

Techniques of Water-Resources Investigations of the United States Geological Survey

Chapter A1 A MODULAR THREE-DIMENSIONAL FINITE-DIFFERENCE GROUND-WATER FLOW MODEL

By Michael G. McDonald and Arlen W. Harbaugh

This chapter supersedes U.S. Geological Survey Open-File Report 83-875

Book 6

MODELING TECHNIQUES

SCWA-203

Click here to return to USGS Publications

already been completed, they appear as predetermined constants in the equation for time step m; thus they retain the same value in each iteration of the time step. Similarly, the final values of head for time step m are used as constants in the storage term during calculations for time step m+1.

Ideally, one would like to specify that iteration stop when the calculated heads are suitably close to the exact solution. However, because the actual solution is unknown, an indirect method of specifying when to stop iterating must be used. The method most commonly employed is to specify that the changes in computed heads occuring from one iteration level to the next must be less than a certain quantity, termed the "closure criterion" or "convergence criterion," which is specified by the user. After each iteration, absolute values of computed head change in that iteration are examined for all nodes in the mesh. The largest of these absolute head change values is compared with the closure criterion. If this largest value exceeds the closure criterion, iteration continues; if it is less than the closure criterion, iteration is said to have "closed" or "converged," and the process is terminated for that time step. Normally, this method of determining when to stop iteration is adequate. Note that the closure criterion refers to change in computed head, and that values of head are not themselves necessarily calculated to a level of accuracy comparable to the closure criterion. As a rule of thumb, it is wise to use a value of closure criterion that is an order of magnitude smaller than the level of accuracy desired in the head results.

The program described herein also incorporates a maximum permissible number of iterations per time step. If closure is not achieved within this maximum number of iterations, the iterative process will be terminated and a

SCWA-203

2-23