STATE OF CALIFORNIA STATE WATER RESOURCES CONTROL BOARD

)

)

}

In the Matter of the Diversion and Use of Water from Big Bear Lake and Bear Creek in San Bernardino County by

BIG BEAR MUNICIPAL WATER DISTRICT and

BEAR VALLEY MUTUAL WATER COMPANY.

ORDER :	WR 95-4
SOURCE :	Bear Creek
COUNTY :	San Bernardino

ORDER REQUIRING MINIMUM RELEASES OF WATER FROM BEAR VALLEY DAM FOR FISHERY PROTECTION

TABLE OF CONTENTS

	PAGE
1.0	INTRODUCTION
2.0	COMPLAINT
3.0	BACKGROUND
3.1	<u>History and Physical Setting</u>
3.2	Water Rights
3.3	The Bear Creek Wild Trout Fishery
3.4	Accessibility and Use of Bear Creek 6
3.5	<u>Recreational and Fish and Wildlife</u> <u>Uses of Big Bear Lake</u> 6
3.6	Water Supply in Bear Valley
3.7	<u>Waste Water Outfall</u>
4.0	PARTIES
5.0	PUBLIC TRUST RESOURCES AND REASONABLE USE
5.1	SWRCB Authority
5.2	Applicability of Public Trust Doctrine to Bear Creek
5.3	Effect of Other Laws on the Establishment of Protections under the Public Trust Doctrine
	5.3.1 Fish and Game Code Section 5937
	5.3.2 The Davis-Grunsky Contract
5.4	The Bear Creek Fishery
5.5	Effects of Alternative Flow Releases
	5.5.1 Method of Analysis of Effects on Lake Levels
	5.5.2 Effect of Alternatives on Lake Recreation
	5.5.3 Effect of Alternatives on Fish and Wildlife Uses of the Lake

i.

PAGE Considerations in Setting an . 30 Potential Effects of Unrelated Actions on Lake Level 34

	on bake bever	•	• •	•	•	•	•	•	•	54
6.0	ENVIRONMENTAL CONSIDERATIONS	•	• •	•	•	•	•	•	. •	35
6.1	<u>Categorical Exemption from California</u> <u>Environmental Quality Act</u>	•	•	•	•		•	•	•	35
6.2	Endangered Species Act Considerations	•	• •	•	•	•	•		•	37
7.0	CONCLUSIONS	•	•	•	•	•	•	•	•	38
ORDEF		•	• •	•	•	•	•	•	•	39
CERTI	FICATION	•	•	•	•	•	•	•	•	42

Instream Flow . .

5.5.4

5.5.5

STATE OF CALIFORNIA STATE WATER RESOURCES CONTROL BOARD

)

)

In the Matter of the Diversion and Use of Water from Big Bear Lake and Bear Creek in San Bernardino County by

BIG BEAR MUNICIPAL WATER DISTRICT and

BEAR VALLEY MUTUAL WATER COMPANY. ORDER: WR 95-4 SOURCE: Bear Creek COUNTY: San Bernardino

ORDER REQUIRING MINIMUM RELEASES OF WATER FROM BEAR VALLEY DAM FOR FISHERY PROTECTION

1.0 INTRODUCTION

On October 24, 1990 California Trout, Inc. (Cal-Trout) filed a complaint against Big Bear Municipal Water District's (District) operation of Bear Valley Dam and Big Bear Lake in San Bernardino County. The complaint alleged that the District's operation of Bear Valley Dam and Big Bear Lake provides insufficient releases of water into Bear Creek to keep the fishery in good condition. The State Water Resources Control Board (SWRCB) staff conducted an investigation and recommended that either a water right hearing be held to receive evidence that would assist the SWRCB in resolving the complaint, or the parties negotiate a settlement of the issues in the complaint. Attempts at negotiation failed, and on July 28, 1993 the SWRCB gave notice of a public hearing. A pre-hearing orientation tour was held on September 29, 1993 and a hearing to receive non-evidentiary policy statements was conducted on September 29 and 30, 1993 in the City of Big Bear Lake. The evidentiary hearing was held on October 12 and 13, 1993, November 18 and 19, 1993, and December 13, 1993. The SWRCB has considered all the evidence in the hearing record and has considered the policy statements and the written closing arguments of the parties. The SWRCB finds and concludes as follows:

2.0 COMPLAINT

Cal-Trout in its complaint alleges that since 1977 the District, which operates Bear Valley Dam and Big Bear Lake, has cut back releases of water from Bear Valley Dam for downstream prior rights and has substituted purchased water from a source other than Big Bear Lake for use by the prior right holders. The complaint alleges that this is causing inadequate instream flows in Bear Creek. Cal-Trout alleges that the District refuses to release from the dam more than 0.106 cubic feet per second (cfs).

Cal-Trout alleges that the District is failing to keep the downstream fishery in good condition. The complaint alleges that the small releases violate the public trust interest in maintaining trout in Bear Creek in good condition. The complaint further alleges that continuing the small releases violates Fish and Game Code section 5937 and is an unreasonable use of water within the meaning of Water Code sections 100 and 275.

Cal-Trout requests that the SWRCB order the District to conduct an Instream Flow Incremental Methodology (IFIM) study to determine the needed flows. In the interim, Cal-Trout requests that the district be ordered to conduct a Tennant Method study to determine interim flow requirements and release the Tennant Method flows. Cal-Trout requests that after completion of an IFIM study, the SWRCB convene a further proceeding to establish permanent flow releases.

3.0 BACKGROUND

3.1 <u>History and Physical Setting</u>

Big Bear Lake is a 73,320 acre-foot (af) reservoir located in the San Bernardino Mountains in San Bernardino County. The lake occupies part of Bear Valley. Its maximum surface area is 2,973 acres, and its maximum surface elevation is 6,743 feet above sea level. Bear Valley Dam impounds the water in the lake.

Baldwin Lake also is located in Bear Valley, to the east of Big Bear Lake. Baldwin Lake is smaller and shallower than Big Bear

Lake. It is generally considered a dry lake although it occasionally retains water through a summer. Baldwin Lake is a natural sink. Baldwin Lake has no surface hydrological connection to Big Bear Lake.

A dam was first constructed at the site of Bear Valley Dam in The reservoir was enlarged in 1911 to its current size by 1884. construction of a new dam downstream of the original dam. The new dam was reinforced in 1988. The original purpose of the reservoir was to impound water for irrigation use in the San Bernardino Valley. Irrigation uses from the reservoir continued into the late 1970's, but recreational uses on and around the lake had increased in importance over time. The residents of Bear Valley voted in 1964 to create the District, with the purpose of changing the Lake's primary use to recreation. Litigation ensued, with the District seeking to acquire Big Bear Lake by condemnation. In 1977 the parties stipulated to a judgment in which the District acquired the dam, the land under the lake, and the surface recreational rights to the lake. The parties also stipulated to a judgment in which the District was allowed to provide a substitute, or "in lieu", water supply for the water right holders in the San Bernardino Valley instead of releasing water from Big Bear Lake.

Tourism is the principal economic base for the City of Big Bear Lake and nearby unincorporated communities in Bear Valley. Big Bear Lake is easily accessible from the urban areas in southern California. Bear Valley and Big Bear Lake offer boating, fishing, water contact recreation, winter skiing, sightseeing, hiking, and other outdoor recreation.

Releases from Bear Valley Dam flow into Bear Creek and then into the Santa Ana River. From the dam, Bear Creek flows through a steep canyon in a southwesterly direction approximately 8.75 miles to its confluence with the Santa Ana River. It receives flow from several tributaries along the way. In 1988, the California Department of Fish and Game (DFG) designated Bear

З.

Creek as a "wild trout stream" in recognition of its excellent wild trout fishery resource.

Most access trails to Bear Creek¹ are steep and difficult, and the creek is difficult to walk along, with large boulders and heavy tangled vegetation along the creek. Only physically fit individuals are able to use the creek for fishing, due to the terrain.

3.2 <u>Water Rights</u>

According to the judgment of the San Bernardino County Superior Court filed February 7, 1977, Bear Valley Mutual Water Company (Mutual) holds water rights to divert water at Bear Valley Dam and to store in Big Bear Lake all of the flow of Bear Creek. Mutual can take up to 65,000 af from the lake in any ten-year period for the use of its stockholders. Mutual's water rights are based on pre-1914 appropriations commenced in 1883 and 1909.

The judgment authorizes the District to deliver a substitute water supply to Mutual in lieu of releasing water from Big Bear The District and Mutual have an accounting system to keep Lake. track of the water each can retain or take for use. Each has an "account". When the District provides substitute water to Mutual, it gets credit in its account for storing water in Big Bear Lake. Inflow is credited to Mutual's account. If the lake spills, the spills are deducted from the District's account unless there is no water in the District's account. If water is released from the lake for Mutual's use, the release is deducted from Mutual's account. If the District's water account is zero, then any spilled water is accounted to Mutual, and the District must either release water from the lake to meet Mutual's demands or supply to Mutual in-lieu water.

¹ In the lowest part of Bear Creek, there is vehicular access to the Slide Creek area.

In 1987 the District adopted its current policy for complying with the 1977 judgment. Under the policy, the District maintains the lake level as high as possible for recreational purposes, using the following operational rules:

- When the lake is less than 4 feet below its maximum elevation, the District meets Mutual's irrigation demands by releasing water from Big Bear Lake.
- 2. When the lake is between 4 and 6 feet below its maximum elevation, the District purchases in-lieu water between May 1 and October 31, and releases water from Big Bear Lake between November 1 and April 30.
- 3. When the lake is between 6 and 7 feet below its maximum elevation, the District's board decides whether to release water from the lake.
- If the lake is more than 7 feet below its maximum elevation, the District buys in-lieu water all year.

The District's policy regarding instream fishery releases is to allow only "leakage" from the dam and seepage. The District agreed in 1989, under a Stream Alteration Permit (Fish and Game Code section 1601) from the Department of Fish and Game for repairs to the dam, that instream flow will be maintained at no less than 0.106 cfs. The agreement has expired, but the District's policy is still to maintain this flow.

3.3 The Bear Creek Wild Trout Fishery

In 1988 the Department of Fish and Game (DFG) designated Bear Creek a wild trout stream because it has an excellent wild trout fishery resource and because its proximity to the urban areas of southern California provides exceptional value. This designation was made under Fish and Game Code section 1725 et seq. The designation was based on the fishery that exists downstream of

the confluence of West Cub Creek with Bear Creek, but the DFG designated the entire stream.

3.4 Accessibility and Use of Bear Creek

Four trails provide access to Bear Creek. Figure 1 is a general location map showing Big Bear Lake, Bear Creek, the trails into Bear Creek, and the Santa Ana River. The access to Bear Creek via each of the trails is steep and difficult. Nevertheless, 700 visitor days, or two percent of the total hiking within the Forest Service district's boundaries, is associated with Bear Creek. Likewise, ten percent of the total fishing use within the Forest Service district is within the upper reaches of Bear Creek.

Bear Creek contains brown trout, rainbow trout, sculpin, and other fish life. It also provides habitat for three pairs of California spotted owls, the San Bernardino flying squirrel, the southern rubber boa, the two-striped garter snake, bats, and numerous other terrestrial wildlife species.

3.5 <u>Recreational and Fish and Wildlife Uses of Big Bear Lake</u> The four major categories of recreational use on Big Bear Lake are general boating, 48 percent; fishing, 37 percent; sailing, 9 percent; and water skiing, 6 percent. Shore uses include fishing, swimming, and sunbathing. The District operates a handicapped-access fishing pier on the north shore of Big Bear Lake. Two ski resorts occupy U.S. Forest Service land overlooking Big Bear Lake: Snow Summit and Bear Mountain. The ski resorts have contracts with the District to divert water from Big Bear Lake for snow making. The lake also provides visual benefits, and is aesthetically more attractive when it is full or nearly full of water.

Big Bear Lake also provides wildlife habitat. It is on the Pacific flyway and provides habitat for migrating waterfowl. Approximately 30 bald eagles inhabit Bear Valley during the

winter. The bald eagles are on the endangered lists under the state and federal² Endangered Species Acts. Also, up to 150 white pelicans live at the shallow east end of Big Bear Lake. The District and a private organization are working to develop 145 acres in the Stanfield Marsh at the shallow east end of Big Bear Lake into waterfowl habitat. Perches for the bald eagles have been provided in the vicinity of Stanfield Marsh. Finally, Big Bear Lake has a year-round stocked lake fishery.

Big Bear Lake and Bear Valley are heavily used for recreation, and attract numerous visitors to the area. During the summer recreational season of May through September, non-residents comprise 40 percent of all lake users on weekdays and 60 percent of all lake users on weekends. Boat use on Big Bear Lake and shoreline use including fishing ordinarily peak in July and August. Several physically handicapped individuals testified that the lake provided recreational opportunities for them while the creek was inaccessible to them. In 1992, there were 87,000 visitors, totalling over 123,000 visitor days, using the facilities operated by the Forest Service around Big Bear Lake. Over 917,000 visitors use the downhill ski resorts each winter.

3.6 <u>Water Supply in Bear Valley</u>

Most of the water used in Bear Valley for domestic or municipal uses is ground water. The City of Big Bear Lake and the Big Bear Community Services District operate a total of 77 ground water wells within Bear Valley. Twenty-one of the wells, accounting for 25 percent of the total annual pumpage, have been constructed since 1977.

Approximately 700 af of water is taken from Big Bear Lake each winter for snow making. Some of this water returns to the lake as runoff. Additionally, the City of Big Bear Lake has identified the lake as a potential source of water for future

² The United States Fish and Wildlife Service has proposed to upgrade the bald eagle to threatened status.

municipal use, and also may in the future use 585 to 980 acrefeet per annum (afa) of lake water for ground water recharge.

The total combined average annual municipal and domestic water production from the wells is 4650.3 afa. The sustained yield of Bear Valley's ground water basin subareas is 3,050 afa. (BBMWD/City Exhibit No. 5-10, p. 2-4.) Current water production exceeds the sustained yield, and by the year 2000 may exceed the sustained yield by up to 6,000 afa. A state of overdraft exists in the Division and Rathbone subareas, which are southeast of Big Bear Lake. Pumping levels are below the lake level at several wells in the Division and Grout Creek subareas. These wells, particularly in the Division subarea, appear to be less productive when the east end of Big Bear Lake, at Stanfield Marsh, dries up. Therefore, it appears that the lake and its tributary streams may contribute to the recharge of ground water.

Both the City of Big Bear Lake and the Big Bear Community Services District have water rationing programs which were in effect in 1993. However, they have not prepared and adopted a Water Shortage Contingency Plan, which is required under Water Code section 10620 et seq. for water suppliers who serve more than 3,000 customers or supply more than 3,000 afa. They also have not signed the Memorandum of Understanding regarding Urban Water Conservation in California, which the California Department of Water Resources completed June 11, 1991. The memorandum includes urban water conservation practices intended to reduce long-term urban water demands.

3.7 <u>Waste Water Outfall</u>

Treated waste water from Bear Valley is discharged to Lucerne Valley, outside the Bear Valley watershed. Currently about 2,273 afa is discharged to Lucerne Valley. This will increase to 3,397 afa at buildout. Under the 1977 judgment, the quantity of waste water discharged to Lucerne Valley is added to Mutual's lake storage account. If the water were treated to advanced levels (it currently receives secondary treatment), it could be reused

within Bear Valley for irrigation, dust control, and ground water recharge. Reclaiming the treated wastewater could benefit the District, since it would reduce the share of the lake water that is accounted to Mutual, and would lessen the overdraft of Bear Valley's ground water.

4.0 PARTIES

On July 28, 1993, the SWRCB sent a Notice of Public Hearing and Notice of Pre-Hearing Field Orientation Tour to all parties who had indicated an interest in this matter. The SWRCB sent the following persons or entities notices by certified mail with a return receipt required: Bear Valley Mutual Water Company; Big Bear Watermaster; Mr. Jim Edmondson, Regional Manager of California Trout, Inc.; Mr. Steve Parmenter, Department of Fish and Game; Mr. Wayne Lemieux, Law Offices of Wayne Lemieux; Mr. Scott Smith, Best, Best & Krieger; Honorable Paul Woodruff, Member of the Assembly; California Trout, Inc.; Mr. Kevin O'Brien, Downey, Brand, Seymour & Rohwer, representing Big Bear Municipal Utility District; Ms. Rose Robinson, San Bernardino National Forest; Ms. Sheila Hamilton, General Manager, Big Bear Municipal Water District; Mr. Fred A. Worthley, Regional Manager, Region 5, Department of Fish and Game; Mr. Stuart L. Somach, DeCuir & Somach, representing City of Big Bear Lake; Mr. Stuart M. Richter, Katten, Muchin, Zavis & Weitzman, representing California Trout, Inc.; Honorable Bill Leonard, Member of the Senate; Mr. Steve L. Feldman, Attorney. The SWRCB sent notices by regular mail to six hundred and twenty-one others who indicated an interest in this proceeding.

The Notice of Public Hearing provided that any person who wanted to participate in the hearing must file with the SWRCB a Notice of Intent to Appear, which must be received by the SWRCB no later than August 16, 1993.

The following parties filed Notices of Intent to Appear: Papoose Bay Homeowners Association, California Trout, Inc., California Department of Fish and Game, U.S. Department of Agriculture

(Forest Service), Big Bear Municipal Water District and City of Big Bear Lake (joint filing), and the Santa Ana River-Mill Creek Cooperative Water Project.

Of these parties, the Papoose Bay Homeowners Association and the Santa Ana River-Mill Creek Cooperative Water Project did not file their pre-hearing submittals. The pre-hearing submittals required by September 27, 1993 were the written testimony of each witness, the proposed exhibits, the statements of witness qualifications for expert witnesses, and lists of the proposed exhibits.

Of the parties who filed their pre-hearing submittals, the positions of the parties can be divided into three groups. Cal-Trout and DFG recommended increased flow releases from Bear Valley Dam. The U.S. Forest Service provided extensive information regarding Bear Creek, Bear Valley, and Big Bear Lake, but did not make a recommendation. The District and the City of Big Bear Lake opposed increases in releases from the dam.

At the policy statement session of the hearing on September 29 and 30, 1993, Mr. George Grover, special counsel to San Bernardino Valley Municipal Water District appeared and advised the SWRCB that his client has water rights that are affected by releases from Big Bear Lake and is opposed to increasing releases from Bear Valley Dam for fishery protection. He said that Western Municipal Water District of Riverside County joined in his statement. In response to a question, Mr. Grover said that his client would not be presenting evidence in the evidentiary hearing.

The Notice of Intent to Appear filed by Santa Ana River-Mill Creek Cooperative Water Project's Management Committee stated that it is made up of the water right holders on the Santa Ana River. Mutual is a member of this Committee. John Shone, Managing Director of Mutual, was listed as a witness in the Notice of Intent to Appear. Based on the Notice of Intent to

Appear, it appeared that the Committee intended to represent Mutual's and others' water right interests in the hearing.

The Notice of Public Hearing listed nine key issues that the SWRCB would consider. Issue No. 7 asks in pertinent part:

"What are the water rights of the District and of Bear Valley Mutual Water Company? How would these water rights be affected if additional measures are necessary to protect fish and public trust resources in Bear Creek and Big Bear Lake?"

On October 7, 1993, having noted that the Santa Ana River-Mill Creek Cooperative Water Project's Management Committee had not filed its pre-hearing submittals, the SWRCB's staff contacted Mr. Shone by telephone and advised him that the SWRCB was considering joining Mutual as a party in the hearing and strongly urged that he or another representative of Mutual attend the hearing. The staff also advised Mr. Shone by letter dated October 7, 1993, that Mutual might be joined as a party.

On October 20, 1993, the SWRCB issued a Supplement to Notice of Public Hearing in which it gave notice that Mutual was a party and that as a result of this proceeding the SWRCB may modify Mutual's water rights.

Mutual admits to having received the July 28, 1993 Notice of Public Hearing, but nevertheless argues that it had not been properly notified that its water rights might be affected until it received the October 20, 1993 Supplement to Notice of Public Hearing. Mutual makes this argument even though the July 28, 1993 notice included Issue No. 7 addressing Mutual's water rights. Also, Mutual's interests apparently initially were going to be represented by the Santa Ana River-Mill Creek Cooperative Water Project's Management Committee. Consequently, Mutual was adequately notified of the potential effect of this proceeding on its water rights but elected not to appear until the SWRCB again explicitly and officially notified Mutual of the potential effect on its water rights in the October 20, 1993 notice. The

October 20, 1993 notice eliminated any argument that Mutual would not be affected by this proceeding.

Mutual now claims that on November 18 and 19, 1993 it had to respond to written testimony and exhibits that were all produced on that same day by the other parties. It is true that none of the parties had to submit their <u>rebuttal</u> evidence until November 18 and 19 when they testified, but the other parties were required by the October 20, 1993 notice to provide Mutual copies of all of their previously submitted exhibits, which include written testimony, by November 4, 1993, two weeks before the November 18-19 hearing. This is the same period of time that all the other parties were given to review exhibits in the others' cases in chief before the October 12 and 13 hearing dates. Absent evidence to the contrary, it can be assumed that the parties supplied their exhibits to Mutual on time. With respect to the rebuttal testimony, Mutual was treated exactly the same as all other parties, none of whom was entitled to see the others' rebuttal evidence before it was presented.

Although Mutual objected to its late joinder by the SWRCB in this proceeding, it had ample notice and opportunity to participate earlier. The SWRCB's hearings are open to entities that may have an interest. Any interested person may file a Notice of Intent to Appear and participate. For example, the City of Big Bear Lake participated as a full party, notwithstanding that it has no water rights or other property interests in Big Bear Lake and was not named in Cal-Trout's complaint. Mutual is one of the selected entities that received the hearing notice dated July 28, 1993 by certified mail. As noted above, the notice included Issue No. 7, which explicitly pointed to the potential effects on Mutual's water rights.

At the November 18 hearing, having appeared after having been notified of its joinder, Mutual asked for more time to crossexamine witnesses who had previously testified. In his opening statement, Mutual's attorney stated <u>inter alia</u> that

"we are objecting to the late joinder in the sense that it will deprive my client of various rights of due process unless the Board exercises its discretion to allow us to cross-examine witnesses at a later date that may have previously presented direct testimony." (Nov. 18, 1993, T,14:8-14:13.)

The SWRCB scheduled a further hearing date on December 13, 1993 to give Mutual a further opportunity to cross-examine any witnesses of the other parties and/or to present additional evidence. With the further hearing and because of the other factors discussed above, Mutual has had ample due process in this proceeding.

5.0 PUBLIC TRUST RESOURCES AND REASONABLE USE

5.1 SWRCB Authority

Cal-Trout filed its complaint with the SWRCB against the District under three theories: that the current flow release practices of the District violate the public trust doctrine, that these release practices constitute an unreasonable use of water, and that these release practices violate Fish and Game Code section 5937. Cal-Trout asked the SWRCB to require the District to release additional water from Bear Valley Dam for fishery protection.

Water is stored in Big Bear Lake under pre-1914 appropriative water rights held by the Bear Valley Mutual Water Company. The District retains the water Mutual appropriates from Bear Creek in Big Bear Lake, and in lieu of releasing water provides Mutual a substitute water supply.

Although the SWRCB does not issue a permit or license for a pre-1914 appropriation of water such as the Big Bear Lake appropriation, the SWRCB has authority to supervise the exercise of pre-1914 water rights under the public trust doctrine and under Water Code section 275, which implements California Constitution Article X, section 2. (See <u>In re Water of Hallett</u> <u>Creek Stream System</u> (1988) 44 Cal.3d 448, 243 Cal.Rptr. 887, 901, note 16, cert. den. 488 U.S. 824 and cases cited therein.) Based

on these authorities, the SWRCB has continuing authority under both the reasonableness doctrine and the public trust doctrine over all appropriations or other diversions of water for use. In applying these doctrines, the requirements of section 5937 should be taken into consideration.

Neither the February 1977 judgment³ of the San Bernardino Superior Court in <u>Big Bear Municipal Water District</u> v. <u>North Fork</u> <u>Water Company, et al.</u>, No. 165493, nor the decision in <u>Big Bear</u> <u>Municipal Water District</u> v. <u>Bear Valley Mutual Water Company</u> (1989) 207 Cal.App.3d 363, 254 Cal.Rptr. 757 deprives the SWRCB of jurisdiction in this matter. A judgment in private water right litigation does not bind claimants who were not parties to the litigation. (<u>In re Waters of Long Valley Creek System</u> (1979) 25 Cal.3d 339, 158 Cal.Rptr. 350, 354.) Therefore, neither case limits the authority of the SWRCB or a court to adjudicate the issues raised by Cal-Trout's complaint under the public trust doctrine⁴, and neither case conclusively determines the reasonableness of the diversion and uses reviewed in this Order. The previous litigation, and its effects on all water users, are considered in this Order.

This Order is an exercise of the SWRCB's continuing authority under the public trust doctrine and the reasonableness doctrine. Under the public trust doctrine the State retains supervisory control over navigable waters and the lands beneath those waters,

³ The judgment provides for a "physical solution" allowing the District to provide downstream water right holders who were parties to the litigation with a substitute water supply as an alternative to releasing water into Bear Creek from Big Bear Lake. Using a physical solution is intended to further the policy of Article X, section 2 of the California Constitution that waters be put to beneficial use to the fullest extent that they are capable. (<u>City of Lodi</u> v. <u>East Bay Municipal Utility District</u> (1963) 7 Cal.2d 316, 60 P.2d 439, 450.)

⁴ The court in <u>Biq Bear Municipal Water District</u> v. <u>Bear Valley Mutual</u> <u>Water Co.</u> did not hold it had no authority to modify the water rights under the public trust doctrine, but instead held that it had no <u>obligation</u> to reconsider the 1977 judgment under the circumstances of that case. The court noted that unlike the facts in <u>National Audubon Society</u>, there had been previous consideration of the public trust uses of Big Bear Lake in the 1977 judgment. See 254 Cal.Rptr. 757, at 767. The court did not decide whether the public trust doctrine applies to Big Bear Lake and Bear Creek.

as well as non-navigable waters that support a fishery. The purpose of the public trust is to protect navigation, fishing, recreation, fish and wildlife habitat and aesthetics. (<u>National</u> <u>Audubon Society</u> v. <u>Superior Court</u> (1983) 33 Cal.3d 419, 189 Cal.Rptr. 346, 357, cert. denied, 464 U.S. 977.)

No person can acquire a vested right to appropriate water in a manner harmful to interests protected by the public trust. But if the public interest in the diversion outweighs the harm to public trust values, water may be appropriated despite harm to public trust values. When it applies the public trust doctrine, the SWRCB has the power to reconsider past water allocations, and it has a duty of continuing supervision over the taking and use of appropriated water. (<u>National Audubon Society</u>, 189 Cal.Rptr. at 363-366.)

The SWRCB and the courts have concurrent jurisdiction to conduct proceedings applying the public trust doctrine. In recognizing the SWRCB's jurisdiction over diversion and use of all waters, the California Supreme Court in <u>National Audubon Society</u> emphasized the SWRCB's broad authority over allocation of water, including the power to adjudicate all competing claims, even riparian claims.

Measures required under the public trust doctrine must, in accordance with the decision in <u>National Audubon Society</u> at 189 Cal.Rptr. 362, meet the test of reasonableness under California Constitution Article X, section 2. Since this Order establishes requirements for protection of the public trust uses of Bear Creek, the SWRCB has applied the reasonableness doctrine to the flow requirements in this Order.

The reasonableness doctrine, which is set forth at California Constitution Article X, section 2, applies to the use of all waters of the state. It limits every water right. (<u>Peabody</u> v. <u>Vallejo</u> (1935) 2 Cal.2d 351, 40 P.2d 486.) The SWRCB and the courts have concurrent jurisdiction to conduct proceedings to

adjudicate issues under the reasonableness doctrine. (Environmental Defense Fund, Inc. v. East Bay Municipal Utility District (1980) 26 Cal.3d 183, 605 P.2d 1, 161 Cal.Rptr. 466) The SWRCB has jurisdiction to conduct administrative proceedings applying the reasonableness doctrine to all water rights, including pre-1914 water rights that are not subject to the permit and license system administered by the SWRCB. (Imperial Irrigation District v. State Water Resources Control Board (1986) 186 Cal.App.3d 1160, 231 Cal.Rptr. 283.)

To determine what constitutes a reasonable use or diversion the SWRCB must consider the totality of the circumstances. The reasonableness of a use or diversion varies as conditions change, and is dependent on the facts of the case. (Environmental Defense Fund, Inc., supra.) To determine the reasonableness of a particular use, it is necessary to consider the effect of that use on other uses. (In re Waters of Long Valley Creek Stream System (1979) 25 Cal.3d 339, 599 P.2d 656, 158 Cal.Rptr. 350.) In this case, both the stream fishery uses and the numerous uses of the lake are beneficial uses.

5.2 <u>Applicability of Public Trust Doctrine to Bear Creek</u> The public trust doctrine applies to all tidal and navigable waters of the state, including waters that are navigable only to recreational craft. (<u>People ex rel. Baker</u> v. <u>Mack</u> (1971) 19 Cal.App.3d 1040, 97 Cal.Rptr. 448.) The public trust doctrine applies where diversions from non-navigable tributaries of navigable waters harm public trust uses of the navigable waters. (<u>National Audubon Society</u>, at 189 Cal.Rptr. 346, 357.) The public trust doctrine also applies to activities which harm the fishery in a non-navigable water. (<u>People v. Truckee Lumber Co.</u> (1897) 116 Cal. 397, 40 P. 374, 375; see <u>California Trout</u>, Inc. v. <u>State Water Resources Control Board</u> (1989) 207 Cal.App.3d 585, 255 Cal.Rptr. 184, 211-212.)

Some parties argued that Bear Creek is non-navigable, and therefore not protected by the public trust doctrine. It is not

necessary in this case to determine whether Bear Creek is navigable, because as noted above, the public trust doctrine protects fish in non-navigable waters.

5.3 <u>Effect of Other Laws on the Establishment of Protections</u> under the Public Trust Doctrine

5.3.1 Fish and Game Code Section 5937 Section 5937 of the Fish and Game Code is a legislative expression of the public trust doctrine. (See <u>California Trout</u>, <u>Inc.</u> v. <u>State Water Resources Control Board</u> (1989) 207 Cal.App.3d 585, 255 Cal.Rptr. 184, 209, 212.) Section 5937 is derived from an 1870 statute. The statute has been amended from time to time. It provides:

"The owner of any dam shall allow sufficient water at all times to pass through a fishway, or in the absence of a fishway, allow sufficient water to pass over, around, or through the dam, to keep in good condition any fish that may be planted or exist below the dam. During the minimum flow of water in any river or stream, permission may be granted by the department [DFG] to the owner of any dam to allow sufficient water to pass through a culvert, waste gate, or over or around the dam, to keep in good condition any fish that may be planted or exist below the dam, when, in the judgment of the department, it is impracticable or detrimental to the owner to pass the water through the fishway."

This section requires the owner of any dam upstream of waters that support fish to release enough water to keep the fish in good condition. Although this statute did not originally specify that water be released or bypassed for fish protection in the absence of a fishway, it does not exempt dam owners with dams that were constructed before this statute was amended. The rule requiring that fish be kept in good condition below the dam states the current obligation of the dam owner to bypass or release water from dams. (<u>California Trout, Inc.</u> v. <u>State Water</u> <u>Resources Control Board</u> (1989) 207 Cal.App.3d 585, 255 Cal.Rptr. 184, 195.) Even the original requirement for construction of a fishway was intended to be applied to dams built before the

requirement was first enacted. (See Stats. 1870, c. 457, section 3, pp. 663-664.)

It is the SWRCB's policy to enforce section 5937.⁵ In Fish and Game District 4½ (Mono and Inyo Counties), Fish and Game Code Section 5946 requires the SWRCB to require compliance with Section 5937 whenever it issues either a permit or license. Bear Creek is not in District 4½.

Section 5946 and section 5937 of the Fish and Game Code have been construed together as a legislative determination of reasonableness which imposes mandatory enforcement obligations on the SWRCB. (<u>California Trout, Inc. v. State Water Resources</u> <u>Control Board</u> (1989) 207 Cal.App.3d 585, 255 Cal.Rptr. 184, 208.) No appellate law exists construing Section 5937 alone, but <u>California Trout, Inc.</u>, can be read as indicating that section 5937 legislatively establishes that it is reasonable to release enough water below any dam to keep fish that exist below the dam in good condition. A release of water that is much in excess of the amount needed to keep the fish in good condition, however, could be unreasonable within the meaning of California Constitution Article X, section 2 if there would be adverse effects on other beneficial uses of the water.

5.3.2 The Davis-Grunsky Contract

On August 29, 1988, the District and the Department of Water Resources executed a contract under the Davis-Grunsky Act. Under the contract, the Department of Water Resources agreed to grant to the District a maximum of \$4,583,206 for repairs to Bear Valley Dam. The contract is subject to various terms and conditions, including conditions requiring that the reservoir be operated for recreational purposes. The SWRCB construes the contract as an independent expression of public policy favoring the maintenance of recreational uses in Big Bear Lake.

⁵ Pursuant to its regulation at 23 CCR Section 782 the SWRCB includes in every new permit a provision requiring compliance with Section 5937.

5.4 The Bear Creek Fishery

The fundamental issue in this proceeding is whether all of Bear Creek or only the reach downstream of West Cub Creek should be assured instream flows adequate to maintain a trout fishery in good condition. Above the confluences with the Cub creeks (upper Bear Creek), Bear Creek normally receives flow only from Bear Valley Dam and possibly from small streambed accretion flows. Approximately 0.6 miles below the dam is a ledge which apparently is a barrier to upstream migration of trout; this barrier is located in a narrow rocky gorge known as "Fish Canyon". No trout were observed upstream of the barrier in 1993, although sculpin and crayfish were observed in pools between the dam and Fish Canyon. Only a few adult trout were observed in 1993 in the reach of upper Bear Creek below Fish Canyon.

Although section 5937 requires that enough water be released to keep the fish in "good condition", this term is not defined. The trout fishery downstream of the Cub creeks usually is in good condition. During drought periods, however, tributary inflows and accretions to Bear Creek as far as the confluence with North Fork Bear Creek are too small to maintain the trout fishery in good condition. The critical period is summer, because both young of the year and adult fish are present, ambient temperatures are highest, and flows are lowest except shortly after thunderstorms. The current release is insufficient by itself to maintain trout populations and varied riparian habitat anywhere in Bear Creek, leaving the fishery dependent on inflows from tributaries to Bear Creek.

The DFG's fisheries biologist testified that he determines whether fish are in good condition by looking at the fish in their habitat. If the fish are abundant considering the stream size or its potential productivity, have enough food, have a low disease frequency, are in equilibrium with their environment, and have all life stages represented, he considers them to be in good condition. Based on these criteria, the DFG witness considered the trout fishery in Bear Creek to be in good condition below the

Cub creeks, but not in good condition above their confluence with Bear Creek. Additionally, the USFS hypothesized that the trout fishery above East Cub Creek could be self-sustaining if higher flows were maintained in that reach. No evidence exists, however, to confirm this hypothesis.

The District's biologist used measures of (1) standing crop; i.e., pounds of trout per acre or number per mile; (2) evidence of reproduction indicating a self-sustaining population; (3) growth rates of the fish; (4) health, or absence of disease; (5) angler catch rates; (6) number and diversity of aquatic invertebrates; (7) water quality; and (8) habitat quality to assess the condition of the fishery. Based on these measures and based on the Fish and Game Code definition of "fish"⁶, the District's biologist considered all of Bear Creek's fishery to be in good condition, even though the upper reach was not supporting a self-sustaining trout population. The District argued that the reach of Bear Creek upstream of the Cub creeks should not be managed for trout. The District argued that the fishery in this reach should be considered to be in good condition because it supports other "fish" in good condition, such as crayfish and prickly sculpin.

Below the Cub creeks, the majority of flows come from sources other than dam releases. The data suggest that in late summer of 1993, more than seventy percent of the flow in Bear Creek below the Cub creeks was from accretions and tributary inflows. During drought periods, flows from the dam become more important to the trout fishery below the Cub creeks as the tributary flows and accretions decrease.

While the upper 1.2 miles (upper reach) of Bear Creek above West Cub Creek adequately supports species requiring less flow than

⁶ "Fish" is defined at Fish and Game Code section 45 as meaning "wild fish, mollusks, crustaceans, invertebrates, or amphibians, including any part, spawn, or ova thereof."

trout need, it apparently does not currently support a selfsustaining trout fishery, and it is speculative whether the upper reach would be suitable for a trout fishery if more flow were provided in that reach. Although a few adult trout have been found in the lower part of the upper reach, between Fish Canyon and West Cub Creek, there is no evidence that trout reproduced in that reach during 1992 and 1993. Above Fish Canyon, planted trout have not survived. Additionally, several rock structures and boulder fields in the upper reach apparently act as barriers to upstream migration of trout.

The parties recommend several different instream flows to be maintained at the weir below Bear Valley Dam. Actual flows have varied. Between 1977 and 1986, the average flow varied from 1.21 cfs to 42.80 cfs. Between September 1986 and December 1988 the average flow was 0.088 cfs. In 1990, the average flow was 0.094 cfs, although the District intended to release 0.106 cfs. In 1989, DFG required a release of 0.106 cfs under a stream alteration agreement (Fish and Game Code section 1601) in connection with repairs to the dam, but that agreement has since expired. The District recommends maintaining 0.106 cfs, and argues that it is adequate.

Cal-Trout's final recommendation is to maintain 2 cfs on an interim basis until additional studies are done. According to Cal-Trout, the 2 cfs is ten percent of the long-term median inflow from the watershed above the dam. Cal-Trout said there could be a higher flow in wetter years and a lower flow in drier years. DFG recommends a minimum flow of 1.2 cfs, which is equal to the flow below West Cub Creek in 1991 and 1992. The fishery below West Cub Creek was in good condition in 1991 and 1992.

Cal-Trout requested that the SWRCB additionally require flushing flows during the spring. Flushing flows apparently are beneficial to habitat maintenance in Bear Creek because they can reduce the density of riparian vegetation and move fine sediments which could interfere with trout spawning and rearing habitat.

The amount, duration, and velocity of flows needed to produce these benefits is unclear. Since the District's operational policy will result in a fuller reservoir, there will be spills or high releases from time to time for flood control. These spills or high releases will produce the benefit of flushing flows. Therefore, no flushing flows are specified in this Order.

The SWRCB recommends, however, that the District consult with DFG and USFS whenever the District determines that a spill or a high volume release will occur, and cooperate to the maximum extent to manage the spill or high volume release to the greatest benefit for downstream habitat management and to minimize extreme, short duration changes in flow rates below Bear Valley Dam.

5.5 Effects of Alternative Flow Releases

The SWRCB's staff analyzed three proposals for flow releases based on the parties' recommendations: (1) Cal-Trout's recommendation to release 2.0 cfs in all seasons of all years; (2) DFG's recommendation that the minimum release be 1.2 cfs; (3) The District's recommendation that the release be 0.1 cfs in all seasons of all years.

Additionally, SWRCB's staff analyzed a release rate requiring maintenance of 1.2 cfs in Bear Creek measured immediately downstream of the confluence with West Cub Creek in all years, with a minimum release of 0.3 cfs. The 0.3 cfs minimum release was the approximate flow at the weir downstream of Bear Valley Dam in the summer of 1993, when the sculpin and crayfish in the upper reach of Bear Creek were in good condition.

As explained above, the District's proposed release rate apparently does not maintain a trout fishery in the reach above the Cub creeks in good condition, and during dry years does not maintain the Bear Creek fishery above the confluence with North Fork Bear Creek in good condition. DFG's proposed release rate would supply the minimum flow recommended by DFG to all of Bear Creek. The staff-generated instream flow alternative would

supply the DFG recommended flow downstream of West Cub Creek. Cal-Trout's proposal would protect riparian habitat and fish populations better than DFG's proposal.

Method of Analysis of Effects on Lake Levels 5.5.1 The District and the City produced the results of a computerized hydrological reservoir operation model in which it was assumed that the releases for instream flows would be (1) 6.0 cfs and 8.0 cfs plus flushing flows of 40 cfs (attributed to Cal-Trout proposal) or (2) 3.5 cfs plus flushing flows of 40 cfs (attributed to DFG proposal). Their results indicated that the assumed releases would require more water than historical inflow to the lake, substantially shrink the size of the lake, sometimes empty the lake, and release water under the rights of Mutual. The District and the City did not provide either their formulae or an electronic copy of the computer model; nor did they explain all of their assumptions in formulating and running the model. They declined to produce model results with releases for instream flows of 1.0 cfs and 2.0 cfs. In the absence of having the model in the record including its mathematical formulae, a full verification of its results, and an explanation of the assumptions used, the hydrological evidence produced by the District and the City are of little value in analyzing the lower releases considered in this Order.

Cal-Trout produced a model on rebuttal, and provided results with releases for instream flows of 1.0 cfs and 2.0 cfs, as requested by the SWRCB. According to Cal-Trout's model, the 1.0 and 2.0 cfs releases would never empty the lake; the average surface elevation would stay above 64.0 feet, and mean monthly drawdown would be 0.12 feet per month; there would be increased operational flexibility to minimize evaporation and spillage; and there would be no significant impact on recreational or fish and wildlife uses, water levels, or the economy.

Because the District produced neither the results of flow releases in the range the SWRCB was interested in analyzing nor

the documentation for its hydrological model, and because the Cal-Trout model needed verification, the SWRCB staff performed their own analysis to evaluate the effects of alternative releases.⁷ The method of calculation is as follows:

- (1) The staff divided the 79-year historical precipitation record for the period October 1 to April 30⁸ into three year types: wet (25 percent), normal (50 percent), and dry (25 percent). The staff reviewed both three year-type and five year-type hydrology classification systems and used the three year-type classification because this method requires fewer computations and produces results during the dry years which are very similar to the dry year results using five year types.⁹
- (2) The model calculates the end-of-month storage in Big Bear Lake using a hydrologic formula as follows:

Adjusted end-of-month storage = previous end-of-month storage + calculated unimpaired flow - instream flow release rate - District demands - releases to Mutual evaporation losses

The staff used the data produced by District's simulated model runs for calculated unimpaired flow, District demands, releases to Mutual, and calculated evaporation loss rates. (BBMWD/CITY 7-2, 7-3, 7-4, 7-5, 7-6, and 7-7) The staff used historical precipitation data and end of month storage data from the Big Bear Watermaster reports. Additionally, the staff used the following formulae:

⁷ The method used for these calculations, since the calculations were performed on a computer, is called a model, but it is essentially like a conventional, manual calculation method.

⁸ Approximately 90 percent of the total annual precipitation at Big Bear Lake occurs during this period.

⁹ If five water year types were used, they would be divided equally, with dry years occurring 20 percent of the time. A dry year using three year types averages 21.39 inches of precipitation while a dry year using five year types averages 20.55 inches of precipitation. Estimated evaporation losses = evaporation loss rate x lake surface area;

Derived surface area = 26.0139 x adjusted end-of-month storage ^{0.423};

Adjusted staff gage elevation = $2.1702 \times \text{adjusted end-}$ of-month storage ^{0.313}.

(3) The staff assumed:

- that the District's current operation policy would continue; i.e., no release of water for Mutual when the lake is at or below 4 feet below full (i.e., at staff gage elevation 68.33);
- for the staff-generated alternative that 1.2 cfs would be released during a dry year; 0.5 cfs would be released during a normal year; 0.3 cfs would be released during a wet year.¹⁰

Using this method, the SWRCB staff calculated the effects of each of the four alternative release rates on the water levels in Big Bear Lake. The following table summarizes the results.

ALTERNATIVE RELEASE RATES	AVERAGE END-OF-MONTH STORAGE (acre-feet)	AVERAGE END-OF-MONTH SURFACE AREA (acres)	AVERAGE STAFF GAGE Blevation (feet)
Cal-Trout - (2.0 cfs)	52,386	2,548.1	64.41
DFG - (1.2 cfs)	54,326	2,595.9	65.34
District - (0.1 cfs)	56,930	2,656.0	66.48
Staff - (1.2 cfs below West Cub Creek)	55,470	2,623.2	65.85

SUMMARY OF MODEL RUN RESULTS

When the lake is full, the staff gage elevation is 72.33 feet. This table shows that all four of the alternative release rates would keep the average level of Big Bear Lake above 62.33 feet on

¹⁰ The staff-generated alternative was evaluated using information in the hearing record pertaining to flow readings below Bear Valley Dam. This information was used to estimate the releases needed to maintain 1.2 cfs below West Cub Creek. The assumed releases are the best estimate for maintaining 1.2 cfs.

the staff gage.¹¹ The Board's staff also calculated the number and frequency of months in the 624-month historical record during which the lake would have been below different staff gage elevations under each of the four alternative release rates. The following table shows the results of this calculation, expressed in percent of months below the specified lake level on the staff gage.

ALTERNATIVE RELEASE RATES	ELEVATION 72.33 FT. (FULL)	ELEVATION 67.33 PT. (-5')	ELEVATION 62.33 FT. (- 10')	ELEVATION 57.33 FT. (- 15')	ELEVATION 52.33 FT. (-20')
Cal-Trout - (2.0 cfs)	39.10%	29.65%	17.15%	7.37%	6.73%
DFG - (1.2 cfs)	40.71%	34.94%	14.10%	6.41%	3.85%
District - (0.1 cfs)	46.96%	34.62%	13.78%	4.65%	0.00% •
Staff Alternative - (1.2 cfs below West Cub Creek)	41.67%	37.82%	12.34%	6.25%	1.92%

SUMMARY OF FREQUENCY BELOW SELECTED LAKE LEVELS, IN PERCENTAGES OF MONTHS

This table shows that, compared with the District's proposal, Cal-Trout's proposal would reduce the frequency of the lake being full to 5 feet below full by 7.86 percent, and 5 to 10 feet below full by 4.97 percent, with corresponding increases in frequency of lower lake levels. DFG's proposal would reduce the frequency of the lake being full to 5 feet below full by 6.25 percent, and would increase the frequencies of the lake being (1) 5 to 10 feet below full by 0.32 percent, (2) 10 to 15 feet below full by 0.32 percent, (3) 15 to 20 feet below full by 1.76 percent, and (4) more than 20 feet below full by 3.85 percent of the time. Stated another way, the lake level would be above 62.33 feet, or 10 feet below full, 68.75 percent of the time under Cal-Trout's proposal and 75.65 percent of the time under DFG's proposal.

¹¹ The critical level for maintaining recreational opportunities on the lake is approximately ten feet below full. The reservoir is ten feet below full when it is at 62.33 feet on the staff gage.

Under the District's proposal, the lake level would be above 62.33 feet 81.58 percent of the time. Under the staff-generated alternative, the lake level would be above 62.33 feet 79.5 percent of the time.

5.5.2 Effect of Alternatives on Lake Recreation

The District provided an analysis of the economic effect of different lake levels. The analysis shows, with reference to pre-1977 operations, that the lake levels have affected the uses of the lake, and that in turn the available lake uses affect the local economy. In general, a high lake level in summer means that more tourists will spend money in the area, supporting the local economy. The area also attracts numerous visitors in the winter, for skiing in the ski areas adjacent to the lake. The population of Bear Valley in 1990 was 14,127, an increase of 28 percent since 1980. Almost all employed people in the local area are supported by tourism. The businesses include recreational businesses, lodging, and retail. Lodging includes 1,290 rooms with a 39 percent average occupancy rate. Annually, visitors spend approximately \$6.7 million in the area. According to Cal-Trout, approximately 94 percent of the spending is during the skiing season.

The lake level can affect recreation on the shoreline. There is a lack of usable beach and shoreline when the lake is full. Shoreline use increases as the lake level falls, until the lake is six feet below full. At six feet below full, the distance between access points and the lake shore increases, particularly on the shallower east end of the lake. The south shore marinas have to relocate when the lake level is more than five feet below full. When the lake level is more than ten feet below full, both the south and north shore marinas move their facilities to deeper water. Additionally, on the south shore some private docks are beached and some are moved to deeper water. Except on the east end of the lake, public boat ramps remain operable at 10 feet below full. At 20 feet below full, some north and south marinas are still able to move to deeper water, but 60 percent of

the private docks are out of operation and only the west boat ramps remain in operation.

In the winter, the ski areas obtain water from the lake to manufacture snow unless the lake level drops more than 18 feet below full. Under Cal-Trout's proposal, they could manufacture snow in approximately 93.27 percent of the years, and under DFG's proposal they could manufacture snow in approximately 96.15 percent of the years. Under the District's proposal, they can manufacture snow in approximately 100 percent of the years. Under the staff-generated alternative, they will be able to manufacture snow in approximately 98.08 percent of the years. During the winter, lake levels apparently do not affect recreation unless the ski resorts are unable to manufacture snow, since the lake is covered by snow and the recreational activities center around skiing.

The lake loses surface area as the lake level falls. This reduces boating space. At five feet below full, the lake surface is reduced by 240 acres (8 percent), and the surface area for higher speed boating is reduced by 300 acres (12 percent). At ten feet below full, the surface area is reduced by 520 acres (17 percent) and the area for higher speed boating is reduced by 670 acres (25 percent). Lower lake levels result in further acreage reductions.¹²

5.5.3 Effect of Alternatives on Fish and Wildlife Uses of the Lake

The District and the City expressed concern that changes in lake level because of instream releases to Bear Creek could have adverse effects on bald eagles, which live in the Big Bear Lake area during the winter. The hearing record contains no evidence of any significant relationship between lake level and the number of bald eagles that overwinter in the area. Nor is there

¹² On the other hand, evaporation losses from the lake are reduced at lower lake levels.

evidence that changes in the lake level will have significant effects on the lake's fish populations, which are a food source for the eagles. Over the eight years of available data, no obvious pattern of eagle use was apparent; the eight years included several years in which the lake was drawn down at least fourteen feet below full. The Forest Service witness testified that there is no correlation between lake level and eagle abundance or ability to feed. The eagle abundance depends on numerous factors that include lake levels, winter temperatures, number of sunny days, and winds. The Forest Service witness testified that while draining the lake for extended periods would have an adverse impact by removing waterfowl habitat, it was uncertain whether intermediate levels would have an adverse effect. Since bald eagles eat primarily fish, ducks, and other waterfowl, the Stanfield Marsh area is not critically important to eagle feeding. The waterfowl and the eagles move to adjacent shallow water of the lake when the marsh is dry or nearly dry.

The Stanfield Marsh is an area covering about 145 acres at the east end of Big Bear Lake. The marsh starts to dry when the lake is eight feet below full. The marsh is used by white pelicans and wintering eagles. A drop in lake level could subject the marsh to more frequent freezing, limiting the use by waterfowl. Further, lake fluctuations could expose species of special concern, such as the two-stripe garter snake, to predators for short periods.

Apparently fluctuations in the lake levels do not have substantial adverse effects on fish, waterfowl, and other wildlife. Therefore, the SWRCB finds that there will be no significant impact on these uses as a result of implementation of any of the analyzed alternatives.

5.5.4 Considerations in Setting an Instream Flow The recommendation of the Department of Fish and Game was helpful in determining the needs of the Bear Creek fishery. The Department of Fish and Game is a trustee agency for fish and

wildlife, and has both the primary expertise of the State in dealing with fish and wildlife issues and the primary responsibility for interpreting the Fish and Game Code. The SWRCB is required to give great weight to Fish and Game's judgment with respect to fish and wildlife needs. (<u>Bank of</u> <u>America v. State Water Resources Control Board</u> (1974) 42 Cal.App.3d 198, 212, 116 Cal.Rptr. 770; see Water Code Sections 1243 and 1257.5.) This does not mean that the SWRCB must accept Fish and Game's judgment, but the weight of the evidence must overcome the weight of Fish and Game's evidence before the SWRCB will reject it.

The current releases are not adequate to maintain the trout in Bear Creek in good condition, particularly in drier years. In drier years, releases become important downstream of West Cub Creek. A higher rate of release than the current rate is necessary to maintain the existing fish in good condition. Maintaining the fish in good condition is critical to protecting the public trust uses downstream of the dam and it is a legal obligation of the District under Fish and Game Code section 5937.

Although the SWRCB is not obliged to strictly enforce section 5937 in this case, it is responsible to ensure reasonable protection for public trust uses. As discussed above, <u>California</u> <u>Trout, Inc.</u>, 255 Cal.Rptr. 184, 208 suggests that maintaining fish in good condition as required by section 5937 is reasonable as a matter of law. A release that is too high, however, could be unreasonable because of adverse effects on other beneficial uses, including other recreational, environmental, or fish and wildlife uses.¹³ Under extreme conditions, a too-high release could have adverse effects on the Bear Creek fishery by depleting the lake's supply of water to a level at which there was not

¹³ The SWRCB does not need to decide whether section 5937 is a legislative determination of reasonableness in this case; nor does the SWRCB need to decide whether the reasonableness doctrine would allow the SWRCB to authorize flows under the public trust doctrine that do not fully satisfy section 5937. The flows ordered in this case are reasonable and they also fully satisfy section 5937.

enough water to maintain the instream flow. The issue is what release rate will both achieve enough protection to maintain the fishery in Bear Creek and at the same time avoid impairing the beneficial uses of Big Bear Lake. There is a scarcity of data and studies to determine the benefits of different flow releases on the creek during different year types. The 2.0 cfs release Cal-Trout recommended likely would maintain the Bear Creek fishery. The DFG recommended that the absolute minimum release¹⁴ should be 1.2 cfs.

While more flow might produce more stream fishery benefits, it is uncertain how much benefit will occur; further studies and actual experience with this flow level are needed before the relative fishery benefits can be determined more accurately.

The recreational benefits of the lake are highly important to the local economy and reductions in recreational lake use should be minimized. Nevertheless, the lake can be drawn down some distance before summer recreation is significantly impacted. Further, more than 90 percent of recreational dollars are spent in the winter, when lake levels are less important. Snow-making can continue so long as the lake stays above 18 feet below full.

As proposed by the staff generated alternative, this Order requires releases from Bear Valley Dam adequate to maintain an instream flow in Bear Creek below West Cub Creek of 1.2 cfs all year, with a minimum instream flow of 0.3 cfs measured at the weir below Bear Valley Dam. This is the minimum flow which the evidence indicates is likely to maintain the fish in Bear Creek below West Cub Creek in good condition. The 0.3 cfs minimum flow required just below Bear Valley Dam should be sufficient in many months, when combined with accretion and tributary flows from the

 $^{^{14}\,}$ The SWRCB interprets DFG's reference to "release" as meaning the instream flow.
Cub creeks, to meet the 1.2 cfs requirement at a measuring point in Bear Creek immediately below West Cub Creek.

The 0.3 cfs minimum flow also should provide more stabilized conditions for the fish living in Bear Creek above the Cub creeks. The SWRCB finds that this Order will provide enough flow in upper Bear Creek to keep in good condition the fish that are present there, such as sculpin and crayfish. The flows required by this Order are not intended to support trout above Fish Canyon, because trout apparently (1) are absent from this area and (2) cannot migrate past a barrier at Fish Canyon.

The reach between Fish Canyon and the Cub creeks contains a few adult trout which will be supported by the required flows. The flows occurring in this reach will be substantially increased, especially during summer months in drier years, compared with current conditions. This area, however, may not be appropriate for all life stages of trout. The habitat is limited, with narrow, rocky terrain. Further, the evidence in the hearing record is extremely limited with respect to the trout populations and available habitat in this reach, and substantial evidence does not support the establishment of flow requirements that might or might not support trout reproduction in this reach.

Based on the evidence and the above analyses of the effects of meeting these instream flows on Big Bear Lake and on the recreational uses in Bear Valley, these instream flows will provide both reasonable protection for the public trust uses in Bear Creek and reasonable protection of the recreational, environmental and fish and wildlife uses and other uses of Big Bear Lake and Bear Valley, within the meaning of California Constitution, Article X, section 2. These flows also are low enough so that they will not interfere with Mutual's ability to divert this water downstream for its consumptive uses.

To determine whether these instream flows are adequate and effective, this Order requires that the District conduct a study

in consultation with the DFG and the Forest Service to determine the effect of the required releases and the effects of higher and lower releases. The monitoring required in this Order is the minimum necessary, and may be supplemented. The results of the study shall be reported to the SWRCB.

The SWRCB will retain continuing authority over the instream flow requirements, and any party may in the future petition the SWRCB for a temporary or permanent change in the streamflow required by this Order. The SWRCB will have discretion whether to accept or reject any petition after reviewing its contents. The instream flow requirements in this Order will remain in effect unless evidence received in a future proceeding establishes that a different streamflow is necessary either to protect public trust uses or to ensure that water is diverted and used in accordance with California Constitution, Article X, section 2.

5.5.5 Potential Effects of Unrelated Actions on Lake Level As noted in Sections 3.6 and 3.7, above, ground water wells are used to supply domestic water in Bear Valley. These wells are extracting water in excess of the sustained yield of the ground water basin subareas. After it is used, the water obtained from ground water is treated and discharged to Lucerne Valley, outside the Bear Valley watershed.

The ground water extractions have the potential to reduce the level of water in Big Bear Lake. The streams tributary to Big Bear Lake and the lake itself may contribute to recharge of the ground water. If recharge occurs from either the tributaries or the lake itself, water either will not reach the lake or will be extracted from the lake to the ground water basin subareas. This could reduce the lake level significantly if the communities in Bear Valley do not minimize losses because of consumptive uses. The loss of water to consumptive uses could affect lake levels substantially more than this Order. The Bear Valley communities may in the future have to implement measures to minimize water

losses; the available measures could include conservation and treating and reusing the wastewater within Bear Valley.

6.0 ENVIRONMENTAL CONSIDERATIONS

6.1 <u>Categorical Exemption from California Environmental</u> <u>Quality Act</u>

This Order is adopted for the purpose of enforcing public trust protections of the fishery in Bear Creek. Under Fish and Game Code section 5937 and the public trust doctrine, the District and Mutual already are obligated to release enough water to maintain the fishery in good condition. Thus, the function of this Order is to define the amount of water that is necessary for this purpose. The above discussion explains how the SWRCB arrived at the instream flow releases required by this Order. Determination of the required releases was tempered by the reasonableness doctrine in California Constitution, Article X, Section 2 and was balanced against protection of other recreational environmental, and fish and wildlife uses which exist in Bear Valley and Big Bear Lake.

Where a regulatory agency such as the SWRCB takes an action to enforce a law, general rule, standard, or objective, that action is categorically exempt under Title 14, California Code of Regulations, Section 15321(a)¹⁵ from the requirement for preparation of environmental documents unless the action falls within an exception. The exceptions are listed in section 15300.2. The only exception which could apply in a case such as this is the one in subdivision (c). It provides:

"A categorical exemption shall not be used for an activity where there is a reasonable possibility that the activity will have a significant effect on the environment due to unusual circumstances."

It is unclear what constitutes a "reasonable possibility" that compliance with this Order will have a significant adverse effect

¹⁵ This action also qualifies for an exemption under sections 15307 (protection of natural resources) and 15308 (protection of the environment).

on the environment. Public Resources Code section 21082.2 requires preparation of an EIR if there is substantial evidence, in light of the whole record before the agency, that a project may have a significant adverse effect on the environment. The existence of public controversy in itself does not require the preparation of an EIR. Substantial evidence "shall include facts, reasonable assumptions predicated upon facts, and expert opinion supported by facts." (Pub. Res. Code § 21082.2 subd. (c).) Substantial evidence, according to this subdivision, does not include argument, speculation, unsubstantiated opinion or narrative, evidence which is clearly inaccurate or erroneous, or evidence of social or economic impacts which do not contribute to, or are not caused by, physical impacts on the environment.¹⁶ ٤.

The record does not contain substantial evidence that the releases required by this Order will have a significant adverse effect on the environment. As explained in more detail in Section 5 of this Order, the District and the City provided evidence regarding the effects of higher release rates and argued against any change in release rates, but did not supply requested analysis regarding the release rates considered in this Order. During the hearing, the hearing officer made all parties aware of the SWRCB's interest in reviewing the effects of 1.0 cfs and 2.0 cfs release rates, and requested model runs analyzing these release rates. No substantial evidence was provided showing that the 1.0 cfs or 2.0 cfs release rates would have a significant adverse effect. Cal-Trout provided evidence which upon analysis shows that there will not be a significant adverse effect.

The evidence shows that the changes in lake elevation because of this Order will not be significantly greater than the changes in

¹⁶ It should be noted that the "fair argument" test using the substantial evidence standard in section 21082.2 has been applied only in deciding whether to prepare an EIR or a negative declaration. (<u>Laurel Heights Imp. Assn.</u> v. <u>Regents</u>, 94 Daily Journal D.A.R. 70, 76 (1994) (Laurel Heights II).) Where an exemption is involved, a less stringent test may be appropriate; the "reasonable possibility" language implies that an agency should weigh the evidence to decide whether an EIR must be prepared instead of relying on the exemption.

lake elevation under the current regime during the three year types. In turn, the effects on both the local economy and the recreational, environmental, and fish and wildlife uses of Big Bear Lake and Bear Valley will be insignificant. Additionally, the great weight of the evidence favors using the exemption. Therefore, there is no reasonable possibility that this Order will have a significant adverse effect on the environment.

6.2 Endangered Species Act Considerations

The District argued that a reduction in the surface area or volume of Big Bear Lake could have possible adverse effects on bald eagles. A number of bald eagles overwinter at Big Bear Lake. Their principal food sources are fish that they can obtain from the lake and migratory waterfowl. The bald eagle is listed as endangered under both the California Endangered Species Act (Fish and Game Code §§ 2050 to 2098) and the federal Endangered Species Act (16 USCA §§ 1531 to 1544).

Under Fish and Game Code section 2090, each state lead agency shall consult with the DFG to ensure that any action by the state lead agency is not likely to jeopardize the continued existence of any endangered or threatened species. A "state lead agency" is defined as the state agency, board, or commission which is a lead agency under CEQA. Because this Order is categorically exempt from compliance with CEQA, the SWRCB is not a state lead agency, and is not required to consult with the DFG under section 2090. With respect to the federal Endangered Species Act, no consultation is required because no federal action is necessary in this case. The federal act only requires consultation where a federal agency is taking an action. (See 16 USCA § 1536.)

Further, as discussed above, implementation of this Order is very unlikely to have any adverse effect on the bald eagles, and certainly would not have a discernible effect. The evidence shows that the experts cannot correlate bald eagle populations with lake levels. A combination of factors apparently determines whether the eagles will spend the winter at Big Bear Lake. While

this Order will cause minor changes in lake level, it will not cause the lake to go dry. At the more likely intermediate lake levels, there is no indication that the eagles would avoid Big Bear Lake or be adversely impacted. Consequently, this Order will not have adverse effects on bald eagles. Since there will be no adverse effects on the bald eagles, this Order does not involve a taking of the eagles, and does not require additional measures to obtain authorization from either DFG or the United States Fish and Wildlife Service.

7.0 CONCLUSIONS

Based on the foregoing, the SWRCB concludes that:

- Both the District and Mutual are properly respondents in this proceeding, and this Order may properly modify the water rights of either or both of these parties.
- 2. This Order places a joint obligation on both the District, as the owner of Bear Valley Dam and as a holder of an interest in the water rights in Big Bear Lake, and on Mutual, as the water right holder. The SWRCB expects that releases of water for the fishery will be accounted first to water in the District's lake account and then to Mutual, in accordance with the 1977 stipulated judgment.
- In most years the fishery is in good condition downstream of West Cub Creek, but could benefit from additional flows, particularly in dry years.
- 4. The appropriate minimum instream flow to provide reasonable protection for the trout fishery in Bear Creek below West Cub Creek is 1.2 cfs.
- 5. This Order does not have an expiration date, but this Order retains continuing authority to review the instream flow requirements. The District shall consult with the DFG and the Forest Service to develop a workplan and conduct studies

to determine whether the required flows will keep the trout fishery in good condition. The District shall report to the SWRCB regarding its studies.

ORDER

IT IS HEREBY ORDERED that:

- 1. a. The Big Bear Municipal Water District and the Bear Valley Mutual Water Company shall jointly or severally release enough water from Bear Valley Dam and Big Bear Lake to maintain a minimum flow of 1.2 cubic feet per second as measured at a measuring device to be located in Bear Creek no more than 500 feet downstream of the confluence with West Cub Creek. The flow rate shall be calculated as a seven-day running average; however, the Big Bear Municipal Water District shall ensure that flow shall not be less than 1.0 cubic feet per second, calculated on a daily (24-hour) average.
 - b. The release from Bear Valley Dam and Big Bear Lake shall not be less than 0.3 cubic feet per second as measured by a measuring device located approximately 300 feet downstream of the toe of Bear Valley Dam.
 - c. Reductions in releases, as measured 300 feet downstream of the toe of Bear Valley Dam, for fishery protections that are required by this Order shall be made gradually, at no more than 0.2 cubic feet per second per day, to minimize stranding of fish.
- 2. Pursuant to California Water Code sections 100 and 275 and the common law public trust doctrine, the State Water Resources Control Board retains continuing authority over the rights to water impounded by Bear Valley Dam in Big Bear Lake to modify the instream flow requirements in Paragraph 1 of this Order. No action will be taken pursuant to this paragraph unless the State Water Resources Control Board

determines, after notice to affected parties and opportunity for hearing, that such action is consistent with California Constitution Article X, section 2; is consistent with the public interest; is consistent with the public trust doctrine.

- 3. a. Within six months of the adoption of this Order, the Big Bear Municipal Water District shall submit for approval of the Chief of the Division of Water Rights a plan showing the types, locations and construction schedule for installation of gages which are capable of continuously measuring flows required by this Order. The Big Bear Municipal Water District shall obtain all necessary authorizations for installation and operation of the gages. The Big Bear Municipal Water District shall monitor instream flows at (1) a measuring device located approximately 300 feet below the Bear Valley Dam and (2) a measuring device in Bear Creek to be installed within 500 feet downstream of the confluence with West Cub Creek. Said measuring devices shall be properly maintained.
 - b. The Big Bear Municipal Water District shall maintain a continuous record of the required flows sufficient to document compliance with the terms of this Order and shall make such record available to the State Water Resources Control Board and to other interested parties upon request of the State Water Resources Control Board.
 - c. The Big Bear Municipal Water District shall submit a report by December 31 of each year that verifies compliance with the terms of this Order for the previous water year ending September 30. Documentation for the report shall be submitted to the Division of Water Rights on personal computer disc format. The computer system compatibility shall be designated by the Chief of the Division of Water Rights.

- d. The Big Bear Municipal Water District shall conduct studies to determine whether the measures required by this Order maintain the trout fishery in Bear Creek in good condition. The Big Bear Municipal Water District shall, before commencing studies, consult with the Department of Fish and Game and the U.S. Forest Service, and prepare a workplan that defines the scope, responsible parties, and time schedule for the studies. The workplan shall be submitted to the Chief of the Division of Water Rights for approval no later than six months after the effective date of this Order.
- 4. The Chief, Division of Water Rights, is delegated authority to authorize variances in the instream flows for the purpose of either (1) conducting studies to determine whether the minimum instream flows or some other instream flows will provide reasonable protection for the trout fishery in Bear Creek or (2) to avoid unreasonable impacts to the lake level or instream flows. The Big Bear Municipal Water District or the Bear Valley Mutual Water Company may request a variance by filing a written request and sending copies of the request to the Department of Fish and Game, the United States Forest Service, and California Trout, Inc. Any variance may be subjected to terms and conditions, and shall remain in effect for a period not to exceed one year. A variance may be authorized only if it will have no unreasonable effect on the environment. If environmental documentation is necessary, the party requesting the variance shall prepare such documentation.
- 5. The Big Bear Municipal Water District shall consult with the Department of Fish and Game and the U.S. Forest Service whenever the Big Bear Municipal Water District determines that a spill or a high-volume release will occur. Consistent with time and operational constraints, the district shall manage the spill or high volume release to the greatest benefit for downstream habitat management and to minimize

extreme, short duration changes in flow rates below Bear Valley Dam.

CERTIFICATION

The undersigned, Administrative Assistant to the Board, does hereby certify that the foregoing is a full and correct copy of an order duly and regularly adopted at a meeting of the State Water Resources Control Board held on February 16, 1995.

AYE: John P. Caffrey James M. Stubchaer Marc Del Piero Mary Jane Forster John W. Brown

NO: None

ABSENT: None

ABSTAIN: None

n March

Administrative Assistant to the Board

STATE WATER RESOURCES CONTROL BOARD DIVISION OF WATER RIGHTS

0

STAFF REPORT

BIG BEAR LAKE AND BEAR CREEK

2.5

SAN BERNARDINO COUNTY

DECEMBER 1994

• • B •

TABLE OF CONTENTS

/.

2

		PAGE
LIST	OF FIGURES	iii
LIST	OF TABLES	iii
I.	BACKGROUND A. INTRODUCTION B. CAL-TROUT'S COMPLAINT C. STAFF INVESTIGATION D. SWRCB WATER RIGHT HEARING 1. TOUR AND POLICY SESSION 2. EVIDENTIARY SESSIONS	1 2 2 4 4
II.	DESCRIPTION OF WATER RIGHTS A. GENERAL B. BEAR VALLEY MUTUAL WATER COMPANY'S WATER RIGHTS C. DISTRICT'S WATER RIGHTS	5 5 6 8
111.	OPERATION OF BIG BEAR LAKE A. GENERAL B. DISTRICT'S DAM OPERATIONAL CRITERIA C. INSTREAM FLOW REQUIREMENT D. CONSUMPTIVE USE	8 9 9 9
IV.	HYDROLOGYA. BEAR VALLEY'S SURFACE HYDROLOGYB. BEAR VALLEY'S SUB-SURFACE HYDROLOGYC. PRECIPITATIOND. UNIMPAIRED RUNOFFE. RESERVOIR'S STORAGE LEVELSF. FLOW RELEASE INTO BEAR CREEKG. GROUNDWATERH. WATER CONSERVATIONI. RECLAMATION	9 9 10 11 12 13 14 16 17
۷.	HYDROLOGIC MODELS A. GENERAL B. DIVISION'S MODEL	18 18 19
VI.	RECREATIONAL AND PUBLIC TRUST USES OF BIG BEAR LAKE AND BEAR CREEK B. BIG BEAR LAKE'S RECREATIONAL VALUE C. BEAR CREEK'S RECREATIONAL VALUE D. BIG BEAR LAKE'S WILDLIFE VALUE F. BEAR CREEK'S WILDLIFE VALUE	21 21 22 23 23 23 23

TABLE OF CONTENTS (Continued)

•

r

.

<u>ور</u>

VII.	RELA A.	TIONSHIP BETWEEN LAKE LEVEL AND LAKE USE	24 24
	Β.	RECREATIONAL USE IMPACT	25
	C.	FACILITIES AND ACTIVITIES IMPACTS	26
		1. RECREATION	26
		2. BOATING	27
		3. SHORE USE	27
VIII.	RELA	TIONSHIP BETWEEN LAKE LEVEL AND LAKE ENVIRONMENTAL IMPACTS	28
	Α.	EFFECTS ON BALD EAGLES	28
	Β.	EFFECTS ON STANFIELD MARSH	29
IX.	BEAR	CREEK FISHERY RESOURCES	30
	Α.	GENERAL	30
	Β.	BEAR CREEK BELOW WEST CUB CREEK	30
	С.	BEAR CREEK ABOVE CUB CREEKS	33
	D.	MINIMUM FLOW RATES	34
	E.	FLUSHING FLOWS.	35
	F.	DISCUSSION	35
Χ.	SUMM/	ARY, CONCLUSION, AND RECOMMENDATIONS	38
ATTACH	MENT	Α	41
APPEND	IX A	- STAFF ANALYSIS OF LAKE LEVEL IMPACTS	

LIST OF FIGURES

PAGE

PAGE

1.	General Location Map	1
2.	Bear Creek Watershed Map	1
3.	Santa Ana River-Bear Creek System Schematic	6
4.	Schematic of Water Master Accounts in Big Bear Lake	8
5.	Bear Valley Watershed Boundary Map	10
6.	Bear Valley Hydrologic Subunit Map	10
7.	Bear Valley Geologic Cross-Section Map	10
8.	Historic Capacity/Staff Gage Comparison Hydrograph	41
9.	Groundwater Well Location Map	14
10.	Big Bear Lake Recreation Facilities Map	22
11.	Bear Creek Access Route Map	23
12.	Estimated Baseline of Lake Related Spending and Employment	25

LIST OF TABLES

1. Precipitation Summary 11 2. Unimpaired Flow Data 41 3. Unimpaired Flow Summary 12 4. End-Of-Month Storage Data 41 5. Lake Elevation/Capacity/Area Data 41 6. End-Of-Month Storage Summary 13 7. Water Master Lake Release Data 41 8. Monthly Bear Valley Dam Flow Release Summary 14 9. Groundwater Well Data 41 10. Alternative Impact Summary 20 11. Alternative Impact Summary (min. lake levels and areas)...... 20 Alternative Impact Summary (max. lake level and area impact..... 21 12. 13. Frequency Evaluation Summary 21 14. Recreational Affects Summary 28 15.

STAFF ANALYSIS

BIG BEAR LAKE AND BEAR CREEK WATER RIGHT HEARING COMPLAINT BY CALIFORNIA TROUT INC. AGAINST BIG BEAR MUNICIPAL WATER DISTRICT; SAN BERNARDINO COUNTY

I. BACKGROUND

A. <u>Introduction</u>: The purpose of this staff analysis is to provide a summary and evaluation of the testimony and evidence presented during the water rights hearing held by the State Water Resources Control Board (SWRCB) regarding the diversion and use of water from Big Bear Lake and Bear Creek in San Bernardino County. The hearing was held in response to a complaint filed by California Trout, Inc. (Cal-Trout), against Big Bear Municipal Water District (District). Figure 1 shows the location of Big Bear Lake, Bear Creek and the District.

Big Bear Lake is operated by the District. The lake is a man-made, 73,320 acre-feet (AF) reservoir located in the San Bernardino Mountains within Bear Valley. When full, the lake has a maximum surface area of 2,973 acres. Big Bear Lake is a major alpine lake that provides easy public access from urban, areas in southern California.¹ The lake and surrounding mountains provide an attractive, year-round, recreational setting for the City of Big Bear Lake's (City) principal economic base of tourism, which supports the permanent population of the City as well as other unincorporated communities located within Bear Valley (i.e., Big Bear City, Fawnskin, Moonridge, Sugarloaf).

Bear Creek and its tributaries drain a watershed containing approximately 9,000 acres located downstream of Bear Valley Dam in the San Bernardino Mountains. Downstream of Big Bear Lake's Bear Valley Dam, Bear Creek meanders in a southwesterly direction for a distance of approximately 8.75 miles to its confluence with the Santa Ana River. The creek's flow is supplemented by natural tributary flow from its main tributaries: East Cub Creek, West Cub Creek, North Fork Bear Creek, Camp Creek, Siberia Creek, Johnson Creek, and Slide Creek.² Figure 2 shows the location of Bear Creek and its major tributaries.

In 1988, the California Department of Fish and Game (DFG) designated Bear Creek as a "Wild Trout Stream" because of its excellent wild trout fishery resource which provides exceptional value due to its proximity to urban areas in southern California.³

² DFG EXHIBIT NO. 4 - Testimony of Michael Giusti, p.1.

³ Ibid., p.2.

¹ BBMWD/CITY EXHIBIT NO. 11-1 - Thomas C. Wegge, <u>Analysis of Recreation</u> <u>and Economic Impacts of Alternative Water Release Scenarios from Big Bear</u> <u>Lake</u>, September 1993, p.2-1.

•,

B. <u>Cal-Trout's Complaint</u>: On October 24, 1990, Cal-Trout filed a complaint with the SWRCB's Division of Water Rights (Division) against the District's operation of Big Bear Lake's Bear Valley Dam. The complaint alleged that the District's operation of Big Bear Lake and Bear Valley Dam provided insufficient release of water into Bear Creek from Big Bear Lake. Cal-Trout contended that the District's operation violated the "public trust" requirement to maintain Bear Creek's trout habitat in good condition as required by Section 5937 of the Fish and Game Code.⁴ Cal-Trout requested that the SWRCB require the District to release water from Big Bear Lake to provide minimum fish flows determined to be necessary to maintain Bear Creek's trout habitat in good condition.

Staff Investigation: On September 24, 1992, the Division issued a staff С. Report of Investigation based on an evaluation of the complaint issues, including comments by DFG, the District and Cal-Trout. The Division concluded that there existed a difference in expert opinion regarding the condition of Bear Creek's fish resources and flow requirements needed to maintain Bear Creek's fishery resources in good condition, and that insufficient information was available for Division staff to reach a conclusion regarding the condition of fish resources or the flow requirements.⁵ Division staff recommended that the parties enter into negotiations to reach a mutually acceptable settlement of the issues in the complaint, or that a water right hearing be held to receive evidence that would assist the SWRCB in determining whether additional measures are needed to protect fish and other public trust resources in Bear Creek and Big Bear Lake. On November 4, 1992, all parties to the complaint including Cal-Trout, DFG, the District and Division staff met in an initial attempt to discuss a negotiated settlement of the complaint. Representatives of Cal-Trout and the District also held a series of meetings in April and May 1993, in an effort to reach a negotiated settlement; however, Cal-Trout informed the Division on June 17, 1993, that the parties were unable to settle their dispute and requested that a hearing be set for this matter.

D. <u>SWRCB Water Right Hearing</u>: The parties were advised on January 7, 1993, that the Division would recommend to the SWRCB that a hearing be held during the summer of 1993 to address the outstanding issue raised by the complaint. By letters dated February 25, 1993 and March 22, 1993, the District and the City jointly requested that the hearing be held no sooner than October 1993. Cal-Trout requested by letter dated June 17, 1993, that a hearing be held after the Mono Lake water right hearing, which was originally scheduled to be held during October, November, and December 1993. On July 28, 1993, the SWRCB issued a Notice of Public Hearing notifying all parties that a hearing would be held regarding the diversion and use of water from Big Bear Lake and Bear Creek. A pre-hearing orientation tour and policy statement session were scheduled for September 29 and 30, 1993 in the City of Big Bear Lake, and an evidentiary session was scheduled for October 12 and 13, 1993 in San

⁴ SWRCB EXHIBIT NO. 1 - File 262.0 (36-01-02), Ernest Mona, <u>Report of</u> <u>Investigation</u>, September 24, 1992, Attachment A.

⁵ Ibid., pp. 18-19.

Bernardino. The following parties notified the SWRCB of their intent to appear at the water right hearing:

- . Big Bear Municipal Water District
- . City of Big Bear Lake
- . California Department of Fish and Game
- . California Trout, Inc.
- . United States Forest Service
- . Santa Ana/Mill Creek Cooperative Water Project Management Committee
- . Papoose Bay Homeowners Association

On August 13, 1993, the District and the City submitted a joint request for a time extension in the scheduled date of September 12, 1993 for the submittal of all written testimony and exhibits, because more time was needed to prepare and submit exhibits. This request was followed by Cal-Trout's August 18, 1993 objection to the time extension requested by the District and City. On August 24, 1993, the SWRCB notified all parties that the date to submit all written testimony and exhibits was extended to September 27, 1993. Following the issuance of the SWRCB's notification, DFG submitted a letter dated September 3, 1993 requesting a continuance of the hearing, based on its belief that the period between the submission date for testimony and exhibits and the actual hearing was too short for the review of new studies prepared by the District and City and for the preparation of expert responses to the information presented. DFG's request was followed by a September 14, 1993 Cal-Trout request for a continuance of the hearing. No other party objected to DFG's request for a continuance. On September 16, 1993, the SWRCB notified all parties that the hearing would be held on the scheduled dates of October 12 and 13, 1993. This notification was followed by DFG's September 22, 1993 request for a continuance of the hearing scheduled for October 12 and 13, 1993; however, on September 24, 1993, the SWRCB notified all parties of its decision to proceed with the hearing as scheduled.

On October 1, 1993 and October 5, 1993, the SWRCB received written objections from Cal-Trout and DFG, respectively, to written testimony submitted jointly by the District and City. Specifically, Cal-Trout and DFG objected to the District/City Exhibit 1-1, consisting of the "Annotated Outline of the Testimony of Roy Leidy" with supporting Exhibits 1-2 through 1-126. Both parties requested that the SWRCB move to strike the testimony from the record because the "outline" was not written testimony, but an outline of proposed testimony which, they argued, would provide an unfair advantage to the District and City. On October 4, 1993, the SWRCB notified all parties that the District and City did not submit the written testimony of Roy Leidy in accordance with SWRCB regulations (Title 23, California Code of Regulations, Section 761); therefore, the oral testimony of Roy Leidy would be continued until November 18 and 19, 1993. In addition, all parties were notified that the full written testimony of Roy Leidy must be received by the SWRCB by November 4, 1993. On October 5, 1993, Cal-Trout and DFG responded to the SWRCB's response to the earlier objection's to the written testimony of Roy Leidy by arguing that each party would be prejudiced. Cal-Trout and DFG requested that Roy Leidy's testimony be submitted on September 12, 1993, and that all other fishery experts testify on November 18 and 19, 1993. On October 7, 1993, the SWRCB denied Cal-Trout's and DFG's request.

1: <u>Tour and Policy Session</u>: On September 29, 1993, a pre-hearing orientation tour of Big Bear Lake and Bear Valley was conducted by Members of the SWRCB and staff. Representatives of all participating parties and local legislators were present during the tour. The tour included an inspection of the Bear Valley Dam, an overview of Bear Creek Canyon, and a drive around the entire perimeter of Big Bear Lake and Bear Valley with frequent stops.

Following the tour, the SWRCB heard non-evidentiary policy statements on September 29 and 30, 1993 at the City's Performing Arts Auditorium. Speakers presenting policy statements included 12 elected officials, 14 representatives of public agencies, 13 representatives of special interest groups, and 60 individuals. A total of 205 additional people attended but did not speak. Virtually all statements heard by the SWRCB during the two day session were made in support of the District and City and recommended that the SWRCB reject Cal-Trout's complaint. The SWRCB also received over 750 written comments from part-time and full-time residents of Bear Valley, which also requested that the SWRCB reject Cal-Trout's complaint.

2. <u>Evidentiary Sessions</u>: On October 12 and 13, 1993, the SWRCB received evidence from the following parties: Cal-Trout, DFG, U.S. Forest Service, District, and the City. Papoose Bay Homeowners Association submitted a Notice of Intent to Appear and submitted written testimony. Since the Association did not participate in the hearing, their testimony was not accepted into evidence. The Santa Ana/Mill Creek Water Project Cooperative Management Committee (Committee) also submitted a Notice of Intent to Appear; however the Committee did not submit written testimony or exhibits and did not participate in the hearing.

On October 7, 1993, staff contacted Mr. John Shone, Managing Director of Bear Valley Mutual Water Company (Mutual Water Company). Mr. Shone was initially identified as one of the witnesses to testify for the Committee in its original submitted Notice of Intent to Appear. By telephone contact and letter dated October 7, 1993, staff advised Mr. Shone that the SWRCB was considering joining the Mutual Water Company as a party in the hearing, and strongly urged that he or a representative of the Mutual Water Company attend the hearing.

On October 20, 1993, the SWRCB issued a Supplement to Notice of Public Hearing notifying all parties that the hearing would be continued on November 18 and 19, 1993 in San Bernardino, to hear the direct testimony of Roy Leidy, the direct testimony of the Mutual Water Company (which was joined as a party to the proceedings), and the rebuttal testimony of each party wishing to present rebuttal. The District and City were also requested to submit, by November 4, 1993, additional information pertaining to: a 1977 Final Baseline Environmental Impact Report for Lake Restoration Activities, the City's Urban Water Management Plan prepared under Water Code Section 10620 et seq., the District's hydrologic model for determining the effects of water releases on Big Bear Lake, stream flow readings below Bear Valley Dam, and information pertaining to bald eagles at Big Bear Lake. The District and City responded on October 26, 1993 to the SWRCB's request, by requesting that the SWRCB defer the submission of information pertaining the District's/City's hydrologic model until the SWRCB resolves the threshold issue of the condition of the fish in Bear Creek. On November 1, 1993, the SWRCB denied the District's and City's requests; however, by letter dated November 10, 1993, the District and City "... declined to provide the requested hydrological model ...".

At the end of the November 19, 1993 hearing session, the SWRCB announced that the hearing would be continued until December 13, 1993, to provide the Mutual Water Company a further opportunity to present additional evidence and/or cross-examine the witnesses of the other parties. On November 29, 1993, the Mutual Water Company's attorney advised the SWRCB that he wished to cross-examine only one witness, and requested that the SWRCB authorize the Mutual Water Company to take the one witness' deposition and enter the deposition into evidence in lieu of convening a formal hearing. DFG objected to using a deposition procedure. On December 2, 1993, the SWRCB issued a Notice of Continuance and Change of Location and Time, notifying all parties that the hearing would be continued on December 13, 1993 in Sacramento. The hearing was adjourned on December 13, 1993 and all parties were provided 30 days to submit their closing arguments.

II. DESCRIPTION OF WATER RIGHTS

A. <u>General</u>: In 1884, construction was completed of the original "Old Bear Valley Dam" at the western end of Bear Valley. The "Old Bear Valley Dam" was an arched dam 300-feet wide and 52-feet high; producing a storage capacity of 25,280 AF at the dam's spillway elevation of 6,723 feet above sea level.⁶ The "Old Bear Valley Dam" created a lake over five miles long which was stocked with thousands of fish from Lake Tahoe in 1887.⁷ In 1911, as a result of increasing demands for irrigation water in the San Bernardino Valley, the Mutual Water Company completed the construction of a larger Bear Valley Dam. This new 72-feet high, reinforced concrete, multiple arched dam is located approximately 300 feet downstream of the "Old Bear Valley Dam". The new dam's overflow elevation is 6,743 feet above sea level, producing a designed reservoir capacity of 72,167 AF.⁸ In 1977, a resurvey of the reservoir

⁶ SWRCB EXHIBIT No. 1 - File 262.0 (36-01-02), Ernest Mona, <u>Staff Report</u> <u>of Investigation</u>, September 24, 1992, pp. 4-5.

⁷ SWRCB EXHIBIT No. 1 - File 262.0 (36-01-02), Tourist pamphlet, 1993, p. 38.

⁸ SWRCB EXHIBIT NO. 1 - Ernest Mona, <u>Report of Investigation</u>, September 24, 1992, pp. 4-5.

resulted in a revision of the 1911 designed capacity. The reservoir's surveyed capacity is 73,320 acre-feet.⁹ The reservoir is now known as Big Bear Lake.

In 1964, the residents of Bear Valley voted to create the District for the purpose of controlling and stabilizing the water level within Big Bear Lake. On November 3, 1965, the District filed a complaint in San Bernardino Superior Court (Action No. 12905) against the Mutual Water Company. In January 1977, the lawsuit resulted in an "agreement of sale". The District acquired title to Bear Valley Dam, to the reservoir's land lying beneath the surface elevation of 6743.2 feet above sea level, and to the surface recreational rights on Big Bear Lake. Concurrently, action to adjudicate water rights in Bear Creek was filed in 1974 by the District (Big Bear Municipal Water District v. North Fork Water Company, et al, SB No. 165493), in an effort to develop a "physical solution agreement" to provide the necessary companion water supply which would make the District's lake acquisition meaningful. Under the "physical solution", the District could provide "in-lieu" water (i.e., water from wells in the San Bernardino Basin and/or State Water Project water) within the service area of the Mutual Water Company, and compensate the Mutual Water Company for the costs of production of San Bernardino Basin Water.

In 1977, a "physical solution agreement" was executed among the District, the Mutual Water Company, and the San Bernardino Valley Water Conservation District, in order to bind all interests and affected parties within the San Bernardino Valley. Because the physical solution contemplated the incorporation of its provisions in a Stipulated Judgment in the adjudication case, concurrence was also required of the "prior rights companies": North Fork Water Company, Lugonia Water Company, and Redlands Water Company. Figure 3 shows the Santa Ana River-Bear Creek system that delivers water to the Mutual Water Company and other water rights holders in the Santa Ana River System. On February 4, 1977, a Stipulation and Judgment was entered in the San Bernardino Superior Court.¹⁰ Under Section V of the Judgment, a Watermaster Committee was created to account for the water.

B. <u>Bear Valley Mutual Water Company's Water Rights</u>: After the construction of the "Old Bear Valley Dam" in 1884, it became apparent to the growers in the San Bernardino Valley, during the dry summer months of 1898, 1899, and 1900, that a higher dam providing more holdover storage was necessary at Big Bear. The growers in the San Bernardino Valley felt that it was necessary to organize a company which would control the water distribution facilities in the San Bernardino Valley ("Bear Valley System"). The company's control of the "Bear Valley System" would provide the growers with an assured water

⁹ Ibid.

¹⁰ Ibid., pp. 5-6

FIGURE 3

f,

supply and would allow them to build a higher dam at Big Bear.¹¹ At the time, the "Bear Valley System" included: 6,871 acres of land, the right to impound water at Big Bear lake, the Redlands Canal from the mouth of the Santa Ana Canyon, the Greenspot Pipeline, 50% interest in the North Fork Canal, the Highland Ditch, the North San Bernardino Pipeline, and other public and private properties.¹²

In 1903, the Mutual Water Company was organized and succeeded its predecessor companies, which included the Bear Valley Land and Water Company, the Bear Valley Irrigation Company, the New Bear Valley Irrigation Company, and the Bear Valley and Alessandro Development Company.¹³ Originally, a total of 70,559 shares of Mutual Water Company stock had been subscribed by growers in San Bernardino Valley; however, by 1909 a total of 83,527 shares were subscribed by 100% of all users who had been using water from the "Bear Valley System".¹⁴ The Mutual Water Company currently consists of 250,137 total shares of stock, which are owned by various agencies, water companies, private organizations and individuals.¹⁵ For example, the City of Redlands and the East Valley Water District own approximately 84,532 shares of the Mutual Water Company's stock, either directly as shareholders of company stock, or indirectly as shareholders in other water companies (e.g., Crafton Water Company and Redlands Height Water Company), who also own shares of Mutual Water Company stock. The District also owns 21,026 shares of Mutual Water Company stock.¹⁶

The Mutual Water Company claims to be the holder of the pre-1914 water rights for the water diverted from Bear Creek and impounded in Big Bear Lake, as well as the holder of pre-1914 water rights to divert the water in excess of prior rights agreements.¹⁷ These prior rights agreements (i.e., 1885 North Fork Agreement and 1886 Sunnyside Agreement) require the Mutual Water Company to provide specific amounts of Santa Ana River water to the North Fork Water Company and Sunnyside Division of the South Fork Ditch.

¹¹ BBMWD/CITY EXHIBIT NO. 1-48, "History of Bear Valley Mutual Water Company - 1903 Through 1983", p. 1.

¹² Ibid., p. 6.

¹³ Ibid.

¹⁴ Ibid., p. 3, 5, and 9.

¹⁵ SWRCB EXHIBIT No. 1 - File 262.0 (36-01-02), Ernest Mona, <u>Staff</u> <u>Report of Investigation</u>, September 24, 1992, p.4.

¹⁶ Ibid.

¹⁷ BBMWD/CITY EXHIBIT NO. 7-1 - Testimony of Donald Evenson, p. 1.

District's Water Rights:¹⁸ Pursuant to the February 4, 1977 Stipulation C. and Judgment among the District, the Mutual Water Company, and the San Bernardino Valley Water Conservation District, the District's five-member Board of Directors' mission is to manage Big Bear Lake to maximize its potential for public recreational uses. Accordingly, the District has acquired certain rights to the waters impounded in Big Bear Lake. Under the terms of the 1977 Judgment, the District may retain water in their lake account by providing the Mutual Water Company with alternative water supplies, or "in lieu" water. If the District provides the Mutual Water Company with "in lieu" water, the District can keep an equal amount of water in Big Bear Lake, which is credited to the District's lake account. Whenever Big Bear Lake fills, water that spills is considered as the District's water and is deducted from the District's lake account, until the lake account is zero. Once the District's lake account is zero, any water that spills is considered as Mutual Water Company's water. Consequently, at times, the District will have no water or acquired rights in Big Bear Lake. Figure 4 shows a schematic of the District's and the Mutual Water Company's accountable rights to the water in Big Bear Lake.

III. OPERATION OF BIG BEAR LAKE

A. <u>General</u>: Since 1964, when the citizens of Bear Valley voted to create the District, the citizens of Bear Valley have been committed to maintaining the water surface level of Big Bear Lake as high as possible for recreation and wildlife purposes:¹⁹ Since 1977, more than six million dollars has been pledged and spent to maintain and enhance recreation uses in Big Bear Lake, for example:²⁰

- . \$3,000,000 for the purchase of 44,000 acre-feet of "in-lieu" water;
- . \$2,000,000 to acquire facilities and stock to supplement the purchase of State Water Project water;
- . Assessments have been imposed to repair the Bear Valley Dam to meet seismic requirements (i.e., \$3,000,000 of grant funding
- provided by the State of California under the Davis-Grunsky Act); . \$425,000 of grant funding under Proposition 70 was used to purchase
- land currently used as a recreational vehicle park located adjacent to the lake;
- . \$470,000 of grant funding from the California Department of Boating and Waterways was used to construct public boat launch facilities;
- . \$40,000 has been spent to construct a unique handicap-access fishing pier facility on the lake.

¹⁸ Ibid.

²⁰ Ibid., pp. 4-6.

¹⁹ BBMWD/CITY EXHIBIT NO. 6-1 - Testimony of Robert Ludecke, p. 4.

B. <u>District's Dam Operational Criteria</u>: Since 1987, the District has operated Big Bear Lake under the following operational policy to maintain the lake level as high as possible to accommodate recreational uses while meeting the requirements of the February 4, 1977 Stipulation and Judgment:²¹

- "... When the lake is in the top 4 feet, the irrigation demands from the lake will be met by releasing water from Big Bear Lake ..."; "... When the lake is between 4 feet and 6 feet down, the District intends to purchase in-lieu water between the months of May 1st and October 31st from either wells or the State Water Project; between November 1st and April 30th, water required would be released from Big Bear Lake ...";
- . "... When the lake is between 6 and 7 feet down, the Board shall determine whether to release from the lake ...";
- "... In the unlikely event that the lake is more than 7 feet down, the District intends to buy in-lieu water throughout the year ...".

C. <u>Instream Flow Requirements</u>: The District currently operates Bear Valley Dam to comply with a stream or lake alteration agreement entered into with DFG in 1988, in connection with seismic repair work on the dam. The DFG agreement required the District to release water from Big Bear Lake at a bypass rate of at least 0.106 cubic feet per second.²² The requirement is no longer in effect.

D. <u>Consumptive Use</u>: Big Bear Lake is currently used as a source of supply for snow making purposes at Snow Summit Ski Resort and Bear Mountain Ski Resort. Combined use of water from by both ski resorts amounts to approximately 700 acre-feet per year.²³ In addition, the City has identified Big Bear Lake as a potential source of water for future municipal use.²⁴ The City's Department of Water and Power's Water Resources Master Plan has identified the future use of 585 to 980 acre-feet per year of Big Bear Lake water for groundwater recharge.²⁵

IV. HYDROLOGY

A. <u>Bear Valley's Surface Hydrology</u>: Bear Valley is approximately 13 miles long and about 8 miles wide with Bear Valley Dam located in the western

²¹ SWRCB EXHIBIT NO. 1 - File 262.0 (36-01-02), Ernest Mona, <u>Report of</u> <u>Investigation</u>, September 24, 1992, p. 10.

²² BBMWD/CITY EXHIBIT NO. 6-1 - Testimony of Robert Ludecke, p. 7.

²³ BBMWD/CITY EXHIBIT NOS. 13 AND 14 - Testimony of Richard Kun and Rich MacGarry.

²⁴ Ibid., p. 8.

²⁵ BBMWD/CITY EXHIBIT NO. 5-1 - Testimony of Michael Perry, p. 2.

portion of the valley. Baldwin Lake, which the local residents consider to be a dry lake, is a natural sink located to the east end of the Bear Valley. Figure 5 shows the topographic features of Big Bear Lake's and Baldwin Lake's watersheds and the major tributaries of both lakes.

As Figure 5 shows, Big Bear Lake's major tributaries include Rathbone Creek and Grout Creek, and minor tributaries include Kidd Creek, North Creek, Metcalf Creek, and other unnamed, intermittent streams. These tributaries are located within Big Bear Lake's watershed, which covers an area of approximately 34,000 acres. Baldwin Lake's tributaries include Caribou Creek, which flows through Van Dusen Canyon, and other minor, intermittent streams originating within May Van Canyon and Green Canyon.

B. <u>Bear Valley's Sub-Surface Hydrology</u>: There are 11 major groundwater basins or hydrologic subareas within the Big Bear Lake drainage area: Grays Landing, Grout Creek, Northshore, Van Dusen, West Baldwin, East Baldwin, Erwin Lake, Division, Rathbone, Village, and Mill Creek.²⁶ Figure 6 shows the hydrologic boundaries of each subarea. Big Bear Lake and Baldwin Lake are separated by alluvial deposits which originate from the surrounding mountain ranges.²⁷ As shown by Figure 7, these deposits have caused a separation between the two basins.²⁸

The water bearing layers, which overlay non-water bearing formations, are quaternary unconsolidated deposits of both recent alluvium period (composed of sand and gravel of high permeability) and older alluvium period (composed of a greater proportion of clay, which reduces permeability).²⁹ The non-water bearing formations provide minimal storage for percolating water within cracks and fissures; however, the recent and older alluvium deposits provide greater storage capacity for percolating groundwater.³⁰

C. <u>Precipitation</u>: Precipitation data at the Bear Valley Dam have been collected since the turn of the century. Table 1 of Attachment A indicates that total annual precipitation by water-year (i.e., October 1 through September 30) for the period 1911 to 1990 ranged from a minimum of 14.95 inches during water year 1986-1987, to a maximum of 86.55 inches during water year 1968-1969. The average annual precipitation for the 79-year period is 35.33 inches. Table 2 provides a summary of monthly maximum, minimum, and

 26 CAL-TROUT EXHIBIT NO. 2C - <u>1977 EIR, Big Bear Lake Restoration</u> Report, p. III-13.; and

BBMWD/CITY EXHIBIT NO. 23 - Bear Valley Groundwater Basin Map.

²⁷ Ibid., p. III-32.

²⁸ Ibid., p. III-36.

- ²⁹ Ibid., p. III-36.
- ³⁰ Ibid.

FIGURE 5

ĩ

.

•

FIGURE 7

• 8
average values of recorded precipitation at Bear Valley Dam for the time period 1911 to 1990. 31

MONTH	MAXIMUM (Inches)	MINIMUM (Inches).	AVERAGE (Inches)
JANUARY	40.80	0	6.49
FEBRUARY	29.65	0	6.92
MARCH	25.75	0	5.99
APRIL	17.23	0	2.98
MAY	7.39	0	0.86
JUNE	3.50	0	0.17
JULY	3.26	0	0.53
AUGUST	4.45	0	0.74
SEPTEMBER	8.76	0	0.83
OCTOBER	6.68	0	1.33
NOVEMBER	26.87	0	3.33
DECEMBER	22.40	0	5.17

TABLE 2 - Summary of Precipitation 1911 - 1990

D. <u>Unimpaired Runoff</u>: Table 3 of Attachment A shows monthly unimpaired flow of Bear Creek at the dam site for the period January 1911 to December 1990. The flow data are expressed in total acre-feet per month, and were calculated by District consultants by using lake release data, lake spill data, lake stage measurement data, elevation-capacity-area data, and calculated evaporation rates.³² The calculated unimpaired flows at Big Bear Lake ranged from a yearly minimum of 1,437 AF (or an annual flow rate of 1.98 cfs) in 1961 to a yearly maximum of 61,672 AF (or an annual flow rate of 85.18 cfs) in 1969. The average annual unimpaired flow at Big Bear Lake for the 80-year

³¹ SWRCB EXHIBIT No. 1 - File 262.0 (36-01-02), Ernest Mona, <u>Report of</u> <u>Investigation</u>, September 24, 1992, p. 7.

³² BBMWD/CITY EXHIBIT 1-75, Rebuttal Testimony of George R. Leidy, p. 3.

î r r *x*

 $\mathbf{\hat{v}}_{i}$

period of 1911 to 1990 is 16,335.20 acre-feet (22.56 cfs). Monthly maximum, minimum, and average values are summarized in Table 4. 33

MONTH	MAXIMUM (AF) (CFS)	MINIMUM (AF) (CFS)	AVERAGE (AF) (CFS)
JANUARY	20,701 337.20	0 1 0	1,620 26.39
FEBRUARY	13,898 250.68	0 0	2,328 41.99
MARCH	24,969 406.79	0 0	3,244 ₁ 52.85
APRIL	12,687 213.58	0 0	3,574 60.16
MAY	7,532 122.71	0 0	1,676 27.30
JUNE	1,969 33.14	0 0	357 6.01
JULY	2,321 37.81	0 0	412 6.71
AUGUST	1,975 32.17	0 1 0	432 7.03
SEPTEMBER	2,002 33.70	0 0	326 5.48
OCTOBER	1,436 23.39	0 17 0	336 5.47
NOVEMBER	8,418 141.71	0 1 0	663 11.16
DECEMBER	16,642 271.13	0 0	1,362 22.18

TABLE 4 - Summary of Unimpaired Flow 1910 - 1990

E. <u>Reservoir Storage Levels</u>: Table 5 of Attachment A provides a summary of the end-of-month storage volumes at Big Bear Lake during the period 1910 to 1990. Table 6 of Attachment A shows elevation/capacity/surface area values for the lake with accompanying elevation/capacity/surface area curves. As the tables indicate, Big Bear Lake's current maximum capacity is 73,320 acre-feet at a staff gage elevation reading of 72.33 feet, as established by the 1977 reservoir survey. Figure 8 of Attachment A shows a hydrograph of end-of-month storage volumes for Big Bear Lake for the period 1910 through 1990 and relates those volumes to staff gage elevations. Table 7 summarizes the lake's recorded monthly minimum and maximum storage volumes during 1910 to 1990.³⁴

³³ SWRCB EXHIBIT NO. 1 - File 262.0 (36-01-02), Ernest Mona, <u>Report of</u> <u>Investigation</u>, September 24, 1992, p. 7.

³⁴ Ibid. p. 8.

MONTH	MAXIMUM (AF)	MINIMUM (AF)
JANUARY	69,630	900
FEBRUARY	70,138	3,049
MARCH	72,167	3,410
APRIL	73,231	5,193
MAY	72,358	4,683
JUNE	71,913	3,258
JULY	71,660	2,333
AUGUST	70,138	1,617
SEPTEMBER	68,109	1,000
OCTOBER	66,080	693
NOVEMBER	65,827	540
DECEMBER	68,616	592

TABLE 7 - Summary of End-of-Month Storage 1910 - 1990

F. <u>Flow Release into Bear Creek</u>: Since the construction of the dams, the surface flow of water entering Bear Creek at the Bear Valley Dam site has been comprised of the following components: ³⁵

- . Leakage and seepage through and around the dam;
- . Periodic releases of water from Big Bear Lake for downstream uses;
- . Spills from Big Bear Lake;
- . Minimum releases for instream flows.

Since 1977, Big Bear Watermaster records have been maintained and show the flow of water into Bear Creek from the Bear Valley Dam. These recorded flows are summarized in Table 8 of Attachment A.³⁶ These data indicate that during the period 1977 to 1986, the District's releases of water into Bear Creek were comprised of leakage, actual releases, and spill water. Steven Foulkes, District Manager, testified that during the period 1975 - 1985, the District maintained an interim release policy during this period which was slightly

³⁶ Ibid., p. 9.

³⁵ SWRCB EXHIBIT No. 1 - File 262.0 (36-01-02), Ernest Mona, <u>Report of</u> <u>Investigation</u>, September 24, 1992, p. 9.

different from the District's current release policy.³⁷ As Table 8 indicates, however, since 1986 the District's current release policy limited releases of water into Bear Creek from Bear Valley Dam to only minimum releases rates comprised of seepage and leakage. Table 9 provides a summary of the monthly flow releases into Bear Creek during the period 1977 through 1990.

YEAR	MAXIMUM (AF) (CFS)	MINIMUM (AF) (CFS)	YEAR TOTAL (AF) + (CFS)
1977	254 4.31	1 0.016	880 1.21
1978	830 13.52	1 0.016	1,045 1.44
1979	4,301 72.40	4 0.065	11,123 15.39
1980	12,616 227.56	6 0.101	30,933 42.80
1981	630 10.60	1 0.016	2,280 3.15
1982	1,729 28.16	2 0.032	2,845 3.93
1983	8,581 139.80	5 0.081	27,203 37.64
1984	687 11.19	2 0.032	2,380 3.29
1985	1,143 18.62	2 0.032	2,496 3.45
1986	433 7.05	2 0.032	1,386 1.91
1987	9 0.14	4 0.065	67 0.09
1988	13 0.21	0 0.0	65 0.09
1989	10 0.16	1 0.016	53 0.07
1990	9 0.14	4 0.065	68 0.09

TABLE 9 - Summary of Bear Valley Dam Flow Release 1977 - 1990

G. <u>Groundwater</u>: The City and other communities within Bear Valley rely almost entirely on local groundwater sources to meet municipal and domestic demands. To service these demands, the City and Big Bear Community Services District (CSD) own and operate a total of 77 groundwater wells within the Bear Valley.³⁸ Figure 9 shows the locations of these wells relative to Big Bear Lake. Table 10 of Attachment A provides summary data pertaining to the groundwater wells' depths and production. As indicated by Table 10, the total

³⁷ TRANSCRIPT, November 19, 1993, Testimony of Steven Foulkes, pp. 15-16.

³⁸ BBMWD/CITY EXHIBIT 23 - Summary of Groundwater Production Wells/Bear Valley Ground Water Basin Map.

FIGURE 9

.7

combined average annual municipal and domestic water production is 4650.3 acre-feet. Since 1977, 21 new wells have been constructed by the City's Department of Water and Power (DWP) and CSD, which account for approximately twenty-five percent of the total annual pumpage.

Only limited data are available in the hearing record regarding the effects of groundwater pumping on the groundwater basins within Bear Valley, or the correlation between groundwater pumping and lake level. However, the available information does indicate that the sustained yield of Bear Valley's groundwater basin subareas was determined to be 3,050 acre-feet per year.³⁹ Of the total storage capacity of 241,600 acre-feet in all subareas, 28,100 acre-feet is considered as usable water.⁴⁰ Subareas with the greatest sustained yield are the West Baldwin, Erwin Lake, Division, and Rathbone basins.⁴¹

Evaluations pertaining to the sustained groundwater yield within the Big Bear Lake watershed have indicated that current production exceeds sustained yield, and projected production may exceed sustained yield by as much as 6,000 acre-feet by the year 2000.⁴² Consequently, available studies indicate that an overdraft condition currently exists in the Division and Rathbone Subareas.⁴³ Evidently, the overdraft conditions have existed since the mid-. 1970's.⁴⁴ Additionally, these studies have indicated that pumping levels in the Division and Grout Creek Subareas are known to be below Big Bear Lake's level at several locations, suggesting that the surface waters stored in Big Bear Lake may be contributing to the recharge of the groundwater.⁴⁵

As an example of Big Bear Lake's influence on adjacent groundwater basins, Michael Perry⁴⁶ testified that "... Division wells especially and somewhat the Grout wells appear to have been affected by lake levels ...".⁴⁷ When asked how it is affected, Mr. Perry testified that "... as the lake lowers, the

 39 BBMWD/CITY EXHIBIT NO. 5-10 - Bear Valley Water Resource Report and Management Plan, p. 2-4.

⁴⁰ Ibid.

⁴¹ Ibid.

⁴² Ibid.

⁴³ BBMWD/CITY EXHIBIT NO. 5-3 - Reevaluation of Sustained Groundwater Yields/Big Bear Lake Watershed, Cover letter dated July 28, 1987.

⁴⁴ Ibid.

⁴⁵ Ibid., p.1.

⁴⁶ TRANSCRIPT, October 13, 1993, Testimony of Michael Perry, pp. 41-42.

⁴⁷ Ibid., p. 143, lines 1-9.

water recedes from the eastern end of the lake, Stanfield Marsh...it appears that as the area dries up...the Division groundwater basin...is not capable of producing the same amount of water ...".⁴⁸ Therefore, it appears that lake levels can be affected, in part, due to the recharge of adjacent groundwater subareas. Furthermore, the loss of natural inflow from tributary sources as a result of increased groundwater pumping from adjacent wells may also affect lake levels.

H. <u>Water Conservation</u>: During field investigations, Division staff noticed posted signs indicating that a "Stage One" water rationing program had been activated within Bear Valley. According to Michael Perry, the "Stage One" rationing program was implemented by the CSD to achieve a 10 to 12 percent reduction in water consumption within the CSD.⁴⁹ The implementation of a "Stage One" program was triggered because of a drop in static water levels in CSD's wells.⁵⁰ The City also advised the SWRCB that the City was operating within a "Stage Two" water rationing program which seeks to achieve a 15 percent reduction in overall water usage within the City.⁵¹ The CSD and the City's DWP rely on water conservation regulations adopted by the City on October 13, 1987.⁵²

Pursuant to the SWRCB's October 20, 1993 Supplement to Notice of Public . Hearing, the District and the City were requested to provide a copy of the City's Urban Water Management Plan prepared in accordance with Water Code Section 10620 et seq. (Assembly Bill No. 11 approved October 13, 1991). Water Code Section 10620 requires each California urban water supplier providing municipal water directly or indirectly to more than 3,000 customers, or supplying more than 3,000 acre-feet of water annually, to prepare and adopt a Water Shortage Contingency Plan by January 31, 1992. The City has not prepared a Water Shortage Contingency Plan in compliance with Water Code Section 10620.⁵³

⁴⁸ Ibid., p. 143, lines 14-22.

⁴⁹ Ibid., pp. 199-200.

⁵⁰ Ibid., p. 199.

⁵¹ SWRCB EXHIBIT No. 1 - File 262.0 (36-01-02), City's November 8, 1993 letter to SWRCB responding to the SWRCB's October 20, 1993 request for information.

 52 SWRCB EXHIBIT No. 1 - File 262.0 (36-01-02), Water Conservation Regulations for CSD and the City's DWP, March 11, 1991, included as an attachment to City's November 8, 1993 letter to SWRCB.

⁵³ SWRCB EXHIBIT No. 1 - File 262.0 (36-01-02), City's November 8, 1993 letter to SWRCB responding to SWRCB's October 20, 1993 request for information. Additionally, the City has not signed the State Department of Water Resources, June 11, 1991, Memorandum of Understanding regarding Urban Water Conservation in California (MOU).⁵⁴ The urban water conservation practices included in the MOU (referred to as "Best Management Practices") are intended to reduce longterm urban demands from what they would have been without implementation of these practices and are in addition to programs which may be instituted during occasional water supply shortages.⁵⁵ A major benefit of the MOU is to conserve water which could be used for the protection of streams, wetlands, and estuaries and/or urban supply reliability.⁵⁶

I. <u>Reclamation</u>: The City's wastewater discharge for the last three years has averaged 2,273 acre-feet per year, with the projected buildout discharge estimated to be 3,397 acre-feet per year.⁵⁷ All wastewater is treated at the existing Big Bear Area Regional Wastewater Agency (BBARWA) treatment plant using secondary treatment and is exported to the Lucerne Valley.⁵⁸

The California State Health Department has indicated that the direct discharge of any advanced treated wastewater to Big Bear Lake or Bear Creek would not be allowed because Big Bear Lake and Bear Creek are designated as sources for domestic water supplies.⁵⁹ Michael Perry testified that the City's DWP and the BBARWA have conducted studies to identify opportunities to reuse treated, wastewater in Bear Valley.⁶⁰ These studies have indicated that opportunities do exist for the reuse of advanced treated wastewater (tertiary or more advanced levels) for indirect uses such as aquatic and wildlife habitat maintenance, dust suppression on dry lakebed, irrigation, and groundwater recharge.⁶¹ The benefits that would occur from the use of reclaimed wastewater would be a reduction in the quantity of wastewater exported to the Lucerne Valley which could be reused in Bear Valley, a reduction in the District's obligations to the Mutual Water Company under the 1977 Judgement, and the improvement of the overdraft condition which exists in Bear Valley's groundwater basins. These benefits could lead to higher production from

⁵⁴ TRANSCRIPT, October 13, 1993, Testimony of Michael Perry, p. 149. line 22.

⁵⁵ SWRCB EXHIBIT No.1 - File 262.0(36-01-02), MOU, June 11, 1993, p. 1.

⁵⁶ Ibid., p. 5.

⁵⁷ SWRCB EXHIBIT No. 1 - File 262.0 (36-01-02), City's November 8, 1993 letter to SWRCB responding to the SWRCB's October 20, 1993 request for information.

⁵⁸ BBMWD/CITY EXHIBIT No. 5-7, p. 21.

⁵⁹ BBMWD/CITY EXHIBIT No. 5-1, p. 2.

⁶⁰ BBMWD/CITY EXHIBIT No. 5-1, p. 2.

⁶¹ BBMWD/CITY Exhibit No. 5-7, p. 21.

existing municipal wells⁶² and possibly reduce losses from Big Bear Lake as a result of the lake's recharge of adjacent overdrafted groundwater basins.

V. HYDROLOGIC MODELS

A. <u>General</u>: The results of hydrologic reservoir operation models were introduced into evidence by the District and City, and Cal-Trout to illustrate the impact of proposed release rates on Big Bear Lake's water levels. The results of the District's and City's model, which was not provided to the SWRCB upon request, were used to illustrate impacts on lake water levels attributed to existing operations, existing operations with allegedly proposed Cal-Trout releases of 6.0 cfs and 8.0 cfs plus flushing flows of 40 cfs, and existing operations with an initially proposed DFG releases of 3.5 cfs plus flushing flows of 40 cfs.⁶³ Cal-Trout's model results were used to illustrate impacts on lake water levels attributed to existing operations with releases of 1.0 cfs and 2.0 cfs.⁶⁴

The District's and City's model results were presented to the SWRCB to indicate the following: $^{\rm 65}$

- . Releases of 6.0 cfs and 8.0 cfs were higher than the historical inflow to Big Bear Lake;
- . Proposed releases by Cal-Trout and DFG would substantial lower the levels of Big Bear Lake, shrink the size of the lake, and on occasion would empty the lake;
- . Proposed releases of 6.0 cfs and 8.0 cfs could not be beneficially used by the Mutual Water Company 50% of the time such releases were made;
- There would be times when the District would not have enough water in its lake account to satisfy proposed fishery release schedules. The District argued that it does not have authority to release water from the Mutual Water Company's account to meet fishery releases.

- ⁶³ DISTRICT/CITY EXHIBIT NOS. 7-1 TO 7-7.
- ⁶⁴ CAL-TROUT EXHIBIT NO. 15C.
- ⁶⁵ BBMWD/CITY EXHIBIT NOS. 7-1 TO 7-7, P. 7.

⁶² BBMWD/CITY EXHIBIT No. 5-5, p. 1.

Cal-Trout's model results were presented to the SWRCB to indicate the following:⁶⁶

- . Releases of 1.0 cfs and 2.0 cfs would never empty Big Bear Lake;
- . Releases of 1.0 cfs and 2.0 cfs would result in an average surface elevation above 64.00 feet, and mean monthly drawdown would be 0.12 feet per month;
- . Releases of 1.0 cfs and 2.0 cfs would result in increased operational flexibility to minimize evaporation losses and spillage;
- . Releases of 1.0 cfs and 2.0 cfs would not significantly impact Big Bear Lake's environment, water levels or ecomomy.

B. <u>Division's Hydrologic Model</u>: The Division developed a hydrologic model to evaluate the impact on Big Bear Lake's water levels attributed to proposed release rates for downstream fisheries. The model and model run results are described, in detail, in the Appendix to this staff analysis.

Three proposed release rates were evaluated based on recommendations by the . parties made during the hearing:

- . <u>Cal-Trout</u>: 2.0 cfs in all years;
- . DFG: 1.2 cfs in all years;
- . District/City: 0.1 cfs in all years.

In addition, a Division generated alternative rate release was evaluated based on information contained in the hearing record pertaining to flow readings below Bear Valley Dam.⁶⁷ This information was reviewed for the purpose of evaluating dam release requirements needed to maintain a 1.2 cfs flow rate below West Cub Creek (See Appendix). Based on that evaluation, the following release scenario was determined to be the best estimate for evaluation of lake level impacts.

<u>Division Alternative</u>: 0.3 cfs during a "wet" water-year 0.5 cfs during a "normal" water-year 1.2 cfs during a "dry" water-year

Water-year type is based on accumulated precipitation during the season of October 1 to May 1, with releases of water from Bear Valley Dam beginning May 1 and continuing to the following May 1 of each year.

⁶⁶ CAL-TROUT EXHIBIT NO. 15C, section titled Reservoir Simulation Summary.

⁶⁷ BBMWD/CITY EXHIBIT No. 24 - FLOW READINGS BELOW BEAR VALLEY DAM.

The primary purpose of the hydrologic evaluations is to define the impact of different instream flow standards in Big Bear Lake and the resulting impacts to public trust uses, recreational uses, and to the local economy. Table 11 shows the results of the hydrologic studies and compares average end-of-month (E.O.M.) storage capacity, lake surface area, and lake elevation which would have occurred if the evaluated release rates had been applied to the operation of Big Bear Lake during the 624 month period from 1939 through 1990.

PROPOSED RELEASE RATES	AVERAGE E.O.M. STORAGE (acre-feet)	AVERAGE E.O.M. SURFACE AREA (acres)	AVERAGE E.O.M. STAFF GAGE ELEVATION (feet)
CAL-TROUT	52,386	2,548.1	64.41
DF&G	54,326	2,595.9	65.34
DISTRICT/CITY	56,930	2,656.0	66.48
DIVISION ALTERNATIVE	55,470	2,623.2	65.85

TABLE	11	_	Summary	of	Alternative	Imnact
TRUCE	* *		Juninary	V1	NICEINALIVE	TIIIharr

Table 12 shows a comparison of the minimum surface areas and lake levels which could have been attributed to each release scenario during the period of evaluation.

> TABLE 12 - Summary of Alternative Impact (Minimum lake levels and surface areas)

PROPOSED RELEASE RATES	MINIMUM SURFACE AREA (acres)	MINIMUM LAKE LEVEL (feet)
CAL-TROUT	1531.3	44.27
DF&G	1716.2	48.17
DISTRICT/CITY	1938.3	52.70
DIVISION ALTERNATIVE	1821.4	50.33

Table 13 shows a comparison of the maximum surface area impacts and lake level impacts attributed to Cal-Trout's, DFG's and the Division's release scenarios, when compared to the District's/City's proposed release rate results, which represents the District's current operation.

PROPOSED RELEASE RATES	MAXIMUM SURFACE AREA IMPACT (acres)	MAXIMUM LAKE LEVEL IMPACT (feet)
CAL-TROUT	-407 (21.0%)	-8.44 (16%)
DF&G	-222 (11.5%)	-4.54 (8.6%)
DIVISION ALTERNATIVE	-116 (6.0%)	-2.37 (4.5%)

TABLE 13 - Summary of Alternative Impact (Maximum lake level and surface area impacts)

Table 14 summarizes the frequency that Big Bear Lake would have been below different lake elevations under the four release scenarios. As described in the Appendix, the following results indicate the percentage of time that the lake levels would have been between specified levels during the 624 month . period from 1939 through 1990 (i.e., between full and -5 feet below full).

	TABLE 1	4 -	Summary	of	Frequency	Eva	luation
--	---------	-----	---------	----	-----------	-----	---------

PROPOSED RELEASE RATES	ELEVATION 72.33 FT. (FULL) (%)	ELEVATION 67.33 FT. (-5 ft) (%)	ELEVATION 62.33 FT. (-10 ft) (%)	ELEVATION 57.33 FT. (-15 ft) (%)	ELEVATION 52.33 FT. (-20 ft) (%)
CAL-TROUT	39.10	29.65	17.15	7.37	6.73
DF&G	40.71	34.94	14.10	6.41	3.85
DISTRICT/CITY	46.96	34.62	13.78	4.65	0
DIVISION ALTERNATIVE	41.67	37.82	12.34	6.25	1.92

VI. RECREATIONAL AND PUBLIC TRUST USES OF BIG BEAR LAKE AND BEAR CREEK

A. <u>General</u>: Big Bear Lake and Bear Creek provide a wide range of recreational opportunities to southern California's regional population of more than 12 million people.⁶⁸ The U.S. Forest Service oversees the management responsibility for all recreation and wildlife throughout the San Bernardino National Forest, which include Bear Creek, Bear Valley Dam and much

 $^{^{68}}$ BBMWD/CITY EXHIBIT NO. 11-1 – Testimony of Thomas C. Wegge., pp. 2-3 to 2-4, 2-5.

of the north shore of Big Bear Lake.⁶⁹ According to the testimony of Thomas Wegge, the District's and City's economic consultant, Big Bear Lake and Bear Creek provide a natural outdoor recreational environment which creates "... a public trust value and good recognized as serving basic human biological and psychological needs..."⁷⁰ 3

B. <u>Big Bear Lake Recreational Values</u>: Recreational uses of Big Bear Lake are primarily limited to activities during the summer recreational season of May through September.⁷¹ These recreational uses can be divided into four categories: general boating (48%), fishing (37%), sailing (9%), and water skiing (6%).⁷² Shore uses includes fishing, swimming and sunbathing.⁷³ According to user counts conducted by the District, most visits to the lake are made during weekends and holidays.⁷⁴ Approximately 70% of all lake visitors are weekend visitors.⁷⁵ Non-residents comprise 40% of all lake users during the weekdays and 60% of all lake users during weekends.⁷⁶

Figure 10 shows the various recreational facilities on Big Bear Lake. These facilities include nine private marinas on the lake's south shore and two boat launching facilities owned and operated by the District located on the north shore. Boat use, which includes activities such as fishing, waterskiing, sailing and jet-propelled skiing, typically peaks in July and August during. the summer recreational season.⁷⁷ Shoreline use along Big Bear Lake also peaks in July and August, with weekend fishing being the most popular shoreline activity.⁷⁸ The District also operates a unique handicap-access fishing pier facility on the lake's north shore.

The U.S. Forest Service, which manages recreation and resources values on forest service lands, oversees the following day use facilities and campground on Big Bear Lake's shores: Grout Bay Picnic Area, Serrano Campground, Meadow

⁶⁹ U.S. FOREST SERVICE EXHIBIT NO. 5 - Testimony of Gary A. Earney, p.1.

⁷⁰ BBMWD/CITY EXHIBIT NO. 11-1 - Testimony of Thomas Wegge, p.2-5.

⁷¹ Ibid. p. 2-2.

⁷² SWRCB EXHIBIT NO. 1 - File 262.0 (36-01-02), Ernest Mona, <u>Report of</u> <u>Investigation</u>, September 24,1992, p. 9.

⁷³ BBMWD/CITY EXHIBIT NO. 11-1 - Testimony of Thomas Wegge, p.2-2.

⁷⁴ Ibid., p. 2–4.

⁷⁵ Ibid.

⁷⁶ Ibid.

⁷⁷ Ibid., p. 2-5.

⁷⁸ Ibid., p. 2-4.

ŝ

FIGURE 10

Edge Picnic Area, Alpine Pedal Path, East Launch Boat Ramps and Juniper Landing.⁷⁹ According to data submitted by the Forest Service for 1992, these recreational facilities were utilized by over 87,000 visitors, totalling over 123,000 visitor-days (A visitor day represents use over a 12 hour period).⁸⁰ The Forest Service also oversees the operation of Snow Summit and Bear Mountain ski resorts under Special Use Permits. During the season 1992-1993, 917,000 visitors used both ski resorts, which translates to 391,000 visitordays.⁸¹ Both ski resorts have contracts with the District to allow diversion of water from Big Bear Lake for snow making purposes.

C. <u>Bear Creek Recreational Values</u>: Recreational values associated with Bear Creek have been categorized by the USFS as hiking and backpacking, fishing and swimming, camping at the Siberia Creek Campground, and sightseeing/dam observation.⁸² Access into the Bear Creek Canyon is provided by four trails: Glory Ridge, Siberia Creek, Camp Creek, and Clark's Ranch trails.⁸³ Figure 11 shows the access routes to the upper and middle reaches of Bear Creek provided by Glory Ridge and Camp Creek trails. Although access is difficult and the trails are steep, 700 visitor-days, or two percent of the total hiking use within the District, are associated with Bear Creek.⁸⁴ Fishing along the reaches of Bear Creek above Siberia Creek (see Figure 2) has been estimated to total 410 visitor-days, or 372 visitor-days, for the Siberia Creek Campground.⁸⁵</u>

D. <u>Big Bear Lake's Wildlife Values</u>: Big Bear Lake and Baldwin Lake are on the Pacific flyway and provide habitat for migrating waterfowl. In addition, Big Bear Lake provides both habitat and food to approximately 30 wintering southern bald eagles, and up to 150 white pelicans, which utilize the shallow end of the lake.⁸⁶ The District is currently working with the Natural

⁷⁹ U.S. FOREST SERVICE EXHIBIT NO. 5 - Testimony of Gary A. Earney, pp. 4-5.

⁸⁰ U.S. FOREST SERVICE EXHIBIT NO. 6 - Summary of Forest Service Recreational Activities Table.

⁸¹ U.S. FOREST SERVICE EXHIBIT NO. 5, p. 3, and

U.S. FOREST SERVICE EXHIBIT NO. 6 - Summary of Forest Service Recreational Activities Table.

⁸² Ibid., p. 2.

⁸³ Ibid.

⁸⁴ Ibid.

⁸⁵ Ibid.

⁸⁶ Ibid., pp. 5–6.

23

Heritage Foundation, Inc. to develop the Stanfield Marsh Waterfowl Habitat (145 acres) located at the shallow east end of Big Bear Lake. Other wildlife species supported by Big Bear Lake include the two-striped garter snake and a year-round, heavily stocked lake fishery.⁸⁷

E. <u>Bear Creek's Wildlife Value</u>: Bear Creek provides a fishery for both brown trout and rainbow trout, as well as valuable riparian habitat for three pairs of California spotted owls and for the San Bernardino flying squirrel.⁸⁸ Bear Creek's riparian habitat also provides valuable habitat for the southern rubber boa, the two-striped garter snake, various species of bats, and other numerous terrestrial wildlife species.⁸⁹

VII. RELATIONSHIP BETWEEN LAKE LEVEL AND LAKE USE

A. <u>General</u>: The District's testimony included an Economic Analysis that quantified the recreational and economic impacts which could occur within different lake level ranges. That testimony concluded that the storage levels in Big Bear Lake affect the uses of the lake which, in turn, affect the local economy. The following provide a summary of the District's analysis.

Between the period 1980 to 1990, the Bear Valley area's permanent population has increased by 28% from a population of 11,015 to 14,127, with 5,402 citizens living in the City.⁹⁰ The local economy of the Bear Valley area, which includes the City and the unincorporated areas of Fawnskin, Big Bear City, Erwin Lake, and Baldwin Lake, is supported by tourists visiting Bear Valley for recreational use of the lake and ski resorts. Approximately 59% of the area's employed residents work sales and service jobs or are employed in professional, technical, managerial and proprietary positions related to the area's tourist industry.⁹¹ Approximately 19% of all full time jobs and 83% of all part time jobs are generated by major employers in the lodging and recreation industries.⁹²

Bear Valley's lodging industry includes over 60 overnight lodging facilities providing 1,290 rooms (39% average year-round occupancy rate).⁹³ The recreation industry includes both private commercial boat facilities on the

⁸⁷ U.S. FOREST SERVICE EXHIBIT NO. 5 - Testimony of Gary A Earney, p. 6.

⁸⁸ Ibid., p. 2.

⁸⁹ Ibid., p. 3.

⁹⁰ BBMWD/CITY EXHIBIT NO. 11-1 - Testimony of Thomas Wegge, p. 2-12.

⁹¹ Ibid., p. 2-13.

⁹² Ibid.

⁹³ Ibid.

24

lake's south shores and public boat facilities on the lake north shores which support summer recreational uses of Big Bear Lake (i.e., general boating, fishing, sailing, and skiing) from mid-April through October.⁹⁴ Between May 1 and November 31, shore campground facilities support uses of fishing, swimming and sunbathing. In addition, both the Snow Summit and Bear Mountain ski areas operate resorts from November 15 through April 15, and rely on Big Bear Lake water to make snow during the winter season.

The District's economic analysis provides an estimated baseline of lake related spending and employment.⁹⁵ As Figure 12 indicates, direct spending by visitors to Big Bear Lake averages approximately \$6.7 million, with about 58% attributed to spending related to lodging, food and drink, and the remainder attributed to spending related to automobile (i.e., gasoline, repairs, etc.), boat (i.e., rentals, fares, fees, repairs, etc.), fishing (i.e., licenses, equipment, bait), other recreation (i.e., equipment rentals, fees, etc), and other retail spending.⁹⁶ According to Cal-Trout, recreational spending is dominated by the skiing industry, which comprises approximately 94% of the total area's recreational spending.⁹⁷

B. <u>Recreational Use Impact</u>: The District's economic analysis describes the recreational impacts that may occur as a result of reduced lake levels. For example, the District's east boat launch ramps cannot operate when the lake drops below staff gage elevation 59.33 feet (13 feet below full), with ramp impairment occurring at about staff gage elevation 62.33 feet (10 feet below full). Private marinas are apparently much more sensitive to lake level fluctuation than the District's public ramps.⁹⁸ Shore uses are affected by lake levels because of the availability of usable beach and shoreline. When the lake is full, there is a lack of usable beach and shoreline.⁹⁹ As the lake level falls, shoreline activity increases because more beach areas are exposed.¹⁰⁰ When the lake drops below staff gage elevation 66.33 feet (6 feet below full) shoreline use decreases because the distance between access points and the lake shore increases, especially in the shallower east end of the

⁹⁴ Ibid.

ĩ

⁹⁵ Ibid., Table 6. Estimated Baseline Lake Related Spending and Employment.

⁹⁶ Ibid., p. 2-15.

⁹⁷ CAL-TROUT EXHIBIT NO. 15D, Rebuttal Testimony - <u>Measured Economic</u> <u>Factors of Big Bear Lake</u>, p.1.

⁹⁸ BBMWD/CITY EXHIBIT NO. 11-1 - Testimony of Thomas C. Wegge, p.2-3.

⁹⁹ Ibid., p. 2-4.

¹⁰⁰ Ibid., p. 2-5.

			Table 6. 1	Estimated Baselin	e Lake-Related Sp	ending and Employm	lent			
	Spen Par	ding per ty Trip	Eatimated Spend	Annual ling	·		Estimated Employment C Recreation	Pull-Time Jenerated by Spending	Estimated N Jobs Gene Recreation	lumber of rated by Spending
Spending Sector	Shore Users	Boaters	Shore Users	Boaters	Direct Spending [*]	Total Spending ^b	Direct	Total	Direct	Total
Lodging	\$45.85	\$54.87	\$857,400	\$1,392,500	\$2,249,900	\$8,077,100	78.3	174.7	133	- 297
Rood	30.53	1214	570,900	1,053,500	1,624,400	5,848,800	63.9	134.6	109	229
Automobile	16.70	17.53	312,300	444,900	757,200	1,865,800	13.0	31.5	77	3
Boating	0.00	16.9E	0	1,013,600	1,013,600	3,296,200	25.4	64.1	43	109
Fishing	1.7	3.73	32,200	94,700	126,800	412,400	3.2	8.0	s	14
Recreation	5.55	4.79	103,800	121,600	225,400	732,800	5.6	143	01	24
Other	13.49	17.49	252.300	443,900	696,100	2,361,000	24.8	52.7	42	8
Total	\$113.84	\$179.86	\$2,128,900	\$4,564,700	\$6,693,400	\$22,594,100	214.3	479.8	36	817
- Notes: Estimat Estimat	ed number of part) ed number of part)	y trips related to sh r trips related to bo	ore use = 18,700 ating = 25,379		*					
 Direct spending 	totals represent est	timated trip-related	spending (in 1990	dollars) within 30) miles of Big Bear	Lake.				
b Total spending r	epresents the estim	sated direct and sec	ondary spending in	San Bernardino	County associated	with recreation at Bi	g Bcar Lake.			
 Direct and total FTE job equals 	jobs represent pan two part-time jobs.	t-time and full-time	jobs generated by	recreation spendi	ing. Jobs were esti	mated assuming that	70% of full-time e	quivalent (FTE) jot	ss are part-time job	is and that one

£

FIGURE 12

ĩ

ĵ.

lake.¹⁰¹ In addition, both ski resorts usually begin making snow in early to mid-November to prepare slopes for the Thanksgiving weekend.¹⁰² The pumps that supply the water to both ski resorts are located at the shallow east end of Big Bear Lake, and become inoperable below staff gage elevation 54.33 feet (18 feet below full).¹⁰³

C. <u>Impact on Facilities and Activities</u>: Thomas Wegge's testimony, which is based on a 20-year analysis period corresponding to the hydrologic period 1939 to 1958,¹⁰⁴ describes how recreation opportunities, visitation, and local economy could be affected by implementation of proposed water release scenarios.¹⁰⁵ As indicated by Mr. Wegge's testimony,¹⁰⁶ impacts to recreation facilities, boating activities, and shoreline activities of proposed releases were related to the following specific lake level ranges: full to -5 feet below full, -5 feet to - 10 feet below full, -10 feet to -15 feet below full, -15 feet to -20 feet below full, and less than -20 feet below full.¹⁰⁷ Mr. Wegge's testimony indicates that -10 feet below full is "... the critical lake level for maintaining recreation opportunities at Big Bear Lake ...".¹⁰⁸

1. <u>Recreation Facilities</u>: At staff gage elevation less than 67.33 feet (5 feet below full), south shore marinas and private boat docks are moved out, while north shore marinas, public boat ramps, and shore facilities are unaffected. At staff gage elevation less than 62.33 feet (10 feet below full), south and north shore marinas move their facilities to deeper water, requiring the extension of access roads. In addition, south shore effects include beaching of some private docks, the movement of some private docks to deeper water, and diminished use of shore facilities; however, public boat ramps are still operable, but the use of ramps located on the east part of the lake becomes impaired. At staff gage elevation less than 52.33 feet (20 feet below full), some north and south shore marinas are still able to move to deeper water; however, some marinas must reduce their operations because of increased cost and decreased use, and less than 60% of private docks are in operation. Additionally, shore facilities east of Windy Point and Gilner

¹⁰¹ Ibid.

¹⁰⁵ BBMWD/CITY EXHIBIT No. 11-1, Written Testimony of Thomas Wegge, Chapter 3. Alternative Analysis, pp. 3-1 through 3-9.

¹⁰⁶ Ibid, p. 3-4.

¹⁰⁷ Ibid., Table 7, Frequency of recreation effects at different lake levels.

¹⁰⁸ Ibid., p. 4-1.

¹⁰² Ibid., p. 2-16.

¹⁰³ Ibid., p. 2–17.

¹⁰⁴ Ibid, p. 3-1.

Point are severely affected, and east boat ramps cease all operations. Only west boat ramps remain in operation.

2. <u>Boating</u>: At staff gage elevation less than 67.33 feet (5 feet below full), the surface area of the lake is reduced by 240 acres (8%) and the surface area available for higher speed activities is reduced by 300 acres (12%). There is some loss of lake surface area in coves, bays, and in the eastern portion of the lake; however, views from the lake are not diminished. At staff gage elevation less than 62.33 feet (10 feet below full), the lake's surface area is reduced by 520 acres (17%) and the surface area available for higher speed activities is reduced by 670 acres (25%). The loss of lake surface area in the eastern portion of the lake decrease boating opportunities. The District stated that boating congestion in the middle and western portions of the lake could create additional public safety problems, but provided no evidence to support this contention. Views from the eastern portion of the lake, bays, and coves begin to diminish. At staff gage elevation less than 52.33 feet (20 feet below full), the lake's surface area is reduced by 1,170 acres (39%) and the surface area available for high speed boat activities is reduced by 1.240 acres (46%). Boating activities are severely restricted east of Gilner Point and Windy Point, which, as the District contends, could result in increased public safety problems in the western portion of the lake because of increased congestion.

3. <u>Shore Use</u>: At staff gage elevation less than 67.33 feet (5 feet below full), 240 acres of lake bed are exposed, which results in more beach areas and enhances access to the lake's shoreline while not diminishing views of the lake from the shore. At staff gage elevation less than 62.33 feet (10 feet below full), 520 acres of lakebed are exposed, which reduces recreational opportunities in bays and coves. In the eastern portion of the lake, Stanfield Marsh becomes dry, shore use is less desirable, and views of the lake are diminished. At staff gage elevation less than 52.33 feet (20 feet below full), 1,170 acres of lakebed are exposed, resulting in the drying up of most areas east of Eagle Point, reduction of shore use activities in the eastern portion of the lake, and in the concentration of all recreational activities in the western portion of the lake. Additionally, the views of the lake from the shore are dominated by exposed lakebed.

According to the above summarized testimony, within the above described lake level ranges certain recreational activities can be maintained depending on the impact that occurs to lake facilities which support recreational uses of the lake. Those lake facilities described in Mr. Wegge's testimony are: north shore marinas, south shore marinas, the east ramp boat launch, private docks, Stanfield Marsh, and winter ski resorts.

Based on the criteria used by Mr. Wegge to describe potential recreational impacts to Big Bear Lake, as well as the model run results previously described in this report and detailed in the Appendix, the following Table 15 summarizes the impacts which could have occurred under the four fish release scenarios during the evaluation period of 1939 to 1991.

TABLE 15 - Recreational Effects Summary (percentage of time that effects could have occurred)

RECREATIONAL EFFECTS	CAL-TROUT RELEASE PROPOSAL	DF&G RELEASE PROPOSAL	DISTRICT CURRENT OPERATION	DIVISION RELEASE ALTERNATIVE
ALL FACILITIES OPERATION BY NORTH SHORE MARINAS COULD REMAIN OPEN	100%	100%	100%	100%
ALL SOUTH SHORE MARINAS ARE UNAFFECTED	68.75%	75.65%	81.58%	79.49%
THE EAST RAMP BOAT LAUNCH COULD CONTINUE OPERATIONS	85.87%	89.75%	95.36%	91.83%
60% OF PRIVATE DOCKS ARE UNAFFECTED	93.27%	96.15%	100%	98.08%
STANFIELD MARSH IS UNAFFECTED	68.75%	75.65%	81.58%	79.49%
THE OVERALL ABILITY OF SKI AREAS TO MANUFACTURE SNOW	93.27%	96.15%	100%	98.08%

VIII. RELATIONSHIP BETWEEN LAKE LEVEL AND LAKE ENVIRONMENTAL IMPACTS

A. <u>Effects on Bald Eagles</u>: Bald eagles, <u>Haliaeetus leucocephalus</u>, are winter residents of the Big Bear Lake area, and are listed on state and federal endangered species lists. The City and District expressed concerns about possible deleterious effects to bald eagles should required releases reduce the surface area or volume of Big Bear Lake.

Although the hearing record includes information that describes the effects upon Big Bear Lake's wildlife environment as a result of lake level fluctuations, no evidence was presented indicating that changes in lake level and volume resulting from releases of water would have significant effects on the resident fish populations of Big Bear Lake, which is one source of food for bald eagles. Likewise, no evidence was presented of any significant relationship between lake level and the number of bald eagles overwintering in the Big Bear Lake area.

The expert witness for the City and District testified that no obvious pattern was apparent for the eight years of available data, including several years of drought during which the lake was drawn down at least fourteen feet from its maximum level.¹⁰⁹ In addition, the USFS expert witness testified that there was no relationship between lake level and eagle abundance or ability to feed. Testimony presented by Robin Butler, USFS's eagle expert witness, indicated that the number of bald eagles which roost within Bear Valley is dependent upon a number of factors, including lake levels, winter temperatures, number of sunny days, and winds.¹¹⁰ Ms. Robin also stated that "... it is impossible to draw conclusions correlating numbers of bald eagles to lake levels ..." because of numerous variables.¹¹¹ Ms. Butler further stated that "... it is unclear whether lowering Big Bear lake levels would significantly impact Big Bear's wintering Bald Eagle population ... Thus, while draining Big Bear Lake completely for extended periods would certainly adversely impact wintering bald eagle populations by removing waterfowl habitat, it is difficult to state with certainty that lowered lake levels would adversely impact bald eagles

Additional USFS expert testimony indicates that because bald eagles feed primarily on fish, ducks and other waterfowl, the Stanfield Marsh area was not found to be critically important to eagle feeding. Evidently, during the past drought when the marsh was nearly or completely dry, all waterfowl, including the bald eagles, simply moved out into adjacent shallow waters of the lake. The bald eagles move to those areas which are adjacent to underwater springs, which remain ice-free during much or all of the winter.¹¹³

B. <u>Effects on Stanfield Marsh</u>: Stanfield Marsh covers an area of approximately 145 acres located at the east end of Big Bear Lake (see Figure 10). According to testimony presented by USFS, the marsh may be affected when Big Bear Lake's surface elevation drops below 6,735 feet (8 feet below full).¹¹⁴ Ms. Butler of the USFS testified that "... the Stanfield Marsh is important to waterfowl (i.e. white pelicans) and wintering eagles...complete loss of the marsh habitat, however, is not desirable since it supports one of the better waterfowl nesting and foraging areas in the valley ...^{"115} In addition, Mr. Gary Earney, USFS Forest Ranger, testified that a drop in lake

¹⁰⁹ TRANSCRIPT, November 18, 1993; p. 173, line 9 - p. 175, line 20.

¹¹⁰ U.S. FOREST SERVICE EXHIBIT No. 1, Rebuttal Testimony of Robin Butler, p. 2.

¹¹¹ Ibid.

¹¹² Ibid.

¹¹³ TRANSCRIPT, November 18, 1993; p. 272, line 25 - p. 277, line 10.

¹¹⁴ U.S. FOREST SERVICE, EXHIBIT No. 5, Testimony of Gary Earney, p. 9.

¹¹⁵ U.S.F.S. EXHIBIT No. 1, Rebuttal Testimony of Robin Butler, p. 2.

elevation may subject the marsh to more frequent freezing, thus limiting the marsh's use by waterfowl.¹¹⁶ Furthermore, Mr. Earney testified that state species of special concern (e.g., the two-stripe garter snake) could be affected by lake fluctuations due to increased exposure of the snake to predators; however, this effect would be short termed.¹¹⁷

IX. BEAR CREEK FISHERY RESOURCES

A. <u>General</u>: Bear Creek supports primarily a brown trout fishery throughout most of its length, with some rainbow trout also found in the lower reaches of Bear Creek, below the junction with North Fork Bear Creek.

The substance of the complaint before the SWRCB concerns that portion of Bear Creek between North Fork Bear Creek and Bear Valley Dam, in particular the 1.2 mile reach (often referred to as "Upper Bear Creek") between Bear Valley Dam and West Cub Creek, although the more general issue of support of the fishery in the entire watershed is also relevant. The main issues may be summarized as follows:

- 1. Is the section of Bear Creek below West Cub Creek in good condition? Do releases from Bear Valley Dam contribute to whatever condition is found there?
- 2. Is Upper Bear Creek in good condition? To what extent do releases from Bear Valley Dam contribute to whatever condition is found there?
- 3. If Upper Bear Creek is not in good condition, what minimum flows are required to improve conditions in that reach? Are additional flows also needed in the reach of Bear Creek between West Cub Creek and North Fork Bear Creek?
- 4. In addition to minimum flows, are flushing flows required for habitat maintenance in Bear Creek? If so, what size, frequency and duration of flushing flows are required?

B. <u>Bear Creek Below West Cub Creek</u>: Based on substantial evidence presented by the City, the District, and DFG, most of Bear Creek appears to support a self-sustaining wild trout fishery, and generally this fishery appears to be in good condition. The available data are not sufficiently detailed to determine unequivocally whether the populations have been substantially affected by the recent drought. However, periodic flow measurements during the recent drought suggest that flows in this reach have been minimal in some periods. USFS measurements in August 1991 indicate that flows in Bear Creek were extremely low in several locations, including an estimated flow of only

¹¹⁷ Ibid.

¹¹⁶ U.S. FOREST SERVICE EXHIBIT NO. 5 - Testimony of Gary A. Earney, p.5.

0.009 cfs in the area near East and West Cub creeks.¹⁰⁹ USFS testified that reduced flows contributed directly and indirectly to the reduced numbers of trout in the reaches of the main stem of Bear Creek above the confluence with the North Fork Bear Creek, compared to the reaches below the confluence.¹¹⁰ Measurements taken by DFG in 1988 and 1989 measured flows in the Glory Ridge Trail area at 0.19 cfs and 0.05 cfs, respectively, as compared to 3.55 cfs and 3.0 cfs, respectively, farther down Bear Creek in the Slide Creek area below the junction with the North Fork.¹¹¹ These low flow measurements appear to support the hypothesis that, in the absence of releases from the reservoir, there are periods in which tributary flow into Bear Creek is minimal, especially in drought periods. As noted, despite these low flows, the trout populations have apparently been able to survive in some locations in Bear Creek below West Cub Creek, though at significantly lower abundance levels than farther down Bear Creek, especially below the confluence with North Fork Bear Creek. Both USFS and DFG concluded that additional flows in this reach would result in improved habitat, better flushing of fine sediments, and higher numbers of fish. No party provided information on winter flow measurements in the Glory Ridge area.

The second question is whether releases from Bear Valley Dam contribute significantly to whatever conditions are found in Bear Creek below West Cub. Creek. Under cross examination, fish expert witnesses for both the District/City and DFG were asked to evaluate two scenarios concerning the reach of Bear Creek below the Cub creeks. One scenario continued current dam release rates but eliminated any contributions from the Cub creeks. The second scenario eliminated all releases from the dam but maintained present flow rates in the Cub creeks.

The District's/City's fish expert witness indicated that the present flow release regime from Bear Valley Dam (averaging about 0.1 cfs) does make an important contribution to maintenance of the trout populations below West Cub Creek. He indicated that if Cub Creek flows were absent, there would be only a small reduction in numbers or biomass of fish, perhaps only twenty percent.¹¹² The witness also testified that zero releases from the dam, compared to the current releases, but with the Cub creeks flow continuing,

¹⁰⁹ USFS EXHIBIT No. 3 – Initial Analysis of Bear Creek, San Bernardino National Forest, p. 3.

¹¹⁰ USFS EXHIBIT No. 1 - Testimony of Rosamond A. Robinson, p. 4.

¹¹¹ DFG EXHIBIT No. 17 - Memorandum to Ed Dito, SWRCB, from Fred Worthly, DFG Region 5, March 30, 1992, p. 1.

¹¹² TRANSCRIPT, November 18,1993, Testimony of Roy Leidy, p. 176, line 16 - p. 177, line 19.

31

would result in no change in fish numbers or biomass downstream of the Cub creeks.¹¹³

The fish expert witness for DFG came to substantially different conclusions concerning these two hypothetical scenarios. He testified that he would expect the reduction in fish biomass or numbers would be almost 100 percent in Bear Creek in the absence of flows from the Cub creeks, and he would expect Bear Creek below the Cub creeks to be quite similar to the condition seen at present above the Cub creeks. Under the second scenario, he would expect to see some change in the absence of releases from the dam, but he could not quantify those changes. He did indicate that the releases from the dam made a small, but not a significant, contribution to the condition of Bear Creek below the Cub creeks.

C. Bear Creek Above The Cub Creeks: Between the dam and West Cub Creek is a reach of approximately 1.2 miles which receives flow from the dam (seepage, leakage, releases, and spills) and from accretion from the streambed; this reach is often referred to as "Upper Bear Creek". Accretion may result from surcharging of the groundwater from the water stored behind the dam. Flow data from Summer 1993, measured at the Parshall flume below the dam, and from a weir located about midway between the dam and the Cub creeks ("Fish Canyon", weir #2) suggest that accretion may account for about one/third of the total flow in this reach. Testimony from the District/City and from DFG indicates that trout are absent from above Fish Canyon to the dam, though sculpins and crayfish are present. The District/City and the USFS also testified to the presence of several rock structures and boulder fields which could, and in some cases probably do, act as barriers to upstream migration of trout; a particularly large barrier is present in Fish Canyon. Upper Bear Creek has been planted with trout at various times in the past, but those above Fish Canyon have not survived.¹¹⁵ USFS hypothesized that with increased flow, planted trout could again establish self-sustaining populations even with the barriers present in the Upper Bear Creek.¹¹⁶ In addition, the reach between Fish Canyon and the Cub creeks, while it has some trout present, currently

¹¹³ TRANSCRIPT, November 18, 1993, Testimony of Roy Leidy, p. 178, line 23 - p. 179, line 11.

¹¹⁴ TRANSCRIPT, November 18, 1993, Testimony of Steven Parmenter, p. 247, line 20 - p. 249, line 12.

¹¹⁵ TRANSCRIPT, November 18, 1993, Testimony of Roy Liedy, p. 119, lines 2-7.

¹¹⁶ USFS EXHIBIT No. 6, Rebuttal Testimony of Rosamond Robinson, p. 2.

does not meet the angler effort catch rate goal of the DFG Management Plan.¹¹⁷ Based on data from 1993, there is no evidence of recent successful trout reproduction above the Cub creeks; no young-of-the-year trout were found.¹¹⁸

The District/City argued that Upper Bear Creek should not be expected to support a trout population because this reach is a "transition zone" between the warm-water fishery of Big Bear Lake and the cold-water fishery of Bear Creek. The water being released from the lake has, in theory, higher temperatures, higher nutrient levels, and has reduced or no dissolved oxygen. Therefore, according to this argument, changes in these water quality parameters must occur during the released water's passage through the first portion of Bear Creek in order to make conditions suitable for trout farther downstream. In support of this hypothesis, the City/District presented evidence to indicate that water temperature and nutrient levels decrease, and oxygen levels increase, downstream from the dam. However, an analysis of the submitted data, as well as the District/City's own testimony, indicates that the temperature and nutrient parameters measured at the dam are not out of the normal range for trout,¹¹⁹ and that the released water is sprayed out at the base of the dam, and so becomes rapidly oxygenated. In addition, the water released from the dam is taken from very deep in the lake, 120 and so would likely be the coldest water in the lake. Under cross examination by USFS, the District's/City's expert witness also acknowledged that all of the factors discussed in the transition zone are a function of flow, and that changes in flow rates could affect the size or characteristics of the transition zone.¹²¹ The District's/City's witness also suggested that, over time, high flows, high sediment loads, or unsuitable water quality could have eradicated the trout in the first 0.6 miles of Bear Creek.¹²² However, this witness also indicated

¹¹⁷ TRANSCRIPT, November 18, 1993, Testimony of Roy Liedy, p. 131, lines 11-16.

¹¹⁸ TRANSCRIPT, November 19, 1993, Testimony of Roy Liedy, p. 69, line 23 - p. 70, line 3; p. 86, lines 10-24.

¹¹⁹ TRANSCRIPT, November 18, 1993, Testimony of Roy Liedy, p. 145, line 22 - p. 149, line 21.

 120 TRANSCRIPT, November 18, 1993, Testimony of Roy Leidy, p. 175, line 22 - p. 176, line 5.

¹²¹ TRANSCRIPT, November 18, 1993, Testimony of Roy Liedy, p. 149, line 22 - p. 150, line 14.

 122 TRANSCRIPT, November 18, 1993, Testimony of Roy Leidy, p. 119, line 13 - p. 120, line 15.

that if flows were absent and long-lasting pools were not available, the trout would also die.¹²³

Minimum Flow Rates: The third question concerns the issue of what D. constitutes adequate minimum flows in Bear Creek, both above and below the Cub creeks. Nearly all of the data collected and presented on Bear Creek may be considered as more or less "anecdotal". There has been a lack of regular, long-term, repeated observations carried out at consistent locations, using similar or compatible measuring techniques, in this watershed. Even the descriptions of some of the sampling stations are rather vague as to specific location. Likewise, water flow and quality data are often generally lacking, and the accuracy of some flow measurements is highly debatable. Despite repeated requests, no evidence was presented of any attempt to undertake an Instream Flow Incremental Methodology (IFIM) study of the relationship of varying flows to potential habitat. There have also been no quantitative measurements, and only minimal casual observations, of the effects of large flushing flows (releases, spills, etc.) on sediment transport, riparian vegetation, and fish in Bear Creek.

A wide range of flows has been proposed by the participants. The City/District indicated that the average flow releases from the dam have been 1.41 cfs since the 1977 Judgement.¹²⁴ They also testified that between September 1986 and December 1988, the average flow was 0.088 cfs, based on 101 measurements below the dam.¹²⁵ Since the grouting of the dam in 1989, the District claims it has maintained an average minimum flow of approximately 0.106 cfs, in conjunction with a Section 1601 permit condition associated with the dam grouting, even though that agreement has terminated.¹²⁶ Their data indicate that in 1990, however, the average flow was 0.094 cfs (Table 8 of Attachment A). The District argued that this flow is adequate to maintain the habitat below the dam, and that no change is warranted.

Cal-Trout testified that a minimum flow of 2 cfs should be released from the dam, based on a formula of ten percent of the long-term median inflow from the watershed above the dam. In wetter years, more could be released, and in very

¹²³ TRANSCRIPT, November 18, 1993, Testimony of Roy Leidy, p. 144, line 23 - p. 145, line 17.

¹²⁴ TRANSCRIPT, October 13, 1993, Testimony of Mr. Ludecke, p. 139, line 5-11.

¹²⁵ TRANSCRIPT, October 13, 1993, Testimony of Mr. Evenson, p. 157, line 22 - p. 158, line 16.

¹²⁶ TRANSCRIPT, October 13, 1993, Testimony of Mr. Ludecke, p. 133, line 16 - p. 134, line 22. **x t**

dry periods less could be released, but the fish populations might not be kept in good condition.¹²⁷

DFG recommended a base flow, especially in late summer, of 1.2 cfs, which was the flow measured below West Cub Creek during 1991 and 1992. This number was developed from a very limited set of observations and was considered by the DFG witness as the minimum ("rock-bottom") amount needed to maintain the trout populations above the Cub creeks.¹²⁸ DFG also testified that the Cal-Trout recommendation of 2.0 cfs would probably provide substantial benefits above those obtained by the DFG recommended level of 1.2 cfs.¹²⁹

E. <u>Flushing Flows</u>: The last question to be considered is whether increased flow releases should be required for flushing flows or for stream habitat maintenance, and, if so, of what flow rate, frequency and duration. Little evidence was presented on this issue. USFS testified that the large releases in 1993 reduced the density of riparian vegetation in the Upper Bear Creek area, compared to densities observed several years earlier. This was viewed as a beneficial action in terms of providing a healthier, more varied, riparian habitat.¹³⁰ There were also disagreements in the evidence presented concerning what volumes of water would be required to move a certain amount of fine sediment in order to improve spawning and rearing habitat, and also just how much of the various pool areas in Upper Bear Creek would have to be scoured with these flows in order to provide significant habitat improvement.¹³¹

F. <u>Discussion</u>: The limited testimony and data available on the relative contributions of releases from the dam and the Cub creeks, plus accretion to Bear Creek between the dam and the Cub creeks, indicate that the majority of the flows in Bear Creek come from sources other than the dam releases. The District's/City's data from late summer 1993 suggest that more than seventy percent of the total flow in Bear Creek below the Cub Creeks comes from accretion in the stream bed and flows from the Cub creeks. The testimony from the District/City appears to be contradictory, therefore. If the 20-30 percent (or less) of the flow in Bear Creek comes from the dam releases, yet an absence of Cub Creek flows would reduce fish biomass by only 20 percent,

¹²⁷ TRANSCRIPT, October 12, 1993, Testimony of Mr. Trihey, p. 120, line 11 - p. 123, line 17.

¹²⁸ TRANSCRIPT, October 12, 1993, Testimony of Mr. Parmenter, p. 212, line 10 - p. 214, line 4.

 129 TRANSCRIPT, October 12, 1993, Testimony of Mr. Parmenter, p. 214, line 12 - p. 215, line 18.

¹³⁰ TRANSCRIPT, November 18, 1993, Testimony of Ms. Butler, p. 278, line 2 - p. 279, line 10; p. 299, line 12 - p. 300, line 9.

¹³¹ TRANSCRIPT, November 18,1993, Testimony of Ms. Robinson, p. 289, line 1 - p. 292, line 7; p. 294, line 19 - p. 296, line 20. then presumably the small releases from the dam are the main supporter of the downstream fish community. Yet the witness <u>also</u> testified that the <u>absence</u> of flows from the dam would have no effect on the downstream community. An example of seepage rates (Table 8 of Attachment A) shows that in late 1988 and early 1989 measured releases (seepage) rates were extremely low; in December 1988 the rate was zero. If these values are correct, there can be little doubt that the dam releases were contributing little or nothing to the maintenance of habitat conditions in any portion of Bear Creek. In addition, if the dam releases were the primary support for the downstream fish community, then one could anticipate that there would be little difference between the areas upstream and downstream of the Cub creeks. As was discussed above, this is not the case; the two reaches are distinctly different in character.

The Division's staff believes that releases from the reservoir must be the "safety net" both for Upper Bear Creek and for the reach of Bear Creek between West Cub Creek and the confluence with North Fork Bear Creek, especially in drier years when flows from tributary streams are reduced or absent. Arguments can be made for a variety of flow regimes, based on water-year type, season, lake level, and other factors. The critical period appears to be summer carryover, for several reasons: both young-of-the-year and adult fish are present; ambient temperatures are highest, and flows are lowest (except possibly for short periods after occasional thunderstorms). Flows in the spring and summer are even more reduced in recent years with the change in operating policy for the District, which results in fewer releases to meet downstream demands. These conditions all dictate higher stress levels and physiological demands on the fish, and reduced suitable habitat. Big Bear Lake is by far the largest source of water in the watershed; projected future demands on the system will probably result in fewer opportunities for releases, lower seepage rates, etc. Therefore, some minimal management of the stream system is appropriate to assure continued maintenance of adequate habitat, both above and below the Cub creeks.

As discussed above, a variety of flow regimes was proposed by various participants. Each of these proposals will be summarized and discussed as alternative proposed flows.

Cal-Trout - 2.0 cfs in all years: This flow rate is the basic rate proposed by Cal-Trout, based on a percentage of the calculated (not measured) estimated median unimpaired inflow into Bear Valley above the dam. As proposed here, this rate would apply in all seasons of all years, regardless of the lake level or water year type. Cal-Trout and DFG both acknowledge that this flow would provide a substantial increase in protection for riparian habitat and fish populations through the reaches of Bear Creek from the dam to the junction with North Fork Bear Creek. Cal-Trout also acknowledged that during drought somewhat reduced flows would be appropriate, but the levels were not specified. Cal-Trout also proposed unspecified higher flows during wet periods. It is probable that, with the change in the District's policy for purchase of in-lieu water, there is a higher probability of dam spills or releases which could to provide somewhat higher flows during wet periods.

<u>DFG - 1.2 cfs in all years</u>: This alternative incorporates the minimum flow rate recommended by DFG for summer flows, but does not increase the flow rate in winter. This flow rate would be maintained regardless of precipitation or lake level. It would provide substantially increased habitat continuity and stability, especially in the Upper Bear Creek provided by the present release rate. reach, compared to the conditions It would also provide some additional protection and flow stability below the Cub Creeks, especially in drought periods, when flows from tributary streams, especially the Cub creeks, are reduced or absent. DFG and USFS flow rate measurements during the summers of drought years indicate that Bear Creek has minimal flow in the absence of dam releases above 0.1 cfs. The impacts on lake levels would be somewhat less than Alternative 2, and also allow guicker lake recovery after droughts are over.

<u>District/City - 0.1 cfs in all years</u>: This alternative would simply continue the present release rate policy of the District, which was tied to a temporary permit condition which is no longer in effect. Maintenance of this release rate would continue the minimal habitat condition which the historical releases from the dam have generated in Upper Bear Creek, and which provide little or no contribution to protection below the Cub creeks. This alternative would provide maximum lake level protection.

Division Proposed - 0.3 cfs minimum dam release; maintain 1.2 cfs below West Cub Creek: The evidence submitted by the parties indicates that by far the largest portion of the trout fishery in Bear Creek exists below the Cub creeks. Limited flow measurements presented in the record indicate that the reach between the Cub Creeks and North Fork Bear Creek is substantially impacted during drought periods. The reach between the Cub Creeks and Fish Canyon is marginal trout habitat because of low flows and a narrow stream channel, and a barrier at Fish Canyon appears to prevent upstream migration of trout beyond this point. The Division proposed alternative requires the District to maintain a minimum average flow below West Cub Creek of 1.2 cfs at all times (seven-day running daily average with an instantaneous minimum flow of 1.0 cfs). This flow will assure that adequate flows are always maintained in the majority of the stream's trout habitat. This required release will also assure that the reach between the Cub Creeks and Fish Canyon is provided with substantially increased flows in drier periods (compared to the present release rate), as a result of the required releases for the downstream In addition, the 0.3 cfs constant minimum release rate should reach. provide improved habitat and stream surface flow continuity throughout the reach between the dam and the Cub Creeks. The District will also be required to reduce releases by no more than 0.2 cfs per day to reduce stranding of fish. Because of the extremely limited data available on the Upper Bear Creek reach, and because the actual flow regime in this reach cannot readily be modeled, it is impossible to determine the extent of habitat improvement which will occur in this reach. However, staff believes that the proposed flow requirements will provide important additional protection for trout habitat and the trout fishery throughout

Bear Creek. This alternative will have minimal, if any, measurable effects on the resources and economy of Big Bear Lake and Bear Valley.

X. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

On October 24, 1990, Cal-Trout submitted a complaint to the SWRCB contending that the District was not releasing sufficient water from Big Bear Lake to maintain Bear Creek's fishery resources in good condition. In response to the complaint, the Division's staff conducted an investigation and distributed to interested parties a staff report of investigation, dated September 24, 1992. As described in the staff report, Division staff concluded that there was difference in expert opinion and insufficient information to determine the appropriate flow required for Bear Creek's fishery resources. Following the release of the staff report, the parties conducted extensive, but unsuccessful, negotiations to resolve the issues raised in the complaint and requested that the SWRCB hold a hearing. The SWRCB held a water right hearing extending over 7 days with testimony by 17 expert witnesses and comments and/or policy statements by 99 agencies or individuals.

The parties continue to have a significant difference in opinion regarding the flows needed in Bear Creek to maintain fish in good condition. Essentially, Cal-Trout contended that 2.0 cfs is required, the DFG recommended a minimum flow rate of 1.2 cfs, and the District and City argued that the existing 0.1 cfs minimum bypass flow provides adequate protection. The District and the City also argued that Big Bear Lake provides substantial public trust uses, recreational opportunities, and economic benefits to the local communities within Bear Valley; and that any increase in release of water from Big Bear Lake into Bear Creek for instream purposes would lower the lake with adverse impacts to the lake's uses. Consequently, the primary issue of this complaint involves the allocation of water between competing uses -- additional flow for the benefit of the fishery resources in Bear Creek compared to the benefits resulting from storage in Big Bear Lake.

Staff recognizes that below certain lake levels, recreational and economic impacts begin to occur even if biological impacts are minimal, and that a reduced minimum flow under extreme lake conditions may be appropriate; however, flows must be sufficient to maintain fish in at least minimal condition. 'The record strongly supports the conclusion that the District's/City's current operational release rate of only 0.1 cfs is not sufficient by itself to maintain trout populations and varied riparian habitat anywhere in Bear Creek. Therefore, it is the opinion of Division staff that a bypass flow of 0.1 cfs does not provide sufficient flow to maintain fish in good condition in the stream reach below West Cub Creek and that a higher flow will be required.

As discussed in Sections V, VI, VII and the Appendix to this staff analysis, Division staff evaluated the impacts that four release rates would have on Big Bear Lake's water levels, public trust uses, recreational uses and economy. Based on staff's evaluation and the testimony submitted at the hearing, the affects on Big Bear Lake's boating and shore activities, use and social benefits, local economy spending and jobs, property values, and agency revenues which are attributed to current operations, will not be significantly increased as a result of the implementation of the Division's proposed release scenario (i.e., 0.3 cfs minimum release from Bear Valley Dam and the maintenance of 1.2 cfs below West Cub Creek). In addition, there is no correlation between lake level and bald eagle activity; nor will small changes in lake level have significant effects on lake fisheries and productivity, the Stanfield Marsh, or the bald eagles' food supply or habitat.

In contrast, the evaluated proposed release rates from Big Bear Lake to Bear Creek will affect streamflows rates in Bear Creek. Such increased streamflows could positively affect recreational opportunities associated with the creek, improve the overall riparian habitat, increase fish populations from current levels, and increase annual use of the creek.

Unfortunately, despite extensive studies and expert testimony at the hearing, there is still insufficient information available to Division staff to accurately determine the appropriate instream flow regime for Bear Creek. Existing law requires that the SWRCB shall give deference to DFG's expert opinion: therefore, Division staff recommends that the SWRCB adopt the Division's proposed flow standard as a minimum level of protection. Based on the information in the hearing record, the recommended minimum flow rate of. 0.3 cfs from Bear Valley Dam with a flow maintenance requirement of 1.2 cfs below West Cub Creek will maintain fish in good condition and, at the same time, cause insignificant impacts to Big Bear Lake's public trust uses. recreational uses or the local economy. Division staff recommends that the SWRCB direct the District to prepare a workplan detailing the measures and recording equipment to be used in implementing the proposed release rates. including gage locations and completion schedules. The Workplan should be submitted for review and approval of the Chief of the Division of Water Rights within three months of the effective date of the Order.

Cal-Trout also recommended that the District be required to provide a springtime "flushing flow" of 30 to 35 cfs for 3 consecutive days.¹³² Based on information submitted during the hearing, Division staff concludes that flushing flows are important for maintaining suitable habitat in Bear Creek; however, the hearing record does not contain sufficient information to define the flow rate, frequency, or duration of flushing flows. Accordingly, Division staff does not propose that the District be required to provide flushing flows. Review of hydrologic data and the District's operational criteria indicate that with the current stabilization of lake levels, the District will be required to spill or bypass substantial quantities of water during wet years. Therefore, as an alternative to required flushing flows, Division staff recommends that the District consult with DFG and USFS and cooperate to the maximum extent to manage future spills/releases to the greatest benefit for downstream habitat management, and to minimize extreme, short duration changes in flow rates.

In this particular case, there is a difference in expert opinion regarding the instream flow standard. In the opinion of Division staff, the District should

¹³² CAL-TROUT EXHIBIT NO. 2B, p. 13.

have the primary responsibility to monitor release rates below the dam and to ensure that the proposed flow rate will maintain the fish in good condition. Accordingly, Division staff recommends that the District be required to conduct additional studies to determine whether the proposed instream flow standard does, in fact, maintain the fish in good condition.

Division staff recommends that the SWRCB direct the District to prepare a Workplan that will define the scope, responsible parties, and time schedule for completion of those additional studies. During the development of the Workplan, the District should consult with DFG and USFS to assist in the development of the Workplan and to determine their level of participation. The Workplan should be submitted for review and approval of the Chief of the Division of Water Rights within six months of the effective date of the order.

The District should submit a final report summarizing the result of the additional studies. The SWRCB can review the results of those additional studies and, if appropriate, can modify the instream flow standard adopted pursuant to this matter.

Division staff also recommends that the SWRCB authorize the Chief of the Division of Water Rights to approve appropriate changes in the instream flow, standard that may be necessary to conduct fishery studies that are defined in the Workplan.
ATTACHMENT A

F

•

•

TABLE 1 BEAR VALLEY PRECIPITATION DATA (AT BEAR VALLEY DAM)

WATER YEAR	ост.	NOV.	DEC.	, JAN.	FEB.	MONTHLY MAR.	' PRECIPT APR.	TATION (I MAY	NCHES) JUN.	JUL.	AUG.	SEP.	TOTAL
11-12	1.10	0.36	1.90	0.58	0.00	14.95	2.50	0.07	0.00	0.36	0.00	0.00	21.82
12-13	2.34	0.00	0.00	4.87	9.93	3.01	0.06	0.04	1.63	0.58	2.79	0.00	25.24
14-15	0.45	0.35	8.28	9.84	21.06	5,59	4.06	3.27	0.00	0.23	0.20	0.43	53.97
15-16	0.00	0.98	8.29	37,59	3.88	7.55	0.73	0.58	0.00	0.23	0.55	1.66	62.04
10-17	5.07	0.42	7.38	4.69	5.80	2.60	3.74	0.00	0.00	0.93	0.16	0.00	30.85
18-19	0.19	2.41	4.13	0.14	5.98	5.88	1.32	0.21	0.00	1.62	0.32	3.55	25.75
19-20	2.05	4.48	2.00	0.70	14.92	12.50	0.82	0.00	0,00	0.15	0.05	3.00	40.67
21-22	0.80	0.70	13.60	9,56	7.48	4.60	1.50	0.00	0.00	0.00	0.22	0.00	39.19
22-23	1.20	1.70	1.10	7.20	7.00	0.93	3.08	0.00	0.00	0.40	0.55	1.14	24.30
23-24	1.90	1.60	4.60	0.00	2.74	4.90	<u> </u>	1.10	3.50	0.32	0.00	0.60	20.23
25-26	4.70	2.54	1.50	2.68	8.47	1.55	17.23	1.40	0.00	0.00	0.00	0.00	40.07
26-27	2.80	4,26	8.30	1.80	16.56	3,85	1.98	0.28	0.09	0.12	0.00	0.00	37.26
28-29	2.20	1.00	4.27	3.51	4.19	4.10	4.00	0.00	0.00	0.00	1.18	0.70	25.15
29-30	0.19	0.00	0.00	9.60	5.05	9.02	1.00	7.39	0.00	0.00	0.00	0.00	32.25
31-32	2.00	5.50	14.29	9.10	4.15	0.00	7.10	0.20	0.00	0.00	4.45	0.00	28.82
32-33	0.15	0.15	6.27	11.53	0.15	0.10	0.87	1.62	0.41	0.40	0.00	0.00	21.65
33-34	0.52	1.35	16.25	1.40	3.21	0.54	0.00	0.00	1.28	0.42	0.55	0.10	25.62
35-36	0.00	0.85	1.08	0.27	17.00	4.14	2.85	0.08	0.00	0.61	0.58	0.06	27.52
36-37	4.24	1.11	15.49	6.91	16.38	11.42	1.06	0.30	0.51	0.00	0.29	1.05	58.76
37-35 38-39	0.98	0.00	4.52	4,95	4.11	2.72	3.21	0.00	0.00	0.40	0.38	7.71	32.15
39-40	0.75	1.56	1.02	7.69	6.99	3.79	1.63	0.00	0.00	0.00	0.00	0.55	23.98
40-41	1.99	2.24	14.64	3.84	13.6/	11.26	7.01	0.61	0.00	0.00	0.12	0.00	23.73
42-43	0.47	0.67	1.87	19.71	9.42	4.83	2.65	0.00	0.00	0.00	0.00	0.25	39.87
43-44	1.85	0.20	9.08	2.48	12.05	2.38	3.00	0.20	0.00	0.00	0.00	0.00	31.24
45-46	1.78	0.82	15.37	0.73	4.23	11.31	1.73	0.31	0.00	3.26	0.07	1.76	41.37
4647	6.68	13.79	5.19	2.72	1.52	1.36	0.70	0.03	r 0.04	0.00	1.19	0.12	33.34
47~48	0.59	0.26	7.52	0.12	4.13	7.48	4.25	0.15	0.13	0.04	0.00	0.00	28.38
4950	1.07	4.28	7.29	5.19	4.14	2.84	3.10	0.64	0.00	1.18	0.01	0.79	30.53
50-51	0.13	2.39	13 35	4.93	3,64	2.29	4.45	1.04	0.00	3.06	0.12	2 78	23.35
52-53	0.00	6.47	5.17	1.80	1,79	3.47	1.85	1.94	0.00	0.03	0.07	0.03	22.62
53-54	0.31	1.56	0.45	16.52	5.89	14.35	0.23	0.23	0.54	0.92	0.41	0.60	42.01
55-56	0.00	3.21	2.58	12.19	2.07	0.00	4.09	1.67	0.00	1.93	0.00	0.00	27.02
56-57	0.25	0.00	0.59	18.88	3.99	2.38	2.91	3.60	0.28	0.43	0.27	0.00	33.58
58-59	0.16	1.85	0.00	3.82	17.55	0.00	0.59	0.17	0.00	0.20	0.55	1.15	26.04
59-60	0.46	1.70	0.74	6.17	5.50	2.12	5.14	0.32	0.00	0.05	0.03	0.28	22.51
<u>60-61</u> 61-62	1.86	6.30 5.14	5.27	6.92	16.36	5.32	0.00	2.03	0.00	0.12	0.40	0.00	42.41
62-63	0.56	0.19	0.21	0.77	0.00	6.16	4.88	0.00	0.00	0.00	1.48	5.15	19.40
6364 6465	1,41	5.08	1.06	4.80	0.51	2.06	3.36	2.52	0.00	1.45	0.26	0.23	26.08
65-66	0.13	26.87	12.03	1.89	3.67	1.70	0.14	0.08	0,00	0.00	0.33	0,44	47.28
66-67	0.50	3.13	22.40	9.24	0.00	7.30	13.64	0.67	0.06	0.05	1.49	1.70	60.18
68-69	0.00	0.00	3.62	40.80	29.65	3.85	2.16	1.64	1.00	2.67	0.03	0.75	86.55
69-70	0.11	2.93	0.24	2.79	0.94	8.38	2.77	0.10	0.05	0.19	1.65	0.00	20.15
70-71	3.85	16.20	22.32	0.00	0.18	0.00	1.92	0.73	0.00	0.02	0.35	0.00	30.19
72-73	1.29	6.56	0.00	6.43	12.10	11.14	0.00	0.53	0.00	0.00	0.59	0.00	38.64
7374	0.00	4.42	5.88	12.55	0.05	7.53	1.15	0.39	0.00	0.29	1.25	0.70	29.26
75-76	0.79	3.10	0.55	0.00	12.04	5.26	2.60	0.25	0.19	0.77	0.00	8.76	34.31
76-77	0.60	0.15	1.30	6.80	0.53	20.10	0.00	5.67	0.00	0.00	2.87	0.00	21.00
78-79	0.31	7.61	3.83	9.98	9.23	10.30	0.00	0.50	0.00	1.23	0.15	0.23	43.37
79-80	2.31	0.00	0.94	20.97	26.31	7.99	2.77	1.40	0.00	1.43	0.00	0.00	64.12
81-82	0.57	2.61	0.10	3.98	4.65	18.16	2.40	0.71	0.00	0.17	2.26	0.09	36.40
82-83	1.75	8.78	5.52	8.21	8.71	13.50	4.70	0.00	0.00	0.00	3.65	1.15	55.97
<u>83-84</u> 84-85	3.35	6.04	12.77	2.02	0.25	1.86	1.62	0.00	0.00	0.91	0.00	0.02	21.00
85-86	0.37	10.00	3.76	4.94	12.13	7.21	0.00	0.00	0.00	0.88	3.26	2.74	45.29
86-87 87-88	0.00	2.40	1.60	1.59	2.66	3.90	1.58	0.28	0.00	0.49	0.17	0.28	14.95 28.89
88-89	0.00	2.97	6.43	1.88	6.39	2.76	0.39	1.11	0.00	0.00	0.38	1.60	23.91
8990	2.61	0.20	0.00	6.70	6.18	2.67	1.33	0.96	0.20	0.73	0.55	0.00	22.13
AVERAGE	1.33	3.33	5.17	6.49	6.92	5.99	2.98	0.86	0.17	0.53	0.74	0.83	35,33

SOURCES: Camp Dresser & McKee Inc., April 1985 Analysis of Water Supply Yield Big Bear Watermaster Annual Reports

ş,

T

ı • *f* •

					CALCU	LATED UNI	MPAIRED	FLOW					·····
YEAR	JAN.	FEB.	MAR.	MONTHL APR.	Y CALCUI MAY	ATED UN JUN.	JUL.	FLOW (A AUG.	CRE-FEE SEP.	т) ост.	NOV.	DEC.	TOTAL
1910	2118	1765	3447	1826	493	0	463	272	379	0	654	348	11765
1911 1012	7562	2707	2098	2029	2201	300	724	2/3	226	535	343	243	8497
1913	501	1270	1119	3755	719	144	234	929	353	101	595	304	10024
1914	4326	6238	5279	4294	2694	511	544	75	195	94	423	1142	25815
1915	1589	5320	5583	10306	7308	1291	1294	740	353	316	494	1968	30302
1910	20/01	1501	2937	4326	2650	709	1004	1975	782	108	751	1005	17874
1918	112	1059	11222	1357	0	1634	1080	739	564	506	529	997	19799
1919	177	1023	2938	1943	357	0	1110	612	0	164	753	1221	10298
1920	2247	5963	5372	4889	2814	396	190	869	1481	1133	294	16642	32470
1921	3050	590	7598	4177	7532	1587	1572	1120	494	779	405	3105	37593
1923	1307	862	2068	6052	814	1290	0	396	1264	267	1316	0	15636
1924	280	1121	1384	4421	1109	0	806	153	558	177	578	583	11170
1925	1262	783	1552	1909	1031	580	0	369	0	0	1000	1355	16241
1927	1766	13275	4254	3731	904	1001	46	285	542	416	697	1035	27952
1928	689	1256	1310	3	239	48	0	253	0	333	278	647	5056
1929	637	654	3141	3110	542	205	0	489	208	103	0	39	9128
1930	4//	1366	303	1124	417	0	153	435	426	373	438	783	6123
1932	633	5476	8263	7468	4161	837	0	153	221	266	258	1094	28830
1933	1441	277	1962	1749	803	171	425	275	0	205	439	3403	11150
1934	767	944	2088	6301	1808	110	196	20	413	0%0	204	2/4	16054
1935	528	2461	2900	4061	735	0	<u><u> </u></u>	369	0	429	466	2574	13599
1937	774	11381	8424	12127	5973	1210	400	635	560	162	215	1030	42891
1938	785	3976	24968	7684	3504	724	971	707	559	378	198	1373	45827
1939	1307	1490	3307	1374	311	.596	210	9/1	26	660	198	4068	12775
1941	1392	4105	5948	6107	6164	873	107	849	0	1021	594	1848	29008
1942	224	884	1524	2972	956	0	665	432	116	399	496	486	9154
1943	3783	2945	2758	3223	1496	140	491 532	374	197	250	2889	616	15910
1945	568	3807	3471	5501	1530	392	697	1149	461	916	142	5173	23807
1946	574	997	2304	3063	364	154	1057	142	338	488	3528	1829	14838
1947	565	838	1106	474	116	102	0	336	52	139	106	803 656	4397
1948	1012	992	1593	4025	697	172	108	110	244	95	564	812	10424
1950	610	1973	1234	851	134	0	231	124	386	235	378	30	6186
1951	602	421	123	1005	198	0	243	112	135	427	293	1216	25252
1952	554	442	1332	12367	204	173	429	84	235	320	133	130	4859
1954	1538	1047	2730	6286	1089	233	395	438	389	0	477	782	15404
1955	349	395	2110	743	1801	235	37	806	0	307	335	123	7241
1956	1353	1254	0 546	437	402	118	40	1/0	411	203		1302	9487
1958	620	3059	5314	8765	4736	263	0	595	99	0	872	0	24323
1959	263	1857	1253	84	0	86	609	80	0	488	597	141	5458
1960	597	729	1882	734	1123		610	0	77	1012	409	173	1437
1961	400	2790	2845	4291	1099	13	0		249	61	178	135	11875
1963	188	308	306	630	327	0	0	0	390	85	265	98	2597
1964	297	7	950	2465	955	295	0	0	0	143	195	4288	20060
1965	330	1429	3153	4339	353	0	431	470	240	267	568	13071	21596
1967	881	1273	2533	4319	4496	1187	709	899	546	242	1106	1378	19569
1968	682	1551	1617	1240	377	215	640	396		171	558	375	7822 61679
1969 1970	20533	8441 561	0910 2222	12646	361	<u>1909</u> 412	629	1676	48	3/3	1332	1509	10020
1971	640	485	788	533	621	337	569	347	0	514	628	6112	11574
1972	220	91	420	0	480	320	0	529	212	106	1150	1457	4985
1973	1443	1496	3344	0185	4527	150	356	410	678	855	138	1139	11561
1975	627	653	860	2019	1257	0	465	469	649	544	613	358	8514
1976	0	953	2811	814	179	51	442	583	2002	113	581	141	8670
1977	724	316	371	632	2520	654	226	305	<u>81</u>	303 A	1764	2095	41114
1970	410/	2652	13338	7409	4092	92	745	640	974	257	115	192	25447
1980	6196	13898	6090	6882	5758	1160	813	541	571	389	0	161	42459
1981	507	1286	1967	1304	0	441	0	261	229	100	489	2582	25220
1982 1983	1820	2096	<u></u>	6097	6908	1407	279	1715	595	725	2012	0	35143
1984	1980	314	758	50	357	0	2068	1927	168	177	422	2348	10569
1985	639	1283	1636	1997	0	0	863	0	0	301	1667	1111	9497
1986	1177	5838	3721	1797	250	82	0	254	141	1328	283	981	8005
1985	805	439	288	1669	436	191	Ő	359	0	0	364	0	4551
1989	0	2511	1732	307	0	180	0	0	217	0	20		4907
AVERAGE (AP)	517 1620 59	352 2328.27	24/5 3244.41	3574.37	1676.05	357.83	412.95	432.02	326.74	336.23	663.11	1362.62	16335.20
AVIET ACTE (NOR	26 28	/1 00	57 85	60.16	27 2	6.01	6.71	7.03	5.48	5.47	11.16	22.18	22.56

 AVERAGE (CFS)
 26.391
 41.991
 52.831
 60.161
 27.31

 SOURCES: Camp Dresser & McKee Inc., April 1985 Analysis of Water Supply Yield Big Bear Watermaster Annual Reports
 Big Bear Watermaster Annual Reports

.

.

۹,

TABLE 3 BIG BEAR LAKE

YEAR			P	MONIT	HLY RECO	DRDED ST	ORAGE VO	OLUME (A	CRE-FEI	 ET)		
•••	JAN.	FEB.	MAR.	APR.	MAY	JUN.	JUL.	AUG.	SEP.	OCT.	NOV.	DEC.
1910	21879	23209	24243	24539	24243	23209	22174	20102	17767	16016	16275	16470
1911 1912	23800 19712	23504	25279	23948	24391	23800	23430	21879	20361	19583	19583 14135	19/12
1913	14135	15302	16210	19583	18674	16470	13746	11603	8920	6657	7039	7269
<u>1914</u> 1915	25871	1/63/ 31057	36290	46054	28383	27941	27350 52229	<u>25871</u> 51433	24391 50636	49839	23356	24391 51632
1916	72167	67094	69123	68616	69123	68362	67602	65319	64223	63170	62748	63591
1917	64433 52229	53060	63802	64433	62959	69883	60643	63591 57483	59168	51831	53692	52830
1919	52030	52850	55377	56641	54745	51035	47848	48864	39954	37860	37337	38384
1920	40476	46253	51234	52850	53902	51433	50636	<u>51831</u> 46452	45445	47050	46452	46054
1922	60011	65065	72167	72167	71405	71405	71152	70138	68109	66080	65827	68616
1923 1924	69630 53165	70138	54745	58536	57272	69630 53271	49441	44262	3/693	54324 36465	35941	36290
1925	37337	37860	38906	40302	38734	36465	32278	28531	24391	22914	22914	24096
1926	24539	24835	25427	43266	34895	33849	30360	27202	23800	20879	20361	21581 32802
1928	33325	34372	35244	34024	31755	27941	22914	18545	14264	11913	11294	11809
1929	12325	12841	15692	18415	18027	15951	12635	10159	8095	6530	6338	6275
1931	10365	11603	11603	12325	12119	10881	8817	7269	6148	5639	5893	6594
1932	7166	12532	20491	27497	30883	30709	29419	27645	25723	24243	23356	24243
1934	15562	16340	16860	16340	14395	12738	10159	7372	5574	5257	5574	5766
1935	6848	9230	12016	18027	18804	18027	16080	14005	12119	10675	10571	10675
1937	11706	22914	31057	42668	47649	47649	46652	45855	448.59	43664	43266	40636
1938	44661	48445	67602	71405	72167	71405	70645	68616	66080	64433	63591	64438
1939	59168	60853	61906	62538	60853	58536	54956	51035	47649	45656	45059	48644
1941	49839	53692	59168	64644	69630	69123	67602	66334	63802	63170	62959	64433
1942 1943	52030	54745	60643	65065	64854	63381	60432	57062	53902	50437	48843	48445
1944	52428	53902	56220	60011	60432	58958	55798	51632	47649	44661	46851	47250
<u>1945</u> 1946	47649	51234	54324	59168	59590	58115 52638	55377 49640	/ 53271	50038 42867	47449	46253	50835
1947	46452	47050	47649	47449	45656	43066	39431	36639	33849	32104	31232	31929
1948	31929 21581	32976	23800	27350	27350	25279	29863	26462	23209	21581	20361	20620
1950	17118	18933	19842	20231	19453	17767	15692	13048	11500	10055	9849	9746
1951	10262	10571	10468	10262	9746 22914	22322	21730	2930	1400	950 18674	950	2125
1953	20361	20620	21581	21879	21286	19842	17767	15302	13151	11809	11397	11397
1954	12841	13746	16210	22026	22322	21484	19842	18156	16470	14914	14914	15562
1956	11294	12428	11809	11913	11603	9849	7682	5511	2840	1300	1000	592
1957	2930	5766	6148	20231	24243	23652	4875 22618	2452	1946 21434	20620	21139	3079 20620
1959	20749	22470	23356	22914	21730	19842	17377	15044	13151	12222	12016	11809
1960 1961	12325	12944	14525	14655	15173	13358	11706	9023	6721	6402	6338 540	6084
1962	900	3664	6402	10365	10984	10365	9436	7888	7102	6594	6338	6338
1963	6465	6657	6784	7166	7039	6338	4557	3109	2870	2572	2751	2812
1965	3079	3258	3410	7579	8404	7785	7269	6784	6402	6020	14135	18286
1966	19583	20879	23652	23948	23504	22470	21730	20749	19842	19455	19583	32453
1968	42967	44262	45408	46054	45457	44262	43266	42270	40476	39606	39606	39780
1969 1970	60011	62959	66080	72167	72167	71913	<u>71660</u>	69123	65065	<u>63381</u> 59590	63381	63381
1971	61906	62117	62327	62117	61696	60643	59590	58115	56641	56220	56220	62117
<u> </u>	62117 54324	<u>61906</u>	<u>61696</u> 58536	60853	67094	59168	57062	54535	52428	51234	51831	53060
1974	61064	61696	63802	64433	63591	61485	59168	56851	54956	53692	52850	53692
1975	54114	54535	54956	56220	56430	54324	51632	48843	46452	44661	43664	43664
1977	36559	36559	36559	36559	36925	36421	34771	33547	32357	31682	31024	33377
1978	37292	44222	57044	64180	66544	65126	63766	61962	61380	60000	60457	61380
1980	65362	66308	71869	72358	71381	70892	69915	68706	66544	64653	63707	63475
1981	63707	64653	66071	66544	65126	63707	61380	59313	57494	56145	55920	55695
1983	64979	68137	71625	73231	72358	71327	69861	69861	67116	64416	65629	64705
1984	65977	65693	65835	65126	64133	62032	61892	62171	60915	59405	59130	61194
1986	57359	62869	65977	66402	65409	63568	61613	60640	59542	58306	57494	57359
1967	57359	58306	59130	60091	59267	57899	56280	54941	53748	54013	53616	54279
1989	46699	48953	50094	49587	48445	47314	45344	43903	49334 42943	40191	47811 41302	47314 40834
1990	41068	41185	43183	43183	42473	41536	40142	39005	37879	36888	36009	35690

.

 TABLE 5

 BIG BEAR LAKE END-OF-MONTH STORAGE

5

۲

SOURCES: Camp Dresser & McKee Inc., April 1985 Analysis of Water Supply Yield Big Bear Watermaster Annual Reports •

TABLE 6 BIG BEAR LAKE ELEVATION/VOLUME/SURFACE AREA DATA

Т

1

ŧ

30.00	1744	303
21.00	2000	000
21.00	6007	170
32.00	2397	350
33.00	2758	371
34.00	3140	393
35.00	3574	475
36.00	4090	557
37.00	4714	692
38.00	5474	827
39.00	6344	914
40.00	7301	1000
41.00	8335	1069
42.00	9438	1137
43.00	10612	1210
44.00	11859	1283
45.00	13177	1354
46.00	14567	1425
47.00	16027	1494
48.00	17554	1562
49.00	19146	1623
50.00	20800	1684
51.00	22510	1736
52.00	24273	1789
53.00	26087	1841
54.00	27954	1893
55.00	29873	1946
56.00	31847	2000
57.00	33887	2081
58.00	36009	2162
59.00	38208	2237
60.00	40483	2312
61.00	42824	2369
62.00	45221	2426
63.00	47684	2500
64.00	50221	2575
65.00	52821	2625
66.00	55471	2674
67.00	58169	2722
68.00	60915	2770
69.00	63707	2815
70.00	66544	2863
71.00	69427	2907
72.00	72358	2954
73.23	73370	2073

p

SOURCE: Camp Dresser & Mackee, Inc. - Data Tables 3-4 of staff's 9/24/92 report

STAFF GAGE ELEVATION (FEET)

•

TABLE 8 RECORDED FLOWS FROM BEAR VALLEY DAM 1977 – 1990

OPERATING PERIOD	LEAKAGE (AF)	RELEASES (AF)	DAM SPILLS (AF)	TOTAL FLOW (AF)	OPERATING PERIOD	LEAKAGE (AF)	RELEASES (AF)	DAM SPILLS (AF)	TOTAL FLOW (AF)
JAN. 77	11	76	0	77	JAN. 84	3	0	397	400
FEB	1	0	0	1	FEB	2	0	259	261
ADD			0	1	MAR AND	2	0	0	2
MAY		0	0	1	MAY	$\frac{2}{2}$	<u> </u>	<u> </u>	2
JUN	1	135	0	136		2	441	0	443
· JUL	1	253	0	254		2	566	v	568
AUG	1	249	0	250	AUG	2	0	0	2
SEP	1	155	0	156	SEP	2	0	0	2
OCT	1	0	0	-1	OCT	2	685	0	687
	1	<u>U</u>	0		NOV		8	0	9
TAN 78	1	0	0	<u> </u>	TAN 85	2	<u> </u>	0	2
FEB	2	Ő	<u>o</u>	2	FEB	2	0	0	2
MAR	5	0	0	5	MAR	2	Õ	Ö	2
APR	4	0	0	4	APR	3	0	0	3
MAY	4	0	0	4	MAY	3	0	0	3
JUN	4	0	0	4		3	684	0	687
AIR		0	0			3	0	0	
SEP	4	ŏ	0	4	SEP	3	327	0	330
OCT	4	0	0	4		3	1140	Õ	1143
NOV	4	173	0	177	NOV	3	312	0	315
DEC	4	826	0	830	DEC	3	0	0	3
JAN. 79	2	703	0	705	JAN. 86	3	79	0	82
FBB	2	103	U 562	100		3	Ű	0	3
APR	4	X	4296	4301		2	U 0	<u>0</u>	
MAY	5	0	2796	2801		2	0	n	2
JUN	5	0	0	5	JUN	2	105	ŏ	107 .
RIL	4	0	0	4	JUL	2	316	0	318
AUG	4	659	0	663	AUG	2	0	0	2
SEP	4	1160	0	1164	SEP	2	7	0	9
NOV	4	/33	<u> </u>	131		2	451	U	433
DEC		0	0	6	DBC	2	71	0	73
JAN. 80	8	Ŏ	4475	4483	JAN. 87	1 6	Ő	0	6
FEB	7	12609	0	12616	FEB	6	0	0	6
MAR	7	0	0	7	MAR	9	0	0	9
APR	7	5560	0	5567	APR	8	0	0	8
MAY	7	5638	0	5645	MAY UN	5	0	0	5
		<u>145</u>	0	152		3	0	<u> </u>	2 5
AUG	7	<u>ñ</u>	0	7	AUG	4	0	0	4
SEP	7	1259	0	1266	SEP	4	0	0	4
OCT	7	1164	0	1171	ocr	4	0	0	4
NOV	6	0	0	6	NOV	6	0	0	6
DEC	6	0	0	6	DEC	5	0	0	5
JAN, 81	5		0	2	JAN. 88	10	0	0	10
MAR		- 0	0		MAR	11	0	0	10
APR	3	ő	Ö	3	APR	13	0	ŏ	13
MAY	3	0	0	3	MAY	7	0	0	7
JUN	4	245	0	249	JUN	6	0	0	6
JUL	3	537	0	540	JUL	2	0	0	2
AUG	2	<u>38/</u>	<u> </u>	289 620	AUG CED	2	U		2
OCT		252	0	253	OCT SDr	4	0	0	4
NOV	1	0	0	1	NOV	2	0	Ö	2
DEC	2	0	0	2	DEC	0	0	0	0
JAN. 82	2	0	0	2	JAN. 89	4	0	0	4
FEB	2	0	0	2	FEB	4	0	0	4
MAK APD	- 2		<u> </u>	2	MAK ADD	10	U	0	10
MAY	2	0	0	2	MAY		0	0	5
JUN	2	— ŏ	<u> </u>	2	JUN	Ť		ŏ	1
лл	3	0	0	3	TUL	3	0	0	3
AUG	3	0	0	3	AUG	4	0	0	4
SEP	3	343	0	346	SEP	5	0	0	5
NOV	4	0	12		NOV		····· ··· ··· ··· ··· ··· ··· ··· ···	0	3
DEC	4	0	1725	1729	DEC	4	0	ŏ	4
JAN. 83	5	ō	2602	2607	JAN, 90	4	0	Ő	4
FEB	6	0	1322	1328	FEB	4	0	0	4
MAR	4	0	5612	5616	MAR	4	0	0	4
APR	4	0	3810	3814		8	0	0	8
MAY UN		<u> </u>	938	945		y 5	0 0	0	
ЛЛ	7	<u>ö</u>		7	<u>π</u> π	5	0	0	5
AUG	5	0	0	5	AUG	5	0	Ō	5
SEP	3	1813	0	1816	SEP	6	0	0	6
OCT	4	2320	0	2324	OCT	7	0	0	7
NOV	3	0	9	12	NOV	6	0	0	6
DEC.	3	<u>v</u>	· 14J	140		2	U 1	/ V	3

.

SOURCE: Big Bear Watermaster Annual Reports (1977 - 1990)

*

TABLE 10 SUMMARY OF GROUNDWATER PRODUCTION WELLS BEAR VALLEY GROUNDWATER BASIN

1

.

٠

				*****	AVERAGE							AVERAGE	
NUMBER		OWNER	DRILLED	(FT)	PRODUCTION	FRODUCTION	NUMBER	WELL NAME	OWNER	YEAR DRILLED	DEFTH (FT)	PRODUCTION	PRODUCTION
ļ			2027		(AF)						1-2	(AF)	
	FENNS YLVANIA	JWL	1300	0/0	143.3	76-69	39	LAKEWOOD #27	DWP	1958	288	33	58-92
2	MIDDJLE SCHOOL	DWP	1990	585	33.5	91-92	40	LAKEWOOD #26	DWP	1949	100	18.1	57-85
3	OAK	DWP	1989	AN	102	90-92	41	FLANE	DWP	NA	AN	NA	NA
4	KNICKERBOCKER	DWP	1989	775	104	89-92	42	FISH HATCHERY SPRING	CSD	NA	AA	151.2	47-91
S	LAKEPLANT #1	DWP	1924	326	25	47-92	43	GREEN SPOT SPRING	CSD	AN	AN	151.2	47-91
9	LAKEPLANT #3	DWP	1938	380	136.9	47-92	44	MONTE VISTA	DWP	1979	106	9.8	80-92
2	LAKEPLANT #2	DWP	1924	340	49.8	47-92	45	XANO	DWP	1968	230	5	82-92
•0	LAKEPLANT #4	DWP	1945	420	87.1	47-92	46	MAINYS	DWP	1979	268	1.3	80-92
6	DOGWOOD SPRINGS #1,2,3	DWP	AN	AN	290.3	71-92	47	BARBAR LEE	DWP	1986	172	4.2	86-91
9	DOGWOOD SLANT #1	DWP	1955	+00+	1.6	72-92	48	NORTHSHORE #1	DWP	1940	50	61.1	47-92
11	DOGWOOD SLANT #4	DWP	1955	400*	16.7	80-92	49	NORTHSHORE #2	DWP	1968	305	4.7	. 72-92
12	DOGWOOD SLANT #8	DWP	1963	582*	59.7	80-92	50	NORTHSHORE #3	DWP	1970	184	12.9	77-92
13	DOGWOOD SLANT #2	DWP	1955	400*	16.7	80-92	51	CEDAR DELL SLANT B	DWP	1959	122*	13.8	72-92
14	DOGWOOD SLANT #3	DWP	1955	400*	16.7	80-92	52	CEDAR DELL SLANT D	DWP	1964	204=	13.8	72-92
15	LASEN SLANT #1	DWP	1959	400*	1.8	72-92	53	CEDAR DELL SLANT C	DWP	1959	149*	13.8	72-92
16	LASEN SLANT #7	DWP	1959	400*	66.2	72-92	54	CEDAR SPRING	DWP	1966	385*	22.8	72-92
11	LASEN SLANT #5	DWP	1964	+00+	37.4	72-92	55	DIVISION #5	DWP	1975	471	59	76-92
18	LASEN SLANT #10	DWP	1964	323*	21.6	72-92	56	1#NOISING	DWP	1947	423	138.3	48-92
19	LASEN PLANT #11	DWP	1964	391*	21.6	72-92	57	DIVISION #2	DWP	1964	497	239.4	64-92
20	GOLDMINE SLANT #1	DWP	1957	400*	8.3	71-92	58	DIVISION #4	DWP	1975	475	86.1	75-92
21	GLODMINE #14	DWP	1965	742*	8.3	71-92	59	DIVISION #3	DWP	1973	505 205	55.8	73-92
22	GOLDMINE SLANT #13	DWP	1965	526*	8.3	71-92	60	DIVISION #7	DWP	1986	400	170.8	87-92
ន	GOLDMINE SLANT # 12	DWP	1965	652	8.3	71-92	61	DIVISION #6	DWP	1973	400	223	76-92
24	LASSEN #4	DWP	1990	168	47.3	90-92	62	HILDALE	CSD	NA	A N	NA	NA
22	LASSEN #!	DWP	1956	20	17	71-92	63	CSD#7A	CSD	1987	142	10.8	88-91
26	LASSEN #3	DWP	1961	115	29.8	62-92	64	AIRPORT	CSD	NA	NA	NA	NA
27	SAND CANYON	DWP	1972	330	130.1	72-92	65	CSD #5	ß	1980	155	8.2	81-91
87	BOW CANYON	DWP	1989	999	80	9092	99	GREENWAY	CSD	¥Ν	NA	NA	NA
67	CADY	DWF	AN	(3)	•	90-92	67	(SD #4A	ß	1987	116	68	88-91
8	LA CRESCENTA	JWD	1989	586	33.3	90-92	68	CSD #4	cso	1980	110	142.2	16-16
31	OWEN	DWP	1990	1012	0	90-92	69	CSD#1	CSD	NA	NA	114.4	47-91
32	SAWMILL	DWP	1956	305	29.3	57-91	70	CSD#1B	CSD	1958	332	158.4	73-91
33	MAPLE	DWP	1989	760	220.7	9092	11	CSD #6	CSD	1981	150	74.8	83-91
34	LAREWOOD #5	DWP	1973	400	139.8	7692	, 72	MALTBY	CSD	AN	AN	NA	NA
35	LAKEWOOD #6	DWP	1982	402	52.6	83-92	73	CSD #3	CSD	8561	324	98.3	59-91
36	LAKEWOOD #7	DWP	1987	400	98.3	90-92	74	C3D#3A	CSD	1987	174	97.8	88-91
37	11THLANE #1	DWP	1946	140	25.8	57-92	75	CSD#2	CSD	1958	236	43.4	76-91-
38	1 10THLANE N. #3	DWP	1972	300	95.3	72-92	76	VAQUEROS	CSD	NA	NA	NA	NA
SOURCE:	BBMWD/CITY EXHIBIT 2:	~					11	VAN DUSEN SLANT	CSD	NA	NA	245.1	47-91

* - HORIZONFAL LENGTH DWP - CITY'S DBPARTMENT OF WATER AN POWER CSD - BIG BEAR COMMUNITY SERVICES DISTRICT N/A - NO INFORMATION AVAILABLE

٠

÷

• •

STATE WATER RESOURCES CONTROL BOARD DIVISION OF WATER RIGHTS

ŧ

APPENDIX A

STAFF ANALYSIS OF LAKE LEVEL IMPACTS

.

. . 1

TABLE OF CONTENT

\$

	· ·	Page
Ι.	GENERAL	1
II.	WATER YEAR TYPE DEFINITION	1
111.	EVALUATION OF BEAR CREEK'S FLOW CONDITIONS A. MEASURED FLOW EVALUATION B. DAM RELEASE/BEAR CREEK FLOW RELATIONSHIP C. SUMMARY	4 4 5 10
IV. /	LAKE LEVEL IMPACTS	10 10 12
V.	RECREATIONAL IMPACT	13
MODEL	. RUNS	14

• · · С. Х

.

LIST OF TABLES

.

۲

1.	ACCUMULATED RAINFALL	2
2.	SEASON DEFINITION	3
3.	1993 BEAR CREEK FLOW MEASUREMENTS	4
4.	BEAR CREEK AVERAGE MONTHLY FLOW - 1993	5
5.	REGRESSION EVALUATIONS	6
6.	BEAR CREEK ESTIMATED FLOW ("WET" WATER-YEAR)	7
7.	BEAR CREEK ESTIMATED FLOW ("NORMAL" WATER-YEAR)	8
8.	BEAR CREEK ESTIMATED FLOW ("DRY" WATER-YEAR)	9
9	DISTRIBUTION/FREQUENCY SUMMARY	12
10.	RECREATIONAL AFFECTS SUMMARY	13

LIST OF FIGURES

Page

Page

1	5 WATER-YEAR DEFINITION GRAPH	3
1.	2 WATED_VEAD DEFINITION COADH	3
2.	DEDDOCED DELEASE INDACT (CAL TOOUT)	12
3.	PROPUSED RELEASE IMPACT (CAL-TROOT)	10
4.	FREQUENCY EVALUATION (CAL-TROUT)	12
5.	PROPOSED RELEASE IMPACT (DFG)	12
6.	FREQUENCY EVALUATION (DFG)	12
7.	PROPOSED RELEASE IMPACT (DISTRICT)	12
8.	FREQUENCY EVALUATION (DISTRICT)	12
9.	PROPOSED RELEASE IMPACT (DIVISON)	12
10.	FREQUENCY EVALUATION (DIVISION)	12
11.	LAKE LEVEL IMPACT COMPARISON	12
12.	LAKE LEVEL IMPACT COMPARSION	12
13.	SURFACE AREA IMPACT COMPARISON	12
14.	SURFACE AREA IMPACT COMPARISON	12
15.	RECREATIONAL AFFECT COMPARISON (NORTH SHORE FACILITIES)	14
16	RECREATIONAL AFFECT COMPARISON (SOUTH SHORE FACILITIES)	14
17	RECREATIONAL AFFECT COMPARISON (FAST RAMP BOAT LAUNCH)	14
10	RECREATIONAL AFFECT COMPARISON (PRIVATE DOCKS)	14
10.	RECREATIONAL AFEECT COMPARISON (STANEIFID MARSH)	14
19.	RECREATIONAL AFFECT CONDADICON (STANFILLD PARSH)	11
20.	RECREATIONAL AFFECT COMPARISON (SKI AREASS)	14

ENGINEERING ANALYSIS EVALUATION OF LAKE LEVEL IMPACTS

I. GENERAL

The following analysis of the impacts on Big Bear Lake's levels and recreational opportunities takes into consideration the wide range of instream flow release rates proposed by the participants of the hearing. The analysis evaluates the operating period of 1939 through 1990 and is structured to:

- . Initially define annual water-year types based on precipitation;
- . Evaluate lake level impacts of proposed release rates; and
- . Evaluate the impacts to recreational opportunities.

II. WATER-YEAR TYPE DEFINITION

The definition of water-year type is based on an evaluation of historic precipitation data contained in the hearing record (See Table 1 of Attachment A). For the purpose of this analysis, a water-year period is defined as the accumulated rainfall for the period October 1 to April 30 of each year, because approximately 90% of recorded total annual precipitation at Big Bear Lake occurs during this period of time.

To define the water-year type during the water-year period, a simple percentile of time is used for the 79-year period (1911-1991) of recorded data. For comparison purposes, two categories of water-year type definitions were examined: a 5 water-year type definition and a 3 water-year type definition. For example, a 5 water-year type definition includes a straight 20% frequency distribution for the 79-year period of record [i.e., 20% (wet)-20% (above normal)-20% (normal)-20% (below normal)-20% (dry)], and a 3 wateryear type definition includes a 25%-50%-25% frequency distribution of the 79year period of record [i.e., 25% (wet)-50% (normal)-25% (dry)]. Table 1 ranks in ascending order the accumulated precipitation recorded at Big Bear Lake during the period October 1 to April 30.

R A N K	WATER YEAR	ACCUM PRECIP (IN)									
1	76-77	12.46	21	84-85	21.61	41	74-75	27.61	61	53-54	39.31
2	62-63	12.77	22	63-64	21.62	42	49-50	27.91	62	42-43	39.62
3	86-87	13.73	23	67-68	21.62	43	47-48	28.06	63	44-45	40.95
4	80-81	14.06	24	59-60	21.83	44	71-72	28.65	64	78- 79	41.26
5	60-61	14.46	25	70-71	22.05	45	56-57	29.00	65	65-66	46.43
6	27-28	17.13	26	22-23	22.21	46	16-17	29.76	66	14-15	49.63
7	83-84	17.56	27	41-42	22.74	47	34-35	30.14	67	13-14	50.03
8	50-51	17.83	28	28–29	23.27	48	48-49	30.36	68	82-83	51.17
9	69-70	18.16	29	33-34	23.27	49	43-44	31.04	69	31-32	52.48
10	32-33	19.22	30	20-21	23.30	50	46-47	31.96	70	51-52	53.69
11	23-24	19.31	31	38-39	23.30	51	81-82	32.47	71	40-41	54.65
12	89-90	19.69	32	39-40	23.43	52	17-18	32.87	72	66-67	56.21
13	24-25	19.84	33	58-59	23.97	53	45-46	35.97	73	36-37	56.61
14	18-19	20.05	34	55-56	24.14	54	26-27	36.77	.74	57-58	57.11
15	12-13	20.21	35	75-76	24.34	55	19-20	37.47	75	37-38	58.59
16	52-53	20.55	36	29–30	24.86	56	72-73	37.52	76	15-16	59.02
17	88-89	20.82	37	87-88	25.75	57	21-22	38.29	77	79-80	61.29
18	54-55	20.87	38	35-36	26.19	58	85-86	38.41	78	77-78	66.95
19	11-12	21.39	39	64-65	26.33	59	25-26	38.67	79	68-69	80.46
20	30-31	21.55	40	73-74	26.63	60	61-62	39.01			

TABLE 1 - Accumulated Precipitation (October 1 to April 30)

Based on the above ranking, Table 2 shows the 5 water-year type and 3 wateryear type definitions based on accumulated rainfall during the period October 1 to April 30.

WATER-YEAR DEFINITION 5 - WATER-YEAR TYPE	ACCUMULATED PRECIPITATION (October 1 to Arip1 30)
WET	> 41.26"
ABOVE NORMAL	> 30.36" BUT <= 41.26"
NORMAL	> 23.43" BUT <= 30.36"
BELOW NORMAL	> 20.55" BUT <= 23.43"
DRY	<= 20.55"
WATER-YEAR DEFINITION 3 - WATER-YEAR TYPE	ACCUMULATED PRECIPITATION (October 1 to April 30)
WET	> 38.67"
NORMAL	> 21.39" BUT <= 38.67" ·
DRY	<= 21.39"

TABLE 2 - Water-Year Type Definition

Figure 1 and Figure 2 graphically illustrate the above water-year type definitions based on accumulated rainfall for the period 1911 through 1990. Because there is little difference in water-year type ranges, and for the sake of keeping this evaluation simple, any analysis of lake level impact which requires the use of water-year type definitions will be based on a 3 water-year definition, based on Octiber 1 to April 30 accumulated precipitation.

TOTAL PRECIPITATION (INCHES)

(SEH

FIGURE 2

BIG BEAR LAKE PRECIPITATION 3 WATER-YEAR TYPE DEFINITION (25%/50%/25%) accumulated precip. (OCT 1 - APRIL 30)

TOTAL PRECIPITATION (INCHES)

\$ ۴ • • · · · · . .

III. EVALUATION OF BEAR CREEK FLOW CONDITIONS

A. <u>Measured Flow Evaluation</u>: By October 20, 1993 Supplement to Notice of Public Hearing, the SWRCB requested that Big Bear Municipal Water District (BBMWD) and the City of Big Bear Lake (City) provide additional information pertaining to stream flow readings below Bear Valley Dam. In response to the request, BBMWD/City introduced into evidence during the SWRCB's November 18 and 19, 1993 hearing, BBMWD/City Exhibit #24. BBMWD/City Exhibit #24 contains stream flow data collected by BBMWD during the summer of 1993. BBMWD measured flows downstream of Bear Valley Dam at three locations: (1) at a Parshall flume (installed 1986) located 350 feet downstream of Bear Valley Dam, (2) at a rectangular weir (i.e., crest length 3.33 ft., max. head 0.416 ft.) located upstream of East Cub Creek in the area known as Fish Canyon, and (3) at a 90degree v-notch weir (i.e., max head 1.00 ft.) located a short distance downstream of West Cub Creek.

Bear Creek stream flows measured by the BBMWD/City during periods in June, July, August, and September of 1993 have been compiled in the following Table 3. The data are graphically illustrated in Figure 3 (measured flow) and Figure 4 (measured average monthly flow).

The data indicates the following:

- . Bear Valley Dam average releases into the upper portion of Bear Creek was 0.43 cfs during the period of June through September, and ranged from a June maximum release rate of 0.99 cfs to a September minimum release rate of 0.19 cfs.
- . Upstream of East Cub Creek, Bear Creek's average measured flow was 0.35 cfs during the period of August through September.
- . Downstream of West Cub Creek, Bear Creek's average measured flow was 1.13 cfs during the months of June through September, and ranged from a July maximum flow rate of 1.67 cfs to a September minimum flow rate of 0.82 cfs.

Based on the flow data collected by the District/City, it appears that the following conclusion can be reached:

- . The flow of Bear Creek upstream of East Cub Creek is dependent on seepage/releases of water from Bear Valley Dam.
- . The flow of Bear Creek downstream of West Cub Creek is comprised of water released from Bear Valley Dam, and seasonal and natural contributory flow from East and West Cub Creeks. Based on the collected data, it appears that such contributory natural flow from the Cub Creeks only supplemented Bear Valley Dam releases/seepage to the extent of 0.78 cfs, on an average basis. This flow relationship occurred after one of the wettest precipitation years on record, which was recorded as being 81.82 inches according to Watermaster reports.

PERIOD		BEAR CREEK BELOW CUB CREEKS	BEAR CREEK ABOVE CUB CREEKS	DAM Releases
MEASUREN	IENT DAY	FLOW (CES)	RLOW (CF6)	(CFS)
ILINE 1993	1.2			0.51
10112 1805	2.3			
	4.5	· · · · · · · · · · · · · · · · · · ·		·····
	6-7			0.99
	7-8			
	9 - 10 10 - 11			
	11 12			
	13 14			0.99
	14 15			
	16 - 17 17 - 18	· · · · · · · · · · · · · · · · · · ·		
	18 - 19 19 - 20			
	20 - 21			· · · · · ·
1	22.23	0.441		
	24 25	0.441		
	26 - 26	0.441		
	27 - 28 28 - 29	0,441		0.45
	29-30			
UUL1 1000	2.3	······		
	4-5			A 27
	5-6		· · · · · · · · · · · · · · · · · · ·	9.51
	7-8			
1	9 10	1.429		
1 .	11 - 12	1.428	······································	0.39
	12 - 13	1.429		
	14 15	1,429		
	16 - 17	1.67		
	18 - 19	1.67		0,39
	19 - 20 20 - 21	1.67		
	21 - 22 22 - 23	1.67		
1	23 - 24		<i>t</i>	
	25 - 26			0.45
	26 - 27			
	28 - 29 29 - 30			
ALICUST 1997	30 31			0.29
100001 1805	2-3		6.782	
	4.5	1.366	0.347	
1	5-6	1.366	0.341	
1	7-8	1.305	0.316	
	9 - 10	1.305	0.325	
	11 - 12	1.305	0.307	
	12 - 13	1,000	0.307	
	14 - 15		0.34	
	16 - 17		0.202	
	18 - 19 19 - 20		0.346	
1	20-21		0.356	
1	22 . 23		0.331	0.34
	23 - 24 24 - 25		0.323	
1	25 - 26 26 - 27		0.359	
	27 - 28		0.361	1
1	29 - 30		0.299	0.24
SEPTEMBER 199	1-2		1.398	ļ
	2-3	1.079	0.266	1
1	4-5	1.079	0.233	<u> </u>
1.	6 - 7 7 - P	1.079	0.23	0.21
	8-9	1.079	0.222	
1	10 - 11	0.824	0.21	
1	11 - 12 12 - 13	0.824	0.225	
	13 - 14	0.824	0.234	0.21
	15 - 16	0.824 0.844	0.238	<u> </u>
1	17 10	0.844		
1	19 - 20	0.844	· · · · · · · · · · · · · · · · · · ·	0.19
1	20 - 21 21 - 22	0.844		
	22 23			
1	24 - 25	······································		
	26 - 27			0.19
	21 - 28 28 - 29			
	29-30	• •	·····	

TABLE 3 - 1993 BEAR CREEK FLOW MEASUREMENTS

•

3

AVERAGE 1.13 0.35 SCURCE: BEIMWORCHY EXHBIT #24 - FLOW READINGS BELOW BEAR VALLEY DAM

0.43

.: -

·· · ·

It is evident that even after one of the wettest years on record, the contributory and natural flows of the East and West Cub Creeks are not sufficient to maintain a flow rate of 1.2 cfs in Bear Creek below West Cub Creek and during the dry period of the year of June through September. Supplemental dam releases from Bear Valley Dam must be made to maintain a flow rate of 1.2 cfs below West Cub Creek.

B. <u>Dam Release/Bear Creek Flow Relationship</u>: The data collected by the District/City during 1993 pertaining to releases/seepage from the dam, and to flow below the Cub creeks, were examined to determine whether the data could be used to provide a basis for estimating required releases from the dam. These releases would maintain a flow of 1.2 cfs below the Cub Creeks during "wet", "normal" and "dry" water-years, as defined above. These estimates are needed to evaluate the impacts of the Division-evaluated alternative on lake levels, recreation, etc.

The sets of daily flow rates collected in 1993 are presented in Table 3 and shown graphically in Figure 3. The average dam release and average flow below the Cub Creeks were calculated for the months of July, August and September (see Table 4 and Figure 4).

PERIOD OF MEASUREMENT (MONTH)	BEAR CREEK AVERAGE MONTHLY FLOW BELOW CUB CREEK (CFS)	BEAR CREEK AVERAGÉ MONTHLY FLOW ABOVE CUB CREEKS (CFS)	AVERAGE MONTHLY DAM RELEASES/SEEPAGE (CFS)					
JULY	1.54	-	0.45					
AUGUST	1.32	0.34	0.29					
SEPTEMBER	0.92	0.36	0.20					

TABLE 4 - Bear Creek - Average Monthly Measured Flows

Because almost no data are available for flows in "normal" and "dry" wateryears, estimates of such flows were developed using the following assumptions:

- The averages flow and release values calculated from the 1993 data were assumed to represent typical "wet" water-year conditions.
- The average flow below the Cub Creeks in summer in "wet" year-types is assumed to be 1.2 cfs (about the actual average observed in 1993), of which 0.3 cfs is dam releases (the actual average release in 1993), and 0.9 cfs is Cub Creeks contribution.
- In "normal" water-year types, average summer contribution from the Cub creeks is assumed to be only 75% of the "wet" average summer contribution, while dam releases remain unchanged.

- In "dry" water-year types, average summer contribution from the Cub creeks is assumed to be only 25% of the "wet" average summer contribution, while dam releases remain unchanged.
- In all years and particularly during the dry period of the year, the flows seen below the Cub Creeks are, to a considerable degree, the result of releases from the dam (that is, a regression analysis can be used to generate release/flow relationship equations.
- . In all years, no more than 1.2 cfs would be required to be released from the dam to maintain the flow below the Cub Creeks; in all years there would be a minimum of 0.3 cfs released from the dam at all times.

The next step is to generate the average flow values which would be needed in "normal" and "dry" water-year types to maintain an average 1.2 cfs below the Cub Creeks, based on the "wet" water-year data and the above assumptions. The "wet" monthly average flows below the Cub Creeks were each reduced by 25% and 75%, respectively. Each of the data sets was then subjected to a regression analysis, regressing the flow below the Cub Creeks against the average monthly dam release values (which were held constant). The resulting regression equations were used to generate a series of release/flow relationships, based on the three regression equations. The equations generated in this step in the analysis are shown in Table 5, and the release/flow values for each wateryear type are shown in Tables 6, 7, and 8.

lry-year http://	-0.00114	0.004514	0.999109	m	-	0.844075		<pre>sSLOPE=(X COEFFICIENT) ePT=CONSTANT</pre>	t DAM RELEASES	0.05	0.1	0.15	0.2	0.25	0.3	0.35	0.4	0.45	0.0	0.50	0.0	200	0.75	0.8	0.85	0.9	0.95	-	1.05		15	1.2	1.25	1.3	1.35	1.4	1.45
	Constant	Std Err of Y Est	R Squared	No. of Observations	Degrees of Freedom	X Coefficient(s) Star Exact Coof	Sta Err of COBL	Y = AX + B WHERE:A= B= INTERCE	Y = 0.844075(X) - 0.00114 BELOW CUB CREEK	0.041064	0.083268	0.125471	0.167675	0.209879	0.252083	0.294286	0.33649	0.378694	0.420898	0.463101	0.503500	0.01200	0.631916	0.67412	0.716324	0.758528	0.800731	0.842935	0.885139	0.927343	0.969546	1.01175	1.053954	1.096158	1.138361	1.180565	1.222769
	0.397443	0.108331	0.8924	ന	-	1.742204	0.604957	<pre>c=SLOPE=(X COEFFICIENT) EPT=CONSTANT</pre>	443 DAM RELEASES	0.05	0.1	0.15	0.2	0.25	0.3	0.35	0.4	0.45	0.5	0.55	0.0	0.00	0.75	80	0.85	0.9	0.95	-	1.05	1.1	1.15	1.2					
DEED - REGRESSION EVALUATIO	Constant	Std Err of Y Est	R Squared	No. of Observations	Degrees of Freedom	X Coefficient(s)	Std Err of Coet.	Y = AX + B WHERE: A B= INTERC	Y = 1.742204(X) + 0.397 BELOW CUB CREEK	0.484553	0.571663	0.658774	0.745884	0.832994	0.920104	1.007214	1.094325	1,181435	1 268545	1.355655	1.442/05	1.0288/0	1.010300	1.791206	1.878316	1.965427	2.052537	2.139647	2.226757	2.313867	2.400978	2.488088					
<u>-</u>	Output: 0.523243	0.142507	0.897226	n	÷	2.351351	0.795807	<pre>\= SLOPE = (X COEFFICIENT) EPT = CONSTANT</pre>	3243 DAM RELEASES	0.05	50:0 I U	0.15	0.2	0.25	0.3	0.35	0.4	0.45	0.5	0.55	0.6	0.65	0.7	0.0	0.85	0.9	0.95	-	1.05	1.1	1.15	1.2					
wet-year	Constant Pegression (Std Err of Y Est	R Squared	No. of Observations	Degrees of Freedom	X Coefficient(s)	Std Err of Coef.	Y = AX + B WHERE : A B= INTERCI	Y = 2.351351(X) + 0.523 BELOW CUB CREEK	0 640811	0.040010	0.100010	0.003513	1 111081	1,228648	1.346216	1.463783	1.581351	1.698919	1.816486	1.934054	2.051621	2.169189	2.286/36	0 F01801	2.639459	2.757026	2 874594	2.992162	3 109729	3.227297	3.344864					

TABLE 5 - REGRESSION EVALUATION (DAM RELEASES v. FLOW BELOW WEST CUB CREEK)

٠

DIVISION PROPOSED ALTERNATIVE

-

7

ESTIMATED FLOW BELOW WEST CUB CREEK (CFS)	BEAR VALLEY DAM RELEASES/SEEPAGE (CFS)
0.64	0.05
0.75	0.1
0.87	0.15
0.99	0.2
1.11	0.25
1.22	0.3
1.34	0.35
1.46	0.4
1.58	0.45
1.69	0.5
1.81	0.55
1.93	0.6
2.05	0.65
2.16	0.7
2.22	0.75
2.40	0.8
2.52	0.85
2.63	0.9
2.75	0.95
2.87	1.0
2.99	1.05
3.10	1.1
3.22	1.15
3.34	1.2

JABLE 6 - Bear Creek Estimated Flows ("wet" water-year conditions)

ESTIMATED FLOW BELOW WEST CUB CREEK (CFS)	BEAR VALLEY DAM RELEASES/SEEPAGE (CFS)
0.48	0.05
0.57	0.1
0.65	0.15
0.74	0.2
0.83	0.25
0.92	0.3
1.00	0.35
1.09	0.4
1.18	0.45
1.26	0.5
1.35	0.55
1.44	0.6
1.52	0.65
1.61	0.7
1.70	0.75
1.79	0.8
1.87	0.85
1.96	0.9
2.05	0.95
2.13	1.0
2.22	1.05
2.31	1.1
2.40	1.15
2.40	1.2

JABLE 7 - Bear Creek Estimated Flows ("normal" water-year conditions)

Ţ
ESTIMATED FLOW BELOW WEST CUB CREEK (CFS)	BEAR VALLEY DAM RELEASES/SEEPAGE (CFS)
0.04	0.05
0.08	.1
0.12	0.15
0.16	0.2
0.20	0.25
0.25	.3
0.29	0.35
0.33	0.4
0.37	0.45
0.42	0.5
0.46	0.55
0.50	0.6
0.54	0.65
0.58	0.7
0.63	0.75
0.67	0.8
0.71	0.85
0.75	0.9
0.80	0.95
0.84	1.0
0.88	1.05
0.92	1.1
0.96	1.15
1.01	1.2

TABLE 8 - Bear Creek Estimated Flows("dry" water-year conditions)

As expected (since the analysis is based on actual data), the results show that a release of 0.3 cfs from the dam is sufficient to maintain a flow of 1.2 cfs below the Cub Creeks in "wet" water-year types. In "normal" water-years, a release of 0.5 cfs is required to maintain 1.2 cfs below the Cub Creeks. In "dry" water-years, the regression shows that a release of 1.45 cfs is required to maintain 1.2 cfs below the Cub Creeks. However, since under the above assumptions no more than 1.2 cfs would be required to be released from the dam, the value used for impact analyses is 1.2 cfs, not 1.45 cfs.

Staff recognizes that this method incorporates various assumptions, and the statistical process is limited, particularly since only three values are regressed to develop each release/flow equation. However, this analysis is for the purpose of developing values for <u>general</u> impact analysis, not for determining what the impacts will be in any particular year. Various factors may cause the actual impacts to be greater or lesser in any particular year. Some of these factors include:

- The flow releases are assumed to be maintained throughout the year, but it is likely that releases will be reduced during some parts of the year. The change in the contribution of the Cub Creeks during the Summer of 1993 reflect the seasonal changes which may be expected. Thus, the impact analyses may represent a "worst-case" scenario.
- . The data sets are limited, and the assumptions on percent reduction of Cub Creeks' contributions may not be accurate.
- The small data sets in the regression tend to induce error.

C. <u>Summary</u>: The method described above represents one way to generally quantify possible releases from Bear Valley Dam in order to evaluate lake level and economic impacts. The assumed required releases for evaluation of this alternative are 0.3 cfs all year in "wet" water-year types, 0.5 cfs in "normal" water-year types, and 1.2 cfs in "dry" water-year types.

IV. LAKE LEVEL IMPACTS

A. <u>MODEL DESCRIPTION</u>: A reservoir operation model was developed to analyze lake level impacts attributed to the following three proposed fish release rates:

- . <u>Cal-Trout</u>: 2.0 cfs in all years;
- . <u>DFG</u>: 1.2 cfs in all years;
- . District/City: 0.1 cfs in all years.

In addition, a Division alternative rate release was evaluated based on information contained in the hearing record pertaining to flow readings below

Bear Valley Dam.¹³³ As previously discussed, this information was reviewed for the purpose of evaluating the necessary minimum release requirements needed to maintain a 1.2 cfs flow rate below West Cub Creek. Based on the above evaluation, the following release scenario was determined to be the best estimate for evaluation.

. <u>Division Alternative</u>: 0.3 cfs during a "wet" water-year 0.5 cfs during a "normal" water-year 1.2 cfs during a "dry" water-year

Water-year type is based on accumulated precipitation during the season of October 1 to April 30 as previously discussed, with releases of water from Bear Valley Dam beginning May 1 and continuing to the following May 1 of each year.

The developed reservoir operation model is based on the following hydrologic formula:

Adjusted E.O.M. Storage = INF - FREL - DD - MREL - EVAP where: INF = calculated unimpaired flow FREL = instream flow release rate DD = District demands MREL = Mutual Water Company releases EVAP = evaporation losses

Calculated unimpaired flow data, District demand data, Mutual Water Company demand data, and evaporation rate data included in the developed model were extracted from data included in the District's/City's simulated model runs.¹³⁴ Historic precipitation data and end-of-month (E.O.M.) storage data included in the model were taken from Table 1 and Table 5 of Attachment A. In addition, data included in the model pertaining to estimated evaporation losses, adjusted E.O.M. storage, adjusted surface area, and adjusted staff gage elevation were derived based on the following formulas:

. Estimated evaporation losses = (evaporation rate x lake surface area);

Adjusted E.O.M. storage = (previous E.O.M storage + unimpaired flow - instream flow release - BBMWD demand - Mutual demand - evaporation losses);

. Adjusted surface area = (26.0139 x adjusted E.O.M. storage^0.423);

. Adjusted staff gage elevation = (2.1702 x adjusted E.O.M. storage^0.313).

¹³³ BBMWD/CITY EXHIBIT No. 24 - FLOW READINGS BELOW BEAR VALLEY DAM.

¹³⁴ BBMWD/CITY EXHIBIT Nos. 7-2 to 7-7, Simulated Model Runs.

a second seco

Basic assumptions used in the model for all evaluated release proposals, include the District's current operational policy (i.e., no release of water to meet Mutual Water Company's demand when the lake is 4 feet below full or at staff gage elevation 68.33).

B. <u>MODEL RUN RESULTS</u>: The reservoir operation model was developed to derive adjusted end-of-month (E.O.M.) surface areas and lake levels for each of the four release rates identified above. Copies of the model run results are attached.

Figures 3 - 10 graphically illustrate the impacts to Big Bear Lake's surface area and level which could have been attributed to the proposed release scenarios. Figure 3, 5, 7, and 9 shows a comparisons of historic lake levels and lake levels under each release scenario for the period 1939 to 1991. Figures 4, 6, 8, and 10 graphically illustrate the distribution and frequency of resulting lake levels which would have occurred under each release scenario during the 624 month period of evaluation.

The distribution and frequency results are summarized in the following Table 9. The data indicate the number of months that Big Bear Lake's levels would have been between specified lake level ranges (i.e., full to -5 feet below full.

PROPOSED RELEASE RATES	ELEVATION 72.33 FT. (FULL) (months)	ELEVATION 67.33 FT. (-5 ft) (months)	ELEVATION 62.33 FT. (-10 ft) (months)	ELEVATION 57.33 FT. (-15 ft) (months)	ELEVATION 52.33 FT. (-20 ft) (months)
CAL-TROUT	244	185	107	46	42
	(39.10%)	(29.65%)	(17.15%)	(7.37%)	(6.73%)
DF&G	254	218	88	40	24
	(40.71%)	(34.94%)	(14.10%)	(6.41%)	(3.85%)
DISTRICT/CITY	293	216	86	29	0
	(46.96%)	(34.62%)	(13.78%)	(4 .65%)	(0%)
DIVISION ALTERNATIVE	260	236	77	39	12
	(41.67%	(37.82%	(12.34%)	(6.25%)	(1.92%)

TABLE 9 - Summary of Distribution/Frequency Evaluation

Figures 11, 12, 13, and 14 graphically compare the maximum impacts to Big Bear Lake's levels and surface areas that could have been attributed to the four release scenarios.

FIGURE 4

.

FIGURE 6

. . . N

FIGURE 8

FIGURE 10

ø

ţ

FIGURE 12

,t

t

FIGURE 14

V. RECREATIONAL IMPACTS

Thomas Wegge's testimony, which is based on a 20-year analysis period corresponding to the hydrologic period 1939 to 1958,¹³⁵ describes how recreation opportunities, visitation, and the local economy could be affected by implementation of alternative water release scenarios.¹³⁶ As indicated by Mr. Wegge's testimony,¹³⁷ recreational impacts of proposed releases were related to the following specific lake level ranges: Full to -5 feet below full, -5 feet to - 10 feet below full, -10 feet to -15 feet below full, -15 feet to -20 feet below full, and more than -20 feet below full.

Within the above described lake level ranges, certain recreational activities can be maintained depending on the impact that occurs to lake facilities which support recreational uses of the lake. Those lake facilities described in Mr. Wegge's testimony are: north shore marinas, south shore marinas, the east ramp boat launch, private docks, Stanfield Marsh, and winter ski resorts.

Based on the same criteria used by Mr. Wegge to describe potential recreational impacts to Big Bear Lake, Table 10 summarizes the impacts to described facilities that could have occurred under the four release scenarios during the evaluation period of 1939 to 1991.

¹³⁵ Ibid, p. 3-1.

¹³⁶ BBMWD/CITY EXHIBIT No. 11-1, Written Testimony of Thomas Wegge, Chapter 3. Alternative Analysis, pp. 3-1 through 3-9.

¹³⁷ Ibid, p. 3-4.

TABLE 10 - Recreational Effects Summary (percentage of time that Effects could have occurred)

RECREATIONAL EFFECTS	CAL-TROUT RELEASE PROPOSAL	DF&G RELEASE PROPOSAL	DISTRICT CURRENT OPERATION	DIVISION RELEASE ALTERNATIVE
ALL FACILITIES OPERATION BY NORTH SHORE MARINAS COULD REMAIN OPEN	100%	100%	100%	100%
ALL SOUTH SHORE MARINAS ARE UNAFFECTED	68.75%	75.65%	81.58%	79.49%
THE EAST RAMP BOAT LAUNCH COULD CONTINUE OPERATIONS	85.87%	89.75%	95.36%	91.83%
60% OF PRIVATE DOCKS ARE UNAFFECTED	93.27%	96.15%	100%	98.08%
STANFIELD MARSH IS UNAFFECTED	68.75%	75.65%	81.58%	79.49%
THE OVERALL ABILITY OF SKI AREAS TO MANUFACTURE SNOW	93.27%	96.15%	100%	98.08%

Figures 15 - 20 graphically compare the above identified impacts and illustrate the net impact increase that could have occurred under Cal-Trout's, DF&G's and the Division's alternative release scenarios when compared to the District's current operations.

Based on the above summarized results, the affects on Big Bear Lake's boating and shore activities, use and social benefits, local economy spending and jobs, property values, and agency revenues which are attributed to current operations, will not be significantly increased as a result of the implementation under the Division's evaluated release scenario. In contrast, the any proposed release rates from Big Bear Lake to Bear Creek will affect streamflows rates in Bear Creek. Such increased streamflows could positively affect recreational opportunities associated with the creek, improve the overall riparian habitat, increase fish populations from current levels, and increase annual use of the creek.

FIGURE 15

¢

***** 1

FIGURE 18

t,

FIGURE 19

¢

t

ATTACHMENT

۲.

ŧ,

MODEL RUNS

1

۶. .

CAL-TROUT: MAXIMUM FISH RELEASE OF 2 CFS YEAR ROUND

ŧ.

Ŧ

HISTORIC STAFF GAGE	(FT)		69.8	70.3	71.3	72.0	71.7	70.8	69.8	68.7	68.2	67.6	67.0	67.0	67.6	68.2	68.6	68.8	68.2	67.4	66.1	64.6	63.2	62.4	62.1	63,6	64.1	65,6	67.6	69.5	71.2	210	20.5		7.80		202	69.5 69.5	69.7	70.0	70.8	70.4	69.4	68.2	66.7	65.4 64.3
HISTORIC E.O.M. STORAGE	(AF)		65573	66840	69883	72167	71405	69616	65319	62117	60653	58958	57483	57483	59168	60853	61906	62538	60853	58536	54956	51035	47649	45656	45059	48644	49839	53692	59168	64644	69630	69123	20973	40000	6347D	62050	64433	64433	65065	66080	68362	67347	64223	60643	56641	53060 50437
ADJUSTED STAFF GAGE	(FT)	69.5	69.8	70.1	71.1	71.9	71.9	71.4	70.8	70.4	70.5	70.3	70.2	70.2	70.6	71.1	71.4	71.5	71.2	70.7	70.0	69.0	68.3	68.1	67.8	69.1	69.4	70.6	72.3	72.3	72.3	72.1		2.1.2	0.07	107	71.1	71.0	71.2	71.4	72.1	72.0	71.4	70.8	70.0	69.2 68.6
DERIVED SURFACE ARFA	(QC)	2814.9	2831.9	2851.2	2904.3	2949.6	2949.6	2919.2	2890.8	2868.2	2874.1	2861.1	2853.9	2852.7	2878.4	2903.9	2919.7	2927.9	2909.1	2884.6	2841.6	2791.9	2748.9	2738.7	2725.7	2793.1	2810.2	2875.7	2968.9	2973.0	2973.0	2962.0	5827 A	C 0080	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2881.6	2905.5	2900.9	2907.8	2923.3	2960.7	2955.7	2923.7	2866.6	2842.5	2800.5 2770.2
ADJUSTED E.O.M. STORAGE	(AF)	64433.0	65356.0	66418.7	63379.0	71963.8	71962.0	70220.7	68615.5	67357.1	67682.0	66961.4	66565.1	66500.2	67923.0	69356.9	70251.1	70718.8	69648.7	68267.8	65891.5	63199.5	60921.3	60387.2	59712.3	63260.7	64182.3	67771.3	73079.6	73320.0	73320.0	710010	V1004.0	CULLU C	68502 4	68102.3	69444.0	69188.5	69576.5	70455.1	72607.5	72316.4	70475.5	68383.6	65936.2	63660.7 62041.5
EST. EVAP. LOSSES	(AF)	APACITY >	197.0	198.2	484.7	813.2	1179.8	1445.3	1693.1	1734.5	1348.1	1034.7	715.3	313,9	228.2	259.1	609.8	788.3	1259.0	1570.9	1615.4	1705.0	1312.2	1072.1	629.9	272.6	223.4	281.0	517.6	682.8	1218.9	1397.3	10001	1212 8	982 7	751 1	259.3	232.4	261.1	523.4	701.6	1125.1	1477.9	1725.0	1645.4	1307.5 1064.2
ESTIMATED EVAP RATE	(FT/MONTH)	STARTING CA	0.07	0.07	0.1/	0.28	0.40	0.49	0.58	0.60	0.47	0.36	0.25	0.11	0.08	0.09	0.21	0.27	0.43	0.54	0.56	0.60	0.47	0.39	0.23	0.10	0.08	0.10	0.18	0.23	0.41	14.0	0.00	245	034	0.26	0.00	0.08	0.09	0.18	0.24	0.38	0.50	0.59	0.57	0.38 0.38
MUTUAL F RELEASE	(AF)		0	0 (0	0 0	0	0	0	373	0	0	0	0	0	0	0	0	0	288	729	686	874	0	0	0	a	0	0	0	0 (- 0	00			• c	0	0	0	0	0	0	32	910	1112	966 832
MUTUAL DEMAND	(AF)		0	00	<u> </u>	0 (5	0	0	373	0	0	0	0	0	0	0	o	¢	288	729	686	874	664	453	0	0	0	0	0	0 0	-	,) C		0	0	0	0	0	0	32	910	1112	966 832
BBMWD EMAND Dowmka)	(AF)		125	125	-	0 0	5	0	0	0	0	0	125	125	125	125	0	0	0	0	¢	0	0	0	125	125	125	125	0	0	0 0	- <	50	- c		175	125	125	125		0	0	0	0	0	20
FISH E RELEASE D	(AF)		122	110	771	118	771	118	122	122	118	122	118	122	122	110	122	118	122	118	122	122	118	122	118	122	122	110	122	118	122	8LL	22	118	122	118	122	122	110	122	118	122	118	122	122	118 122
SEASON DEFINITION FOR FISH	RELEASES		wet	wet	Met	wet	normal	normal	normal	normal	normal	normai	normal	normal	normai	normal	Wet	New	ind	wet	wet	wet	wet	wet	wet	wet	wet	normal	normal	normal	normal	normai normai														
CALCULATED UNIMPAIRED FLOW	(AF)		1,367	1,496	100'5	3,516	1,300	(178)	210	971	1,791	436	562	496	1,898	1,928	1,626	1,374	311	596	06	(179)	26	. 660	198	4,068	1,392	4,105	5,948	6,107	6,164	013 101	101	(101)	1 021	265	1.848	224	884	1,524	2,972	956	(213)	665	432	116 399
N ACCUMULATED PRECIPITATION (water vear oct -seo)	(NI)	58.59	13.26	17.37	60'0Z	23.30	23.30	23.30	23.67	24.44	32.15	0.75	2.31	3.33	11.02	18.01	21.80	23.43	23.43	23.43	23.43	23.43	23.98	1.99	4.23	18.87	22.71	36.38	47.64	54.65	55.26 55.26	02.20	07.00	56 20	3.49	4 97	13.76	14.05	16.76	19.49	22.74	22.74	22.74	23.61	23.73	23.73
RECIPITATION	(NI)		4,95	4,11	27.72	3.21	0.00	0.00	0.37	0.77	7.71	0.75	1.56	1.02	7.69	6.99	3.79	1.63	0.0	00.0	0.00	0.00	0.55	1.99	2.24	14.64	3.84	13.67	11.26	7.01	0.61	8.0	00.7	<u>8</u> 9	3.49	1 48	8.79	0.29	2.71	2.73	3.25	0.0	0.00	0.87	0.12	0,00 0,47
۵.	ONTH	4	-	~ 0	n ·	4	۵ I	œ	7	œ	თ	10	÷-	12	-	2	ო	4	ŝ	9	~	æ	თ	10	ŧ	12	-	5	3	•	un (p r	~ a	50	, t	5 5	12	-	2	ę	4	ŝ	9	~	ര	ъĉ
DATE	YEAR M	1938	1939	1939	1939	1939	1939	1939	1939	1939	1939	1939	1939	1939	1940	1940	1940	1940	1940	1940	1940	1940	1940	1940	1940	. 1940	1941	1941	1941	1941	1941	1841	1401	1041	1941	1941	1941	1942	1942	1942	1942	1942	1942	1942	1942	1942 1942

CAL-TROUT

ORIC F GAGE ATION	1) 3.7	3.5	0.9	8.5 9.7	9.6	5.0	- 6.9	15.7	5.1	6.0 35.0	35.1	35.7 25.7	0.jz	. 1.	37.6	86.4 8 a	33.2	91.9	83.9 810	33.2	34.7	35.8 27.6	37.8	37.3	5.4	¥.2		570	34.7	35.0	35.7 26.6	0.0 20.0	35.2	01	57.5 51.1	30.5	8,13 8,6	0.2
C HIST STAF	ند ۵	6.6		69	ω.		n m	U)		•	Ψ.			, u	~						U.		, ф	Ψ.	т, т											Ū	Ψu	,
HISTORI E.O.M. STORAG	(AF) 48843	48445 52030	54745	60643 65065	64854	63381	60432 57062	53902	52428 50025	52130	52428	53902	56ZZU 80011	60432	58958	55798 51632	47649	44661	46851	47649	51234	54324 54168	59590	58115	53271	50038	47449	46253 50835	51234	52030	53902	55166	52638	49640	46054 42867	41473	4462 40064	1000t
ADJUSTED STAFF GAGE ELEVATION	(FT) 68.2	68.0 69.2	70.0	71.9 72.3	72.3	72.0	71.2	70.6	70.4	70.2	70.2	70.6	4.C 4.C	72.3	72.0	71.6 70 a	70.1	69.4	6 69 6 69	6,69	71.0	71.9	72.3	72.0	21.3	70.8	70.6	71.B	612	72.0	72.3	72.0	71.5	71.1	70.3 69.5	69.1	70.0	-C.+
DERIVED SURFACE AREA	(AC) 2746.0	2736.3 2798.0	2843.8	2951.3 2973.0	2972.7	2952.8	2910.6 2910.6	2879.9	2866.2	2855.0	2865.0	2878.8	2920.0	2973.0	2953.9	2933.8 2803.3	2848.5	2811.5	2840.5 2836 9	2839.1	2898.8	2950.0	2973.0	2952.6	2929.6	2891.0	2879.9	2863.4 2946.0	2948.1	2957.2	2973.0	2956.7	2928.1	2905.0	2817.4	2794.9	2845.2 2860 7	1.0002
. ADJUSTED E.O.M. STORAGE	(AF) 60765.8	60263.4 63525 7	66011.9	72062.0 73320.0	73304.8	72150.3	/1161.0 69731.7	68010.4	67244.9	66627.4	66627.0	67946.1	73320.0	73320.0	72212.3	71057.5 68760 3	66267.1	64252.9	65830.5 65631 4	65753.8	69070.3	71984.5	73320.0	72137.2	70173.3	68626.3	68009.8	67086.4 71756 7	71877.4	72403.6	73320.0	72372.8	70727.9	69414.9	66967.0 64568.8	63357.9	66083.9 67261 4	410010
EST. EVAP LOSSES	(AF) 1052.7	741.4 273.6	223.8	255.9 580.3	862.2	1248.5	1356.3	1717.2	1497.6	7.017	228.4	199.9	316.7	713.5	1129.7	1299.7 1584 3	1678.1	1424.2	1068.4 568 1	198.6	255.5	434.8	1159.5	1456,8	1742.0	1430.0	1098.6 222	957.7	206.2	235.8	502.7	1189.2	1507.9	1669.0	1713.9	957.9	559.0 204 E	0.401
ESTIMATED EVAP RATE	(FT/MONTH) 0.38	0.27 0.10	0.08	0.09	0.29	0.42	0.67	0.59	0.52	0.25	0.08	0.07	0.11	0.24	0.38	0.44	0.58	0.50	0.38	0.07	0.09	0.15	0.39	0.49	0.59	0.49	0.38	67.0 0 00	0.07	80.0	0.17	0.40	0.51	0.57	0.59	0.34	0.20	v. v
MUTUAL Release	(AF) 476	00	0	00	0	00	0 191	159	00		0	0	- -	0	0	265 066	894 894	718	00) O	0	00	00	0	154 0	460	312	8 <u>6</u> 1	0	0	00	00	173	579	754 1159	619	00	þ
MUTUAL DEMAND	(AF) 476	359 0	0	00	0	0 (191 191	159	00	00	0	0	c	> 0	0	265 066	894	718	00	0	0	00	00	D ;	154	460	312	12 0	00	0	00	00	173	579	754 1159	619	00	2
BBMWD DEMAND (Snowmkg)	(AF) 125	125 125	125	00	0	0 0	. 0	0	сı,	125	125	125	э с	00	0	00	0	0	125	125	125	00	00	0	00	0	0	125 175	125	125	0	- 0	0	0 (00	0	125	671
FISH RELEASE	(AF) 118	122	15	122	122	118	122	118	122	122	122	110	122	122	118	122	118	122	118	122	110	122	122	118	122	118	122	118	122	110	122	122	118	122	122	122	118	771
SEASON EFINITION FOR FISH	tel EASES mai	mai mai	mal	mal mal	-				÷.			.		mal	rmal	rmal		rmal	rmal rmal	ma	rmal	rmal								- <u>-</u>	÷.	r mal	mal	mal	rmal	mal	Iem	ILLIBI
 	μġ	22	22	22	We	8M	en ve	we.	ew.	ew Ab	- MB	Α	BW 0	2	2	22	2 2	2	22	22	Ê	28	2 ≸	ÐM	ew ew	8	We	We we		9.M	A8		2	2	22	22	2	2
CALCULAT UNIMPAIR FLOW	(AF) 496	486 3 783	2,945	6,428 5,223	696	212	491 557	273	854	66 1.635	475	1,754	2,758	1.496	140	* 532 374	197	250	2,889 616	568	3,807	3,471	1,530	392	697 1149	461	916	142 A 173	574	1997	2,304	364 364	154	1,057	142 338	488	3,528	A79'L
ACCUMULATED PRECIPITATION (water year octsep)	(IN) 1 14	3.01	32.14	36,97 39,62	39.62	39.62	39.62 39.62	39.87	1.85	2.05	13.61	25.66	28.04	31.24	31 24	31.24	31 24	0.00	13.70 15.78	18.29	27.24	39.78 40.05	40.95 41.06	41.06	41.20	44.07	1.78	2.60	18.70	22.93	34.24	35.97 36.28	36.28	39.54	39.61 41.37	6.68	20.47	99'07
PRECIPITATIO	(IN) 0.67	1.87	9.42	4.83 2.65	0.0	0.00	000	0.25	1.85	07.0 80.6	2.48	12.05	2.38	0.20	0.00	800	800	00.0	13.70	2.51	8.95	12.54	0.11	0.00	0.14	0,66	1.78	0.82	10.01	4.23	11.31	1.73 0.31	0000	3.26	0.07	5.68	13.79	5.1 8
	11 11	4	- സ	ი ა	- GD	6	~ ∞	00	10	= 5	! -	2	ო -	t 10	9	~ 0	0 0	٩	÷ ;	2 -	. (1	~ ~	4 LC	9	r~ α	000	10	53	2.4	- ~1	e co	4 10	o o	2	00	°6	273	12
DATE	YEAR M 1942	1942	1943	1943 1943	1943	1943	1943 1943	1943	1943	1943 1943	1944	1944	1944	1944	1944	1944	1944	1944	1944	1945	1945	1945	1945 1945	1945	1945 1045	1945	1945	1945 1045	1046	1946	1946	1946 1946	1946	1946	1946 1046	1946	1946	1946

,

۱

¥

STORIC AFF GAGE EVATION		62.7	63.0 22.0	63.4	62.4	61.2	59.6	58.2	56.8	55.9	55.4	55.8	50.0	50.0 8	57.0	57.5	56.4	54.6	52.6	50.5	49.3	48.4	48.6	49.3	50.0	50.9	53.1	53.1	8,10 9 04	17.0	46.0	45.0	44.9	45.4	45.9	47.3	48.0	40.0	20.4	46.4	42.1	40.5	38.8	38.6	38.5	39.5 39.5
A. ST A. ST A. ST		2	0	" "	οφ	ģ	5	o,	0 ,	4	ି ପ	о (+ م د	0 0	, .	- 4		. ല	2	ص	5	5	0	5	p	0	0	Q (4.07	0.00	0	F	0	00				5 F	- ~	1 00	0	5	0	ç,	7 -
HISTO E E.O.A STOR	SE.	4645	4705	4074	4565	4306	3943	3663	3384	3210	3123	3192	2815	1670	3594	3524	3315	2986	2646	2320	2158	2036	2062	2158	2247	2380	2735	2735	1707	1052	1724	1608	1595	1660	111	1893	1984	2023	944.4	1569	1304	1150	1005	88 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	974	1057
ADJUSTED STAFF GAG FI FVATION	(FT)	70.5	20.6 20.5	20.6	70.1	69.2	68.0	67.5	67.0	66.6	66.3	66.5	00.4 00.5	000.0	67.5	67.3	66.8	66.2	65.6	65.0	64.8	64.5	64.6	64.9	65.1	65.5	66.7	66.6 20 4	00.1 64 4	0.00	64.5	64.1	64.0	64.1	64.2	64.8 27 4	69.1	C.C.D.	į.	63.6	63.0	62.6	62.3	62.0	61.8 8 0	6.19
DERIVED SURFACE ARFA	Q V	2870.8	2876.4	2876.7	2848.6	2801.0	2734.0	2708.0	2679.0	2658.6	2644.1	2652.3	2040.3	2674.7	2710.6	2697.2	2672.6	2638.8	2605.4	2575.5	2563.9	2547.6	2552.0	2566.4	2579.0	2601.5	2666.8	2658.6	2632.4	2670.5	2546.1	2526.6	2519.4	2527.7	2532.2	2063.6	2.9/62	25.65.6	2526.6	2497.9	2466.7	2447.4	2428.0	2416.7	2405.7	2409.2
ADJUSTED E.O.M. STORAGE	(AF)	67498.6	6/814.5 69404 4	67774 9	66271.7	63682.4	60141.8	58797.4	57323.3	56295.5	55573.6	55980.0	0.100000	57103.9	58932.2	58246.1	56998.5	55310.8	53665.7	52221.0	51670.1	50896.4	51101.6	51790.0	52393.1	53477.2	567U7.8	56296.1	24334.2 53470 7	51984 B	50825.6	49907.4	49571.5	49960.2	50171.5	01000.3	0.00770	2.1022C	40010 3	48579.1	47157.3	46290.6	45424.7	44928.4	44445.6	44601.3
EST EVAP LOSSES	(AF)	200.8	267.1	778.5	1265.3	1424.3	1652.6	1558.4	1408.1	1044.8	584.9	211.5	2.212	399.2	668.7	1057.1	1321.6	1496.7	1504.1	1276.6	952.9	589.7	203.8	76.6	154.0	386.9	6/6.4 000 -	986.7 1966 0	1500.5	1482.9	1285.3	891.1	656.9	176.4	151.7	203.2	1.210	1004 8	12011	1440.2	1423.8	1134.7	979.0	631.3	265.8 160 1	216,9
ESTIMATED EVAP RATE	(FT/MONTH)	0.07	0.10	0.27	0.44	0.50	0.59	0.57	0.52	0.39 6.60	0.22	90.0		0.15	0.25	0.39	0.49	0.56	0.57	0.49	0.37	0.23	0.08	0.03	0.06	0.15	97.0	0.37	0.57	0.57	0.50	0.35	0.26	0.07	0.06	200	07.0	07.0 07.0	0.47	0.57	0.67	0.46	0.40	0.26	0.11	0.09
MUTUAL RELEASE	(AF)	0	- -	00	229	1004	1720	0	0	0	00	50	> c	00	0	0	0	0	0	0	0	0	0	0	0	0 (- <) C	0	0	0	01	0 0		-			0	0	0	0	0 (00
MUTUAL DEMAND	(AF)	0 (⇒ c	00	229	1004	1720	1644	1767	1484	1128	910 925		> C	0	381	1268	1828	2014	1815	1507	1214	693	0	0	0	20	0 C	1672	1741	1590	1272	1002	455	50	2 5	5) C 7)	859	1598	1859	456	456	456	456	456 456	456
BBMWD DEMAND Snowmkg)	(AF)	125	67L	0	0	0	0	0	0	- ;	125	G21	55	9 C	0	0	0	0	0	¢	0	125	125	125	125	0	2 0	э с		00	0	0	125	125	125	671	-	- -		0	0	0	٥ļ	125	125	125
FISH RELEASE ((AF)	122	110	118	122	118	122	122	118	271	916		110	122	118	122	118	122	122	118	122	118	122	122	110	122	911	771	123	122	118	122	118	122	122	215	271	123	118	122	122	118	122	118	221	110
ASON INITION R FISH	EASES	<u> </u>													_	_	_			_	-	=	_									-		=	_	= 1	= -			=	_	_	-	·	= -	=
	REL	norma			norma	norma	погта	norma.	norma	norma				BUTTOD	norma	DOLTING	norma	norma	norma	norma	norma	norma	norma	norma	norma	norma				norma		norma	norma	norma	Inorma				norma		norme	norma	norme	norma	norme	
CALCULATE UNIMPAIRED FLOW	(AF)	565	030 1106	474	116	(43)	(46)	336	52	89 L	106	699	000	181	2,615	493	192	(69)	(19)	(20)	524	59	656	1,012	992	1,593	670' 4	180	108	110	244	96	564	812	610	518'- 1915	407'-	134	(45)	231	124	386	235	378	3U 603	421
AACCUMULATED PRECIPITATION (water vear octseb)	(NI)	28.38 25.55	28.90 11 76	31.96	31.99	32.03	32.03	33.22	33.34	0.0A	0.85	0.3/ 0.40	18.33	23.81	28.06	28.21	28.34	28.38	28.38	28.38	1.67	1.67	9.46	21.42	25.55	30.34	90.00 17	51.74 24 74	3196	31.97	32.06	1.07	5.35	12.64	17.83	18.12	24.01	28.55	28.55	29.73	29.74	30.53	0,13	2.52	20.2	11.09
PRECIPITATIO	(NI)	2.72	1.02	0.70	0.03	0.04	0.00	1.19	0.12		0.26	76.1	7.84	7.48	4.25	0.15	0.13	0.04	00.0	0.00	1.67	00'0	7.79	11.96	4.13	4.79	20.0	8 6	0.00	0.0	0.09	1.07	4.28	62.1	5.19	4 c	40.7	0.10	000	1.18	0.01	0.79	0.13	2.39	0.0	3.64
-	IONTH	~~ (7	× 4	ŝ	9	2	00	ດເ	23	53	7.	- ^	; m	4	ŝ	9	-	æ	თ	t		12	- 1	2	ო -	4 4	n a	0 ~	- 00	9	5	:1	12	- (40	0 ×	4 ư	i ce	~	8	თ	₽:	; 1	27	- 0
DATE	YEAR N	1947	1047	1947	1947	1947	1947	1947	1947	1947	1947	1947	1948 1948	1948	1948	1948	1948	1948	1948	1948	1948	1948	1948	1949	1949	1949	2000	8481 6404	1949	1949	1949	1949	1949	1949	1950	1820	1050	1950	1950	1950	1950	1950	1950	1950	1950	1951

ŧ

ŧ

CAL-TROUT

ŝ

HISTORIC STAFF GAGE ELEVATION	(FI) 39.3	39.1 29.5	35.5 35.5	32.2	4.07 4.04 0 4.0	18.6	18.6	23.9	25.8 25.8	27.5	47.3	50.3	49.B	49.4	40.4	47.1	47.4	48.1	48.4	0.0 7 7 7 7	49.5	49.1	48.0	46.4	42.2	40.8	40,4	40.4	41.9 42.8	45.1	49.6	49.8	49.3	48.0	46.7	20.0	43.9	44.5	44.8	45.0	46.7 46.7	
HISTORIC E.O.M. STORAGE	(AF) 10468	10262	041e	5511	0062	920 920	950	2125	2721	3347 8228	18933	22914	22322	21730	10583	18674	19064	19972	20361	21681	21879	21286	19842	17767	13151	11809	11397	11397	12841	16210	22026	22322	21484	19842	18156 16470	01401	14914	15562	15821	16080	1/896 18156	1
ADJUSTED STAFF GAGE ELEVATION	(F I) 61.7	61.4 61.4	60.3	59.7	0.05	58.1	57.9	58.3	58.4	58.5 50.8	65.0	66.3	65.9	65.5 24 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	64.2	64.2	64.4	64.5 24 4	t h t 6	64.7 64.7	64 3	63.8	63.3	62.1 62.1	61.8	61.5	61.3	67.8 62.1	63.0	65.2	65.1	64.6	0.49	63.6 52.5	2.20	62.5	62.6	62.6	62.6	63.2 63.2	
DERIVED SURFACE AREA	(AC) 2399.3	2385.2 2365.2	2323.0	2293.9	4.6477 7.000 E	2209.8	2199.1	2219.5	2226.0	2232.7 2700 0	2574.3	2645.7	2622.5	2598.7	2.1002	2530.7	2531.3	2543.6	2544.7	2,5452	2555.2	2535.8	2508.7	2480.4	2420.0	2403.5	2387.1	2379.4	2405.4	2467.1	2584.0	2579.4	2550.9	2522.5	2496.6	2.0142	2440.5	2447.6	2446.6	2445.2	2479.U 2478.6	
ADJUSTED E.O.M. STORAGE	(AF) 44168.6	43555.8	40919.9	39716.7	3/3/0/2	36360.4	35946.3	36739.4	36995.4	37258.6 30036 4	52165.6	55649.4	54504.5	53344.1	0.12010 84000 5	50099.6	50127.8	50708.0	50760.6	1.100UC	51255.5	50341.0	49077.4	47778.8	45072.8	44351.2	43640.4	43308.5	44433.U 45004 4	47177.1	52629.6	52408.0	51052.8	49718.7	48521.2		45982.5	46297.9	46253.0	46192.8	47696.7	
EST. EVAP. LOSSES	(AF) 433.7	599.8 000.0	830.2 1111.7	1324.1	1040	800.1	464.1	175.9	111.0	155.8	528.8	1081.2	1269.9	1442.4	1301.3	1019.9	480.8	227.8	254.4		792.7	996.5	1318.6	1605.6	1271.9	919.6	600.9	214.8	166.6 240.5	435.3	715.5	1188.6	1470.2	1607.1	1513.5		612.2	219.6	146.9	220.2	464.6 644.5	
ESTIMATED EVAP RATE	(F1/MONTH) 0.18	0.25	0.47	0.57	0.00	0.36	0.21	0.08	0.05	0.07	0.23	0.42	0.48	0.65	00.0	040	0,19	0.09	0.10		0.31	0.39	0.52	500	0.52	0.38	0.25	0.09	0.07	0,18	0.29	0,46	0.57	0.63	0.60		0.25	0.09	0.06	0.09	0.19 0.26	
MUTUAL RELEASE	(AF) 0	00	00	00	50	0	0	Q	0	00		a	o	00	- c) C	0	0	00		00	0	0	0 (Ģ	0	0	00	0	0	0	0	0	00		00	0	0	0 (00	,
MUTUAL DEMAND	(AF) 456	456	456 456	456	400	456	456	a	0	00	00	0	0	0,00	100	833	272	0	0 0	200	5 1	410	1282	456	456 456	456	456	456	50	6	0	0	390	1231	1493	004	456	0	0	0	342	2
BBMWD DEMAND (Snowmkg)	(AF)	00	00	0		00	125	125	125	125	00	0	0	0	- c	o c	125	125	125	671	90	0	0	0 (0	125	125	125	0	0	0	0	0	00	-	125	125	125	125	00	>
FISH RELEASE	(AF) 122	118	118	122	77	122	118	122	122	110 110	118	122	118	122	771	122	118	122	122		118	122	118	122	771	122	118	122	122	122	118	122	118	122	122		118	122	122	110	122	
SEASON DEFINITION FOR FISH	RELEASES ormal	ormal	22	5	2	22	• 2	2	2	2	2	et .	et	đ		រី ថ្នី		let	fet	Į į	et Et	2	2	2	22	. 2	<u>v</u>	۲ ک	22	2	2	ret	ret	ret	jet.	Ĭ.		And I	/et	<i>i</i> et	ret rot	
CULATED MPAIRED .0W	AF) 123 Di	105	196 al	243 243	(265)	427 d	293 d	1,216 d	614 d	654 d	3,078 3,887 0	4.687 W	243 W	404 w	2113 222	140	752	1,055 W	554 W	442	1,332 W 828	204	173 d	429 d	23 64 23 64 23 64	320	133 d	130 1	1,538 1,647	2.730 d	6,286 d	1,089 W	233 W	395 w	438	205	477 W	782	349 v	395 w	2,110 W	2
ED CAL ON UNIT tt-sep) FL	3										4-	-																														
ACCUMULAT PRECIPITATI water year or	(IN) 13.38	17.83	18.87	21.93	22.05	23.33	5.90	19.25	32.52	34.43	20.00 20.02	53,69	53.69	55.77	56.19 50.03	20.90	6.47	11.64	13.44	15.23	18.70	22 49	22 49	22.52	22.59	0.31	1.87	2.32	18.84	39.08	39,31	39.54	40.08	41.00	41.41	42.01	0.00	7 10	17 34	18.79	19.40 20.87	10.04
RECIPITATION	(IN) 2.29	4.45	1.04 0.01	3.06	0.12	7.03	3.87	13.35	13.27	1.91	16.14	0.00	00:00	2.08	0.42	2.70	6.47	5.17	1.80	1.79	3.47 1.95	194	0.00	0.03	0.07	0.31	1.56	0.45	16.52 5 90	0.09	0.23	0.23	0.54	0.92	0.41	0.60	0.00	3 38	9.64	1.45	0.61	2 t ' -
Ē	3NTH 3	4	ഗയ	~	nc (n Ç	; =	12	-	~	- - -	ר איז	9	7	сс с	ך מ ל	2₽	12	~	~	(n) =	+ v:	90	~	ωc	° 0	Ŧ	12	- c	4 0	4	ۍ ۲	Ģ	7	ŝ	on :	55	÷	<u>.</u> –	2	იი -	ł
DATE	YEAR M(1951	1951	1951 1951	1951	1951	1951 1951	1951	1951	1952	1952	1952	1952	1952	1952	1952	7061	1952	1952	1953	1953	1953	1953	1953	1953	1953	1953	1953	. 1953	1954	1054	1954	1954	1954	1954	1954	1954	1954 1054	1051	1955	1955	1955	CCRI

CAL-TROUT

,

ŧ
HISTORIC STAFF GAGE ELEVATION	(FT)	47.2	46.2	13.0	40.7	39.2	38.8	36.8	40.3	41.5	40.8	41.0	0.04 0.04 0.04	35.7	32.2	26.1	20.5	18.9	16.0	26.4	32.6	33.3 22.0	n () •		31.0	25.0	23.2	22.6	22.7	26.8 26.3	341	40.8	48.3	51.2	50.8	50.1	1.04	195	49.0	48.6	48.7	50.0	50.6	50.3	49.4 48.0
HISTORIC E.O.M. STORAGE	(AF)	18804	17507	14135	11706	10365	10055	10055	11294	12428	11809	11913		7682	5511	2840	1300	1000	592	2930	5766	6148 6#30	0000	6084	4875	2452	1946	1789	1809	30/9	6657	11809	20231	24243	23652	22618	21434	20620	21139	20620	20749	22470	23356	22914	2173U 19842
ADJUSTED STAFF GAGE FI EVATION	(FT)	63.3	62.8 62.3	61.8	61.2	609	60.6	60.5	60.9 5 : 5	61.2	60.8 20 1	20°	4 0 9 9 0 9	59.2	58.6	57.8	57.4	57.3	57.0	58.1	7.8	59.2 50.2	1000	58.4	57.7	56.4	56.1	55.7	55.4	200	57.4	59.8	63.4	64.8	4,40	1.50	. e . e	623	62.3	. 61.9	61.9	62.5	62.7	62.4	61.2
DERIVED SURFACE ARFA	(AC)	2482.2	2455.7	2404.2	2372.2	2354.3	2343.1	2334.5	2355.8	2374.7	2352.5	2346.1	2301.5	2267.3	2236.8	2193.8	2177.5	2168.0	2156.5	2208.6	22/0/22	2270.0	2255 5	2224.8	2188.9	2126.4	2107.7	2090.7	2074.1	21030.2	2174.7	2298.3	2485.6	2562.1	7.900	5.4062 24694C	2455.2	2427.5	2430.2	2411.1	2407.0	2439.4	2453.3	2436.0	2373.6
ADJUSTED E.O.M. STORAGE	(AF)	47859.5	45176 2	44382.6	42996.4	42232.5	41759.5	41401.2	42297.1	43104.1	42158.1	41009.U	40030.4	38635.5	37419.8	35739.7	35114.9	34754.6	34322.5	36314.1	00100	38/4/.9	38164 6	36946.5	35551.9	33198.3	32513.2	31898.7	31300.6	32374 1	35008.8	39896.3	48014.7	51584.8	0.4004 D	40504.0	46638.8	45403.1	45522.3	44681.3	44504.4	45933.8	46552.6	45/62.6	43057.1
EST. EVAP LOSSES	(AF)	1016.2	1319.5	1477.6	1226.2	948.9	565.0	234.3	210.1	212.0	474.9 580 4	000. I 038 5	1236.2	1334.9	1269.7	1163.1	767.8	457.3	195.1	129.4	6'N77	401.0 567.5	20100	1218.0	1312.6	1269.5	978.1	695.5	439.1	160.7	189.3	304.5	528.6	1043.9	0.6221	1503.0	1216.4	957.5	509.8	243.0	192.9	192.6	512.3	136.0	1347,1
ESTIMATED EVAP RATE	(FT/MONTH)	0.41	0.57	0.61	0.51	0.40	0.24	0.10	000	60'0 0	0.20	070	0.53	0.58	0.56	0.52	0.35	0.21	0.09	900	29	0.25	0.35	0.54	0.59	0.58	0.46	0.33	1200	0.08	60 0	0.14	0.23	0.42	0.40		0.49	0.39	0.21	0.10	0.08	0.08	0.21	0.00	0.56
MUTUAL RELEASE	(AF)	0		0	0	0	0 (Ģ	00	50	50	00	0	0	0	0	0	0	þ	50				0	0	0	0	0	20	00	0	0	0	00		00	00	0	0	0	0	0	5		0
MUTUAL	(AF)	221	456 456	456	456	456	456	455	00	⊃ {	400	456	456	456	456	456	456	456	456	50	5 0	456	363	456	456	456	456	456	455	456	0	0	, 01	00	00	> c	47	201	177	374	456	0	27	104	456
BBMWD DEMAND Snowmkg	(AF)	00	00	0	0	0	125	125	125	671 071	- c	o c	0	¢	0	0	0	125	125	47L	3 <	00	• c	0	0	0	0,	0 10	125	125	125	0	0	00	, c	, c	00	0	125	125	125	125	50	>	>0
FISH RELEASE	(AF)	122	122	122	118	122	118	271	122		122	122	118	122	122	118	122	118	221	771		118	122	118	122	122	118	122	116	122	110	122	118	122	133	100	118	122	118	122	122	110	771	102	118
SEASON DEFINITION FOR FISH	RELEASES	2		₹	Č,	<u></u>	2	<u></u>	Ž	1.y		uy normal	hormal	hormal	hormal	Tormal	Jormal	Jormal	lomai	normal Sormol	ormal ormal	normal	ormal	normal	normal	normal	Jormal	Tormal	tormal	bormai	normal	hormal	vormal	wet		in term	wet	wet	wet	wet	wet	wet	Net	vel normal	normat
CALCULATED JNIMPAIRED FLOW	(AF)	1,301	37	806	(42)	307	335	123	1,353	+070/	(348)	684	12	62	176	(333)	265	340		2,300	2017	015 015	403	118	4	(362)	411	503	4 004 203	620	3,059	5,314	8,765	4,736	(53)	595	66	(156)	872	(351)	263	1,857	507'L	1040	86
NACCUMULATED (PRECIPITATION ((water vear octsep)	(IN)	24.88	26.83	29.60	29.60	0.00	3.21	9.79	17.98		20.02	25.81	25.81	27.02	27.02	27.02	0.25	0.25	0.64	27.81	28,00	29.00	32,60	32.88	33.31	33,58	33.58	4.01	1,00 10,74	19.84	32.46	45.38	57.11	58.11 58.11	58 15 21 15	58.93	60.74	0.16	2.01	2.01	5.83	23.38	23.30	18.02	24,14
PRECIPITATIO	(NI)	4.04	1.95	2.77	0.00	00.0	3.21	00.7	12.19	2000	000	1.67	00.0	1.21	0.00	0.00	0.25	0010	80.0	10.00		2.91	3.60	0.28	0.43	0.27	0.0	10.4	0.12 0.12	3.10	12.62	12.92	11.73	00.1	000	0.78	1.81	0.16	1.85	0.00	3.82	17.55		20.0	0.00
њ.	NONTH	ഹം	~	8	0 g	2:	:::	7	- 0	40	04	r 43	G	7	80	o j	63	: :	2	- ~	4 6	04	. rc	¢	1	م «	ກູ	2;	= \$	<u>1</u> –	7	ςη,	4 1	n u	7	- 00	0	Ć	1	12	~ ~ 1	~ ~	•	+ u	9 (3
DATE	EAR N	1955 1066	1955	1955	1955	1955	1955	0061	1956		1956	1956	1956	1956	1956	1956	1956	1956		1061	1067	1957	1957	1957	1957	1957	1957	1957	1057	1958	1958	1958	1958	1958	1068	1958	1958	1958	1958	1958	1959	1959	1959	1050	1959

t

ŧ.

CAL-TROUT

ഹ

HISTORIC STAFF GAGE ELEVATION	(FJ) ,,	40.1 44.1	42.2	41,3	41.1 40.8	414	42.0	43.6	43.7	44.2	42.4	4U./ 37 5	34.5	33.7	33.6	33.2	33.2	1.25	316	30.6	27.3	24.6	21.9	2) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	15.6	16.9	18.2	20.3	39.2	39.9	39.2	38.1 28.0			33.6	33.6	33.8	34.1	50	34.7	33.6	30.3	26.9
HISTORIC E.O.M. STORAGE	(AF)	15044	13151	12222	12016	12325	12944	14525	14655	15173	13358	11/U6 0032 7	6721	6402	6338	6084	6084	0447	5193	4683	3258	2333	1617	1000	240	002	006	3064	10365	10984	10365	9436 7000	7100	6594	6338	6338	6465	6657 6704	7400	7039	6338	4557	3109
ADJUSTED STAFF GAGE ELEVATION	۴IJ ۳	60.1 80 1	59.5	59.2	59.1 80.0	0.00	59.2	59.8	59.8	59.8	59.1	- 196 1 12	56.9	57.0	56.8	56.6	56.6	2,00	20.U	55,2	54.1	53.4	52.7	52.1 64.7	51.3	51.2	51.1	52.6	56 1	56.2	55.5	54.7	2.00 2.00 2.00	6,55	62.5	52.4	52.2	52.1	0.20	51.7	50.9	49.6	49.2
DERIVED SURFACE AREA	(AC)	2348.4	2283.4	2269.8	2264.6 2264.6	2261.6	2269.4	2300.9	2300.2	2301.6	2262.0	2240.B	2150.5	2153.6	2146.4	2134.3	2133.8	2116.2	2080 0	2060.9	2008.2	1971.0	1936.4	1906.B	1870.9	1863.1	1857.2	1933.4	2107.8	2112.6	2080.5	2040.2	1021,0	1947.6	1930.6	1921.1	1915.1	1910.2	10001	1887.4	1850.0	1786.5	1765.5
ADJUSTED E.O.M. STORAGE	(AF)	42U25.0 40573.4	39287.3	38740.0	38526.5 29404 4	38408.7	38721.8	40005.2	39977.0	40034.9	38423.9	3/5//.4	34094.7	34210.5	33941.2	33490.5	33472.8	32823.1	34370.0	30833.9	29000.0	27748.1	26609.2	25658.1	24531.1	24288.7	24106.7	26513.1	32517 1	32693.1	31531.8	30106.1	0.10002	26973.2	26421.3	26116.3	25922.8	25766.0 25766.0	2.0000.2	25045.9	23887.0	21994.0	21387.8
EST. EVAP LOSSES	(AF)	1409 6	1111.0	913.3	567.5 272 5	135.4	180.9	476.6	644.3	943.1	1288.9	1334,6	1158.6	774.2	495.3	171.7	170.7	234.7	402.1 568.0	815.0	1112.9	1204.9	1162.9	910,1 667 4	396.6	168.4	149.0	148.6	602 D	801.0	1056.3	1206.7	0000	749.4	486.9	193.1	134.5	229.8	0.040	820.0	906.0	1073.0	1036.2
ESTIMATED EVAP RATE	(FT/MONTH)	0.60	0.48	0.40	0.25	290	0.08	0.21	0.28	0.41	0.56	0.00	0.51	0.36	0.23	0.08	0.08	0.11	81.0 72.0	0.39	0.54	0.60	-0.59	0.47	5.0 120	0.09	0.08	80 O	030	0.38	0.60	0.68	1.9.0	0.38	0.25	0.10	0.07	0,12		0.43	0.48	0.58	0.58
MUTUAL RELEASE	(AF)		0	0	00	00	00	0	0	0	0			0	0	0	0	5	00		0	0	0	00	00	0	0	00		0	0	00		òc	0	0	0	00	20	0	0	0	¢
MUTUAL DEMAND	(AF)	456 456	456	456	456 4 56	000 100 100	00	219	327	406	456	456 456	456	456	456	456	458	456	424	456	456	456	456	456	456	0	456	00		0	456	456	400 450	456	456	456	456	456	0 0 0 0 0 0	456	456	456	456
BBMWD DEMAND (Snowmkg)	(AF)	50	0	0	125	125	125	0	0	0	0		- c	0	125	125	125	125) C	0	0	0	00	125	125	125	125		0	0	00	з c) C	125	125	125	125	- 0	- -	0	0	0
FISH RELEASE	(AF)	122	118	122	116	521 521	110	122	118	122	118	221	118	122	118	122	122	110	122	122	118	122	122	118	118	122	122	110	118	122	118	122	771	122	118	122	122	110		122	118	122	122
SEASON DEFINITION FOR FISH	RELEASES	rmal rmal	rmal	ırmal	rmal rmat	filliat vrmat	mal	rmal	rmal	Itma	srmal	ormal	uma rmal	ormal	ormal	srmat	ormai	Ima	ormal ormal		~ ~	~	Y	>:		~ >	×	> 2	~ >	a ta	et		5 7	11	it i		et	5	6	สั >	~>	~ ~	Y
		BU DE	21) 10	88 10	97 no		28	82 DO	34 10	23 no	9 (7)	5 5 5 5		12 12 12	. DE	32) nc	2 0	22 (22 22		96) 96)	03)	75 dr	46 dr	5	2 C	73	4	- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10	6 5 2 5	56 56	13 Wi	97) w	(20) (20)	54 54	78 W	35	88 Wi	90 80 80	≊ : 8 :	06 05	35) dr	98) dr	52 dr
CALCU UNIMP. FLOV	(F)	Ó	~	.4	10.4	~ U	~~	1,8	2	1,1	6,	0 5	₫. ೮	0,0	4	_	4	۳ ۳	÷		-9		-	c	4	-	~	2.4	20	10			-,	v	~	~	-	<i>с</i> о с		00	S	9	w)
4 ACCUMULATED PRECIPITATION (water vear octse	Î	24.34 24.80	26,04	0.46	2.16	4.90 0.07	14.57	16.69	21.83	22.15	22.15	22.20	22.23 22 E1	1.86	8,16	8.82	11.45	11.49	14.46 14.46	14 69	14.69	14,81	16.69	16.69	5.14	10.41	17.33	33.69	10.85	41.04	41.21	41.74	42.14	14.24	0.75	0.96	1.73	1.73	697 / S	12.11	12.77	12.77	14.25
PRECIPITATIO	(N)	0.20	1.15	0.46	1.70	0.74	5.50	2,12	5.14	0.32	0.00	0.05	0.03	0.20	6.30	0.66	2.63	0.04	2.97	0.00	0.00	0.12	1.88	0.0	0.00 A 14	5.27	6.92	16.36	9.3Z	2.03	0.17	0.53	0.40	12.0	000 010	0.21	0.77	0.00	6.16 . 25	88.4 00 00	0.00	00.0	1.48
_	HTNO!	~ α	ით	10	53	2	- ^	10	4	ŝ	യ	~ 0	οc	» C	2 =	12	-	2	، دە	3 U	ი დ	4	ß	စမ္	55	12	**	~	× ۳	гú	9 09	~	ю «	υç	2 ₽	12	į –	2	۰. Ch	च थ) (C) r-	Ø
DATE	YEAR M	1959 1050	1959	1959	1959	1959	1960	1960	1960	1960	1960	1960	1960	1960	1960	1960	1961	1961	1961	1061	1961	1961	1961	1961	1961	1961	1962	1962	1962	1961	1962	1962	1962	1962	1962	1962	1963	1963	1963	1963 1063	1963	1963	1963

Ì

2

ø

HISTORIC STAFF GAGE	ELEVATION (FT)	26.2	25.3	25.9	26.1 26.0	26.7	28.9	33.4	34.3	34.0	32.1	29.8	26.4	24.9	25.3	26.0	2,07	5.12	21.1 35 5	26.7	35.8	35.1	34.3	33.7	33.1	43.2	46.8	47.8	48.8	50.8	51,0	200	49.4	48.7	48.0	47.7	47.8	56.0	56.4	57.0	58.0	59.9	61.5	61.5	01.10	500 903	60.2 60.2
HISTORIC E.O.M.	a Urace (AF)	2870	2572	2751	2022	3049	3920	6212	6784	6594	5447	4302	2930	2423	2442	18/2	2012	3410	7870	8404	7785	7269	6784	6402	6020	14135	18286	19583	20879	23652	23948	22470	21730	20749	19842	19455	19583	32453	33151	34198	36290	40128	43664	43664	10074	41672	40875
ADJUSTED STAFF GAGE	(FT)	48.7	48.2	47.9	47.6 47.6	47.3	47.8	49.2	49.3	48.8	47.8	46.8	45.6	45.1	44.7	0.44 0.44	0.44	6 P 7	47.5	47.9	47.1	46.3	45.8	45.2	44.6	50.6	53.1	53.7	54.3	22.22	0.0 7 7	1.75	54.1	53.3	52.6	52.2	52.1	59.0	59.2	59.6 20 -	60.5 20 :	62.1 53 F	0.00	63.4 4.50 4.00	0.00	62 3	62.0
DERIVED SURFACE	AC)	1744.0	1718.9	1705.3	1691.0	1676.9	1697.0	1766.6	1771.0	1746.7	1698.2	1651.0	1594.4	1000.1	0.7001	1047.2	1520 5	1531.3	1684.3	1701.6	1663.6	1625.8	1601.0	1576.5	1548.2	1835.7	1958.3	1989,1	2019.5	A ZANZ	2095.1 2076 3	2037.5	2006,3	1967.6	1931.5	1912.0	1906.0	2257.5	2268.3	2287.7	2334.4	2420.2	D.4047	2490.4	P 0445	2431.5	2412.1
ADJUSTED E.O.M. STOPAGE	(AF)	20777.1	20077.4	19704.0	19315.9	18935.7	19478.7	21418.4	21544.8	20854.0	19511.5	18253.6	16807.6	0,00101	0.10101 10101	14645.6	15447.0	15277 1	19135.3	19601.7	18583.0	17601.5	16974.0	16365,5	15679.4	23451.8	27327.6	28353.5	29388.4	018/07	31345 A	30011.3	28934.8	27634.8	26449.7	25822.1	25630.8	38245.2	38676.0	39464.5	41385.1	45002.0		46236.7	48377 B	45581.1	44728.6
EST. EVAP. LOSSES	(AF)	882.7	662.7	395,3 4 70 F	118.5	152.2	285.1	407.3	706.6	867.8	1065.5	1018.9	0.908	0.000	060.0	102.4	154.6	276.9	382.8	690.6	816.7	981.5	975.5	736.5	662.1	402.5	165.2	137.1	158.1	0.444	6779 9429	1162.2	1385.5	1263.9	1023.2	772.6	516.2	209.7	203.2	249.5	400.4	010.0 1016 E		12/2/4	1604.0	1224.7	972.6
ESTIMATED EVAP PATE	(FT/MONTH)	0.50	0.38	0.23	0.07	0.09	0.17	0.24	0.40	0.49	0.61	0.60	0.49	2420		0.0	0.10	0.18	0.25	0,41	0.48	0.59	0.60	0.46	0.42	0.26	0.09	0.07	0.08	220	0.30	0.56	0.68	0.63	0.52	0.40	0.27	0,11	0.09	1.0	17.0	27.0		0.85	0.65	0.50	0.40
MUTUAL RELEASE	(AF)	0	0 (50	0	0	0	0	0	0	00	9 0		- c	o c		c	• 0	0	0	D	0	0	0	0	0	0 (0	-			0	0	0	0	0	0 (0	-	.	- c		> c			0	0
MUTUAL DEMAND	(AF)	456	456	456 156	456	456	456	o	338	456	456	964	400 904	450	ç	456	456	456	0	0	456	456	456	456	456	0	0 (5 0	50	00	oc	164	456	456	456	456	456	3	50	50				o c	c	0	0
BBMWD DEMAND (Soowmkg)	(AF)	0	° ;	021 361	125	125	0	0	0	0 (0 0	0	- c	- 42 42		125	125	0	0	0	0	0	0	0	0	125	125	97L	<u>6</u>	oc	- c	0	0	0	0	0	125	221	97L	07L		- c	00		• =	0	0
FISH RELEASE	(AF)	118	122	118	122	110	122	118	122	118	122	221	110	877 877	100	122	110	122	118	122	118	122	122	118	122	118	122	271	011	27- 27-	122	118	122	122	118	122	118	221	271	110	771	123	277	123	122	118	122
SEASON DEFINITION FOR FISH	RELEASES	dry	dry		λ.p	dry	dry	dry	norma	normai	normal	normat	normar normat	normat	normal	normai	normai	normal	normai	normal	normat	normat	normal	normai	normai	normai	normai	normai	normai	normai	wat	wet	wet	wet	wet	wet	Wei	Men	Net	wei	Wei	wei		wot	wet	wet	wet
CALCULATED UNIMPAIRED FI OW	(AF)	390	85	297 80	297	7	950	2,465	955 201	295	(061)	(111)	(519) 142	105.	776	330	221	229	4,359	1,279	(84)	122	470	246	86	8,418	4,288	1,410	1,429	808 808	353	(54)	431	86	(44)	797	568	13,071	100	C/7'I	2 000 V	907 7		101	899	546	242
VACCUMULATED PRECIPITATION (water vear oct -seo)	(NI)	19.40	1.41	0.40 7 7 7	12.35	12.86	18.26	21.62	24.14	24.14	20.09	20.02 27.00	20.00	5 JO	5.20	7.08	8.54	10.60	26.33	26.33	26.37	27.74	29.57	30.21	0.13	27.00	39.03	40.92	44.00 A6.00	46.43 46.43	46.51	46.51	46.51	46.84	47.28	0.50	3.63	20.03	30.21 25 37	17.00	16.01	- 200.5 56, 88	20.00	50 00	58 48	60.18	0.00
PRECIPITATION	(NI)	5,15	1,41	90.00 1.06	4.80	0.51	5.40	3.36	2,52	00.0	1.43	07.0 0	0.63	4 58	200	1.88	1.46	2.06	15.73	0.0	0.04	1.37	1.83	0.64	0.13	26.87	12.03	PD - C	3,07	210	0.08	00.0	00.0	0.33	0.44	0.0	3,13	72.40	97.8 00.00	00.0	12.00	0.67	300	0.05	1 49	1.70	0.00
<u></u>	AONTH	σ	21			2	ო	4	s c	וס	~ 0	00	νċ	2 5	- 0	4	~~~~	ო	4	ç	9	~	8	ი	<u>p</u> :	ξ.	2	c	7 0	24	۲u	9	7	æ	σę	2:	= ;	7	r- (v c	°.≺	t 10	20	~	. ac	ით	10
DATE	YEAR A	1963	1995 1	202	1964	1964	1964	1964	1964	100	1904	100	1051	1964	1064	1965	1965	1965	1965	1965	1965	1965	1965	1965	1965	1965	1965	000	1066	1988	9961	1966	1966	1966	1966	1966	1966	002	1901	1021	1061	1967	200 200	1961	1967	1967	1967

~

HISTORIC STAFF GAGE ELEVATION	(LJ	60.4	61.0	61,2	61.8	62.3	62.5	62.3	61.8	61.3	60.9	60.1	59.6	59.6	59.7	67.9	0.99	0.0	10.04	0 4 4			60 7		i g	1.69	69.1	69.1	69.7	69.7	60.4 0.0	03.U	68.7	68.2	67.8	68.0	68.5 2 5	68.6	20.7	- 00	1.00	0.00	67.8 67.8	67.9	66.7	66.6	66.6 2.62	68.7
HISTORIC E.O.M. STORAGE	(AF)	41274	42469	42967	44262	45408	46054	45457	44262	43266	42270	40476	39606	39606	39780	60011	65629	55050	73407	71012	71660	20103	ASOAS	63381	63381	63381	63381	63381	65065	65065	64223	6311U 63117	62117	60853	59590	60221	61485	61906	11170	12620	11170	01080	59590	58115	56641	56220	56220	62117
ADJUSTED STAFF GAGE ELEVATION	(LJ)	62.1	62.5	62.6	63.0	63.4	63.6	63.3	62.8	62.4	61.9	61.2	60.8	60.7	60.7	68.6	11.3	72.3	5 C C F	2.0	10.0	215	20	208	70.8	70.8	70.8	70.8	71.3	71.3	71.0	4.0.4 80.8	69.1	68.3	67.8	68.0	68.3	68.4 20 4	4.00	0 0 4 0	60.3 6 4		673	66.7	66.1	65.9	65.9	67.9
DERIVED SURFACE AREA	(AC)	2417.0	2438.2	2443.6	2466.9	2488.9	2499.8	2483.0	2455.5	2434.1	2409.4	2374.2	2353.7	2347.2	2345.2	2768.0	2913./	28/3.0	0.6782	0.0102	0 6 4 0 6	0.0102	2001 8	2887.7	2887 5	2887.7	2889.1	2889.7	2917.4	2914.9	2897.4	2003.7	2796.5	2752.7	2725.7	2733.1	2752.5	2755.8	0.0017	0.7672	1.0612	2747.5	5 10 20	2665.0	2634.8	2624.1	2619.1	2731.1
ADJUSTED E.O.M. STORAGE	(AF)	44940.3	45877.9	46117.9	47165.1	48166.7	48666.5	47896.6	46652.7	45697.4	44608.3	43084.6	42207.7	41934.3	41851.0	61926.0	69910.5	73320.0	73320.0	73320.0	0.02667	0.02667	0.10001	68445 6	68431 7	68443.0	68521.1	68558.2	70119.1	69975.9	68990.7	0.61210	63445.1	61116.8	59713.3	60093.6	61109.6	61282.4	01200.0	2.94610	61014.8 00400 c	60400.0 60000.0	58106 5	FREAD O	55112.3	54582.1	54337.3	59992,8
EST. EVAP. LOSSES	(AF)	651.3	193.4	195.1	268.8	493.4	622.2	1024.9	1340.8	1473.3	1363.1	1204.7	926.0	588.4	211.2	211.1	2214	466.2	1.200	1540.1	1782 8	0.0011	15247	1044.7	7210	288.7	259.9	288.9	549.1	700.2	1224.2	1006.7	1720.8	1342.3	1073.5	708.7	246.0	220.2	0.012	0.0/0	444.4	2 0 0 0 0 0	1530.5 1630.5	1870 8	1359.6	922.2	629.8	209.5
ESTIMATED EVAP RATE	(FT/MONTH)	0.27	0.08	0.08	0.11	0.20	0.25	0.41	0.54	0.60	0.56	0.50	0.39	0.25	0.09	60'0	0.08	0.16	17.0 .	0.42		0.00	55	0.36	0.26	0.10	0.09	0.10	0.19	0.24	0.42	70.0 70.0	0.61	0.48	0.39	0.26	0.09	0.08	200	12.0	12.0	5	10.0	20.0	0.51	0.35	0.24	0,08
MUTUAL RELEASE	(AF)	0	0	0	0	0	0	0	Ö	0	0	0	0	0	0	0	5	0		- c		- c) c	00	0	0	0	0	0	200	1156	916	0	0	0	0 (-	⊃ (50	- (- c	00	0	0	0	0
MUTUAL DEMAND	(AF)	ò	0	0	¢	¢	0	0	374	963	1014	1427	1121	775	756	0	0 1	<u></u>		- c		,) C	00	0	0	0	0	0	200	1156	916	945	, 0	0	0 (- c	. .	- ç	581	828 1210	0101	1470	1269	857	0
BBMWD DEMAND (Snowmkg)	(AF)	125	125	125	125	0	0	0	0	0	0	0	0	125	125	125	125	~ <	20	- c			00		4.0F	125	125	125	0	0	00	50	c	0	0	125	125	125	921 0		⊃ <	-		00	0	0	125	125
FISH RELEASE	(AF)	118	122	122	110	122	118	122	118	122	122	118	122	118	122	122	110	122	811	771	10	221		100	110	122	122	110	122	118	122	211	122	118	122	118	122	122	011	271	118	271	118	100	118	122	118	122
SEASON DEFINITION FOR FISH	RFI FASES	wet	wet	wet	wet	wet	wet	normai	normal	normai	norma	normal	normai	Wei	Wet.	wet	wei	wei	wer	wei	wet	wet	wel	wet	dry			dry	dry	dry	dry	dry	<u>div</u>	GLY	dry	normal	normal	numat Pormot	normal	normal	normai	normai						
CALCULATED UNIMPAIRED FLOW	(AF)	1 106	1 378	682	1.551	1,617	1,240	377	215	640	396	(201)	171	558	375	20,633	8,441	6,910	12,646		606't	018,1		275	010	547	585	561	2,232	675	361	412	628 1 676	48	(208)	1,332	1,509	640	485	788	533	129	33/ 660	200	(F)	514	628	6,112
LACCUMULATED PRECIPITATION (water veer oct -seo)	(IN)	7 88	10.80	13.84	16.30	19.44	21.62	21.80	21.80	22.36	22.77	22.77	0.28	0.28	3.90	44.70	74.35	78.20	BU.46	01.20	04.10	85.77	00.00	00.00	1.0	3.28	6.07	7.01	15.39	18.16	18.26	18.31	20.15	20.15	0.02	16.28	16.28	17.80	19.28	20.13	22.05	24.48	24.46 26.00	29,40	25.55	3.85	5.14	27.46
RECIPITATION	(IN)	7 88	6.6	3.04	2.46	3.14	2,18	0.18	0.00	0.56	0.41	0.00	0.28	0.00	3.62	40.80	29.65	3.85	2.26	40.L	3.5	2.67		6.0	= 5 5 7	28.2 0 24	01.0	0.94	8.38	2.77	0.10	0.05	0.19 4.65	00.0	0.02	16.26	0.00	1.52	1.48	0.85	1.92	2.43	0.0	12.0		385	1.29	22.32
ш	ONTH	÷	- 2	! -	2	i က	4	ç	Ģ	~	- 00	0	9	1	12		2	ო.	4 1	e 0	φı	~ 0	00	n ç	2∶	= 2	<u>i</u> -	- ~	س ا	4	ц.	φı	~ α	0 0:	6	÷	12	₩	~	ര	4	ŝ	(O 1	~ 0	00	, 6	1	12
DATE	VEAD M	1067	1961	1968	1968	1968	1968	1968	1968	1968	1968	1968	1968	1968	1968	1969	1969	1969	1969	F961	1963	1969	2000 F	1969		1060	1970	1970	1970	1970	1970	1970	0201	1970	1970	1970	1970	1971	1971	1971	1971	1971	1971	1201	1071	1971	1971	1971

TORIC AFF GAGE		68.7	68.6 8 5	68.2	68.0	6/.6 97.0	65.0 65.0	65.1	64.7	64.9	65.4	00.0 66.3	67.4	69.3	70.3	69.8 60.8	03.J	0.00 683	67.6	67.6	67.6	68.3	68.5	2.80 2.90	69.2 69.2	68.5	67.6	66.8 ee *	65.6	65.3	65,6	65.8 21.0	60.0 201	00.1 88.8	66.6	65.8	64.8	63.7	62.7	61.9 21.5	615 615	60.9	61.1
RIC HIS STA			~ ~						_			•	-			~ ~				_																							
HISTO E.O.M	(AF)	62117	619U6	60853	60221	00180	54535	52428	51234	51831	09066	55587	58536	64012	67094	64040	040 80438	60853	59168	59168	58958	61064	61696 22003	50000 64433	63591	61485	59168	56851	53692	52850	53692	54114	00040	04900 66220	56430	54324	51632	48843	46452	43664	43664	42270	42867
ADJUSTED STAFF GAGE	(FT)	67.8	67.6	67.2	6.68 2.02	00.0	65.4	64.9	64.6	64.7	00.1 Ac e	62.9	66.9	68.8	69.8 20.2	09.3 68 6	0.00 1.69 1.	67.7	67.3	67.3	67 1	67.8	8.10 8.88	00.0 68.8	68.5	67.7	67.2	66.7 66.4	66.3	66.0	66.2	66.3 66.4	90.4 7 2 2	5 0 0 0 0 0	6.99	66.4	65.9	65.4	60.1	6.40 8.48	64.7	64.4	64.6
DERIVED SURFACE ABEA	Sol Sol	2726.4	2711.5	2692.8	2678.1	5014 9	2593.9	2569.4	2549.6	2556.9	2311.4	2619.5	2676.4	2779.9	2835.2	2015.1	2742 4	2719.3	2695.4	2695.6	2686.6	2722.9	2768 F	2778.3	2763,6	2718.0	2691.3	26491	2641.9	2627.0	2640.3	2643.7	2652 4	2675.6	2676.9	2646.6	2620.9	2596.9	4.0002	2562 0	2558.9	2541.3	2551.1
ADJUSTED E.O.M. STOPAGE	(AF)	59747.3	58976.3	58020.1	57274.1	54744 7	53107.5	51930.5	50989,5	51335.6 5235.6	52331 1 53331 1	54358.2	57187,3	62558.4	65540.3 62006 2	600411 600411	60580.4	59380.6	58154.9	58163.0	57704.5	59564.6 £0067.2	510K2 2	62472.0	61692.4	59313.4	57943.8	55817.8	55464.7	54725.6	55381.2	55550.0 55730.0	56018 0	57149.6	57214.4	55698.2	54426.7	53253.6 52460 2	54500.2	51578.0	51432.8	50596.5	51060.4
EST, EVAP LOSSES	(AF)	218.5 200.0	625.1	759.2	1104.0	1672 8	1544.2	1271.0	925.0	560.9 220.4	180.4	233.9	392.9	695,9	1223.2	1711 1	1606.7	1343.8	1087.7	673,9	296.5	214.9	5461	775.2	1194.7	1520.0	1603.6	1413.0	1086.1	634.1	236.4	211.2	450.0	769.4	1070.2	1365.2	1614.5	1520.1	1006 4	667.7	256.2	230.3	254.1
ESTIMATED EVAP RATE	(FT/MONTH)	0.08	0.23	0.28	0.41	690	0,59	0.49	0.36	0.22	0.00	0.09	0.15	0.26	0.44		0.58	0.49	0.40	0.25	0.11	0.08	0, 0	0.28	0.43	0.55	0.59	0.53	0.41	0.24	0.09	80.0	0.17	0.29	0.40	0.51	0.61	0.58	080	0.26	0.10	60'0	0.10
MUTUAL Release	(AF)	00	00	0	00		0	0	0	00		0	0	0	50	0 86	276	0	0	0 (0 0	00		0	0	891 2	00		0	0	0 0) O	0	0	0	00		00	0	0	0
MUTUAL DEMAND	(AF)	181	484	637	1019	1855	1983	1985	1334	518	be	00	0	0	- c	186	276	400	417	00	00	00	þe	0	0	891	1208	1348	1234	724	0.00	503		0	0	1041	1789	2393	1500	1317	884	456 Î	0
BBMWD DEMAND Spowmkn)	(AF)	125 125	20	0	00	- c	00	0	0	125	125	125	0	0 (ə c) C	0	0	0	125	125	125	30	0	0	00	> <	00	0	125	125	125	20	00	0	0	0	ə c) с	125	125	125	125
FISH RELEASE	(AF)	122	122	118	122 118	122	122	118	122	118	122	15	122	118	122	122	122	118	122	118	122	122	122	118	122	118	77	118	122	118	122	111	122	118	122	118	122	122	100	118	122	122	110
ASON NITION 2 FISH	EASES			_	<u> </u>			• • •									_	_	_						_			-	~~*				- 1844		_					- 14-14	_	<u> </u>	_
	REL	norma	norma	погта	horma		norma	погта	norma	norma		BUTION	norma	norma	norma	norma	norma	norma	norma	norma		norma		norma	погта	norma			norma	norma				погта	погта	norma	BULIOU	norma		norma	norma	norma	norma
CALCULATEI UNIMPAIRED	(AF)	220 91	420	(62)	480 320	(11)	529	212	106	1,150	1 443	1,496	3,344	6,185	4,321	152	544	262	(16)	925 85	52 525 5	2,322 905	2.658	1,413	537	150	005	678	855	138	1,139	653 653	860 8	2,019	1,257	(33)	465	469 RAG	640	613	358	(359)	953
N ACCUMULATED PRECIPITATION (water vear octseo)	(N)	27.46 27.64	27.64	28.65	29.38 29.84	29.84	30.19	30.19	1.29	7.85	14.28	26.38	37.52	37.52	38.05	38.05	38,64	38.64	0.00	4.42	0.35 17.00	17.95	25.48	26.63	27.02	27.02	24.51	29.26	3.12	3.84	9.72	11.40	22.62	27.61	28.01	28.01	28.01	28.01	02 C	3.89	4,44	4.44	16,46
PRECIPITATIO	(IN)	0.00	0.00	1.01	0.73	00.0	0.35	0.0	1.29	9.00	6.43	12.10	11.14	0.00	20'0 0000	00.0	0.59	0.00	0,00	4.42	0.93	12.55	7.53	1.15	0.39	0.0	1 25	0.70	3.12	0.72	20.00 10.00	3.13	8 03	4,99	0.40	0.00	0.0	0.00		3.10	0.55	0.00	12.04
	IONTH	r- 0	10	4	ທຸແ	~	0	σ	23	= 2	į	2	(r) ·	4	n u	~	œ	0	ç	5;	21	- 0	400	• 4	ŝ	(0 t	- α	ຸດ	10	7	2	- 0	1.62	•	ŝ	ю I	- 0	οσ	° €	52	12	र ू (7
DATE	YEAR N	1972	1972	1972	1972 1972	1972	1972	1972	1972	2781	1973	1973	1973	1973	1973	1973	1973	1973	1973	1973	19/3	1974 1974	1974	1974	1974	1974	1974 1974	1974	1974	1974	19/4	1975	1975	1976	1975	1975	6/61	1975 1975	1975	1975	1975	1976	19/6

ŧ.

ŧ

CAL-TROUT

HISTORIC STAFF GAGE ELEVATION	(F1)	62.2 62.3	61.8	60.7	59.6 8.8.5	2.00	58.3	58.2	58.0	58.2	58.2 ·	58.2	20.4	58.1	57.3	56.6	56.0	55.6	55.3 7 7 7	0.00	51 7	689	69,4	70.2	69.7	69.2	00.00 6.8 A	67.9	68.1	68.4	0.60 Fee	7.90	72.0	72.0	71.5	71.2	70.6	70.1	69.5	00.00	669 6	70.1	71.9	72.0
HISTORIC E.O.M. STORAGE	(AF)	45258	44262	41872	39606 37462	27000	36813	36639	36290	36559	36559	36559	20035	36421	34771	33547	32357	31682	31024	11000	24275	57044	64180	66544	65126	63766	61380	60000	60457	61380	63009	80015	72236	72113	70648	69671	67986	66308	64653	54062 63044	65362	66308	71869	72358
ADJUSTED STAFF GAGE ELEVATION	(FT)	65.5 65.5	65.1	64.5	64.0 A A		9 9 9 9	63.4	63.2	63.4	63.3	63.2	00.1	62.9	62.1	61.5	61.0	60.6	60.1	1.10	02.1 65.4	5 69	72.2	72.3	71.8	71.3	70.4 70.4	6.69	70.1	70.5	71.2	6 C L	77.3	72.3	71.8	71.5	71.1	70.9	70.6	5.U/	72.0	72.3	72.3	72.3
DERIVED SURFACE AREA	(AC)	2597.6 2508.1	2576.1	2547.1	2521.8 2501 3	10130	2494.6	2487.8	2480.1	2486.2	2482.0	2478.2	2473.1 2476.8	2459.6	2417.9	2388.3	2359.6	2341.0	2316.7	2.000.2	2597.B	2839.0	2963.1	2973.0	2945.0	2917.8	2868 0	2840.7	2847.4	2874.4	2911.4	2073.0	2973.0	2973.0	2945.4	2925.9	2905.4	2893.8	2874.7	2059.0	2953.6	2973.0	2973.0	2973.0
ADJUSTED E.O.M. STORAGE	(AF)	53290.2 53240.8	52250.7	50869.9	49687.1 48735 0		48419.0	48118.4	47763.6	48042.2	47849.7	47676.8	4/4/6.1	46838.6	44982.6	43690.7	42459.5	41673.1	40657.5	0.12124	403/4,0 53054 7	65746.2	72745.4	73320.0	71698.3	70145.3	60144.2	65837.5	66205.2	61699.9	69778.7	72220.0	73220.0	73320.0	71718.3	70603.6	69439.2	68784.4	67718.4	666/1.8 66603 3	72194.5	73320.0	73320.0	73320.0
EST. EVAP. LOSSES	(AF)	459.2 675.4	1117.2	1313.8	1502.8	410004	981.3	648.6	248.8	198.4	273.5	421.9	/ 10./ 865.8	1312.7	1734.0	1474.9	1194.2	967.4	772.5	2,0.0	212.9	544.5	709.7	1214.9	2229.7	1767.0	18/9.1	1434.4	653.4	256.3	201.2	202.U	BD2 7	1248.7	1575.7	1737.8	1682.4	1510.8	1200.9	1.917	256.7	324.9	535.1	832.4
ESTIMATED EVAP RATE	(FT/MONTH)	0.18	0.43	0.51	0.59	07.0	0,39	0.26	0.10	0.08	0.11	0.17	0.25	0.53	0.71	0.61	0.50	0.41	0.33	0.12	0.09	2.0	0.25	0.41	0.75	0.60	0.04 07 07	0.50	0.23	60'0	0.07	0.03 at 0	2.20	0.42	0.53	0.59	0.58	0.52	0.42	0.20		0.11	0.18	0.28
MUTUAL I RELEASE	(AF)	00	0	0	00		00	0	0	0	0	¢ 0		0	0	0	0	0	0 (50	- c		0	0	0	0) () C	0	0	00	- c		00	0	0	0	0	0	5.0	bc	0	0	0
MUTUAL	(AF)	146	806	1620	456 456	e c	456	456	456	0	0	00	50	456	456	456	456	456	456 °	-	- c		0	0	0	00	50	• C	0	0	00	, 		• c	0	0	0	0	0 (00	00	0	0
BBMWD DEMAND Snowmka)	(AF)	00	0	0	00		00	125	125	125	125	00	50	0	0	0	0	0	125	125	125	ç Ç	00	0	o	00	50	> c	125	125	125	07I) C	0	o	c	0	0	125	125	125	0	0
FISH RELEASE	(AF)	122	122	118	27 27 27	771	116	118	122	122	110	122	8LL	118	122	122	118	122	118	221	271	5 C C C	118	122	118	122	122	12	118	122	122	011	118	122	118	122	122	118	122	118	122	110	122	118
SEASON EFINITION FOR FISH	ELEASES	mai	mai	mal	mal		mai mai	mal	mai	mat	mał	ma	mai											_	-		-	_		-							-	÷	.					t
	œ	2	2 g	nor	õ d	2 }			0	nor	Jor	2		50	Ê	, E	ę	Ş	Ę.	Ê.	64	52	55	, BM	WB	We.	ew a		we.	we	en a	A C			ew Me	8M	We	ВM	We	9A	a a	44	9M	мө
CALCULATE UNIMPAIRE	(AF)	2,811	179	51	442 503	200	2,002 113	581	141	724	316	371	632	654	0	305	81	303	0	2,595	7 10/	13 358	7.827	3,529	726	336	0 00	800 0	1.264	1,998	2,527	2097		4 002	92	745	640	974	257	115	761 761 9	13,898	6,090	6,882
I ACCUMULATED PRECIPITATION (water vear oct -sep)	(NI)	21.74	24.59	24.78	25.55 25.55	20.02	34.31 0.60	0.75	2.05	8.85	9.38	12.46	12.46	18.13	18.13	21.00	21.00	0,00	0.39	13.00	25.30 26.70	20.73 58 80	86.95 86.95	67.56	67.56	67.62	67.62 co.cz	09.07 0.31	7.92	11.75	21.73	30.96	41.20	41.76	41 76	42.99	43.14	43.37	2.31	2.31	62.5 62.6	50.53	58.52	61.29
RECIPITATION	(NI)	5.26	0.25	0,19	0.77	0.0	8.76 0.60	0.15	1.30	6.80	0.53	3.08	00.0		00.0	2.87	0.00	0.00	0.39	12.61	12.30		8.06 8.06	0.61	0.00	0.06	0.00	00.2	1.61	3.83	9.98	9.23	200	39	000	1 23	0,15	0.23	2.31	0.00	0.94 70.05	26.31	7.99	2.77
ц	NTH	с , -	tru⊓	9	~ ~	0 0	n ⊂	2:	12	~	~	m ·	4			60	თ	6	7	12	- <	N (1	, 4	· vo	0	7	æ (» ć	2 ==	12	-	~ ~	"	t u	n u) r -	- 60	0	6	ž:	<u>,</u>	- 0	4 (7)	4
DATE	YEAR MC	1976	1976 1976	1976	1976	018L	1976 1976	1076	1976	1977	1977	1977	197	1977	1977	1977	1977	1977	1977	1977	1978	18/0	1978	1978	1978	1978	1978	19/8 1078	1978	1978	1979	1979	19/9	1070	1979	1979	1979	1979	1979	1979	1979		1980	1980

5

x

HISTORIC STAFF GAGE		717	71.6	71.3	70.9	70.2	69.5	69.2	69.1	69.2 20 2	69.5	0.02	20.2	2.69	7.00	00.4 5 4 7	67.0	2.10	66.4	66.4	6.99	67.6	889	71.1	71.6	71.2	70.8	70.5	70.1	69.5	69.7	70.3	69.6 20.5		72.3	72.0	71.7	71.2	71.2	70.4	69.5	63.9	69.6	0.07	6.69	6,9	69.7	69.4 69.6	00,0
HISTORIC E.O.M. STOPACE	STURAGE (AE)	71381	70892	69915	68706	66544	64653	63707	63475	63707	04003	66071	D6544	60170 60707 #	10100	50212	57494	56146	55920	55695	57269	59084	62544	69427	70892	69725	68413	67558	66256	64565	65275	66837	64979 66497	740100	73231	72358	71327	69861	69861	67116	64416	65629	64705	65977	65693	65835	65126 01126	64133 62022	25035
ADJUSTED STAFF GAGE		72.3	72.2	71.8	71.4	71.1	8.07	70.4	70.3	70.3	0.0 1	6.07	0.17	6.02 0.02		67.7 7	67.3	66.8	66.6	66.5	67.0	67.6	68.7	71.0	71.4	71.0	70.6	70.2	69.7	69.3	69.5	70.5	7.07	0.04	72.3	72.3	72.3	71.8	71.7	71.4	71.2	71.5	71.2	7.17	71.6	71.6	1.3	0.17 20.4	1.01
DERIVED SURFACE ABEA		2973.0	2964.8	2945.5	2922.0	2903.7	2000.0	2866.8	2020.0	2859.0	47107	7.6892	0.1082	2837 3	5778 2	2720.4	2694.5	2670.5	2661.9	2652.6	2680.0	2711.2	2775.4	2899.5	2923.3	2900.7	2875.1	2853.9	2825,9	2805.4	2814.9	28/1.0	2000.4	2072.0	2973.0	2973.0	2969.2	2941.4	2939.1	2920.3	2911.0	2928.4	2911.6	2937.4	2933.2	2933.4	G'RLRZ	2691.4	0.8407
ADJUSTED E.O.M. STORAGE	(AF)	73320.0	72841.8	71728.3	70379.9	69342.7	00417.3	6/281.2 66964 4	0.10000	66645.2	0.08010	60044 E	67680 J	01000.2 65651 0	62469.0	59423 5	58109.2	56893 2	56458.2	55997.1	57371.0	58960.8	62317.6	69104.2	70457.4	69173.4	67742.6	66562.4	65032.5	63923.9	64436.6	6/513.2	0.75000 77786 1	73320.0	73320.0	73320.0	73098.8	71492.0	71358.4	70286.2	69759.1	70747.8	69792.1	71260.1	71021.9	701030.2	E 1910/	66394.7 66394 3	0.12200
EST. EVAP. LOSSES	(AF)	1100.0	1516.2	1808.5	1767.3	1490.2	4.701 -	803.1 244.0		205.0	0000	042.0	0.440	1638.2	1813.0	1747.5	1425.3	1094.0	681.0	298.1	198.9	270.7	471.7	713.3	1183.0	1438.3	1720.1	1719.3	1409.8	1051.2	622.8	0.862	241.2	506.0	680.8	1204.1	1510.3	1763.7	1726.6	1548.9	1130.2	780.2	708.7	265.0	317.2	1.129	0000	1712 4	1.21.1
ESTIMATED EVAP RATE	(FT/MONTH)	0.37	0.51	0.61	0.60	10.0	8 7 7 7	0.0 0		80.0		0.19	0.50	0.57	0.64	0.63	0.52	0.41	0.26	0.11	0.08	0.10	0.17	0.26	0.41	0.49	0.59	0.60	0,49	0.37	0.22	80'O	010	0.18	0.23	0.41	0.51	0.59	0.59	0.53	0.39	0.27	0.24	0.09	0.11	12.0	17.0	0.40	0
MUTUAL RELEASE	(AF)	0	0	0	0 0	50	0	50) (o c	714	1247	1437	0	0	0	0	o	0	0	0	0	0	0	210	461	37	0	.		- C	0	0	0	0	0	0	0	0	0 (0 (00	50	⊃ r	or B66	}
MUTUAL DEMAND	(AF)	ò	0	0	0 (50	00		> c			- c		714	1247	1437	1597	737	472	0	0	0	0	0	0	0	0	210	461	37	0 0	50		- C	0	0	0	0	0	0	0	0	0	0 (50	50	ې د ۲	یں 866	222
BBMWD DEMAND Snowmkn)	(AF)	0	0	0	-		0 V 7	1 22	101	125	30	> c	> c	o c	c	0	0	0	125	125	125	125	0	0	0	0	0	0	0.0	0	67 L	07 1 1	105	c	0	0	o	0	0	0	0	125	125	125	125	-		- c	>
FISH RELEASE	(AF)	118	122	118	271	011	271	122	221	110	2 <u></u>	121 112	122	118	122	122	118	122	118	122	122	110	122	118	122	118	122	122	118	122	118	221	110	122	118	122	118	122	122	118	122	118	122	122	110	77	0 - 10	118	2
SEASON DEFINITION FOR FISH	RELEASES	wet	wet	wet	19M	wei		wet		wet	wot.	wet	drv	dr.	drv	drv	dry	dīv	dry	dry	dry	dry	dry	dry	normal	normal	normal	normai	normat	normat	normai	normat	normal	normai	normai	wet	wet	wei	Wei		dry	K 12							
CALCULATED UNIMPAIRED D FLOW	(AF)	5,758	1,160	813	45 [1/0) C	161 U	507	1 286	1 067	1904		441 1	0	261	229	o	489	84	1,820	2,096	3,951	7,618	2,658	272	411	871	459	102	1,3/9	0,000 1 010	4 769	9 623	6,097	6,908	1,407	279	1,715	595	725	2,012	0.00	1,980	415	000	25.20	0	>
I ACCUMULATED PRECIPITATION (water veer octsen)	(IN)	62.69	62.69	64.12	64,12 64,42	112		212		5 C	12.12	14.06	14.77	14.77	14.94	15.44	15.53	0.57	3.18	3.28	7.26	11.91	30.07	32.47	33.06	33.26	34.04	36.30	36.40	1.75	10.03 20.05	50.05	32.97	46.47	51.17	51.17	51.17	51.17	54.82	55.97	3.35	9.39	CD.71	17.11	097.7E	40.14	22.74	17.56	
PRECIPITATION	(NI)	1,40	0,00	1.43	0.0	0.00	200	201	2 EO	3.46	A 0B	88.0	0.71	0000	0.17	0.50	0.09	0.57	2.61	0.10	3.98	4.65	18.16	2.40	0.59	0.20	0.78	2.26	0.10	1.75	0./0 5	20.02	8.71	13.50	4.70	0.00	0.00	0.00	3.65	1.15	3.35	6.04	7.66 200	0.06	67 D	0.10		000	22.22
	AONTH	ю.	co i	~ (οc	°€	2 \$: 5	<u> </u>	- ~	19	গৰ	- va	6	2	80	თ	₽	£	12	-	2	ი	4	Ś	ن ی	- 1	ω	თ. ,	2∶	= \$	2 -	- ~	· ~;	4	Ş	œ	2	ഹ	ത	₽:	: :	2	- (N 0	o =	t u	n cc	\$
DATE	YEAR N	1980	1980	1980		1980	1080	1980	1081	1981	1081		1981	1981	1981	1981	1981	1981	1981	1981	1982	1982	1982	1982	1982	1982	1982	1982	1982	1982	7081	2021	1983	1983	1983	1983	1983	1983	1983	1983	1983	1983	1983	1984	1984	1001	1001	1984	>>>

ŧ

Ł

CAL-TROUT

÷

HISTORIC STAFF GAGE ELEVATION	(L)	66 6 5 9 4	283	67.7	67.6	68.4	68.5	68.8	69.2	69.6	69.2	4 89 4 9	1.00	0,10	56.1	66.4	66.7	67.0	68.9	70.0	1.07	69.6	69.2 200	68.5 2 5 2 5	00.2 07 0	67.9	67.0	67.0	67.0	67.3	67.6 68.0	67.7	67.2	66.6	66.1	65.6	65.7	65.6	85.8 87.8	0.00	- 09 99	5.95	66.1	65.6	64.9	64.5
HISTORIC E.O.M. STORAGE	(AF)	61892	60915	59405	59130	61194	61613	62590	63707	64842	63568	61334	00000 4	01 /00 7007	55073	55740	56550	57359	62869	65977	66402	65409	63568	61613	60640	58308 58308	57494	57359	57359	58306	06190	59267	57899	56280	54941	53748	54013	53616	54279	04000	54841 54675	546D5	54941	53748	51912	50741
ADJUSTED STAFF GAGE ELEVATION	E	69.9 60.3	68.9	68.3	68.1	68.8	68.8	69,1	69,4	69.8	69.2	68.2	0.70	2.10	663	66.6	66.8	67.0	68.9	6.69	70.0	69.7	0.93	68.2 07.0	67.4 67.4	4 10	66.8	66.7	66.7	67.0	61.2 67 5	67.9	66.7	66.0	65.5	65.0	65.1	64.8	65.0 01.0	7.00	65.0	2.20	65.0	64.5	63.8	63.3
DERIVED SURFACE AREA	(AC)	2637.8	2785.2	2751.2	2741.8	2777.1	2780.6	2795.2	2813.8	2832.6	2799.8	2744.6	1.0212	2003.5	2642.4	2657.9	2669.8	2682.8	2784.9	2840.5	2846.3	2826.0	2790.3	2747.2	C'97/7	2685.5	2672 1	2666.8	2663.2	2678.3	2692.6 2700 G	2R91.5	2662.6	2628.2	2599.0	2572.4	2576.1	2563.8	2574.4	4.1002	2577 6	2500.3	2574.8	2548.2	2507.6	2480.6
ADJUSTED E.O.M. STORAGE	(AF)	656/9.1	62839.2	61042.5	60550.2	62409.9	62593.6	63374.7	64374.4	65398.0	63619.3	60695.0 50704 0	0.10/60	0101C	55487.1	56261.1	56856.7	57511.7	62822.3	65830.9	66145.7	65035.8	63111.4	60830.1	0.40760	0.10000	56974.8	56707.3	56525.6	57286.6	58878 6	57953.8	56494.0	54782.5	53356.0	52076.7	52253.7	51665.1	52168.4	0.60626	52440.5 52082.8	52034 1	52188.6	50925.3	49024.7	47787.2
EST. EVAP. LOSSES	(AF)	16/5.2	1444 7	1002.7	671.3	241.3	208.3	266.9	514.3	855.4	1274.7	1548.3	10/4/2	1100.9	1029.2	650.0	268.5	275.0	292.4	590.4	798.2	1223.9	1732.3	1632.3	0.2211	0.0121	973.2 695.5	272.6	210.7	253.0	440,5 840 A	1083.8	1423.8	1589.6	1558.5	1294.3	1029.0	628.6	230.7	4°177	208.5	600 7	1059.4	1336.3	1778.7	1474.4
STIMATED EVAP RATE	(FT/MONTH)	0.59	0.51	0.36	0.24	60.0	0.08	0.10	0.18	0.30	0.45	0.55	19.0	0.00	0000	0.25	0.10	0.10	0.11	0.21	0.28	0.43	0.61	0.59	0.63	0.40	0.06	0.10	0.08	0.10	0.19	0.40	0.53	0.60	0.59	0.50	0.40	0.24	0.09	80.0	0.10	220	041	0.62	0.70	0.59
mutual e Release	(AF)	999	867 867	849	0	0	0	0	0	0	382	1258 ົ) C	0	0	0	0	0	0	0	74	527	00			0	0	0	-		0	0	0	¢	0	0	00		50	00) C	0	0	0
MUTUAL DEMAND	(AF)	886	867 867	849	374	0	0	0	0	0	382	1258	41.01	4001 9786	576	0	0	0	0	0	0	0	74	527	292	143 177	334	350	0	0	20	414	1369	1760	1820	1758	1306	292	0	5	50		474	1279	1910	1810
BBMWD DEMAND Snowmkg)	(AF)	00		0	125	125	125	125	0	0	0	00	-	50		125	125	125	125	0	0	0	0 (00	00	> <	125	125	125	125	00) C	0	0	0	0	0	125	125	07L	67L	50	o c	0	0	0
FISH RELEASE	(AF)	122	118	122	118	122	122	110	122	118	122	118	771	771	122	118	122	122	110	122	118	122	118	122	122	110	118	122	122	10	122	122	118	122	122	118	122	118	122	271	011	777	122	118	122	122
SEASON DEFINITION FOR FISH	RELEASES	dry	din Art	dry	dī	dry	dry	dry	dry	dry	normal	normal	normal	normai	normal	norma	normal	normal	normal	normał	normal	normal	normai	normal	normal	normai	nomal	normal	normal	normal	normal			갑	đ	dry	dry	сц	dry		ζ, į	in i	normal	normal	normal	normal
CALCULATED UNIMPAIRED FLOW	(AF)	2,068	1,821	171	422	2,348	639	1,283	1,636	1,997	o	0	863	5 0	205	1 667	1,111	1,177	5,838	3,721	1,231	236	0	0	769	141 Cat	284	252	276	1,249	1,341	180	82	0	254	133	1,328	283	961	805	439	007	500 736	191	0	359
ACCUMULATED PRECIPITATION (water vear octsep)	(N)	19.40	21.53	0.00	2.83	15,60	17.62	18.13	19.99	21.61	21.68	22.06	16.22	16.22	10.22	10.37	14,13	19.07	31.20	38.41	38.41	38.41	38.41	39.29	42.55	45.29	0.00	4.00	5.59	8.25	12,15	2.02	14.01	14.50	14.67	14.95	5,12	9.66	14.11	17.90	19.25 20.25	27.U2	26.96	26.24	26.24	28.89
RECIPITATION	(NI)	1.84	2.23	00.0	2.83	12.77	2.02	0.51	1.86	1.62	0.07	0.38	0.91	300	0.80	10.01	3.76	4.94	12.13	7.21	0.00	0.00	0.00	0.88	3.26	5.75 5.75	0.0	160	1.59	2.66	3.90			0,49	0.17	0.28	5.12	4.54	4,45	3.79	1.35	33	0.00	200	000	2.65
Δ.	HTNO.	⊦ ~ (οσ	9	1	12	-	2	ы	4	ъ	ģ	~ (ρœ	n ç	2.5	: 우	į •	2	ന	4	ю	œ	~	∞ (сл с Т	2∶	: ;	i •~	2	ო -	t 4	n (c	~	60	თ	5	ţ	12	-	~ ~	.	d u) «	2	. co
DATE	YEAR M	1984	1084	1984	1984	1984	1985	1985	1985	1985	1985	1985	1985	1965	1005	1085	1985	1986	1986	1986	1986	1986	1986	1986	1986	1986	1906	1986	1987	1987	1987		1081	1987	1987	1987	1987	1987	1987	1968	1988	0061	1000	2000	1988	1968

ţ

r

STORIC IAFF GAGE	(FT)	63.9	63.4	63.3	63.1	62.8	63.7	64.2	64.0	63.5	63,1	62.2	61.6	61.2	60.8	60.4	60.2	60.3	60.4	61.3	61.3	61.0	60.5	59.9	59.4	58.8	58.3	57.9	57.7	
STORIC H	AF)	9334	8191	7811	7314	6699	8953	0094	9587	8445	7314	5344	3903	2943	2004 7	1302	0834	1068	1185	3183	3183	2473	1536	0142	9005	7879	6888	6009	5690	
ADJUSTED HI STAFF GAGE E	(FT)	62.6 4	62.1 4	61.9 4	61.6 4	61.3 4	62.2 4	62.7 5	62.4 4	61.9 4	61.4 4	60.5 4	59.8 4	59.3 4	58.8 4	58.4 4	58.1 4	58.2 4	58.2 4	59,1 4	59.1 4	58.7 4	58.2 4	57.5 4	56.9 3	56.3 3	55.7 3	55.2 3	54.9 3	
DERIVED / SURFACE	ξΩ Ε	2447.9	2420.4	2408.5	2395.2	2377.3	2424.7	2448.9	2436.1	2409.0	2381.7	2334.5	2298.5	2273.3	2248.1	2227.7	2212.9	2215,8	2214.3	2262.4	2260.8	2241.7	2217.0	2179.9	2148.8	2117.3	2088.3	2061.0	2050.4	
ADJUSTED E.O.M. STOPAGE	(AF)	46312.3	45091.2	44570.8	43991.4	43217.5	45279.5	46356.1	45785.9	44592.1	43403.8	41400.3	39905.6	38878.3	37869.7	37062.2	36481.1	36596.1	36535.9	38439.4	38376.9	37612.6	36639.5	35209.5	34033.9	32863.0	31809.4	30835.5	30462.6	
EST. EVAP. LOSSES	(AF)	1356.9	1099.1	641.4	332.4	527.0	214.0	533.4	759.2	1071.9	1250.3	1881.5	1372.7	1126.3	886.6	584.5	334.2	154,9	177.3	449,5	633.5	904.3	1188.1	1308.0	1242.6	1052.9	931.6	730.9	164.9	
ESTIMATEO EVAP RATE	(FT/MONTH)	0.55	0.45	0.27	0.14	0.22	60'0	0.22	0.31	0.44	0.52	0,79	0.59	0.49	0.39	0.26	0.15	0.07	0.08	0.20	0.28	0.40	0.53	0.59	0.57	0.49	0.44	0.35	0.08	
MUTUAL RELEASE	(AF)	0	o	0	0	0	0	٥	¢	o	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
MUTUAL DEMAND	(AF)	1688	1686	456	0	0	0	0	0	o	0	0	0	0	Ò	0	0	0	0	0	٥	0	0	0	0	o	0	0	a	
BBMWD DEMAND (Snowmka)	(AF)	0	0	125	125	125	125	0	0	0	0	o	0	0	0	125	125	125	125	0	0	0	0	0	0	0	0	125	125	
FISH	(AF)	118	122	118	122	122	110	122	118	122	118	. 122	122	118	122	118	122	122	110	122	118	122	118	122	122	118	122	118	122	
SEASON DEFINITION FOR FISH	RELEASES	ormal	ormai	ormal	ormal	ormal	ormal	ormal	ormal	2	2	2	2	2		2	2	2	2	2	2	2	۲ ک	2	2	2	2	≥	2	
CALCULATED UNIMPAIRED FLOW	(AF)	с 0	0	364 n	0	- 0	2511 n	1732 n	307 n	0	180 đ	0	0	217 d	0	20 70	0	517 d	352 d	2475 d	689 d	262 d	333 q	0	189 d	0	0	0	9 90	
N ACCUMULATED PRECIPITATION (water vear oct -seo)	(N)	28.69	0.00	2.97	9.40	11.28	17.67	20.43	20.82	21.93	21.93	21.93	22.31	23.91	2.61	2.81	2.81	9.51	15.69	18.36	19.69	20,65	20.85	21.58	22.13	22.13	0.00	1.77	2.88	
PRECIPITATIC	(NI)	0.00	0.00	2.97	6.43	1.88	6.39	2.76	0.39	1.11	0.00	0.00	0.38	1.60	2.61	0.20	0.00	6.70	6.18	2.67	1.33	0,96	0.20	0.73	0.55	0.0	0.00	1.77	1.11	
-	AONTH	0	6	5	12	-	2	ო	4	ഹ	9	~	8	თ	5		12		5	ო	4	ų	ശ	7	æ	თ	₽	1	12	
DATE	YEAR N	1988	1988	1988	1988	1989	1989	1989	1989	1989	1989	1989	1989	1989	1989	1989	1989	1990	1990	1990	1990	1990	1990	1990	1990	1990	1990	1990	1990	

۲

*

PRECIPITATION: SWRCB Exhibit #1, Report of Investigation, P.7. CALCULATED UNIMPARED FLOW: BBMWD/CITY Exhibit # 7-2 thru 7-7, Simulated model runs SEAMOD DEFINITION FOR F1SH RELEASE: Derived (see staff report) SEAMOD DEFINITION FOR F1SH RELEASE: Derived (see staff report) SEAMOD DEFINITION FOR F1SH RELEASE: Derived (see staff report) MUTUAL DEMAND: BBMWD/CITY Exhibit #7-2 thru 7-7, Simulated model Runs MUTUAL DEMAND: BBMWD/CITY Exhibit #7-2 thru 7-7, Simulated model Runs MUTUAL DEMAND: BBMWD/CITY Exhibit #7-2 thru 7-7, Simulated model Runs MUTUAL RELEASE: Derived: Represe Develored (seve). SVRCGE Exhibit #1, report of Investigation, P.10. ESTIMATED EVAPORATION LOSSES: Derived: (evap. rate)s(rate surface area) ADJUSTED E.0.M. STORAGE: Derived: (evap. rate)s(rate surface area) ADJUSTED E.0.M. STORAGE: Derived: (gage elevetion)=(2,1702)x(af; E.0.M. storage)^0.313 HISTORIC STAFF GAGE ELEVATION: Derived: (gage elevetion)=(2,1702)x(historic E.0.M. storage)^0.313 HISTORIC STAFF GAGE ELEVATION: Derived: (gage elevetion)=(2,1702)x(historic E.0.M. storage)^0.313

CAL-TROUT

DFG: USING A MAXIMUM RELEASE RATE OF 1.2 CFS YEAR-ROUND		-

.

HISTORIC STAFF GAGE ELEVATION	(FT)		0760 6 VL	5.UV 71.3	72.0	7.17	70.8	8.69	68.7	68.2	67.6	67.0	212	683	68.6	68.8	68.2	67.4	66.1	64.6	63.2	4770	1.20	0.60 F 1 h	65.6	67.6	69.5	71.2	71.0	70.1	69.2	69.0	69.0	C.V0	5.00	1.40	9 0 E	10.4	109	68.7	66.7	65.4	64.3
HISTORIC E.O.M. STORAGE	(AF)		61000	00040 69883	72167	71405	68616	65319	62117	60853	58958	57483	501/5	60853	61906	62538	60853	58536	54956	51035	47649	45050	5000 0	40044	53692	59168	64644	69630	69123	66334	63802	63170	62959	04433	264433	09069	00000	LPLLY	56243	60643	56641	53060	50437
ADJUSTED STAFF GAGE ELEVATION	(FT)	69.5 50 5	0.40	1.17	72.0	72.0	71.4	70.9	70.6	70.7	70.5	70.3	201	217	71.6	71.7	71.4	71.0	70.2	69.3	68.6	7.90	0.00	7160	70.7	72.3	72.3	72.3	72.1	71.4	70.9	70.9	70.8	772		2.17 2.15	2.4	1 E	315	71.0	70.2	69.4	68.9
DERIVED SURFACE AREA	(YC)	2814.9	2032.7	2906.8	2952.8	2953.6	2924.1	2896.5	2874.8	2881.4	2869.3	2863.0	1.2002	2015.7	2031.7	2940.6	2922.7	2899.0	2857.1	2808.5	2766.6	2/44.0	C-7617	2818 5	2884.4	2973.0	2973.0	2973.0	2962.8	2919.9	2893.6	2892.9	2886.6	2911.3	07/067	7.0167	10505	1.5064	1 4500	7808.0	2854.8	2813.9	2784.6
ADJUSTED E.O.M. STORAGE	(AF)	64433.0	0.90900	7.01coo	72149.8	72194.6	70498.4	68938.4	67724.5	68093.3	67418.0	67066.7	0/046.0 69618 9	2 30009	10935.6	71447.0	70419.5	69078.3	66741.8	64088.6	61849.6	60692.6	4,20000	1.90000	68260.2	73320.0	73320.0	73320.0	72724.7	70259.5	68773.6	68736.8	68382.6	69771.8	2,20020	7.00005	0.02601	2 12864	0 62012	KON27 K	69216.9	64382.7	62806.4
EST. EVAP. LOSSES	(AF)	PACITY >	0.121	485.0	813.9	1181.1	1447.3	1696.0	1737.9	1351.2	1037.3	717.3	014.9	260.0	612.2	791.6	1264.5	1578.2	1623.4	1714.3	1320.0	10/9/0	7.150	7.617	281.8	519.2	683.8	1218.9	1397.3	1614.0	1313.9	983.8	752.2	259.8	152.9	7.197	1.920	(.to)	1120.4	1 121 1	1651.9	1313.2	1069.3
ESTIMATED EVAP RATE	(FT/MONTH)	STARTING CA	10.0	0.17	0.28	0.40	0.49	0.58	0.60	0.47	0.36	0.25	11.0	0.00	12.0	0.27	0.43	0.54	0.56	0.60	0.47	0.39	57'N	01.0	0.10	0.18	0.23	0.41	0.47	0.55	0.45	0.34	0.26	6 0'0	0.08	0.09	0.10	47.0 0 2 0	0.50	0.50	15.0	0.46	0.38
MUTUAL RELEASE	(AF)	<		• •	• •	0	¢	•	373	0	0	0	.) C	0	0	288	729	686	874	664		5 0	> a		0	0	00		0	0	0 ·	0		- •		5 e	0 (î	010	1112	066	832
MUTUAL DEMAND	(AF)	¢	•		. 0	0	0	0	373	Ð	0	0	2 0		> C	0	0	288	729	686	874	664	405	- c		. 0	0	0	0		ò	0	Ģ	0					ິເ	10	1112	966	832
BBMWD DEMAND (Snowmkg)	(AF)	201	3	0	• •	0	0	0	0	0	0	125	<u>0 7</u>	21 221	<u>1</u> c	0	0	0	0	0	0	0.0	9	9 2	125	•	0	0	0		0	0	125	125	81	51			50) C		0
FISH RELEASE	(AF)	;	4	90 74		74	11	74	74	71	74		4 4	4 3	44	7	2	71	74	74	21	23	53	4 2	66	74	11	74	21	47		74	21	1	48	87	4		4 5		74	4	74
SEASON DEFINITIO FOR FISH	RELEASES		wet	wet	wet	normal	nomal	normal	normal	normal	normal	normal	leuron	normal		normal	normal	normal	normal	normal	normal	'normal	normal	normal	normal	normal	normai	wet	wet	wet	wet.	wet	wet	wet	wet	wet	wet	wet	DOTIDAL		normal romat	nome	normal
CALCULATED UNIMPAIRED FLOW	(AF)		1,367	3 567	3.516	006.1	(178)	210	176	1,791	436	202	496	1,020	9721	1.374	311	596	6	(6/1)	26	660	198	4,008	1011	5,948	6,107	6,164	873	107	(101)	1,021	594	1,848	224	884	1,524	71677	006	(617)	CO0 727	711	399
ACCUMULATED PRECIPITATION (water year oct-sop)	(NI)	58.59	13.26	20.00	73 30	23.30	23.30	23.67	24.44	32.15	0.75	2.31	3.33	11.02	10.01	23.43	23.43	23.43	23,43	23.43	23.98	1.99	4.23	18.87	11.22	47.64	54.65	55.26	55.26	97.20	56.29	3.49	4.97	13.76	14.05	16.76	19.49	57.77	22.74	17 C1	12.01	C1.57	0.47
LECIPITATION	(IN)		4.95	4.11 0 70	3 21	0.0	0.00	0.37	0.77	17.71	0.75	1.56	1.02	A0'/	26-0 0- 0	1.63	0.0	0.0	0.00	0.00	0.55	1.99	2.24	14.64	3.84 12 67	11.26	7.01	0.61	0.00	0.0	0.00	3.49	1.48	8.79	0.29	2.71	2.73	3.25	0.0	0.0	18/0	0.00	0.47
H	MONTH	4		~ ~	4	r vn	v o	*	00	6	10	=	12	- (4 F	0 4	r un	9	4	ø	6	10	=	12		4 m	4	Ś	Ŷ	~ 0	• •	0	11	12	•	0	њ.	4,	ŝ	01	- 0	• •	10
ATE	TEAR	1938	1939	1030	1010	1939	1039	1939	1939	1939	1939	1939	1939	0461	1040	1940	1040	1940	1940	1940	1940	1940	1940	1940	1941	1941	1941	1941	1941	1941	1041	1941	1941	1941	1942	1942	1942	1942	1942	1942	1942	7441	1942

FISH AND GAME

7

*

HISTORIC STAFF GAGE	ELEVATION	(FI)	2.53	1.co	66.0	68.2	69.7	9.69	69.1	68.1	66.9	65.7	65.1	64.5	65.0	65.1	65.7	00.00 10	6/.9	1'00	0.10	4 00 V	ŝ	61.9	629	63.0	63.2	64.7	65.8	67.6 27 8	0/.0 67.2	6612	65.4	64.2	63.1	62.6 54.5	543	65.0	65.7	66,6	66.2	65.2	64.0	62.5	61.1	60.5	62.5
HISTORIC E.O.M.	STURAGE	(AF) 40042	48445	52030	54745	60643	65065	64854	63381	60432	57062	53902	52428	50835	52130	52428	53902	17795	11000	58058 58058	00/00/	51515	47649	44661	46851	47250	47649	51234	54324	59168 60500	5815	55377	53271	50038	47449	46233 50925	11734	52030	53902	56220	55166	52638	49640	46054	42867	41475	46054
ADJUSTED STAFF GAGE	NOLLEVALION	(F1) 62 6	689	69.3	70,2	72.1	72.3	72.3	72.0	11.7	71.3	70.7	70.5	70.1	70.3	5.07	70.8	0.1. 1	677 672	044	21.7	2012	70.1	69.5	70.0	70.0	70.0	11.1	72.1	5.7)	77.0	71.6	71.4	70.9	70.7	71.0	72.0	72.2	72.3	72.3	72.1	71.5	71.1	70.4	69.6 (2.2	7.60	70.6
DERIVED SURFACE	AKEA	(AU)	1 3712	2808.0	2854.4	2962.2	2973.0	2973.0	2953.9	2937.6	2913.3	2883.6	2870.7	2848.1	2861.2	7862.0	2886.5	0,0472	0.6742	1.12162	2025	2805.0	2851.9	2815.9	2845.6	2842.8	2845.9	2906.2	2958.0	0.5162	2953.4	2931.3	2920.8	2894.3	2884.1	2305.4	2954.6	2964.4	2973.0	2973.0	2957.5	2929.7	2907.5	2804.0	2821.7	1.0082	2875.4
ADJUSTED E.O.M. STOPAGE	a UKAGE	(AF) 615723	60754.7	64064.1	66593.5	72690.6	73320.0	73320.0	72212.3	71270.5	69888.1	68212.3	67492.8	66243.3	66967.3	0/014.4	07/280	0.04000	13320.0	72250 3	71150.0	68907 0	66454.4	64486.5	66109.4	65957.3	66127.3	69487.2	72448.2	73220.0	72184.2	70910.7	70314.9	68813.7	68243.8 77258 5	72084.3	72252.7	72822.3	73320.0	73320.0	72420.8	70822.5	69556.5	1.001/0	04802.2	02037.0 66400 9	67754.7
EST. EVAP. LOSSES	947	1058.1	745.6	274.6	224.6	256.9	592.4	862.2	1248.7	1358.8	1674.4	1718.9	1499.5	1119.6	712.0	6.877	5175	0.116	712.5	1001	1300.1	1585.2	1679.6	1425.9	1070.0	569.1	0.091	256.1	455.9	2,46/	1456.8	1742.5	1670.8	1431.2	8'660T	958.7	206.6	236.4	504.0	832.4	1189.2	1508.3	1669.9	4-CT/T	146U.9	4.202	285.1
ESTIMATED EVAP DATE	arvo	(FILMONIAL) D 38	0.27	0.10	0.08	0.09	0.20	0.29	0,42	0.46	0.57	0,59	0.52	0.39	0.25	20'0 2 0 0	10.0	11.0	0.17	0.38	0.44	0.54	0.58	0.50	0.38	0.20	0.07	0.09	CI.U 25.0	0.40	0.49	0.59	0.57	0.49	0.38	60 U	0.07	0.08	0.17	0.28	0.40	0.51	0.57	45.U	16.0	40° 0	0.10
MUTUAL RELEASE	63	476	359	0	0	0	0	0	0	0	161	159	0	0	∍ •	2			> c		265	965	894	718	0	0	0	-		5 C	0	154	0	460	512	901 0	0	0	0	0	0	173	5/9	40/	611	610 0	, O
MUTUAL DEMAND	(AD)	476	359	0	0	0	0	0	0	0	161	159	0	0		> <	5 0		• •	• c	265	965	894	718	0	0	0	2 0		> c	0	154	0	460	212	0 0	0	c	0	0	0	173	6/.5	1150	9013 013	610 0	, o
BBMWD DEMAND (Snownbe)		(125	125	125	125	0	0	0	c	0	0	0	0	125	125	271	C7I	~ c) C		0	0	0	0	125	125	125	<u>q</u> (• •	0	0	• •	10	125	125	125	0	0	C	0		> c	> <	125	125
FISH RELEASE	6	1	74	74	66	74		74	E I	74	74	71	44	57	41	t (90 1 / 2	1	74	71	74	74	71	74	71	74	74	90 F	4 t 4 7	74	71	74	74	51	- t - '	74	74	66	74	1	74	53	74	t F	1.2	t r	74
SEASON DEFINITIO FOR FISH	DEL EA CEC	normal	normal	normal	normal	normal	normal	wet	Wel	Met	wer	tuet	normal	normal	norma	norma	normal	nomnal	normal	normal	norma	normal	LENTION .	Tentor	wet	wet	wet	wet	wet	wet	wet	wet	wet	wet	normal	normal	normal	normal roman	normal	normal	normal						
CALCULATED UNIMPAIRED FLOW		496	486	3,783	2,945	6,428	5,223	969	212	491	227	273	854	66	1,055	1.14	1, 154	4 470	1.496	140	532	374	197	250	2,889	616	268	3,60/	5,4/1 5 501	1.530	392	697	1,149	461	014	5.173	574	7997	2,304	3,063	364	154	100,1	114	000	3 528	1,829
ACCUMULATED PRECIPITATION (water year oct -sen)	(TW)	1.14	3.01	22.72	32.14	36.97	39.62	39.62	39.62	39.62	39.62	39.87	1.85	5.02	51.15	77 36	28.04	31.04	31.24	31,24	31.24	31.24	31.24	0.00	13.70	15.78	18.29	47'17 47'17	40 QS	41.06	41.06	41.20	43.41	44.07	1./8	17.97	18.70	22.93	34.24	35.97	36.28	36.28	59.24 20.61	10.66	41.57	20.47	25.66
ECIPITATION	(ND	0.67	1.87	19.71	9,42	4.83	2.65	0.00	0.00	0.00	0.00	0.25	1.85	07.0	9.08	30.01	212	100	0.20	0.00	0.00	0.00	0.00	0.00	13.70	2.08	2.51	54.6	1 17	0.11	0.00	0.14	2.21	0.66	1.78	15.37	0.73	4.23	11.31	1.73	0.31	0.00	97.5	176	1. /0 6 68	13 70	5.19
P.R.	H.L.NOV	11	12	1	3	ε	ব	va i	9	- 1	***	9	9	1 :	2.		4 r	1	r ka	9	7	*	6	10	11	12 ·	- (11	04	t (r	o,	٢	e c (ъ,	2:	12	1	7	εų	ৰ '	γn '	οτ	~ 0	• •	γç	1 1	12
DATÈ	VEAD	1942	1942	1943	1943	1943	1943	1943	1943	1943	1943	1943	1943	1943	2421	1101	1044	1044	1944	1944	1944	1944	1944	1944	1944	1944	1945	1945	1045	5461	1945	1945	1945	1945	1045	1945	1946	1946	1946	1946	1946	1946	1946	1046	1046	1946	1946

HISTORIC STAFF GAGE ELEVATION	(FT) 62.7	63.0	63.2 63.1	62.4	61.2	59.6	7.80	50.8 55.0	55.4	55.8	55.8	56.3	5.0C 5.7 Q	57.5	56.4	54.6	52.6	C.UC 5.04	48.4	48.6	607 002	50.0	2.00 1.62	53.1	51.8	8.04	46.0	45.0	44.9	45.4	4.64 47.3	48.0	48.3	1.7	46.4	4.4	42.1	40.7 29 2	38.6	38.5	39.1	39,5
HISTORIC E.O.M. STORAGE	(AF) 46452	47050	47649 47440	45656	43066	39431	45032	33849	31232	31929	31929	32976	35849 35041	35244	33151	29863	26462	23209	20361	20620	21581	22470	22300	27350	25279	22322	17248	16080	15951	16600	18013	19842	20231	19453	17767	15692	13048	00011	0780	9746	10262	10571
ADJUSTED STAFF GAGE ELEVATION	(FT) 70.6	70.7	70.9	70.3	69.4	68.2	87.8	61.2 KK 0	6.69 9.99	8,99	66.7	61.0	01.3 67 0	61.7	67.3	66.7	66.1 25 1	6.00 6.64	65.0	65.1	65.4	65.7	00.1 67.3	67.2	66.7	66.2 25 2	03.0 65.2	64.8	64.7	64.9	3.53	65.8	65.8	65.5	64.9	64.4	6,50	0.55	63.0	62.8	62.9	62.9
DERIVED SURFACE AREA	(AC) 2878.3	2884.7	2892.4	2859.4	2812.8	2747.0	2722.0	2694.0 7674 6	2661.1	2670.1	2665.1	2681.1	0.0202	2718.8	2695.2	2662.5	2630.2	2601.4 2500 s	2575.6	2580.8	2596.0	2609.3	F 7507	2690.0	2664.9	2635.1	5°C007	2563.4	2557.1	2566.3	0.1/62	2616.4	2617.3	2597.6	2569.8	2542.3	2512.3	2494.1	0.0142	2455.8	2460.9	2461.1
ADJUSTED E.O.M. STORAGE	(AF) 67919.4	68278.6	68704.8 68236 8	66870.2	64322.5	60822.9	59519.1	58084.6 57000 0	56420.6	56873.7	56622.1	57426.8	28131.7	59355.7	58144.5	56492.2	54881.6	53471.8	52226.4	52477.3	53212.9	53858.1	58255.8	57880.3	56609.4	55124.4	53638.4 53538.8	51646.2	51347.7	51781.7	52563 6	54202.9	54250.3	53289.6	51952.7	50644.9	49245.8	1.01484	4/303.3	46666.5	46897.6	46906.1
EST. EVAP. LOSSES	(AF) 201.3	287.8	605.8 780.0	1269.7	1429.7	1659.6	1565.8	1415.4	588.4	212.9	213.6	213.2	402.2	1065.2	1332.2	1509.3	1517.6	1283.8	595.9	206.0	1.1.1	155.8	391.4 684 4	0.866	1371.9	1519.0	1302.0	903.7	666.5	179.0	134.0	520.7	732.6	1020.8	1220.9	1464.8	1449.1	7.0011	0.166	271.2	171.9	221.5
ESTIMATED EVAP RATE	(FT/MONTH) 0.07	0.10	0.21	0.44	0.50	0.59	0.57	0.52	(C. U	0.08	0.08	0.08	0.15	0.39	0.49	0.56	0.57	0.49	0.23	0.08	0.03	0.06	0.1) X	0.37	0.51	0.57	0.50	0.35	0.26	0.07	0.0	0.20	0.28	0.39	0.47	0.57	0.57	0.46	0.40	0.11	0.07	0.0
MUTUAL RELEASE	(AF) 0	0	00	229	1004	1720	•	0	00	, 0	0	0	00	• •	0	0	0	00	• •	0	a	0 :	00	• •	0	0		0	0	0	5	0	0	0	0	0	0		• •	, c	, 0	0
MUTUAL DEMAND	(AF) 0	0	00	229	1004	1720	1644	1767	1128	576	675	0	0 <	381	1268	1828	2014	1815	1001	693	0	0	00	00	1197	1672	1741	1272	1002	455	o e	° 8	0	859	1598	1859	456	456	400 734	456	456	456
BBMWD DEMAND Snowmkg)	(AF) 125	125	0	00	0	0	0	00	0 135	3 XI	125	125	0 0	0	0	0	0	0	125	125	125	125	00	00	0	0	00		125	125	21	<u>1</u> 0	0	0	0	0	0	0 0	2) j	32	15	125
FISH RELEASE ((AF) 74	99	24	74	11	74	74	53	7.4	74	74	66	4	14	71	74	74	22	12	74	74	66 2.5	74	14	12	7	74	74	7	47	41	74	7	74	7	74	74	17	5.5	77	14	66
SEASON DEFINITIO FOR FISH	RELEASES	normal	normal	nonnal	normal	normal	normal	normal	normal	normal	lamon	normal	ncomal	normal	normal	normal	normal	normal	nomal	normal	normal	normal	normal	normal	pormal	normal	normal	lamon	normal	nomal	normal	normal	normal	normal	normal	normal	normal	normal	nomai	normai	normal	normal
CALCULATED UNIMPAIRED FLOW	(AF) 565	838	1,106	116	(43)	(46)	336	52	139	865 865	161	1,209	1,181	C1012	192	(69)	(61)	(50)	47C	656	1,012	266	1,593	607 607	12	108	110	144	564	812	610	5/5°1	851	134	(45)	231	124	386	235	6/5 30	ŝ	421
ACCUMULATED PRECIPITATION (water year octsep)	(II) 28 38	29.90	31.26	31.99	32.03	32.03	33.22	33.34	9C.U 28 0	(P. 8	8.49	16.33	23.81	28.21	28.34	28.38	28.38	28.38	10.1	9.46	21.42	25.55	30.34	07.15 17.4	31.74	31.96	31.97	97.06 1.07	5.35	12.64	17.83	1617	27.91	28.55	28.55	29.73	29.74	30.53	0.13	7 52	40-7 4 L	11.09
ECIPITATION	(II) 22.	1.52	1.36	0.03	0.04	0.00	1.19	0.12	96.0	07-0	0.12	7.84	7.48	4.25 0.15	0.13	0.04	0.00	0.00	1.67	7.79	11.96	4,13	4.79	0.02	800	0.22	0.01	20.0	4.28	7.29	5.19	4.14	1015	0.64	0.00	1.18	0.01	0.79	0.13	2.39	01/0 1 02	3.64
ЪЧ	HTNOM	- ~	с л .	4 ~	0	L	æ	а i	21	2 2	i –	2	cŋ '	4 4	1 40	٢	0 ¢	6	2 5	12		7	m,	4 v	9	1	æ (ο <u>τ</u>	2 =	12			n 4	r v r	9	7	20	0	10	= 2	1-	4 61
DATE	YEAR	1947	1947	1947	1947	1947	1947	1947	1947	1047	1948	1948	1948	1948	1948	1948	1948	1948	1948	1948	1949	1949	1949	1949	1949	1949	1949	1040	1949	1949	1950	1950	1050	1950	1950	1950	1950	1950	1950	1950	1051 1051	161

2

e

. 铝云	4	-							_																																		
HISTORIC STAFF GAC		39.3 1.05	38.5	35.5	32.2	21.0	18.6	18.6	23.9	25.8	C.12	0.cc	50.3	49.8	49.4	48.4	47.8	47.1	47.4	40.1	48,6	49.3	49.5	49.1	46.0	44.3	42.2	40.8	404	40.4	42.8	45.1	49.6	49.8 49.8	6.V4 1.e.o	10.4	45.3	43.9	43.9	44.5	44.8	45.0	46.7
HISTORIC E.O.M. STORAGE	(AF)	10263	9746	1579	1100	1400	950	920	2125	2721	1400	18933	22914	22322	21730	20361	19583	18674	19064	20361	20620	21581	21879	21286	17767	15302	13151	11809	11397	19611	13746	16210	22026	22322	10842	74061	00101	14914]49]4	15562	15821	17906	18156
ADJUSTED STAFF GAGE ELEVATION		1770	62.1	61.4 20 0	60.0 60.0	59.5	59.3	59.1	59.5	59.7	61.0	66.1	67.4	67.0	66.5	66.0	65.7	65.3	6.00 2.53	65.6	65.6	62.9	65.9	65.5 66.0	5 PY	63.9	63.4	63.1	62.9	07.) 63.7	5.59	64.4	66.5	66.4	6'C0		64.5	64.1	63.9	64.1	64.1	64.1 64.7	64.7
DERIVED SURFACE ARFA	(AC)	2432.4	2420,7	2380,3	2309.9	2284.4	2272.8	2263.4	2284.0	2291.4	2363.5	2630.5	2700.3	2678.2	2655.5	2625.2	2608.7	2590.7	0.76C7	2606.7	2606.0	2620.0	2618.9	2600.6	2547.5	2514.6	2489.7	2474.4	2459.3	2478.7	2492.0	2539.5	2652.6	2648.5	201202	25601	2548.8	2524.0	2516.5	2524.1	2524.1	0.5222	2556.9
ADJUSTED E.O.M. STORAGE	(AF)	45933.0	45105.7	43344.9	40373.8	39329.1	38859.7	38479.4	39315.3	39616.1 20018.7	42624.9	54897.3	58405.5	57281.3	56138.3	54637.1	53829.0	0.20220	53630.0	53733.6	53697.8	54382.5	54327.3	55455.9 57185 6	50892.8	49348.8	48205.2	47505.1	46823.5	47700.5	48308.6	50516.0	55994.6	4.68/CC	711125	51010.0	50952.4	49787.9	49437.9	49794.4	49793.0	49/09.8 512263	51333.6
EST. EVAP. LOSSES	(AF) 442.0	613.1	951.4	1137.7	1317.4	1108.7	822.4	477.3	181.1	150.4	298.8	543.6	1104.8	1296.2	1473.0	1540.2	1260.1	1043.5	2.224	260.5	286.7	573.3	812.2	1352 3	1647.8	1554.0	1307.6	946.1	018.6 2213	171.7	247.9	448.6	736.5	1220.2	1651 4	1556.4	1284.6	1019.5	631.0	226.5	151.4	1117	664.7
ESTIMATED EVAP RATE	(FT/MONTH)	0.25	0.39	0.47	0.56	0.48	0.36	0.21	80.0	0.0	0.13	0.23	0.42	0.48	0.55	0.58	0.48	0.40	61.0	0.10	0.11	0.22	0.31	0.52 0	0.64	0.61	0.52	0.38	67.0 0.00	0.07	0.10	0.18	0.29	0.45	0.63	0.60	0.50	0.40	0.25	0.09	0,06	0.19	0.26
MUTUAL RELEASE	(AF)	0	0	00	0	0	0	00			0	0	0	0	0	0 0		- c		0	0	0 (00	0	0	C				0	0	o «			G	0	0	0	0 (. 0
MUTUAL DEMAND	(AF) 455	456	456	456	456	456	456	456 6	> 0	- c	0	0	0	0	0	601	CC4 9	225 171	0	0	360	۲2 X	01	1287	456	456	456	456	456 456	0	C	0	• •	1001	1231	1493	456	456	456	0 (00	342
BBMWD DEMAND Snowmkr)	(AF)	0	0	0 c	0	0	0	125	C71	521	0	0	0	0	0	20	20	901	125	125	125	0 (-		0	0	0	0	571 271	125	125	0	0 0		òc	. 0	0	0	125	125	61	C7 0	· C
FISH RELEASE I	(AF) 71	٦	74	74	74	71	74	17	4 4	99 90	74	71	74	71	74	4		1 1	74	74	66	74	55	12	74	74	2	4	74	74	99	74		4 5	74	74	71	74		74	4 9	20	71
SEASON DEFINITIO FOR FISH	RELEASES	normal	dry.	다. 다.) j	dry	dry	ţ,		dr y	Î	đy.	wet	wet	wet	wet	Met	wet	Wel	wet	wet	wet	Jaw	di V	1 j	dry	λ.p	Ê İ	And And	Î	đy.	dry	dry.	Tawa Tawa	wet	wet	wet	wet	wet	wet	wet	wet	wet
CALCULATED UNIMPAIRED FLOW	(AF) 123	13	198	(552) 243	(392)	135	427	293	1,210	654	3,079	12,887	4,687	243	404	EI I	170	757	1.055	554	442	1,332	272 272	173	429	84	235	320	3 8	1,538	1,047	2,730	6,286	1,005	395	438	389	(11)	477	782	245 205	2,110	743
ACCUMULATED PRECIPITATION (water year octsep)	(II) 33 25	17,83	18.87	18.87 21.93	22.05	23.35	2.03	5.90 5.20	12.21	34,43	50.57	53.69	53.69	53.69	55.17	20.19	14.90	0.00	11.64	13.44	15.23	18.70	00.02	22.49	22.52	22.59	22.62	18.0	2.32	18.84	24.73	39.08	39.31	40.05	41.00	41.41	42.01	0.00	4.32	7.70	17.34 19 TO	19,40	20.87
BCIPITATION	(NI) 86. (4.45	1.04	000 3.06	0.12	1.30	2.03	3.87	CC.CT	191	16.14	3.12	0.00	0.00	2.08	0.42	0.00	0.00 6 47	5.17	1.80	1.79	3.47	6 I 1	00.0	0.03	0.07	0.03	15.0	0.45	16.52	5.89	14.35	0.23	2.0	0.92	0.41	0.60	0.00	4.32	3,38	40.04	0.61	1.47
M	MONTH 1	o. •a∙	Ś	01	. 00	6	10	12	71	- 6	I M	4	Š.	ve i	<i>.</i> •	×c	νç	2 =	12	-	7	(1), 1	4 4	n vo		æ	٥ <u>:</u>	2 :	1 1	, -	7	ы) .	4 4	n ve	•		9	10	= :	12	(4 m	4
DATE	YEAR	1951	1951	1891	1951	1951	1951	1991	1061	1952	1952	1952	1952	1952	1952	1062	2061	7641	1952	1953	1953	1953	1063	1953	1953	1953	1953	501 1933	1059	1954	1954	1954	1954	1054	1954	1954	1954	1954	1954	1954	0061	1955	1955

ť

t

HISTORIC STAFF GAGE ELEVATION	(FI) 47.2	46.2	44.5	43.2	39.2	38.8	38.8	40.3	0.14	41 D	40.6	38.6	35.7	32.2	26.1	C.U2	16.7	0.01 D. AC	32.6	33.3	33.9	34.0	33.2	91.U	322	22.6	22.7	26.8	28.3	898	48.3	51.2	50.8		1.24	7 84	100	48.6	48.7	50.0	50.6	50.3	49.4	10.04
HISTORIC E.O.M. STORAGE	(AF) 18804	17507	15562	14135	10365	10055	10055	11294	11800	21011	11603	9849	7682	5511	2840	1000	000T	1000	5766	6148	6530	6594	6084	C/84 C/84	1946	1789	1809	3079	3664	118/00	20231	24243	23652	22618	4/177	105706	01120	20620	20749	22470	23356	22914	21730	74041
ADJUSTED STAFF GAGE ELEVATION	(FT) 64.8	64.3	63.7	63.4	62.5 62.5	62.3	62.1	62.5	6776 577	7 C 70	62.2	61.6	61.0	60.4	59.7	4.60 50 2	7.60		61.1	61.1	61.1	60.9	60.3	7.60	58.2	57.9	57.6	58.0	58.2	113	65.1	66.4	66.0	65,4	0.09		0.40 1	8.9	63.7	64.3	64.6	64.3	63.7	03.2
DERIVED SURFACE AREA	(AC) 2560.6	2535.4	2503.5	2486.2	2438.9	2428.9	2421.6	2442.8	2461.6	1.1442	2422.9	2393.6	2361.0	2332.1	2291.4	22/6,4	1.0022	5 802C	2367.3	- 2367.8	2366.7	2354.9	2325.8	8.1672	2215.4	2199.9	2185.0	2208.4	2214.7	11077	2576.8	2650.0	2628.2	2595.5	2574.0		1 2020	2507.8	2504.9	2536.3	2550.1	2534.1	2505.3	0.0147
ADJUSTED E.O.M. STORAGE	(AF) \$15123	50319.1	48837.0	48041.9	45911.6	45465.3	45146.4	46082.5	46925.6	46010.3	45199.8	43918.6	42518.4	41298.2	39615.5	39004.5	500/U.S	50210.0	42786.0	42808.3	42760.3	42261.0	41036.3	19630.1	36577.7	35975.7	35401.7	36308.0	36552.4	0.12265	52283.9	55863.7	54783.7	53185.9	52149.6	+ 01 KOC	49692.0	10016.5	48899.9	50365.5	51011.9	50259.8	48922.2	4/334.2
EST, EVAP. LOSSES	(AF) 1048 3	1357.1	1445.2	1527.1	082.3	585.3	242.9	217.9	219.8	492.3	974.3	1284.1	1388.3	1322.2	1212.7	802.0	478.0	1.404.1	230.8	449.8	591.9	828.3	1271.7	13 / 2.2	1.0201	731.1	462.0	196.6	176.7	5.241 4.015	551.7	1082.2	1272.0	1471.8	1557.3	7.1071	1.596	2.020	200.6	200.4	532.6	765.0	1013.6	1403.0
ESTIMATED EVAP RATE	(FTMONTH)	0.53	0.57	0.61	0.40	0.24	0.10	0.09	0.09	0.20	0.40	0.53	0.58	0.56	0.52	0.35	17'0	60'0 90'0	0.10	61.0	0.25	0.35	0.54	95.0	0.46	0.33	0.21	0'0	0.08	50'D	0.23	0.42	0.48	0.56	0.60	64.5 0 - 0	45.0 10.0	010	0.08	0.08	0.21	0.30	0.40	90.0
MUTUAL RELEASE	(AF) 0	, 0	0	0		0	0	0	0 <	ò		, 0	0	0	0	•	, D			0	o	0	¢,		- c	0	0	0	0		0	0	0	0	0	•			• •	0	0	0	0 (n
MUTUAL DEMAND	(AF) 321	456	456	456	456	456	456	c	0	400	926	456	456	456	456	456	456	604 6	- -	00	456	363	456	456	456	456	456	178	456		• •	0	, ,	0	0 ţ	44	102	111	456	; 0	24	457	456	456
BBMWD DEMAND (Snownkg)	(AF)	, 0	0	0 0		125	125	125	125	00		0	0	0	0	ò	22	21	95	0	0	0	0	0			125	125	125	9	, c	0	0	0	0	- ·	0 201	<u> </u>	51	125	0	0	0 0	D
FISH RELEASE	(AF) 74	1	74	74	72	12	74	74	99	212	74	12	74	74	71	47	57	4 1	4 ¥	24	71	74	11	1	2 2	2	71	74	74	87		74	71	74	74	21	4 2		77	99	74	71	74	11
SEASON DEFINITIO FOR FISH	RELEASES	ų p	r Ş	dry ,	A R	Î	dry	đry	dry	Ê İ	, ym	normal	normal	normal	normal	normal	Inormal	normal	normal	normal	normal	normal	normal	normal	normal	normal	normal	normal	normal	normal	normal	wet	wet	wet	wet	wet	wet	Net and	wei	wet	wet	wet	normal	normal
CALCULATED UNIMPAIRED FLOW	(AF)	356	37	806	(42) 307	335	123	1,353	1,254	(349)	154 787	74	5	176	(399)	265	340	0I 0	2,368	546	615	403	118	40	(202) ·	203	84	1,302	620	4C0/5	915(5	4,736	263	(52)	595	3	(156)	8/2	(100)	1.857	1,253	84	(250)	86
ACCUMULATED PRECIPITATION (water vear oct-seb)	(NI)	74.80	26.83	29.60	29.60	3,21	5.79	17.98	20.05	20.05	24.14	25.81	27.02	27.02	27.02	0.25	0.25	0.84	19.72	26.09	29.00	32.60	32.88	33.31	33.58	4.55 12.4	7.63	16.74	19,84	32.46	45.38	58.11	58.11	58.15	58.93	60.74	0.16	10.2	10.7	23.38	23.38	23.97	24.14	24.14
ECIPITATION	(IN)	10.4	1.95	2.77	000	3.21	2.58	12.19	2.07	8.8	4.03 73	000	1.21	0.00	0.00	0.25	0.00	0.59	18.88 3.00	24.6	2.91	3.60	0.28	0.43	0.27	0.00 4 5 1	3.12	9.11	3.10	12.62	12.92	1.00	0.00	0.04	0.78	1.81	0.16	1.85	00.0	2.02 17.55	0.00	0.59	0.17	0.00
Ъ	MONTH	n v		e C ·	₽ċ	3 =	12		2	(1) T	d u	n ve		80	6	10	=	12	- •	7 F	. 4	S	9	7	90 C	ν Ε	2 1	12	1	6 1	- CM	r v [.]	9	1	0 0	6	2	= :	17		4 (*	14	5	9
DATE	YEAR 1	1055	1955	1955	1955	1955	1955	1956	1956	1956	1956	1055	1956	1956	1956	1956	1956	1956	1957	7201	1957	1957	1957	1957	1957	759L	1957	1957	1958	1958	1958	1058	1958	1958	1958	1958	1958	1958	8661	20201	1050	1959	1959	1959

ഹ

ł

T

HISTORIC STAFF GAGE ET EVATION	(FT)	40.1	42.2	41.3	41.1 40.8	41.4	42.0	43.6	43.7	44.2	47.4 40.7	37.5	34.2	33.7	33.6	33.2	33.2	1.76	31.6	30.6	27.3	24.6	21.9	18.9	16.8 16.6	0.01	18.2	28,3	33.7	39.2	39.9	1.85	36.0	34.8	34.0	33.6	33.6	33.8	34.1	5.45 0.45	34.7	33.6	30.3 26,9	
HISTORIC E.O.M. STOPAGE	(AF)	15044	13151	12222	11800	12325	12944	14525	14655	15173	11706	9023	6721	6402	6338	6084	5473	1440	5193	4683	3258	2333	1617	1000	540	92	006	3664	6402	10365	10984	0426	7888	7102	6594	6338	6338	6465	6657	1162	7039	6338	4557 3109	
ADJUSTED STAFF GAGE FI EVATION	(FT)	62.1	61.5	61.3	61.1	61.2	61.3	61.9	61.9	610	5.10 60.8	60.0	59.2	59.3	59.1 20.1	9.80	2.00 2.00	58.2	58.2	57.7	56.7	56.0	55.4 2.5	54.8	040 042	54.1	54.0	55.4	56.7	58.5	58.6	57.3	56.5	56.1	55.6	55.3	55.2	55.1	0,44	2.40 0.85	54.6	53.9	52.8 52.4	
DERIVED SURFACE ARFA	(AC)	2418.8	2389.2	2376.7	2365.3	2371.3	2379.4	2409.5	2409.3	2410.7	2352.9	2308.1	2267.9	2270.9	22(64.7	0.9622	N-0244	2223.4	2216.1	2189.4	2140.3	2105.5	2073.0	2045.6	1.6202	2007.5	2003.2	2073.2	2140.7	2233.9	2238.4	2170.6	2130.9	2106.8	2084.3	2069.2	2061.6	2057.2	2,5502	2042.0	2033.5	1999.1	1941.0	
ADJUSTED E.O.M. STORAGE	(AF) 46485 2	45020.1	43731.1	43189.4 47006 3	42701.0	42957.1	43305.4	44613.8	44602.1	44005,5	42174.2	40302.0	38661.8	38783.4	38534.1	2012105	27572 5	17095.0	36605.3	35571.0	33714,8	32431.6	31261.4	30293.1	20183.0	28975.8	28830.2	31268.9	33729.0	37306.8	3/482.9	34853.8	33367.8	32480.3	31666.7	31127.6	30856.7	30701.4	C.11/CUE	20501.0	29871.9	28689.8	26/58.3 26110.6	
EST. EVAP. LOSSES	(AF) 1584.0	1471.1	1161.0	955.7 504 7	237.2	141.9	189.7	499.7	0/4./	1350.0	1400.2	1388.2	1177.1	816.4	5223	7791	748.0	425.5	601.7	864.3	1182.3	1284.2	1242.2	716.0	426.1	181.2	160.6	160.3	311.0	642.2	848.9 1110.2	1280.9	1324.1	1065.5	800.6	521.1	206.9	144.3	240.9 260 k	0107	882.1	976.1	2.8211 8.2511	
ESTIMATED EVAP RATE	(FT/MONTH)	0.60	0.48	0.40	0.10	0.06	0.08	0.21	0.28	0.41	0.59	0.59	0.51	0.36	0.23	0.00	0.11	0.19	0.27	0.39	0.54	0.60	0.59	0.47	12.0	0.09	0.08	0.08	0.15	0.30	0.38	0.58	0.61	0.50	0.38	0.25	0.10	0.07	71.0	0.10	0.43	0.48	0.58	
MUTUAL RELEASE	(AF)	0	0	00	òc	0	0	0	50		0	c	0	c .	00			0	0	0	0	0	0 0	- <	0	0	0	0	0	0	- c	• •	0	0	0	0	0	0 0		• •	0	0	ə c	
MUTUAL DEMAND	(AF) 416	456	456	456 456	456	0	0	219	327 AD6	456	456	456	456	456	456	926	456	456	456	456	456	456	456	904 731	456	0	456	0	0	0 (0 456	456	456	456	456	456	456	456	420	456	456	456	456 456	
BBMWD DEMAND (Snowrike)	(AF) 0	0	0	0 125	12	125	125	-		• •	0	0	0	0	125	<u> </u>	3 2	0	0	0	0	•	• •		125	125	125	125	0	0		, o	0	0	0	125	125	125	(71 U	, c	0	0	00	
FISH RELEASE	(AF) 74	74	12	2 2	2	74	66	22	12		74	74	71	14	52	22	66	74	71	74	2	27	2 2		12	74	74	66	74	57	74	74	74	71	74	71	74	74	0D	12	74	7.7	74	
SEASON DEFINITIO FOR FISH	RELEASES	normal	normal	normal	normal	normal	normal	normal	normal	normal	normal	normai	normal	normal	normal	nomual romal	normal	normal	normal	đry	τp.	Ş,	5	n de	с р	٦. T	, cp	đry	ζų.	È	19W	wet	wet	wet	wet	wet	wet	wet	wet	wet	фу	ζţ	Ş Ş	
CALCULATED UNIMPAIRED FLOW	(AF) 600	8	(57) (57)	488 507	141	597	729	1,882	45/ 172	(204)	610	(410)	(392)	1,012	469	400	(180)	μ	183	(96)	(803) 26	2	<u> </u>	216	217 81	173	214	2,790	2,845	4,291	560'T	(16)	(88)	249	61	178	135	188	306	630	327	(135)	(098) 552	
ACCUMULATED PRECIPITATION (water vear octsep)	(IN) 24.34	24.89	26.04	0.46 7 16	2.90	9.07	14.57	16.69	21.65	22.15	22.20	22.23	22.51	1.86	8,16 e eo	0.02	11.49	14.46	14.46	14.69	14.69	14.81	10.09	0.00	5.14	10.41	17.33	33.69	39.01	10.65	41.04	41.74	42.14	42.41	0.56	0.75	0.96	1.13	1,80	12.77	12.77	12.77	12.77 14.25	
ECIPITATION	(IN) 0.20	0.55	1.15	1.70	0.74	6.17	5.50	2.12	0.32	000	0.05	0.03	0.28	1.86	0.3U	0.00 7.63	0.04	2.97	0.00	0.23	0.00	0.12	1.88	0.00	5,14	5.27	6.92	16.36	5.32	00.0	117	0.53	0.40	0.27	0.56	0.19	12.0	0.71	0.00 6.16	4.88	0.00	0.00	0.00 1.48	
PR	MONTH 7	. <i>2</i> 0	6 ç	3 6	12	1	7	~~ ·	t v	o o		æ	6	9	= 2	<u>1</u>	• 6	en en	4	ŝ	vo i		~ c	νč	2 1	12	1	7	ей т	4 4	~ v	•	0 0	σ	01	=	, 12	-	4 1*	া পা	ŝ	vo t	~ 8	
ATE	EAR 1959	1959	1959	9291 1959	1959	1960	1960	1960	1060	1960	1960	1960	1960	0961	1960	1961	1961	1961	1961	1961	1961	1961	1961	1061	1961	1961	1962	1962	1962	1962	1962	1962	1962	1962	1962	1962	1962	1963	1062	1963	1963	E961	1963 1963	

۲

t,

FISH AND GAME

HISTORIC STAFF GAGE ELEVATION	۴IJ ۶	25.3	25.9	26.1	26.7	28.9	33.4	34.3	34.0	32.1	29.82	24.9	25.3	26.0	26.8	27.3	21.12		30./ 35.8	35.1	34.3	33.7	33.1	43.2	40.8 41 8	48.8	50.8	51.0	50.7	20.0	47.4	48.0	47.7	47.8	56.0	56.4	0.73	28.0	5 F3	5 I9	61.1	60.9	60.6	60.2
HISTORIC E.O.M. STORAGE	(AF) 2870	2572	2751	2812	3019	3920	6212	6784	6594	5447	4302 2030	2473	2542	2781	3079	3258	3410	6161	8404 7795	7269	6784	6402	6020	14135	18280	20870	23652	23948	23504	22470	21730	19842	19455	19583	32453	33151	34198	0670F	0710 4	43664	42867	42270	41672	40875
ADJUSTED STAFF GAGE ELEVATION	(FJ)	51.5	51.3	51.1	50.8 50.8	51.2	52.4	52.5	52.0	51.1	50.3	18.7	48.5	48.4	48.4	48.3	48.2	6.DC	2.10	49.8	49.3	48.8	48.3	53.5	7.65	595	58.2	58.2	57.9	57.2	0.00	55.2	54.9	54.8	61.1	61.3	61.7	C'70	1.40	1.00	64.9	64.6	64.3	63.9
DERIVED SURFACE AREA	(AC) 1000 0	1878.2	1866.5	1857.2	1844.6	1863.0	1924.8	1928.2	1905.7	1861.2	1313.1	2 2721	1730.6	1727.2	1727.0	1721.8	1716.2	1849.2	1863./	1794 5	1771.1	1748.6	1723.2	1977.7	2090.3	1 8 2 1 6	2216.5	2218.9	2200.4	2164.9	2135.1	2065.1	2047.2	2042.0	2368.0	2378.9	2397.9	2442.3	0.6262	1,0020	2568.3	2550.5	2533.5	2515.4
ADJUSTED E.O.M. STORAGE	(AF) 25460 1	24757.8	24394.8	24107.1	24075.1	24286.5	26233.4	26344.4	25623.6	24232.1	22924.4	202202	20403.0	20307.9	20300.8	20158.1	20003.1	23862.1	24308.9	2,20202	21547.4	20907.7	20197.3	27971.2	31882.2	3.4015 3	36621.7	36713.8	35994.3	34637.1	33522.0	30982.5	30349.4	30168.7	42816.1	43285.0	44105.3	40000	4.1.1.64	C.66160 57076 A	51877.8	51033.4	50233.1	49387.7
EST. EVAP. LOSSES	(AF) 060 4	722.3	432.0	186.7	1571	313.6	447.1	769.9	944.8	1162.5	1116.7	5 441	366.2	173.1	138.2	172.7	309.9	429.1	7.58.2	1.0701	1076.7	814.7	734.4	448.0	178.0	160.6	472.6	664.9	998.5	1232.2	1472.1	1091.4	826.1	552.7	224.6	213.1	261.7	9-502	5./5C	2.6CUI	1683.6	1669.4	1275.3	1013.4
ESTIMATED EVAP RATE	(FTMONTH)	0.38	0.23	0.10	0.07	0.17	0.24	0.40	0.49	0.61	0.60	CF 0	0.21	0.10	0.08	0.10	0,18	0.25	0.41	0.40	0.60	0.46	0.42	0.26	60	0.0	0.22	0.30	0.45	0.56	0.68	0.52	0.40	0.27	0.11	0.09	0.11	0.21	77.0	7470	0.65	0.65	0.50	0.40
MUTUAL RELEASE	(AF)) C	0	0	00	00	, o	0.	0	0	00	•	0	0	0	0	0	0	0		0	0	0	0	0	ə c		0	0	0	00		0	0	0	0	0.	÷ (50		›c	• 0	0	0
MUTUAL DEMAND	(AF) 166	959	456	456	456	456	0	338	456	456	456	456	456	0	456	456	456	0	0	456	456	456	456	0	00			0	0	164	456	456	456	456	0	0	0	0	<u> </u>	- ¢	> c	, O	0	0
BBMWD DEMAND (Snowmkg)	(AF)		125	125	125	0	0	0	0	0	0		125	125	125	125	0	0	0 0			0	0	125	125	21	0	0	0	0	•	- C	0	125	125	125	125	0 (0	-) O	0	0
FISH RELEASE	(AF) 72	P2	12	74	74	74	4	74	¥	74	2.1			74	74	6 6	74	11	77		12	71	74	7	27	4 8	74	F	74	71	47	5.5	74	11	74	74	99	74	57	4 1	14	74	7	. 74
SEASON DEFINITIO FOR FISH	RELEASES	Į,	ĴĴ	dry	51	j f	j j	normal	normal	normal	normal	normal	normal	normal	normal	normal	normal	normal	nomal	normal 	normal	normal	normal	normal	normal	normal	normal	normal	wet	wet	wet	wet	wet	wet	wet	wet	wet	wet	wet	wet	Wei	twet	wet	wet
CALCULATED UNIMPAIRED FLOW	(AF) 300	9%6 28	265	98	297	050	2.465	955	295	(155)	(117)	(61C)	105	112	330	221	229	4,359	1,279	(a) (a)	10	246	86	8,418	4,288	1,410	3 153	828	353	(54)	431	09	(H) 297	568	13,071	881	1,273	2,533	4,319	4,496	1,187	800	546	242
ACCUMULATED PRECIPITATION (water vear octsen)	Ĩ.	19.40	6.49	7.55	12.35	00.21	21.62	24.14	24.14	25,59	25.85	20.02	70.0 5 20	5.20	7.08	8.54	10.60	26.33	26.33	26.37	11.12	30.21	0.13	27.00	39.03	40.92	44.39	46.43	46.51	46.51	46.51	40.04	0.50	3.63	26.03	35.27	35.27	42.57	56.21	56.88	44.00 00 33	58.48 58.48	60.18	0.00
ECIPITATION	(II)	0 4 F	5.08	1.06	4.80	16.0	936	2.52	0.00	1.45	0.26	0.23	7970	00.0	1.88	1.46	2.06	15.73	0.00	0.04	/ e. 1 8 2	0.64	0.13	26.87	12.03	68.1	1.70	0.14	0.08	0.00	0.00	0.33	0.50	11.5	22.40	9.24	0.00	7.30	13.64	0.67	8.0 20	CV.V	1.70	0.00
Ъ	MONTH	2 è	3 1	12	(2	n 4	· v	9	2		γ	2 ₽	12	-	2	ы	4	Ś	ю (~ 0	• 0	10	11	12	- •		0 4	ŝ	6	•	<i>.</i>	v (2 1	12	-	7	ŝ	4	Ś	01	- 9	• •	10
DATE	YEAR	1963	1963	1963	1964	1964 1084	1064	1964	1964	1964	1964	1964	1064	1064	1965	1965	1965	1965	1965	1965	1965	5901	1965	1965	1965	1966	1966	1966	1966	1966	1966	1966	1006	10061	1966	1967	1961	1961	1967	1967	1967	1061	10/1	1961

~

8

\$

HISTORIC STAFF GAGE	LT LT	60.4	61.0	61.2	673	62.5	62.3	61.8	61.3	60.9	60.1	59.6 50.5	0.4C	61.9	0.69	70.0	72.0	72.0	21.9	8 E	0.17	69.1	69.1	1.69	69.1	69.1 201	69.7	69.4	69.0	68.7	68.7	7.80	68.0	68.5	68.6	68.7	1.80	00.7 69.5	68.2	67.8	67.3	66.7	00.0 06.0	68.7
HISTORIC E.O.M. STOPAGE	(AF)	41274	42469	42967	45408	46054	45457	44262	43266	42270	40476	30005	00065	60011	62959	66080	72167	72167	71913	71650	57169	63381	63381	63381	63381	63381	20000	64223	63170	62117	62117	59590	60221	61485	61906	62117	17670	41170 V1190	60643	59590	58115	56641	56220 56220	62117
ADJUSTED STAFF GAGE HLFVATION	(ET)	64.0	64.4	04.5 64 0	65.3	65.5	65.2	64.8	64.4	63.9	63.3	6'70 6'7	62.8	70.3	72.3	72.3	72.3	72.3	72.3	5.27	11.0	70.8	70.8	70.9	70.9	2.07	714	71.1	70.6	69.8 200	5.90 5.95	67.7	6'19	68.3	68.3	68.3 F	4.00 4.07	68.1 68.1	61.7	67.3	66.8	66.2 56 1	66.0	68.1
DERIVED SURFACE ARFA	SO S	2520.4	2541.2	2.1962	2591.3	2602.1	2586.3	2560.1	2539.6	2516.1	2482.8	0.6042	2457.0	2858.7	2973.0	2973.0	2973.0	2973.0	2973.0	0.5762	2003.5	2890.3	2890.8	2891.9	2894.1	0.0282	2922.2	2905,7	2874.8	2831.1	C'1087	2720.5	2728.8	2749.2	2753.5	8.8012	11210	2741.5	2719.7	2697.5	2669.9	2639.8	2626.0	2738.6
ADJUSTED E.O.M. STORAGH	(AF)	49618.6	50596.0	1.07600	52984.5	53505.7	52741.8	51489.2	50519.1	49419.0	4/888.9	46763.7	46718.5	66831.4	73320.0	73320.0	73320.0	72220.0	13320.0	71000.0	63331.9	68587.6	68620.0	68678.9	68804.7	10402	70395.4	69455.0	67722.1	65317.5	51740 8	59444.6	59873.3	60937.7	61158.7	4//TTO	01030 0	60532.5	59400.3	58263.5	56864.0	55360.4 54976 4	54677.2	60380.1
EST. EVAP. LOSSES	(AF)	679.2	201.6	203.0	514.0	647.8	1066.8	1396.6	1536.1	1422.2	0.8621	615.0	221.2	221.1	228.7	475.7	802.7	1.242.1	2.0101	1873.0	1525.2	1045.3	722.6	289.1	260.3	4.202	701.8	1227.3	1510.9	1753.6	1347.6	1078.2	707.3	245.6	219.9	C1017	744.2	1045.4	1398.2	1631.8	1672.5	1361.7	631.2 631.2	210.1
ESTIMATED EVAP RATE	(FT/MONTH)	0.27	0.08	0.11	0.20	0.25	0.41	0.54	0.60	000	05.0	0.25	0.09	0.09	0.08	0.16	0.27	14.0	10.0	0.63	0.52	0.36	0.25	0.10	0.09	0.10	0.24	0.42	0.52	0.61	0.48	0.39	0.26	0.09	0.08	0.10	0.27	0.38	0.51	0.60	0.62	10.0	0.24	0.08
MUTUAL RELEASE	(AF)	0	00) C	. 0	0	0	0	0 0				0	0	0	0	0				0	0	0	0	0		0	0	563	1206	010	945	0	0 (0	0	0	0 0		• •	0
MUTUAL DEMAND	(AF)	0	<u>ہ</u> د		0	0	0	374	963	1014	1121	775	156	0	0	0	20	- c			. 0	0	0	0	0 0		0	0	563	1206	916	945	•,	0 (•		0	193	828	1319	1442	14/0	857	0
BBMWD DEMAND (Snownikg)	(AF)	125	521	125	0	0	0	0 (0 0			125	125	125	125	C (- c			0	0	125	125	125	J C	, c	0	c ·	00		0	125	125	C21	(<u>)</u>		0	0	0	0 0		125	125
FISH RELEASE	(AF)	21		99	74	71	74	11	74	±.+	72	12	74	74	99	74	57	27	12	72	2	74	71	74	4	00 72		74	Fi	47	12	74	7	74	4 20	00	1	74	71	74	44	11	3	74
SEASON DEFINITIO FOR FISH	RELEASES	wet	wet	wet	wet	wet	normal	normal	nomal	normal	normal	normal	normal	normal	norma!	normal	normai	- 12M	wol	wet	wet	dry	Ę.	th th	dr v	Ą	dry	drb	Ŋ,	d d d	Ĵ	normal	normal	normal	поттиа	nomal Temal	normal	normal						
CALCULATED UNIMPAIRED FLOW	(AF)	1,106	5/2/1 687	1.551	1,617	1,240	377	215	640 206	045	(102)	558	375	20,533	8,441	6,910	12,040	1 060	1 010	(364)	(81)	375	951	547	C8C	2.237	675	361	412	629 1 676	48	(208)	1,332	1,509	040 485	788	533	621	337	569	347	(17) 212	628	6,112
ACCUMULATED PRECIPITATION (water year octsep)	(NI)	7.88	10.80	16.30	19.44	21.62	21.80	21.80	22.36	11 77	0.28	0.28	3.90	44.70	74.35	78.20	80.40 en 10	01.26	91.00	85.80	86.55	0.11	3.04	3.28	0.07	15.30	18.16	18.26	18.31	18.50	20.15	0.02	16.28	16.28	10.36	20.13	22.05	24.48	24.48	25.00	25.55	185	5.14	27.45
ECIPITATION	(II)	7.88	2.92	2.46	3.14	2.18	0.18	0.00	95.0	1400	0.28	0.00	3.62	40.80	29.65	3,85	0777	101	27.7	0.03	0.75	0.11	2.93	0.24	2.12	6.38	2.77	0,10	0,05	0.19	00.0	0.02	16.25	0.00	201	0 8 C	1.92	2.43	0.00	0.52	0.55	2,85	1.29	22.32
PF	HLNOW	= :	17	- 64	£	4	νn '	0	- 0	00	01	H	12	1	5	m •	44	n v		- 00	0	10	Ξ	12		4 07	1 41	5	vo I	- o	0	10	11	12	-	4 ल	া ব	ŝ	9	e	w c	ۍ د	21	12
DATE	YEAR	1967	1041	1968	1968	1968	1968	1968	1068	1068	1968	1968	1968	1969	1969	1969	1060	10,00	1060	1969	1969	1969	6961	6961	0/61	1970	1970	0161	1970	1970	1970	1970	0191	0161	1/61	101	1261	1721	1261	1701	1261	1771	1721	1971

ŧ

3

FISH AND GAME

œ

변경	-	10	~	~ <		6	9		~ 0	× 4	. 80	÷	4		منه	o	2 00	2	9	9	<u>ب</u>		jç	4 v 1	7	Ň	ەبە			ej.	ە بە	ŵ c	<u>,</u>	. 0	9	<i>8</i> 0.	øç i	r; (س بد	، ب	19) 19)	
HISTORIC STAFF GA ELEVATIC	Ē	80	89	99 99	5	66	65.	23.2	6.3	5 2	5	66	61.	69 E	2.2	89	8	89	67.	61	61	x e	89	68	69	68	19	83	3 23	65	8.	84	5.5	39	99	65	5	5 (22	10	55	;8	61
HISTORIC E.O.M. STORAGE	(AF) 62117	61906	61696	60853	59168	57062	54535	52428	51254	16610	54324	55,587	58536	64012	266232	5/000 2/0013	62538	60853	59168	59168	58958	61064	06010	64433	63591	61485	59168	10300	53692	52850	53692	54114	A2062	56220	56430	54324	51632	48843	70404	10046	43664	42270	42867
ADJUSTED STAFF GAGE ELEVATION	(FT) 68.0	67.9	67.8	67.4	6.68	66.1	65.7	65.2 2.5	2.40	0.00	65.8	66.2	67.3	69.1 11 1	2.02	1.69	68.6	68.0	61.6	61.6	67.5	68.1	00.3	69.2 69.2	68.9	68.1	61.7	779	66.8 8	66.5	66.8	9.98	2.00 7.1 7	67.5	67.5	67.0	66.5	66.1 2	2 (9 7 3 3	0.00	7.00 7.50	65.2	65.4
DERIVED SURFACE AREA	(AC) 7734.9	2727.0	2721.6	2703.9	2,667.0	2631.3	2608.9	2585.5	2566.7	25/4.9	2617.9	2639.6	2696.8	2800.1	2855.6	5 0202	1 5924	2735.9	2713.0	2714.0	2706.0	2742.8	7.16/2	2800.1	2786.2	2741.8	2716.1	6'1692	2669.4	2655.5	2669.5	2673.7	1.0/02	2707.6	2709.5	2680.4	2655.7	2632.6	2617.1	2605.8	20004	2582.0	2592.4
ADJUSTED E.O.M. STORAGE	(AF)	59781.2	59500.0	58587.9	56767 4	54936.6	53839.1	52701.8	51803.0	52192.3 52019 6	54280.9	55350.3	58224.3	63637.1	66658.1	65062.1	6,42250 61804 1	60240.1	59055.7	59106.5	58693.9	60600.5	61040.2	63073.9	62893.8	60549,4	59213.7	57974.4	56838.7	56140.0	56841.0	57055.5	2.01710	0 2228	58877.0	57391.1	56147.1	55001.8	54237.2	53686.5	0.95420.0	0.62626	53036.9
EST. EVAP. LOSSES	(AF)	300.8	627.2	762.1	1106.0	1680.8	1552.5	1278.4	930.8	564.7 231.7	181.7	235.6	395.9	701.2	1232.0	1242.0	1,42/1	1355.2	1094.4	678.2	298.5	216.5	274.3	2.050	1204.0	1532.4	1617.7	1575.3	1426.7	640.7	239.0	213.6	240.0	2,004	1083.0	1381.9	1635.0	1540.3	1342.6	1020.7	6/1/9 9 09 0	0.002	258.2
ESTIMATED EVAP RATE	(FT/MONTH)	0.11	0.23	0.28	14.0	0,63	0.59	0.49	0.36	0.22	60.0 10.0	0.09	0.15	0.26	0.44	0.54	10.0	070	0.40	0.25	0.11	0.08	0.10	0.20	0.43	0.55	0.59	0.58	1.53 1.61	0.24	0.09	0.08	0.09	0.17	0.40	0.51	0.61	0.58	0.51	0.39	0.26	0,10	0.10
MUTUAL RELEASE	(AF) ,		. 0	0		00	0	0	0	00	0	ò	0	0	0	0	130	400	¢	0	0	0	0 (00	þ	168	0	e «		. 0	0	•	0 0	•		, o	0	0	0	0	0	30	, o
MUTUAL DEMAND	(AF)	181	484	637	1019	1855	1983	1985	1334	518		0	0	0	0	0	081	400	417	0	0	0	0	0 0	~	891	1208	1329	1348	724	0	663	0 0			1041	1789	2393	2133	1569	1317	884	20 4
BBMWD DEMAND Snowmkg)	(AF)	561] 0	0	0 0		. 0	0	0	51 5	25	13	0	0	0	0			~ c	125	125	125	125	0 0		, o	0	0	00	125	125	125	125	•		0	0	0	0	0	125	125	125
FISH RELEASE	(AF)	66	2	7	2.2	74	74	1	74	23	74	8	74	71	74	51	42	2 1	74	1	74	74	99	27	17	12	74	74	2.2	12	. 74	74	99	74	2		74	74	7	74	71	47	66 4
SEASON DEFINITIO FOR FISH	RELEASES	normal	normal	normal	normal	romalsu	normal	normal	nonnał	normal	lennon lannar	normal	normal	normal	normal	nomal	normal	normal	nomal	normal	normai	normal	normal	normal	normal	normal	normal	normal	normal	normal	normal	nonnal	normal	normal	nomal	normal	normal	nomal	nomal	normal	normal	normal	normal
CALCULATED UNIMPAIRED FLOW	(AF)	077	420	(6L)	480	076	520	212	106	1,150	1,457	1.496	3,344	6,185	4,327	11	152	440	707	925	85	2,322	905	2,658	1,413 \$37	150	356	410	678	138	1,139	627	653	860	2,019	(C7)	465	469	649	544	613	358	(4ct) 953
ACCUMULATED PRECIPITATION (water vear oct -sen)	(NI)	27.46	27,64	28.65	29.38	46.62	10 10 P	30.19	1.29	7.85	7.85	26.38	37.52	37.52	38.05	38.05	38.05	38.64	10.01	0.00	5,35	17.90	17.95	25.48	26,63	20.12	27.31	28.56	29.26	3.12 2.84	9,72	11.46	14.59	22.62	27.61	28.01	28.01	28.01	28.44	0.79	3.89	4.44	4.44 16.48
LECIPITATION	(NI)	0.00	0.00	1.01	0.73	0.46	0.35	0.0	1.29	6.56	0.00	0.43 12 10	11.14	0.00	0.53	0.00	0.00	0.59	0.00	0,00	0.93	12.55	0.05	7.53	1.15	(5.0 0.0	0.29	1.25	0.70	5.12 0.72	5.88	1,74	3.13	8.03	4.99	0.40	0.0	0.00	0.43	0.79	3.10	0.55	0,00 12.04
ła	HINOM		2 6	4	ŝ	ю г	~ 0	, O	10	11	11	- ~	4 ~~	4	Ś	\$	٢	90 (γġ	9 8	12	- 1	2	£	4 4	n v		3 0	6	2:	12	-	7	£	4 '	<u>~</u>	70	. 00	6	10	11	12	1
ATE	'EAR	1972	1972	1972	1972	1972	1072	1972	1972	1972	1972	1973	1073	1973	1973	1973	1973	1973	1973	1073	1073	1974	1974	1974	1974	1074	1974	1974	1974	1974	1974	1975	1975	1975	1975	5761	2701	5401	1975	1975	1975	1975	1976 1976

s,

2

o

HISTORIC STAFF GAGE FLEVATION	(H)	623	61.8	59.6	58.5	58.7	58.3	58.2 58.0	58.2	58.2	58.2	58.2	58.4	57.3	56.6	56.0	55.6	55.3	207 \$ 8 \$	61.7	66.9	69.4	70.2	69.7 60.3	68.6	68.4	61.9	68,1 68,1	69.0	68.7	71.3	0.27	71.5	71.2	70.6	70.1	5.99 5.93	5 09 5 09	69.8	70.1	72.0	
HISTORIC E.O.M. STORAGE	(AF) 45258	45457	44262	39606	37162	37686	36813	36639	36559	36559	36559	34559	22405	34771	33547	32357	31682	31024	11002	44222	57044	64180	66544	02120	61962	61380	6000	60457	63009	62244	69915	C1162	70648	69671	67986	66308	04053	70040	65362	66308 71 860	72358	
ADJUSTED STAFF GAGE ELEVATION	(I ^T I) 66.2	66.2	63.9 25 3	64.9	64.5	64.8	64.4	64.3 64.7	64.3	64.2	64.2	64.1	2140 210	63.1	62.6	62.1	61.7	61.3 61.3	07.2 63.8	66.4	70.8	72.3	72.3	71.4	70.7	70.5	70.0	70.1	71.3	72.0	77.3	5.71	71.8	71.5	71.2	71.0	0.0/ 70.4	70.3	72.1	72.3 77 3	72.3	
DERIVED SURFACE AREA	(AC) 2638.8	2639.9	2619.0	2567.0	2547.5	2562.4	2542.1	2536.2	2536.5	2533.2	2530.3	2526.6	5.0502	2473.8	2445.4	2418.1	2400,7	2377.8	2507.9	2647.8	2888.4	2973.0	2973.0	2919.5	2884.9	2872.2	2844.9	2852.4	2918.0	2956.3	2973.0	2973.0	2946.2	2927.6	2907.9	2897.1	28/87	2858.7	2960.1	2973.0 2073.0	2973.0	
ADJUSTED E.O.M. STORAGE	(AF) 55307.3	55364.2	54334.1 52079 2	51817.5	50889.0	51597.2	50636.9	50049.3	50372.0	50217.9	50084.3	49911.5	403.76 1	47479.7	46201.6	44988.9	44226.5	43238.3	49038.6	55756.8	68484.8	73320.0	73220.0	70239.8	68285.6	67581.2	66071.0	68027.0	70153.4	72351.7	73320.0	73320.0	71765.3	70698.1	69580.7	68971.6	9 15129	66829.5	72569.2	73320.0	73320.0	
EST. EVAP. LOSSES	(AF) 466.6	686.1	1135.2	1528.8	1437.5	1222.8	5,002	253.6	202.4	279.0	430.6	733.8	1341	1772.4	1509.0	1222.7	991.4	792.2	218.4	250.8	556.0	722.1	1218.9	1767.5	1880.2	1442.4	1436.1	256.7	201.6	262.6	1.240	1248.7	1575.7	1738.2	1683.3	1512.1	710.7	315.1	257.3	325.6	832.4	
ESTIMATED EVAP RATE	(FT/MONTH) 0.18	0.26	0.43	0.59	0.56	0.48	0.39	0.10	0.08	0.11	0.17	0.29	0.53	0.71	0.61	0.50	0.41	0.15	0.09	0.10	0.21	0.25	0.41	0.60	0.64	0.50	0.50	6770 0.02	0.07	0.09	0.18	0.42	0.53	0.59	0.58	0.52	0.95	0.11	0.09	0.11	0.28	
MUTUAL RELEASE	(AF) 0	Q ·	00		0	0		00	0	0	0	00		0	0	0	5		00	0	0	00	>		0	0	0 0		0	0 (ò	0	0	0	0 0		0	0	.	0	
MUTUAL DEMAND	(AF) 0	146	806	456	456	0	400	456	0	0	0	00	456	456	456	456	456	436 0	0	0	0	0 0		00	0	0	0 0	00	0	0	o o	0	0	0	0	0		,0	0	00	0	
BBMWD DEMAND (Snowmkg)	(AF)	0	0 0		0	•	0 201	র ম	125	125	0	0,0		0	0	0	0.00	125	125	125	0	00		00	0	0 0	0	125	125	125 ,	ə c	, o	0	0	0	0 0	125	125	125	125	0	
FISH	(AF) 74	7	74	74	74		4 5	74	74	66	74	2	12	74	74	21	4	77	74	66	74		74	74	74	21	4	74	74	99	7 7	74	71	74	74	22	52	74	74	66 74	7	
SEASON DEFINITIO FOR FISH	RELEASES normal	normal	normal	normal	normal	normal	100001	normal	normal	normal	normal	normal	dry	dry	dry	фу.	ά Δ	<u>Ş</u>		-t-t-	đry	đry	19/1	wet	wet	wet	wet	wet	wet	wet	wet	wet	wet	wet	wet	wet	wor	wet	wet	wet wet	wet	
CALCULATED UNIMPAIRED FLOW	(AF) 2,811	814	179	442	583	2,002	(11 193	141	724	316	371	632	654	0	305	18	505 °	0 2 595	4,107	7,160	13,358	7,827	67C'S	336	0	809 ,	0	1,204	2,527	2,652	7 400	4.092	92	745	640	974	211 2	192	6,196	13,898 6.090	6,882	
ACCUMULATED PRECIPITATION (water year octsep)	(IN) 21.74	24.34	24.59	25.55	25.55	34.31	0.00	2.05	8.85	9.38	12.46	12,46	18.13	18.13	21.00	21.00	0.00	0.39	25.30	38.79	58.89	66.95 57 55	0C.10 35 73	67,62	67.62	69.67 Å	0.31	11.75	21.73	30.96	41.20	41.76	41.76	42.99	43.14	43.37	18.6	3.25	24.22	50,53 58,52	61.29	
LECIPITATION	(IN) 5.26	2.60	0.25	0.77	0.00	8.76	0.00	1.30	6.80	0.53	3.08	000	0.00	0.00	2.87	0.00	0,00	0.59	12.30	13.49	20.10	8,06	10.0	0.06	00'0	2.05	15.0	3.83	9.98	9.23	0.00	0.50	0.00	1.23	0.15	0.23	167	0,94	20.97	26,31 7.99	2.77	
Ϋ́Ε	MONTH 3	4	ŝ) r	æ	σç	2 =	12		2	ŝ	च ४	n vo	-	9 0	σ	2:	= £	1 -	7	ŝ	4.	n v	o r-	90	٥ ;	2:	11	-	61 0	÷д	r v)	9	7	80	e č	3 =	12	-	c4 m	04	
ATE	TEAR 1976	1976	1976	1976	1976	1976	0161	0/61 1976	1977	1977	1977	1071	161	1977	1977	1101	1161	1161	1978	1978	1978	1978	8/61	1978	1978	1978	1078	1978	1979	1979	1070	1979	1979	1979	1979	1979	1070	1979	1980	1980	1980	

HISTORIC STAFF GAGE ELEVATION	E L	71.6	71.3	70.9	2°69	69.2	69.1	69.2 69.5	70.07	70.2	69.7	69.2	60.4 67.7	67.0	66.5	66.4	66.4	5, Y	69.89 69.89	1.17	71.6	71.2	20.8	1.07	69.5	69.7	5'0' 9'09	70.7	71.8	72.3	L 11	71.2	71.2	70.4	69.5	6.69	0.00	0.09	6.9.9	69.7	69,4	08.0
HISTORIC E.O.M. STORAGE	(AF) 71381	70892	69915	68706	64653	63707	63475	63707	66071	66544	65126	69707	01500	57494	56145	\$5920	55695	57269	62544	69427	70892	69725	68413	66256	64565	65275	0083/	68137	71625	73231	10007/	19869	69861	67116	64416	65629	04/02	11600	65835	65126	64133	75020
ADJUSTED STAFF GAGE ELEVATION	Ē	72.2	71.9	71.5 1 1	70.9	70.5	70.4	70.4	1.17	71.2	70.7	70.1	69.U	67.5	67.1	60.9	66.8	67.3	1.69	71.3	71.8	71.4	70.9 202	70.1	69.7	6.69	6.07 F 14	72.3	72.3	72.3	6.7) 7.7	71.8	71.8	71.4	71.3	71.6	71.9	11.7	71.8	71.5	71.1	6.07
DERIVED SURFACE AREA	(AC)	2965.7	2947.2	2924.5 2007 0	2892.5	2871.9	2865.0	2865.7	2903.9	2910.9	2883.9	2848.1	2.0612	2708.5	2685.5	2677.8	2669,6	2697.6	2701.8	2917.5	2941.9	2920.1	2895.5	2848.1	2828.5	2838.7	1,5055	2973.0	2973.0	2973.0	0,6142	2043.1	2941.6	2923.6	2915.2	2933.3	2917.4	5 0 V 02	2941.5	2927.4	2907.2	1.9082
ADJUSTED E.O.M. STORAGE	(AF) 73320.0	72892.8	71822.7	70521.4	68711.2	67560.7	67178.1	67219.6 4 2004 0	69356.7	69753.4	68232.6	66244.8	63103.9 60009.0	58824.7	57651.0	57259.2	56844.3	58265.0	0.70046	70127.5	71521.4	70275.2	68880.8 6773 6 6	66243.2	65174.3	65728.8	68601.3 60421 6	73320.0	73320.0	73320.0	72145 9	71586.5	71500.0	70473.5	69993.1	71027.7	8.81107	71420 4	71494.1	70690.7	69543.2	66888.U
EST. EVAP. LOSSES	(AF) 1100 D	1516.2	1809.1	1768.3	1133.7	954.5	344.6	266.4 206.6	544.3	836.3	1446.7	1643.8	1319.9	1432.2	1099.7	684.8	299.9	200.2	474 0	718.0	1190.4	1447.4	1731.6	1420.3	1059.5	627.9	2.102	287.6	529.2	680.8	1.204.1	1764.7	1727.6	1550.2	1131.4	781.3	109.9	0.712	629.3	782.4	1393.5	1718.2
ESTIMATED EVAP RATE	(FT/MONTH)	0.51	0.61	0,60	0.39	0.33	0.12	0.09	010	0.29	0.50	0.57	0.64	0.52	0.41	0.26	0.11	0.08	017	0.26	0.41	0.49	0.59	0.49	0.37	0.22	60'n	0.10	0.18	0.23	0.41	10.0	0.59	0.53	0.39	0.27	0.24	60-0 11 0	0.21	0.27	0.48	0.59
MUTUAL RELEASE	(AF)	• •	0	0	• •	0	0	00		0	0	714	1241	0	0	0	0	0		• •	0	ç	0 0	461	37	0		0	0		•	> c		0	0	0	0 <		• •	0	37	866
MUTUAL	(AF)	0	0	00	• •	0	0	•		, o	0	714	1247	1597	137	472	0	0		0	0	0	0 99	461	37	0	2 9	90	0	0	ç	00	, o	0	0	0	0 4	2	00	. 0	37	866
BBMWD DEMAND (Snownkg)	(AF)	ò	0	0 0	00	125	125	125	(† 1	0	0	0			0	125	125	125	0	00	0	0	0 0	- -	0	125	22	38	0	0	0		0	0	0	125	125	21	1 °	. 0	0	0
FISH RELEASE	(AF) 7.4	12	74	74	14	7	74	74	00 74	12	74	51	47	12	74	71	74	74	90 92	۲ ۲	74	71	22	4 2	74	2	47	59 99	12	23	27	P 2	14	11	74	71	74	14	14	7	74	11
SEASON DEFINITIO FOR FISH	RELEASES	wet	wet	wet	wei	wet	wet	wet	wer	wet	γ.up	đry	Ţ,	dry	Î	dry.	dry	dry	Ç L	à đ	normal	normal	normal	normal	normal	normal	nomal	normal	normal	nomal	wet	wet	wat	wet	wet	wet	wet	wet	wet	wet	đry	ζτρ
CALCULATED UNIMPAIRED FLOW	(AF) 5 758	1,160	813	541	1/0	0	161	507	1 067	1.304	0	441	0	229	0	489	84	1,820	2,096	7.618	2,658	272	Ę	1/9 1/9	102	1,379	3,583	4.760	9,623	6,097	6,908	1,407 270	1.715	595	725	2,012	0	1,980	914 758	ŝ	357	0
ACCUMULATED PRECIPITATION (water year oct. sep)	Ĭ.	07.07 67.69	64.12	64.12	04.12	1.13	2.14	5.64	13.18	14.06	14.77	14.77	14.94	15.53	0.57	3.18	3.28	7.26	- 16.11 TO AC	32.47	33.06	33.26	34.04	36.3U 36.40	1.75	10.53	16.05	17 07	46.47	51.17	51.17	51.17	(111C	55.97	3.35	9.39	17.05	11.11	17.54	17.56	17.56	17.56
ECIPITATION	(IN)	8.0	1.43	0.00	0.00	0.00	1.01	3,50	3,40 A DS	998 O	0.71	00'0	0.17	000	0.57	2.61	0.10	3.98	4.65	2.40	0.59	0.20	0.78	2.26	1.75	8.78	5.52	8.71	13.50	4.70	0.00	0.00	2.65	1.15	3.35	6.04	7.66	0.06	67.0	0.02	000	0.00
Η	HTNOM	n ve	~	~ (2 E	11	12	•		04	t vis	9	r °	~ ~	07	п	12	 .	64 6	n 49	5	9	1	90 C	10	п	12		4 (*1	4	ŝ	ю г	- •		10	11	12	- 0		- 4		9
ATE	TEAR	1080	1980	1980	0861	1980	1980	1861	1981	1061	1981	1981	1981	1961	1981	1861	1981	1982	1982	1982	1982	1982	1982	1982	1982	1982	1982	1983	1983	1983	1983	1983	5861	1083	1983	1983	1983	1984	1084	1084	1984	1984

R

F

÷

HISTORIC STAFF GAGE ELEVATION	E.	68.6	68.7	68.3 1	61.6	68.4	68.5	68.8	69.2	69.69	69.2	68.4	68.1	C'/0	66.1	66.4	66.7	67.0	. 6'89	70.0	70.1	8.60	2.90	06.2 68.2	67.8	67.3	67.0	67.0	67.0	6/10 87.8	68.0	67.7	67.2	66.6	1.00	0.00 1.22	65.6	65.8	66.0	66.1	66.0	66.3	1.00	0.C0 0.40	64.5
HISTORIC E.O.M. STORAGE	(AF)	61892	62171	60915	59130	61194	61613	62590	63707	64842	63568	61334	50000	56954	55073	55740	56550	57359	62869	65977	66402	00400	51515	60640	59542	58306	57494	57359	57359	50120	60091	59267	57899	56280	14640	54013	53616	54279	54808	54941	54675	55605	24941	51012	50741
ADJUSTED STAFF GAGE ELEVATION	E.	70.1	6'69	69.2	03.0 68.3	68.9	69.0	69.3	69.6	70.0	69.4	68.4	0.10	60.9 66.4	66.1	66.4	66.6	66.9	68.8	69.8	69.9	0.60	0.60	00.2 67.8	67.4	67.1	66.9	66.8	66.7	67.3 67.3	67.6	67.3	66.8	66.2 27 2	7.00	7.00	65.1	65.3	65.4	65.4	65.3	65.6	4.00	64.1 64.1	63.7
DERUVED SURFACE AREA	(AC)	2849.4	2839.6	2798.6	2750.0	2786.1	2790.4	2805.8	2825.1	2844.6	2812.8	1.8612	2112	2647.0	2630.9	2647.5	2660.4	2674.4	2777.8	2834.5	2841.2	8-1787 2-1787	2.0012	2725.0	2702.7	2685.8	2673.4	2669.0	2666.4	2602.5	2715.3	2698.1	2670.2	2636.8	2003.0	7.587.7	2576.4	2587.8	2595.7	2595.3	2588.8	2607.2	1.7607	1.1022	2501.8
ADJUSTED E.O.M. STORAGE	(AF)	66314.5	65777.4	63556.4	60980.1	62887.1	63118.1	63942.2	64988.0	66055.1	64319.0	61434,5 50037 e	5.0202C	55713.6	54916.2	55740.0	56384.6	57088.6	62444.1	65502.2	65865.7	04800.0 62031 2	0.00003	59674.0	58528.7	57664.7	57037.1	56817.4	56683.5	58750 0	59173.1	58293.9	56877.6	55209.5 52005 0	9.02050	52809.5	52265.1	52815.3	53198.7	53176.8	52863.9	8.16186	51003.4	49961.8	48760.5
EST. EVAP. LOSSES	(AF)	1681.5	1681.1	1451.0	674.8	242.0	209.0	267.9	516.3	858.8	1280.1	0.0001	17577	1410.5	1024.4	647.2	267.4	274.0	291.5	588.9	796.5	1.1221	1.4211	1720.9	1215.3	973.0	695.6	272.7	210.9	406.2	811.9	1086.1	1427.3	1594.1	0.5001	1.651	631.4	231.9	222.6	270.0	526.8	104.2	1000.4	1791.9	1486.3
ESTIMATED EVAP RATE	(FT/MONTH)	0.59	0.59	16.0	0.24	0.09	0.08	0.10	0.18	0.30	0.45	(C.U	10'N	0.53	0,39	0.25	0.10	0.10	0.11	0.21	0.28	0.43	10:0	0.63	0.45	0.36	0.26	0.10	0.08	010	0.30	0.40	0.53	0.60	90'N	0.40	0.24	0.09	0.09	0.10	0.20	0.27	0.41	75'N	0.59
MUTUAL RELEASE	(AF)	886	709	867	374	0	0	0	0	•	382	8621	4TCI	00	0	0	0	0	0	0	0	0 12	40.5	0	0	0	0	0	00		0	0	0	0			0	0	0	0	0			o o	0
MUTUAL DEMAND	(AF)	886	109	867	374	0	ò	0	0	0	382	8621	1551	1466	945	0	0	0	0	0	0 0	0 2	5 <u>5</u> 2	862	743	677	331	350	00		0	414	1369	17,60	1769	901	292	0	0	0	0 0	° į	4/4 0201	1910	1810
BBMWD DEMAND (Snownkg)	(AF)	0	0	0 0	125	125	125	125	0	0	0 (. 0	c	125	125	125	125	0	0			0	0	0	125	125	125	(7 0	ò	0	0	с «			125	125	125	125	0 0	- c	- <		0
FISH RELEASE	(AF)	74	74	57	7 7	74	74	99	74	71	74		7.4	t F.	74	71	74	74	99	74	57	4 4	17	24	71	74	71	74	74	00	11	74	71	77	4 1	74	1	74	74	66 	4		4	22	74
SEASON DEFINITIO FOR FISH	RELEASES	dry	dry	λų.	t t	dry.	dry	dry	dry	dry	normal	normal	normal	normal	nermał	normal	normal	normal	normal	normal	numal	normal	lettion	normal	normal	norma!	normal	normal	normal	normal	nomal	dry	dry	ф,		i i	L.P	dry	Ъ,	dry	dry ,	dry	TETTOT	normal	normal
CALCULATED UNIMPAIRED FLOW	(AF)	2,068	1,927	168	422	2,348	639	1,283	1,636	1,997	0 «	0,0	803 0	0	301	1,667	1,111	1,177	5,838	3,721	1,231	062	> c	769	141	183	264	252	276	1,245	797	281	82	0 32	401	251 875 1	283	186	805	439	288	1,669	450	141	359 359
ACCUMULATED PRECIPITATION (water vear oct-sep)	(SI)	19.40	21.63	21.65	2.83	15.60	17.62	18.13	19.99	21.61	21.68	22.06	1677	23.87	0.37	10.37	14.13	19.07	31.20	38.41	38.41	58.41 29.41	20.41 30.70	42.55	45.29	0.00	2.40	4.00	5.59	8.25 17 15	13.73	14.01	14.01	14.50	14,07	5 17	9,66	14.11	17.90	19.25	20.25	25.75	20.23	20.24	28,89
ECIPITATION	(IN)	1.84	2.23	0.02	2.83	12.77	2.02	0.51	1.86	1.62	0.07	85.0	16.0	06.0	0.37	10.00	3.76	4.94	12.13	7.21	0.00	0.00	0.00	3.26	2.74	0.00	2.40	1.60	1.59	90 7	1.58	0.28	0.00	0.49	0.17	5 12	4.54	4,45	3.79	1.35	1,00	5.50	0.48	10:0	2.65
X	MONTH	1	90	۵ ;	9 1	12	-	7	ri,	4	د م ا	ю (- 0	00	10	II	12	-	7	(1)	বি	n v	9 F	~ 00	6	10	н	12		N 17	4	ν S	9	r (× 0	νĘ	11	11	1	2	ω.	ব	0	e (~	. 00
DATE	YEAR	1984	1984	1984	1984	1984	1985	1985	1985	1985	1985	1985	C861	1985	1985	1985	1985	1986	1986	1986	1986	1086	1066	1986	1986	1986	1986	1986	1987	1861	1987	1987	1987	1987	1987	1087	1987	1987	1988	1988	1988	1988	1988	1088	1988

3

3

FISH AND GAME

₽

TORIC HISTORIC O.M. STAFF GAGE RAGE ELEVATION	AF) (FT)	49334 63.9	48191 63.4	47811 63.3	47314 63.1	46699 62.8	48953 63.7	50094 64.2	49587 64.0	48445 63.5	47314 63.1	45344 62.2	43903 61.6	42943 61.2	42004 60.8	41302 60.4	40834 60.2	41068 60.3	41185 60.4	43183 61.3	43183 61.3	42473 61.0	41536 60.5	40142 59.9	39005 59.4	37879 58.8		36888 58.3
ADJUSTED HIS STAFF GAGE E. ELEVATION STC	E	63.1	62.6	62.4	62.1	61.8	62.7	63.2	63.0	62.5	62.0	61.1	60.4	60.0	59.5	59.2	58.9	59.0	59.0	59.9	59.9	59.5	59.1	58.4	57.8	57.2	527	1.00
DERIVED SURFACE AREA	(AC)	2470.3	2444.0	2433.2	2421.1	2404.4	2452.0	2476.8	2465.0	2439.2	2413.0	2367.3	2332.6	2308.6	2284.9	2265.9	2252.4	2256.4	2255.9	2303.8	2303.1	2285.2	2261.8	2226.3	2196.7	2166.7	1202	C'ACT7
ADJUSTED E.O.M. STORAGE	(AF)	47321.0	46137,9	45658.2	45123.4	44391.8	46495.4	47613.9	47082.1	45923.5	44766.6	42786.3	41320.3	40323.4	39349.0	38578.9	38040.0	38200.4	38180.9	40123.9	40096.8	39363.6	38414.4	37006.0	35852.0	34704.6	11477 2	
EST. EVAP. LOSSES	(AF)	1368.5	1109.2	647.7	335.8	532.6	216.4	539.4	767.8	1084.6	1265.9	1906.3	1392.0	1143.0	900.4	594.1	339.9	157.7	180.5	458.0	645.1	921.3	1211.2	1334.4	1269.0	1076.4	5 50	1.111
ESTIMATED EVAP RATE	(FT/MONTH)	0.55	0.45	0.27	0.14	0.22	0.09	0.22	0.31	0.44	0.52	0.79	0.59	0.49	0.39	0.26	0.15	0.07	0.08	0.20	0.28	0.40	0.53	0.59	0.57	0.49	0.44	
MUTUAL RELEASE	(AF)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	¢	0	ð	0	0	0	0	0	C	,
MUTUAL DEMAND	(AF)	1683	1686	456	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	c	0	0	. 0	0	0	0	¢	,
BBMWD DEMAND (Snowmkg)	(AF)	0	•	125	125	125	125	0	0	0	0	0	0	0	0	125	125	125	125	0	0	0	0	0	0	0	c	•
FISH RELEASE	(AF)	F	74	11	74	74	99	74	17	74	71	74	74	11	74	71	74	74	66	74	71	74	71	74	74	2	74	-
SEASON DEFINITIO FOR FISH	RELEASES	normal	normal	normal	normal	normal	normal	nconal	normal	dry	Ę7	dry.	, Ç	, ch	dry	стр	drv	, vib	, vp	, ţ	dry	Ą	dry.	,₿	, ÇĐ	- Pa	, h	
CALCULATED UNIMPAIRED FLOW	(AF)	0	0	364	0	0	2511	1732	307	0	180	0	0	217	0	20	0	517	352	2475	689	262	333	0	189	0		
ACCUMULATED PRECIPITATION (water year octsep)	, A	28.89	0.00	2.97	9.40	11.28	17.67	20.43	20.82	21.93	21.93	21.93	22.31	23.91	2.61	2.81	2.81	9.51	15.69	18.36	19.69	20.65	20.85	21.58	22.13	22.13	0.00	
ECIPITATION	(NI)	0.00	0.00	2.97	6.43	1.88	639	2.76	0.39	1.11	0.00	0.00	0.38	1.60	2.61	0.20	0.00	6.70	6.18	2.67	1.33	0.96	0.20	0.73	0.55	0.00	0.00	
fq	HINOM	6	10	Ц	12	1	2		4	Ś	9		. ac	6	01	Π	12		. 6	I (**)	4	Ś	9		- oc	• •	ŝ	
٤IÌ	cX,	1988	1988	1988	1988	1989	1989	1989	1989	1989	1989	1080	1989	1989	1989	1989	1989	1000	1990	1990	1990	1990	1990	1990	1990	1990	1001	

PRECIPITATION: SWRCB Exhibit #1, Report of Investigation, P.1.
CALCULATED UNIMPAIRED FLOW: BBMWD/CITY Exhibit #7-2 thru 7-7, Simulated model runs SEASON DEFINITION FOR FISH RELEASE: Derived (see staff report)
SEASON DEFINITION FOR FISH RELEASE: Derived (see staff report)
BBMWD DIBAND: BBMWD/CITY Exhibit #7-2 thru 7-7, Simulated model runs MUTUAL DEMAND: BBMWD/CITY Exhibit #7-2 thru 7-7, Simulated model runs MUTUAL DEMAND: BBMWD/CITY Exhibit #7-2 thru 7-7, Simulated model runs MUTUAL RELEASE: Derived, Desert on current operational ploty, NKRE Beahir #1, report of Investigation, P.10.
ESTIMATED EVAPORATION LOSSES: Derived: (raye environ) ploty, NKRE Beahir #1, report of investigation, P.10.
ESTIMATED EVAPORATION LOSSES: Derived: (raye elvation)-(1.1702)(40) - (1.66) release)-(BBMWD demand)-(Mutual Demand)-(Evap. Losses) DBRIVED SURFACE AREA: (aurface acrea) = (26.01397)(adi, E.O.M. storage)-(1.01702)(41) E.O.M. storage)-(313 ADUSTED STARF GAGE ELEVATION: Derived: (gage elevation)-(2.1702)(40) E.O.M. storage)-(0.313) HISTORIC E.O.M. STORAGE: SWRCB EAbilit #1, Report of Investigation, P.8.
HISTORIC E.O.M. STORAGE: SWRCB EAbilit #1, Report of Investigation, P.8.
HISTORIC E.O.M. STORAGE: SWRCB EAbilit #1, Report of Investigation, P.8.
HISTORIC E.O.M. STORAGE: SWRCB EAbilit #1, Report of Investigation, P.8.
HISTORIC E.O.M. STORAGE: SWRCB EAbilit #1, Report of Investigation, P.8.
HISTORIC E.O.M. STORAGE: SWRCB EAbilit #1, Report of Investigation, P.8.

FISH AND GAME

ł

HISTORIC STAFF GAGE	ELEVATION (FT)	000	5.04 70.3	71.3	72.0	71.7	8.05	08.0 68.7	68.2	67.6	67.0	07.0	68.2 68.2	68.6	68.8	68.2	67.4	60.1 100	63.2	62.4	62.1	63.6 64 1	- + - 9 - 9	67.6	69.5	712	n.r.	70.1	69.2	69.0	0.69	03.50 RO F	69.7	20.07	70.8	70.4	69.4	199.7 2.9 1	85.4	64.3
HISTORIC E.O.M.	siukade (AF)	0C 2 40	66840 66840	69883	72167	/1405	65310	62117	60853	58958	57483	5016B	60853	61906	62538	60853	58536 64066	51035	47649	45656	45059	48644	53692	59168	64644	69630 69430	62120 67800	66334	63802	63170	62959	64433	65065	66080	68362	67347	64223	56641	53060	50437
ADJUSTED STAFF GAGE	(FT)	69.5 20 0	70.2	71.2	72.0		0,1 ×	70.7	70.9	70.7	20.6	0.07	71.6	71.9	72.1	71.8	70.6	809 809	69.0	68.6	68.3 55 -	69.59 0.09	711	72.3	72.3	72.3	717	71.4	71.0	71.0	6.02		71.5	71.8	72.3	72.3	1.1	70.8	69.6	69.1
DERIVED SURFACE	(AC)	2814.9 2834.0	2855.2	2910.3	2957.3	2.8682	2904 5	2884.1	2891.7	2880.8	2875,6 2876 c	2013 0	2930,9	2948.4	2958.3	2941.5	2879.0	2831.5	2791.0	2770.4	2751.0	2,819.0 2,838.6	2905.0	2973.0	2973.0	2973.0	0 9600	2923.4	2898.2	2698.8	2693.6	2916.9	2925.5	2942.8	2973.0	2969.9	2939.9	2863.2	2823.6	2795.5
ADJUSTED E.O.M. STOPAGE	(AF)	64433.0 65472 0	66638.6	69714.2	72409.3	4'0207/	69390.5	68239.8	68669.3	68058.2	67769.0	69354.6	70890.2	71894.8	72466.7	71499.6	FU213.4	65335.4	63150.6	62052.1	61028,9	65726.2	69416.3	73320.0	73320.0	73320.0	71230.9	70458.6	69036.1	69065.7	70214	700911	70581.6	71573.0	73320.0	73140.3	6.404.3 60440.0	67078 G	64903.9	63391.9
ST. EVAP. LOSSES	(AF)	ACITY > 197.0	198.4	485.4	814.9	100.3	1699.9	1742.7	1355.5	1041.0	720.2	230.1	261.4	615.5	796.1	1272.1	1634.7	1727 1	1330.8	1088.5	637.2	225.6	283.9	522.9	683.8	1218.9	1659.8	1615.3	1315.5	985.4	1.00 280 A	233.5	262.5	526.6	706.3	1129.7	1465.0	1655.9	1317.1	1072.9
ESTIMATED E EVAP RATE	(FT/MONTH)	STARTING CAF	0.07	0.17	0.28		0.58	0.60	0.47	0.36	0.25	0.08	60.0	0.21	0.27	0.43	150	0.60	0.47	0.39	0.23	0.08	0.10	0.18	0.23	0.41	0.56	0.55	0.45	0.34	97.0	0.08	0.09	0.18	0.24	0.38	0.50	0.57	0.46	0.38
MUTUAL RELEASE	(AF)	c	0	0	00		00	373	0	0	00	00	0	0	0 4	0 000	2007	686	874	664	453	00	0	0	0	00) a	0	0	0		00	0	0	0	o ;	2010	112	966	832
MUTUAL DEMAND	(AF)	c	0	0	00		0	373	0	0	00	0	0	0	0 (0 000	007	686	874	664	453		0	0	0	00) O	0	o,	•		00	0	0	0	o ç	95 010	1112	996	832
BBMWD DEMAND (Spoweka)	(AF)	125	125	0	00	o	0	0	0	0	125 135	125	125	0	5	00	00	0	0	0	125	125	125	0	0	00	0	0	0	o ç	105	125	125	0	o (0 0		00	0	0
FISH RELEASE	(AF)	G	9.09	9	u u	о ч	9 (9	9	9	9	694	9	9	9	φ.	0 4	9	9	9	9	io u	bю	9	9	9	un un	9 49	ę	9	0	9 4	ŝ	φ	9	φ,	9	04	φ	9	Ģ
SÉASON DEFINITION FOR FISH	RELEASES	wet	wet	wet	wet	pormal Dormal	normal	normai	norma	normal	normal	normal	normal	normal	normal	normal	normal	normal	normal	normal	Dormal	normal	normal	normal	normal	wet	wet	wet	wet	Net	wet	wet	wet	wet	wet	normal	normal	normal	normal	normal
CALCULATED UNIMPAIRED FLOW	(AF)	1.367	1496	3,567	3,516	(178)	210	971	1,791	436	562 496	1,898	1,928	1,626	1,3/4	311 506	606	(179)	26	680 100	198 A Dep	1,392	4,105	5,948	6,107 2.107	6,164 873	107	849	(101)	1201	1846	224	884	1,524	2,972	956	(C 1 3) REE	432	116	399
ACCUMULATED PRECIPITATION (water year oct -sen)	(NI)	58.59 13.26	17.37	20.09	23.30	23.30	23.67	24 44	32.15	0.75	2.31	11 02	18.01	21.80 20.40	23.43	23.43	23.43	23.43	23.98	1.99	4.23	22.71	36.38	47.64	54.65	55.26 55.26	55.26	56.29	56.29	64-F	4. <i>31</i> 13.76	14.05	16.76	19.49	22.74	4.77 77	22.64	23.73	23.73	0.47
RECIPITATION	(NI)	4.95	4.11	2.72	2.2.9 0 00	000	0.37	0.77	7.71	0.75	1.56	7.69	6.99	3.79	1.63	0.00	0.00	0,00	0.55	1.99	2.24	3.84	13.67	11.26	7.01	0.00	0.00	1.03	0.0	3,49	04 A	0.29	2.71	2.73	3.25	000	0.00	0,12	0.00	0.47
ш	MONTH	4	3	с, .	47 W	» «	- 1~	80	0 ç	₽:	5	! - -	7	сл -	4.	n u	~	- 00	6	₽:	5 5	<u>v</u> **	N	Ċ,	4	n w		60	б (2;	: ¢	i –	2	ŝ	4 1	<u>ന</u> (• •	- 00	0	6
DATE	YEAR	1938 1939	1939	1939	1939	1030	1939	1939	1939	1939	1939	1940	1940	1940	1940	0461	1940	1940	1940	1940	1940	1941	1941	1941	1941	1941	1941	1941	1941	184	1041	1942	1942	1942	1942	1942	2481	1942	1942	1942

DISTRICT/CITY: CURRRENT OPERATION -- 0.1 CFS YEAR-ROUND

\$

DISTRICT/CITY

HISTORIC STAFF GAGE		63.7	63.5 Ar 0	000 900	68.2	69.7	69.69	69.1	56.0 66.0	100 1 2 2 2	65.1	64.5	65.0	65.1	65.7	66.6	F 00	00. F	E A A	64.8	63.2	61.9	62.9	63.0	200.4 F 4 7	8.59	67.6	67.8	67.3 6 8 9	65.4	64.2	63.1	62.6	0.40 7.47	65.0	65.7	66.6	66.2	65.2	04.U	61.1	60.5	61.8	62.5
HISTORIC E.O.M.	o URAGE	48843	48445	54745	60643	65065	64854	63381	60432	20005	50805	50835	52130	52428	53902	56220	60400	20400	00200 80708	51632	47649	44661	46851	47250	47048 E1024	54324	59168	59590	58115 58175	53271	50038	47449	46253	51032	52030	53902	56220	55166	52638	43040	42867	41473	44462	46054
ADJUSTED STAFF GAGE		68.7	68.4 20 5	09.00 2012	723	72.3	72.3	72.0	7.17	2.5	206	70.2	70.5	70.5	71.0	1.17	12.3	2.27		110	70.2	9.69	70.2	101	212	23	72.3	72.3	72.0	715	71.0	70.8	20.6	1.27	101	72.3	72.3	72.1	71.6	7.1.7	2.99	69.3	70.3	70.7
DERIVED	AKEA ACC	2773.5	2759.3	2022.4	2973.0	2973.0	2973.0	2955.0	2939.9		2000.2 2876 5	2855.1	2869.4	2871.5	2896.9	2939.7	29/370	29/51	6.0062	0.0080	2856.6	2821.9	2852.7	2851.2	2,0032 3,0400	2,969,2	2973.0	2973.0	2954.6 2000 e	2924.3	2899.0	2890.0	2875.5	218967 918967	0.0790	2873.0	2973.0	2958.7	2932.0	0.1162	2803.7	2807.4	2859.4	2884,8
ADJUSTED E.O.M.	SIURAGE (AF)	62218.6	61465.7	67420 0	73320.0	73320.0	73320.0	72277.3	71403.0	5,18001	67870 5	66633.6	67423.8	67538.3	68960.3	71393.6	/3320.0	700110	0.42021	50101 3	66716.6	64814.3	66500.0	66414.4	8,1,5999 70070 0-	73098.4	73320.0	73320.0	72249.2	70513.9	69076.0	68572.4	67760.7	12543.9	73320.0	73320.0	73320.0	72488.8	70954.9	9,65/99	65129.8	64031.3	66866.8	68278.9
EST, EVAP. LOSSES	(AF)	1062.3	748.9	2/5.9	258,3	594.6	862.2	1248.7	1359,3	15/5/	1501 0	1121.9	713.8	229.6	201.0	318.7	1.99.7	13.5	1.8211	1586.4	1681 7	1428.3	1072.3	570.5	199.6	137.54	742.3	1159.5	1456.8	1672.1	1432.9	1101.6	664.7	258.8	1727	505.4	832.4	1189.2	1508.9	16/1.3	1/1/1/2 1463 d	961.4	561.5	285.9
ESTIMATED EVAP	FT/MONTH)	0.38	0.27	01.0	000	0.20	0.29	0.42	8.0 8.0	19.0	0.58	0.39	0.25	0.08	0.07	0.11	0.17	0.24		144 0 54	0.58	0.50	0.38	0.20	10.0	0.15	0.25	0.39	0.49	80'N	0.49	0.38	0.23	0000	0.0	0.17	0.28	0.40	0.51	0.57	0.58 1.51	0.34	0.20	0.10
MUTUAL RELEASE	(AF)	476	359	- c	0	0	o	0	0	191	80L		0	0	0	0	0 1		0 190	202	108	2118	0	0	0		0	0	0	4 <u>0</u>	460	312	158	о с			• •	0	173	579	1150	619	0	0
MUTUAL	(AF)	476	359	ə c	0	•	0	0	0	191	90L		0	0	0	0	0.1	20	2	507 590	006 708	718	0	0	00	20	0	0	0	46L D	460	312	158	0,0		o c	• •	0	173	579	154	519 819	0	0
BBMWD DEMAND	(Snowmkg) (AF)	125	125	125	0	0	0	0	0	0	50	0 725	2 5 5	125	125	0	0	0	-			0	125	125	125	67L	0	0	0		00	0	125	125	<u>8</u>		0	0	0	•	50) C	125	125
FISH RELEASE	(AF)	9	9	99	0 0	9	9	G	9	9	99	ο«	о co	6	9	9	9	φ (00	¢ «	0 4		9	9	9	0.0	e o	¢	Ģ	90 G	9 49	6	9	(C) (C)	64	64	00	9	9	9	9 4 9	SC	υ	φ
SEASON	FOR FISH	normal	norma	norma	normal	normai	wet	wet	wet	wet	Wet	Wei	wet	wet	wet	wet	wet	normal	normat		normal	normal	normal	normal	hormal	normal	hormat	wet	wet	wet	wet	wet	wet	wet	19W	Wei	wet	normal	normal	normal	normal	hurnal	normal	normat
CALCULATED UNIMPAIRED	FLOW	496	486	3,783	2,345 6,428	5,223	969	212	491	557	273	400	1 635	475	1,754	2,758	4,429	1,496	140	225	3/4	250	2,889	616	568	3,807	5.501	1,530	392	697	1, 143 461	916	142	5,173	574	166 166	3 063	364	154	1,057	142	488 488	3,528	1,629
ACCUMULATED PRECIPITATION	(water year octsep)	1 14	3.01	22.72	32.14 36.97	39,62	39.62	39.62	39.62	39,62	39.87	1.85	11 13	13.61	25.66	28.04	31.04	31.24	31.24	31.24	97.75 PC 20	1000	13.70	15.78	18.29	27.24	39.70 40.95	41.06	41.06	41.20	43.41	1.78	2.60	17,97	18.70	22.93	35.97	36.28	36.28	39.54	39.61	41.37 8.68	20.47	25.66
RECIPITATION	(161)	(in) 0.67	1.87	19.71	9.42 4.83	2.65	0,00	00,0	0.00	00'0	0.25	1.85	0.00	2.48	12.05	2.38	3,00	0.20	0.00	00:0	0.0	88	13.70	2.08	2.51	8.95	14.54	0.11	0,00	0.14	12.2	1.78	0.82	15.37	0.73	4.23	1.51	0.31	00:0	3.26	0.07	1./15 6 60	13.79	5.19
Ē	UT NO	Ē	Ę	- (20	> ব	- s	9	7	œ	o i	53	= 5	<u>1</u>	2	3	4	ŝ	9	-	ap c	»č	5 2	얻	-	~ ~	n 4	rω	e	~ '	:o c	° 0	÷	12		2	° ₹	r uc	9	7	æ	ລຸ	2 ₽	12
DATE	VE 20	10.47 IVI	1942	1943	1943	6761	1943	1943	1943	1943	1943	1943	1945	1944	1944	1944	1944	1944	1944	1944	1944	1044	1944	1944	1945	1945	1945 1045	1945	1945	1945	1945 1045	1945	1945	1945	1946	1946	1940	1946	1946	1946	1946	1946	1946	1946

DISTRICT/CITY

N

ŧ

CIGOTSIH	STAFF GAGE	(FT)	1729	630	63.1	62.4	61.2	59.6	58.2	55.9	55.4	55.8	55.8	56.3	56.8	57.9	0.70 E.6. A	1.00	526	50.5	49,3	48,4	48.6	49.3	50.0	50.9	2.23	1.22	0.00	47.R	46.0	45.0	44.9	45.4	45.4	0.14	0.01	40.0	46.4	44.6	42.1	40.5	38.8	38.6	38,5	39.5 39.5
CIGOTAIN	E.O.M.	(AF)	46452	47050	47449	45656	43066	39431	30039	32104	31232	31929	31929	32976	33849	35941	33151	29863	26462	23209	21581	20361	20620	21581	22470	23800	2/350	2/350	61707	19583	17248	16080	15951	16600	811/1	10800	24081	10453	17767	15692	13048	11500	10055	9849	9746	10571
AD.IISTED	STAFF GAGE	(FT)		11.9	71.0	70.5	69.7	9.89 1	0/30 67 0	66.7	66.5	66.7	66.6	66.9	67.2 92.0	6/ X	613	66.7	66.1	65.6	65.4	65.2	65.3	65.6	65.9	66.3 21.2	9.79	57.0 57.0	2.10	66.0	65.5	65.2	65.1 2= 2	00.0 0	0.00	00. 88.3	199	66.0	65.5	65.0	64.5	64.2	63.9	63.7	63.6 53.6	63.7
DERIVED	SURFACE	(AC)	6'0007	2895.3	2899.5	2874.6	2829.4	2/65.2	26830	2664.9	2652.7	2663.1	2659.5	2676.7	6,1992	9.67/2	2896.1	2664.8	2633.8	2606.4	2597.2	2583.3	2589.9	2606.5	2620.9	2645.1	0.1172	2104.9	2652 7	2624.3	2602.3	2585.3	2580.3	1.0802	4. 1802 0.0000	0.642.0	2646 1	2627.8	2601.5	2575.4	2547.1	2530.2	2513.4	2504.6	2496.5	2504.3
ADJUSTED	E.O.M.	(AF)	0.11000	69420.9	69104.5	61709.7	65219.4	51/18.1 F0000 A	57524 0	56611.5	56000.2	56522.0	56339.0	57204.2	1.11810	58813.7 50336 7	58190.1	56605.3	55061.4	53714.8	53268.5	52599,1	52917.5	53720.8	54425.4	55619.2	000000	20030.0 57425 ()	55008.8	54590.8	53516.6	52694.8	52455.6	0.00820	0.81200	55563 0	55668.6	54764 6	53478.5	52220.7	50870.7	50079.0	49295.9	48889.4	48512.9	40005.4
EST FVAP	LOSSES	(AF)	8.1 VS	608.2 608.2	784.4	1275.8	1437.3	1669.3	1 9041	1046.4	586.3	212.2	213.1	212.8 404 E	401.04 0.104	1064 5	1332.0	1509.8	1518.9	1290.6	964.4	597.4	206.7	1.17	156.4	393.1	1.100	1370 5	1528.2	1512.0	1312.1	910.8	672.2	100.00	100.4	506.D	140.3	1032.0	1235.1	1482.9	1468.0	11717	1012.1	653.5	275.0	225.3
ESTIMATED	EVAP RATE	(FT/MONTH)	0.0	0.21	0.27	0.44	0.50	0.08	0.57	0,39	0.22	0.08	0.08	0.08	0.10	020	0.49	0.56	0.57	0.49	0.37	0.23	0.08	0.03	0.06	0.15		100	0.57	0.57	0.50	0.35	0.26	20.0	0.0	0.00	0.28	0.39	0.47	0.57	0.57	0.46	0.40	0.26	11.0	0.0
MUTUAI	RELEASE	(AF)		- 0	0	229	1004	0271 0271	1 C	• •	0	0	0	00	.) C	0	0	0	0	0	0	0	•	50				0	0	0	00		o c		o c	0	Ō	0	0	0	0 0	50	00	» O
MUTUAL	DEMAND	(AF)		00	0	229	1004	07/1	1767	1484	1128	576	675	00		381	1268	1828	2014	1815	1507	1214	693	0	0 (1107	1672	1741	1590	1272	1002	0 C		98	, o	859	1598	1859	456	456	456	456	455	456
BBMWD	DEMAND (Snowmka)	(AF) 17E	101	67I	0	0	00			0	125	125	125	125			0	0	0	•	•	125	125	125	125				• •	0	0	0	125		135		o c	0	0	0	•	0	0,0	125	67L	35
FISH	N RELEASE	s (AF)	2 4	0.0	9	Ģ	6	64	o co	9.09	ç	9	6	99	04	o «c	9 0	9	9	9	Ð	9	9	9	φ.	00	09	5 46	, с	. 0	Ð	6			5 9				G	9	Ū.	9	6	51	54	
SEASON	DEFINITION FOR FISH	RELEASES	normal	normal	normal	normal	normai	rormai	normal	normal	normal	normal	normal	normal		normal	normal	normal	normal	normal	normai	rormal	normal	normal	normal	normal	nurmar	normal	normal	normal	normal	normal	normal	numed	normal	normal	normal	normal	normal	normal	normal	normal	norma	normal	normal	normal
CALCULATED	UNIMPAIRED	(AF)		1,106	474	116	(43)	140) 126	52	139	106	865	161	1209	101-101	61 0 ¹ 7	192	(69)	(19)	(20)	524	59	656	1,012	266	1,593	4,U20	120	108	12	244	95	505 510 510	210	010 1	1 234	851	134	(45)	231	124	386	235	3/8	30	421
ACCUMULATED	PRECIPITATION (water vear octsep)	(N)	00.07	31.26	31.96	31.99 20.25	32.03	52.75 22.75	33.34	0.59	0.85	8.37	8.49	16.33 23 84	10.02	28.24	28.34	28.38	28.38	28.38	1.67	1.67	9.46	21.42	25,55	30.34	00.00	3174	31.96	31.97	32.06	1,07	5.35 84 6	10.21	20.51	24.81	27.91	28.55	28.55	29.73	29.74	30.53	0.13	2:52	2.52	11.09
RECIPITATION		ې (آ)	2 C2 F	1.36	0.70	0.03	0.04 0.04	000	0 12	0.59	0.26	7.52	0.12	7.84	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.15	0.13	0.04	00.0	0.00	1.67	00.0	1.79	11.96	4.13	۲.4 2.5	20.0	000	0.22	0.0	60.0	1.07	4 <u>7 7</u>	R7	0	T R C	3 10	0.64	0.00	1.18	0.01	0.79	0.13	2.39	0.0	3,64 2,64
đ		AONTH	- ר	N (7)	4	ю (401	~ α	5	9	Ħ	12	 (2 10	• •	4 U	0 0	*	8	ð	¢	÷ ۲	<u>ы</u>	- 1	2	-	tu	<u>ه</u> د	~	- 60	o,	₽:	; ت	<u>1</u> 1	- 6	a (c.	• 4	- un	Ŷ	2	œ	თ	우	= 9	2 -	- 01
ATE	l	EAR N	1047	1947	1947	1947	1947	1941	1947	1947	1947	1947	1948	1948	040	1948	1948	1948	1948	1948	1948	1948	1948	1949	1949	1949	0404	1040	1949	1949	1949	1949	1949	1040	1050	1950	1950	1950	1950	1950	1950	1950	1950	1950	1990	1951

ŧ

ļ

DISTRICT/CITY

Ċ

HISTORIC STAFF GAGE ELEVATION	(FT) 39.3	39.1 20 5	35.5	32.2	26.4	18.6	18.6	23.9	25.8	27.5	5.73 573	50.3	49.8	49.4	40.4	171	47.4	48.1	48.4	48.6	5.64 2.64	1.04	48.0	46.4	5 C4 C C4	40.8	P 07		8.14 8.04	45.1	49.6	49.8	49.3	46.7	45.3	43.9	43.9	0.44 4 4 10	45.0	46.5 46.7	40.1
HISTORIC E.O.M. STORAGE	(AF) 10468	10262	7579	5511	2930	950	950	2125	2721	3347 6338	18933	22914	22322	21730	10583	18674	19064	19972	20361	20620	18612	21286	19842	17767	13151 13151	11809	11397	11397	12641	16210	22026	22322	21484	18156	16470	14914	14914	15902	16080	17896	DCIN
ADJUSTED STAFF GAGE ELEVATION	(FT) 63.6	63.4 80.0	62.3	61.8	61.0 An A	60.4 60.4	60.2	60.7	60.8	61.0 0.0	67.1	68.3	67.9	67.6 67.0	07.0	66.4	66.5	66.7	66.8	66.8 57	07.1 67.1	66.8	66.3	65.8 22.2	69.2 64.8	64.5	64.3	64.2	64./ 64.0	65.8	67.8	67.8	67.3	00.0 66.4	66.0	65.6	65.5	65.7 65.7	65.7	66.3 66.3	00'0
DERIVED SURFACE AREA	(AC) 2497.0	2485.6	2430.1	2404.0	2363.5	2329.7	2321.9	2343.4	2352.0	2360.5	2684.2	2753.1	2732.3	2710.9	7.2002	2650.4	2652.7	2666.4	2669.5	2669.8	C.4802	2667.4	2643.0	2617.3	2565 8	2548.9	2535.4	2530.5	2020.0	2617.2	2726.7	2723.4	2697.6	2648.4	2629.4	2606.4	2600.1	2608.7	2610.5	2643.2	2644.2
ADJUSTED E.O.M. STORAGE	(AF) 48540.2	48014.9	45519.3	44371.2	42627.0	41200.1	40872.9	41772.1	42138.0	42496.3 45767 5	575,05 0	61139.5	60055.0	58950.3	5/404/3	55082.6	56000.1	56685.3	56841.7	56859.0	1.18616	56738.6	55518.6	54250.0	52731.5 51615 7	50955.8	50320.6	50091.4	51321.3 51081 6	54243.0	59764.0	59592.7	58267.4	908003 8 98788	54844.6	53715.8	53410.2	5382/.2	53917.8	55525.8 *****	55575.0
EST. EVAP. LOSSES	(AF) 450.8	624.3	909.4 1160.2	1385.2	1346.2	842.3	489.2	185.8	117.2	164,6 206 0	567 F	1127.4	1321.5	1502.8	10/2/3 1001 E	1066.9	503.6	238.7	266.6	293.6	4./90	1046.9	1387.1	1691.5	1596.6 1344 8	973.9	637.2	228.2	1/7/1	462.7	759.0	1254.3	1552.3	1603.1	1324.2	1051.8	651.6	234.U 156.6	234.9	496.0	687.2
ESTIMATED EVAP RATE	(FT/MONTH) 0.18	0.25	0.47	0.57	0.56	0.36	021	0.08	0.05	0.07	2.0	0.42	0,48	0.55	90'D		0.19	0.09	0.10	0.11		0.39	0.52	0.64	0.61	0.38	0.25	0.09	0.0	0.18	0.29	0;46	0.57	0.60	0.50	0.40	0.25	000	000	0.19	0.26
MUTUAL RELEASE	(AF) 0	0	- G	0	0 0	00	0	0	0	00		0	0	0			0	0	0	0	00	0	¢	¢,		• •	0	0	00		0	Q	0			0	0		.0	00	c
MUTUAL	(AF) 456	456	456	456	456	456 456	456	0	0	00		••	0	0.00	901	0 00 0 00 0 00	272	0	0	360	E F	410	1282	456	456 456	456	456	456	00		° °	0	390	1621	456	456	456	00	,0	00	342
BBMWD DEMAND (Srowmkg)	(AF)	0		0	00	- c	125	125	125	125		0	0	0		00	125	125	125	125	00	00	0	0	0 0	00	125	125	2 <u>5</u>	2	,0	0	0			0	125	125 125	125	i ° '	0
FISH RELEASE	(AF) 6	9	00	9	99	с «	о Ю	e Se Se	9	9 U	04	o o	9	ŝ	00	0 4	0 KC	9	9	9	ω G	00	9	ŝ	60 W	00	9	ŝ	59	о чо С	90	9	Ú	u a	<u>،</u> د	9 69	9	99	» (D	9	Ģ
SEASON DEFINITION FOR FISH	RELEASES normal	normal		(j)	dīy			dry Y	dry	dry		wet	wet	wet	wat	Mer	Met	wet	wet	wet	wet	uv Mer	, çê	dry	dry Joh		tr	dry	Ę	20		wet	wet	wet	Wel	wet	wet)ew	wei Wei	wet	wet
CALCULATED UNIMPAIRED FLOW	(AF) 123	105	198	243	(392)	135	283	1,216	614	654	A10'0	4,687	243	404	113	270	752	1.055	554	442	1,332	204	173	429	84	83 928	133	130	1,538	044	6.286	1,089	233	395 120	420	12	477	782	0.45 205	2,110	743
ACCUMULATED PRECIPITATION (water vear octsep)	(IN) 13.38	17,83	18.8/ 18.87	21.93	22.05	23.35	06 5	19.25	32.52	34.43	10.00	53.69	53.69	55.77	56.19 52.52	16.90	0.00 6.47	11.64	13.44	15.23	18.70	66.US	22.49	22.52	22.59	0.31	1.87	2.32	18.84	24.13	39.31	39.54	40.08	41.00	14.14	00.0	4.32	7.70	11.34 18.70	19.40	20.87
RECIPITATION	(IN) 2.29	4.45	1.04	3.06	0.12	130	3.87	13.35	13.27	1.91	16,14	2 00 O	00.0	2.08	0.42	2.78	0.00	5.17	1,80	1.79	3.47	58. 1.01	00.0	0.03	0.07	0.01	1.56	0.45	18.52 7 20	0.89 14 25	0.23	0.23	0.54	0.92	0.41	000	4.32	3.38	9.64 1.45	0.61	1.47
Ð.	10NTH 3	4	un u	~	a0 (σç	2∓	- 14	~ ~	20	• •	4 W	9	7	œ (n ç	2∓	: 0	i ←	3	с, .	4 u	о ча	~	ω (ъÇ	: =	12	- (ل ە ن	ر ي .	9	~ "	ю с) Ç	5	5	- 0	4 00	4
DATE	YEAR N 1951	1951	1951	1951	1951	1951	1051	1951	1952	1952	1952	1952	1952	1952	1952	1952	1952	1952	1953	1953	1953	1953	1953	1953	1953	1953 1953	1953	1953	1954	1954 1054	1954	1954	1954	1954	1954	1954	1954	1954	1955 1055	1955	1955

DISTRICT/CITY

4

2

ĩ

HISTORIC STAFF GAGE	ELEVATION	(L1) A7.2	46.2	44.5	43.2	40./ 20.2	2 9 9 F	38.8	40.3	41.5	40.B	41.0	40.6	38.6		2.440	202	18.0	16.0	26.4	326	33.3	33.9	34.0	33.2	31.0	25.0	2.52	27.0	26.8	283	34.1	40.8	48.0 0 0		50.1	49.7	49.2	48.6	49.0	48.6	48.7	50.0	50.6 70.6	50.3	48.0 1
HISTORIC E.O.M.	STORAGE	18804	17507	15562	14135	10/11	10055	10055	11294	12428	11809	1913	11603	9849 7600	1002	2840	1300	1001	665	2930	5766	6148	6530	6594	6084	4875	2452	1946	1800	3079	3664	6657	11809	15202	73657	22618	22174	21434	20620	21139	20620	20749	22470	23356	22914	19842
ADJUSTED STAFF GAGE		(11) 66.4	66.0	65.4	65.1 84 8	04-0 6 4 3	64.1	64.0	64.4	64.8	64.4	64.3	64.1	63.6 6 2 0	2. 2. 2.	618	615	614	613	62.2	63.2	83.3	63.3	63.1	62.6	.62.0	6.09	9'09 9'09	5.05 1.05	60.5	60.7	61.9	0.40	1.10	4.00 4.00	67.4	67.1	66.6	66.2	66.2	56.0	65.9	66.5 00.0	66.8 66 F	6,00 1,88	65.5
DERIVED SURFACE	AREA	2648.4	2624.7	2594.7	2578.4 2540 b	9534 F	2525.9	2520.3	2541.6	2560.5	2542.2	2537.8	2526.3	2498.9	24413	2403.4	2390.0	2383.2	2375.4	2423.5	2479.8	2481.3	2481.1	2470.7	2443.5	2411.7	2356.8	2.040.5	2314 2	2337.2	2344.4	2407.7	67192	2,000.2	2135.5	2704.7	2684.4	2660.2	2636.1	2639.9	2624.8	2623.2	2653.8	2001.0	2626.6	2598.1
ADJUSTED E.O.M.	STORAGE	55786.5	54611.8	53146.7	52364.0	50282.0	49877.7	49617.1	50612.3	51506.6	50639.5	50434.9	48895.8	48024.9	46019.2	44344.7	43762.6	43469.7	43134.2	45228.7	47752.3	47821.1	47809.8	47338.4	46116.2	44708.6	42341.8	41002.7	40551.5	41514.2	41816.3	44533.3	49504.2	0100401 6170600	60220.1	58630.2	57596.4	56374.0	55174.5	55361.9	54616.0	54538.0	56054.1	00/43.0 2 2003	54704 3	53313.4
EST EVAP LOSSES	(AF)	1084.1	1403.7	1496.1	1582.7	1019.9	608.3	252.6	226.8	228.7	512.1	635.5	1.0101	50001 1440 4	1382.3	1269.5	841.2	501.9	214.5	142.5	242.4	471.2	620.3	868.4	1334.2	1441.7	1396.8	770 F	488.7	208.3	187.0	211.0	5.70.1	1128.7	1322.8	1531.9	1622.8	1315.4	1037.5	553.6	264.0	210.0	209.9	0.700 6.008	ouu.o 1061.3	1470.9
ESTIMATED EVAP	RATE (FT/MONTH)	0.41	0.53	0.57	0.61	0.40	0.24	0.10	0.09	0.09	0.20	97.0 7 10	0.40	0.58	0.56	0.52	0.35	0.21	0.09	0.06	0.10	0.19	0.25	0.35	0.54	0.59	80.0	0.40	0.21	0.09	0.08	0.09	41.0	240	0.48	0.56	0.60	0.49	0.39	0.21	0.10	0.08	0.08	0.50	0.40	0.56
MUTUAL RELEASE	(AF)	0	0	0	c	00	0	0	0	0	0 (0		o c	00	• •	0	0	0	0	0	0	0	o	0	00	50	00	0	0	0	0 (• c	0	0	0	0	0	0	0 0	0	50	> c	00	ō
MUTUAL DEMAND	(AF)	221	456	456	456	456	456	456	0	0	456	454 014	450	456	456	456	456	456	456	0	0	0	456	363	456	456	400	456	456	178	456	0 0			0	0	0	47	201	11	374	456	2 6	1 1	456	456
BBMWD DEMAND	Snowmkg) (AF)	0	0	0	- -) O	125	125	125	125	00	50	5 0	00	0	0	0	125	125	125	125	0	0	0	o (.	- 0		125	125	125	125	00	00	0	0	0	¢	0	125	125	125	125	c c	0	0
FISH RELEASE	(AF) (9	9	ю I	0 v	9 00	Ф	9	9	9	6	00	D (1	0 40		Q	G	9	9	9	9	ø	9	9	o «	04	0 0		0	9	ග	6	οu	о (с	9	9	9	9	9	99	9	ie (שמ	2 44	9 0	9
SEASON DEFINITION	FOR FISH RELEASES	dry	ζþ	Σp	dry	d Zp	dry	dry	dry	dry		ary	normal	normai	normal	normai	normai	normal	normal retrict	normal	normal	normal	normal	normal	normal	wet	wet	wet	wet	wet	wet	wet	Wet	wei	19M	Wei	normal	normal								
CALCULATED UNIMPAIRED	PLOW (AF)	1,301	235	37	909 (42)	307	335	123	1,353	1,254	(349)	104	74	5 3	176	(399)	265	340	ĉ	2,368	2,897	546	615	403	118	40	(706)	203	87	1,302	620	3,059	9,314	4 736	263	(52)	595	66	(156)	872	(102)	207	1,85/ 1 753	007'I	(250)	86
ACCUMULATED	(weter year octsep) (IN)	24.88	24,88	26.83	29.60	00.0	3.21	5.79	17.98	20.05	20.05	24.14 DE 84	10.02	27.02	27.02	27.02	0.25	0.25	0.84	19.72	23.71	26.09	29.00	32.60	32.88	33,31 22 EQ	00,00	4.51	7.63	16.74	19.84	32.46	43,30	58 11	58.11	58.15	58.93	60.74	0.16	2.01	2.01	5.83	23.36	20.02	24.14	24.14
RECIPITATION	(NI)	4.01	00.0	1.95	20.0	00.0	3.21	2.58	12.19	2.07	0.0	80.4 1		121	000	0.00	0.25	0.00	0.59	18.88	3,99	2.38	2.91	3.60	0.28	0.43	17.0	451	3.12	9.11	3,10	12.62	11 73	201	80	0.04	0.78	1.81	0.16	1.85	000	3.82	17.55 00.00	0.50	0.17	00:0
ă	NTH	ŝ	ç	~ <	р ст	무	7	4	÷	2	ლ -	4 U	n u	~	- 00	თ	10	÷	12	-	~	ന	4	ю,	ωı	~ 0	00	° (2 ₽	4	-	20	، د	r ur	9	7	හ	0	0	= 9	2	- (21 6	<u>م</u> ر	t U)	φ.
ATE	EAR MC	1955	1955	1955	1955	1955	1955	1955	1956	1956	1956	1930	1066	1956	1956	1956	1956	1956	1956	1957	1957	1957	1957	1957	1957	1051	1051	1957	1957	1957	1958	1958	1058	1958	1958	1958	1958	1958	1958	1958	1958	1959	1959	1050	1959	1959

¥

٢.

DISTRICT/CITY

w

HISTORIC STAFF GAGE ELEVATION	(FT) 46.1	44.1	41,3	41.1 40.8	41.4	42.0	43.6 43.7	44.2	42.4	40.7	37.5	15	33.6	33.2	33.2	32.1	31.6	30.6	27.3	24.6	21.9	10.4	15,6	16.9	48.2 28.2	33.7	30.2	39.9	392	08.1 26.0	8.46	34.0	33.6	33.6 25.5	33.55 2.4.1	34.3	34.9	34.7	33.6 20.3	26.9 26.9	
HISTORIC E.O.M. STORAGE	(AF) 17377	15044	12222	12016	12325	12944	14525	15173	13358	11706	9023 6731	6402	6338	6084	6084	5447	523/	4683	3258	2333	1617	603	540	200	006	5407	10365	10984	10365	9420	7102	6594	6338	6338	0405 6867	6784	7166	7039	6338 Ace7	3109	
ADJUSTED STAFF GAGE ELEVATION	(FT) 65.1	64.5 64.0	69.7	63.7 63.6	83.7	63.9	64.4 64.4	64.5	63.8	63.4	62.6 64 0	6.10 10 10	619	61.8	61.8	615	61.9	60.7	59.8	59.2	58.6	- 00 57 D	57.6	57.5	57.5	0.00	61,5	61.6	61.1	50.4 50.7	59.3	58.9	58.7	58.5	2022 2022	58.4	58.4	58.1	57.5 56 E	56.1	
DERIVED SURFACE AREA	(AC) 2576.1	2545.2 2517 8	2506.4	2502.9	2504.6	2513.2	2542.0	2544.0	2509.0	2489.9	2448.3	2414.7	2409.3	2401.1	2402.9	2389.6	2360.5	2345.6	2300.6	2268.4	2238.4	2213.4	2185.7	2181.6	2179.2	2243.1	2390.0	2394.3	2386.6	2331.7	2272.9	2252.7	2239.8	2234.2	1.1522	7776.8	2229.1	2212.8	2181.6	2110.5	
ADJUSTED E.O.M. STORAGE	(AF) 52253.6	50782.0 49497 3	48972.2	48811,6 48571 3	48887.4	49285.0	50633.3 F0640 F	50724 1	49089.5	48213.2	46328.2	AA810.5	44602.3	44246.5	44323.5	43748.1	43359.1	41867.1	39991.5	38680.1	37481.8	30300.0	35429.3	35274.6	35183.1	3/00/.8 40170 3	43763.8	43948.6	42758.5	41282.9	38862 0	38053.3	37537.1	37317.1	37217.7	37025.6	37115.2	36477.7	35274.5	33305.2 32616.2	
EST. EVAP LOSSES	1662.8	1545.7	1007.1	626.6 26.0 3	149.9	200.4	527.8	1042.4	1424.6	1480.3	1469,1 1249 6	0.9421	555.3	192.7	192.1	264.3	454.U	6766	1266.6	1380.3	1336.3	0.2601	461.8	196.7	174.5	1/4.3	691.5	908.2	1197.1	1372.6	1147.5	863.7	563.2	224.0	156.4	0.102	534.4	958.5	1062.1	1235.0	
ESTIMATED EVAP RATE	(FT/MONTH) 0.64	0.60	0.40	0.25	90.0	0.08	021	0410	0.56	0.59	0.59	98.0	0.23	0.08	0.08	0.11	91.0	0.39	0.54	09.0	0.59	0.35	0.21	0.09	0.08	0.08	0.30	0.38	0.50	0.58	020	0.38	0.25	0.10	0.07	р Ч	0.24	0.43	0.48	0.58	
MUTUAL RELEASE	(AF) 0	00	0	00	00	0	00	oc	0	¢	00		0	•	o	0	00		0	0	0		00	0	0	00	0	0	0	0 0		0	0	0	00	00	0	0	00		
MUTUAL DEMAND	(AF) 456	456	456	456 A56	207	0	219	321 406	456	456	456	154	456	456	456	456	456	456	456	456	456	456	456	0	456	9 0	00	0	456	456	450	456	456	456	456	450	456	456	456	456	
BBMWD DEMAND (Snowmkg)	(AF) 0	00	0	125	125	125	00	00	00	0			125	125	125	125	0		0	0	0		125	125	125	125		0	0	0.0		0	125	125	22 22 22	<u>s</u> -		0	00	00	
FISH V RELEASE	: (AF) 6	φų	540	60 9	00	6	φ «	0«	0.00	9		64	0.0	9	9	9	up u	36	90	9	U.		540		τ ρ ι		940	υ	9			1.163	ιų.	u					Ψ,	U U	
SEASON DEFINITION FOR FISH	RELEASES normal	normal	normal	normal	normal	normal	normal	morma	normal	normal	normal	normal	normal	normai	normal	normal	normal	dev dev	λ.	dry	đ	ζ.p	20		dry	Σ	d d	wet	wet	wet	Net Wet	wet	wet	wet	wet	Wel	wet	dry	dry	dry Vrb	Ļ
CALCULATED UNIMPAIRED FLOW	(AF) 609	80	488	597	597	729	1,882	134	(204)	610	(410)	(382)	210'1 269	(32)	400	(180)	71	00) (90)	(603)	75	146	11	612 87	173	214	2,790	4 291	1,099	13	(01)	(88) 740	612 612	178	135	188	805	000	327	(135)	(698) 552	
N ACCUMULATED PRECIPITATION (water year octsep)	(IN) 24.34	24.89	20.04 0.46	2.16	2.90	14.57	16.69	21.63	22.15	22.20	22.23	1977	1.00 8.16	8.82	11.45	11.49	14.46	14.40	14.69	14.81	16.69	16.69 2 2 2	0.00 5 14	10.41	17.33	33.69	50.01	41.04	41.21	41.74	42.14	0.58	0.75	0.96	1.73	1.73	48,1 77 CF	12.77	12.77	12.77 14.25	
RECIPITATIO	(IN) 0.20	0.55	0.46	221	0./4 6 17	5,50	2.12	5.14 0.22	0000	0.05	0.03	0.28	1.85 6 30	0.66	2.63	0.04	2.97	8.0	000	0,12	1.88	0.00	0.00 5.14	5.27	6.92	16.36 5 20	2.32	2.03	0.17	0.53	0.40	0.56	0.19	0.21	0.77	0.00	0,16 4 99	000	0.00	0.00	
, 6 L	MONTH 7	φ,	νç	=	2 -	. 01	<i>с</i> у .	4 4	n u	~	80	σţ	€ 5	: £	-	2	сл ·	4 1	n (c	~	8	On 1	5 5	5	<u>i</u> –	2		F 40	ç	7	æ 6	₽ É	2 €	12	÷	~ ~	- CT	r vo	9	⊷ 80	ł
DATE	YEAR 1959	1959	1959	1959	1959	1960	1960	1960	1960	1960	1960	1960	1960	1960	1961	1961	1961	1961	1961 1961	1961	1961	1961	1961	1961	1962	1962	1962 1962	1962	1962	1962	6 29 29 29 29 29 29 29 29 29 29 29 29 29	1902	1962	1962	1963	1963	1963	1963	1963	1963 1963	****

DISTRICT/CITY

9

r

HISTORIC STAFF GAGE ELEVATION	(FT) 26.2	22.3	20.9 26.1	26.8	26.7	28.9	4.00 6.4.0	34.0	32.1	29.8	26.4	24.9	20.3	26.0	27.3	27.7	35.5	36.7	35.8	35.1	34.3	33.7	33.1	43.2		41,8	50.8	51.0	50.7	50.0	49.4	46.7	1 1 1 1 1	47.6	56.0	56.4	57.0	58.0	58.9	61.5	61.5	1.10	505 505	60.2
HISTORIC E.O.M. STORAGE	(AF) 2870	2572	2812	3079	3049	3920	2120	6594	5447	4302	2930	2423	7627	2/81	3258	3410	7579	8404	7785	7269	6784	6402	6020	14135	10200	19363 20879	23652	23948	23504	22470	21730	67/07	19042	19583	32453	33151	34198	36290	40128	43664	43664	1997.6	41672	40875
ADJUSTED STAFF GAGE ELEVATION	(FT) 55.8	55.4	55.0 55.0	55.1	54.9	55.2 E8 a		55.9	55.1	54.4	53.5	53.1		52.B 52.9	52.8	52.7	55.0	55.2	54.6	54.0	53.6	53.2	27.1	1.70	08. I	0.90	613	61.4	61.1	60.4	59.9	7 80 80	0.00	1.05	63.9	64.1	64.5	65.3	66.7 21.0	6/.9 57.0	67.8	07.4 87.4	- 70 96 8	66.5
DERIVED SURFACE AREA	(AC) 2092.0	2072.1	2055.6	2056.3	2047.5	2110 0	21216	2101.0	2060.8	2021.8	1977.2	1956.3	1.0451	1945.5	1942.3	1938,5	2052.7	2065.0	2034.2	2002.6	1980.8	1960.6	1936.3	0.0012 9 1966	0,1022	2316.6	2379.0	2381.5	2364.6	2331.9	2303.9	5,0122 5,0200	N 5666	2219.2	2516,2	2527.4	2545.8	2587.6	2663.6	7.6212	9,02/2	5104.8 2687 0	2672.0	2655.4
ADJUSTED E.O.M. STORAGE	(AF) 31945.0	31229.0 30096 4	30647.2	30669.3	30360.2	30956.1	33021.2	32270.6	30828.0	29468.5	27952.8	27259.4 26045 e	0.21 5020	26907.5	26802.9	26676.3	30544.7	30976.1	29894.9	28810.8	28073.2	27402.0	206/0.5	0.00440 0.00440 0.00440	20526.0	406517	43289.1	43397.4	42672.7	41288.5	9.72L04	97606 D	368011	36727.8	49423.7	49947.2	50811.2	52803.6	56547.3	0.91990	4,10180	00000.0 27773 G	56969.7	56136.8
EST. EVAP. LOSSES	(AF) 1055.3	795.0	206.2	143.9	185.1	1946 1 AGK K	847.5	1039,6	1281.6	1236.5	1.066	830.4	0.014	155.5	194.6	349.6	484.6	841.6	991.2	1200.1	1201.6	911.2	823.4	0.4.0 104.0	1 1 1	183.2	509.6	713.7	1071.7	1324.2	1585./	1401.0	805.8	600.3	244.1	226.5	278.0	534.6	569.3	1.9111	1.2451	1753 2	1344.0	1068.8
ESTIMATED EVAP RATE	(FT/MONTH) 0,50	0.38	0,10	0.07	0.09	11.0	070	0.49	0.61	09.0	0.49	0.42		0.08	0.10	0.18	0.25	0.41	0.48	0.59	0.60	0.46	0.42	97.0	550	0.08	022	0,30	0,45	0.56	89.0	8.0	0.40	0.27	0.11	0.09	0.11	0.21	720	0.4Z		0.00 0.65	0.50	0.40
MUTUAL RELEASE	(AF) 0	00	00	0	0	.			0	0	0	00			0	0	0	0	0	0	0	0	20			0	0	0	0	0 (0	0	0	0	0	2 0	-	20) C	òc	Ō
MUTUAL DEMAND	(AF) 456	456 Acc	456	456	456	450	338	456	456	456	456	456		456	456	456	0	0	456	456	456	456	450) C	00	0	0	0	164	455	400	456	456	0	0	0	0	00	> <	20) C		0
BBMWD DEMAND Snowmkg)	(AF)	0 121	125	125	125	-		00	0	0	0	0 307	344	125	125	¢	0	0	0	0	0	0	D L	125	121	125	0	0	0	0	2	. .) C	125	125	125	125	0	0	-) C		. 0
FISH RELEASE	(AF) 6	50 U	9 10	9	6	0 4		с D	9	9	9	in a	54	0 0	9	9	9	9	9	9	Ð	ю (0 4	e u	5 4	9 9	9 69	9	9	9	e u	04		90	9	9	ç	ю (<u>م</u>	00	04	5 «	o ve	9
SEASON DEFINITION FOR FISH	RELEASES dry	Ъ Ч		dry	ζ ^{τρ}	A A	normal	normal	normal	normai	normai	normai		normal	normal	normal	normal	normal	normal	normal	normal	normai		normal pormai		normal	normal	normal	wet	wet	Wet			wet	wet	wet	wet	wet	Tew	19M	wet	Wet	wet	wet
CALCULATED UNIMPAIRED FLOW	(AF) 390	95 266	86 86	297	7	990 2 465	955	295	(155)	(117)	(519)	143 105		330	221	229.	4,359	1,279	(84)	122	470	246	88	0,410 A 788	017/1	1,429	3,153	828	353	(54)	104	00	ίų.	568	13,071	681	1,273	2,533	4,319	4,480	181,1	500	546 546	242
ACCUMULATED PRECIPITATION (water.year octsep)	(IN) 19.40	1.41	7.55	12.35	12.86	16.20	24 14	24,14	25.59	25,85	26.08	0.62		7.08	8.54	10,60	26.33	26.33	26 .37	27.74	29.57	30.21	0.13	21.00		44.59	46.29	46,43	46.51	46.51	40.01	40.04 17.00	0.50	363	26.03	35.27	35.27	42.57	56.21 F6.00	30.88 10.21	20.94 56.00	50.35	50.18 60.18	000
RECIPITATION	(IN) 5.15	1.41 E 08	90,1	4.80	0.51	0.40 3.36	2.50	00,0	1.45	0.26	0.23	0.62	900	1.88	1.46	2.06	15.73	00.0	0.04	1.37	1.83	0.64	0.13	10.02		3.67	1.70	0.14	0.08	000		0 C C	0.11	3.13	22.40	9.24	0.00	7.30	13.64	19'D	90.0	0.05	170	000
Ë	0NTH 9	\$;	얻	-	~ ~	n -	r uc	o co	7	æ	თ	61	= \$	<u>v</u> –	· ~	ო	4	ŝ	e	2	80	σ,	₽;	= ĉ	ų Ŧ	- ~	ı ი	4	ŝ	u ا	~ c	0 0	» ⊊	2 12	5	-	2	იი .	-st 1	n	1 0	~ a	00	• 0
DATE	YEAR M 1963	1963 1063	1963	1964	1964	1064	1964	1964	1964	1964	1964	1964	1021	1965	1965	1965	1965	1965	1965	1965	1965	1965	1965	2061 3901	1066	1966	1966	1966	1966	1966	1966	9081 1008	1066	1966	1966	1967	1967	1967	1967	1961	1967	10/21	1061	1967

ŧ

3

DISTRICT/CITY

~

HISTORIC STAFF GAGE ELEVATION	(FT) 60.4	61.0	612 812	62.3	62.5	62.3	0.00	609	60.1	59,6	59,6	59.7 67 9	69 0	70.0	72.0	72.0	8. L 2 4	110	69.7	69.1	69.1 201	69.1 80 1	69.1	69.7	69.7	69.4	0.60	68.7	68.2	67.8	68.0 50 5	9.00 8.88	68.7	68.7	68.7	68.5	68.2 1	67.8 0=0	67.3 ce 7		9 9 9 9 9 9	68.7
HISTORIC E.O.M. STORAGE	(AF) 41274	42469	42967	45408	46054	45457	20244	43200	40476	39606	39606	39780 60011	62959	66080	72167	72167	71660	69123	65065	63381	63381	00001	63381	65065	65065	64223	6317U	62117	60853	59590	60221 64495	61906	62117	62327	62117	61696	60643	59590	58115 56241	56220	56220	62117
ADJUSTED STAFF GAGE ELEVATION	(FT) 66.6	67.0	67.1 67.5	67.9	68.1	67.8	4.6	66.6 66.6	66.1	65.7	65,6	65 6 7 3	72.3	72.3	72.3	72.3	22	71.6	71.1	70.9	70.9	0.17	71.1	71.6	71.6	71.3	8'n/ 2002	9.69 9.69	689	68.1	68.2 50 5	00.0 6.8.7	68.8	68.8	68.8	68.5	61.9	67.5	67.0 66 E	000 6 99	699	68.3
DERIVED SURFACE AREA	(AC) 2660.6	2681.1	2687.8 2700.8	2730.5	2741.1	2726.6	1-2012	2660.6	2629.7	2612.1	2607.5	2607.7	0.6790	2973.0	2973.0	2973.0	0.5782	2934.2	2905.8	2893.8	2895.5	2001.2	2903.7	2933.1	2832.5	2917.2	2001.0	2822.9	2781.4	2738.8	2748.2	2775 1	2778.5	2780.3	2776.1	2764.1	2727.6	2706.8	2680.6	5 1 CO2	2640.6	2753.7
ADJUSTED E.O.M. STORAGE	(AF) 56394.9	57429.0	57765.5 58880 0	59958.9	60510.3	59757.5 50151.5	50454.1	56394.6	54857.3	53996.7	53770.7	53780.0	73320.0	73320.0	73320.0	73320.0	73320.0	71077.0	69464.2	68787.1	68883.7	60203 3	69343.2	71017.5	70982.6	70105.9	05432.0 66087.6	64866.0	62637.0	60393.3	60882.2	62300 3	62376.8	62575.7	62352.0	61719.1	59812.5	58738.9	57401.6 ccoc7 c	00801.0 EEE97 A	55400 0	61169.7
EST. EVAP. LOSSES	(AF) 717.0	212.8	214.5 285.7	542.0	682.6	1123.8	14/2.4	1502.3	1330.3	1025.6	653.0	234.7	237.8	475.7	802.7	1248.7	2.01.01 9.0021	1873.0	1525.8	1046.1	723.5	269.69	290.1	551.7	704.0	1231.7	10101 1 1010	1735.6	1355.0	1084.8	712.1	541.0 91.60	277.5	583.1	750.7	1054.9	1409.7	1636.6	1678.2	1.1001	524 A	211.3
ESTIMATED E EVAP RATE	(FT/MONTH) 0.27	0.08	0.08	0.20	0.25	0.41	40,0	0.56	0.50	0.39	0.25	0.09 0.09	0.08	0.16	0.27	0.42	10.0	0.63	0.52	0.36	0.25	01.0	0.10	0.19	0.24	0.42	0.52	0.61	0.48	0.39	0.26	80.0 80.0	010	0.21	0.27	0.38	0.51	0.60	0.62	10.0	40.0	80.0
MUTUAL RELEASE	(AF) 0	0	00	00	Ō	0	.		0	0	0	00	• -	• •	0	0	- c		0	0	0	00	0	0	0	0 9	563 1206	1156	916	945	00	50	• c	0	0	193	828	0	0 0	20	00	0 0
MUTUAL DEMAND	(AF) 0	0	00	00	0	° i	3/4	963 1014	1427	1121	175	756	• =	0	0	0			0	0	0	00		0	0	0	563 1006	1156	916	945	0	/		0	0	193	828	1319	1442	14/1	1298	0
BBMWD DEMAND Snowmkg)	(AF) 125	125	125	30	0	00	50	ə c	0	0	125	25 £	125	0	0	0	0	00	0	0	125	67 I 179	125	0	0	0	20	00	0	0	125	125	2 2 2 2 2	90	0	0	0	0	00	> c	25.0	125
FISH RELEASE ((AF) 6	u o	99	о (0	9	ŝ	ю «	e Se ce	90	g	9	94	¢	ο Φ	ç	9	5		ο Ο	9	9 ·	00) (D	9	(G)	φų	0 00	9	9	φ,	שמ	. (c	9	9	θ	9	ç	ω.	n a	b u	ο O
SEASON DEFINITION FOR FISH	RELEASES	wet	wet	wet	wet	norma	normal	normal	normal	normai	normai	normal	normal	normal	normal	wet	wet	wet	wet	wet	wet	Wet	wet	wet	wet	ζ.p	6	사 가 다	ÌÈ	dry	dry		<u>, 5</u>	dr y	dry	normal	normal	normal	normal		normal	hormal
CALCULATED UNIMPAIRED FLOW	(AF) 1 106	1,378	682	1.617	1,240	377	215	640 346	(201)	171	558	375 20 523	R 441	6,910	12,646	7,390	1,969	(364)	(81)	375	951	547	200 5,61	2,232	675	361	412	029 1 676	48	(208)	1,332	1,509	ABS	188	533	621	337	569	347	(5)	514 600	6,112
ACCUMULATED PRECIPITATION (water vear oct.sep)	(IN) 7.88	10,80	13.84	19.44	21.62	21.80	21.80	22.36	22.77	0.28	0.28	3.90	74.25	78.20	80.46	82.10	83.10 Sr 11	85.77 85.80	86.55	0.11	3.04	3,28	7.01 101	15.39	18.16	18.26	18.31	20 15 20 15	20.15	0.02	16.28	16.28	00.11	20.13	22.05	24.48	24.48	25.00	25.55	25.55	3.85	27.46
RECIPITATION	(IN) 7 AR	2,92	3.04	3.14	2,18	0.18	0.00	0.56	000	0.28	0.00	3.62 40 90	20.04	3.85	2.26	1.64	0.5	2003	0.75	0.11	2.93	0.24	8/7	8.38	2.77	0.10	0.05	0.19 165	00.0	0.02	16.26	0.0	70'T	0.85	1.92	2.43	00.0	0.52	0.55	0.0	3.85	22.32
Ë.	AONTH	: 0	- (N	4	ŝ	ഗ	~ α	. 0	, 6	5	<u>6</u> .	- c	N (7)	4	2	ωı	- 0) (#	<u></u>	- r	4 63	4	40	φı	- α	90	P	Ħ	<u>6</u> .	- ‹	N (**) - 1	ŝ	9	7	æ	о (₽;	51
DATE	YEAR N	1967	1968	1968 1968	1968	1968	1968	1968 1068	1068	1968	1968	1968	6061	1969	1969	1969	1969	1969	1060	1969	1969	1969	0/61 -	1970	1970	1970	1970	1970	1970	1970	1970	1970	1/RL	101	121	1971	1971	1971	1971	1971	1971	1971 1971

DISTRICT/CITY

00

Ŷ

£

HISTORIC STAFF GAGE FI FVATION	(FT) 6.8.7	68.6	6.90 6.93	68.0	67.6 20.0	9.00 9.00	00.9 65.1	64.7	64.9	65.4	65.8	66.3 67 A	109	70.3	8.69	69.3	689 8.00 8.00	7.00 2.7 a	07.0 67.6	67.6	68.3	68.5	89.2 59.5	5'B9	68.5 68.5	67.6	66.8 2 2 2 2	00.1 65 6	65.3	65.6	65.8	629	- 000 1999	66.6	65.8	64.8	63.7	62.7	טן א איי	615	603	61.1
HISTORIC E.O.M. STORAGE	(AF) (AF)	61906	0 1090 60853	60221	59168	700/0	104000	51234	51831	53060	54324	55587 58536	64012	67094	65573	64012	62538	500033 50160	59168	58958	61064	61696	63802	64433 52504	61485	59168	56851	00400 5 2 6 0 0	52850	53692	54114	54535 54055	56220	56430	54324	51632	48843	40452	43664	43664	42270	42867
ADJUSTED STAFF GAGE FI FVATION	(FT) 683	68.2	67.8	67.6	67.2	00.0 66.1	64.7	65.4	65.6	66.0	66.4 60.0	67.9	69.8	70.8	70.3	69.7	269.2	00.7 6 8 3	583 583	68.1	68.8	68.9	69.7	9,90 9,04	6.89 8.89	68,0	67.6	67.9	67.0	67.2	67.3	67.4 67.6	089 089	68.1	67.6	67.1	66.7 55.7	00.00	00.0 66.2	66.2	65.9	66.1
DERIVED SURFACE AREA	(AC) 2751.2	2744.6	2724 1	2711.6	2690.7	0.002 9.824 6	2612 5	2595.2	2604.4	2626.7	2649.5	2729.4	2832.2	2887.8	2860.0	2827.4	2802.0	C 1 7 2 0.0	2746.2	2739.6	2777.0	2786.4	2825.2	2020.0	2781.1	2733,6	2710.8	2690.8	2678.2	2693.3	2698.8	2704.3	2735.7	2738.7	2711.0	2687.6	2665.9	0 CO2	2637.5	2636.7	2622.0	2633.3
ADJUSTED E.O.M. STORAGE	(AF) 61038.4	60695.8 604779 5	59626.2	58983.3	57914.4 66447.7	55008 5	54013.6	53173.1	53621.1	54712.7	55840.9 56067 4	59904.6	65374.0	68448.8	66900.4	65115.8	63/3/.y	60672 5	60780.5	60432.4	62404.2	62900.5	64995.2	2.117000	62622.3	60123.4	58941.9 5841.9	57920.9	57282.1	58049.1	58329.6	58608.7	60229.5	60386.2	58950.5	57755.8	56660.0	4.04400 6.4473	55242 5	55205.8	54478.5	55038.3
EST. EVAP. LOSSES	(AF) 220.3	302.6	767.3	1116.9	1382.9	1566.8	1290.9	940.5	570.9	234.4	183.9	400.8	7.09.7	1246.2	1559.4	1744.6	1639.9	11001	686.0	302.1	219.2	277.7	557.3	1310 7	1553.1	1640.9	1585.5	1105.3	645.8	241.0	215.5	242.2	786.5	1094.3	1396.7	1653.7	1556.8	0.8001	686.8	263.7	237.3	262.2
ESTIMATED EVAP RATE	(FT/MONTH) 0.08	0.11	0.28	0.41	0.51	0,50	0.49	0.36	0.22	0.09	/n'n	0.15	0.26	0.44	0.54	0.61	86.0	070	0.25	0.11	0.08	0.10	0.20	0210	0,55	0.59	0,58	0.41	0.24	0.09	0.08	0.09	0.29	0.40	0.51	0.61	80.0	16.0	0.26	0.10	0.09	01.0
MUTUAL RELEASE	(AF) 0	00	00	0		o. e	• c	0	0	0 (50	00	0	0	0	186	9/2	417	0	0	0	Ċ (00	891	1208	00		0	0	00		00	0	0	0 1		00) O	0	0	c
MUTUAL DEMAND	(AF) 0	181	637	1019	1214	1983	1985	1334	518	0 (00	0	0	0	186	9/7	417	0	0	0	0	0 0		891	1208	1329	1234	724	0	663) C	0	0	1041	1789	2393	4133	1317	884	456 Î	C
BBMVD DEMAND Snowmka)	(AF) 125	125	0	0		50	. 0	0	125	125	971 975	0	0	0	0	0 0			125	125	125	125		00	00	0	00		125	125	125	07I 0	00	0	0	0 (125	125	125	125
FISH RELEASE ((AF) 6	ଦେଖ	о ф	ų (200	.	9 60	9	9	9	<u>ب</u> م	0 40	9	ę.	9	ω (οų		00	g	9	¢,	φų	04	9 00	9	u u	g	9	9	ωu	0 4	9 9	9	9	e «	9	0 4	9 00	9	ю (ø
SEASON DEFINITION FOR FISH	RELEASES normel	normal	normal	normai	normai	normal	norma	normal	normal	normal	normal	normal	normal	normei	normal	normai	norma; Dormaj	normal	normal	normai	normal	normai	normal	normal	normal	normal	normal	normal	normal	normal	normal	normal	normal	normal	normal	normal	normal	Tormal	Pormal	normal	normal	normal
CALCULATED UNIMPAIRED FLOW	(AF) 220	91 420	(62)	480	320	529	212	106	1,150	1,457	1,443	3,344	6,185	4,327	4	152	262	(16)	925	85	2,322	905 3 5 5 5	80017	527 527	150	356	410 678	855	138	1,139	627 662	860 860	2,019	1,257	(33)	465	409 640	540	613 613	358	(359)	555
ACCUMULATED PRECIPITATION (water year octsep)	(IN) 27.46	27.64 27.64	28.65	29.38	78.67 VB 04	30.19	30.19	1.29	7.85	7.85	14.28 26.38	37.52	37,52	38.05	38.05	38.05	38.64	000	4.42	5.35	17.90	17.95	25.48 06.60	20.02	27.02	27.31	28.56 20.56	3.12	3.84	9.72	11.46	14.38	27.61	28.01	28.01	28.01	10.82	010	3.89	4.44	4.44	16.46
RECIPITATION	(N)	0.18	1.01	0.73	0.00	0.35	00.0	1.29	6.56	0.0	12 10	11.14	00,0	0.53	0.0	0.00	86'D	000	4.42	0.93	12.55	0.05	1.53	0.30	00.0	0.29	1.25	3 12	0.72	5,88	1.74	2.0	4,99	0.40	0.00	0.00	0.0	0.43	3.10	0.55	00:0	12.04
ă	HIN:	CN 6	ৰ	ыn (0 ٢	• oc	101	9	: ∓	5 2	- r	9 10	ব	n U	с I	~ c	00	° ç	:	ų	-	~ ~	γņ -	1 U	.	7	00	9	÷	12	- c	N 0	4	ŝ	ග	~ - 1	юc	n ċ	2 T	: 6	- (N
DATE	'EAR M 1972	1972	1972	1972	278L	1972	1972	1972	1972	1972	670F	1973	1973	1973	1973	19/3	107.2	1973	1973	1973	1974	1974	19/4	1074	1974	1974	1974	1974	1974	1974	1975 4075	1075	1975	1975	1975	1975	1975	1075	1975	1975	1976	1976

ţ

×.

DISTRICT/CITY

a

HISTORIC EEVATORIC (FT) 700 720 720 720 720 720 888 888 720 720 888 888 720 888 720 888 720 888 720 888 720 888 720 888 720 720 888 888 888 720 720 720 888 888 888 888 720 720 720 888 888 888 888 888 888 888 888 888 8
HISTORIC E.O.M. STIORAGE (AF) (AF) 33606 37680 37680 37680 37680 36606 37716 37680 36606 36609 5704 20000 660900 660900 660900 660900 660900 660900 660900 660900 660900 660900 660900 660900 6600000 6600000 6600000 6600000 6600000 6600000 6600000 6600000 66000000
ADJUSTED ADJUSTED ELECTATION (FTATION) (FTATIO
DERIVED ARTA ARTA ARTA ARTA ARTA 28821 28821 28821 28821 28821 28821 28822 28825 28855 28575 285
ADJUISTED E.O.M. STORAGE (AFA/GE (AFA/GE (AFA) 573653.3 55161.1 551617.7 551617.7 551617.7 551617.7 551614.4 651714.4 551614.6 52264.9 52265.0 52265.4 66878.6 52265.5 52267.0 773320000000000000000000000
EST_EVAP LOSSES (AF) (AF) (AF) (AF) (AF) (1555.4 (13555.4 (13555.4 (13555.4 (13555.4 (13555.4 (13555.4 (13555.4 (13555.4 (13555.4 (13555.5 (13542.5) (13542.5 (13542.5) (13542.5 (13542.5) (13542.5) (13542.5) (13542.5) (13542.5) (13542.5) (13542.5) (13542.5) (13542.5) (13542.5) (13542.5) (13542.5) (13542.5) (13545.5) (13542.5) (13542.5) (13542.5) (13542.5) (13542.5) (13542.5) (13542.5) (13542.5) (13542.5) (13542.5) (13542.5) (13542.5) (13542.5) (13542.5) (13542.5) (13542.5) (13542.5) (13555.5) (
ESTIMATED EVAP FAAR (FTMANT (FTMANT (FTMANT 0.18 0.18 0.18 0.19 0.11 0.11 0.11 0.11 0.11 0.11 0.11
MUTUAL ELEASE (AF) (AF) (AF) (AF) (AF) (AF)
MUTUAL EMANU AAN AAN AAN AAN AAN AAN AAN AAN AAN
BERWUD DEMAND (Srowmrkg) (AF) (AF) (AF) (25 (25 (25 (25 (25 (25 (25 (25 (25 (25
SEASON REFINITION REFINITION FOR A SEASON Normal Normal Normal A A A A A A A A A A A A A A A A A A A
CALCULATED UNIMPAIRED (AF) (AF) (AF) (2,811 (2,813 (AF) (2,813 (179 (442 (179 (179 (179 (179 (179 (179 (179 (179
ACCUMULATED PRECIPITATION (wter year oct-sep) (INI) (INI) 24.55 25.55 25
PRE CI (I) (I)))))))))))))
∩ ∩ ⊥ผลขด≻ตออ่ะถ่⊢งผลขดะตออ่ะถ่⊢งผลขดะตออ่ะถ่⊢งผลขดะตออ่ะถ่ะงผล _
CATE YEAR 1976 1976 1976 1976 1976 1977 1977 1977

DISTRICT/CITY

HISTORIC STAFF GAGE FI FVATION	(FT)	7.17	71.6	202	8.02 C 02	505	5 69 2 69	69 1	69.2	69.5	70.07	70.2	69.7	69.2	68.4	67.7	67.0	66.5	66.4	66.4	66.9	67.6	68.8	1.11	71.6	71.2	70.8	70.5	70.1	69.5	69.7	70.3 20.6	0.80 2 02	71.8	72.3	72.0	71.7	712	71.2	70.4	69.5	6.69	69.6	70.0	66.9	66.69	69.7	69.4 68.6
HISTORIC E.O.M. STORAGE	(AF)	71381	70892	21220 20702	00100	64653	63707	63475	63707	64653	66071	66544	65126	63707	61380	59313	57494	56145	55920	55695	57269	59084	62544	69427	70892	69725	68413	67558	66256	64565	65275	66837 64070	66437	71625	73231	72358	71327	69861	69861	67116	64416	65629	64705	65977	65693	65835	65126	64133 62032
ADJUSTED STAFF GAGE ELEVATION	(FT)	72.3	72.2	9.L7 7.1.5	617	710	70.6	70.5	70.6	70.8	71.3	71.4	71.0	70.3	69.3	68.3	67.9	67.5	67.4	67.2	67.8	68.4	69.5	71.8	72.2	71.9	71.4	7.1	20.6	70.3	70.5	9 L L L	- C-	72.3	72.3	72.3	72.3	71.8	71.8	71.5	71.4	717	71.5	72.0	71.9	72.0	71.7	4.L7 70.B
DERIVED SURFACE AREA	() V	2973.0	2966.8	0.448.2	2911.6	2898.3	2878.9	2873.2	2875.2	2890.4	2915.4	2923.5	2897.7	2863.1	2806.7	2751.3	2727.9	2706.3	2699.9	2693.0	2722.0	2754.4	2819.3	2942.6	2967.7	2947.1	2923.7	2904.4	2878.7	2860.5	2871.5	C 0500	2073.0	2973.0	2973.0	2973.0	2971.1	2945.4	2945.0	2928.2	2920.9	2940.2	2925.4	2953.0	2950.7	2952.7	2039.9	2874.7
ADJUSTED E.O.M. STORAGE	(AF)	73320.0	72957.8	11999.0	69792 1	69039.6	67952.1	67636.7	67745.5	68592.8	70007.5	70465.9	69006.9	67076.2	63993.7	61046.2	59827.5	58714.0	58381,9	58032.5	59519.4	61209.0	64674.2	71561.6	73013.2	71819.3	70476.9	69383.8	67940.9	66928.6	67541.1	712640	73320.0	73320.0	73320.0	73320.0	73210.8	71718,9	71698.9	70735.6	70321.5	71419.5	70577.0	72159.8	72023.8	72144.4	71403.0	67719.3
EST. EVAP. LOSSES	(AF)	1100.0	1516.2	1009.1	1493.3	1135.5	956.4	345.5	267.2	307.6	546.3	839.6	1453.0	1651.7	1829.6	1765.4	1441.7	1107.5	690.1	302.4	202.0	274.9	479.3	724.6	1200.6	1460.1	1747.6	1748.4	1434.8	1070.9	635.0	246 D	2910	529.2	680.8	1204.1	1510.3	1764.8	1728.9	1552.0	1133.2	782.8	711.5	266.2	318.9	631.4	785.4	1389.4
ESTIMATED EVAP RATE	(FT/MONTH)	0.37	0.51		0.51	0.39	0.33	0.12	0.09	0.11	0.19	0.29	0.50	0.57	0.64	0.63	0.52	0.41	0.26	0.11	0.08	0.10	0.17	0.26	0.41	0.49	0.59	0.60	0.49	0.37	0.22	900 800	0.10	0.18	0.23	0.41	0.51	0.59	0.59	0.53	0.39	0.27	0.24	60.0	0.11	0.21	0.27	0.59
MUTUAL RELEASE	(AF)	0	00		0	0	0	0	0	0	0	0	0	714	1247	1437	0	0	0	•	0	0	•	0	0	0	0	210	461	37	0 0	00	¢	0	0	0	0	Q	o	¢	0	0	0	0	0	⊃ +	0	л. 866
MUTUAL	(AF)	••	00		00	0	0	0	0	0	0	•	0	714	1247	1437	1597	137	472	0	0	0	0	0	0	0	0	210	461	37	0.0) C	0	0	0	·	0	0	o	0	0	0	0	0	⊃•		368 866
BBMWD DEMAND (Snowmka)	, (AF)	•			0	0	125	125	125	125	0	0	0	0	0	0	0	o j	125	125	125	125	0	0	0	0	•	ə •	0 4		125	151	125	0	0	0	0	0	0	o	0	125	125	125	125	5	0 0	
FISH RELEASE	(AF)	ia (ω u	04	ы С	9	9	9	Ģ	9	9	9	Q	9	9	9	÷ ۵	9	9	9	9	9	9	9	9	9	9	9 Q	\$ \$	9 1	ω u	οu	20 00	9	9	9	9	9	9	9	9	9	9	9	9	9 Q	99	0 9
SEASON DEFINITION FOR FISH	RELEASES	wet	wet	wei	wet	wet	wet	wet	wet	wet	wet	wet	dry	dry .	dry	ζ ^D	λŋ.	ζ,	dry	dry	dry	dry	dry	dry	normal	normal	normal	normai	normal	normai	normai	normai	normat	normal	normal	wet	wet	wet	wet	wet	wet	wet	wet	wet	wet	wet	wet	dry dry
CALCULATED UNIMPAIRED FLOW	(AF)	5,758	1,160	5.43	271	389	0	161	507	1,286	1,967	1,304	0	441	0	261	229	0	489	84	1,820	2,096	3,951	7,618	2,658	272	411	871	459	102	1,379	0,000 1 013	4 769	9,623	6,097	6,908	1,407	279	1,715	595	725	2,012	0	1,980	314	758	6	/cr
ACCUMULATED PRECIPITATION (water vear octsep)	Î.	62.69	62.69 E.4.40	64.1Z	84.12 84.12	1.13	1.13	2.14	5.64	9.10	13, 18	14.06	14.77	14.77	14.94	15.44	15.53	0.57	3.18	3.28	7.26	11.91	30.07	32.47	33.06	33.26	34.04	36.30 5 5	36.40	1.75	10.53	07.01 24.76	32.97	46.47	51.17	51.17	51,17	51.17	54.82	55.97	3.35	9.39	17.05	17.11	17.36	17.54	17.56	17.56
RECIPITATION	(N)	1.40	0.00		000	1,13	00.0	1.01	3.50	3,46	4.08	0.88	0.71	00.0	0,17	0.50	60.0	0.57	2.61	0.10	3.98	4.65	18.16	2.40	0.59	0.20	0.78	2.26	0.10	1.75	8.78	20.0 10 B	871	13.50	4.70	00.0	0.00	0.00	3.65	1.15	3.35	6.04	7.66	0.06	0.25	0.18	0.02	00.0
ä	HINOV	n ∘	20 †	~ a	00	₽	Ŧ	42	•	N	ო	4	ŝ	6	•	œ	с ,	9	£	5	-	2	e	4	ŝ	φ	⊷ :	» «	თ ;	₽:	5	2 -	- ~	10	ব	ъ	G	-	80	6 0	₽	÷	с р	~	2	(n) ·	ৰ ।	nφ
DATE	EAR N	1980	1980		1980	1980	1980	1980	1981	1981	1981	1981	1981	1981	1981	1981	1981	1981	1981	1981	1982	1982	1982	1982	1982	1982	1982	1982	1982	1982	1982	1082	1083	1983	1983	1983	1983	1983	1983	1983	1983	1983	1983	1984	1984	1984	1984	1984 1984

ţ

٤

DISTRICT/CITY

÷

HISTORIC STAFF GAGE ELEVATION	(FT) 686	68.7	68.3	67.7	0.10 1.68	68.5	68.8	69.2 20.2	0.90	58.4	68.1	67.5	66.8	00.1 0	1.90	67 D	683	70.0	70.1	69.8	69.2 5 5	00.00 C 83	67.8	67.3	67.0	67.0	0.78	61.6 67.6	68.0	67.7	67.2	00.0 2 4 9 9	555	66.7	65.6	65.8	66.0	66.1 2.5	0.00 	5 - 5 7 - 5	65.6	64.9	64.5
HISTORIC E.O.M. STORAGE	(AF) 61807	62171	60915	59405	00190 01194	61613	62590	63707	04047 01560	61334 61334	60503	58718	56954	55073		57359	62869	65977	66402	65409	63568	61610 60640	59542	58306	57494	57359	973399 60206	59130	60091	59267	57899	5628U 64044	52748	54013	53616	54279	54808	54941	546/5 88605	54045	53748	51912	50741
ADJUSTED STAFF GAGE ELEVATION	(FT) 201	70.2	69.5	689 50 1	69.3	69.4	69.7	101	6.07 0.03	8.80 0.69	68.1	67.5	67.0	2.99	0.10	67.6	69,5	70.5	70.6	70.3	69.7	0.85	679	67.6	67.4	67.4	61 4 67 7	68.0	68.3	68.0	67.5	60.9 F. 9.3	100	684 1	62.9	66.1	66.3	66.3	50.2 2 2 2	0.00 8.6.3	65.9	65.2	64.7
DERIVED SURFACE AREA	(AC) 2066 6	2856.8	2817.2	2785.8	2808.3	2813.8	2830.1	2850.3	1.0182	2440.2	2743.2	2708.7	2680.6	2665.9	C0007 0	5 CI 2C	2814.8	2871.7	2879.2	2861.0	2827.6	2787.0	27312	2715.6	2704.5	2701.5	2700.2	2733.0	2751.6	2735.8	2709.3	2677.4	2020.1	2632 1	2622.2	2634.6	2643.7	2644.3	26292	7.0002	2621.0	2583.2	2558.8
ADJUSTED E.O.M. STORAGE	(AF) 27006 0	66726.4	64561.5	62869.3	0.00120 64079 7	64377 1	65259.0	66368.2	6/492.7 55947 0	62978 3	60620.7	58837.2	57403.6	56661.2	9/04 1.4	500118 6	64430.0	67548.2	67966.3	66958.2	65124.4	62937,3 61000 8	59998.3	59192.1	58621.8	58466.9	58398.5	0.00250	61060.7	60235.0	58863.8	57240.4	20200.1	54070.0	54488.7	55102.7	55550.1	55583.2	55328.4 cenza c	5 91 200 5 81 91 3	54428.6	52593.2	51427.2
EST, EVAP. LOSSES	(AF) 1600 2	1690.6	1459.8	1014.2	019.1	210.6	270.1	520.7	866.5 1201 a	1570.6	1700.6	1777.6	1427.5	1037.4	0.000	0.112 8.77C	295.6	596.7	806.9	1238.0	1753.8	1554.2	1227.5	983.2	703.4	275.9	213.4 DE6 E	500.6	822.6	1100.6	1447.2	1617.4	1201.1	1050.7	642.2	236.0	226.6	274.9	536.8	C 1001	1372.8	1829.4	1518.9
ESTIMATED EVAP RATE	(FT/MONTH)	0.59	0.51	0.36	0.24	0.08	0.10	0.18	0.30	0.45	0.61	0.65	0.53	0.39	07.0	0.0	5 1 1	0.21	0.28	0.43	0.61	0.59	0.45	0.36	0.26	0.10	0.08	0.0	0.30	0.40	0.53	0.60	80.0		0.24	0.09	0.09	0.10	0.20	17.0	0.52	0.70	0.59
MUTUAL RELEASE	(AF) 006	602	867	849	4/5	00	0	0	0 C	382	1514	0	0	0	5 0		• C	0	0	0	74	527			0	0	0		• -	0	0	0 0	50		00	0	0	0	• •		0	0	0
MUTUAL DEMAND	(AF) 896	202	867	849	374 0	00	0	0	0	382	1514	1554	1466	945	5 0			• •	0	•	74	527	200	677	331	350	0		00	414	1369	1760	179L	1206	292	0	0	0	0		1279	1910	1810
BBMWD DEMAND (Snowmkg)	(AF)		0	•	125 125	125	125	0	00		0	0	0	0	2	6 f	15	10	0	0	0	00		0	125	125	123			. 0	0	0			125	125	125	125	00		>0	0	o
FISH RELEASE	(AF)	0 ¢	9	6	e u	о «С	φ	9 9	ю «	in a	9 69) O	Ŷ	φ	ەم	04	» «	9 49	9	9	9	ω u	2 46	00	Ŷ	9	é Se e Se e Se e Se e Se e Se e Se e Se	0 4	5 46	9.00	9	99	04	0 4	0 10	Ŷ	9	9	6	99	° Ф	Ŷ	ç
SEASON DEFINITION FOR FISH	RELEASES	22	, L	dry	Ç Ç	dr.	2p	dry	dry	normat	normal	normal	normal	normal	normal	normal		normat	normat	normal	normal	normal	normal	normal	normal	normal	normal	normal	normat	drv	dry	Σġ.	ζ,		20) Ap	dry	dry	dry		normal	normal	normal
CALCULATED UNIMPAIRED FLOW	(AF) (2,222	1 077	168	111	422	639	1,283	1,636	1,997	00	863	0	0	301	1,667	::[,'	5,838	3.721	1,231	236	0	0 0 22	201 141	183	264	252	276	1,248	1 707 1	281	82	•	254	133	1,220	981	805	439	288	1,669	430 191	0	359
ACCUMULATED PRECIPITATION (water year octsep)	(N)	18.4U 24.63	21.65	0.0	2.83	17.60	18.13	19.99	21.61	21.68 20.06	20 22	22.97	23.87	0.37	10.37	14.13	31.20	38.41	38.41	38.41	38.41	39.29 10.11	46.30 16.30	43.28 0.00	2.40	4.00	5.59	825	01.21 01.21	14.01	14.01	14.50	14.67	14.45	5,12 0,66	14,11	17.90	19.25	20.25	25.75	26.23	26.24	28.89
RECIPITATION	(NI)	2 1.84 2 2 2 2	0.02	0.00	2.83		0.51	1.86	162	0.07	0.00	00.0	06.0	0.37	10.00	3.76	49.4 49.4	7.21	0000	00.0	00.0	0.88	07.5	4 00 0	2.40	1.60	1.59	2.66	3.90	0.28	0.00	0.49	0.17	0.28	5.1Z	4 45	3.79	1.35	1.00	5.50	0.48	000	2.65
ä		~ 0	00	9	Ξ\$	<u>v</u> -	- 0	. 69	4	ŝ	0 1	- 60	. G	ę	=	얻,	- 6	4 01	> শ্ব	ŝ	9	~ '		₽Ę	2 12	9	-	2	× 10	t v.	9	~	م	ъ ;	55	: 2	i –	2	сi .	4	ഗൾ) r	8
DATE	(EAR N	1984	1984	1984	1984	1005	1985	1985	1985	1985	1085	1985	1985	1985	1985	1985	1900	10,86	1986	1986	1986	1986	1965	1980	1986	1986	1987	1987	1981	1081	1987	1987	1987	1987	1987	1081	1988	1988	1988	1988	1988	1988	1988

DISTRICT/CITY

ŗ

J

s

얻

HISTORIC STAFF GAGE FI FVATION	(FT)	63.9	63.4	63.3	63.1	62.8	63.7	64.2	64.0	63,5	63.1	62.2	61.6	61.2	60.8	60.4	60.2	60.3	60.4	613	61.3	61.0	60.5	59.9	59.4	58.8	58.3	57.9	57.7
HISTORIC E.O.M. STORAGE	(AF)	49334	48191	47811	47314	46699	48953	50094	49587	48445	47314	45344	43903	42943	42004	41302	40834	41068	41185	43183	43183	42473	41536	40142	39005	37879	36888	36009	35690
ADJUSTED STAFF GAGE ELEVATION	(FT)	64.2	63.7	63.5	63.3	63.1	63.9	64.4	64.2	63.8	63,3	62.5	61.9	61.4	61.0	60.7	60.5	60.6	60.6	61.5	61.5	61.2	60.8	60.1	59.6	59.1	58.6	58.1	58.0
DERIVED SURFACE AREA	(VC)	2529.0	2504.4	2495.1	2484.7	2469.8	2516.8	2541.9	2531.5	2507.4	2482.9	2439.2	2406.6	2384,3	2362.4	2345.3	2333.9	2339.2	2340.0	2386.7	2387.1	2370.8	2349.0	2315.7	2288.1	2260.2	2235.1	2211.8	2204.9
ADJUSTED E.O.M. STORAGE	(AF)	50021.6	48880.0	48449.4	47974.1	47296.4	49454.1	50626.4	50139.5	49019.6	47892.2	46924.7	44484.5	43516.3	42580.4	41855.2	41372.4	41595.0	41628.9	43622.8	43637.6	42938.7	42009.2	40617.3	39480.3	38353.1	37352.6	36439.4	36170.4
EST. EVAP. LOSSES	(AF)	1399.7	1135.5	663.7	344.3	546.6	222.3	553.7	788.0	1113.9	1301.4	1961,5	1434.3	1179.2	929,9	614.2	351.8	163.4	187.1	475.0	668.3	954.8	1256.5	1385.9	1320.0	1121.2	994.5	782.3	176.9
ESTIMATED EVAP RATE	(FT/MONTH)	0.55	0.45	0.27	0.14	0.22	60'0	0.22	0.31	0.44	0.52	0.79	0.59	0.49	0.39	0.26	0.15	0.07	0.08	0.20	0.28	0.40	0.53	0.59	0.57	0.49	0.44	0.35	0.08
MUTUAL RELEASE	(AF)	0	0	¢	0	0	0	0	0	0	0	0	0	0	0	•	0	0	0	0	0	0	0	0	0	0	0	0	0
MUTUAL DEMAND	(AF)	1688	1686	456	0	0	0	0	0	0	0	0	0	0	0	0	0	0	¢	0	0	0	0	0	0	0	0	0	0
BBMWD DEMAND Snowmka)	(AF)	¢	o	125	125	125	125	0	0	0	0	0	0	0	0	125	125	125	125	0	0	0	0	0	0	0	0	125	125
FISH RELEASE	(AF)	9	9	Q	9	ç	9	ø	9	9	9	9	9	9	9	9	9	ç	Q	e	9	ç	Q	Q	Ģ	9	9	9	ę
SEASON DEFINITION FOR FISH	RELEASES	normal	normal	normal	normal	потта	normal	normal	normal	ср	dry	dry	dy	dry	dry	dry	dīy	dry	dry	dry	dry	dry	dry	dry dry	dry	dry	dry	dry	dry
CALCULATED UNIMPAIRED FLOW	(AF)	0	0	364	0	Q	2511	1732	307	0	180	0	o	217	0	20	0	517	352	2475	689	262	333	0	189	0	0	0	39
N ACCUMULATED PRECIPITATION (water vear octsep)	Î	28.89	00.0	2.97	9.40	11.28	17.67	20.43	20.82	21.93	21.93	21.93	22.31	23.91	2.61	2.81	2.81	9,51	15.69	18.36	19.69	20.65	20.85	21.58	22 13	22,13	0.00	17.1	2.88
RECIPITATIO	(N)	0.00	0,0	2.97	6.43	1.88	6.39	2.76	0.39	1.11	0.00	00.0	0.38	1.60	2.61	0.20	0.00	6.70	6.18	2.67	1.33	960	0.20	0.73	0.55	00.0	0.00	1.77	1.11
đ	VONTH	0	9	7	12	.	2	ო	4	5 C	Q	~	ŝ	თ	6	7	5	-	2	e	4	ۍ	9	2	6 0	0	10	÷	ġ
DATE	YEAR 1	1988	1988	1988	1988	1989	1989	1989	1989	1989	1989	1989	1989	1989	1989	1989	1989	1990	1990	1990	1990	1990	1990	1990	1990	1990	1990	1990	1990

ŧ

74

PRECIPITATION: SWRCB Exhibit #1, Report of Investigation, P.7. CALCULATED UNIMPAIRED FLOW: BBMWD/CITY Exhibit # 7-2 thru 7-7, Simulated model runs SEBAND DRENNITON FOR FIBH RELEASE: Derived (see staff roport) BBMND DRENNITON FOR FIBH RELEASE: Derived (see staff roport) MUTUAL DEMAND: BBMWD/CITY Exhibit #7-2 thru 7-7, Simulated model runs MUTUAL DEMAND: BBMWD/CITY Exhibit #7-2 thru 7-7, Simulated model Runs MUTUAL DEMAND: BBMWD/CITY Exhibit #7-2 thru 7-7, Simulated model Runs MUTUAL DEMAND: BBMWD/CITY Exhibit #7-2 thru 7-7, Simulated model Runs MUTUAL DEMAND: BBMWD/CITY Exhibit #7-2 thru 7-7, Simulated model Runs MUTUAL DEMAND: BBMWD/CITY Exhibit #7-2 thru 7-7, Simulated model Runs MUTUAL DEMAND: BBMWD/CITY Exhibit #7-2 thru 7-7, Simulated model Runs MUTUAL DEMAND: BBMWD/CITY Exhibit #7-2 thru 7-7, Simulated model Runs MUTUAL DEMAND: BBMWD/CITY Exhibit #7-2 thru 7-7, Simulated flow)-(fish relaese)-(BBMWD demand)-(Mutual Demand)-BBTMATED EVAPORATION LOSSES: Derived: (previous E.O.M. storage)+(unimpaired flow)-(fish relaese)-(BBMWD demand)-(Mutual Demand)-(Evap. losses) ADJUSTED SUFACE RARA. (surdex area)=(gage elevation)=(2,1702)x(di). E.O.M. storage)^03.13 HISTORIC E.O.M. STORAGE: SWRCB Exhibit #1, Report of Investigation, P.8. HISTORIC E.O.M. STORAGE: SWRCB Exhibit #1, Report of Investigation, P.8. HISTORIC STAFF GAGE ELEVATION: Derived: (gage elevation)=(2,1702)x(historic E.O.M. storage)^03.13

<u>6</u>

HISTORIC STAFF GAGE	ELEVATION (FT)		69.8 20	10.5	2002	1.1	70.8	69.8	68.7	7 80	67.0	67.0	67.6	08.2 69 6	2.50	68.2	67.4	66.1	64.6	63.2	62.4	172	5 F. 19	65.6	67.6	69.5	71.2	70.5	1.07	69.2	69.0	69.0	C.X0	5.03	20.0	70.8	70.4	69.4	68.2	66.7	64.3	
HISTORIC E.O.M.	STORAGE (AF)		65573	04200	77167	71405	68616	65319	62117	58058 58058	57483	57483	59168	50800	62538	60853	58536	54956	51035	47649	45656	45064 14791	10830	53692	59168	64644	69630	67143	66334	63802	63170	62959	64493	65065	66080	68362	67347	64223	60643	56641	50437	
ADJUSTED STAFF GAGE	ELEVATION (FT)	69.5	8,69 20,00	7.07	711	72.1	71.5	71.1	70.7	3.0.2 20.5	70.5	70.5	71.0		10.04	11.7	71.2	70.5	69.69	68.9	68.5	09. F	1.69	70.9	72.3	72.3	72.3	72.2	71.4	71.0	71.0	70.9	6 I L	417	+ F F	E.27	72.3	71.7	111	70.3	69.1	
DERIVED SURFACE	AREA (AC)	2814.9	2833.8	2,804.5	29/9/6	2958.0	2929.2	2902.4	2881.5	2833.8	2871.8	2872.2	2899.2	20.02	1.0402	2035.4	2912.5	2871.5	2823.8	2782.9	2761.7	2/41.8	2829.0	2895.2	2973.0	2973.0	2973.0	2963.7	2922.7	2897.4	2897.7	2892.3	6 5162	2023 6	2 0402	2973.0	2969.5	2939.0	2903.7	2861.4	2792.8	
ADJUSTED E.O.M.	STORAGE (AF)	64433.0	65459.5	0.01000	72467 1	72448.5	70791.1	69271.1	68096.7	683U3.4	67556.1	67580.2	69092.4	C.0000/	72136.4	71146.8	66839.7	67538.7	64919.8	62714.6	61594.3	0.049.12	1 80139	68867.2	73320.0	73320.0	73320.0	111121	70422.0	68987.8	69005.2	68702.8	0.1410/	C 70702	71453 4	73320.0	73115.3	71355.5	69345.5	66979.4	63247.0	
EST. EVAP. LOSSES	(AF)	APACITY >	197.0	4.521	8147	1182.6	1449.4	1698.9	1741.4	1040.0	719.4	315.9	229,8	260.9	104.6	9 0961	1585.1	1631.0	1722.9	1327.2	1085.3	2.650	274.2	282.9	521.1	683.8	1218.9	1397.3	1615.0	1315.2	985.1	753.4	5.002 A 227	1 1 2 2 2	1.202	705.8	1129.7	1484.7	1734.0	1655.1	1316.2	
; U.5 (wet-year) ESTIMATED EVAP	RATE (FT/MONTH)	STARTING CA	0.07	10.0	0.17	0.40	0.49	0.58	0.60	0.47	0.25	0.11	0.08	60'0	17.0	0.43	0.54	0.56	0.60	0.47	0.39	0,23	0.0	0,10	0.18	0.23	0.41 1	0.47	0.55	0.45	0.34	0.26	60'0 80'0	00.0	0.0	0.24	0.38	0.50	0.59	0.57	0.46 0.38	-
.5 (normal-year) MUTUAL RELEASE	(AF)		0 (0	0	0	373	s c	0	0	0	00		• •	288	729	686	874	664	403	ç	0	0	0	0	00	.0	0	0	0		> <		• c	0	32	910	1112	966 832	-
ois (dry-year); u MUTUAL DEMAND	(AF)		0	•		0	0	0	373		0	0	0				288	729	686	874	664	453		0	e	0	0	00	0	,o	0	0		> c		• •	0	32	910	1112	966 832	-
release of 1.2 BBMWD DEMAND	Snowmkg) (AF)		125	3		0	0	0	0	0 0	125	125	125	2 <u>1</u> °			00	0	0	0	0	83	35	125	0	0	0	00	0	0	0	125	C7 1	21			0	0	0	0	- c	,
Aaxmum hsh i FISH RELEASE I	(1 (AF)		18.5	10.5	C.81 19	31	06	31	H :	3 5	1 08	31	31	28	10	5.5	68	31	31	30	31	6	10	28	31	30	18.5	19.5	18.5	18	18.5	£,	0.51	2.01	19.5	18	3.15	30	31	31	8 F	\$
DEFINITION	FOR FISH RELEASES		wet	wet	Tytel Titel	normal	normal	normal	normal	normal	normal	normal	normal	normal	normal	normal .	normal	normal	nomal	normal	normal	normal	normal	pormal	normal	normal	wet	wet	wet	wet	wet	wet	Jaw		met	11/01	normal	normal	normal	normal	normal	
CALCULATED	FLOW (AF)		1,367	1,496	190,5	1.300	(178)	210	116	1,791	430 562	496	1,898	1,928	1 274	211	2965	8	(179)	26	660	198	4,008	4,105	5,948	6,107	6,164	873	849	(101)	1,021	594	1,848	477	504 1 < 1 A	1010 C	956	(213)	665	432	116	
I ACCUMULATED	(water year octsep) (IN)	58.59	13.26	11.37	20.09	23.30	23,30	23.67	24,44	32.15	2.31	3.33	11.02	18.01	21.80	04-07 EV 46	23.43	23.43	23.43	23.98	1.99	4.23	18.8/	36.38	47.64	54.65	55.26	55.26 55.26	56.29	56.29	3.49	4.97	13.76	14.03	0/01	VF CC	22.74	22.74	23.61	23.73	23.73 0.47	15
ECIPITATION	(N)		4,95	4,11	2.72	0.00	0.00	0.37	0.77	7.71	2/10 95 I	1.02	7.69	6.99	61.5	1.05	000	0.00	0.00	0.55	1.99	2.24	14,64 2 0 4	5 E	11.26	1.01	0.61	0.0	1.03	0.00	3.49	1.48	8.79	67.0		21.75	0.00	0.0	0.87	0.12	0.00	1
¥	MONTH	4	-1	6	***	• •	9		00	٥ <u>:</u>	91	2	1	~		1 u	n vo		. 00	6	10	11	12	- ~	4 ų	4	5	10 r	~ 05	0	10	п	12	- •		*1 -	• •	. 10	ſ	8	ο ē	2
DATE	· YEAR	1938	1939	1939	1939	0101	1939	1939	1939	1939	1030	6691	1940	1940	1940	1940	1940	1940	1940	1940	1940	1940	1940	1441	1941	1941	1941	1941	1941	1941	1941	1941	1941	1942	1942	7461	CP01	1942	1942	. 1942	1942	1

DIVISION PROPOSED ALTERNATIVE: Using three water-year type definition (WEF 25%NORMAL-50%DRY-25%) for accumulated rainfall as of May 1

DIVIDION PROPOSED ALTERNATIVE

-

ş.

r
HISTORIC STAFF GAGE ELEVATION	(FT)		65.0 65.0	66.0	68.2	60.6	69.1	68,1	66.9	65.7	545	65.0	65.1	65.7	66.6 27.0	6/9 681	67.6	66.4	64.8	63.2	619	629	0.50	64.7	65.8	67.6	67.8	6/9 643	65.4 65.4	64.2	63.1	62.6 54 5		650	65.7	66.6	66.2	65.2	64.0	C'70	505	61.8	62.5
HISTORIC E.O.M. STORAGE	(AF)	48845	52030	54745	60643 65055	64854	63381	60432	57062	53902	50835	52180	52428	53902	56220	11000	58958	55798	51632	47649	44661	46851	47640	51234	54324	59168	59590	1100	53271	50038	47449	46253 40815	10000	52030	53902	56220	55166	52638	49640	4004	10074	44462	46054
ADJUSTED STAFF GAGE ELEVATION	E)	0.00	69.5 69.5	70.4	72.3	72.3	72.0	71.7	71.3	70.8	70.2	70.4	70.5	70.9	7.1.7	5.71 2.77	72.0	71.7	71.0	70.2	69.6 20 :	1.07	70.1	71.2	72.2	72.3	72.3	116	71.4	71.0	70.8	70.5	1.1.1	72.3	72.3	72.3	72.1	71.6	71.2	70.4 20.7	69.3	70.2	70.7
DERIVED SURFACE AREA	(AC)	410172	2818.4	2865.2	2973.0 1073 0	2973.0	2954.8	2939.4	2916.2	2887.4	2853.8	2867.9	2869.7	2895.0	2937.6	0.5122	2955.4	2937.0	2898.1	2854.9	2819.7	2850.1	2852 0	2912.8	2965.1	2973.0	2973.0	C 2506	2923.7	2898.1	2888.9	2874.2	20062	2972.7	2973.0	2973.0	2958.3	2931.2	2909.7	3 3686	2804.7	2856.3	2881.3
ADJUSTED E.O.M. STORAGE	(AF)	1.00020	64625.2	67191.7	73320.0	73320.0	72265.3	71378.6	70050.6	68426.1 67760 1	66561.7	67339.8	67441.8	68853.4	71274.5	73320.0	72300.3	71235.9	69027.9	66620.0	64693.6	60330.1 66736.1	1.04200	69856.0	72859.1	73320.0	72220.0	2 81012	70477.3	69027.7	68511.9	67688.4 72450 3	776877	73301.2	73320.0	73320.0	72463.8	70906.1	69682.3	0.775/0	63886.5	66698.5	68085.9
EST. EVAP. LOSSES	(AF)	C.1001	275.6	225.5	257.9 504 6	862.2	1248.7	1359.2	1675.5	1501 4	1121.4	713.5	229.4	200.9	318.4	713.5	1129.7	1300.4	1586.0	1680.9	1427.4	C.1/01	199.4	256.7	436.9	741.3	C.6011	1.743.1	1671.9	1432.6	1101.3	664.4 258.7	2071	237.0	505.4	832.4	1189.2	1508.7	1670.8	1.01/1	960.7	560.9	285.6
ESTIMATED EVAP RATE	(FT/MONTH)	85.0 15.0	0.10	0.08	0.09	0.29	0.42	0.46	0.57	UC.D	20.39	0.25	0.08	0.01	0.11	0.24	0.38	0.44	0.54	0.58	0.50	8E.0 07.0	20.0	0.0	0.15	0.25	0.80 0.80	05 U	0.57	0.49	0.38	0.23	<i>L</i> 0 0	0.08	0.17	0.28	0.40	0.51	0.57	80.0 13.0	0.34	0.20	0.10
MUTUAL RELEASE	(AF) 17	9/10	0	0	00) O	0	0	161	0<1 0) C	0	0	0	00		0	265	965	894	718				0	0	o c	154	0	460	312	158		0	0	0	0	173	579	+C/	619	0	0
MUTUAL DEMAND	(AF)	4/0 250	67 0	0	00	0	0	0	161	961		0	0	0	00		0	265	965	894	718			, o	0	0 (00	5 2	0	460	312	8 <u>,</u> 0		0	0	0	0	173	579	1041	619	0	0
BBMWD DEMAND (Snowinkg)	(AF)	(71 721	125	125	0 0	0	0	0	0 (00	125	125	125	125	00	00	0	0	0	0	0	C71	175	15 21	0	0	00		0	0	0	21 22	125	125	°	0	0	0	00	> c	00	125	125
FISH RELEASE	(AF)	30	- - -	28	5	18.5	18	18.5	18.5	19.5	18	18.5	18.5	16.5	18.5	61 15	30	31	31	30	31	8.5	3 1	28	31	30	18.5	18.5	18.5	18	18.5	18	18.5	16.5	18.5	18	31	30	16	15	15	30	. 31
SEASON DEFINITION FOR FISH	RELEASES	Inition	normal	normal	normal	Wet	wet	wet	wet	wet	wet	wet	wet	wet	wet	wet normal	normal	normal	normal	normal	normal	normal	normal	normal	normal	normal	wet	wet	wet	wet	wet	wet	turet	wet	wet	wet	normał	normal	normal	normal	normal	normal	nomal
CALCULATED UNIMPAIRED FLOW	(AF) 402	064	3,783	2,945	6,428 5 723	969	212	491	557	51Z	r 99	1,635	475	1,754	2,758	4,429	140	532	374	197	250	7,889	895	3,807	3,471	5,501	1,230	765	1,149	461	916	142 5 173	745	266	2,304	3,063	364	154	1,057	141	488	3,528	1,829
I ACCUMULATED PRECIPITATION (water year octsep)	Ĵ.	1.14	22.72	32.14	36.97 30 K1	39.62	39.62	39.62	39.62	39,87	2.05	11.13	13.61	25.66	28.04	31.04	31.24	31.24	31.24	31.24	0.00	13.70	02 81	27.24	39.78	40.95	41.06 #1.06	41.00	43.41	44.07	1.78	2.60 17 07	18 20	22.93	34.24	35.97	36.28	36.28	39.54	10.25	41.57	20.47	25.66
ECIPITATION	(IN) 2,2	10'0	10.1	9.42	4.83 7.55	0.00	0.00	0.00	0.00	0.25	0.20	9.08	2.48	12.05	2.38	5.00 0.20	0.0	0.00	0.00	0.00	0.00	13.70	2.00	8,95	12.54	1.17	0.11	0.14	2.21	0.66	1.78	0.82	140	4.23	11.31	1.73	0.31	0.00	3.26	10.0	1.70	13.79	5,19
R	HLNOM	= :	7	6	en 4	t va	9	L	900 (2 C	9 =	12	1	7	en •	4 v	Ŷ	4	æ	\$	9	= 5	<u>1</u> -	- 0	en.	4	Ś	0 1	- 00	ø	2∶	2 11	1-	. 6	i m	া বা	\$	9		00	× È	II	12
DATE	YEAR	1942	1943 1943	1943	1943	1943	1943	1943	1943	1943	1943	1943	1944	1944	1944	1944	1944	1944	1944	1944	1944	1944	1045	1945	1945	1945	1945	1045	1945	1945	1945	1945	C#61	1946	1946	1946	1946	1946	1946	1040	1946	1946	1946

ъ

ţ

DIVIDION PROPOSED ALTERNATIVE

N

HISTORIC STAFF GAGE ELEVATION	(FT) 62.7	63.0	63.2 63.1	62.4	61.2	59.6	58.2	56.8 2		# 66	55.8	56.3	56.8	57.9	2.25	2.12	52.6	50.5	49.3	48.4	48.6	49.3	0.00	2.00	53.1	51.8	49.8	47.8	45.0	44.9	45.4	45.9	5.14 0.84	48.3	1.74	46,4	44.6	42.1	40.5	30.0 30.0	38.5	39.1	39.5
HISTORIC E.O.M. STORAGE	(AF) 46452	47050	47649	45656	43066	39431	36639	33849	32104	21020	31929	32976	33849	35941	447CS	10100	26462	23209	21581	20361	20620	21581	224/0	013570	27350	25279	22322	19583	16080	15951	16600	17118	C7801	20231	19453	17767	15692	13048	00511	CCUU1	9746	10262	10571
ADJUSTED STAFF GAGE ELEVATION	(FT) 70.7	70.9	71.0	70.4	69.69	68,4	67.4	699	000	5995 5995	66.4	66.7	67.0	67.7	C.10	599	62.9	65.4	65.2	64.9	65.0	65.3	0.00	0.00 E L 2	67.1	66.7	66.2	65.6 2 2 2	579 9	64.8	65.0	65.1	0.00	66.0	65.6	65.1	64.6	64.1	8.53	4.50	1.69	63.2	63.2
DERIVED SURFACE AREA	(AC) 2885.0	2892.1	2900.4	2869.0	2823.3	2758.5	2702.5	2675,3	2626.0	2643.9	2649.8	2666.6	2681.5	2718.9	5.1012	2657 6	2621.1	2593.1	2583.4	2569.0	2575.2	2591.3	4-CD02	5.6202 5.6202	2688.9	2664.5	2635.6	2606.6	2566.6	2561.2	2571.2	2577.4	1,2002	2625.4	2606.5	2579.7	2553.0	2524.1	2506.7	2489.5	2460.1	2477.3	2478.3
ADJUSTED E.O.M. STORAGE	(AF) 68293.2	68689.7	69157.3	67400.7	64889.2	61426.5	58515.1	57131.8	0.08196	0.50555	55853.2	56697.2	57447.2	59361.8	0.50/00	2,000 A	54433.6	53069.3	52602.8	51912.6	52207.1	52985.9	5,009,4	58151 0	57820.7	56591.3	55149.6	53726.3	51206.5	51538.2	52014.9	52314.7	0.01050	54644.4	53723.5	52423.4	51153.0	49790.8	48985.7	48187.0	473640	47637.0	47682.1
EST. EVAP. LOSSES	(AF) 201.7	288.5	607.3	1273.5	1434.5	1665.7	1572.4	1405.3	1043.3	0.440 0.11 5	212.3	212.0	400.0	670.4	1276.6	15021	1512.0	1284.3	959.4	594.2	205.5	77.3	C.CCI	583 6	997.3	1371.3	1518.8	1202.3	004.4	667.3	179.3	154.3	1.167	734.6	1023.9	1225.1	1470.4	1455.2	1161.1	1007.7	277 8	173.0	223.0
ESTIMATED EVAP RATE	(FT/MONTH) 0.07	0.10	0.21	0.44	0.50	0.59	0.57	0.52	0.39	77.0 0 0	0.08	0.08	0.15	0.25	0.50 0.40	0.56	0.57	0.49	0.37	0.23	0.08	0.03	90-0 91-0	0.26	0.37	0.51	0.57	0.57	0.35	0.26	0.07	0.06	07'0	0.28	0.39	0.47	0.57	0.57	0.46	0.40	0710	0.07	0.09
MUTUAL RELEASE	(AF) 0		00	229	1004	1720	1644	0 (•		0	0	0	0 (-		o.c	0	0	0	0	¢,			• •	Ð	0	0		0	. 0	•			0	0	0	0	0 '	•		. 0	0
MUTUAL DEMAND	(AF) 0	0	00	229	1004	1720	1644	1767	1484	8711	675	0	0	0	156	1829	2014	1815	1507	1214	603	0	•	00		1197	1672	174].	0401	1002	455	0,1	- 5	<u>,</u> -	859	1598	1859	456	456	456	904 751	456	456
BBMWD DEMAND (Snowmkg)	(AF)	125	0	- - -	0	0	0	0	0 44	C21 X21	125	125	0	•	-		• •		0	125	125	125	129			0	0	0	00	125	125	125	(7] (7]		• •	0	0	0	0 (0 50	521	125	125
FISH RELEASE	(AF) 31	28	31	9 E	30	31	31	30	31	50	1.0	28	31	30	5 8	15	15	30	31	30	Ĩ	31	58	15	31	. A	31	31	15	8	31	31	87	10	31	30	31	31	30	31	30	31	28
SEASON DEFINITION FOR FISH	RELEASES	normal	normal	normal	normal	normal	normal	normal	normal	normal	normal	normal	normal	normal	normal	normal	normal	normal	normal	normal	normal	normal	nomal	normal	normal	normal	normal	normal	normal	normal	normal	normal	normal	normal	normal	normal	normal	normal	normal	normal	normal	normal	normal
CALCULATED UNIMPAIRED FLOW	(AF) 565	838	1,106	116	(43)	(46)	336	52	661	100	161	1,209	1,181	2,615	505	761	(m)	(20)	524	59	656	1,012	992	54C,1	107	172	108	110	244	564 264	812	610	1,073	951 851	134	(45)	231	124	386	235	3/8	602	421
A CCUMULATED PRECIPITA TION (water year octsed)	(IN) 38 38	29.90	31.26	31.99	32.03	32.03	33.22	33,34	0.59	(1.8) 27	670 8.40	16.33	23.81	28.06	28.21	10.04 10.04	28.29	28.38	1.67	1.67	9.46	21.42	25.55	30.34 20.34	174	31.74	31.96	31.97	32.00	5.35	12.64	17,83	21.97	24.81	28.55	28.55	29.73	29.74	30.53	0.13	22.22	7.45	11.09
ECIPITATION	(N) #	1.52	1.36	0.03	0.04	0.00	1.19	0.12	0.59	0.26	0.12	7.84	7.48	4.25	0.15	61.0	1 000	0.00	1.67	0.00	7.79	11.96	4,13	6. 6	1 28	0.00	0.22	0.01	20.0	4.28	7.29	5.19	4.14	2.04	0.64	0.0	1.18	0.01	0.79	0.13	2.39	4.93	3.64
PR	HINOM	7 7	÷, .	4 v.	e vo	Ŀ	*	6	10	= 2	1 -	- 71	ň	4	Ś	01	~ ~	• œ	10	=	12	-	01	m •	1 4	n vo	1	ж 1	2 <u>5</u>	2 =	12	1	(1)	v) v	t v	o vo	•	80	Q	10	11 \$	- 1	2
DATE	YEAR 1047	1947	1947	1947	1947	1947	1947	1947	1947	1947	1048	1948	1948	1948	1948	1948	1048	1048	1948	1948	1948	1949	1949	1949	1040	1949	1949	1949	1949	1040	1949	1950	1950	1950	1950	1950	1950	1950	1950	1950	1950	ucki 1391	1991

DIVIDION PROPOSED ALTERNATIVE

à

ŕ

က

HISTORIC STAFF GAGE ELEVATION	(FT) 39.3	39.1	38.5	32.2	26.4	21.0	18.6	18.5	25.8	27.5	33.6	47.3	2.0C 40.8	49.4	48,4	47.8	47.1	47.4	48.4	48.6	49.3	49.5	49.1	46.4	44.3	42.2	40.8	40.4	41.9	42.8	45.1	49.6	49.8	48.0	46.7	45.3	43.9	43.9	44.5	44.5 45 D	46.5	46.7	
HISTORIC E.O.M. STORAGE	(AF) 10468	10262	9746	5511	2930	1400	950	950	2721	3347	6338	18933	41677	21730	20361	19583	18674	19064	19506	20620	21581	21879	21286	17767	15302	13151	11809	11397	12841	13746	16210	22026	77977	19847	18156	16470	14914	14914	15562	12861	17896	18156	
ADJUSTED STAFF GAGE ELEVATION	(FT) 63.1	62.8	62.5	61.2	60.4	59,9	59.7	595 60 0	60.09	60.2	61.4	66t4	1.10	66.9	66.3	66.0	65.7	65.8	199	66.1	66.4	66.4	66.0	65.0	64.4	64.0	63.7	63.4	1.53	64.0	64.9	66.9	2.00	90.4 6.5 0	65.5	65.1	64.7	64.5	64.7	64.7 64.7	65.4	65.4	
DERIVED SURFACE AREA	- (AC) 2470.5	2458.5	2439.8	2371.8	2329.4	2304.0	2292.4	2283.0	2310.7	2317.9	2381.8	2646.3	5.01/2	2673.9	2644.8	2629.3	2612.4	2614.7	\$ 1296	2631.7	2646.5	2646.3	2628.1	2002.3	2542.3	2517.5	2502.2	2487.2	2400.0	2519.2	2566.0	2677.4	2674.2	2643.1	1508 3	2579.1	2555.6	2549.2	2557.8	2558.9	2592.8	2593.9	
ADJUSTED E.O.M. STORAGE	(AF) 47328.0	46785.3	45950.5	44180.8 42982.1	41187.8	40133.7	39657.2	39272.8	40107.2	40708.3	43411.9	55680.1	7716765	57061.2	55604.9	54840.4	54011.2	54123.8	54500.0	54958.7	55693.2	55682.8	54780.7	53516.1	50644.8	49486.8	48776.1	48087.6	47/94.7	49565.5	51768.0	57238.9	57077.8	C.80/CC	1 2 2 2 2 2 1	52394.9	51273.8	50968.9	51378.0	51430.0	53058.4	53109.3	
EST. EVAP. LOSSES	(AF) 446 1	617.6	958.8	1146.7	1328.2	1118.1	829.5	481.4	115.7	161.7	301.3	547.8	1111.4	1482.5	1550.8	1269.5	1051.7	496.4	233.3	289.5	579.0	820.4	1032.1	1366.6	1570.8	1322.0	956.7	625.5	7.222	250.6	453.5	744.1	1231.6	1524.3	C 54 51	1299.2	1031.6	638.9	229.4	153.5	486.3	674.1	
ESTIMATED EVAP RATE	(FT/MONTH)	0.25	0.39	0.47	0.56	0.48	0.36	0.21	0.08	0.07	0.13	0.23	0,42	0.55	0.58	0.48	0.40	0.19	0.09	0.10	0.22	0.31	0.39	0.52	0.61	0.52	0.38	0.25	60'0 10 0	0.10	0.18	0.29	0.46	1.5.0	09.0	0.50	0.40	0.25	0.09	0.06	0.19	0.26	
MUTUAL RELEASE	(AF)	0	0		0	0	0	0	• •	00	0	0	0 0		0	0	0	0		00	0	0	0	00	þe	0	0	ų Q	00	0	0	0	с ·	00			00	0	0	0 0	> c	, o	
MUTUAL DEMAND	(AF) #46	456	456	456 456	456	456	456	456 ^	00	00	0	Ċ	0		601	455	833	272		360	13	19	410	1282	456	456	456	456	456		0	,o	0	390	1671	456	456	456	0	0	> <	342	
BBMWD DEMAND Snowrakg)	(AF)	• •	0	00	0	0	0	125	22	132	0	0	0 0		0	0	0	125	125	<u> </u>	9	0	0	00		0	0	21	125	121	0	0	0	0	•		0	125	125	125	<u>3</u> 0	, o	
RISH RELEASE 1 0	(AF)	30	74	12	14	11	74	11	74	47 99	74	11	18.5	18 5	18.5	18	18.5	18	18.5	18.5	18.5	18	74	12	47 74	17	74	12	47	7 Y	74	71	18.5	18	18.5	18.1	18.5	18	18.5	18.5	16.5	18	
SEASON DEFINITION FOR FISH	RELEASES	normal	đry	Į į	drv	, tab	dry	dry	dry 1	j j	L L	dry	wet	wet	wet	wet	wet	wet	wet	wet	wet	wet	¢.	đry I		d v	đry	đ	¢¢	A la	년	, tīb	wet	wet	Tow	Wet	wet	wet	wet	wet	wet	wer wet	
CALCULATED UNIMPAIRED FLOW	(AF)	50 102	198	(552) 243	(392)	135	427	293	1,216	614 654	3,079	12,887	4,687	243	113	523	241	752	1,055	400 442	1 332	828	204	173	429 84	235	320	133	130	1,047	2,730	6,286	1,089	233	C65	438	(11)	424	782	349	395	743	
ACCUMULATED PRECIPITATION (water ver net-sen)	(NI)	17.83	18.87	18.87	22.05	23.35	2.03	5.90	19.25	22.22 20.25	50.57	53.69	53.69	53.69 55 77	56.19	58.97	0.00	6.47	11.64	15.22	02 81	20.55	22.49	22.49	22.52	29.02	0.31	1.87	2.32	18.84 74 72	39.08	39.31	39.54	40.08	41.00	41.41	0.00	4.32	7.70	17.34	18,79	19.40 20.87	
ECIPITATION	(IN)	4.45	1.04	0,00	01.0	1.30	2.03	3.87	13.35	13.27	16.14	3.12	0.00	0.00	0 4 0	2.78	0,00	6.47	5.17	1.80	27 T	1.85	1.94	0.00	0.03	0.0	0.31	1.56	0.45	16.52	14.35	0.23	0.23	0.54	0.92	0.41	0.00	4.32	. 3.38	9.64	1.45	0.61 1.47	
ž	MONTH	n 4	· • ·	vo 1	- 00	0	10	Ξ	12.	(4 10	4	s	90	- 0	• •	10	н	12		9.6	n -1	Ś	بور	r- 0	~ a	10	11	12	r	4 (*	- - 1	ŝ	9	L I	<i></i>	уĊ	8 1	12	1	~ ~	ক ব	
DATE	YEAR	1061	1951	1261	1051	1951	1951	1561	1951	1952	1952	1952	1952	1952	1057	1057	1952	1952	1952	1953	1053	1953	1953	1953	1953	1053	1953	1953	1953	1954	1054	1954	1954	1954	1954	1954	1054	1954	1954	1955	1955	1955 1955	

ċ

ш`.	-																																												
HISTORIC STAFF GAG		47.2	46.2	43.2	40.7	39.2	35.5	0.00	11.5	40.8	41.0	40.6	38.6	35.7	32.2	1.02	0 81	16.0	26.4	32.6	33.3	33.9	34.0	33.2	31.0	2,50	22.6	22.7	26.8	28.3		483	51.2	50.8	50.1	49.7	49.2	48.6	49.0	48.6	48.7	20.0 20.0	0.90	4.04	48.0
HISTORIC E.O.M.	(AF)	18804	115/10	14135	11706	10365	2001	11204	12428	11809	11913	11603	9849	7682		0407	1000	592	2930	5766	6148	6530	6594	6084	4875	7047	1789	1809	3079	3664	11800	20231	24243	23652	22618	22174	21434	20620	21139	20620	20749	122470	N1044	21730	19842
ADJUSTED STAFF GAGE	(FT)	65.4	0.00 64.4	64.1	63.5	63.2	03.U 67 8	6.20 6.23	63.6	63.2	63.1	62.9	62.3	61.7	1.10	502 202	60.1	59.9	60,8	62.0	62.0	. 62.0	61.8	61.2	0.10 4 15	. C 05	58.9	58.6	59.1	2.92	5.0	63.9	67.3	66.9	66.3	65.9	65.5	65.0	65.1	64.8	8	4.C0 7.57	2. 2. 2. 2. 2. 2.	64.8	64.3
DENVED SURFACE APEA	(VO)	2597.3	2540.4	2523.0	2492.7	2475.9	2405.9	1.0742	2497.7	2477.5	2471.9	2460.0	2431.8	2400.4	1.7167	5 0126	2312.2	2303.6	2353.3	2411.5	2412.8	2412.3	2401.5	2373.0	2340,8 2784 0	2267.5	2253.1	2239.4	2263.1	227/0.1	2450.1	2624.1	2696.2	2675.6	2644.2	2623.8	2599.1	2574.5	2578.4	2562.7	6.0922	7 909C	7501 9	2564.4	2535.2
ADJUSTED E.O.M. STOPAGE	(AF)	53272.8	50557.1	49739.5	48339.8	1.67.674	4/120.5	47730.6	48570.4	47647.9	47394.5	46856.7	45596.9	C/1754	43010.2	40772.7	40470.6	40116.5	42190.3	44699.0	44755.8	44737.6	44265.3	43036.4	41505 20214 4	38644.7	38068.4	37524.3	38468.7	41453.4	46409.4	54580.8	58196.2	57147.1	55578.2	54568.2	53363.5	52175.4	52363.7	51611.4 51525.0	5'07CTC	53776 6	53010.6	51692.9	50312.8
EST. EVAP. LOSSES	(AF)	1276 6	1466.1	1549.7	1286.7	1.792	246.6	221.3	223.1	499.5	619.4	988.8	1110 6	0.0141	1221 8	816.7	487.1	208.1	138.2	235.3	458.2	603.2	844.3	2'0671	13577	1050.7	748.3	473.2	201.5	204.3	327.0	563.5	1102.1	1294.2	1498.3	1586.5	1285.7	1013.7	540.6	87.42	0.002	544.4	782.0	1036.7	1436.1
ESTIMATED EVAP RATF	(FT/MONTH)	0.41	0.57	0.61	0.51	0.40	0.10	0.09	0.09	0.20	0.25	0.40	\$C.0	90.0	0.50	0.35	0.21	0.09	0.06	0.10	0.19	0.25	0.35		85.0	0.46	0.33	0.21	0.09	60'0	0.14	0.23	0.42	0.48	0.56	0.60	0.49	0.39	0.21	01.0	00'0 0 00	0.21	0.30	0.40	0.56
MUTUAL RELEASE	(AF)	00	0	•	0	5 0		0	ð	0	0	0 (• •	0	0	0	0	0	0	0 0	20		0	Ċ	0	•	0	0	0	0	0	0 (•	5 0	•	5 0	50		, c	0	0	0
MUTUAL DEMAND	(AF) 201	177	456	456	456	454	456	0	0	456	456	456	456	444	456	456	456	456	0	0	•	456	50F	420	456	456	456	456	178	ç F	0	0	o,	o (0 (⊃ ţ	4	107		3/4 155		, 42	457	456	456
BBMWD DEMAND (Snownke)	, (AF)	- -	0	0	00	175	38	125	125	0	0	0 0	> <		00	0	125	125	125	- 125	0	0 (5 6		0	0	0	125	82	125	0	0	0	0 <	0 ¢		•	0 Y	571	571 561	125] 0	0	0	0
FISH RELEASE	(AF)	5 6	74	74	5.5	. 5	2	74	66	74	12	15	20	7 2	÷.	31	30	31	31	28	31	30	15	2. 1.5	31	30	31	ខ្ល	31	58	31	30	18.5	18	18.5	18.5	10.5	C.81	10 5	2.61	14.5	18.5	18	31	30
SEASON DEFINITION FOR FISH	RELEASES	A P) 	dry	ţ	e e	Î	, ţ	, A	dry	dry .	norma	bornal bornal		norma	normal	normal	riormal	normal	normal	normal	norma	normal	normal	normal	normal	normal	normal	Dormal	normal	normal	normal	wet.	wet	wet	Tave I	Met.	Wet	Met.	tret	tret	wet	wet	normal	normal
CALCULATED UNIMPAIRED FLOW	(AF) 1 201	10541	37	806	(42) 107	325	123	1,353	1,254	(349)	437	725	ţÇ	175	(399)	265	340	10	2,368	2,897	546	615	405	917	(962)	411	203	3 8	1,302 600	3,059	5,314	8,765	4,736	263	(75)	ς έ	с (<u></u>	(0C1)	2/0	(100)	1 857	1,253	8.4	(250)	86
A ACCUMULATED PRECIPITATION (water year octseb)	(N)	24.83	26.83	29.60	29.60	3.21	5.79	17.98	20.05	20.05	24.14	18.02	C0.72	27.02	27.02	0.25	0.25	0.84	19.72	23.71	26.09	29.00	99.76 99.65	11 11	33.58	33.58	4.51	7.63	10.74	32.46	45,38	57.11	58.11	56.11	28.15	56.95 20.72	4/'/00	01.0 7 01	10.7	10.7	21.18	23,38	23.97	24.14	24.14
ECIPITATIO	(N)	0.00	1.95	2.77	0.00	3.21	2.58	12.19	2.07	0.00	4.09 2	1.6/	1010	000	0.00	0.25	0.00	0.59	18.88	3.99	2.38	2.91	00'9 86 0	0.43	0.27	0.00	4.51	3.12	9.11 2.10	12.62	12.92	11.73	1.00	0.0	0.04	0.78	1011	0.10	6 F	8. 8	17 55	0.0	0.59	0.17	0.00
PR	MONTH	n vo	•	a0 (οġ	8 =	12	1	6	en .	4.0	n v		. or	, 6 ,	10		12	1	(1	ŝ	4.	n v) r	- 20	6	10	Ξ÷	12	- 61	¢ħ	4	Ś	0 9	~ 0	• •	γč	01	: :	7 -	• •	1 01	4	ŝ	6
DATE	VEAR	1955	1955	1955	1955	1955	1955	1956	1956	1956	1956	0061	1956	1956	1956	1926	1956	1956	1957	1957	1957	1961	1061	1951	1957	1957	1957	1957	1021	1958	1958	1958	1958	8661	8661	9061	0041	1050	0061	1050	1050	1959	1959	1959	1959

÷

đ

HISTORIC STAFF GAGE ELEVATION	(FT) 46.1	44.1	42.2	41.3 411	40.8	41,4	42.0	43.6 43.7	1.04	42.4	40.7	37.5	34.2	33.7	53.0	11.5	32.1	31.7	31.6	30.6	212	24:0 21 0	18.9	16.8	15.6	16.9	18.2	13.7	39.2	39,9	39.2	36.0	34.8	34.0	33.6	33.6	33.8	34.1		34.7	33.6	30.3 26.9	
HISTORIC E.O.M. STORAGE	(AF) 17377	15044	13151	12016	11809	12325	12944	14525	15175	13358	11706	9023	6721	6402	6050 6024	6084	5447	5257	5193	4683	3258	1617	0001	693	540	700	2664	6402	10365	10984	10365	7888	7102	6594	6338	6338	6465	1500	7166	7039	6338	4557 3109	
ADJUSTED STAFF GAGE ELEVATION	(FT) 63.9	63.3	62.7	5.20 4 7 A	62.3	62.5	62.6	63.2 63.2	100	62.5	62.2	61.3	60.6 20.5	60.7	60.6 20.4	5004 60.4	60.2	60.0	59.8	59.2 22 2	583	1.10	56.5	56.2	55.9	55.8	55.7 57.0	58.7	59.9	60,0	5.95 5 8 8		57.6	57.2	57.0	56,8	56.8	1.00	1.92	56.4	55.7	54.6 54.2	! •
DERIVED SURFACE AREA	(AC) 2512.8	2481.1	2452.8	2441.1	2431.5	2438.1	2446.7	2476.3	2478.2	2442.2	2422.8	2379.9	2341.4	2344.7	2339.4	7331.8	2317.7	2308.0	2296.6	2270.4	2222.6	2156.5	2129.2	2112.7	2097.6	2091.6	2087.4	1717	2305.9	2310.9	2282.6	2240.0	2186.6	2165.9	2152.5	2146.5	2143.7	2141.3	21413	2123.3	2089.6	2033.6 2013.2	
ADJUSTED E.O.M. STORAGE	(AF) 49268.3	47809.6	46531.7	45001/.5	45580.5	45875.6	46256.6	47593.8 47604 A	47681.0	46059.2	45197.3	43326.8	41691.1	41829.2	41003.9	41286.7	40696.8	40296.5	39826.3	38760.6	36860.6	1.02000	33301.6	32697.4	32144.7	31930.0	31777.6	3,6657.6	40212.4	40416.6	39256.2	36120.0	35466.1	34677.7	34171.2	33947.4	33841.7	33750.9	7 13755	33084.0	31858,8	29173.3	1
EST. EVAP. LOSSES	(AF) 1622.5	1507.7	1190.9	1.189	243.7	145.9	195.0	513.8 KN2 A	1015.4	1387.8	1440.9	1429.5	1213.7	842.9	2.42C	186.4	256.5	440,4	623.2	895.7	1226.0	0.5551	1013.4	745.2	443.7	138.3	167.3	122.0	665.2	876.3	1155.4	1370.6	1104.6	830.9	541.5	215.3	150.3	257.2	513 2	920.8	1019.2	1212.0	
ESTIMATED EVAP RATE	(FT/MONTH) 0.64	0.60	0.48	0.40	0.10	0.06	0.08	0.21	0.40	0.56	0.59	0,59	0.51	0.36	0.23	0.08	0.11	0.19	0.27	0.39	0.54	0.50	0.47	0.35	0.21	0.09	0.08	0.15	0.30	0.38	0.50	85.0 0.61	0.50	0.38	0.25	0.10	0.07	0.12	01'N	0.43	0.48	0.58 0.58	2
MUTUAL RELEASE	(AF)	0	0	00	0	0	0	00		0	0	0	с [,]	0	- C			. 0	0	0	0 (• •	0	0	00	• =	ò	0		, c	0	0	0	0	0				0	00	,
MUTUAL DEMAND	(AF) 456	456	456	456 456	456	0	0	219	40k	456	456	456	456	456	456	456	456	456	456	456	456	450 751	456	456	456	0	456		0	0	456	400 741	456	456	456	456	456	456	904	456	456	456	, ,
BBMWD DEMAND (Snownkg)	(AF) 0	• •	0	0 22	125	125	125	0		00	0	0	0	0	125	271	125	0	0	0	0	.		0	125	125	125	(7] U		0	0 0		0	0	125	125	125	125	00		, O	00	;
FISH RELEASE	(AF) 31	5 16	30	31	31	31	28	31	00	1.6	31	31	30	31	30	<u>,</u>	28	16	30	74	11	4 1	, t 71	74	11	74	44	87	12	18.5	18	C.61 2.91	18	18.5	18	18.5	18.5	16.5 18.5	0.61	01 74	11	74	ŗ
SEASON DEFINITION FOR FISH	RELEASES	normal	normal	normal	normal	normai	normal	normal	normal	normal	normal	pormal	normal	normal	nomial	normal	normal	normal	normal	dry	dry	Ę.	j.) L	dry	đry	dry	tin tin	ĴĴ	wet	wet	wet	wet	wet	wel	wet	wet	wet	wet	wet drav	- -	τp tr	Ť.
CALCULATED UNIMPAIRED FLOW	(AF) 600	80	(22)	488	141	597	729	1,882	1 1 2 2	1,125 (204)	610	(410)	(392)	1,012	469	(75) 100	(180)	1	183	(96)	(603)	C 7	07. [.	215	87	173	214	2,190	4.291	1,099	13	(16)	249	61	178	135	188	308	905	1020	(135)	(868) (855	400
ACCUMULATED PRECIPITATION (water year octsep)	(N)	24.89	26.04	0.46	06.6	9.07	14.57	16.69	21.85	27,12 21,22	22.20	22.23	22.51	1.86	8.16	26.8	11.40	14.46	14.46	14.69	14.69	14,81	16.09 16.60	0.00	5.14	10.41	17.33	20.02	39.01	41.04	41.21	41.74	47.14	0.56	0.75	0.96	1.73	1.73	7.89	17.21	12.77	12.77	14.27
ECIPITATION	(NI)	0.55	1.15	0.46	0.74	6,17	5.50	2.12	5.14 0.22	0.00	0.05	0.03	0.28	1.86	6.30	800	607 700	55	0.0	0.23	0.00	0.12	0.00 0.00	000	5.14	5.27	6.92	10.30	0.00	2.03	0.17	0.53	0.40	0.56	0.19	0.21	0.77	0.00	6.16	4.88	0.00	0.00	1.40
Ж	MONTH	~ ~	0	9 :	15	1	7	с л.	4.	n v	~ r	- 90	6	10	= 1	7	- r	4 14	ণ ৰ	،5	Ś	r •	×c	¢ []	11	12			n 4	, w	9	r .	~ 0	0	=	12	1	5	~1 ~	4 4	<u>م</u> ر	1.0	•
DATE	YEAR	1950	1959	1959	1050	1960	1960	1960	1960	1060	1960	1960	1960	1960	1960	1960	1061	1061	1961	1961	1961	1961	1961	1961	1961	1961	1962	1962	1961	1962	1962	1962	7061	1962	1962	1962	1963	1963	1963	1963	1963	1963	2071

Ċ.

÷

DIVIDION PROPOSED ALTERNATIVE

HISTORIC STAFF GAGE ELEVATION	ET)	25.3	25.9	26.1	26.7	28.9	33.4	34.3	34.0	1.26	26.4	24.9	25.3	26.0	27.3	27.7	35.5	36.7	35.8	35.1	1.00 1.00 1.00	1.65	43.2	46.8	47.8	48.8	50.5	50.7	50.0	49.4	48.7	40.0	47.8	56.0	56.4	57.0	0.80	4.40 2.13	61.5	61.1	60.9	60.6 60.2	
HISTORIC E.O.M. STORAGE	(AF)	2572	2751	2812	3049	3920	6212	6784	460	5447 4307	2930	2423	2542	18/2	3258	3410	1579	8404	7785	7269	60/9	6020 6020	14135	18286	19583	20879	20022	23504	22470	21730	20/49	19455	19583	32453	33151	34198	06795	87T/14	43664	42867	42270	41 <i>6</i> 72 40875	
ADJUSTED STAFF GAGE ELEVATION	(FT) \$3.	53.4	53,1	52.9	52.7	53.0	54.2	54.3		0.60	51.2	50.8	50.5	5.05 5.05	50.4	50.3	52.8	53.1	52.5	51.8	91.4 60.5	2.02	55.2	57.3	57.9	58.5	1.90	59.4	58.8	58.2	0.10	56.6	56.6	62.6	62.8	63.1	0.40 K A	4 (0 1 2 2	66,6	66.3	62.9	65.6 65.3	
DERIVED SURFACE AREA	(AC) 1003 A	1970.8	1959.2	1950.1	1938.0	1954.7	2012.0	2015.5	2.944.5	2.7661	1864.1	1842.2	1830.7	1828.7	1825.7	1821.4	1945.2	1958.9	1926.6	1893.8	C.1/01	1827.1	2065.1	2172.6	2201.3	2229.5	D.CK22	2280.5	2247.0	2218.7	2154.5	2136.3	2132.2	2443.3	2454.9	2474.0	471CZ	10202	2661.2	2640.4	2623.5	2607.4 2590.6	
ADJUSTED E.O.M. STORAGE	(AF) 78485 7	27739.4	27355.1	27058.2	26660.3	27206.8	29131.7	29250.9	5,82682	27122-8	24320.8	23649.9	23303.0	1172241.0	23153.7	23023.1	26896.7	27347.2	26292.9	25247.2	23005.0	23194.8	30982.7	34928.8	36030.8	37130.7	39/02.2	39172.2	37823.1	36707.7	4.1/606 3.0F145	33567.0	33415.2	46108.1	46625.7	47487.2	49481.2 52770 2	5,64163	56426.2	55386.9	54551.1	53767.4 52947.9	
EST. EVAP. Losses	(AF) 1006 6	757.3	453.3	195,9	175.4	329.5	469.1	804.8	0'/0K	1171.3	936.6	782.9	386.9	185.1	183.0	328.6	455.3	797.5	940.3	1136.7	860.0	777.2	475.0	185.9	152.1	176.1	688.5	1033.9	1277.1	1527.9	1125 0	861.1	576.8	234.5	219.9	270.0	C.41C	1000	1359.2	1729.8	1716.2	1311.7 1043.0	
ESTIMATED EVAP RATE	(FT/MONTH)	0.38	0.23	0.10	0.0	0.17	0.24	0.40	0.42 0.61	0.60	0.49	0.42	0.21	01.0	0.10	0.18	0.25	0.41	0.48	0.59	0.00	0.42	0.26	0.09	0.07	0.08	77'N	0.45	0.56	0.68	20.7 20.50	0.40	0.27	0.11	0.09	0.11	17.0	77.0 77.0	0.51	0.65	0.65	0.50	
MUTUAL RELEASE	(AF) 0	• •	0	00	0	0	0	0		00	0	0	0 0		0	o	¢	0	0			0	0	0	0	00		, O	0	0		• •	0	0	0	•	> c		0	0	0	00	
MUTUAL DEMAND	(AF) 456	456	456	456	456	456	0	338	954	456	456	456	456	456	456	456	0	0	456	456	456	456	0	0	0	00		. 0	164	456	456	436	456	0	0	0 0		• •	0	0	0	00	
BBMWD DEMAND (Snowmkg)	(AF)	òc	125	125	3 23	0	0	00		00	0	0	125	C71 132	125	0	0	0	0	50		0	125	125	125	125		0	0	00		0 0	125	125	125	125			0	0	0	00	
FISH RELEASE	(AF) 71	14	11	74	5	74	11	31	00 12		30	31	8	15	28	31	30	31	R :	15	5	31	30	31	31	28	1.05	18.5	18	18.5	10.5	18.5	18	18.5	18.5	16.5	10.5	18 5	18	18.5	18.5	18.5	
SEASON DEFINITION FOR FISH	RELEASES	ĵ	dry.	j j	j j	đđy L	đry	normal	normal	normal	normal	normal	normal	normal	normal	normal	normal	nomal	normal	norma	Tormal	normal	normal	normal	normal	normal	normal	wet	wet	wet	wet	wet	wet	wet	wet	wet	Tert	war	wet	wet	wet	wet wet	
CALCULATED UNIMPAIRED FLOW	(AF) 300	ç 28	265	86 700	1	950	2,465	955 205	567		(519)	143	195	117	221	229	4,359	1,279	(8	122	246	86	8,418	4,288	1,410	1,429	5,125 828	353	(54)	431		52 1	568	13,071	881	1,273	2,235 A 210	436,4	1,187	709	668	546 242	
I ACCUMULATED PRECIPITATION (water year octsep)	(IN) 19.40	1.41	6,49	7.55	12.86	18.26	21.62	24.14	-24, J4 -25, 50	25.85	26.08	0.62	5.20	7.08	8.54	10.60	26.33	26.33	26.37	27.74	10.67	0.13	27.00	39.03	40.92	44.59	46.43	46.51	46.51	46.51	40.84	0.50	3.63	26.03	35.27	35.27	1624	17.00	56.94	56.99	58.48	60.18 0.00	
ECIPITATION	(II)	1.41	5.08	1.06	0.51	5.40	3.36	2.52	0.00	0.26	0.23	0.62	4.58	0.00	1.46	2.06	15.73	0.00	0.04	1.37	1.65	0.13	26.87	12.03	1.89	3.67	1.70 0.14	0.08	0.0	0.0	65.0 144 0	0.50	3,13	22.40	9.24	0.00	06.7 62.61	13.04	0.06	0.05	1.49	1.70 0.00	
äd	MONTH	10	II	51 - 21 -	- 0	۱ m	4	γn V	• •	∽ o≮	. 0	10	= :	21 -	- 6	i m	4	s	νo ι	- 0		× 0	11	12	1	c4 i	গৰ	r **)	6	r (~ ~	¢ 5	11	12		61 4	* *	tv	- vo	7	\$	e 6	
DATE	YEAR	1961	1963	1963	1964	1964	1964	1964	1961	1964	1964	1964	1964	1065	1965	1965	1965	1965	1965	1965	1045	1965	1965	1965	1966	1966	0061 2001	1966	1966	1966	1966	1966	1966	1966	1967	1967	1961	1061	1961	1967	1967	1961 1967	

^-

,

â

HISTORIC STAFF GAGE ELEVATION	(FT)	- 00.4 61.0	61.2	61.8 62.3	62.5	62.3	61.8	613	60.9	60.1 50.5	20.5	59.7	61.9	69.0	70.0	72.0	0.2.0	6.1.4 6.1.5	11.0	69.7	69.1	1.69	69.1 :	69.1 20 -	1.40	69.7	69.4	69.0	68.7	1.00	67.8	68.0	68.5	68.6	68.7	68.7	08.7	000	100	67.3	66.7	66.6	66.6 68.7	
HISTORIC E.O.M. STODAGE	(AF)	42469	42967	45408	46054	45457	44262	43266	42270	40476 30606	39606	39280	60011	62959	66080	72167	/917/	21617	60123	65065	63381	63381	63381	63381	19550	65065	64223	63170	62117	11170	59590	60221	61485	61906	62117	62327	62117	01020	20200	58115	56641	56220	56220 62117	
ADJUSTED STAFF GAGE FI EVATION	(FT)	65.8	65.9 22	66.8 66.8	67.0	66.7	66.2	65.9	65.4	64.8 64.5	64.4	64.4	71.5	72.3	72.3	72.3	5.27	C.71	216	71.17	70.9	70.9	71.0	71.0	1.17	21.6	71.3	70.7	69.9 60.6	C.40	6.19	68.0	68.4	68.5	68.5	6.80 . 80	00.4 7 0 7	00.7 878	67.4	66.9	66.4	66.2	66.2 68.3	
DERIVED SURFACE ARFA	(AC)	2617.1	2623.8	2667.8	2678.8	2663.9	2638.8	2619.0	4.0402	2504.0	2541.5	2541.3	2928.4	2973.0	2973.0	2973.0	0,6722	1073.0	2934.0	2905.4	2893.2	2894.7	2896.7	2899.9	2302.2	2930.7	2914.1	2883.2	2839.7	1.0102	2729.3	2737.5	2757.8	2762.0	2762.3	2/64.9	C.2012	77261	2704.8	2678.0	2648.8	2639.9	2636.6 2749.4	
ADJUSTED E.O.M. STORAGE	(AF)	54238.3	54567.4	56757.5	57312.6	56560.3	\$\$306.7	54332.5	6105750	50841.5	50607.8	50598.1	70746.4	73320.0	73320.0	73320.0	0.02651	73320.0	71064.5	69439.9	68750.4	68835.1	68949.1	69129.9 60350.5	\$ 16006	70875.0	69931.1	68193.8	65784.0	622071	59898.5	60324.9	61388.5	61608.9	61626.7	9'09/19	1.0/4/0	50730 S	58632.8	57271.9	55805.1	55361.0	55200.4 60945.5	
EST. EVAP. LOSSES	(AF) 600 5	207.7	209.4	529.3	667.0	1098.3	1438.5	1583.3	1400.0	1000.2	636.6	228.7	228.7	234.3	475.7	1.208	1516.7	1783 8	1873.0	1525.7	1045.9	723.3	289.5	260.7	551 4	703.6	1230.9	1515.3	1738.8	13617	1081.6	709.6	246.4	220.6	276.2	1.080	2.04/	1401 0	1635.6	1677.0	1365.8	927.1	633.6 210.9	
ESTIMATED EVAP RATE	(FT/MONTH)	0.08	0.08	0.20	0.25	0.41	0.54	0.60	05.0	0.39	0.25	0'0	0.09	0.08	0.16	17:0	750	0.60	0.63	0.52	0.36	0.25	0.10	0.0	0.10	0.24	0.42	0.52	0.61	0.48	0.39	0.26	0.09	0.08	0.10	17.0	17.0	0.51	0.60	0.62	0.51	0.35	0.24 0.08	
MUTUAL RELEASE	(AF) 0	0	00	0	0	0	0	00		00	0	0	0	0	0	- c	0 0	• •	0	0	0	0 (•		> c	0	0	563	1206	016	945	0	0	0			102	0	0	0	0	0	00	
MUTUAL DEMAND	(AF) 0	0	00	9 0	0	0	374	963	4101 7071	1121	775	756	0	0	0		> c	• •	. 0	0	0	0	• •	00	> c	0	0	563	1206	010	945	ο,	0	0 (20	- <	101	828	1319	1442	1470	1269	857 0	
BBMWD DEMAND Snowmkg)	(AF) 175	125	125	90	0	0	0	00			125	125	125	125	0			òc	• •	0	0	125	125	CZ1 751	0	• •	0	0 0		> c	0	125	125	125	8			òo	0	0	0	0	125 125	
HSH RELEASE	(AF) 1%	18.5	18.5	18.5	18	31	30	F 5	102	R E	30	31	31	28	51	00 2 8 1	19.1	18.5	18.5	18	18.5	18	18.5	16.5	18.5	18	74	12	74	12	74	12	74	74	87	ŧ F	1.5	30	31	31	30	31	30 31	
SEASON DEFINITION FOR FISH	RELEASES	wet	wet	wet	wet	normal	nomial	norma]	10111011	normal	normal	normal	normal	normal	normal	normal	w.c.	wet	wet	wet	wet	wet	wet	wet	wet	wet	dry	dry	γ ρ γ	A P	r Ş	dry	dry.	ζį.		6 į	ury normal	normal	normal	normal	normal	normal	normal normal	
CALCULATED UNIMPAIRED FLOW	(AF) 1.106	1,378	682 1 551	1,617	1,240	377	215	640 306	040	(102)	558	375	20,533	8,441	019.0	7 300	1 969	1.910	(364)	(81)	375	951	747	195	2.232	675	361	412	629 1 676	48	(208)	1,332	1,509	640	C64 997	600 523	163	337	569	347	(11)	514	628 6,112	
A ACCUMULATED PRECIPITATION (water year oct.seb)	(IN) 7.88	10,80	13.84 16.20	19.44	21.62	21.80	21.80	22.36	24.42	0.28	0.28	3.90	44.70	74.35	18.20	80.40 80.10	83 10	85.77	85.80	86.55	0.11	3.04	5.40 6 07	7.01	15,39	18.16	18.26	18.31	18.5U 20 15	20.15	0.02	16.28	16.28	17.80	19.28	51.02	24.48	24,48	25.00	25,55	25.55	3.85	5.14 27.46	
ECIPITATION	(IN) 7.88	2.92	3.04 2.46	3.14	2.18	0.18 $\hat{0}.\hat{1}\hat{0}$	0.00	0.56	100	0.28	0.00	3.62	40.80	29,65	C8.4	07.7		2.67	0.03	0,75	0.11	2.93	0.24 0.70	70 04	8.38	2.77	0.10	0.05	0.19	0.00	0.02	16.26	0.0	1.52	1.48 0.85	6°0	242	0.00	0.52	0.55	0.00	3.85	1.29 22.32	
PR	MONTH 11	12		4 m	4	ŝ	¢,	. 8		10	11	12		ci 1	n 1	v t	n ve		×	6	9	= :	71	- 6	1	ব	ν,	ن ب	- 04	. 0	10	11	12	н (•	t 4	o vo	-	×	6	10	11 21	
DATE	YEAR 1967	1961	1968	1968	1968	1968	1968	1968	1068	1968	1968	1968	1969	1969	1000	1060	1060	1969	1969	1969	1969	696]	1070	10/61	1970	1970	0261	1970	0/61	1070	1970	1970	1970	141	1/71	1/21	10.61	161	1971	161	1971	1701	1791 1791	

æ

0

÷

STORIC AFF GAGE EVATION	(E) (8)	68.6 68.6	68.5	68.2	63.0 67.6	6.99	63.9	65.1	64.7	64.9	65.4 65.4		67.4	69.3	70.3	69.8	69.3	68.8	68.2	919	67.6	68.3	68.5	69.2	5.69	7.60	61.6	66.8	88.1		5.59	65.8	63.9	66.1	66.6	0.00		1.53	62.7	61.9	61.5	61.5	609	1.19
HI STA																																			_	_							_	
HISTORIC E.O.M. STORAGE	(AF) 67117	61906	61696	60853	60221 60168	57062	54535	52428	51234	51831	53060	#7C#C	58536	64012	67094	65573	64012	62538	60853	00146	58958	61064	61696	63802	64433	38719	59168	56851	54956	53692	53692	54114	54535	54956	56220	26430	F1040	45843	46452	44661	43664	43664	42270	42867
ADJUSTED STAFF GAGE ELEVATION	(FT) 68,	68.1	68.0	61.7	67.4 67.1	01.10 66.4	66.0	65.6	65.2	65.4	65.8	7.00	00.0 61.1	69.6	70.6	70.1	69.5	69.0	88.5 2.89	680	67.8	68.5	68.7	69.4	69.69 26 5	5.90 7.92	67.7	67.2	66.9	60.8 V	60.0 66.0	67.0	67.1	67.2	67.6	1.10	770	e ya	C.90	65.8	65.8	65.7	65.5	65.7
DERIVED SURFACE AREA	(AC) 7746.4	2739.4	2734.8	2717.9	2705.0	0.0002	2626,4	2603.9	2586.1	2594.9	2616.8	7.6502	7.1817C	2821.6	2877.1	2848.8	2815.7	2789.8	2760.9	2.0612	2725 4	2762.7	2771.7	2810.4	2821.4	2808.4	2716.8	2693.5	2678.1	2672.7	2629.6	2679.4	2684.6	2691.9	2715.5	2718.2	676907	2643.8	1 0 0 9 0	2618.7	2614.1	2612.9	2597.5	2608.6
ADJUSTED E.O.M. STORAGE	(AF) 60780 6	60425.4	60184.4	59309.6	58644.3	1.45515	54697.8	53592.8	52730.4	53156.5	54224.0	8.125CC	50435.5	64795.2	67849.7	66283.1	64480.4	63084.2	61549.2	C 99005	59696.6	61644.5	62120.3	64192.9	64789.0	04081.8 61766 7	59251.8	58055.1	57275.6	57001.5	56343.1	57343.8	57602.6	57975,3	59183.6	59323.4	5/8/4.2	C./000C	7.008PS	5421245	54094.4	54035.0	53284.9	53825.1
EST. EVAP. LOSSES	(AF)	302.1	630.1	765.7	1114.3	1600 7	1562.3	1287.0	937.4	568.9	233.5	183.2	C.162	706.8	1241.5	1553.6	1737.8	1633.1	1367.0	1104.3 2 CO 7	300.6	218.0	276.3	554.3	786.9	1213.2	1631.3	1575.7	1427.5	1098.0	541.4	213.9	241.2	456.4	780.6	1086.2	1386.3	15463	C.04C1	1075.4	680.9	261.4	235.2	259.8
ESTIMATED EVAP RATE	(FT/MONTH)	0.11	0.23	0.28	0.41	0.51	0.59	0.49	0.36	0.22	0.09	0.07	0.0	0.26	0,44	0,54	0.61	0.58	0.49	0.40	110	0.08	0.10	0.20	0.28	0.43	050	0.58	0.53	0.41	0.24	0.08	0.09	0.17	0.29	0.40	0.51	10'0	0.70	050	0.26	0.10	0.09	0.10
MUTUAL RELEASE	(AF)	- c	0	0	0	50	0	0	0	0	0	0 0	0		0	0	186	276	400	417	• c	• •	0	0	0	0	14061	0	0	0	0	2	0	0	0	0	0				, c	, o	0	0
MUTUAL DEMAND	(AF) ,	181	484	637	1019	1955	1983	1985	1334	518	0	0	- c			0	186	276	400	417			0	0	0	0.0	198	1329	1348	1234	724	663	0	0	0	•	1041	68/1	5952 5510	1550	1317	884	456	0
BBMWD DEMAND Snowmkg)	(AF) 105	C71 221	90	Ð	0 (00	00	0	0	125	125	125	125		, o	0	0	0	0	0 20	21	12	125	0	0	0 ·	00	0	0	0	125	125	121	0	0	0	0	0 0			175	125	125	125
HSH RELEASE	(AF)	51	31	30	31	8 ;	7 F	6	31	30	15	31	28	10	₹ ₽	8	31	31	30	31	96	. 31	28	31	30	31	8.5	7 E	30	31	83	16	28	31	30	31	30	E i	16	0 5	10	3 5	5 E	28
SEASON DEFINITION FOR FISH	RELEASES	normal	normal	normal	normal	normal	normal	normal	normal	normal	normal	notmal	normal		normal	normal	normai	normal	normal	normal	normal	ioninal anomal	normal	normal	normal	normal	normal	normal	normal	nomal	normal	normal	normal	norma	normal	normal	normal	normal	normal	norma	Dormal	nomai	normal	normal
CALCULATED UNIMPAIRED FLOW	(AF)	220	420	(6L)	480	320	(1) \$20	210	106	1,150	1,457	1,443	1,496	2,244 7 1 0 5	COLO	11	152	544	262	୍ରା	55 2	00 7 1 1 1	506	2,658	1,413	537	150	410	678	855	138	(, 139 627	170	860	2,019	1,257	(33)	465	469	649	44C	510 258	(359)	953
ACCUMULATED PRECIPITATION (water vear octsep)	(II)	27.46	21,04	28.65	29.38	29.84	29.84 20.10	10105	1.29	7.85	7.85	14.28	26.38	70.12	20.90	38.05	38,05	38.64	38.64	0.00	4.42	00.54	17 05	25.48	26.63	27.02	27.02	21.51	29.26	3.12	3.84	9.72	11.40	77 67	27.61	28.01	28.01	28.01	28.01	28.44 8.20	0.79	5.89	4.44	16.48
RECIPITATION	(NI)	0.00	0.00	1.01	0.73	0.46	0.00	000	1.29	6.56	0.00	6.43	12.10	11.14	0.00	000	0.00	0.59	0.00	0.00	4.42	11 SE	50.0	7,53	1.15	0.39	0.00	0.29	0.70	3.12	0.72	5.88	1. /4 2 1 2	8 U3	4.99	0.40	0.00	0.00	0.00	0.43	0.79	3.10	600 00.0	12.04
£	MONTH	- •		14	\$	Ŷ	r- 0	~ ~	01	1	12	1	7	×0.	4 4	n v		. 90	. 0	10	= ;	71 *	-	4 m	। प	Š	v v		, o	10	11	12 ·		4 6	া বা	Ś	6	1	90	0	10	= 5	71 -	• 61
DATE	YEAR	1972	1972	1072	1972	1972	1972	7/63	1972	1972	1972	1973	1973	1973	5/61	1072	1973	101	1973	1973	1973	5161	1974	1974	1974	1974	1974	1974	1074	1974	1974	1974	5701	2701	1075	1975	1975	1975	1975	5791	1975	1975	1976	1976

თ

.,**P**

HISTORIC STAFF GAGE	(FT)	62.3	61.8 40.7	59.6	58.5	58.7	585	58.0	58.2	58.2	58.2	58.4	58.1	57.3	56.6 26.0	2.00	553	265	58.5	61.7	6,69	+ C 02	69.7	69.2	68.6 20 4	67.0	68.1	68.4	69.0	1.00	72.0	72.0	71.5	202	10.0	69.5	69.3	69.3	69.8	70.1	72.0
HISTORIC E.O.M. STOPACH	ACTER (AF) ACTER	45457	44262	39606	37162	37686	36639	36290	36559	36359	36559	36925	36421	34771	33547	11635	31024	33377	37292	44222	57044	66544	65126	63766	61962	00009	60457	61380	63009 67744	51995	72236	72113	70648	1/969	0/2/0 66208	64653	64062	63944	65362	66308 71860	72358
ADJUSTED STAFF GAGE EI EVATION	FLEVALIUN (FT) KK 5	666.6	66.2 65.7	65.3	64.9	2.00	64.7	64.6	64.8	64.7 KA 7	64.6 64.6	64.7	64,4 	63.6	03.I 62 6	62.3	61.8	62.7	64.3	66.8 31 8	11.2	72.3	71.9	71.4	70.8	70.1	70.3	70.8	6.17 7 7 7	72.3	72.3	72.3	6.LT 2.15	01/	211	70.7	70.5	70.4	72.2	72.3	72.3
DERIVED SURFACE APEA	AC) 2655 4	2657.3	2637.3 2610 4	2587.1	2568.4	2564.5	2559.5	2553.7	2561.4	0.9556	2554.0	2557.4	2541.1	2201,0	2445.4	2428.0	2405.3	2452.9	2533.3	2671.5	2009.4	2973.0	2946.7	2921.4	2887.8	2849.8	2858.2	2886.9	2,02,02	2973.0	2973.0	2973.0	2947.1	9,6767 9010 8	2900.9	2883.7	2870.3	2865.5	2967.5	2973.0	2973.0
ADJUSTED E.O.M. STOPAGE	(AF) (AF) S6135.6	\$6229.1	53910.5	52781.4	51884.6	51698.0	51457.3	51186.3	51550.0	51236.2	51196.8	51359.9	50587.4	48/22.0	46201.0	45427.4	44430.2	46537.5	50224.8	56940,4 60663 4	73320.0	73320.0	71798.3	70347.7	68447.8 67704.0	66338.4	66803.9	68401.2	72829.8	73320.0	73320.0	73320.0	70805.0	60743.1	69185.5	68220.1	67471.2	67204.0	72998.6	73320.0	73320.0
EST. EVAP. LOSSES	. (AF) 469.6	690.4	1345.0	1540.1	1448.8	1007.7	666.8	255.9	204.3	435.0	741.5	893.9	1355.4	1/91.4	1236.3	1002.6	801.2	288.6	220.8	253.3 561 0	201.0	1218.9	2229.7	1768.0	1381.4	1438.0	655.5	257.2	263.3	533.6	802.7	1248.7	1.0101	1/20.0	1513.6	1203.9	720.9	315.7	257.9	535.1	832.4
ESTIMATED EVAP RATE	(FT/MONTH) 0.18	0.26	0.51	0.59	0.56	0.39	0.26	0.10	0.08	0.17	0.29	0.35	0.53	0.71	0.50	0.41	0.33	0.12	0.09	01.0	0.25	0.41	0.75	0.60	0.50	0.50	0.23	60 fo	60'0	0.18	0.27	0.42	50.0 03.0	0.58	0.52	0.42	0.25	0.11	0.09	0.18	0.28
MUTUAL RELEASE	(AF) 0	00	00	0	00) o	0	0	00	> 0	0	0	0			. 0	0	0	0		0	0	0	00		0	0	.	00	0	0	0	- c		0	0	0	0	50	>0	, 0
MUTUAL DEMAND	(AF) 0	146 904	800 1620	456	456	456	456	456	00	0	c	0	456	456	456	456	456	0	0		0	0	0	00	00	0	0	50	0	0	0	0			0	0	0	0	50	00	0
BBMWD DFMAND (Snewnke)	(AF) 0	00	00	0	0 c	00	125	125	12 21	90	0	0	00		0	0	125	125	125	C71	0 C	0	0	0	00	0	125	C1 251	13 13	0	0	0,0		0	0	0	125	125	21 Y	0	0
FISH RELEASE	(AF) 31	30	3 7	31	31	31	30	31	31	9 ee	30	74	12	14	: F	74	11	74	14	00 14	5	18.5	18	C.81	C.81 81	18.5	18	0.81	16.5	18.5	18	18.5	18.5	18.5	18	18.5	18	18.5	C.81 16.5	18.5	18
SEASON DEFINITION FOR FISH	RELEASES normal	normal	normal	normal	normal normal	normal	nonnal	normal	normal normal	normal	normal	đry	dry Arv	j j	1÷	Ĵ,	dry	dry	È.	đr đ	년 (J	wet	wet	wet	wei wet	wet	wet	wer	wet	wet	wet	wet	wet	wet	wet	wet	wet	wet	Wet	wet	wet
CALCULATED UNIMPAIRED FLOW	(AF) 2,811	814	15	442	283	113	581	141	316	371	632	1,131	654 0	305	8	303	0	2,595	4,107	13.358	7,827	3,529	726	990 0	608	0	1,264	1,220	2,652	5,752	7,409	4,092	745	640	974	257	115	761	0,190 11 808	6,090	6,882
N ACCUMULATED (PRECIPITATION 1 (water year octsep)	(IN) 21.74	24.34 24.50	24.78	25.55	34.31	0.60	0.75	2.05	0.65	12.46	12.46	18.13	18.13	21.00	21.00	0.00	0.39	13.00	06.62	58.89	66.95	67.56	67.56 57 59	70703	69.67	0.31	7.92	21.13	30.96	41.26	41.26	41.76 41.76	42.00	43.14	43.37	2.31	2.31	92	77.42	58.52	61.29
RECIMTATIO	(IN) 5.26	2.60	0.19	11.0	6.76 8.76	0.60	0.15	1.30	0.53	3.08	0.00	5.67	0000	2.87	0.00	0.00	0.39	12.61	13.40	20.10	8.06	0.61	0.00	90.0	2.05	0.31	7.61	60 O	9.23	10.30	0.00	0.50	1.23	0.15	0.23	2.31	0.00	10.04 20.07	14.02	7.99	2.77
11	E B	4 V	e i	1 0	e 01	10	Ξ	51 -	- 7	1 673	4	Ś	01	- 00	0	10		12	- ~	4 60	4	ŝ	۰ د ر	~ 0	. 0	10	= \$	4 -	• 64		4,	~ ~		- 20	6	2	= :	7	- ~	1 54	4
ATE	EAR 1976	1976 1976	1976	1976	1976	1976	1976	1976	161	1977	1977	1971	1077	1977	1977	1977	1977	1977	1078	1978	1978	1978	8/61	1078	1978	1978	1978	1070	1979	1979	1979	1070	1979	1979	1979	1979	1979	1060	1980	1980	1980

Ō

¢

DIVIDION PROPOSED ALTERNATIVE

HISTORIC STAFF GAGE ELEVATION	(FI) 71.7	- 71.6	- 71.3	10.2	69.5	69.2	69.1	2.99	70.0	70.2	69.1	69.2	7 F	01.0	66.5	66.4	66.4	66.9	67.6	68.80 11	116	71.2	70.8	70.5	70.1	69.5 7.03	1.00	69.69	70.7	71.8		1.17	11.2	71.2	70.4	69.5	6.69	0.00		6,9	69.7	69.4	68.6
HISTORIC E.O.M. STORAGE	(AF) 71381	70892	51993 21792	00200 66544	64653	63707	63475	101/59	11099	66544	65126	63307	61380	51660	56145	55920	55695	S7269	59084	62544	12440	69725	68413	67558	66256	64565	6/700	64979	68137	71625	73231	12217	69861	69861	67116	64416	65629	64/US	1400	65835	65126	64133	62032
ADJUSTED STAFF GAGE ELEVATION	(FT) 72.3	72.2	71.9	71.2	71.0	70.6	70.5	70.5	71.3	71.4	70.9	70.3	69.2	7.80	673	69.1	67.0	67.5	68.1	69.3	017	71.6	1.17	70.8	70.3	70.0	2.0/	71.4	72.3	72.3	72.3	C.21	11.8	71.8	71.5	71,4	7.17	4.17	S.1.2	71.0	71.7	71.3	70.5
DERUVED SURFACE AREA	(AC) 2973.0	2966.6	2949.0	2910.8	2897.2	2877.6	2871.7	2873.5	2013.3	2921.2	2894.2	2858.4	2800.7	2743.9	7.61.7	2688.5	2680.3	2708.2	2739.7	2803.9	0.1262	2030.9	2907.0	2887.3	2861.1	2842.4	2853.2	2920.6	2973.0	2973.0	2973.0	7070.0	2044 0	2944.4	2927.4	2919.9	2938.9	2924.0	6.1067	2.0202	2937.6	2917.4	2870.0
ADJUSTED E.O.M. STORAGE	(AF) 73320.0	72945.8	71930.7	/U0033.7 69743.8	68979.1	67880.0	67552.2	67648.6	608883	70335.2	68809.4	66815.7	63668.2	60656.5	10/565 20102 7	57804 2	57388.1	58807.9	60438.9	63838.7	70665.0	70887.0	69530.2	68422.0	66963.5	65932.8	66525.3	70201.5	73320.0	73320.0	73320.0	73108 9	71604 5	71662.3	70687.3	70261.0	71347.3	70492.6	0,2002/	72025 2	71272.3	70120.1	67458.9
EST. EVAP. LOSSES	(AF) - 11000	1516.2	1809.6	1402.9	1135.2	956.1	345.3	267.1	C.105	839.0	1451.8	1649.7	1826.5	1761.6	1437.8	0.2011	301.1	201.0	273.5	476.7	720.6	1452 4	1738.0	1738.4	1426.3	1064.3	631.0	5.202 2.44 A	289.1	529.2	680.8	1204.1	5.01CI	1728.7	1551.7	1132.9	782.5	711.2	200.1	516.1	784.9	1398,3	1724.2
ESTIMATED EVAP RATE	(FT/MONTH)	0.51	0.61	0.60	0.39	0.33	0.12	0.09	0.11	0.29	0.50	0.57	0.64	0.63	0.52	140	0.11	0.08	0.10	0.17	0.26	0.40	0.59	0.60	0.49	0.37	0.22	20.0 80.0	0.10	0.18	0.23	0.41	10.0	05.0	0.53	0.39	0.27	0.24	60'0 	0.11	0.27	0.48	0.59
MUTUAL RELEASE	(AF) 0	0	0	0 ¢	0	0	0	.		> c	0	714	1247	1437	0	0	• c	. 0	0	0	0	ə c	• •	210	461	37	0		• •	0	•	0 (, o	0	0	0	0	00	» o	37	866
MUTUAL DEMAND	(AF)	0	0	00	0	0	0	0	•		0	714	1247	1437	1597	151	7 C	• =	0	0	0			210	461	37	0		- c	0	0	°,́			• c	0	0	0	c (> 0	37 37	866
BBMWD DEMAND (Snowmkg)	(AF)) 0	0	00	> c	125	125	125	123		00	0	0	0	0	0 1	22	125	125	0	0	00			0	0	125	125	3 E	0	0	0	0			0	125	125	125	125	> <	, 0	0
FISH RELEASE	(AF)	18	18.5	18.5	18.5	18	18.5	18.5	16.5	19.0	74	11	74	74	12	41.	10	41	3	74	2	31	9 F	7 F	30	31	30	15	16	31.5	30	18.5	18	2.61	1.01	18.5	18	18.5	18.5	16.5	0.01 81	74	11
SEASON DEFINITION FOR FISH	RELEASES	wei	wet	wet	Wel Turet	wet	wet	wet	wet	Wel	drv	Ĵ	ţı	đry	dry.	λų,	ç i			ţ	dry	nermal	norma	normal	normal	normal	normal	normal	normal	normal	normal	wet	wet	wet	Wet	and the second	wet	wet	wet	wet	Net.	dry) (j
CALCULATED UNIMPAIRED FLOW	(AF)	1 160	813	541 192	1/0	0	161	507	1,286	1961	t -	441	0	261	229	0	484	40 000 1	2.096	3,951	7,618	2,658	212	411 871	459	102	1,379	3,583	1,013	623	6,097	6,908	1,407	279	(T/1)	261	2.012	0	1,980	314	758	357	0
ACCUMULATED PRECIPITATION	(IN)	67.69 67 66	64.12	64.12	64.12 113	113	2.14	5.64	9.10	13.18	14,00	14.77	14.94	15.44	15.53	0.57	3.18	97.5 27.5	1911	30.07	32.47	33.06	33.26	34.04	36.40	1.75	10.53	16.05	24.26	92.91 AK AT	51.17	51.17	51.17	51.17	54.82	14.00	9.39	17.05	17.11	17.36	17.54	17.56	17.56
ECIPITATION	(N)	1.40	0.00 1.43	0.00	0.00	61.1	1.01	3.50	3.46	4.08	0.88	0.00	0.17	0.50	0.09	0.57	2.61	0.10	5.28 4.65	18.16	2.40	0.59	0.20	0.78	07.7	1.75	8.78	5.52	8.21	8./I	4.70	0.00	0.00	0.00	3.65	1.12	10 Y	7,66	0.06	0.25	0.18	0,02	0.00
ā	MONTH	n v	• •		σġ	2 =	15	- i	2	εŋ '	4 4	'nv	~	~ ~~	6	10	=	12		4 (*	. - 37	Ś	9	e- 0	×c	v 01	: 11	12		r4 +	04	Ś	9	٢	ю (av ĉ	11	12		7	ε.	4 4	v o
DATE	YEAR	1980	1980	1980	1980	0861	1080	1981	1981	1981	1981	1541	1081	1981	1981	1981	1981	1981	1082	1080	1982	1982	1982	1982	1982	1080	1982	1982	1983	1983	1083	1983	1983	1983	1983	1983	1082	1983	1984	1984	1984	1984	1984

.

4

(**1** - P

HISTORIC STAFF GAGE ELEVATION	(F1) 68.6	68.7	68.3	1.10	68.4	68.5	68.8	69.2 50 5	0.40	7.60	68.1	67.5	66.8	86.1	499 1	00	0.10	100	70.1	8.69	69.2	68.5	68.2	8.19	6.10 6.10	67.0	67.0	67.3	67.6	68.0	1.19	66.6	66.1	65.6	65.7	65.6	65.8	00.U	1.00	66.3	66.1	65.6	64.9	C.40
HISTORIC E.O.M. STORAGE	(AF) 61892	62171	60915 50405	50130	61194	61613	62590	63707	24540	00000 91134	60503	58718	56954	55073	55740	00000	90510	60970	66402	65409	63568	61613	60640	59542	58306	1441/0	57359	58306	59130	60091	59267	56280	54941	53748	54013	53616	54279	54808	14440	55605	54941	53748	51912	14/NC
ADJUSTED STAFF GAGE ELEVATION	(FT) 70.3	70.1	69.4	00.0 66 5	1.69	69.2	69.5	69.8 20.2	7.07	0.20	67.8	67.2	- 66.6	66.4	66.7	6.6	7.70	1.40	101	6.9	69.3	68.6	61.9	67.5	67.2	01.0	699	67.2	67.5	67.8	67.5	66.4	62.9	65.4	65.5	65.3	65.5	0'C0	9.00	6,8	65.6	65.1	64.4	63.9
DERUVED SURFACE AREA	(AC) 2859.6	2849.7	2808.9	1.0/17	5 967.6	2800.6	2815.9	2835.1	2854.4	5 012C	2725.0	2690.0	2661.3	2646.1	2663.4	2677.0	2691.7	6.44/1	6102	2840.5	2806.5	2765.3	2729.8	2708.4	2692.3	7.080.7	11107	2692.0	2707.9	2726.3	2709.2	2631.3	2619.8	2594.3	2598.8	2587.5	2598.8	2606.7	7.0002	0.552	2604.4	2579.8	2541.3	2516.3
ADJUSTED E.O.M. STORAGE	(AF) 66879.3	66336.1	64109.9	· 62352.7	5.12CLO	63663.7	64486.8	65530.7	66594.9	64897.4	59676 1	57879.3	56431.7	55671.7	56532.8	57218.8	57964.1	1.00550	2,60403.2	658384	63983,1	61783.3	59925.5	58819.0	57995.9	57407.5	2.06216	57980.5	58792.5	59744.5	58860.9	5/438.8	54373.8	53131.1	53347.3	52800.2	53349,4	53731.9	53703.7	1.62666	53618.8	52428.1	50596.4	49430.2
EST. EVAP. LOSSES	(AF) 1687.6	1687.2	1456.2	1011.2	4.110	209.7	268.9	518.1	861.9	1284.5	1680 0	1765.8	1417.6	1029.9	650.9	269.0	275.7	293.4	C.24C	801.4 1220.4	1741.2	1641.8	1733.9	1217.5	975.0	697.3	4.612	254.2	498.0	815.1	1090.5	1433.2	1570.3	1304.7	1037.7	634.1	232.9	223.5	1.172	1.620	1070.8	1351.7	1800.7	1494.3
ESTIMATED EVAP RATE	(FT/MONTH) 0.59	0.59	0.51	0.36	0.24	0.08	0.10	0.18	0.30	0.45	0.61	0.65	0.53	0.39	0.25	0.10	0.10	0.11	0.21	0.42	0.61	0.59	0.63	0.45	0.36	0.26	0.10	0,06	0.19	0.30	0.40	0.53	0.50	0.50	0.40	0.24	0.09	0.09	0.10	12. 1	0.41	0.52	0.70	0.59
MUTUAL RELEASE	(AF) 886	109	867	849	374		0	0	0	382	8621	4[C] C	0	0	0	0	0	0	0	-	14	527	862	0	0	0	00			0	0	0 (> <) a	0	0	0	0	0	• c	, o	0	0
MUTUAL DEMAND	(AF) 886	200	867	849	374) O	0	c	382	1258	41CI	1466	945	0	c	0	0	0	•	24	527	862	743	677	331	350			0	414	1369	1/00	1758	1306	292	0	0	0	0 °	2 5	1279	1910	1810
BBMWD DEMAND (Snowmkg)	(AF)	• c	0	0	125	221	125	0	0	0	0,	00		0	125	125	125	125	0	0		00		0	C	125	125	125	<u>,</u>	0	0	0	0 4		- c	125	221	125	125	0	20	> 0	, O	0
FISH RELEASE	(AF)	76	11	74	Ę	4 2	t S	74	11	31	30	1.	102	31	30	31	31	28	31	30	1.		7 F	30	31	30	31	31	52	30	74	11	74	4	1	t F	7	74	99	74		1.05	3 8	31
SEASON DEFINITION FOR FISH	RELEASES	dry	Ĵ	dry	dry	dry	ery		Γ. Γ	normal	normal	normal	normal	normal	normal	normal	normal	normal	normal	потпаl	normal	normal	LEUTION LEUTION	normal	normal	лотпаl	normal	normal	normal	normal	drv	dry.	đry	Ъ,		y fer	, P	ړ. لو	dry	dry	dry	normal	normal	normal
CALCULATED UNIMPAIRED FLOW	(AF)	2000	168	177	422	2,348	050	1.636	1,997	0	0	863		301	1.667	1111	1,177	5,838	3,721	1,231	236 °	5	0 740	141	183	264	252	276	1,249	145,1 1707 1	281	82	0	254	133	075'I	180	805	439	288	1,669	436	<u>7</u> 0	35 0
ACCUMULATED PRECIPITATION	(NI)	19.40	21.05	0.00	2.83	15.60	17.62	10.00	21.61	21.68	22.06	22.97	22.97	19.62	10.37	1413	19.07	31.20	38.41	38.41	38.41	38.41	39.29	06.34	0.00	2.40	4.00	5.59	8.25	21.21 22.21	14.01	14.01	14.50	14.67	14.95	2.12	200.2	17.90	19.25	20.25	25.75	26.23	26.24	28.89
ECIPITATION	(NI)	1.84	277	0.00	2.83	12.77	2.02	10.01	160	0.07	0.38	10.0	0.00	0.00	10.01	3.76	4.94	12.13	7.21	0.00	0.00	0.00	0.88	5.20	100	2.40	1.60	1.59	2.66	3.90	80'T	0.00	0.49	0.17	0.28	5.12	40.4	6 7 7	1.35	1.00	5.50	0.48	0.01	2.65
æ	MONTH	r (* 0	01	11	12		71 17	04	- v	9	7	~	ъ,	3:	1 5	1 -	• •	l en	4	۰ ۲	9	r .	× 0	, v 5	3 =	12	1	17		रा भ	n vo	4	90	0	9 :	= :	1		I €^)	4	\$	ю (~ 00
DATE	YEAR	1984	1064	1084	1984	1984	1985	1985	1045	1985	1985	1985	1985	C861	2001	0041	1086	1086	1986	1986	1986	1986	1986	1986	1084	1986	1986	1987	1987	1981	1861	1981	1987	1987	1987	1987	1987	1061	1094	1988	1988	8861	1988	1988

. . .

يک

DIVIDION PROPOSED ALTERNATIVE

HISTORIC	SLAFF GAGE	(FJ)	03.9 A 7A	5.59	63.1	62.8	63.7	64.2	64.0	63.5	63.1	62.2	0.10 0 1 2	7.10	0'00 7 0 7	4.00 4.02	7.00	1.05	61.3	61.3	61.0	60.5	59,9	59.4	58.8	58,3	57.9 222	1.16											
HISTORIC	STORAGE	(AF) - 40224	48191	47811	47314	46699 .	48953	50094	49587	48445	47314	45344	43503	64674	111004	40824	41068	41185	43183	43183	42473	41536	40142	39005	37879	36888	36009	n chine											
ADJUSTED	ELEVATION	(FJ) 634	62.9	62.7	62.5	62.2	63.1	63.6	63.4	62.9	67.4 61.5	60.0	7 US	1005	205	203	59.4	59.4	60.3	60.3	59.9* [`]	59.5	58.8	به 58.2	57.7	57.1	56.6 56.6	r 201											
DERIVED	AREA		2460.5	2450.6	2439.6	2423.9	2471.8	2497.1	2486.3	2460.5	2454.4	5 P32C	2330.4	2306.7	2287.8	2274.5	2278.4	2277.9	2325.0	2324,2	2306.3	2282.9	2247.6	2218.0	2,189.1	2160.9	2135.4						•				•		
ADJUSTED E.O.M	STORAGE	(AF) 48023.7	46876.6	46433.6	A 46939.4	45246.7	47386.6	48543.8	48046.1	45710 7	43713.5	42234.0	41227.3	40244.4	39468.7	38926.5	39085.3	39064.0	41002.6	40969,6	40227.9	39267.6	3/840.7	30080.0	1.77555	0.05445 0.05445	■ 33202.8								i.			• .	
EST. EVAP. LOSSES	(4E)	1376,4	1316.1	652.0	338.2		218.2 -	545.8 1 1 1 1 1	1.14.1	. 1277.0	1923.2	1404.6	1153.6	908.9	1,622 .	343.2	159.2	182.3	462.4	651.0	929.1	4.2221	1101	1.1011 7	0001	0.705	170.8	.*	•		:				- i				
ESTIMATED EVAP	RATE	0.55	0.45	0.27	014	77.0	20.0 v	7710	16.0	0.52	0.79	0.59	0:49	0.39	0.26	0.15	0.07	0.08	0.20	87.0	040		73 U	010	0.45	0, 15 0, 15	0.08			,	•				. 5			.,	
MUTUAL RELEASE	(AE)	0	ċ	с ·			> c #	• -	, o	. 0	0	•	0	0	0	0	0	¢ •	0	-		, c	> c	• e	• •	• =	0			•					o. losses)	•			
MUTUAL DEMAND	(AF)	1688	1686	430	- c	- -) 		, o	0	0	0	0	0	0	0	0				• •	• c	• c	• •	• c	0	0								l Demand)-(Evaj				
BBMWD DEMAND	(Snowmkg) (AF)	0	0 90		125	20	0	0	л _О	•	0	0	0 0	0	21	21	21	C71) c			0	0	0	0	125	125			· F -			ő		mand)-(Mutua				
FISH RELEASE	(AF)	8	16	15	1 1	28	31	30	74		. 14	74	F	z (4 5	र 3	8 2	5	74	11	74	74	11	74	ιu.	74	•~~•			х :		/estigation, P.1)-(BBMWD de		cicn	e)^0.313	
DEFINITION	RELEASES	nomal	normal	normal	normal	normal	normal	normal	dry	dry	đry.	đry		È.	A ID	, i	ų n Pari	l de la composición de la comp	Ĵ	, vib	ĿĮ,	Ъ,	ţ,	dry	đry	, Гр	đy		ulated model mn			;	: #1, report of Inv ulsted model au		ow)-(fish release	E O M eferade)	Trouver smithed	tic E.O.M. storag	
CALCULATEI UNIMPAIRED	(AF)	00	364	0		2511	1732	307	0	180	0 4		117		3 0	513 613	1	5296	689	262	333	0	189	0	0	¢	39		2 thru 77. Sim	port)	ed model runs	ated Model Run	SWKUB EXhibit 1-2 that 7-7 Sim	e surface area)	+(unimpaired f)	storage)∿0.423 i=(2.1702)¥(adi	tigation, P.8.	•(2.1702)x(histor	
ACCUMULATED	(water year octscp) (IN)	28,89 0.00	2.97	9.40	11.28	17.67	20.43	20.82	21.93	21.93	56.12 51.02	16.22	25.21 2 61	18.6	2.81	150	15.69	18.36	19.69	20.65	20.85	21.58	22.13	22.13	0.00	1.77	2.88	rt of Investigation, P.7.	AWD/CITY Exhibit # 7	3: Derived (see staff re-	t #7-2 thru 7-7, Simulat	its #7-2 thru 7-7, Simul	rent operational policy; MWD?CITV Exhibit #7	rived: (evap. rate)x(lak	evious E.O.M. storage)	r (zo.u139)X(aq). E.U.M srived: (page slevation)	ibit #1, Report of Inves	rived: (gage elevation)=	
ECIPITATION	(NI)	0.0	2.97	6,43	1.33	6.39	2.76	0.39	1.11	0.00	0.00	1.60	2.61	0.20	0.0	6.70	6.18	2.67	1.33	0.96	0.20	0.73	0.55	0.00	0.00	1.77	1.11	Exhibit #1, Repo	ED FLOW: BBN	FISH RELEASI	/D/CITY Exhibit	WD/CITY Exhib	ou, pased on curr N RATES: BB!	IN LOSSES: De	iE: Derived: (pr	LEVATION: D	E: SWRCB Exh	EVATION: De	
Ы	MONTH	9 10	=	12	-	9	ς,	4,	ŝ	6 6	~ 01	• •	10	:=	12		- (1	Ę	4	Ś	ę	-	90	σ	10	= :	12	N: SWRCB I	UNIMPAIRL	NITION FOR	AND: BBMW	IAND: BBM	VAPORATIO	VAPORATIO	D.M. STURAL	AFF GAGE E	M. STORAD	FF GAGE EL	
DATE	YEAR	1988	1988	1988	1989	686	1989	1989	686T	10201	1080	0801	1989	1989	6861	1990	1990	1990	0661	1990	1990	1990	0661	NY/	1990	0661	0661	PRECIPITATIC	CALCULATED	SEASON DEFT	BBMWD DEM	MUTUAL DEN MUTUAL DEN	ESTIMATED E	ESTIMATED E	DEPIVED STIP	ADJUSTED ST	HISTORIC E.O.	HISTORIC STA	

1

<u>ت</u>

•

DIVIDION PROPOSED ALTERNATIVE