Fish Benefits Overview

- Temperature Benefits
- Floodplain Benefits
- SalSim

Ecosystem Benefits of the Flow Proposal

- Restore the pattern and some limited magnitude of flow that are more closely aligned to the conditions to which native fish species are adapted

Benefits of Flow

- The benefits of increased instream flows expected from this project have a functionally useful effect, and are evaluated and quantified in this SED in two key ways:
- Increased attainment of beneficial water temperatures for salmonids over space (more river miles) and time (more days)
- Increased floodplain inundation, also in space and time, meaning that more acreage is inundated more of the time, thus benefitting growth and survival of juvenile salmonids

Importance of Temperature on Salmonids

- Behavior
- Disease
- Predation
- Migration
- Reproduction
- Growth
- Smoltification

Evaluation of Temperature Benefits

- USEPA Criteria
- Average Temperature
- $90^{\text {th }}$ Percentile Temperature

USEPA Temperature Criteria

Tuolumne River
1970-2003 all days in May at RM 28.1 7-day average daily maximum temperature

Tuolumne River
1970-2003 all days in May at RM 28.1
7-day average daily maximum temperature

Percent of Time USEPA Temperature Criteria Met in the Tuolumne River in May at RM 28.1

Increase in Percent of Time Temperature Criteria Achieved - Tuolumne River at River Mile 28.1

Life Stage	Month	USEPA Criteria (degrees F)	Base	Unimpaired Flow Percent				
				20	30	40	50	60
Reproduction	Feb	55.4	72\%	5\%	8\%	9.8\%	14\%	18\%
Reproduction	Mar	55.4	54\%	5\%	8\%	14\%	22\%	27\%
Core Rearing	Mar	60.8	84\%	9\%	14\%	15\%	15\%	16\%
Core Rearing	Apr	60.8	74\%	16\%	22\%	22\%	24\%	25\%
Core Rearing	May	60.8	59\%	21\%	30\%	39\%	41\%	41\%
Smoltification	Apr	57.2	57\%	3\%	16\%	28\%	34\%	37\%
Smoltification	May	57.2	38\%	9\%	26\%	39\%	43\%	46\%
Smoltification	Jun	57.2	23\%	-1\%	6\%	13\%	21\%	23\%
Summer Rearing	Jun	64.4	42\%	24\%	33\%	37\%	45\%	48\%

$$
59 \%+39 \%=98 \%
$$

Increase in Percent of Time Temperature Criteria Achieved Tuolumne River - All Times and Locations

Tuolumne River		Confluence (RMO)						1/4 River (RM13.2)						1/2 River (RM28.1)						3/4 River (RM38.3)						Below La Grange (RM53.5)					
		Base	Percent Unimpaired Flow					Base	Percent Unimpaired Flow					Base	Percent Unimpaired Flow					Base	Percent Unimpaired Flow					Base	Percent Unimpaired Flow				
Stage	Criteria (${ }^{\circ} \mathrm{F}$)		20\%	30\%	40\%	50\%	60\%		20\%	30\%	40\%	50\%	60\%		20\%	30\%	40\%	50\%	60\%		20\%	30\%	40\%	50\%	60\%		20\%	30\%	40\%	50\%	60
AM	Sep (64.4)	2\%	0\%	0\%	0\%	0\%	0\%	3\%	0\%	0\%	2\%	2\%	1\%	11\%	0\%	-2\%	17\%	17\%	16\%	33\%	0\%	-3\%	7\%	6\%	6\%	100\%	0\%	0\%	0\%	0\%	
AM	Oct (64.4)	25\%	0\%	-1\%	6\%	5\%	6\%	37\%	0\%	-1\%	4\%	3\%	3\%	63\%	0\%	0\%	3\%	4\%	4\%	81\%	1\%	0\%	0\%	0\%	0\%	100\%	0\%	0\%	0\%	0\%	0\%
R	Oct (55.4)	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	1\%	0\%	-1\%	-1\%	-1\%	-1\%	85\%	3\%	3\%	3\%	4\%	
R	Nov (55.4)	27\%	0\%	0\%	1\%	0\%	-1\%	34\%	0\%	0\%	1\%	-1\%	-2\%	23\%	0\%	-1\%	-1\%	-4\%	-5\%	27\%	0\%	-2\%	-3\%	-9\%	-9\%	85\%	4\%	4\%	5\%	6\%	0\%
R	Dec (55.4)	98\%	0\%	0\%	0\%	0\%	0\%	100\%	0\%	0\%	-1\%	-1\%	-1\%	95\%	0\%	0\%	0\%	-1\%	-2\%	93\%	1\%	0\%	0\%	-2\%	-2\%	95\%	1\%	1\%	1\%	1\%	-2
R	Jan (55.4)	98\%	0\%	0\%	0\%	0\%	0\%	98\%	0\%	0\%	0\%	0\%	0\%	97\%	0\%	0\%	0\%	0\%	0\%	99\%	0\%	0\%	0\%	0\%	-1\%	99\%	0\%	0\%	0\%	0\%	0\%
R	Feb (55.4)	69\%	2\%	3\%	6\%	8\%	10\%	75\%	3\%	5\%	6\%	8\%	9.9\%	72\%	5\%	8\%	9.8\%	14\%	18\%	79\%	1\%	4\%	9.99\%	12\%	13\%	100\%	0\%	0\%	0\%	0\%	0\%
R	Mar (55.4)	37\%	-3\%	-3\%	-3\%	-1\%	9\%	50\%	-1\%	0\%	2\%	7\%	12\%	54\%	5\%	8\%	14\%	22\%	27\%	56\%	9\%	14\%	25\%	30\%	35\%	100\%	0\%	0\%	0\%	0\%	0\%
CR	Mar (60.8)	65\%	6\%	8\%	18\%	24\%	28\%	72\%	5\%	11\%	20\%	23\%	25\%	84\%	9\%	14\%	15\%	15\%	16\%	91\%	8\%	9\%	9\%	9\%	9\%	100\%	0\%	0\%	0\%	0\%	0%
CR	Apr (60.8)	50\%	0\%	6\%	21\%	35\%	41\%	57\%	4\%	18\%	31\%	36\%	38\%	74\%			22\%	24\%	25\%	92\%	6\%	6\%	7\%	8\%	8\%	100\%	0\%	0\%	0\%	0\%	0\%
CR	May (60.8)	19\%	2\%	20\%	34\%	47\%	37\%	34\%	9\%	32\%	46\%	52\%	58\%	59\%	21\%	0\%	39\%	41\%	41\%	74\%	14\%	24\%	26\%	26\%	26\%	100\%	0\%	0\%	0\%	0\%	0\%
S	Apr (57.2)	22\%	0\%	2\%	5\%	9\%	15\%	36\%	-2\%	2\%	7\%	21\%	31\%	57\%	3\%	16\%	28\%	34\%	37\%	65\%	14\%	25\%	29\%	30\%	31\%	100\%	0\%	0\%	0\%	0\%	
S	May (57.2)	3\%	0\%	1\%	2\%	4\%	3\%	15\%	3\%	9\%	16\%	30\%	40\%	38\%	9\%	26\%	39\%	43\%	46\%	56\%	14\%	28\%	35\%	40\%	43\%	100\%	0\%	0\%	0\%	0\%	0%
S	Jun (57.2)	0\%	0\%	0\%	0\%	0\%	0\%	5\%	1\%	1\%	2\%	5\%	10\%	23\%	-1\%	6\%	13\%	21\%	23\%	34\%	8\%	20\%	31\%	37\%	39\%	100\%	0\%	0\%	0\%	0\%	0\%
SR	Jun (64.4)	30\%	1\%	11\%	24\%	35\%	36\%	34\%	7\%	25\%	33\%	41\%	42\%	42\%	24\%	33\%	37\%	45\%	48\%	46\%	29\%	37\%	45\%	45\%	47\%	100\%	0\%	0\%	0\%	0\%	
SR	Jul (64.4)	6\%	-1\%	0\%	1\%	1\%	-1\%	19\%	0\%	-2\%	0\%	-2\%	-4\%	23\%	2\%	-2\%	16\%	17\%	14\%	26\%	3\%	-3\%	15\%	16\%	16\%	100\%	0\%	0\%	0\%	0\%	
SR	Aug (64.4)	0\%	0\%	0\%	0\%	0\%	0\%	2\%	0\%	0\%	-1\%	-1\%	-2\%	8\%	0\%	0\%	1\%	1\%	0\%	9\%	0\%	-1\%	8\%	6\%	5\%	100\%	0\%	0\%	0\%	0\%	0\%

Average Temperature

1970-2003 all days in May at RM 28.1
7-day average daily maximum temperature

1970-2003 all days in May at RM 28.1
7-day average daily maximum temperature

1970-2003 all days in May at RM 28.1
7-day average daily maximum temperature

Tuolumne River Average Temperature

Tuolumne Average 7DADM	Confluence (RMO)						1/4 River (RM13.2)						1/2 River (RM28.1)						3/4 River (RM38.29)						Below La Grange (RM53.5)					
	Base (${ }^{\circ}$ F)	Percent Unimpaired Flow					Base (${ }^{\circ}$)	Percent Unimpaired Flow					Base (${ }^{\circ} \mathrm{F}$)	Percent Unimpaired Flow					Base (${ }^{\circ}$ F)	Percent Unimpaired Flow					Base (${ }^{\circ}$)	Percent Unimpaired Flow				
		20\%	30\%	40\%	50\%	60\%		20\%	30\%	40\%	50\%	60\%		20\%	30\%	40\%	50\%	60\%		20\%	30\%	40\%	50\%	60\%		20\%	30\%	40\%	50\%	60\%
Sep	75.5	0.0	0.1	-1.1	-1.1	-1.0	74.9	0.0	0.1	-1.2	-1.2	-1.1	70.9	0.0	0.2	-1.1	-1.0	-1.0	68.3	0.0	0.2	-0.8	-0.7	-0.7	53.5	0.0	0.2	0.4	0.6	0.6
Oct	67.3	0.0	0.2	-0.6	-0.5	-0.5	66.4	0.0	0.2	-0.6	-0.5	-0.5	63.1	0.0	0.2	-0.3	-0.2	-0.2	61.2	0.0	0.2	-0.2	0.0	0.0	53.8	-0.1	0.1	0.3	0.4	0.5
Nov	57.8	0.0	0.0	-0.2	-0.1	-0.1	56.9	0.0	0.0	-0.1	0.0	0.0	57.2	0.0	0.1	0.0	0.1	0.1	56.7	0.0	0.1	0.0	0.1	0.1	53.7	-0.1	0.0	0.3	0.4	0.4
Dec	50.2	0.0	0.0	0.0	0.0	0.0	49.6	0.0	-0.1	0.0	0.0	0.0	52.6	0.0	0.0	0.1	0.2	0.2	53.3	0.0	0.0	0.2	0.2	0.2	52.9	0.0	0.0	0.2	0.3	0.3
Jan	50.0	0.0	0.0	0.0	0.0	0.0	49.4	0.0	0.0	-0.1	0.0	0.0	51.9	0.0	0.1	0.1	0.2	0.2	52.2	0.0	0.1	0.2	0.2	0.2	51.0	0.0	0.0	0.1	0.1	0.1
Feb	54.2	-0.1	-0.2	-0.3	-0.4	-0.7	53.3	-0.1	-0.2	-0.2	-0.5	-0.7	53.6	-0.1	-0.4	-0.5	-0.8	-1.0	53.1	-0.1	-0.4	-0.5	-0.7	-1.0	50.0	0.0	0.0	0.0	-0.1	-0.1
Mar	58.5	-0.4	-0.7	-1.2	-1.6	-2.2	57.2	-0.5	-0.9	-1.3	-1.7	-2.2	55.7	-0.8	-1.2	-1.7	-2.0	-2.4	54.5	-0.8	-1.2	-1.6	-1.9	-2.2	49.7	0.0	-0.1	-0.1	-0.2	-0.2
Apr	61.7	-0.7	-1.6	-2.5	-3.2	-3.8	60.1	-0.8	-1.7	-2.5	-3.2	-3.8	57.0	-0.7	-1.4	-2.0	-2.5	-2.9	55.2	-0.6	-1.2	-1.7	-2.1	-2.5	49.7	0.0	0.0	-0.1	-0.1	-0.2
May	65.9	-1.7	-3.8	-4.8	-5.6	-5.4	63.8	-1.9	-3.9	-5.1	-6.0	-6.6	59.6		8	-3.7	-4.2	-4.4	57.2	-1.3	-2.5	-3.1	-3.4	-3.4	50.0	0.0	0.0	-0.1	-0.1	0.0
Jun	72.2	-2.8	-4.7	-6.0	-7.0	-7.3	70.7	-3.4	-5.5	-6.9	-8.1	-9.0	67.4	-4.3	-6.1	-7.2	-8.1	-8.6	65.3	-4.8	-6.4	-7.4	-8.2	-8.5	50.9	-0.1	-0.1	0.0	0.1	0.2
Jul	77.6	-0.6	-0.4	-2.1	-2.1	-1.9	76.5	-0.7	-0.3	-2.2	-2.2	-2.0	72.6	-0.9	-0.5	-2.4	-2.4	-2.1	69.8	-0.8	-0.4	-2.0	-1.9	-1.7	51.9	0.1	0.2	0.4	0.6	0.9
Aug	79.1	0.0	0.2	-0.5	-0.4	-0.3	78.5	0.0	0.2	-0.6	-0.5	-0.3	74.0	0.0	0.2	-0.6	-0.5	-0.3	71.1	0.0	0.2	-0.4	-0.3	-0.2	52.9	0.0	0.2	0.4	0.6	0.8

$$
59.6-3.7=55.9
$$

90th Percentile Temperature

1970-2003 all days in May at RM 28.1
7-day average daily maximum temperature

1970-2003 all days in May at RM 28.1
7-day average daily maximum temperature

1970-2003 all days in May at RM 28.1
7-day average daily maximum temperature

Tuolumne River $90^{\text {th }}$ Percentile Temperature

Tuolumne 90th Percentile 7DADM	Confluence (RMO)						1/4 River (RM13.2)						1/2 River (RM28.1)						3/4 River (RM38.29)						Below La Grange (RM53.5)					
	Base (${ }^{\circ} \mathrm{F}$)	Percent Unimpaired Flow					Base (${ }^{\circ} \mathrm{F}$)	Percent Unimpaired Flow					Base (${ }^{\circ}$ F)	Percent Unimpaired Flow					Base (${ }^{\circ} \mathrm{F}$)	Percent Unimpaired Flow					$\begin{array}{\|l\|l} \text { Base } \\ \left({ }^{\circ} \mathrm{F}\right) \end{array}$	Percent Unimpaired Flow				
		20\%	30\%	40\%	50\%	60\%		20\%	30\%	40\%	50\%	60\%		20\%	30\%	40\%	50\%	60\%		20\%	30\%	40\%	50\%	60\%		20\%	30\%	40\%	50\%	60\%
Sep	80.1	0.0	0.0	0.0	0.0	0.0	80.2	0.0	0.0	0.0	0.0	0.0	77.7	0.0	0.0	0.0	0.0	0.0	75.8	0.0	0.0	0.0	0.0	0.0	55.6	-0.3	-0.1	-0.1	-0.3	-0.3
Oct	73.5	0.0	0.0	-0.6	-0.6	-0.6	72.6	0.0	0.0	-0.3	-0.2	-0.2	69.7	-0.1	-0.1	-0.1	-0.1	-0.1	66.9	-0.2	-0.2	-0.2	-0.3	-0.2	56.3	-0.5	-0.5	-0.4	-0.6	-0.4
Nov	62.8	0.0	0.1	-0.1	-0.1	-0.1	61.9	0.0	0.1	-0.1	-0.1	-0.2	60.7	0.0	0.0	-0.1	-0.3	-0.3	59.7	-0.2	-0.2	-0.5	-0.5	-0.6	56.0	-0.3	-0.4	-0.5	-0.6	-0.1
Dec	53.9	0.0	0.1	0.0	0.1	0.1	53.4	0.0	0.1	0.1	0.2	0.2	54.8	0.0	0.0	0.1	0.2	0.2	55.1	-0.1	0.0	0.1	0.3	0.3	54.6	-0.3	-0.3	-0.1	0.3	0.4
Jan	53.4	0.0	0.0	0.2	0.1	0.2	52.9	0.0	0.0	0.0	0.0	0.0	54.1	0.0	0.1	0.2	0.2	0.2	54.1	0.0	0.0	0.2	0.3	0.3	52.2	0.0	0.1	0.4	0.6	0.8
Feb	59.1	-0.2	-0.5	-0.8	-1.2	-1.7	58.5	-0.3	-0.7	-1.1	-1.5	-2.0	57.8	0.1	-0.7	-1.4	-1.8	-2.3	56.7	0.1	-0.6	-1.2	-1.5	-1.7	51.7	0.0	0.0	0.0	0.1	0.2
Mar	65.5	-1.5	-2.5	-3.8	-4.6	-5.5	64.6	-1.5	-2.8	-4.1	-5.0	-5.7	62.6	-2.1	-3.6	-4.4	-5.3	-6.0	60.6	-2.0	-3.3	-4.1	-4.8	-5.3	51.3	-0.1	0.0	-0.1	0.0	0.0
Apr	69.0	-2.5	-4.5	-6.1	-7.5	-8.5	67.4	-2.6	-4.5	-6.2	-7.4	-8.3	63.4	-2.5	-4.2	-5.6	-6.5	-7.1	60.6	-2.1	-3.4	-4.6	-5.4	-5.8	51.1	0.0	-0.1	-0.1	0.0	0.0
May	73.2	-3.0	-5.7	-8.0	-9.6	-10.0	71.5	-2.8	-6.0	-8.3	-9.8	-11.0	66.2		2	-6.8	-7.7	-8.4	62.8	-1.9	-4.5	-5.7	-6.5	-6.9	51.5	-0.1	-0.1	0.0	0.0	0.1
Jun	81.2	-2.5	-3.7	-5.7	-7.7	-9.4	81.0	-2.9	-4.7	-7.3	-9.5	-11.5	79.0	-4.9	-8.5	-11.5	-13.3	-14.7	77.0	-6.1	-10.8	-13.1	-14.4	-15.4	52.6	-0.2	-0.2	-0.1	0.0	0.2
Jul	83.8	-0.2	-0.2	-0.3	-0.3	-0.3	84.0	-0.2	-0.2	-0.3	-0.4	-0.5	81.2	-0.3	-0.4	-0.4	-0.5	-0.5	79.3	-0.2	-0.2	-0.2	-0.2	-0.2	53.4	0.0	0.1	0.3	0.5	0.8
Aug	83.2	0.0	0.0	0.0	0.0	0.0	83.3	0.0	0.0	0.0	0.0	0.0	80.5	0.0	0.0	0.0	0.0	0.0	78.6	0.0	0.0	0.0	0.0	0.1	54.7	-0.2	0.0	0.0	0.0	0.2

$$
66.2-6.8=59.4
$$

Temperature Summary

- Big improvements in temperature conditions from increased flows
- These results include no optimization
- Optimized flow shaping would improve temperature for key life stages
- USEPA criteria were used as only as a benchmark, not as proposed objectives

Floodplain Benefits

- Food availability
- Predator avoidance
- Faster growth
- Better survival
- Some native species spawn on floodplains

Tuolumne River Floodplain Area

From Figure 19-12 (figure and relationship developed by USFWS (2008) - river mile 52 to 21.5

Floodplain vs Flow Relationships

- Stanislaus River - USFWS
- Tuolumne River - USFWS
- Merced River - SWRCB
- San Joaquin River - cbec, inc. / FISHBIO

Tuolumne River Floodplain Inundation

May							
Flow (cfs)	Floodplain Acreage	Base	Percent Unimpaired Flow				
			20	30	40	50	60
75	0	100\%	0\%	0\%	0\%	0\%	0\%
150	0	100\%	0\%	0\%	0\%	0\%	0\%
300	0	95\%	2\%	5\%	5\%	5\%	5\%
500	0	66\%	22\%	32\%	34\%	34\%	34\%
1000	0	51\%	9\%	32\%	45\%	46\%	48\%
1100	Initiates	35\%	15\%	45\%	57\%	62\%	63\%
1250	56	26\%	22\%	52\%	60\%	72\%	72\%
1500	152	20\%	13\%	44\%	63\%	70\%	78\%
2000	305	17\%	1\%	29\%	51\%	65\%	68\%
3000	520	13\%	1\%	2\%	18\%	45\%	59\%
4000	673	11\%	1\%	1\%	0\%	13\%	38\%
5000	791	7\%	1\%	0\%	0\%	4\%	15\%

$$
17 \%+51 \%=68 \%
$$

Tuolumne River Floodplain Inundation

Tuolumne River		February						March						April						May						June					
Flow (cfs)	Floodplain Acreage																														
		Base	20\%	30\%	40\%	50\%	60\%	Base	20\%	30\%	40\%	50\%	60\%	Base	20\%	30\%	40\%	50\%	60\%	Base	20\%	30\%	40\%	50\%	60\%	Base	20\%	30\%	40\%	50\%	60
75	0	100\%	0\%	0\%	0\%	0\%	0\%	100\%	0\%	0\%	0\%	0\%	0\%	100\%	0\%	0\%	0\%	0\%	0\%	100\%	0\%	0\%	0\%	0\%	0\%	78\%	16\%	18\%	18\%	21\%	21
150	0	93\%	2\%	6\%	6\%	6\%	6\%	91\%	7\%	9\%	9\%	9\%	9\%	100\%	0\%	0\%	0\%	0\%	0\%	100\%	0\%	0\%	0\%	0\%	0\%	49\%	38\%	43\%	46\%	48\%	50
300	0	46\%	9\%	16\%	23\%	34\%	41\%	67\%	5\%	23\%	26\%	30\%	32\%	94\%	2\%	5\%	6\%	6\%	6\%	95\%	2\%	5\%	5\%	5\%	5\%	28\%	46\%	59\%	63\%	67\%	68
500	0	44\%	4\%	10\%	10\%	18\%	28\%	56\%	4\%	6\%	24\%	30\%	37\%	70\%	12\%	22\%	28\%	30\%	30\%	66\%	22\%	32\%	34\%	34\%	34\%	27\%	40\%	49\%	60\%	63\%	65
1000	0	38\%	0\%	0\%	-2\%	1\%	11\%	55\%	-2\%	-2\%	-10\%	0\%	15\%	52\%	0\%	13\%	27\%	40\%	45\%	51\%	9\%	32\%	45\%	46\%	48\%	24\%	18\%	37\%	48\%	51\%	59
1100	Initiates	38\%	-1\%	-2\%	-5\%	0\%	6\%	55\%	-4\%	-2\%	-9.8\%	-7\%	7\%	44\%	-2\%	15\%	33\%	44\%	54\%	35\%	15\%	45\%	57\%	62\%	63\%	24\%	13\%	35\%	48\%	50\%	55
1250	56	37\%	-1\%	-4\%	-5\%	-1\%	2\%	51\%	-4\%	-4\%	-9.8\%	-9.8\%	-1\%	41\%	-1\%	11\%	29\%	39\%	50\%	26\%	22\%	52\%	60\%	72\%	72\%	22\%	7\%	34\%	45\%	50\%	54
1500	152	34\%	-1\%	-5\%	-9\%	-2\%	1.2\%	46\%	-4\%	-7\%	-7\%	-9.8\%	-4\%	37\%	-1\%	4\%	20\%	38\%	45\%	20\%	13\%	44	30\%	70\%	78\%	22\%	0\%	24\%	38\%	50\%	50
2000	305	28\%	0\%	-4\%	-7\%	-5\%	4\%	40\%	-2\%	-4\%	-9\%	-9\%	-5\%	33\%	-1\%	-1\%	2\%	18\%	37\%	17\%	\%	\%	51\%	5\%	68\%	21\%	-1\%	7\%	23\%	39\%	48
3000	520	22\%	-4\%	-5\%	-5\%	-6\%	-4\%	34\%	0\%	-5\%	-11\%	-12\%	-9.8\%	21\%	0\%	0\%	-2\%	-4\%	5\%	13\%	1\%	2\%	18\%	45\%	59\%	15\%	0\%	0\%	2\%	26\%	34
4000	673	11\%	0\%	-1\%	-2\%	-1\%	-1\%	16\%	-2\%	-2\%	-2\%	-5\%	-5\%	11\%	0\%	-1\%	0\%	-1\%	-2\%	11\%	1\%	1\%	0\%	13\%	38\%	10\%	0\%	0\%	0\%	6\%	22
5000	791	10\%	0\%	-1\%	-2\%	-2\%	-1\%	7\%	0\%	0\%	0\%	-1\%	0\%	5\%	0\%	0\%	-1\%	-1\%	-1\%	7\%	1\%	0\%	0\%	4\%	15\%	5\%	0\%	0\%	1\%	2\%	9\%

Annual Average Floodplain Inundation Tuolumne River, April - June

Annual Average Floodplain Inundation Tuolumne River, April - June in Below Normal, Dry, and Critical Years

Floodplain Summary

- Large increases in floodplain inundation, especially in dry years
- Results are not optimized for floodplain habitat
- Bigger results are possible from flow shaping
- Flows can be optimized to achieve desired water depths and durations of inundation

SalSim

>Population simulation model for fall-run Chinook salmon in the San Joaquin Basin Developed by California Dept. of Fish and Wildlife (CDFW), Region 4
$>$ Tracks daily growth, movement, and survival as functions of flow, temperature, predation, and other factors
$>$ Designed to estimate changes in:

- juveniles produced by each tributary
- total juveniles out-migrating to the Delta
- total juveniles entering the ocean
- total adults returning to tributaries

Limitations of SalSim

$>$ First 4 years are "priming years"
>Includes an ocean crash which affects adult returns during 2005-2009
$>$ Data used to construct the model has many uncertainties

SalSim has only 7 years that reflect comparative production; first 4 years are "priming years"

[^0]
Last 5 years reflect an ocean crash

[^1]
Average Salmon Production Using SalSim (Total Adult Chinook Salmon Production)

SalSim Run	16-year Average	Difference from Baseline	7-year Average	Difference from Baseline
Baseline	11,373	0	16,151	0
40\% Unimpaired Flow	12,476	1,103	18,210	2,059
40\% Unimpaired Flow with Maximum Flow Shifting	15,512	4,138	23,788	7,637

Adapted from Table 19-32

Average Salmon Production Using SalSim (Total Adult Chinook Salmon Production)

SalSim Run	16-year Average	Difference from Baseline	7-year Average	Difference from Baseline
Baseline	11,373	0	16,151	0
40\% Unimpaired Flow	12,476	1,103	18,210	2,059
40\% Unimpaired Flow with Maximum Flow Shifting	15,512	4,138	23,788	7,637

Adapted from Table 19-32

Why is SalSim not useful for SED?

$>$ Conditions proposed in the SED are different than conditions used to construct SalSim
$>$ Is inaccurate with regard to temperature:

- It is oversensitive relative to egg mortality during egg incubation
- Juvenile mortality is under sensitive relative to lethal temperatures in SalSim
$>$ Underestimates the benefits of floodplain inundation during the spring time period

SED Quantified Benefits

$>$ Temperature habitat to evaluate temperature benefits
$>$ Floodplain habitat to evaluate floodplain benefits

Figure 26. Lengths of all sampled juvenile Chinook salmon by day at the Oakdale trap site.

Grayson Chinook Passage and Flow

during 2006

Figure 10. Daily estimated passage of unmarked Chinook salmon at Grayson and river flow at

Outmigrant Trapping of Juvenile Salmonid in the Lower Tuolumne River, 2006

O. mykiss captured at the Oakdale screw trap on the Stanislaus River $(1995-2009)$

[^0]: Adapted from Figure 19-14

[^1]: Adapted from Figure 19-14

