
The invasive bivalve Corbicula fluminea
can have a variety of effects on aquatic ecosys-
tems. Understanding these effects remains
important as C. fluminea continues to expand
its range, most recently in South America and
Europe (McMahon 1999). Initial interest in C.
fluminea in California (Ingram 1959, Eng 1979)
and throughout the United States centered on
its potential as a pest in water supply infra-
structure (McMahon 1983). There were few
studies of the ecosystem-level effects of the C.
fluminea invasion until the 1980s, when filtra-
tion by C. fluminea was noted to be limiting
pelagic food sources (Cohen et al. 1984, Lau-
ritsen 1986, McMahon and Williams 1986). In
the 1990s, the presence of C. fluminea was as -
sociated with changes in zooplankton commu-
nity structure (Beaver et al. 1991). Corbicula
fluminea has also been associated with other
effects on invaded ecosystems, including alter-
ations in cycling of organic matter in the sub-
strate (Hakenkamp and Palmer 1999), changes
in nutrient cycling (Lauritsen and Mozely 1989,
Beaver et al. 1991), changes in composition of
the benthic community (Hakenkamp et al.
2001), and system-level ecological change
(Phelps 1994). Recent work in the Sacra -

mento–San Joaquin Delta indicates that C. flu-
minea may be suppressing primary production
(Lucas et al. 2002), and thus pelagic secondary
production, as Potamocorbula amurensis does
in the brackish parts of the estuary (Kimmerer
2002). Most of the work on C. fluminea popu-
lations in the United States has occurred in
eastern streams, where it is widely established
(U.S. Geological Survey 2005). There have been
no published studies of the ecological effects
of C. fluminea in the nontidal streams and rivers
of the western United States, even though the
species is established in many of the major river
basins (U.S. Geological Survey 2005).

Given previous work in other geographic
areas, it seems likely that invasion of C. flu-
minea into western rivers was associated with
changes in ecosystem processes, particularly
trophic pathways. Understanding the trophic
linkages from phytoplankton, periphyton, and
particulate organic matter to invertebrates, and
ultimately to fish, is important for the effective
management of ecosystems. In California, C.
fluminea invaded the delta and its tributary
rivers, including the San Joaquin River, circa
1945 (Ingram 1959). Thus, the San Joaquin
River drainage provides an opportunity to study
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Fig. 1. Locations of 16 sites sampled for Corbicula fluminea in the lower San Joaquin River drainage, California.
Arrows indicate dams delimiting the top of the study reaches in the tributary rivers. The 2 open circles on the lower figure
mark the approximate upper and lower ends of the reach of the San Joaquin River without perennial flow.



a well-established population of C. fluminea
and evaluate the potential effect of this invasive
bivalve on stream ecosystems. Accordingly, we
examined the distribution, density, biomass, and
age-class structure of C. fluminea in the lower
San Joaquin River upstream of tidal influence
and in 2 of its major tributaries, namely, the
Tuolumne and Merced rivers (Fig. 1). We also
tested for relationships between measures of
clam abundance and selected habitat variables
and water quality variables in an effort to under -
stand the environmental factors associated with
patterns of clam abundance.

STUDY AREA

The San Joaquin, Merced, and Tuolumne
rivers drain the San Joaquin Valley of Califor-
nia (Fig. 1). The upper portions of the water-
sheds consist primarily of forested lands in the
foothills and upper elevations of the Sierra
Nevada. Agriculture, primarily irrigated farm-
land, dominates the lower valley floor portions
of the watersheds; however, urban areas are
rapidly expanding. All 3 rivers are dammed
near the transition from the foothills of the
Sierra Nevada to the valley floor (Fig. 1). The
stored water is diverted into canal systems or
released into the downstream channel to supply
downstream uses and provide flood control.
These operations have substantially altered nat-
ural hydrologic regimes and geomorphic pro -
cesses (Kahrl et al. 1978, Mount 1995). Irriga-
tion return flows and the intensive use of pes-
ticides and fertilizers have adversely affected
water quality on the valley floor (Kuivila and
Foe 1995, Brown 1997a, 1997b, Domagalski et
al. 1997, Kratzer and Shelton 1999).

This study was conducted in the down-
stream reaches of the tributary rivers below the
dams and in the lower San Joaquin River be -
ginning just upstream of the Merced River (Fig.
1). Flow releases from Millerton Reservoir,
which is on the San Joaquin River, are insuffi-
cient to maintain surface flow within a long
reach of the river from below the dam to just
above the confluence of the Merced River (Fig.
1; Brown 1997a). Upstream of the Merced
River, the flow in the San Joaquin River con-
sists mainly of agricultural return flow. During
our study, river flows were steady or slowly
declining except at the farthest downstream
San Joaquin River site (SJ1). Flows at this site
were variable, due to water management ac -

tivites on the Stanislaus River, but never ap -
proached flood levels.

METHODS

Data Collection

Corbicula fluminea was collected in June
2003 from 16 sites in the lower San Joaquin,
Tuolumne, and Merced rivers (Fig. 1). Sites on
the mainstem San Joaquin River were located to
bracket the confluences of tributary rivers. Sites
on the Tuolumne and Merced rivers repre-
sented the variety of habitats below the foot -
hill dams. Specifically, the 2 upstream sites in
both tributaries were located in a region of
higher gradient and coarse substrate with well-
developed riffle-pool habitat. The 2 downstream
sites were located in a region of lower gradient
and fine substrate dominated by run habitat.
The middle site represented a transition zone.
All of the mainstem San Joaquin River sites
were located in a region of lower gradient and
fine substrate dominated by run habitat.

At each sampling site, C. fluminea densities
were determined within a reach of stream with
a linear extent corresponding to approximately
20 times the mean channel width. A stream
reach of this length adequately captures stream
habitat heterogeneity (Fitzpatrick et al. 1998).
Eleven evenly spaced transects, each oriented
perpendicular to stream flow, were sampled
within each reach. At each transect, C. fluminea
was collected at 5 points: 25%, 50%, and 75%
of stream width and 1 point within 2 m of the
stream edge at each bank. At each point, a clam
sample was collected from a 0.165-m2 area in
front of a rectangular kick net with a net bag
approximately 30 cm deep with 2-mm mesh.
When present, large rocks were removed from
the area in front of the net, and then sand and
gravel were kicked toward the net opening.
This action disturbed the substrate to a depth
of 10 cm. In clear water we occasionally noted
clams remaining in the sample area after kick-
ing, so our estimates represent minimum esti -
mates of the numbers present. To prevent bias-
ing our samples compared to turbid water
samples, we did not collect the remaining visible
clams. When water depth was too great to use
the kick net, we used a pole-mounted Eck man
dredge (0.052 m2). The dredge samples were
sieved through a 2-mm sieve. Our methods
were not adequate to collect the smallest clams
present (<2 mm SL, maximum shell length);
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however, this bias was present for all samples
and does not affect comparisons be tween sites.

At each sampling point on a transect, stream
depth was measured with a calibrated wading
rod. Mean water column velocity was deter-
mined with a Marsh-McBirney electronic flow
meter. The dominant substrate at the sample
point was categorized visually (see Table 1 for
categories). We were unable to sample locations
deeper than our pole (3 m) or locations with
substrate that could not be moved by hand (i.e.,
boulders). All C. fluminea individuals collected
at a sampling site were composited into a single
sample. Subsamples, which represented the
size range of C. fluminea collected, were frozen
to determine biomass. Any remaining clams
were preserved in 10% buffered formalin. Pre-
served clams were transferred to 70% ethyl
alcohol after 7–10 days. Water temperature was
measured at the beginning and end of sampling
activities at each site.

All 55 transect points were successfully
sampled at only 3 of 16 sites (Table 1). At 2
sites in the Merced River (MR3 and MR5) and
1 site in the Tuolumne River (TR3), entire tran -
sects were not sampled (5, 3, and 1 transect,
respectively) because of the presence of deep
pools (>2 m) with large substrate materials
(large cobbles and small boulders) that were not
amenable to sampling with the Eckman dredge.
The remaining missing points represent iso-
lated transect points that could not be sampled
for reasons of depth or substrate.

In the laboratory, maximum shell lengths
(SL) of all collected C. fluminea were mea-
sured to the nearest 0.1 mm using Vernier
calipers. Corbicula fluminea in the frozen sub-
sample were sorted into 1-mm SL size groups
for each site. The clams within each 1-mm size
group at each site were then placed into indi-
vidual pans. At sites where clams were abun-
dant, 1-mm size groups from each site were
split into 2 pans. All pans were then placed in
a 60°C oven (for ≥7 days), weighed (dry mass,
DM), combusted at 500°C, and reweighed (ash
mass, AM; Crisp 1971). The resulting ash-free
dry mass (AFDM) of the clams in each 1-mm
size group was determined by difference
(AFDM = DM – AM). Data from all sites on a
river were combined for determination of a
river-specific regression equation. These equa -
tions were then used to estimate biomass of
individual C. fluminea in the preserved samples.

Age structure of the C. fluminea population
at each site was analyzed using Mix 3.1.3 for
Macintosh (Macdonald and Green 1988). This
program discerns mixtures of distributions with-
in size frequency distributions by the method of
maximum likelihood. The component densities
can be normal, lognormal, gamma, or Weibull
distributions. The parameters were not con-
strained for these analyses. Age structure was
analyzed assuming 2 reproductive periods per
year for C. fluminea in this system (Foe and
Knight 1985). We tested for differences among
rivers in log10-transformed mean SL at each age
(as calculated by Mix) using ANOVA followed
by Tukey pairwise comparisons.

Specific conductance, chlorophyll-a (chl-a),
and suspended particulate matter (SPM) were
determined at 4 sites on 1 day in each river
during a 2nd sampling period that was sepa-
rated from the C. fluminea collections by ≤21
days. Flows were steady or declining slowly be -
tween sampling periods, and thus we assumed
that redistribution of clams between benthic
and water column sampling periods was mini -
mal. Water samples (1 L) were collected as mid -
stream subsurface grabs, which Kratzer et al.
(2004) found to be comparable to width- and
depth-integrated samples in the lower San
Joaquin River (median relative percentage dif-
ference = 12%, n = 8). Specific conductance
was measured with an electronic meter. Chloro -
phyll-a was analyzed according to standard
methods (Parsons et al. 1984), as was SPM
(Hager 1994).

To supplement our single-event environ-
mental sampling we obtained longer-term data
from other sources. Such data were not avail-
able for every site sampled, but the data do
allow comparisons between rivers. We obtained
flow data for the 20 years preceding our sam-
pling from USGS gages located at the upstream
end of our study reaches in the Merced and
Tuolumne rivers and at sites SJ1 and SJ5 on
the San Joaquin River. We obtained unpub-
lished data for water temperature, specific
con ductance, pH, chl-a, dissolved calcium
concentration, and SPM from Dr. Randy
Dahlgren (University of California, Davis). We
used data from twice monthly sampling at
sites MR1, TR1, SJ1, SJ4, and at a location
approximately 4 km upstream of SJ2. Four ad -
ditional sampling events during the time period
were also in cluded. Methods and sampling

2007] CORBICULA FLUMINEA IN CALIFORNIA RIVERS 575



576 WESTERN NORTH AMERICAN NATURALIST [Volume 67

TA
B

L
E

1.
Ph

ys
ic

al
 a

nd
 w

at
er

 q
ua

lit
y 

co
nd

iti
on

s 
at

 1
6 

si
te

s 
in

 th
e 

lo
w

er
 S

an
 J

oa
qu

in
 R

iv
er

 d
ra

in
ag

e,
 C

al
ifo

rn
ia

, 2
00

3.
 S

ee
 F

ig
. 1

 fo
r s

ite
 lo

ca
tio

ns
.

C
or

bi
cu

la
sa

m
pl

in
g

W
at

er
 q

ua
lit

y 
sa

m
pl

in
g

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
_

Tr
an

se
ct

W
at

er
M

ea
n

M
ea

n
M

ea
n

M
ea

n 
Sp

ec
ifi

c
Su

sp
en

de
d

po
in

ts
te

m
pe

ra
tu

re
a

ch
an

ne
l

de
pt

h
ve

lo
ci

ty
do

m
in

an
t

co
nd

uc
ta

nc
e

C
hl

or
op

hy
ll-

a
pa

rt
ic

ul
at

e 
m

at
te

r
Si

te
D

at
e

sa
m

pl
ed

(°C
)

w
id

th
 (m

)
(m

) 
(m

 ⋅
s–

1 )
su

bs
tr

at
eb

D
at

e
(µ

S 
⋅c

m
–1

)
(µ

g 
⋅L

–1
)

(m
g 
⋅L

–1
)

M
R

1
26

 J
un

e 
20

03
54

29
.5

, 2
9.

4
23

.7
0.

45
0.

31
2.

6
9 

Ju
ly

 2
00

3
31

7
1.

50
5.

45
M

R
2

27
 J

un
e 

20
03

53
24

.0
, 2

5.
1

28
.9

0.
49

0.
31

2.
8

9 
Ju

ly
 2

00
3

15
1

2.
50

5.
00

M
R

3
18

 J
un

e 
20

03
30

26
.1

, 2
6.

3
19

.6
0.

42
0.

40
4.

7
9 

Ju
ly

 2
00

3
58

1.
37

2.
94

M
R

4
18

 J
un

e 
20

03
55

18
.3

, 1
9.

7
17

.1
0.

41
0.

55
7.

0
9 

Ju
ly

 2
00

3
ns

c
ns

ns
M

R
5

25
 J

un
e 

20
03

40
16

.2
27

.1
0.

54
0.

46
5.

6
9 

Ju
ly

 2
00

3
47

0.
89

2.
00

TR
1

20
 J

un
e 

20
03

54
22

.6
, 2

3.
7

40
.3

0.
68

0.
32

3.
1

9 
Ju

ly
 2

00
3

18
3

2.
43

6.
67

TR
2

19
 J

un
e 

20
03

52
22

.8
, 2

4.
7

43
.1

0.
56

0.
34

2.
9

9 
Ju

ly
 2

00
3

12
3

1.
06

6.
36

TR
3

24
 J

un
e 

20
03

50
19

.7
, 2

1.
6

32
.8

0.
55

0.
33

6.
2

9 
Ju

ly
 2

00
3

67
0.

87
2.

00
TR

4
25

 J
un

e 
20

03
50

16
.9

, 1
8.

6
26

.5
0.

45
0.

39
4.

1
9 

Ju
ly

 2
00

3
ns

ns
ns

TR
5

26
 J

un
e 

20
02

55
12

.9
, 1

4.
5

32
.3

0.
40

0.
39

7.
0

9 
Ju

ly
 2

00
3d

38
0.

45
0.

70
SJ

R
1

8 
Ju

ly
 2

00
3

55
21

.6
, 2

4.
1

96
.1

0.
77

0.
42

2.
9

9 
Ju

ly
 2

00
3

62
0

88
.9

0
15

.3
8

SJ
R

2
23

 J
un

e 
20

03
54

22
.8

, 2
4.

6
76

.1
1.

08
0.

23
2.

7
9 

Ju
ly

 2
00

3e
89

6
12

2.
50

88
.2

8
SJ

R
3

20
 J

un
e 

20
03

53
24

.3
, 2

6.
8

51
0.

73
0.

35
2.

8
9 

Ju
ly

 2
00

3
ns

ns
ns

SJ
R

4
19

 J
un

e 
20

03
51

26
.5

, 2
7.

3
60

.3
0.

56
0.

40
2.

6
9 

Ju
ly

 2
00

3
13

43
16

2.
50

10
2.

90
SJ

R
5

17
 J

un
e 

20
03

51
27

.2
, 2

8.
6

54
.9

0.
60

0.
31

2.
8

9 
Ju

ly
 2

00
3

ns
ns

ns
SJ

R
6

17
 J

un
e 

20
03

55
24

.8
, 2

6.
8

35
.4

0.
54

0.
36

2.
5

9 
Ju

ly
 2

00
3

19
24

89
.8

0
12

9.
30

a W
at

er
 t

em
pe

ra
tu

re
s 

w
er

e 
re

co
rd

ed
 a

t 
th

e 
be

gi
nn

in
g 

an
d 

en
d 

of
 a

 s
am

pl
in

g 
vi

si
t, 

ex
ce

pt
 f

or
 a

t 
M

R
5 

w
he

re
 o

nl
y 

an
 e

nd
in

g 
te

m
pe

ra
tu

re
 w

as
 t

ak
en

. 
B

ol
d 

in
di

ca
te

s 
an

 a
fte

rn
oo

n 
sa

m
pl

in
g 

vi
si

t 
an

d 
no

nb
ol

d 
te

xt
 d

es
ig

na
te

s 
a 

m
or

ni
ng

 v
is

it.
b S

ub
st

ra
te

 c
at

eg
or

ie
s: 

1,
 b

ed
ro

ck
/c

on
cr

et
e/

ha
rd

pa
n;

 2
, s

ilt
/c

la
y;

 3
, s

an
d 

(>
0.

06
3–

2 
m

m
); 

4,
 fi

ne
 g

ra
ve

l (
>

2–
16

 m
m

); 
5,

 c
oa

rs
e 

gr
av

el
 (>

16
–3

2 
m

m
); 

6,
 v

er
y 

co
ar

se
 g

ra
ve

l (
>

32
–6

4 
m

m
); 

7,
 s

m
al

l c
ob

bl
e 

(>
64

–1
28

 m
m

); 
8,

 la
rg

e 
co

bb
le

 (>
12

8–
25

6 
m

m
);

9,
 s

m
al

l b
ou

ld
er

 (>
25

6–
51

2 
m

m
); 

10
, l

ar
ge

 b
ou

ld
er

 (>
51

2 
m

m
).

c n
s,

 n
ot

 s
am

pl
ed

.
d W

at
er

 q
ua

lit
y 

da
ta

 w
er

e 
ac

tu
al

ly
 c

ol
le

ct
ed

 a
t t

he
 O

ld
 L

aG
ra

ng
e 

br
id

ge
 a

pp
ro

xi
m

at
el

y 
5 

km
 u

ps
tr

ea
m

.
e W

at
er

 q
ua

lit
y 

da
ta

 w
er

e 
ac

tu
al

ly
 c

ol
le

ct
ed

 a
t t

he
 M

az
e 

R
oa

d 
br

id
ge

 a
pp

ro
xi

m
at

el
y 

4 
km

 u
ps

tr
ea

m
.



procedures are documented in Kratzer et al.
(2004). Our sampling-event measurements rep-
resent conditions during a warm, highly pro-
ductive period when clams are expected to be
in good condition, and the longer-term data
place the sampling-event data in the multi-
year context im portant in deter mining popu-
lation structure.

Data Analysis

We compared SL, density (total number per
unit area sampled), and biomass (total AFDM
per unit area sampled) of clams in each river
using ANOVA followed by Tukey pairwise com -
parisons. The data were log10-transformed to
improve normality and to reduce heterosce -
dasticity. We related density and biomass to
environmental conditions using Spearman rank
correlations. Measures of environmental con-
ditions included (1) chl-a as a measure of food
availability; (2) mean depth, mean velocity,
mean dominant substrate size, and water tem-
perature as measures of habitat condition; and
(3) specific conductance and SPM as measures
of water quality. Values for SPM actually
depend on suspended material of both organic
(e.g., suspended algae) and inorganic (e.g., sus-
pended sediment) origin, so this measure also
reflects food availability.

We compared AFDM adjusted for SL (a
measure of condition) of C. fluminea using anal-
ysis of covariance (ANCOVA). For the pairwise
comparisons of rivers, we used the Bonferroni
correction to adjust the significance level for
multiple pairwise tests. Both SL and AFDM
data were log10-transformed for analysis.

RESULTS

Habitat and water quality conditions varied
widely between rivers and between sites on
the same river (Table 1). Compared with the
tributaries, the San Joaquin River was wider
and deeper with less heterogeneity in temper-
ature and substrate size between sites. Water
temperatures were always warm, with all mea-
surements exceeding 20°C. The substrate was
dominated by fine particles (sand or smaller) at
all sites. Specific conductance and SPM de -
clined from upstream to downstream in the
San Joaquin River, whereas chl-a was highest
at the intermediate sites (SJR2 and SJR4).
Chlorophyll-a was approximately 2 orders of
magnitude higher in the San Joaquin River than
in the tributaries. At some sites, specific con-
ductance and SPM were an order of magni-
tude higher in the San Joaquin River than in
the tributary rivers.

In the Merced and Tuolumne rivers, water
temperature, specific conductance, chl-a, and
SPM tended to increase from upstream sites
to downstream sites (Table 1). Mean substrate
size exhibited an opposite trend, with upstream
sites having larger substrate (gravel or larger)
and downstream sites dominated by mixtures of
fine substrates (sand or smaller).

Flow in all 3 rivers was low to moderate
during the 3 years preceding our sampling (Fig.
2). The California Department of Water Re -
sources considered 2001 and 2002 to be dry and
2003 to be below normal based on a scale of
decreasing basin runoff: wet, above normal, be -
low normal, dry, or critically dry (http://cdec
.water.ca.gov/cgi-progs/iodir/wsihist). The most
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TABLE 2. Mean (–+ s) and range (in parentheses) for selected water quality variables from twice monthly sampling from
July 2001 through June 2003 (n = 52, 4 additional sampling events were also included) at 5 sites in the lower San
Joaquin River drainage, California (R. Dahlgren, University of California, Davis, unpublished data).

Water Specific Dissolved Suspended
temperature conductance calcium Chlorophyll-a particulate matter

Site (°C) (µS ⋅ cm–1) pH (mg ⋅ L–1) (µg ⋅ L–1) (mg ⋅ L–1)

MR1 18.0 –+ 5.4 180 –+ 88 7.8 –+ 0.2 17 –+ 7 3.07 –+ 1.91 11.89 –+ 6.53
(8.0–27.8) (43–344) (7.3–8.4) (5–30) (0.24–7.66) (3.70–41.71)

TR1 17.6 –+ 5.2 212 –+ 60 7.9 –+ 0.2 20 –+ 6 3.62 –+ 1.88 10.70 –+ 5.82
(8.5–27.7) (55–303) (7.4–8.4) (5–28) (0.50–9.72) (2.80–28.19)

SJ1 17.2 –+ 5.1 689 –+ 195 8.0 –+ 0.2 45 –+ 13 27.10 –+ 27.01 47.19 –+ 14.52
(7.9–28.1) (305–1027) (7.6–8.5) (20–71) (2.00–105.18) (25.50–81.25)

SJ2 17.7 –+ 5.2 889 –+ 236 8.0 –+ 0.2 54 –+ 13 33.56 –+ 35.37 64.22 –+ 43.50
(8.6–26.7) (342–1302) (7.6–8.6) (22–75) (2.16–133.10) (16.32–209.20)

SJ4 18.2 –+ 5.4 1181 –+ 261 8.0 –+ 0.2 73 –+ 18 31.06 –+ 33.03 58.21 –+ 23.31
(8.5–27.1) (424–1607) (7.6–8.5) (27–116) (1.56–125.74) (18.00–112.00)



recent major flood occurred in late 1996 to early
1997 (Fig. 2). The long-term water quality data
(Table 2) showed patterns and magnitudes
similar to our sampling-event measurements
(Table 1). Specific conductance was higher in
the San Joaquin River than in the tributaries,
with little overlap in the range of values
(Table 2). Mean dissolved calcium was approx-
imately 3 times higher in the San Joaquin River

than in the tributaries. Mean chl-a was about
10 times higher in the San Joaquin River
than in the tributaries. Suspended particulate
matter was 5 to 6 times higher in the San
Joaquin River than in the tributaries. Values
for pH were similar at all sites and ranged
from 7.3 to 8.6. Temperature was also similar
at all sites and ranged from 7.9° to 27.8°C;
however, these samples were taken at the far-
thest downstream and warmest sites on the
tributaries.

There were statistically significant differ-
ences in SL among rivers (ANOVA, F2,4330 =
156.1, P < 0.001). The rivers were all different
from each other (all P < 0.001). Mean SL of
clams was smallest in the San Joaquin River 
(x– = 6.7 mm, 95% C.I. 6.1–7.5 mm, n = 66),
intermediate in the Merced River (x– = 13.3
mm, 95% C.I. 12.9–13.8 mm, n = 712), and
largest in the Tuolumne River (x– = 14.3 mm,
95% C.I. 14.1–14.4 mm, n = 3555). The differ-
ence between the Merced and Tuolumne rivers
was only 1 mm, but was statistically significant
because of high statistical power resulting from
the large sample sizes. Patterns in SL within
each river were different (Fig. 3). All clams from
the San Joaquin River were small; all but 1
measured <14 mm SL. In the Tuolumne River,
the upstream site had no small individuals (Fig.
3). The downstream site had the largest indi-
viduals but also the smallest median size. The
C. fluminea populations at the lower Merced
River sites (MR1–3) had relatively uniform mix -
tures of small and large individuals, and median
sizes were larger than those in the Tuolumne
River (Fig. 3). The upstream Merced River sites
(MR4 and MR5) had fewer large clams and
smaller median sizes (11–13 mm SL) than the
downstream sites.

There were significant statistical differences
in density (ANOVA: F2,13 = 7.2, P < 0.01) and
biomass (ANOVA: F2,13 = 7.7, P < 0.01) among
the rivers. The Tuolumne River had signifi-
cantly higher densities than the San Joaquin
River (P < 0.01, Table 3). The difference in den-
sities between the Merced River and the San
Joaquin River was nearly significant (P =
0.051), with the Merced River having higher
densities. The densities in the Merced and
Tuolumne rivers were not different (P > 0.05).
The pattern for biomass was similar, with bio-
mass highest in the Tuolumne River, interme-
diate in the Merced River, and lowest in the
San Joaquin River (Table 3). The highest
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Fig. 2. Discharge records for the 20 water years (a
water year is from 1 October to 31 September of the next
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biomass value in the San Joaquin River (SJ3)
declined to 0.01 g AFDM ⋅ m–2 when the sin-
gle large clam collected in the San Joaquin
River was omitted. For biomass, both the
Merced and Tuolumne Rivers were signifi-
cantly different from the San Joa quin River (P
< 0.05), but not different from each other (P >
0.05). Within rivers, C. fluminea density and
biomass were low throughout the San Joaquin
River (Table 3). Lowest values within the
Tuolumne River were found at the farthest
upstream and farthest downstream sites (Table

3). Biomass in the Merced River mostly in -
creased from upstream to downstream sites,
whereas density did not show a consistent
pattern.

Density had the greatest number of signifi-
cant correlations and was positively correlated
with mean dominant substrate and negatively
correlated to specific conductance, chl-a, and
SPM (Table 4). Biomass was negatively corre-
lated to chl-a and SPM. Examination of scatter
plots suggested that the correlations might
largely be attributed to the San Joaquin River
sites, which had low abundances of clams and
high values for specific conductance, chl-a, and
SPM. We recalculated the correlations after
excluding the San Joaquin River sites and found
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Fig. 3. Frequency histograms of shell lengths (mm) of Corbicula fluminea at 16 sites in the lower San Joaquin River
drainage, California. Mean length (mm) for each age class is given for each site from youngest (top) to oldest (bottom)
clams.

TABLE 3. Total area sampled, density, and biomass of
Corbicula fluminea at 16 sites in the lower San Joaquin
River drainage, California, 2003.

Area Density Biomass
Site sampled (m2) (clams ⋅ m–2)(g AFDM ⋅ m–2)

MR1 8.92 12 3.14
MR2 8.76 5 1.75
MR3 4.96 20 3.09
MR4 9.09 43 1.10
MR5 6.61 11 1.02
TR1 8.92 6 1.11
TR2 8.59 146 6.29
TR3 8.26 201 15.26
TR4 8.26 69 2.97
TR5 9.09 2 0.23
SJR1 9.09 2 0.02
SJR2 7.68 2 0.01
SJR3 8.76 1 0.36
SJR4 8.43 1 0.03
SJR5 2.67 5 0.01
SJR6 2.88 0 0

TABLE 4. Spearman rank correlations of Corbicula flu-
minea population density (clams ⋅ m–2), and biomass (g
AFDM ⋅ m–2), with selected environmental variables in
the lower San Joaquin River watershed, 2003. Sample size
was 12 for specific conductance, chlorophyll-a and sus-
pended particulate matter, and 16 for the other variables.
Significant correlations have an asterisk.  

Density Biomass
(clams ⋅ m–2) (g ⋅ m–2)

Water temperature (C) –0.35 –0.16
Water depth (m) –0.39 –0.41
Water velocity (m ⋅ s–1) 0.02 –0.10
Mean dominant substrate 0.58* 0.40
Specific conductance (µS ⋅ cm–1) –0.61* –0.56
Chlorophyll-a (µg ⋅ L–1) –0.68* –0.64*
Suspended particulate matter –0.61* –0.60*



no significant correlations of density or biomass
with environmental variables.

Because of the disparity in SL among the
rivers, we limited the Merced and Tuolumne
river data to the same size range found in the
San Joaquin River data (clams <14 mm SL and
excluding the single large clam collected) when
testing for differences in AFDM between
rivers. ANCOVA indicated that there were sig-
nificant differences among rivers (F2,114 =
26.1, P < 0.001), and pairwise comparisons

indicated that all the rivers were statistically
different from one an other (all P < 0.01; Fig.
4). Although the regres sion slopes were not
statistically different, the regression line for
the Merced River appeared to converge on
the line for the San Joaquin River, while the
line for the Tuolumne River appeared to
diverge from line for the San Joaquin River.
Using the regression equations created for each
river (the regressions based on all sizes for the
Merced and Tuolumne rivers), we calculated
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TABLE 5. Regression equations for conversion of maximum shell length (SL, mm) of Corbicula fluminea to ash-free dry
mass (AFDM, g) for the Merced, Tuolumne, and San Joaquin rivers, California, 2003. Regressions for the Merced and
Tuolumne rivers were calculated for the restricted size range of clams found in the San Joaquin River and for the full
size range found in each river. Each data point (n) represents a mean AFDM value for 1 or more clams in the same 1-
mm size group. The total number of clams in the regression is the summation of clams from all size groups. The regres-
sions were then used to calculate the mean and 95% confidence interval for the AFDM of a 10 mm SL Corbicula fluminea.

Regression equation Predicted AFDM
log(AFDM) = a(log[SL]) – b for a 10 mm SL clam (mg)__________________________________________________ ______________________

Total 95% confidence 
Site code a b n number of clams R2 Mean interval

MR
SL: 4–14mm 3.61 –5.43 44 526 0.96 15.1 14.2–16.0
SL: 4–40mm 3.11 –4.93 109 378 0.97 15.1 14.2–16.0

TR
SL: 4–14mm 3.39 –5.27 50 1354 0.99 13.3 13.0–13.6
SL: 4–47mm 3.08 –4.95 110 899 0.98 13.4 13.0–14.0

SJR
SL: 3–14mm 3.50 –5.22 28 65 0.97 19.0 16.9–21.0
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Fig. 4. Regression lines for the relationship between log10-transformed shell length and log10-transformed ash-free
dry mass (AFDM) for Corbicula fluminea of <14 mm shell length from the Merced, Tuolumne, and San Joaquin rivers.



the AFDM of a “standard” 10-mm SL clam for
each river (Table 5). These numbers fell within
the range found previously for C. fluminea in
the San Joaquin Delta region (Foe and Knight
1985). Based on the 95% confidence intervals,
each river was different from the others (Table
5); however, based on the regression lines (Fig.
4), the difference between the Mer ced and
Tuolumne rivers would be less at smaller SL.

The age structure of C. fluminea varied
within and among rivers (Fig. 3). At many sites
(MR4, TR3, SJR2, and SJR5), there was only 1
age class present; however, at other sites, 2
(MR1, MR5, TR4, TR5, SJR1, SJR3, and SJR4),
3 (MR3 and TR2), 4 (MR2), or 5 (TR1) age
classes were present. In general, higher num-
bers of age classes were found at downriver
sites except on the San Joaquin River, which
showed no trend.

The mean SL of clams in each age class var-
ied among sites. An age-1 clam (assumed to be
winter–spring 2003 recruits) ranged from 3.8
mm SL in the San Joaquin River (SJR5) to 15.9
mm SL at the midriver site on the Tuolumne
River (TR3), but an age-2 clam ranged from
11.3 mm SL (SJR4) to 25.1 mm SL (MR1; Fig.
3).

Mean SL of age-1 clams was significantly
different between rivers (ANOVA: F2,12 = 7.3,
P < 0.05). Pairwise tests showed that mean SL
of age-1 clams was larger in the Tuolumne
River than in the San Joaquin River, but was
not different from mean SL of age-1 clams in
the Merced River. The mean SL of age-1 clams
in the Merced River was larger than the mean
SL of age-1 clams in the San Joaquin River, but
the difference was not statistically significant.

Mean SL of age-2 clams was also signifi-
cantly different among rivers (ANOVA: F2,7 =
5.6, P < 0.05). Pairwise tests showed that mean
SL of age-2 clams was larger in the Merced
River than in the San Joaquin River, but was not
different from mean SL of age-2 clams in the
Tuolumne River. The mean SL of age-2 clams in
the Tuolumne River was larger than the mean
SL of age-2 clams in the San Joaquin River, but
the difference was not statistically significant.

DISCUSSION

Our study is the only one we are aware of
that explores the ecology of C. fluminea in the
small to medium-sized rivers of the south-
western United States. The published literature

on introduced riverine populations of C. flu-
minea focuses largely on estuaries (e.g., Cohen
et al. 1984, Boltovsky et al. 1997, Lucas et al.
2002, Morgan et al. 2003) and low-gradient
sand-bottomed rivers (e.g., Leff et al. 1990;
Blalock and Herod 1999). Also, relatively few
studies have incorporated longitudinal sampling
along a river (e.g., Leff et al. 1990, Mouthon
2003). Overall, densities of C. fluminea in the
San Joaquin River watershed were similar to
densities in studies conducted elsewhere that,
like ours, did not consider smaller clams (<3–5
mm SL, Payne et al. 1989, Stites et al. 1995,
Blalock and Herod 1999). However, in our
study there were obvious differences in the dis -
tribution and abundance of C. fluminea both
among and within rivers.

The most obvious difference among rivers
was the low density and biomass of C. fluminea
in the San Joaquin River relative to the 2 tribu-
taries. Larger clams have been collected in the
San Joaquin River, as reported in studies of con-
taminants (Leland and Scudder 1990, Brown
1997b), but they were rare and difficult to col-
lect even from favored microhabitats. We doc-
umented the presence of larger clams, but they
were very low in number (Fig. 3). There were
also differences between the tributaries, with
abundance and biomass peaking in the mid-
reaches of the Tuolumne River but staying rel-
atively consistent throughout the Merced River.
The limited capability of our equipment to sam -
ple deeper water in the Merced River may have
been a factor in the observed difference be -
tween tributaries; however, the difference in
pattern remained when we considered only the
sites where all transects were sampled (MR1,
MR2, and MR4).

Flooding can affect the demographics of C.
fluminea populations by transporting individuals
out of the system and recolonizing the system
with small individuals from upstream refugia
(Payne et al. 1989, McMahon 1999); however,
the lower San Joaquin River and tributaries
have not suffered a major flood since early 1997,
and flows were low to moderate in the 3 years
preceding sampling. It seems unlikely that the
tributary populations would recover rapidly
from the 1997 flood but that the San Joaquin
River would fail to recover after 7 years. There-
fore, we do not believe flooding and transport
of C. fluminea is a sufficient explanation for the
observed lack of multiple year-classes in the
San Joaquin River.
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Physical conditions within the 3 rivers were
well within the known tolerances of C. fluminea.
Specific conductivity was higher in the San Joa-
quin River than in the tributaries, but salinity
(as indicated by specific conductance) was well
below the 14 psu (specific conductance of about
23,000 mS ⋅ cm–1) threshold for adults and the
2 psu (specific conductance of about 3800 mS
⋅ cm–1) threshold for larvae reported by
McMahon (1999) at all sites. Values for pH
were always above the lower limit of 5.6. In
addition, concentrations of dissolved calcium
were always above the concentration of ~2.0
mg ⋅ L–1, which is known to limit some other
species of freshwater bivalves (Thorp and
Covich 1991). Temperatures were also well
below the 36°C lethal limit of C. fluminea
(McMahon 1999). Thus, differences in temper-
ature, salinity, pH or dissolved calcium are
unlikely to explain the differences in density
and biomass between the San Joaquin River
and the tributaries. Clams were also present at
sites with a variety of substrate types, indicat-
ing that appropriate substrate was not limit-
ing. The low density and low biomass of C.
fluminea in the San Joaquin River, despite
apparently suitable environmental conditions
and lack of significant correlations of density
and biomass with environ mental variables in
the tributaries, suggest that the factors struc-
turing the C. fluminea populations are not
straightforward.

The calculated AFDM for a 10-mm SL clam
was highest in the San Joaquin River, indicat-
ing that individual C. fluminea were in good
physiological condition at the time we sam-
pled. This is consistent with the positive cor-
relations with chl-a and results of studies from
other geographic areas, which indicated that
maximum condition occurs at locations with
the highest food availability (reviewed by Mc -
Mahon 1999). Foe and Knight (1985) re ported
that C. fluminea becomes food limited at chl-a
concentrations <20 µg ⋅ L–1 in the Sacramento
River–San Joaquin River Delta. Concentrations
of chl-a in excess of this limit are typical of the
lower San Joaquin River from June through
September (Table 2; Leland 2003, Kratzer et
al. 2004). The other sites did not exceed this
threshold during our study (Tables 1, 2). How-
ever, density and biomass, which likely better
reflect conditions for C. fluminea populations
over longer time periods, were lowest on the
San Joaquin River. In addition, San Joaquin

River C. fluminea shell length was smaller
than tributary C. fluminea shell length for clams
of the same age, and age-class structure was
simpler in the San Joaquin River than in the
tributaries. Thus, some factor other than food
availability is likely contributing to the con-
flicting pattern of smallest-sized individuals
and highest-condition individuals on the San
Joaquin River.

In the absence of other factors, we would
expect C. fluminea to invade the San Joaquin
River and utilize the available food resources
until abundances reached levels capable of fil-
tering out most primary production, as has been
reported elsewhere (Cohen et al. 1984, Laurit-
sen 1986, McMahon and Williams 1986). We
hypothesize that water quality is responsible
for the low clam biomass and small-sized indi-
viduals in the San Joaquin River. Because clam
condition as measured by AFDM was higher
for C. fluminea in the San Joaquin River during
our June collection, despite the smaller sizes
in an age class, we suggest that the water qual-
ity conditions responsible for the stress occur
at other times of the year when temperature
and water quality stresses are greater.

Corbicula fluminea is exposed to dissolved
pesticides in all 3 rivers; however, individuals
in the Tuolumne and Merced rivers are ex -
posed to lower concentrations than those in the
mainstem and west-side tributaries of the San
Joaquin River (Brown 1997b, Domagalski et al.
1997, Domagalski and Munday 2003, Zamora et
al. 2003, Brown et al. 2004). These pesticides
can reach concentrations toxic to some inver-
tebrates (Kuivila and Foe 1995). Clams from the
mainstem and west-side tributaries of the San
Joaquin River can also have high concentrations
of organochlorine compounds in their tissues
(Pereira et al. 1996, Brown 1997b). Boltovsky
et al. (1997) observed that C. fluminea popula-
tions in a polluted area of the Paraná River,
Argentina, had only low densities of older clams
that produced larvae with very poor survival.
A subsequent study confirmed the role of pol-
lutants in limiting survival of juvenile C. flu-
minea (Cataldo et al. 2001). Mouthon (2003)
hypothesized that concentrations of toxic cont-
aminants lethal to pediveligers might explain
low recruitment of C. fluminea in parts of the
Saône and Rhône Rivers, France.

In addition to stress from toxic chemicals,
clam populations in the San Joaquin River
may experience sublethal physical stress. In 
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particular, water temperatures can approach
30°C (Table 1) in midsummer and through the
fall in this temperate climate. This condition is
known to increase oxygen consumption (Mc -
Mahon 1979), decrease filtration rate (Mattice
1979), and decrease metabolic rate (Ortman
and Grieshaber 2003) of C. fluminea. It seems
likely that cumulative and possibly synergistic
environmental stresses may make the mainstem
San Joaquin River a relatively inhospitable
habitat for C. fluminea during the midsummer
to fall period after our late-spring / early
summer sampling period.

Conditions in the San Joaquin River need
not be lethal to cause reduced abundances of
clams. The juvenile and small C. fluminea that
we did find in this river likely originated as
larvae from both a small population of resident
adult clams and from the large populations of
mature clams in the tributaries. Thus, despite
the environmental stresses, the San Joaquin
River potentially receives a steady input of
juvenile C. fluminea from other less-stressed
systems. Larvae may have settled within the
river and subsequently died, or they may simply
have drifted through the mainstem San Joaquin
River to the delta if conditions were stressful
and if conditions inhibited settlement. Larger,
previously settled C. fluminea are able to
facilitate downstream drift to escape stressful
conditions by extruding mucous drag lines
into water currents (Prezant and Chalermwat
1984).

Emigration or mortality in response to en -
vironmental stress does not seem a likely
explanation for the different patterns of distri-
bution in the Merced and Tuolumne rivers.
Data for the Merced and Tuolumne rivers sug-
gest that environmental conditions were well
within the tolerances of C. fluminea through-
out both rivers for 2 years preceding the study.
Recruitment of juveniles was not likely to be
limiting on either river, as we found individu-
als of reproductive size (6–10 mm SL) at the
farthest upstream locations in all systems. In
addition, observations on the Stanislaus River
to the north (Fig. 1; Brian Quelvog, California
Department of Fish and Game, written com-
munication) and the Kern River to the south
(California Academy of Sciences collection
record CAS IZ 78077) indicate that there are
likely populations in upstream reservoirs that

can serve as sources of additional recruits to
the river reaches in our study.

It seems likely that downstream transport
and hydraulics play a role in the distribution
of clams in the tributaries. High densities and
high biomass of clams occur at the stations MR3
and TR3, representing the transition from riffle-
pool habitat with coarse substrate to run habitat
with fine substrate. This pattern would be
expected if clams behaved like substrate parti-
cles and were transported as a component of
bed load. Clams would be moved downstream
by high winter and spring flows and settle in
the transition and low-gradient reaches that
favor accumulation of sand and gravel. Down-
stream transport of clams has been identified
as an important process in other systems (Eng
1979, Payne et al. 1989, Mouthon 2003). The
lack of clam activity at low temperatures (Ort-
mann and Grieshaber 2003) would favor this
hydraulics-dominated transport in winter and
spring, when flow is dominated by snow melt
runoff. Active migration (Prezant and Chal -
ermwat 1984) may also occur in response to
environmental conditions (Williams and McMa-
hon 1989) at other times of the year when the
clams are more active. The broad size ranges
of C. fluminea in the areas of lower velocity
and smaller substrate downstream of the tran-
sition zone and at TR4 are presumably due to
local hydrodynamic conditions. The density
and biomass of C. fluminea downstream of the
habitat transition point differ substantially be -
tween the 2 tributaries, and the differences are
likely the result of a number of interacting fac-
tors including recruitment, food availability,
habitat conditions, and water quality.

Corbicula fluminea populations, similar to
populations of other filter-feeding bivalves in
culture (Dame 1996) and other invasive species
in the wild (Thompson 2005), are likely to ex -
pand until food or physical conditions limit
population growth. Physical conditions in the
tributaries are unlikely to limit C. fluminea pop -
ulation growth except in the lowest reaches
during summer periods when temperatures may
seasonally stress populations (>30°C). How-
ever, even these high temperatures are unlikely
to kill healthy animals, which can survive at
36°C (McMahon 1999). The low chl-a concen-
trations (<< 20 µg ⋅ L–1) and high biomasses
suggest that filter-feeding clams are limited by
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food throughout the lower Merced and Tuol -
umne rivers. Thus, the reasons for differences
in longitudinal patterns of population density,
biomass, and age-class structure between trib-
utaries are difficult to assess without under-
standing the dynamics of primary production
over daily, seasonal, and annual time scales and
without understanding the availability of alter -
native foods. Corbicula fluminea may filter
bacteria and fine-particulate organic matter
out of the water column to supplement the lim-
ited suspended algae food source. It seems
more likely that clams are supplementing their
energy intake through pedal feeding, as has
been noted in other systems (Hakenkamp and
Palmer 1999). Pedal feeding most likely occurs
in the lower reaches of the rivers, where the
velocities decrease, where the sediment is finer,
and where the fine organic particles accumulate.

Corbicula fluminea is an important species
in the delta ecosystem because of its ability to
deplete phytoplankton resources (Lucas et al.
2002, Lopez et al. 2006). The low density and
biomass of C. fluminea that we found in the San
Joaquin River upstream of the delta suggests
that the species is unlikely to have a large effect
on the ecosystem of the mainstem San Joaquin
River. In contrast, our biomass results for the
tributaries are in the same range as for sites in
the delta where C. fluminea can deplete phy-
toplankton, suggesting that C. fluminea may
be an important species in the trophic dynam-
ics of the tributaries to the San Joaquin River.
Preliminary calculations of C. fluminea grazing
rates at the 3 downstream sites in the Merced
and Tuolumne rivers indicate that the clam
populations are generally capable of consum-
ing all phytoplankton primary production oc -
curring in the lower reaches of the rivers; sim-
ilar calculations in the mainstem San Joaquin
River indicate that grazing there is significantly
slower than production (L. Lucas personal com -
munication). Additional studies will be needed
to determine the role of C. fluminea in the
tributary ecosystems. As C. fluminea continues
to expand its range through South America and
Europe (McMahon 1999), questions regarding
its effects on organic carbon dynamics and
trophic linkages are likely to become impor-
tant in a wide array of environmental circum-
stances. Additional studies in the rivers of the
arid southwestern United States could make

important contributions to answering those
questions.
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