37

ANNUAL REPORT OF THE BOARD OF REGENTS OF

THE SMITHSONIAN INSTITUTION

Showing the

OPERATIONS, EXPENDITURES, AND
CONDITION OF THE INSTITUTION
FOR THE YEAR ENDTE JUNE 30
1938

(Publication:3491)

UNITED STATES
GOVERNMENT PRINTING OIFICE
WASHINGION: IOW
mainland across from Japan, the eastern coast of Koren, the coast northward to Vladivostok and perhaps even a little farther north. In Japan it goes far up into the mountains, and in these mountrinous regions it is called the mountain crab.

The Chinese mitten crab (Eriocheir sinensis II. Milne-Edwards)

Figurr 1.--Distribution of genus Eriocheir, in East Asla; horizontal lines; region of habitat of the Japanse mitten crab; terlical lines: reglon of the Chinese mitten crab; doited region: habitat of Erlochelr leptognather : Rathbun.
(pl. I).inhabits China from the province of Fokien in the south to the west const of the Korean Peninsula (by the Yellow Sea) in the north. Its principal habitat is, however, north of Shanghai. Even though it is found far inland, it nevertheless seems to prefer regions near the coast. Kobayashi says that in Korea it always settles in the rico-
fields near the coast and that farther inland it lives only in the rivers. The species of Eriocheir leptognathus described by Dr. Mary J. Rathbum inhabits China from the province of Fokin in the south, where it is very rare, to the Liaotung peninsula on the Yellow Sea in the north. Its principal habitat is north of Shanghai (fig. 1).

The mitten crab belongs to the Grapsoid family group which is phylogenetically the newest group of the brachyuran crustaceans. The Grapsoid crabs are animals of the Tropics, but a few forms reach into the Tomperate Zone, and the mitten crab is one of them. Thus it happens that we see characteristics in an animal living in the Temperate Zone which really belong only to animals living in the Topics. The Grapsoid crabs are marino animals, and it is an outstrnding characteristic of all marine crabs that larvae escape from thear eggs to drift free and pass through various stages before settling ion the bottom. 'Ihereby they differ fundamentally from all real fresh-water crabs which do not go through these stages when the larvae drift. about free. A whole group of Grapsoid crabs spend their adolescence in brackish or fresh water where they find especially rich feeding However, that is the only time they do live in brackish or fresh water. They must always breed in the ocean. The larvae escape from the egg in the ocean and pass through the free-drifting larval stages in salt or brackish water, but however far they may venture into fresh water they must always return to the ocean for reproduction. The Grapsoid crabs, therefore, prefer regions close to the coast when they seek fresh water. Our mitten crab belongs to this group.

HOW THE MITTEN CRAB WAS BROUGHT INTO GERAIANY

The mitten crabs live in the Tempernte Zone in eastern $\Lambda \sin$ up into the far north. 'This fact has made possible their transfor to tomperate Central Europe and to cold-temperate northern Europe. Their presence in Germany was probably made possible because of their reproduction through freo-drifting larvae brought to Germany on commercial vessels. When the ships happened to fill their ballast water tanks in central or north Chinese ports during the larvae's sparning time, the 1.7 - to 5 -mm larvae of the mitten crab would, of course, get into the tanks, and again when the tauks were omptied in the German port the young mitten crabs, a few millimeters long, into which the larvae had developed during the trip, would, of course, get into one of the German rivers emptying into the North Sca. This could go on unnoticed year after yoar. They were undoubtedly brought in long ago. The first Chineso mitten crab, a large male, was discovered in the Aller, a tributary to the Weser, in 1912. One can thus consider that these crabs were first brought in during the first decade of this century, and their entry therefore coincides to a certain extent
with the establishment of intensive maritime traffic with eastern Asia. A specimen was first brought to me for identification in 1923 and a decade and a half or perhaps two may well have passed after they had first been introduced before we became fully nware of this new inhabitant in German waters.

It must seem astonishing that the mitten crab has increased within a period of perhaps threo and a half decades in the German rivers in such an alarming degree. This tremendous increase was undoubtedly aided by the fact that they were not brought in fully grown but in large numbers as larvae or when very young. However, this enormous incrense in such a short time was above all aided by the particular conditions in the German rivers.

The German rivers ceased long ago to be just rivers and became waterways, navigation highways, and traffic arterics. This change of the German rivers has made existence impossible for many native animals, as, for instance, for the predatory fishes which would have been of the greatest importance in fighting and checking these mitten crabs. Conditions wore thus created under which this extraordinarily resistant mitten crab has been able to establish itself.

the distribution of the mitten crab in germany

Although the mitten crab was found first in tho Weser River system (in Aller near Rethem in 1912), it has not been scen there since. By later questioning Elbe fishermen, it was found that the crabs had appeared as a by-catch in the flounder fisheries by the mouth of the Elbo since about 1915. They seem hardly to have left the lower tide-water region after that. They were first seen in the upper tidewater regions ahove Hamburg in 1926, and by 1927 they were there in great masses. Λ few yoars later they flooded the waters of the mid Elbe (Havel, Province of Brandenburg) to such an extent that it became necessary to take mensures to check them. By 1930 the lower sections of the Weser, as well as the lower and mid sections of the Plibe, were thickly infested with these crabs. In the late twenties they began to sproad westward into the Ems and eastward into the Oder. They found their way westward from the Weser into the Ems through the many streams and canals in northern Oldenburg and eastward into the Oder through the waterways leading from the Elbe through Brandenburg. And with the beginning of this decade they commenced to sprend westward from the Ems into northern Holland and through the Midland Canal and the Rhine into southern Holland, northern Belgium, and northern France. They have gradually established a particular breeding ground in the region of the Danish Great and Lesser Belt in the Baltic. Mitten crabs that had reached the Oder from the Elbe through Brandenburg, have with all certainty helped to establish these breeding grounds inasmuch as, upon reaching
maturity, they naturally moved on downstream into the Baltic in their hunt for salt water. And they may have come through the North Sen-Baltic Canal (Kiel Canal) as well. They have spread from these breeding grounds in the Great and Lesser Belt in the Baltic to Denmark, southeastern Sweden, East Prussin, southern Finland, and in some instances, to some of the adjoining countries on the Baltic. Today, according to Dr. Peters, lower and mid Elve as far as into Saxony, the Weser below Bremon, and the coast regions of Germany and Holland from the Elbe to the Rhine are thickly infested with them. In other sections they are only sparse (fig. 2).

Fhaver 2.-Distribution of the Oblnase mitten crab; horizontal lines: now lubabited reglon; dofted reglon: very heavily inhablled.

REPRODUCTION
The mitten crab is, during its whole life, practically a fresh-water animal and is found hundreds of kilometers upstream in thickly infested rivers. With the development of the sex instinct, the urge for the sea also awakens in them, and in August, or after, they leavo their feeding grounds, often located far inland, to move on downstream to the sea. The sex organs develop during this migration and the crabs reach puberty on the last lap of the journey through the usually brackish water in the tidal regions. In the fall they always gather to breed in large swarms in the brackish water in the lower course of the rivers.
animal. This transition demands important readjustment in their (body) system. Their life substance has the same salt concentration as sea water and therefore differs greatly from that of fresh water. Whereas animals in sea water, with equal salt concentration inside as outside the body, are not imperiled through any osmotic action, life in fresh water demands equalization, and the constant absorption of water by osmotic action through unprotected places in the body, as for instance through the gills, is retroacted by increased water outlot through the kidneys. Otherwise the plasma would be destroyed through continuous swelling. The migration of the tender mitten crab larvae from the sea into fresh water with its added requirement for body functions, therefore, implies strong intrinsic power.

THE BREEDING PERIOD

Although the time of mating and the laying of eggs is fairly fixed, beginning about the end of October and lasting until January, the larvae's hatching time changes very much depending upon the weather. When springs are warm, which does not happen often, at least not in northwestern Germany, the larvae hatch sometime between the end of March and Mny or June. But the time for hatching usually comes considerably later and lasts until far into July. Thus their whole development is, of course, delayed. During warm springs, the megalopae may appear in July or August in the fresh water below Hamburg, and there develop into the first bottom stage, but during unfavorable weather their appearance is delayed until October. In 1933, when it was exceptionally warm, the young mitten crabs reached an average length of 10 mm in October but again in 1935 and 1936, when the weather was unfavorable, their average size was only 4 to 7 mm when they went into winter rest.

THE WANDERINGS OF TEE MITTEN CRAB

The migration of the larvae into the fresh water in the upper tidal regions is (probably) nided by the tidal currents. These feeding grounds are very rich, and the wanderings could have continued to end here, as they did up to the beginning of the twenties, if the number of the crabs had not increased so tremendously. It was this enormous increase that forced them to move on farther upstream in their search for food. But the crabs are too small at first to be able to make their way upstream against the strong current. During their first summer in their larval stage they are brought with the tidal current into fresh water, and during their second summer they stay there in the const regions where the water recedes at ebb tide until they grow sufficiently to ennble them to wander on.

In the late fall the crabs return in large masses to deep water for winter rest, causing such crowding in the narrow river-channels that the young ones, then in their second year, are not strong enough to fight for a place for winter rest there and are, therefore, forced to move on. denstydep Ondeux
Consequently, as the catches by the dam in the Weser by Bremen show, the young animals begin to move on upstream in the beginning of winter but only sparsely during the cold weather in January and February. As soon as it gets a little warmer in March, these crabs, not yet 2 years old, commence to migrate upstream in such huge masses that more than 30,000 of them are caught and destroyed daily in Bremen in traps specially constructed for this purpose. The congestion is lifted when the crabs agnin swarm out into the shallow regions with the advent of warmer weather in the beginning of May.
These swarms, which once migrated from the tidal regions, are now

Figure 3.-Cateh of mitten crabs at Dooritiz, Germany, during April, May, June, July, and August, 1987.
forced to wander farther on because rivers that have been converted into navigation arteries do not hold sufficient nutriment for them. It is a wandering without a goal. Wherever a canal, or a rivulet, empties into the river some of the crabs always leave the large swarms to move into it. But in the Elbe, from Hamburg on, they have very few opportunities to branch off into suitable feeding grounds. The crabs heading upstream are, therefore, forced to remain for a long time in huge swarms. Only the Elde near Doemitz (in Mecklenburg), the Havel and the Saole can accommodate these swarms and consequently receive heavy visitations of the crabs. In these three rivers the migration begins in April about the time when it already has reached or. passed its height in the tidal region, and continues into ^ugust. In Doemitz (in Mecklenburg) $44,400 \mathrm{~kg}$ of mitten crabs moving upstream were caught in specially constructed traps by the dam in the Elde rivulet in 1936, and $34,925 \mathrm{~kg}$ in 1937. As the curve, (fig. 3) shows, the migration and the catch commence suddenly in

April and decrease temporarily during the end of May and early June, probably as a result of a shedding which takes place about this time. The migration is at its height in June and July and falls off during August. The swarms that penetrate into the Havel are even larger. About $100,000 \mathrm{~kg}$ of crabs were caught there in similar traps in 1936 (pl. 4, fig. 1). And even as far up in the Saole as Calbe $42,500 \mathrm{~kg}$ were caught in 1936. The migration decreases considerably higher up in the Elbe beyond the mouth of the Snole, inasmuch as the greater mass has brauched off into suitable feeding grounds. In single instances only do they penetrate as far as through Saxony into Czechoslovakia. The mitten crabs, as we see, indeed, accomplish extraordinary wandering feats. The distance which the tiny larvae travel from the sen up to the vicinity of Hamburg is about 100 km , the distance along the Elbe from Hamburg to Doemitz about 120 km , from Hamburg to Garz on the Havel 220 km , and from Hamburg to Calbe on the Saole 350 km .
I have ascertained through marking tests the rate of speed at which the young crabs travel upstream against the current and in doing this I have marked the backs of 13,000 mitten crabs with good sbip's paint of different colors during series of experiments in the Weser, the Elbe, the HaveI, and the Saolo. The crabs were placed in lots of 1,000 specimens at certain distances apart below the traps and the time was noted when the marked crabs agnin landed in the traps from which they had been taken previously. The evolution of these 13 oxperiments showed that the small animals, migrating from tho tidal region in the lower course of the Weser, traveled a distance of 1 to 1.5 km daily and that the larger ones, moving against the current in mid Elbe, a distance of 2 to 3 km dnily. In their upstream migration, they rach the Havel during the first summer and the Saole during the second summer.
When the mitten crabs have reached their full growth in the interior of Germany, they leave and wander back to the sea to reproduce. A shedding of the shell precedes this downstream migration so the crabs start out with thin, light shells and subtle elastic synovial membranes. The migration commences everywhere simultaneously in August and is in all certainty induced by incipient growth of the sex glands, inasmuch as the sex organs begin to develop in these migrating crabs during their wandering through mid Elbe. The migration downstream decreases slowly in mid Elbe during October after its beight in September, whereas the migration continues in its lower course into Novernber. The rate of speed at which these crabs travel has also been ascertained through experiments with color markings (pl. 4, fig. 2). In the course of four experiments, 1,600 crabs were marked and set adrift in the Havel and the Weser. Of tho crabs which were captured, the three which traveled the longest dis-
tances had the highest average: (1) Total distance 338 km , time 29 days, or 12 km per day. (2) Total distance 257 km , time 43 days, or 多 8 km per day. (3) Total distance 368 km , time 38 days, or 10 km per day. These large crabs in the spawning swarm consequently travel downstream at the considerable rate of speed of 8 to 12 km . per day and thus can reach the breeding places in the brackish water? in 2 to 3 months even from the more romote regions.

It is not surprising that the young animals cease their slow wandering upstream in midsummer when the old animals commence their rapid downstream migration, because the young animals are forced to leave the channel in midstream when the two swarms meet.

SHEDDING OF THE SHELL, GROWTH, AND LIFE SPAN

The vertebrates, with their inner skeletons covered with a network of living cells, grow evenly and inconspicuously, but arthropods, with their dead outer armor, grow by leaps. The chitinous armor reinforced by deposits of lime must from time to time be thrown off and renowed because it ages quickly, breaks and becomes useless. Besides, growth is possible only by shedding the shell because the dead outer shell cannot be enlarged through growth as do the bones of the vertebrates. It must, therefore, from time to time be thrown off and replaced with a uew and larger one. Preparation for the shedding of the armor is made in the forming of a new, thin, clastic shell under the old one. The blood pressuro now increases through the absorption of water. The old armor bursts in the rear end between the carapace and the abdomen, the crab glides out backward and expands at the same time. The blood pressure produced to burst the old and expand the new shell is so great that the crab after shedding can move on its elastic legs without caving in. The new shell hardens through absorption of calcaroous deposits. This peculiar periodic mode of growth with the shedding of the shell restricts the mitten crab to a comparatively slow growth. In grow th through sudden expansion, limits are set to the elasticity, inasmuch as overexpansion would tear many organs. According to iuvestigations mado by Dr. Schubert, the length added by shedding is 24 percent in the smallest animals but decreases as they increase in size and is only 11 percent in the largest crabs, which are more than 70 mm long. The number of sheddings per year are limited and evidently strictly regulated. The gullet, the stomach, and the rectum, which reaches almost to the stomach, are coated with chitin and are shed with the shell. They must consequently be emply at the time of shedding. The shedding, is, therefore, preceded by a period of fasting. The fasting continues until the jaws harden. According to Dr. Schubert, the mitten crabs shed 6 to 8 times during their first jear, 4 to 5 times during their
second year, and 2 to 3 times during their third year. The older arabs shed only once a year.
As the hatching of the larvae is usunlly completed in July, I count. the years of life of the mitten crabs as running from July to July. Thus, according to my investigations, the average length of the crabs is: the 1 -year-olds about 13 mm ; the 2 -year-olds about 25 mm ; the 3 -year-olds about 36 to 38 mm . I estimate that the crabs about 56 mm long in the spawning swarms are 5 years old.

NUTRIMENT

In discussions on the evil of the mitten crabs the question has always been an important one as to whether they attack and eat fishes. It is easy to understand that every fisherman whose catch falls off in vicinities where there are mitten crabs vows that they are wanton destroyers of fishes. But the question is not so ensily solved. Timid fishes lose out, to be sure, where there are mitten crabs, and the crabs do attack fishes that have been caught in nets, thus having lost freedom of movement. They are omnivorous and eat whatever they can get. That does not prove, however, that slow mitten crabs catch speedy fishes at liberty. We have, in fact, kept fishes and mitten crabs togother for long periods in the same nquarium, a mitten crab and a perch occupying the same corner, the fish directly sbove the crab without being molested by it. Dr. H. Thiel has proved through examinations of contents of stomachs of mitten crabs that the largest portion of their food comes from the vegetrble kingdom, but they must to some extent get their food from the snimal kingdom as the lime that is necessary to harden the shell otherwise would be lacking. They ent worms, especinlly Tubifer, mussels and snails, inferior crustaceans, water insects, insect larvae, and even dead substance of organic origin. Remains of fishes were found only in 4 to 5 stomachs of 1,000 mitten crabs, and these came from a region with huge swarms of young fishes. It may have been the remains of cadnvers of young fishes that had served the crabs as food.

VOLUNTARY MUTILATION AND REGENERATION

The mitten crabs, like all higher crustacea, are able to throw off their pincer and walking legs and grow new ones at the same time with their next new shell. This ability enables them often to save themselves when they are attacked. With lightning speed they discard the leg the attacker has seized nud then rush off. At the base of all 10 legs, between two joints which have grown together, there is another joint with a very thin shell. Through certain muscular contraction whereby the adjoining leg serves as lever, the endangered leg is broken 114728-39--25
off in this joint. The samo thing happens in cases of injuries. The wound caused by the breaking off of the leg is immediately closed with a thin membrane already formed so that all loss of blood is avoided. Shortly before the next shedding takes place, a bud grows through the scar where the leg was severed and in it is formed a regenerated leg folded in two (pl. 5). It straightens out in the next shedding but is at first somewhat smaller than the discarded limb and lacks always the characteristic pilroe, which makes the fishermen think that they here have an entirely different animal when they find a mitten crab with two regenerated pincers in their by-catch. This lack of pilroe on the regencrated limb is interpreted as a retrogression to an original hairless form, but proof to this effect is lacking (pl. 5).
How much of this solf-mutilation is dependent on the ability to renew discarded limbs is realized by the fact that the crabs are very little inclined to self-mutilation when the time for the next shedding is still remote.

MITTPN CRAB BURROWS

It is known that many tropical crustacoans that live in tidal regions on the const or in the river mouths dig burrows for themsolves into which they retire during obb tide. The mitten crabs do it also in the tidal regions of German rivers. Wo find their burrows in firm marsh bottoms everywhere on the banks of the Fibe tributaries and in canals which dry out in obb tide. It is easy to recognize their low and wide entranees and not to confuse them with the round openings to the burrows of the water voles. The burrows are always dug to slant downward and filled with water, which makes it possible for the crahs to await here the return of the water with high tide. Where the burrows are numerous, the undermined shore finally caves in and thus the mitten crabs are the cause of considerable damage in many places (pl. 6).

damage caused to fisming

Fishermen maintain that tho mitten crab catelies and eats fishes in open waters. Howerer, this does not tally. The healthy fish is much too quick and the mitten crab much too slow for that. Fishermen maintain olso that the crab destroys the spawn and the fry. This could hardly be the case either. But in other ways they do a lot of clamage, as for instance when fishes like flounders are caught in place nets. When the net reaches the bottom the crabs crawl high up on the net, eating the defenscless fish and becoming entangled with their many legs in the fine net threads. In their attempts to escape they tongle up the nets and finally cut them into pieces with their jaws. To the loss in catch there is added the destruction of nets and the loss of time caused by the constantly necessary mending
of damaged nets. When mitten crabs are caught as a by-catch in dragnet fishing, not only is the fish injured and made useless for sale by rubbing against the crab's toothed armor, but the nets wear out much sooner and must be replaced more often. It is estimated that the resulting cost of nets is tripled in many regions. When mitten crabs come upon eel-basket pots, they swarm into them, attracted perhaps by the scent, and as a result the eels do not go in, or if they do, they are devoured. In central Germany large hoop nets with which to catch the eels heading for the sea are often laid out behind the sluice gate. The crabs migrating in the fall unfortunately take the same route and are consequently caught in theso hoop nets. When, as happens in Havel, up to 500 kg of mitten crabs are caught in a single night in a hoop net, the chances for eel fishing are impossible. As eel fishing is the most importnat source of livelihood for the fishermen in many regions, it is very easy to understand that the fishermon demand that adequate steps be taken to ward off their peril.

MEANS OF CONTROL

It is true that some predatory fishes and some aquatic birds and waterfowl devour the mitten crabs, but this means of exterminating them is altogether ineffective because of the crabs' enormous and rapid incroase. The possibility of preventing their reproduction by catching the breeding swarms in the river mouths has been discussed, but however logienl tho iden mny seem, considerable difficulties stand in the way of carrying it out. But more favorable opportunities to control tho crabs have presented themselves in the interior of Germany.
The mitten crabs travel on the bottom of the rivers, forcing their way upstream where the current is strongest, and pile up below any dam that temporarily stops them in their wandering. Advantage of this opportunity is taken by the Weser dams in Bremen. Barrels covered with wire netting or canvas are lowered with davits to the bottom of the Weser. The crabs, jnmmed in against the dan, crawl high up on the barrels, fall into them and aro caught in this way. In 1935 from January to May, $12,166 \mathrm{~kg}$ of mitten crabs ($3,444,680$ specimens) were caught, the greatest amount at one time being 407 kg (113,960 spocimens) on April 15,1935 . In 1936, 12,786 $\mathrm{kg}(2,941,100$ specimens) were taken.
When crabs are jammed below a dam they try in many ways to get by the obstacle. They crawl up on the walls and hamally out on the shore, so as to pass the dam by land. It was thus that it was first learned what enormous masses of mitten crabs infest the German rivers. During warm summer nights the shore region is black with crabs; one cannot take a step without treading on them. In places where a dam is close to a city, it happens occasionally that mitten

It is evident that efforts should be made to convert into profit these huge masses of mitten crabs caught daily during the main migration period. In Bremen the crabs are boiled and distributed to farmers who feed them to pigs with good success. Many fishermen crush their by-catch of mitten crabs and feed them raw to ducks which understand very well how to pick out the soft substance and thrive well on it. In Garz and Gruetz on the Havel, the mitten crabs are ground in large mills, and when this mutage cannot, be fed to ducks, it is dumped into the rivers where the young fishes eat it engerly. This is, of course, unprofitable and consequently experiments have been made for a long time by the "Havel," an association for the protection of fisheries in Gruetz, which would lead to utilization of the mitten crabs. These experiments have yet not been concluded and, therefore, can not be reported on.

MUTATION OF MITTEN CRABS

The mitten crabs have reacted to their introduction into a strange environment with some very conspicuous changes in their outward form. Plate 9 shows the three best examples of this change in the form. The changes have taken place principally in two systematically important characters-the rostrum teeth between the eyes and the three pairs of protuberances on the back behind the forehead.

If one assumes that the mitten crabs were introduced into Germany around the turn of the century, it has required a comparatively long exposure to the new environment for these mutations to take place. No traces of changes were noticed in specimens brought to us int the twenties. In 1932 and 1933 the mitten crab was conspicuously Jabile in systematically important characters. The rostrum tecth were weaker and seldom pointed but mostly blunt, almost round; the indentures betweon the teeth were flatter and often shaped very irregularly; the protuberances on the back were fainter and those of both rear pairs seemed to be inclined to fuse. At that time it was barely possible out of a large mass of mitten crabs to find even a [cw typical specimens to bo used as exhibits. Now the mitten crab again has its original form without any deviation from the Chineso specimens brought to me only recently from Shanghai. It seems (more cannot be said) that the originnl mutation was accompanied by a general fluctuation of those characters which were affected by the change.
The parts of the foregoing report not based on my original investiga-tions are taken from volume 47 of the Reports of the Hamburg Zoological Museum and Institute (works by Drs. Peters, Thiel, Schubert, Hoppe, and Peters), which I recommend for further information.

Female with eges.

 REPRODUCTION.

Smithsonian Report, 1938.- Panning
Plate 3

dying old female densely Covered with barnacles.

1. Female belly; on the Iffleidf (ripht side on the pieture), reqencration buds on the stumpe of first, seremat and third walking leps.

Regenetation.

River beds at Low Ebe Tide with mitten Crab Burrows.

The dam in cirumtz on the Havel secu from below; on the right side on the pieture the nectleweir and on the left side the rampart. Deft from it the sloping wall and on its upher cige the trab. (I'loboraph

 (Dhelturaphis by J)r. Roellifer.)

Trap baskets,

Sinithsonian Report. 10; Pr. Pamine:
platen

Three Mutations of the Mitten Crab from the Elbe.

