

Project Name:	DWR DHCCP	Project No.:	29624
Subject:	Flood Elevations and Protection		
Prepared by:	Phillip Mineart, Tom MacDonald, Wilbur Huang	Date:	January, 2009
Reviewed by:	Fai-Fan Yeh	Date:	January, 2009

1.0 INTRODUCTION

1.1 Purpose and Scope

The purpose of this technical memorandum is to establish the design flood WSEs and flood protection elevations for the conveyance facilities in the Delta Habitat Conservation and Conveyance Program (DHCCP). This Technical Memorandum (TM) describes the data, methods and results of analyses of flood water surface elevations (WSEs) along each of the conveyance alignment options. The flood protection criteria are also described. The current conveyance alignment options are illustrated in Figure 1.

1.2 Exclusion and Limitations

Data used in this TM were limited to readily available data. These data included information used in previous Department of Water Resources (DWR) and United States Army Corps of Engineers (USACE) projects. This TM does not address Federal Emergency Management Agency (FEMA) guidelines. The stage-frequency data reflect present conditions and engineering knowledge and do not reflect any expected probability adjustment. Nor do the data show the effects of any proposed dams, levee improvements, or possible Sacramento-San Joaquin Delta (Delta) operation changes. Considerations of interior drainages for the Delta islands were not included in the scope of this TM. Because the alignments are still being revised at the time of this TM, for the purpose of reference along the alignment, the alignment stationing was approximated from the DHCCP Option Description – Map Book (December 31, 2008). The alignment stationing shall be used with the names of rivers and islands to identify the location for each flood elevation. Except for those presented in the previous DWR or USACE studies, the WSE data and plots presented in this TM were not developed using a hydraulic model.

1.3 Usage

This TM is intended to provide initial tentative general flood protection information and guidelines. The data developed in this TM will be used for describing DHCCP option descriptions and performing preliminary design at the conceptual engineering level. Detailed study on a case-by-case basis is recommended for obtaining detailed flood protection elevations for design and construction.

1

1.4 Study Area

The Delta, covering more than 1,000 square miles, is in Central California. In general, the Delta extends north to Sacramento, south to Stockton, west to Pittsburg and east to Interstate 5. The region, situated at the confluence of the Sacramento and San Joaquin Rivers at the head of Suisun Bay, is very flat and has been reclaimed from a natural tidal area by hundreds of miles of levees along natural and manmade waterways that divide it into approximately 100 tracts, locally known as "islands." Land elevations in the Delta range from just above mean sea level to 10 feet below mean sea level. Before islands were reclaimed, much of the Delta was covered by water from the daily tide cycle. During times of high runoff from the Sacramento and San Joaquin Basins, much of the Delta would be flooded.

The contributing drainage area to the Delta encompass approximately 40,000 square miles of the Sacramento, San Joaquin and Mokelumne River Basins. Flows and the annual maximum stages in these river systems are generated from areas that are geographically and physically different. These differences are caused by the geographical distribution of the contributing drainage basin and the fluctuations of storm tracks over Northern California.

The tidal influence of the Pacific Ocean also contributes a profound effect on water surface elevations in the lower and central parts of the Delta. If high tides combine with high runoff events, a very high flood stage will result. Flood tides from the Pacific Ocean will have a tendency to slow down and backup high inflows from the river basins. When this "stacking" occurs, especially with high wind periods, levee failures and flood flights are a common occurance.

2.0 DELTA FLOODING

2.1 Data

Delta river and slough flooding elevations and flood hazard data are available from the DWR *Delta Risk Management Strategy (DRMS) Report* (URS, 2008) and the annual maximum data sets from the USACE report *Office Report: Sacramento-San Joaquin Delta, California, Special Study, Hydrology* (Special Study) (USACE, 1992). The 100-year, 200-year, and projected 500-year WSEs that are presented in this TM were obtained and/or calculated using data from these two reports.

USACE's report presents stage-frequency curves for 24 water level gage locations, wave runup data for 12 locations and 50-, 100-, and 500-year maximum WSE plots throughout the Delta. The stage-frequency curves in this report, which include stage data recorded through water year 1988, do not consider possible levee failures.

Most of DHCCP conveyance intakes are located along the main stem of Sacramento River. River flooding elevations within Sacramento River are based on results of hydraulic modeling using the UNET hydraulic model that was developed by USACE for the *1997 Sacramento and San Joaquin River Basins, California, Comprehensive Study* (Comp Study) (USACE, 2002) and later modified by MBK Consultants. The UNET hydraulic model simulates unsteady flow through a full network of open channels, weirs, bypasses and storage areas.

All flood elevations in this TM are referenced to the English unit, feet, with the North American Vertical Datum of 1988 (NAVD88). Data presented in previous studies that used the National Geodetic Vertical Datum of 1929 (NGVD29) were converted for use in these studies to NAVD88 using the latitude and longitude of each station and the Corpscon software from USACE (2004). In the Delta and DHCCP project area, the correction varies from 1.97 to 2.50 feet. The standardized conversion of the DHCCP involves adding 2.3 feet.

2.2 Potential Flooding Sources

The Isolated Conveyance Facility (ICF) East and West alignments (ICF-East and ICF-West) pass through several islands or tracts that are adjacent to Delta rivers and sloughs. A levee breach on one of the rivers or sloughs could discharge flood water into the adjacent island or tract and fill it to an elevation that may impact the isolated facility. The islands or tracts which, if flooded, could impact either the ICF-East or ICF-West are presented in the following tabulation along with the assumed source of the flood water.

Island or Tract	Flood Water Source
Eastern Alignment:	
Pierson	Sacramento River or Snodgrass Slough
Glanville	Snodgrass Slough
McCormack-Williamson	Mokelumne River
New Hope	Mokelumne River
Canal Ranch	South Fork Mokelumne River
Brack Tract	South Fork Mokelumne River
Terminous Tract	South Fork Mokelumne River
Shin Kee Tract	South Fork Mokelumne River
King Island	South Fork Mokelumne River
Rindge Tract	Disappointment Slough or San Joaquin River
Lower and Middle Roberts Island	San Joaquin River
Drexler Tract	Middle Fork San Joaquin River
Union Island	Middle Fork San Joaquin River
Western Alignment:	
Netherlands	Elk Slough, Sutter Slough
Ryer Tract	Steamboat Slough
Grand Island	Steamboat Springs, Sacramento River
Brannan-Andrus Island	Sacramento River, Seven Mile Slough, Georgiana Slough
Twitchell Island	Seven Mile Slough, Three Mile Slough, San Joaquin River
Bradford Island	San Joaquin River, False River
Bethel Island	False River, Taylor Slough, Dutch Slough
Hotchkiss Tract	Dutch Slough, Rock Slough
Bryon Tract	Old River (San Joaquin)

The elevation to which an adjacent island or tract will be filled by flood water depends upon several factors, including size of the flood event, location of the breach, size of the breach, size of the island or tract that is flooded, and when the breach occurs relative to the flood event. The flood events considered in these analyses are the 100-year, 200-year, and 500-year floods. The potential breaches were assumed to be at locations that would result in the maximum flooding of the island or tract. Breach sizes were assumed to be large but were not estimated as part of these initial

evaluations. It was assumed that levee breaches would occur during the peak of flood events such that the maximum one-day or five-day flood volumes could enter the islands.

The size of an island or tract will determine how much flood water is needed to fill it to any given elevation. Stage-storage relationships for the islands and tracts listed above for the eastern and western alignments of the isolated facility were developed for use in these analyses. These relationships are presented in Table 1.

2.3 Potential Flooding Scenarios

Six potential flooding scenarios were considered in evaluation of flood protection needs along the DHCCP alignments. These potential flooding scenarios are:

- River flooding assuming no levee failures;
- Floodplain flooding assuming multiple river levee failures or overflows;
- Island flooding limited by levee heights;
- Island flooding limited by river stage;
- Island flooding limited by flood volume; and
- Tidal flooding, due to sea level rise and assuming a levee breach without a storm flood event.

For flooding scenarios 1 through 5, stage-frequency relationships were developed and 100-, 200-, and 500-year WSEs were tabulated. For scenario 6, an estimate of mean higher high water (MHHW) was estimated along each DHCCP alignment. The six potential flooding scenarios are described in the following paragraphs.

2.3.1 Flood Scenario #1: River Flooding – No Levee Failures

River flooding, or overtopping without levee failure, could cause damage to DHCCP facilities located on either the waterside of the river levee or adjacent to the landside of the river levee. After overtopping, flows on the landside of the levee would very quickly spread out, resulting in a relatively shallow sheet flow in the direction of the land slope. Thus, this flooding scenario would be the critical scenario only for facilities on the waterside of the levee or in the immediate vicinity of the levee on the landside.

Gauge stations used to derive flood elevations were chosen based on proximity to the alignments and availability of data. Table 2 lists the data used to derive flood elevations along the alignments and how the elevation at each alignment location was estimated from the data.

Flood elevations are based upon two reports (URS, 2008, and USACE, 1992). The URS data was derived by the Monte Carlo (MC) method as part of the DRMS study and is presented in the NAVD88 datum. USACE data consists of annual maximum stage data taken from USACE's Special Study (USACE, 1992). The period of record varied by station from 30 to 44 years. The elevation datum was NGVD29, which was converted to NAVD88 for this TM. Some flood elevation discrepancies exist in these two data sets. Where there is a discrepancy in these two data, the superiority elevation is selected for conservatism.

2.3.2 Flood Scenario #2: Floodplain Flooding – Levee Failures or Overflows

Flood waters overtopping or failing a levee will flow in the down slope direction across the surface of the island. This flow will continue until it encounters a downstream obstacle, such as a downstream levee or a body of water that is impounded by a downstream levee. In many historical cases, levee failures have resulted in flood waters entering an island, flowing to the low point in the island (generally at a down slope levee), and ponding until the water level reaches the elevation of the lowest elevation of the levee crest that surrounds the island. Flood elevations associated with the floodplain flooding scenario apply to DHCCP facilities in river overbank areas where breach and overtopping flood waters are flowing as sheet flow over the surface of the overbank areas.

Floodplain flooding elevations due to river levee failures and overflows are based on the flood hazard data developed in the Comp Study, Appendix D. The Comp Study levee failure methodology was devised to determine when simulated flows would cause levees to fail and a floodplain would be formed. A likely failure point (LFP) profile was developed for levees in the Sacramento and San Joaquin River Basins on a reach-by-reach basis. The LFP represents the approximate elevation at which there is 50 percent probability of levee failure. The LFP approach represents a simplified analysis to yield generic conditional probability of failure versus WSE with respect to top of levee. After levee failure, the flood WSE remains relatively constant and the flows escape into the floodplain through the levee break. The floodplain flooding WSE is assumed to equal to the maximum flood WSE at and adjacent to the levee break. The floodplain slope. The maximum flood WSE at the levee break increases due to the floodplain slope. The maximum flood WSE at the levee break increases due to the floodplain slope. The maximum flood must be levee break increases due to the floodplain slope. The maximum flood must be levee break increases due to the floodplain slope. The maximum flood must be levee break increases due to the floodplain slope. The maximum flood must be levee break increases due to the floodplain slope. The maximum flood must be levee break increases due to the floodplain slope. The maximum flood must be levee break increases due to the floodplain slope. The maximum flood must be levee break increases due to the floodplain slope. The maximum flood must be levee break increases due to the floodplain slope. The maximum flood must be maximum flood must be in this TM.

2.3.3 Flood Scenario #3: Island Flooding Limited by Levee Heights

A levee breach will result in flood water entering the island or tract and then flowing to the low point within the island or tract, where it will pond until it overtops the low point in the levee that surrounds the island or tract. When the water overtops the low portion of levee it will breach that portion of the levee and any subsequent inflows will flow out of the new breach.

For this potential failure scenario, it was assumed that the maximum WSE of the ponded water is equal to the minimum elevation of the confining levee plus 1 foot. Minimum crest elevations of the levees surrounding each of the islands or tracts were obtained from available topography.

2.3.4 Flood Scenario #4: Island Flooding Limited by River Stage

It is possible that a maximum river or slough WSE is less than the minimum crest elevation of the surrounding levee, or that a levee failure occurs where the levee surrounding the island is at its lowest elevation. In this case, if the levee breaches and the island is small enough, the maximum WSE that would develop in the island or tract is the maximum WSE in the river or slough that is adjacent to the breach.

For this potential failure scenario, it was assumed that maximum WSEs are controlled by the maximum elevation of flood flows in the adjacent major rivers, that is, the levee failure occurs at the worst possible location for island flooding.

2.3.5 Flood Scenario #5: Island Flooding Limited by Flood Volume

Some of the islands or tracts that the isolated facility alignments pass through are quite large and can possibly accommodate more water than the flood event can deliver during the duration of peak flows. In this case, water would start to accumulate on the island immediately after the breach and will continue to accumulate until the flood peak passes and then begin to drain. Thus, the maximum flood elevation on the island depends upon the discharge-duration characteristics of the flood, when the flood occurs relative to the peak flow, and how much of the flood waters enter the island, which is dependent upon how large the breach is and how rapidly it develops.

For this flood scenario it was assumed that flood water would accumulate to the maximum five-day average stage in the river segment that is adjacent to the island or tract, if this elevation is less than the minimum elevation of the surrounding levee. The five-day average river stages were estimated using the flow data and WSE equations developed for the *Technical Memorandum, Delta Risk Management Strategy (DRMS), Phase 1* (URS, 2008). Maximum annual five-day average WSEs were calculated and Log Pearson Type III analyses of the results were made to determine the 100-year, 200-year, and 500-year maximum annual five-day average elevation. If the Log Pearson Type III analyses presented higher elevations than the adjacent levee crests, the levee crest elevation was assumed. The volume of water that would be temporarily stored on the island or tract under this potential failure scenario relative to the total volume of water that can be stored can be estimated from the stage-storage relationships presented in Table 1.

2.3.6 Flood Scenario #6: Tidal Flooding – Sea Level Rise

Tidal flooding is based on MHHW elevation. MHHW is the average of the higher high water height of each tidal day observed over the National Tidal Datum Epoch (note that a tidal day is 24 hours and 50 minutes long). The Tidal Epoch is a specific 19-year period (the present Epoch is 1983 to 2001) over which WSE is measured. Relating all tidal data to a specific epoch ensures that sea level changes and other tidal features are consistent between stations. The elevation of MHHW is not available throughout the Delta. The National Oceanographic and Atmospheric Administration (NOAA) maintain several tide gauges in San Francisco Bay that are used to estimate the MHHW. They have also made several short term measurements at stations in the Delta. For stations with shorter series, comparison of simultaneous observations with a control tide station is made in order to derive the equivalent datum of the National Tidal Datum Epoch.

Where tidal datum data from NOAA were available and could be related to the NAVD88 datum, the data were obtained from the NOAA Web site:

http://tidesandcurrents.noaa.gov/station_retrieve.shtml?type=Bench%20Mark%20Data%20S heets&state=California&id1=941.

DWR maintains a database of water level recorders in the Delta (referred to as the California Data Exchange Center [CDEC]). The water level recorders are maintained by a variety of agencies. Data for stations near the proposed alignments were obtained from the CDEC database (*http://cdec.water.ca.gov/*). Data for all stations were obtained for the period April 1, 2008 to October 31, 2008. This period was chosen to have a consistent time period for comparison between stations

that did not contain any storm data. From these data the maximum WSE for each day was obtained. The average of all these data was used to represent the MHHW datum.

FINAL

Over the next 100 years sea level is projected to increase, thereby increasing the tidal elevation in the Delta. Rahmstorf (2007) developed a semi-empirical relationship between the increase in atmospheric surface temperature above a base value and the rate of sea level rise (SLR). Using estimates of the increase in atmospheric temperature developed by the International Panel on Climate Change (IPCC), Rahmstorf predicted an increase in sea level from 1990 to 2100 of 22 to 49 inches (55 to 125 cm). If the statistical error in his model of one standard deviation is included in the estimate the range in sea level rise is 20 to 55 inches (50 to 140 cm) from 1990 to 2100. A value of 55 inches of sea level rise at the Golden Gate Bridge was used in this analysis.

The increases in sea level cannot simply be added to the estimated WSE. The SLR will change the hydraulic characteristics of flow through the Delta and its impact should decrease the farther inland a location is and the larger the storm event. A simple method to approximate changes in WSE in the Delta due to SLR was developed in the *Technical Memorandum, Delta Risk Management Strategy (DRMS), Phase 1* (URS, 2008). The 55-inch increase in sea level rise will occur in the ocean, or, at the Golden Gate Bridge. Estimates of the increases in tidal MHHW due sea level rises along the DHCCP alignments were made using the following assumptions:

- Flows in the rivers and sloughs can be represented by Manning's Equation.
- Flows in the channels are unaffected by sea level rise.
- Channels are wide so that the hydraulic radius in Manning's Equation can be represented by the depth of water.

With these assumptions a relationship between the rise in sea level downstream (e.g., Golden Gate Bridge) and upstream is:

$$d_{B} = d_{A} + \left[\left(\frac{h}{h + d_{B}} \right)^{10/3} - 1 \right] \left[E_{B} - E_{A} \right]$$
(1)

Where:

 d_B = increase in WSE at the location of interest

d_A = sea level rise downstream (e.g., it is approximately 55 inches, or 4.58 feet, at the Golden Gate Bridge)

h = existing depth of water

 E_B = existing WSE at location of interest

E_A = existing WSE downstream (e.g., , which is approximately 5.9 feet at the Golden Gate Bridge)

The term
$$\left[\left(\frac{h}{h+d_B}\right)^{10/3} - 1\right]$$
 may be assumed to be a factor of -0.2 for most of the area.

Equation (1) can be simplified as:

$$d_{B} = 4.58 - 0.2 \times (E_{B} - 5.9) \tag{2}$$

2.4 Wind-Wave Runup

Flooded areas in the Delta, including areas within the river channels and sloughs, will have waves generated by the Delta winds. Large bodies of water, such as flooded islands, may have long wind fetches and, therefore, have high waves generated by a strong Delta wind. Wind waves could cause overtopping and/or erosion of levees and lead to damage of the DHCCP facilities. Protection of these DHCCP facilities against wind waves must be considered in design of the facilities.

The *Phase 1 Final Technical Memorandum for Wind-Wave Hazard* developed for the DRMS project for DWR (DWR, 2008) provides tables and figures for wind speed frequencies, wave heights and wave runup for various locations throughout the Delta. The wave height and runup values presented in the tables are based on calculations using procedures in the Coastal Engineering Manual developed by USACE. A median wind speed (50 percent chance of being exceeded in any given years) was used as a representative wind speed for estimating wave runup. This value varies from approximately 18 to 20 miles per hour (mph) along the east side of the Delta (near the eastern and through-Delta alignments) to approximately 30 mph near the western alignment. The runup slope is assumed as 1.5 horizontal to 1.0 vertical (H:V) slope. Table 3 presents wave runup for different fetch lengths.

The values in Table 3 are consistent the wind-wave calculations in the Special Study (USACE, 1992), which also indicated wave runup values of 3 to 5 feet. For portions of the alignment located along the edge of tracts, the wave runup values will be smaller. To achieve a wave runup value of 5 feet, the water depth near the alignments would need to be on the order of 15 feet. The wave height and runup values would be smaller as the water depth becomes smaller.

For example, for sloughs and rivers, where wind waves are bounded by banks and levees, fetch length is assumed to be less than 1,000 feet, with no wave runup. For most floodplain and island flooding scenarios, the fetch length was assumed to be pn the order of 20,000 to 30,000 feet. The recommended wave runup for these flooding scenarios is 5.0 feet for conservatism.

3.0 WSES FOR FLOOD ELEVATION SCENARIOS

Estimated WSEs associated with each of the six flood elevation scenarios are presented in the following paragraphs followed by a summary of all estimated WSEs. In these tables, the alignment stationing was approximated from the alignment length. The alignment stationing is suggested to be used with the names of rivers and islands to identify the location for the flood elevation. Flooding elevations from sloughs, the Sacramento River, floodplains, islands and tidal data were listed.

3.1 River Flooding

River flooding WSEs (Flooding Scenario #1) along the ICF-East and ICF-West and TDF are presented in Table 4 and Figure 2. Elevations are also shown with an estimated increase in WSE due to sea level rise of 55 inches at the Golden Gate Bridge.

Table 5 tabulates the 200-year river flooding elevations with and without SLR from Sacramento to Collinsville. These Sacramento River flooding WSEs are illustrated in Figure 3.

River Miles (RMs) in the hydrology and hydraulics (H&H) data table in Table 4 are derived from river alignments from the Comp Study. These UNET hydraulic model RM reference marks are not necessarily the same as those shown on the United States Geological Survey (USGS) quadrangle maps or quoted in other reports. The RM reference marks shown on the USGS quadrangle maps be antiquated, as the river lengths have variously increased or decreased over time due to meadering or cutoff impacts. The Comp Study developed new river alignments based on the aerial photos of the river system taken at the time of the study. The RM reference marks in the Comp Study alignments are the most current information available, and have been used for many other studies and hydraulic models to represent the current river systems; therefore, these values were used in the H&H data tables for referencing relative locations along the river reaches.

3.2 Floodplain Flooding

Floodplain flooding WSEs (Flooding Scenario #2) developed for this TM are based on the maximum flood WSE at the levee break from the Comp Study. The results are tabulated in Table 6 and illustrated in Figure 4.

3.3 Island Flooding

WSEs for the three island flooding scenarios (Scenarios #3, #4, and #5) are summarized in Tables 7 and 8. Also presented in these tables are the WSEs tentatively recommended for design. The island flooding WSEs are illustrated in Figure 5.

The recommended design elevations presented in Tables 7 and 8 were selected based on consideration of historic (water years 1956 to 2005) maximum one-day and five-day runoff volumes in the Sacramento, San Joaquin, and Mokelumne Rivers. These runoff volumes are presented in Table 9. The design flood events are larger than the historic flood events, but not all flood waters will enter an island or tract. Breach flood routings are necessary to refine these estimates.

Furthermore, the recommended design elevations assume levee breaches along the main rivers and sloughs and not along branch sloughs. For example, the South Fork Mokelumne River 200-year WSE at Brack Track is approximately 17 feet, and the low point on the Brack Tract surrounding levee is 12.1 feet. The recommended design elevation is 12.1 feet plus 1 foot. However, the WSE in Hog Slough where it crosses ICF-East is approximately equal to the river elevation (~17 feet), and a levee failure at the crossing could impact the immediately adjacent facilities.

3.4 Tidal Flooding

Estimated tidal flooding elevations are presented in Tables 10 and 11. In general, the MHHW elevation can be considered constant throughout the Delta at approximately 6 feet NAVD88. The tidal WSE generally increases in the upstream direction in the Sacramento River. Due to Sacramento River flow, the WSE remains constant at approximately 6.7 feet at the I Street Bridge. Estimated tidal flooding with SLR is approximately 10 to 11 feet. Tidal flooding WSEs are illustrated in Figure 6.

4.0 FLOOD PROTECTION NEEDS

More than 90 percent of the DHCCP facilities are located within Delta flood-prone areas. It is essential that the DHCCP facilities be protected from flooding. Flood waters entering the facilities would be highly contaminated. In addition, they would contribute massive amounts of silt that would reduce hydraulic capacity, requiring lengthy service outages necessary for cleaning. Therefore, design of the ICF facilities and TDF levees should include protection designed for the required maximum expected flood event.

Both USACE and FEMA are currently in the process of revising their flood protection criteria. At this time neither agency is able to provide definitive criteria for design of levee systems that meet the needs for the State of California. In the absence of updated federal levee protection guideline, DWR published *Proposed Interim Levee Design for Urban and Urbanizing Area State-Federal Project Levees* in August 2008 (DWR, 2008). The interim criteria, currently calling for public comments, is intended to provide interim guidance and criteria for design WSEs and levee design, as well as planning and engineering studies, such as DHCCP.

4.1 Protection criteria

The flood protection criteria described below follows the DWR interim urban/urbanizing levee design approach No. 1, which is a modified version of the FEMA approach. The DHCCP facilities, as critical water infrastructure for the State of California, are designed to be protected against a 200-year flood event. The DWR interim criteria recommended that the 200-year expected WSE is calculated or obtained through conventional deterministic hydraulic analysis. Also, the DWR interim urban/urbanizing levee design criteria recommends: the physical top of levee would need to be at least three feet higher than the expected WSE, with an additional freeboard (FB) allowance for wind-wave runup.

For DHCCP canal embankments, the recommended design flood protection elevation is the superiority of the flooding elevations of floodplain, island, and tidal flood scenarios, plus 5 feet for wind-wave runup and 3 feet of freeboard. For DHCCP infrastructure between the left bank and right bank levees and immediately adjacent to the levee, where wind-wave runup is not an immediate threat, the recommended design flood protection elevation is the superiority of the slough and Sacramento River flooding elevations, plus three feet of freeboard. Table 12 lists the recommended flood protection criteria.

INA

Technical Memorandum

Flooding Scenarios	Concept Figure	Flooding Sources	Flood Protection
1. River Flooding	River 200-yr WSE	200-year WSE in River and Streams	200-year WSE + 3-foot FB
2. Floodplain Flooding	River 200-UT WSE / ZOO-UT fbadplain WES	200-year River Floodplain due to Levee Break	200-year Floodplain WSE + 3-foot FB, plus Wind-Wave Runup
3, 4 and 5. Island Flooding	Slough 200-47 200-47 Tol Tol Tol Tol Tol Tol Tol Tol	Island Flooding (200-year flood or island maximum) WSE due to Levee Break	200-year Island Flooding WSE + 3-foot FB, plus Wind-Wave Runup
6. Tidal Flooding	Slough MHHW Slough Slough Slough Slough Slough Slough Slough	MHHW	MHHW + 3-foot FB, plus Wind- Wave Runup

Table 12. Recommended Flood Protection Criteria

In addition, the DWR interim urban/urbanizing levee design criteria encourages an upward adjustment of the expected WSE to account for sea level rise, based on judgment and consideration of the physical limits of upstream and nearby regional flood protection system.

4.2 Recommended Flood Protection

4.2.1 Without Sea Level Rise

FINAL

The 200-year flood expected WSE, not including sea level rise, are tabulated in Tables 13, 14, and 15 for the ICF-East, ICF-West and TDF Options. These tables also include recommended flood protection, accounting for wind wave runup, for embankment design and river crossing. Figures 7, 8, and 9 show the expected WSE without sea level rise and the recommended flood protection for the ICF-East, ICF-West and TDF Options, respectively.

The Dual Conveyance Facility Option (DCF) will follow the recommended flood protection for the applicable segments of the ICF and TDF options.

4.2.2 With Sea Level Rise

The 200-year flood expected WSE, including sea level rise, are tabulated in Tables 16, 17, and 18 for the ICF-East, ICF-West and TDF Options. These tables also include recommended flood protection, accounting for wind wave runup, for embankment design and river crossing. Figures 10, 11, and 12 show the expected WSE with sea level rise and the recommended flood protection for the ICF-East, ICF-West and TDF Options, respectively.

The DCF Option will follow the recommended flood protection for the applicable segments of the ICF and TDF options.

5.0 REFERENCES

Department of Water Resources (DWR), 2008. Proposed interim Levee Design for Urban and Urbanizing Area State-Federal Project Levees. August 22.

Rahmstorf, Stefan, 2007. A Semi-Empirical Approach to Projecting Future Sea-Level Rise. September.

- United States Army Corps of Engineers (USACE), 1992. Office Report: Sacramento-San Joaquin Delta, California, Special Study, Hydrology, USCE-RTS-S-022.10, USACE, Sacramento District. February.
- USACE, 2002. Sacramento and San Joaquin River Basins, California, Comprehensive Study, Interim Report. USACE, Sacramento District. December 20.

USACE, 2004. Corpscon Software, Version 6.0.1.

URS Corporation (URS), 2008. Technical Memorandum, Delta Risk Management Strategy (DRMS), Phase 1, March 4.

Table 1. Stage-Storage Relationships For Islands or Tracts - Eastern and Western Alignment Isola	ted Facility

Elevation, feet (NAVD88)	Pierson, acre- feet	Glanville, acre- feet	McCormack- Williamson, acre- feet	New Hope, acre- feet	Canal Ranch, acre-feet	Brack Tract, acre-feet	Terminous Tract, acre-feet	Shin Kee, acre- feet	King Island, acre feet	Ringe Tract, acre-feet	Roberts Island, acre-feet	Drexler, acro- feat	Union, acre- feet	Netherlands, acre feet	Ryer, acre- feet	Byron, acre feet
-26 -25	0	0 0	0	0 0	0	0	0	0	 0	Ö	0	0	0	0	0	· 0
-24	0	a	a	å	ő	ŏ	0	0	0	1	0	ů O	р р	0	0	٥
-23	0	a	a	o	ō	0	o	ŏ	ő	1	0	ů	5	0	0	0
-22	D	0	0	o	D	D	0	0	0	1	0	õ	5	D	0	0
-21	0	0	0	0	0	0	D	0	0	2	ō	¢.	5	o o	0	0
-20 -19	0	0	0	0	0	0-	1	D	0	3	o	c	0	0	ō	ő
-19	0	0	0	0	0	Ð	1	D	0	9	1	¢	0	0	0	0
-17	0 0	0 0	0	0	0	Û	2	0	0	53	5	. 0	a -	a	C	o
-16	0	0	0	0	0	0	3	0	1	268	29	c	1	0	0	0
-15	a	0	0	0	0 0	6 46	16	0	2	855	132	Ċ	1	0	0	0
-14	a	ŏ	ő	0	1	202	141 686	1	12	1.977	447	¢	1	Q	¢	0
-13	1	0	ő	0	1	565	1,999	1	62	3,701	1,162	c	2	Q	Q	0
-12	1	ō	ō	0 D		1,255	4,279	2	220 585	6,104	2,402	c	3	0	O	1
-11	3	0	o i	1	58	2,288	7,623	4	585 1,316	9,244 13.058	4,236	c	4	0	2	5
-10	5	0	0	1	217	3,638	12.044	4	2,533	13,055	6,790	C d	6	0	18	21
-9	22	0	0	2	505	5,211	17,287	6	4,170	22,371	10,200 14,563	1	9 16	0 Q	131 595	78
-8	73	0	0	3	953	6,980	23,112	9	6,182	27,709	19,871	1 2	16	d 1		317
-7	196	0	0	14	1,648	8,976	29,435	18	8,509	33,403	26,034	29	158	4	1,813 4,045	994 2,212
-6	487	0	0	58	2,673	11,226	36,210	45	11,016	39,370	32,974	141	545		7,696	3,896
-5 -4	1,271 2,715	0	0	181	3,994	13,717	43,386	115	13,672	45,595	40,667	455	1,573	43	12,904	5,946
-4 -3	2,715 4,758	o a	1	433	5,599	15,428	50,885	239	16,488	52,038	49,152	1,096	3,736	78	19,557	8,316
-2	4,758	a	2 15	846	7,485	19,343	58,659	403	19,464	58,602	58,639	2,158	7,374	127	27,578	10,948
-1	1,326	1	15 59	1,465	9,635	22,457	66,696	615	22,552	65,198	69,384	3,692	12,731	219	36,748	13,779
0	16.049	3	180	2,381 4,089	12,025	25,775	75,034	925	25,668	71,808	61,606	5,638	19,909	523	46,682	16,797
1	21,474	6	366	6,400	14,968 18,173	29,592	84,090	1,548	28,847	78,441	96,797	8,279	30,528	3,354	57,272	20,175
2	27,335	11	807	9,519	21,605	33,654 37,897	93,515	2,328	32,012	85,083	113,364	11,213	42,827	8,833	68,037	23,749
3	33,571	19	1,606	13,463	21,605	42,295	103,247	3,235	35,182	91,737	131,325	14,351	56,152	17,205	78,943	27,531
4	40,112	37	2,730	18,030	29.1B1	46,870	113,159 123,193	4,244 5,359	38,359	98,402	150,664	17,663	71,102	29,371	89,976	31,520
5 ·	46,940	91	4,058	23,257	33,297	51,644	123, 193	5,359 6,686	41,541 44,741	105,080	171,334	21,107	87,565	45,988	101,122	35,718
6	54,044	328	5,507	29,124	37,645	56,600	143,631	8,184	44,74	111,790	193,756	24,621	105,706	66,437	112,357	40,156
7	61,409	716	7,024	35,475	42,204	61,693	153,957	9,867	51,198	118,568 125,371	217,054 240,874	28,171 31,739	125,406	89,646	123,664	44,823
8	69,024	1,273	8,577	42,255	46,943	65,890	164,303	11,715	54,438	132,195	240,874	31,739 35,321	146,381	114,816	135,032	49,655
9	76,869	2,009	10,145	49,434	51,876	72,170	174,650	13,683	57,682	139.033	289,240	38,911	168.233 190.628	141,547 169,555	146,455 157,927	54,621
10	84,926	2,957	11,719	56,915	56,993	77,499	185,025	15,720	60,929	145,877	313,589	42,510	213,413	198,617	169,446	59,692
11	93,165	4,158	13,298	64,584	62,209	82,845	195,395	17,789	64,177	152,726	338,003	46,115	236 499	228,511	181,006	64,838 70,032
12	101,562	5,620	14,881	72,360	67,455	88,196	205,769	19,876	67,425	159,576	362,466	49,726	259,786	259,029	192,604	75,262
13 14	110,089 118,727	7,309	16,468	80,211	72,709	93,549	216,147	21,975	70,675	166,426	386,970	53,344	283,181	290,022	204,233	80,516
15	127,466	9,212 11,321	18,058	68,115	77,968	98,902	226,527	24,083	73,925	173,277	411,509	56,967	306,641	321,338	215,869	85,787
15	135,289	13,620	19,651 21,247	95,053 104,015	83,230 86,493	104,256	235,908	26,196	77,176	180,128	436,075	60,695	330 146	352,865	227,566	91,070
17	145,187	16,063	21,247	104,015	86,493 93.758	109,610	247,291	28,314	80,426	186,980	460,654	64,227	353,694	384,529	239,260	96,361
18	154,144	18,613	24,447	120,002	93,758 99,024	114,964 120,318	257,675 268,060	30,434 32,557	83,677	193,832	485,273	67,561	377,280	416,275	250,966	101,660
19	163,145	21,231	26,050	128,020	104,291	125,672	278,446	32,557 34,682	86,928	200,684	509,898	71,497	400,898	448,086	262,684	106,965
20	172,176	23,886	27,656	136,052	109,658	131.027	288.832	34,662	90,180 93,431	207,536 214,368	534,536 559,184	75,135	424,542	479,955	274,411	112,274
21	181,229	26,561	29,263	144,094	114,826	136,382	299,219	38,938	96,682	214,368	559,184 583,842	78,773	448,209	511,878	286,147	117,586
22	190,303	29,249	30,871	152,146	120,094	141,737	309,606	41,069	99,934	228,093	563,642 608,507	82,412 86,C53	471,895 495,597	543,852	297,890	122,901
23	199,396	31,949	32,480	160,206	125,363	147,092	319,994	43,200	103,186	234,946	633,180	86,003 89,693	495,597 519,312	575,872 607,935	309,640	128,219
24	208,507	34,657	34,090	168,276	130,632	152,447	330,382	45,332	106,437	241,798	657,858	93,334	543,037	640,036	321,395 333,155	133,538 138,859
25	217,635	37,374	35,701	176,353	135,901	157,802	340,771	47,465	109,689	248,651	682,542	96,975	566,772	672,173	344,918	138,859
26	226,776	40,096	37,312	184,437	141,170	163,157	351,159	49,599	112,941	255,504	707,231	100,617	590,515	704,343	356,685	144,180
27	235,931	42,824	38,924	192,526	146,439	168,512	361,548	51,734	116,193	262,357	731,926	104,259	614,263	736,542	368,453	149,502
26 20	245,095 254,272	45,555	40,536	200,621	151,709	173,867	371,936	53,870	119,445	269,210	756,626	107,901	638,017	768,768	380,222	160,148
29 30	254,272 263,458	48,291	42,149	208,721	156,978	179,222	382,325	56,006	122,697	276,063	781,329	111,543	661,775	801,019	391,993	165,472
30	263,458 272,651	51,029 53,770	43,762 45,375	216,824	162,248	184,577	392,714	58,144	125,949	282,916	806,037	115,186	685,536	633,292	403,764	170,796
32	261,851	53,770 56,513	45,375 46,988	224,932 233,042	167,518	189,932	403,103	60,281	129,201	289,769	630,747	118,829	709,300	665,585	415,537	176,120
33	291,057	59,258	46,988	233,042 241,155	172,788	195,288	413,493	62,419	132,453	296,622	855,461	122,472	733,067	897,897	427,310	181,445
34	300,268	62,004	48,602	241,155 249,270	178,058 183,328	200,643 205,998	423,882	64,557	135,705	303,475	880,177	126,115	755,837	930,226	439,063	186,770
35	309,484	64,751	51,830	249,270 257,368	163,328	205,998 211,353	434,271 444,660	66,695	138,957	310,328	904,895	129,758	780,607	962,569	450,858	192,095
36	318,704	67,499	53,444	265,508	193,665	211,353 216,708	444,660 455,050	65,834 70,972	142,209	317,181	929,614	133,401	804,379	994,925	462,633	197,420
37	327,927	70,248	55,058	273,629	199,139	222.064	465,439	73,111	145,461 148,713	324,034 330,887	954,334 979,056	137,044	826,152	1,027,292	474,408	202,745
38	337,154	72,997	56,672	281,751	204,409	227,419	475,828	75,249	151,966	330,887 337,740	979,056 1,003,779	140,688	851,926	1,059,668	486,183	208,071
39	346,383	75,746	58,286	289,875	209,679	232,774	486,218	77,386	155,218	344,593	1,003,779	144,331 147,975	875,701 899,477	1,092,053	497,959	213,397

Table 2. Flood Elevation Data Sets And Extrapolation Methods

Location along Alignment	Data Stations	Extrapolation Method
East Alignment at Clifton Court Forebay	USACE (Old River at Clifton Court	Flood elevation at alignment equals flood elevation
	Forebay)	at data station.
East Alignment at Middle River	MC (MTM, MHR)	Flood elevation at alignment is based on a linear
		extrapolation of the flood elevation slope between
		stations MTM and MHR.
East Alignment at San Joaquin River	MC (VNI, SJR)	Flood elevation at alignment is based on a linear
		interpolation of the flood elevation slope between
		stations VNI and SJR.
East Alignment at Disappointment Slough	MC (VNI, SJR)	Flood elevation at alignment is based on the flood
		elevation slope between stations VNI and SJR and
		the distance from VNI.
East Alignment at White Slough	MC (VNI, SJR)	Flood elevation at alignment is based on the flood
		elevation slope between VNI and SJR and the
		distance from VNI.
East Alignment at Sycamore Slough	MC (VNI) & USACE (Mokelumne R	Flood elevation at alignment equals flood elevation
	at New Hope Bridge)	at the confluence of Sycamore Slough and
		Mokelumne River, which is based on the flood
		elevation slope between VNI and Mokelumne
		River at New Hope Bridge.
East Alignment at Mokelumne River	MC (GSS, BEN) & USACE	Flood elevation at alignment is equal to an average
	(Sacramento River at Walnut Grove,	of flood elevations based on linear interpolation of
	Mokelumne River at New Hope	the flood elevation slope between GSS and BEN,
	Bridge)	Sacramento River at Walnut Grove and BEN, and
		Mokelumne River at New Hope Bridge and BEN.
East Alignment at Snodgrass Slough	USACE (Sacramento River at	Flood elevation at alignment equals flood elevation
	Snodgrass Slough)	at data station.
Through-Delta: Old River at Clifton Court	USACE (Old River at Clifton Court	Flood elevation at alignment equals flood elevation
Forebay	Forebay)	at data station.
Through-Delta: Middle River at Borden Highway	USACE (Middle River at Borden	Flood elevation at alignment equals flood elevation
	Highway)	at data station.
Through-Delta: Venice Island Station	MC (VNI)	Flood elevation at alignment equals flood elevation
		at data station.
Through-Delta: Mokelumne River at Sycamore	MC (VNI) & USACE (Mokelumne	Flood elevation at alignment is based on a linear
Slough	River at New Hope Bridge)	interpolation of the flood elevation slope between
		VNI and Mokelumne River at New Hope Bridge.
Through-Delta: Mokelumne River at New Hope	USACE (Mokelumne River at New	Flood elevation at alignment equals flood elevation
Bridge	Hope Bridge)	at data station.
West Alignment at Clifton Court Forebay	USACE (Old River at Clifton Court	Flood elevation at alignment equals flood elevation
	Forebay)	at data station.
West Alignment at Victoria Island Road	MC (ORB)	Flood elevation at alignment equals flood elevation
	I	at data station.
West Alignment at Rock Slough	USACE (Old River at Rock Slough)	Flood elevation at alignment equals flood elevation
		at data station.
West Alignment at Miner Slough	MC (SSS)	Flood elevation at alignment equals flood elevation
		at data station.
West Alignment at Upstream End	MC (LIS)	Flood elevation at alignment equals flood elevation
- ,	. ,	at data station.

3. Recommended Wind-Generated Wave Runup Values										
Fetch Length (feet)	Wave Height (feet)	Wave Runup (feet)								
3,000 - 7,000	0.5 to 0.7	1.5 - 2.5								
7,000 - 10,000	0.7 - 1.0	2.5-3.0								
10,000 - 20,000	1.0 - 1.5	3.0-4.0								
20,000 - 30,000	1.5 - 2.0	4.0 - 5.0								

d.

÷

•

DWR-661

Table 4. River Flooding Water Surface Elevations

Location Along ICF-East Alignment	Approx. Existing Stage without SLR At East Alignment		Lower Levee Flood Elevation Data Set		WSE increa	ase due to S Golden Gate	Approx. Projected Stage with SLR At East Alignment				
	100-yr feet	200-уг feet	500-yr feet	Height feet		100-yr Inches	200-yr Inches	500-yr Inches	100-yr feet	200-yr feet	500-yr feet
East Align. at Clifton Court Forebay	10.5	11.0	11.7	18.6	USACE (Old River at Clifton Court Forebay)	43.9	42.7	41.1	14.2	14.6	15.1
East Align. at Middle River	11.1	11.8	12.6	13.9	MC (MTM, MHR)	42.5	40.9	38.8	14.7	15.2	15,9
East Align. at San Joanquin River	11.4	11.9	12.8	12.7	MC (VNI, SJR)	41.9	40.5	38.3	14.8	15.3	16.0
East Align. at Disappointment Slough	11.3	11,9	12.8	11.3	MC (VNI, SJR)	41.9	40.5	38.4	14.8	15.3	16.0
East Align. at White Slough	11.4	12.0	12.9	11.4	MC (VNI, SJR)	41.8	40.3	38.2	14.9	15.4	16.1
East Align, at Sycamore Slough	13.8	14.9	16.4	12.9	MC (VNI) & USACE (Mokelumne River at New Hope Bridge)	36.0	33.4	29.8	16.8	17.7	18.9
East Align. at Mokelumne River	18.9	20,3	22.0	20,7	MC (GSS, BEN) & USACE (Sacramento River at Walnut Grove, Mokelumne River at New Hope Bridge)	23.7	20.4	16.3	20.9	22.0	23.4
East Align. at Snodgrasss Slough	24.0	24.7	25.4	15.6	USACE (Sacramento River at Snodgrass Slough)	11.5	9.9	8,2	25.0	25.5	26.1

Location Along TDF Alignment	Approx. Existing Stage without SLR for Thourgh-Delta			Lower Levee	Flood Elevation Data Set	WSE increa	ase due to s Golden Gat		Approx. Projected Stage with SLR for Throguh-Delta			
	100-yr feet	200-yr feet	500-yr feet	Height feet		100-yr Inches	200-yr Inches	500-yr Inches	100-yr feet	200-yr feet	500-yr feet	
Old River at Clifton Court Forebay	10,5	11.0	11.7	20.0	USACE (Old River at Clifton Court Forebay)	43.9	42.7	41.1	14.2	14.6	15.1	
Middle River at Highway 4	9.8	10.2	10.8	12.4	USACE (Middle River at Borden Highway)	45.7	44.7	43.2	13.6	13.9	14.4	
Venice Island Station	10.3	10.7	11,3	10.2	MC (VNI)	44.5 ·	43.4	42.1	14.0	14.3	14.8	
Mokelumne River at Sycamore Slough	13.8	14.9	16.4	11.4	MC (VNI) & USACE (Mokelumne River at New Hope Bridge)	36.0	33.4	29.8	16.8	17.7	18.9	
Mokelumne River at New Hope Bridge	17.5	19.2	21.7	18.9	USACE (Mokelumne River at New Hope Bridge)	27.2	23.0	17.1	19.8	21.2	23.1	

Location Along ICF-West Alignment	Approx. Existing Stage without SLR At West Alignment			Lower Levee Height	Flood Elevation Data Set	WSE increa inches at	ase due to S Golden Gate		Approx. Projected Stage with SLR At West Alignment			
	100-yr feet	200-yr feet	500-yr feet	feet		100-yr Inches	200-yr Inches	500-yr Inches	100-yr feet	200-yr feet	500-yr feet	
West Align. at Clifton Court Forebay	10.5	11.0	11.7	15.6	USACE (Old River at Clifton Court Forebay)	43.9	42.7	41,1	14.2	14.6	15.1	
West Align. at Victoria Island Road	13.0	13.9	15.3	14.1	MC (ORB)	37.9	35.9	32.4	16.2	16.9	18.0	
West Align. at Rock Slough	9.4	9.8	10.2	13.1	USACE (Old River at Rock Slough)	46.6	45.8	44.6	13.3	13.6	13.9	
West Align, at Miner Slough	17.3	18.6	20.3	23.4	MC (SSS)	27.7	24.6	20.4	19.6	20.6	22.0	
West Allgn. at Upstream End	33.5	36.9	42.1	33.1	MC (LIS)	0.0	0.0	0.0	33.5	36.9	42.1	

Note:

- All Elevations in NAVD88

DWR-661

Table 5. Sacramento River Flooding Water Surface Elevations

Table 5. Sacrai	mento Riv	/er Floodi	ing Water:	Surface Elev	/ations									
USACE Comp Sudy UNET Model	100-year	200-year	Sea Level Rise (SLR)	200-year + SLR	USACE Comp Sudy UNET Model	100-year	200-year	Sea Level Rise (SLR)	200-year + SLR	USACE Comp Sudy UNET Model	100-year	200-year	Sea Leve! Rise (SLR)	200-year + SLR
Sacramento River	NAVD88	NAVD86	NAVD88	NAVD88	Sacramento River	NAVD88	NAVD88	NAVD88	NAVD86	Sacramento River	NAVD88	NAVD88	NAVD88	NAVD88
River Mile (RM)	feet	feet	feet	feet	RM	feet	feet	feet	feet	RM	feet	feet	feet	feet
52.0	31.1	32.2	0.0		34.0	21.6	22.7	1.2	23.9	18.8	14,0	14.9		17.7
51.8	31,1	32.2	0.0		33.8	21.4	22.6	1.2	23.8	18.5	13.9	14.8		17.6
51.5	30.9	32.1	0,0		33.6	21.4	22.6	1.2	23.8	18,3	13.7	14.6	2.8	17.4
51.3	30.7	31.8	0.0	31,8	33.6	21.4	22.5	1.3	23.8	18.0	13.7	14.5	2.9	17,4
51.0	30.5	31.7	0.0	31.7	33.6	21.4	22.5	1.3	23,8	17.8	13.5	14.4	2,9	17.3
50.8	30.6	31.7	0.0	31.7	33.6	21.4	22.6	1.2	23.8	17.5	13.5	14.3	2.9	17.2
50,5 50.3	30.5	31.7	0.0	31,7	33.5	21.4	22.5	1.3	23.8	17.3	13,4	14.3	2.9	17.2
50.0	30.4	<u>31.6</u> 31.5	0.0	31.6 31.5	<u>33.3</u> 33.0	21.2	22.3	1.3 1.3	23.6	17.0	13.2	14.1	2.9	17.1
49.8	30.1	31.3	0.0	31.3	32.8	20.9	22.1	1.3	23.4	16,8 16.5	13.2	14.1	2.9	17.0
49.5	29.9	31.1	0.0	31.1	32.7	20.3	22.0	1.4	23.4	16.3	13.1 13.0	14.0	3.0	17.0
49.3	29.8	30,9	0.0	30.9	32.6	20.8	22.0	1.4	23.3	16.0	12.9	13.9	3.0	16.9
49.0	29.6	30.7	0.0	30.7	32.5	20.7	21.9	1.4	23.3	15.8	12.8	13.7	3.0	16.8
48.8	29.5	30.6	0.0	30,6	32.3	20.6	21.7	1.4	23.1	15.5	12.7	13.7	3.0	16.7
48.5	29.4	30.5	0.0	30.5	32.0	20.5	21.6	1.4	23.0	15.3	12.7	13.6	3.0	16.7
48.3	29.3	30.5	0.0	30.5	31.8	20.4	21.5	1.5	23.0	15,0	12.5	13.5	3.1	16.6
48.0	29.2	30.4	0.0.	30.4	31.5	20.2	21,4	1.5	22.9	14.8	12,5	13.4	3.1	16.5
47.8	29.1	30.2	0.0	30.2	31.3	20.1	21.2	1,5	22.7	14.6	12.5	13.5	3.1	16.5
47.5	28.9	30.1	0.0	30.1	31.0	20.0	21.2	1.5	22.7	14.3	12.5	13.5	3.1	16.5
47.3	28.6	29.8	0.0	29.8	30.8	19.8	21.0	1.6	22.5	14.0	12.2	13.0	3.2	16.2
47.0	28.5	20.6	0.0	20.6	30.5	19.7	20.0	1.0	22.4	13.8	12.1	13.0	3.2	16.1
46.8	28.5	29.6	0.0	29.6	30.3	19.6	20.7	1.6	22.3	13.5	12.1	12.9	3.2	16.1
46.5	28.4	29.6	0.0	29.6	30.0	19.4	20.5	1.7	22.2	13.3	12,0	12.8	3.2	16.0
46.4	28.4	29.6	0.0	29.6	29.8	19.3	20.4	1.7	22.1	13.0	11.8	12.6	3.2	15.8
46.4	28.4 28.4	29.5	0,0	29.5	29.5	19.2	20.3	1.7	22.0	12.9	11.7	12.5	3.3	15.8
46.4	28.4	29.5 29.5	0.0	29.5	29,3	19.1 19.0	20.2 20.0	1.7	21,9	12.9	11.6	12.3	3.3	15.6
46.3	26.4	29.0	0.0	29.5	29.0	18.8	19.9	1.8	21.8	12.9	11.6	12.3	3.3	15.6
46.0	28.1	29.3	0.0	29.3	28.5	18.7	19.8	1.8 1.8	21.7	12.9 12.8	11.7 11.7	12.5 12.5	3.3	15.8
45.8	28.0	29.2	0.0	29.2	28.3	18.5	19.6	1.8	21.4	12.5	11.5	12.5	3,3	<u>15.7</u> 15.5
45.5	27.9	29.0	0.0	29.0	28.0	18.4	19.5	1.9	21.3	12.3	11.3	12.0	3.4	15.3
45.3	27.6	28,8	0.0	28.8	27.8	18.3	19.3	1.9	21.2	12.0	11.1	11.8	3.4	15.2
45.0	27.4	28.6	2.3	30.9	27.5	18.2	19.2	1.9	21.1	11.8	10.9	11.6	3.4	15.0
44,8	27.3	28.4	0.1	28,5	27.3	18.1	19.1	1.9	21.0	11.5	10.B	11.4	3.5	14.9
44.5	27.1	28.2	0.1	28.3	27,3	17.9	18.9	2.0	20.9	11.3	10.7	11.4	3.5	14.9
44.3	27.0	28.1	0.1	28.2	27.0	17.8	18.7	2.0	20.7	11.0	10.6	11.2	3.5	14.7
44,0	26.9	28.1	0.1	28.2	26.9	17.8	18,8	2.0	20.8	10.8	10,4	10.9	3.6	14.5
43.8	26,9	28.1	0.2	28.2	26,9	17.8	18.7	2.0	20.7	10.5	10.2	10.8	3.6	14.4
43.5	26.6	27.7	0.2	27.9	26.9	17.8	18.7	2.0	20.7	10.3	10.1	10.6	3,6	14.2
43.3	26.5	27.6	0.2	27.8	26.9	17.8	18.8	2.0	20.8	10.0	9.9	10.4	3.7	14.1
43.0	26,3	27.4	0.3	27.7	26.8	17.8	18.8	2.0	20.8	9.8	9.7	10.2	3.7	14.0
42.8 42,5	26.3 26.3	27.4	0.3	27.7	26.7	17.8	18.8	2.0	20,B	9.5	9.6	10.1	3.7	13.8
42.3	26.3	27.4	0.3	27.7	26.5 26.3	17,7	18.7 18.6	2.0	20.7	9,0	9.6	10.1	3.7	13.8
42.0	26.0	27.2	0.3	27.5	26.0	17.5	18.4	2.0	20.7	8.8 8.5	9.5	10.0 9.8	3.8	13,7
41.8	25.9	27.0	0.4	27.3	25.8	17.3	18.3	2.1	20.4	8.3	9.3	9.8	3.8	13.6 13.6
41.5	25.8	26.9	0.4	27,3	25.5	17.2	18.2	2.1	20.3	8.0	9.3	9.7	3.8	13.5
41.3	25.6	26.8	0.4	27.2	25.3	17.1	18.1	2.1	20.2	7.8	9.2	9.6	3.8	13.4
41.0	25.5	26.6	0.4	27.1	25.0	17.0	17.9	2.2	20.1	7.5	9.1	9.5	3.9	13.4
40.8	25.3	26.5	0.5	26.9	24.8	16.9	17,8	2.2	20.0	7.3	9.0	9.4	3.9	13.3
40.5	25.2	26.3	0.5	26.8	24.5	16.7	17.6	2.2	19.9	7.0	9.0	9.4	3.9	13.3
40.3	25.0	26.2	0.5	26.7	24.3	16.5	17.3	2.3	19.6	6.8	9.0	9.4	3.9	13.3
40.0	24.8	25.9	0.6	26.5	24.0	16.4	17.2	2.3	19.5	6.5	8,9	9.3	3.9	13.2
39.8	24.7	25.8	0.6	26.4	23.8	16.3	17.2	2.3	19.5	6.3	8.9	9,2	3.9	13.1
39.5	24.6	25.7	0.6	26.3	23.5	16.2	17.0	2.4	19,4	6.0	8.8	9.1	3.9	13.1
39.3	24.3	25.5	0.7	26.1	23.3	16.1	17.0	2.4	19.3	5.8	8.7	9.0	4.0	13.0
39,0 38.8	24.2 24.2	25.4 25.3	0.7	26.1	23.0	16.0	16,8	2.4	19.2	5.5	8.6	8.9	4.0	12.9
38.5	24.2	25.3	0.7	26.0 25.9	22.8	15.8	16.6	2.4	19.0	5.3	8.5	8.8	4.0	12.8
38,3	24.7	25.2	0.7	25.9	22.5	15.7 15.6	16.5 16.4	2.5 2.5	19.0 18.9	<u> </u>	8.4	8.7	4,0	12.7
38.0	23.7	23.1	0.8	25.6	22.0	15.5	16.3	2.5	18,8	4.8	8.4	8.6 8.5	4.0	12.7
37,8	23.6	24.7	0.0	25.5	21.8	15.3	16.1	2.5	18.7	4.5	8.2	8.4	4.1	12.6 12.5
37.5	23.6	24.7	0.8	25.6	21.5	15.2	16.0	2.5	18.6	4.0	8.1	8.2	4.1	12.5
37.3	23.5	24.6	0.8	25.5	21.3	15.1	15.9	2.6	18.5	3.8	8.1	8.2	4.1	12.3
37.0	23.4	24.5	0.9	25.3	21.0	14.9	15.7	2.6	18.4	3.5	6,0	8.1	4.1	12.3
36.8	23.2	24.3	0.9	25.2	20,8	14.9	15.7	2.6	18.3	3.3	8.0	8.1	4.1	12.2
36.5	22.8	24.0	1.0	24.9	20.5	14.8	15.6	2.6	18.3	3.0	8.0	8.1	4.2	12.2
36.3	22.9	24.0	1.0	25.0	20.3	14,7	15.5	2.7	18.2	2.8	8.0	8.0	4.2	12.2
36.0	22.8	23.9	1.0	24.9	20.0	14.5	15.4	2,7	18,1	2.5	8.0	8,0	4.2	12.2
35.8	22.6	23,7	1.0	24.7	19.8	14.4	15.2	2.7	17.9	2.3	7.9	8.0	4.2	12.1
35.5	22.3	23.4	1.1	24.5	19.5	14.3	15.1	2.7	17.9	2.0	7.9	7.9	4.2	12,1
35.3	22.3	23.4	1.1	24,5	19.3	14.2	15.0	2.8	17.8	1.8	7.9	7.9	4.2	12.1
000	22.2	23.4	1.1	24.5	19.0	14.1	14.9	2.8	17.7	1.5	7.8	7.9	4.2	12.1
35.0		23.2	1.1	24.3	18.9	14.0	14.9	2.8	17.7	1,3	7.8	7.8	4.2	12.0
34,8	22.1													
34.8 34.5	21,9	23,0	1.2	24.2	18.9	14.0	14.9	2.8	17.7	1.0	7.8	7.8	4.2	12.0
34,8						14.0 14.0 14.0	14.9 14.9 14.9	2.8 2.8 2.8	17.7 17.7 17.7	1.0	7.8 7.8	7.8 7.8	4.2 4.2	12.0 12.0

ļ

	1						
			100-year	200-year	200-year	Sea Level	200-year
	Impact		Fioodplain	Floodplain	Floodplain	Rise	Floodplain
	Area No.	Impact Area Name	WSE	WSE	WSE	(SLR)	WSE + SLR
		inipact, ilou Hairio	NGVD29	NGVD29	NAVD88	NAVD88	NAVD88
			(feet)	(feet)	(feet)	(feet)	(feet)
	41	Lisbon District, RD 302	23.6	25.6	27.9	0.2	28.1
	42	Netherlands, RD 999	13.7	13.7	16.0	2.6	18.6
	43	Clarksberg	13.7	13.7	16.0	2.6	18.6
	44	Stonelake	19.1	20.1	22.4	1.3	23.7
	45	Hood	19.1	20.1	22.4	1.3	23.7
ië.	46	Merritt Island	20.7	20.8	23.1	1.1	24.2
Sacramento River Basin	47	Vorden, RD 551	18.0	18.8	21.1	1.5	22.6
10	48	Courtland	18.0	18.8	21.1	1.5	22.6
Sive I	49	Sutter Island	13.8	13.8	16.1	2.5	18.6
	50	Grand Island	9.7	9.9	12.2	3.3	15.5
ent	51	Locke	13.2	13.3	15.6	2.6	18.2
Ĕ	52	Walnut Grove	12.5	12.6	14.9	2.8	17.7
CC CC	53	Tyler island	7.8	7.8	10.1	3.7	13.8
Sa l	54	Brannan-Andrus Island	7.5	7.6	9.9	3.8	13.7
	55	Ryer Island	12.2	12.2	14.5	2.9	17.4
	56	Prospect Island	15.0	15.2	17.5	2.3	19.8
	57	Twitchell Island	6.4	6.7	9.0	4.0	13.0
-	58	Sherman Island	6.3	6.4	8.7	4.0	12.7
	62	Lindsey Slough, Egbert Tract	15.6	15.7	18.0	2.2	20.2
	30	Paradise Cut	12.2	13.4	15.7	2.6	18.3
<u> </u>	31	Stewart Tract	16.7	17.6	19.9	1.8	21.7
asii	33	Lathrop / Sharp	10.8	13.0	15.3	2.7	18.0
ů – č	34	French Camp	10.8	13.0	15.3	2.7	18.0
Les I	35	Stockton	10.60	12.30	14.6	2.8	17.4
<u> </u>	36	Roberts Island	10.90	13.00	15.3	2.7	18.0
l uin	37	Rough and Ready Island	9.60	10.30	12.6	3.2	15.8
San Joaquin River Basin	38	Drexler Tract	10.00	11.30	13.6	3.0	16.6
<u>ି</u> ୧	39	Union Island	9.25	11.10	13.4	3.1	16.5
au	40	SE Union Island	12.50	13.30	15.6	2.6	18.2
S S	41	Fabian Tract	10.40	11.20	13.5	3.1	16.6
	42	Pico Naglee Tract, RD 1007	10.60	11.60	13.9	3.0	16.9

Table 6. River Floodplain Flooding Water Surface Elevations

Note: Impact Area was used in the USACE Comp Study, Appendix D and F (USACE, 2002) to delineate within the floodplain to facilitate the flood damage analysis. The Impact Area No. was used here for reference to the Comp Study.

.

DWR-661

Table 7. Island or Tract Water Surface Elevations - Eastern Alignment

McCormack- Williamson Tract New Hope Tract Canal Ranch Brack Tract Brack Tract Terminous Tract Shin Kee Tract Shin Kee Tract King Island Rindge Tract Roberts Island (Upper) Drexler Tract	Location	Flood Event	Minimum Levee Crest Elevation, feet	Maximum River Water Surface Elevation, feet	5-Day Average River Water Surface Elevation, feet	Recommended Design Elevation, feet	Sea Level Rise, feet	Recommended Design Elevation + SLR, feet
Pierson District	Levee at Southwest Corner	100-year	27.7	22.5	21.5	22.5	1.3	23.8
		200-year	27.7	23.0	21.9	23	1.2	24.2
		500-year	27.7	23.5	22.3	23.5	1.1	24.5
Glanville Tract	Levee at South End	100-year	21.2	21.1	21.1	21.1	1.5	22.6
	(near Sacramento River)	200-year	21.2	22.1	22.1	22.1	1.3	23.4
		500-year	21.2	23.1	23.1	23.1	1.1	24.2
	Levee at Dead Horse Slough	100-year	18.0	21.1	21.1	19.0	2.0	21.0
Williamson Tract	1 1	200-year	18.0	22.1	22.1	19.0	2.0	21.0
		500-year	18.0	23.1	23.1	19.0	2.0	21.0
New Hope Tract	Levee at Beaver Slough	100-year	14.3	18.4	18.2	15.3	2,7	18.0
		200-year	14.3	19.3	19.1	15.3	2.7	18.0
		500-year	14.3	20,2	19.9	15.3	2.7	18.0
Canal Ranch	Levee at Hog Slough	100-year	13.0	16.7	16.4	14.D	3.0	16.9
	1	200-year	13.0	17.4	17.1	14,0	3.0	16.9
		500-year	13.0	18 2	17.8	14.0	3.0	16.9
Brack Tract	Levee at Sycamore Stough	100-year	12.1	15.3	14.8	13.1	3.1	16.2
		200-year	12.1	15.9	15.5	13.1	3.1	16.2
		500-year	12.1	16.7	16.2	13,1	3.1	16.2
Terminous Tract	Levee at White Slough	100-year	10.8	14.2	13.7	11.8	3.4	15.2
		200-year	10.8	14.8	14.2	11.8	3.4	15.2
		500-year .	10.8	15,5	14.9	11.8	3.4	15.2
Shin Kee Tract	Levee at West End	100-year	8.5	10,4	9.5	9.5	3,9	13.3
		200-year	8.5	10.8	9.9	9.5	3,9	13.3
		500-year	8.5	11.3	10.3	9.5	3.9	13.3
King Island	Levee at Dissapointment Slough	100-year	11.4	10.4	9.6	10.4	3.7	14.0
		200-year	11.4	10.8	9.9	10.8	3.6	14,4
		500-year	11.4	11.3	10.3	11.3	3.5	14.8
Rindge Tract	Levee at Little Tinsel Island	100-year	10.9	10.4	9.6	9.6	3.8	13.5
	í í	200-year	10.9	10.8	9.9	9.9	3.8	13.7
		500-year	10.9	11.3	10.3	10,3	3.7	14.0
	Levee at Drexler Tract	100-year	10.1	13.2	12.4	11.1	3.5	14.6
(Upper)		200-year	10.1	14.1	13.2	11.1	3.5	14.6
		500-year	10.1	15.3	14.2	11.1	3.5	14.6
Drexier Tract	Levee on Trapper Slough	100-year	5,7	11.8	11.1	6.7	4.4	11.1
		200-year	5,7	12.5	11.7	6.7	4,4	11.1
		500-year	5.7	13.4	12.4	6.7	4.4	11.1
Union Island	Levee at Clifton Court Forebay	100-year	17.6	10.9	10.2	10.9	3.6	14.5
		200-year	17.6	11.4	10.6	11.4	3.5	14.9
		500-year	17.6	12.1	11.2	12.1	3.3	15.4

Table 8. Island or Tract Water Surface Elevations - Western Alignment

Tract/Island	Location	Flood Event	Minimum Levee Crest Elevation, feet	Maximum River Water Surface Elevation, feet	5-Day Average River Water Surface Elevation, feet	Recommended Design Elevation,	Sea Level Rise, feet	Recommended Design Elevation + SLR, feet
Netherlands Le Pe Ryer Island Le (ne Pe Byron Tract Le (ne	Levee at Southwest Corner	100-year	23.3	29.2	27.7	24.3	0.9	25.2
	Peaks at FTP	200-year	23.3	29.8	28.2	24.3	0.9	25.2
		500-year	23.3	30.4	28.6	24.3	0.9	25.2
	Levee at South End	100-year	21.3	19.2	18.4	19.2	1.9	21.1
Netherlands Le Pe Ryer Island Le (ne Pe Byron Tract Le (ne	(near Sacramento River)	200-year	21.3	19.6	18.8	19.6	1.8	21.5
(r P	Peaks at SSS	500-year	21.3	20.0	19.1	20.0	1.8	21.8
(n Pe Byron Tract Le	Levee at South End	100-year	15.0	12.9	11.7	12.9	3.2	16.1
Peak Ryer Island Leve (near Peak Byron Tract Leve (near	(near Clifton Court Forebay)	200-year	15.0	13.8	12.4	13.8	3.0	16.8
	Peaks at ORB	500-year	15.0	15.0	13.4	15.0	2.8	17.8

Table 9. Runoff Volumes of Historic Floods of Record

River	Duration	Date	Volume, Acre- Feet
Sacramento River	1-Day	February 19, 1986	228,099
	5-Day	February 17-21, 1986	1,065,322
San Joaquin River	1-Day	January 5, 1997	107,702
	5-Day	February 27 - March 3, 1969	451,438
Mokelumne River	1-Day	December 24, 1955	28,165
	5-Day	December 24-28, 1955	81,064

Table 10. Mean Higher High Water in the Sacramento River

	(feet, NAVD88)							
	MHHW (feet, NAVD88)									
Location	NOAA	CDEC*	Used in Study	SLR Increase (feet)	MHHW with SLR					
Golden Gate Bridge	5.9		5.9	4,6	10.5					
Port Chicago	6.09		6.0	4.6	10.6					
Antioch	5.95	5.98	6.0	4.6	10.6					
Rio Vista	7.01	6.31	6.3	4.5	10.8					
Freeport		6.64	6.6	4.5	11.1					
I Street Bridge		6.73	6.7	4.5	11.2					

Table 11. Mean Higher High Water in the San Joaquin and Mokelumne Rivers

	(feet, NAVD88)						
·	MHHW (feet, NAVD88)								
Location	NOAA	CDEC*	Used in Study	SLR Increase (feet)	MHHW with SLR				
Golden Gate Bridge	5.9	5.86	5.9	4.6	10.5				
Port Chicago	6.09	6.03	6.0	4.6	10.6				
Antioch	5.95	5.98	6.0	4.6	10.6				
Three Mile Slough	5.89		6.0	4.6	10.6				
Venice Island		6.21	6.0	4.6	10.6				
Mokulumne River at Benson's Ferry		5.77	6.0	4.6	10.6				

* CDEC - April 1, 2008-Oct 31, 2008 data

Table 13. ICF-EAST: Recommended Flood Protection for Design Embankment and River Crossings Without Sea Level Rise

Station Location	From	То	200-year Streams Flooding WSE	200-year Sac River Flooding WSE	200-year Floodplain Flooding WSE	200-year Island Flooding WSE	Tidal Flooding WSE	Wind- Wavə Runup	Recommended Design Embankment Flood Protection*	Recommended Design River Crossing Flood Protection**
205.45		Contractor Contractor	NAVD88 (ft)	NAVD88 (ft)	NAVD88 (ft)	NAVD88 (ft)	NAVD88 (ft)	(ft)	NAVD88 (ft)	NAVD88 (ft)
-395+15 Sacramento River at Free -332+34 Sacramento River at Clar	eport		Service Street	29.6			6.6	(11)	10/17 200 (11)	32.6
	ksburg			27.4	and the second second	Contraction of the	State of the second	Contract Ma		30.4
-135+25 Sacramento River at Stor			Survey and the	26.6		and the second	Station of the second		ENTRY BURNING	29.6
100+00 Pierson Tract	Hood	Snodgrass Slough		25.2	22.4	23.0		5.0	31.0	23.0
140+00 Snodgrass Slough			24.7	Service States				0.0	01.0	27.7
242+50 Glanville Tract	Snodgrass Slough	Lost Slough		22.1	21.1	22.1		5.0	30.1	21.1
345+00 Lost Slough				Self Contractor			and a state of the	0.0	00.1	
365+00 McComack Williamson Tr	act Lost Slough	Mokelumne River		18.7	15.6	19.0		5.0	27.0	Contracts which is class?
385+00 Mokelumne River			20.3	Service Property	Contraction (Section	10.0	ALL	0.0	27.0	23.3
487+50 New Hope Tract	Mokelumne River	Beaver Slough		17.2	14.9	15.3		5.0	23.3	23.3
590+00 Beaver Slough			19.2	Contraction of the	11.0	10.0	Statistics and a	5.0	23.3	00.0
652+50 Canal Ranch	Beaver Slough	Hog Slough				14.0		5.0	22.0	22.2
715+00 Hog Slough	the set of the set of the set of the set of	Contraction of the second second	and a start of the	CULTER STATES	P.S. BARRAN	14.0	Marillo Marine Colonado	5.0	22.0	
765+00 Brack Tract	Hog Slough	Sycamore Slough				13.1	Sector Providence	5.0	01.1	
815+00 Sycamore Slough		,	14.9	Real Processing Street of Street	Sector Construction of the	13.1	And the other second se	5.0	21.1	
897+50 Terminous Tract	Sycamore Slough	Upland Canal	14.0			11.8		5.0	10.0	17.9
980+00 Upland Canal / North Gua	rd Road		and the state of the state	Constant line state scores	Constant and the second	11.0		5.0	19.8	
1012+50 Shin Kee Tract	Upland Canal	White Slough				9.5				
1045+00 White Slough	And the second second second	This clough	12.0	March Mercer	No. of Concession, Name	9.5		5.0	17.5	
1122+50 Kinkg Island	White Slough	Disappointment Slough	12.0			10.8				15.0
1200+00 Disappointment Slough		Disappointment Clough	11.9		CONTRACTOR OF STREET,	10.8		5.0	18.8	
1287+50 Rindge Tract	Disappointment Slough	San Joaquin River	11.5			9.9				14.9
1375+00 San Joaquin River		Carrooaquirravei	11.9	No. Statements and	Constant and the second second	9.9		5.0	17.9	
1610+00 Roberts Island	San Joaquin River	Middle River	11.5		12.6	0.7	6.0			14.9
1845+00 Middle River			11.8	CONTRACTOR OF THE	12.0	6.7		5.0	20.6	
2005+00 Union Island	Middle River	Old River	11.0		10.0					14.8
2165+00 Old River			11.0		13.6	11.4		5.0	21.6	
2230+00 Byron Tract 2	Old River	Jones PP	11.0							14.0
2310+00		Banks PP			13.4			5.0	21.4	
		IDAILIKS PP			13.4			5.0	21.4	

Note: * Design Embankment Flood Protection is the highest elevation of floodplain, island and tidal flooding water surface elevation plus wind-wave runup and 3 feet of freeboard protection.

Table 14. ICF-WEST: Recommended Flood Protection for Design Embankment and River Crossings Without Sea Level Rise

Station Location	From	То	200-year Streams Flooding WSE	200-year Sac River Flooding WSE	200-year Floodplain Flooding WSE	200-year Island Flooding WSE	Tidal Flooding WSE	Wind- Wave Runup	Recommended Design Embankment Flood Protection*	Recommended Design River Crossing Flood Protection**
-34+43 Sacramento River nea			NAVD88 (ft)	NAVD88 (ft)	NAVD88 (ft)	NAVD88 (ft)	NAVD88 (ft)	(ft)	NAVD88 (ft)	NAVD88 (ft)
			36.9	31.7			6.6			39.9
	Sacramento River	Winchester Lake			27.9	24.3		5.0	35.9	
195+00 Winchester Lake							NAME OF CASE	8.52.8.8		
525+00 Netherlands	Winchester Lake	Miner Slough			16.0			5.0	24.0	
855+00 Miner Slough			18.6		A SALE AND A SALE AND A		State States	0.0	21.0	21.6
1077+50 Ryer Island	Miner Slough	Sacramento River			14.5	19.6		5.0	27.6	21.0
1300+00 Sacramento River		Contraction of the second		13.5	11.0	10.0	6.3	5.0	27.0	40.5
1400+00 Brannan-Andrus Islan	d Sacramento River	Sevenmile Slough		10.0	9.9		0.5	5.0	47.0	16.5
1550+00 Twitchell Island	Sevenmile Slough	San Joaquin River			9.0			5.0	17.9	
1600+00 San Joaquin River	Conception and a state of	1			5.0		6.0	5.0	17.0	
1665+00 Bradford Island	San Joaquin River	False River					0.0	5.0		9.0
1730+00 False River		I dice raver				Street Street Street Street		5.0		
1807+50 Bethel Island	False River	Dutch Slough	Construction of the second second		A CONTRACTOR OF THE REAL PROPERTY					
1885+00 Dutch Slough		Duten biougn	Figure 1 and the second		and the second			5.0		
1942+50 Hotchkiss Tract 1	Dutch Slough	Contra Costa Canal						Real Parts		
2000+00 Contra Costa Canal		Toonira Costa Canal	0.0					5.0		
2350+00 Bryon Tract 1	Highway 4	Dave T 15	9.8		C. C. C. Constanting					12.8
2520+00	Highway 4	Bryon Tract Forebay			13.9			5.0	21.9	÷
2020+00	Bryon Tract Forebay	Jones and Banks PP	11.0			13.8		5.0	21.8	

Note: * Design Embankment Flood Protection is the highest elevation of floodplain, island and tidal flooding water surface elevation plus wind-wave runup and 3 feet of freeboard protection.

Station	From	То	200-year Streams Flooding WSE	200-year Sac River Flooding WSE	200-year Floodplain Flooding WSE	200-year Island Flooding WSE	Tidal Flooding WSE	Wind- Wave Runup	Recommended Design Embankment Flood Protection*	Recommended Design River Crossing Flood Protection**
-335+00	Commente Di		NAVD88 (ft)	NAVD88 (ft)	NAVD88 (ft)	NAVD88 (ft)	NAVD88 (ft)	(ft)	NAVD88 (ft)	NAVD88 (ft)
and the second of the second of the	Sacramento River at L		a dia sa dia s	25.2			6.6			28.2
-245+00	Hood	Snodgrass Slough		25.2	22.4	23.0		5.0	31.0	
-155+00	Snodgrass Slough		24.7							27.7
-45+00	Snodgrass Slough	Lost Slough		22.1	21.1	22.1		5.0	30.1	
65+00	Lost Slough				1999年1月1日日			a sector of the sector of the	00.1	
85+00	Lost Slough	Mokelumne River		18.7	15.6	19.0		5.0	27.0	
105+00	Mokelumne River	A Charles and the second	20.3		Sector Sector States			0.0	21.0	
222+50	Mokelumne River	Beaver Slough		17.2	14.9	15.3		5.0	23.3	
	Beaver Slough		19.2			1010		0.0	20.0	22.2
460+00	Beaver Slough	Sycamore Slough				14.0		5.0	22.0	22.2
580+00	Sycamore Slough		14.9	in the second second			Contraction of the	0.0	22.0	17.9
	Sycamore Slough	San Joaquin River						5.0		17.9
	San Joaquin River		10.7	and the second second	*		6.0	5.0		13.7
	San Joaquin River	Victoria Canal			13.6		0.0	5.0	21.6	13.7
1880+00	Victoria Canal		11.8			all and the second		5.0	21.0	14.8
2010+00	Victoria Canal	Old River			13.4	11.4		5.0	21.4	14.0
2140+00	Old River		11.0					0.0	21.4	14.0
2190+00	Clifton Court Forebay	Old River			13.4			5.0	21.4	14.0

Table 15. TDF: Recommended Flood Protection for Design Embankment and River Crossings Without Sea Level Rise

Note: * Design Embankment Flood Protection is the highest elevation of floodplain, island and tidal flooding water surface elevation plus wind-wave runup and 3 feet of freeboard protection.

Table 16. ICF-EAST: Recommended Flood Protection for Des	ign Embankment and River Crossings With Sea Level Rise
--	--

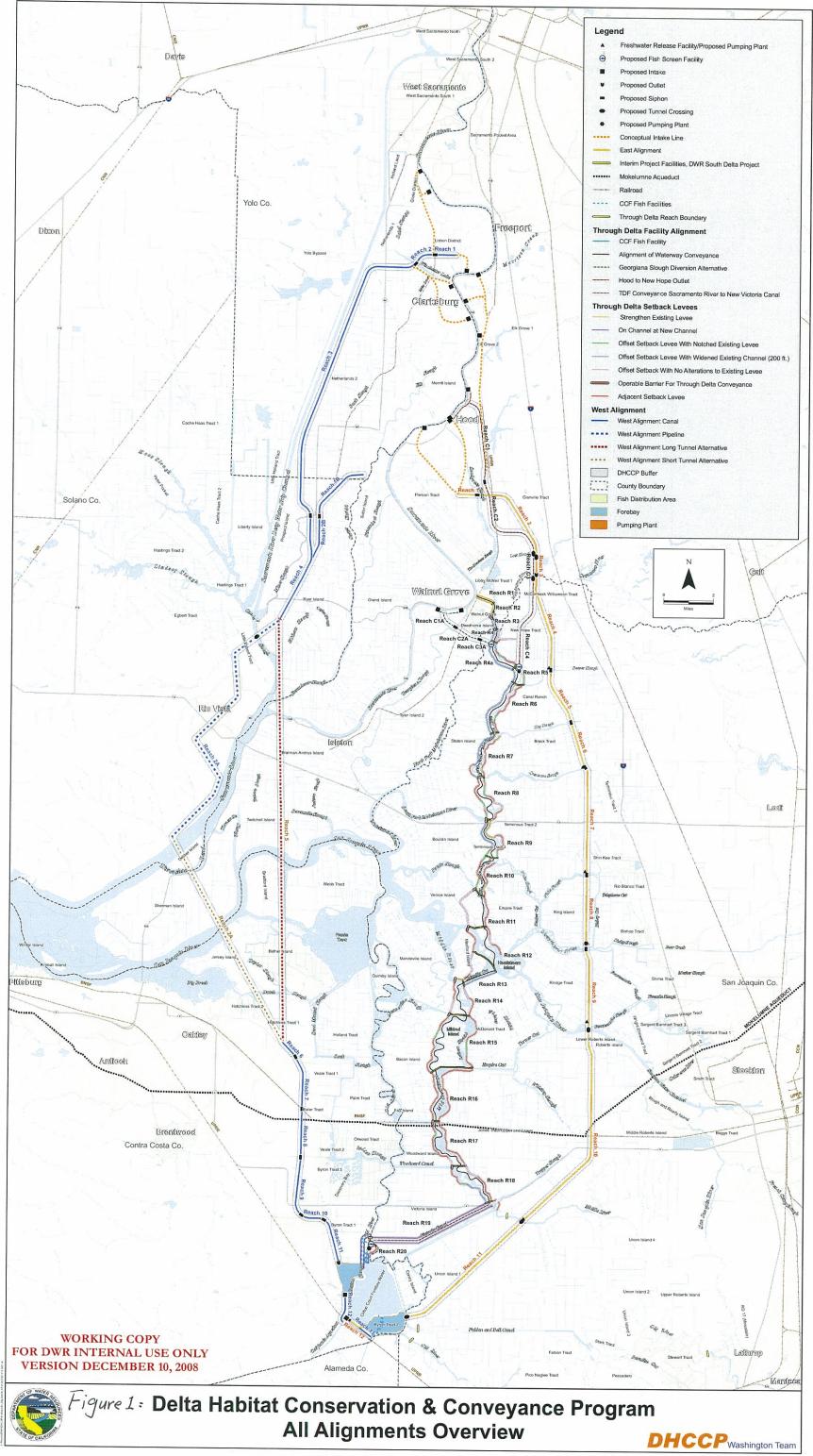
T 11 40 105 - 105 -

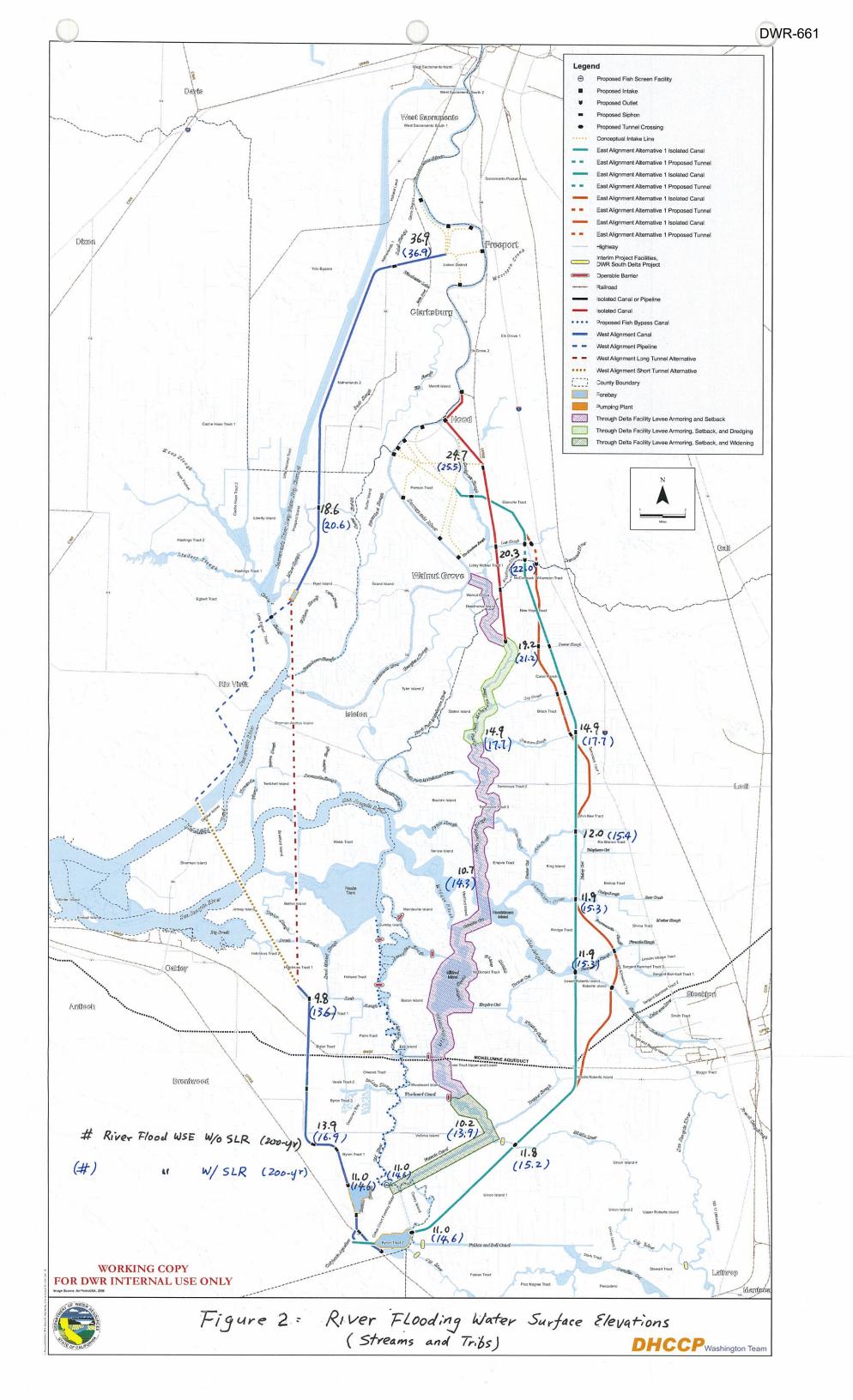
Station	Location	From	То	200-year Streams Flooding WSE	200-year Sac River Flooding WSE	200-year Floodplain Flooding WSE	200-year Island Flooding WSE	Tidal Flooding WSE	Wind- Wave Runup	Recommended Design Embankment Flood Protection*	Recommended Design River Crossing Flood Protection**
-395+15	Sacramento River at Freeport			NAVD88 (ft)	NAVD88 (ft)	NAVD88 (ft)	NAVD88 (ft)	NAVD88 (ft)	(ft)	NAVD88 (ft)	NAVD88 (ft)
-332+34	Sacramento River at Clarksbu	IFO		Mentoving New Pr	29.6			11.1			32.6
	Sacramento River at Stone La	ake			27.7			SC2 Property			30.7
	Pierson Tract	Hood	Createrras Claush		27.1		Salation and				30.1
	Snodgrass Slough	11000	Snodgrass Slough	05.5	25.9	23.7	24.2		5.0	32.2	
	Glanville Tract	Snodgrass Slough	Lost Slough	25.5				Sector Contract			28.5
	Lost Slough	Tonougrass Slough	Lost Slough	And a second	23.4	22.6	23.4		5.0	31.4	
	McComack Williamson Tract	Lost Slough	Mokelumne River	and the second second	00.7			No. Contraction of the			
385+00	Mokelumne River	Teost olough	Nokelulline River	00.0	20.7	18.2	21.0		5.0	29.0	
	New Hope Tract	Mokelumne River	Beaver Slough	22.0	10.0	1					25.0
	Beaver Slough		Deaver Slough	21.2	19.6	17.7	18.0		5.0	26.0	
	Canal Ranch	Beaver Slough	Hog Slough	21.2			16.9		= 0		24.2
715+00	Hog Slough		riog clough				16.9	Street Street and Street	5.0	24.9	
765+00	Brack Tract	Hog Slough	Sycamore Slough	Large service of			16.2		5.0	010	
815+00	Sycamore Slough		c) camero crougn	17.7	No. 2 Anstead		10.2		5.0	24.2	007
	Terminous Tract	Sycamore Slough	Upland Canal				15.2		5.0	23.2	20.7
980+00	Upland Canal / North Guard R	load				and the second second	10.2		5.0	23.2	
1012+50	Shin Kee Tract	Upland Canal	White Slough				13.3		5.0	21.3	
1045+00	White Slough			15.4	Par Star India	Conceptual States	10.0	Contraction of the	5.0	21.3	18.4
1122+50	Kinkg Island	White Slough	Disappointment Slough				14.4	and the second	5.0	22.4	18.4
1200+00	Disappointment Slough			15.3	C. Stranger		14.4		5.0	22.4	40.0
1287+50	Rindge Tract	Disappointment Slough	San Joaquin River				13.7		5.0	21.7	18.3
1375+00	San Joaquin River			15.3			10.7	10.6	5.0	21.7	18.3
	Roberts Island	San Joaquin River	Middle River	1010		15.8	11.1	10.0	5.0	23.8	18.3
	Middle River			15.2		.5.0	11.1		5.0	23.0	18.2
	Union Island	Middle River	Old River			16.6	14.9		5.0	24.6	10.2
2165+00	Old River		a share a share a share	14.6			1 110		0.0	24.0	17.6
	Byron Tract 2	Old River	Jones PP			16.5			5.0	24.5	17.0
2310+00			Banks PP			16.5			5.0	24.5	

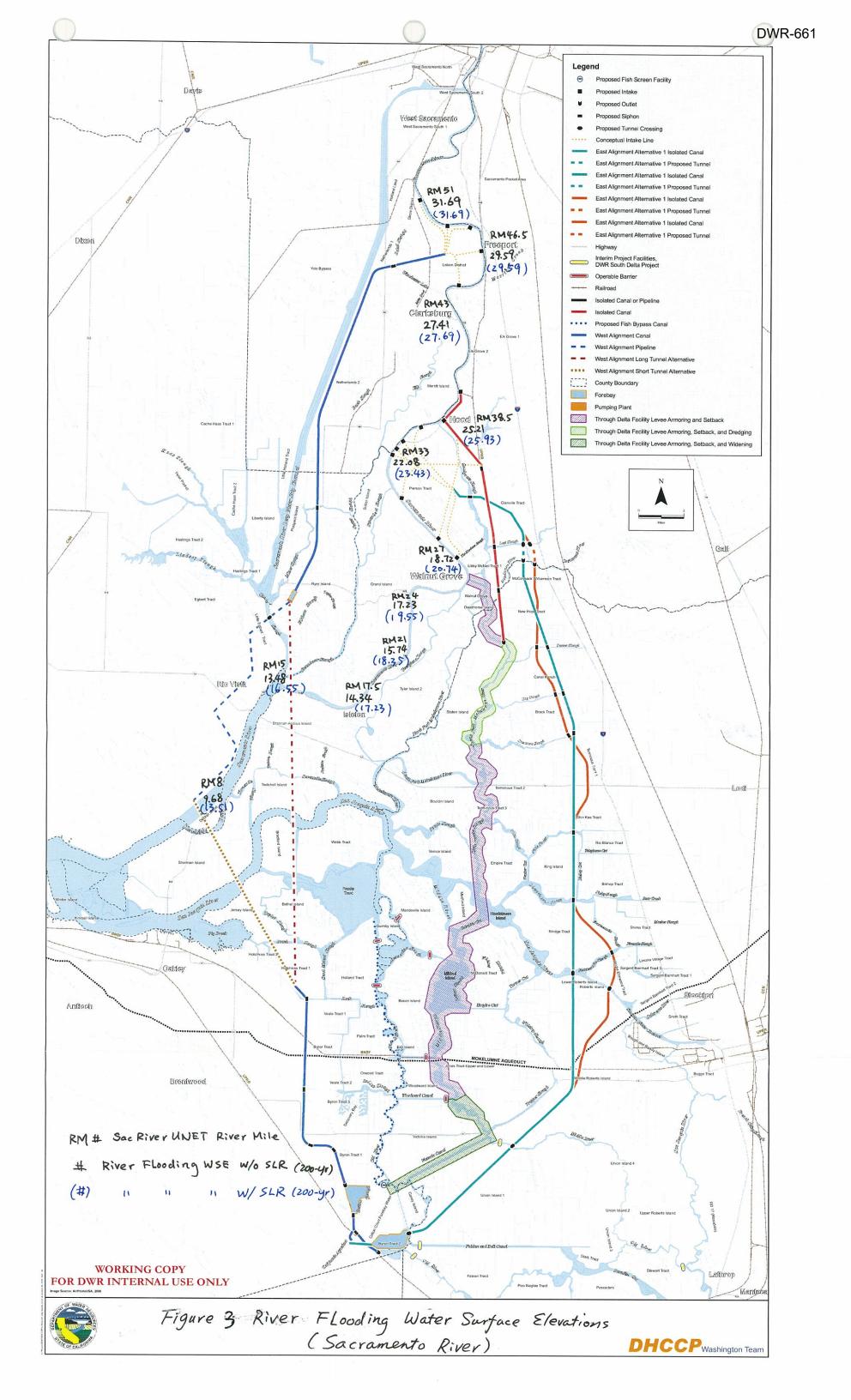
Note: * Design Embankment Flood Protection is the highest elevation of floodplain, island and tidal flooding water surface elevation plus wind-wave runup and 3 feet of freeboard protection.

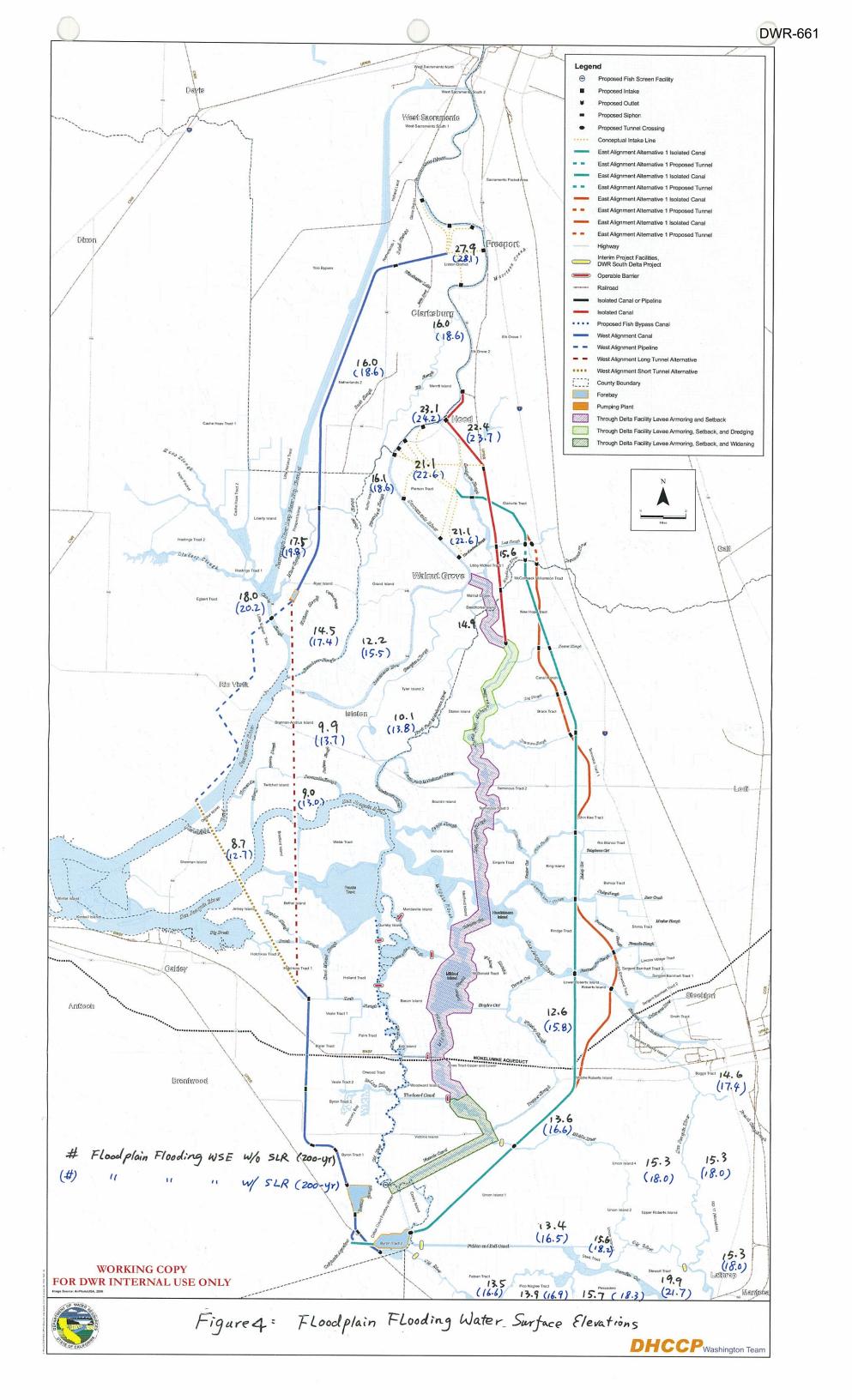
Table 17. ICF-WEST: Recommended Flood Protection for Design Embankment and River Crossings With Sea	Level Rise
	Loverninge

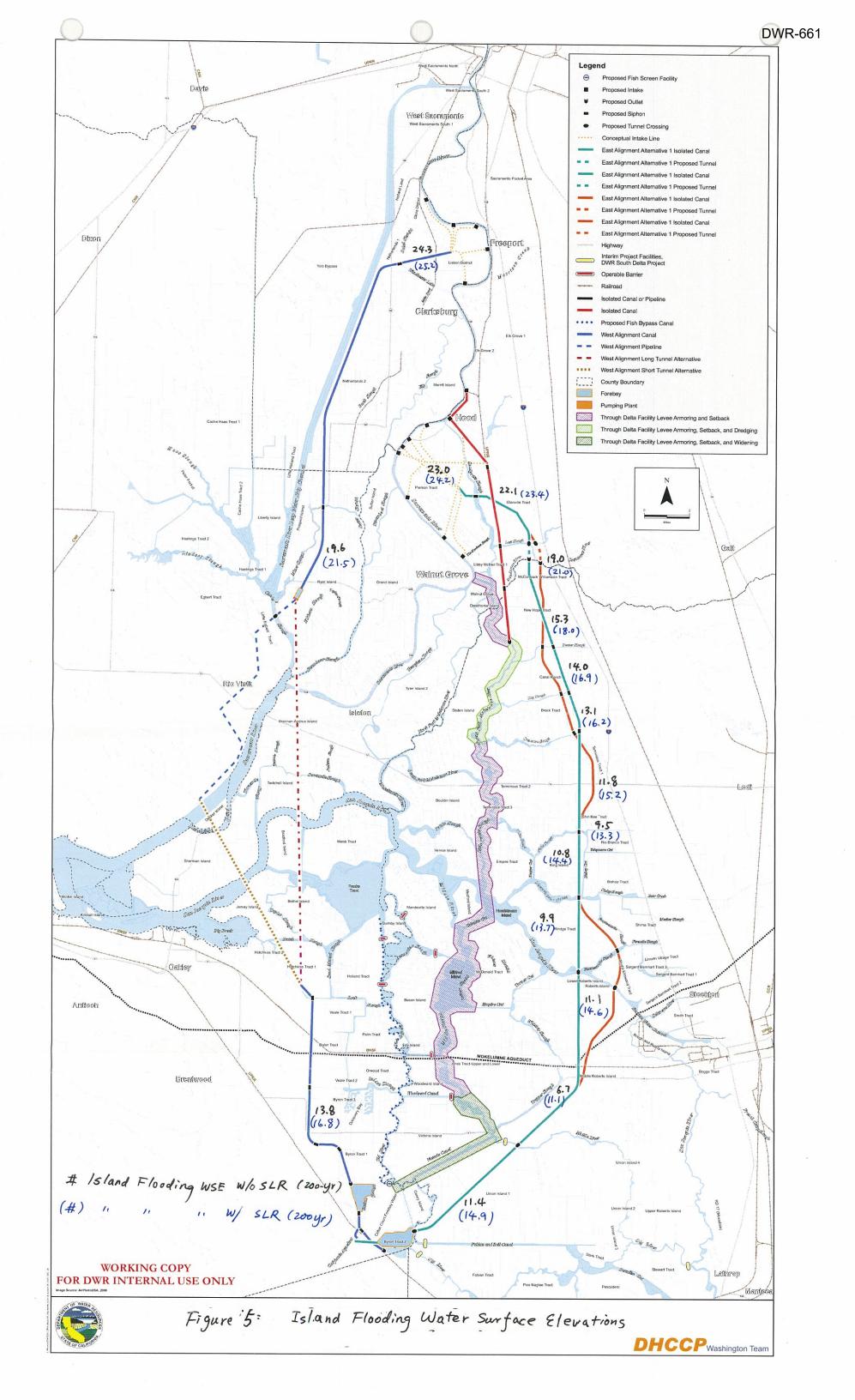
Station	Location	From	То	200-year Streams Flooding WSE	200-year Sac River Flooding WSE	200-year Floodplain Flooding WSE	200-year Island Flooding WSE	Tidal Flooding WSE	Wind- Wave Runup	Recommended Design Embankment Flood Protection*	Recommended Design River Crossing Flood Protection**	
-34+43	Saaramanta Diver	Debal Ol I	 Shire Section of the shire of the section of the sect	NAVD88 (ft)	NAVD88 (ft)	NAVD88 (ft)	NAVD88 (ft)	NAVD88 (ft)	(ft)	NAVD88 (ft)	NAVD88 (ft)	1
	Sacramento River		less and the second	36.9	31.7			11.1			39.9	1
	Lisbon District	Sacramento River	Winchester Lake			28.1	25.2		5.0	36.1		1
	Winchester Lake				2.4.2.5					States and Second		
	Netherlands	Winchester Lake	Miner Slough			18.6			5.0	26.6		1
	Miner Slough			20.6						and the second	23.6	1
	Ryer Island	Miner Slough	Sacramento River			17.4	21.5		5.0	29.5	2010	1
	Sacramento River				16.6			10.8			19.6	Т
		Sacramento River	Sevenmile Slough			13.7			5.0	21.7	10.0	1÷
	Twitchell Island	Sevenmile Slough	San Joaquin River			13.0			5.0	21.0		H
1600+00	San Joaquin River							10.6	0.0	21.0	12.0	-
1665+00	Bradford Island	San Joaquin River	False River					10.0	5.C	Contraction of the second	13.6	Tu
1730+00	False River			Contraction of the second	ALC: NOT THE REAL PROPERTY OF		No. of Concession, Name		5.0			T
	and the second se	False River	Dutch Slough			and a second second second			5.0			T.
	Dutch Slough	and the second second				and the second second			5.0			ĮΤι
		Dutch Slough	Contra Costa Canal									4
	Contra Costa Cana		Contra Costa Callal	13.6			Constant Constant Constant		5.0			
		Highway 4	Prop Tract Farebau	13.0		10.0					16.6	
2520+00			Bryon Tract Forebay			16.9			5.0	24.9		
Note:		Bryon Tract Forebay	Jones and Banks PP the highest elevation o	14.6			16.8		5.0	24.8		

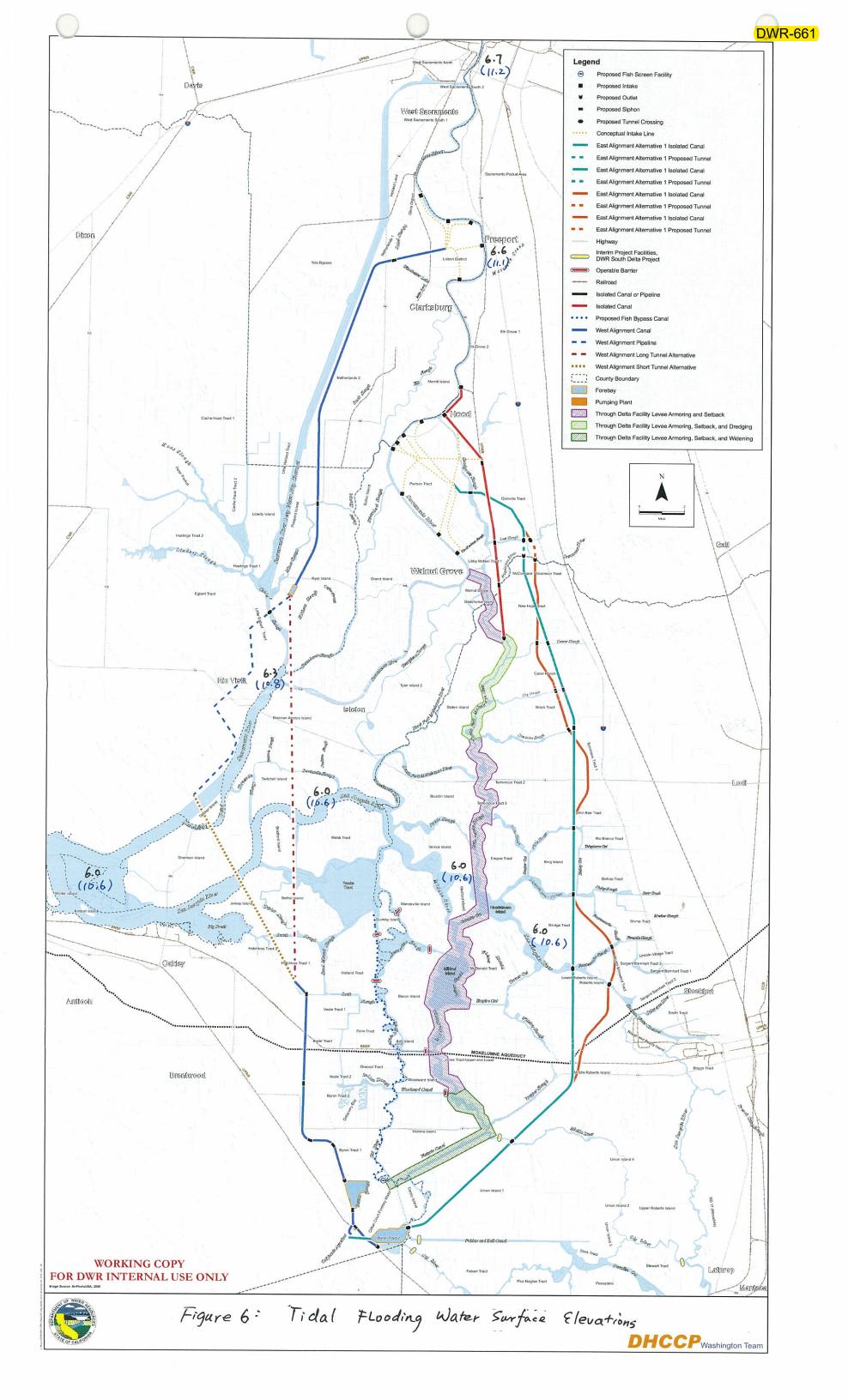

* Design Embankment Flood Protection is the highest elevation of floodplain, island and tidal flooding water surface elevation plus winc-wave runup and 3 feet of freeboard protection.

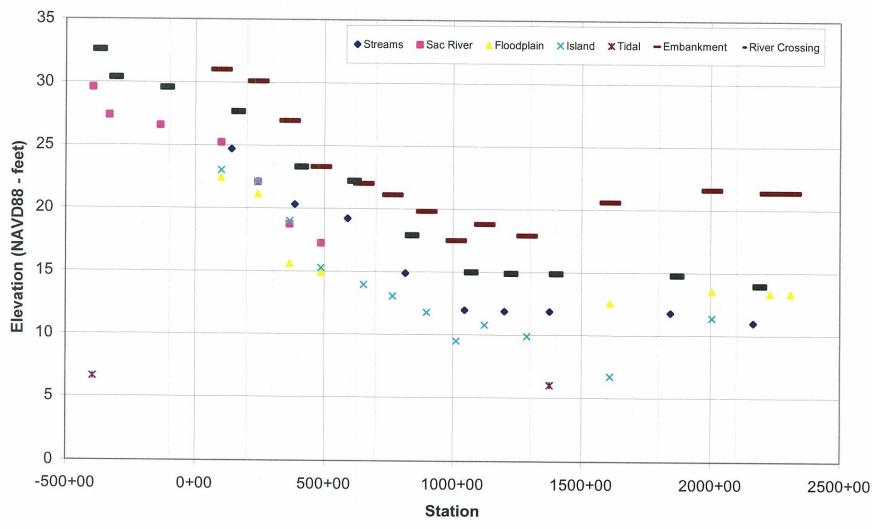

Station	From	То	200-year Streams Flooding WSE	200-year Sac River Flooding WSE	200-year Floodplain Flooding WSE	200-year Island Flooding WSE	Tidal Flooding WSE	Wind- Wave Runup	Recommended Design Embankment Flood Protection*	Recommended Design River Crossing Flood Protection**
335±00	Sacramento River at U		NAVD88 (ft)	NAVD88 (ft)	NAVD88 (ft)	NAVD88 (ft)	NAVD88 (ft)	(ft)	NAVD88 (ft)	NAVD88 (ft)
-245+00				25.9			11.1	2.5		28.9
		Snodgrass Slough		25.9	23.7	24.2		5.0	32.2	
	Snodgrass Slough		25.5							28.5
	Snodgrass Slough	Lost Slough		23.4	22.6	23.4		5.0	31.4	2010
65+00	Lost Slough			States Links		Section Section 2		Per contractor	0111	
85+00	Lost Slough	Mokelumne River		20.7	18.2	21.0		5.0	29.0	
105+00	Mokelumne River		22.0		The second second	2110		0.0	23.0	·
	Mokelumne River	Beaver Slough		19.6	17.7	18.0		5.0	26.0	
	Beaver Slough		21.2		In the second second	10.0	Sector Street Sector	0.0	20.0	24.2
	Beaver Slough	Sycamore Slough				16.9		5.0	24.9	24.2
	Sycamore Slough		17.7	A CONTRACTOR		1010	The state of the	0.0	24.5	20.7
820+00	Sycamore Slough	San Joaquin River						5.0		20.7
1060+00	San Joaquin River	Western States and States and	14.3	Sec. Production		ACCOUNTS OF STORY	10.6	5.0	No. of Concession, Name	17.0
1470+00	San Joaquin River	Victoria Canal			16.6		10.0	5.0	24.6	17.3
	Victoria Canal		15.2	Constant and the	10.0	and a station	Contraction of the local section of the local secti	5.0	24.6	10.0
	Victoria Canal	Old River	10.2		16.5	11.0		5.0	04.5	18.2
	Old River		14.6	CALL COMPANY	10.5	14.9		5.0	24.5	
	Clifton Court Forebay	Old River	14.0		40.5				A CONTRACTOR	17.6
2100100	Cinton Court rolebay				16.5			5.0	24.5	


Table 18. TDF: Recommended Flood Protection for Design Embankment and River Crossings With Sea Level Rise


Note: * Design Embankment Flood Protection is the highest elevation of floodplain, island and tidal flooding water surface elevation plus wind-wave runup and 3 feet of freeboard protection.


DWR-661





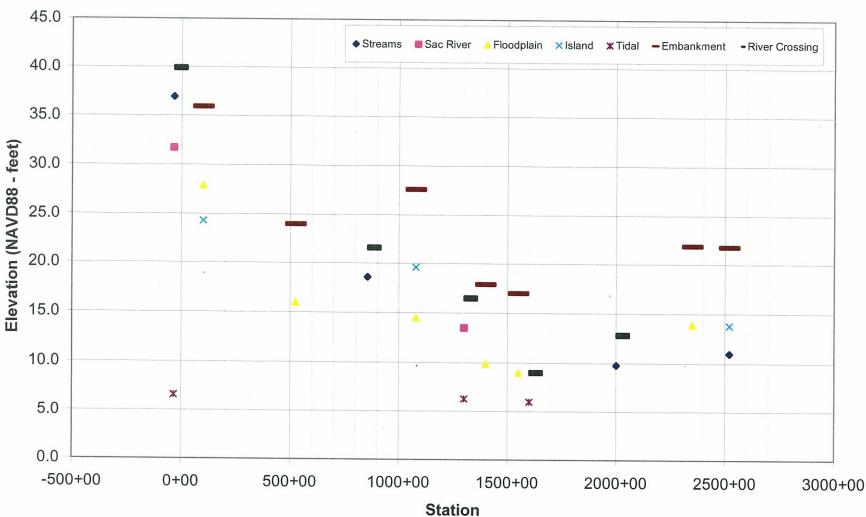


Figure 7. ICF-East: 200-Year Flood Elevations and Protection Elevations Without Sea Level Rise of 55 inches

Figure 8. ICF-West: 200-Year Flood Elevations and Protection Elevations Without Sea Level Rise of 55 inches

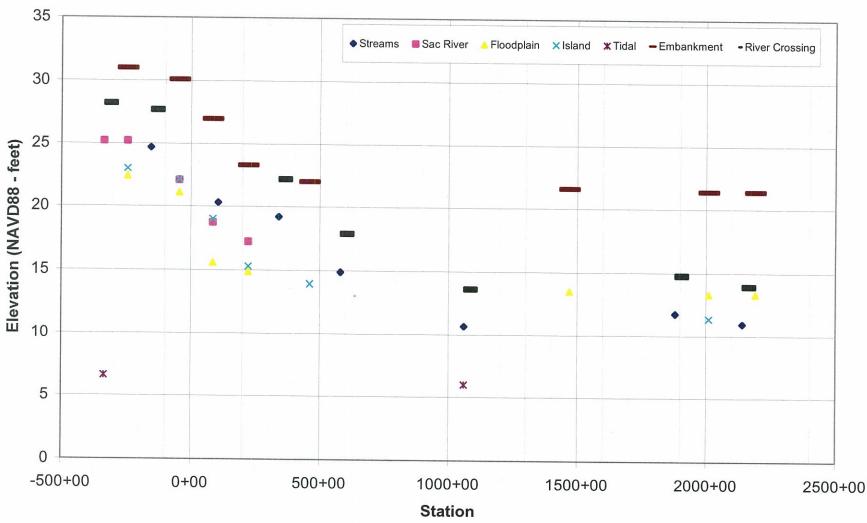


Figure 9. TDF: 200-Year Flood Elevations and Protection Elevations Without Sea Level Rise of 55 inches

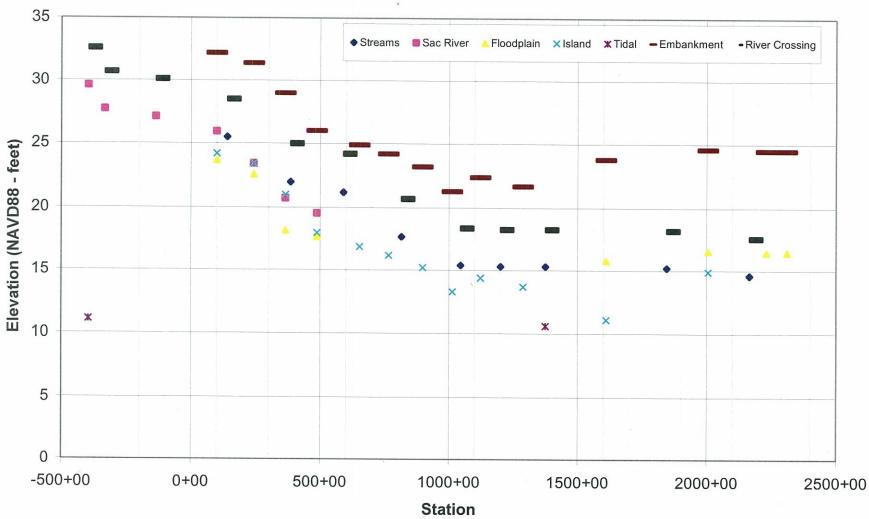


Figure 10. ICF-East: 200-Year Flood Elevations and Protection Elevations With Sea Level Rise of 55 inches

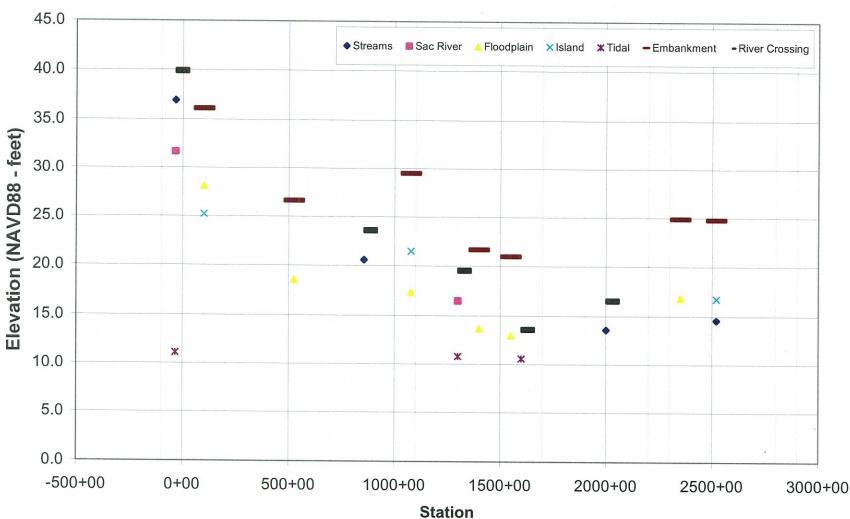


Figure 11. ICF-West: 200-Year Flood Elevations and Protection Elevations With Sea Level Rise of 55 inches

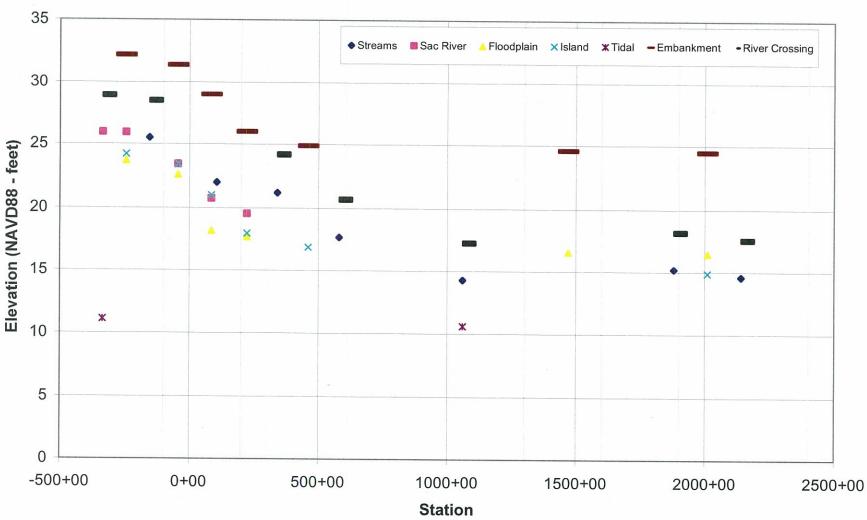


Figure 12. TDF: 200-Year Flood Elevations and Protection Elevations With Sea Level Rise of 55 inches