Fish Benefits Overview

- Temperature Benefits
- Floodplain Benefits
- SalSim

Ecosystem Benefits of the Flow Proposal

 Restore the pattern and some limited magnitude of flow that are more closely aligned to the conditions to which native fish species are adapted

Benefits of Flow

- The benefits of increased instream flows expected from this project have a functionally useful effect, and are evaluated and quantified in this SED in two key ways:
 - Increased attainment of beneficial water temperatures for salmonids over space (more river miles) and time (more days)
 - Increased floodplain inundation, also in space and time, meaning that more acreage is inundated more of the time, thus benefitting growth and survival of juvenile salmonids

Importance of Temperature on Salmonids

- Behavior
- Disease
- Predation
- Migration
- Reproduction
- Growth
- Smoltification

4

Evaluation of Temperature Benefits

- USEPA Criteria
- Average Temperature
- 90th Percentile Temperature

USEPA Temperature Criteria

Based on Table 19-6 in SED

Based on Table 19-6 in SED

Percent of Time USEPA Temperature Criteria Met in the Tuolumne River in May at RM 28.1

Increase in Percent of Time Temperature Criteria Achieved – Tuolumne River at River Mile 28.1

					Unimpa	aired Flow	Percent	
Life Stage	Month	USEPA Criteria (degrees F)	Base	20	30	40	50	60
Reproduction	Feb	55.4	72%	5%	8%	9.8%	14%	18%
Reproduction	Mar	55.4	54%	5%	8%	14%	22%	27%
Core Rearing	Mar	60.8	84%	9%	14%	15%	15%	16%
Core Rearing	Apr	60.8	74%	16%	22%	22%	24%	25%
Core Rearing	May	60.8	59%	21%	30%	39%	41%	41%
Smoltification	Apr	57.2	57%	3%	16%	28%	34%	37%
Smoltification	May	57.2	38%	9%	26%	39%	43%	46%
Smoltification	Jun	57.2	23%	-1%	6%	13%	21%	23%
Summer Rearing	Jun	64.4	42%	24%	33%	37%	45%	48%

59% + 39% = 98%

Based on Table 19-6 in SED

Increase in Percent of Time Temperature Criteria Achieved – **Tuolumne River** – All Times and Locations

Tuolun	nne River	Conflu	ence (RM0)				1/4 Ri	ver (R	er (RM13.2) 1/2 River (RM							.)			3/4 Ri	ver (RN	/138.3)				Below	La Grai	nge (RM	53.5)		
	Month /		Pe	rcent l	Jnimpa	aired Fl	low		F	Percen	t Unim	paired	Flow		Pe	rcent	Unimp	aired F	low		F	Percen	t Unimp	aired Fl	ow	= =	Р	ercent	Jnimpai	ired Flo	w
Life Stage	USEPA Criteria (°F)	Base	20%	30%	40%	50%	60%	Base	20%	30%	40%	50%	60%	Base	20%	30%	40%	50%	60%	Base	20%	30%	40%	50%	60%	Base	20%	30%	40%	50%	60%
AM	Sep (64.4)	2%	0%	0%	0%	0%	0%	3%	0%	0%	2%	2%	1%	11%	0%	-2%	17%	17%	16%	33%	0%	-3%	7%	6%	6%	100%	0%	0%	0%	0%	0%
AM	Oct (64.4)	25%	0%	-1%	6%	5%	6%	37%	0%	-1%	4%	3%	3%	63%	0%	0%	3%	4%	4%	81%	1%	0%	0%	0%	0%	100%	0%	0%	0%	0%	0%
R	Oct (55.4)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	1%	0%	-1%	-1%	-1%	-1%	85%	3%	3%	3%	4%	-2%
R	Nov (55.4)	27%	0%	0%	1%	0%	-1%	34%	0%	0%	1%	-1%	-2%	23%	0%	-1%	-1%	-4%	-5%	27%	0%	-2%	-3%	-9%	-9%	85%	4%	4%	5%	6%	0%
R	Dec (55.4)	98%	0%	0%	0%	0%	0%	100%	0%	0%	-1%	-1%	-1%	95%	0%	0%	0%	-1%	-2%	93%	1%	0%	0%	-2%	-2%	95%	1%	1%	1%	1%	-2%
R	Jan (55.4)	98%	0%	0%	0%	0%	0%	98%	0%	0%	0%	0%	0%	97%	0%	0%	0%	0%	0%	99%	0%	0%	0%	0%	-1%	99%	0%	0%	0%	0%	0%
R	Feb (55.4)	69%	2%	3%	6%	8%	10%	75%	3%	5%	6%	8%	9.9%	72%	5%	8%	9.8%	14%	18%	79%	1%	4%	9.99%	12%	13%	100%	0%	0%	0%	0%	0%
R	Mar (55.4)	37%	-3%	-3%	-3%	-1%	9%	50%	-1%	0%	2%	7%	12%	54%	5%	8%	14%	22%	27%	56%	9%	14%	25%	30%	35%	100%	0%	0%	0%	0%	0%
CR	Mar (60.8)	65%	6%	8%	18%	24%	28%	72%	5%	11%	20%	23%	25%	84%	9%	14%	15%	15%	16%	91%	8%	9%	9%	9%	9%	100%	0%	0%	0%	0%	0%
CR	Apr (60.8)	50%	0%	6%	21%	35%	41%	57%	4%	18%	31%	36%	38%	74%	16%	22%	22%	24%	25%	92%	6%	6%	7%	8%	8%	100%	0%	0%	0%	0%	0%
CR	May (60.8)	19%	2%	20%	34%	47%	37%	34%	9%	32%	46%	52%	58%	59%	21%	30%	39%	41%	41%	74%	14%	24%	26%	26%	26%	100%	0%	0%	0%	0%	0%
S	Apr (57.2)	22%	0%	2%	5%	9%	15%	36%	-2%	2%	7%	21%	31%	57%	3%	16%	28%	34%	37%	65%	14%	25%	29%	30%	31%	100%	0%	0%	0%	0%	0%
S	May (57.2)	3%	0%	1%	2%	4%	3%	15%	3%	9%	16%	30%	40%	38%	9%	26%	39%	43%	46%	56%	14%	28%	35%	40%	43%	100%	0%	0%	0%	0%	0%
S	Jun (57.2)	0%	0%	0%	0%	0%	0%	5%	1%	1%	2%	5%	10%	23%	-1%	6%	13%	21%	23%	34%	8%	20%	31%	37%	39%	100%	0%	0%	0%	0%	0%
SR	Jun (64.4)	30%	1%	11%	24%	35%	36%	34%	7%	25%	33%	41%	42%	42%	24%	33%	37%	45%	48%	46%	29%	37%	45%	45%	47%	100%	0%	0%	0%	0%	0%
SR	Jul (64.4)	6%	-1%	0%	1%	1%	-1%	19%	0%	-2%	0%	-2%	-4%	23%	2%	-2%	16%	17%	14%	26%	3%	-3%	15%	16%	16%	100%	0%	0%	0%	0%	0%
SR	Aug (64.4)	0%	0%	0%	0%	0%	0%	2%	0%	0%	-1%	-1%	-2%	8%	0%	0%	1%	1%	0%	9%	0%	-1%	8%	6%	5%	100%	0%	0%	0%	0%	0%

11

Table 19-6 in SED

Average Temperature

Tuolumne River Average Temperature

Tuolumne	Conflu	ence (RM0)				1/4 Riv	ver (RN	/13.2))		-	1/2 Ri	ver (RN	/128.1)	-			3/4 Riv	ver (RM	38.29)				Below	La Gra	nge (R	M53.5	5)	
Average	Base	Pei	rcent l	Jnimp	aired F	low	Base	Pe	rcent	Unimp	aired F	low	Base	Pe	ercent	Unimpa	aired Fl	ow	Base	Pe	ercent l	Jnimpa	ired Flo	ow	Base	Per	cent U	nimpa	aired F	low
7DADM	(°F)	20%	30%	40%	50%	60%	(°F)	20%	30%	40%	50%	60%	(°F)	20%	30%	40%	50%	60%	(°F)	20%	30%	40%	50%	60%	(°F)	20%	30%	40%	50%	60%
Sep	75.5	0.0	0.1	-1.1	-1.1	-1.0	74.9	0.0	0.1	-1.2	-1.2	-1.1	70.9	0.0	0.2	-1.1	-1.0	-1.0	68.3	0.0	0.2	-0.8	-0.7	-0.7	53.5	0.0	0.2	0.4	0.6	0.6
Oct	67.3	0.0	0.2	-0.6	-0.5	-0.5	66.4	0.0	0.2	-0.6	-0.5	-0.5	63.1	0.0	0.2	-0.3	-0.2	-0.2	61.2	0.0	0.2	-0.2	0.0	0.0	53.8	-0.1	0.1	0.3	0.4	0.5
Nov	57.8	0.0	0.0	-0.2	-0.1	-0.1	56.9	0.0	0.0	-0.1	0.0	0.0	57.2	0.0	0.1	0.0	0.1	0.1	56.7	0.0	0.1	0.0	0.1	0.1	53.7	-0.1	0.0	0.3	0.4	0.4
Dec	50.2	0.0	0.0	0.0	0.0	0.0	49.6	0.0	-0.1	0.0	0.0	0.0	52.6	0.0	0.0	0.1	0.2	0.2	53.3	0.0	0.0	0.2	0.2	0.2	52.9	0.0	0.0	0.2	0.3	0.3
Jan	50.0	0.0	0.0	0.0	0.0	0.0	49.4	0.0	0.0	-0.1	0.0	0.0	51.9	0.0	0.1	0.1	0.2	0.2	52.2	0.0	0.1	0.2	0.2	0.2	51.0	0.0	0.0	0.1	0.1	0.1
Feb	54.2	-0.1	-0.2	-0.3	-0.4	-0.7	53.3	-0.1	-0.2	-0.2	-0.5	-0.7	53.6	-0.1	-0.4	-0.5	-0.8	-1.0	53.1	-0.1	-0.4	-0.5	-0.7	-1.0	50.0	0.0	0.0	0.0	-0.1	-0.1
Mar	58.5	-0.4	-0.7	-1.2	-1.6	-2.2	57.2	-0.5	-0.9	-1.3	-1.7	-2.2	55.7	-0.8	-1.2	-1.7	-2.0	-2.4	54.5	-0.8	-1.2	-1.6	-1.9	-2.2	49.7	0.0	-0.1	-0.1	-0.2	-0.2
Apr	61.7	-0.7	-1.6	-2.5	-3.2	-3.8	60.1	-0.8	-1.7	-2.5	-3.2	-3.8	57.0	-0.7	-1.4	-2.0	-2.5	-2.9	55.2	-0.6	-1.2	-1.7	-2.1	-2.5	49.7	0.0	0.0	-0.1	-0.1	-0.2
May	65.9	-1.7	-3.8	-4.8	-5.6	-5.4	63.8	-1.9	-3.9	-5.1	-6.0	-6.6	59.6	-1.5	->	-3.7	-4.2	-4.4	57.2	-1.3	-2.5	-3.1	-3.4	-3.4	50.0	0.0	0.0	-0.1	-0.1	0.0
Jun	72.2	-2.8	-4.7	-6.0	-7.0	-7.3	70.7	-3.4	-5.5	-6.9	-8.1	-9.0	67.4	-4.3	-6.1	-7.2	-8.1	-8.6	65.3	-4.8	-6.4	-7.4	-8.2	-8.5	50.9	-0.1	-0.1	0.0	0.1	0.2
Jul	77.6	-0.6	-0.4	-2.1	-2.1	-1.9	76.5	-0.7	-0.3	-2.2	-2.2	-2.0	72.6	-0.9	-0.5	-2.4	-2.4	-2.1	69.8	-0.8	-0.4	-2.0	-1.9	-1.7	51.9	0.1	0.2	0.4	0.6	0.9
Aug	79.1	0.0	0.2	-0.5	-0.4	-0.3	78.5	0.0	0.2	-0.6	-0.5	-0.3	74.0	0.0	0.2	-0.6	-0.5	-0.3	71.1	0.0	0.2	-0.4	-0.3	-0.2	52.9	0.0	0.2	0.4	0.6	0.8

$$59.6 - 3.7 = 55.9$$

Table 19-7 in SED

90th Percentile Temperature

²⁰

Tuolumne River 90th Percentile Temperature

Tuolumne	Conflu	ence (RM0)				1/4 Ri	ver (RN	/13.2)			1/2 Riv	ver (RN	/128.1)				3/4 Riv	ver (RM	38.29)				Below	La Gra	nge (R	M53.5	5)	
90th		Pe	rcent l	Jnimp	aired F	low		Pe	rcent	Unimp	aired F	low		Pe	ercent	Unimpa	aired Fl	ow		Pe	ercent l	Jnimpa	ired Flo	ow		Per	cent L	Jnimpa	aired F	low
Percentile 7DADM	Base (°F)	20%	30%	40%	50%	60%	Base (°F)	20%	30%	40%	50%	60%	Base (°F)	20%	30%	40%	50%	60%	Base (°F)	20%	30%	40%	50%	60%	Base (°F)	20%	30%	40%	50%	60%
Sep	80.1	0.0	0.0	0.0	0.0	0.0	80.2	0.0	0.0	0.0	0.0	0.0	77.7	0.0	0.0	0.0	0.0	0.0	75.8	0.0	0.0	0.0	0.0	0.0	55.6	-0.3	-0.1	-0.1	-0.3	-0.3
Oct	73.5	0.0	0.0	-0.6	-0.6	-0.6	72.6	0.0	0.0	-0.3	-0.2	-0.2	69.7	-0.1	-0.1	-0.1	-0.1	-0.1	66.9	-0.2	-0.2	-0.2	-0.3	-0.2	56.3	-0.5	-0.5	-0.4	-0.6	-0.4
Nov	62.8	0.0	0.1	-0.1	-0.1	-0.1	61.9	0.0	0.1	-0.1	-0.1	-0.2	60.7	0.0	0.0	-0.1	-0.3	-0.3	59.7	-0.2	-0.2	-0.5	-0.5	-0.6	56.0	-0.3	-0.4	-0.5	-0.6	-0.1
Dec	53.9	0.0	0.1	0.0	0.1	0.1	53.4	0.0	0.1	0.1	0.2	0.2	54.8	0.0	0.0	0.1	0.2	0.2	55.1	-0.1	0.0	0.1	0.3	0.3	54.6	-0.3	-0.3	-0.1	0.3	0.4
Jan	53.4	0.0	0.0	0.2	0.1	0.2	52.9	0.0	0.0	0.0	0.0	0.0	54.1	0.0	0.1	0.2	0.2	0.2	54.1	0.0	0.0	0.2	0.3	0.3	52.2	0.0	0.1	0.4	0.6	0.8
Feb	59.1	-0.2	-0.5	-0.8	-1.2	-1.7	58.5	-0.3	-0.7	-1.1	-1.5	-2.0	57.8	0.1	-0.7	-1.4	-1.8	-2.3	56.7	0.1	-0.6	-1.2	-1.5	-1.7	51.7	0.0	0.0	0.0	0.1	0.2
Mar	65.5	-1.5	-2.5	-3.8	-4.6	-5.5	64.6	-1.5	-2.8	-4.1	-5.0	-5.7	62.6	-2.1	-3.6	-4.4	-5.3	-6.0	60.6	-2.0	-3.3	-4.1	-4.8	-5.3	51.3	-0.1	0.0	-0.1	0.0	0.0
Apr	69.0	-2.5	-4.5	-6.1	-7.5	-8.5	67.4	-2.6	-4.5	-6.2	-7.4	-8.3	63.4	-2.5	-4.2	-5.6	-6.5	-7.1	60.6	-2.1	-3.4	-4.6	-5.4	-5.8	51.1	0.0	-0.1	-0.1	0.0	0.0
May	73.2	-3.0	-5.7	-8.0	-9.6	-10.0	71.5	-2.8	-6.0	-8.3	-9.8	-11.0	66.2	-2.1		-6.8	-7.7	-8.4	62.8	-1.9	-4.5	-5.7	-6.5	-6.9	51.5	-0.1	-0.1	0.0	0.0	0.1
Jun	81.2	-2.5	-3.7	-5.7	-7.7	-9.4	81.0	-2.9	-4.7	-7.3	-9.5	-11.5	79.0	-4.9	-8.5	-11.5	-13.3	-14.7	77.0	-6.1	-10.8	-13.1	-14.4	-15.4	52.6	-0.2	-0.2	-0.1	0.0	0.2
Jul	83.8	-0.2	-0.2	-0.3	-0.3	-0.3	84.0	-0.2	-0.2	-0.3	-0.4	-0.5	81.2	-0.3	-0.4	-0.4	-0.5	-0.5	79.3	-0.2	-0.2	-0.2	-0.2	-0.2	53.4	0.0	0.1	0.3	0.5	0.8
Aug	83.2	0.0	0.0	0.0	0.0	0.0	83.3	0.0	0.0	0.0	0.0	0.0	80.5	0.0	0.0	0.0	0.0	0.0	78.6	0.0	0.0	0.0	0.0	0.1	54.7	-0.2	0.0	0.0	0.0	0.2

$$66.2 - 6.8 = 59.4$$

Table 19-8 in SED

Temperature Summary

- Big improvements in temperature conditions from increased flows
- These results include no optimization
- Optimized flow shaping would improve temperature for key life stages
- USEPA criteria were used as only as a benchmark, not as proposed objectives

Floodplain Benefits

- Food availability
- Predator avoidance
- Faster growth
- Better survival
- Some native species spawn on floodplains

Tuolumne River Floodplain Area

From Figure 19-12 (figure and relationship developed by USFWS (2008) – river mile 52 to 21.5

Floodplain vs Flow Relationships

- Stanislaus River USFWS
- Tuolumne River USFWS
- Merced River SWRCB
- San Joaquin River cbec, inc. / FISHBIO

25

Tuolumne River Floodplain Inundation

	May														
Flow (cfs)	Floodplain	Base	Р	ercent U	Inimpai	red Flov	V								
	Acreage		20	30	40	50	60								
75	0	100%	0%	0%	0%	0%	0%								
150	0	100%	0%	0%	0%	0%	0%								
300	0	95%	2%	5%	5%	5%	5%								
500	0	66%	22%	32%	34%	34%	34%								
1000	0	51%	9%	32%	45%	46%	48%								
1100	Initiates	35%	15%	45%	57%	62%	63%								
1250	56	26%	22%	52%	60%	72%	72%								
1500	152	20%	13%	44%	63%	70%	78%								
2000	305	17%	1%	29%	51%	65%	68%								
3000	520	13%	1%	2%	18%	45%	59%								
4000	673	11%	1%	1%	0%	13%	38%								
5000	791	7%	1%	0%	0%	4%	15%								

17% + 51% = 68%

Based on Table 19-23 in SED

Tuolumne River Floodplain Inundation

Tuolumn	e River		•	Fobr		*	•		*	M	orch		*		*	An			-			Ma	••					Lue			
Flow	Floodplain			rebi	luary					IVI	arcn					Ар	111					Ma	у					Jui	le		
(cfs)	Acreage	Base	20%	30%	40%	50%	60%	Base	20%	30%	40%	50%	60%	Base	20%	30%	40%	50%	60%	Base	20%	30%	40%	50%	60%	Base	20%	30%	40%	50%	60%
75	0	100%	0%	0%	0%	0%	0%	100%	0%	0%	0%	0%	0%	100%	0%	0%	0%	0%	0%	100%	0%	0%	0%	0%	0%	78%	16%	18%	18%	21%	21%
150	0	93%	2%	6%	6%	6%	6%	91%	7%	9%	9%	9%	9%	100%	0%	0%	0%	0%	0%	100%	0%	0%	0%	0%	0%	49%	38%	43%	46%	48%	50%
300	0	46%	9%	16%	23%	34%	41%	67%	5%	23%	26%	30%	32%	94%	2%	5%	6%	6%	6%	95%	2%	5%	5%	5%	5%	28%	46%	59%	63%	67%	68%
500	0	44%	4%	10%	10%	18%	28%	56%	4%	6%	24%	30%	37%	70%	12%	22%	28%	30%	30%	66%	22%	32%	34%	34%	34%	27%	40%	49%	60%	63%	65%
1000	0	38%	0%	0%	-2%	1%	11%	55%	-2%	-2%	-10%	0%	15%	52%	0%	13%	27%	40%	45%	51%	9%	32%	45%	46%	48%	24%	18%	37%	48%	51%	59%
1100	Initiates	38%	-1%	-2%	-5%	0%	6%	55%	-4%	-2%	-9.8%	-7%	7%	44%	-2%	15%	33%	44%	54%	35%	15%	45%	57%	62%	63%	24%	13%	35%	48%	50%	55%
1250	56	37%	-1%	-4%	-5%	-1%	2%	51%	-4%	-4%	-9.8%	-9.8%	-1%	41%	-1%	11%	29%	39%	50%	26%	22%	52%	60%	72%	72%	22%	7%	34%	45%	50%	54%
1500	152	34%	-1%	-5%	-9%	-2%	1.2%	46%	-4%	-7%	-7%	-9.8%	-4%	37%	-1%	4%	20%	38%	45%	20%	13%	44%	63%	70%	78%	22%	0%	24%	38%	50%	50%
2000	305	28%	0%	-4%	-7%	-5%	4%	40%	-2%	-4%	-9%	-9%	-5%	33%	-1%	-1%	2%	18%	37%	17%	1%0	>%	51%	65%	68%	21%	-1%	7%	23%	39%	48%
3000	520	22%	-4%	-5%	-5%	-6%	-4%	34%	0%	-5%	-11%	-12%	-9.8%	21%	0%	0%	-2%	-4%	5%	13%	1%	2%	18%	45%	59%	15%	0%	0%	2%	26%	34%
4000	673	11%	0%	-1%	-2%	-1%	-1%	16%	-2%	-2%	-2%	-5%	-5%	11%	0%	-1%	0%	-1%	-2%	11%	1%	1%	0%	13%	38%	10%	0%	0%	0%	6%	22%
5000	791	10%	0%	-1%	-2%	-2%	-1%	7%	0%	0%	0%	-1%	0%	5%	0%	0%	-1%	-1%	-1%	7%	1%	0%	0%	4%	15%	5%	0%	0%	1%	2%	9%

Table 19-23 in SED

Annual Average Floodplain Inundation Tuolumne River, April – June

Based on Table 19-29

Annual Average Floodplain Inundation Tuolumne River, April – June in Below Normal, Dry, and Critical Years

Based on Table 19-30/

Floodplain Summary

- Large increases in floodplain inundation, especially in dry years
- Results are not optimized for floodplain habitat
- Bigger results are possible from flow shaping
- Flows can be optimized to achieve desired water depths and durations of inundation

SalSim

- Population simulation model for fall-run Chinook salmon in the San Joaquin Basin Developed by California Dept. of Fish and Wildlife (CDFW), Region 4
- Tracks daily growth, movement, and survival as functions of flow, temperature, predation, and other factors
- Designed to estimate changes in:
 - juveniles produced by each tributary
 - total juveniles out-migrating to the Delta
 - total juveniles entering the ocean
 - total adults returning to tributaries

Limitations of SalSim

First 4 years are "priming years"

Includes an ocean crash which affects adult returns during 2005-2009

Data used to construct the model has many uncertainties

SalSim has only 7 years that reflect comparative production; first 4 years are "priming years"

Adapted from Figure 19-14

Last 5 years reflect an ocean crash

Adapted from Figure 19-14

Average Salmon Production Using SalSim (Total Adult Chinook Salmon Production)

SalSim Run	16-year Average	Difference from Baseline	7-year Average	Difference from Baseline
Baseline	11,373	0	16,151	0
40% Unimpaired Flow	12,476	1,103	18,210	2,059
40% Unimpaired Flow with Maximum Flow Shifting	15,512	4,138	23,788	7,637

Adapted from Table 19-32

Average Salmon Production Using SalSim (Total Adult Chinook Salmon Production)

SalSim Run	16-year Average	Difference from Baseline	7-year Average	Difference from Baseline
Baseline	11,373	0	16,151	0
40% Unimpaired Flow	12,476	1,103	18,210	2,059
40% Unimpaired Flow with Maximum Flow Shifting	15,512	4,138	23,788	7,637

Adapted from Table 19-32

Why is SalSim not useful for SED?

- Conditions proposed in the SED are different than conditions used to construct SalSim
- > Is inaccurate with regard to temperature:
 - It is oversensitive relative to egg mortality during egg incubation
 - Juvenile mortality is under sensitive relative to lethal temperatures in SalSim
- Underestimates the benefits of floodplain inundation during the spring time period

SED Quantified Benefits

- Temperature habitat to evaluate temperature benefits
- Floodplain habitat to evaluate floodplain benefits

Lamprey From Dan Worth, CDFW

110

100

White sturgeon, courtesy of USFWS

Prickly sculpin From Dan Worth, CDFW

0

150

120 130 140

120 1/ 190 / 150

160

- CHERRICH CONTRACT

170 39 170

120

Rainbow trout / steelhead (*Oncorhynchus mykiss*) courtesy of DFW

10+3+41111

Sacramento Splittail Courtesy of Prof. P. Moyle, UC Davis

ANALYSES OF ROTARY SCREW TRAP SAMPLING OF MIGRATING JUVENILE CHINOOK SALMON IN THE STANISLAUS RIVER, 1996-2005

August 2006

Brian Pyper and Casey Justice

41

Figure 10. Daily estimated passage of unmarked Chinook salmon at Grayson and river flow at Modesto (MOD) during 2006.

Outmigrant Trapping of Juvenile Salmonids in the Lower Tuolumne River, 2006

FINAL REPORT March 2007

Andrea N. Fuller Chrissy L. Sonke and Michele Palmer

Submitted to Turlock and Modesto Irrigation Districts

Ref ID 90971

O. mykiss captured at the Oakdale screw trap on the Stanislaus River (1995-2009)

