	TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSOR*	SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
2	R	PETALUMA RIVER	206.300						-	
				Nutrients TMDL will be developed assessment needed.	l as part of ongoing watershed man	Medium agement effort.	25 Additional monitor	Miles ing and	2000	2005
					Agriculture					
					Construction/Land Development					
				l	Urban Runoff/Storm Sewers					
				Pathogens TMDL will be developed assessment needed.	l as part of ongoing watershed man	Medium agement effort.	25 Additional monitor	Miles ing and	2000	2005
					Agriculture					
	•				Construction/Land Development					
				1	Urban Runoff/Storm Sewers					
				Sedimentation/Siltation TMDL will be developed assessment needed.	l as part of ongoing watershed man	Medium agement effort.	25 Additional monitor	Miles ing and	2000	2005
				1	Agriculture					
				<b>Construction/Land Development</b>						
					Urban Runoff/Storm Sewers					
2	R	PINE CREEK	207.310							
				Diazinon		Low	12.56	Miles		
				This listing was made b	y USEPA. Urban Runoff/Storm Sewers					
_	_									
2	R	PINOLE CREEK	206.600	Dissian		•	0.47			
				Diazinon This listing was made b	v USEPA	Low	9.17	Miles		
					Urban Runoff/Storm Sewers					
•	-		204 200							
2	R	RODEO CREEK	201.300	Diazinon	·	Low	7.96	Miles		
				This listing was made b	v USEPA.	LOW	7.50	mues		
					Urban Runoff/Storm Sewers					
2	R	SAN ANTONIO CREEK (REG 2)	206.300							
2	n	SAN ANTONIO GREEN (REG 2)	200.300	Diazinon		Low	17.77	Miles		
				This listing was made b	y USEPA.	2007				
				-	Urban Runoff/Storm Sewers					
2	R	SAN FELIPE CREEK	205.300							
-		0/01/220/2 011201		Diazinon		Low	15.47	Miles		
				This listing was made b	y USEPA.			•		
					Urban Runoff/Storm Sewers					
2	R	SAN FRANCISQUITO CREEK	205.500							
-				Diazinon		Low	12.05	Miles		
				This listing was made b	-					
					Urban Runoff/Storm Sewers					

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

.

Approved by USEPA: 12-May-99

٠

•

REGION	TYPE		HYDRO UNIT	POLLUTANT/STRESSOR* SOURCE	PRIORITY	SIZE AFFECTED		START DATE	END DATE
				Sedimentation/Siltation Impairment to steelhead habitat. Nonpoint Source	Medium	18	Miles	2000	2005
2	R	SAN GREGORIO CREEK	202.300	Sedimentation/Siltation Impairment to steelhead habitat. Nonpoint Source	Medium	16	Miles	2000	2005
2	R	SAN LEANDRO CREEK	204.200	Diazinon This listing was made by USEPA. Urban Runoff/Storm Sewers	Low	14.77	Miles		
2	R	SAN LORENZO CREEK (R2)	204.200	Diazinon This listing was made by USEPA. Urban Runoff/Storm Sewers	Low	11.7	Miles		
2	R	SAN MATEO CREEK	204.400	Diazinon This listing was made by USEPA. Urban Runoff/Storm Sewers	Low	11.05	Miles		
2	R	SAN PABLO CREEK	206.600	Diazinon This listing was made by USEPA. Urban Runoff/Storm Sewers	Low	16.14	Miles		
2	R	SAN RAFAEL CREEK	203.200	Diazinon This listing was made by USEPA. Urban Runoff/Storm Sewers	Low	2.8	Miles		
2	R	SARATOGA CREEK	205.500	Diazinon This listing was made by USEPA. Urban Runoff/Storm Sewers	Low	17.86	Miles		
2	R	SONOMA CREEK	206.400	Nutrients TMDL will be developed as part of ongoing watershed main assessment needed. Agriculture Construction/Land Development Urban Runoff/Storm Sewers		23 Additional monit	<b>Miles</b> toring and	2000	2005

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

i.

.

Approved by USEPA: 12-May-99

REGION	TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSOR*	SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
				Pathogens TMDL will be developed assessment needed.	d as part of ongoing watershed man	Medium nagement effort.	23 Additional monite	Miles oring and	2000	2005
					Agriculture Construction/Land Development					
					Urban Runoff/Storm Sewers					
				Sedimentation/Siltation	d as part of ongoing watershed mar	Medium nagement effort.	23 Additional monit	Miles oring and	2000	2005
					Agriculture Construction/Land Development					
	_				Urban Runoff/Storm Sewers					
2	R	STEVENS CREEK	205.500				<u></u>	A611		
				Diazinon This listing was made b	V USEPA.	Low	22.26	Miles		
				-	Urban Runoff/Storm Sewers					
2	R	SUISUN SLOUGH	207.23							
£	i v		201.23	Diazinon This listing was made b	y USEPA.	Low	10	Miles		
				-	Urban Runoff/Storm Sewers					
2	R	WALKER CREEK	201.120							
					ay. TMDLs will be developed as pa nd assessment needed.	Medium art of evolving wa	25 atershed manage	Miles ment effort.	2002	2007
				-	Mine Tailings					
					Surface Mining					
				Additional monitoring a	ay. TMDLs will be developed as pa nd assessment needed.	Medium art of evolving wa	25 atershed manage	Miles ment effort.	2002	2007
					Agriculture		-			_
				Additional monitoring a	ay. TMDLs will be developed as pa nd assessment needed. Agriculture	Medium art of evolving wa	<b>25</b> atershed manage	Miles ment effort.	2002	2007
-	_				Agriculture					
2	R	WALNUT CREEK	207.320	Diazinon		Low	9.03	Miles		
				This listing was made b	y USEPA.	LOW	3.UJ	MII22		
				-	Urban Runoff/Storm Sewers					
2	R	WILDCAT CREEK	206.600							
_	-			Diazinon		Low	12.07	Miles		
				This listing was made b	•					
					Urban Runoff/Storm Sewers					

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

٠

,

Approved by USEPA: 12-May-99

•

.

				DINELINONIT			Approved	· · ·	12-May-9
TYPE	NAME	HYDRÖ UNIT	POLLUTANT/STRESSOR	* SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
т	SUISUN MARSH WETLANDS	207.230							
			Metals		Medium	57000	Acres	2003	2008
			Additional monitoring a						
				-					
			Nutrianta	Urban Runon/Storm Sewers	Bio alle una	67000		2002	2008
				and assessment needed.	mealum	57000	Acres	2003	2008
				•					
				Urban Runoff/Storm Sewers					
			Org. enrichment/Low D.C	<b>)</b> .	Medium	57000	Acres	2003	2008
			Additional monitoring a	and assessment needed.					
				Agriculture					
				Flow Regulation/Modification					
				Urban Runoff/Storm Sewers					
			-		Medium	57000	Acres	2003	2008
			Additional monitoring a						
				•					
				-					
				orban Runon/storm Sewers					
В	MONTEREY HARBOR	309.500	•• • •			~ .	-		
			Metals	Deilseed Slee Bile	Medium	74	Acres	0198	0403
			Linknown Toxicity	Railroad Slag Flie	Low	74	A	0109	0411
			Unknown roxicity	Source Unknown	LOW	74	Acres	0190	0411
_									
в	MORRO BAY	310.220	30.4.1.			400			
			metals	Rest Discharges Messel Mestes	High	100	Acres	0696	0400
				-					
				-					
			Pathonens	Surface Minning	High	50	Acres	0696	0400
			r atriogens	Natural Sources	mgn	50	ACIES	0030	0400
				•					
				Urban Runoff/Storm Sewers					
			Sedimentation/Siltation		High	100	Acres	0696	0699
				Agriculture			-		
				Channel Erosion					
				Channelization					
				<b>Construction/Land Development</b>					
				Irrigated Crop Production					
				Resource Extraction					
		T SUISUN MARSH WETLANDS	TYPE     NAME     UNIT       T     SUISUN MARSH WETLANDS     207.230       B     MONTEREY HARBOR     309.500	TYPE       NAME       UNIT       POLLUTANT/STRESSOR         T       SUISUN MARSH WETLANDS       207.230       Metals       Additional monitoring a         Mutrients       Additional monitoring a       Nutrients       Additional monitoring a         Nutrients       Additional monitoring a       Salinity       Additional monitoring a         B       MONTEREY HARBOR       309.500       Metals         B       MORRO BAY       310.220       Metals         Pathogens       Pathogens       Pathogens	TYPE     NAME     UNIT     POLLUTANT/STRESSOR*     SOURCE       T     SUISUN MARSH WETLANDS     207.230     Metals Additional monitoring and assessment needed. Agriculture Flow Regulation/Modification Urban Runoff/Storm Sewers     Agriculture Flow Regulation/Modification Urban Runoff/Storm Sewers       Nutrients     Additional monitoring and assessment needed. Agriculture Flow Regulation/Modification Urban Runoff/Storm Sewers     Additional monitoring and assessment needed. Agriculture Flow Regulation/Modification Urban Runoff/Storm Sewers       Org. enrichment/Low D.O. Additional monitoring and assessment needed. Agriculture Flow Regulation/Modification Urban Runoff/Storm Sewers       B     MONTEREY HARBOR     309.500       B     MORRO BAY     310.220       B     MORRO BAY     310.220       B     MORRO BAY     310.220       C     Settals Nonpoint Source Septage Disposal Upland Craing Urban Runoff/Storm Sewers       Sedimentation/Siltation Urban Runoff/Storm Sewers     Settals Natural Sources Septage Disposal Upland Craing Urban Runoff/Storm Sewers	TYPE     NAME     UNIT     POLLUTANT/STRESSOR     SOURCE     PRIORITY       T     SUISUN MARSH WETLANDS     207.230     Metals     Medium     Additional monitoring and assessment needed.     Agriculture       Flow Regulation/Modification     Urban Runoff/Storm Sewers     Medium     Additional monitoring and assessment needed.     Medium       Additional monitoring and assessment needed.     Agriculture     Flow Regulation/Modification     Medium       Additional monitoring and assessment needed.     Agriculture     Flow Regulation/Modification     Medium       Additional monitoring and assessment needed.     Agriculture     Flow Regulation/Modification     Medium       Additional monitoring and assessment needed.     Agriculture     Flow Regulation/Modification     Medium       Additional monitoring and assessment needed.     Agriculture     Flow Regulation/Modification     Medium       B     MONTEREY HARBOR     309.500     Metals     Medium       B     MORRO BAY     310.220     Metals     Medium       B     MORRO BAY     310.220     Metals     High       Natural Sources     Surface Mining     High       Nonpoint Source     Surface Mining     High       Nonpoint Source     Surface Mining     High       Nonpoint Source     Surface Disposal     Urban Ru	TYPE     NAME     UNIT     POLLUTANT/STRESSOR*     SOURCE     PRIORITY     AFFECTED       T     SUISUN MARSH WETLANDS     207.330     Metals     Medium     57000       Additional monitoring and assessment needed.     Agriculture     Flow Regulation/Modification     57000       Additional monitoring and assessment needed.     Agriculture     Flow Regulation/Modification     57000       Additional monitoring and assessment needed.     Agriculture     Flow Regulation/Modification     57000       Additional monitoring and assessment needed.     Agriculture     Flow Regulation/Modification     57000       Additional monitoring and assessment needed.     Agriculture     Flow Regulation/Modification     57000       Additional monitoring and assessment needed.     Agriculture     Flow Regulation/Modification     57000       Additional monitoring and assessment needed.     Agriculture     Flow Regulation/Modification     57000       Additional monitoring and assessment needed.     Agriculture     Flow Regulation/Modification     57000       B     MONTEREY HARBOR     309.500     Metals     Medium     74       B     MONTEREY HARBOR     310.220     Surrec Unknown     Low     74       B     MORRO BAY     310.220     Metals     High     100       B     MORRO BAY     31	TYPE     MAME     UNIT     POLLUTANT/STRESSOR*     SOURCE     PRIORITY     AFFECTED     UNIT       T     SUISUN MARSH WETLANDS     207.230     Metals     Medium     57000     Acres       Additional monitoring and assessment needed.     Agriculture     Flow Regulation/Modification     Medium     57000     Acres       Additional monitoring and assessment needed.     Agriculture     Medium     57000     Acres       Additional monitoring and assessment needed.     Agriculture     Flow Regulation/Modification     Urban Runoff/Storn Severs     Medium     57000     Acres       Org. enrichment/Low D.0.     Medium     57000     Acres     Additional monitoring and assessment needed.     Agriculture       Flow Regulation/Modification     Urban Runoff/Storn Severs     Medium     57000     Acres       Salinity     Additional monitoring and assessment needed.     Agriculture     Flow Regulation/Modification     Urban Runoff/Storn Severs       B     MONTEREY HARBOR     309.500     Metals     Railroad Siag Pile     Low     74     Acres       B     MORRO BAY     310.220     Metals     Medium     50     Acres       B     MORRO BAY     310.220     Metals     High     50     Acres       Sedimentation/Siltation     Urban Runoff/Storn Sever	TYPE     NAME     UNIT     POLUTTATISTRESSOR*     SOURCE     PRORITY     AFFECTED     UNIT     DATE       T     SUISUN MARSH WETLANDS     207.33     Metals     Medium     57000     Acres     2093       Additional monitoring and assessment moedod.     Additional monitoring and assessment moedod.     Medium     57000     Acres     2003       Additional monitoring and assessment moedod.     Additional monitoring and assessment moedod.     Medium     57000     Acres     2003       Additional monitoring and assessment meedod.     Agriculture     Flow Regulation/Modification     Urban Runoff/Storm Severs     Medium     57000     Acres     2003       Additional monitoring and assessment meedod.     Agriculture     Flow Regulation/Modification     Urban Runoff/Storm Severs     Medium     57000     Acres     2003       Additional monitoring and assessment meedod.     Agriculture     Flow Regulation/Modification     Urban Runoff/Storm Severs     Medium     57000     Acres     2003       B     MONTEREY MARBOR     309.500     Metals     Railroad Sing Plie     Low     74     Acres     0198       B     MORRO BAY     310.220     Metals     Medium     74     Acres     0596       Sedimentation/Siltation     Matural Sources     Nonpoint Source     Septa

Water Act Section 303(d). In a few cases, they provide necessary information.

.

•

Approved by USEPA: 12-May-99

.

.

.

SEGION     TYPE     NAME     UNIT     POLUUTANT/STRESSOR*     SOURCE     PRIORITY     AFFECTED     UNIT     DV       3     B     MOSS LANDING HARBOR     306.000     Pathogens     Low     40     Acres     04       Agriculture     Boat Discharges/Vessel Wastes     Nonpoint Source     Low     160     Acres     04       Agriculture     Boat Discharges/Vessel Wastes     Nonpoint Source     Low     160     Acres     04       Agriculture     Agriculture     Low     10     Miles     01       Boat Discharges/Descing/Hyther     Agriculture     Low     10     Miles     01       Agriculture     Boat Discharges/Descing/Hyther     Agriculture     Low     10     Miles     01       Agriculture     Boat Discharges/Descing/Hyther     Agriculture     Low     10     Miles     01       Agriculture     Agriculture     Low     10 <td< th=""><th>_</th><th></th><th></th><th></th><th>· · · · ·</th><th></th><th></th><th></th><th></th><th>·</th><th><u> </u></th></td<>	_				· · · · ·					·	<u> </u>
3     C     MONTEREY BAY SOUTH     399.500       3     C     Pacific OCEAN AT POINT RINCON     315.340       3     E     CARPINTERIA MARSH (EL ESTERO MARSH)     315.340       3     E     CARPINTERIA MARSH (EL ESTERO MARSH)     315.340       3     E     CARPINTERIA MARSH (EL ESTERO MARSH)     315.340	EGION	TYPE	NAME		POLLUTANT/STRESSOR	* SOURCE	PRIORITY		UNIT	START DATE	END DAT
Nonpoint Source       Low       160       Acres       04         Pesticides       Agriculture trigated Crop Production       Low       160       Acres       04         Agriculture-storm runoff       Channel Erosion       Low       160       Acres       04         Agriculture-storm runoff       Channel Erosion       Channel Erosion       Low       160       Acres       04         Metals       Corredging (Hydromod.)       Erosion/Sittation       Hydromodification       10       Miles       01         3       C       MONTEREY BAY SOUTH       309.500       Metals       Low       10       Miles       01         3       C       PACIFIC OCEAN AT POINT RINCON       315.340       Peticides       Low       10       Miles       01         3       E       CARPINTERIA MARSH (EL       315.340       Pathogens       Medium       5       Miles       04         3       E       CARPINTERIA MARSH (EL       315.340       Pathogens       Medium       5       Miles       04         4       Correstromation/Sitter       Low       80       Acres       04         4       Correstromation/Sitter       Low       80       Acres       04	3	В	MOSS LANDING HARBOR	306.000	Pathogens	-	Low	40	Acres	0405	040
Sedimentation/Siltsion     Low     160     Acres     64       Sedimentation/Siltsion     Agriculture     Agriculture     Agriculture       Agriculture     Agriculture-storn unoff     Channel Erosion     Dredging (Hydromod.)       Erosion/Siltation     Hydromodification     Irrigated Crop Production     Niles     04       3     C     MONTEREY BAY SOUTH     309.500     Erosion/Siltation     Hydromodification       1rrigated Crop Production     Nonpoint Source     Niles     04       3     C     MONTEREY BAY SOUTH     309.500     Erosion/Siltation       1     Heals     Low     10     Miles     04       1     Pesticides     Low     10     Miles     04       1     Pesticides     Low     10     Miles     04       1     Pethogens     Medium     5     Miles     04       1     Nonpoint Source     Urban Runoff/Storm Sewers     10     Miles     04       1     Agriculture     Indices     10     Miles     04       1     Agriculture     Indices     10     Miles     04       1     Agriculture     Indices     10     Agriculture       1     Indices     Indices     10     10					Pesticides	Nonpoint Source	Low	160	Acres	0405	040
Agriculture       Agriculture-storm runoff       Agriculture-storm runoff       Agriculture-storm runoff         Channel Forsoino       Dredging (Hydromod.)       Erosion/Siltation       Hydromodification         Bittingated Crop Production       Miles       01       Miles       01         Metals       Low       10       Miles       01         Agriculture       Metals       Low       10       Miles       01         Agriculture       Mateis       Low       10       Miles       01         Miles       Mateis       Low       10       Miles       01         Mateis       Mateis       Mateis       Low       10       Miles       04         Mateis       Mateis       Mateis       Low       80       Acres       04         Mateis       Mateis       Mateis       Low       80       Acres       04				•		Irrigated Crop Production					
Metals Metals Surface Mining Peticides Agriculture 3 C PACIFIC OCEAN AT POINT RINCON 315.340 Pathogens Medium 5 Medium 5 Medium 5 Medium 5 Medium 5 Medium 5 Medium 6 Med					Sedimentation/Siltation	Agriculture-storm runoff Channel Erosion Dredging (Hydromod.) Erosion/Siltation Hydromodification Irrigated Crop Production	Low	160	Acres	0405	04
3       C       PACIFIC OCEAN AT POINT RINCON 315.340       Agriculture       Medium       5       Miles       04         3       C       PACIFIC OCEAN AT POINT RINCON 315.340       Pathogens       Medium       5       Miles       04         3       C       PACIFIC OCEAN AT POINT RINCON 315.340       Pathogens       Medium       5       Miles       04         3       E       CARPINTERIA MARSH (EL       315.340       Nonpoint Source Urban Runoff/Storm Sewers       Medium       5       Miles       04         3       E       CARPINTERIA MARSH (EL       315.340       Nutrients       Low       80       Acres       04         4       Marciulture       Org. enrichment/Low D.O.       Low       80       Acres       04         4       Org. enrichment/Sittation       Low       80       Acres       04         4       Agriculture       Low       80       Acres       04	<b>3</b>	С	MONTEREY BAY SOUTH	309.500	Metals		Low	10	Miles	0198	04
Pathogens       Medium       5       Miles       04         Nonpoint Source Urban Runoff/Storm Sewers       Nonpoint Source Urban Runoff/Storm Sewers       Niles       04         3       E       CARPINTERIA MARSH (EL       315.340       State					Pesticides	2	Low	10	Miles	0198	04
ESTERO MARSH) Nutrients Low 80 Acres 04 Agriculture Org. enrichment/Low D.O. Low 80 Acres 04 Agriculture Priority Organics Low 80 Acres 04 Urban Runoff/Storm Sewers Sedimentation/Siltation Low 80 Acres 04 Agriculture	3	С	PACIFIC OCEAN AT POINT RINCON	315.340	Pathogens		Medium	5	Miles	0406	04
Agriculture Org. enrichment/Low D.O. Agriculture Priority Organics Low 80 Acres 04 Urban Runoff/Storm Sewers Sedimentation/Siltation Low 80 Acres 04 Agriculture	3	E		315.340							
Agriculture Priority Organics Low 80 Acres 04 Urban Runoff/Storm Sewers Sedimentation/Siltation Low 80 Acres 04 Agriculture					Nutrients	Agriculture	Low	80	Acres	0406	04
Urban Runoff/Storm Sewers Sedimentation/Siltation Low 80 Acres 04 Agriculture					-		Low	80	Acres	0406	04
Agriculture						Urban Runoff/Storm Sewers	Low	80	Acres	0406	04
Storm sewers					Sedimentation/Siltation	Construction/Land Development	Low	80	Acres	0406	04

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

+

Approved by USEPA: 12-May-99

.

•

REGION	TYPE		HYDRO UNIT	POLLUTANT/STRESSOR*	SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	
3	Е	ELKHORN SLOUGH	306.000		· · · · · · · · · · · · · · · · · · ·					
				Pathogens		Low	500	Acres	0405	0409
					Natural Sources					
					Nonpoint Source					
				Pesticides		Low Old Salinaa m	500	Acres	0405	040
				slough.	m PG&E may transfer pollutants fro	om Olu Salinas m	ver and moss lai	iung Hanx	or to the	
					Agricultural Return Flows					
					Agriculture					
					Agriculture-storm runoff					
					Contaminated Sediments					
					Erosion/Siltation					
					Irrigated Crop Production					
					Nonpoint Source	_				
				Sedimentation/Siltation	A	Low	50	Acres	0405	04(
					Agriculture					
					Agriculture-storm runoff Channel Erosion					
			-		Irrigated Crop Production					
					Nonpoint Source					
					Nonpoint Source					
3	Е	GOLETA SLOUGH/ESTUARY	315.310							
				Metals		Low	200	Acres	0406	04 ⁻
					Industrial Point Sources	•		•	0.400	
				Pathogens	Urban Runoff/Storm Sewers	Low	200	Acres	0406	04
				Priority Organica	orban Runon/Storm Sewers	Low	200	Acres	0406	04
				Priority Organics	Nonpoint Source	Low	200	Acres	0400	04
				Sedimentation/Siltation	Nonpoint Goulde	Low	200	Acres	0406	04
				ocumentation on allow	Construction/Land Developmen		200	Acies	0400	•••
3	E	OLD SALINAS RIVER ESTUARY	309.100			-				
•	-			Nutrients		Medium	50	Acres	0198	04
					Agricultural Return Flows					
					Agriculture					
					Irrigated Crop Production					
					Nonpoint Source					
				Pesticides	-	Medium	50	Acres	0198	04
					Agricultural Return Flows	`				
					Agriculture					
					Agriculture-irrigation tailwater					
					Agriculture-storm runoff					
					Irrigated Crop Production					
					Nonpoint Source		,			

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

• •

								Approved	by USEPA:	12-May-99
REGION	TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSOR	SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
3	E	SALINAS RIVER LAGOON (NORTH)	309.100	Nutrients	Nonpoint Source	Medium	75	Acres	0198	0403
				Pesticides	Agriculture	Medium	75	Acres	0198	0403
				Sedimentation/Siltation	Nonpoint Source	Medium	75	Acres	0198	0401
3	E	SAN LORENZO RIVER ESTUARY	304.120	Pathogens	Natural Sources	Medium	20	Acres	0499	0401
				Sedimentation/Siltation	Urban Runoff/Storm Sewers Hydromodification	High	20	Acres	0198	0400
3	E	WATSONVILLE SLOUGH	305.100	Metals	Agriculture	Medium	300	Acres	0199	0403
				Oil and grease	Urban Runoff/Storm Sewers Nonpoint Source	Medium	300	Acres	0199	0403
				Pathogens	Urban Runoff/Storm Sewers Nonpoint Source	Medium	300	Acres	0199	0403
				Pesticides	Source Unknown Urban Runoff/Storm Sewers Agricultural Return Flows Agriculture	Medium	300	Acres	0199	0403
				Sedimentation/Siltation	Agriculture-storm runoff Irrigated Crop Production Nonpoint Source	Medium	300	Acres	0198	0401
				Commentationsontation	Agriculture Agriculture-storm runoff Irrigated Crop Production Nonpoint Source	Westum			0130	
3	L	HERNANDEZ RESERVOIR	305.500	Mercury	Subsurface Mining	Medium	619	Acres	0198	0403
3	L	NACIMIENTO RESERVOIR	309.820	Metals	Natural Sources Subsurface Mining	High	5370	Acres	0997	0400

Approved by USEPA: 12-May-99

**.** .

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

• **•** 

Approved by USEPA: 12-May-99

4 Y

REGION	TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSOR	* SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
3	R	APTOS CREEK	304.130							
				Pathogens		Low	4	Miles	0405	0411
				Sedimentation/Siltation	Urban Runoff/Storm Sewers	Medium	4	Miles	0101	0401
					Channel Erosion	mount	-	Miles		0.401
					Disturbed Sites (Land Develop.)					
3	R	ARROYO BURRO CREEK	315.320							
				Pathogens		Medium	6	Miles	0406	0411
					Nonpoint Source Urban Runoff/Storm Sewers					
3	R	BLANCO DRAIN	309.100							
				Pesticides	· · · · · - · -	Medium	8	Miles	0198	0405
					Agricultural Return Flows Agriculture					
					Agriculture-irrigation tailwater					
					Agriculture-storm runoff					
					Irrigated Crop Production					
					Nonpoint Source					
3	R	CARBONERA CREEK	304.120							
				Nutrients	Nonpoint Source	High	10	Miles	0493	0400
				Pathogens	Nonpoint Source	Medium	10	Miles	0499	0401
					Nonpoint Source					
					Urban Runoff/Storm Sewers		_			_
				Sedimentation/Siltation	Construction/Land Development	High	10	Miles	0198	0400
					Nonpoint Source					
3	R	CARPINTERIA CREEK	315.340							
3	N		010.040	Pathogens		Low	6	Miles	0406	0411
				_	Agriculture					-
					Nonpoint Source					
					Septage Disposal					
3	R	CHORRO CREEK	310.220	<b></b>						
				Metals	Mine Tailings	High	11	Miles	0696	0400
					Resource Extraction					
				Nutrients		High	11	Miles	0696	0400
					Agriculture					
					Agriculture-storm runoff					
					Irrigated Crop Production Municipal Point Sources					
					manopar ront oources					

• Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

.

.

Approved by USEPA: 12-May-99

.

.

*

Agriculture-storm runoff Channel Erosion ChannelErosion ChannelEization Construction/Land Development Erosion/Silitation Goff course activities Hydromodification Irrigated Crop Production Inrigated Crop Production Nonpoint Sources Nonpoint Sources Nonpoint Sources       Instruction High       Instruc	REGION	TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSOR	SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
Agriculture-storm runoff Channelization       Sevelopment       Sevelopment         Construction/Land Development       Construction/Land Development       Sevelopment         Construction/Land Development       Construction/Land Development       Sevelopment         Sevelopment       Construction/Land Development       Sevelopment         Barry Construction/Land Development       Construction/Land Development       Sevelopment         Sevelopment       Sevelopment       S					Sedimentation/Siltation		High	11	Miles	0696	0699
Single						-					
Amount       Chamelization Construction/Land Development Errosion/Silitation Golf course activities Hydromodification Inrigated Crop Production Natural Sources Natural Sources Natural Sources Natural Source Extraction Read Construction Destabilization Upland Grazing       Section Source Source Extraction Read Construction Streambank Modification/Destabilization Upland Grazing       Section Source Source Extraction Read Construction Streambank Modification/Destabilization Upland Grazing         3       R       CLEAR CREEK (R3)       304.120 Mercury       Medium 2       Miles       0198       040 Metals         3       R       LAS TABLAS CREEK       309.810 Metals       Metals       Miles       0997       040 Metals         3       R       LAS TABLAS CREEK, NORTH FORK       309.810 Metals       Metals       High       5       Miles       0997       040 Metals         3       R       LAS TABLAS CREEK, SOUTH FORK       309.810 Metals       Metals       High       5       Miles       0997       040 Metals         3       R       LAS TABLAS CREEK, SOUTH FORK       309.810 Metals       Metals       High       5       Miles       0997       040						-					
3       R       LAS TABLAS CREEK, NORTH       309.810         3       R       LAS TABLAS CREEK, SOUTH FORK       309.810			,								
Final Sources       Ension/Siltation         Golf course activities       Hydromodification         Hydromodification       Inrigated Crop Production         Natural Sources       Range Land         Resource Extraction       Road Construction         Nonpoint Source       Range Land         Resource Extraction       Road Construction         Note:       Network         Mercury       Medium       2       Miles       0198       044         Mercury       Mercury       Medium       2       Miles       0198       044         Surface Mining       13       Miles       0997       044         Surface Mining       145											
Golf course activities Hydromodification Irrigated Crop Production Natural Sources Range Land Resource Extraction Streambank Modification/Destabilization Upland Grazing       Set						•					
Hydromodification Irrigated Crop Production Natural Sources Range Land Resource Extraction Streambank Modification/Destabilization Upland Grazing       Hiles       0198       040         3       R       CLEAR CREEK (R3)       304.120 Mercury       Medium       2       Miles       0198       040         3       R       LAS TABLAS CREEK       309.810 Metals       Metals       High       13       Miles       0997       040         3       R       LAS TABLAS CREEK, NORTH FORK       309.810       Metals       High       5       Miles       0997       040         3       R       LAS TABLAS CREEK, NORTH       309.810       Metals       High       5       Miles       0997       040         3       R       LAS TABLAS CREEK, NORTH       309.810       Metals       High       5       Miles       0997       040         3       R       LAS TABLAS CREEK, NORTH       309.810       Metals       Metals       997       040         3       R       LAS TABLAS CREEK, SOUTH FORK       309.810       Metals       997       040         3       R       LAS TABLAS CREEK, SOUTH FORK       309.810       Metals       997       040         5       Miles       099.70       0											
Image Land       Nanopoint Sources         Nanopoint Sources       Nanopoint Source         Nanopoint Source Extraction       Resource Extraction         Resource Extraction       Read Construction         Streambank Modification/Destabilization       Upland Grazing         Mercury       Medium       2       Miles       0198       044         Resource Extraction       Miles       0997       044         Resource Extraction       Miles       0997       044         Surface Mining       Miles       0997       044         Surface Mining       Miles       0997       044         Surface Mining       Miles       0997       044         No       Metals       Surface Mining       Miles       0997       044         Miles       No       Miles       0997       044         Miles       No       Miles       0997       044         Miles       No </td <td></td>											
Natural Sources       Nonpoint Source         Nonpoint Source       Range Land         Resource Extraction       Resource Extraction         Road Construction       Streambank Modification/Destabilization         Upland Grazing       Miles       0198         Matals       Mercury       Medium       2       Miles       0198       044         Resource Extraction       Miles       0198       044       044       044       044       044         Surface Mining       Miles       0198       044 </td <td></td>											
Range Land Resource Extraction Road Construction Streambank Modification/Destabilization Upland Grazing       Streambank Modification/Destabilization Upland Grazing       Streambank Modification/Destabilization Upland Grazing         3       R       CLEAR CREEK (R3)       304.120 Mercury       Medium       2       Miles       0198       044         3       R       LAS TABLAS CREEK       309.810 Metals       Metals       High       13       Miles       0997       044         3       R       LAS TABLAS CREEK, NORTH       309.810 Metals       Metals       Miles       0997       044         3       R       LAS TABLAS CREEK, NORTH       309.810 Metals       Miles       0997       044         3       R       LAS TABLAS CREEK, NORTH       309.810 Metals       Miles       0997       044         3       R       LAS TABLAS CREEK, NORTH       309.810 Metals       Miles       0997       044         3       R       LAS TABLAS CREEK, SOUTH FORK       309.810 Metals       Miles       0997       044         3       R       LAS TABLAS CREEK, SOUTH FORK       309.810 Miles       Miles       0997       044         4       Miles       Miles       0997       044       044											
3       R       CLEAR CREEK (R3)       304.120       Mercury       Medium       2       Miles       0198       044         3       R       LAS TABLAS CREEK       309.810       Metals       Resource Extraction       Miles       0198       044         3       R       LAS TABLAS CREEK       309.810       Metals       High       13       Miles       0997       044         3       R       LAS TABLAS CREEK, NORTH       309.810       Metals       Surface Mining       5       Miles       0997       044         3       R       LAS TABLAS CREEK, NORTH       309.810       Metals       Metals       Metals       Miles       0997       044         3       R       LAS TABLAS CREEK, NORTH       309.810       Metals       Metals       Miles       0997       044         3       R       LAS TABLAS CREEK, SOUTH FORK       309.810       Metals       Miles       0997       044         3       R       LAS TABLAS CREEK, SOUTH FORK       309.810       Metals       Miles       0997       044         5       Miles       0997       044       Miles       0997       044					•	Nonpoint Source					
Road Construction Streambank Modification/Destabilization Upland Grazing         3       R       CLEAR CREEK (R3)       304.120       Mercury       Medium       2       Miles       0198       044         3       R       LAS TABLAS CREEK       309.810       Metals       High       13       Miles       0997       044         3       R       LAS TABLAS CREEK, NORTH       309.810       Metals       Metals       Metals       Migh       5'       Miles       0997       044         3       R       LAS TABLAS CREEK, NORTH       309.810       Metals       Metals       Metals       Migh       5'       Miles       0997       044         3       R       LAS TABLAS CREEK, NORTH       309.810       Metals       Surface Mining       High       5'       Miles       0997       044         3       R       LAS TABLAS CREEK, SOUTH FORK       309.810       Metals       Metals       Miles       0997       044         3       R       LAS TABLAS CREEK, SOUTH FORK       309.810       Metals       Miles       0997       044         Metals       Metals       Miles       0997       044						Range Land					
Streambark Modification/Destabilization Upland Grazing       Streambark Modification/Destabilization Upland Grazing         3       R       CLEAR CREEK (R3)       304.120         3       R       LAS TABLAS CREEK       309.810         3       R       LAS TABLAS CREEK, NORTH       309.810         Metals       Metals       Surface Mining         3       R       LAS TABLAS CREEK, SOUTH FORK       309.810         Metals       Surface Mining       Miles       0997         3       R       LAS TABLAS CREEK, SOUTH FORK       Miles       0997											
Jack Constraint       Jack Straint       Upland Grazing         Jack Straint       Jack Straint       Jack Straint       Jack Straint       Mercury       Medium       2       Miles       0198       044         Jack Straint       Ja											
3       R       CLEAR CREEK (R3)       304.120       Mercury       Medium       2       Miles       0198       044         3       R       LAS TABLAS CREEK       309.810       Metals       High       13       Miles       0997       044         3       R       LAS TABLAS CREEK, NORTH       309.810       Metals       High       13       Miles       0997       044         3       R       LAS TABLAS CREEK, NORTH       309.810       Metals       Metals       Miles       0997       044         3       R       LAS TABLAS CREEK, NORTH       309.810       Metals       Metals       Miles       0997       044         3       R       LAS TABLAS CREEK, SOUTH FORK       309.810       Metals       Miles       0997       044         3       R       LAS TABLAS CREEK, SOUTH FORK       309.810       Metals       Miles       0997       044							ilization				
Mercury       Medium       2       Miles       0198       044         3       R       LAS TABLAS CREEK       309.810       Metals       High       13       Miles       0997       044         3       R       LAS TABLAS CREEK, NORTH       309.810       Metals       Surface Mining       13       Miles       0997       044         3       R       LAS TABLAS CREEK, NORTH       309.810       Metals       Surface Mining       Miles       0997       044         3       R       LAS TABLAS CREEK, NORTH       309.810       Metals       Metals       Miles       0997       044         3       R       LAS TABLAS CREEK, SOUTH FORK       309.810       Metals       Miles       0997       044         Metals       Metals       Metals       Miles       0997       044         3       R       LAS TABLAS CREEK, SOUTH FORK       309.810       Metals       Miles       0997       044						Upland Grazing				•	
Resource Extraction         3 R LAS TABLAS CREEK, NORTH 309.810         Metals       Metals       High       13       Miles       0997       044         Surface Mining         3       R       LAS TABLAS CREEK, NORTH       309.810       Metals	3	R	CLEAR CREEK (R3)	304.120							
3     R     LAS TABLAS CREEK     309.810     Metals     High     13     Miles     0997     040       3     R     LAS TABLAS CREEK, NORTH     309.810     Metals     <					Mercury		Medium	2	Miles	0198	0403
Metals     High     13     Miles     0997     040       3     R     LAS TABLAS CREEK, NORTH     309.810     Surface Mining     High     5     Miles     0997     040       3     R     LAS TABLAS CREEK, SOUTH FORK     309.810     High     5     Miles     0997     040       3     R     LAS TABLAS CREEK, SOUTH FORK     309.810     High     4     Miles     0997     040						Resource Extraction					
Surface Mining 3 R LAS TABLAS CREEK, NORTH 309.810 FORK Metals Metals Creek, SOUTH FORK 309.810 3 R LAS TABLAS CREEK, SOUTH FORK 309.810 Metals High 4 Miles 0997 044	3	R	LAS TABLAS CREEK	309.810							
3 R LAS TABLAS CREEK, NORTH 309.810 FORK Metals Metals High 5 Miles 0997 044 Surface Mining 3 R LAS TABLAS CREEK, SOUTH FORK 309.810 Metals High 4 Miles 0997 044					Metals		High	13	Miles	0997	0400
FORK Metals High 5 Miles 0997 040 Surface Mining 3 R LAS TABLAS CREEK, SOUTH FORK 309.810 Metals High 4 Miles 0997 044						Surface Mining					
Surface Mining 3 R LAS TABLAS CREEK, SOUTH FORK 309.810 Metals High 4 Miles 0997 044	3	R		309.810							
3 R LAS TABLAS CREEK, SOUTH FORK 309.810 Metals High 4 Miles 0997 044					Metals		High	5`	Miles	0997	0400
Metals High 4 Miles 0997 04						Surface Mining			•		
	3	R	LAS TABLAS CREEK, SOUTH FORK	309.810							
Surface Mining					Metals		High	4	Miles	0997	0400
						Surface Mining					

# * Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

₽

.

.

Approved by USEPA: 12-May-99

4

•

	_			<u>```</u>				11		
REGION	TYPE	NAME		POLLUTANT/STRESSOR	SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
3	R	LLAGAS CREEK	305.300							
				Nutrients		High	22	Miles	0198	0401
					Agricultural Return Flows					
					Agriculture					
					Agriculture-irrigation tailwater Agriculture-storm runoff					
					Habitat Modification					
					Irrigated Crop Production					
					Municipal Point Sources					
					Nonpoint Source					
					Pasture Land					
					Point Source					
	·		,		Urban Runoff/Storm Sewers					
				Sedimentation/Siltation		Medium	22	Miles	0198	0401
					Habitat Modification Hydromodification					
_	_				nydromodification					
3	R	LOMPICO CREEK	304.120				_			
				Nutrients	Septage Disposal	High	5	Miles	0493	0400
				Pathogens	Septage Disposal	Medium	5	Miles	0499	0401
				ratiogens	Natural Sources	Mediam		MILES	0433	0401
					Nonpoint Source					
					Septage Disposal					
				Sedimentation/Siltation		High	5	Miles	0198	0400
					Construction/Land Development					
					Natural Sources					
3	R	LOS OSOS CREEK	310.220		,					
				Nutrients		High	10	Miles	0696	0400
					Agricultural Return Flows					
					Agriculture					
					Agriculture-storm runoff					
				Priority Organics	Irrigated Crop Production	High	10	Miles	0696	0400
				Friendly Organics	Urban Runoff/Storm Sewers	nigir	10	mnes	0030	0400

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

1

.

#### HYDRO SIZE START END **REGION TYPE** NAME POLLUTANT/STRESSOR* SOURCE PRIORITY AFFECTED UNIT UNIT DATE DATE 10 Miles 0696 0699 Sedimentation/Siltation High Agriculture Agriculture-storm runoff **Channel Erosion** Channelization Dredging (Hydromod.) **Erosion/Siltation Habitat Modification** Hydromodification Irrigated Crop Production **Natural Sources Nonpoint Source** Range Land **Removal of Riparian Vegetation** Streambank Modification/Destabilization Upland Grazing MISSION CREEK 315.320 3 R 0406 0411 Pathogens Low 9 Miles Septage Disposal Urban Runoff/Storm Sewers 0406 0411 **Unknown Toxicity** 9 Miles Low Urban Runoff/Storm Sewers PAJARO RIVER 305.000 R 3 Nutrients High 49 Miles 0198 0401 **Agricultural Return Flows** Agriculture Agriculture-irrigation tailwater Agriculture-storm runoff Agriculture-subsurface drainage Channelization Irrigated Crop Production **Nonpoint Source Removal of Riparian Vegetation** Urban Runoff/Storm Sewers Wastewater - land disposal

#### 1998 CALIFORNIA 303(d) LIST AND TMDL PRIORITY SCHEDULE

Approved by USEPA: 12-May-99

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

٠

.

Approved by USEPA: 12-May-99

,

•

EGION	TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSOR	SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
				Sedimentation/Siltation	Agriculture Agriculture-storm runoff Channel Erosion Channelization Habitat Modification Hydromodification Irrigated Crop Production Range Land Removal of Riparian Vegetation Resource Extraction Streambank Modification/Destabil Surface Mining	Medium	49	Miles	0198	0401
3	R	RIDER GULCH CREEK	305.100	Sedimentation/Siltation	Agriculture Construction/Land Development Silviculture	Medium	2	Miles	0198	0401
3	R	SALINAS RECLAMATION CANAL	309.200	Pesticides	Agricultural Return Flows Agriculture Agriculture-irrigation tailwater Agriculture-storm runoff Irrigated Crop Production Minor Industrial Point Source Nonpoint Source	Medium	20	Miles	0198	040
				Priority Organics	Agricultural Return Flows Agriculture Agriculture-irrigation tailwater Agriculture-storm runoff Irrigated Crop Production Minor Industrial Point Source Nonpoint Source Source Unknown Urban Runoff/Storm Sewers	Medium	20	Miles	0198	040
3	R	SALINAS RIVER	309.100	Nutrients	Agriculture	Medium	50	Miles	0198	040

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

.

•

-

Approved by USEPA: 12-May-99

,

,

REGION TYPI		HYDRO UNIT	POLLUTANT/STRESSOR	* SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
			Pesticides	· · · · · · · · ·	Medium	50	Miles	0198	0403
				Agricultural Return Flows					
				Agriculture					
				Agriculture-irrigation tailwater					
				Agriculture-storm runoff					
				Irrigated Crop Production					
				Nonpoint Source					
			Salinity/TDS/Chlorides	A	Medium	50	Miles	0198	0403
			Padimentation/Dillation	Agriculture	Madium	00	Mileo	0400	0404
	•		Sedimentation/Siltation	Agriculture	Medium	90	Miles	0198	0401
				Agriculture-storm runoff					
				Channel Erosion					
				Irrigated Crop Production					
				Land Development					
				Nonpoint Source					
				Range Land					
				Road Construction					
3 R	SAN ANTONIO CREEK (SANTA BARBARA COUNTY)	315.310							
			Sedimentation/Siltation		Low	6	Miles	0406	0411
				Agriculture					
				Nonpoint Source					
3 R	SAN BENITO RIVER	305.500							
•			Sedimentation/Siltation		Medium	86	Miles	0198	0401
				Agriculture	-				
				Nonpoint Source					
				Resource Extraction					
3 R	SAN LORENZO RIVER	304.120							
• •	and merimine strent		Nutrients		High	25	Miles	0493	0400
				Nonpoint Source	···a··				
				Septage Disposal					
			Pathogens	•	High	25	Miles	1999	200
				Septage Disposal					
				Urban Runoff/Storm Sewers					
			Sedimentation/Siltation	<i>,</i>	High	25	Miles	1298	040
				Construction/Land Development					
				Land Development					
				Silviculture					
				Urban Runoff/Storm Sewers					

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

4

.

Approved by USEPA: 12-May-99

.

,

EGION	TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSOR	* SOURCE	PRIORITY	SIZE AFFECTED		START DATE	END DATE
3	R	SAN LUIS OBISPO CRK.(BELOW W.MARSH ST.)	310.240							
				Nutrients		High	9	Miles	0493	0400
					Agriculture					
					Agriculture-storm runoff					
					Irrigated Crop Production					
				Pathogons	Municipal Point Sources	High	9	Miles	0493	040
				Pathogens	Urban Runoff/Storm Sewers	nigii	3	annes	0433	040
				Priority Organics		Medium	9	Miles	0498	040 [.]
				····· <b>/</b> ··· <b>···</b>	Industrial Point Sources		-			
3	R	SANTA YNEZ RIVER	314.000			•				
•			-14.000	Nutrients		Low	70	Miles	0403	0407
					Nonpoint Source					2.0
				Salinity/TDS/Chlorides	-	Low	70	Miles	0403	040
					Agriculture					
				Sedimentation/Siltation		Low	70	Miles	0403	040
					Agriculture					
					Resource Extraction Urban Runoff/Storm Sewers					
					orban Kunon/Storm Sewers					
3	R	SHINGLE MILL CREEK	304.120	N: 4-14-			•			
				Nutrients	Septage Disposal	High	2	Miles	0198	040
				Sedimentation/Siltation	ochage nishosai	High	2	Miles	0198	<b>04</b> 0'
					<b>Construction/Land Development</b>		-			
					Nonpoint Source					
3	R		304,130							
-	••			Pathogens	τ	Low	7	Miles	0406	<b>04</b> 1 [.]
				-	Agriculture					
					Septage Disposal					
				Sedimentation/Siltation		Medium	7	Miles	0401	040
					Agriculture					
					Construction/Land Development					
3	R	WADDELL CREEK, EAST BRANCH	304.110							
				Nutrients		Medium	3	Miles	0401	040
					Municipal Point Sources					
3	W	ESPINOSA SLOUGH	309.100							
				Nutrients		Medium	320	Acres	0198	040
					Agriculture					
				Destisides	Storm sewers	Mad ¹	204	A	0400	040
				Pesticides	Agriculture	Medium	320	Acres	0198	040
					Urban Runoff/Storm Sewers					
		esented under each pollutant/stressor ar			Appendix -42					

Water Act Section 303(d). In a few cases, they provide necessary information.

.

•

REGION	TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSOR	* SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
				Priority Organics	Nonpoint Source	Medium	320	Acres	0198	0403
3	w	MORO COJO SLOUGH	309.100							
3	••		505.100	Pesticides		Low	345	Acres		0411
					Agricultural Return Flows					
					Agriculture					
					Agriculture-storm runoff Irrigated Crop Production				0198 0198 0198 0198 0198 0406 0406 0403	
					Nonpoint Source					
				Sedimentation/Siltation	-	Low	345	Acres	0198	0411
					Agriculture Agriculture-storm runoff					
					Construction/Land Development					
					Irrigated Crop Production					
					Nonpoint Source					
3		SALINAS RIVER REFUGE LAGOON (SOUTH)	309.100							
				Nutrients		Medium	163	Acres	0198	0401
				Pesticides	Agriculture	Medium	163	Acres	0198	0403
					Agriculture			,	es 0198 es 0198 es 0198 es 0198 es 0406 es 0403	• ••••
				Salinity/TDS/Chlorides		Medium	163	Acres		0403
					Agriculture					
3	W	SCHWAN LAKE	304.120	Nutrients		Low	32	Acres	0406	0411
				Nutients	Nonpoint Source	LOW	JL	ACIES	0400	0411
				Pathogens	- R	Low	32	Acres	0406	0411
					Natural Sources Urban Runoff/Storm Sewers					
	147				orban Runon/storm Sewers					
3	w	SOQUEL LAGOON	304.130	Nutrients		Low	2	Acres	0403	0407
					Nonpoint Source					
					Septage Disposal		_			
				Pathogens	Natural Sources	Low	2	Acres	0403	0407
					Nonpoint Source					
		•			Urban Runoff/Storm Sewers					
				Sedimentation/Siltation	Construction/Land Development	Medium	2	Acres	0401	0405
					Construction/Land Development					

Approved by USEPA: 12-May-99

,

.

2

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA: 12-May-99

ja 🔥

.

REGION	TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSOR	SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
3	W	TEMBLADERO SLOUGH	309.100							
				Nutrients		Medium	150	Acres	0198	040
					Agricultural Return Flows					
					Agriculture					
					Agriculture-storm runoff					
					Irrigated Crop Production					
					Nonpoint Source				5 0198 5 0198 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
				Pesticides		Medium	150	Acres	0198	040
					Agricultural Return Flows					
					Agriculture					
					Agriculture-storm runoff					
					Irrigated Crop Production					
					Nonpoint Source					
4	в	CHANNEL ISLANDS HARBOR	403.11							
				Lead		Low	220	Acres		
				Elevated levels of lead	l in sediment.					
					Nonpoint Source					
				Zinc		Low	220	Acres		
				Elevated levels of zinc	in sediment.					
					Nonpoint Source					
4	в	LA FISH HARBOR	405.12							
				DDT		High	50	Acres		
					Nonpoint/Point Source					
				PAHs		High	50	Acres	res	
					Nonpoint/Point Source					
				PCBs		High	50	Acres		
					Nonpoint/Point Source		•			
				Tributyltin		Low	0	Acres		
					Nonpoint/Point Source					
4	В	LA HARBOR CONSOLIDATED SLIP	405.12							
				Benthic Comm. Effects		High	37.13	Acres		
					Nonpoint Source					
				Chlordane		Medium	37.13	Acres		
				Elevated levels of child	ordane in tissue and sediment.					
					Nonpoint Source					
				Chromium Elevated levels of chr	amium in codiment	Medium	37.13	Acres		
					Nonpoint Source					
				DDT	Nonpoint Source	High	37.13	Acres		
					T in tissue and sediment. Fish Co			ALICS		
					Nonpoint Source		<b>,</b>			
				Lead		Low	37.13	Acres		
				Elevated levels of lead	d in sediment.					
					Nonpoint Source					
-	onto pr	esented under each pollutant/stressor a		ed under Clean	Appendix -44					

• •

REGION	TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSOR*	SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
				PAHs		High	37.13	Acres		
				Elevated levels of PAH:	s in sediment.			,		
					Nonpoint Source					
				PCBs		High	37.13	Acres		
					s in tissue and sediment.	Fish Consumption Advisory		Aures		
					Nonpoint Source					
				Sediment Toxicity		High	37.13	Acres		
				-	Nonpoint Source	mgn	37.13	Acres		
				Tributyltin	asapoint source	l ent	37.13	Aaras		
				Elevated levels of tribut	ultin in tissue	Low	37.13	Acres		
				·						
					Nonpoint Source	St. diam	27.42			
				Zinc Elevated levels of zinc i	a tissue and rediment	Medium	37.13	Acres		
					Nonpoint Source					
4	в	LA HARBOR INNER BREAKWATER	405.12							
				DDT		High	1.5	Acres		
					Nonpoint/Point Source					
				PAHs		High	1.5	Acres		
					Nonpoint/Point Source	· · · •				
				PCBs		High	1.5	Acres		
					Nonpoint/Point Source					
				Tributyltin		Low	1.5	Acres		
					Nonpoint/Point Source	LOW				
	_									
4	В	LA HARBOR MAIN CHANNEL	405.12							
				Beach Closures		Low	3785	Acres		
					Nonpoint/Point Source					
				Copper		Low	3785	Acres		
				Elevated levels of copp	er in tissue and sediment.					
					Nonpoint/Point Source					
				DDT		High	3785	Acres		
				Elevated levels of DDT	in tissue and sediment. F	Fish Consumption Advisory f	or DDT.			
					Nonpoint/Point Source					
				PAHs		High	3785	Acres		
				Elevated levels of PAH	s in tissue and sediment.			-		
					Nonpoint/Point Source					
				PCBs	•	High	3785	Acres		
					s in tissue and sediment.	Fish Consumption Advisory				
					Nonpoint/Point Source					
				Sediment Toxicity		Low	3785	Acres		
				-	Nonpoint/Point Source	Low	5.00	A0103		
				Tributyltin	nonpointer onit oource	l ow	3785	Acros		
				Elevated levels of tribut	lyttin in sediment	Low	3103	Acres		
					Nonpoint/Point Source					

Approved by USEPA: 12-May-99

л I

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

. .

Approved by USEPA: 12-May-99

**1** 1

								Αφριονεά	-,	12-10189-33
REGION	ТҮРЕ	NAME	HYDRO UNIT	POLLUTANT/STRESSOR*	SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
				Zinc		Low	3785	Acres	-	
				Elevated levels of zinc in						
				N	Ionpoint/Point Source					
4	в	LA HARBOR SOUTHWEST SLIP	405.12							
				DDT		High	30	Acres		
				Fish Consumption Advis	-					
					Nonpoint Source					
				PCBs Fish Consumption Advis	any for DCPa	High	30	Acres		
				Fish Consumption Advis	-					
					Nonpoint Source	Medium	20	Aaraa		
				Sediment Toxicity	Nonpoint Source	meaium	30	Acres		
	_				tempenit oouroe					
4	В	LONG BEACH HARBOR MAIN CHANNEL, SE,W BASIN, PIER J, BREAKWTR	405.12							
				Benthic Comm. Effects	,	Medium	3594	Acres		
					Nonpoint Source					
				DDT		High	3594	Acres		
				Elevated levels of DDT i	in tissue. Fish Consumption A					
					Nonpoint Source					
				PAHs		High	3594	Acres		
				Elevated levels of PAHs						
				PCBs	Nonpoint Source	High	3594	Acres		
					in tissue. Fish Consumption		3334	ALIES		
					Nonpoint Source	,				
				Sediment Toxicity	• • • • • • • • • • • • • • • • • • • •	Medium	3594	Acres		
					Nonpoint Source					
4	в	MARINA DEL REY HARBOR-BACK BASINS	405.13							
				Benthic Comm. Effects		Low	413	Acres		
					Nonpoint Source					
				Chlordane		High	413	Acres		
					dane in tissue and sediment.					
					Nonpoint Source					
				Copper	or in tionup and dit	Medium	413	Acres		
				Elevated levels of coppe						
				DDT	Nonpoint Source	High	413	Acres		
					in tissue and sediment. Shell			Acres		
					Nonpoint Source					
				Dieldrin	• • • • • •	Low	413	Acres		
				Elevated levels of dieldr	rin in tissue.					
				I	Nonpoint Source					

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

• •

REGION	TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSOR*	SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
				Fish Consumption Advisory		High	413	Acres		
					npoint Source		7.0	,-10100		
				High Coliform Count		High	413	Acres		
					npoint Source			,		
				Lead		Low	413	Acres		
				Elevated levels of lead in ti	issue and sediment.					
				No	npoint Source					
				PCBs		High	413	Acres		
				Elevated levels of PCBs in	tissue. Shellfish Harvesting	g Advisory for PCBs.			•	
				No	npoint Source					
				Sediment Toxicity		' Medium	413	Acres		
				No	npoint Source					
				Tributyitin		Low	413	Acres		
				Elevated levels of tributyltin	n in tissue.					
					npoint Source					
				Zinc		Medium	413	Acres		
				Elevated levels of zinc in ti						
				No	npoint Source					
4	В	PORT HUENEME HARBOR (BACK BASINS)	403.11							
		,		DDT		High	50	Acres		
				Elevated levels of DDT in t	lissue.					
				No	npoint Source					
				PAHs	-	High	59	Acres		
				Elevated levels of PAHs in	sediment.					
				. No	npoint Source					
				PCBs		High	50	Acres		
				Elevated levels of PCBs in	tissue.					
				No	npoint Source					
				Tributyltin		Low	50	Acres		
				Elevated levels of tributylti						
					npoint Source					
				Zinc		Low	50	Acres		
				Elevated levels of zinc in ti						
				No	npoint Source					
4	В	SAN PEDRO BAY NEARS/OFF SHORE ZONES- CABRILLO PIER AREA	405.12							
				Chromium		Low	10700	Acres		
				Elevated levels of chromiu	ım in sediment.					
				Νο	onpoint/Point Source					
				Copper		Low	10700	Acres		
				Elevated levels of copper	in sediment.			-		
				No	npoint/Point Source					

Approved by USEPA: 12-May-99

.

.

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

.

Approved by USEPA: 12-May-99

.

.

EGION 1	TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSOR* SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
				DDT	High	10700	Acres		
				Elevated levels of DDT in tissue and sediment. Fish	Consumption Advisory	y for DDT.			
				Nonpoint/Point Source					
				PAHs	High	10700	Acres		
				Elevated levels of PAHs in sediment.					
				Nonpoint/Point Source					
				PCBs	High	10700	Acres		
				Fish Consumption Advisory for PCBs.					
				Nonpoint/Point Source					
				Sediment Toxicity	Medium	10700	Acres		
				Nonpoint/Point Source					
				Zinc	Low	10700	Acres		
				Elevated levels of zinc in sediment.					
				Nonpoint/Point Source					
4		SANTA MONICA BAY OFFSHORE AND NEARSHORE	413.00						
				Cadmium	Low	16640	Acres		
				Elevated levels of cadmium in sediment.					
				Nonpoint/Point Source		•			
				Chlordane	Low	16640	Acres		
				Elevated levels of chlordane in sediment.					
				Nonpoint/Point Source					
				Copper	Low	16640	Acres		
				Elevated levels of copper in sediment.					
				Nonpoint/Point Source					
				DDT Elevated levels of DDT in tissue and addiment	High	16640	Acres		
				Elevated levels of DDT in tissue and sediment.					
				Nonpoint/Point Source		40040			
				¿ Debris	Low	16640	Acres		
				Nonpoint/Point Source	10:_L	40040			
				Fish Consumption Advisory	High	16640	Acres		
				Nonpoint/Point Source	•	40040	A		
				Lead Elevated levels of lead in tissue and sediment.	Low	16640	Acres		
				Nonpoint/Point Source	\$4 and to sure	16640	A		
				Mercury Elevated levels of mercury in sediment.	Medium	16640	Acres		
				Nonpoint/Point Source					
				Nickel	Low	16640	Acres		
				Elevated levels of nickel in sediment.	LUW	10040	ALICS		
				Nonpoint/Point Source					
				PAHs	High	16640	Acres		
				Elevated levels of PAHs in sediment.	e n Mari	10070	10163		

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

٠

•

#### HYDRO SIZE START END **REGION TYPE** NAME UNIT POLLUTANT/STRESSOR* SOURCE PRIORITY AFFECTED UNIT DATE DATE PCBs 16640 High Acres Elevated levels of PCBs in tissue and sediment. Nonpoint/Point Source Sediment Toxicity Medium 16640 Acres Nonpoint/Point Source Silver Low 16640 Acres Elevated levels of silver in tissue. Nonpoint/Point Source Zinc 16640 Low Acres Elevated levels of zinc in sediment. Nonpoint/Point Source в VENTURA HARBOR: VENTURA 403.11 4 **KEYES High Coliform Count** High 40 Acres **Nonpoint Source** С ABALONE COVE BEACH 405.11 4 **Beach Closures** Medium 0.94 Miles Nonpoint Source DDT High 0.94 Miles Elevated levels of DDT in sediment. **Nonpoint Source** PCBs High 0.94 Miles Fish Consumption Advisory for PCBs. **Nonpoint Source** AMARILLO BEACH 404.21 С DDT High 0.3 Miles Fish Consumption Advisory for DDT. **Nonpoint Source** PCBs 0.3 High Miles Fish Consumption Advisory for PCBs. **Nonpoint Source** 404.16 С **BIG ROCK BEACH** 4 **Beach Closures** Medium 1.09 Miles **Nonpoint Source** DDT High 1.09 Miles Fish Consumption Advisory for DDT. **Nonpoint Source** High Coliform Count Hiah 1.09 Miles **Nonpoint Source** PCBs High 1.09 Miles Fish Consumption Advisory for PCBs. **Nonpoint Source**

#### 1998 CALIFORNIA 303(d) LIST AND TMDL PRIORITY SCHEDULE

Approved by USEPA: 12-May-99

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA: 12-May-99

.

.

REGION	TYPE		HYDRO UNIT	POLLUTANT/STRESSOR* SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
4	С	BLUFF COVE BEACH	405.11						
				Beach Closures	Medium	0.61	Miles		
				Nonpoint Source					
				DDT	High	0.61	Miles		
				Fish Consumption Advisory for DDT.					
				Nonpoint Source					
				PCBs Fish Consumption Advisory for PCBs.	High	0.61	Miles		
				Nonpoint Source					
				Nonpoint Source					
4	С	CABRILLO BEACH (INNER) LA HARBOR AREA	405.12						
				Beach Closures (Coliform)	Low	0.79	Miles		
				Nonpoint Source					
				DDT	High	0.79	Miles		
				Fish Consumption Advisory for DDT.					
				Nonpoint Source					
				PCBs Fish Consumption Advisory for PCPs	High	0.79	Miles		
				Fish Consumption Advisory for PCBs.					
				Nonpoint Source					
4	С	CABRILLO BEACH OUTER	405.12						
				Beach Closures	Medium	0.51	Miles		
				Nonpoint Source					
				DDT	High	0.51	Miles	÷	
				Fish Consumption Advisory for DDT.					
				Nonpoint Source	13:	0.54	Miles		
				High Coliform Count Nonpoint Source	High	0.51	Miles		
				PCBs	High	0.51	Miles		
				Fish Consumption Advisory for PCBs.	nigh	0.51	miles		
				Nonpoint Source					
	•		404.40						
4	С	CARBON BEACH	404.16	Basel Classes		4.45			
				Beach Closures	Medium	1.48	Miles		
				Nonpoint Source	111-L	4.40			
				DDT Fish Consumption Advisory for DDT.	High	1.48	Miles		
				Nonpoint Source					
				PCBs	High	1.48	Miles		
				Fish Consumption Advisory for PCBs.	1113(1	1.40	11163		
				Nonpoint Source					
	~		405 43	• • • • • • • • • • • • • • • • • • • •					
4	С	CASTLEROCK BEACH	405.13	Parah Clasura	Madk		Miles		
				Beach Closures	Medium	0.81	Miles		
				Nonpoint Source					

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

.

٠

REGION	TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSOR*	SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
				DDT Fish Consumption Advise	ory for DDT.	High	0.81	Miles		
				PCBs Fish Consumption Advise	onpoint Source ory for PCBs. onpoint Source	High	0.81	Miles		
4	С	DAN BLOCKER MEMORIAL (CORAL) BEACH	404.31							
				High Coliform Count N	onpoint Source	High	1.04	Miles		
4	С	DOCKWEILER BEACH	405.12	Beach Closures		Medium	5.4	Miles		
	•			High Coliform Count	onpoint Source	High	5.4	Miles		
4	С	ESCONDIDO BEACH	404.34	Beach Closures	•	Medium	2.05	Miles		
					onpoint Source	High	2.05	Miles		
					ory for DDT. Ionpoint Source					
				PCBs Fish Consumption Advis N	ory for PCBs. Ionpoint Source	High	2.05	Miles		
4	С	FLAT ROCK POINT BEACH AREA	405.11	Beach Closures		Medium	0.3	Miles		
					Ionpoint Source	High	0.3	Miles		
				Fish Consumption Advis	ory for DDT. Ionpoint Source					
				PCBs Fish Consumption Advis	ory for PCBs. Ionpoint Source	High	0.3	Miles		
4	с	HERMOSA BEACH	405.12	Beach Closures	·	Medium	1.88	Miles		
	_				Ionpoint Source					
4	C	INSPIRATION POINT BEACH	405.11	Beach Closures	lonpoint Source	Medium	0.3	Miles		
				DDT Fish Consumption Advis	ory for DDT.	High	0.3	Miles		
				· · ·	Ionpoint Source					

Approved by USEPA: 12-May-99

•

.

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

¢

.

Approved by USEPA: 12-May-99

.

•

REGION	TYPE		HYDRO UNIT	POLLUTANT/STRESSOR*	SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
				PCBs Fish Consumption Advisory for		High	0.3	Miles		
				νουτ	point Source					
4	С	LA COSTA BEACH	404.16	Design Classes		B.B **		A.C.L.		
				Beach Closures	point Source	Medium	0.74	Miles		
				DDT		High	0.74	Miles		
				Fish Consumption Advisory f	for DDT.					
					point Source					
				PCBs		High	0.74	Miles		
				Fish Consumption Advisory f						
				Nong	point Source					
4	С	LAS FLORES BEACH	404.15					_		
				DDT Fish Consumption Artvisory (	for DDT	High	0.76	Miles		
				Fish Consumption Advisory f	for DD1. point Source					
				Nonp High Coliform Count		High	0.76	Miles		
				-	point Source		v v	-11163		
				PCBs		High	0.76	Miles		
				Fish Consumption Advisory f		_				
				Nong	point Source					
4	С	LAS TUNAS BEACH	404.12							
				Beach Closures		Medium	1.25	Miles		
					point Source	•				
				DDT Fish Consumption Advisory (	for DDT	High	1.25	Miles		
				• •	point Source					
				PCBs	granna ar anna an a' anna a'	High	1.25	Miles		
				Fish Consumption Advisory	for PCBs.					
					point Source					
4	с	LEO CARILLO BEACH (SOUTH OF	404.44							
	-	COUNTY LINE)								
				Beach Closures		Medium	1.15	Miles		
				-	point Source	· ·				
				High Coliform Count	noint Source	High	1.15	Miles		
				Non	point Source					
4	С	LONG POINT BEACH	405.11			·	<b>•</b> •=	<b>.</b>		
				DDT Fish Consumption Advisory	for DDT	High	0.45	Miles		
					point Source					
				High Coliform Count		High	0.45	Miles		
				-	point Source					
					-					

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

•

¢

				303(0) LIST AND TWIDE I	-RIORITT SCHED		Approved I	IY USEPA:	12-May-
EGION	TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSOR* SOURCE	E PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
				PCBs	High	0.45	Miles		
				Fish Consumption Advisory for PCBs.					
				Nonpoint Source	ce				
4	С	LUNADA BAY BEACH	405.11						
				Beach Closures	Medium	0.35	Miles		
				Nonpoint Sour	ce				
4	С	MALAGA COVE BEACH	405.11						
				Beach Closures	Medium	1.13	Miles		
				Nonpoint Sour	ce				
				DDT	High	1.13	Miles		
				Fish Consumption Advisory for DDT.					
				Nonpoint Sour		4.42	N#11		
				PCBs Fish Consumption Advisory for PCBs.	High	1.13	Miles		
		-		Nonpoint Source	CP.				
	_								
4	С	MALIBU BEACH	404.21	Deach Oleanna	Man diama	0.52			
				Beach Closures Nonpoint Sour	Medium	0.53	Miles		
				DDT	High	0.53	Miles		
				Fish Consumption Advisory for DDT.		0.00			
				Nonpoint Sour	ce				
4	с	MALIBU LAGOON BEACH (SURFRIDER)	404.21						
				Beach Closures	Medium	0.66	Miles		
				Nonpoint Sour	ce				
				DDT	High	0.66	Miles		
				Fish Consumption Advisory for DDT.	t				
				Nonpoint Sour			M.1.		
				High Coliform Count Nonpoint Sour	High	0.66	Miles		
				PCBs	High	0.66	Miles		
				Fish Consumption Advisory for PCBs.		0.00	Milleo		
				Nonpoint Sour	rce				
	с	MANDALAY BEACH	403.11						
4	C	MANDALAT BEACH	403.11	Beach Closures	Low	1.55	Miles		
				Nonpoint Sour		1.55	Whites		
	-			the source of th					
4	С	MANHATTAN BEACH	405.12	Deach Oleanna	<b></b>	2.09	Mileo		
				Beach Closures Nonpoint Sour	Medium	2.08	Miles		
				Nonpoint Sour	ve				
4	С	MARINA DEL REY HARBOR BEACH	405.13						
				Beach Closures	Medium	0.65	Miles		
				Nonpoint Sou	700				
				Appendix .	53				

Approved by USEPA: 12-May-99

.

.

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

÷

۲

Approved by USEPA: 12-May-99

.

۲

REGION	TYPE	NAME	HYDRO UNIT			SIZE AFFECTED	UNIT	START DATE	END DATE
				High Coliform Count	High	0.65	Miles		
				Nonpoint Sour	ce				
4	С	MCGRATH BEACH	403.11						
				Beach Closures	Low	1.35	Miles		
				Nonpoint Sour High Coliform Count	ce Medium	1.35	Miles		
				Nonpoint Sour		1.55	141169		
4	с	NICHOLAS CANYON BEACH	404.43	-					
•	-			Beach Closures	Medium	1.94	Miles		
				Nonpoint Sour					
				DDT Fish Consumption Advisory for DDT.	High	1.94	Miles		
				Pish Consumption Advisory for DD1. Nonpoint Sour	ce				
				PCBs	High	1.94	Miles		
				Fish Consumption Advisory for PCBs.					
				Nonpoint Sour	ce				
4	С	PALO VERDE SHORELINE PARK BEACH	413.057						
				Pathogens	Low	0.12	Miles		
				Source Unknow Pesticides		0.12	Mileo		
				Pesticides Source Unknow	Low	0.12	Miles		
4	с	PARADISE COVE BEACH	404.35						
-	v		55	Beach Closures	Medium	1.33	Miles		
				Nonpoint Sour					
				DDT Fish Consumption Actionary for DDT	High	1.33	Miles		
				Fish Consumption Advisory for DDT. Nonpoint Sour	TCP.				
				High Coliform Count	High	1.33	Miles		
				Nonpoint Sour					
				PCBs	High	1.33	Miles		
				Fish Consumption Advisory for PCBs. Nonpoint Sour	ce				
4	С	POINT DUME BEACH	404.36						
				Beach Closures	Medium	0.95	Miles		
				Nonpoint Sour		• • •			
				DDT Fish Consumption Advisory for DDT.	High	0.95	Miles		
				Nonpoint Sour	ce				
				PCBs	High	0.95	Miles		
				Fish Consumption Advisory for PCBs.					
				Nonpoint Sour	ce				

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Appendix -54

.....

¢

### HYDRO SIZE START END REGION TYPE POLLUTANT/STRESSOR* SOURCE PRIORITY UNIT NAME AFFECTED UNIT DATE DATE С POINT FERMIN PARK BEACH 405.11 4 Medium Miles **Beach Closures** 1.5 **Nonpoint Source** DDT High 1.5 Miles Fish Consumption Advisory for DDT. Nonpoint Source PCBs High Miles 1.5 Fish Consumption Advisory for PCBs. Nonpoint Source 405.11 С POINT VICENTE BEACH **Beach Closures** Medium 2.13 Miles **Nonpoint Source** PORTUGESE BEND BEACH 405.11 С 4 **Beach Closures** Medium 2.2 Miles **Nonpoint Source** DDT High 2.2 Miles Fish Consumption Advisory for DDT. **Nonpoint Source** PCBs High 2.2 Miles Fish Consumption Advisory for PCBs. Nonpoint Source С PUERCO BEACH 404.31 4 **Beach Closures** Miles Medium 1.68 **Nonpoint Source** DDT High Miles 1.68 Fish Consumption Advisory for DDT. Nonpoint Source **PCBs** High 1.68 Miles Fish Consumption Advisory for PCBs. Nonpoint Source **REDONDO BEACH** 405.12 4 С **Beach Closures** Medium 1.37 Miles **Nonpoint Source** DDT High 1.37 Miles Fish Consumption Advisory for DDT. Nonpoint Source 1.37 Miles **High Coliform Count** Hiah **Nonpoint Source** PCBs High 1.37 Miles Fish Consumption Advisory for PCBs. ٠ Nonpoint Source

### 1998 CALIFORNIA 303(d) LIST AND TMDL PRIORITY SCHEDULE

Approved by USEPA: 12-May-99

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA: 12-May-99

• •

EGION	TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSOR*	SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
4	С	RESORT POINT BEACH	405.11							
				Beach Closures		Medium	0.49	Miles		
				N	Ionpoint Source					
4	С	ROBERT H MEYER MEMORIAL BEACH	404.42							
				Beach Closures		Medium	1.23	Miles		
					Ionpoint Source					
				DDT Fish Consumption Adviso	orv for DDT	High	1.23	Miles		
				•	Ionpoint Source					
				PCBs		High	1.23	Miles		
				Fish Consumption Advise	-					
				N	Ionpoint Source					
4	С	ROCKY POINT BEACH	405.11							
				Beach Closures		Medium	0.52	Miles		
				N	Ionpoint Source					
4	С	ROYAL PALMS BEACH	405.11							
				Beach Closures		Medium	1.06	Miles		
				N TDD	Ionpoint Source	LI:-F	1.00	840		
				Fish Consumption Advise	ory for DDT.	High	1.06	Miles		
				•	Ionpoint Source					
				PCBs		High	1.06	Miles		
				Fish Consumption Advis	•					
				N	lonpoint Source					
4	C	SANTA CLARA RIVER ESTUARY BEACH/SURFERS KNOLL	403.11							
				High Coliform Count	, 	Low	0.56	Miles		
				N	Ionpoint Source					
4	С	SANTA MONICA BEACH	405.13							
				Beach Closures		Medium	2.95	Miles		
					Ionpoint Source	11:	2.05	N#12		
				High Coliform Count	Ionpoint Source	High	2.95	Miles		
	•			r,						
4	С	SEA LEVEL BEACH	404.41	Roseh Cleaures		Nadium	0.67	Milee		
				Beach Closures	Ionpoint Source	Medium	0.67	Miles		
				DDT		High	0.67	Miles		
				Fish Consumption Advis	ory for DDT.		-			
					lonpoint Source					
				PCBs Fish Consumption Advis	on for PCBs	High	0.67	Miles		
				•	lonpoint Source					
··		esented under each pollutant/stressor								

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

-

4

Approved by USEPA: 12-May-99

.

,

REGION	TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSO	R* SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
4	С	TOPANGA BEACH	404.11					_		
				Beach Closures		Medium	1.01	Miles		
					Nonpoint Source					
				DDT		High	1.01	Miles		
				Fish Consumption Ac	•					
					Nonpoint Source		4.04			
				High Coliform Count	Nonnoint Course	High	1.01	Miles		
				PCBs	Nonpoint Source	High	1.01	Miles		
				Fish Consumption Ac	lvisorv for PCBs.	nyn	1.01	Miles		
					Nonpoint Source					
	~	TORDANICE REACH	405 40					•		
4	С	TORRANCE BEACH	405.12	Deach Oleanna		<b>11</b>				
				Beach Closures	Nonpoint Source	Medium	0.58	Miles		
				High Coliform Count	Nonpoint Source	High	0.58	Miles		
				riigh comonii count	Nonpoint Source	េសម្ភាព	0.50	miles		
	•		404.07							
4	C	TRANCAS BEACH (BROAD BEACH)	404.37	Devel Of						
				Beach Closures	Normaint Courses	Medium	2.02	Miles		
				DDT	Nonpoint Source	High	2.02	Miles		
				Fish Consumption Ad	ivisory for DDT.	mgn	2.02	miles		
					Nonpoint Source					
				High Coliform Count		High	2.02	Miles		
					Nonpoint Source					
-				PCBs	•	High	2.02	Miles		
				Fish Consumption A	lvisory for PCBs.					
					Nonpoint Source					
4	С	VENICE BEACH	405.13		r					
				Beach Closures		Medium	1.5	Miles		
					Nonpoint Source					
				High Coliform Count	•	High	1.5	Miles		
					Nonpoint Source					
A	с	WHITES POINT BEACH	405.11							
-	Ŭ		400.11	Beach Closures		Medium	0.7	Miles		
					Nonpoint Source	meaidin	•	111100		
				DDT		High	0.7	Miles		
				Fish Consumption A	dvisory for DDT.					
					Nonpoint Source					
				PCBs		High	0.7	Miles		
				Fish Consumption A	•					
		•			Nonpoint Source					

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

.

Approved by USEPA: 12-May-99

.

.

GION	TYPE		HYDRO UNIT	POLLUTANT/STRESSOR	* SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	ENI DAT
4	С	WILL ROGERS BEACH	405.13							
				Beach Closures		Medium	2.2	Miles		
					Nonpoint Source					
				High Coliform Count		High	2.2	Miles		
					Nonpoint Source					
4	С	ZUMA (WESTWARD BEACH)	404.36							
				Beach Closures		Medium	1.65	Miles		
					Nonpoint Source					
				DDT	increase for DDT	High	1.65	Miles		
				Fish Consumption Ad	•					
				PCBs	Nonpoint Source	Llink	1.65	Miles		
				Fish Consumption Ad	visory for PCBs	High	1.65	Miles		
					Nonpoint Source					
	-		40.4.04		·····					
4	E	MALIBU LAGOON	404.21	Benthic Comm. Effects		Medium	32.5	Acres		
				Benthic Comm. Effects	Nonpoint/Point Source	meulum	32.5	Acres		
				Enteric Viruses		High	32.5	Acres		
					Nonpoint/Point Source					
				Eutrophic	-	Medium	32.5	Acres	0193	12
					Nonpoint/Point Source					
				High Coliform Count		High	32.5	Acres		
					Nonpoint/Point Source					
				Shellfish Harvesting Adv		Medium	32.5	Acres		
				Surimming Destrictions	Nonpoint/Point Source	1.01-1-	20 E			
				Swimming Restrictions	Nonpoint/Point Source	High	32.5	Acres		
					Nonpointr one obuice					
4	E	MUGU LAGOON	403.11		·			_		
				Chlordane Elevated levels of chi	ordana in tissua	High	2000	Acres	1298	
					Nonpoint Source					
				Copper		Medium	2000	Acres		
				00pp0.	Nonpoint/Point Source		2000	7.0100		
				Dacthal	•	High	2000	Acres	1298	
				Elevated levels of dat	thal in tissue.					
					Nonpoint Source					
				DDT Elevente of Inc.	T in finance and an diment. Effectiv	High	2000	Acres	1298	
				Elevaled levels of DD	T in tissue and sediment. Effects	on bira reproductiv	ily nom DDT.			
				Endosulfan	Nonpoint Source	High	2000	Acres	1298	
				Elevated levels of end	losulfan in tissue.	112911	2000	AUICO	1230	
					Nonpoint Source					
				Mercury		High	2000	Acres		
					Nonpoint/Point Source					

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

.

*c* 

### START END HYDRO SIZE REGION TYPE NAME POLLUTANT/STRESSOR* SOURCE PRIORITY UNIT AFFECTED UNIT DATE DATE Nickel Medium 2000 Acres Nonpoint/Point Source 2000 1298 Nitrogen Low Acres Nonpoint/Point Source PCBs High 2000 Acres Elevated levels of PCBs in tissue. Nonpoint/Point Source Sediment Toxicity High 2000 Acres Nonpoint/Point Source Sedimentation/Siltation High 2000 Acres Nonpoint/Point Source Zinc Medium 2000 Acres Nonpoint/Point Source 405.43 L **CRYSTAL LAKE** 4 Org. enrichment/Low D.O. Low 5.8 Acres Nonpoint Source ECHO PARK LAKE 405.15 4 L Algae Low 23 Acres **Nonpoint Source** 1299 Ammonia 23 0194 Low Acres Nonpoint Source Copper 23 Acres Low **Nonpoint Source** Eutrophic Low 23 Acres **Nonpoint Source** 23 Lead Low Acres Nonpoint Source Odors 23 Acres Low **Nonpoint Source** PCBs Medium 23 Acres Elevated levels of PCBs in tissue. **Nonpoint Source** pH · Medium 23 Acres **Nonpoint Source** Trash High 23 Acres **Nonpoint Source** EL DORADO LAKES 405.15 4 L Algae Low 220 Acres **Nonpoint Source** Ammonia Low 220 Acres 0194 1299 **Nonpoint Source** 220 Copper Low Acres **Nonpoint Source**

1998 CALIFORNIA 303(d) LIST AND TMDL PRIORITY SCHEDULE

Approved by USEPA: 12-May-99

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA: 12-May-99

.

*

				<u> </u>					<u> </u>	
	YPE	NAME	HYDRO UNIT	POLLUTANT/STRESSOR*	SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
				Eutrophic		Low	220	Acres		
				N	onpoint Source					
				Lead		Low	220	Acres		
					onpoint Source					
				Mercury Elevated levels of mercu	nuin finaun	Medium	220	Acres		
					ry in ussue. Ionpoint Source					
				рH	ionpoint source	Medium	220	Acres		
					Ionpoint Source	mearan	220	10105		
4 1			403.51							
4 L	L	ELIZABETH LAKE	403.31	Eutrophic		Low	194	Acres		
					Ionpoint Source	LOW	134	ALIES		
				Org. enrichment/Low D.O.	ionpoint oouroo	Medium	194	Acres		
				—	ionpoint Source					
				pH	•	Medium	194	Acres		
				N	Ionpoint Source					
				Trash		Low	194	Acres		
				N	Ionpoint Source					
4 I	L	LAKE CALABASAS	405.21							
				Ammonia		Low	28	Acres		
				N	Ionpoint Source					
				Copper		Medium	28	Acres		
				Elevated levels of coppe						
				DDT	Ionpoint Source	High	28	Acres		
				Elevated levels of DDT is	n tissue.	nign	20	ACIES		
					Ionpoint Source					
				Eutrophic	•	Medium	28	Acres		
				-	Ionpoint Source					
				Odors		Low	28	Acres		
					Ionpoint Source					
				Org. enrichment/Low D.O.		Medium	28	Acres		
					Ionpoint Source	"				
				рН	Inneriat Course	Medium	28	Acres		
				Zinc	Ionpoint Source	Low	20	Acres		
				Elevated levels of zinc in	n fissue.	Low	28	Acres		
					Ionpoint Source					
			100 51		····					
4	L	LAKE HUGHES	403.51	Alean		1	24	Acres		
				Algae	Ionpoint Source	Low	34	Acres		
				Eutrophic	tomponit obdite	Medium	34	Acres		
				-	Ionpoint Source	mound	•••			
					• • • • • • •					

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

.

.

### SIZE START END HYDRO REGION TYPE NAME UNIT POLLUTANT/STRESSOR* SOURCE PRIORITY AFFECTED UNIT DATE DATE **Fish Kills** Medium 34 Acres Nonpoint Source Odors Low 34 Acres Nonpoint Source Trash Low 34 Acres Nonpoint Source LAKE LINDERO 404.23 4 L Algae Medium 13.56 Acres Nonpoint Source Chloride Low 13.56 Acres Nonpoint Source 0193 1202 Eutrophic Medium 13.56 Acres Nonpoint Source Odors Low 13.56 Acres Nonpoint Source Selenium Low 13.56 Acres Elevated levels of selenium in tissue. **Nonpoint Source** Specific conductivity Low 13.56 Acres Nonpoint Source 13.56 Trash Acres Low **Nonpoint Source** 4 LAKE SHERWOOD 404.26 L Medium 213 Acres Algae **Nonpoint Source** 213 Ammonia Low Acres **Nonpoint Source** Eutrophic 213 0193 1202 Medium Acres **Nonpoint Source** Medium 213 Acres Mercurv Elevated levels of mercury in tissue. **Nonpoint Source** 213 Org. enrichment/Low D.O. Medium Acres **Nonpoint Source** LEGG LAKE 405.41 4 L Ammonia Low 70 Acres **Nonpoint Source** 70 Copper Low Acres **Nonpoint Source** 70 Acres Lead Low **Nonpoint Source** 70 Odors Low Acres **Nonpoint Source**

1998 CALIFORNIA 303(d) LIST AND TMDL PRIORITY SCHEDULE

~

Approved by USEPA: 12-May-99

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA: 12-May-99

.

.

. .

REGION	TYPE		HYDRO UNIT	POLLUTANT/STRESSOR*	SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
				Hq		Medium	70	Acres		
					onpoint Source					
				Trash	oppoint Source	High	70	Acres		
				N	onpoint Source					
4	L	LINCOLN PARK LAKE	405.15				_	_		
				Ammonia	enneint Course	Low	7	Acres	0194	1299
				Eutrophic	onpoint Source	Medium	7	Acres		
				-	onpoint Source	meanann	•	Auto		
				Lead	·	Low	7	Acres		
				N	onpoint Source					
				Odors		Low	7	Acres		
					onpoint Source		-	-		
				Org. enrichment/Low D.O.	onpoint Source	Medium	7	Ácres		
				Trash	onpoint Source	High	7	Acres		
					ionpoint Source		•	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
4	L	MACHADO LAKÈ (HARBOR PARK LAKE)	405.12							
		,		Algae		Low	45.2	Acres		
					Ionpoint Source					
				Ammonia		Low	45.2	Acres		
					Ionpoint Source			-		
				ChemA Elevated levels of chem/ N	A pesticides in tissue. Ionpoint Source	High	45.2	Acres		
				Chlordane	-	High	45.2	Acres		
					ane in tissue. , Fish Consumptic Ionpoint Source	on Advisory for chic	ordane.			
				DDT		High	45.2	Acres		
					n tissue. Fish Consumption Ad	visory for DDT.				
				N Dieldrin	lonpoint Source	High	45.2	Acres		
				Elevated levels of dieldri	n in tissue.	nigu	4J.2	Aries		
		•			Ionpoint Source					
				Eutrophic		Low	45.2	Acres		
				N	Ionpoint Source					
				Odors		Low	45.2	Acres		
					Ionpoint Source	4 M . K	45.0			
				PCBs Elevated levels of PCBs	in tissue.	High	45.2	Acres		
					Ionpoint Source					
				Trash	• • • • • • • • • • • • • • • • • • • •	Low	45.2	Acres		
					Ionpoint Source					

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

٠

.

Approved by USEPA: 12-May-99

.

۲

REGION	TYPE	NAME		POLLUTANT/STRESSOR*	SOURCE	PRIORITY	SIZE AFFECTED		START DATE	END DATE
4	L	MALIBOU LAKE	404.24							
				Algae		Medium	69	Acres		
					Nonpoint Source			_		
				Chlordane	dens is fissue	Low	69	Acres		
				Elevated levels of chlor						
				Copper	Nonpoint/Point Source	Medium	69	Acres		
				Elevated levels of copp	ver in tissue.	medium	05	ALIES		
					Nonpoint Source					
				Eutrophic	• • • • • • • • • •	Medium	69	Acres	0193	1202
				•	Nonpoint Source					
				Org. enrichment/Low D.O	-	Medium	69	Acres		
					Nonpoint Source					
				PCBs		Low	69	Acres		
				Elevated levels of PCB						
					Nonpoint Source					
4	L	MATILIJA RESERVOIR	402.20							
				Fish barriers	•	Low	198	Acres		
					Dam Construction/Operation					
4	L	MCGRATH LAKE (ESTUARY)	403.11							
		· · ·		Chlordane		High	1.35	Acres		
				Elevated levels of chlo						
					Nonpoint Source					
				DDT Elevated levels of DDT	" in andiment	High	1.35	Acres		
				Elevated levels of DD1						
				Pesticides	Nonpoint Source	High	1.35	Acres		
					ticides (total) in şediment.	myn	1.39	ALIES	τ.	
					Nonpoint Source					
				Sediment Toxicity	•	Medium	1.35	Acres		
				-	Nonpoint Source					
A	L	MUNZ LAKE	403.51							
-+	-			Eutrophic		Low	15	Acres		
					Nonpoint Source	2011				
				Trash		Low	15	Acres		
					Nonpoint Source					
<b>A</b>	L	PECK ROAD PARK LAKE	405.41							
4	L			Chlordane		Medium	166	Acres		
				Elevated levels of chio	vrdane in tissue.	manan				
					Nonpoint Source					
				DDT	-	Medium	166	Acres		
				Elevated levels of DD	T in tissue.					
					Nonpoint Source					

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

.

٠

•

Approved by USEPA: 12-May-99

٠

.

REGION 1	YPE	NAME		POLLUTANT/STRESSOR* SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
				Lead	Low	166	Acres		
				Nonpoint Source					
				Odors	Low	166	Acres		
				Nonpoint Source					
				Org. enrichment/Low D.O.	Medium	166	Acres		
				Nonpoint Source Trash	Llich	166	Acres		
				Nonpoint Source	High	100	Acres		
				Achipenit obuice					
4	L	PUDDINGSTONE RESERVOIR	405.52		•• ••				
				Chlordane Elevated levels of chlordane in tissue.	Medium	382	Acres		
				Nonpoint Source					
				DDT	Medium	382	Acres		
				Elevated levels of DDT in tissue.	mediam	JUZ	AGI 63		
				Nonpoint Source					
				Mercury	Medium	382	Acres		
				Elevated levels of mercury in tissue.					
				Nonpoint Source					
				Org. enrichment/Low D.O.	Medium	382	Acres		
				Nonpoint Source					
				PCBs Elevated levels of PCBs in tissue.	Medium	382	Acres		
				Nonpoint Source					
				Nonpoint Bource					
4	L	SANTA FE DAM PARK LAKE	405.41	_					
				Copper	Low	70	Acres		
				Nonpoint Source		70			
				Lead Nonpoint Source	Low	70	Acres		
				pH	Low	70	Acres		
				Nonpoint Source	20#	10	Acica		
4	L	WESTLAKE LAKE	404.25	A1	<b>11</b>	400			
				Algae Nonpoint Source	Medium	186	Acres		
				Ammonia	Low	186	Acres		
				Nonpoint Source	204	100	Acies		
				Chlordane	Low	186	Acres		
				Elevated levels of chlordane in tissue.	Low				
				Nonpoint Source					
				Copper	Medium	186	Acres		
				Elevated levels of copper in tissue.					
				Nonpoint Source					
				Eutrophic	Medium	186	Acres	0193	120
				Nonpoint Source					

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

.

٠

REGION	TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSOR	SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
				Lead		Low	186	Acres		
				Org. enrichment/Low D.C	Nonpoint Source	Medium	186	Acres		
				<u></u>	Nonpoint Source	modiam		10100		
4	R	ALISO CANYON WASH	405.21							
				Selenium	Nanadiat Causa	Low	10.13	Miles		
4	R	ARROYO LAS POSAS REACH 1	403.12		Nonpoint Source					
-	n	(LEWIS SOMIS RD TO FOX BARRANCA)	403.12							
				Ammonia		High	1.99	Miles	1298	
				Chloride	Nonpoint/Point Source	Medium	1.99	Miles	0197	1200
					Nonpoint/Point Source					
				DDT Elevated levels of DD1	in sediment.	High	1.99	Miles	1298	
					Nonpoint Source					
				Nitrate and Nitrite	Nonpoint/Point Source	Medium	1.99	Miles	1298	
				Sulfates	Nonponior onit oource	Medium	1.99	Miles		
				Total Dissoluted Calida	Nonpoint/Point Source	<b></b>	4.00		4000	
				Total Dissolved Solids	Nonpoint/Point Source	Medium	1.99	Miles	1298	
4	R	ARROYO LAS POSAS REACH 2 (FOX BARRANCA TO MOORPARK FWY (23))	403.62							
				Ammonia		High	9.62	Miles	1298	
				Chloride	Nonpoint/Point Source	Medium	9.62	Miles	0197	1200
				Ginoride	Nonpoint/Point Source	Medium	3.02	mnes	0137	1200
				DDT Elevated levels of DD1	l in codimont	High	9.62	Miles	1298	
				Lievaled levels of DD1	Nonpoint Source					
				Nitrate and Nitrite		Medium	9.62	Miles	1298	
				Sulfates	Nonpoint/Point Source	Medium	9.62	Miles		
				ernatoo	Nonpoint/Point Source		0101	mico		
				Total Dissolved Solids	Nenneint/Deint Course	Medium	9.62	Miles		
4	R	ARROYO SECO REACH 1 (LA	405.15		Nonpoint/Point Source					
4	R	RIVER TO WEST HOLLY AVE)	403.13							
				Algae	Nonnoint Source	Low	7.02	Miles		
					Nonpoint Source					

Approved by USEPA: 12-May-99

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA: 12-May-99

.

.

REGION	TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSOR	* SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
				High Coliform Count		Medium	7.02	Miles		
					Nonpoint Source					
				Trash		High	7.02	Miles		
					Nonpoint Source					
4	R	ARROYO SECO REACH 2 (WEST	405.31							
		HOLLY AVE. TO DEVILS GATE								
		DAM)		Algae		Low	2.53	Miles		
				Algae	Nonpoint Source	LOW	2.33	anes		
				High Coliform Count	Nonpoint Oburge	Medium	2.53	Miles		
				ange ventern vent	Nonpoint Source		•			
				Trash		High	2.53	Miles		
					Nonpoint Source					
4	R	ARROYO SIMI REACH 1 (MOORPARK FRWY (23) TO BREA	403.62							
		CYN)								
				Ammonia	Name sin4/Daint Course	High	7.58	Miles	1298	
				Boron	Nonpoint/Point Source	Medium	7.58	Miles		
				BUIUII	Nonpoint Source	medium	7,30	miles		
				Chloride	Houponit operes	Medium	7.58	Miles	0197	120
					Nonpoint Source					
				Chromium	•	Low	7.58	Miles		
				Elevated levels of chro						
		•			Nonpoint/Point Source					
				Nickel		Low	7.58	Miles		
				Elevated levels of nick						
				Calasium	Nonpoint/Point Source	• .	7.60	6411		
				Selenium Elevated levels of sele	nium in tissue	Low	7.58	Miles		
					Nonpoint/Point Source					
				Silver		Low	7.58	Miles		
			•	Elevated levels of silve	er in tissue.					
					Nonpoint/Point Source					
				Sulfates		Medium	7.58	Miles		
					Nonpoint Source					
				Total Dissolved Solids		Medium	7.58	Miles		
				<b>1971</b>	Nonpoint Source		-			
				Zinc Elevated levels of zinc	in tissua	Low	7.58	Miles		
					Nonpoint/Point Source					
4	R	ARROYO SIMI REACH 2 (ABOVE	403.67		Nonpointer onit Source					
		BREA CANYON)		Boron		Medium	11.12	Miles		
				Boron	Nonpoint Source	wealum	11.72	miles		
		esented under each pollutant/stressor a	···· · · · · · · ·		Appendix -66					

Water Act Section 303(d). In a few cases, they provide necessary information.

•

.

REGION	TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSOR*	SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
				Sulfates		Medium	11.12	Miles	-	
				1	Nonpoint Source					
				Total Dissolved Solids		Medium	11.12	Miles		
				1	Nonpoint Source					
4	R	ASHLAND AVENUE DRAIN	405.13							
				High Coliform Count		High	0.57	Miles		
				_	Nonpoint Source					
				Org. enrichment/Low D.O.		Low	0.57	Miles		
				1	Nonpoint Source					
				Toxicity		Low	0.57	Miles		
				1	Nonpoint Source					
4	R	BALLONA CREEK	405.13							
				Arsenic		Medium	4.3	Miles		
				Elevated levels of arsen	ic in tissue.					
				· · · ·	Nonpoint/Point Source					
				Cadmium		Medium	4.3	Miles		
				Elevated levels of cadm.	ium in sediment.					
				I	Nonpoint/Point Source					
				ChemA		High	4.3	Miles		
				Elevated levels of chem	•					
					Nonpoint/Point Source					
				Chlordane Eleveted levels of chlore	lana in tianua	High	4.3	Miles		
				Elevated levels of chloro						
		• .			Nonpoint/Point Source	Medium	4.2	Miles		
				Copper Elevated levels of conne	er in tissue and sediment.	Mealum	4.3	Miles	•	
					Nonpoint/Point Source					
				DDT .		High	4.3	Miles		
				Elevated levels of DDT	in tissue.	- ingri	4.0	miles		
					Nonpoint/Point Source					
				Dieldrin	•	High	4.3	Miles		
				Elevated levels of dieldr	in in tissue.					
				1	Nonpoint/Point Source					
				Enteric Viruses		High	4.3	Miles		
				I	Nonpoint/Point Source					
				High Coliform Count		High	4.3	Miles		
				1	Nonpoint/Point Source					
				Lead		Low	4.3	Miles		
				Elevated levels of lead i						
					Nonpoint/Point Source					
				PCBs Elevated levels of PCBs	n in finnun	High	4.3	Miles		
				Sediment Toxicity	Nonpoint/Point Source	Medium	4.2	Miles		
				-	Nonpoint/Point Source	Meurum	4.3	Miles		
		esented under each pollutant/stres			Appendix -67					

Approved by USEPA: 12-May-99

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA: 12-May-99

.

•

REGION	TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSOR*	SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	EN DAT
				Silver Elevated levels of silver i	n tissue and sediment.	Low	4.3	Miles		
				N	Ionpoint/Point Source					
				Toxicity		Medium	4.3	Miles		
					Ionpoint/Point Source					
•				Trash		High	4.3	Miles		
				N	Ionpoint/Point Source					
				Tributyitin		Low	4.3	Miles		
				Elevated levels of tributyl	ltin in sediment.					
				N	Ionpoint/Point Source					
4	R	BALLONA CREEK ESTUARY	405.13							
-				Arochlor		High	2.5	Miles		
				Elevated levels of arochic	or in sediment.		<b>-</b>			
					Ionpoint/Point Source					
				Chlordane		High	2.5	Miles		
				Elevated levels of chlorda	lane in tissue and sediment.					
				N	Ionpoint/Point Source					
				DDT		High	2.5	Miles		
				Elevated levels of DDT in	n sediment.					
				N	lonpoint/Point Source					
				High Coliform Count		High	2.5	Miles		
				N	Ionpoint/Point Source					
				Lead		Low	2.5	Miles		
				Elevated levels of lead in						
					lonpoint/Point Source					
				PAHs	in an diment	High	2.5	Miles		
				Elevated levels of PAHs						
					Ionpoint/Point Source					
				PCBs Elevated levels of PCPs	in tionup and codimont	High	2.5	Miles		
				Elevated levels of PCBs						
					Ionpoint/Point Source	Ma -41	25			
				Sediment Toxicity	Instant/Deint Course	Medium	2.5	Miles		
					Ionpoint/Point Source	Ma	25	6431		
				Shellfish Harvesting Adv.	Innaint/Daint Source	Medium	2.5	Miles		
				Zinc	Ionpoint/Point Source	Low	25	Mileo		
				Linc Elevated levels of zinc in	sediment	Low	2.5	Miles		
					Nonpoint/Point Source					
4	R	BEARDSLEY CHANNEL (ABOVE CENTRAL AVENUE)	403.61	r.	tonponter ont dource					
				Algae		l ow	6.16	Miles	1298	
				-	Nonpoint Source	Low	0.10	miles	1230	
				ChemA	tonpoint oource	High	6.16	Miles	1298	
				Elevated levels of chem/	A pesticides in tissue.	myn	0.10	miles	1230	
					Nonpoint Source					
		esented under each pollutant/stressor			Appendix -68					

Water Act Section 303(d). In a few cases, they provide necessary information.

,

.

Approved by USEPA: 12-May-99

.

EGION	TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSO	R* SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
				Chlordane		High	6.16	Miles	1298	
				Elevated levels of ch	lordane in tissue and sediment.					
					Nonpoint Source					
				Chlorpyrifos		High	6.16	Miles	1298	
				Elevated levels of ch						
					Nonpoint Source					
				Dacthal		High	6.16	Miles	1298	
				Elevated levels of da						
					Nonpoint Source					
				DDT		High	6.16	Miles	1298	
				Elevated levels of DI	DT in tissue and sediment.					
					Nonpoint Source					
				Dieldrin	- Idein in Ainnun	High	6.16	Miles	1298	
				Elevated levels of di						
					Nonpoint Source				4000	
				Endosulfan	dosulfan in tissue and sediment.	High	6.16	Miles	1298	
				A114	Nonpoint Source	84 - dl	6.46		4000	
				Nitrogen	Nonnaint Course	Medium	6.16	Miles	1298	
				PCBs	Nonpoint Source	1.HK	6.16			
				Elevated levels of P	CRs in tissue	High	0.10	Miles		
					Nonpoint Source		•			
				Toxaphene	Nonpoint Source	High	6.16	Miles	1298	
					xaphene in tissue and sediment.	nign	0.10	miles	12.30	
					Nonpoint Source					
				Toxicity	Nonpoint Source	High	6.16	Miles		
				TOXICITY	Nonpoint Source	mgn	0.10	miles		
				Trash	Nonpoint Source	Low	6.16	Miles		
				1145/1	Nonpoint Source	LUW	0.10	anies		
					Nonpoint Source					
4	R	BELL CREEK	405.21							
				High Coliform Count		Low	9.81	Miles		
					Nonpoint/Point Source					
4	R	<b>BROWN BARRANCA / LONG</b>	403.11							
•		CANYON								
				Nitrate and Nitrite		Medium	3.79	Miles		
					Nonpoint Source					
	-	DUDDANK MERTEDN OUANNES	405.06		·					
4	R	BURBANK WESTERN CHANNEL	405.21	Almon		•		6817		
				Algae	Non-sist/Daint Davis	Low	6.35	Miles		
				A	Nonpoint/Point Source					
				Ammonia	Non-sist/Data ( Oracia)	High	6.35	Miles	0194	129
				0 - 4 1	Nonpoint/Point Source					
				Cadmium	Nonnoint/Daint Courses	Low	6.35	Miles		
					Nonpoint/Point Source					

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

.

.

-

Approved by USEPA: 12-May-99

		·							-	-
REGION	ТҮРЕ	NAME	HYDRO UNIT	POLLUTANT/STRESSOR	* SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
				Odors		Low	6.35	Miles		
				• -	Nonpoint/Point Source	_				
				Scum/Foam-unnatural	Nonnaint/Baint Sausa	Low	6.35	Miles		
				Trash	Nonpoint/Point Source	High	6.35	Miles		
					Nonpoint/Point Source		3.93			
4	R	CALLEGUAS CREEK REACH 1 (ESTUARY TO 0.5MI S OF BROOME RD)	403.11							
		······································		Ammonia		High	2.2	Miles	1298	
					Nonpoint/Point Source					
				ChemA Elevated levels of char	mA in ticeue	High	2.2	Miles	1298	
				Elevated levels of chei	mA in tissue. Nonpoint Source					
				Chlordane		High	2.2	Miles	1298	
				Elevated levels of chlo						
				007	Nonpoint Source		~ ~	B.#?!	4000	
				DDT Elevated levels of DD	T in tissue and sediment.	High	2.2	Miles	1298	
					Nonpoint Source					
				Endosulfan	anullan in tin	High	2.2	Miles	1298	
				Elevated levels of end	losulfan in tissue. Nonpoint Source					
				Nitrogen	Ashpoint Source	Medium	2.2	Miles	1298	
				_	Nonpoint/Point Source					
				PCBs Elevated levels of PCI		High	2.2	Miles		
				Elevated levels of PCI	Bs in tissue. Nonpoint/Point Source					
				Sediment Toxicity	Nonpointer unit Source	Medium	2.2	Miles		
					Nonpoint/Point Source					
				Toxaphene	•	High	2.2	Miles	1298	
				Elevated levels of tox.	aphene in tissue and sediment.					
				Toxicity	Nonpoint Source	High	2.2	Miles		
					Nonpoint/Point Source	24				
4	R	CALLEGUAS CREEK REACH 2 (0.5 MI S OF BROOME RD TO POTRERO RD	5 403.12							
		<b></b>		Ammonia		High	2.3	Miles	1298	
					Nonpoint/Point Source					
				ChemA Elevated levels of che	mA nesticidas in tissus	High	2.3	Miles	1298	
				Elevaled levels of che	emA pesticides in tissue. Nonpoint Source					

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

.

.

Appendix -70

.

.

.

REGION	TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSOR	* SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
				Chlordane		High	2.3	Miles	1298	
				Elevated level of chlor	dane in tissue.					
					Nonpoint Source					
				Dacthal		High	2.3	Miles	1298	
				Elevated level of dacth						
					Nonpoint Source					
				DDT Eleverted level of DDT	in tinnun and andiment	High	2.3	Miles	1298	
				Elevated level of DDT	in tissue and sediment.					
				Federaulfee	Nonpoint Source	Ll:-b		Mileo	1209	
				Endosulfan Elevated level of endo	sulfan in tissue	High	2.3	Miles	1298	
					Nonpoint Source					
				Nitrogen	Nonpoint Source	Medium	2.3	Miles	1298	
				mavyen	Nonpoint/Point Source	meuluii	2.3	MIICS	1230	
				PCBs	Nonponior one obarce	High	2.3	Miles		
				Elevated level of PCB:	s in tissue.		2.3	MIIICO		
					Nonpoint/Point Source					
				Sediment Toxicity		Medium	2.3	Miles		
					Nonpoint/Point Source					
				Toxaphene	•	High	2.3	Miles	1298	
					hene in tissue and sediment.					
					Nonpoint Source					
				Toxicity		High	2.3	Miles		
					Nonpoint/Point Source					
4	R	CALLEGUAS CREEK REACH 3 (POTRERO TO SOMIS RD)	403.12							
				Chloride		Medium	7.7	Miles	0197	1200
				Universe and the second	Nonpoint/Point Source	meanan	•••	mes		1200
				Nitrate and Nitrite	·····	Medium	7.7	Miles	1298	
					Nonpoint/Point Source					
				Total Dissolved Solids		Medium	7.7	Miles		
					Nonpoint/Point Source		•••			
	_		40- 45							
4	R	COMPTON CREEK	405.15	-						
				Copper		Low	8.52	Miles		
					Nonpoint/Point Source		0.50	N#79		
				High Coliform Count		Medium	8.52	Miles		
					Nonpoint/Point Source	•		Miler		
				Lead	Name sist/Daint Carries	Low	8.52	Miles		
				-14	Nonpoint/Point Source		0.50	M9		•
				рH	Non-sist/Doint Course	Medium	8.52	Miles		
					Nonpoint/Point Source					

Approved by USEPA: 12-May-99

•

٠

•

.

Approved by USEPA: 12-May-99

.

DECICI	-		HYDRO		SOURCE	DDIOD/77/	SIZE		START	END
REGION				POLLUTANT/STRESSOR*	SOURCE	PRIORITY	AFFECTED	UNIT	DATE	DATE
4		CONEJO CREEK / ARROYO CONEJO NORTH FORK	403.64							
				Ammonia		High	6.51	Miles	1298	
					Nonpoint/Point Source					
				Chlordane		Medium	6.51	Miles	1298	
				Elevated levels of chloro						
					Nonpoint Source		6 54		4000	
				DDT Elevated levels of DDT	in tissue.	Medium	6.51	Miles	1298	
					Nonpoint Source					
				Sulfates		Medium	6.51	Miles		
					Nonpoint/Point Source		-			
				<b>Total Dissolved Solids</b>		Medium	6.51	Miles		
				,	Nonpoint/Point Source					
4	R	CONEJO CREEK REACH 1 (CONFL	403.12							
		CALL TO SANTA ROSA RD)		•		<i>,</i>				
				Algae	Nonnoint/Doint Saura	Low	5.8	Miles	1298	
				Ammonia	Nonpoint/Point Source	High	5.8	Miles	1298	
					Nonpoint/Point Source	ការអ្នក	5.0	11162	1720	
				Cadmium		Medium	5.8	Miles		
				Elevated levels of cadm	nium in tissue.			-		
					Nonpoint/Point Source					
				ChemA	A posticidos in tissu-	High	5.8	Miles	1298	
				Elevated levels of chem	•					
				Chromium	Nonpoint Source	Medium	5.8	Miles		
				Elevated levels of chron	mium in tissue.	MCUIUII	5.0			
					Nonpoint/Point Source					
				Dacthal		High	5.8	Miles	1298	
				Elevated levels of dacth						
					Nonpoint Source					
				DDT Elevated levels of DDT	in tissue	High	5.8	Miles	1298	
					In tissue. Nonpoint Source					
				Endosulfan		High	5.8	Miles	1298	
				Elevated levels of endo	sulfan in tissue.	rugii			.255	
					Nonpoint Source					
				Nickel		Medium	5.8	Miles		
				Elevated levels of nicke						
					Nonpoint/Point Source	<b></b>				
				Org. enrichment/Low D.O.	). Nonpoint/Point Source	Medium	5.8	Miles		
					Nonpoint/Fornt Source					

Nonpoint/Point Source

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

.

.

### HYDRO SIZE START END REGION TYPE NAME POLLUTANT/STRESSOR* SOURCE PRIORITY UNIT AFFECTED UNIT DATE DATE Silver Medium 5.8 Miles Elevated levels of silver in tissue. Nonpoint/Point Source Sulfates Medium 5.8 Miles Nonpoint/Point Source **Total Dissolved Solids** Medium 5.8 Miles Nonpoint/Point Source Toxaphene High 5.8 Miles 1298 Elevated levels of toxaphene in tissue and sediment. **Nonpoint Source** Toxicity High 5.8 Miles Nonpoint/Point Source CONEJO CREEK REACH 2 (SANTA 403.63 4 R ROSA RD TO THO. OAKS CITY LIMIT) Algae Low 2.67 Miles 1298 Nonpoint/Point Source 1298 Ammonia High 2.67 Miles Nonpoint/Point Source Cadmium Medium 2.67 Miles Elevated levels of cadmium in tissue. Nonpoint/Point Source ChemA High 2.67 1298 Miles Elevated levels of chemA pesticides in tissue. **Nonpoint Source** Chloride Medium 2.67 Miles 0197 1200 Nonpoint/Point Source Chromium Medium 2.67 Miles Elevated levels of chromium in tissue. Nonpoint/Point Source Dacthal High 2.67 Miles 1298 Elevated levels of dacthal in tissue. **Nonpoint Source** DDT High 2.67 Miles 1298 Elevated levels of DDT in tissue. **Nonpoint Source** Endosulfan High 2.67 Miles 1298 Elevated levels of endosulfan in tissue. Nonpoint Source Nickel 2.67 Miles Medium Elevated levels of nickel in tissue. Nonpoint/Point Source Org. enrichment/Low D.O. 2.67 Miles Medium **Nonpoint/Point Source**

### 1998 CALIFORNIA 303(d) LIST AND TMDL PRIORITY SCHEDULE

Approved by USEPA: 12-May-99

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

. .

Approved by USEPA: 12-May-99

•

٠

EGION	TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSOR	* SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
				Silver		Medium	2.67	Miles		
				Elevated levels of silve						
				0	Nonpoint/Point Source					
				Sulfates	Nonnoi-HBai-t Saura	Medium	2.67	Miles		
				Total Dissolved Solids	Nonpoint/Point Source	Modium	2.67	Miles		•
				I ULAI DISSOIVED SOIIDS	Nonpoint/Point Source	Medium	2.07	Miles		
				Toxaphene		High	2.67	Miles	1298	
					aphene in tissue and sediment.					
					Nonpoint Source					
				Toxicity		High	2.67	Miles		
					Nonpoint/Point Source					
L I	R	CONEJO CREEK REACH 3	403.64							
		(THOUSAND OAKS CITY LIMIT TO								
		LYNN RD.)		<b>A1</b>			• -			
				Algae	Nonnoint/Daint Saura	Low	5.6	Miles	1298	
				Ammonia	Nonpoint/Point Source	Hish	5.6	Miles	1298	
					Nonpoint/Point Source	High	5.0	miles	1720	
				Cadmium		Medium	5.6	Miles		
				Elevated levels of cad	'mium in tissue.					
					Nonpoint/Point Source					
				ChemA		High	5.6	Miles	1298	
				Elevated levels of che	mA pesticides in tissue.					
					Nonpoint Source					
				Chromium Elevated levels of chro	omium in tissue	Medium	5.6	Miles		
				cievaleu ieveis Ul Chiv	Nonpoint/Point Source					
				Dacthal	tonponter onic oduce	High	5.6	Miles	1298	
				Elevated levels of dac	thal in tissue.		0.0	micə	1250	
					Nonpoint Source					
				DDT		High	5.6	Miles	1298	
				Elevated levels of DD						
					Nonpoint Source					
				Endosulfan	loguitton in tingun	High	5.6	Miles	1298	
				Elevated levels of end						
				Nickel	Nonpoint Source	Medium	5.6	Miles		
				Elevated levels of nick	kel in tissue.	meulum	3.0	mnes		
					Nonpoint/Point Source					
				Org. enrichment/Low D.	-	Medium	5.6	Miles		
				-	Nonpoint/Point Source					
				Silver		Medium	5.6	Miles		
				Elevated levels of silve						
					Nonpoint/Point Source					

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

.

.

REGION	TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSOR	SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATI
				Sulfates		Medium	5.6	Miles		
					Nonpoint/Point Source					
				Total Dissolved Solids		Medium	5.6	Miles		
					Nonpoint/Point Source					
				Toxaphene Elouated lovels of texe	phene in tissue and sediment.	High	5.6	Miles	1298	
				Lievaled levels of (0xa	Nonpoint Source					
				Toxicity	Nonpoint Source	High	5.6	Miles		
				TOXICITY	Nonpoint/Point Source	g.	0.0	Mileo		
			402.00							
4	R	CONEJO CREEK REACH 4 (ABOVE LYNN RD.)	403.68							
		21111112-1		Algae		Low	4.98	Miles		
					Nonpoint/Point Source					
				Ammonia		High	4.98	Miles	1298	
					Nonpoint/Point Source					
				ChemA		High	4.98	Miles	1298	
				Elevated levels of che	mA pesticides in tissue.					
				Chloride	Nonpoint Source	Marilium	4.09		0407	12
				Chioriae	Nonpoint/Point Source	Medium	4.98	Miles	0197	12
				Dacthal	Nonpointeroint Source	High	4.98	Miles	1298	
				Elevated levels of dac	thal in tissue.		4.00	linice	1200	
					Nonpoint Source					
				DDT		High	4.98	Miles	1298	
				Elevated levels of DD						
				<b></b>	Nonpoint Source					
				Endosulfan Elevated levels of end	leavelfor in tinguo	High	4.98	Miles	1298	
				Elevated levels of end	Nonpoint Source					
				Org. enrichment/Low D.(	•	Medium	4.98	Miles		
				org. charonine tow D.	Nonpoint/Point Source	meanan	4.50	MILES		
				Sulfates		Medium	4.98	Miles		
					Nonpoint/Point Source					
				Total Dissolved Solids		Medium	4.98	Miles		
					Nonpoint/Point Source					
				Toxaphene		High	4.98	Miles	1298	
				Elevated levels of toxa	aphene in tissue and sediment.					
				Taulaita	Nonpoint Source	11:-h	4.09	Miles		
				Toxicity	Nonpoint/Point Source	High	4.98	Miles		
	-				anthous out domes					
4	R	COYOTE CREEK	405.15	Aba anna 171-5-111-4-1			40.45			
				Abnormal Fish Histology		Medium	13.45	Miles		
				Algae	Nonpoint/Point Source	Medium	13.45	Miles		
				-19ae	Nonpoint/Point Source	weulun	10.40	111163		
	ente =	esented under each pollutant/stressor a	ro not room	red under Clean	Appendix -75					

Approved by USEPA: 12-May-99

1 5

Water Act Section 303(d). In a few cases, they provide necessary information,

÷.

¢

Approved by USEPA: 12-May-99

1 **)** 

REGION	TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSOR* SOURCE	PRIORITY	SIZE AFFECTED		START DATE	END DATE
				Ammonia	High	13.45	Miles		
				Nonpoint/Point Source					
				High Coliform Count	Medíum	13.45	Míles		
				Nonpoint/Point Source	Madin	12 AF	Mile-		
				Silver Elevated levels of silver in tissue.	Medium	13.45	Miles		
				Nonpoint/Point Source					
4	R	DOMINGUEZ CHANNEL (ABOVE	405.12						
		VERMONT)		Aldrin	Medium	9	Miles		
				Aldrin Elevated levels of aldrin in tissue.	mealum	3	mies		
				Nonpoint/Point Source					
				Ammonia	Low	9	Miles		
				Nonpoint/Point Source		-			
				ChemA	High	9	Miles		
				Elevated levels of chemA pesticides in tissue.					
				Nonpoint/Point Source			<b>_</b>		
				Chlordane	High	9	Miles		
				Elevated levels of chlordane in tissue. Nonpoint/Point Source					
				Nonpoint Source	Medium	9	Miles		
				Elevated levels of chromium in sediment.	meululli	J			
				Nonpoint/Point Source					
				Copper	Low	9	Miles		
				Nonpoint/Point Source					
				DDT	High	9	Miles		
				Elevated levels of DDT in tissue and sediment.					
				Nonpoint/Point Source	Madlum	•			
				Dieldrin Elevated levels of dieldrin in tissue.	Medium	9	Miles		
				Nonpoint/Point Source					
				High Coliform Count	Low	9	Miles		
				Nonpoint/Point Source		-			
				Lead	Low	9	Miles		
				Elevated levels of lead in tissue.					
				Nonpoint/Point Source					
				PAHs Eleverted levels of DALls is codiment	High	9	Miles		
				Elevated levels of PAHs in sediment.					
				Nonpoint/Point Source PCBs	LI:-L	0	Miles		
				Elevated levels of PCBs in tissue.	High	9	Miles		
				Nonpoint/Point Source					
				Zinc	High	9	Miles		
				Elevated levels of zinc in sediment.		-			

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

.

.

GION	TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSOR*	SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
4	R	DOMINGUEZ CHANNEL ESTUARY (TO VERMONT)	405.12							
				Aldrin		Medium	8.4	Miles		
				Elevated levels of aldrin	in tissue.					
				1	Nonpoint/Point Source					
				Ammonia		Low	8.4	Miles		
				1	Nonpoint/Point Source					
				Benthic Comm. Effects	•	High	8.4	Miles		
					Nonpoint/Point Source					
				ChemA	···•	High	8.4	Miles		
				Elevated levels of chem	A pesticides in tissue.		••••			
					Nonpoint/Point Source					
				Chlordane		High	8.4	Miles		
				Elevated levels of chloro	lane in tissue.		0.4			
					Nonpoint/Point Source					
				Chromium		Medium	8.4	Miles		
				Elevated levels of chron	nium in sediment.	meanann	0.4	mico		
					Nonpoint/Point Source					
				Copper		Low	8.4	Miles		
					Nonpoint/Point Source	LOW	0.7	Milles		
				DDT	tompomer on toource	Llinh	8.4	Miles		
				Elevated levels of DDT	in tissue and sediment	High	0.4	miles		
					Nonpoint/Point Source					
					Nonpombroint Source	No alterna				
				Dieldrin Elevated levels of dieldr	in in ticcuo	Medium	8.4	Miles		
					Nonpoint/Point Source	• .				
				High Coliform Count		Low	8.4	Miles		
		_			Nonpoint/Point Source	<u>.</u>				
				Lead	e 41	Low	8.4	Miles		
				Elevated levels of lead i						
					Nonpoint/Point Source					
				PAHs		High	8.4	Miles		
				Elevated levels of PAHs						
					Nonpoint/Point Source					
				PCBs		High	8.4	Miles		
				Elevated levels of PCB:	s in tissue.					
					Nonpoint/Point Source					
				Zinc		High	8.4	Miles		
				Elevated levels of zinc i	n sediment.					
					Nonpoint/Point Source					

Approved by USEPA: 12-May-99

4 F

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

1 1

-

Approved by USEPA: 12-May-99

•

									DY USEFA.	12-10/03-33
REGION	TYPE		HYDRO UNIT	POLLUTANT/STRESSOR*	SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
4	R	DUCK POND AGRICULTURAL DRAIN/MUGU DRAIN/OXNARD DR #2	403.11							
				ChemA Elevated levels of chem	A pesticides in tissue. Nonpoint Source	High	13.5	Miles	1298	
				Chlordane Elevated levels of chlor	dane in tissue.	High	13.5	Miles	1298	
				DDT Elevated levels of DDT	Nonpoint Source in tissue and sediment.	High	13.5	Miles	1298	
				Nitrogen	Nonpoint Source Nonpoint Source	Medium	13.5	Miles	1298	
				Sediment Toxicity	Nonpoint Source	Medium	13.5	Miles		
				Toxaphene Elevated levels of toxap	-	High	13.5	Miles	1298	
				Toxicity	Nonpoint Source	High	13.5	Miles		
4	R	FOX BARRANCA	403.62	Boron	Nonpoint Source	Medium	3.03	Miles		
				Nitrate and Nitrite	Nonpoint Source	Medium	3.03	Miles	1298	
				Sulfates	Nonpoint Source	Medium	3.03	Miles		
				Total Dissolved Solids	Nonpoint Source	Medium	3.03	Miles		
4	R	LAS VIRGENES CREEK	404.22	High Coliform Count	Nonpoint Source	High	11.47	Miles		
				Nutrients (Algae)	Nonpoint Source	Medium	11.47	Miles	0193	1202
				Org. enrichment/Low D.O	). Nonpoint Source	Medium	11.47	Miles		
				Scum/Foam-unnatural	Nonpoint Source	Low	11.47	Miles		
				Selenium	Nonpoint Source	Low	11.47	Miles		
				Trash	•	Low	11.47	Miles		
					Nonpoint Source					

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

1 1

Appendix -78

Ciean A

	_				L FRIORITI SCILDU			by USEPA:	12-May-99
REGION	TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSOR* SOU	RCE PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
4	R	LINDERO CREEK REACH 1	404.23	Algae Nonpoint S		2.2	Miles		
				High Coliform Count Nonpoint S	High ource	2.2	Miles		
				Scum/Foam-unnatural Nonpoint S	Low	2.2	Miles		
				Selenium Nonpoint S	Low	2.2	Miles		
				Trash Nonpoint S	Low	2.2	Miles		
4	R	LINDERO CREEK REACH 2 (ABOVE LAKE)	404.23						
				Algae Nonpoint S	Medium ource	4.8	Miles		
				High Coliform Count Nonpoint S	High ource	4.8	Miles		
				Scum/Foam-unnatural Nonpoint S	Low	4.8	Miles		
				Selenium Nonpoint S	Low	4.8	Miles		
				Trash Nonpoint S	Low	4.8	Miles		
4	R	LOS ANGELES RIVER REACH 1 (ESTUARY TO CARSON STREET)	405.12						
				Ammonia Nonpoint/P	oint Source	2.01	Miles	0194	1299
				High Coliform Count	, Medium oint Source	2.01	Miles		
				Lead	Low	2.01	Miles		
				Nutrients (Algae)	oint Source	2.01	Miles	0194	1299
				pH	Medium Point Source	2.01	Miles		
				Scum/Foam-unnatural	Low	2.01	Miles		
				Trash	oint Source High Joint Source	2.01	Miles		
4	R	LOS ANGELES RIVER REACH 2 (CARSON TO FIGUEROA STREET)	405.15	Ammonia Nonpoint/F	Point Source	19.37	Miles	0194	1299

Approved by USEPA: 12-May-99

.

•

1 *I* 

.

•

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA: 12-May-99

,

•

/

TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSOR	* SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
			High Coliform Count	Nonnoint/Point Source	Medium	19.37	Miles		
			Lead		Low	19.37	Miles		
			Nutrients (Algae)	Nonpoint/Point Source	Medium	19.37	Miles	0194	1299
			Odors	Nonpoint/Point Source	Low	19 37	Miles		
				Nonpoint/Point Source					
			Oil	Nonpoint/Point Source	Medium	19.37	Miles		
			Scum/Foam-unnatural	Nonpoint/Point Source	Low	19.37	Miles		
			Trash	•	High	19.37	Miles		
R	LOS ANGELES RIVER REACH 3 (FIGUEROA ST TO RIVERSIDE DR.)	405.21		Konpoint Point Source					
	(, , , , , , , , , , , , , , , , , , ,		Ammonia	Non-sist/Deint Source	High	7.24	Miles	0194	1299
			Nutrients (Algae)		Medium	7.24	Miles	0194	1299
			Odors	Nonpoint/Point Source	Low	7.24	Miles		
			Scum/Foam-unnatural	Nonpoint/Point Source	Low	7.24	Miles		
				Nonpoint/Point Source					
			Irash	Nonpoint/Point Source	Hign	7.24	Miles		
R	LOS ANGELES RIVER REACH 4 (SEPUVEDA DR. TO SEPULVEDA DAM)	405.21		ı					
	,		Ammonia	Nenneint/Daint Source	High	11.84	Miles	0194	1299
			High Coliform Count		Medium	11.84	Miles		
			Lead	Nonpoint/Point Source	Low	11.84	Miles		
			Nutrianta (Alaza)	Nonpoint/Point Source		44 04	Nilos	0104	1299
				Nonpoint/Point Source				0154	1255
			Odors	Nonpoint/Point Source	Low	11.84	Miles		
			Scum/Foam-unnatural	Nonpoint/Point Source	Low	11.84	Miles		
	R	R LOS ANGELES RIVER REACH 3 (FIGUEROA ST TO RIVERSIDE DR.) R LOS ANGELES RIVER REACH 4	TYPE     NAME     UNIT       R     LOS ANGELES RIVER REACH 3 (FIGUEROA ST TO RIVERSIDE DR.)     405.21       R     LOS ANGELES RIVER REACH 4 (SEPUVEDA DR. TO SEPULVEDA     405.21	TYPE     NAME     UNIT     POLLUTANT/STRESSOR       High Coliform Count     Lead       Nutrients (Algae)     Odors       Oil     Scum/Foam-unnatural       Trash     Trash       R     LOS ANGELES RIVER REACH 3 (FIGUEROA ST TO RIVERSIDE DR.)     405.21       R     LOS ANGELES RIVER REACH 4 (SEPUVEDA DR. TO SEPULVEDA DAM)     405.21       R     LOS ANGELES RIVER REACH 4 (SEPUVEDA DR. TO SEPULVEDA DAM)     405.21	TYPE     NAME     UNIT     POLLUTANT/STRESSOR*     SOURCE       High Coliform Count     Nonpoint/Point Source     Lead     Nonpoint/Point Source       Nutrients (Algae)     Nonpoint/Point Source     Odors     Nonpoint/Point Source       Oll     Nonpoint/Point Source     Oil     Nonpoint/Point Source       R     LOS ANGELES RIVER REACH 3 (FIGUEROA ST TO RIVERSIDE DR.)     405.21     Ammonia     Nonpoint/Point Source       R     LOS ANGELES RIVER REACH 4 (FIGUEROA ST TO RIVERSIDE DR.)     405.21     Monpoint/Point Source     Nonpoint/Point Source       R     LOS ANGELES RIVER REACH 4 (SEPUVEDA DR. TO SEPULVEDA DAM)     405.21     Ammonia     Nonpoint/Point Source       R     LOS ANGELES RIVER REACH 4 (SEPUVEDA DR. TO SEPULVEDA DAM)     405.21     Ammonia     Nonpoint/Point Source       R     LOS ANGELES RIVER REACH 4 (SEPUVEDA DR. TO SEPULVEDA DAM)     405.21     Ammonia     Nonpoint/Point Source	TYPE     NAME     UNIT     POLLUTANT/STRESSOR'     SOURCE     PRIORITY       High Coliform Count     Nonpoint/Point Source     Low       Nonpoint/Point Source     Low       Nutrients (Algae)     Nonpoint/Point Source     Medium       Odors     Nonpoint/Point Source     Low       Odirs     Nonpoint/Point Source     Low       Odirs     Nonpoint/Point Source     Medium       R     LOS ANGELES RIVER REACH 3 (FIGUEROA ST TO RIVERSIDE DR.)     405.21     Ammonia     Migh Nonpoint/Point Source     Medium       R     LOS ANGELES RIVER REACH 4 (FIGUEROA ST TO RIVERSIDE DR.)     405.21     Ammonia     Monpoint/Point Source     Medium       R     LOS ANGELES RIVER REACH 4 (SEPUVEDA DR. TO SEPULVEDA     405.21     Cow     Nonpoint/Point Source     Medium       R     LOS ANGELES RIVER REACH 4 (SEPUVEDA DR. TO SEPULVEDA     405.21     Cow     Nonpoint/Point Source     Medium       R     LOS ANGELES RIVER REACH 4 (SEPUVEDA DR. TO SEPULVEDA     405.21     Cow     Nonpoint/Point Source     Medium       R     LOS ANGELES RIVER REACH 4 (SEPUVEDA DR. TO SEPULVEDA     405.21     Cow     Nonpoint/Point Source     Low       R     LOS ANGELES RIVER REACH 4 (SEPUVEDA DR. TO SEPULVEDA     405.21     Cow     Nonpoint/Point Source     Low       Nonpoint/Point Source <td>TYPE     NAME     UNIT     POLLUTANT/STRESSOR*     SOURCE     PRIORITY     AFFECTED       High Coliform Count     Nonpoint/Point Source     Low     19.37       High Coliform Count     Nonpoint/Point Source     Low     19.37       Nutrients (Algae)     Nonpoint/Point Source     Medium     19.37       Nonpoint/Point Source     Core     19.37     19.37       Nonpoint/Point Source     Monpoint/Point Source     Low     19.37       Odors     Nonpoint/Point Source     Low     19.37       Oil     Nonpoint/Point Source     Low     19.37       Scum/Foam-unnatural     Nonpoint/Point Source     Low     19.37       R     LOS ANGELES RIVER REACH 3 (FIGUEROA ST TO RIVERSIDE DR.)     405.21     Armonia     Monpoint/Point Source       R     LOS ANGELES RIVER REACH 4 (FIGUEROA ST TO RIVERSIDE DR.)     405.21     Armonia     Monpoint/Point Source       R     LOS ANGELES RIVER REACH 4 (SEPUVEDA DR. TO SEPULVEDA DAM)     405.21     Trash     Nonpoint/Point Source       R     LOS ANGELES RIVER REACH 4 (SEPUVEDA DR. TO SEPULVEDA DAM)     405.21     Armonia     High     7.24       R     LOS ANGELES RIVER REACH 4 (SEPUVEDA DR. TO SEPULVEDA DAM)     405.21     Codors     Nonpoint/Point Source     High     11.84       N</td> <td>TYPE     NAME     UNIT     POLLUTANT/STRESSOR*     SOURCE     PRIORITY     AFFECTED     UNIT       High Coliform Count     Nonpoint/Point Source     Medium     19.37     Miles       Nutrients (Algae)     Nonpoint/Point Source     Low     19.37     Miles       Nutrients (Algae)     Nonpoint/Point Source     Medium     19.37     Miles       Odors     Nonpoint/Point Source     Low     19.37     Miles       Oil     Nonpoint/Point Source     Low     19.37     Miles       Scum/Foam-unnatural     Nonpoint/Point Source     Low     19.37     Miles       R     LOS ANGELES RIVER REACH 3 (FIGUEROA ST TO RIVERSIDE DR.)     405.21     Armonia     High     7.24     Miles       Nutrients (Algae)     Nonpoint/Point Source     Low     7.24     Miles       Nutrients (Algae)     Nonpoint/Point Source     Low     7.24     Miles       Nutrients (Algae)     Nonpoint/Point Source     Low     7.24     Miles       Namonia     Nonpoint/Point Source     Low</td> <td>TYPE     NAME     UNIT     POLLUTANT/STRESSOR*     SOURCE     PRIORITY     AFFECTED     UNIT     DATE       High Coliform Count     Nenpoint/Point Source     Medium     19.37     Miles     Miles       Lead     Nonpoint/Point Source     Low     19.37     Miles     0194       Mutrients (Algae)     Nonpoint/Point Source     Low     19.37     Miles     0194       Old     Nonpoint/Point Source     Low     19.37     Miles     0194       Old     Nonpoint/Point Source     Low     19.37     Miles     0194       R     LOS ANGELES RIVER REACH 3 (FIGUEROA ST TO RIVERSIDE DR.)     405.21     Armonia     Nonpoint/Point Source     Medium     7.24     Miles     0194       Nutrients (Algae)     Nonpoint/Point Source     Low     7.24     Miles     0194       Nutrients (Algae)     Nonpoint/Point Source     Low     7.24     Miles     0194       Nonpoint/Point Source     Low     7.24     Miles     0194       NAMI     Armonia     Nonpo</td>	TYPE     NAME     UNIT     POLLUTANT/STRESSOR*     SOURCE     PRIORITY     AFFECTED       High Coliform Count     Nonpoint/Point Source     Low     19.37       High Coliform Count     Nonpoint/Point Source     Low     19.37       Nutrients (Algae)     Nonpoint/Point Source     Medium     19.37       Nonpoint/Point Source     Core     19.37     19.37       Nonpoint/Point Source     Monpoint/Point Source     Low     19.37       Odors     Nonpoint/Point Source     Low     19.37       Oil     Nonpoint/Point Source     Low     19.37       Scum/Foam-unnatural     Nonpoint/Point Source     Low     19.37       R     LOS ANGELES RIVER REACH 3 (FIGUEROA ST TO RIVERSIDE DR.)     405.21     Armonia     Monpoint/Point Source       R     LOS ANGELES RIVER REACH 4 (FIGUEROA ST TO RIVERSIDE DR.)     405.21     Armonia     Monpoint/Point Source       R     LOS ANGELES RIVER REACH 4 (SEPUVEDA DR. TO SEPULVEDA DAM)     405.21     Trash     Nonpoint/Point Source       R     LOS ANGELES RIVER REACH 4 (SEPUVEDA DR. TO SEPULVEDA DAM)     405.21     Armonia     High     7.24       R     LOS ANGELES RIVER REACH 4 (SEPUVEDA DR. TO SEPULVEDA DAM)     405.21     Codors     Nonpoint/Point Source     High     11.84       N	TYPE     NAME     UNIT     POLLUTANT/STRESSOR*     SOURCE     PRIORITY     AFFECTED     UNIT       High Coliform Count     Nonpoint/Point Source     Medium     19.37     Miles       Nutrients (Algae)     Nonpoint/Point Source     Low     19.37     Miles       Nutrients (Algae)     Nonpoint/Point Source     Medium     19.37     Miles       Odors     Nonpoint/Point Source     Low     19.37     Miles       Oil     Nonpoint/Point Source     Low     19.37     Miles       Scum/Foam-unnatural     Nonpoint/Point Source     Low     19.37     Miles       R     LOS ANGELES RIVER REACH 3 (FIGUEROA ST TO RIVERSIDE DR.)     405.21     Armonia     High     7.24     Miles       Nutrients (Algae)     Nonpoint/Point Source     Low     7.24     Miles       Nutrients (Algae)     Nonpoint/Point Source     Low     7.24     Miles       Nutrients (Algae)     Nonpoint/Point Source     Low     7.24     Miles       Namonia     Nonpoint/Point Source     Low	TYPE     NAME     UNIT     POLLUTANT/STRESSOR*     SOURCE     PRIORITY     AFFECTED     UNIT     DATE       High Coliform Count     Nenpoint/Point Source     Medium     19.37     Miles     Miles       Lead     Nonpoint/Point Source     Low     19.37     Miles     0194       Mutrients (Algae)     Nonpoint/Point Source     Low     19.37     Miles     0194       Old     Nonpoint/Point Source     Low     19.37     Miles     0194       Old     Nonpoint/Point Source     Low     19.37     Miles     0194       R     LOS ANGELES RIVER REACH 3 (FIGUEROA ST TO RIVERSIDE DR.)     405.21     Armonia     Nonpoint/Point Source     Medium     7.24     Miles     0194       Nutrients (Algae)     Nonpoint/Point Source     Low     7.24     Miles     0194       Nutrients (Algae)     Nonpoint/Point Source     Low     7.24     Miles     0194       Nonpoint/Point Source     Low     7.24     Miles     0194       NAMI     Armonia     Nonpo

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

i

ì

		1990 CALIF		1 303(U) LIST AN		JUNEDU		Approved	by USEPA:	12-May-9
EGION	TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSOR	SOURCE	PRIORITY	SIZE AFFECTED		START DATE	END DATE
4	R	LOS ANGELES RIVER REACH 5 (AT SEPULVEDA BASIN)	405.21							
				Ammonia	Nonpoint/Point Source	High	1.93	Miles	0194	1299
				ChemA	Nonpoint/Point Source	Medium	1.93	Miles		
				Chlorpyrifos Elevated levels of chlo	-	Medium	1.93	Miles		
				Lievaled levels of Gillo	Nonpoint/Point Source					
				Nutrients (Algae)		Medium	1.93	Miles	0194	129
					Nonpoint/Point Source					
				Odors	Nonpoint/Point Source	Low	1.93	Miles		
				Oil	Nonponit/oint Source	Low	1.93	Miles		
					Nonpoint/Point Source					
				Scum/Foam-unnatural		Low	1.93	Miles		
			Trash	Nonpoint/Point Source	High	1.93	Miles			
			110017	Nonpoint/Point Source						
4	R	LOS ANGELES RIVER REACH 6 (ABOVE SEPULVEDA FLD CNTRL BASIN)	405.21							
				Dichloroethylene/1,1-DC		Low	6.17	Miles		
				High Coliform Count	Nonpoint Source	Low	6.17	Miles		
				High Comonn Count	Nonpoint Source	LOW	0.17	WHIES		
				Tetrachloroethylene/PCE		Low	6.17	Miles		
				Trichloroethylene/TCE	Nonpoint Source	Low	6.17	Miles		
				Themoroeunyiener ICE	Nonpoint Source	LOW	0.17	Miles		
4	R	MALIBU CREEK	404.21							
•		····		Fish barriers		Low	9.5	Miles		
					Dam Construction/Operation					
				High Coliform Count	Nonpoint/Point Source	High	9.5	Miles		
				Nutrients (Algae)		Medium	9.5	Miles	0193	120
					Nonpoint/Point Source	_				
				Scum/Foam-unnatural	Nonpoint/Point Source	Low	9.5	Miles		
				Trash	temponial offic oblige	Low	9.5	Miles		
					Nonpoint Source					
					Nonpoint Source					

Approved by USEPA: 12-May-99

.

k.

.

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

.

· · · · ·

Approved by USEPA: 12-May-99

• · · · ·

REGION	ТҮРЕ	NAME	HYDRO UNIT	POLLUTANT/STRESSOR	* SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
4	R	MATILIJA CREEK REACH 1 (JCT. WITH N. FORK TO RESERVOIR)	402.20		~					
				Fish barriers	Dam Construction/Operation	Low	1.6	Miles		
4	R	MATILIJA CREEK REACH 2 (ABOVE RESERVOIR)	402.20							
				Fish barriers	Dam Construction/Operation	Low	16.8	Miles		
4	R	MEDEA CREEK REACH 1 (LAKE TO CONFL. WITH LINDERO)	404.23							
				Algae	Nonpoint Source	Medium	3.01	Miles		
				High Coliform Count	Nonpoint Source	High	3.01	Miles		
				Selenium	Nonpoint Source	Low	3.01	Miles		
				Trash	Nonpoint Source	Low	3.01	Miles		
4	R	MEDEA CREEK REACH 2 (ABV COFL. WITH LINDERO)	404.24							
				Algae	Nonpoint Source	Medium	5.44	Miles		
				High Coliform Count	Nonpoint Source	High	5.44	Miles		
				Selenium	Nonpoint Source	Low	5.44	Miles		
				Trash	Nonpoint Source	Low	5.44	Miles		
4	R	MINT CANYON CREEK REACH 1 (CONFL TO ROWLER CYN)	403.51							
				Nitrate and Nitrite	Nonpoint Source	Medium	8.16	Miles		
4	R	MONROVIA CANYON CREEK	405.33	Lead		Low	2.09	Miles		
4	R	PALO COMADO CREEK	404.23		Nonpoint Source					
-		The composition	707.20	High Coliform Count	Nonpoint Source	High	7.78	Miles		
4	R	PICO KENTER DRAIN	405.13							
				Ammonia	Nonpoint Source	Low	4.77	Miles		
		· ·		Copper	Nonpoint Source	Medium	4.77	Miles		
		esented under each pollutant/stressor			Appendix -82					

Water Act Section 303(d). In a few cases, they provide necessary information.

,

.

								Approved	by USEPA.	12-мау-99
REGION	TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSOR	* SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
				Enteric Viruses		High	4.77	Miles		
					Nonpoint Source					
				High Coliform Count	Nonpoint Source	High	4.77	Miles		
				Lead	Honpoint Oource	Low	4.77	Miles		
					Nonpoint Source					
				PAHs	Name int Carrier	High	4.77	Miles		
				Toxicity	Nonpoint Source	Medium	4.77	Miles		
				Toxicity	Nonpoint Source	mealum	4.11	Miles		
				Trash		Low	4.77	Miles		
					Nonpoint Source					
4	R	REVOLON SLOUGH MAIN BRANCH (MUGU LAGOON TO CENTRAL AVENUE)	403.11							
				Algae		Low	8.9	Miles	1298	
					Nonpoint Source					
				ChemA Flevated levels of che	mA pesticides in tissue.	High	8.9	Miles	1298	
					Nonpoint Source					
				Chlordane	· ·	High	8.9	Miles	1298	
				Elevated levels of chick	ordane in tissue and sediment.					
				Chlorpyrifos	Nonpoint Source	High	8.9	Miles	1298	
				Elevated levels of child	orpyrifos in tissue.		0.0	MACS	1200	
					Nonpoint Source					
				Dacthal Elevated levels of dac	thal in sediment	High	8.9	Miles	1298	
					Nonpoint Source					
				DDT	•	High	8.9	Miles	1298	
				Elevated levels of DD	T in tissue and sediment.					
				Dieldrin	Nonpoint Source	High	8.9	Miles	1298	
				Elevated levels of diel	ldrin in tissue.	T I MIT	0.5	Miles	1200	
					Nonpoint Source					
				Endosulfan	losulfan in tissue and sediment.	High	8.9	Miles	1298	
				Lievaled levels of end	Nonpoint Source					
				Nitrogen		Medium	8.9	Miles	1298	
					Nonpoint Source					
				PCBs Elevated levels of PC	Re in tiesue	High	8.9	Miles		
					Nonpoint Source					
				Selenium		Low	8.9	Miles		
					Nonpoint Source					

Approved by USEPA: 12-May-99

. .

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

, ,

Approved by USEPA: 12-May-99

. .

				· · · ·					DY USEPA:	12-мау-
EGION	TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSO	R* SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
				Toxaphene Elevated levels of tox	raphene in tissue and sediment. Nonpoint Source	High	8.9	Miles	1298	
				Toxicity	Nonpoint Source	High	8.9	Miles		
				Trash	Nonpoint Source	Low	8.9	Miles		
4	R	RIO DE SANTA CLARA/OXNARD DRAIN #3	403.11		Nonpoint Source					
				ChemA Elevated levels of ch	emA pesticides in tissue. Nonpoint Source	High	2.48	Miles	1298	
				Chlordane Elevated levels of chi	lordane in tissue.	High	2.48	Miles	1298	
				DDT Elevated levels of DL		High	2.48	Miles	1298	
				Nitrogen	Nonpoint Source Nonpoint Source	Low	2.48	Miles	1298	
				PCBs Elevated levels of PC	CBs in tissue.	High	2.48	Miles		
				Sediment Toxicity	Nonpoint Source	High	2.48	Miles		
				Toxaphene Elevated levels of to	caphene in tissue.	High	2.48	Miles	1298	
4	R	RIO HONDO REACH 1 (CONFL. LA RIVER TO SNT ANA FWY)	405.15		Nonpoint Source					
		· · · ·		Ammonia	Nonpoint/Point Source	Low	4.19	Miles	0194	12
				Copper		Low	4.19	Miles		
				High Coliform Count	Nonpoint/Point Source	Low	4.19	Miles		
				Lead	Nonpoint/Point Source	Low	4.19	Miles		
				рН	Nonpoint/Point Source	Low	4.19	Miles		
				Trash	Nonpoint/Point Source	High	4.19	Miles		
				Zinc	Nonpoint/Point Source Nonpoint/Point Source	Low	4.19	Miles		

• Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

۱ I

									by USEPA:	12-May-99
REGION			HYDRO UNIT	POLLUTANT/STRESSOR	* SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
4	R	RIO HONDO REACH 2 (AT SPREADING GROUNDS)	405.15							
				Ammonia	Nonpoint/Point Source	Medium	2.71	Miles	0194	129 <del>9</del>
				High Coliform Count	Nonpoint/Point Source	Low	2.71	Miles		
4	R	SAN GABRIEL RIVER EAST FORK	405.43							
				Trash	Nonpoint Source	High	12	Miles		
4	R	SAN GABRIEL RIVER ESTUARY	405.15		·	<b>.</b>				
				Abnormal Fish Histology	/ Nonpoint/Point Source	Medium	2.95	Miles		
				Arsenic Elevated levels of arse	nic in tissue.	Low	2.95	Miles		
					Nonpoint/Point Source					
4		SAN GABRIEL RIVER REACH 1 (ESTUARY TO FIRESTONE)	405.15							
				Abnormal Fish Histology	/ Nonpoint/Point Source	Medium	8.73	Miles		
				Algae	Nonpoint/Point Source	Medium	8.73	Miles		
				Ammonia	Nonpoint/Point Source	High	8.73	Miles		
				High Coliform Count		Low	8.73	Miles		
				Toxicity	Nonpoint/Point Source	Medium	8.73	Miles		
-	_				Nonpoint/Point Source					
. 4		SAN GABRIEL RIVER REACH 2 (FIRESTONE TO WHITTIER NARROWS DAM	405.15							
				Ammonia	Nonpoint/Point Source	High	9.99	Miles		
				High Coliform Count	Nonpoint/Point Source	Low	9.99	Miles		
				Lead		Low	9.99	Miles		
4	R	SAN GABRIEL RIVER REACH 3	405.41		Nonpoint/Point Source					
		(WHITTIER NARROWS TO RAMONA)								
				Toxicity	Nonpoint/Point Source	Medium	3.52	Miles		
					Nonponter unit Source					

Approved by USEPA: 12-May-99

.

.

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

.,

2

Approved by USEPA: 12-May-99

.

.

· · · · · · · · · ·				· · /						
REGION	TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSOR	* SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
4	R	SAN JOSE CREEK REACH 1 (SG CONFL. TO TEMPLE STREET)	405.41							
				Algae	Nonpoint/Point Source	Medium	13.12	Miles		
				Ammonia	Nonpoint/Point Source	High	13.12	Miles		
				High Coliform Count	Nonpoint/Point Source	Low	13.12	Miles		
4	R	SAN JOSE CREEK REACH 2 (TEMPLE TO I-10 AT WHITE AVE.)	405.51							
				Algae	Nonpoint/Point Source	Medium	4.93	Miles		
				Ammonia	Nonpoint/Point Source	High	4.93	Miles		
				High Coliform Count	Nonpoint/Point Source	Low	4.93	Miles		
4	R	SANTA CLARA RIVER ESTUARY	403.11	0.			0.07			
				ChemA	Nonpoint Source	Medium	2.07	Miles		
				High Coliform Count	Nonpoint Source	Low	2.07	Miles		
				Toxaphene	Nonpoint Source	Medium	2.07	Miles		
4	R	SANTA CLARA RIVER REACH 3 (DAM TO ABV SP CRK/BLW TIMBER CYN)	403.21							
				Ammonia	Nonpoint/Point Source	Medium	13.24	Miles		
				Chloride	Nonpoint/Point Source	Medium	13.24	Miles	1297	
4	R	SANTA CLARA RIVER REACH 7 (BLUE CUT TO WEST PIER HWY 99)	403.51							
			,	Ammonia	Nonpoint/Point Source	Medium	9.21	Miles		
				Chloride Chloride was relisted		Medium	9.21	Miles	1297	
				High Coliform Count	Nonpoint/Point Source	Low	9.21	Miles		
				Nitrate and Nitrite	Nonpoint/Point Source	Medium	9.21	Miles		
					Nonpoint/Point Source					

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

•

۰.

		1998 CALIF	UKNIA	A 303(d) LIST AND TMDL PRIORITY SCHEDULE				Approved	12-May-99	
EGION	TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSOR	* SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
4	R	SANTA CLARA RIVER REACH 8-W PIER HY 99 TO BOUQUET CYN RD BRG	403.51							
				Ammonia	Nonpoint/Point Source	Medium	3.42	Miles		
				Chloride Chloride was relisted b		Medium	3.42	Miles	1297	
					Nonpoint/Point Source					
				High Coliform Count	Nonpoint/Point Source	Low	3.42	Miles		
				Nitrate and Nitrite		Medium	3.42	Miles		
				Org. enrichment/Low D.C	Nonpoint/Point Source ).	Medium	3.42	Miles		
					Nonpoint/Point Source					
4	R	SANTA CLARA RIVER REACH 9 (BOUQUET CYN RD.TO ABV LANG GAGNG)	403.51						-	
				High Coliform Count	Nonpoint/Point Source	Low	12.69	Miles		
4	R	SANTA MONICA CANYON	405.13							
			High Coliform Count	Nonpoint Source	High	2.9	Miles			
			Lead	Nonpoint Source	Low	2.9	Miles			
4	R	SEPULVEDA CANYON	405.13		Nonpoint Source					
4	n	SEPULVEDA CANTON	400.75	Ammonia		Low	6.8	Miles		
				High Coliform Count	Nonpoint Source	High	6.8	Miles		
				_	Nonpoint Source					
				Lead	Nonpoint Source	Low	6.8	Miles		
4	R	STOKES CREEK	404.22							
				High Coliform Count	Nonpoint Source	High	5.33	Miles		
4	R	TAPO CANYON REACH 1	403.67		Nonpoint Source					
-	ĸ		400.07	Boron		Medium	5.23	Miles		
				Chloride	Nonpoint/Point Source	Medium	5.23	Miles	0197	120
					Nonpoint/Point Source				0.07	
				Sulfates	Nonpoint/Point Source	Medium	5.23	Miles		
				Total Dissolved Solids	-	Medium	5.23	Miles		
					Nonpoint/Point Source					

Approved by USEPA: 12-May-99

.

.

.

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

...

,

Approved by USEPA: 12-May-99

.

.

REGION	TYPE	NAME	HYDRO	POLLUTANT/STRESSOF	* SOURCE	PRIORITY	SIZE	UNIT	START	
4	R	TOPANGA CANYON CREEK	UNIT 404.11	FULLUTAN 1/31 KE350			AFFECTED		DATE	DATE
*			~~~~	Lead	Nonpoint Source	Low	8.6	Miles		
4	R	TORRANCE CARSON CHANNEL	405.12							
				Copper	Nonpoint Source	Low	12.6	Miles		
				High Coliform Count	Nonpoint Source	Medium	12.6	Miles		
				Lead	Nonpoint Source	Low	12.6	Miles		
				Leau	Nonpoint Source	LOW	12.0	Miles		
4	R	TORREY CANYON CREEK	403.41							
				Nitrate and Nitrite	Nonpoint Source	Medium	1.7	Miles		
4	R	TRIUNFO CANYON CREEK REACH	404.24							
		1		Lead		Low	4.06	Miles		
				Manauma	Nonpoint Source	1	4.00	Milee		
				Mercury	Nonpoint Source	Low	4.06	Miles		
4	R	TRIUNFO CANYON CREEK REACH	404.25							
		2		Lead		Low	1.98	Miles		
				Mercury	Nonpoint Source	Low	1.98	Miles		
				mercury	Nonpoint Source	LOW	1.30	miles		
4	R	TUJUNGA WASH (LA RIVER TO ) HANSEN DAM)	405.21		,					•
				Ammonia	Nonpoint Source	Medium	9.68	Miles	0194	1299
				Copper		Medium	9.68	Miles		
				High Coliform Count	Nonpoint Source	Low	9.68	Miles		
					Nonpoint Source					
				Odors	Nonpoint Source	Low	9.68	Miles		
				Scum/Foam-unnatural		Low	9.68	Miles		
				Trash	Nonpoint Source	High	9.68	Miles		
					Nonpoint Source					
4	R	VENTURA RIVER ESTUARY	402.10	Algae		Low	0.35	Miles		
					Nonpoint/Point Source					

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

.

.

							0125		074	END
REGION	TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSOR*	SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
				DDT		Medium	0.35	Miles		
				Elevated levels of DDT						
					Nonpoint/Point Source					
				Eutrophic	· · · · · · · · · · · · · · · · · · ·	Low	0.35	Miles		
					Nonpoint/Point Source					
				Trash		Low	0.35	Miles		
				1	Nonpoint/Point Source					
4	R	VENTURA RIVER REACH 1	402.10							
		(ESTUARY TO MAIN STREET)								
				Algae		Low	0.18	Miles		
				l	Nonpoint/Point Source					
				Copper		Low	0.18	Miles		
				Elevated levels of coppe						
					Nonpoint/Point Source					
				Silver		Medium	0.18	Miles		
				Elevated levels of silver						
					Nonpoint/Point Source		0.45			
				Zinc Elevated levels of zinc i	n tissua	Low	0.18	Miles		
				1	Nonpoint/Point Source					
4	R	VENTURA RIVER REACH 2 (MAIN ST. TO WELDON CANYON)	402.10							
				Algae		Low	4.64	Miles		
				I	Nonpoint/Point Source					
				Copper		Low	4.64	Miles		
				Elevated levels of copp						
					Nonpoint/Point Source					
				Selenium		Low	4.64	Miles		
				Elevated levels of selen						
					Nonpoint/Point Source					
				Silver	· in Henry	Medium	4.64	Miles		
				Elevated levels of silver						
					Nonpoint/Point Source	<u>.</u>				
				Zinc	in finnun	Low	4.64	Miles		
				Elevated levels of zinc i						
					Nonpoint/Point Source					
4	R	VENTURA RIVER REACH 3 (WELDON CANYON TO CONFL. W/ COYOTE CR)	402.10							
		JUIDIE ORY		Pumping		Low	0.78	Miles		
					Nonpoint Source	LOW	0.70	1411163		
				Water Diversion	Honpolin Goulde	Low	0.78	Miles		
					Nonpoint Source	LUW	0.70	WIII62		
					nonpoint douite					

Approved by USEPA: 12-May-99

~

• •

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA: 12-May-99

• •

REGION	TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSOR*	SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
4	R	VENTURA RIVER REACH 4 (COYOTE CREEK TO CAMINO CIELO RD.	402.20							
				Pumping	Nonpoint Source	Low	14.94	Miles		
				Water Diversion	Nonpoint Source	Low	14.94	Miles		
4	R	VERDUGO WASH REACH 1 (LA RIVER TO VERDUGO RD.)	405.21							
				Algae	Nonpoint Source	Low	3.41	Miles		
				High Coliform Count	Nonpoint Source	Low	3.41	Miles		
				Trash	Nonpoint Source	High	3.41	Miles		
4	R	VERDUGO WASH REACH 2 (ABOVE VERDUGO ROAD)	405.24							
				Algae	Nonpoint Source	Low	5.55	Miles		
				High Coliform Count	Nonpoint Source	Low	5.55	Miles		
				Trash	Nonpoint Source	High	5.55	Miles		
4	R	WALNUT CREEK WASH (DRAINS FROM PUDDINGSTONE RESERVOIR	405.41							
				рН	Nonpoint/Point Source	High	13.9	Miles		
				Toxicity	Nonpoint/Point Source	Medium	13.9	Miles		
4	R	WHEELER CANYON / TODD BARRANCA	403.21		-					
				Nitrate and Nitrite	Nonpoint Source	Medium	4.17	Miles		
4	R	WILMINGTON DRAIN	405.12	Ammonia	•	Madise	4.0	6417		
				Ammonia Copper	Nonpoint Source	Medium Low	4.9 4.9	Miles Miles		
				Copper High Coliform Count	Nonpoint Source	Low	4.9	Miles		
				Lead	Nonpoint Source	Low	4.9	Miles		
					Nonpoint Source	2017				

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

· .

Approved by USEPA: 12-May-99

REGION	TYPE		HYDRO UNIT	POLLUTANT/STRESSOF	* SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
4	т	BALLONA CREEK WETLANDS	405.13							
				Arsenic		Medium	86	Acres		
				Elevated levels of ars						
					Nonpoint Source			•		
				Exotic Vegetation	Nonnoint Source	Low	86	Acres		
				Habitat alterations	Nonpoint Source	Low	86	Acres		
				Habitat alterations	Nonpoint Source	LOW		Acies		
				Hydromodification		Low	86	Acres		
					Nonpoint Source					
				Reduced Tidal Flushing		Low	86	Acres		
					Nonpoint Source					
				Trash		High	86	Acres		
					Nonpoint Source					
4	т	COLORADO LAGOON	405.12							
				Chlordane		High	13.6	Acres		
				Elevated levels of chi	ordane in tissue and sediment.					
				•	Nonpoint Source					
				DDT Elevated levels of DD		High	13.6	Acres		
				Elevated levels of DD	Nonpoint Source					
				Dieldrin	Nonpoint Source	Medium	13.6	Acres		
				Elevated levels of die	ldrin in tissue.	meanan	10.0	Acies		
					Nonpoint Source					
				Lead		Medium	13.6	Acres		
				Elevated levels of lea	d in tissue and sediment.					
					Nonpoint Source					
				PAHs	He is and income.	High	13.6	Acres		
				Elevated levels of PA						
				PCBs	Nonpoint Source	High	13.6	Acres		
				Elevated levels of PC	Bs in tissue.	nigo	13.0	Acres		
					Nonpoint Source					
				Sediment Toxicity	• • • • • • • • • • • • • • • • • • • •	Medium	13.6	Acres		
				-	Nonpoint Source	·				
				Zinc		Medium	13.6	Acres		
				Elevated levels of zin						
					Nonpoint Source					
4	т	LOS CERRITOS CHANNEL	405.15							
				Ammonia		Low	16	Acres		
					Nonpoint Source					
				Copper		Low	16	Acres		
					Nonpoint Source					

Comments presented under each pollutant/stressor are not required under Clean
Water Act Section 303(d). In a few cases, they provide necessary information.

,

.

Approved by USEPA: 12-May-99

.

• ,

.

EGION	TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSOR	* SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
				High Coliform Count	Nonpoint Source	Low	16	Acres		
				Lead	•	Low	16	Acres		
				Zinc	Nonpoint Source	Medium	16	Acres		
					Nonpoint Source					
5	E	DELTA WATERWAYS	544.000	Chlorpyrifos	•	High	480000	Acres	0198	120
					Agriculture					
				DDT	Urban Runoff/Storm Sewers	Low	480000	Acres	0104	12
				Dississe	Agriculture	Llink	480000		0198	12
				Diazinon	Agriculture	High	480000	Acres	0190	12
				Electrical Conductivity	Urban Runoff/Storm Sewers	Medium	16000	Acres	0101	12
				Electrical conductivity	Agriculture	mearan		Acres		
				Group A Pesticides	Agriculture	Low	480000	Acres	0104	12
				Mercury Becourse extraction of	ources are abandoned mines.	High	480000	Acres	0198	12
				Resource extraction s	Resource Extraction					
				Org. enrichment/Low D.	D. Municipal Point Sources	High	75	Acres	0101	12
					Urban Runoff/Storm Sewers					
				Unknown Toxicity	Source Unknown	Medium	480000	Acres	0101	12
5	L	BERRYESSA LAKE	512.210		· ·					
				Mercury	Resource Extraction	High	20700	Acres	0198	12
5	L	CLEAR LAKE	513.520							
				Mercury	Resource Extraction	High	43000	Acres	0198	12
				Nutrients	Resource Extraction	Low	43000	Acres	0104	12
					Source Unknown					
5	L	DAVIS CREEK RES	513.320	Mercury		Medium	290	Acres	0198	12
				-	Resource Extraction					
5	L	KESWICK RES	524.400	Cadmium		Medium	200	Acres	0198	12
					Resource Extraction					
			·	Copper	Resource Extraction	Medium	200	Acres	0198	12
Comme	ents pr	esented under each pollutant/str	essor are not requir	ed under Clean	Appendix -92					

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

› •

		1000 0/121			DIMDETRORT				DY USEFA.	12-1112-95
REGION	TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSOR	SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
				Zinc	Resource Extraction	Medium	200	Acres	0198	1211
5	L	MARSH CREEK RES	543.000	Mercury	Resource Extraction	Medium	375	Acres	0198	1211
5	L	SHASTA LAKE	506.100	Cadmium	Resource Extraction	Low	20	Acres	0104	1211
				Copper	Resource Extraction	Low	20	Acres	0104	1211
				Zinc	Resource Extraction	Low	20	Acres	0104	1211
5	L	WHISKEYTOWN RES	524.610	High Coliform Count	Septage Disposal	Low	100	Acres	0104	1211
5	R	AMERICAN RIVER, LOWER	519.210	Group A Pesticides	Urban Runoff/Storm Sewers	Low	23	Miles	0104	1211
				Mercury Resource extraction so	ources are abandoned mines.	Medium	23	Miles	0101	1211
				Unknown Toxicity	Resource Extraction Source Unknown	Low	23	Miles	0104	1211
5	R	ARCADE CREEK	519.210	Chlorpyrifos		Medium	10	Miles	0198	1211
				Diazinon	Urban Runoff/Storm Sewers e of diazinon for these waterbodies Agriculture Urban Runoff/Storm Sewers	Medium	10	Miles	0198	1211
5	R	CACHE CREEK	511.300	Mercury Resource extraction s	ources are abandoned mines.	High	35	Miles	0196	1205
				Unknown Toxicity	Resource Extraction	Medium	35	Miles	0101	1211
	_		540.040		Source Unknown					
5	R	CHICKEN RANCH SLOUGH	519.210	Chlorpyrifos	Urban Runoff/Storm Sewers	Medium	5	Miles	0198	1211

Approved by USEPA: 12-May-99

• 3

ъ с

τ

Approved by USEPA: 12-May-99

.

1

REGION	TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSOR	SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
				Diazinon		Medium	5	Miles	0198	1211
				The agricultural source	e of diazinon for these waterbodies	is from aerial depo	osition.		•	
					Agriculture					
					Urban Runoff/Storm Sewers					
5	R	COLUSA DRAIN	520.210	<b>.</b>		•• ·-				
				Carbofuran/Furadan	Agriculture	Medium	70	Miles	0101	1211
				Group A Pesticides	Agriculture	Medium	70	Miles	0101	1211
				oroup Ar counted	Agriculture	meanan		111169		
				Malathion	<b>-</b> · · · · · · · · · · · · · · · · · · ·	Medium	70	Miles	0101	1211
					Agriculture					
				Methyl Parathion		Medium	70	Miles	0101	1211
				()	Agriculture		34	B.2.*	0606	
				Unknown Toxicity	Agriculture	Medium	70	Miles	0101	1211
-	-	DOLLY ODERY	540 540		Agriculture					
5	R	DOLLY CREEK	518.540	Copper		Medium	1	Miles	0101	1211
					ources are abandoned mines.	medium	•	miles	0101	1211
					Resource Extraction					
				Zinc		Medium	1	Miles	0101	1211
				Resource extraction s	ources are abandoned mines.					
					Resource Extraction					
5	R	DUNN CREEK	543.000			_				
				Mercury Resource extraction s	ources are abandoned mines.	Low	9	Miles	0104	1211
				TOSOULO EXECUUI S	Resource Extraction					
				Metals		Low	9	Miles	0104	1211
				Resource extraction s	ources are abandoned mines.					
					Resource Extraction					
5	R	ELDER CREEK	519.120							
				Chlorpyrifos		Medium	10	Miles	0198	1211
					Urban Runoff/Storm Sewers					
				Diazinon The anticultural source	e of diazinon for these waterbodies	Medium s is from aerial den	10 osition	Miles	0198	1211
				The agricultural Source	Agriculture	s is nom denai dep	USIGUII.			
					Urban Runoff/Storm Sewers					
5	R	ELK GROVE CREEK	519.110							
5			J13.110	Diazinon		Medium	5	Miles	0198	1211
					e of diazinon for these waterbodies				-	
					Agriculture					
					Urban Runoff/Storm Sewers					

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

· ·

Approved by USEPA: 12-May-99

.

,

REGION	TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSOR	• SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
5	R	FALL RIVER (PIT)	526.400	Sedimentation/Siltation		Medium	25	Miles	0104	1211
					Agriculture-grazing Highway/Road/Bridge Construct Silviculture	tion				
5	R	FEATHER RIVER, LOWER	519.220							
				Diazinon	Agriculture	High	60	Miles	0198	1205
				Group A Pesticides	Urban Runoff/Storm Sewers	Low	60	Miles	0104	1211
				Mercury Resource extraction se	Agriculture	Medium	60	Miles	0101	1211
					Resource Extraction					
				Unknown Toxicity	Source Unknown	Medium	60	Miles	0101	1211
5	R	FIVE MILE SLOUGH	544.000			•• ••				
				Chlorpyrifos	Urban Runoff/Storm Sewers	Medium	1	Miles	0198	1211
				Diazinon The agricultural source	e of diazinon for these waterbodies Agriculture	Medium is from aerial dep	1 osition.	Miles	0198	1211
					Urban Runoff/Storm Sewers					
5	R	FRENCH RAVINE	516.320							
				Bacteria	Land Disposal	Low	1	Miles	0104	1211
5	R	HARDING DRAIN (TURLOCK IRR DIST LATERAL #5)	535.500							
				Ammonia	Agriculture	Low	7	Miles	0104	1211
				Chlorpyrifos	Municipal Point Sources Agriculture	Medium	7	Miles	0198	1211
				Diazinon	-	Medium	7	Miles	0198	1211
				Unknown Toxicity	Agriculture Agriculture	Medium	7	Miles	0198	1211
5	R	HARLEY GULCH	513.510							
				Mercury Resource extraction s	ources are abandoned mines. Resource Extraction	Medium	8	Miles	0101	1211

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

· ·

Approved by USEPA: 12-May-99

,

•

			HYDRO				SIZE		START	END
REGION			UNIT	POLLUTANT/STRESSOR*	SOURCE	PRIORITY	AFFECTED	UNIT	DATE	DATE_
5	R	HORSE CREEK	526.200							
				Cadmium		Low	2	Miles	0104	1211
				Resource extraction sources						
					ource Extraction		•			4044
				Copper Resource extraction sources	are abandoned mines	Low	2	Miles	0104	1211
					ource Extraction					
				Lead		Low	2	Miles	0104	1211
				Resource extraction sources	are abandoned mines.	LOW	2	Miles	0104	1211
					ource Extraction					
				Zinc		Low	2	Miles	0104	1211
				Resource extraction sources	are abandoned mines.	200	-	iiiioo		
				Reso	ource Extraction					
5	R	HUMBUG CREEK	517.320							
3	IX.		517.520	Copper		Low	9	Miles	0104	1211
				Resource extraction sources	s are abandoned mines.	LOW	3	miles	0104	1411
					ource Extraction					
				Mercury		Low	9	Miles	0104	1211
				Resource extraction sources	s are abandoned mines.		-			
				Reso	ource Extraction					
				Sedimentation/Siltation		Low	9	Miles	0104	1211
				Resc	ource Extraction					
				Zinc		Low	9	Miles	0104	1211
				Resource extraction sources						
				Reso	ource Extraction					
5	R	JAMES CREEK	512.240							
				Mercury		Low	6	Miles	0104	1211
				Resource extraction sources	s are abandoned mines.					
				Reso	ource Extraction					
				Nickel		Low	6	Miles	0104	1211
				Resource extraction sources						
				Reso	ource Extraction					
5	R	KANAKA CREEK	517.420							
		•		Arsenic		Low	1	Miles	0104	1211
				Resource extraction sources	s are abandoned mines.					
				Reso	ource Extraction					
5	R	KINGS RIVER (LOWER)	551.900							
	i v	and area correly	331.300	Electrical Conductivity		Low	30	Miles	0104	1211
				-	culture	LOW	~~			
				Molybdenum		Low	30	Miles	0104	1211
					culture	2011	••	inneg	••••	
				Toxaphene	-	Low	30	Miles	0104	1211
				-	culture					

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

ł

,

Approved by USEPA: 12-May-99

.

.

.

REGION	TYPE		HYDRO UNIT	POLLUTANT/STRESSOR* SOURCE	PRIORITY	SIZE AFFECTED		START DATE	END DATE
5	R	LITTLE BACKBONE CREEK	506.200						
				Acid Mine Drainage	Medium	1	Miles	0104	1211
				Resource Extraction					
				Cadmium	Medium	1	Miles	0104	1211
				Resource extraction sources are abandoned mines.					
				Resource Extraction					
				Copper	Medium	1	Miles	0104	1211
				Resource extraction sources are abandoned mines.					
				Resource Extraction	•	-			
				Zinc	Medium	1	Miles	0104	1211
				Resource extraction sources are abandoned mines.					
				Resource Extraction					
5	R	LITTLE COW CREEK	507.330						
				Cadmium	Low	1	Miles	0104	1211
				Resource extraction sources are abandoned mines.					
				Resource Extraction					
				Copper	Low	1	Miles	0104	1211
				Resource extraction sources are abandoned mines.					
				Resource Extraction					
				Zinc	Low	1	Miles	0104	1211
				Resource extraction sources are abandoned mines.					
				Resource Extraction					
5	R	LITTLE GRIZZLY CREEK	518.540						
				Copper	Medium	10	Miles	0101	1202
				Mine Tailings					
				Zinc	Medium	10	Miles	0101	1202
				Mine Tailings					
5	R		531,400	·					
•	••			Ammonia	Low	15	Miles	0104	1211
				Dairies				- 1 - 1	
				Biological Oxygen Demand	Low	15	Miles	0104	1211
				Dairies					
				Electrical Conductivity	Low	15	Miles	0104	1211
				Dairies					
	_		E 40 000						
5	R	MARSH CREEK	543.000					0404	4044
				Mercury Resource extraction sources are abandoned mines	Low	24	Miles	0104	1211
				Resource extraction sources are abandoned mines.					
				Resource Extraction	Law	24	Miles	0404	4044
				Metals Resource extraction sources are abandoned mines.	Low	24	Miles	0104	1211
				Resource Extraction					

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

.

1

Approved by USEPA: 12-May-99

• •

									<u> </u>	
REGION	TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSOF	* SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
5	R	MERCED RIVER, LOWER	535.000							
				Chlorpyrifos		High	60	Miles	0198	1205
					Agriculture					
				Diazinon	Agriculture	High	60	Miles	0198	1205
		<b>、</b>		Group A Pesticides	Agricalitie	Low	60	Miles	0104	1211
					Agriculture				•1••	
. 5	R	MOKELUMNE RIVER, LOWER	531.200							
		······································		Copper		Low	28	Miles	0104	1211
				Resource extraction s	ources are abandoned mines.					
					Resource Extraction					
		·		Zinc Resource extraction s	ources are abandoned mines.	Low	28	Miles	0104	1211
					Resource Extraction					
5	R	MORRISON CREEK	519.120							
5	n	MORRISON OREER	515.120	Diazinon		Medium	20	Miles	0198	1211
					e of diazinon for these waterbodies				0.00	
					Agriculture					
					Urban Runoff/Storm Sewers					
5	R	MOSHER SLOUGH	544.000							
				Chlorpyrifos		Medium	2	Miles	0198	1211
				Diazinon	Urban Runoff/Storm Sewers	Medium	2	Miles	0198	1211
					e of diazinon for these waterbodies			miles	0198	1211
				•	Agriculture	•				
					Urban Runoff/Storm Sewers					
5	R	MUD SLOUGH	541.200							
				Boron		Low	16	Miles	0101	1211
					Agriculture					
				Electrical Conductivity		Low	16	Miles	0101	1211
				Pesticides	Agriculture	Low	16	Miles	0101	1211
				T Collondes	Agriculture	LOW	10	anco	0101	1211
				Selenium	-	High	16	Miles	0592	1200
					Agriculture					
				Unknown Toxicity		Low	16	Miles	0101	1211
					Agriculture					
5	R	NATOMAS EAST MAIN DRAIN	519.220							
				Diazinon The acticultural source	ce of diazinon for these waterbodies	Medium	5	Miles	0198	1211
			•		Agriculture	is nom denai dep				
					Urban Runoff/Storm Sewers					
							*			

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Appendix -98

۱.

.

HYDRO SIZE START END **REGION TYPE** NAME UNIT POLLUTANT/STRESSOR* SOURCE PRIORITY UNIT AFFECTED DATE DATE PCBs Low 12 Miles 0104 1211 Industrial Point Sources Urban Runoff/Storm Sewers 5 R **ORESTIMBA CREEK** 541.100 Chlorpyrifos Medium 10 Miles 0198 1211 Agriculture Diazinon Medium 10 Miles 0198 1211 Agriculture **Unknown Toxicity** Medium 3 Miles 0101 1211 . Agriculture 5 PANOCHE CREEK 542.400 R Mercury Low 25 Miles 0104 1211 Resource extraction sources are abandoned mines. **Resource Extraction** Sedimentation/Siltation 40 0104 1211 Low Miles Agriculture Agriculture-grazing **Road Construction** 0104 1211 Selenium Low 40 Miles Agriculture Agriculture-grazing **Road Construction** PIT RIVER 506.000 5 R Nutrients Low 100 Miles 0104 1211 Agriculture Agriculture-grazing Org. enrichment/Low D.O. Low 100 Miles 0104 1211 Agriculture Agriculture-grazing Temperature Low 100 Miles 0104 1211 Agriculture Agriculture-grazing 5 R SACRAMENTO RIVER (RED BLUFF 500.000 TO DELTA) Diazinon High 30 Miles 0198 1205 Agriculture 0198 1205 Mercury High 30 Miles Resource extraction sources are abandoned mines. **Resource Extraction** Unknown Toxicity Medium 185 Miles 0101 1211 Source Unknown

#### 1998 CALIFORNIA 303(d) LIST AND TMDL PRIORITY SCHEDULE

Approved by USEPA: 12-May-99

.

.

.

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA: 12-May-99

۷

•

.

REGION	TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSOR	• SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
5	R	SACRAMENTO RIVER (SHASTA DAM TO RED BLUFF)	508.100							
				Cadmium		High	40	Miles	0196	1201
				Resource extraction so	ources are abandoned mines. Resource Extraction					
				Copper		High	40	Miles	0196	1201
				Resource extraction so	ources are abandoned mines. Resource Extraction					
				Unknown Toxicity	Resource Extraction	Medium	50	Miles	0101	121
				Chalown Toxicity	Source Unknown	meanan			0.01	
				Zinc		High	40	Miles	0196	1201
				Resource extraction se	ources are abandoned mines.					
					Resource Extraction					
5	R	SACRAMENTO SLOUGH	520.100							
				Diazinon	•	Medium	1	Miles	0198	121
					Agriculture Urban Runoff/Storm Sewers					
				Mercury	orban Kunon/Storm Sewers	Medium	1	Miles	0198	121
					Source Unknown		-			
5	R	SALT SLOUGH	541.200				•			
				Boron		Low	15	Miles	0198	121
					Agriculture					
				Chlorpyrifos		Low	15	Miles	0198	121
				Diazinon	Agriculture	Low	15	Miles	0198	121
				Diazinon	Agriculture	LOW		111165	0150	141
				Electrical Conductivity	2	Low	15	Miles	0198	121
					Agriculture ,					
				Selenium		High	15	Miles	0592	129
				Unknown Toxicity	Agriculture	Low	15	Miles	0198	121
				Onknown roxicity	Agriculture	LOW	15	Miles	0190	121
5			542.200							
5	R	SAN CARLOS CREEK	542.200	Mercury		Low	1	Miles	0104	121
					ources are abandoned mines.	LOW	•	nines	0104	12
					Resource Extraction					
5	R	SAN JOAQUIN RIVER	544.000							
				Boron		High	130	Miles	0697	129
					Agriculture					
				Chlorpyrifos	A	High	130	Miles	0198	120
		,		DDT	Agriculture	Low	130	Miles	0104	121
						LUW	1.00	101115225	0104	141

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

L

*

GION	TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSOR	* SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	ENC DAT
				Diazinon		High	130	Miles	0198	120
					Agriculture					
				Electrical Conductivity		High	130	Miles	0697	12
				Group A Posticidos	Agriculture	Low	130	Miles	0104	12
				Group A Pesticides	Agriculture	L0₩	130	Miles	0104	12
				Selenium		High	50	Miles	0592	12
					Agriculture					
				Unknown Toxicity		Medium	130	Miles	0198	12
					Source Unknown					
5	R	SPRING CREEK	524.400							
				Acid Mine Drainage		High	5	Miles	0198	12
				Resource extraction s	cources are abandoned mines. Resource Extraction					
				Cadmium	Resource Extraction	High	5	Miles	0198	12
					ources are abandoned mines.		•	mileo	0.00	••
					Resource Extraction					
				Copper		High	5	Miles	0198	12
				Resource extraction s	cources are abandoned mines. Resource Extraction					
				Zinc	Resource Extraction	High	5	Miles	0198	1:
					sources are abandoned mines.		-	hilleo		
					Resource Extraction					
5	R	STANISLAUS RIVER (LOWER)	535.300							
•				Diazinon		High	48	Miles	0198	1:
					Agriculture		, 			
				Group A Pesticides	Agriculturo	Low	48	Miles	0104	1:
				Unknown Toxicity	Agriculture ,	Medium	48	Miles	0101	1:
				•••••••	Source Unknown					••
5	R	STOCKTON DEEP WATER CHANNEL	544.000							
				Dioxin		Medium	2	Miles		
				This listing was made	by USEPA.					
					Point Source					
				Furans This listing was made	by USERA	Medium	2	Miles		
				This isong was made	Point Source					
				PCBs		Medium	2	Miles		
				This listing was made	•					
					Point Source					
5	R	STRONG RANCH SLOUGH	519.210							
				Chlorpyrifos		Medium	5	Miles	0198	1:
					Urban Runoff/Storm Sewers					

a 1

Water Act Section 303(d). In a few cases, they provide necessary information.

ч**т** — Ф

Approved by USEPA: 12-May-99

. .

•

REGION	TYPE	NAME		POLLUTANT/STRESSOR*	SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
				Diazinon The agricultural source o	f diazinon for these waterbodies	Medium is from aerial dep	5 osition.	Miles	0198	1211
					griculture Irban Runoff/Storm Sewers					
5	R	SULFUR CREEK	513.510							
-				Mercury		High	7	Miles	0198	1205
					rces are abandoned mines. Resource Extraction					
5	R	TEMPLE CREEK	531.400							
				Ammonia		Low	10	Miles	0104	1211
				,	lairies	•	40			4044
				Electrical Conductivity	airies	Low	10	Miles	0104	1211
5	R	TOWN CREEK	526.200	-						
3	ĸ	IOMN CREEK	520.200	Cadmium		Low	1	Miles	0104	1211
				Resource extraction sour	rces are abandoned mines.					
					Resource Extraction					404
				Copper Resource extraction sou	rces are abandoned mines.	Low	1	Miles	0104	121
					Resource Extraction					
				Lead		Low	1	Miles	0104	121
					rces are abandoned mines. Resource Extraction					
				Zinc		Low	1	Miles	0104	121
					rces are abandoned mines.					
				R	Resource Extraction					
5	R	TUOLUMNE RIVER (LOWER)	535.500	<b></b>	,					
				Diazinon	Agriculture	High	32	Miles	0198	120
				Group A Pesticides	gilculture	Low	32	Miles	0104	1211
					Igriculture					
				Unknown Toxicity		Medium	32	Miles	0101	1211
				S	Source Unknown					
5	R	WEST SQUAW CREEK	505.100	<b>.</b>			•			
				Cadmium Resource extraction sou	rces are abandoned mines.	Medium	2	Miles	0104	1211
					Resource Extraction					
				Copper		Medium	2	Miles	0104	121
					rces are abandoned mines.					
				Lead	Resource Extraction	Medium	2	Miles	0104	121
					rces are abandoned mines.		-		••••	
				F	Resource Extraction					

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

4

.

Ν

#### HYDRO SIZE START END REGION TYPE NAME PRIORITY POLLUTANT/STRESSOR* SOURCE UNIT UNIT AFFECTED DATE DATE Zinc 2 Miles 0104 1211 Medium Resource extraction sources are abandoned mines. **Resource Extraction** WILLOW CREEK (WHISKEYTOWN) 524.630 5 R Acid Mine Drainage Low 3 Miles 0104 1211 Resource extraction sources are abandoned mines. **Resource Extraction** Copper Low 3 Miles 0104 1211 Resource extraction sources are abandoned mines. **Resource Extraction** Zinc 0104 Low 3 Miles 1211 Resource extraction sources are abandoned mines. Resource Extraction **GRASSLANDS MARSHES** 5 w 541.200 **Electrical Conductivity** Medium 8224 Acres 0101 1211 Agriculture Selenium High 8224 0592 1298 Acres Agriculture 6 1 BRIDGEPORT RES 630.300 Nutrients Hiah 3000 Acres Livestock grazing in wetlands upgradient of reservoir. TMDLs to be addressed during years 6-13 of the next 13 years of the TMDL development process, resources permitting. Aariculture Sedimentation/Siltation 3000 Hiah Acres Watershed disturbance including livestock grazing. TMDLs to be addressed during years 6-13 of the next 13 years of the TMDL development processs, resources permitting. Source Unknown **CROWLEY LAKE** 603.100 6 L 5280 Arsenic High Acres To be addressed as part of Watershed Management Initiative (WMI) for upper watershed, beginning with Years 3-5 of WMI program, if resources permit. Natural Sources Nutrients High 5280 Acres Source Unknown DONNER LAKE 635.200 6 L **Priority Organics** Low 960 Acres PCBs in fish and sediment exceed Maximum Tissue Residue Level criteria; unknown nonpoint sources. Phase I Truckee River sediment TMDL projected for completion in 1999. Additional monitoring/study necessary to determine sources/cleanup potential for priority organics. TMDLs for organics to be addressed during years 6-13 of the next 13 years of the TMDL development process, resources permitting. Source Unknown

#### 1998 CALIFORNIA 303(d) LIST AND TMDL PRIORITY SCHEDULE

Approved by USEPA: 12-May-99

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA: 12-May-99

۰.

.

REGION	TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSOR*	SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
6	L	EAGLE LAKE (2)	637.300							
				Org. enrichment/Low D.O. Nutrients from wastewater addressed through sewerii TMDLs to be addressed d permitting.	ng of septic system deve	lopment and RWQCB's o	ngoing nonpoin	t source pro	ogram.	
					nd Development					
					npoint Source					
					nge Land					
				Se	ptage Disposal					
6	L	GRANT LAKE	601.000							
				Arsenic		High	1095	Acres	0198	0199
				Targeted for "easy" (alread Na	dy funded) TMDL docum tural Sources	entation that arsenic from	natural source	S.		
6	L	HAIWEE RES	603.300							
				Copper Copper problems related t biological monitoring being TMDL development proce	g required. TMDLs to be	addressed during years 6				
				На	bitat Modification					
				No	onpoint Source					
6	L	HORSESHOE LAKE (2)	628.000							
		.,		Sedimentation/Siltation Further monitoring may pe years of the TMDL develo			<b>1</b> I during years 6	Acres -13 of the ne	ext 13	
				Co	onstruction/Land Devel	opment				
6	L	INDIAN CREEK RES	632.200							
				Nutrients Reservoir formerly receive unreliability of treatment p fresh water.	rocess led to eutrophical					0199
				W	astewater					

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

1 **.** 

Approved by USEPA: 12-May-99

.

1

REGION	TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSOR*	SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
6	L	LAKE TAHOE	634.000							
				Nutrients Watershed disturbance, ur TMDLs but ability to comp additional watershed asse watershed to be coordinatu environmental threshold st	lete them depends on av ssment, were funded as ed with Tahoe Regional	ailability of reliable wate a result of 1997 preside	nshed model. Mo ntial forum; TML	odel calibra )Ls for entii	tion, and re	
					mospheric Deposition					
					nstruction/Land Develo	onment				
					ainage/Filling Of Wetla	•				
	-				hway Maintenance An					
					dromodification					
				•	rinas					
					enpoint Source					
					her Urban Runoff					
					viculture					
					ban Runoff/Storm Sew	ers				
					astewater					
				Sedimentation/Siltation		High	120000	Acres		
				Watershed disturbance ind depends on availability of i group model, and for addii TMDLs to be coordinated environmental threshold si	reliable watershed mode tional watershed assessi with Tahoe Regional Pla	l. Funding for final calib ment, was provided as a	ration of U.C. Da result of 1997 p	vis Tahoe I residential I	Research	
				So	urce Unknown					
6	L	PLEASANT VALLEY RES	603.200							
	-			Org. enrichment/Low D.O. Problems related to water Crowley Lake as part of th next 13 years of the TMDI	e Watershed Managem	ent Initiative; TMDLs to I				
				Fic	ow Regulation/Modifica	ntion				
				No	onpoint Source					
6	L	STAMPEDE RES	636.000							
•	_			Pesticides Sources unknown; no sigr loading probably low. Rec cycle. TMDLs, if needed, y process.	alculation of Maximum T	issue Residue Level cri	teria makes delis	ting possibl	le in next	
				So	ource Unknown					
6	L	TINEMAHA RES	603.200							
•	-			Arsenic TMDLs to be addressed a permitting.	luring years 6-13 of the r	Low next 13 years of the TML	<b>180</b> DL development j	Acres process, res	sources	
				Na	atural Sources					
				No	onpoint Source					
				Ur	ostream Impoundment					

Water Act Section 303(d). In a few cases, they provide necessary information.

.,

Approved by USEPA: 12-May-99

•

•

REGION	TYPE	NAME		POLLUTANT/STRESSOR*	SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
				the next 13 years of the 1	upstream geothermal source IMDL development process ource Unknown		180	Acres during year		
6	L	TOPAZ LAKE	631,100							
	-			next 13 years of the TMD	damage during January 19 DL development process, res griculture onpoint Source		2300 addressed durir	Acres ng years 6-1	3 of the	
6	L	TWIN LAKES	603.100							
				Nutrients Watershed disturbance, u development process, if i	urban runoff; to be addresse resources permit.	Low ed during years 6-13 of	<b>3</b> the next 13 yea	Acres rs of the TM	IDL	
				L	and Development					
					onpoint Source					
				0	ther Urban Runoff					
6	R	AMARGOSA RIVER	609.000							
				Salinity/TDS/Chlorides Internally drained river wi 104/106 grant funds	ith natural high salinity; targ	Medium eted for "easy" (alread)	198 y funded) TMDL	Miles using 1998	0198 Section	0199
				N	atural Sources					
6	R	ASPEN CREEK	632.100							
		•		Metals		High	4	Miles	0198	0199
				using 1998 Section 104/	•	CB mine workplan to b	e documented a	s Phase I Ti	MDL	
					cid Mine Drainage					
					latural Sources Ionpoint Source					
6	R	AURORA CANYON CREEK	630.300		····					
Ū	N.		000.000	be addressed during yea	on basis of limited data; fui ors 6-13 of the next 13 years tange Land					
6	R	BEAR CREEK (R6)	635.200							
				break. Phase I sediment amendments in 1999, us funding and will begin in	ogic modification for ski res TMDL for Truckee River an ing 1998 Section 104/106 g 1998. Iydromodification	d tributaries projected	to be completed	for Basin P	lan	0199
					lydromodification lonpoint Source					

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

۱.

•

Approved by USEPA: 12-May-99

•

•

EGION	TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSOR*	SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
6	R	BLACKWOOD CREEK	634.200							
				Hy No	d as phase i "easy" (alread Instruction/Land Develor dromodification Inpoint Source	ady funded) TMDL using				019
					source Extraction					
				51	viculture	•				
6	R	BODIE CREEK	630.200							
				No			6 be addressed di	Miles uring years (	5-13 of	
6	R	BRONCO CREEK	635.200						•	
					effort. Phase I TMDL to b	e completed in 1999 usi				019
6	R	BRYANT CREEK	632,100		•					
U	ĸ	BRIANIONEER	032.100							019
6	R	CARSON RIVER, E FK	632.100	·				•		
-					t conditions. NV has sinc A. TMDLs, if needed, to	e delisted the river for th	iese pollutants. I	Further mon	itoring	
6	R	CLARK CANYON CREEK	630.300							
				Habitat alterations Livestock grazing. Listed further monitoring may su years of the TMDL develo	pport delisting. TMDLs, i	f needed, to be address				
				Ra	ange Land					

18

.

5.

*

Approved by USEPA: 12-May-99

.

.

REGION	TYPE	NAME		POLLUTANT/STRESSOR*	SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
6	R	CLEARWATER CREEK	630.400	<u> </u>						
				Sedimentation/Siltation Livestock grazing. Listed of needed, to be addressed of permitting.						
				Ra	inge Land					
6	R	COTTONWOOD CREEK (1)	603.300							
				Water/Flow Variability Lower reach of creek affect the next 13 years of the Tr	MDL development proces	ss, resources permitting.	7 be addressed du	Miles uring years 6	i-13 of	
				Flo	ow Regulation/Modifica	tion				
6	R	EAST WALKER RIVER	630.000	Metals Inactive mines and other v levels; needs further moni						
				TMDLs, if needed, will be		6-13 of the next 13 years	s of the TMDL de	velopment p	process.	
					atural Sources					
					onpoint Source					
					ther Urban Runoff					
					ange Land esource Extraction					
				Sedimentation/Siltation River affected by turbid re State Department of Fish TMDLs, if needed, to be a resources permitting.	and Game. Further mon addressed during years 6	itoring of beneficial use I	recovery may su	pport delistin	ig.	
				Hy	ydromodification					
6	R	GOODALE CREEK	603.300	Sedimentation/Siltation Potential for delisting follo next 13 years of the TMD	L development process,		9 addressed durii	Miles ng years 6-1;	3 of the	
				R	ange Land					
6	R	GRAY CREEK (R6)	635.000	Sedimentation/Siltation Disturbance of naturally h Plan amendment using 19 monitoring to begin in 199	998 Section 104/106 grai	nt funds. Section 205(j) i				0199
					atural Sources					
				N	onpoint Source					
6	R	GREEN CREEK	630.400	Habitat alterations Creek affected by hydroe	lectric dam construction,	Medium livestock grazing. TMDL	1 Ls to be address	Miles ed during yea	ars 6-13	
				of the next 13 years of the Hy						

Water Act Section 303(d). In a few cases, they provide necessary information.

1

.

Approved by USEPA: 12-May-99

REGION	TYPE		HYDRO UNIT	POLLUTANT/STRESSOR*	SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
6	R	GREEN VALLEY LAKE CREEK	628.200		need for listing. TMDLs	Low d in stream in 1980's; no m s, if needed, to be addresse ses permitting.				
				So	urce Unknown					
6	R	HEAVENLY VALLEY CREEK	634.100	phase future development scheduled to be document	based on accomplishn ted as Phase I "easy" (a	High Intenance activities. Recen Inent of watershed restorati already funded) TMDL usin It monitoring data indicate p	on projects. Mai g 1998 Section	ster Plan cu 104/106 gi	urrently rant funds.	0199
					nstruction/Land Deve	lopment				
				1	bitat Modification					
				•	dromodification					
					nd Development onpoint Source					
					creational Activities					
6	R	HOT OBEEK (1)	631.400							
0	ĸ	HOT CREEK (1)	031.400	-	ge; targeted for "easy" tural Sources	Medium (already funded) TMDL us	5 ing 1998 Section	Miles n 104/106 g	<b>0198</b> grant funds	0199
6	R	HOT CREEK (2)	603.100							
				• • •	s. Targeted for "easy" ( Itural Sources	High already funded) TMDL usi	10 ng Section 104/	Miles 106 grant fi	0198 unds.	0199
~	-	NOT SPRINGS CANYON OFFER	630.300						•	
6	R	HOT SPRINGS CANYON CREEK	630.300	Sedimentation/Siltation Listed on basis of limited of during years 6-13 of the n		<b>Medium</b> may support delisting. TM DL development process.	1 DLs, if needed,	Miles to be addre	essed	
				Ra	inge Land					
6	R	INDIAN CREEK (1)	632.200							
				Habitat alterations Watershed disturbance fro implementation.	om livestock grazing. Ti	High MDLs to be addressed as	7 part of Carson I	Miles River WMI		
				Pa	sture Land					
6	R	LASSEN CREEK	637.000							
				process, as resources per		Medium luring years 6-13 of the ne: cation	6 At 13 years of th	Miles e TMDL de	evelopment	

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA: 12-May-99

.

.

REGION	TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSOR*	SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
6	R	LEE VINING CREEK	601.000	will probably be documen TMDL implementation, re		eady funded) TMDL dur	11 dered restoration ring years 3-5 of t	Miles project is u he 13 year	ınderway; s of	
6	R	LEVIATHAN CREEK	632.100	FI	ow Regulation/Modificati	ion				
U	ĸ	LEVIA I NAV UREER	032.100	part of ongoing pollution a (already funded) TMDL u	ected by acid drainage from abatement project. Lahonta sing 1998 Section 104/106 cid Mine Drainage	an RWQCB workplan to				0199
6	R	LITTLE HOT CREEK	603.100	funds.	urces: targeted for "easy" ( atural Sources	Medium (already funded) TMDL	í . using 1998 Sect	Miles tion 104-10	0198 96 grant	1299
6	R	MAMMOTH CREEK	603.100	Mammoth Lakes as well a through the RWQCB's on National National	eadwaters of Hot Creek (2) as natural sources of meta ngoing regulation and enfor latural Sources lonpoint Source	ils. Urban runoff problei	ms at Mammoth a			
6	R	MILL CREEK (1)	601.000	development process, re:	diversions. TMDLs to be a sources permitting. Vater Diversións	High addressed during years	7 6-13 of the next ⁻	Miles 13 years of	the TMDL	
6	R	MILL CREEK (3)	641.300	process, resources permi	L to be addressed during yo itting. Lange Land	Medium ears 6-13 of the next 13	<b>6</b> 3 years of the TM	Miles DL develop	oment	
6	R	MOJAVE RIVER	628.200	urban/industrial sources; River is currently a WMI / "mini-slug" pollutants to b development process, re. H	n 1980's due to subsurface later monitoring shows ma priority watershed with emp be addressed, if necessary sources permitting. lazardous Waste and Disposal	ain "slug" has dissipated phasis on revision of Tl	d but some areas DS/salinity object	of pollution	Ls for	

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

,

•

REGION	TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSOR*	SOURCE	PRIORITY	SIZE AFFECTED		START DATE	END DATE
6	R	MONITOR CREEK	632.100							
				Metals Drainage from inactive m WMI effort during years 3			<b>4</b> addressed as pa	Miles art of Carson F	River	
				N	atural Sources					
				N	onpoint Source					
				R	esource Extraction					
6	R	OWENS RIVER	603.300							
				Arsenic		High	120	Miles		
				during years 6-13 if resou	during years 3-5 of the ne TMDLs for Upper and Mic inces permit.	xt 13 years of the TMDL	development pr	ocess, as part	t of	
				N	atural Sources					
				Habitat alterations TMDLs for Long HA (630 process as part of the WI during years 6-13 of the r		MDLs for Upper and Mic	ddle Owens HA'			
					ow Regulation/Modificat	•	-			
6	R	PINE CREEK (2)	637.300		•					
U	ĸ	FINE UNLER (2)	037.500	documented as "easy"(al	vatershed disturbance. Wi ready funded) TMDL, or as onpoint Source			CRMP group		0199
				R	ange Land					
6	R	ROUGH CREEK	630.000							
					s. Additional monitoring m 5-13 of the next 13 years of					
				R	ange Land					
6	R	SKEDADDLE CREEK	637.100							
-				Further monitoring may s years of the TMDL develo	A land led to reports of high upport delisting. TMDLs, i opment process, resources ange Land	f needed, will be address				
6	R	SNOW CREEK	634.200							
-				L	rainage/Filling Of Wetlan and Development onpoint Source	High Ids	1	Miles		

Approved by USEPA: 12-May-99

Approved by USEPA: 12-May-99

.

6 1	R	SQUAW CREEK	635.200							DATE
				Olympics; part of creek wa watershed damage occurr Section 104/106 grant fun	· ·	k has very high bedloa ding. Phase I sediment 98 using Section 205(j)	d sediment trans TMDL to be cor	sport. Seven	e	0199
					onstruction/Land Develop					
					ainage/Filling Of Wetland					
					ghway Maintenance And	Runoff				
				-	dromodification					
					atural Sources					
					onpoint Source					
					ther Urban Runoff					
				Re	ecreational Activities					
6 1	R	SUSAN RIVER	637.200							
				Unknown Toxicity		High	59	Miles		
				River affected by natural a addressed during years 6	and man-made geothermal -13 of the next 13 years of	discharges and by agr the TMDL developmen	icultural drainag t process, resou	e. TMDLs to rces permitti	be ing.	
					griculture	-				
				Hi	ghway Maintenance And	Runoff				
				Na	atural Sources					
				Ne	onpoint Source					
				O	ther Urban Runoff					
				So	ource Unknown					
6	R	TRUCKEE RIVER	635.200							
				Sedimentation/Siltation		High	106	Miles	1195	0199
				and management; highly 104/106 grant funds; Pha	cluding ski resorts, silviculi erosive subwatersheds. Ph se II work, using Section 2	tural activities, urban de nase I sediment TMDL t	o be completed			
				Se	ource Unknown					
6	R	TUTTLE CREEK	603.300							
					ns. Potential for delisting fo -13 of the next 13 years of					
				R	ange Land					
6	R	WARD CREEK	634.200							
•				13 years of the TMDL dev	TMDLs to be developed as velopment process, as reso and Development		7 Fahoe during yea	Miles ars 6-13 of ti	he next	

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

.

.

Approved by USEPA: 12-May-99

.

.

REGION	TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSOR*	SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
6	R	WEST WALKER RIVER	631.000	•	econstructed under em rough WMI process (or	ergency regulations with n nce priority watersheds are	o CEQA analys a rotated), proba	is.)		
6	R	WOLF CREEK (1)	632.100	Sedimentation/Siltation Livestock grazing. Problen years of the TMDL develop	ns to be addressed as		14 effort during yea	Miles ars 3-5 of th	ne next 13	
6	S	ALKALI LAKE, LOWER	641.000	Nat		ing 1998 Section 104/106		Acres npairment t	0198 to be	0199
6	S	ALKALI LAKE, MIDDLE	641.000	Nat		ing 1998 Section 104/106		Acres npairment t	0198 to be	0199
6	S	ALKALI LAKE, UPPER	641.000	Nat		ing 1998 Section 104/106		Acres npairment t	0198 to be	0199
6	S	DEEP SPRINGS LAKE	605.000	Salinity/TDS/Chlorides Natural internally drained la 1998 Section 104/106 grar No		Medium nt" to be documented as "	<b>1400</b> easy" (already fi	Acres unded) TMI	0198 DL using	0199

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

-

Approved by USEPA: 12-May-99

REGION	TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSOR*	SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
6	S	HONEY LAKE	637.200							
				Arsenic Arsenic is from ultimately TMDLs to be addressed a connection with TMDLs fo	luring years 6-13 of the ne					
					ow Regulation/Modificati	ion				
					atural Sources					
				No	onpoint Source					
				Salinity/TDS/Chlorides Natural internally directed years 6-13 of the next 13 with TMDLs for the Susan	years of the TMDL develop					
				Aç	griculture					
				Na	atural Sources					
				Ň	onpoint Source					
6	S	HONEY LAKE WILDFOWL MGMT. PONDS	637.200							
				Flow alterations		Medium	500	Acres		
				needed, to be addressed	980s drought. Further mo. during years 6-13 of the ne gricultural Water Diversio	ext 13 years of the TMD			MDLs, if	
				Metals	•	Medium	500	Acres		
					980s drought; further mon during years 6-10 of the n					
				Ag	griculture					
				G	eothermal Development					
				Ni	atural Sources					
					ltural, geothermal drainage opment process, resources		<b>500</b> d during years	Acres 6-13 of the	next 13	
				•	griculture					
				G	eothermal Development					
				N	atural Sources					
				Trace Elements		Medium	500	Acres		
				addressedduring years 6-	iral drainage. Further mon -13 of the next 13 years of					
					eothermal Development atural Sources					
6	S	LITTLE ALKALI LAKE	603.100							
					ologic/geothermal sources 8 Section 104/106 grant fu		1 be documented	Acres as "easy"	0198 (already	019
				N	atural Sources					

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

.

.

w

Appendix -114

.

,

.

REGION	TYPE	NAME		POLLUTANT/STRESSOR*	SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	
6	S	MONO LAKE	601.000							
				of Water and Power, Natur TMDL using Section 104/1 Flo Nat	drained lake with increased 1 ral high levels of toxic elemer 106 grant funds. ow Regulation/Modification atural Sources ource Unknown	nts to be addressed t				0199
-	~	OWENGLASS		30						
6	S	OWENS LAKE	603.300	Salinity/TDS/Chlorides		·	20000	Acres		
				Natural internally drained s by Los Angeles Departmer District may restore some l next 13 years of the TMDL Corps of Engineers delines Flo	saline lake with lake level dec nt of Water and Power. Pend beneficial uses to part of lake L development process, as re ration of brine pool; natural lai ow Regulation/Modification ttural Sources	ding project by Great ebed. TMDLs to be a esources permit. [20 ke bed is much large	eased due to dive Basin Unified Air addressed during 0,000 acre area fi	rersions of tri ir Pollution C g years 6-13	Control I of the	
6	s	SEARLES LAKE	621.000							
-				funded) TMDL using 1998	drained desert playa lake. N 3 Section 104/106 grant funds purce Unknown	<b>Medium</b> Vatural impairment to s.	26100 be documented	Acres as "easy" (a	0198 already	0199
6	w	AMEDEE HOT SPRINGS	637.200							
-					is developed for energy produ sing 1998 Section 104/106 gra		1 ment to be docu.	Acres mented as "	0198 'easy"	0199
				Na	atural Sources					
6	w	BIG SPRINGS	603.100							
-				"easy" (already funded) TN	e of arsenic at headwaters of MDL using 1998 Section 104/ atural Sources		<b>1</b> ral impairment to i	Acres be documen	0198 Inted as	0199
F	141		626 000	NC						
Ŭ	w	CINDER CONE SPRINGS	635.000	(disposal discontinued 197		Medium ace drainage from for	1 Imer wastewater	Acres r disposal are	ea	
					ource Unknown	Medium	1	Acres		
				further monitoring may sup	n former wastewater disposal pport delisting. TMDLs, if ner opment process, as resources	area. Has not been i eded, to be address	monitored routine	Acres ely in recent 3-5 of the ne	years; xt 13	
				-	astewater					

Approved by USEPA: 12-May-99

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

...

Approved by USEPA: 12-May-99

•

.

REGION	TYPE		HYDRO UNIT	POLLUTANT/STRESSOR*	SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
6	w	FALES HOT SPRINGS	631.000					· · · · ·		
				Metals Natural geothermal spring Section 104/106 grant fur	gs; natural impairment to be doc nds.	Medium cumented as "easy"	1 (already funded	Acres d) TMDL us	<b>0198</b> ing 1998	0199
				Na	atural Sources					
6	w	HONEY LAKE AREA WETLANDS	637.200							
				years of the TMDL develo	ects of saline Honey Lake water. opment process, probably as pa					
					griculture					
					eothermal Development atural Sources					
					onpoint Source					
6	w	KEOUGH HOT SPRINGS	603.000							
-		-		Metals		Medium	1	Acres	0198	0199
				funding) TMDL using 199	gs developed for recreation. Na 8 Section 104/106 grant funds. atural Sources	tural impairment to	be documented	l as "easy"	(already	
6	w	TOP SPRING	637.200							
				testing showed MCL exce using 1998 Section 104/1	as developed as domestic water eedance.) Natural impairment to 106 grant funds. atural Sources					0199
6	w	WENDEL HOT SPRINGS	637.200							
				funded) TMDL using 199	g developed for energy. Metals 8 Section 104/106 grant funds. atural Sources	Medium source to be docu	1 mented as natul	Acres al for "easy	<b>0198</b> " (aiready	0199
7	R	ALAMO RIVER	723.100							
				•	ined in agricultural return flows.	High Elevated fish tissu	<b>52</b> e levels. Toxic l	Miles bioassay re	<b>2002</b> sults.	2011
				A Sedimentation/Siltation	gricultural Return Flows	L1:_L	52	Milee	4009	2002
					gricultural Return Flows	High	92	Miles	1998	2000
				Selenium Selenium originates from	Upper Basin Portion of Colorad gricultural Return Flows	High to River. Elevated t	<b>52</b> fish tissue levels	Miles	2000	2010
7	R	COACHELLA VALLEY STORM CHANNEL	719.470							
				-	ed, threat of toxic bioassay resu cource Unknown	Low ults.	20	Miles	2004	2009

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

.

٦

		1990 CALIF		303(a) LIST AND	TINDL FRIORIT	SCHEDU		Approved	by USEPA:	12-May-99
REGION	TYPE	NAME	HYDRO	POLLUTANT/STRESSOR*	SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
7	R	IMPERIAL VALLEY DRAINS	723.100	Pesticides Elevated fish tissue levels	and toxic hinassay moults	High	1305	Miles	2005	2011
					ricultural Return Flows	High	1305	Miles	2000	2010
				Selenium Selenium originates from L	ricultural Return Flows Jpper Basin Portion of Colora ricultural Return Flows	High do River. Elevated	<b>1305</b> fish tissue levels	Miles	2000	2010
7	R	NEW RIVER (R7)	723.100							
	n		123.100	•	to establish TMDL in cooperat ricultural Return Flows	High tion with U.S.EPA/I	60 Mexico.	Miles	1998	2005
				Nutrients Regional Board proposes i	to establish TMDL in coopera	High tion with U.S.EPA/	60 Mexico.	Miles	2002	2010
				Pesticides	ricultural Return Flows ricultural Return Flows	High	60	Miles	2002	2013
				•	Imperial Valley and Mexicalli ricultural Return Flows	High Valley.	60	Miles	1998	2002
				Volatile Organics/VOCs	ricultural Return Flows	High	60	Miles	2007	2013
7	R	PALO VERDE OUTFALL DRAIN	715.400							
				Bacteria So	urce Unknown	Medium	16	Miles	2005	2011
7	S	SALTON SEA	728.000	Nutrients	ricultural Return Flows	Medium	220000	Acres	2002	201 <b>0</b>
				Salinity	ricultural Return Flows	Medium	22000Ò	Acres	1998	2001
				•	Upper Basin Portion of Colora ricultural Return Flows	Medium do River.	220000	Acres	2000	2007
8	В	ANAHEIM BAY	801.110	Metals	known Nonpoint Source	Medium	180	Acres	0108	0111
				Un Pesticides	ban Runoff/Storm Sewers	Medium	180	Acres	0108	0111

Approved by USEPA: 12-Mav-99

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA: 12-May-99

STAR UNIT DATE	
Acres 0108	0111
Acres 0108	0111
Acres 0108	0111
Aaraa 0196	0107
Acres 0130	0107
Acres 0196	6 0198
Acres 0697	' 010
Acres 0199	010
A	
Acres 0199	010
Acres 0199	010
	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Acres 0196	5 019
Acres 0697	010
Acres 0199	010
A	
ACTES U196	6 019
	Acres 0697 Acres 0199 Acres 0199 Acres 0199 Acres 0196 Acres 0697

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

.

з

								Approved		12-May-99
REGION	TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSOR	SOURCE	PRIORITY	SIZE AFFECTED		START DATE	END DATE
8	L	BIG BEAR LAKE	801.710	Copper	· December 5 (c) (1-	Medium	2970	Acres	0102	0105
				Mercury	·Resource Extraction	Medium	2970	Acres	0102	0105
				Metals	Resource Extraction	Medium	2970	Acres	0102	0105
				Noxious aquatic plants	Construction/Land Development Unknown point source	Medium	2970	Acres	0102	0105
				Nutrients	Construction/Land Development	Medium	2970	Acres	0102	0105
				Sedimentation/Siltation	Snow Skiing Activities Construction/Land Development Snow Skiing Activities Unknown Nonpoint Source	Medium	2970	Acres	0102	0105
8	L	CANYON LAKE (RAILROAD CANYON RESERVOIR)	802.120							
				Nutrients	Nonpoint Source	Medium	600	Acres	0102	0104
				Pathogens	Nonpoint Source	Medium	600	Acres	0102	0104
8	L	ELSINORE, LAKE	802.310	Nutrients	Unknown Nonpoint Source	Medium	3300	Acres	0102	0104
		•		Org. enrichment/Low D.(	•	Medium	3300	Acres	0102	0104
				Sedimentation/Siltation	Urban Runoff/Storm Sewers	Medium	3300	Acres	0102	0104
				Unknown Toxicity	Unknown Nonpoint Source	Medium	3300	Acres	0102	0104
8	L	FULMOR, LAKE	802.210	Pathogens	Unknown Nonpoint Source	Low	9	Acres	0108	0111
8	L	PRADO PARK LAKE	801.210	Nutrients		Low	60	Acres	0108	0111
				Pathogens	Nonpoint Source Nonpoint Source	Low	60	Acres	0108	0111

Approved by USEPA: 12-May-99

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

.

Approved by USEPA: 12-May-99

.

٤.

			HYDRO		· · · · · · · · · · · · · · · · · · ·		SIZE		START	END
REGION				POLLUTANT/STRESSOR	* SOURCE	PRIORITY	AFFECTED	UNIT	DATE	DATE
8	R	CHINO CREEK, REACH 1	801.210	Nutrients	Agriculture Dairies	Medium	2	Miles	0100	0105
				Pathogens	Dairies Urban Runoff/Storm Sewers	Medium	2	Miles	0100	0105
8	R	CHINO CREEK, REACH 2	801.210	High Coliform Count	Unknown Nonpoint Source	Low	10	Miles	0108	0111
8	R	CUCAMONGA CREEK, VALLEY REACH	801.210	High Coliform Count	Unknown Nonpoint Source	Low	13	Miles	0108	0111
8	R	GROUT CREEK	801.720	Metals	Unknown Nonpoint Source	Medium	2	Miles	0102	0105
8	R	KNICKERBOCKER CREEK	801.710	Nutrients	Unknown Nonpoint Source	Medium	2	Miles	0102	0105
0	R	NHORENBOOKEN CREEK	001.710	Metals	Unknown Nonpoint Source	Medium	2	Miles	0103	0105
	_			Pathogens	Unknown Nonpoint Source	Medium	2	Miles	0103	0105
8	R	LYTLE CREEK	801.400	Pathogens	Unknown Noripoint Source	Low	18	Miles	0108	0111
8	R	MILL CREEK (PRADO AREA)	801.250	Nutrients	Agriculture Dairies	Medium	4	Miles	0100	0105
				Pathogens	Dairies	Medium	4	Miles	0100	0105
				Suspended solids	Dairies	Medium	<b>4</b>	Miles	0100	0105
8	R	MILL CREEK, REACH 1	801.580	Pathogens	Unknown Nonpoint Source	Low	5	Miles	0108	0111
8	R	MILL CREEK, REACH 2	801.580	Pathogens	Unknown Nonpoint Source	Low	8	Miles	0108	0111

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

4

à.

NAME INTAIN HOME CREEK INTAIN HOME CREEK, EAST K	HYDRO UNIT 801.580 801.700 801.720	POLLUTANT/STRESSOR Pathogens Pathogens Nutrients Sedimentation/Siltation	SOURCE	PRIORITY Low Low Medium	SIZE AFFECTED 4 1 2	UNIT Miles Miles Miles	START DATE 0108 0108 0108	END DATE 01111 01111 0105
INTAIN HOME CREEK, EAST K HBONE (RATHBUN) CREEK	801.700 801.720	Pathogens Nutrients	Unknown Nonpoint Source Snow Skiing Activities	Low Medium	1	Miles	0108	0111
K HBONE (RATHBUN) CREEK	801.720	Nutrients	Snow Skiing Activities	Medium				
• • • •		Nutrients	Snow Skiing Activities	Medium				
• • • •			-		2	Miles	0102	0105
DIEGO CREEK, REACH 1		Sedimentation/Siltation	-	Ma				
DIEGO CREEK, REACH 1			Snow Skiing Activities	Medium	2	Miles	0102	0105
	801.110		Unknown Nonpoint Source					
		Metals	Unknown Nonpoint Source	High	6	Miles	0199	0102
		Nutrients .	Agriculture Groundwater Loadings	High	6	Miles	0196	0198
		Pesticides		High	6	Miles	0199	0102
		Sedimentation/Siltation	Agriculture Channel Erosion Construction/Land Development	High	6	Miles	0196	0198
DIEGO CREEK, REACH 2	801.110							
			Urban Runoff/Storm Sewers					0102
		Nutrients	Agriculture Groundwater Loadings	High	6	Miles	0196	0198
		Sedimentation/Siltation	Agriculture	High	6	Miles	0196	0198
		Unknown Toxicity		High	6	Miles	019 <del>9</del>	0102
I	DIEGO CREEK, REACH 2	DIEGO CREEK, REACH 2 801.110	DIEGO CREEK, REACH 2 801.110 Metals Nutrients Sedimentation/Siltation	Nutrients Agriculture Groundwater Loadings Urban Runoff/Storm Sewers Pesticides Pesticides Sedimentation/Siltation  DIEGO CREEK, REACH 2 801.110  Metals Urban Runoff/Storm Sewers Nutrients Metals Urban Runoff/Storm Sewers Nutrients Agriculture Groundwater Loadings Urban Runoff/Storm Sewers Nutrients Agriculture Groundwater Loadings Urban Runoff/Storm Sewers Urban	Nutrients       Agriculture         Groundwater Loadings       Urban Runoff/Storm Sewers         Urban Runoff/Storm Source       High         Dirknown Nonpoint Source       High         Agriculture       High         Sedimentation/Siltation       Agriculture         Channel Erosion       High         DIEGO CREEK, REACH 2       801.110         Metals       Urban Runoff/Storm Sewers         Nutrients       High         Agriculture       High         Sedimentation/Siltation       High         Metals       Urban Runoff/Storm Sewers         Urban Runoff/Storm Sewers       High         Mutrients       High         Agriculture       High         Sedimentation/Siltation       High         Sedimentation/Siltation       High         Mutrients       High         Agriculture       High         Agriculture       High         Agriculture       High         Agriculture       High         Sedimentation/Siltation       High         Agriculture       Channel Erosion         Construction/Land Development       Erosion         Erosion/Siltation       Erosion/Siltation	Nutrients       High       6         Agriculture       Groundwater Loadings       Urban Runoff/Storm Sewers         Urban Runoff/Storm Sewers       High       6         Sedimentation/Siltation       Mign       6         Sedimentation/Siltation       Mign       6         DIEGO CREEK, REACH 2       801.110       Ketals       High       6         Nutrients       Metals       High       6         Nutrients       High       6       6         Sedimentation/Siltation       Urban Runoff/Storm Sewers       High       6         Nutrients       High       6       6       6         Sedimentation/Siltation       Urban Runoff/Storm Sewers       High       6         Nutrients       High       6       6       6         Agriculture       Groundwater Loadings       1       1       6         Sedimentation/Siltation       Mutrients       High       6         Agriculture       High       6       6       6         Groundwater Loadings       High       6       6       6         Urban Runoff/Storm Sewers       High       6       6       6       6         Urban Runoff/Storm Sewers <t< td=""><td>Nutrients     Agriculture Groundwater Loadings Urban Runoff/Storm Sewers     High     6     Miles       Pesticides     Inknown Nonpoint Source     High     6     Miles       Sedimentation/Siltation     Qgriculture Channel Erosion Construction/Land Development Erosion/Siltation     High     6     Miles       DIEGO CREEK, REACH 2     801.110     Ketals     High     6     Miles       Nutrients     Metals     High     6     Miles       Nutrients     Ketals     High     6     Miles       Sedimentation/Siltation     Agriculture Channel Erosion Construction/Land Development Erosion/Siltation     Miles     Miles       DIEGO CREEK, REACH 2     801.110     Ketals     High     6     Miles       Qirculture Groundwater Loadings Urban Runoff/Storm Sewers     High     6     Miles       Agriculture Groundwater Loadings Urban Runoff/Storm Sewers     High     6     Miles       Agriculture Channel Erosion Construction/Land Development Erosion/Siltation     High     6     Miles</td><td>Nutrients       Agriculture Groundwater Loadings Urban Runoff/Storm Sewers       High       6       Miles       0196         Pesticides       Pesticides       High       6       Miles       0199         Nutrients       Agriculture Channel Erosion Construction/Land Development Erosion/Siltation       High       6       Miles       0196         DIEGO CREEK, REACH 2       801.110       Metals       Urban Runoff/Storm Sewers       High       6       Miles       0199         Nutrients       Metals       Urban Runoff/Storm Sewers       High       6       Miles       0199         DIEGO CREEK, REACH 2       801.110       Metals       Urban Runoff/Storm Sewers       High       6       Miles       0199         DIEGO CREEK, REACH 2       801.110       Metals       Urban Runoff/Storm Sewers       High       6       Miles       0199         Nutrients       Agriculture Groundwater Loadings Urban Runoff/Storm Sewers       High       6       Miles       0196         Agriculture Channel Erosion Construction/Land Development Erosion/Siltation       High       6       Miles       0196         Unknown Toxicity       Luchnown Toxicity       Luchnown Sewers       High       6       Miles       0196   </td></t<>	Nutrients     Agriculture Groundwater Loadings Urban Runoff/Storm Sewers     High     6     Miles       Pesticides     Inknown Nonpoint Source     High     6     Miles       Sedimentation/Siltation     Qgriculture Channel Erosion Construction/Land Development Erosion/Siltation     High     6     Miles       DIEGO CREEK, REACH 2     801.110     Ketals     High     6     Miles       Nutrients     Metals     High     6     Miles       Nutrients     Ketals     High     6     Miles       Sedimentation/Siltation     Agriculture Channel Erosion Construction/Land Development Erosion/Siltation     Miles     Miles       DIEGO CREEK, REACH 2     801.110     Ketals     High     6     Miles       Qirculture Groundwater Loadings Urban Runoff/Storm Sewers     High     6     Miles       Agriculture Groundwater Loadings Urban Runoff/Storm Sewers     High     6     Miles       Agriculture Channel Erosion Construction/Land Development Erosion/Siltation     High     6     Miles	Nutrients       Agriculture Groundwater Loadings Urban Runoff/Storm Sewers       High       6       Miles       0196         Pesticides       Pesticides       High       6       Miles       0199         Nutrients       Agriculture Channel Erosion Construction/Land Development Erosion/Siltation       High       6       Miles       0196         DIEGO CREEK, REACH 2       801.110       Metals       Urban Runoff/Storm Sewers       High       6       Miles       0199         Nutrients       Metals       Urban Runoff/Storm Sewers       High       6       Miles       0199         DIEGO CREEK, REACH 2       801.110       Metals       Urban Runoff/Storm Sewers       High       6       Miles       0199         DIEGO CREEK, REACH 2       801.110       Metals       Urban Runoff/Storm Sewers       High       6       Miles       0199         Nutrients       Agriculture Groundwater Loadings Urban Runoff/Storm Sewers       High       6       Miles       0196         Agriculture Channel Erosion Construction/Land Development Erosion/Siltation       High       6       Miles       0196         Unknown Toxicity       Luchnown Toxicity       Luchnown Sewers       High       6       Miles       0196

Approved by USEPA: 12-Mav-99

.

.

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

18

Approved by USEPA: 12-May-99

.

REGION	TYPE		HYDRO UNIT	POLLUTANT/STRESSOF	SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
8	R	SANTA ANA RIVER, REACH 3	801.200							
				Nutrients		Medium	3	Miles	0100	0111
					Dairies					
				Pathogens		Medium	3	Miles	0100	0111
					Dairies	<b> </b>				••••
				Salinity/TDS/Chlorides	Dairies	Medium	3	Miles	0100	0111
8	R		801.270							
đ	ĸ	SANTA ANA RIVER, REACH 4	001.2/0	Pathogens		Low	12	Miles	0108	0111
					Nonpoint Source		.=			
8	R	SANTIAGO CREEK, REACH 4	801.120							
				Salinity/TDS/Chlorides		Low	2	Miles	0108	0111
					Source Unknown					
8	R	SILVERADO CREEK	801.120	Dathana		•			0409	
				Pathogens	Unknown Nonpoint Source	Low	2	Miles	0108	0111
				Salinity/TDS/Chlorides		Low	2	Miles	0108	0111
					Unknown Nonpoint Source					
8	R	SUMMIT CREEK	801.710							
				Nutrients	Construction/Land Developmen	Medium t	2	Miles	0102	0105
-	-	MICOLONI DAV	000 100		constructions and pevelopmen	•				
9	В	MISSION BAY	906.400	Eutrophic		Medium	1	Acres	0705	0708
					Nonpoint/Point Source		•			2.00
				High Coliform Count		Low	1540	Acres	0799	0709
				Lead	Nonpoint/Poin't Source	Medium	1	Acres	0705	0708
				⊾çau	Nonpoint/Point Source	medium	1	AU103	0103	0100
9	в	SAN DIEGO BAY	900.00		-					
-	-			Benthic Comm. Effects		High	172	Acres	0198	0703
				acres, Near Coronad	following areas: Near Sub Base 16 o Bridge 30 acres, Near Chollas Cre nel 9 acres, North of 24th Street Ma	ek 14 acres, Sar	n Diego Naval Sta			
					Nonpoint/Point Source				•	
				Copper	and a second of the Observation of the	High	50	Acres	0198	0703
				i his listing is for diss	olved copper in the Shelter Island ya Nonpoint/Point Source	icnt Basin in San	Diego Bay.			
				Sediment Toxicity	Nonpoint Foint Source	High	172	Acres	0198	0703
				The listing covers the acres, Near Coronad	following areas: Near Sub Base 16 o Bridge 30 acres, Near Chollas Cre nel 9 acres, North of 24th Street Ma	acres, Near Gra ek 14 acres, Sar	ape Street 7 acres n Diego Naval Sta	, Downtow	n Piers 10	
				Seventi Sueer Ulan	Nonpoint/Point Source	nië reminar IV	uvi 53.			

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Appendix -122

.

REGION	TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSOR	SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
9	С	PACIFIC OCEAN, ALISO HSA 901.13	901.13	High Coliform Count	Nonpoint/Point Source	Medium	0.01	Miles	0797	0701
9	С	PACIFIC OCEAN, BUENA VISTA HA 904.20	904.20	High Coliform Count		Low	0.02	Miles	079 <del>9</del>	0709
9	с	PACIFIC OCEAN, CORONADO HA	910.10	nigh Comorni Count	Nonpoint/Point Source	LOW	0.02	miles	0739	0709
	Ū	910.10		High Coliform Count	Nonpoint/Point Source	Low	0.04	Miles	0799	0709
9	С	PACIFIC OCEAN, DANA POINT HSA 901.14	901.14		•					
_	_			High Coliform Count	Nonpoint/Point Source	Low	0.06	Miles	0700	0710
9	С	PACIFIC OCEAN, ESCONDIDO CREEK HA 904.60	904.60	High Coliform Count		Low	0.02	Miles	0799	0709
9	с	PACIFIC OCEAN, LAGUNA BEACH HSA 901.12	901.12		Nonpoint/Point Source					
				High Coliform Count	Nonpoint/Point Source	Low	0.15	Miles	0700	0710
9	C	PACIFIC OCEAN, LOMA ALTA HSA 904.10	904.10	High Coliform Count		Low	1	Miles	0799	0709
9	с	PACIFIC OCEAN, LOWER SAN	901.270		Nonpoint/Point Source		•	miles	0105	0105
		JUAN HSA		High Coliform Count	Nonpoint/Point Source	Low	0.02	Miles	0700	0710
9	С	PACIFIC OCEAN, SAN CLEMENTE HA 901.30	901.30							
				High Coliform Count	Nonpoint/Point Source	Low	0.15	Miles	0700	0710
9	С	PACIFIC OCEAN, SAN DIEGO HU 907.00	907.00	High Coliform Count		Low	0.5	Miles	0799	0709
					Nonpoint/Point Source	2044	0.0	mies	0,00	0,03

Approved by USEPA: 12-May-99

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

-

Approved by USEPA: 12-May-99

.

4

RECION	TYPE		HYDRO	DOLI LITANTISTOFSSOO		ידיסטוספ	SIZE	11607	START	END
REGION 9	c		UNIT 905.00	POLLUTANT/STRESSOR*	* SOURCE	PRIORITY	AFFECTED	UNIT	DATE	DATE
<u>,</u>		HU 905.00	act -	High Coliform Count	Nonpoint/Point Source	Low	0.02	Miles	079 <del>9</del>	0709
9		PACIFIC OCEAN, SAN LUIS REY HU 903.00	903.00	High Coliform Count	Nonpoint/Point Source	Low	0.01	Miles	0799	0709
9		PACIFIC OCEAN, SAN MARCOS HA 904.50	904.50	High Coliform Count	Nonpoint/Point Source	Low	0.01	Miles	0799	0709
9		PACIFIC OCEAN, SCRIPPS HA 906.30	906.30							
				High Coliform Count	Nonpoint/Point Source	Low	0.13	Miles	0799	0709
9		PACIFIC OCEAN, TIJU <b>AN</b> A HU 911.00	911.00	High Coliform Count	Nonpoint/Point Source	Low	3.2	Miles	0798	0711
9		SAN DIEGO BAY, LINDBERGH HSA 908.21	908.21	High Coliform Count	Nonpoint/Point Source	Low	0.2	Miles	07 <del>9</del> 9	0709
9		SAN DIEGO BAY, TELEGRAPH HSA 909.11	909.11	High Coliform Count		Low	0.01	Miles	0799	0709
9	E	AGUA HEDIONDA LAGOON	904.310	-	Nonpoint/Point Source					
				High Coliform Count	Nonpoint/Point Source	Low	5	Acres	0799	0709
				Sedimentation/Siltation	Nonpoint/Point Source	Medium	5	Acres	0704	0707
9	E	ALISO CREEK MOUTH OF ORANGE		High Coliform Count	Nonpoint/Point Source	Medium	0.3	Acres	0797	0701
9	E	BUENA VISTA LAGOON	904.210	High Coliform Count	Nonpoint/Point Source	Low	350	Acres	0799	0709
				Nutrients	Nonpoint/Point Source	Low	150	Acres	0704	0707

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Appendix -124

٠

Approved by USEPA: 12-May-99

¥

۲

REGION	ТҮРЕ	NAME	HYDRO UNIT	POLLUTANT/STRESSOR	* SOURCE	PRIORITY	SIZE AFFECTED		START DATE	END DATE
				Sedimentation/Siltation	Nonpoint/Point Source	Medium	350	Acres	0704	0707
9	E	FAMOSA SLOUGH & CHANNEL	906.400	Eutrophic	Nonpoint Source	Medium	28	Acres	0705	0708
9	Ε	LOMA ALTA SLOUGH	904.100	Eutrophic	Nonpoint Source	Low	8	Acres	0799	0709
				High Coliform Count	Nonpoint Source	Low	8	Acres	0799	0709
9	E	LOS PENASQUITOS LAGOON	906.100	Sedimentation/Siltation	Nonpoint/Point Source	Medium	385	Acres	0705	0708
9	E	SAN ELIJO LAGOON	904.610	Eutrophic	Nonpoint/Point Source	Low	330	Acres	0799	0709
				High Coliform Count		Low	150	Acres	0799	0709
				Sedimentation/Siltation	Nonpoint/Point Source ation/Siltation Nonpoint/Point Source	Medium	150	Acres	0704	<b>0</b> 707
9	E	SAN JUAN CREEK (MOUTH)	901.200	High Coliform Count	Nonpoint/Point Source	Low	2	Acres	0700	0710
9	E	SANTA MARGARITA LAGOON	902.110	Eutrophic	Nonpoint/Point Source	High	1	Acres	0796	0705
9	E	TIJUANA RIVER ESTUARY	911.110	Eutrophic	Nonpoint/Point Source	Low	1	Acres	0798	0711
				High Coliform Count		Low	150	Acres	0798	0711
				Lead	Nonpoint/Point Source	Low	1	Acres	0798	0711
				Nickel	-	Low	1	Acres	0798	0711
				Pesticides	Nonpoint/Point Source	Low	1	Acres	0798	0711
				Thallium	Nonpoint/Point Source	Low	1	Acres	0798	0711
				Trash	Nonpoint/Point Source	Low	1	Acres	0798	0711

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

4

-

Approved by USEPA: 12-May-99

5

٤

REGION	TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSOR*	SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
9	L	GUAJOME LAKE	903.110							
				Eutrophic		Medium	25	Acres	0708	0711
					Nonpoint/Point Source					
9	R	ALISO CREEK	901.130							
				High Coliform Count		Medium	1	Miles	0797	0701
					Nonpoint/Point Source					
9	R	CHOLLAS CREEK	908,220							
-			••••==•	Cadmium		High	1	Miles	0198	0703
				Elevated levels in Ston	nwater.				-	
					Nonpoint/Point Source					
				Соррег		High	1	Miles	0198	0703
				Elevated levels in Ston						
					Nonpoint/Point Source		_			
				High Coliform Count	No was in the interview	Low	1	Miles	0799	0709
				Lead	Nonpoint/Point Source	lich	1	Miles	0198	0703
				Elevated levels in Ston	mwater.	High	4	miles	0190	0703
					Nonpoint/Point Source					
				Toxicity		High	1	Miles	0198	0703
				Toxicity in Stormwater.						
					Nonpoint/Point Source					
				Zinc		High	1	Miles	0198	0703
				Elevated levels in Stor						
					Nonpoint/Point Source					
9	R	RAINBOW CREEK	902.200						•	
				Eutrophic		High	5	Miles	0798	0700
					Nonpoint/Point Source					
9	R	SAN JUAN CREEK LOWER	901.270		r r					
•				High Coliform Count		Low	1	Miles	0700	0710
				-	Nonpoint/Point Source					
9	R	TECOLOTE CREEK	906.500							
	N	IEOOLOTE OKEEK	300.300	Cadmium		Medium	6	Miles	0705	0708
				Elevated levels in Stor	mwater.	meanan	Ū	mico	0100	0100
					Nonpoint/Point Source					
				Copper		Medium	6	Miles	0705	0708
				Elevated levels in Stor	mwater.					
					Nonpoint/Point Source					
				High Coliform Count	·· · · · · · ·	Low	6	Miles	0799	0709
					Nonpoint/Point Source		-	•		
				Lead Elevated levels in Stor	muster	Medium	6	Miles	0705	0708
				Elevated levels III Stor	Nonpoint/Point Source					
					Nonpointer oint Source					

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

.....

REGION	TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSOR*	SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
				Toxicity Elevated levels in Stormwa	ater.	Medium	6	Miles	0705	0708
				No	npoint/Point Source					
•				Zinc		Medium	6	Miles	0705	0708
				Elevated levels in Stormwa						
				No	npoint/Point Source					
9	R	TIJUANA RIVER	911.110					-		
				Eutrophic		Low	7	Miles	0798	0711
				No	npoint/Point Source					
				High Coliform Count		Low	7	Miles	0798	0711
				No	npoint/Point Source					
				Org. enrichment/Low D.O.		Low	7	Miles	07 <del>9</del> 8	0711
					npoint/Point Source					
				Pesticides		Low	7	Miles	0798	0711
					npoint/Point Source					
		•		Solids		Low	7	Miles	0798	0711
					npoint/Point Source		_			
				Synthetic Organics		Low	7	Miles	0798	0711
					npoint/Point Source	1	-	Miles	0700	0744
				Trace Elements	npoint/Point Source	Low	7	Miles	0798	0711
				Trash	npomeroan Source	Low	7	Miles	0798	0711
					npoint/Point Source	LOW	'	ames	0190	0/11
				10	nponter onte oource					

Approved by USEPA: 12-May-99

t

Approved by USEPA: 12-May-99

EGION	TYPE	NAME		HYDRO UNIT	POLLUTANT/STRES	SOR* SOU	RCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
						ABBREVIATIONS						
REG	ONAL WATER	QUALITY CONTRO	<u>DL BOARD</u>	<u>s</u>								
1	North Coast											
2	San Francisco	Bay										
3	Central Coast											
4	Los Angeles											
5	Central Valley											
6	Lahontan											
7	Colorado Rive	r Basin										
8	Santa Ana											
9	San Diego											
WATE	R BODY TYPE											
В=	BAYS AND H	ARBORS	L =	LAKES / RE	SERVOIRS	S =	SALINE LAKES					
C =	COASTAL SH	ORELINES	O =	OCEAN ANI	O OPEN BAYS	T =	WETLANDS, TIDA	L				
E =	ESTUARIES		R =	RIVERS / S	TREAMS	W=	WETLANDS, FRE	SHWATER				
G =	GROUND WA	TER										

#### HYDRO UNIT

"Hydro Unit" is the State Water Resources Control Board hydrological subunit area.

#### "GROUP A" or "CHEM A" PESTICIDES

aldrin, dieldrin, chlordane, endrin, heptachlor, heptachlor epoxide, hexachlorocyclohexane (including lindane), endosulfan, and toxaphene

* Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.