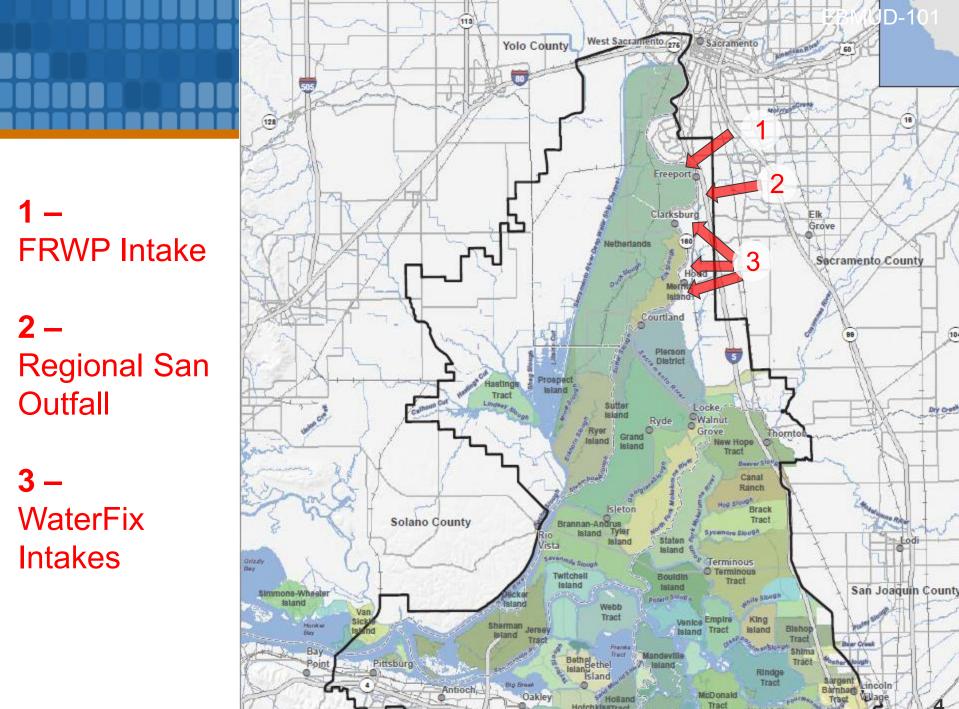
WaterFix Impacts on Reverse Flows at Freeport Regional Water Project Intake

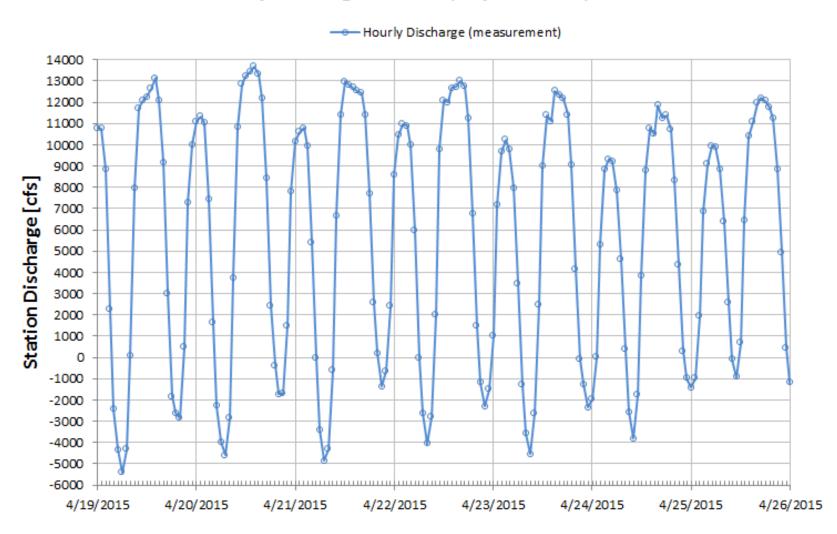
Testimony Summary
Benjamin S. Bray, Ph.D., P.E.
(EBMUD Exhibit 101)

Presentation Topics

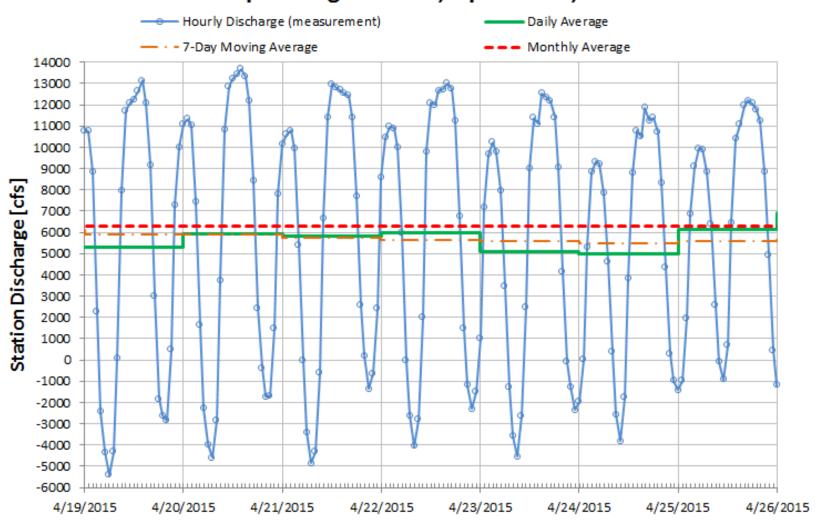


Tidal Influence at Freeport

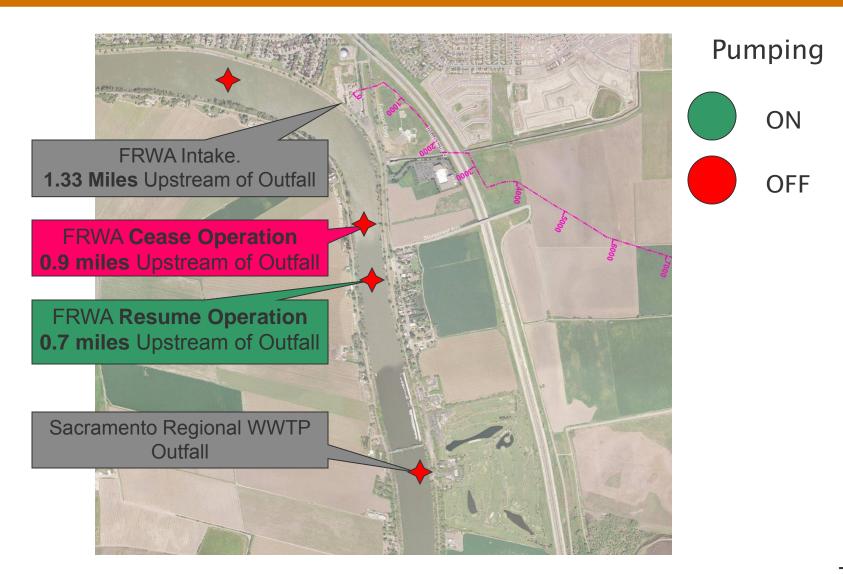
Defining the Problem:


What is a "significant" reverse flow event?

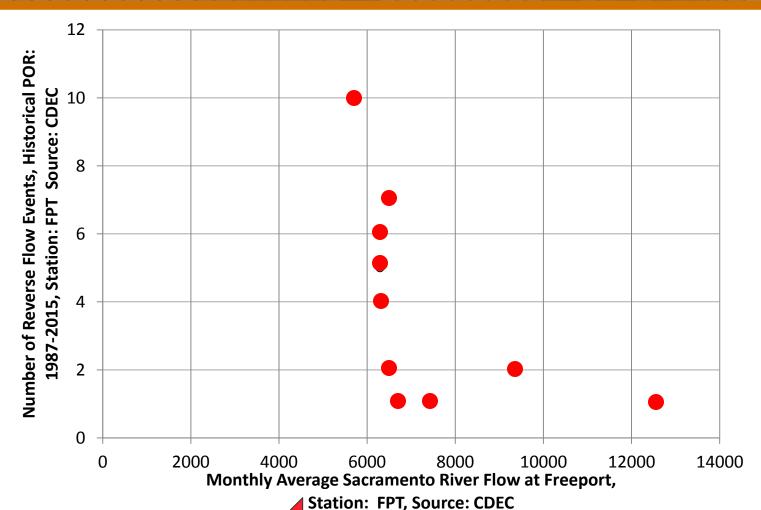
An Example of Tidal Influence


Freeport Gage Station, April 19-25, 2015

An Example of Tidal Influence



Freeport Gage Station, April 19-25, 2015


Reverse Flow Operational Criteria

Increasing risk of reverse flow shutdowns

Technical Analysis Efforts:

Assessing Reverse Flow Impacts to Freeport Regional Water Project

WaterFix's Impact on Freeport

- WaterFix increases SWP/CVP operational flexibility
- New flexibility allows timing and magnitude of north-tosouth exports to change
- Shift in export patterns can reduce Sacramento River low flows during droughts
- Lower flows lead to more significant reverse flow events that require Freeport Project shutdowns

Relevant Prior Analysis

Table 3: Reverse Flow Events with Advective Transport Exceeding 0.9 Miles for DWR Modeling Studies, 1974-1991 Hydrology.							
Model Study	Brief Description	Number of Events					
EX_ROA0_SLR0_CC0	Existing Case, Includes Fall X2						
EX_No_FallX2_ROA0_SLR0_CC0	Existing Case, No Fall X2	30					
NAA_ELT_ROA0_SLR15_CC5	No Action Case, Early	→ 70					
NAA_LLT_ROA0_SLR45_CC5	No Action Case, Late	178 ←					
NAA_ROA0_SLR0_CC0	No Action Case, General	22					
ALT4_ELT_ROA25_SLR15_CC5	Action Case, Early	→ 14					
ALT4_LLT_ROA65_SLR45_CC5	Action Case, Late	21 ←					

Table 4:	Reverse Flow Events with Advective Transport Exceeding 0.9 Miles for MBK Modeling Studies, 1921-2003 Hydrology and 1974-1991
	Hydrology.

Model Study	Brief Description	Number of Events 1921-2003 Hydrology	Number of Events 1974-1991 Hydrology
MBK_FutBase_CC0_SLR0 MBK_BDCP_ALT4_CC0_SLR0_ROA0	Base Case Action Case	203	55 64
MBK_FutBase_CC0_SLR0_ROA25	Base Case with Restoration	49	11
MBK_BDCP_ALT4_CC0_SLR0_ROA25	Action Case with Restoration	→ 55	→ 12

Relevant Prior Analysis

What the BDCP modeling told us:

North Delta Diversion + New Tidal Marsh

> Fewer Shutdown Events at Freeport

North Delta Diversion

— New Tidal Marsh

More Shutdown Events at Freeport

Freeport Reverse Flow Impact Analysis: Two Methods

INDIRECT → Use CalSim-II

Assess risk of WaterFix-caused increase in reverse flows by analyzing changes in Sacramento River flows downstream of Freeport intake

DIRECT → Use DSM2

Assess changes in reverse flow events by analyzing fine-timescale (15-min) velocity output at Freeport intake

Analysis of Petitioners' CalSim-II WaterFix Modeling

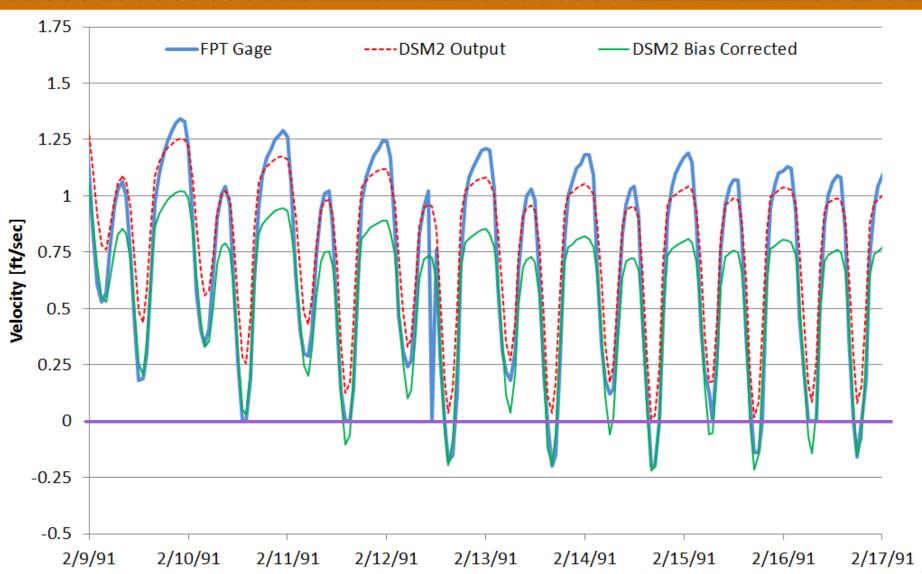
Number of "Low-Flow" Months where WaterFix Scenario Reduces Monthly Average Flow at Freeport (vs. NAA):

Period of Interest	Н3	H4	Bnd1	Bnd2
1929-1934 Drought (Oct. 1928 – Oct. 1934, <i>N</i> = <i>73</i>)	9	7	6	5
1976-1977 Drought (Oct. 1975 – Nov. 1977, N = 26)	4	4	3	4
1987-1992 Drought (Oct. 1986 - Nov. 1992, N = 74)	12	5	5	8
Drought Subtotal (<i>N</i> = 173)	25	16	14	17
WY 1922-2003 (N = 984)	34	22	22	20

WaterFix operations will further reduce flows during droughts, when flows are already low.

Analysis of Petitioners' DSM2 WaterFix Modeling

Number of Modeled "Shutdown Events" at Freeport:


Period of Interest	NAA	Н3	H4	Bnd1	Bnd2
1976-1977 Drought (Oct. 1975 – Oct. 1977)	31	30	33	27	28
1987-1992* Drought (Oct. 1987 - Sep. 1990)	71	51	45	50	56
WY 1975-1991 Total (Oct. 1974 - Sep. 1991)	113	89	86	82	96

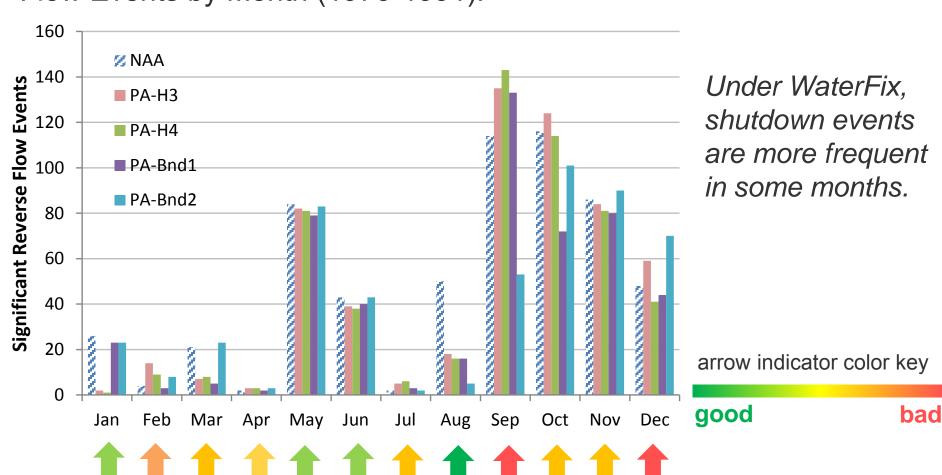
^{*}WY 1992, the last year of the 1987-1992 drought is not included in DSM2 simulations

Long-term "high level" rollup suggests WaterFix operation could moderately reduce significant reverse flow events under most scenarios.

DSM2 Historical Simulation shows Velocity Output Bias

Number of Modeled "Shutdown Events" at Freeport:

Period of Interest	NAA	Н3	H4	Bnd1	Bnd2
1976-1977 Drought (Oct. 1975 - Oct. 1977)	165	183	183	160	176
1987-1992* Drought (Oct. 1987 - Sep. 1990)	377	374	332	326	328
WY 1975-1991 Total (Oct. 1974 - Sep. 1991)	596	572	541	500	504


^{*}WY 1992 (final year of 1987-1992 drought) not included in Petitioners' DSM2 simulations.

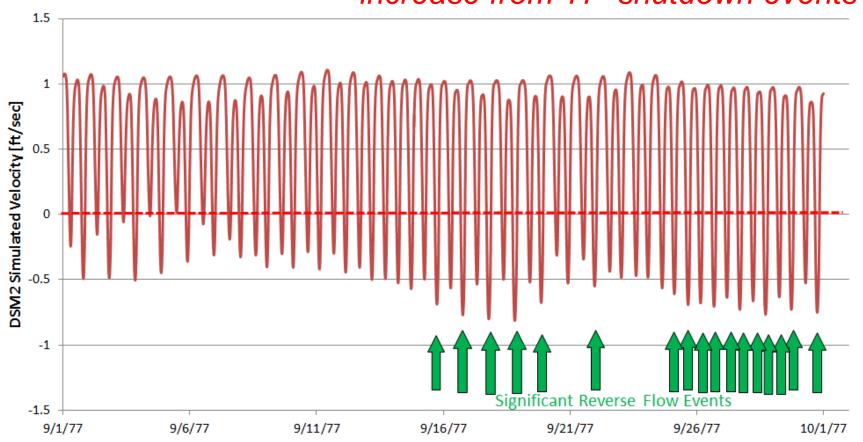
Without bias correction, DSM2 significantly underestimates the frequency of significant reverse flow events in all scenarios (including the NAA).

A closer look at "shutdown events" – month by month

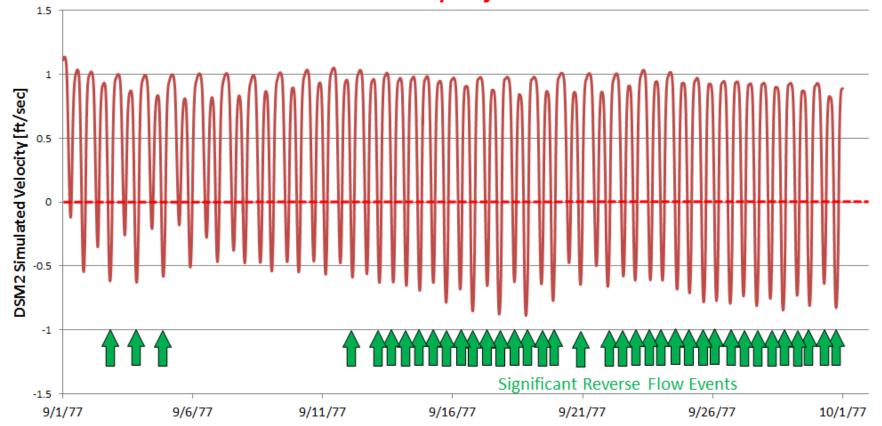
Bias-Corrected DSM2 Modeled Significant Reverse Flow Events by Month (1976-1991):

		Number of Significant Reverse Flow Events					Corresponding Monthly Average Flow [cfs]				
year	month	NAA	H3	H4	Bnd1	Bnd2	NAA	H3	H4	Bnd1	Bnd2
		0	9	9	9	9	9,288	7,880	7,880	7,910	7,863
1976	11	(change)	9	9	9	9		-1,408	-1,408	-1,378	-1,425
		6	16	16	16	17	8,437	7,564	7,564	7,589	7,469
1976	12	(change)	10	10	10	11		-873	-873	-848	-968
		17	37	37	38	26	6,916	6,058	6,056	6,032	6,687
1977	9	(change)	20	20	21	9		-858	-860	-884	-229
		35	43	43	20	36	6,085	5,826	5,827	6,870	6,187
1977	10	(change)	8	8	-15	1		-259	-258	785	102
		8	21	20	17	0	7,898	7,222	7,260	7,522	10,088
1987	9	(change)	13	12	9	-8		-676	-638	-376	2,190
		0	3	3	1	0	11,890	9,233	9,185	9,423	11,397
1988	7	(change)	3	3	1	0		-2,657	-2,705	-2,467	-493
		16	23	20	28	11	7,353	7,092	7,364	6,842	7,889
1990	9	(change)	7	4	12	-5		-261	11	-511	536
		17	18	18	3	27	7,178	7,132	7,190	9,703	6,471
1990	12	(change)	1	1	-14	10		-46	12	2,525	-707
		1	12	7	1	7	11,551	8,819	9,054	10,684	9,607
1991	2	(change)	11	6	0	6		-2,732	-2,497	-867	-1,944
		4	10	10	12	10	9,694	8,292	8,303	8,107	8,217
1991	6	(change)	6	6	8	6		-1,402	-1,391	-1,587	-1,477
		0	14	14	14	0	8,925	7,833	7,856	7,803	9,584
1991	8	(change)	14	14	14	0		-1,092	-1,069	-1,122	659

For ease of reference, increases in significant reverse flow events and corresponding monthly flows are colored with red font. Decreases in significant reverse flow events and corresponding monthly flows are colored with green font. For cases where there is no change in the number of significant reverse flow events, grey font is used. Also, italicized font is used for each "change" row of the table where the NAA is subtracted from the project alternative.


September 1977 Example: Shift in Timing of Exports.

Oct-76 Nov-76 Dec-76 Jan-77 Feb-77Mar-77 Apr-77 May-77 Jun-77 Jul-77 Aug-77 Sep-77 Oct-77 Nov-77 Dec-77


September 1977 Example: WaterFix operation results in an increase from 17 "shutdown events"...

No Action Alternative, Bias-corrected DSM2 Simulation

September 1977 Example: ...to 37 "shutdown events" under the H3 project alternative.

H3 Project Scenario, Bias-Corrected DSM2 Simulation

Conclusions

- · WaterFix increases operational flexibility
- Flexible operations allow the timing of north-to-south movement of water to shift within the year
- · Shifted export timing periodically results in incrementally lower flows in the Sacramento River during droughts, compared to the No Action Alternative

Conclusions (cont'd)

- Periodically lower Sacramento River flows increase the likelihood of reverse flow events severe enough to require the Freeport Project intake to shut down
- WaterFix improves significant reverse flows in winter and spring – but serious reverse flow events are more numerous in the late summer to early winter months
- Proposed north Delta bypass criteria are insufficiently protective