

State of California
The Resources Agency

Department of Water Resources

JAN 3 1 1983
GOV'T. LOGO. - CISTA
Save
Water

Delta Levees Investigation

ON THE COVER: Storm clouds hover about Mt. Diablo in the background of this high-water scene depicting the northwest portion of the then recently flooded Webb Tract bordered by Franks Tract and the San Joaquin River This photo was taken February 22, 1980, five weeks after the levee breaks on Holland and Webb Tracts and one day after the breaks on Prospect and Dead Horse Islands. During the period between February 16 and February 22, severe storms accompanied by 9-foot tides had occurred, and flood fight efforts were extended to several Delta islands Fortunately a break in the weather on February 21 prevented predicted tides of 10 feet from occurring and possibly kept other vulnerable islands form being flooded.

Department of Water Resources Bulletin 192-82

Delta Levees Investigation

December 1982

Huey D. Johnson Secretary for Resources Edmund G. Brown Jr. Governor

Ronald B. Robie Director

The Resources Agency

State of California

Department of Water Resources

		•	,	

FOREWORD

The condition of Delta levees continues to worsen. As recently as November 30, 1982, another inadequate levee failed. Such failures have occurred with increasing regularity in recent years. They occur during times of high flood water and even during the summer, as the gradually sinking Delta takes its toll on the fragile levees of yesteryear.

In 1976 the Legislature directed the Department to prepare a plan for the preservation of Sacramento-San Joaquin Delta levees. This report is in response to that directive -- Chapter 1302, Statutes of 1976. In a joint effort with the Corps of Engineers, technical plans for restoration of all or part of the Delta levee system have now been prepared. Virtually all that can be done in terms of such feasibility studies has been done.

Now is the time for <u>decision</u>. The most significant element in a decision on what action to take is <u>how much can we afford</u> and <u>who will pay?</u> These questions can only be answered by the Legislature, the local landowners, and the Congress. The potential cost is enormous.

The bare bones Corps of Engineers flood control program to restore 200 miles of levees protecting 19 islands has an estimated cost of \$450 million in today's prices. (Assuming a modest 6 percent inflation rate this will translate into \$1.5 billion in actual outlay.) Adding the planned recreation and wildlife enhancement would increase these costs by 16 to 20 percent, respectively.

A complete rehabilitation of the Delta levee system would cost a staggering \$3.4 billion at 6 percent inflation (\$930 million at today's prices). Adding recreation and wildlife enhancement would increase costs by about 10 percent.

To date there has been a limited willingness of local landowners, the direct beneficiaries of a levee improvement program, to pay. In addition, the Federal Government is proposing to increase the up-front cost sharing required from nonfederal sources, and has taken a greatly restrictive view of the federal responsibility for levee restoration.

There is a danger that taking a short-term view of Delta flooding problems will merely pass the tough issues on to the next generation. Short-run economic decisions may serve to subsidize private interests at the expense of the general public. The great challenge in the Delta is to find an equitable way of financing a very uncertain long-term future. The political process is the traditional arena for handling these kinds of issues and is the right forum for the next step in Delta deliberations.

These policy issues must be addressed today. In the event the Legislature determines that a major responsibility for levee restoration should fall upon the State, a bond issue or other form of capital financing must be developed and approved by the people.

Ronald B. Robie

Director

•		

CONTENTS

																						Page
FOREWORE)	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	iii
ORGANI ZA	ATIO	N	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	xiv
CALIFORM	AIA	WA]	rer	CO	MMIS	SSI	ON	•	•	•	•	•	•	•	•	•	•	•	•	•	•	xv
CONVERSI	CON	FAC	CTOF	RS	•	•	•	•	•	•	•	•	•	•	•	•	•	Ins	ide	Ba	ck	Cover
Chapter	1.	9	SUM	ARY	Z AJ	ND :	FIN	DIN	GS	•	•	•	•	•	•	•	•	•	•	•	•	1
• -			ngs						_		_											3
					•	•	•	•	•	•	•	•	•	•	•	٠	•	•	·	•	·	4
			cour		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
	Lev	re e	Pro	ble	ems	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	6
	Pla	ınn	lng	Pre	ece	pts	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	6
	Alt	erı	nati	Lve	Le	vee	Im	pro	ven	ent	P1	ans		•	•	•	•	•	•	•	•	10
		5	Syst	tem	P1:	an													•			11
			Mod				tem	ı P1	an	•	•	•		•	•	•	•	•	•	•	•	13
			Inci			-			•	•	•	•	•	•	•	•	•	•	•	•	•	15
	Cos	st S	Shar	ring	g a	nd	Fin	anc	ial	Re	qui	rem	ent	8	•	•	•	•	•	•	•	17
	No-	-Ac	tioi	n P	lan	A1	ter	nat	ive		•		•	•	•	•	•	•	•	•	•	19
	Po]	lic	y Ai	lte	rna	tiv	es	•	•	•	•	•	•	•	•	•	•	•	•	•	•	21
	Leg	gal	and	d I1	nst	itu	tio	nal	. Ma	tte	rs	•	•	•	•	•	•	•	•	•	•	22
Chapter	2.]	BACI	KGR	OUN	D A	ND	OBJ	ECT	IVE	s	•	•	•	•	•	•	•	•	•	•	25
•		e D	elta	a	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	26
	Bas	sis	fo	r Si	tud	у	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	28
	Sco	pe	of	St	udy	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	29
	Cor	ndu	ct (of :	Stu	dy	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	30
	Rej	por	t 0	bje	cti	ves		•	•	•		•	•	•	•	•	•	•	•	•	•	30

																				Page
Chapter	3.	LEVEE	PROE	BLEMS	3 .	•	•	•	•	•	•	•	•	•	•	•	•	•	•	35
	Recla	iming	the	Delt	a	•	•	•	•	•	•	•	•	•	•	•	•	•	•	35
	Soils		•		. ,	•	•	•	•	•	•	•	•	•	•	•	•	•	•	36
	F1ood	l Prote	ectio	n .	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	38
	Water	Trans	sport	atio	n a	and	Wa	ite	r Qı	ıa1:	i ty	•	•	•	•	•	•	•	•	39
		Potent									•	•	•	•	•	•	•	•	•	40
		Potent	tial	Long	z Te	ero	Pr	ob.	lems	3	•	•	•	•	•	•	•	•	•	41
		Future	e Wor	k .	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	42
	Recre	eation	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	42
	Fish	and W	11411	lfe	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	42
	Cause	es or 1	Poter	ntial	l Ca	aus	es	of	Lev	vee	Fa	ilu:	re	•	•	•	•	•	•	43
		Overto	ppir	ng .	•	•	•	•	•		•	•	•	•	•	•	•	•	•	43
		Struct	tural	l Fai	l Luı	re	• •	•	•	•	•	•	•	•	•	•	•	•	•	44
		Subsid	dence	. د		•	•	•	•	•		•		•	•	•	•	•	•	45
		Seepag	ge .	• • •				•					•							45
		Rodent	_						•	•		•								45
		Erosio				•	•	•	•	•				•	•					46
		Seism							•	•	•	•	•		•		•	•		46
		Levee	_				•	•	•	•	•	•	•	•	•	•	•	•	•	48
	Levee	Fail	ıre E	Evalu	ati	lon	Į.	•	•	•	•	•	•	•	•	•	•	•	•	50
Chapter	4.	PLANN	ING A	AND I	DES	I GN	CC)NS	LDEI	RAT	LON	S	•	•	•	•	•	•	•	53
	Proje	ect Pu	rpose	28	•		•	•	•	•	•	•	•		•	•	•	•	•	54
	Desig	gn Cons	sider	atio	ns			•	•	•		•	•	•	•	•	•	•	•	54
		Levee	0ve1	rtopp	oing	3	•	•		•	•	•	•	•	•	•	•	•	•	54
		Freebo	oard			•	•	•	•	•	•	•	•	•	•	•	•	•	•	5.5
		Land S	Subst	ldend	:e	•	•	•	•	•	•	•	•	•	•	•	•	•	•	55
		Seism	icity	7			•	•	•	•	•	•	•	•	•	•	•	•	•	57
		Typica	al Le	evee	Sec	cti	on	•	•	•	•	•	•	•	•	•	•	•	•	57
		Mater	lal E	Borro	w S	Sit	es	•	•	•	•	•	•		•	•	•	•	•	58
		A11-W	eathe	er Ro	ads	s f	or	F1	oodi	figl	nt .	Acc	ess	•	•	•	•	•	•	58
		Erosio								_	•	•	•			•				58
		Vegeta									•	•	_							60
												•	•	•	•	•	•	•	•	
		aptions										•	•	•	•	•	•	•	•	60
	Assur	uptions	s for	c Cos	st S	Sha	rin	ng A	lna]	Lys:	İs	•	•	•	•	•	•	•	•	63

																			Page
		Floor Recre					and	W11	dli	fe	Enh	anc	• еще	nt	Cos	ts	•	•	65 68
	Assu	mption	ns fo	or Fi	nan	cial	Ana	lys	is	•	•		•	•	•	•	•	•	68
	Lega	l and	Inst	titut	ion	al M	atte	rs	•	•	•	•		•	•	•	•	•	69
		Feder										•	•		•	•	•	•	69
		Land Need									•	•	•	•	.•	•	•	•	70 72
	Speci	ific A	Alte	cnati	ve (Conc	epts	Ev	alu	ate	d	•	•	•	•	•	•	•	73
Chapter	5.	SYSTE	EM PI	LAN		• •	•	•	•	•	•	•		•	•	•	•	•	75
	Flood	d Cont	rol	Feat	ure	s .	•	•	•	•	•	•	•	•	•	•	•	•	75
		Flood	l Cor	itrol	Co	sts	•	•	•	•	•	•	•	•	•	•	•	•	78
	Recre	eation	ı Fea	ture	:S		•	•	•	•	•	•	•	•	•	•	•	•	80
		Recre					•	•	•	•	•	•	•	•	•	•	•	•	80 80
	Fish	and k						Fe:	• atıı	reg	•	•	•	•	•	•	•	•	82
		Fish											_	·	•	•	•	•	83
		Fish										ts	•	•	•	•	•	•	83
	Econo	omics	of t	he S	yst	em, P	lan	•	•	•	•	•	•	•	•	•	•	•	84
		Const	ruct	ion	Sch	edu l	e an	d E	xpe	ndi	tur	es	•	•	•	•		•	88
		Proje				_		•			•	•	•	•	•	•	•	•	96
		Propo	sea	Cost	Sna	arın	g rr	ogra	am	•	•	•	•	•	•	•	•	•	97
Chapter	6.	MODIF	'IED	SYST	EM 1	PLAN	•	•	•	•	•	•	•	•	•	•	•	•	101
	Flood	l Cont	rol	Feat	ures	3 .	•	•	•	•	•	•	•	•	•	•	•	•	102
		Flood	l Cor	trol	Cos	sts	•	•	•	•	•	•	•	•	•	•	•	•	.103
	Recre	eation	Fea	ture	:S	• •	•	•	•	•	•	•	•	•	•	•	•	•	103
		Recre Recre				Lts	•	•		•	•	•	•	•	•	•	•	•	103 106
	Fish	and W	11d1	.ife	Enha	ancei	ment	Fea	atu	res		•	•	•	•	•	•	•	106
		Fish										•		•					106
		Fish	and	W11d	life	e Enl	hanc	emei	nt	Ben	efi	ts							108

																		Page
	Econ	omics of	the M	lodifi	ed :	Sys	tem	P1	an	•	•	•	•	•	•	•	•	108
		Constru	ction	Sched	u1e	an	d E	хре	ndi	tur	es	•		•	•	•	•	111
		Project	Finan	cing				•										118
		Propose								-	-	_	_	-	-			122
		1100000	u 0050	· Silar	6		0 62.		•	•	•	•	•	•	•	•	•	
Chapter	7.	INCREME	NTAL F	PLAN	•	•	•	•	•	•	•	•	•	•	•	•	•	123
	Floo	d Contro	1 Feat	ures	•	•	•	•	•	•	•	•	•	•	•	•	•	124
		Flood C	ontro1	Cost	s	•	•	•	•	•	•	•	•	•	•	•	•	126
	Recr	eation F	eature	es •	•	•	•	•	•	•	•	•	•	•	•	•	•	126
		Recreat	ton Co	ete							_			_				128
		Recreat			8	•	•	•		•	•	•	•	•	•	•	•	129
	Fish	and Wil	dlife	Enhan	cem	ent	Fe	atu	res	•	•	•	•	•	•	•	•	129
									_									
		Fish an									•	•	•	•	•	•	•	129
		Fish an	d Wild	llife	Enh	anc	eme	nt :	Ben	efi	ts	•	•	•	•	•	•	129
	Econ	omics of	the I	ncrem	ent.	al	Pla	n	•	•	•	•	•	•	•	•	•	130
		Constru	ction	Sched	ule	an	d E	кре	ndi	tur	es	•	•					133
		Project						-										138
		Propose		_							•	•	•	•	•	•	•	141
Chapter	8	NO-ACTI	ON PLA	N AT.T	FRN.	Δ Τ Τ Υ	VF											143
onapter			ON IM	uv ILLII			• •	•	•	•	•	•	•	•	•	•	•	
	Back	ground	• •	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	143
		State a	nd . Fed	eral a	Ass:	ist	ance	e P	rog	ram	8	•	•		•	•		143
		Agricul	tural	Inter	est:	s		•	•		•	•	•	•	•	•	•	145
		State a										ts						147
		Other I				•	•	•	•	•	•	•	•	•	•	•	•	149
	Alte	rnative	Future	s Wit	hou	t A	Ma	jor										
	Isla	nd Rehab	ilitat	ion P	roj	ect	•	•	•	•	•	•	•	•	•	•	•	149
	The !	Delta Wi	th Con	tinue	d R	est	ora	tio	n	•	•	•	•	•	•	•	•	150
	The	Delta Wi	thout	Conti	nue	d R	est	ora	tio	n	•	•	•	•	•	•	•	150
	Fact	ors Affe	cting	Recla	mat	ion	of	F1	ood	ed	Is1	and	8	•	•	•	•	152
	Cons	equences	of Pe	rmane	nt :	F1o	odi	ng	•	•	•	•	•	•	•	•	•	154
		Levee S	tahili	tv -	_	_	_	_	_	_	_	_	_	_		•		155
		Fish an		•	-			•	•	•	•	•					•	155
			** ± ± U		•	•	•	-	-	•	-	•	-	-	-	-	-	

																			Page
Chapter	9.	ADDIT	CIONAL	LON	G TI	ERM	PRO	BLE	MS	AND	OF	POR	TUN	ITI	ES	•	•	•	159
	Buffe	er Zor	nes		•	•	•	•	•	•	•	•	•	•	•	•	•	•	159
	Po1de	ers .			•	•	•	•	•	•	•	•	•	•	•	•	•	•	159
	Perma	anent	Flood	ing	•	•	•	•		•	•	•	•	•	•	•	•	•	162
			7																
A	^	DEAGA	A DA	TNTO	77D A 1	nt ox	. DD	o Bo	a en	00	am.	0774	D # 31	^					
Appendi	х А.		N ADM TER P			·	·	·	SED.	•	•	• SHA	· KIN	•	•	•	•	•	163
Appendi	х В.	ENABL	ING S	TATE	LEC	GISL	ATI	ON	•	•	•	•	•	•	•	•	•	•	195
Appendi	k C.		RTMENT																
			ARMY ORAFT											ILI	TY	REP	ORT		
		SACRA	MENTO	-SAN	JOA	AQUI	N D	ELT	A	•	•	•	•	•	•	•	•	•	203
	i																		
							Ed.		_										
								ure											
1			oded bonal O							ilu •	re •	or •	•	•	•	Fа	cin	g F	age 1
2	Delta	a Leve	es St	udy .	Area	ı .	•	•	•	•		•	•	•		•	•		2
3	Lower	Land	l Surf	ace 1	E1e	vat i	ons		19	78	Тор	ogr	aph	у.	•	•	•	•	5
4	Leve	e Reha	bilit	atio	n Me	tho	ds	•	•	•	•	•			•	•	•		9
5	Syste	em Pla	ın •		•	•	•	•	•	•	•	•	•	•	•	•	•		12
6	Modif	ied S	System	Pla	n .	•	•	•	•	•	•	•	•		•	•	•	•	14
7	Incre	ementa	ıl Pla	n .	•	•	•	•	•	•		•	•	•	•	•	•	•	16
8	Statu	itory	Delta			•	•	•	•	•	•	•	•	•		•			27
9	Delta	a Leve	ees		•	•	•		•	•	•	•	•	•	•	•	•		31
10	Thick	ness	of Or	gani	c So	oils		•	•	•	•	•	•	•	•	•	•	•	37
11	Earth	ıquake	Epic	ente	r aı	nd F	'au1	t M	ар	•	•	•	•	•		•	•		47
12			Frequent C	-							•	•	•	•	•	•	•	•	51

				Page
13	Estimated Frequency of Levee Failure in Year 2020	•	•	52
14	Allocation of Capital Costs, Traditional Cost Sharing .	•	•	66
15	Allocation of Capital Costs, Proposed Cost Sharing	•	•	67
16	System Plan	•	•	76
17	System Plan Levees	•	•	77
18	Recreation Facilities	•	•	81
19	Location of Fish and Wildlife Enhancement Areas	•	•	85
20	Modified System Plan	•	•	104
21	Modified System Plan Levees	•	•	105
22	Incremental Plan	•	•	125
23	Incremental Plan Levees	•	•	127
24	Potential for Delta Area to Remain Flooded	•	•	153
25	Projected Future Subsidence	•	•	161
	<u>Tables</u>			
1	Overview of Alternative Plans	•	•	10
2	Comparison of Costs and Benefits	•	•	11
3	Illustration of Possible Sharing of Capital Costs	•	•	17
4	Capital Cost	•	•	18
5	Estimated Bonding Requirement to Fund Non-Federal Costs	•	•	19
6	Islands and Improvements, Delta Study Area	•	•	. 32
7	Theoretical Depletion Times of Organic Soils	•	•	36
8	Delta Levee Failures, 1950 Through 1982	•	•	39
9	Statistical Frequency of Levee Failures per 100 Years .	•	•	50
10	Seismic Design Parameters, Sacramento-San Joaquin Delta		•	59
11	Synopsis of State Policy for Agricultural Lands and Flood Plain Management	•	•	70

	<u> </u>	age
12	System Plan, Summed Capital Costs and Operation and Maintenance Costs for Flood Control, by Island or Tract	79
13	Costs of Recreation Features, System Plan	82
14	Acreage and Costs of Fish and Wildlife Enhancement Features, System Plan	84
15	Economic Summary, System Plan	86
16	System Plan, Allocation of Summed Capital Costs, Traditional Cost Sharing	88
17	System Plan, Allocation of Escalated Summed Capital Costs, by Participant, Traditional Cost Sharing	89
18	Schedule of Total Project Costs, System Plan	90
19	Schedule of Total Project Costs, System Plan, 6 Percent Escalation Rate	91
20	Schedule of Total Project Costs, System Plan, 9 Percent Escalation Rate	92
21	Schedule of Non-Federal Costs, System Plan Traditional Cost Sharing	93
22	Schedule of Non-Federal Costs, System Plan Traditional Cost Sharing, 6 Percent Escalation Rate	94
23	Schedule of Non-Federal Costs, System Plan Traditional Cost Sharing, 9 Percent Escalation Rate	95
24	System Plan, Allocation of Repayment Obligation Traditional Cost Sharing	96
25	System Plan, Allocation of Island or Tract Repayment Obligation and Operation and Maintenance Costs, Traditional Cost Sharing, 6 Percent Escalation / 9 Percent Bond Interest	98
26	System Plan, Allocation of Island or Tract Repayment Obligation and Operation and Maintenance Costs, Traditional Cost Sharing, 9 Percent Escalation / 12 Percent Bond Interest	99
27	Modified System Plan, Summed Capital Costs and Operation and Maintenance Costs for Flood Control, by Island or Tract	107
28	Economic Summary, Modified System Plan	109
29	Modified System Plan, Allocation of Summed Capital Costs Traditional Cost Sharing	110

		Page
30	Modified System Plan, Allocation of Escalated Summed Capital Costs, by Participant, Traditional Cost Sharing	111
31	Schedule of Total Project Costs, Modified System Plan	113
32	Schedule of Total Project Costs, Modified System Plan 6 Percent Escalation Rate	114
33	Schedule of Total Project Costs, Modified System Plan 9 Percent Escalation Rate	115
34	Schedule of Non-Federal Costs, Modified System Plan Traditional Cost Sharing	116
35	Schedule of Non-Federal Costs, Modified System Plan Traditional Cost Sharing, 6 Percent Escalation Rate	117
36	Schedule of Non-Federal Costs, Modified System Plan Traditional Cost Sharing, 9 Percent Escalation Rate	118
37	Modified System Plan, Allocation of Repayment Obligation Traditional Cost Sharing	119
38	Modified System Plan, Allocation of Island or Tract Repayment Obligation and Operation and Maintenance Costs, Traditional Cost Sharing, 6 Percent Escalation/9 Percent Bond Interest.	120
39	Modified System Plan, Allocation of Island or Tract Repayment Obligation and Operation and Maintenance Costs, Traditional Cost Sharing, 9 Percent Escalation/12 Percent Bond Interest.	121
40	Incremental Plan, Summed Capital Costs and Operation and Maintenance Costs for Flood Control, by Island or Tract	128
41	Economic Summary, Incremental Plan	131
42	Incremental Plan, Allocation of Summed Capital Costs, Traditional Cost Sharing	132
43	Incremental Plan, Allocation of Escalated Summed Capital Costs, by Participant, Traditional Cost Sharing	132
44	Schedule of Total Project Costs, Incremental Plan	133
45	Schedule of Total Project Costs, Incremental Plan, 6 Percent Escalation Rate	134
46	Schedule of Total Project Costs, Incremental Plan, 9 Percent Escalation Rate	13 5
47	Schedule of Non-Federal Costs, Incremental Plan Traditional Cost Sharing	136

		-	rage
48	Schedule of Non-Federal Costs, Incremental Plan, Traditional Cost Sharing, 6 Percent Escalation Rate	•	137
49	Schedule of Non-Federal Costs, Incremental Plan, Traditional Cost Sharing, 9 Percent Escalation Rate	•	138
50	Incremental Plan, Allocation of Repayment Obligation Traditional Cost Sharing	•	139
51	Incremental Plan, Allocation of Island or Tract Repayment Obligation and Operation and Maintenance Costs, Traditional Cost Sharing, 6 Percent Escalation/9 Percent Bond Interest	•	140
52	Incremental Plan, Allocation of Island or Tract Repayment Obligation and Operation and Maintenance Costs, Traditional Cost Sharing, 9 Percent Escalation/12 Percent Bond Interest	•	140
53	Delta Islands Valuation Estimate, July 1980	•	147
54	Average Annual Without-Project Damages, Without Peripheral Canal	•	151
55	Potential for Delta Areas to Remain Flooded	•	154
56	Projected Future Maximum Subsidence	•	160

Capies af this bulletin at \$5.00 each may be ordered from:
State of California
DEPARTMENT OF WATER RESOURCES
P.O. 80x 388
Sacromento, Colifornia 95802

Make checks payable to STATE OF CALIFORNIA California residents add sales tax.

State of California EDMUND G. BROWN JR., GOVERNOR

The Resources Agency
HUEY D. JOHNSON, Secretary for Resources

Department of Water Resources RONALD B. ROBIE, Director

CHARLES R. SHOEMAKER Deputy Director

Lee Carter

Don Finlayson

M. CATHARINE BERGREN
Assistant Director

ROBERT W. JAMES
Deputy Director

MARY ANNE MARK
Deputy Director

GERALD H. MERAL Deputy Director

This bulletin was prepared under the guidance of a task force comprised of a Steering Committee and a Work Group

Steering Committee

John McClurg, Chair

Wayne MacRostie Larry Mullnix Robert Potter Robert Whiting

Work Group

John McClurg, Chair Russell Franson Ray Hoagland

Bruce Raymond Maurice Roos

and is based on work done by the Central District

Wayne MacRostie, District Chief Kenneth Woodward, Chief, Planning Office Lee Carter, Chief, Waterways Management Branch

Program Management

Russell Franson

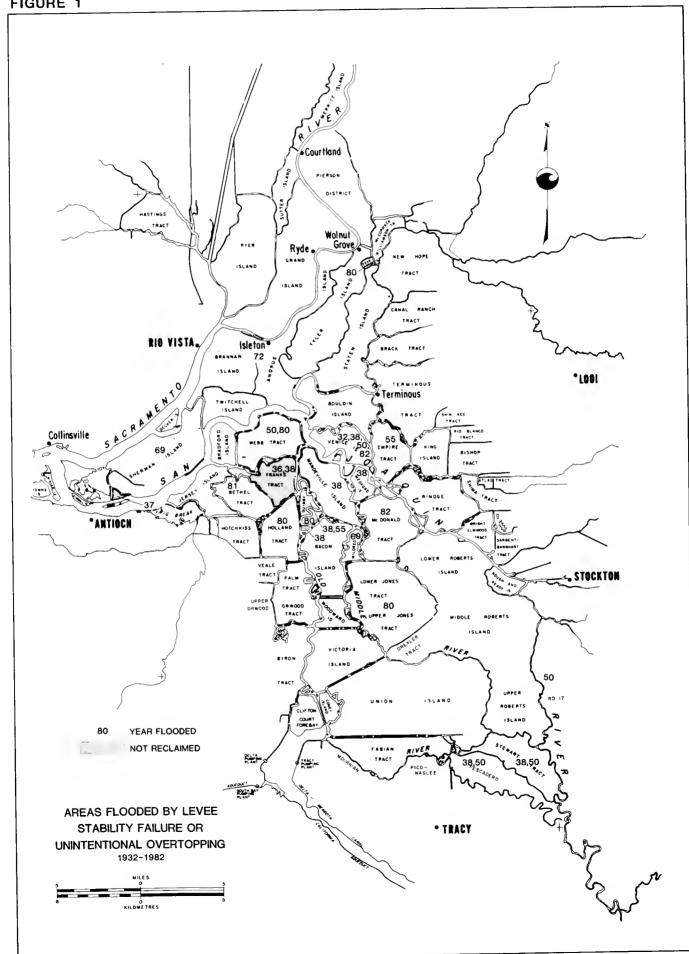
Walter Terry

Engineering

Carroll Evans Charles Kearney	Ed Lawler Dave Lawson	Robert Manning Robert Newton	Steve Peterson Richard Wada
Economics	Land	Appraisal	Geology
Ray Hoagland Ron Landingham	Richa	rd Markee	Carl Hauge George Newmarch
	Drafting, Edi	ting, and Typing	

Sylvia Blake	Vera Doherty	Elaine Jennings	Marilyn Manning
Pamela Casselman	Harry Inouye	Cathy Korff	Brent Welch

State of California Department of Water Resources CALIFORNIA WATER COMMISSION


SCOTT E. FRANKLIN, Chairperson, Newhall ALEXANDRA C. STILLMAN, Vice Chairperson, Stockton

Thomas K. Beard	•	•	•	•	•	•	•	•	•	•	•	•	•	•	. Stocktor
Roy E. Dodson	•	•	•	•	•	•	•	•	•	•	•	•	•	•	. San Diego
Daniel M. Dooley .	•	•	•	•	•	•	•	•	•	•	•	•	•	•	Visalia
Harrison C. Dunning	•	•	•	•	•	•	•	•	•	•	•	•	•	•	Davis
Merrill R. Goodall .	•	•	•	•	•	•	•	•	•	•	•	•	•	•	. Claremont
Donald L. Hayashi .	•	•	•	•	•	•	•	•	•	•	•	•	•	Sa	n Francisco
Charlene H. Orszag .	•	•	•			•								• S	herman Oaks

Orville L. Abbott Executive Officer and Chief Engineer

Tom Y. Fujimoto
Assistant Executive Officer

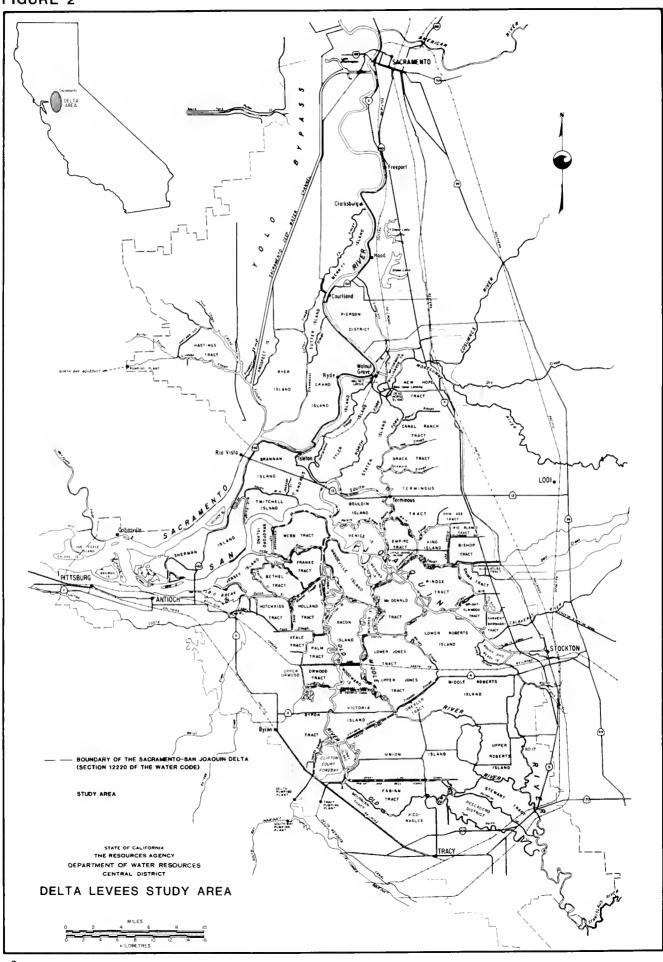
The California Water Commission serves as a policy advisory body to the Director of Water Resources on all California water resources matters. The nine-member citizen commission provides a water resources forum for the people of the State, acts as a liaison between the legislative and executive branches of State Government, and coordinates Federal, State, and local water resources efforts.

Chapter 1. SUMMARY AND FINDINGS

On August 23, 1982, as technical studies for this bulletin were nearing completion, the levee protecting McDonald Island collapsed, forcing evacuation of more than 100 people and flooding 6,100 acres of farm land. While there was no loss of life, three people -- one a 9-year old girl -- had to swim for their lives after an 8-foot wall of water gushed through the break, forcing them from their mobile home.* Scores of other people, nearly all farm workers, took refuge on roofs of buildings. Damage was estimated at \$7.8 million and the cost to repair the levee and dewater the island was estimated at \$13.5 million. On November 30, 1982, just prior to completion of this bulletin, the levee on Venice Island also failed, flooding 3,200 acres of agricultural land.

These failures are not rare occurrences. Maintaining the fragile Delta levees has been a continuing problem since they were first built to reclaim the fertile Delta soils so they could be farmed. Since original reclamation, each of the 70 islands and tracts in the statutory Delta has been flooded at least once. Even since 1930 some islands have flooded several times, as shown in Figure 1. About 100 failures have occurred since the early 1890s. With only three exceptions -- Big Break, Franks Tract, and Lower Sherman Island -- flooded islands have been restored. In some cases, the cost of repairs exceeded the appraised value of the island. Whether restoration of all flooded islands will continue is unknown.

There are two general designations of levees in the Delta. Where the


Sacramento and San Joaquin Rivers enter the Delta, the levees along those rivers have been either built, rebuilt, or adopted as federal flood control project levees. These "project" levees are maintained to U. S. Army Corps of Engineers standards, and generally provide adequate protection now. The levees in the central Delta are mostly "nonproject" levees, constructed and maintained over a long period by private interests or local reclamation districts.

Since 1950, floodings have occurred on 17 islands and tracts, mostly involving nonproject levees in the central Delta. Two islands flooded twice during that period. Twice as many floodings were caused by structural failure as by overtopping from the combination of high tides, winds and floodflows. As on McDonald Island, these structural failures were caused by the unstable nature of the organic Delta soils that comprise the levee and its foundation, and the accompanying subsidence of island land surfaces.

This bulletin examines the problems, feasibility, and costs of upgrading the 537 miles of nonproject levees protecting 56 islands and tracts** in the Delta study area (Figure 2) as a means of reducing the frequency of flooding and attendant damage, and preserving the physical configuration of the Delta — a formal legislative objective as spelled out in the California Water Code. As an illustration of the magnitudes of this task, consider that, placed end-to-end, these nonproject levees would stretch the airline distance from Oroville to Mexico.

^{*} Sacramento Bee, August 24, 1982.

^{**} There are 60 named islands and tracts in the study area, but two do not have levees and two (Reclamation District 17 and Stewart Tract) have only project levees.

Findings

- * The complexity of the problems and the uncertainties inherent in all levee rehabilitation plans examined should not be minimized.
- * Continued subsidence of Delta islands suggests that the objective of continuing the present configuration of the Delta indefinitely is problematical.
- * With or without a major reconstruction project, a long run view suggests that some permanent flooding may be inevitable.
- * The economics of the Delta suggest that without substantial federal assistance in either reconstructing levees or reclaiming flooded islands, the efforts of other public and private parties with an interest in the Delta will not preserve the Delta.
- * Physical measures are available that will decrease the frequency of Delta levee failures, but future levee failures are inevitable.
- * The potential damage that would be incurred through loss of the present Delta is high, but the costs of preserving the entire Delta in its present configuration for 50 years is also high (\$3.4 billion assuming a 6 percent inflation rate). Adding planned recreation and wildlife enhancement features would increase the cost to about \$3.7 billion. Finding an equitable and acceptable cost sharing formula and financing are heretofore insurmountable hurdles that must be overcome if a program to upgrade Delta levees is to be implemented.
- *The cost of saving the Delta exceeds the willingness of agricultural landowners, the primary beneficiaries, to pay. But, there are other project beneficiaries, including urban landowners, land oriented recreationists, boaters, State and Federal water projects, water utilities, railroads, oil and gas companies, State and county roads and the fishing and hunting industry who utilize the Delta in one way or another.
- * It is not completely clear, however, that benefits to all of these beneficiaries in combination can justify rehabilitation of levees on all Delta islands. Many of the beneficiaries have alternatives for protecting their interests that do not require islands to remain unflooded, and these alternatives limit their financial interests in a levee improvement program.
- Because of the high cost of an uncertainty surrounding upgrading levees of individual islands, the Legislature may determine that a less costly levee restoration program involving fewer islands or the use of polders is appropriate for the Delta study area
- Plans that would allow some Delta islands to remain flooded after a levee failure could increase the maintenance cost, and possibly the failure rate, of the remaining levees because of increased wind-driven wave erosion and increased seepage from adjacent flooded islands.
- "The voters' rejection of Proposition 9, which would have given the go-ahead for construction of the Peripheral Canal, adds one more complication -- the problem of a Delta water transfer facility should be solved and coordinated with a solution to the Delta levee problems.
- If the State is to provide financial assistance to a Delta levee improvement program, legislation to limit State liability must be enacted.
- * If the State is to participate in a Delta levee improvement program, public recreation facilities, mitigation of fish and wildlife losses, and wildlife enhancement features must be included.
- With or without levee upgrading, the Delta islands are below sea level and will remain vulnerable to flooding. Proper use of Delta flood plains requires land use regulations that are cognizant of conditions that could result in loss of life or damage to public and private structures, and restrain urban encroachment on agricultural lands.

Background

The statutory Delta (Water Code Section 12220) encompasses 550,000 acres of prime agricultural land, about half of which is in the central Delta. Industrial areas already exist or have been zoned — mostly around the outer fringes of the Delta — in each of five Delta counties. Twelve of the 60 islands and tracts in the study area have towns or other urban developments.

Delta study area waterways meander among the 60 islands and tracts, many of which have subsided over the years so that some are now between 15 and 20 feet below sea level (see Figure 3). Continued oxidation and other losses of peat soils could theoretically result in 25 feet of additional subsidence in the western and central Delta. These lowland areas are protected from high tides and floodflows by the extensive system of levees. Delta farms on the islands are irrigated with water drawn from these waterways and from subirrigation via rising ground water. The Delta levees, adjacent farm lands, and about 800 small nonleveed "tule" islands provide habitat for numerous wildlife species. The estuarine waterways provide a unique habitat for California's largest and most diverse fishery, and they have become one of California's major recreation areas. with fishing and boating being the major attractions.

The Delta waterways also serve as conduits to transport water of the federal Central Valley Project and the California State Water Project across the Delta for export to water deficient areas to the west and south of the Delta. Under State law, Delta water requirements for all reasonable beneficial purposes must be met before

any water can be exported by these two projects. Because the Delta is subject to ocean salinity intrusion by tidal action through San Francisco Bay, these projects must make reservoir releases to augment Delta outflow during low flow periods to repel the salt water so as to protect the quality of local and export water supplies. As a condition of water rights permits, the State Water Resources Control Board has set salinity standards for many Delta locations which must be met by operation of the State Water Project and the federal Central Valley Project.

The future of the Delta depends heavily on the extent to which the levees are maintained. The California Legislature, in 1973, declared that the physical characteristics of the Delta should be maintained essentially in their present form.

In 1976, the Legislature adopted the conceptual plan for improving nonproject levees, presented in Bulletin 192,* at an estimated capital cost of \$128 million (1974 prices). In this same legislation, the Department of Water Resources was requested to study and make recommendations concerning construction, cost sharing, land use, zoning, flood control and related recreation, fish and wildlife habitat, and esthetic values. Legislature also directed the Executive Branch to request the Corps of Engineers to resume its earlier investigation for improving Delta levees in cooperation with affected State and local agencies.

These actions led to a cooperative study by the Department and the Corps of Engineers that forms the basis for this bulletin. The Corps has prepared a separate draft report, which contains detailed technical data and analyses and

^{*} Department of Water Resources Bulletin 192 "Plan for Improvement of the Delta Levees", May 1975.

recommends the extent of federal interest in upgrading Delta levees.

Levee Problems

Delta soils are typically organic or mineral, or a combination of both. In the heart of the Delta, many of the levees were constructed of (or founded on) these peaty, organic soils. While these soils are well suited for growing crops, they are not well suited for construction of earthen embankments. These peaty soils have low density, are highly compressible, and are structurally weak. They are also susceptible to oxidation, wind erosion, and burning, which has led to continual subsidence of the levees and the island land surfaces.

As the land surface of islands with peaty soils subside, the water pressure on (and seepage through or under) the levees increases, frequently resulting in levee instability and failure.

Waterside slopes of levees are subject to erosion from wind-generated waves, boat wakes, and flowing water of high velocity. Under some conditions, certain types of vegetation on levee slopes can help slow erosion; under other conditions, continual wave action at normal water surfaces undercuts vegetation at the waterline, resulting in progressive caving that eats into the levees.

Maintenance of nonproject levees is the responsibility of individual districts and landowners for each island and tract, and does not conform to uniform standards. By comparison with Corps of Engineers standards for project levees, maintenance on nonproject levees is not adequate.

In a special inspection of nonproject levees around 52 islands in October 1980, the Department of Water Resources rated 4 "very poor", 28 "poor", and 20 "fair". More than 500 problem sites

were identified. Dense stands of bamboo, blackberry vines, etc., on about 25 percent of the levees precluded visual inspection, making it impossible to detect and repair erosion, caving, or rodent burrows that weaken the levees.

In the future if levees that fail are not repaired, large areas in the Delta could become open water surfaces like Franks Tract, Big Break, and Lower Sherman Island. In these cases, portions of the levees have mostly washed away, causing the flooded islands to become part of the open water surface of the estuary. Much of the destruction of these former levees was caused by wind-wave action on the unprotected interior levee slopes.

Flooded islands could provide increased fishery habitat and water surface for recreation.

There could also be other impacts. These, depending on the islands that flooded, include:

- o Increased erosion from wind-driven waves and increased seepage on adjacent islands.
- Loss of agricultural production and farmsteads.
- ° Loss of wildlife food and habitat.
- ° On some islands, damage to urban settlements.
- ° Disruption of highways, railroads, and utilities.
- Loss of fresh water by increased evaporation (and in some cases require additional Delta outflow to repel salt water intrusion).

Planning Precepts

Levee rehabilitation plans discussed in this bulletin are mainly based on the premise that the Delta is to be preserved in its present configuration by improving and maintaining existing Delta levees in response to legislative policy.

Although not evaluated in this bulletin. in previous investigations, the Department has considered enclosing groups of islands to form large polders. Polder levees would reduce the length of levee needed to protect a group of islands, and would also exclude tidal action and floodflows from the closed-off channels. Because there is concern that the separate islands of the Delta cannot be maintained in perpetuity, the Legislature may modify its policy of maintaining the present configuration over the long term. With this in mind and with careful planning, polders could perhaps be phased in over a period of 30 to 50 years.

During this coordinated study, planning considerations have focused on the degree of protection to be sought and the physical approach for improving the levees. It was concluded that in most cases levees should be high enough to protect against overtopping by flood stages with an average recurrence interval of once in 300 years. In addition, the minimum freeboard to withstand wind-generated waves and contingency factors like higher than anticipated tides should be 1.5 feet for levees protecting agricultural land, and 3 feet for levees protecting urban areas.

Because of the Delta's inherently poor foundation conditions, however, this should not be interpreted as reducing the levee failure rate to once-in-300 years. While levee rehabilitation will greatly reduce the frequency of flooding below that of the no-action alternative, the below-sea-level islands will always remain vulnerable to flooding.

A typical improved levee section, as shown in Figure 4, would have a 16-foot crown width with a waterside slope of 1 vertical on 2 horizontal, and a landside slope of 1 vertical on 3 horizontal. Landside berms would be constructed where necessary to help provide stability for the weak, highly compressible peat foundations. Slopes on the landside berms may have to be as flat as 1 vertical on 15 horizontal. In the deep peat areas, staged construction, consisting of periodic raising of the levee crowns, backslope, and landside berm, would be required to compensate for continuing subsidence.

In some places, construction of levees on a new alignment (levee setback) was assumed as the method to protect areas of high environmental value or to avoid reaches of unstable levee. These levees would have a 12-foot crown width and slopes of 1 vertical on 2 horizontal on both the landside and waterside. On Bethel Island and Hotchkiss Tract, flood walls (sheet piles driven at the waterside levee crown) would be used to avoid extensive relocation of houses and other improvements that have encroached on existing levees.

Because of a general scarcity of suitable construction material within the Delta, it was assumed that a significant portion of the 55 million cubic yards of embankment material required to rehabilitate the nonproject levees would be imported from sources within 50 miles of the Delta.

A levee improvement project would substantially reduce the frequency of levee failures. Less frequent failures would, in turn, result in benefits due to reduction in flood damage, salinity impairment of water supplies, and floodfight costs.

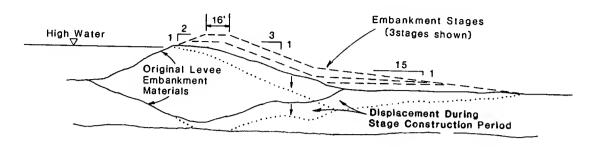
The Corps of Engineers estimated the economics of the alternative projects by comparing benefits and costs (expressed in terms of prices prevailing in 1981) over a 50-year period of analysis and using a discount rate of 7-5/8 percent. This analysis was based on the difference in damage, costs, and economic output with and without the levee

improvement project. The withoutproject conditions* used by the
Corps of Engineers assumed that the
Peripheral Canal would be in place and
that flooded islands would continue to
be restored after a levee break, just as
they have been after 97 of the last
100 island floodings. (The fate of
Venice Island, which flooded as a result
of levee failure on November 30, 1982,
had not been decided in time for
inclusion in this bulletin.)

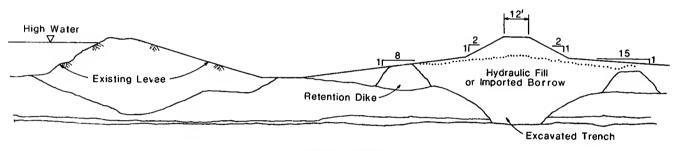
Because of voter rejection of Proposition 9 in June 1982, the Department of Water Resources modified the Corps of Engineers' analysis to illustrate costs and benefits for this bulletin, assuming that the Peripheral Canal would not be built. (The effects of other new facilities for conveying water across the Delta were not considered in this study. However, it is recognized that the Delta levee program and a Delta water transport project will need to be coordinated.)

The Department retained the Corps' "continued island restoration" assumption. For illustrating possible State and local cost sharing of non-federal costs, however, the Department also found it necessary to modify the Corps' estimates of water quality and supply benefits to more nearly reflect the impact on affected water supplies. The modifications included the recognition that water lost in the short term while the island was flooded would be recovered when the island was pumped out, and that under State Water Resources Control Board Decision 1485, the salt water would often be farther west of the Delta for a summer levee break than it was in 1972 when Andrus and Brannan Islands flooded. (The Andrus-Brannan flood was used by the

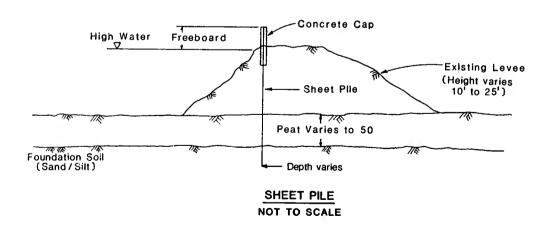
Corps as a bases for computing water quality - water supply benefits.)


Flood control costs and benefits are sensitive to the assumptions regarding the without-project conditions. These assumptions affect the degree of economic justification for the alternative plans considered, including the number of islands that would be included under two of the plans. In recognition of this fact, the Corps' draft report states that:

"The ultimate number of islands and tracts which would receive (federal) flood control improvements would be dependent on the results of post-authorization studies including reevaluation of the without project conditions."


This joint study also assumed that land use management would be a local obligation and responsibility to prevent project—induced urban development on agricultural lands within the project area. Future development on islands that already have urban developments would have to be consistent with city and county General Plans and be limited to areas incapable of sustained economic agricultural production.

Another premise was that local entities would hold the United States free and harmless from any damages arising from construction and operation of a federal levee improvement project. An additional premise was that the Legislature would enact laws to limit State liability to prevent a project beneficiary from recovering damages from the State as a result of future levee failures simply because the State had agreed to participate in a levee improvement project to reduce the ever-increasing risk of levee failure in the Delta.


^{*} The ramifications of other without- project possibilities are discussed later in this chapter and in Chapters 4 through 8.

STAGE CONSTRUCTION NOT TO SCALE

NOT TO SCALE

LEVEE REHABILITATION METHODS

Alternative Levee Improvement Plans

Specific flood control plans were formulated under one of two concepts:

- That the Delta is a system of interdependent islands and tracts.
- That each Delta island and tract is essentially independent of all other islands and tracts.

Under the first concept, the Delta and the economics of a levee improvement plan are considered as a single system because the Delta is characterized as having many interrelated problems that are largely inseparable. Under the second concept, the individual characteristics and problems of each island and tract are considered separately in determining economic justification of a levee improvement project.

Application of the first concept resulted in the System and Modified

Conversion of Islands and Tracts to Wildlife Management Areas

Study Area Totals

Islands and Tracts Already
Protected by Project Levees**

System Plans, and the second concept in the Incremental Plan. In addition to levee improvement, each of these three plans includes public recreation and wildlife enhancement features.

Table 1 presents an overview of the treatment of the islands, tracts, and levees in the study area under each of the three alternative levee improvement plans. Table 2 is a summary comparison of costs and benefits at 1981 price levels. It includes data with and without the Peripheral Canal to facilitate tracking with the Corps' draft report. Because of inflation, these cost estimates are much less than the probable costs at the time they would be incurred if Congress and the California Legislature authorize implementation of a levee improvement plan. For this reason, Chapters 5, 6, and 7 also contain tables of escalated costs. Because the rate of inflation cannot be predicted with any degree of certainty, these escalated costs were made for both 6 percent and 9 percent rates. A brief

20

Λ

537

2

60

0

537

Table 1

	System Number of	System Plan		System Plan	Increme Number of	ntal Plan
Action	Islands and Tracts Affected	Miles of Nonproject Levees	Number of Islands and Tracts Affected	Miles of Nonproject Levees	Islands and Tracts Affected	Miles of Nonproject Levees
Extensive Upgrading of Nonproject Levees	47	444	41	400	19	205
Minimum Improvement of Nonproject Levees	6	73	0	0	0	0
No Upgrading of Nonproject Levees	0	0	12	117	34	312

20

0

537

OVERVIEW OF ALTERNATIVE PLANS*

2

60

Assuming no Peripheral Canal. Under the Corps of Engineers assumption of the Peripheral Canal in place, only 36 islands and tracts under the Modified System Plan and 15 islands and tracts under the Incremental Plan would have nonproject levees upgraded. Thus, islands and tracts with levees that would not be upgraded would be increased to 17 and 38, respectively.
 ** The draft Corps report excludes Reclamation District 17; this bulletin excludes both Reclamation District 17 and Stewart Tract because both are protected exclusively by project levees.

COMPARISON OF COSTS AND BENEFITS

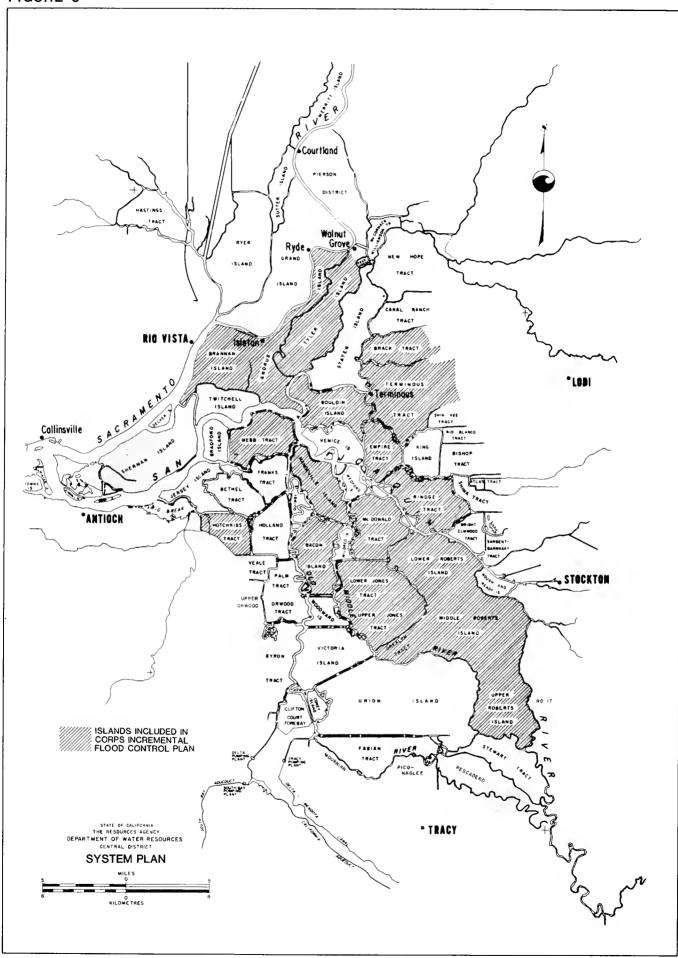
(In Millions of Dollars at 1981 Prices)

	Wi	th Peripheral Ca	nal	Without Peripheral Canal			
Item	System Plan	Modified System Plan	Incremental Plan	System Plan ¹	Modified System Plan	Incremental Plan	
CAPITAL COST							
Flood Control ² Recreation Wildlife Enhancement	910 40 <u>57</u>	608 40 57	326 40 <u>49</u>	931 40 <u>57</u>	732 40 <u>57</u>	448 40 49	
Totals	1,007	705	415	1,028	829	537	
ANNUAL COSTS ³							
Flood Control Recreation Wildlife Enhancement	60.9 4.0 3.9	39.8 4.0 3.9	20.9 4.0 3.2	61.0 4.0 3.9	48.8 4.0 3.9	28.6 4.0 3.2	
Totals	68.8	47.7	28.1	68.9	56.7	35.8	
ANNUAL BENEFITS							
Flood Control ⁴ Recreation Wildlife Enhancement Totals	51.9 13.1 8.1 73.1	43.9 13.1 8.1 65.1	32.6 13.1 8.1	62.1 13.1 8.1 83.3	57.1 13.1 8.1 78.3	46.1 13.1 8.1 67.3	
BENEFIT-COST RATIOS							
Flood Control Recreation Wildlife Enhancement	0.9:1 3.3:1 2.1:1	1.1:1 3.3:1 2.1:1	1.6:1 3.3:1 2.5:1	1.0:1 3.3:1 2.1:1	1.2:1 3.3:1 2.1:1	1.6:1 3.3:1 2.5:1	
Total Project	1.1:1	1.4:1	1.9:1	1.2:1	1.4:1	1.9:1	

Excludes Stewart Tract because the tract is already protected by project levees. 2 Includes both initial and future stage construction cost plus fish and wildlife mitigation costs.

3 Includes operation and maintenance costs plus amortization of capital costs at 7-5/8 percent over 50 years.

Benefits include reduction of inundation damage, floodfight expenditures, and salinity impairment of water supplies due to less frequent levee failures, as estimated by the U.S. Army Corps of Engineers.


summary of these levee improvement alternatives and the no-action plan alternatives is presented in the following sections.

System Plan

Of the alternative plans considered, the System Plan is the most extensive and most nearly meets objective of preserving the Delta in its present configuration.

Under the System Plan, depicted by the shaded area on Figure 5, 47 islands and

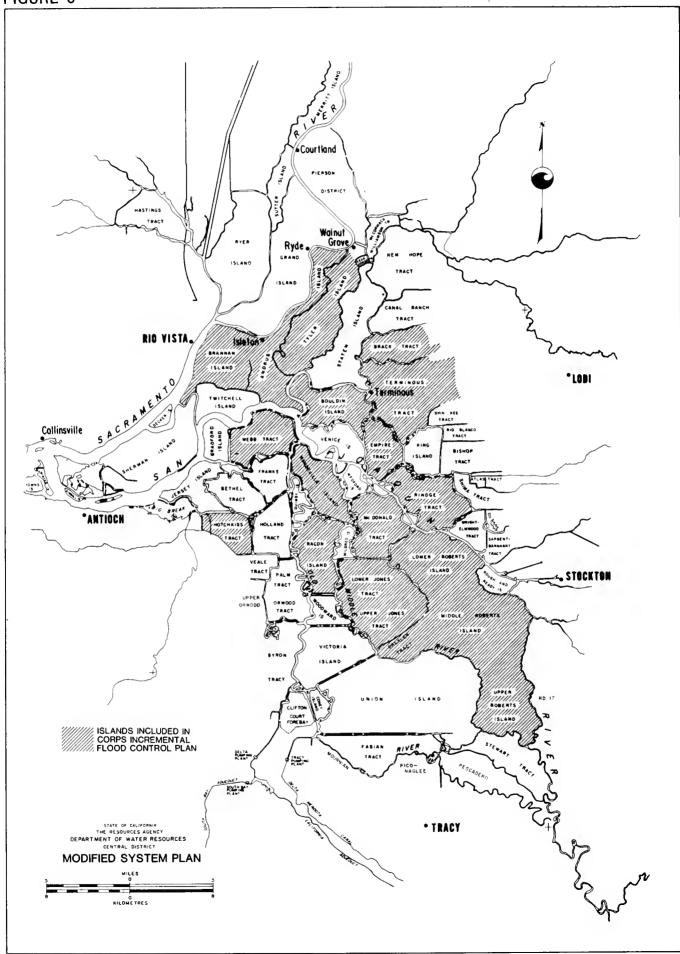
tracts, with 444 miles of nonproject levees, would be rehabilitated and extensively upgraded. Six islands and tracts, with 73 miles of nearly adequate nonproject levees, would require only minimum improvements, and five small islands, 3,450 acres with only 20 miles of nonproject levees but with highly diversified habitat, would be set aside for wildlife management areas. In addition, wildlife enhancement features would include about 1,000 acres of upland and riparian habitat in levee setback areas and about 1,500 acres of channel tule islands. New recreation facilities, to be provided at 45 sites

throughout the Delta, would consist of 14 recreation areas, 23 fishing access sites, 8 boater destination sites, and 145 miles of trails.

The System Plan would substantially reduce the frequency of failure of most nonproject levees and attendant damages on the islands and tracts they protect. It would also increase recreation opportunities and provide wildlife enhancement. Using Corps of Engineers estimates, the capital cost would be about \$3.7 billion assuming a conservative inflation rate of 6 percent per year (\$1 billion, based on 1981 prices). The estimated annual cost of operation and maintenance is \$3.4 million at 1981 prices. Under the Corps' "with Peripheral Canal" and "continued restoration of flooded islands" assumptions, the plan has an overall benefit-cost ratio of 1.1 to 1. "Without the Peripheral Canal" the benefit-cost ratio would be 1.2 to 1. Also, while not shown in Table 2, The Corps' sensitivity analysis shows that the plan would have a benefit-cost ratio of 1.5 to 1 without the Peripheral Canal and without island restoration as a base condition. Chapter 5 contains a more detailed discussion of the features, costs, benefits, and financial requirements.

Modified System Plan

While the System Plan has an overall computed benefit-cost ratio of 1.1 to 1, the benefit-cost ratio for the flood control features alone is only 0.9 to 1, as estimated by the Corps (refer to Table 2). This fact led to the Modified System Plan; a plan that is economically justified under the Corps' assumptions from a flood control standpoint. Under this plan, six islands were eliminated because the cost of levee improvements far exceeds the flood control benefits or for other reasons such as landowners expressed desire to be excluded. Also dropped from the plan were six islands and tracts that would require only minimum effort to provide adequate


levees, assuming that this work could be accomplished by non-federal interests. The latter group, while dropped from the plan, would probably remain as viable units of the Delta.

Under the Modified System Plan (without the Peripheral Canal), as depicted by the shaded areas on Figure 6, 41 islands and tracts, with 400 miles of nonproject levees that protect about 205,000 acres, would be upgraded. Under the Corps of Engineers assumption of the Peripheral Canal being in place, levees protecting only 36 islands and tracts would be upgraded in the Modified System Plan. It is emphasized, however, that the Corps' analysis is for the purpose of illustrating concepts rather than defining a specific plan.

This plan would have the same recreation and wildlife features as the System Plan and would set aside five small islands as wildlife management areas. The Corps used the same recreation and wildlife enhancement features as for the System Plan because recreation and wildlife plans are essentially separable from the levee improvement plans and are considered economically justified in their own right.

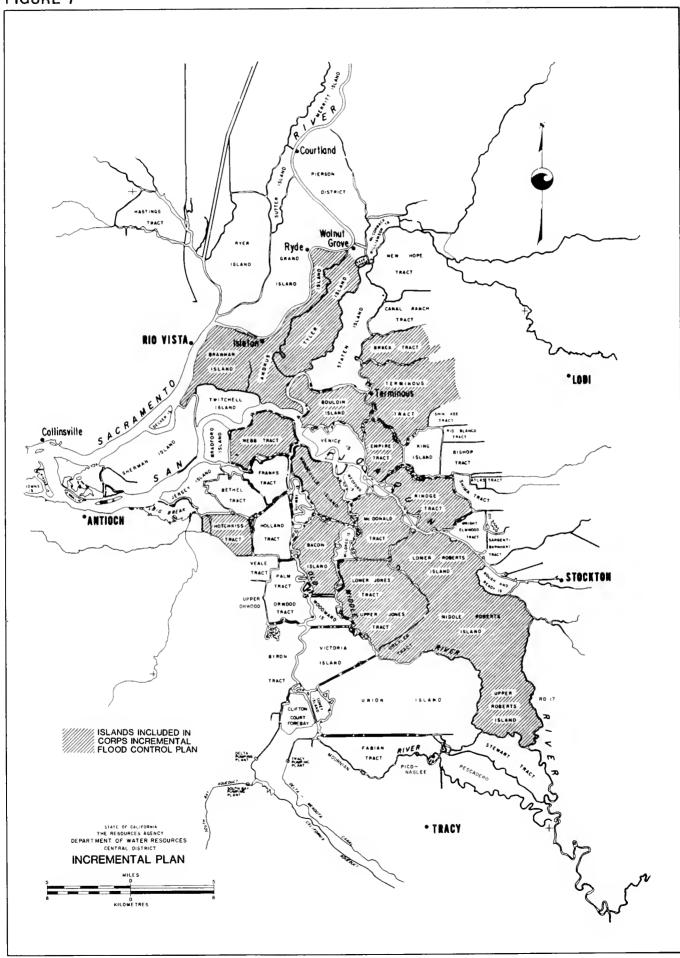
The 12 islands and tracts with 117 miles of nonproject levees not included for rehabilitation would continue to be maintained to various local standards. Under a proposal presented in the Corps' draft feasibility report, if these excluded levees were improved by non-federal interests to a federal standard for flood control, they would then qualify for consideration for emergency repairs under Public Law 84-99. Such improvements would be expensive, however.

The Modified System Plan would reduce the frequency of levee failure for roughly two-thirds of the islands and tracts with nonproject levees, and it would provide essentially the same recreation opportunities and wildlife enhancement as would the System Plan.

It has an estimated capital cost of about \$3 billion, assuming an inflation rate of 6 percent per year (\$829 million, at 1981 prices). Annual operation and maintenance costs would be about \$2.6 million at 1981 prices. The overall benefit-cost ratio is 1.4 to 1 without the Peripheral Canal (refer to Table 2). The flood control elements of the plan, taken as a whole, would have a benefit-cost ratio of 1.2 to 1. From the Corps' sensitivity analysis, assuming as a base condition no Peripheral Canal and without island restoration, the overall benefit-cost ratio would be 1.8 to 1, and for the flood control element as a whole 1.7 to 1 (not shown in Table 2). Chapter 6 contains a more detailed description and discussion of the Modified System Plan.

Incremental Plan

Even though the flood control features of the Modified System Plan are economically justified as a unit, some of the individual islands and tracts included for levee improvement had a benefit-cost ratio of less than 1 to 1. This led to consideration of the Incremental Plan, depicted by the shaded area on Figure 7, wherein each island and tract must have a flood control benefit-cost ratio of at least 1 to 1 to be included in the plan. Thus, for economic analysis of this plan each island and tract is considered independent of all others.


Under the Incremental Plan, 205 miles of nonproject levees that protect 19 islands and tracts, totaling about 137,000 acres, would be rehabilitated. Under the Corps of Engineers assumption of the Peripheral Canal being in place, only 15 islands would have their levees upgraded under the Incremental Plan. Again, the number of islands and tracts to be included is not definite but would depend on post-authorization studies. Furthermore, the Corps' draft report indicates that if levees not included in the Plan were improved by non-federal

interests to a federal standard for flood control, they would then qualify for consideration for emergency repairs under Public Law 84-99. Such improvements would be very expensive, however.

The Incremental Plan would have the same recreation features and the same five small islands set aside for wildlife management as in the System Plan and the Modified System Plan. However, the total wildlife enhancement features would be somewhat less than those for the System Plan and Modified System Plan because there would be less setback levees to protect riparian habitat area due to fewer islands being included in the plan. The Incremental Plan would reduce the frequency of levee failure for about one-third of the islands and tracts with nonproject levees.

Using Corps of Engineers' estimates, the Incremental Plan (without the Peripheral Canal) has an estimated capital cost of about \$1.8 billion, assuming an inflation rate of 6 percent per year (\$537 million, based on 1981 prices). Annual operation and maintenance costs are estimated to be \$1.9 million at 1981 prices. The overall benefit-cost ratio is 1.9 to 1 without the Peripheral Canal (refer to Table 2). The flood control element of the plan has a benefit-cost ratio of 1.6 to 1. While not shown on Table 2, the Corps' sensitivity analysis for the without Peripheral Canal and without island restoration base condition shows the overall and flood control elements to have benefit- cost ratios of 2.3 to 1 and 2.2 to 1, respectively.

A significant problem with the Incremental Plan is that islands not included will in time probably become open water areas, increasing the wind-wave erosion and seepage on the remaining islands. This would increase the maintenance costs and possibly the frequency of levee failures of islands adjacent to flooded areas unless remedial measures are taken. (These increased operation and maintenance costs were not included in the Corps estimates, however.)

Chapter 7 contains a more detailed description and discussion of the Incremental Plan.

Cost Sharing and Financial Requirements

Cost sharing in a Delta levee improvement plan is a significant issue of public policy. This issue is quite complex for a number of reasons.

First, the Corps of Engineers has recommended that the federal interest be limited to those individual islands and tracts where the flood control benefits exceed the flood control costs; the Incremental Plan concept. Adoption of this recommendation by Congress would leave a large number of non-federal participation islands and tracts for which the main source of potential funding would be from State and local interests.

Second, the Corps report assumes the traditional federal/non-federal cost sharing formula, even though the Reagan Administration has proposed a new cost sharing formula that would require a greater degree of non-federal funding.

Third, in the Delta there is another complicating factor not found in a riverine flood control project; there are two broad classes of beneficiaries. These are:

- ° The beneficiaries protected from inundation. (Primary beneficiaries.)
- The beneficiaries on the water side of the levees that would suffer less frequent adverse impacts on water quality from levee failures. (Secondary beneficiaries.)

Cost sharing will ultimately have to be decided by the Congress and the Legislature. As summarized in Table 3,

Table 3

		ILLUSTRATI (1n	ON OF PO	SSIBLE SH	ARING OF	CAPITAL Prices)	COSTS1					
		Federal ²			State ³		County4		Islands and Tracts ^S		Water Projects & Water Users6	
Plan and Function	Project Totals	Tradi- tional ⁷	Pro- posed ⁸	Tradi- tional ⁷	Pro- posed							
System Plan												
Flood Control	931	407	286	265	318	0	0	244	309	14	18	
	40	20	20	10	10	10	10	0	0	0	, 0	
Recreation Wildlife Enhancement	57	43	Ö	7	29	7	28	0	0	0	0	
Totals	1,028	470	306	282	357	17	38	244,	309	14	18	
Modified System Plan								•				
51 4 0 = 4 = 2	732	407	286	167	220	0	0	150	215	9	12	
Flood Control	40	20	20	10	10	10	10	0	0	0	0	
Recreation	57	43	0	. 7	29	- 7	28	0	0	0	0	
Wildlife Enhancement	5/	43	U		23	•		-				
Totals	829	470	306	184	258	17	38	150	215	9	12	
Incremental Plan												
Flood Control	448	407	286	25	78	0	0	15	80	1	5	
Recreation	40	20	20	10	10	10	10	0	0	0	0	
Wildlife Enhancement	49	37	Ö	6	25	6	24	0	0	0	0	
Totals	537	464	306	41	112	16	34	15	80	1	5	

¹ Based on the "without Peripheral Canal" and "continued restoration of flooded islands and tracts" conditions.

 Based on federal participation in only 19 islands and tracts. Depends on congressional legislation.
 Department of Water Resources illustrative example. Depends on State legislation. 4 Depends on action by each of the three counties involved (Sacramento, San Joaquin, and Contra Costa). 5 Depends on island-by-island decisions on whether to participate in plan.

Would probably require new legislation. Based on Corps of Engineers' draft feasibility report and on existing legislation for federal projects. Based on June 15, 1981, memorandum to President Reagan from Interior Secretary Watt.

the Department of Water Resources has prepared illustrations of the effects for two of the many possible ways that costs could be shared for each of the three alternative plans. A discussion of the cost sharing assumptions is contained in Chapter 4. Chapters 5, 6, and 7 and Appendix A show the results in more detail, including the costs that would be assigned to each island and tract.

The Department estimates that the earliest practical date for start of construction is 1989. From the anticipated release date of this bulletin. this allows:

- ° Two years for Federal and State authorization.
- Another two years for postauthorization studies to define the specific plan of improvement, and negotiations of repayment contracts for costs to be borne by local interests.
- Another two years for preparing designs and specifications.

Because of practical limitations on availability of construction equipment, it was assumed that participating islands would be divided into groups with approximately equal amounts of work in each group. Levees with the highest probability of failure would be in the first group and those with the least failure probability in the last group. Initial construction would begin biennially for each successive group until all levees in the adopted plan were upgraded. Also because of continuing subsidence, additional construction would be required periodically over an extended period after initial construction is completed to maintain the levees to design standards.

Because future rates of inflation cannot be predicted with any degree of certainty, the Department estimated the probable range of funding requirements

by escalating the Corps' 1981 costs at rates of both 6 and 9 percent per year to the estimated year that the costs would be incurred. (For the past several years the Department has used an escalation rate of 9 percent per year for construction costs for the financial analysis of future facilities of the State Water Project. This rate is now under study with the view of reducing it to 6 percent for next year's analysis.) Table 4 summarizes the estimated capital

Table 4

CAPITAL COST* (In Millions of Dollars)								
Plan, Function and Responsibility	1981 Prices	to Time of	lated Prices Construction 9% Per Year					
System Plan								
Flood Control Recreation Wildlife Enhancement	931 40 57	3,365 93 206	8,262 141 482					
Project Totals	1,028	3,664	8,885					
Federal Share: Traditional** Proposed***	470 306	1,678 1,046	4,076 2,493					
Non-Federal Share: Traditional** Proposed***	558 722	1,986 2,618	4,809 6,392					
Modified System Plan								
Flood Control Recreation Wildlife Enhancement	732 40 57	2,746 83 207	6,237 118 499					
Project Totals	829	3,036	6,854					
Federal Share: Traditional** Proposed***	470 306	1,857 1,160	3,998 2,428					
Non-Federal Share: Traditional** Proposed***	359 523	1,178 1,875	2,856 4,426					
Incremental Plan								
Flood Control Recreation Wildlife Enhancement	448 40 49	1,534 76 173	3,681 102 415					
Project Totals	537	1,783	4,198					
Federal Share: Traditional** Proposed***	464 306	1,625 1,154	3,938 2,429					
Non-Federal Share: Traditional** Proposed***	73 232	158 629	260 1,769					
* Without Peripheral Canal.								

Without Peripheral Car

Based on Corps' draft feasibility report and existing federal legislation.

^{***} Based on June 15, 1982, memorandum to President Reagan from Interior Secretary Watt.

costs in terms of 1981 prices and escalated prices for the three alternative plans. It also shows the federal and non-federal escalated prices under both traditional and Reagan Administration proposals for cost sharing.

In its financial analyses, the Department assumed that federal costs would be funded from annual appropriations by Congress. It was further assumed that the State would fund all non-federal costs through the sale of bonds, and that the local share would be recovered by the State through contracts with each participating island and tract, county, or other beneficiary. Like inflation, interest rates are highly volatile and unpredictable. Thus, bond service was calculated at both 9 percent and 12 percent interest for a 50-year period of repayment. simplify the financial analysis, it was also assumed that money from bond sales allocated for future staged construction would be deposited in a sinking fund, with interest calculated at both 8 and 10-1/2 percent. The effect of a sinking fund earning interest at a higher rate than inflation results in bonding requirements much less than the summed escalated costs. In actual practice, many more bond sales would occur over the life of the project to cover stage construction costs, and such escalated costs would be repaid with dollars depreciated by inflation. However, the sinking fund approach was chosen for this analysis to reduce the bias induced by the extreme effect of escalation of stage construction costs far into the future because it more nearly reflects the ability to meet repayment obligations.

Table 5 summarizes the estimated bonding requirements to fund the estimated non-federal costs for both traditional and proposed federal/non-federal cost sharing formulas, and for two sets of economic assumptions. Chapters 5, 6, and 7, and Appendix A show the results in more detail.

ESTIMATED BONDING REQUIREMENT TO FUND NON-FEDERAL COSTS* (In Millions of Dollars)

4.4.5	Required Bonding				
Plan and Financial Assumptions**	Traditional Cost Sharing	Proposed Cost Sharing			
System Plan					
6% Escalation/9% Bond Interest	1,320	1,631			
9% Escalation/12% Bond Interes	2,068	2,519			
Modified System Plan					
6% Escalation/9% Bond Interest	B14	1,117			
9% Escalation/12% Bond Interes	t 1,232	1,665			
Incremental Plan					
6% Escalation/9% Bond Interest	148	433			
9% Escalation/12% Bond Interes	t 207	613			

* Without Peripheral Canal.

No-Action Plan Alternative

The financial costs of a reconstruction program to upgrade nonproject Delta levees to flood control standards will be high. But then, the area to be preserved is large. In its analysis of project benefits, the Corps of Engineers assumed that in absence of a levee upgrading program, past practices of reclaiming flooded Delta islands would continue; but will they?

In the absence of a major Federal or State levee construction program, there are many possible scenarios for the Delta. One is continuation of past practices of substantial Federal and State aid in restoring flooded islands. The other is the loss of such aid in restoring flooded islands and the probability that many flooded islands would remain flooded. Under either case, or under the wide array of intermediate possibilities, there will be an increasing probability of levee

^{**} Money from bond sales for future staged construction was assumed to be deposited in a sinking fund at 8 percent interest for the 6% escalation/9% bond interest condition and 10-1/2 percent interest for the 9% escalation/12% bond interest condition.

failure as the islands and tracts continue to subside.

At present, primary responsibility for upgrading the 537 miles of nonproject levees in the Delta rests with local reclamation districts and landowners. Some financial aid for maintaining these levees is provided by the State under the 1973 Delta Levees Maintenance Act (Way Bill). Historically, Federal and State disaster assistance and funding has been provided to help fight floods and restore flooded islands and tracts after levee failures. Most of the money for such restoration in recent years has come from Federal and State emergency funds, with the costs ultimately falling on taxpayers. In some cases, reclamation has cost more than the appraised value of the island or tract being reclaimed.

Although it is impossible to determine precisely the local ability to finance reclamation, evidence from payment capacity analysis of Delta agriculture and responses from Delta interests indicates that local willingness to pay would be much less than the likely costs of reclamation.

With a Federal and State policy for continued reclamation, most of the Delta could probably be preserved in its present configuration in the near term. (This is the assumption used by the Corps of Engineers for the base condition in its economic analyses of the alternative plans for improving Delta levees.) However, such an effort would require substantial increase in Federal and State disaster assistance funding with time. This is illustrated in Chapter 3 by comparing the estimated probability of levee failure under present conditions, shown in Figure 12, with the probability of failure under year 2020 conditions, shown in Figure 13; both figures assume continued subsidence and no major levee improvements.

Because of changing policies and increasing costs, continued financial

support for restoration of flooded islands from federal programs is already becoming less certain. Following the 1980 Delta levee failures, the Corps of Engineers determined that federal Public Law 84-99 authority can no longer be used in repairing or restoring the nonproject levees in the Delta. This is because the Corps now classifies the nonproject levees as reclamation levees, and not flood control levees for which Public Law 84-99 would be applicable. the Federal Emergency Management Agency has indicated that it may be unable to recommend federal financial assistance for restoring flooded islands under Public Law 93-288, unless in an emergency situation the public interest requires protection against salinity intrusion into aqueducts that furnish domestic water supplies, or unless there is significant non-federal effort to improve the Delta levees so that the frequency of future levee breaks are significantly reduced.

Failure to continually reclaim flooded Delta islands and tracts would eventually lead to the evolution of a large inland sea in the western and central Delta, the opposite of total preservation of the present configuration of Delta islands, tracts, and waterways. The sequence and ultimate extent of this condition is highly speculative, depending on the behavior of the parties with a major interest in the Delta.

Although no detailed studies have been made on the consequences of allowing an inland sea to form over a major portion of the Delta, speculation can be made on this possibility based on experience from flooding of individual islands, either temporary (in most cases) or permanent (in the case of Big Break and Franks Tract). It is evident that all of the economic and environmental resources would be affected to some extent. Some of the effects (and potential mitigating measures) of permanent flooding of individual or

groups of islands and tracts are summarized below.

- Increased levee failures and flooding of remaining islands. Much of this potential could be mitigated by raising the freeboard and increasing the erosion protection on adjacent levees or by preserving the levees of the permanently flooded islands.
- Reduction of yield of the Federal and State export projects due to loss of fresh water through evaporation (which would exceed consumptive use of irrigated agriculture), and possibly an increased need for additional outflow to repel salinity intrusion. However, remedial measures, short of full restoration of an island, could nullify these potential losses. Flooded areas could be operated as reservoirs to increase the yield to the projects. However, the effect of permanent flooding on State and Federal projects is difficult to determine because the State Water Resources Control Board might modify the Delta salinity standards to reflect the change in beneficial uses to be protected.
- Changes in fish and wildlife habitat. Although flooded areas such as Big Break and Franks Tract have increased high quality habitat for fish and other aquatic life, future floodings would produce much deeper areas, which might not have the high biological production. Permanent flooding would not be particularly adverse to fish, but habitat and food supply for wildlife would be lost.
- Loss of the unique system of meandering waterways and the recreational boating values they support (unless the levees of the flooded islands were maintained). Also, loss of some recreational hunting on the islands.
- Loss of agricultural productivity on the flooded islands.

Disruption of transportation systems and utilities, such as highways, railroads, aqueducts, and gas wells, associated with some islands. At a cost, all of these effects could be mitigated.

Although the consequences are unclear, the economics of the Delta are such that, without substantial Federal and State assistance in either reconstructing Delta levees or continuing to reclaim flooded islands, it appears that the efforts of other public and private parties cannot be expected to preserve the Delta.

Policy Alternatives

The Legislature has adopted a State policy of maintaining the Delta in its current configuration. The Legislature may wish to reconsider this policy in view of the extremely high costs of the System Plan and the Modified System Plan.

The Legislature should also recognize that although improvement of the Delta levees in their present locations is physically feasible now, it may not be a permanent solution. Eventually, continuing subsidence may make it virtually impossible to retain a section of levee due to the large difference between the elevation of the subsided island surface and the elevation of the water surface in the adjacent channel. Levee sections subjected to somewhat less severe elevation differences may require excessive maintenance costs.

Although not evaluated in this bulletin, an alternative that could be considered would be combining islands into large polders. This could be acomplished either as an initial plan or as a plan to be phased in over time.

The use of polders would exclude tidal action and floodflows from closed-off channels, but it would also permit the

reduction of water levels in those channels to reduce seepage and mitigate the increasing hydrostatic pressure on the interior levees due to subsidence and greatly reduce the length of project levee needed to protect a group of islands. Polders would change some recreational uses in the Delta and would affect fish and wildlife values in the Delta. The costs and effects of polders have been given some study in the past, but they have not been studied in as much detail as the alternative projects presented in this bulletin.

Legal and Institutional Matters

Along with the physical and financial aspects, a number of important related matters need to be considered in conjunction with public funding of any levee improvement program. These are summarized here and discussed more fully in Chapter 4, and also in the Corps' draft report.

In addition to assumption of non-federal cost obligations, the Corps report lists several other requirements as conditions for federal funding. Among these are: limiting federal liability, enacting and enforcing appropriate land use regulations, and maintaining and operating federal project facilities in accordance with regulations and standards prescribed by the Secretary of the Army.

It must be recognized that even after completion of a levee upgrading program, the Delta islands and tracts that are below sea level will be vulnerable to flooding. Decision making authorities must recognize this vulnerability.

Proper use of Delta flood plains require land use regulations that are cognizant of conditions that could result in loss of life or damage to public and private structures. Further, while the Legislature has assigned county and city governments the responsibility for land use planning and regulation, it has also established policies and guidelines to restrain urban encroachment on agricultural lands and to foster appropriate flood plain management.

For the Delta levees improvement program, four approaches for land use planning and regulation were considered:

- ° Continuation and possible improvement of the present State-local government system.
- State-mandated review of performance of local flood plain management against State criteria.
- State overview of local government land use actions to ensure minimum standards on a regional basis.
- ° Creation of a new organization or level of government, with land use responsibilities for the Delta.

Continuation and possible improvement of the present State-local government system is the approach considered to have the best chance of success, to be least controversial, and to be least expensive. This system is already in place and functioning and the General Plans and regulations of Delta cities and counties already designate most of the land for agricultural use, specify areas for urban development, and provide criteria for limiting the use of areas subject to flooding or unstable conditions. Therefore, use and improvement of the present system seems to be the most appropriate way to proceed before serious consideration is given to implementing another approach.

Under present law, the State has no liability for levee failures in the Delta. In the action by landowners for damages caused by flooding from the Andrus-Brannan Islands levee break in June 1972, the California Court of Appeals ruled that the State was not

liable for losses.* The Court further held that there was no duty on the part of the State to review local reclamation plans for levee work that was in progress at the time of the failure.

Any proposal for State funding of physical improvements in the Delta must address potential legal liability of the State. While the State may be willing to contribute to Delta levee improvement, it should not be the intent of the State to underwrite perfect safety to benefited lands. It would be unjust

for the law to permit a project beneficiary to recover damages from the State simply because the State participated in the project to reduce the risk to the beneficiary. State participation should be contingent upon enactment of appropriate statutory or constitutional immunities or limitation of liability. In addition, the State should seek hold-harmless or waiver agreements with project beneficiaries of such a nature as to bind all current and future possessors or users of the benefited lands.

^{*98} Cal. App. 3d 662; 159 Cal. Rptr. 721, Civ. No. 17809. Third Dist., Nov. 13, 1979.

		1 -}-	

Chapter 2. BACKGROUND AND OBJECTIVES

All was well in the Delta during the early morning hours of that summer day in 1972 until the southerly levee protecting Andrus Island gave way. Rushing water pouring through the initial break quickly widened the opening to 300 feet, and eventually to 500 feet. Within two hours, Highway 12 was flooded and water began spilling over into the adjacent Brannan Island. Several people in a nearby trailer camp narrowly escaped.

During the next two days, Andrus and Brannan Islands, with land surfaces as much as 20 feet below sea level, were flooded with 164,000 acre-feet of water. Federal, State, and local emergency efforts to protect the town of Isleton with a bow levee failed, making it necessary to evacuate 2,000 people.

But the water that flooded these islands was not winter flood water from the major rivers that drain the watershed tributary to the Delta. Tributary inflow to the Delta at that time was mostly storage releases from Federal and State reservoirs to supplement low summer unregulated flow. This controlled inflow was not sufficient to supply the sudden draft placed on the Delta's water supply by the levee break. Saline waters rushed in from Suisun Bay to meet the remaining draft, temporarily interrupting the controlled outflow that had been forming a hydraulic barrier to protect the Delta against salinity intrusion.

Both the State Water Project and Federal Central Valley Project immediately reduced exports and increased storage releases to restore the hydraulic barrier. In the western Delta, salinities began an immediate downward trend, but in the central and southern Delta, the flushing effect was much slower and the salt water had to be removed by

local and export pumping, causing adverse effects on agricultural and domestic water supplies.

The foregoing event was both usual and unusual. Since initial reclamation of the Delta began in the 1860s, each of the Delta's 70 islands or tracts has been flooded at least once, and some several times. Since 1930, 30 levee failures have resulted in flood damage on 22 islands or tracts. In 1980 alone, six islands were flooded, indicating that Delta levee failures are becoming more frequent. Only four of the forty levee failures since 1930 occurred during the nonwinter flood season --Webb Tract, June 1950; Andrus-Brannan Islands, June 1972; Jones Tract, September and October 1980; and MacDonald Island, August 1982.

Only five of the Delta islands subject to periodic flooding have significant urban populations -- Andrus-Brannan, Bethel, Byron, Hotchkiss, and New Hope. The other islands are devoted almost entirely to agriculture, although there are large areas of native vegetation that provide important habitat for numerous wildlife species.

The continued threat of flooding is a major concern of many Delta interests -- urban and agricultural landowners, recreationists, utilities, railroads, and various levels of government. The basic purposes of this report are:

- To examine the problems, methods feasibility, and costs of upgrading the Delta levee system in order to reduce the frequency of flooding and attendant damage.
- To report on alternative plans to preserve the physical configuration of the Delta as it is today.

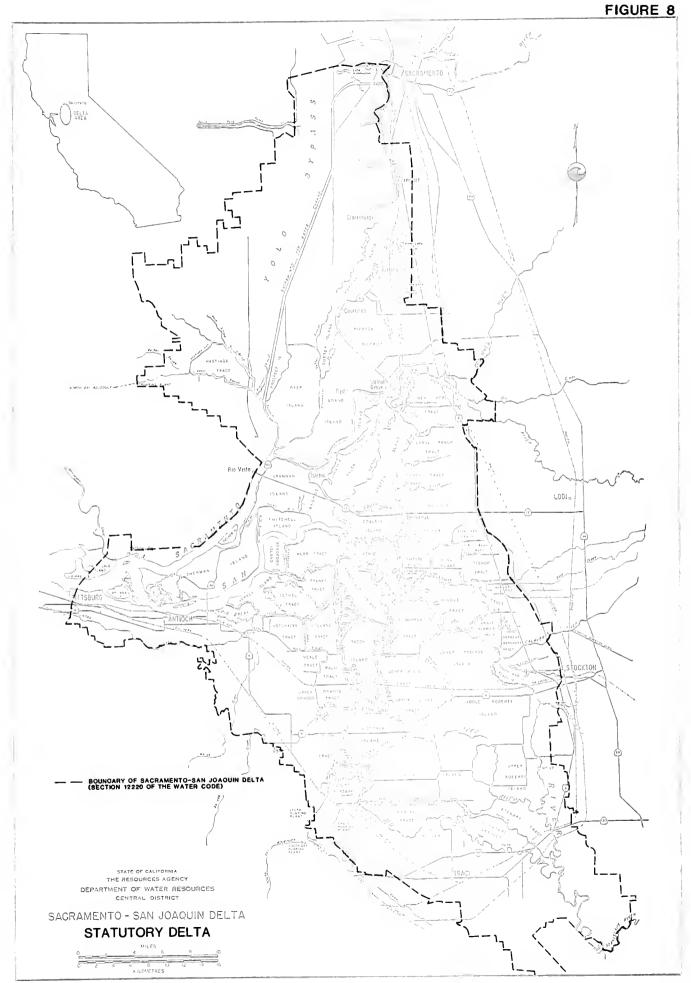
The Delta

The Sacramento-San Joaquin Delta, as defined in California Water Code Section 12220 (see Figure 8), is a unique area situated at the confluence of the Sacramento and San Joaquin Rivers, which drain 43,000 square miles* of watershed and discharge into San Francisco Bay and the Pacific Ocean. The statutory Delta occupies an area of more than 1,100 square miles, including over 700 miles of scenic waterways. The Delta encompasses about 70 leveed islands and tracts, many of which are 15 to 20 feet below sea level as a result of land subsidence. The network of levees totals about 1,100 miles in length and protects 550,000 acres of mostly prime agricultural land.

In addition to the leveed islands and tracts, about 800 small, unleveed "tule" islands exist within the Delta. The tule islands and some of the levees and riverbanks support dense growths of natural vegetation. Cover and food for many wildlife species are provided by trees such as oak, cottonwood, and willow, and by shrubs, vines, grasses, and aquatic plants.

Three major population centers — the San Francisco Bay Area, Sacramento, and Stockton — are located near the Delta's borders. Portions of six counties — Alameda, Contra Costa, Sacramento, San Joaquin, Solano, and Yolo — are within the area of the Delta. Although no major cities are located entirely within the Delta, this area includes a portion of Stockton and the small incorporated cities of Antioch, Brentwood, Isleton, Pittsburg, and Tracy, plus about 14 unincorporated towns and villages.

Much of the soil in the Delta is organic; that is, largely composed of or derived from peat, and is subject to


subsidence problems for a number of reasons. While certain measures and practices could be adopted to slow the rate of subsidence, subsidence will continue as long as organic material remains and the land is used for farming. Since peat in some islands in the central Delta is still 30 or more feet deep, subsidence will continue for many, many years. This poses potential flooding problems of a scale much greater than those that have occurred to date. New approaches must be used if we are to maintain Delta levees with up to 40 feet of static head.

Ground water levels under the Delta islands are maintained at depths of 0 to 10 feet below the soil surface, depending upon agricultural practices and the season of the year. Ground water (and seepage through the levees) would rise and fill most of the Delta lowlands to about the water level in adjacent channels if it were not controlled by an extensive drainage system where such water and seepage are collected and pumped back into adjacent channels.

The economy of the Delta depends heavily upon the protection provided by the levees. The Delta is a productive agricultural area, supporting a wide variety of crops, such as corn, asparagus, pears, tomatoes, sugar beets, and various other truck crops. A grape and wine industry is expanding in the area. About 91 percent of the Delta is zoned for agriculture. Although some of this land will be converted to nonagricultural uses, overall crop productivity is expected to increase somewhat in the future because of double cropping.

Industrial areas already exist or have been zoned for development in each of the Delta counties. A relatively small growth in industry is expected to take place.

^{*}All of the Central Valley Basin except the Tulare Lake drainage, 16,500 square miles, which is a closed basin.

Older (deeper) sediments under the Delta constitute one of the largest natural gas reservoirs in the nation, making the Delta a gas producer and storage area of regional and national importance. There are 35 operating fields scattered throughout the area, with major fields near Rio Vista. To date, cumulative production of gas from these fields amounts to about 4.2 trillion cubic feet. Delta gas fields can probably produce until the turn of the century. Because of the Delta's strategic location, some of the abandoned fields are being used to store imported gas.

The Delta's 50,000 acres of waterways provide a rich aquatic habitat for an abundance of birds, mammals, fish, and other aquatic life. These waterways and adjacent land areas support one of California's largest and most diverse fishery resources and provide habitat for over 100 species of waterfowl and wildlife, including important game species and some rare and endangered species.

The Delta is also one of California's major outdoor recreation areas. Its abundant water, fish, wildlife, cultural, and historical resources offer a variety of recreational opportunities, such as fishing, boating, hunting, picnicking, camping, bicycling, and sightseeing. The estimated 12.3 million days of recreation use in 1980 exceeded the capacity of existing facilities. As the recreation use has grown, so have related problems for the levees in the Delta. Because more and larger recreational boats are being used, waterside levee erosion from wakes has increased. Trespass complaints are common.

Two major east-west roads, Highway 4 and Highway 12, bisect the Delta. Highway 160 follows a meandering north-south course along the Sacramento River. Interstate 5 skirts the eastern side of the Delta and Interstate 205 goes near the southern border. In addition, two 30-foot deep water ship channels enable ocean-going vessels to travel to the

inland ports of Sacramento and Stockton. Rice, other grains, and wood chips are the principal commodities carried by these vessels. Projections of commerce indicate an optimistic outlook for shipping through the Delta. It is anticipated that the tonnage of commercial shipping will increase significantly in the future, particularly if the planned deepening of these channels takes place to accommodate larger vessels.

Basis for Study

Department studies for improving Delta levees date back 25 years or more and were frequently done in connection with planning for a Delta water transfer facility of the State Water Project. In 1969, after plans for the Delta water transfer facility of the State Water Project centered on the Peripheral Canal, the Legislature requested the Department of Water Resources to study the problems related to Delta levees and to recommend feasible solutions to those problems.

In 1973, as part of the Delta Levee Maintenance Act (Way Bill), the Legislature declared that the physical characteristics of the Delta should be preserved essentially in their present form. The Legislature also declared that the key to preserving the Delta's physical characteristics is the system of levees defining the waterways and producing the adjacent islands (Water Code Section 12981 et. seq.; refer to Appendix B).

In 1975, the Department published Bulletin 192, "Plan for Improvement of the Delta Levees", which conceptually would preserve the present physical configuration of the Delta. The plan suggested that capital and replacement costs for improving the levees and providing recreation features should be shared 50 percent Federal, 30 percent State, and 20 percent local. Maintenance costs would be shared 60 percent local and 40 percent State.

In 1976, the Legislature adopted the conceptual plan for levee improvement set forth in Bulletin 192 and requested the Department to develop further plans for preservation of Delta levees (Water Code Section 12225 et. seq., called the Nejedly-Mobley Delta Levees Act; refer to Appendix B). It directed the Department to make recommendations to the Legislature concerning construction, cost sharing, land use, zoning, flood control, recreation, fish and wildlife habitat, and esthetic values (Water Code Section 12226.1). In 1976, the Legislature also directed the Department to investigate the viability of subsidence control in the Delta (Water Code Section 12881.4, SEC. 3; refer to Appendix B).

The U. S. Army Corps of Engineers also has authority to study Delta levee improvements and related matters. That authority stems collectively from two congressional resolutions and a public law, which are paraphrased below.

On June 1, 1948, the Senate Committee on Public Works adopted a resolution requesting the Corps of Engineers to review past reports for navigation and flood control in the Delta to determine if certain specified modifications to existing projects were advisable, particularly for the elimination of tidal flow in areas subject to tidal inundation in order to reduce the tidal prism of the Delta to a minimum.

Section 205 of the Flood Control Act, approved by Congress on May 17, 1950, authorized and directed the Corps of Engineers to investigate and make surveys for flood control and allied purposes, including floods aggravated by or due to wind or tidal effects, in certain designated areas of the United States, including the Delta.

On January 31, 1961, and June 7, 1961, respectively, the Senate and House Committees on Public Works adopted resolutions requesting the Corps of Engineers to determine the advisability

of measures to preserve the scenic values and to preserve and enhance recreational opportunities in the Delta, consistent with the primary flood control purpose of existing and proposed Delta levees and channel improvements.

Scope of Study

The levees within the statutory Delta (Water Code Section 12220) have been classified into two basic categories -- project levees and nonproject levees (see Figure 9).

The project levees comprise about 35 percent of the total Delta levee system. They were either built, rebuilt, or adopted as federal flood control project levees, and are maintained to federal standards by local districts. (An exception is the project levee on the west side of the Sacramento River Deep Water Ship Channel, which is maintained by the Corps of Engineers.) They generally overlie and are composed of mineral soils. In general, most project levees provide adequate protection.

The nonproject levees make up about 65 percent of the levees in the Delta. They were constructed by island landowners or local public reclamation districts, and are maintained by the individuals or districts to widely varying and generally less stringent standards than project levees. Maintenance is largely financed by the landowners. There are two exceptions. A few nonproject levees -- termed direct agreement levees -- have received federal financial assistance as a result of an adjacent navigation project or during rebuilding following a flood disaster. Also, under the Delta Levee Maintenance Act (Way Bill), the State provides some financial assistance to local districts for maintenance and rehabilitation, in recognition of State interest in preserving Delta levees and associated recreation and wildlife values.

Many nonproject levees have inadequate freeboard and levee section, subsiding peat foundations, marginal stability, seepage from rodent activity or other causes, inadequate maintenance, or a combination of these deficiencies. Thus, the study area for this investigation and report is limited to the 60 islands and tracts mostly with nonproject levees, as shown on Figure 2, in Chapter 1. Table 6 lists these islands and tracts, along with statistics on the area, length of levee, and type of improvements on each island or tract.

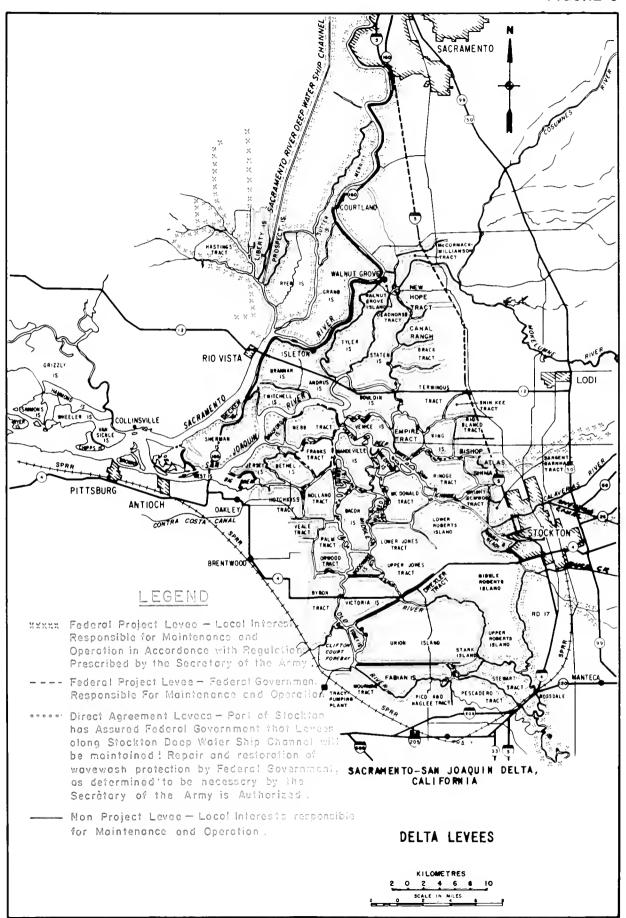
Conduct of Study

Recognizing that, to be financially feasible, a major rehabilitation of Delta levees would probably require federal participation, the Legislature, in 1973, directed the Secretary of The Resources Agency to request the Corps of Engineers to resume its Delta investigation, which had been discontinued in 1966. The study was to be in cooperation with affected State and local agencies, and was to include a report to Congress recommending particular nonproject levees that should be included as federal project levees. As noted earlier, in 1976 the Legislature directed the Department of Water Resources to develop further plans for preserving Delta levees. The studies reported herein have been conducted jointly by the Department and the Corps of Engineers.

The portion of the study conducted by the Department of Water Resources pertained to land subsidence, seismic hazards, levee vegetation as related to erosion control and maintenance, existing levee profiles and cross sections, land values, economic data, water quality data, historical and projected recreation use, present levee maintenance standards and practices, and financial requirements and cost sharing analysis for nonfederal costs.

The Corps of Engineers' portion of the study included levee failure analyses

(past, present, and future), design and cost estimates for various levee rehabilitation alternatives, economic analyses of various alternative improvement plans, plan formulation studies, evaluation of environmental aspects, and a recommendation as to whether there is federal interest in Delta levee rehabilitation, recreation, and wildlife enhancement. The Corps of Engineers' recommendation of federal interest was based on the plans being consistent with the Corps' mission and on maximizing net benefits for federal dollars invested.


Premises for plan formulation and analysis were developed jointly by the Department of Water Resources and the Corps of Engineers. Also, plans for recreation and fish and wildlife enhancement were developed by these agencies jointly, in consultation with various Federal, State, and local entities responsible for these activities and resources.

Report Objectives

The primary objective of this bulletin is to respond to the enabling legislation relative to identifying a plan for improving nonproject levees in the Delta (refer to Appendix B), with specific attention to flood control, recreation, fish and wildlife habitat, cost, cost sharing, financing, land use, and related matters. This legislation asked the Department of Water Resources to submit plans to keep the Delta in essentially its present configuration.

A secondary objective is to examine and describe the uncertainties inherent in implementing a major levee rehabilitation program for preserving the Delta in its present configuration and to identify those key issues that must be addressed if any major rehabilitation plan is to succeed.

The plans presented in this report are based on information developed jointly by the Department of Water Resources and the Corps of Engineers. Initial

ISLANDS AND IMPROVEMENTS, DELTA STUDY AREA											
Island or Tract	Acres	Miles of Project Levees	Miles of Non- Project Levees	Acres per Mile of Levee	Public Roads	Gas Wells	Pipe- Lines	Trans- mis- sion Lines	Cities or Towns	Resorts	Rail- roads
Andrus	7,323	20.6	6.2	273	x	x			x	x	×
\t l as	339	0.7	3.1	89				x			
Bacon	5,546	0	14.3	388	X		X			X	
Bethel Bishop	3,520 2,169	0	11.5 5.8	306 374	x x				x	x x	
·	6,047	0	18.0	336	×					x	
Bouldin Brack	4,873	Ö	10.8	451	x					^	
Bradford	2,143	ŏ	7.4	290		x					
Brannan	7,680	6.8	3.9	718	X	x		X	X	X	
Byron	6,933	0	9.5	730	x		x	x	×	x	
Canal Ranch	2,996	0	9.5	315	x						
Coney	935	0	5.4	173							
Deadhorse	211 3,165	0	2.5 8.9	84 356	x		x	×		x	
Drexler Empire	3,165	0	10.3	362	x		^	^		x	
		_									
Fabian	6,530	0	18.8	347 388	X X					x x	
Holland Hotchkiss	4,225 3,358	0	10.9 8.4	388 400	X	x		x	x	x	
Jersey	3,471	ŏ	15.6	223	x	x	x	X			
Jones, Upper/Lower	12,153	ŏ	17.8	683	X		x			x	x
King	3,260	0	9.0	362	x	×				x	
Mandeville	5,238	0	14.3	366							
Mandeville, Little	376	0	0	0							
McCormack- Williamson	1,639	0	8.7	188		x					
4-03-4		•	12.7	449		J	J				
McDonald Medford	6,145 1,219	0 0	13.7 5.9	207		×	X				
meatoro Mildred	998	0	7.3	137			x				
Mournian	1,100	ŏ	6.8	162	x			x		x	x
New Hope	9,754	Ö	12.3	793	x	x		x	x	x	
Orwood	2,440	0	6.4	381	×		×			x	x
Orwood, Upper	1,698	Ō	4.5	377	x		X	x		X	X
Palm	2,436	0	7.8	312			X	J	x		X X
Pescadero Pico-Naglee	8,500 6,090	6.7 0	8.3 8.3	567 734	x x			X X	^		×
Ouimby	769	0	7.0	110							
Quimby Rec. Dist. 17	12,000	16.2	0	741	x			x	x	x	x
Rhode	92	0.2	ŏ	0	,,			**			
Rindge	6,844	Ō	15.7	436							
Rio Blanc o	667	0	3.2	208							
Roberts, Lower	10,600	0	17.0	624	x	x	x	x	x	×	x
Roberts, Middle	13,687	6.3	2.0	1,649	X	X	x	X			×
Roberts, Upper	8,260	10.3	4.2	570 304	X X		x	x			
Sargent-Barnhart Sherman	1,214 10,420	1.5 9.7	2.5 9.8	534	×	x	x	×		x	
Sh ima	2,394	0	8.1	296				x			
Shin Kee	1,074	0	1.9	565	x			-			
Staten	9,088	0	25.5	356	X	x					
Stewart	4,700	16.5	0	285	X			x	X	X	X
Terminous	10,470	0	16.1	650	x	x			×	X	x
Twitchell	3,633		9.5	303	x	x				u	J
Tyler	8,583		10.7	372	X	x		J		x	x
Union Veale	24,951 1,298	1.2	28.8 5.7	832 228	X X			X X			
Venice	3,220		12.3	262	^			*			
Victoria	7,250		15.1	480	×		. х				
Walnut Grove	652		2.0	225	x		~		x	x	x
Webb	5,490	0	12.8	429							
Woodward	1,822	0	8.7	209			x				
Wright-Elmwood	2,121	0	6.8	312	x			X			
TOTAL	289,534	112.3	537.3								

findings of the Corps of Engineers from this joint study are reflected herein and presented in detail in the draft federal report entitled, "Sacramento-San Joaquin Delta, California -- Draft Feasibility Report and Draft Environmental Impact Statement", completed in October 1982. That report, which has detailed appendices of technical data and analytical procedures, describes alternatives, plan formulation criteria, and the extent of federal interest in participating in Delta levee rehabilitation.

Accordingly, this report summarizes information and uses the same basic alternatives as presented in the Corps of Engineers' draft report, but it does not repeat the detailed data and analysis published by the Corps. It does, however, include supplemental analysis on non-Federal financing, cost sharing, and other matters not included in the Corps' report. (The Department's letter comments on the Corps' draft feasibility report are presented in Appendix C.)

			G.	
i.				

Chapter 3. LEVEE PROBLEMS

The Delta has experienced a long history of levee failures resulting in substantial economic loss. To understand the nature of these levee failures and related problems it is first necessary to review briefly the history of Delta reclamation and the nature of its soils, floods, and related factors.

Reclaiming the Delta

The long and costly process of reclaiming the lands of the Delta began in the California gold rush era of the early 1850s. The population influx created a demand for food, which in combination with the fertile Delta soils, a convenient water supply, and shallow draft shipping to Central California markets created the incentive to reclaim and farm the Delta. Settlers first constructed low barriers of earth on the higher "natural levees" formed by deposits during previous floods. These low barriers, called "shoestring levees", were built primarily to keep tilled soil from washing away.

Settlers rarely tried to prevent high tides from easing water over the lower portions of their land. Exclusion of tidal water awaited complete enclosure of the tracts.

The Federal Swamp and Overflow (Arkansas) Act of 1850 provided for title transfer of the wetlands from the Federal Government to the states. In 1861, California established a State Commission to facilitate reclamation for landowners. It was not, however, until 1868, when the responsibility for carrying out reclamation was turned over to landowners and their reclamation districts, that reclamation began on a large scale. Sherman Island is the site of the first coordinated levee system; this took place in 1868-69.

The first levees were built with two purposes in mind. Levees built around the islands of the central Delta were intended primarily to exclude tidal water from the tracts underlain by peat; those built along the sedimentary banks of the rivers were expected to protect the reclaimed land, not just from high tides, but against all but the highest flood stages as well.

Levee work was primarily done by Chinese laborers teamed to handle four basic tasks: dig with an iron spade; fork and shovel peat blocks into wheelbarrows; push the wheelbarrows along planks; and lay the embankment.

Between 1871 and 1879, most of the tracts of swamp and overflow lands were enclosed by a levee system. Although considerable land was cleared for crops, much of it was used for pasture. At that time, about 47 square miles of marsh between Venice Island and Middle Roberts Island remained unleveed. About 100 square miles of the central Delta's peaty tracts that had been leveed were abandoned to the tides by 1875. During the 1870s, all but one tract (near Courtland) experienced flooding. The development of dredges to build levees more quickly and at greatly reduced cost helped to reclaim most of the Delta marsh between 1880 and 1916. By 1930, all but minor areas of the swamplands had been leveed and were producing a wide variety of crops.

Although dredges have replaced hand labor in levee construction, the two techniques have some things in common. Neither is susceptible to a rigorously applied engineering approach, and both methods evolved over time on a trial and error basis. In fact, because of the unstable and widely varying character of peat soils, engineers have been unable to develop rigorous technical approaches

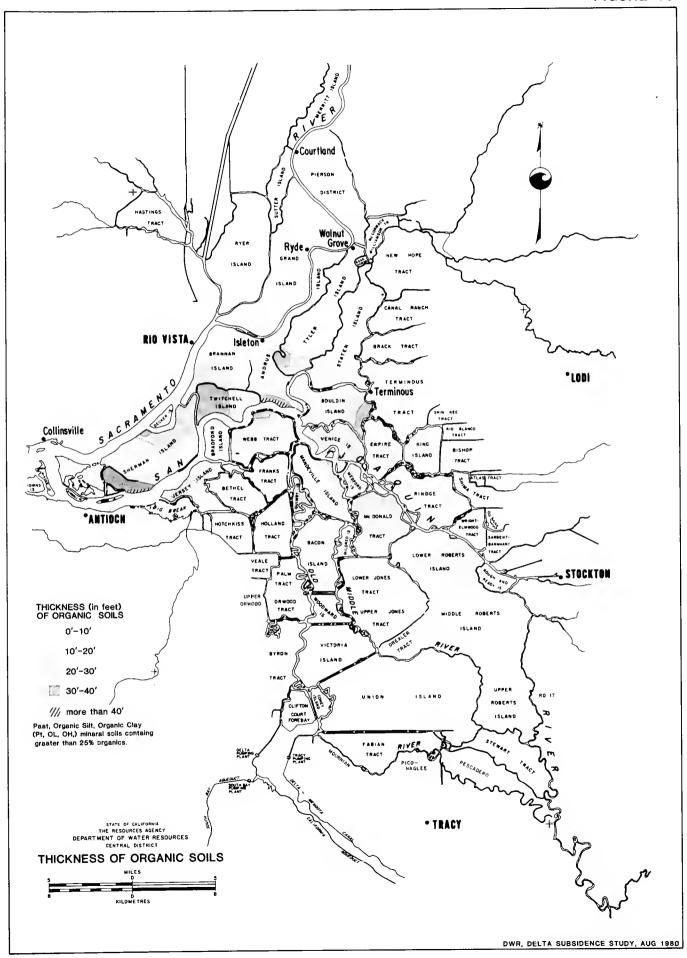
to Delta levee design and construction. There are modern examples of "engineered" Delta levees that have taken years to stabilize (or have never stabilized) following construction. U. S. Army Corps of Engineers has been unable to turn over some levees along the Yolo Bypass to non-federal interests for operation and maintenance because they continue to sink and must be reconstructed or raised almost annually. Department of Water Resources is having similar experience on relatively short reaches of levee in the Suisun Marsh at Roaring River Slough, where the levees overlie 60 feet of peaty soils.

A research paper, "Discovering and Rediscovering the Fragility of Levees and Land in the Sacramento-San Joaquin Delta: 1870-1379 and Today", was prepared by John Thompson, Professor in the Department of Geography, University of Illinois, and was published by the Department of Water Resources in March 1982. This paper, available at the Central District office of the Department, presents information about early efforts to construct levees in the Delta.

Soils

Delta soils are typically organic, mineral, or a mixture of both. The organic soils are largely composed of or derived from peat, which is thickest in the western and central portions of the Delta, where it reaches a maximum depth of more than 50 feet at Sherman and Andrus Islands. Mineral soils (sand and silt) occur along the margins of the Delta and as channel and natural levee deposits. Figure 10 shows the distribution and thickness of organic soils, defined as peat, organic silt, organic clay, and mineral soils with more than 25 percent organic material.

The physical and chemical properties of the organic soils make them susceptible to oxidation, anaerobic decomposition, wind erosion, and flammability. These properties create continual subsidence problems. Peat areas of most islands subside at average rates of from one to three inches per year (refer to Table 7).


Table 7

THEOR	THEORETICAL DEPLETION TIMES OF ORGANIC SOILS								
Island or Tract	Estimated Maximum Thickness of Organic Soils (in Feet)		Estimated* Time Until Depletion (in Years)						
Andrus	53	1.6	>200						
Bacon	18	3.0	72						
Bethel	10	1/0							
Bouldin	31	3.0	124						
8rack	12	1/0							
Bradford	20	1.6	150						
Brannan	29	1.6	>200						
Byron	5	1.6	38						
Coney	4	1.6	30						
Empire	18	1/0							
Fabian	1/0	_ 							
Holland .	24	3.0	96						
Hotchkiss	16	1/0							
Jersey	30	3.0	120						
Jones, Lower	13	2.9	54						
Jones, Upper	8	2.9	33						
King	5	1/0	146						
Mandeville	34	2.8	146						
Medford	22 1/0	3.0	88						
Mildred	1/0 1/0								
McDonald	1/0	1.6-3.0	56-105						
Orwood Palm	10	3.0	56-105 40						
Ouimby	1/0	1.6	40						
Rindge	16	1.1	175						
Roberts, Lower		1.6	128						
Sherman	I/D	3.0							
Terminous	1/0								
Twitchell	40	3.0	160						
Tyler	40	3.0	200						
Northern Par	t 32	1.6	>200						
Southern Par		4.6	83						
Union	6	1/0							
Veale	2	1.6	15						
Venice	30	3.0	120						
Victoria	7	3.0	28						
Webb	33	3.0	132						
Woodward	16	3.0	64						

I/D = Insufficient Data

*Assumes all subsidence is due to loss of organic soils. Estimates are theoretical. They are computed by dividing estimated maximum organic soil thickness by estimated subsidence rates. Actual depletion times may be considerably different, depending on such variables as earth movement. land leveling, soil importation, irrigation practices, and flooding.

About 80 percent of the shallow subsidence of the organic soils is due to oxidation. Figure 3, in Chapter 1, shows the location of lower land surface elevations throughout the study area. Recognizing that before reclamation, the surface elevation of organic soils was about sea level, the magnitude of negative elevations (that is, elevations below sea level based on 1978

topography) is an approximate measure of the maximum amount of subsidence that has taken place on each island since initial reclamation. Limited available data seem to indicate that most Delta subsidence is shallow and related to depletion of the organic soils rather than deep-seated regional subsidence. (Experts do not agree on whether tectonic subsidence is occurring. If it is, the rate is very small in comparison to other causes.)

Thus, the depletion of organic soils is a major controlling factor in determining the future of the Delta. For islands within the study area, the theoretical depletion times for total loss of organic soils are shown in Table 7. The depletion times include the assumption that all subsidence is due to loss of organic soils, and that there have been no corrective measures or changes in farming practices to retard subsidence.

Complete depletion of organic soils would not necessarily be adverse to Delta farming, but it may reduce farm income, leaving less money for levee maintenance. Depletion would probably signal the end of shallow subsidence. Organic soils in some of the southern and eastern portions of the Delta have already been depleted.

Shallow subsidence is probably the most troublesome problem in preserving the Delta levees. As explained in later chapters, such subsidence is at least partially controllable by changing farming practices, including restriction of cultivation. Conceivably, this could be done in areas immediately adjoining the levees to help maintain stability. However, this has not been proven by testing.

Flood Protection

About 40 percent of all the natural runoff of California is carried by

rivers of the Central Valley Basin that flow into the Delta and then to the Pacific Ocean via San Francisco Bay.

Historical floodflows of the Sacramento and San Joaquin River systems have been estimated to be in excess of 400,000 cubic feet per second. Ironically, reclamation of the Delta created part of its own flood problem — for every tract of land leveed there was correspondingly less flood plain over which the excess flows from the Central Valley rivers could spread.

Under the Delta's present configuration, the major factors influencing high water stages are a combination of high flows, high tides, westerly winds, and low barometric pressure. Historically, the highest stages have occurred during December through February, as have most levee failures. Figure 1, in Chapter 1, shows the islands and tracts that have flooded since 1930 due to structural failure and overtopping.

While construction of upstream reservoirs since the middle 1940s has reduced the threat of overtopping, Delta levee failures continue to be a serious problem, and seem to be occurring with increased frequency. Since about 1950, levee failures have been twice as likely to be caused by foundation or levee instability than by overtopping (see Table 8). These types of failures are caused by the unstable nature of the organic soils and by the subsidence of the interior island land surfaces, which results in greater continuous hydrostatic forces on the levees.

If levees that fail are not repaired, large areas in the Delta could become like Franks Tract, Big Break, and Lower Sherman Island, where portions of the levees have washed away, causing the flooded islands to become part of the open water surface of the estuary. Much of the destruction of these former levees was caused by wave action on the unprotected interior levee slopes.

DELTA LEVEE FAILURES, 1950 THROUGH 1982

Island or Tract	Oate of Failure	Water Level (feet)	Levee Crest (feet)	Island Floor (feet)	Original Thickness of Peat (feet)	Probable Type of Levee Failure
Venice	3 Dec 1950	+ 4.2	+ 8 <u>+</u>	-10 <u>+</u>	22 <u>+</u>	Stability
Stewart	5 Dec 1950	+22.9	+22+	7 <u>+</u>	0	Overtopping
Reclamation District 17	7 Dec 1950	-	-	-	0	Overtopping
Pescadero	1950	-	-	-	0	Overtopping
Webb	2 Jun 1950	+ 6.1 <u>+</u>	+ 8.3 <u>+</u>	-10 <u>+</u>	30 <u>+</u>	Stability
Quimby	26 Dec 1955	+ 6.3	+10+	-10 +	20+	Stability
Empire	26 Dec 1955	+ 6.8	+ 7.5	-10	20 <u>+</u>	Stability
New Hope	Dec 1955	-	-	-	0	Overtopping
McCormack-Williamson	4 Apr 1958	-	-	-	0	Overtopping
Dead Horse	4 Apr 1958	-	-	-	0	Overtopping
Canal Ranch	5 Apr 1958	-	-	-	10 <u>+</u>	Overtopping
Sherman	20 Jan 1969	+ 5.1	+10.5 <u>+</u>	-10	50 +	Stability
Mildred	16 Feb 1969	+ 6.0	9.0	-10 <u>+</u>	22+	Stability
Andrus-Brannan	22 Jun 1972	+ 3.2	+13	-15	35 <u>+</u>	Stability
Webb	18 Jan 1980	-	-	-	30 <u>+</u>	Stability
Holland	18 Jan 1980	-	-	-	30 <u>+</u>	Stabil/Over
Dead Horse	21 Feb 1980	-	-	-	0	Stability
Jones, Lower	26 Sep 1980	-	-	-	30 <u>+</u>	Stability
McDonald	23 Aug 1982	- 0.1	9+	-15	30 <u>+</u>	Stability
Venice	30 Nov 1982	6.1 <u>+</u>	8 <u>+</u>	-15	40 <u>+</u>	Unknown

Notes: Water level elevation at time of failure estimated from nearest gage. Highest level on day of failure used if time of failure not known. Elevation datum is mean sea level.

Levee crest and island floor elevations estimated from topographic maps or levee surveys. Elevation datum is mean sea level.

. Original peat thickness for island, estimated from published peat thickness map, is thickness before compression under weight of levee.

Although flooded islands would provide increased fishery habitat and water surface for recreation, there would be many adverse impacts. These impacts could include:

- Loss of fresh water by increased evaporation and possible increased need for additional Delta outflow to repel salt water from San Francisco Bay.
- Loss of agricultural production and farmsteads.
- ° Loss of wildlife food and habitat.
- ° Loss of recreational hunting use.

- ° Damage to urban development.
- Disruption of highways, railroads, and utilities.

These are the losses that stimulate the search for an effective means to protect the Delta levee system -- the essence of this report.

Water Transportation and Water Quality

In addition to providing a convenient resource of water for local agricultural, urban, and industrial water supplies and for recreational and fishery purposes, Delta channels also provide an important link in the interbasin transfer of water by the Federal Central Valley Project and the State Water Project. Water released from upstream Federal and State storage reservoirs — Clair Engle, Shasta, Oroville, and Folsom — flows down the Sacramento River into the network of channels of the Delta, and then to the export facilities of these two projects located in the southern Delta. The levees, of course, confine the water to these channels.

During low flow periods, the Delta is subject to ocean saltwater intrusion by tidal action through San Francisco Bay. Ocean salinity intrusion is controlled during such periods by creating a hydraulic barrier (a flow of fresh water to repel the salt water) from releases of water stored from upstream Central Valley Project and State Water Project reservoirs. State policy requires that the Delta must be protected before any water is exported, and as a condition of State water rights for these two projects, water quality criteria established by the State Water Resources Control Board must be met. During periods of high uncontrolled runoff, the hydraulic barrier pushes ocean salinity far to the west, allowing these criteria to be met without releases from project reservoirs.

Potential Short Term Problems

If a large island floods during an extended low-flow period, there is a potential for excessive salinity intrusion into the Delta that will degrade the water supply for both local use and export. For example, on the first day of summer in 1972, the Andrus Island levee broke, flooding about 13,000 acres

of Andrus and Brannan Islands. The sudden levee failure, followed by the rapid flooding of the islands, disrupted the hydraulic barrier and caused a large amount of water to flow upstream in the San Joaquin River. The flow averaged about 35,000 cubic feet per second for two days and drew saline water into the Delta from Suisun Bay. By June 24, salinity (chloride content) increased from about 250 to 1,500 parts per million at Jersey Point and from 125 to 750 parts per million at Franks Tract.

Within hours of the break, State Water Project intake gates at Clifton Court Forebay were closed and the Central Valley Project pumps at Tracy began cutting back, reducing exports over a 35-day period. Releases from Folsom, Oroville, and Shasta reservoirs were increased, nearly tripling the rate of Delta outflow for the next 10 days. About 23,000 acre-feet* of extra water in addition to the amount inundating Andrus and Brannan Islands was released to restore salinity to its prebreak level in the western Delta, after which normal Delta outflows were once again effective in holding out saline waters. A portion of this outflow came from water pumped out of the island lake after the levee was repaired. Thus, most of the water first used to flush the salts was recovered.

However, even with the reservoir releases, a large block of salt water remained trapped in the central Delta and had to be removed over the next several weeks by local diversions and by pumping at the Federal and State export facilities. During this process salinities in the southern Delta continued to climb to about four times their prebreak values. Chloride content peaked at about 400 parts per million at the Rock Slough intake to the Contra Costa Canal

^{*}This figure is substantially less than the estimate appearing in the Corps of Engineers' draft report. The new figure was derived during a reanalysis of the Andrus-Brannan situation prompted by a need to develop benefits for cost allocation purposes.

and at about 280 parts per million at Clifton Court Forebay. (The limit recommended by the Public Health Service for drinking water is 250 parts per million chlorides.) This salty Delta water was blended with fresh water from East Bay Municipal Utility District's Mokelumne River Aqueduct, Del Valle Reservoir, and San Luis Reservoir, providing water of usable quality for most export water users. Some users, where such blending was not possible, had only the salty Delta water.

Short term water quality problems do not occur if a levee breaks during winter periods of high floodflow. Nor do water quality problems necessarily occur with all summer levee breaks, or at all locations in the Delta. This was demonstrated on August 23, 1982, when the west levee of McDonald Island broke, flooding about 6,100 acres. Because 1982 was classified as a wet year, requiring a relatively high level of controlled Delta outflow during the summer under State Water Resources Control Board Decision 1485, and because even higher Delta outflows were being made for a special test for the Department of Fish and Game, very little salt water was drawn into the Delta and the quality of water supplies was unaffected.

Potential Long Term Problems

Long term water supply problems could occur if a Delta levee were to break and an island allowed to remain flooded, and if no other remedial action were taken. Water loss through evaporation of an inundated island exceeds the consumptive use of irrigated agriculture over the same area. This would require the State Water Project and Federal Central Valley Project to make greater releases of stored water to meet Delta needs before any water could be exported, thereby reducing the yield (water for project purposes) of the projects. However, remedial measures, short of full restoration of an island, that would nullify

this loss of yield are possible. Such measures will be discussed in Chapter 8 of this bulletin.

Increased salinity intrusion and additional outflow needed to control it might be a problem if certain islands in the western and southwestern channels were to remain flooded, and if no remedial measures were taken. While there would be no significant increase in the total amount of water entering the Delta as a result of rising tides, there could be a significant change in tidal flows in channels in the immediate vicinity of the breached levee. This could tend to increase the local tidal dispersion (mixing action) or reduce the salinity travel path, or both. The result could be twofold: (1) a greater tendency for salinity intrusion into the central Delta and project water supplies, and (2) corresponding increases in Delta outflow required to control that salinity.

An example of this was the 1980 flooding of the 4,200 acre Holland Tract, which, if left flooded, would have significantly increased the tidal flow of Dutch Slough and could have shortened the path of travel. This, in turn, would have resulted in a greater possibility of salty water being carried from the mouth of Dutch Slough (on the San Joaquin River) into Old River, and thence to the State and Federal export facilities. These problems could be mitigated by the restoration of the levees without total reclamation of the flooded island as discussed in Chapters 8 and 9.

Some investigators have mistakenly hypothesized that if an island were allowed to remain flooded, there would be an increase in the tidal prism and oscillating tidal flows in and out of the Delta, thereby increasing the potential for salinity intrusion and the need for higher outflows to control it. While it is true that with a flooded island a greater surface area is covered with water, the tidal amplitude actually

lessens so that the tidal prism remains essentially constant. This effect has been observed not only on an analog model developed by the Department of Water Resources and the hydraulic model constructed by the Corps of Engineers, but also in the Delta itself. A comparison of tides at Collinsville and Venice Island before and after the Andrus-Brannan Island flood showed a 0.7 foot decrease in tidal range at the latter point.

Future Work

The effect of a Delta levee break on water quality and supply of the Federal Central Valley Project and State Water Project water depends on the specific location of the levee break and on flow and water quality conditions. Flow conditions depend upon unregulated streamflows, upstream reservoir releases, and the specific method and magnitude of water transfer through or around the Delta. Except for the effects of increased evaporation, this makes it impossible to quantify the effects on the water export projects for a non-existent generalized case.

However, the Corps of Engineers, with assistance from the Department of Water Resources, and the U. S. Bureau of Reclamation, is performing a series of 24 hydraulic model studies for the Federal Emergency Management Agency. The purpose of these tests is to evaluate the quality impacts of certain levee failures in various sections of the Delta. To assist in establishing policy for federal aid in restoring flooded islands, the Federal Emergency Management Agency is especially interested in the long term effects on water exported from the Delta in relation to the domestic water supplies of Contra Costa County, the South San Francisco Bay Area, and Southern California. Results from these studies, however, were not available in time for use in this bulletin.

Recreation

The Delta offers a great diversity of recreational opportunities. Its 50,000 acres of water surface, nearly 1,100 miles of leveed shoreline, and abundant fish and wildlife support a wide variety of recreational activities, the most popular being fishing and boating. There are 116 private and public resorts catering primarily to anglers and boaters. The limited facilities for picnicking and swimming are heavily used. Some of the resorts are also developing additional facilities for picnicking and camping to augment the limited existing facilities. Duck and pheasant hunting is also popular in the Delta. The maze of Delta channels is especially appealing for boat cruising, and the expanse of calm water is ideal for water skiing and high-speed boating. Although some of the channels are not used extensively, other areas are congested. Competition occurs between anglers and boaters. Safety for recreationists is becoming a significant concern.

Boat wakes contribute to levee erosion, which has increased as recreational use has grown and boats have become larger and more numerous. Also, landowner complaints of trespass by recreationists onto privately owned levees and farmlands are increasingly common.

Recreation in the Delta is expected to continue to grow over time, reflecting the population growth of the San Francisco Bay, Sacramento, and Stockton areas. If the recreation potential of the Delta is to be realized, development of additional facilities and better management to control the conflicting uses and incidents of trespass are essential.

Fish and Wildlife

Although reclamation of the former marshlands has removed much of the once

lush expanses of native vegetation, the Delta remains a unique and varied habitat for a multitude of fish and wildlife species.

The largest anadromous fishery resource in California is partially dependent on environmental conditions in the Delta estuary. The most significant of these anadromous species are chinook salmon and striped bass. Other anadromous species of substantial importance include steelhead, American shad, and sturgeon. Resident warm water species include catfish, black bass, and crappie. The levees help maintain the aquatic environment necessary to the continued abundance of some of these fishery resources.

Environmental conditions for fish and other aquatic life have deteriorated in the Delta over the past 20 years due to human activity. Specific adverse conditions have been attributed to the present method of transferring water through the Delta channels for export by the Federal Central Valley Project and State Water Project. The present operation of these projects:

- Interferes with migrating salmon and other anadromous fish.
- Oraws large numbers of free-floating striped bass eggs, larvae, and tiny fish through the louvered screens at the export pumps.
- Decreases fish food supply due to the relatively high velocity flows in the channels that are used for water transfer.

These problems are not directly related to levees, and their solution is basically independent of levee improvement plans. However, if levees that fail are not repaired, large areas in the Delta could become similar to Franks Tract, Big Break, and Lower Sherman Island where the levees have washed away and the flooded islands have become part of the estuary. These flooded islands

expanded the habitat for a variety of fish, especially striped bass and catfish. However, past observations of fish utilization of flooded islands is not necessarily the best guide for the future. Because of subsidence since these early unreclaimed failures, future floodings would produce much deeper areas. These deep areas would not have the high phytoplankton production of the existing flooded islands, and thus would be of lower value to the fishery.

The Delta also provides important habitat for numerous species of water-fowl and other wildlife, including pheasant, mourning dove, 200 species of nongame birds, and 39 species of mammals, some of which support a modest trapping industry. The mammal group includes river otters, skunks, and burrowing species such as beaver, muskrat, and ground squirrels that cause serious damage to levees.

Causes or Potential Causes of Levee Failure

Levee failures continue to be the Delta's primary problem. The principal causes of levee failure are structural failure of levee materials, foundation failures of underlying soils, and overtopping by floodflows, tides, and waves. Contributing factors include poor construction materials, erosion by current and wave action, seepage through or under the levee, rodent burrows in the levees, and improper levee repairs. Lack of adequate maintenance to correct these problems on a regular basis also contributes to levee failure. Most failures are a composite of several of these causes.

Overtopping

Construction of upstream reservoirs since the middle 1940s has reduced the frequency of levee overtopping. Although in recent years failure resulting from overtopped levees has been

controlled to a large degree, the continual subsidence of a levee requires periodic application of additional material to its crown and landward slope to maintain adequate freeboard.

Another problem that may contribute to overtopping is the abnormally high tides that have recently been observed. Water year 1981-82 was one of the wettest in this century in the Central Vallev. Rio Vista tide gage has been used for years as an index of flood stages in the Delta. Tide levels at this gage are forecast daily by the River Forecast Center in Sacramento. These tides remained well above average levels during the summer of 1982. The average stage increases were not large, being around 0.5 to 0.7 foot, but nevertheless, they are of concern because of the precarious Delta levee situation.

Some preliminary analysis of the abnormal tide situation has been made, primarily to determine whether the factors involved are of a temporary or permanent nature. Indications are that there some of each.

One factor, reflecting a more or less temporary condition that has contributed to the higher than normal Rio Vista tide stages, is that larger than normal Delta outflows occurred this past summer. The primary reason is the very wet runoff season, but a minor reason was reduced export pumping by the State Water Project and Federal Central Valley Project since San Luis Reservoir storage levels were lowered to facilitate repairs. The greater outflows are believed to be the major cause of the higher tidal stages.

There are, however, two other factors believed to be contributing to Delta tide levels being higher than long-range forecasts generally indicate. These additional factors may well be permanent. They are deep-seated subsidence in the vicinity of the Rio Vista gage and increases in average ocean levels at the Golden Gate. Some tentative studies

of the latter indicate a 50-year trend of slowly rising ocean levels of 0.08 inch per year. Deep-seated subsidence at the Rio Vista gage is difficult to determine with assurance because of questions about the stability of nearby benchmarks. A very preliminary study indicates a deep-seated subsidence rate of about 0.2 inch per year. Whether this is a localized rate or typical of larger areas of the Delta is not known. Subsidence in the Rio Vista area may be partly attributable to natural gas extraction in that vicinity.

Structural Failure

Levee foundation materials in the central Delta vary; they include clay, silt, sand, and peat. In general, the inorganic materials provide adequate foundation conditions, but the peat has an extremely low density, is highly compressible, and is structurally weak. Saturated sands and silts may be subject to liquefaction, resulting in decreased shear resistance. Liquefaction involves a temporary transformation of the material into a fluid mass. Soil logs from exploratory drill holes along the alignment of some levees show that the peat in the foundations has consolidated to about 60 percent of the original thickness, with only a small gain in shear strength. Water pressure against the levees and the weight of the levee can cause this low-strength foundation material to move laterally, causing a levee failure.

Differential foundation settlement may be another cause of levee failures, particularly where levees are founded on peat that abuts old, narrow river channels or sloughs filled with clay and sand. The clay-, silt-, and sand-filled channels consolidate little compared to the surrounding peat. Cracks may develop in the levee above the old channel sediment-peat contacts, causing levee failure. Although the actual cause of the levee failure has not been determined, both the 1980 failure of the

Santa Fe Railroad embankment that separated Upper and Lower Jones Tracts and the 1982 failure of McDonald Island levee were near such old channels.

Since 1950, incidents of levee failure due to foundation or levee instability have doubled. Structural failures are often preceded by a localized partial failure involving 200 to 1,000 feet of levee. Partial failure includes settlement of the levee and the formation of cracks and sinkholes in the landward levee slope. Unless repair is immediate, the condition may become worse until the levee completely fails.

Caution must be used in placing extensive new fill, particularly saturated dredged material, on levees composed of or founded on organic soils. The additional weight, especially when the levees are saturated from winter rains or high water levels, can increase the chances of failure. Dredge operators should be careful not to undermine the waterside toe of the levees. should also avoid digging into coarse sand lenses in channel bottoms that could open new routes for seepage. Indeed, some levee failures may have been stimulated by levee repair work, as they occurred at sites where there had been recent or ongoing repair. The 1972 Andrus Island, the 1980 Jones Tract, and the 1982 McDonald Island failures are examples of this possibility.

Subsidence

Subsidence contributes to structural failure. As subsidence of peaty soils in the interior of the islands continues, water pressure on the levees increases. This sometimes causes a section of levee or its foundation to fail, with subsequent flooding of an island. Results of an analysis by the Corps of Engineers indicate that there is likely to be two to three times the number of structural failures as a result of subsidence during the next 30 years, compared to the last 30 years.

Seepage

The elevation difference between the higher channel water surface and the lower ground surface of many Delta islands causes a continual seepage of water through the levees from the channels to the interior of the islands. Seepage tends to increase with time as land subsidence lowers the island ground surface, which continues to increase the water pressure on the levees. This seepage can cause levee instability, loss of agricultural production, and higher power costs for drainage pumps.

Levee instability can result from saturation and from removal of levee material by water seeping through the levee. In some instances, saturated soils extend 1,000 feet into the islands. Visible flows occur in some places at the levee toe and in the toe drain ditches. As a result of these flows from adjacent channels, small ponds have been created on some islands. If seepage (and ground water) were not removed by pumping, seepage would soon fill the island to channel levels.

Rodent Burrows

The Delta provides abundant habitat, including marshlands, berms, and levees, for rodents. Rodent burrows, particularly those of beaver and muskrat, can threaten the integrity of a levee. Burrows in levees can weaken the levee section and contribute to levee failure by increasing the potential for "piping" -- the washing away of levee material by seepage through a levee. Vegetation on levee slopes makes it difficult to detect rodent burrows. some areas where excessive vegetation (such as dense stands of bamboo or blackberry vines) occur, it is impossible to detect such burrows. Moveover, properly managed vegetation can reduce rodent problems.

Erosion

The waterside slopes of Delta levees are subjected to varying erosional effects from channel flows, tidal action, wind-generated waves, and boat wakes. The accelerated growth in recreational use in recent years by pleasure boaters, anglers, and water skiers has intensified this erosion.

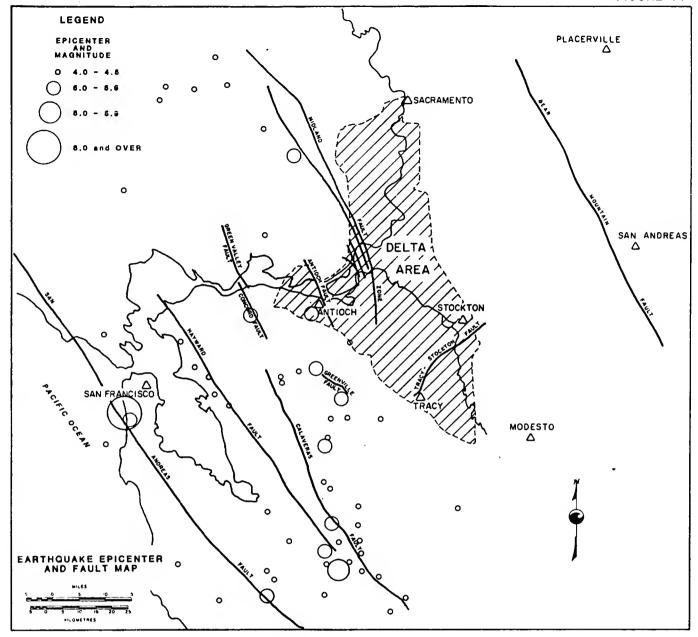
The U.S. Geological Survey* found that about 20 percent of the annual energy dissipated against the levees could be attributed to boat-generated waves in a typical narrow channel subject to both winter floodflows and heavy boat traffic. In a channel relatively unaffected by winter floodflows, energy dissipation from boat-generated waves ranges from about 45 to 80 percent of the total, depending upon wind movement and other factors.

Erosion is often alleviated by placing rock revetment on the waterward levee slope, usually with rock hauled in by barge from outside the Delta. Chunks of concrete or other material obtained locally are sometimes used. Placement of revetment can cause, as well as alleviate, levee problems. The rock does not always remain in place on the slopes, thus causing unexpected erosion if not repaired. In addition, the added weight of rock can cause subsidence or slumping of levee fill or overload the foundation and thereby contribute to a structural failure.

By absorbing the energy of windgenerated waves and boat wakes, a berm on the waterside of a levee does much to prevent erosion. Many Delta levees were originally constructed so as to provide a berm. In most cases, however, the berms have not been adequately protected, and these buffers between the main channels and the levees have been lost.

Vegetation on levees may be desirable or undesirable with regard to erosion. Certain types of vegetation (such as tules or rushes) on levee slopes can help to slow erosion. However, the continual wave action at normal water levels frequently undercuts inappropriate types of vegetation at the waterline, and progressive caving eats into the levee slope. In some places, dense stands of vegetation (bamboo, blackberry vines, etc.) can also screen the view and make it difficult or impossible to detect problem areas.

Other methods of erosion control that have been considered include timber mattresses, bulkheads, concrete paving, grouted riprap, sheet piling, and fabrics such as open nylon and vinyl mats and rayon filter materials. For most levee erosion situations, nothing has been found that is as effective as rock revetment.


Seismicity

California is one of the most seismically active areas of the continental United States. Three major active faults, the San Andreas, Hayward, and Calaveras, are immediately west of the Delta and several significant faults underlie the Delta (see Figure 11). These faults have been studied in detail by the Department of Water Resources, the Division of Mines and Geology, and the U. S. Geological Survey.

Because these faults have a potential for damaging Delta levees, the Department conducted a seismicity hazard study** of the Delta as part of the joint Delta Levees Study with the Corps.

^{*} U. S. Geological Survey, Water Resources Investigations 28-74, "Evaluation of Causes of Levee Erosion in the Sacramento-San Joaquin Delta, California", 1975. **Department of Water Resources, Central District, "Seismicity Hazards in the Sacramento-San Joaquin Delta", October 1980.

FIGURE 11

The seismicity hazard study concluded that no Delta levee failures are known to be directly attributable to earthquakes, but that a major earthquake in the area today could cause serious damage. There are two reasons for this. First, there have been no serious damage-causing earthquakes in the Delta area since the San Andreas fault ruptured in 1906 (Richter magnitude 8.3)*. Second, the few levees in existence at that time were much lower and subject to much less hydrostatic water pressure.

Earthquakes can cause a number of problems for levees, including liquefaction and settlement. These two factors are of particular concern in the Delta, where levees are founded on and constructed with unconsolidated peat and inorganic soils of low density, low shear strength, and high moisture content. The hazards become greater as the levees are raised to counteract continued land subsidence. Even without another 1906 magnitude earthquake, the Antioch fault earthquake of 1965 (Richter magnitude 4.9) and the Greenville fault earthquake of 1980 (Richter magnitude 5.8) emphasize the potential for higher earthquake magnitudes and the need to consider seismic forces as a potential cause of levee failure.

The Department of Water Resources reviewed the Midland fault because it crosses the central Delta and several recent levee failures are near it, suggesting a possible correlation. The fault was reported to be active and capable of producing a Richter

magnitude 7 earthquake.** However, several more recent studies by the Department and by the Division of Mines and Geology*** conclude that it is inactive, and there is no geologic evidence that the Midland fault is active or has been active for about 20 million years. The Department plotted all earthquake epicenters and recent levee failures in the Delta and superimposed them on a geologic map. There is no apparent correlation between levee failures, epicenters, and the Midland fault.

Levee Maintenance

Maintenance on nonproject levees is performed by many individual districts and landowners. The quality of maintenance varies according to the practices followed by the maintaining entity and does not comply with any set of uniform standards. In some areas, heavy vegetation is allowed to grow on the levee slopes, making it difficult to observe seepage areas, damage by erosion, rodent burrows, cracking, and settlement of organic soils of the levees and their foundations.

Marinas are expanding and boating is increasing, creating additional levee erosion problems. The boating interests are not contributing funds to pay for the added maintenance costs they cause.

Indeed, an argument could be made that a higher level of inspection and repair is needed in the Delta than in other areas

^{*} Richter magnitude of an earthquake is a rating that measures the energy released during the earthquake. The logarithmic Richter scale means that for every upward step of one magnitude unit, there is a 32-fold increase in energy release.

^{**} Greensfelder, Department of Conservation, Division of Mines and Geology.

^{***}Department of Water Resources, "Revaluation of Seismic Hazards for Clifton Court Forebay, Bethany Dams and Reservoir Patterson Reservoir, Del Valle Dam and Lake Del Valle", July 1979.

Department of Water Resources, "Los Vaqueros Offstream Storage Unit, Engineering Feasibility". July 1981.

California Division of Mines and Geology, "Fault Evaluation Report FER-133", July 30, 1982.

because of the severity of the problems. Unfortunately, present practices lead to "deferred maintenance", a condition requiring periodic major levee rehabilitation when conditions become intolerable. In the interim, such deferred maintenance can contribute to levee failure.

In October 1980, following six levee breaks that year, the Department of Water Resources visually inspected non-project levees around 52 islands and tracts. Corps of Engineers maintenance standards generally used for project levees were used as a guide to assess the general condition of these levees and to identify sites that could cause problems during the 1980-81 flood season. More than 500 potential problem sites were identified. Of the 52 islands, 4 were rated "very poor", 28 were rated "poor", and 20 were rated "fair"*.

During the inspection, dense vegetation, particularly blackberry vines and bamboo, prevented adequate inspection of some levees. About half of the levee slopes were clear enough to allow good visual inspection. Another quarter had sparse vegetation and provided for fair visual inspection. The rest were so heavily covered with wild growth that inspection of the levees was precluded.

Beginning in 1973 with passage of the Delta Levee Maintenance Act (Way Bill), the State has provided some financial assistance to local reclamation districts for routine annual maintenance. However, funds available at both the State and local levels remain well below those needed to upgrade levee maintenance throughout the Delta to an acceptable standard.

Although information on expenditures for maintenance and rehabilitation of levees in the Delta is sparse, available information shows substantial levels of expenditure. Information on annual maintenance and rehabilitation expenditures from 1973 through 1975 for about 30 percent of the nonproject levees was averaged. This indicates the general range of these expenditures during a period that did not include substantial Federal and State financial assistance programs. Following the 1980 flood disasters, financial assistance was provided to 43 islands and tracts under two federal programs administered by the U. S. Army Corps of Engineers or the Federal Emergency Management Agency, plus a State program administered by the Office of Emergency Services. In addition, financial assistance under the State's Delta Levee Maintenance Subventions program reimbursed part of the maintenance and rehabilitation costs incurred during fiscal year 1981-82 for 27 islands and tracts.

To compare these expenditures with the money spent recently by maintaining agencies that participated in Federal and State financial assistance programs during 1980-81, these averaged 1973-1975 values were multiplied by a factor of 2.0 to revise the price index from 1974 to 1981. The general range of these expenditures is summarized in the following tabulation:

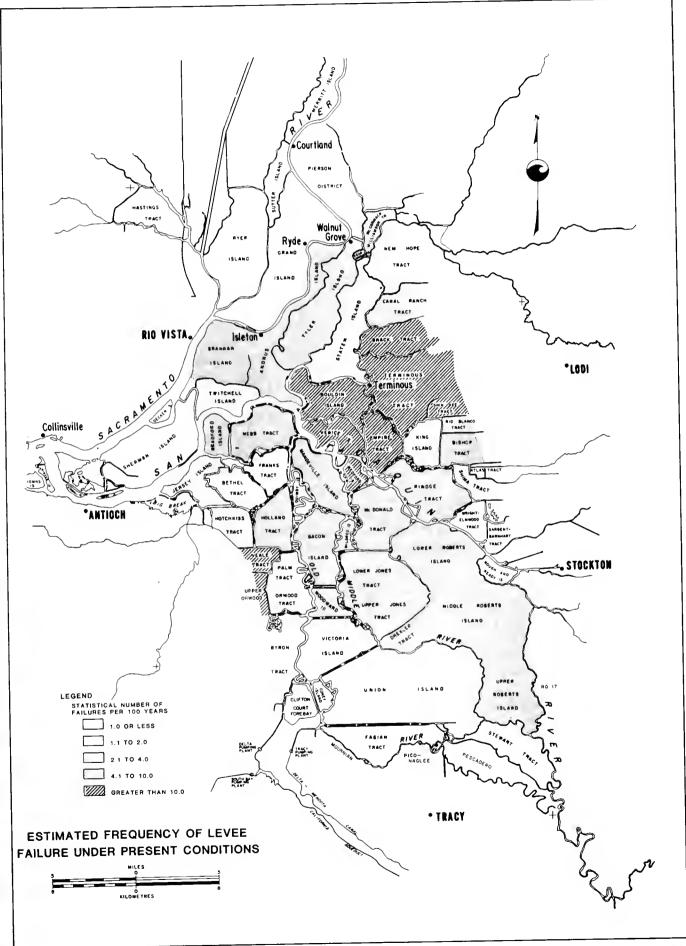
Without Assistance Programs

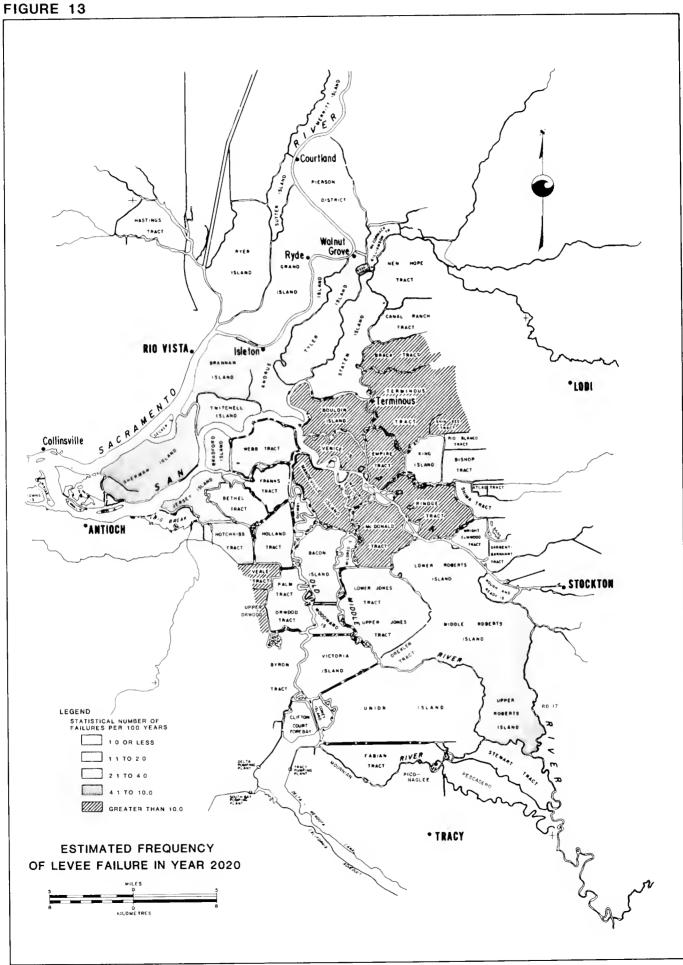
\$4,500 to \$14,500/mile \$10 to \$50/acre

With Assistance Programs

\$9,500 to \$24,000/mile \$20 to \$60/acre

^{*}Department of Water Resources, "Findings and Recommendations Based on the Inspection of Delta Levees During October 1980", December 1980.


Levee Failure Evaluation


As part of the joint Delta Levees Study, the Corps of Engineers evaluated the historical, present, and future frequency of levee failure. While construction of upstream reservoirs since the middle 1940s has reduced peak floodflows, and thereby the number of failures due to overtopping, failures due to levee instability have increased and will probably continue to increase due to subsidence of the island floors, which increases the hydrostatic pressure on the levees. The detailed procedures and results of analyses of frequency of failure due to overtopping and failure due to levee instability have been published by the Corps of Engineers as supporting material to its draft feasibility report on Delta levee rehabilitation. The statistical frequency of levee failure from a combination of overtopping and instability for islands and flood plains in the study area under both present and future conditions (without a levee improvement project) is summarized in Table 9. The estimated frequency of failure is generalized in four categories in Figure 12. Figure 13 shows frequency of failure 40 years in the future assuming no major rehabilitation program.

Levee conditions as presented in the Corps' study are based on levee data collected in 1974. While some levees have been improved since then, others may be in worse condition, but from a statistical point of view, the analysis provides an adequate basis for a feasibility study.

T	а	h	le	9	

STATISTICAL FREQUENCY OF LEVEE FAILURES PER 100 YEARS								
<u>Island</u>	Exist- ing	After 20 Years	After 40 Years	After 60 Years	After 80 Years			
Andrus-Brannan	4.64	6.81	6.99	7.01	7.01			
Atlas	0.65	0.66	0.70	0.79	0.94			
Bacon	5.63	7.25	8.77	10.09	11.19			
Bethel	0.20	0.86	1.91	3.40	4.29			
Bishop	5.67	6.04	6.23	6.26	6.29			
Bouldin	18.25	18.25	18.25	18.25	18.25			
Brack	13.00	13.25	13.44	13.48	13.51			
Bradford	5.00	5.92	6.29	6.53	6.59			
Byron	0.13	0.46	1.02	1.65	2.51			
Canal Ranch	5.22	6.50	7.13	7.57	7.79			
Coney	1.42	1.87	2.43	2.76	2.89			
Dead Horse	5.08	5.12	5.28	5.44	5.63			
Empire	12.22	14.08	14.85	15.32	15.63			
Fabian	Neg.	Neg.	Neg.	0.01	0.20			
Holland	4.17	5.68	7.89	9.12	9.82			
Hotchkiss Jersey Jones, Roberts,	2.80 3.49	3.77 5.72	4.46 7.30	5.26 8.22	5.59 8.80			
Orexler	6.65	8.05	8.68	9.21	9.36			
King	3.91	4.88	5.69	6.29	6.49			
Mandeville	6.85	10.04	11.36	11.61	11.65			
McCormack- Williamson McDonald Medford Mildred New Hope	5.03 7.65 16.90 4.06 1.82	5.19 9.82 17.03 4.81 2.41	5.51 11.04 17.07 5.34 3.44	5.95 11.53 17.07 5.56 4.72	6.51 11.82 17.07 5.68 5.45			
Orwood	0.16	0.69	1.19	2.11	3.07			
Orwood, Upper	11.78	12.19	12.54	12.84	13.13			
Palm	3.87	4.27	4.46	4.50	4.56			
Pescadero	0.94	1.40	1.80	2.13	2.46			
Quimby	2.84	3.81	4.82	5.70	6.21			
Rindge	7.14	9.56	11.47	12.44	13.01			
Rio Blanco	3.52	3.69	4.01	4.39	4.71			
Sargent-Barnhart	1.30	1.36	1.49	1.72	1.95			
Sherman	1.54	5.33	7.16	7.26	7.26			
Shima	2.21	3.71	4.99	5.38	5.70			
Shin Kee	13.08	13.17	13.32	13.45	13.56			
Staten	2.19	4.33	7.44	10.50	11.99			
Stewart	0.94	1.40	1.80	2.13	2.46			
Terminous	15.40	16.79	17.19	17.41	17.79			
Twitchell	2.85	4.76	4.91	4.93	4.93			
Tyler	5.17	5.94	6.37	6.79	6.91			
Union	Neg.	0.02	0.09	0.30	0.73			
Veale	12.09	13.40	13.71	13.87	13.91			
Venice	16.43	17.03	17.03	17.03	17.03			
Victoria	1.22	1.97	3.13	4.48	5.28			
Walnut Grove	0.02	0.03	0.06	0.10	0.13			
Webb	8.81	9.29	9.29	9.29	9.29			
Woodward	6.86	7.62	7.93	8.16	8.34			
Wright-Elmwood	1.31	2.14	2.93	3.36	3.58			
From analysis by U. S. Army Corps of Engineers								

Chapter 4. PLANNING AND DESIGN CONSIDERATIONS

The premise and purposes of the study are set forth in legislation enacted in 1973 and 1976 (see Chapter 2). This legislation calls for the Department of Water Resources to develop plans for improving Delta levees to preserve the Delta in its present configuration. idea that the Delta should be preserved in its present state has been further supported by public hearings conducted as a part of this investigation, and was strongly supported by a broad base of participants at a conference on the "Future of the Delta", cosponsored by the Institute of Government Affairs, the University of California at Davis, and the California Department of Water Resources, in March 1981.

Investigations and analyses conducted for this bulletin have been influenced by numerous assumptions. The major purposes of this investigation have been:

- To develop and describe a program of levee improvement to carry out the legislative intent to preserve the Delta in its present configuration.
- o To estimate the costs of such a program.
- o To identify uncertainties and difficulties inherent in such a program.
- ° To suggest other measures that may warrant further consideration.

Accordingly, technical studies, specific plans, and economic evaluations presented in this bulletin are limited to levee improvement plans, including

appropriate flood plain management elements. Various scenarios under the "no action" alternative are also discussed, but only in general terms (refer to Chapter 8).

In addition to individual levee improvement plans, the U.S. Army Corps of Engineers included in its draft report* a discussion of nonstructural and out-of-Delta alternatives, as well as cost and benefit data on "polder levees", which would enclose small groups of islands within the Delta. view of the legislative and public preference for preserving the existing physical characteristics of the Delta, these types of measures are not analyzed in this bulletin. This is in keeping with the report's format of not repeating details of the investigation published by the Corps of Engineers.

Nevertheless, it should be noted that the Department has considered various polder alternatives in previous investigations. They were described in the preliminary edition of Bulletin 76, "Delta Water Facilities", December 1960, and in "Delta Levees -- What Is Their Future?", September 1973. Unlike the Corps analysis of small polders, which shows the cost to be nearly as great as for improving individual levees, the 1973 report estimated capital costs of a system of large polders to be about half the cost of extensive improvement of individual island levees.

If financing of the projects described in this bulletin proves to be an insurmountable problem, the Legislature may reconsider its policy of preserving the existing physical configuration of

^{*}Draft Feasibility Report and Draft Environmental Impact Statement, Sacramento-San Joaquin Delta", October 1982.

the Delta. Even though Delta agriculture would be preserved, such reconsideration would have to recognize that polders would inhibit boat travel and alter the aquatic environment for fish.

Project Purposes

The following specific planning goals or project purposes were used by the Corps of Engineers and the Department of Water Resources as a guide in the formulation and evaluation of alternative levee improvement plans for preserving the physical configuration of the Delta.

- Reduce the extent of floodfight costs, property damage, threats to public safety, and loss of agricultural production resulting from levee failure.
- Reduce water quality problems related to levee failure.
- Improve recreational opportunities, when consistent with other Delta activities and resources.
- Protect and enhance fish and wildlife that would be affected by flooded islands or levee improvements.
- ° Preserve significant scenic values.

Design Considerations

To provide a basis for formulating specific plans for reducing the frequency of flooding in the Delta, numerous design issues were considered and technical studies conducted during this cooperative investigation. Many of these issues and studies focus on the degree of protection to be sought and upon the physical approaches to be taken in improving the levees. These design considerations are summarized in this section.

Levee Overtopping

Three levels of protection from overtopping were considered. These levels considered the combined effects that high floodflows, high tides, and high winds have on water stages in the Delta.

50-Year Flood: Protection against a flood with an average recurrence interval of once in 50 years was considered the minimum appropriate protection for islands and tracts used primarily for agriculture.

100-Year Flood: Protection against a flood with water stages that could be expected to occur on the average of once in 100 years was considered the minimum appropriate protection for islands and tracts with urban development. This level of protection, plus a 3-foot minimum freeboard, corresponds with minimum standards required for urban areas under the National Flood Insurance Program.

300-Year Flood: The Corps of Engineers analysis of extreme Delta inflows and water stages (as affected by high tides and wind) concluded that water stages with an average recurrence interval of once in 300 years would be appropriate to base the level of protection against overtopping for both urban and agricultural islands and tracts. Overall, the cost of providing protection against a 300-year flood is only about 4 percent more than providing protection against a 50-year flood, and was found to result in a maximum of net benefits over costs. This is because the difference in water stage between a 50-year flood and a 300-year flood is about 0.5 foot for most of the tidal dominated waters in the study area. Exceptions occur where the Mokelumne and San Joaquin Rivers enter the Delta. Stage difference between the 50-year flood and the 300-year flood at these locations is about 2 feet and 4 feet, respectively.

The design flood stage elevation, based on approximate 300-year flood levels, is:

	Design Flood Stage Elevation
	(feet above
Location	mean sea level)
Collinsville	6.8
Rio Vista	7.5
Venice Island	7.8
Stockton	7.9
New Hope	16.0
Mossdale (regulated)	23.0

Freeboard

Freeboard is the difference between the design flood elevation and the top of the levee embankment. Lack of adequate freeboard is a serious problem in the Delta. The purpose of freeboard is to insure overtopping protection from wind-generated waves and contingency factors such as higher than anticipated tides. Freeboard criteria consider the type of land use being protected (urban versus agricultural), channel hydraulics, and the highest water level expected when design floodflows, high tides, and high wind-generated waves occur simultaneously.

The minimum freeboard used for this study is 1.5 feet for levees protecting agricultural land and 3 feet for those protecting urban areas. Freeboard aliowances to withstand wind-generated waves vary throughout the Delta and depend on the expanse of open water to which the levee is exposed and on the levee orientation with respect to prevailing winds. Freeboard design criteria recognized that wind velocities in the Delta can range up to 73 miles per hour, with velocities to 50 miles per hour occurring every year. Calculations for 50 mile per hour winds indicate maximum wave heights could be 4 feet adjacent to Franks Tract and at other locations where the expanse of

open water surface ranges from 4,000 to 6,000 feet. Channels with reaches of open water surface in the range of 2,000 to 4,000 feet were calculated to have wave heights of about 1 to 2 feet.

If a levee failure occurs and the island remains flooded, with subsequent destruction of the remaining levees from interior erosion, the freeboard on adjacent islands may need to be raised because waves generated over a greater expanse of water would be higher. Because tidal range decreases by a small amount as a result of a flooded island (as noted in Chapter 3), the full effect of the increased wave height would not translate to a need for increased freeboard.

Land Subsidence

The general problem of continuing land subsidence was discussed in Chapter 3. As the island floors subside, the force of the water against the levees increases. Subsidence is a major reason for the need to increase the levee section or mass required for levee stability.

Methods to reduce land subsidence were considered in these reports:

- "Subsidence of Organic Soils in the Sacramento-San Joaquin Delta", Department of Water Resources, August 1980.
- "Causes of Subsidence in the Sacramento-San Joaquin Delta and a Strategy for Controlling Its Rate", prepared by Helen Burke for the Department of Water Resources, September 1980.

The latter report mentions four strategies for dealing with subsidence:

 Fill the subsided islands to sea level elevation with soil, dredging spoil, sludge, or compost material.

- 2. Grow crops of high biomass and plow residue into the soil.
- 3. Grow crops that have a shallow root zone, such as pasture, to reduce the depth of soil that is subject to oxidation.
- 4. Convert islands to marshes.

For the first of these strategies, the large volume of material required to fill subsided islands is not available within a reasonable distance, except for possibly one or two small islands that might be used to stockpile materials for future levee construction and for floodfight emergencies. Proposals to add fill, such as sludge from the San Francisco Bay Area, to an individual island have been considered, but water quality concerns, economics, and insufficient material have prevented implementation of this strategy.

In the second strategy, the addition of biomass material would require changes in farming practices and crop patterns. Reduction of the subsidence rate on the island floors would depend upon the rate of accumulation of plant residues in the soil, which could be relatively slow.

Conversion from deep-rooted crops to shallow-rooted pasture, as suggested in the third strategy, would lower the value of the agricultural production of the land. This approach might be part of an intermediate strategy until a comprehensive levee restoration project can be implemented. However, because of the high assessments for levee construction and maintenance, the income from pasture probably would not be sufficient to maintain a profitable farming operation along with paying a share of the costs of a levee restoration project.

Strategies that continue the primary land use as agricultural can slow subsidence rates by a maximum of only 30 percent as long as organic material remains.

Under the fourth strategy, the water table would be maintained at or slightly above the present land surface level on some islands, which would then be managed as marshes. An example of this approach is Little Franks Tract, where the State purchased the land and is managing it as a recreation and wildlife area.

Of the four strategies to control the rate of subsidence, conversion of critical islands to marshes seems to be the most effective because it greatly reduces the oxidation process of peat soils. This strategy would probably require State or Federal ownership of the islands, and was considered in developing wildlife areas as part of a fish and wildlife plan (refer to Chapter 5). However, applying this strategy on a large scale would significantly change the physical characteristics of the Delta.

Because land subsidence cannot be eliminated and still meet the objectives of this study, techniques must be sought to maintain levee freeboard while subsidence continues to its natural end. The technique selected was to follow the initial levee rehabilitation with periodic additional construction every few years to restore the subsided levees to project standards.

These future construction stages would also compensate for settlement (or subsidence) of the levees themselves, as underlying peat foundations are compressed by the increased loading. In areas of the deep peat, this process could continue for up to about 90 years after initial construction. Cost estimates and financial analyses presented in this report assume continued construction for a 50-year period. Indeed, it is not certain that levees in the deep peat could be economically designed and built to withstand the high water pressures that will prevail much more than 50 years from now.

Seismicity

The general problem of seismic forces and earthquake faults within and near the Delta was discussed in Chapter 3. Seismicity is discussed in more detail in the Department of Water Resources report, "Seismicity Hazards in the Sacramento-San Joaquin Delta", October 1980. There is no documented record of a Delta levee failure resulting from seismic activity during the most intense ground shaking in recent history, the 1906 San Francisco earthquake. This is probably because the levees were relatively low at that time; that is, the island ground levels had not subsided to the extent they have today.

Now that the island floors have subsided and are continuing to subside, the height of the levees is greater, causing increased water pressure against the levees, and a similar earthquake occurring today might have different results.

The frequency of earthquakes of significant magnitude is still a subjective estimate based on experience and judgment of experts. The design parameters for basic rock motions shown in Table 10 were used by the Corps of Engineers in evaluating the Delta levees. While the Corps' design has accounted for small earthquakes, the lack of actual experience of the impacts of earthquakes on Delta soils leaves some doubt that some levees, even after rehabilitation, could withstand an earthquake of Richter scale magnitude 5 or greater if the epicenter occurred in the Delta, or of magnitude 8 on the San Andreas or Hayward faults*.

Typical Levee Section

A typical rehabilitated levee section would consist of a 16-foot minimum

crown width with a waterside slope of 1 vertical on 2 horizontal, and a landside slope of 1 vertical on 3 horizontal, as shown in Figure 4 (in Chapter 1). Landside berms would be constructed where necessary to control seepage and to counter-balance the channel water pressure against the levee.

These typical levee sections were used to estimate costs of alternative levee improvement plans. If a plan is adopted and implemented, the specific design would be determined on a site-by-site basis.

For most levees, a construction method called "stage construction" was adopted because the strength of the foundation material in most areas is inadequate to support the entire weight of the required embankment at any one time without excessive foundation settlement, and because the levee foundations are subject to continuing subsidence. Therefore, the levee must be improved in stages. Figure 4 illustrates the stage construction method of rehabilitating existing levees.

For levees built on a new alignment, the "levee setback" method would be used. The method would only be used to protect areas of high environmental value or reaches of levees found to be unstable. As illustrated in Figure 4, this method includes excavating a foundation inspection trench along the new levee alignment, building retention dikes on both sides of the trench, and backfilling the area between the dikes with suitable material to provide a stable levee foundation. Backfilling would be with materials from the adjacent channel, if available, or from imported fill materials. The levee section, constructed later from the backfill material, would have a 12-foot minimum crown width, waterside and landside slopes of 1 vertical on 2

^{*}Richter scale is defined in Chapter 3. Epicenter is the point on the earth's surface vertically above the origin of an earthquake.

horizontal, with flatter berms. The existing levee would be left in place to protect the setback levee from wave action. The area between the two levees could be used for wildlife habitat.

The sheet pile method consists of placing steel sheet piles at the waterside crown of existing levees, as illustrated in Figure 4. A portion of the sheet pile would extend above the top of the levee and would be encased in a concrete cap to act as a flood wall and provide the required freeboard. Because of its relatively higher cost, this method was confined to areas with urban development, such as Bethel Island and Hotchkiss Tract, to avoid extensive relocation of houses and other improvements that encroach on existing levees.

It is likely that levee failures will continue during the 12- to 15-year levee rehabilitation process. Indeed, some levee failures may even be induced, or at least speeded up, by the rehabilitation process itself. The existing levees and their foundations are not composed of homogeneous construction materials for which reaction to loading can be precisely predicted or controlled. As noted in Chapter 3, differential foundation settlement may occur where levees founded on peat foundations abut levees that overlie old, narrow river channels or sloughs that are filled with clay or sand.

Differential settlement can also be anticipated where part of the newly built levee section overlies partially compacted soils under existing levees and part is placed on unconsolidated material of the island floor. This appears to be the condition that has caused cracking of the Twitchell Island levee along Threemile Slough, making it unacceptable for local interests to assume responsibility for maintenance for the last 20 years.

Thus, any decision to undertake a levee rehabilitation program implicitly

carries with it a responsibility to restore a flooded island should a levee failure occur during the rehabilitation program.

Material Borrow Sites

Based on the foregoing typical levee sections, the Corps of Engineers determined that about 55 million cubic yards of material would be required for initial and staged construction to rehabilitate the substandard levees in the study area. It was also determined that because of a general scarcity of soils suitable for levee construction within the Delta, a significant portion of the construction material would have to be imported.

The Department of Water Resources surveyed potential material borrow sites within 50 miles of the periphery of the study area and found adequate quantities of suitable material available within this distance.

All-Weather Roads for Floodfight Access

Some public roads are located on levee crowns. Under the proposed plan of levee restoration, most of the public roads would be relocated landward of the levee toe (or landward berm, when used). For levee inspection and floodfight purposes, a 12-foot stabilized aggregate roadway would be built on the crown of most rehabilitated levees.

Erosion Control Methods

Wind-generated waves, and to some extent boat wakes, are the principal cause of levee bank erosion. Erosion control methods using vegetative plantings were evaluated during the study. Although more environmentally acceptable than other control methods, survival of the plantings was generally poor. In high erosion areas, vegetation does not

SEISMIC DESIGN PARAMETERS, SACRAMENTO-SAN JOAQUIN DELTA

Fault Zone	Maximum Magnitude*	Liquefaction Radius (Miles)	Other Parameters** At:	Antioch	Stockton	Sacramento
San Andreas	8-1/4	93	Distance (miles) Max. Accel. (g's) Period (seconds) Duration (seconds)	44 0.25 0.5 20	65 0.2 0.6 7	79 0.18 0.7 3
Hayward	7	31	Distance (miles) Max. Accel. (g's) Period (seconds) Duration (seconds)	25 0.25 0.3 23	47 0.25 0.4 10	62 0.09 0.4 4
Calaveras	6-3/4	20	Distance (miles) Max. Accel. (g's) Period (seconds) Duration (seconds	18 0.25 0.3 20	39 0.1 0.4 12	59 0.07 0.4 3
Green Valley	6	5	Distance (miles) Max. Accel. (g's) Period (seconds) Duration (seconds)	15 0.25 0.2 9	0.06 0.3 2	44 0.06 0.3 2
Concord	6	5	Distance (miles) Max. Accel. (g's) Period (seconds) Duration (seconds,)	12 0.27 0.2 10	39 0.07 0.3 2	49 0.05 0.3 1
Bear Mountain	6	5	Distance (miles) Max. Accel. (g's) Period (seconds) Duration (seconds)	56 0.05 0.3 1	31 0.12 0.3 3	22 0.16 0.3 7
Greenville	5-1/2	2	Distance (miles) Max. Accel. (g's) Period (seconds) Duration (seconds)	26 0.1 0.2 3	14 0.18 0.2 5	56 0.04 0.3
Antioch	5	1	Distance (miles) Max. Accel. (g's) Period (seconds) Ouration (seconds)	1 0.2 0.2 4	28 0.02 0.2	43 0.01 0.2

Information is based on analysis by the U.S. Army Corps of Engineers. Stockton and Midland fault zones are not included in Corps analysis. Values presented are estimates of the maximum earthquake characteristics that appear capable of occurring given known or assumed seismological and geological conditions. Approximations presented are for comparative purposes only; professional opinions differ on the reliability of such estimates. Approximations presented are not intended as design criteria for structures.

^{*} Magnitude based on Richter Scale.

^{**} The shortest distance between the fault zone and the cities of Antioch, Stockton, and Sacramento is shown. Earthquake acceleration is expressed as a fraction of gravity (g). Thus an acceleration of 0.5g corresponds to an acceleration that is 50 percent of the value of gravity. Computation assumptions, local ground conditions, and other factors could either increase or decrease expected accelerations.

provide an adequate degree of erosion protection.

Some alternative levee designs, such as sheet piling and levee setback, do not require placement of erosion control features on all levees. Many levees in sheltered areas would not require erosion protection because some of these areas have less recreational boat traffic than the larger, more popular waterways. However, where needed, erosion control was predicated on using a rock blanket.

Construction practices to mitigate or reduce the adverse effect of rock revetment include:

- Retention of waterside berms and vegetation where possible.
- Reconstruction of waterside berms and allowing revegetation where feasible.
- Selective or minimum clearing to retain trees and other desirable vegetation when the safety of the levee and the hydraulic capacity of the channel are not adversely affected.

Vegetation on Levees

It is the policy of the State to maintain and enhance the environmental values of flood control project levees consistent with the primary purpose of protecting lives and property from floods. Under this policy,* the retention of levee and berm vegetation is encouraged as long as such vegetation does not threaten the flood control system. Additionally, vegetation on waterside berms and channel islands is recognized as sometimes providing a flood control benefit by protecting levees and berms against erosion.

It is anticipated that the final plan for the Delta levees could result in levees of different sizes and structural materials. This, coupled with the variable erosion hazard throughout the Delta, means that different standards for vegetation could be required to ensure the safety and protection of all the levees. Low growing ground cover is desirable in nearly all situations. Shrubs are acceptable in most situations. Trees are acceptable in controlled situations when they do not present a hazard to the structural integrity of the levee.

One of the maintenance requirements specified in the Corps of Engineers design considerations is that roots of vegetative growth must not penetrate into the basic levee structure. To minimize cost, most of the rehabilitated levees were not designed large enough to permit vegetative growth on the waterward levee slopes. The difference in policy between the State and the Corps of Engineers with regard to vegetation management on flood control levees will need to be resolved on a site-by-site basis during final design considerations.

Assumptions for Economic Analysis

Assumptions and procedures were adopted by the Corps of Engineers for the basic economic analysis in its report. In some cases, these were modified by the Department of Water Resources for this bulletin.

The Corps of Engineers made an economic analysis of the alternative plans, as required for congressional authorization of federal participation in a Delta levee restoration project. Economic justification (or lack thereof) was

^{*}Water Code Sections 12581, 12582 and 12840 through 12849. Also, State Reclamation Board "Guide for Vegetation on Project Levees", adopted December 1, 1967 [Revised: September 5, 1969; May 10, 1974; December 10, 1976; and December 18, 1981.].

established by comparing estimates of average annual equivalent flood control costs with average annual equivalent flood control benefits for a 50-year period. Costs and benefits were expressed in terms of prices prevailing in October 1981. To put costs and benefits on a common time base, a discount rate of 7-5/8 percent was used.

The "first cost" of the alternative plans includes costs for:

- Initial and future stages of levee construction (levee setback, in some cases).
- Relocations, including relocation betterments of structures and utilities.
- Acquisition of lands, easements, and rights of way, and family relocation assistance.
- ° Fish and wildlife mitigation and enhancement features.
- ° Recreation facilities.
- Engineering, design, contingencies, construction supervision, and administration.

Annual costs include interest on and amortization of the first cost, as well as annual operation, maintenance, and replacement costs associated with the plans.

Flood control benefits stemming from the alternative levee improvement plans include:

- Reduction in flood damage and crop losses due to less frequent levee failures.
- Reduction in the frequency and volume of water needed to restore Delta water

quality to meet standards after levee failures.

Reduction in expenditures for floodfights and island restoration due to less frequent levee failures.

Recreation benefits are based on estimated increased visitation as a result of new facilities and recreational opportunities. Numerical estimates of recreation benefits were based on the travel-cost method of computation, which means the estimated cost, in terms of time and travel, that people are willing to pay to participate in recreation provided by the project. Wildlife enhancement benefits were based on both direct and indirect uses associated with establishing fish and wildlife enhancement areas and the wildlife management areas.

Flood control benefits were measured by estimating the difference in damage, cost, and economic output for predicted conditions with and without the levee improvement project. Since the without-project condition is compared to the with-project condition for calculating benefits, it is important that the without-project condition be as representative of actual future conditions as possible. In the Delta, this is difficult because there are a number of uncertainties as to what conditions will prevail.

Three possible future conditions that affect both the cost and benefit sides of the economic analysis equation are:

- Whether the Peripheral Canal will be built.
- Whether, in absence of a levee improvement project, flooded islands following a levee break would continue to be restored to pre-flood conditions as they generally have been in the past.

Whether nonrestored flooded islands are maintained as reservoirs or left as open lakes.

The combination of the first two possible future conditions leads to four possible scenarios:

- Peripheral Canal in place; flooded islands restored.
- Peripheral Canal not in place; flooded islands restored.
- Peripheral Canal in place; flooded islands not restored.
- Peripheral Canal not in place; flooded islands not restored.

The Corps of Engineers analyzed the sensitivity of these four without-project scenarios on costs and benefits. This sensitivity analysis showed the first scenario -- Peripheral Canal in place and flooded islands restored -- to be the most conservative. In each of the other cases, greater net benefits and higher benefit-cost ratios would accrue from a levee improvement project. The option of maintaining nonrestored islands as reservoirs has not been analyzed. It is likely, however, that this scenario would be more conservative than scenarios three and four.

The without-project condition adopted by the Corps assumed that the Peripheral Canal would be in place and operating, and that subsequent to a levee failure, a flooded island would always be restored to pre-flood conditions. Use of these assumptions was consistent with past State legislation and policies of the State and Federal Governments.*
However, there is now a significant

probability that one or both of the Corps' adopted assumptions will prove to be incorrect.

On June 8, 1982, as the Corps draft report was being written, California voters, through Proposition 9, rejected Senate Bill 200, which would have given the go-ahead for constructing the Peripheral Canal as a part of the State Water Project. This bulletin was rewritten to make the without Peripheral Canal condition the primary basis for evaluating alternative levee improvement plans. However, this bulletin also shows the with Peripheral Canal condition at appropriate places to allow tracking the analysis in the Corps' draft report.

In addition, since the 1980 Delta levee failures, the probability of some islands to remain flooded has increased. At that time, the Corps of Engineers determined that federal Public Law 84-99 authority could not be used for federal financial assistance in repairing levees or restoring flooded islands throughout most of the Delta. The Federal Emergency Management Agency has also indicated a reluctance to participate in future flood emergency activities unless public facilities are threatened, or unless significant levee improvements are undertaken by non-federal interests to reduce the existing flood hazards. However, on September 24, 1982, President Reagan declared an emergency condition regarding the August 23 flooding of McDonald Island, and the Federal Emergency Management Agency has pledged federal financial assistance for restoration of that island. Federal assistance was not automatic. Local agencies had to submit a second request with additional information and

^{*}The assumption on the Peripheral Canal was in keeping with passage of Senate Bill 200 by the California Legislature in 1980; the assumption of continuing restoration of flooded islands was consistent with the policy adopted by State Legislature in 1973 Statutes for preserving the existing physical characteristics of the Delta, and with past Federal and State policy of providing financial assistance in restoring a flooded island.

justification. Had it been one of the less justified islands, the outcome is uncertain.

Also, on October 15, 1982, as a condition for federal financial assistance to restore McDonald Island, the Governor agreed to provide leadership and other resources needed to accomplish essential flood hazard mitigation, including the support of State legislation which would provide for a program of flood plain management and appropriate State and local cost sharing of work required to upgrade the Delta levees system.

The uncertainty as to future policy decisions, together with anticipated increased frequency in levee failures accompanied by ever-increasing restoration costs, makes it probable that flooded islands will not be restored in the future with federal funds unless the State and local agencies develop and implement a program to upgrade Delta levees. Without such a program, future decisions on whether a flooded island will be restored cannot be reliably predicted. Such decisions will continue to depend on political, social, economic, and other factors and to be made on a case-by-case basis. is likely that this will result in some flooded islands being restored and others remaining flooded.

The foregoing strongly suggests the appropriateness of assuming as a without project condition the non-restoration alternative, or at least a combination of that alternative with the restorations condition. However, the Department retained the Corps of Engineers assumption as to island restoration for the purpose of illustrating costs, sharing of non-federal costs and financial analyses in this bulletin. The results of the Corps sensitivity analyses showing the effects on economic feasibility of the alternative plans of

assuming the without-project condition to be without both the Peripheral Canal and restoration of islands after flooding are referred to in Chapters 5, 6 and 7. The nature of the non-restoration scenario is discussed in more detail in Chapter 8.

Assumptions for Cost Sharing Analysis

Cost sharing between Federal, State, and local interests in any Delta levee improvement plan is a significant issue of public policy that will ultimately have to be decided by the Congress, the California Legislature, and the local interests that may decide to participate in such a plan. To assist these interests in their cost sharing deliberations, it was considered necessary to make certain assumptions to illustrate some of the ways in which costs could be shared. This section describes these assumptions; Chapters 5, 6, and 7 contain the results, as applied to the specific plans considered, for the traditional federal/nonfederal cost sharing as set forth in the Corps' draft report. Appendix A contains comparable information for a new federal/nonfederal cost sharing formula being proposed by the Reagan Administration.

In its draft report of October 1982, the Corps of Engineers recommended limiting federal participation in upgrading Delta levees to only those islands and tracts that could be economically justified when considered individually and separately from all other islands and tracts. Based on the Corps' report, this approach would result in from 15 to 27 islands and tracts being included for federal participation, depending on the specific without project assumptions used in the economic analysis. Recreation and wildlife enhancement features would also be included in the federal project.

Under the "without project"* conditions assumed as a base for the detailed cost and benefit analysis in the Corps' report, federal participation would be limited to 15 islands and tracts. However, the Corps' draft report also states that "the ultimate number of islands and tracts which would receive (federal) flood control improvements would depend on the results of post-authorization studies including reevaluation of the assumed (base) without project conditions."

Under "without Peripheral Canal" and "continued restoration of flooded islands" assumptions, and using the Corps' estimates of costs and benefits, 19 islands and tracts would be included in the federal levee improvement project. This is the assumption used for the federal-nonfederal cost sharing illustration for this bulletin.

The question of federal-nonfederal cost sharing is further complicated by a proposed change in federal policy.

The Corps report assumes the traditional federal-nonfederal cost sharing relationships, wherein the Corps would pay 100 percent of flood control construction costs and a proportional share of mitigation costs. The Corps report also assumed that 50 percent of the recreation costs and 75 percent of the wildlife enhancement costs would be federal costs. The Corps assumes other costs to be nonfederal.

While not yet approved by Congress, the Reagan Administration has proposed a new cost sharing formula. Under this formula, nonfederal interests would be expected to pay, up front, 35 percent of all flood control costs, 50 percent of recreation costs, and 100 percent of wildlife enhancement costs.

Consequently, this bulletin considers the effect of both the traditional and

Reagan Administration cost sharing formulas for illustrating the magnitude of the nonfederal costs for the assumed 19 federal participation islands and tracts. This facilitates tracking with the Corps report and also shows the significant effects of the potential change in federal policy on nonfederal cost sharing. This bulletin also considers State and local cost sharing on nonfederal participation islands and tracts.

The procedures adopted to illustrate possible sharing of nonfederal costs assume that nonfederal flood control costs would be shared in proportion to benefits received between two classes of beneficiaries: beneficiaries protected from inundation of the islands and tracts, and beneficiaries protected from salinity impairment of their water supplies. For these latter beneficiaries, the Department found it necessary to modify the Corps' estimate of water quality and supply benefits to more closely approximate the impacts of island failures on the water-side beneficiary under the assumed base (without project) condition. The modifications reflect the fact that much of the water lost in the short term while the island was flooded would be recovered when the island was pumped out, and that under State Water Resources Control Board Decision 1485, the salt water would be farther west of the Delta for a summer levee break than it was in 1972 when Andrus and Brannan Islands flooded. This estimate should be considered only to illustrate the principles involved, recognizing that more precise estimates would have to be made if the Congress and the Legislature decide to authorize and help fund a Delta levee improvement project.

For the land-side flood control beneficiary, the Department applied existing rules for State-local cost sharing of nonfederal costs in a federal

^{*}The "with Peripheral Canal" and "continued restoration of flooded islands" the without project condition was used as a base in the Corps report.

project as far as they go, but had to make assumptions for extending and expanding these rules to the nonfederal participation islands.

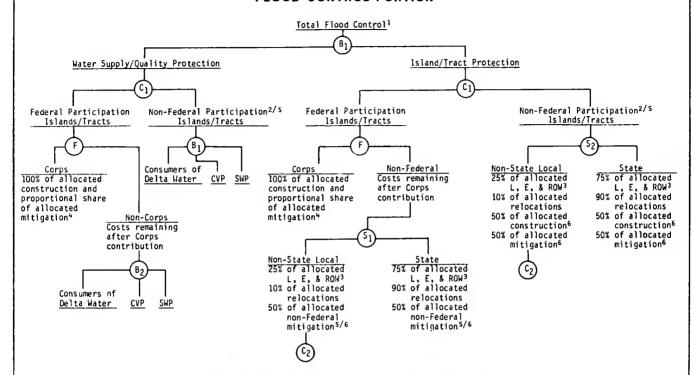
The somewhat complex procedures are most easily explained with the aid of illustrations. Figure 14 is for the traditional federal cost sharing formula and Figure 15 is for the cost sharing proposal contained in the June 15, 1982, memo to President Reagan from Interior Secretary Watt.

Flood Control Costs

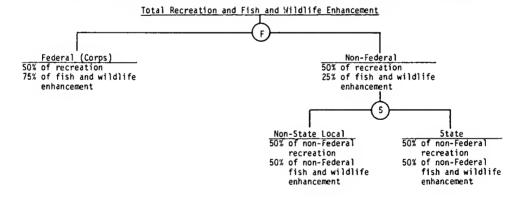
The principles for sharing flood control costs in Figures 14 and 15 are the same except for determination of the federal share under traditional and proposed cost sharing formulas.

- All costs for relocation betterments would be allocated to the island or tract on which they occur, and would be a local responsibility. This conforms to existing Federal and State rules for federal flood control projects.
- Remaining flood control costs (total flood control costs, less relocation betterments costs) would then be allocated between island protection and water quality and supply protection in proportion to the benefits.
- Allocated island protection costs would be divided into two groups: the federal participation islands, and the non-federal participation islands. This division would be in proportion to construction costs represented by each group.

For the federal participation islands, the Federal Government would pay 100 percent of the construction costs, plus a proportional share of the mitigation costs under traditional federal cos sharing rules set forth in the Corps report. (Under proposed cost sharing formula [Figure 15], costs borne by the Federal Government would be limited to 65 percent of these federal participation island flood protection costs.)


All remaining island protection costs for the federal participation islands would be shared between the State and local interests. The Department assumed that existing State-local cost sharing rules for federal projects for the costs of lands, easements, rights-of-way, and relocations would be applied to both the federal and non-federal participation islands, and that all remaining non-federal costs be shared 50 percent local and 50 percent State. Part of the justification for State contribution is in recognition of the role of boat wakes in levee damage. Also, State expenditures to improve levees would be partially offset by a reduction in floodfight and island restoration costs by the Office of Emergency Services. Implementation of this cost sharing formula would require legislation.

Allocated water quality and supply protection costs would also be divided into two groups: the federal participation islands, and the non-federal participation islands. As for island protection costs, the division would be in proportion to construction costs for each group.


For the federal participation islands, the Federal Government would pay 100 percent of the construction costs, plus a proportional share of the mitigation costs under the traditional federal cost sharing rules set forth in the Corps report. (Under proposed cost sharing formula [Figure 15], costs borne by the Federal Government would be limited to 65 percent of the water protection costs for the federal participation islands.)

ALLOCATION OF CAPITAL COSTS. TRADITIONAL COST SHARING

FLOOD CONTROL PORTION

RECREATION AND FISH AND WILDLIFE ENHANCEMENT PORTION

LEGEND

- Costs allocated in proportion to benefits.
- B2
- Costs remaining after Corps' contribution, allocated in proportion to benefits.

 Costs allocated between Federal and non-Federal groups in proportion to total construction costs represented by each group.

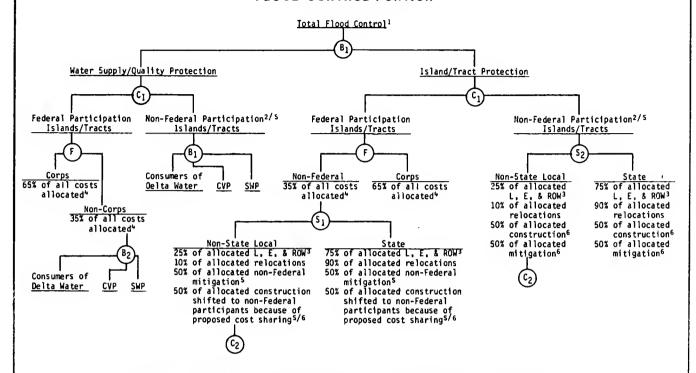
 Costs allocated among islands and tracts in proportion to construction costs on each island.

 Costs allocated in accordance with Federal cost sharing principles used in the Corps' draft report.

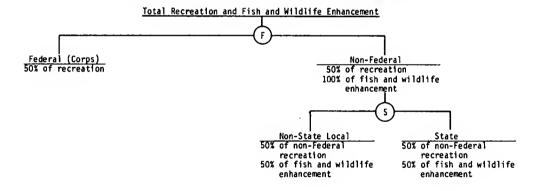
 Costs allocated in accordance with 1974 Department of Water Resources guidelines.
- C2

- Costs remaining after Corps' contribution, allocated in accordance with 1974 Department of Water Resources guidelines, augmented to accommodate mitigation costs.
- Costs allocated in accordance with 1974 Department of Water Resources guidelines, augmented to accommodate allocation of construction 52 and mitigation costs.

NDTE5


- 1 Except for relocation betterments, which are the responsibility of the islands and tracts on which they occur (Department of Water Resources 1974 guidelines).

 For System and Modified System Plans.


 Lands, easements, and rights of way.
- 4 Proportional to the allocation of the sum of all other capital costs.
- S Will require legislation.
- 6 Part of the justification for State contribution is recognition of the role of boat wakes in levee damage.

ALLOCATION OF CAPITAL COSTS, PROPOSED COST SHARING

FLOOD CONTROL PORTION

RECREATION AND FISH AND WILDLIFE ENHANCEMENT PORTION

LEGEND

- Costs allocated in proportion to benefits.
- Costs remaining after Corps' contribution, allocated in proportion to benefits.
- Costs allocated between Federal and non-Federal groups in proportion to total construction costs represented by each group.
- Costs allocated among islands and tracts in proportion to construction costs on each island.
 Costs allocated in accordance with June 15, 1982, memorandum to President Reagan from Interior Secretary Watt.
- Costs allocated in accordance with 1974 Department of Water Resources guidelines.

 Costs remaining after Corps' contribution, allocated in accordance with 1974 Department of Water Resources guidelines, augmented to accommodate mitigation costs and added local costs resulting from June 15, 1982, memorandum to President Reagan from Interior
- Secretary Watt.
 Costs allocated in accordance with 1974 Department of Water Resources guidelines, augmented to accommodate allocation of construction and mitigation costs.

NOTES

- Except for relocation betterments, which are the responsibility of the islands and tracts on which they occur (Department of Water Resources 1974 guidelines).

 For System and Modified System Plans.
- Lands, easements, and rights of way Except for mitigation, which is allocated in proportion to the allocation of the sum of all other capital costs. S Will require legislation.
- 6 Part of the justification for State contribution is recognition of the role of boat wakes in levee damage.

All remaining water quality and supply protection costs for the federal participation islands, plus water quality and supply costs for the non-federal participation islands would be allocated to the State Water Project, the Central Valley Project, and the salinity affected consumers of Delta water. For illustrative purposes, the Department assumed this would be in proportion to benefits enjoyed (damage prevented), for each affected group. More precise estimates would have to be made during post-authorization studies. Collection from these groups of beneficiaries would probably require new legislation at both the Federal and State level.

Recreation and Fish and Wildlife Enhancement Costs

These costs are entirely separable from flood control costs and are not directly associated with the federal participation islands; that is, the Corps has essentially the same recreation and fish and wildlife enhancement plan for all flood control alternatives. The only difference between Figure 14 and Figure 15 is determination of the federal and non-federal shares under the traditional and proposed federal cost sharing formulas.

- Ounder traditional federal cost sharing, as presented in the Corps report, the Federal Government would pay 50 percent of recreation costs and 75 percent of fish and wildlife enhancement costs. (Under the proposed federal cost sharing formula the Federal Government would still pay 50 percent of the recreation cost, but none of the fish and wildlife enhancement cost.)
- All remaining recreation, fish and wildlife enhancement costs would be non-federal costs to be shared between State and local interests. For this illustration, the Department assumed the existing 50-50 local-State cost sharing rules for federal projects

would apply to these non-federal costs. (Local in this case means the counties, rather than the islands.)

Assumptions for Financial Analysis

The Corps of Engineers did not include a financial analysis in its report. This section discusses the assumptions used for the Department's financial analysis for funding non-federal costs.

Because of practical limitations on availability of appropriate construction equipment, it was assumed that participating islands and tracts would be divided into groups of five to twelve islands each and that initial construction would begin biennially for each successive group. Each group would represent approximately equal amounts of work. The levees would be placed in the groups according to probability of failure, and groups with the highest probability of failure would be rehabilitated first.

The financial analysis by the Department assumes separate sales of 30-year bonds covering non-federal costs for each group of islands. Also covered would be mitigation, recreation, and fish and wildlife enhancement costs occurring during the initial construction period for each group of islands. Sale of the bonds was assumed to occur during the year prior to start of construction for each group of islands. It was assumed that the estimated 1981 prices would escalate at the rate of 6 percent per year to the year that the costs would be incurred, and that interest rates on bonds would be 9 percent. It was also assumed that the bonds would not be discounted and that they would cover the initial construction costs, interest during construction, and the cost of marketing the bonds. In addition, a sinking fund to meet 50 years of stage constuction costs for each group of islands would be established with an assumed interest rate of 8 percent.

This last assumption was made to simplify the presentation of the financial cost of the project. In reality, it is not accepted practice to sell bonds to meet construction costs that would occur more than a few years after the sale.

In actual practice, many bond sales would occur over the life of the project to cover stage construction costs. For this reason, the effect of a single sinking fund for each island or tract group earning interest at a higher rate than the rate of escalation would not be available to pay for all future stage costs. Many much shorter term (e.g. 3 to 5 year) funds would be created instead. As a consequence, the actual sum of all the bond sales for each group will be much larger than assumed for this report -- the result of continually financing for ever-escalating stage construction costs. The single-sinking fund approach was chosen to reduce the bias induced by the extreme effect of escalation on stage costs far in the future. Because the bonds sold to cover these costs would be repaid with dollars shrunk by inflation, the real impact of these expenditures on the ability to meet repayment obligations is reflected more realistically using the single-fund assumption used for this report.

Because neither rates of inflation nor interest rates can be predicted with any degree of certainty, a sensitivity analysis of financial cost was made using 9 percent per year cost escalation and 12 percent bond interest. In this analysis, money from bond sales for future staged construction was assumed to be deposited in a sinking fund at 10-1/2 percent interest.

Legal and Institutional Matters

Legal and institutional provisions that should be a part of any publicly financed levee improvement program for the Delta include:

- Requirements for federal participation.
- Land use controls to avoid undesirable urban developments from occurring on Delta islands dedicated to agriculture.
- ° Provisions to limit State liability.

These considerations are discussed in this section.

Federal Participation

In its draft report, the Corps of Engineers recommends federal participation in those islands and tracts that individually have computed flood control benefits that exceed the cost of providing those benefits. Several institutional requirements are recommended as conditions for federal funding. In addition to assumption of non-federal cost obligations, these include:

- Holding the United States free from all damages arising from construction and operation of the levee improvement project, except those involving fault or negligence of the United States or its contractors.
- Enacting and enforcing land use management, zoning, and other means as necessary to assure that no future urban development on agricultural islands in the project area will occur as a direct result of the federal project.
- Ensuring that development on existing urban islands will be consistent with city and county General Plans and that such future development will be limited to those areas incapable of sustained economic agricultural production.
- After project completion, maintaining and operating federal project facilities in accordance with regulations

and standards prescribed by the Secretary of the Army and Section 221 of the 1970 Flood Control Act.

Land Use Planning and Regulation

Proper use of flood plains is also important to State and local governments, cities, counties, special districts, regional agencies, landowners, farmers, and commercial and industrial interests. While the Legislature has assigned county and city governments the responsibility for land use planning and regulation, it has established policies and guidelines to restrain urban encroachment on agricultural lands and to foster appropriate flood plain management. Some of these policies and guidelines are paraphrased in Table 11.

The flood plains of the Delta are special land resources that must be used in a manner that prevents loss of life and reduces economic loss caused by flooding. While upgrading Delta levees will provide a higher degree of flood protection, the islands of the Delta that are below sea level will always be vulnerable to flooding, even after implementation of a levee restoration program. Land use planning in the Delta must recognize this vulnerability.

The most important facets of land use planning related to Delta levee restoration are those that will:

- Preserve the agricultural production capability of the Delta by limiting urban encroachment within areas capable of sustained economical production.
- Preserve the wildlife habitats, including waterways, channel islands, wetlands, riparian forests, vegetation corridors, and agricultural lands, particularly those that are important to the Pacific Flyway waterfowl and to rare, threatened, and endangered wildlife species.

Table 11

SYNOPSIS OF STATE POLICY FOR AGRICULTURAL LANDS AND FLOOD PLAIN MANAGEMENT

Agricultural Lands

Preservation of maximum amount of the limited supply of agricultural land is necessary to the conservation of the State's economic resources (Government Code Section 51220(a)).

Premature and unnecessary conversion of agricultural land is contrary to public interest (Government Code Section 51220(b)).

State policy is to improve the quality of life in California by preserving and using the land resources in economically and socially desirable ways (Government Code Section 65030).

State policy is to ensure that land use decisions are made with full knowledge of long-term and short-term economic and fiscal implications, as well as environmental effects (Government Code Section 65030.2).

Local land use practices should ensure the preservation of open space for scenic beauty and recreation, the conservation of natural resources, the production of food and fiber, the separation and definition of developed areas, and the protection of public health and safety (Government Code Sections 65560 and 65561).

State policy seeks to maintain, improve, and enhance the quality of air, water, and land, including agricultural resources, according to State and national standards and local needs (Public Resources Code Sections 21000 and 21001).

The Legislature intends for counties to conserve open space whenever possible, including productive agricultural land (Government Code Section 65562).

The State intends that local land use decisions, such as zoning, follow local open space policies and the State statutes (Government Code Sections 65563, 65564, 65566, and 65567).

Flood Plain Management

State policy is to encourage local levels of government to plan, implement, and enforce land use regulations that will prevent loss of life and economic loss due to excessive flooding (Water Code Section 8401(b and c)) and to provide guidance and assistance as appropriate (Water Code Section 8401(d)).

Upon request by a local agency, the State shall review the agency's flood plain management plans (Water Code Section 8403).

Upon request and funding by a local agency, the State may make or cause to be made the investigation and will provide data needed to develop local flood plain management plans (Water Code Section 8404).

After completion of a federal project, the appropriate public agency shall establish regulations to prohibit construction of any structure which may endanger life or significantly restrict the flood carrying capacity of designated floodways. (Water Code Sections 8410 and 8411).

Preserve the biological productivity of waterways and wetlands.

- Provide additional recreational opportunities consistent with public safety needs, flood control constraints, and the need to balance public rights with the rights of private property owners.
- Preserve the diverse historical and cultural resources from destruction or adverse alteration.
- Provide that developments fronting waterways be water related and designed and operated to minimize intrusion into the waterway and on natural qualities of the area.
- Provide that development be consistent with State and Federal policies, including the National Flood Insurance Program, and that the hazards of subsidence and liquefaction of foundation soils be recognized. These facets should also be applied to homesites fronting waters connected directly to Delta waterways.
- Provide that development be reviewed for consistency with city and county General Plans and with the California Environmental Quality Act.

For a Delta levees restoration program, four approaches to the organization and process of land use planning were considered:

- Continuation and possible enhancement of the present State-local government system.
- State-mandated review of performance of local flood plain management compared to State criteria.
- 3. State overview of local government land use actions to ensure minimum standards on a regional basis.
- 4. Creation of a new organization or level of government, with land use responsibilities for the Delta.

Continuation and possible enhancement of the present State-local government

system is the approach considered to have the best chance of success, to be least controversial, and to be least expensive. While some adjustments may be necessary, much of what is needed for the land use component of a levee improvement project is already in place and functioning. This system of mandated, legally enforceable, comprehensive local General Plans, tied to decision-making processes, and adopted with public review and participation. came into existence between 1965 and 1980. General Plans contain land use elements as well as other elements pertinent to the Delta Levees Study, such as:

- Conservation and open space elements concerning agriculture and environment.
- Seismic and other safety elements dealing with flooding, land failure, and other matters of public protection.
- ° Circulation elements controlling roads and transmission lines.

General Plans may also contain optional elements that allow local governments to engage in certain programs, such as recreation elements that enable local governments to require that lands be dedicated for recreational park purposes.

The General Plans and regulations of Delta cities and counties already designate most of the land for agricultural use, specify areas for urban development, and provide criteria for limiting the use of areas subject to flooding and unstable conditions. In leveed areas, land use is related to levee conditions, which means that most areas are limited to agricultural use.

Where urban development is allowed, subdivision projects must provide necessary on-site and off-site improvements. Where an urban development project is

extended into adjoining areas, the project must bear the cost of safety improvements, such as levee reconstruction. Development project requirements are keyed to public safety. Particular standards or decisions may be challenged, but the regulatory structure is in operation.

Need To Limit State Liability

Under present law, the State has no liability for levee failures in the Delta. In the action by landowners for damages caused by flooding from the Andrus-Brannan Islands levee break in June 1972, the California Court of Appeals ruled that the State was not liable for losses.* The Court further held that there was no duty on the part of the State to review local reclamation plans for levee work that was in progress at the time of the failure.

Thus, any proposal for physical improvements in the Delta must address potential liability of the State. Three points are central to understanding and resolving the liability issue.

The first is that no levee restoration program in the Delta can guarantee safety from flooding. The instability of Delta soils, the effect of winds, tides, and floodflows, and the unique problems of erosion, seepage, and subsidence all present uncertainties for levee restoration projects in the Delta. The same security against flooding cannot be achieved by protective works in the Delta as in areas less vulnerable to these problems. Although a rehabilitation project may be worthwhile because of the benefits derived from the diminished risks, a significant risk of levee failure will still persist.

Second, agreed-upon cost sharing should reflect the total financial burden of each participant. If the law were such that only those at fault and directly responsible for injury would be exposed to liability, potential liability would have no impact on the allocation of costs. But present trends in judicial interpretation in tort, nuisance, and inverse condemnation law, broadening nonfault, "deep pocket", and cost spreading theories of compensation have increasingly resulted in the State becoming an insurer or surety for projects in which it has participated. Thus, any cost sharing formula, especially given the high risk of projects in the Delta, could significantly understate costs to the State unless potential liability is somehow limited.

The third point follows from the first two. While the State may be willing to contribute to a levee rehabilitation project in the Delta, it should not be the intent of the State to underwrite the perfect safety of the benefited lands. A levee rehabilitation project would be a risk venture in an unstable setting, and participants should each know, understand, and assume the risks. It would be both an unjustifiable misunderstanding of this fact and a severe distortion of any agreed-upon cost sharing, for example, for the law to permit a project beneficiary to recover damages from the State simply because the State had participated in the project.

State participation should, therefore, be contingent upon the enactment of appropriate statutory or constitutional immunities or limitation of liability. In addition, the State should seek hold-harmless waiver agreements with project beneficiaries of such a nature to bind all current or future owners or users of the benefited lands.

^{*98} Cal. App. 3d 662; 159 Cal. Rptr. 721, Civ. No. 17809. Third Dist., Nov. 13, 1979.

Specific Alternative Concepts Evaluated

As noted earlier in this chapters, alternative plans evaluated in this bulletin are limited to the individual island levee improvement projects and the "no action" plan. Levee improvement was evaluated using criteria described earlier in this chapter.

Protection of the islands against flood damage and protection of water supplies against salinity intrusion are closely related and are, therefore, generally considered together. Where measures relate only to flood damage or to water quality, they are treated separately. Except for mitigation, recreation and fish and wildlife plans are considered as discretionary additions to levee improvement plans.

Under the most extensive levee improvement plan — the System Plan (Chapter 5) — the Delta is considered to be a system of interdependent islands. Under the system approach, levee improvements for the Delta islands are justified as a single unit rather than on an island-by-island basis.

Under the System Plan approach, the Delta is characterized as a system having many interrelated problems. Water quality can deteriorate over a large portion of the Delta when a single levee breaks, adversely affecting both local and export water supplies. The Andrus Island break in 1972 is a good example of this. Also, if an island (or several islands) were to remain permanently flooded, adjacent islands would become more vulnerable to erosion by wind-generated waves. For example, Franks Tract flooding has caused increased levee maintenance problems on adjacent islands. In some cases, the hydrostatic pressure on a flooded island forces water into underground strata (sand lenses) below the island and then through sand layers to emerge as seepage on adjacent islands, which could weaken the levee structure of the adjacent

islands. McDonald Island flooding in 1982 and the resultant seepage in Lower Jones Tract and Roberts Island is an example of this interrelationship.

Furthermore, in 1976 the Legislature adopted as policy the conceptual plan presented in Department of Water Resources Bulletin 192, 1975 (which treats the Delta as a system), as a basis for preserving the physical configuration of the Delta. Under the System Plan concept, all substandard Delta levees would be rehabilitated regardless of economic justification of the work on the individual islands. While overall benefits (including recreation and wildlife enhancement benefits) for the System Plan exceeded the costs, benefits from the flood control components alone do not exceed the cost of the flood control components under the Corps of Engineers "with Peripheral Canal and with Island restoration" assumptions.

The second most comprehensive plan is the Modified System Plan (Chapter 6). This plan also treats the Delta as a system, but it eliminates from the plan: (1) the islands that would require only the addition of levee patrol roads and erosion protection material to comply with levee design standards, and (2) some of the least economically justified individual islands to achieve overall economic justification from a flood control standpoint (i.e., a flood control plan with an overall benefit to cost ratio equal to or greater than one-to-one), and other factors such as landowners expressed desire to be excluded, etc. Flood control benefits for some islands included in this plan do not exceed the costs of levee rehabilitation.

The Incremental Plan (Chapter 7) reflects the view that Delta islands are essentially independent of each other, and that the flood control benefits for each island should exceed its flood control costs. Each island has widely varying characteristics, such as the

condition of the levees, types of improvements, and crops grown. Under this plan, rehabilitation of individual island levees would have to be economically feasible separately to be included in the plan. This is the criterion adopted by the Corps of Engineers in its draft feasibility report as a basis for recommending federal participation.

In addition to discussing the Incremental Plan as a separate alternative, this bulletin recognizes the Corps' participation in the individually justifed islands for both the System Plan and the Modified System Plan.

The No-Action Plan Alternative (Chapter 8) discusses possible futures of the Delta in the absence of a major Federal or State program to upgrade Delta levees. At one extreme is the continuation of past practices of substantial Federal and State assistance in restoring flooded islands. At the

other end of the spectrum is the loss of such aid, which could eventually lead to the Delta becoming as a huge inland sea. Obviously, there is a wide array of intermediate possibilities. In any event, there would be an increasing probability of levee failure as a result of continuing subsidence, which will lead to increased cost of levee maintenance, floodfight efforts, and restoration of flooded islands. Three possible scenarios are examined:

- ° Continuing the practice of reclaiming flooded islands.
- ° Not reclaiming flooded islands.
- Partial reclaiming of flooded islands.

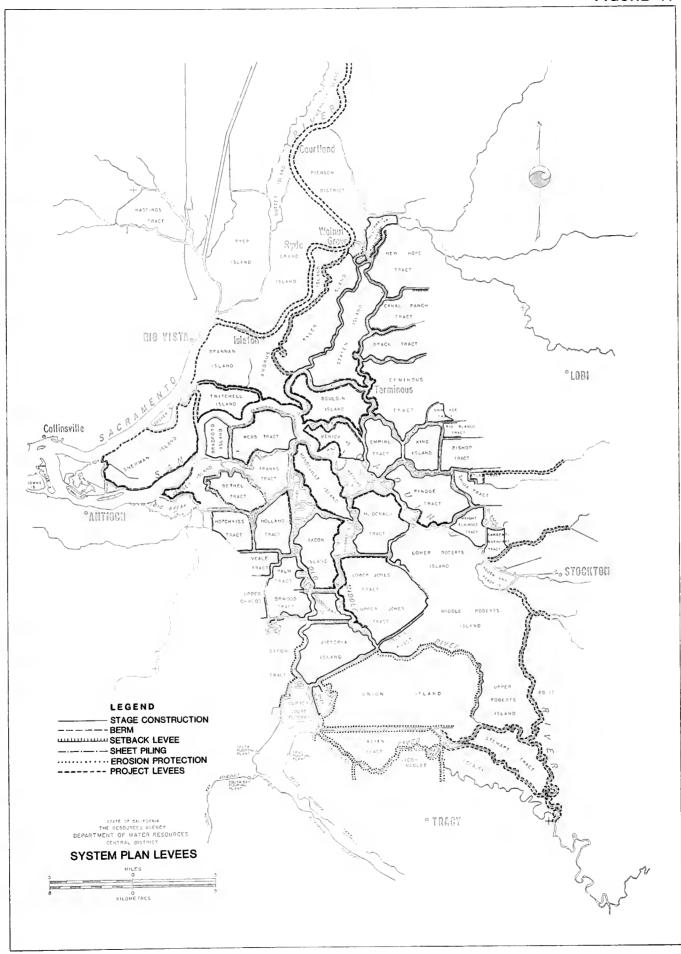
Continuation of present practices will eventually lead to the Delta as a huge inland sea.

Chapter 5. SYSTEM PLAN

Of the various alternatives discussed in Chapter 4, the System Plan would satisfy to the greatest extent the legislative intent to preserve the integrity of the Delta levee system (refer to Chapter 2, "Basis for Study"). This plan was based on the concept that the Delta islands are interdependent and act together as a single system. Economic justification was based on the system as a whole, rather than on an individual island basis, as discussed in Chapter 7. The plan would:

- ° Reduce flooding.
- Reduce the periods of water quality impairment by reducing the frequency of salinity intrusion caused by island flooding.
- Provide needed public access and recreation facilities.
- Preserve and enhance some of the Delta's natural resources and scenic areas.

Improvements proposed for the System Plan are discussed first, followed by the economics of the System Plan based on traditional (recent past) cost sharing methods. Tables indicating the effect of a Reagan Administration proposed cost sharing formula are included in Appendix A. The differences are summarized in Tables 3 and 5, Chapter 1.


The plan considered all 60 major islands and tracts in the study area. These islands and tracts are listed on Table 6. The levees protecting two tracts, Reclamation District 17 and Stewart Tract, are "project levees" that have been improved under a Federal-State flood control project, and no additional work has been proposed for these two tracts under the System Plan. Five

islands (Little Mandeville, Medford, Mildred, Quimby, and Rhode) are proposed for use as fish and wildlife enhancement areas, and are not included for flood control improvements under the System Plan.

Levee improvements for flood control under the System Plan are proposed for the remaining 53 islands, which are depicted by the shaded area on Figure 16. Levee rehabilitation is proposed for 47 of the 53 islands. The remaining six (Fabian, Mournian, Pescadero, Pico-Naglee, Union, and Walnut Grove) would only require the addition of levee patrol roads and erosion protection material to comply with levee design standards. The crosshatched area in Figure 16 shows the 19 islands considered -- economically justified for federal participation under the "Incremental Flood Control Plan", which is described in the Corps' 1982 draft feasibility report (without Peripheral Canal assumption).

Flood Control Features

Flood control features consist of levee rehabilitation, land use management, and fish and wildlife mitigation. The stage construction method of levee rehabilitation would be used on most of the islands. Fifteen miles of sheet pile flood walls would be used on parts of Bethel Island and Hotchkiss Tract to avoid relocation of existing urban development along the levees on those tracts. Setback levees would be used to protect the existing riparian habitat in a number of areas. After rehabilitation, all 53 islands would have an expected frequency of failure of less than once in 100 years during the 50-year economic life of the project. Figure 17 shows the general locations of

the various types of levee improvements. More specific locations are shown on Plates 2 through 37 of the Plan Formulation Appendix of the Corps of Engineers' "Draft Feasibility Report", dated October 1982.

Land use management would be a required feature of this plan to ensure that the natural and beneficial values of the flood plain are preserved. This feature would include enactment and enforcement of zoning regulations that would prevent project-induced urban growth on agricultural islands. Urban developments would be required to be consistent with city and county General Plans and the Plans and the California Environmental Quality Act, and would be limited to areas incapable of sustained economic agricultural production (refer to Chapter 4, "Land Use Planning and Regulation").

Although the probability of flooding on all islands would be reduced to less than once in 100 years, the Department believes that most islands especially those below sea level, would not be suitable for urbanization. This is because the failure of a levee, possible even during the summer, would have too severe consequences to urban populations.

Levee rehabilitation would result in a loss of riparian habitat, wetland vegetation, and agricultural land. The U.S. Fish and Wildlife Service indicates that the most significant fish and wildlife impact would be the loss of scarce riparian habitat. Adverse impacts on the fishery would be minimal.

Several methods for mitigation of the adverse impacts on riparian habitat were considered. For example, setback levees could be considered. However, the method selected for this report would involve the purchase of selected small parcels of marginal agricultural

land for development into mature riparian habitat through natural establishment and succession of plant species. Although important fish and wildlife values would be furnished by successional development stages, this is natural process is expected to take about 40 years. It is estimated that about 3,390 acres of agricultural land would be required for mitigation of the adverse impacts resulting from construction flood control features of the System Plan.

Flood Control Costs

Table 12 shows the summed capital costs (initial construction plus staged construction) and the annual operation and maintenance costs for flood control by island and tract (1981 prices) and also the cost per mile of levee and cost per acre for each island and tract. These costs per levee mile and per acre are a measure of the cost of providing flood control in the Delta. As shown in the table, the capital costs per mile of levee range from \$5,596,000 for Venice Island down to \$71,000 for Union Island. The corresponding costs per acre of land range from \$21,375 for Venice Island down to \$82 for Union Island.

After the levees are rehabilitated, the annual operation and maintenance costs range from about \$20,000 per mile (\$66 per acre) for Bethel Island down to \$3,000 per mile for Walnut Grove Tract, and \$2 per acre for Andrus-Brannan Island.

The estimated total capital costs, including the cost of fish and wildlife mitigation, is \$931 million. The average cost per mile of levee rehabilitation is \$1.8 million, or an average of about \$3,500 per acre of land. The average annual operation and maintenance cost amounts to about \$4,000 per mile, or \$8 per acre of land included in the System Plan.

SYSTEM PLAN
SUMMED CAPITAL COSTS AND OPERATION AND MAINTENANCE COSTS FOR FLOOD CONTROL, BY ISLAND OR TRACT (In Dollars, At 1981 Prices)

		Capital Cost*	Per	Annual Ope	rations and Main Per Mile	tenance Per
Island or Tract	Total	of Levee	Acre	<u>Total</u>	of Levee	Acre
Andrus-Brannan	40,695,000	4,029,000	2,712	34,000	3,366	2
Atlas Bacon	2,520,000 29,044,000	813,000 2,031,000	7,434 5,237	10,000 49,000	3,226 3,427	29 9
Bethel	31,525,000	2,741,000	8,956	231,000	20,087	66
Bishop	8,178,000	1,410,000	3,770	20,000	3,448	9
Bouldin	69,885,000	3,883,000	11,557	61,000	3,389	10
Brack Bradford	20,392,000 18,555,000	1,888,000 2,507,000	4,185 8,658	38,000 25,000	3,519 3,378	8 12
Byron	18,582,000	1,956,000	2,680	33,000	3,474	5
Canal Ranch	12,860,000	1,354,000	4,292	33,000	3,474	11
Coney	3,553,000	658,000	3,800	18,000	3,333	19
Deadhorse Drex 1er	4,447,000 17,094,000	1,779,000 1,921,000	21,076 5,401	8,000 31,000	3,200 3,483	38 10
Empire	15,392,000	1,494,000	4,132	35,000	3,398	9
Fabian	8,756,000	466,000	1,341	64,000	3,404	10
Holland	17,562,000	1,611,000	4,157	37,000	3,394	9
Hotchkiss Jersey	7,015,000 19,605,000	835,000 1,257,000	2,089	54,000 53,000	6,429	16 15
Jones, Lower/Upper	28,978,000	1,628,000	5,648 2,384	53,000 61,000	3,397 3,427	15 5
King	10,041,000	1,116,000	3,080	30,000	3,333	9
Mandeville	27,218,000	1,903,000	5,196	62,000	4,336	12
McCormack-Williamson McDonald	9,867,000	1,134,000	6,020	30,000	3,448	18
New Hope	28,295,000 19,465,000	2,065,000 1,583,000	4,605 1,996	46,000 42,000	3,358 3,415	7
Orwood	8,465,000	1,323,000	3,469	22,000	3,437	9
Orwood, Upper	4,154,000	923,000	2,446	21,000	4,667	12
Palm Possadomo Amoatt	11,546,000	1,480,000	4,740	28,000	3,590	11
Pescadero Area** Rindge	9,242,000 20,989,000	395,000 1,337,000	589 3,067	80,000 53,000	3,419 3,376	5 8
Rio Blanco	3,299,000	1,031,000	4,946	11,000	3,437	16
Roberts, Lower/Middle/Upper	39,516,000	1,703,000	1,214	174,000	7,500	5
Sargent-Barnhart Sherman	3,974,000 50,379,000	1,590,000	3,273	8,000 37,000	3,200	7 4
Shima	7,077,000	5,141,000 874,000	4,835 2,956	27,000	3,776 3,333	11
Shin Kee	3,587,000	1,888,000	3,340	7,000	3,684	7
Staten	35,029,000	1,374,000	3,864	87,000	3,412	10
Terminous Twitchell	48,096,000 39,448,000	2,987,000 4,152,000	4,594 10,858	56,000 33,000	3,478 3,474	5 9
Tyler	22,904,000	2,141,000	2,669	41,000	3,832	5
Union	2,052,000	71,000	82	87,000	3,021	3
Veale	4,305,000	755,000	3,317	19,000	3,333	15
Venice Victoria	68,827,000 12,117,000	5,596,000 802,000	21,375 1,671	42,000 51,000	3,415 3,377	13 7
Walnut Grove	1,247,000	624,000	1,913	6,000	3,000	ģ
Webb	30,439,000	2,378,000	5,544	43,000	3,359	8
Woodward	15,657,000	1,801,000	8,599	30,000	3,448	16
Wright-Elmwood	6,979,000	1,026,000	3,290	23,000	3,382	11
Subtotal	918,862,000			2,093,000		
Fish and Wildlife Mitigation	11,738,000					,
Total	930,600,000			2,093,000		
Average		1,777,000	3,411		4,048	8
Average Computed With Mitigatio	n	1,800,000	3,455		4,048	8
* Paced on stage construction	mothed (added coe	t for loves cathac	v tochuded to	Atch and unitality	to annancement c	ne t e \

^{*} Based on stage construction method (added cost for levee setback included in fish and wildlife enhancement costs).
** Includes Mournian, Pescadaro, and Pico-Naglee.

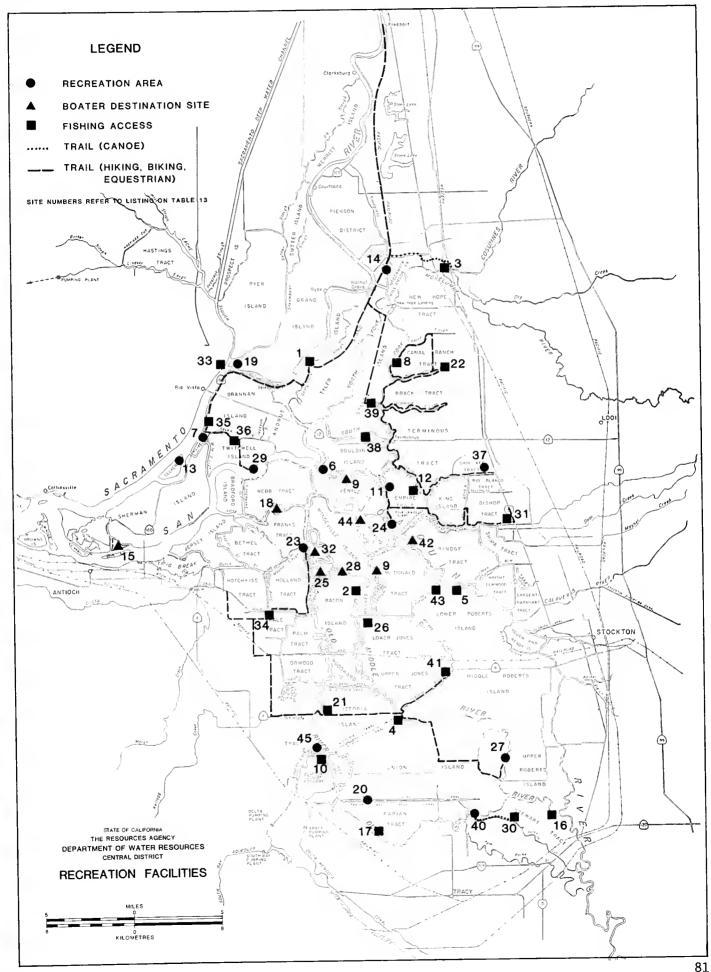
Recreation Features

Existing recreation facilities in the Delta are used beyond optimum capacities. Few of the 116 known commercial recreation facilities, of which 107 are marinas, have major expansion plans. New recreation features under the System Plan would be located on 45 sites in the study area and would consist of 14 recreation areas, 23 fishing access sites, 8 boater destination sites, and 145 miles of trails. Figure 18 shows the types and locations of the recreation features.

Recreation areas would provide picnicking, boat launching and dockage, and fishing and camping with restroom facilities. Fishing access sites would include picnic tables, restrooms, parking facilities, and boat launching access to Delta waterways, some with cartop-carrier launching facilities and others with launching facilities for boat trailers. Boater destination sites would provide access to small channel islands and to many areas accessible only by boat. Day use docks, anchoring buoys, and some sanitation facilities would be provided, depending on the location. The trails (bicycling, hiking, equestrian, and channels for canoes) would link various recreation areas and sites and also provide trail access from outside of the Delta. 70 miles of trails would be located on existing roads.

Existing recreational use is estimated to be about 12.3 million recreation days annually. Without the proposed recreation features, this use is expected to increase to about 14 million recreation days by year 2020, along with an increase in problems related to recreation — trespass, litter, and competition between users.

The new recreation facilities would provide opportunities for shore-based and water-based activities to accommodate an additional annual use of 2.4 million recreation days, while reducing the existing problems related


to recreation. This would result in an increase of about 20 percent over existing use. The proposed recreation plan was carefully studied and coordinated to preserve scenic values and environmental quality, to consider agricultural interests and landowner concerns, and to be compatible with the flood control and water quality features.

Recreation Costs

Table 13 lists the recreation facilities, the first cost, and the annual operation and maintenance cost of each facility (1981 prices). The first cost includes the cost of constructing the recreation facilities and the cost of lands, easements, and rights of way, plus associated engineering, design, construction supervision, and adminis-The table also lists the first tration. cost associated with the trail system. The total first cost for the recreation features (45 recreation sites and the trail system) amounts to \$40 million (1981 prices). The equivalent annual cost, based on a 7-5/8 percent interest rate and a 50-year project economic life, would be \$3 million. Annual operation and maintenance cost associated with these features amounts to \$966,000, which translates to about 40 cents per recreation day. The total equivalent annual cost, including operation and maintenance, amounts to \$4 million.

Recreation Benefits

Recreation benefits were computed by the Corps of Engineers in accordance with the Water Resources Council's National Economic Development Evaluation Procedures, using the travel/cost method. The equivalent annual benefits for recreation use, based on a 7-5/8 percent interest rate and a 50-year project economic life, were estimated at \$20 million. This value includes recreation benefits attributable to the fish and wildlife management area. Of the total equivalent annual benefits, 63 percent, or \$13 million, is

	COSTS OF REC	REATION FE (1981 Pr		ITEM PLAN		
	Recreation Facilities			Trail System		
Location on Map	Facility	First Cost (\$1,000)	Annual 0&M (\$1,000)	Trail	First Cost (\$1,000)	Annua T 0&M (\$1,000
1 2 3 4 5	Andrus Island Fishing Access Site Bacon Island Fishing Access Site Benson Ferry Bridge Fishing Access Site Blackbird Fishing Access Site Black Slough Fishing Access Site	163 53 103 49 48	9.2 9.2 9.9 8.1 8.1	Andrus-Brannan Island Trail Bishop Tract Trail Brack Tract Trail Byron Tract Trail Canal Ranch Trail	293 129 187 123 275	15.0 0.6 0.9 0.6 0.9
6 7 8 9 10	Bouldin Island Recreation Area Brannan Island State Park Recreation Area Canal Ranch Fishing Access Site Channel Island Boater Destination Site Clifton Court Forebay Fishing Access Site	3,353 2,567 46 20 498	52.7 68.0 8.1 4.3 16.3	Delta Meadows Canoe Trail Drexler Tract Trail Empire Tract Trail Holland Tract Trail Hotchkiss Tract Trail	71 86 96 186 48	0.4 0.4 0.5 0.9 0.2
11 12 13 14 15	Connection Slough Recreation Area Correia Road Fishing Access Site Decker Island Recreation Area Delta Meadows Recreation Area Donlon Island Boater Destination Site	1,631 38 209 1,878 20	35.4 8.1 8.8 30.6 4.3	King Island Trail Paradise Cut Canoe Trail Sacramento to Walnut Grove Trail Shin Kee Tract Trail Staten Island Trail	130 150 3,321 32 176	0.7 0.8 16.9 0.2 0.9
16 17 18 19 20	El Pescadero Fishing Access Site Fabian Fishing Access Site Franks Tract 8oater Destination Site Grand Island Recreation Area Grant Line Canal Recreation Area	49 58 26 5,200 234	8.1 8.1 4.3 130.4 6.6	Terminous Tract Trail Twitchell Island Trail Tyler Island Trail Union Island Trail Upper Jones Tract Trail	281 116 1,334 423 145	1.4 0.6 0.9 2.1 0.7
21 22 23 24 25	Highway 4 Fishing Access Site Hog Slough Fishing Access Site Holland Tract Recreation Area Light 11 Recreation Area Little Mandeville Boater Destination Site	36 43 5,174 1,601 20	148.2 8.1 8.1 35.4 4.3	Upper Orwood Tract Trail Veale Tract Trail Victoria Island Trail Walnut Grove Trail	85 96 116 186	0.4 0.5 0.6 0.9
26 27 28 29 30	Lower Jones Fishing Access Site Middle River Recreation Area Old River Island Boater Destination Site Oulton Point Recreation Area Paradise Fishing Access Site	53 1,435 20 3,039 48	9.2 47.4 4.3 52.7 9.9		8,085	48.0
31 32 33 34 35	Pixley Slough Fishing Access Site Quimby Island Boater Destination Site Rio Vista Fishing Access Site Rock Slough Fishing Access Site Sacramento River Fishing Access Site	50 20 93 63 50	9.9 4.3 8.1 9.2 8.1	Summary	First Cost (\$1,000)	Annual 0&M (\$1,000
36 37 38 39 40	Sevenmile Slough Fishing Access Site Shin Kee Recreation Area South Fork Mokelumne Fishing Access Site Staten Island Fishing Access Site Tippy Canoe Recreation Area	38 4,120 48 63 19	8.1 49.3 8.1 9.2 5.0	Recreation Facilities Trail System Total	32,481 8,085 40,566	918.0 48.0 966.0
41 42 43 44 45	Trapper Slough Fishing Access Site Tule Island Boater Destination Site Turner Cut Fishing Access Site Venice Cut Boater Destination Site Widdows Island Recreation Area	38 20 63 20 64	8.1 9.2 4.3 4.3 6.6	10.61	40,300	300.0

32,481

918.0

attributed to general recreation; the remaining 37 percent is attributed to fish and wildlife. Based on the equivalent annual cost of \$4 million, the benefit-cost ratio of the recreation features would be 3.3 to 1.0.

Fish and Wildlife Enhancement Features

Fish and wildlife enhancement features include acquiring public interest in

lands to preserve and enhance their natural resources and scenic values. An additional enhancement feature would involve construction of setback levees to preserve and enhance the vegetation on the existing levees on Brack, Canal Ranch, McCormack-Williamson, and New Hope tracts. As mentioned earlier, setback levees could be considered as mitigation but for compatibility with the Corps report levee setbacks have been treated as enhancement in this

report. Figure 19 shows the locations of enhancement features. Specifically, the acquired lands would provide a diversity of terrain, including about 1,000 acres of significant upland and riparian habitat, about 1,500 acres of channel tule islands with valuable riparian habitat and freshwater marshes, and about 3,500 acres of highly diversified habitat set aside for wildlife management areas on Little Mandeville. Medford, Mildred, Quimby, and Rhode Islands. Most of the wildlife areas were chosen because of favorable wildlife habitat, but a few were chosen for other reasons. For example, Medford, Mildred, and Quimby islands are small, with very high levee maintenance costs in comparison to the agricultural area protected. They could, however, be managed to provide food for waterfowl or as wetlands (which would also reduce the rate of subsidence of the island floors).

The U. S. Fish and Wildlife Service has expressed an interest in developing a national wildlife refuge in the Delta. Coordination will continue with the Service if a flood control project is authorized for construction.

While formulating the fish and wildlife measures, the Department of Water Resources and the U. S. Army Corps of Engineers coordinated their efforts with other Federal, State, and local agencies interested in the fish and wildlife and environmental quality enhancement potential of the project. In addition, meetings were held with the Delta reclamation districts and private landowners to consider fish and wildlife measures. Information from all of these sources was included in development of fish and wildlife measures for the study area.

Fish and Wildlife Enhancement Costs

First and annual costs for fish and wildlife enhancement features are shown in Table 14 (1981 prices). The first cost of the enhancement areas amounts to about \$7 million. The cost to repair the levees around the wildlife management areas was estimated at \$32 million. and the cost of the lands was estimated at about \$9 million, for a total first cost of \$41 million for the wildlife management areas. The increased cost to provide setback levees instead of stage construction on the present levee alignment was about \$8 million,* making a total for the fish and wildlife enhancement features of nearly \$57 million.

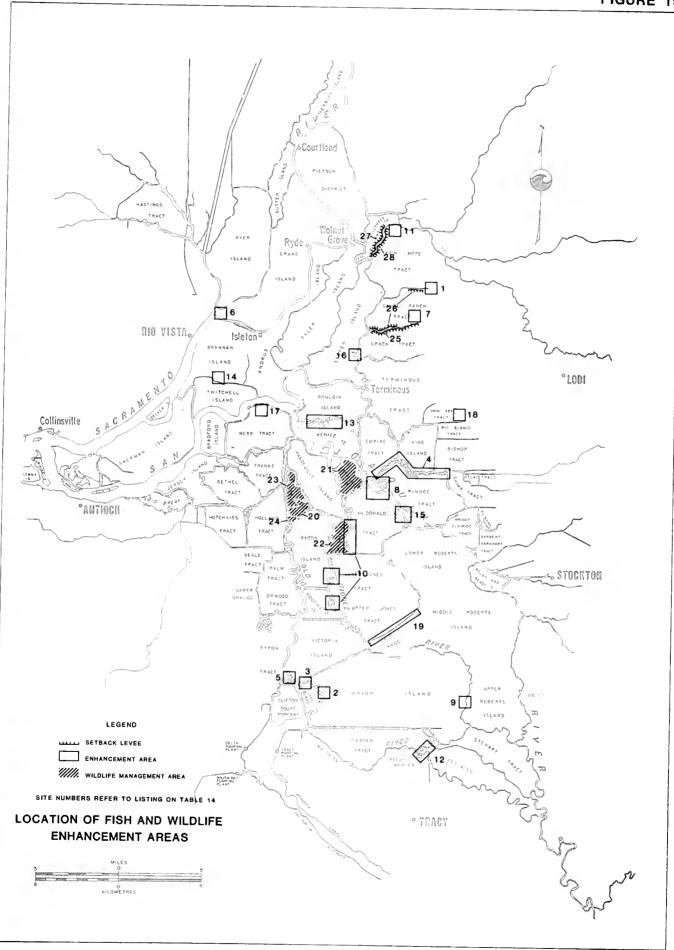
Fish and Wildlife Enhancement Benefits

The benefits attributable to the fish and wildlife resources include both monetary and nonmonetary benefits. The monetary benefits accrue primarily from recreational fish and wildlife activities (fishing, hunting, bird watching, nature walks, etc.) associated with facilities of the recreation plan, and from both sport and commercial fishing and hunting of game birds associated with the fish and wildlife enhancement features. The intangible nonmonetary benefits include benefits that would occur in preserving significant natural areas as identified in the Delta Wildlife Habitat Protection and Restoration Plan prepared by the Department of Fish and Game, the Delta Master Recreation Plan prepared by The Resources Agency, the Delta Action Plan prepared by the Delta Advisory Planning Council, and the Environmental Atlas

^{*}The cost increase as a result of using setback levees instead of the stage construction method is considered by the Corps to be enhancement. The Department considers at least part of these costs to be costs to avoid mitigation. This difference in cost classification would be resolved during post-authorization studies.

Table 14

14016 14	ACREAGE AND CC FISH AND WILDLIFE ENHAN SYSTEM PLA (1981 Price	ICEMENT	FEATURES,	
Location			First	Annua 1
On Map	Feature	Acres	Cost (\$ 1,000)	0&M (\$1,000)
	Enhancement Areas		*****************	**************************************
1	8eaver Slough	50	125	
2	Bonetti Island Coney Island Berm	33	83	
ľ	Islands	50	125	
4	Disappointment Slough	300	750	
5	Eucalyptus and Widdows Islands	120	. 367	
6	Grand Island	100	250	
7 8	Hog Slough	100	317	
9	Headreach, Fern, Lost Lake, and Tule Islan Middle River	ds 300	750	
10	(Union Island)	45	155	
10	Middle River Channel Islands	290	726	
11	Mokelumne River	125	396	
12 13	Old River Channel Islands Potato Slough	220	549	
,,,	Channel Islands	200	500	
14	Sevenmile Slough	20	52	
15 16	Spud and Hog Islands South Fork Mokelumne	295	738	
, ,	River	10	28	
17	Webb Tract	230	639	
18 19	Shin Kee Tract Trapper Slough	50 100	162 250	
,,	Subtotal	2,638	6,962	0
	Wildlife Management Areas			
20	Little Mandeville			
21	Island Medford Island	376 1,219		
22	Mildred Island	998		
23	Quimby Island	769		
24	Rhode Island Initial Construction	92	24,765	
	Stage Construction		16,525	
	Subtotal	3,454	41,290	340
	Setback Levees*			
25	Brack Tract		425	
26	Canal Ranch		534	
27 28	McCormack-Williamson New Hope		2,802 4,637	
	Subtotal		8,398	0
	TOTALS	6,092	56,650	340
	increase as a result of if stage construction me		setback lev	vees


prepared by the U. S. Army Corps of Engineers.

The tangible monetary benefits were based primarily on the percentage of total recreation benefits associated with fish and wildlife activities. U. S. Fish and Wildlife Service determined that about 37 percent of the visitors to the Delta participate in activities that depend on fish and wildlife resources. This percentage of the total annual recreation benefits of \$21 million was used to obtain the annual benefits of \$7.8 million assigned to the fish and wildlife enhancement areas. Additional fish and wildlife benefits were based on reduced waterfowl losses due to disease, on habitat improvement and other contributions to the National Migratory Bird Conservation Program, on reduced crop depredation, and on hunting and visitation at the wildlife management areas. These equivalent annual benefits were estimated to be at least \$322,000. total annual fish and wildlife enhancement benefits were estimated to be about \$8 million.

Economics of the System Plan

The first cost of initial and stage construction of this plan includes costs for levee construction, acquisition of lands, easements, and rights of way, relocation of existing facilities, construction of recreation features, providing fish and wildlife mitigation and enhancement features, and the related engineering, design, construction supervision, and administration. The annual costs include amortization of the first costs, and the annual operation and maintenance costs for the levees, recreation facilities, and wildlife areas.

The annual benefits include reduction of physical flood losses, reduction of floodfight costs, water quality and water supply benefits, recreation benefits from increased recreation use, and fish and wildlife benefits from reduced waterfowl losses, contributions to the National Migratory Bird Conservation Program, reduced crop depredation, and new hunting and visitation access on the proposed wildlife management areas.

As shown on Table 15, the plan has an estimated cost in 1981 prices of about \$1 billion. If these prices were escalated at 6 percent the plan would cost more than \$3.6 billion. The plan

has an overall benefit/cost ratio of 1.2 to 1. For purposes of comparison, figures both with and without the Peripheral Canal have been shown. The figures in the columns under "With

Table 15

ECONOMIC SUMMARY, SYSTEM PLAN

(At 1981 Prices and a 7-5/8 Percent Discount Rate, Under 1990-2040 Project Conditions)

		ipheral Canal	Without Per	ipheral Canal
	Subtotals	Totals	Subtotals	Totals
FIRST COST*				
Flood Control and Water Quality**		\$ 910,000,000		\$ 931,000,000
Initial Construction*** Stage Construction	\$670,000,000 240,000,000		\$686,000,000 245,000,000	
Recreation		40,000,000		40,000,000
Fish and Wildlife Enhancement		57,000,000		57,000,000
TOTAL FIRST COST		\$1,007,000,000		\$1,028,000,000
ANNUAL COST				
Flood Control and Water Quality		\$ 60,900,000		\$' 61,000,000
Interest and Amortization Operation and Maintenance	\$ 58,900,000 2,000,000		\$ 59,000,000 2,000,000	
Recreation	•	4,000,000		4,000,000
Interest and Amortization Operation and Maintenance	\$ 3,000,000 1,000,000		\$ 3,000,000 1,000,000	
Fish and Wildlife Enhancement		3,900,000		3,900,000
Interest and Amortization Operation and Maintenance	\$ 3,500,000 400,000		\$ 3,500,000 400,000	
TOTAL ANNUAL COST		\$ 68,800,000		\$ 68,900,000
ANNUAL BENEFITS				
Flood Control and Water Quality Recreation Fish and Wildlife Enhancement		\$ 51,900,000 13,100,000 8,100,000		\$ 62,100,000 13,100,000 8,100,000
TOTAL ANNUAL BENEFITS		\$ 73,100,000		\$ 83,300,000
BENEFIT-COST RATIOS				
Flood Control and Water Quality Recreation Fish and Wildlife Enhancement		0.9:1 3.3:1 2.1:1		1.0:1 3.3:1 2.1:1
TOTAL PROJECT BENEFIT-COST RATIO		1.1:1		1.2:1
NET BENEFITS (Excess of Benefits Over Costs)		\$ 4,300,000		\$ 14,400,000

Rounded to nearest \$1 million.

^{**} The draft Corps report excludes Reclamation District 17; this bulletin excludes both Reclamation District 17 and Stewart Tract because both are protected exclusively by project levees.

^{***} Includes \$11,000,000 in fish and wildlife mitigation costs under with Peripheral Canal assumption, and \$11,700,000 under without Peripheral Canal assumption.

Peripheral Canal" were taken from the Corps of Engineers' draft feasibility report dated October 1982. The figures in the columns under "Without Peripheral Canal" were based on the same basic assumptions used by the Corps except that Stewart Tract was excluded. Changing to the "Without Peripheral Canal" assumption does not have a significant effect on costs, but benefits would be larger because of the greater number of islands included without the Peripheral Canal. As indicated in this table, the summed first cost (initial construction plus staged construction) without the Peripheral Canal is \$21 million greater than with the Peripheral Canal; the corresponding annual cost is \$100,000 greater.

The annual benefits, however, increased by \$10.2 million. Furthermore, the overall benefit-cost ratio for the System Plan increased from 1.1 for the project with Peripheral Canal to 1.2 for the project without the Peripheral Canal.

As stated in Chapter 4, there is considerable logic in support of the non-restoration assumption, as well as the without Peripheral Canal assumption for computing the benefits of the plan. According to the Corps' sensitivity analysis, the combination of these assumptions would result in an overall benefit/cost ratio for the System Plan of 1.5 and for the flood control features of the plan of 1.4.

For compatibility with the Corps' report, the assumptions for this report are based on the following:

- Federal interest in participating in flood control improvements in the Delta would be limited to those locations where the improvements are economically justified*.
- o Islands will be reclaimed after levee breaks.

On this basis, the federally authorized project would include levee improvements on 19 islands (refer to Figure 16) and recreation and fish and wildlife enhancement features in the federal plan. (The ultimate number of islands and tracts that would receive flood control improvements under a federal program would depend on results of post-authorization studies, including reevaluation of the assumed without-project conditions.)

Table 16 shows the summed capital costs (1981 prices) allocated between federal and nonfederal participants under the traditional cost sharing method used in the Corps of Engineers' draft feasibility report. The Federal Government would pay \$407 million of the flood control costs for the federal participation islands, and would also pay \$20 million of costs allocated to recreation and \$43 million of fish and wildlife enhancement costs. Nonfederal interests would be responsible for the levee construction and mitigation costs (\$433 million) on the 34 islands not included in the federal project (refer to Figure 16). Also, non-Federal participants would pay \$90 million for lands, easements, rights of way, relocations, and relocation betterments for the 53 islands in the System Plan, \$20 million for recreation facilities, and \$14 million for fish and wildlife enhancement. For the total project, the Federal Government would be responsible for 46 percent of the total capital costs and the non-Federal interests would be allocated 54 percent of the total capital costs of the System Plan.

However, the Federal Government is proposing to increase the up-front cost sharing required from nonfederal sources. Comparable cost figures for this proposed formula are contained in Appendix A Table A-16 which show that the federal share would be reduced to only 30 percent.

^{*}Authorization of the federal Incremental Flood Control Plan would make this official policy.

SYSTEM PLAN ALLOCATION OF SUMMED CAPITAL COSTS TRADITIONAL COST SHARING

(In Thousands of Dollars, 1981 Prices)

Item Flood Control,	Project Total	Federal Allocation	Nonfederal Allocation
Federal Participation	slands an	d Tracts	
Construction Mitigation	405,000 2,500	405,000 2,200	300
Lands, Easements, Rights of Way Relocations Relocation Betterments	24,200 8,100 8,600	 	24,200 8,100 8,600
Subtotal Percent	448,400 100%	407,200 91%	41,200
Flood Control, Nonfederal Participation	on Islands	and Tracts	
Construction Mitigation	424,100 9,200		424,100 9,200
Lands, Easements, Rights of Way Relocations Relocation Betterments	30,200 9,000 9,700		30,200 9,000 9,700
Subtotal Percent	482,200 100%		482,200 100%
Flood Control Subtotal Percent	930,600 100%	407,200 44%	523,400 56%
Recreation and Fish and	d Wildlife	Enhancement	<u>.</u>
Recreation Percent	40,000 100%	20,000 50%	20,000 50%
Fish and Wildlife Enhancement Percent	57,000 100%	42,800 75%	14,200 25%
PROJECT TOTALS PERCENT	1,027,600 100%	470,000 46%	557,600 54%

Table 17* shows the traditional allocation of the summed capital costs to Federal, State, county, islands and tracts, and to water projects and water users in 1981 prices and in costs escalated at 6 percent and 9 percent to

the time of construction. Table A-17 shows the same information for the proposed cost sharing.

Of the non-Federal flood control costs, about half was allocated to the State. The islands and tracts were allocated 47 percent of the non-Federal flood control costs; the remaining 3 percent was assigned to the water projects and local water users. The costs of recreation and fish and wildlife enhancement were divided equally between the state and the counties. Overall, the state was assigned about half of the total cost of the project.

Construction Schedule and Expenditures

Before a levee rehabilitation project can be initiated, six steps are required: (1) Federal and State authorization of a project must be obtained, (2) advanced planning and an environmental impact report must be completed. (3) design and specifications for the work must be completed, (4) funds must be available for financing the work, (5) contracts detailing repayment obligations must be signed between the State and the local levee maintaining agencies, and (6) contracts must be signed to provide for construction, operation, and maintenance. Considering the aforementioned six steps, it is estimated that the earliest date for beginning construction would be 1989. Assuming maximum annual construction contract amounts in the \$70 million (1981 prices) range to reflect the availability of construction equipment and the logistics associated with construction, the initial construction period would extend over a 12-year period. The construction schedule was developed on the basis of repairing the levees with the estimated highest frequency of failure rate first.

^{*}The addition of numbers in Table 17 and subsequent cost allocation and scheduling tables may not equal the totals because of rounding.

SYSTEM PLAN ALLOCATION OF ESCALATED SUMMED CAPITAL COSTS, BY PARTICIPANT TRADITIONAL COST SHARING

(In Millions of Dollars)

										Non	-Federa	7						
	Fede	ral To	tal		Total			State			County		Island	S/Trac	ts	Water Pr	ojects/	Users
Purpose	1981 Prices	Escal.	ation 9%	1981 Prices	Escal.	ation 9%	1981 Prices	Esca la	tion 9%	1981 Prices	Escala 6%	tion 91	1981 Prices	Escala 6%	t ion	1981 Prices	Escala 6%	tion 9%
Flood Control Percent	407	1,478	3,244	523 100	1,888	4,618 100	265 51	939 50	2,277 49	:	-	-	244 47	897 47	2,214	14 2	52 3	127 3
Recreation Percent	20	47	71	20 100	46 100		10 50	23 50	35 50	10 50	23 50	35 50	:	-	:	:	-	-
Fish/Wildlife Enhancement Percent	43	154	361	· 14 100	52 100	120 100	7 50	26 50	60 50	7 50	26 50	60 50	:	-	-	-	-	-
TOTAL Percent	470	1,679	4,076	558 100	1,986 100	4,808 100	283 51	988 50	2,372	17 3	49 3	95 2	244 44	897 45	2,214 46	14 2	52 2	127 3

initial construction for each island would be completed within a two year period. Following the initial construction, areas where settlement or other major problems (that are considered beyond the normal maintenance work performed by local levee maintaining agencies) will be corrected as part of the levee restoration project. The construction schedule and expenditures for the total project based on 1981 prices are shown on Table 18.

Recognizing that construction probably will not begin until 1989, and prices will escalate during the interim (as well as after construction begins), an evaluation was made to ascertain the effect of price escalation on project costs. Table 19 presents the cost information of Table 18 escalated at a rate of 6 percent. As a result of this escalation rate, capital costs during the initial construction period (1989 through 2000) would increase by more than \$1 billion and costs for stage construction after year 2000 would increase by \$1.6 billion. The total increase in capital costs associated with the 6 percent escalation rate amounts to about \$2.6 billion.

To further evaluate its sensitivity of price escalation on project costs, an analysis was made of the effect of a 9 percent rate of escalation.

Table 20 presents the cost information of Table 18 escalated at a rate of 9 percent. The total capital costs associated with the 9 percent escalation rate amounts to about \$8.9 billion.

The total difference between the 6 percent and 9 percent rates of escalation amounts to over \$5 billion during the 50-year life of the project.

Cost allocation by the traditional method of cost sharing was previously discussed. The following discussion addresses the nonfederal portion of the capital costs of the System Plan. Table 21 shows the construction schedule and nonfederal costs portion of the System Plan in 1981 prices. The total nonfederal capital costs during the initial construction period (1989 through 2000) would amount to about \$470 million. During the following stage construction period, the total nonfederal capital costs would amount to about \$85 million.

Table 18

SCHEOULE	OF	TOTAL	P	ROJEC	T COS	T5.	SYSTEM	PLAN
(In T	nous	ands	of	Doll	ars.	1981	Prices	()

Island or Tract	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	Future Stage	Total
Bouldin*	20,576	20,576					6,673					6,146	15,914	69,8
/enice	10,295	10,295		4,824		4,824		4,824		4,824			28,942	68,8
'erminous*	13,937	13,937				1,410				3,932			14,881	48,0
mpire*	5,170	5,170				340				456			4,257	15.3
leale	2,153	2,153											4,237	4,
rack*	9,083	9,083								2,227				20
Shin Kee			1,794	1,794										
Drwood, Upper			2,077	2,077										3,
			0.676											4,
landeville*			8,676	8,676						••			9,867	27,
1cDonald*			8,252	8,252				2,458				2,115	7,218	28,
lindge*			9,333	9,333								295	2,029	20,
lebb* Roberts,			7,909	7,909				2,116					12,505	30,
Lower/Middle/Upper*		'	19,573	19,573	370									39.
rexler*			3,846	3,846			3,451						5,951	17,0
Jones, Lower/Upper*					12,451	12,451							4 076	20
loodward					3,927	3,927	2,316						4,076 5,498	28, 15,
Sacon*					8,704	8,704	2,310					4,264	7,372	73,
Andrus-Brannan*					11,279	11,279	861							29,
										1,852		861	14,563	40,
Canal Ranch					5,920	5,920							1,021	12,
Bishop					3,154	3,154							1,870	8,
[yler*					10,337	10,337							2,231	22,
Bradford					4,811	4,811							8,934	18,
lersey							9,803	9,803						19,
lo 1 1 and							6,580	6,580				778	3,624	17,
Sherman							25,190	25,190						50.
AcCormack-Williamson							4,550	4,550					767	9,
Deadhorse							1,930	1,930				80	507	4,
(ing							4,824	4,824					393	10,0
[witchell									13,759	13 750			11 021	
Staten									12,164	13,759 12,164			11,931	39,
Palm													10,701	35,
									4,527	4,527			2,493	11,
lotchkiss*									3,508	3,508				7,0
Shima '									3,294	3,294			489	7,0
Rio Blanco									1,626	1,626			47	3,
New Hope									9,733	9,733				19,4
right-Elmwood											3,211	3,211	558	6,9
/ictoria											5,443	5,443	1,232	12,
Coney											1,777	1,777		3,
Pescadaro Area											4,621	4,621		9,
Sargent-Barnhart											1,846	1,846	283	3,9
Bethel .											15,018	15,018	1,489	31,
Orwood											3,700	3,700	1,066	8,
Atlas											1,260	1,260		2,
Byron											9,291	9,291		18,
Walnut Grove											624	624		1,
Jnion											1,026	1,026		2,
Fabian											4,378	4,378		8,
											•			
Flood Control Subtotal	61,212	61,212	61,459	66,283	60,951	67,155	66,177	62,274	48,609	51,900	52,192	66,731	182,709	918,
Fish/Wildlife Mitigation	831	831	1,078	1,078	957	957	641	641	849	849	1,513	1,513		11,
Flood Control Total	62,042	62,042	62,537	67,361	61,908	68,112	66,818	62,915	49,458	62,749	53,705	68,244	182,709	930,
Recreation	3,697	3,697	2,383	2,383	2,676	2,676	2,905	2,905	4,392	4,391	4,231	4,230		40,
						•			-				12 212	
Fish/Wildlife Enhancemen		3,525	4,205	4,205	3,707	3,706	4,328	3,330	3,885	2,667	2,629	3,626	13,312	56,0
Project Total	69,264	69,264	69,125	73,949	68,291	74,494	74,051					76,100	196,021	1,027,

SCHEOULE OF TOTAL PROJECT COSTS, SYSTEM PLAN 6 PERCENT ESCALATION RATE (In Thousands of Dollars)

Venice 16 Terminous* 22 Empire* 8 Veale 3 Brack* 14 Shin Kee Orwood, Upper Mandeville* McDonald* Rindge* Webb* Roberts, Lower/Middle/Upper* Drexler* Jones, Lower/Upper* Woodward Bacon* Andrus-Brannan* Canal Ranch 8ishop Tyler* 8radford Jersey Holland Sherman	2,795 6,408 2,213 8,239 3,431 4,476	34,763 17,392 23,545 8,734 3,637 15,345	3,212 3,720 15,536 14,773 14,164 35,052 6,888	9,157 	 745	10,289 3,007 725 	15,087	11,561 5,891 5,071		12,990 10,588 1,228 5,997		18,595 6,399 893	153,462 228,832 136,217 22,472 87,147 67,469 27,692 119,521	254,74 306,63 195,5 41,3 7,00 35,8 6,6 7,66 119,14 110,26 63,07
Terminous* 22 Empire* 8 Veale 3 Brack* 14 Shin Kee Orwood, Upper Mandeville* McDonald* Rindge* Nebb* Roberts, Lower/Middle/Upper* Drexler* Jones, Lower/Upper* Adodward Bacon* Andrus-Brannan* Canal Ranch Bishop Tyler* Bradford Jersey Holland Sherman	2,213 8,239 3,431 4,476 	23,545 8,734 3,637 15,345 	3,212 3,720 15,536 14,778 16,713 14,164 35,052 6,888	3,405 3,943 16,469 15,665 17,716 15,014 37,155 7,301	 745	3,007 725 		5,891		10,588 1,228 5,997 		 6,399 893	136,217 22,472 87,147 67,467 27,692	195,5 41,3 7,00 35,8 6,6 7,66 119,1 110,2 63,0
Empire* 8 Veale 3, Veale 3, Brack* 14 Shin Kee Drwood, Upper Mandeville* McDonald* Rindge* Mebb* Roberts, Lower/Middle/Upper* Drexler* Jones, Lower/Upper* Moodward Bacon* Andrus-Brannan* Canal Ranch Bishop Tyler* Bradford Jersey Holland	8,239 3,431 4,476 	8,734 3,637 15,345 	3,212 3,720 15,536 14,778 16,713 14,164 35,052 6,888	3,405 3,943 16,469 15,665 17,716 15,014 37,155 7,301	 745	725		5,891 5,071		1,228 5,997 		 6,399 893	22,472 87,147 67,467 27,692	41,3 7,0 35,8 6,6 7,6 119,1 110,2 63,0
/eale 3 drack* 14 Shin Kee Drwood, Upper dandeville* dcDonald* Rindge* debb* Roberts, Lower/Middle/Upper* Drexler* Dones, Lower/Upper* Hoodward dacon* Andrus-Brannan* Canal Ranch Dishop Fyler* Gradford Dersey dolland Sherman	3,431 4,476	3,637 15,345 	3,212 3,720 15,536 14,778 16,713 14,164 35,052 6,888	3,405 3,943 16,469 15,665 17,716 15,014 37,155 7,301	 745			5,891 5,071	 	5,997 		 6,399 893	22,472 87,147 67,467 27,692	41,3 7,0 35,8 6,6 7,6 119,1 110,2 63,0
/eale 3 drack* 14 Shin Kee Drwood, Upper dandeville* dcDonald* Rindge* debb* Roberts, Lower/Middle/Upper* Drexler* Dones, Lower/Upper* Hoodward dacon* Andrus-Brannan* Canal Ranch Dishop Fyler* Gradford Dersey dolland Sherman	3,431 4,476	3,637 15,345 	3,212 3,720 15,536 14,778 16,713 14,164 35,052 6,888	3,405 3,943 16,469 15,665 17,716 15,014 37,155 7,301	 745			5,891 5,071	·	5,997 	 	 6,399 893	87,147 67,467 27,692	7,06 35,8 6,6 7,66 119,19 110,20 63,0
Brack* 14 Shin Kee Orwood, Upper Wandeville* McDonald* Rindge* Webb* Roberts, Lower/Middle/Upper* Orexler* Jones, Lower/Upper* Woodward Bacon* Andrus-Brannan* Canal Ranch Bishop Tyler* Brack	4,476	15,345	3,212 3,720 15,536 14,778 16,713 14,164 35,052 6,888	3,405 3,943 16,469 15,665 17,716 15,014 37,155 7,301	 745		 	5,891 5,071		 	 	 6,399 893	87,147 67,467 27,692	35,8 6,6 7,66 119,19 110,20 63,0
Orwood, Upper dandeville* dtcOnald* Rindge* Rebbt* Roberts, Lower/Middle/Upper* Orexler* Jones, Lower/Upper* doodward Bacon* Andrus-Brannan* Canal Ranch Bishop Fyler* Gradford Dersey dolland Dersey dolland Sherman			3,720 15,536 14,778 16,713 14,164 35,052 6,888	3,943 16,469 15,665 17,716 15,014 37,155 7,301	 745			5,891 5,071	 	 	 	 6,399 893	87,147 67,467 27,692	7,66 119,19 110,20 63,00
Mandeville* dcOonald* itindge* lebb* lobberts, Lower/Middle/Upper* lones, Lower/Upper*			15,536 14,778 16,713 14,164 35,052 6,888	16,469 15,665 17,716 15,014 37,155 7,301	 745	:- :- :-	 	5,891 5,071				6,399 893	87,147 67,467 27,692	119.1 110.2 63.0
### Actionald* Lindge* Lebe* Lower/Middle/Upper* Dones, Lower/Upper* Lower/Upper* Lower/Upper* Lower/Upper* Lower/Upper* Locon*	 		14,778 16,713 14,164 35,052 6,888	15,665 17,716 15,014 37,155 7,301	 745	 	 	5,071				893	67,467 27,692	110,2 63,0
lindge* lebb* lebb* loberts, Lower/Middle/Upper* lones, Lower/Upper* londward lacon* lacon* landrus-Brannan* landlaranch lishop lyler* laraford lersey lersey lereman	 		14,778 16,713 14,164 35,052 6,888	15,665 17,716 15,014 37,155 7,301	 745	 		5,071				893	67,467 27,692	110,2 63,0
lindge* lebb* lebb* loberts, Lower/Middle/Upper* lones, Lower/Upper* londward lacon* lacon* landrus-Brannan* landlaranch lishop lyler* laraford lersey lersey lereman	 		16,713 14,164 35,052 6,888	17,716 15,014 37,155 7,301	745			5,071				893	27,692	63,0
lebb* oberts, Lower/Middle/Upper* lones, Lower/Upper* oodward lacon* adrus-Brannan* land Ranch lishop yler* radford lersey lolland herman			14,164 35,052 6,888	15,014 37,155 7,301	745			-						
loberts, Lower/Middle/Upper* lones, Lower/Upper* loodward lacon* anal Ranch lishop yler* iradford lersey lolland cherman			35,052 6,888	37,155 7,301	745 			-						,
Lower/Middle/Upper* rexler* lones, Lower/Upper* loodward lacon* londrus-Brannan* lanal Ranch lishop yler* radford lersey lolland herman			6,888	7,301									,001	•
Orexler* Jones, Lower/Upper* Joodward Jacon* John Sanch Jishop Jishop Jishoford Jersey Jersey Jersey Jersey Jersey Jersen			6,888	7,301			7 000							72 0
loodward lacon* indrus-Brannan* lanal Ranch lishop yler* leradford lersey lolland		 			25.054		7,802						50,775	72,9 72,7
oodward acon* indrus-Brannan* anal Ranch ishop yler* radford ersey olland herman		 				26,557							24.815	76,4
lacon* indrus-Brannan* anal Ranch lishop yler* iradford lersey lolland					7,901	8,375	5,236						38,750	60,2
Indrus-Brannan* Ianal Ranch Iishop 'yler* Iradford Jersey Iolland Iolerman					17,514	18,565	3,230					12,901	46,989	95,9
anal Ranch ishop yler* radford dersey olland herman							1,947							
lishop Fyler* Bradford Jersey Holland Sherman					22,696	24,057				4,987		2,605	122,203	178.4
Tyler* Bradford Jersey tolland Sherman					11,911	12,626							9,346	33,8
radford Dersey tolland Sherman					6,346	6,727							10,740	23,8
Dersey Holland Sherman					20,799	22,047							15,261	58,1
dolland					9,680	10,260		•-					97,080	117,0
herman							22,163	23,492						45.6
							14,877	15,769				2,354	29,575	62,5
							56,951	60,368						117,3
lcCormack-Williamson -							10,287	10,904					33,859	55,0
Deadhorse							4,364	4,625				242	4,112	13,3
(ing -							10,907	11,561					3,021	25,4
[witchell -									34,951	37,049			100,256	172,2
Staten -									30,901	32,755			184,932	248,5
Palm -									11,499	12,189			21,530	45,2
									8,910	9,445				18,3
									8,368	8,870			3,758	20,9
									4,131	4.378			- 771	9,2
									24,724	26,207				50,9
right-Elmwood			**								9,164	9,714	4,546	23,4
											15,535	16,467	15,998	48.0
											5,071	5,375		10,4
											13,190	13,981		27,1
											5,268	5,584	1,533	12,3
											42,866	45,438	14,449	102,7
			. 								10,560	11,193	18,524	40,2
		'	·								3,596	3,812		7.4
											26,520	28,111		54,6
											1,780	1,886		3,6
511.511											2,929	3,104		6,0
Fabian .											12,496	13,246		25,7
													<u> </u>	
lood Control Subtotal 97.	7,562	103,416	110,063	125,824	122,645	143,237			123,484	100,683			1,695,635	3,338,
ish/Wildlife Mitigation 1.		1,404	1,931	2,047	1,925	2,041	1,450	1,537	2,157	2,286	4,318	4,578		26,9
Flood Control Total 98	8,886	104,819	111,994	127,871	124,571	145,278	151,070	150,780	125,641	168,969	153,292	206,479	1,695,635	3,365,2
Recreation 5	5,892	6,246	4,268	4,524	5,385	5,708	6,568	6,962	11,157	11,824	12,077	12,798		93,4
Fish/Wildlife Enhancement 5	5,618	5,955	7,531	7,982	7,459	7,905	9,785	7,981	9,869	7,182	7,504	10,971	109,979	205,
Project Total 110	0,397	117,021	123,792	140,377	137,415	158,890	167,423	165,723	146,667	187,974	172,873	230,248	1,805,614	3,664.4

Table 20

SCHEDULE OF TOTAL PROJECT COSTS, SYSTEM PLAN 9 PERCENT ESCALATION RATE (in Thousands of Dollars)

Island or Tract	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	Future Stage	Total
Bouldin*	40,999	44,689					22,299		٠.			31,601	479,492	619,0
/en1ce	20,512	22,359		12,448		14,789		17,571		20,877			688,126	796,6
[erminous*	27,769	30,269				4,323				17,016			445,036	524,4
mpire*	10,301	11,228				1,042				1,973			52,099	76,6
/eale	4,289	4,675											02,033	8,9
Brack*	18,097									9,638				47,4
Shin Kee			4,246	4,628										8,8
Drwood, Upper			4,917	5,360										10,2
andeville*			20,538	22,386								••	305,219	348,1
lc0ona1d*			19,535	21,294				8,953				10,875	217,023	277,6
indge*			22,093	24,082								1,517	106,972	154,
lebb*			18,723	20,409				7,707					430,422	477,
loberts, Lower/Middle/Upper*			46,336	50,507	1,041									97,8
rexler*			9,105	9,924	1,041		11,532						155 645	
			A,103	7,767			11,532						155,645	186,
ones, Lower/Upper* oodward					35,020 11,044	38,172 12,038	7 730						58,946	132.
oogwarg acon*							7,739					21 024	105,840	136,
					24,481	26,685	2 077			0.015	••	21,924	121,638	194.
ndrus-Brannan*					31,724	34,579	2,877			8,015		4,427	392,644	474,
anal Ranch					16,650	18,148							26,992	61,
ishop					8,871	9,670							24,811	43,
yler*					29,073	31,690							38,333	99,
radford					13,530	14,748							359,549	387,
ersey							32,757	35,705				4.000	05 461	68,
olland				••			21,989	23,968				4,000	85,461	135,
herman							84,176	91,752						175,
cCormack-Williamson							15,205	16,573					207,739	239,
eadhorse							6,450	7,030				411	11,640	25,
ing							16,120	17,571					8,023	41,
witchell									54,625	59,542			315,513	429,
taten									48,295	52,641			877,594	978,
a lm									17,972	19,589			60,465	98,
otchkiss*									13,926	15,179				29
hima									13,078	14,255			9,982	37,
io Blanco									6,456	7,037			2,942	16,
lew Hope				••	•-				38,641	42,119				80,
right-Elmwood											15,144	16,507	12,416	44,
ictoria											25,673	27,983	54,623	108,
oney								<i>'</i>			8,380	9,134		17,
escadaro Area	••										21,798	23,760	••	45,
argent-Barnhart											8,705	9,489	3,445	21,
ethel											70,842	77,217	42,907	190,
lrwood											17,451	19,022	72,720	109,
tlas	••										5,944	6,478		12,
lyron											43,827	47,771		91,
lalnut Grove											2,941	3,206		6,
											4,840	5,275		10,
Inion														

Flood Control Subtotal 121,968 132,945 145,495 171,037 171,435 205,884 221,145 226,832 192,993 267,881 246,196 343,108 5,774,258 8,221,176 Fish/Wildlife Mitigation 1,655 1,804 2,553 2,782 2,691 2,933 2,143 2,336 3,371 3,674 7,137 7,779 -- 40,859 Flood Control Total 123,623 134,749 148,047 173,819 174,126 208,817 223,288 229,168 196,363 271,555 253,333 350,887 5,774,258 8,262,035 Recreation 7,367 8,029 5,641 6,149 7,527 8,204 9,708 10,581 17,438 19,003 19,958 21,749 -- 141,354 Fish/Wildlife Enhancement 7,024 7,656 9,955 10,851 10,427 11,362 14,463 12,129 15,425 11,542 12,401 18,644 339,613 481,490 Project Total 138,013 150,435 163,643 190,819 192,079 228,383 247,459 251,879 229,226 302,099 285,692 391,280 6,113,871 8,884,879

*Islands included in Federal plan.

SCHEDULE OF NON-FEDERAL COSTS, SYSTEM PLAN -- TRADITIONAL COST SHARING (In Thousands of Dollars, 1981 Prices)

Island or Tract	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	Future Stage	Total
Bouldin*	1,102	1,102												2,2
/enice	10,295	10,295		4,824		4,824		4.824		4,824			28,942	68,8
[erminous*	1,665	1,665												3,3
mpire*	966	966												1,9
eale	2,153	2,153												4.3
rack*	478	478												9
hin Kee			1,794	1,794										3,5 4,1
rwood, Upper			2,077 547	2,077										
andeville*				547										1,0
cDonald*			530	530										1,0
indge*			1,036	1,036										
lebb* loberts,			461	461										
Lower/Middle/Upper*			3,882	3,882										7,
rexler*			492	492										•
lones, Lower/Upper*					1,892	1,892								3,7
oodward					3,927	3,927	2,316						5,498	15,
acon*					1,258	1,258								2,
indrus-Brannan*					4,423	4,423								8,
anal Ranch					5,920	5,920							1,021	12,
ishop					3,154	3,154							1,870	8.
yler*					1,340	1,340								2,
radford					4,811	4,811							8,934	18
lersey							9,803	9,803						19.
folland							6,580	6,580				778	3,624	17,
herman							25,190	25,190						50,
CCormack-Williamson							4,550	4,550					767	9,
Deadhorse							1,930	1,930				80	507	4
King							4,824	4,824					393	10,
witchell									13,759	13,759			11,931	39,
Staten									12,164	12,164			10,701	35,
Palm									4,527	4,527			2,493	11,
lotchkiss*									97	97				,
Shima									3,294	3,294			489	7,
Rio Blanco									1,626	1,626			47	3,
New Hope									9,733	9,733			7/	19,
new nope									. 9,733	9,733				15,
Iright-Elmwood											3,211	3,211	558	6.
/ictoria											5,443	5,443	1,232	12,
Coney											1,777	1,777		3,
Pescadaro Area											4,621	4,621		9,
Sargent-Barnhart											1,846	1,846	283	_3,
Bethe l											15,018	15,018	1,489	31,
Orwood											3,700	3,700	1,066	8,
Atlas											1,260	1,260		2,
Byron											9,291	9,291		18,
Walnut Grove											624	624		1,
Union											1,026	1,026		2,
abian											4,378	4,378		8,
													-	
lood Control Subtotal	16,657	16,657	10,817	15,641	26,722	31,546	55,192	57,700	45,199	50,023	52,192	53,050	81,845	513,
Fish/Wildlife Mitigation	277	277	189	189	426	426	641	641	765	765	1,513	1,513	01 045	7,
Flood Control Total	16,934	16,934	11,006	15,830	27,148	31,972	55,833	58,341	45,963	50,787	53,705	54,563	81,845	520,
Recreation	1,849	1,849	1,192	1,192	1,338	1,338	1,453	1,453	2,196	2,196	2,116	2,115		20,
ish/Wildlife Enhancemen	t 881	881	, 1,051	1,051	927	927	1,082	833	971	667	657	907	3,328	14,

Table 22 shows the nonfederal costs escalated at a rate of 6 percent. Compared to the 1981 prices the effect of a 6 percent escalation rate would increase costs during the initial

construction period by \$667 million; during the following staged construction period by \$764 million; for a total increase of about \$1.4 billion.

Table 22

		SCHED	ULE OF N	ON-FEOER	6 PERC	ÉNT ESCA	I PLAN LATION F of Dolla	RATE	ONAL COS	i SHAR1N	la .			
Island or Tract	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	Future Stage	Total
Bouldin*	1,756	1,861												3,6
/enice	16,408	17,392		9,157		10,289		11,561		12,990			228,832	306,6
Terminous*	2,654	2,813												5,4
mplre*	1,539	1,631												3,
eale	3,431	3,637												7.
rack*	762	808								••				1.
hin Kee			3,212	3,405										6,
rwood, Upper			3,720	3,943										7.
landev111e*			979	1,037										2,
cOonald*			949	1,006										1,
indge*			1,855	1,967										3,
ebb*			825	874										1,
oberts.														
Lower/Middle/Upper*			6,951	7,368										14,
rexler*			881	934										1,
ones Lower/Ilnnows	_	_			3 506	4 034								7.
ones, Lower/Upper*					3,806 7,901	4,034 8,375	5,236						38,750	60,
oodward acon*					2,530	2,682	3,230						30,730	5,
ndrus-Brannan*					8,900	9,434			••	••				18,
anal Ranch	••				11,911	12,626							9.346	33,
Ishop					6,346	6,727							10,740	23,
vler*					2,695	2,857								5,
radford					9,680	10,260							97,080	117
ersey							22,163	23,492						45,
lo 1 l and							14,877	15,769				2,354	29,575	62,
herman							56,951	60,368					22.050	117,
McCormack-Williamson Deadhorse							10,287 4,364	10,904 · 4,625				242	33,859 4,112	55, 13,
ing (ing							10,907	11,561					3,021	25,
witchell									34,951	37,049			100,256	172,
itaten									30,901	32,755			184,932	248,
Palm									11,499	12,189			21,530	45,
lotchk1ss*									246	261				
Shima									8,368	8,870			3,758	20,
R1o Blanco									4,131	4,378			771	9,
lew Hope									24,724	26,207				50,
Intabt Elmunod											9,164	9,714	4,546	23,
right-Elmwood ictoria											15,535	16,467	15,998	48.
Coney											5,071	5,375		10
escadaro Area											13,190	13,981		27,
argent-Barnhart				••							5,268	5,584	1,533	12
lethel											42,866	45,438	14,449	102
Drwood											10,560	11,193	18,524	40
tlas											3,596	3,812		7
Byron											26,520			54
dalnut Grove											1,780	1,886		3,
Inion											2,929	3,104		6
abian				••							12,496	13,246		25,
														
lood Control Subtotal	26,549	28,142	19,372	29,691	53,770	67,285	124.784	138.281	114,820	134,699	148.974	160,508	821,613	1,868,
ish/Wildlife Mitigation		468	339	359	857				1,943			4,578		19,
Flood Control Total	26,990								116,763				821,613	1,887
lecreation	2,946	3,123	2,134	2,262	2,692	2,854	3,284		5,579	5,912		6,399		46,
ish/Wildlife Enhancemer			1,883	1,996	1,865	1,976				1,795	1,876	2,743	27,495	51
		-	-						·		-		•	
Project Total	31,341	33,221	23,727	34,308	59,184	73,024	131,964	145.294	124.809	144,465	161,207	174.227	849,108	1,985

Table 23 shows the nonfederal costs escalated at a rate of 9 percent. Compared to the 1981 prices the total increase in the capital costs associated with the 9 percent escalation rate amounts to \$4.2 billion.

Tables A-21, A-22, and A-23 in Appendix A show the schedule of nonfederal costs of the system plan in 1981, prices escalated prices at 6 percent and escalated prices at 9 percent computed by the cost sharing formula proposed by the Reagan Administration.

Table 23

					9 PER	CÉNT ESC housands	ALATION	RATE	10NAL CO					
Island or Tract	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	Fut ure Stage	Total
ouldin*	2,195	2,392							·					4,58
enice	20,512	22,359		12,448		14,789		17,571		20,877			688,126	796,68
erminous*	3,318	3,616												6,93
mpire*	1,924	2,097												4,02
eale	4,289	4,675												8,96
rack*	952	1,038												1,99
hin Kee			4,246	4,628										8,8
rwood, Upper			4,917	5,360										10,27
andeville*			1,294	1,410										2,70
cOonald*			1,255	1,368										2,62
indge* ebb*			2,453 1,090	2,673 1,188										5,12
oberts,	••		1,090	1,100										2,27
Lower/Middle/Upper*			9,189	10,016										19,2
rexler*			1,165	1,270										2,43
ones, Lower/Upper*					5,320	5,799								11,11
oodward					11,044	12,038	7,739						105,840	136,60
acon*					3,537	3,855								7,39
ndrus-8rannan*					12,440									26,00
anal Ranch					16,650								26,992	61,7
ishop					8,871	9,670							24,811	43,3
yler* radford					3,768	4,107								7,8
rauturu					13,530	14,748							359,549	387,8
ersey							32,757	35,705						68,4
olland							21,989	23,968				4,000	85,461	135,4
herman							84,176	91,752						175,9
cCormack-Williamson							15,205	16,573					207,739	239,5
eadhorse Ing							6,450 16,120	7,030 17,571				411	11,640 8,023	25,5 41,7
							,						-	
witchell taten									54,625	59,542			315,513	429,6
a lm									48,295	52,641			877,594	978,5
a ini otchkiss*									17,972	19,589			60,465	98,0
hima									385 13,078	420 14,255			9,982	37.3
io Blanco									6,456	7,037			2,942	37,3 16,4
ew Hope									38,641	42,119			2,542	80,7
right-Elmwood											15 144	16 503	12.416	44.0
ictoria											15,144 25,673	16,507 27,983	12,416 54,623	44,0 108,2
oney											8,380	9,134		17,5
escadaro Area											21,798	23,760		45,5
argent-Barnhart											8,705	9,489	3,445	21,6
ethel											70,842	77,217	42,907	190,9
rwood											17,451	19,022	72,720	109,1
tlas		'									5,944	6,478		12,4
yron											43,827	47,771		91,5
alnut Grove											2,941	3,206		6,1
nion											4,840	5,275		10,1
abian								、			20,652	22,510		43,1
load Cantual Cottact	22.100	26 137	05 606	40.000	35									
	33,190	36,177			75,160								2,970,787	4,587,4
ish/Wildlife Mitigation Flood Control Total	.552 33,742	602 36 779	26 056	488	1,198	1,306		2,336		3,309	7,137	7,779	2 070 707	30,3
, lood control local	JJ,/42	30,773	26,056	40,849	76,358	30,020	100,280	212,50/	102,488	419,/88	200,333	200,344	2,970,787	4,617,8
ecreation	3,683	4,015	2,821	3,075	3,763	4,102	4,854	5,291	8,719	9,501	9,979	10,875		70,6
ish/Wildlife Enhancement	1,756	1,914	2,489	2,713	2,607	2,840	3,616	3,032	3,856	2,885	3,100	4,661	84,903	120,3
Project Total	39,181	42,708	31,365	46,636	82,728	104,963	195,049	220,830	195,063	232,175	266,412	296,080	3,055,691	4,808,8

Project Financing

The allocation of the escalated capital costs to the non-Federal participants shown in Table 17 were used to calculate the total amount of the bonds that would have to be authorized for State issue and the bond repayment obligation of each of the project participants. Two sets of financial market rate assumptions were used for these analyses (see Chapter 4 for a full discussion of the financial assumptions):

	Assump- tion 1	Assumption 2
Cost Escalation Rate	6%	9%
Bond Interest Rate	9%	12%
Sinking Fund Rate	8%	10.5%

Table 24 shows the allocation of financial costs of the traditional non-Federal share of the project among beneficiaries for both sets of assumptions. This allocation was made in accordance with the discussion of cost sharing principles in Chapter 4. Table A-24 shows the same information computed by the proposed cost sharing formula.

A comparison of Table 24 with Table 17 reveals the following:

- The escalated summed capital costs for the flood control and fish and wildlife enhancement purposes are substantially greater than the financial costs for these purposes.
- The escalated summed capital costs for the recreation purpose are less than the financial costs for this purpose.

This difference results from the future stage costs associated with both flood control and fish and wildlife enhancement. No future stage costs are associated with recreation. Because of the sinking fund assumption discussed in Chapter 4 (Assumptions for Financial Analysis), the large effect of escalating future stage costs on the sum of capital costs is more than compensated for in the financial analysis. This mitigating effect is not significant enough to reduce the recreation financial costs below the sum of the escalated capital costs for recreation.

Table 24

SYSTEM PLAN ALLOCATION OF REPAYMENT OBLIGATION -- TRADITIONAL COST SHARING

(In Millions of Dollars)

	To	tal*	St	ate	Co	unty	Is lands	/Tracts*	Water Pa	rojects er Users
Purpose	**6%/9%	9%/12%	<u>6%/9%</u>	9%/12%	6%/9%	9%/12%	6%/9%	9%/12%	6%/9%	9%/12%
Flood Control Percent	1,238 100	1,941 100	625 50	978 50			580 47	911 47	33 3	52 3
Recreation Percent	50 100	76 100	25 50	38 50	25 50	38 50			 	
Fish/Wildlife Enhancement Percent	32 100	52 100	16 50	26 50	16 50	26 50				
TOTAL PROJECT Percent	1,320 100	2,068 100	666 50	1,041 50	41 3	64 3	580 44	91 1 44	33	52 3

^{*} Includes relocation betterments.

^{**}Percents of Escalation/Bond Rate.

Tables 25 and 26 show the suballocation to individual islands and tracts of the financial obligation allocated to the islands/tracts category in Table 24. This suballocation was made using the assumptions discussed in Chapter 4 (Assumptions for traditional Cost Sharing Analysis). The suballocation was made using the annual repayment equivalent of the total bond repayment obligation shown in Table 24. Annual unit repayment values by levee mile and acre are provided, as well as the portion of operation and maintenance costs allocated to each island and tract. The operation and maintenance costs are escalated to the price level expected in 1989, the year of the start of construction.

To facilitate the comparison of the relative obligations of each of the islands and tracts, a 1988 bond sale equivalent capital cost repayment obligation is also presented in Tables 25 and 26. These figures assume that construction on all islands and tracts would be initiated in 1989 and that bond repayment for all islands and tracts would begin on that same date. This was a necessary assumption for comparison purposes because the figures in the first three columns are based on six bond sales over a 12-year construction period. With inflation assumed to continue during this period, the relative values of each of the bond sales would differ, a dollar of repayment obligation stemming from the first sale being worth substantially more in real terms than a dollar of repayment obligation incurred with the final bond sale.

Proposed Cost Sharing Program

While not yet approved by Congress, a revision of traditional cost sharing methods is under consideration at the federal level. Under the proposed cost sharing formula, nonfederal interests would be required to contribute 35 percent (up front) of the cost of a federally authorized flood control project,* and to assume 100 percent of the fish and wildlife enhancement costs and 50 percent of the recreation costs. Under this proposed cost sharing formula, assuming federal participation on 19 islands and tracts in the System Plan as shown on Figure 16, the cost allocation for the total project (1981 prices) would be 30 percent (\$306 million) federal, 70 percent (\$722 million) non-Federal, as shown on Table A-16 of Appendix D.

Tables similar to Tables 16, 17, 21, 22, 23, 24, 25, and 26, computed under the proposed cost sharing formula, are presented as the same table number preceded by the letter "A" in Appendix A. The differences in allocation between the traditional and proposed cost sharing can be compared between the corresponding tables.

^{*} The 35 percent share is assumed to be computed after all relocation betterment costs are allocated to the nonfederal participants.

SYSTEM PLAN ALLOCATION OF ISLAND OR TRACT REPAYMENT OBLIGATION AND OPERATION AND MAINTENANCE COSTS TRADITIONAL COST SHARING 6 PERCENT ESCALATION / 9 PERCENT BOND INTEREST

	Annu	al Repayment			Bond Sale Annual Repa			OLM Costs Price Level	
Island or Tract	Total	Per Mile of Levee	Per Acre	Total	Per Mile of Levee	Per Acre	Total	Per Mile of Levee	Per Acre
Andrus-Brannan*	1,322,000	131,000	88	1,047,000	104,000	70	40,000	3,911	3
Atlas	349,000	113,000	1,030	195,000	63,000	575	12,000	3,748	34
Bacon*	351,000	25,000	63	278,000	19,000	50	57,000	3,981	10
Bethel	4,398,000	382,000	1,250	2,456,000	214,000	698	268,000	23,339	76
Bishop	694,000	120,000	320	550,000	95,000	253	23,000	4,007	11
Bouldin*	206,000	11,000	34	206,000	11,000	34	71,000	3,938	12
Brack*	97,000	9,000	20	97,000	9,000	20	44,000	4,088	9
Bradford	1,437,000	194,000	671	1,138,000	154,000	531	29,000	3,925	14
Byron	3,248,000	342,000	468	1,814,000	191,000	262	38,000	4,036	6
Canal Ranch	1,146,000	121,000	382	907,000	96,000	303	38,000	4,036	13
Coney	495,000	92,000	530	277,000	51,000	296	21,000	3,873	22
Deadhorse	498,000	199,000	2,359	351,000	140,000	1,663	9,000	3,718	44
Drexler*	98,000	11,000	31	87,000	10,000	28	36,000	4,047	11
Empire* .	148,000	14,000	40	148,000	14,000	40	41,000	3,948	11
Fabian	1,230,000	65,000	188	687,000	37,000	105	74,000	3,955	11
Holland	1,880,000	173,000	445	1,326,000	122,000	314	43,000	3,944	10
Hotchkiss*	25,000	3,000	7	16,000	2,000	5	63,000	7,469	19
Jersey	2,227,000	143,000	642	1,570,000	101,000	452	62,000	3,948	18
Jones, Lower/Upper*	376,000	21,000	31	298,000	17,000	25	71,000	3,982	6
King	1,150,000	128,000	353	811,000	90,000	249	35,000	3,873	11
Mandeville* McCormack-Williamson McConald* New Hope Orwood	70,000	5,000	13	63,000	4,000	12	72,000	5,038	14
	1,070,000	123,000	653	755,000	87,000	460	35,000	4,007	21
	66,000	5,000	11	59,000	4,000	10	53,000	3,901	9
	2,565,000	209,000	263	1,609,000	131,000	165	49,000	3,968	5
	1,203,000	188,000	493	672,000	105,000	275	26,000	3,994	10
Orwood, Upper	300,000	67,000	176	267,000	59,000	157	24,000	5,422	14
Palm	1,390,000	178,000	571	872,000	112,000	358	33,000	4,171	13
Pescadero Area	1,280,000	55,000	82	715,000	31,000	46	93,000	3,972	6
Rindge*	189,000	12,000	28	168,000	11,000	25	62,000	3,922	9
Rio 8lanco	428,000	134,000	642	269,000	84,000	403	13,000	3,994	19
Roberts, Lower/Middle/Upper* Sargent-Barnhart Sherman Shima Shin Kee	585,000 558,000 5,781,000 893,000 224,000	25,000 223,000 590,000 110,000 118,000	18 459 555 373 208	521,000 311,000 4,076,000 560,000 199,000	22,000 125,000 416,000 69,000 105,000	16 256 391 234 186	202,000 9,000 43,000 31,000 8,000	8,714 3,718 4,387 3,873 4,281	6 8 4 13 8
Staten	4,013,000	157,000	442	2,518,000	99,000	277	101,000	3,964	11
Terminous*	293,000	18,000	28	293,000	18,000	28	65,000	4,041	6
Twitchell	4,781,000	503,000	1,316	3,000,000	316,000	826	38,000	4,036	11
Tyler*	278,000	26,000	32	220,000	21,000	26	48,000	4,452	6
Union	284,000	10,000	11	159,000	6,000	6	101,000	3,510	4
Veale	331,000	58,000	255	331,000	58,000	255	22,000	3,873	17
Venice	4,371,000	355,000	1,357	4,371,000	355,000	1,357	49,000	3,968	15
Victoria	1,622,000	107,000	224	906,000	60,000	125	59,000	3,924	8
Walnut Grove	184,000	92,000	282	103,000	51,000	158	7,000	3,486	11
Webb*	71,000	6,000	13	63,000	5,000	12	50,000	3,903	9
Woodward	1,257,000	145,000	690	996,000	114,000	547	35,000	4,007	19
Wright-Elmwood	954,000	140,000	450	533,000	78,000	251	27,000	3,930	13

 ^{*} Islands and tracts in Federal plan.
 ** Common base for comparison of relative financial obligation.

SYSTEM PLAN
ALLOCATION OF ISLAND OR TRACT REPAYMENT OBLIGATION AND OPERATION AND MAINTENANCE COSTS
TRADITIONAL COST SHARING
9 PERCENT ESCALATION / 12 PERCENT BOND INTEREST

	Annu	al Repayment			8 Bond Sale Annual Repa		(1989	OLM Costs Price Level	
Island or Tract	Total	Per Mile of Levee	Per Acre	Total	Per Mile of Levee	Per Acre	Total	Per Mile of Levee	Per Acre
Andrus-Brannan*	2,423,000	240,000	162	1,717,000	170,000	114	49,000	4,890	3
Atlas	756,000	244,000	2,230	319,000	103,000	942	15,000	4,686	43
Bacon*	643,000	45,000	116	455,000	32,000	82 ,	71,000	4,977	13
Bethel	9,556,000	831,000	2,715	4,037,000	351,000	1,147	336,000	29,178	95
Bishop	1,295,000	223,000	597	918,000	158,000	423	29,000	5,009	13
Bouldin*	337,000	19,000	56	337,000	19,000	56	89,000	4,923	15
Brack*	159,000	15,000	33	159,000	15,000	33	55,000	5,111	11
8radford	2,749,000	371,000	1,283	1,947,000	263,000	909	36,000	4,907	17
8yron .	7,031,000	740,000	1,014	2,970,000	313,000	428	48,000	5,046	7
Canal Ranch	2,118,000	223,000	707	1,501,000	158,000	501	48,000	5,046	16
Coney	1,073,000	199,000	1,147	453,000	84,000	485	26,000	4,842	28
Oeadhorse	972,000	389,000	4,608	580,000	232,000	2,748	12,000	4,648	55
Drex ler*	170,000	19,000	54	143,000	16,000	45	45,000	5,060	14
Empire*	243,000	24,000	65	243,000	24,000	65	51,000	4,936	14
Fabian	2,664,000	142,000	408	1,125,000	60,000	172	93,000	4,945	14
Holland	3,700,000	339,000	876	2,206,000	202,000	522	54,000	4,931	13
Hotchk1ss*	51,000	6,000	15	26,000	3,000	8	78,000	9,338	23
Jersey	4,312,000	276,000	1,242	2,571,000	165,000	741	77,000	4,935	22
	690,000		57		27,000	40	89,000	4,978	7
Jones, Lower/Upper* King	2,234,000	39,000 248,000	685	489,000 1,332,000	148,000	409	44,000	4,842	13
_			••			00	00.000	5 000	17
Mandeville*	122,000	9,000	23	102,000	7,000	20	90,000	6,298	17
McCormack-Williamson	2,091,000	240,000	1,276	1,247,000	143,000	761	44,000	5,009	27
McDonald*	115,000	8,000	19	96,000	7,000	16	67,000	4,877	11
New Hope	5,252,000	427,000	538	2,636,000	214,000	270	61,000	4,960	6
Orwood	2,635,000	412,000	1,080	1,113,000	174,000	456	32,000	4,993	13
Orwood, Upper	519,000	115,000	305	437,000	97,000	257	31,000	6,779	18
Palm	2,895,000	371,000	1,188	1,453,000	186,000	596	41,000	5,214	17
Pescadero Area	2,772,000	118,000	177	1,171,000	50,000	75	116,000	4,966	7
Rindge*	327,000	21,000	48	275,000	18,000	40	77,000	4,904	11
Rio Élanco	878,000	274,000	1,316	441,000	138,000	660	16,000	4,993	24
Roberts,									
Lower/Middle/Upper*	1,013,000	44,000	31	853,000	37,000	26	253,000	10,894	8
Sargent-Barnhart	1,211,000	484,000	997	512,000	205,000	421	12,000	4,648	10
Sherman	11,194,000	1,142,000	1,074	6,674,000	681,000	641	54,000	5,484	5
Shima	1,837,000	227,000	767	922,000	114,000	385	39,000	4,842	16
Shin Kee	388,000	204,000	361	326,000	172,000	304	10,000	5,352	9
Staten	8,447,000	331,000	929	4,239,000	166,000	466	126,000	4,956	14
Terminous*	481,000	30,000	46	481,000	30,000	46	81,000	5,052	8
Twitchell	9,984,000	1,051,000	2,748	5,011,000	527,000	1,379	48,000	5,046	13
Tyler*	510,000	48,000	59	361,000	34,000	42	60,000	5,566	7
Union	615,000	21,000	25	260,000	9,000	io	126,000	4,388	5
Veale	544,000	95,000	419	544,000	95,000	419	28,000	4,842	21
Venice	7,526,000	612,000	2,337	7,526,000	612,000	2,337	61,000	4,960	19
Victoria	3,543,000	235,000	489	1,496,000	99,000	206	74,000	4,906	10
Walnut Grove		100 000	611			258	9,000	4,358	13
wainut Grove Webb*	398,000 123,000	199,000 10,000	22	168,000 104,000	84,000 8,000	258 19	62,000	4,358 4,880	11
Moodwand									24
Woodward Wright-Elmwood	2,372,000 2,077,000	273,000 305,000	1,302 979	1,680,000 877,000	193,000 129,000	922 414	44,000 33,000	5,009 4,913	24 16
WE TALL - E HIMOOOO	2.0//.000	302 4000	9/9	677,000	173.000	414	33,000	4,913	10

^{**} Common base for comparison of relative financial obligation.

	· ·		

Chapter 6. MODIFIED SYSTEM PLAN

The Modified System Plan is based on the concept that the Delta islands are interdependent and that the flood control benefits for the overall system should exceed the flood control costs. The plan is similar to the System Plan, except that 12 islands and tracts have been deleted from the flood control project.

Six of these twelve islands (Fabian, Mournian, Pescadero, Pico-Naglee, Union, and Walnut Grove) are the same six mentioned in the System Plan that would require only the addition of levee patrol roads and erosion protection material to comply with levee design They are located in the standards. lower flood hazard areas of the Delta and already provide protection against at least a once-in-50-year flood occurrence. The other six islands (Atlas, Orwood, Sargent-Barnhart, Sherman, Twitchell, and Venice) were deleted because the cost of levee improvements exceeded the estimated flood control benefits. Other factors such as landowners expressed desire to be excluded in selecting this group of islands.

As in the System Plan, the levees protecting two tracts, Reclamation District 17 and Stewart Tract, are "project levees" that have been improved under a Federal-State flood control project, and no additional work has been proposed for these tracts. Also as in the System Plan, five islands (Little Mandeville, Medford, Mildred, Quimby, and Rhode) are proposed for use as fish and wildlife enhancement areas and are not included for flood control improvements.

Under the Modified System Plan, of the 60 major islands and tracts in the study area, levee improvements for flood

control are proposed for 41 islands, which are depicted by the shaded area on Figure 20. The crosshatched area on the figure depicts the 19 islands considered economically justified for federal participation under the "Incremental Flood Control Plan", which is described in the Corps' 1982 draft feasibility report (without Peripheral Canal assumption).

The Modified System Plan would essentially satisfy the intent of the Legislature to preserve the integrity of the Delta levee system (refer to Chapter 2, "Basis for Study"). Economic justification was based on the 41-island system as a whole, rather than on an individual island basis, as discussed in Chapter 7. To a lesser extent than the System Plan, this plan would:

- ° Reduce flooding.
- Reduce the periods of water quality impairment by reducing the frequency of salinity intrusion caused by island flooding.

The Modified System Plan includes the same recreation and fish and wildlife enhancement features as were included in the System Plan and, as such, the Modified System Plan would:

- Provide needed public access and recreation facilities.
- Preserve and enhance some of the Delta's natural resources and scenic areas.

As for the 12 islands and tracts that would be included in the System Plan but excluded in this plan, it was assumed that maintaining and upgrading these levees would be the responsibility of the respective maintaining agencies. If funds are appropriated by the

Legislature, the State may assist these agencies through the Delta Levee Maintenance Subventions Program (Way Bill), whereby the State reimburses local agencies for a portion of the cost to maintain and rehabilitate their levees.

Should a levee failure occur on the 12 excluded islands, they could be eligible for a federal restoration program being proposed by the Corps of Engineers in its draft feasibility report. This program, entitled, "Flood Hazard Mitigation Program", would be for islands and tracts not included in a federal levee restoration program, and involves financial assistance under Public Law 84-99. Financial assistance under Public Law 84-99, which is administered by the Corps of Engineers, is presently limited to supplementing local floodfight activities to save lives and prevent or mitigate property damage and to restoring flood preventative structures (but not reclamation structures, as nonproject levees in the Delta are now classified). Under the Flood Hazard Mitigation Program, application of Public Law 34-99 authority for nonproject levees in the Delta would be proposed according to the following criteria:

- Nonproject levees not authorized for federal flood control improvements would be considered eligible for assistance if nonfederal interests improve and maintain the levees to a federal standard.
- Minimum levee standards would be as follows:
 - Where the levee protects only agricultural lands, the minimum levee crown elevation would equal the 50-year flood stage elevation plus a 1.5-foot minimum freeboard.
 - Where the levee provides protection to urban areas, the minimum elevation of the levee crown would be based on the 100-year flood stage plus a 3.0-foot minimum freeboard.

- The minimum levee section used in raising the existing levees should have a crown width of not less than 12 feet and side slopes of 1 vertical on 2 horizontal, or flatter.
- The levee crown would be required to have an all-weather surface for vehicular access and flood patrols.
- Continuous maintenance and inspection of the levees would be required. The maintenance program would be prescribed by the Corps of Engineers.

A discussion of allowing flooded islands to remain flooded is presented in Chapter 8.

Flood Control Features

Flood control features consist of levee rehabilitation, land use management, and fish and wildlife mitigation. The stage construction method of levee rehabilitation would be used on most of the islands. Fifteen miles of sheet pile flood walls would be used on parts of Bethel Island and Hotchkiss Tract to avoid relocation of existing urban development along the levees. Setback levees would be used to protect riparian habitat in a number of areas. After rehabilitation, all 41 islands would have an expected frequency of failure of less than once in 100 years during the 50-year economic life of the project.

Although the probability of flooding on all islands would be reduced to less than once in 100 years, the Department believes that most islands especially those below sea level, would not be suitable for urbanization. This is because the failure of a levee, possible even during the summer, would have too severe consequences to urban populations.

Figure 21 shows the general locations of the various types of levee improvements. More specific locations are shown on Plates 2 through 31 (exclusive of 8, 9, 12, and 24) of the Plan Formulation Appendix of the Corps' draft feasibility report.

Land use management would be a required feature of this plan to ensure that the natural and beneficial values of the flood plain are preserved. This feature would include enactment and enforcement of zoning regulations that would prevent project-induced urban growth on agricultural islands. Urban developments would be required to be consistent with city and county General Plans and the California Environmental Quality Act, and would be limited to areas incapable of sustained economic agricultural production (refer to Chapter 4, "Land Use Planning and Regulation").

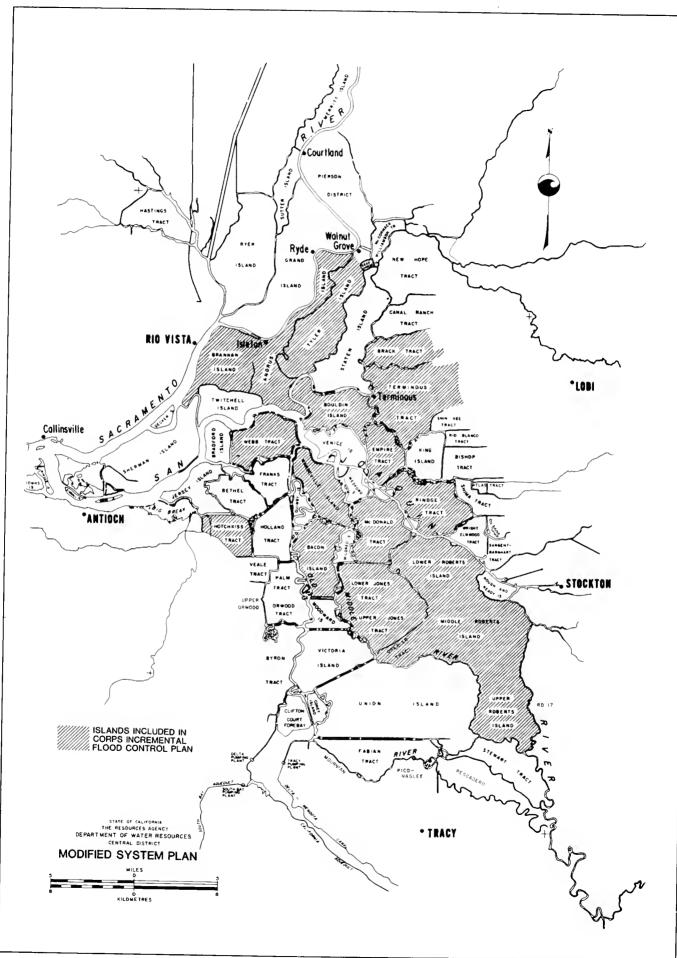
Levee rehabilitation would result in a loss of riparian habitat, wetland vegetation, and agricultural land. The U. S. Fish and Wildlife Service indicates that the most significant fish and wildlife impact would be the loss of scarce riparian habitat. Adverse impacts on the fishery would be minimal. Several methods for mitigation of the adverse impacts on riparian habitat were considered. The method selected for this report would involve the purchase of selected small parcels of marginal agricultural land. It is estimated that about 2,280 acres of agricultural land would be purchased for mitigation of the adverse impacts resulting from construction of the Modified System Plan. As in the System Plan, these lands would be small parcels of marginal agricultural land that would be allowed to develop into mature riparian habitat through natural establishment and succession of plant species.

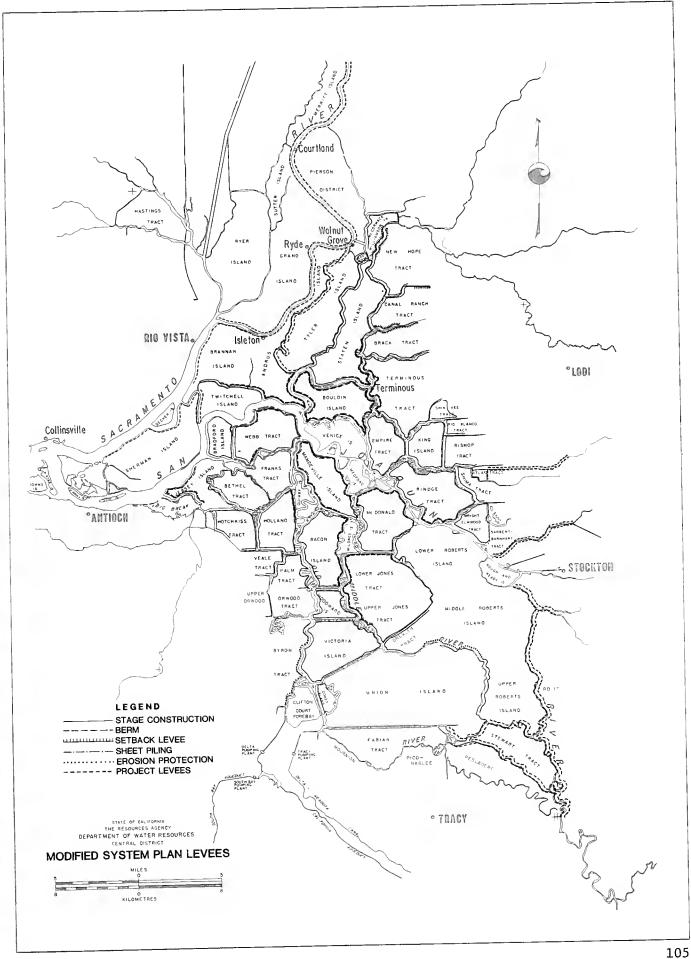
Flood Control Costs

Table 27 shows the summed capital costs (initial construction plus staged construction) and the annual operation and maintenance costs for flood control by island and tract (1981 prices) and also the cost per mile of levee and cost per acre for each island and tract.

These costs per levee mile and per acre are a measure of the cost of providing flood control in the Delta. As shown in the table, the capital costs per mile of levee range from \$4 million for Andrus-Brannan Island down to \$658,000 for Coney Island. The corresponding costs per acre of land range from \$21,000 for Deadhorse Island down to \$1,200 for Roberts Island.

After the levees are rehabilitated, the annual operation and maintenance costs range from about \$20,000 per mile (\$66 per acre) for Bethel Island down to about \$3,000 per mile for Deadhorse Island, and \$2 per acre for Andrus-Brannan Island.


The estimated total capital costs for flood control, including the cost of fish and wildlife mitigation, is \$732 million. The average cost per mile of levee rehabilitation is \$1.8 million, or an average of about \$3,800 per acre of land. The average annual operation and maintenance cost amounts to about \$4,000 per mile, or \$9 per acre of land included in the Modified System Plan.


Recreation Features

Recreation features, including costs and benefits allocated to recreation, would be the same as those used in the System Plan. New recreation features under both plans would be located on 45 sites in the study area, and would consist of 14 recreation areas, 23 fishing access sites, 8 boater destination sites, and 145 miles of trails. Figure 18 (Chapter 5) shows the types and locations of the recreation features. For a further discussion of these recreation features and an expansion of the discussion on costs and benefits presented below, refer to Chapter 5.

Recreation Costs

Table 13, in Chapter 5, lists the recreation facilities, the first cost, and the annual operation and maintenance

cost of each facility (1981 prices). The first cost includes the cost of constructing the recreation facilities and the cost of lands, easements, and rights of way, plus associated engineering, design, construction supervision, and administration. The table also lists the first cost associated with the trail system. The total first cost for the recreation features (45 recreation sites and the trail system) amounts to \$40 million (1981 prices). The equivalent annual cost, based on a 7-5/8 percent interest rate and a 50-year project economic life, would be \$3 million. Annual operation and maintenance cost associated with the recreation features amounts to \$966,000, which translates to about 40 cents per recreation day. total equivalent annual cost, including operation and maintenance, amounts to \$4 million.

Recreation Benefits

Recreation benefits were computed by the Corps of Engineers in accordance with the Water Resources Council's National Economic Development Evaluation Procedures, using the travel/cost method. The equivalent annual benefits for recreation use, based on a 7-5/8 percent interest rate and a 50-year project economic life, were estimated at This value includes \$21 million. recreation benefits attributable to the fish and wildlife management area. The equivalent annual benefits attributed to general recreation amounts to \$13 million, which provides a benefit-cost ratio of 3.3 to 1.0.

Fish and Wildlife Enhancement Features

Fish and wildlife enhancement features would be the same as those discussed for the System Plan. These features include acquiring public interest in lands to

preserve and enhance their natural resources and scenic values. An additional enhancement feature would involve construction of setback levees to preserve and enhance the vegetation on the existing levees on Brack, Canal Ranch, McCormack-Williamson, and New Hope tracts to avoid loss of riparian habitat. Setback levees could be considered as mitigation, but for compatibility with the Corps report, levee set backs have been treated as enhancement in this report. Figure 19 (Chapter 5) shows the locations of enhancement features.

Specifically, the acquired lands would provide a diversity of terrain, including about 1,000 acres of significant upland and riparian habitat, about 1,500 acres of channel tule islands with valuable riparian habitat and freshwater marshes, and about 3,500 acres of highly diversified habitat set aside for wildlife management areas on Little Mandeville, Medford, Mildred, Quimby, and Rhode Islands. For further discussion of these fish and wildlife enhancement features and an expansion on the discussion of costs and benefits presented below, refer to Chapter 5.

Fish and Wildlife Enhancement Costs

First and annual costs for fish and wildlife enhancement features (1981 prices) are shown in Table 14 (Chapter 5). The first cost of the enhancement areas amounts to about \$7 million. The cost to repair the levees around the wildlife management areas was estimated at \$32 million, and the cost of the lands was estimated at about \$9 million, for a total first cost of \$41 million for the wildlife management areas. The increased cost to provide setback levees instead of stage construction on the present levee

MODIFIED SYSTEM PLAN
SUMMED CAPITAL COSTS AND OPERATION AND MAINTENANCE COSTS FOR FLOOD CONTROL, 8Y ISLAND OR TRACT

(In Dollars, At 1981 Prices)

		Capital Cost*		Annual Ope	rations and Main	
Island or Tract	Total	Per Mile of Levee	Per Acre	Total	Per Mile of Levee	Per Acr
Andrus-Brannan	40,695,000	4,029,000	2,712	34,000	3,366	
lacon	29,044,000	2,031,000	5,237	49,000	3,427	ģ
ethel	31,525,000	2,741,000	8,956	231,000	20,087	66
ishop						9
ouldin	8,178,000 69,885,000	1,410,000 3,883,000	3,770 11,557	20,000 61,000	3,448 3,389	10
lrack	20,392,000	1,888,000	4,185	38,000	3,519	1
radford	18,555,000	2,507,000	8,658	25,000	3,378	1
yron	18,582,000	1,956,000	2,680	33,000	3,474	
anal Ranch	12,860,000	1,354,000	4,292	33,000	3,474	1
oney	3,553,000	658,000	3,800	18,000	3,333	ī
eadhorse	4,447,000	1,779,000	21,076	8,000	3,200	3
rex ler	17,094,000	1,921,000	5,401	31,000	. 3,483	1
mpire	15,392,000	1,494,000	4,132	35,000	3,398	
olland	17,562,000	1,611,000	4,157	37,000	3,394	
otchkiss .	7,015,000	835,000	2,089	54,000	6,429	1
ersey .	19,605,000	1,257,000	5,648	53,000	3,397	1
ones, Lower/Upper	28,978,000	1,628,000	2,384	61,000	3,427	
ing	10,041,000	1,116,000	3,080	30,000	3,333	
andeville	27,218,000	1,903,000	5,196	62,000	4,336	1
CCormack-Williamson	9,867,000	1,134,000	6,020	30,000	3,448	1
cDonald	28,295,000	2,065,000	4,605	46,000	3,358	
ew Hope	19,465,000	1,583,000	1,996	42,000	3,415	
rwood, Upper	4,154,000	923,000	2,446	21,000	4,667	1
alm	11,546,000	1,480,000	4,740	28,000	3,590	1
indge	20,989,000	1,337,000	3,067	53,000	3,376	
io 81anco	3,299,000	1,031,000	4,946	11,000	3,437	1
oberts, Lower/Middle/Upper	39,516,000	1,703,000	1,214	174,000	7,500	
hima	7,077,000	874,000	2,956	27,000	3,333	1
hin Kee	3,587,000	1,888,000	3,340	7,000	3,684	
taten	35,029,000	1,374,000	3,864	87,000	3,412	1
erminous	48,096,000	2,987,000	4,594	56,000	3,478	
ÿler	22,904,000	2,141,000	2,669	41,000	3,832	
eale	4,305,000	755,000	3,317	19,000	3,333	1
ictoria	12,117,000	802,000	1,671	51,000	3,377	
ebb	30,439,000	2,378,000	5,544	43,000	3,359	•
oodward	15,657,000	1,801,000	8,599	30,000	3,448	1
right-Elmwood	6,979,000	1,026,000	3,290	23,000	3,382	1
ubtotal ish and Wildlife Mitigation	723,942,000 8,290,000			1,702,000		
otal	732,232,000			1,702,000		
	, 32,232,000	1 000 000	2.755	2,702,000	4 050	
verage	_	1,808,000	3,755		4,250	
verage Computed With Mitigatio	n	1,828,000	3,798		4,250	1

alignment, was about \$8 million,* making a total first cost for the fish and wildlife enhancement features of nearly \$57 million.

Fish and Wildlife Enhancement Benefits

The benefits attributable to the fish and wildlife resources include both monetary and nonmonetary benefits. monetary benefits accrue primarily from recreational fish and wildlife activities (fishing, hunting, bird watching, nature walks, etc.) associated with facilities of the recreation plan, and from both sport and commercial fishing and hunting of game birds associated with the fish and wildlife enhancement features. The intangible nonmonetary benefits include benefits that would occur in preserving significant natural areas as identified in the Delta Wildlife Habitat Protection and Restoration Plan prepared by the Department of Fish and Game, the Delta Master Recreation Plan prepared by The Resources Agency, the Delta Action Plan prepared by the Delta Advisory Planning Council, and the Environmental Atlas prepared by the U. S. Army Corps of Engineers.

The tangible monetary benefits were based primarily on the percentage of total recreation benefits associated with fish and wildlife activities. This was determined to be 37 percent of the total annual recreation benefits of \$21 million, and provided the annual benefits of \$7.8 million assigned to the fish and wildlife enhancement areas. Additional fish and wildlife benefits based on waterfowl factors were estimated to be at least \$322,000. The total annual fish and wildlife

enhancement benefits were estimated to be about \$8 million.

Economics of the Modified System Plan

The first cost of initial and stage construction of this plan includes costs for levee construction, acquisition of lands, easements, and rights of way, relocation of existing facilities, construction of recreation features, providing fish and wildlife mitigation and enhancement features, and the related engineering, design, construction supervision, and administration. The annual costs include amortization of the first costs, and the annual operation and maintenance costs for the levees, recreation facilities, and wildlife areas.

The annual benefits include reduction of physical flood losses, reduction of floodfight costs, water quality and water supply benefits, recreation benefits from increased recreation use, and fish and wildlife benefits from reduced waterfowl losses, contributions to the National Migratory Bird Conservation Program, reduced crop depredation, and new hunting and visitation access on the proposed wildlife management areas.

As shown on Table 28, the plan has an estimated cost of about \$829 million at 1981 prices. If these prices were escalated at 6 percent, the Plan would cost about \$2.8 billion. The Plan has an overall benefit/cost ratio of 1.4 to 1. For purposes of comparison, figures both with and without the Peripheral Canal have been shown. The figures in the columns under "With

^{*}The cost increase as a result of using setback levees instead of the stage construction method is considered by the Corps to be enhancement. The Department considers at least part of these costs to be costs to avoid mitigation. This difference in cost classification would be resolved during post-authorization studies.

ECONOMIC SUMMARY, MODIFIED SYSTEM PLAN

(At 1981 Prices and a 7-5/8 Percent Discount Rate, Under 1990-2040 Project Conditions)

	With Per Subtotals	ipheral Can Tota		Without Per Subtotals	iphe	ral Canal Totals
FIRST COST*						
Flood Control and Water Quality**		\$ 608,00	00,000		\$	732,000,000
Initial Construction*** Stage Construction	\$438,000,000 170,000,000			\$549,000,000 183,000,000		
Recreation		40,00	00,000			40,000,000
Fish and Wildlife Enhancement		57,00	00,000		_	57,000,000
TOTAL FIRST COST		\$ 705,00	00,000		\$	829,000,000
ANNUAL COST						
Flood Control and Water Quality		\$ 39,80	00,000		\$	48,800,000
Interest and Amortization Operation and Maintenance	\$ 38,600,000 1,200,000			\$ 47,100,000 1,700,000		
Recreation		4,00	00,000			4,000,000
Interest and Amortization Operation and Maintenance	\$ 3,000,000 1,000,000			\$ 3,000,000 1,000,000		
Fish and Wildlife Enhancement		3,90	00,000			3,900,000
Interest and Amortization Operation and Maintenance	\$ 3,500,000 400,000			\$ 3,500,000 400,000		
TOTAL ANNUAL COST		\$ 47,70	00,000		\$	56,700,000
ANNUAL BENEFITS						
Flood Control and Water Quality			00,000 00,000		\$	57,100,000 13,100,000
Recreation Fish and Wildlife Enhancement			00,000			8,100,000
TOTAL ANNUAL BENEFITS .		\$ 65,10	00,000		\$	78,300,000
BENEFIT-COST RATIOS						
Flood Control and Water Quality Recreation Fish and Wildlife Enhancement		•	1.1:1 3.3:1 2.1:1			1.2:I 3.3:1 2.1:I
TOTAL PROJECT BENEFIT-COST RATIO			1.4:1			1.4:1
NET BENEFITS (Excess of Benefits Over Costs)		\$ 17,4	00,000		\$	21,600,000

Rounded to nearest \$1 million.

^{**} The draft Corps report excludes Reclamation District 17; this bulletin excludes both Reclamation District 17 and Stewart Tract because both are protected exclusively by project levees.

*** Includes \$7,000,000 in fish and wildlife mitigation costs under with Peripheral Canal assumption and \$8,300,000 under without Peripheral Canal assumption.

Peripheral Canal" were taken from the Corps of Engineers' draft feasibility report dated October 1982. The figures in the columns under "Without Peripheral Canal" were based on the same basic assumptions used by the Corps. As indicated in this table, the summed first cost (initial construction plus staged construction) without the Peripheral Canal is \$124 million greater than with the Peripheral Canal; the corresponding annual cost is \$9 million greater.

The annual benefits, however, increased by \$13.2 million. The overall benefit/cost ratio for the Modified System Plan (1.4 to 1) did not change.

As stated in Chapter 4, there is considerable logic in support of the non-restoration assumption, as well as the without Peripheral Canal assumption for computing the benefits of the plan. According to the Corps' sensitivity analysis, the combination of these assumptions would result in an overall benefit/cost ratio for the Modified System Plan of 1.8 and 1.7 for the flood control features of the plan.

For compatibility with the Corps' report, the assumptions for this report are based on the following:

- Federal interest in participating in flood control improvements in the Delta would be limited to those locations where the improvements are economically justified*.
- ° Islands will be reclaimed after levee breaks.

On this basis, the federally authorized project would include levee improvements on 19 islands (refer to Figure 20) and recreation and fish and wildlife enhancement features in the federal plan. (The ultimate number of islands

and tracts that would receive flood control improvements under a federal program would depend on results of post-authorization studies, including reevaluation of the assumed without-project conditions.)

Table 29 shows the summed capital costs (1981 prices) allocated between federal and nonfederal participants under the

Table 29

ALLOCATION (IONAL COST	CAPITAL COST SHARING	
Item	Project Total		Monfederal Allocation
Flood Control, Federal Participation I	slands an	d Tracts	
Construction Mitigation Lands, Easements,	405,000 2,500	405,000 2,200	300
Rights of Way Relocations Relocation Betterments	24,200 8,100 8,600		24,200 8,100 8,600
Subtotal Percent	448,400 100%	407,200 91%	41,200 9%
Flood Control, Nonfederal Participatio	n Islands	and Tracts	
Construction Mitigation Lands, Easements,	244,800 5,800		244,800 5,800
Rights of Way Relocations Relocation Betterments	19,800 6,200 7,200		19,800 6,200 7,200
Subtotal Percent	283,800 100%		283,800 100%
Flood Control Subtotal Percent	732,200 100%	407,200 56%	325,000 44%
Recreation and Fish and	Wildlife	Enhancement	
Recreation Percent	40,000 100%	20,000 50%	20,000 50%
Fish and Wildlife Enhancement Percent	57,000 100%		14,200 25%
PROJECT TOTALS PERCENT	829,200 100%	470,000 57%	359,200 43%

^{*}Authorization of the federal Incremental Flood Control Plan would make this official policy.

traditional cost sharing method used in the Corps of Engineers' draft feasibility report. The Federal Government would pay \$407 million of the flood control costs for the federal participation islands, and would also pay \$20 million of costs allocated to recreation and \$43 million of fish and wildlife enhancement costs. Nonfederal interests would be responsible for the levee construction and mitigation costs (\$250 million) on the 22 islands not included in the federal project (refer to Figure 20). Also, non-Federal participants would pay \$74 million for lands, easements, rights of way, relocations, and relocation betterments for the 41 islands in the Modified System Plan, \$20 million for recreation facilities, and \$14 million for fish and wildlife enhancement. For the total project, the Federal Government would be responsible for 57 percent of the total capital costs and the non-Federal interests would be allocated 43 percent of the total capital costs of the Modified System Plan.

However, the Federal Government is proposing to increase the up-front cost sharing required from non-Federal sources. Comparable cost figures for this proposed formula, contained in Table A-29, Appendix A, show that the

Federal share would be reduced to only 37 percent.

Table 30 shows the traditional allocation of the summed capital costs to Federal, State, county, islands and tracts, and to water projects and water users in 1981 prices and in costs escalated at 6 percent and 9 percent to the time of construction. Table Λ -30 shows the same information for the proposed cost sharing.

Of the non-Federal flood control costs, about half was allocated to the state. The islands and tracts were allocated 47 percent of the non-Federal flood control costs; the remaining 3 percent was assigned to the water projects and local water users. The costs of recreation and fish and wildlife enhancement were divided equally between the state and the counties. Overall, the state was assigned about half of the total cost of the project.

Construction Schedule and Expenditures

Before a levee rehabilitation project can be initiated, six steps are required:

Table 30

MODIFIED SYSTEM PLAN ALLOCATION OF ESCALAYED SUMMED CAPITAL COSTS, 8Y PARTICIPANT TRADITIONAL COST SHARING

(In Millions of Dollars)

	Fede	ral To	tal		Total			State			-federa County	<u>'</u>	Island	s/Trac	ts	Water Pr	o fects/	lisers
Purpose	1981 Prices	Escal.		1981 Prices	Escal.	ation 9%	1981 Prices	Escala 6%	tion 9%	1981 Prices	Escala 6%	tion 9%	1981 Prices			1981 Prices	Escala 6%	
Flood Control Percent	407	1,661	3,565	325 100	1,085 100	2,672 100	167 51	543 50	1,320	:	-	-	150 46	513 47	1,279 48	9	29 3	7 3
Recreation Percent	20	42	59	20 100	42 100	60 100	10 50	21 50	30 50	10 50	21 50	30 50	-	-	:	-	- .	-
Fish/Wildlife Enhancement Percent	43	155	374	14 100	52 100	124 100	7 50	26 50	62 50	7 50	26 50	62 50	:	-	-	-	-	-
TOTAL Percent	470	1,858	3,998	359 100	1,179 100	2,856 100	184 51	590 50	1,412	17 5	47 4	92 3	150 42	513 44	1,279 45	9	29 2	73

- ° Federal and State authorization of a project must be obtained.
- Advanced planning and an environmental impact report must be completed.
- Oesign and specifications for the work must be completed.
- Funds must be available for financing the work.
- ° Contracts detailing repayment obligations, must be signed between the State and the local levee maintaining agencies.
- ° Contracts must be signed to provide for construction, operation, and maintenance.

Considering the aforementioned six steps, it is estimated that the earliest date for beginning construction would be 1989. Assuming maximum annual construction contract amounts in the \$70 million (1981 prices) range to reflect the availability of construction equipment and the logistics associated with construction, the initial construction period would extend over a 10-year period. The construction schedule was developed on the basis of repairing the levees with the estimated highest frequency of failure rate first. The initial construction for each island would be completed within a two year period. Following the initial construction, areas where settlement or other major problems (that are considered beyond the normal maintenance work performed by local levee maintaining agencies) will be corrected as part of the levee restoration project. The construction schedule and expenditures for the total project based on 1981 prices are shown on Table 31.

Recognizing that construction probably will not begin until 1989, and prices will escalate during the interim (as well as after construction begins), an evaluation was made to ascertain the

effect of price escalation on project costs. Table 32 presents the cost information of Table 31 escalated at a rate of 6 percent. As a result of this escalation rate, capital costs during the initial construction period (1989 through 1998) would increase by about \$700 million and costs for stage construction after year 1998 would increase by about \$1.3 billion. The total capital costs associated with the 6 percent escalation rate amounts to about \$2.8 billion.

To further evaluate its sensitivity of price escalation on project costs, an analysis was made of the effect of a 9 percent rate of escalation. Table 33 presents the cost information of Table 31 escalated at a rate of 9 percent. The total capital costs associated with the 9 percent escalation rate amounts to about \$6.9 billion.

The total difference between the 6 percent and 9 percent rates of escalation amounts to over \$4 billion during the 50-year life of the project.

Cost allocation by the traditional method of cost sharing was previously discussed. The following discussion addresses the nonfederal portion of the capital costs of the Modified System Plan. Table 34 shows the construction schedule and nonfederal costs portion of the plan in 1981 prices. The total nonfederal capital costs during the initial construction period (1989 through 1998) would amount to about \$313 million. During the following stage construction period, the non-Federal capital costs would amount to about \$44 million.

Table 35 shows the nonfederal costs escalated at a rate of 6 percent. Compared to the 1981 prices the effect of a 6 percent escalation rate would increase costs during the initial construction period by \$387 million; during the following staged construction period by \$433 million; for a total increase of about \$820 million.

SCHEDULE OF TOTAL PROJECT COSTS, MODIFIED SYSTEM PLAN (In Thousands of Dollars, 1981 Prices)

Island or Tract	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	Future Stage	Total
Bouldin*	20,576	20,576					6,673				22,060	69,885
Terminous*	13,937	13,937				1,410				3,932	14,881	48,096
Empire*	5,170	5,170				340				456	4,257	15,392
Veale	2,153	2,153										4,305
Brack*	9,083	9,083								2,227		20,392
Shin Kee	1,794	1,794										3,587
Orwood, Upper	2,077	2,077										4,154
Mandeville*	8,676	8,676									9,867	27,218
McDonald*			8,252	8,252				2,458			9,333	28,295
Rindge*			9,333	9,333				-,			2,324	20,989
Webb*			7,909	7,909				2,116			12,505	30,439
Roberts,			7,303	,,303				2,110			12,505	30,43
Lower/Middle/Upper*			19,573	19,573	370							20 516
Orexler*			3,846		3/0						5 051	39,516
				3,846			3,451				5,951	17,094
Jones, Lower/Upper*			12,451	12,451							4,076	28,978
Woodward					3,927	3,927	2,316				5,498	15,667
Bacon*					8,704	8,704					11,636	29,044
Andrus-Brannan*				• •	11,279	11,279	861			1,852	15,424	40,695
Canal Ranch					5,920	5,920					1,021	12,860
Bishop	~~				3,154	3,154					1,870	8,178
Tyler*					10,337	10,337					2,231	22,904
Bradford					4,811	4,811					8,934	18,555
Jersey					9,803	9,803						19,605
Holland							6,580	6,580			4,402	17,562
McCormack-Williamson							4,550	4,550			767	9,867
Oeadhorse							1,930	1,930			587	4,447
King							4,824	4,824			393	10,041
Staten							12,164	12,164			10,701	35,029
Palm							4,527	4,527			2,493	11,546
Hotchkiss*						••	3,508	3,508				7,015
Shima							3,294	3,294			489	7,077
Rio Blanco							1,626				47	
								1,626				3,299
New Hope							9,733	9,733				19,465
Wright-Elmwood									3,211	3,211	558	6,979
Victoria									5,443	5,443	1,232	12,117
Coney									1,777	1,777		3,553
Bethel									15,018	15,018	. 1,489	31,525
Byron				•-					9,291	9,291		18,582
Flood Control Subtotal Fish/Wildlife Mitigation	63,463 845	63,463 845	61,364 953	61,364 953	58,303 850	59,683 850	66,036 998	57,309 998	34,739 500	43,206 500	155,026 	723,952 8,290
Flood Control Total	64,308	64,308	62,317	62,317	59,152	60,532	67,033	58,306	35,238	43,705	155,026	732,242
Recreation	5,826	5,825	3,069	3,068	4,332	4,331	3,915	3,914	3,143	3,143		40,566
Fish/Wildlife Enhancemen	t 3,969	3,969	4,728	4,727	4,207	4,206	4,930	3,931	4,445	3,228	14,310	56,650
Project Total	74,103	74,102	70,114	70,112	67,691	69,069	75,878	66,151	42,826	50,076	169,336	829,458

SCHEDULE OF TOTAL PROJECT COSTS, MODIFIED SYSTEM PLAN 6 PERCENT ESCALATION RATE (In Thousands of Dollars)

emminous*	Island or Tract	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	Future Stage	Total
emfinous* 22,213 23,545 -	Bouldin*	32,795	34.763					15,087				172,057	254,70
motret 8,239 8,734 - 725 - 1,228 22,472 41,281 281							3.007	-			10,588	136,217	195,57
eale 3.431 3.637													41,39
rack* 14,476 15,345 5,997 - 35,6 hin kee 2,859 3,030 5,891 7,561 106,0 andeville* 13,827 14,657 5,891 7,561 106,0 andeville* 13,827 14,657 5,891 7,561 106,0 andeville* 13,827 14,657 5,891 73,867 110,1 andeville* 14,164 15,014 28,585 63, 63, 60 andeville* 14,164 15,014 5,071 119,521 153,0 oberts, obe											•	•	7,06
hin kee 2,859 3,030 5,891 7,561 106,00 andeville* 13,827 14,657 5,891 73,867 110,660 andeville* 13,827 14,657 5,891 73,867 110,60 andeville* 13,827 14,657 5,891 73,867 110,60 andeville* 14,164 15,014 5,071 119,521 153,70 abets 14,164 15,014 5,071 119,521 153,70 abets 14,164 15,014 5,071 119,521 153,70 abets											5 007		
Name													
Conald*			•										
Conald*	rwood, Upper		3,509										
Indige	fandeville*	13,827	14,657									77,561	106,04
enbe*	1c0onald*			14,778					5,891				110,2
ebb* oberts, Lower/Middle/Upper* 35,052 37,155 745 5,071 119,521 153,70 oberts, Lower/Middle/Upper* 35,052 37,155 745 7,802 50,775 72,70 nes, Lower/Upper* 22,298 23,636 22,085 66,00 dward 7,901 8,375 5,236 59,809 95,00 dward 17,514 18,565 59,809 95,00 dward 11,911 12,626 59,809 95,00 dward 11,911 12,626 9,346 33,4150 97,912 97,913 97,912 97,913 97,913 97,913 97,913 97,913 97,913 97,913 97,913 97,913 97,913 97,913 97,913 97,913 97,913 9	tindge*			16,713	17,716							28,585	63,0
Color	2			14.164					5.071			119,521	153,70
Lower/Middle/Upper* 35,052 37,155 745 7,802 50,775 725, rexler* 6,888 7,301 7,802 50,775 725, rexler* 6,888 7,301 7,802 50,775 725, resler* 22,298 23,636 38,750 66,000 acon* 17,514 18,555 38,750 66,000 acon* 17,514 18,555 38,750 66,000 acon* 17,514 18,555 38,750 60,000 acon* 17,514 18,555 38,750 60,000 acon* 11,911 12,666 9,868 178,000 acon* 10,408 178,000 acon*									- •			•	
rexler*				35 053	27 155	745							72.9
Cones, Lower/Upper*						_		7 002					
17,901								7,802					
Secons	lones, Lower/Upper*			22,298	23,636	•-	••					22,085	08,0
178, 178,	loodward							5,236					60,2
Samal Ranch	Bacon*					17,514	18,565						
Sishop	Andrus-8rannan*					22,696	24,057	1,947			4,987		
Sistop	Canal Ranch					11.911	12,626					9,346	33,8
yler*	-						6.727					10.740	23,8
Fradford													
19,725 20,908													
Commack-Williamson											•	•	
CCOTMACK-Williamson	Jersey					19,725	20,908						40,0
Readhorse	Holland												62,5
Ting													
taten 27,502 29,152 164,588 221, **Palm	Deadhorse												
taten	King							10,907	11,561			3,021	25,4
Project Total 18,108 125,193 125,563 133,093 136,208 147,320 171,553 158,535 108,794 134,844 1,469,276 2,828,445 10,616 18, 10,616 18,025 14,025 14,025 108,000 171,553 158,535 108,794 134,844 1,469,276 2,828,445 10,000 106								27,502	29,152			164,588	221,2
Note													40,2
hima 7,447 7,894 3,345 18, tio 8lanco 3,676 3,897 686 8, tio 8lanco 22,004 23,325 686 8, tio 8lanco 22,004 23,325 45, tright-Elmwood 22,004 23,325 45, tright-Elmwood 13,826 14,655 14,238 42, toney 4,513 4,784 9, thethel 38,151 40,440 12,859 91, thethel 38,151 40,440 12,859 91, thethel 23,602 25,019 48, thethel 23,602 25,019 48, thethel 23,602 25,019 48, thethel 23,602 25,019 48, thethel 13,826 14,634 1,351,102 2,521,67 1,370 1,346 1,427 1,707 1,810 1,710 1,812 2,256 2,391 1,270 1,346 17,67 1,810 1,710 1,812 2,256 2,391 1,270 1,346 1,427												•	
Rio 8lanco												3 345	
lew Hope 22,004 23,325 45,3 Fright-Elmwood 8,156 8,645 4,046 20,65 Fright-Elmwood 8,156 8,645 4,046 20,65 Fright-Elmwood 13,826 14,655 14,238 42,75 Fright-Elmwood													
#right-Elmwood 8,156 8,645 4,046 20,6													
Flood Control Subtotal 101,150 107,219 109,893 116,486 117,316 127,298 149,300 137,343 88,248 116,343 1,351,102 2,521,6 15sh/Wildlife Mitigation 1,346 1,427 1,707 1,810 1,710 1,812 2,256 2,391 1,270 1,346 17,6 Flood Control Total 102,496 108,646 111,600 118,296 119,026 129,111 151,556 139,734 89,518 117,689 1,351,102 2,538,7 Recreation 9,286 9,841 5,496 5,824 8,717 9,238 8,851 9,380 7,984 8,463 83,08 Fish/Wildlife Enhancement 6,326 6,706 8,467 8,973 8,465 8,971 11,146 9,421 11,292 8,692 118,174 206,65 Project Total 118,108 125,193 125,563 133,093 136,208 147,320 171,553 158,535 108,794 134,844 1,469,276 2,828,44	New Hope							22,004	23,325				45,3
Coney 4,513 4,784 9, 19thell 38,151 40,440 12,859 91,4 19700 38,151 40,440 12,859 91,4 19700 23,602 25,019 48,6 1000 Control Subtotal 101,150 107,219 109,893 116,486 117,316 127,298 149,300 137,343 88,248 116,343 1,351,102 2,521,6 15h/Wildlife Mitigation 1,346 1,427 1,707 1,810 1,710 1,812 2,256 2,391 1,270 1,346 17,6 Flood Control Total 102,496 108,646 111,600 118,296 119,026 129,111 151,556 139,734 89,518 117,689 1,351,102 2,538,7 Recreation 9,286 9,841 5,496 5,824 8,717 9,238 8,851 9,380 7,984 8,463 83,08 15h/Wildlife Enhancement 6,326 6,706 8,467 8,973 8,465 8,971 11,146 9,421 11,292 8,692 118,174 206,65 Project Total 118,108 125,193 125,563 133,093 136,208 147,320 171,553 158,535 108,794 134,844 1,469,276 2,828,48	Wright-Elmwood												20,8
Hethel	Victoria											14,238	
Hethel	Coney									4,513	4,784		9,2
Ayron 23,602 25,019 48,6 Flood Control Subtotal 101,150 107,219 109,893 116,486 117,316 127,298 149,300 137,343 88,248 116,343 1,351,102 2,521,6 Flood Control Total 102,496 108,646 111,600 118,296 119,026 129,111 151,556 139,734 89,518 117,689 1,351,102 2,538,7 Recreation 9,286 9,841 5,496 5,824 8,717 9,238 8,851 9,380 7,984 8,463 83,08 Fish/Wildlife Enhancement 6,326 6,706 8,467 8,973 8,465 8,971 11,146 9,421 11,292 8,692 118,174 206,63 Project Total 118,108 125,193 125,563 133,093 136,208 147,320 171,553 158,535 108,794 134,844 1,469,276 2,828,48										38.151		12.859	91.4
Fish/Wildlife Mitigation 1,346 1,427 1,707 1,810 1,710 1,812 2,256 2,391 1,270 1,346 17,6 Flood Control Total 102,496 108,646 111,600 118,296 119,026 129,111 151,556 139,734 89,518 117,689 1,351,102 2,538,7 Recreation 9,286 9,841 5,496 5,824 8,717 9,238 8,851 9,380 7,984 8,463 83,08 fish/Wildlife Enhancement 6,326 6,706 8,467 8,973 8,465 8,971 11,146 9,421 11,292 8,692 118,174 206,65 Project Total 118,108 125,193 125,563 133,093 136,208 147,320 171,553 158,535 108,794 134,844 1,469,276 2,828,48	Byron												48,6
Fish/Wildlife Mitigation 1,346 1,427 1,707 1,810 1,710 1,812 2,256 2,391 1,270 1,346 17,6 Flood Control Total 102,496 108,646 111,600 118,296 119,026 129,111 151,556 139,734 89,518 117,689 1,351,102 2,538,7 Recreation 9,286 9,841 5,496 5,824 8,717 9,238 8,851 9,380 7,984 8,463 83,08 fish/Wildlife Enhancement 6,326 6,706 8,467 8,973 8,465 8,971 11,146 9,421 11,292 8,692 118,174 206,65 Project Total 118,108 125,193 125,563 133,093 136,208 147,320 171,553 158,535 108,794 134,844 1,469,276 2,828,48	Flood Control Subtotal	101.150	107.219	109,893	116.486	117,316	127,298	149.300	137,343	88,248	116.343	1,351,102	2,521,6
Recreation 9,286 9,841 5,496 5,824 8,717 9,238 8,851 9,380 7,984 8,463 83,08 Fish/Wildlife Enhancement 6,326 6,706 8,467 8,973 8,465 8,971 11,146 9,421 11,292 8,692 118,174 206,65 Project Total 118,108 125,193 125,563 133,093 136,208 147,320 171,553 158,535 108,794 134,844 1,469,276 2,828,48													17,0
Fish/Wildlife Enhancement 6,326 6,706 8,467 8,973 8,465 8,971 11,146 9,421 11,292 8,692 118,174 206,63 Project Total 118,108 125,193 125,563 133,093 136,208 147,320 171,553 158,535 108,794 134,844 1,469,276 2,828,48	Flood Control Total	102,496	108,646	111,600	118,296	119,026	129,111	151,556	139,734	89,518	117,689	1,351,102	2,538,7
Project Total 118,108 125,193 125,563 133,093 136,208 147,320 171,553 158,535 108,794 134,844 1,469,276 2,828,48	Recreation	9,286	9,841	5,496	5,824	8,717	9,238	8,851	9,380	7,984	8,463		83,08
	Fish/Wildlife Enhanceme	nt 6,326	6,706	8,467	8,973	8,465	8,971	11,146	9,421	11,292	8,692	118,174	206,63
	Project Total	118,108	125,193	125,563	133,093	136,208	147,320	171,553	158,535	108,794	134,844	1,469,276	2,828,48

SCHEDULE OF TOTAL PROJECT COSTS, MODIFIED SYSTEM PLAN 9 PERCENT ESCALATION RATE (In Thousands of Dollars)

Island or Tract	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	Future Stage	Total
Bouldin*	40,999	44,689					22,299				511,093	619,08
Terminous*	27,769	30,269				4,323				17,016	445,036	524,41
Impire*	10,301	11,228				1,042				1,973	52,099	76.64
/eale	4,289	4,675								-,		8,9
	18,097	19,726								9,638		47,4
rack*										•		
hin Kee	3,574	3,895										7,4
rwood, Upper	4,139	4,511										8,6
fandeville*	17,286	18,842									256,897	293,0
dcDonald*			19,535	21,294				8,953			227,898	277,6
lindge*			22,093	24,082							108,489	154,6
lebb*			18,723	20,409		~~		7,707			430,422	477,2
loberts.								•			·	•
Lower/Middle/Upper*			46,336	50,507	1,041							97,8
			9,105	9,924			11,532				155,645	186,2
Orex ler*							11,552				49,614	111,2
lones, Lower/Upper*			29,476	32,129		-:-					45,014	111,2
loodward					11,044	12,038	7,739				105,840	136,6
Bacon*					24,481	26,685					143,562	194,7
Andrus-Brannan*					31,724	34,579	2,877			8,015	397,071	474,2
Canal Ranch					16,650	18,148					26,992	61,7
3i shop					8,871	9,670					24,811	43,3
[y]er*					29,073	31,690					38,333	99,0
Bradford					13,530	14,748					359,549	387,8
											333,343	57,6
Jersey		,			27,571	30,053						37,0
lo 11 and							21,989	23,968			89,462	135,4
4cCormack-Williamson							15,205	16,573			207,739	239,5
Deadhorse						-:-	6,450	7,030			12,051	25,5
Cing							16,120	17,571			8,023	41,7
Staten							40.649	44,307			738,654	823,6
Palm							15,126	16,488			50,892	82,5
dotchkiss*							11,721	12,776				24,4
											8,402	31,4
5hima_							11,008	11,998				
Rio Blanco							5,434	5,923			2,476	13,8
New Hope							32,523	35,450				67,9
right-Elmwood									12,747	13,894	10,450	37,0
/ictoria									21,608	23,553	45,975	91,1
Coney									7,053	.7,688		14,7
Bethel									59,626	64,992	36,114	160,7
Byron									36,888	40,208		77,0
Flood Control Subtotal	126 454	127 825	145 270	150 344	163 085	182 075	220 673	208 745	137 022	186 978	4,543,589	6,212,7
ish/Wildlife Mitigation		1,834	2,257	2,460	2,390	2,605	3,334	3,634	1,985	2,163		24,3
Flood Control Total	128,137	139,669	147,526	160,804	166,375	185,580	224,007	212,379	139,907	189,141	4,543,589	6,237,1
Recreation	11,609	12,651	7,265	7,917	12,184	13,278	13,083	14,257	12,479	13,602		118,32
Fish/Wildlife Enhancemen	nt 7,908	8,620	11,193	12,198	11,833	12,895	16,475	14,319	17,648	13,970	371,578	498,63
Project Total	147 654	160 041	165 005	100 010	100 202	211 752	252 564	240 055	170 024	216 712	4,915,167	6 854 N7

SCHEDULE OF NON-FEDERAL COSTS, MODIFIED SYSTEM PLAN -- TRADITIONAL COST SHARING (In Thousands of Dollars, 1981 Prices)

Cerminous* 1,665 1,665	Island or Tract	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	Future Stage	Total
Terminous*	Bouldin*	1,102	1,102										2,203
Impire* 966 966													3,330
Feele													1,931
Frack*													4,305
Sitin Kee 1,794 1,794 3,55													956
Probable													
Andeville*													
Commands													
Rindge*	Mandeville*	54/	547									••	1,09.
Mebb*	McOonald*												1,06
Noberts Lower/Widdle/Upper* 3,882 3,882 7,77	Rindge*			1,036	1,036								
Note	Webb*			461	461		~-						92
Lower/Middle/Upper*													
## Drex Command				3.882	3.882								7,76
Johnes, Lower/Upper* - 1,892 1,892 3,76 doodward 3,927 3,927 2,316 5,498 15,66 Bacon* 1,258 1,258 2,5 Andrus-Brannan* 4,423 4,23 2,8 Canal Ranch 5,920 5,920 1,021 12,88 Bishop 3,154 3,154 1,870 8,11 Tyler* 1,340 1,340 2,6 Bradford 4,811 4,811 8,934 18,55 Horizonack-Williamson 9,803 9,803 19,66 Holland 4,811 4,811 19,66 Holland 4,550 4,550 767 9,88 King 1,340 1,340 19,66 King 1,340 1,340 19,66 Holland 4,550 4,550 767 9,88 King Bradford 1,330 1,301 19,66 Holland 1,360 1,230 19,66 Holland 1,365 4,550 767 9,88 King Blanco 1,2164 12,164 10,701 35,06 Palm 1,2164 1,626 47 3,22 Hotchkiss* 9,733 9,733 19,44 Wright-Elmwood 1,626 1,626 47 3,22 Kew Hope 9,733 9,733 19,44 Wright-Elmwood 5,443 5,443 1,232 12,11 Flood Control Subtotal 10,780 10,780 8,292 8,292 34,633 34,633 51,640 49,324 34,739 34,739 40,481 318,31 Flood Control Subtotal 10,780 10,780 8,292 8,292 34,633 34,633 51,640 49,324 34,739 34,739 40,481 318,31 Flood Control Subtotal 10,991 10,991 8,406 8,406 35,163 35,163 52,561 50,245 35,238 35,238 40,481 322,88 Recreation 2,913 2,913 1,535 1,534 2,166 2,166 1,958 1,957 1,572 1,572 - 20,245 Fish/Wildlife Enhancement 992 992 1,182 1,182 1,052 1,052 1,233 983 1,111 807 3,578 14,10													984
Soodward	Jones, Lower/Upper*												3,78
Bacon* 1,258 1,258 2,5 Andrus-Brannan* 4,423 4,423 8,8 Andrus-Brannan* 4,423 4,423 8,8 Andrus-Brannan* 4,423 4,423 1,021 12,86 Bishop 1,340 1,340 1,670 8,15 Flood Control Subtotal 10,780 8,292 8,292 34,633 34,633 51,640 49,324 34,739 34,739 40,481 318,35 Flood Control Subtotal 10,780 8,292 8,292 34,633 34,633 51,640 49,324 34,739 34,739 40,481 318,35 Flood Control Subtotal 10,780 8,292 8,292 34,633 34,633 51,640 49,324 34,739 34,739 40,481 318,35 Flood Control Subtotal 10,780 8,292 8,292 34,633 34,633 51,640 49,324 34,739 34,739 40,481 318,35 Flood Control Subtotal 10,780 8,292 8,292 34,633 34,633 51,640 49,324 34,739 34,739 40,481 318,35 Flood Control Subtotal 10,780 8,292 8,292 34,633 34,633 51,640 49,324 34,739 34,739 40,481 318,35 Flood Control Subtotal 10,780 10,780 8,292 8,292 34,633 34,633 51,640 49,324 34,739 34,739 40,481 318,35 Flood Control Subtotal 10,780 10,780 8,292 8,292 34,633 34,633 51,640 49,324 34,739 34,739 40,481 318,35 Flood Control Subtotal 10,780 10,780 8,292 8,292 34,633 34,633 51,640 49,324 34,739 34,739 40,481 318,35 Flood Control Subtotal 10,780 10,780 8,292 8,292 34,633 34,633 51,640 49,324 34,739 34,739 40,481 318,35 Flood Control Subtotal 10,991 10,991 8,406 8,406 35,163 35,163 52,561 50,245 35,238 40,481 322,88 Flood Control Subtotal 10,991 10,991 8,406 8,406 35,163 35,163 52,561 50,245 35,238 40,481 322,88 Flood Control Subtotal 10,991 10,991 8,406 8,406 35,163 35,163 52,561 50,245 35,238 40,481 322,88 Flood Control Subtotal 10,991 10,991 8,406 8,406 35,163 35,163 52,561 50,245 35,238 40,481 322,88 Flood Control Subtotal 10,991 10,991 8,406 8,406 35,163 35,163 52,561 50,245 35,238 40,481 322,88 Flood Control Subtotal 10,991 10,991 1,535 1,534 2,166 2,166 1,958 1,957 1,572 1,572 20,267				•	•	2 027	2 007	2 216				E 400	15 66
Andrus-Brannan*								-					
Canal Ranch 5,920 5,920 1,021 12,88 ishop 3,154 3,154 1,870 8,15 ryler* 1,340 1,340 1,870 8,15 reford 4,811 4,811 8,934 18,55 reford 4,811 4,811 8,934 18,55 reford													
## ## ## ## ## ## ## ## ## ## ## ## ##													
Tyler* 1,340 1,340 2,6 Bradford 4,811 4,811 8,934 18,55 lersey 4,811 4,811 8,934 18,55 lersey 19,66 6,580 19,66 lersey 19,66 lersey 19,66 lersey 19,66 lersey 19,66 lersey 19,66 lersey 19,67 lersey 19,77 lersey 19,40 lersey 19,77 lersey 18,51 lersey													
Bradford 4,811 4,811 8,934 18,51	Bishop											1,870	
Sersey	Tyler*					1,340							
Sersey	Bradford					4,811	4,811					8 ,934	18,55
Name	Jersey					9,803	9,803						19,60
Name	Holland							6,580	6,580			4,402	17,562
Deadhorse													9.86
King												580	4,44
Staten													
Palm													
Hotchkiss*													
Shima 3,294 3,294 489 7,07 Rio Blanco 1,626 1,626 47 3,22 New Hope 9,733 9,733 19,44 Wright-Elmwood 3,211 3,211 558 6,97 Victoria 5,443 5,443 1,232 12,17 Coney 5,443 5,443 1,232 12,17 Coney 1,777 1,777 3,55 Bethel 15,018 15,018 1,489 31,55 Byron 9,291 9,291 18,51 Flood Control Subtotal 10,780 10,780 8,292 8,292 34,633 34,633 51,640 49,324 34,739 34,739 40,481 318,31 Fish/Wildlife Mitigation 212 212 114 114 530 530 921 921 500 500 4,55 Flood Control Total 10,991 10,991 8,406 8,406 35,163 35,163 52,561 50,245 35,238 35,238 40,481 322,81 Recreation 2,913 2,913 1,535 1,534 2,166 2,166 1,958 1,957 1,572 1,572 20,26 Fish/Wildlife Enhancement 992 992 1,182 1,182 1,052 1,052 1,233 983 1,111 807 3,578 14,16													
Rio Blanco New Hope 1,626 1,626 47 3,22 New Hope 9,733 9,733 19,46 Wright-Elmwood 3,211 3,211 558 6,97 Victoria 5,443 5,443 1,232 12,11 Coney 1,777 1,777 3,55 Bethel 15,018 15,018 1,489 31,56 Byron 9,291 9,291 18,56 Flood Control Subtotal 10,780 10,780 8,292 8,292 34,633 34,633 51,640 49,324 34,739 34,739 40,481 318,31 Flood Control Subtotal 10,780 10,780 8,292 8,292 34,633 34,633 51,640 49,324 34,739 34,739 40,481 318,31 Flood Control Subtotal 10,991 10,991 8,406 8,406 35,163 35,163 52,561 50,245 35,238 35,238 40,481 322,86 Recreation 2,913 2,913 1,535 1,534 2,166 2,166 1,958 1,957 1,572 1,572 20,266 Fish/Wildlife Enhancement 992 992 1,182 1,182 1,052 1,052 1,233 983 1,111 807 3,578 14,166													
New Hope 9,733 9,733 19,40 Wright-Elmwood 3,211 3,211 558 6,90 Victoria 5,443 5,443 1,232 12,11 Coney 5,443 5,443 1,232 12,11 Coney 1,777 1,777 3,55 Bethel 15,018 15,018 1,489 31,53 Byron 9,291 9,291 18,50 Flood Control Subtotal 10,780 10,780 8,292 8,292 34,633 34,633 51,640 49,324 34,739 34,739 40,481 318,33 Fish/Wildlife Mitigation 212 212 114 114 530 530 921 921 500 500 4,55 Flood Control Total 10,991 10,991 8,406 8,406 35,163 35,163 52,561 50,245 35,238 35,238 40,481 322,80 Recreation 2,913 2,913 1,535 1,534 2,166 2,166 1,958 1,957 1,572 1,572 20,260 Fish/Wildlife Enhancement 992 992 1,182 1,182 1,052 1,052 1,233 983 1,111 807 3,578 14,160													
Wright-Elmwood 3,211 3,211 558 6,97 Victoria 5,443 5,443 1,232 12,11 Coney 5,443 5,443 1,232 12,11 Sethel 1,777 1,777 3,55 Sethel 15,018 15,018 1,489 31,55 Sethel 15,018 15,018 1,489 31,55 Sethel 9,291 9,291 18,58 Seyron 9,291 9,291 18,58 Seyron 9,291 9,291 18,58 Seyron Sethel Seyron 9,291 9,291 18,58 Seyron	Rio Blanco								•			4/	
Victoria 5,443 5,443 1,232 12,12 Coney 1,777 1,777 3,55 Bethel 15,018 15,018 1,489 31,53 Byron 15,018 15,018 1,489 31,53 Flood Control Subtotal 10,780 10,780 8,292 8,292 34,633 34,633 51,640 49,324 34,739 34,739 40,481 318,33 Fish/Wildlife Mitigation 212 212 114 114 530 530 921 921 500 500 4,55 Flood Control Total 10,991 10,991 8,406 8,406 35,163 35,163 52,561 50,245 35,238 35,238 40,481 322,83 Recreation 2,913 2,913 1,535 1,534 2,166 2,166 1,958 1,957 1,572 1,572 20,267 Fish/Wildlife Enhancement 992 992 1,182 1,182 1,052 1,052 1,233 983 1,111 807 3,578 14,167	New Hope							9,733	9,733				19,46
Coney	Wright-Elmwood									3,211	3,211	558	6,97
Coney	Victoria									5,443	5,443	1,232	12,11
Bethel 15,018 15,018 1,489 31,57 Byron 15,018 15,018 1,489 31,57 Byron 9,291 9,291 18,56 Flood Control Subtotal 10,780 10,780 8,292 8,292 34,633 34,633 51,640 49,324 34,739 34,739 40,481 318,33 Fish/Wildlife Mitigation 212 212 114 114 530 530 921 921 500 500 4,55 Flood Control Total 10,991 10,991 8,406 8,406 35,163 35,163 52,561 50,245 35,238 35,238 40,481 322,86 Recreation 2,913 2,913 1,535 1,534 2,166 2,166 1,958 1,957 1,572 1,572 20,26 Fish/Wildlife Enhancement 992 992 1,182 1,182 1,052 1,052 1,233 983 1,111 807 3,578 14,16										1,777		-	3,55
Flood Control Subtotal 10,780 10,780 8,292 8,292 34,633 34,633 51,640 49,324 34,739 34,739 40,481 318,33 51,640 49,324 34,739 34,739 40,481 318,33 51,640 51,64												1.489	
Fish/Wildlife Mitigation 212 212 114 114 530 530 921 921 500 500 4,55 Flood Control Total 10,991 10,991 8,406 8,406 35,163 35,163 52,561 50,245 35,238 35,238 40,481 322,88 Recreation 2,913 2,913 1,535 1,534 2,166 2,166 1,958 1,957 1,572 1,572 20,28 Fish/Wildlife Enhancement 992 992 1,182 1,182 1,052 1,052 1,233 983 1,111 807 3,578 14,16	Byron												18,58
Fish/Wildlife Mitigation 212 212 114 114 530 530 921 921 500 500 4,55 Flood Control Total 10,991 10,991 8,406 8,406 35,163 35,163 52,561 50,245 35,238 35,238 40,481 322,88 Recreation 2,913 2,913 1,535 1,534 2,166 2,166 1,958 1,957 1,572 1,572 20,28 Fish/Wildlife Enhancement 992 992 1,182 1,182 1,052 1,052 1,233 983 1,111 807 3,578 14,16													
Flood Control Total 10,991 10,991 8,406 8,406 35,163 35,163 52,561 50,245 35,238 35,238 40,481 322,86 Recreation 2,913 2,913 1,535 1,534 2,166 2,166 1,958 1,957 1,572 1,572 20,26 Fish/Wildlife Enhancement 992 992 1,182 1,052 1,052 1,233 983 1,111 807 3,578 14,16	Flood Control Subtotal			8,292	8,292							40,481	318,33
Flood Control Total 10,991 10,991 8,406 8,406 35,163 35,163 52,561 50,245 35,238 35,238 40,481 322,86 Recreation 2,913 2,913 1,535 1,534 2,166 2,166 1,958 1,957 1,572 1,572 20,26 Fish/Wildlife Enhancement 992 992 1,182 1,052 1,052 1,233 983 1,111 807 3,578 14,16	Fish/Wildlife Mitigation		212	114		530	530						4,55
Fish/Wildlife Enhancement 992 992 1,182 1,182 1,052 1,052 1,233 983 1,111 807 3,578 14,16	Flood Control Total	10,991	10,991	8,406	8,406	35,163	35,163	52,561	50,245	35,238	35,238	40,481	322,88
	Recreation	2,913	2,913	1,535	1,534	2,166	2,166	1,958	1,957	1,572	1,572		20,28
Project Total 14,896 14,896 11,122 11,122 38,381 38,380 55,751 53,185 37,921 37,617 44,059 357,33	Fish/Wildlife Enhancemen	992	992	1,182	1,182	1,052	1,052	1,233	983	1,111	807	3,578	14,16
	Project Total	14,896	14,896	11,122	11,122	38,381	38,380	55,751	53,185	37,921	37,617	44,059	357,33

SCHEDULE OF NON-FEDERAL COSTS, MODIFIED SYSTEM PLAN -- TRADITIONAL COST SHARING 6 PERCENT ESCALATION RATE (In Thousands of Dollars)

Island or Tract	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	Future Stage	Total
Bouldin*	1,756	1,861										3,617
Terminous*	2,654	2,813										5,467
Empire*	1,539	1,631										3,170
Veale	3,431	3,637										7.06
	762	808										1,569
Brack*												
Shin Kee	2,859	3,030		~-								5,889
Orwood, Upper	3,310	3,509		~~			~-					6,819
Mandeville*	871	923										1,79
McOonald*			949	1,006								1,95
Rindge*			1.855	1.967								3,822
Webb*			825	874								1,59
Roberts.												-,
			6 051	7 260								14,319
Lower/Middle/Upper*			6,951	7,368								
Drexler*			881	934								1,819
Jones, Lower/Upper*			3,387	3,591								6,97
Woodward					7,901	8,375	5,236				38,750	60,26
Bacon*					2,530	2,682						5,21
Andrus-Brannan*					8,900	9,434						18,334
Canal Ranch					11,911	12,626					9,346	33,88
Bishop					6,346	6,727					10,740	23,81
											10,740	5,55
Tyler*					2,695	2,857					07.000	
Bradford					9,680	10,260			1		97,080	117,020
Jersey			••		19,725	20,908		~-				40,63
Holland							14,877	15,769			31,929	62,57
McCormack-Williamson							10,287	10,904			33,859	55,05
Deadhorse							4,364	4,625			4,354	13,34
King							10,907	11,561			3,021	25,48
Staten							27,502	29,152			164,588	221,24
Palm							10,234	10.848			19,161	40,24
											-	45
Hotchkiss*							219	232			2 245	
Shima							7,447	7,894			3,345	18,68
Rio Blanco							3,676	3,897			686	8,25
New Hope							22,004	23,325				45,32
Wright-Elmwood									8,156	8,645	4,046	20.84
Victoria			**						13,826	14,655	14,238	42.72
_									4,513	4,784		9, 29
Coney												91.45
Bethel ·						~~			38,151	40,440	12,859	
Byron									23,602	25,019		48,62
F1 - 4 6 - 4 - 3 6 4 4 4 5		10.000	14 046	15 346		72 070	116 355	110 000	00 040	02.545	471 274	1 074 00
Flood Control Subtotal	17,181	18,212	14,849	15,740	69,688		116,753		88,248	93,543	471,374	1,074,29
Fish/Wildlife Mitigation		357	205	217	1,067	1,131	2,083	2,208	1,270	1,346		10,22
Flood Control Total	17,518	18,569	15,054	15,957	70,755		118,836	120,416	89,518	94,889	471,374	1,084,51
Recreation	4,643	4,921	2,748	2,912	4,358	4,619	4,426	4,690	3,992	4,232	^	41,54
Fish/Wildlife Enhancemen	t 1,581	1,676	2,117	2,243	2,116	2,243	2,787	2,355	2,823	2,173	29,544	51,65
Project Total	23,742	25,166	19,919	21,112	77,230	81 862	126,048	127 461	0 6 333	101,294	477,547	1,177,71

Table 36 shows the nonfederal costs escalated at a rate of 9 percent. Compared to the 1981 prices the total increase in the capital costs associated with the 9 percent escalation rate amounts to \$2.3 billion.

Tables A-34, A-35, and A-36, in Appendix A, show the schedule of non-federal costs of the Modified System Plan in 1981 prices, escalated prices at 6 percent and escalated prices at 9 percent computed by the cost sharing formula proposed by the Reagan Administration.

Project Financing

The allocation of the escalated capital costs to the non-Federal participants shown in Table 30 were used to calculate the total amount of the bonds that would have to be authorized for State issue and the bond repayment obligation of each of the project participants. Two sets of financial market rate assumptions were used for these analyses (see Chapter 4 for a full discussion of the financial assumptions):

Table 36

	****			·		of Oolla		1005	1007	1000	Future	T-4-3
Island or Tract	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	5t age	Total
8ouldin*	2,195	2,392										4,587
Terminous*	3,318	3,616										6,934
Empire*	1,924	2,097										4,021
Veale	4,289	4,575										8,974
Brack*	952	1,038										1,991
Shin Kee	3,574	3,895										7,469
Orwood, Upper	4.139	4,511										3,650
Mandeville*	1,089	1,187										2,276
andevirie	1,007	1,107										7. , 27 0
McDonald*			1,255	1,368								2,622
Rindge*			2,453	2,673								5,126
Webb*			1,090	1,188								2,278
Roberts.				,								
Lower/Middle/Upper*			9,189	10,016								19,209
Drexler*			1,165	1,270								2,434
Jones, Lower/Upper*			4,478	4,881								9,359
Woodward					11,044	12,038	7,739				105,840	136,662
Bacon*					3,537	3,855						7,392
Andrus-Brannan*					12,440	13,560						26,000
Canal Ranch					16,650	18,148					26,992	61,789
Bishop					8,871	9,670					24,811	43,351
Tyler*			••		3,768	4,107						7,874
Bradford			•-		13,530	14,748					359,549	387,827
Jersey					27,571	30,053						57,624
Holland							21,989	23,968			89,461	135,418
McCormack-Williamson							15,205	16,573			207,739	239,517
Deadhorse							6,450	7,030			12,051	25,531
King							16,120	17,571			9,023	41,715
Staten							40,649	44,307				
Palm							15,126				738,654	823,610
Hotchkiss*							324	16,488			50,892	92,506
				•••				353			0.400	677
Shima							11,008	11,998			8,402	31,408
Rio Blanco							5,434	5,923			2,476	13,832
New Hope				••			32,523	35,450				67,974
Wright-Elmwood		••							12,747	13,894	10,450	37,091
Victoria									21,608		45,975	91,137
Coney									7.053	7.688		14,741
Bethe1									59,626	64,992	36,114	160,732
8yron									36,888	40,208		77,096
Flood Control Subtotal	21,479	23,412	19,629	21,396	97,411	106,178	172,567	179,662	137,922	150,335	1,727,430	
Fish/Wildlife Mitigation		459	271	295	1,491	1,625	3,079	3,356				15,145
Flood Control Total	21, 9 00	23,871	19,900	21,691	98,902	107,803	175,645	183,017	139,907	152,499	1,727,430	2,672,565
Recreation	5,804	6,326	3,633	3,958	6,092	6,639	6,541	7,128	6,239	6,801		59,162
Fish/Wildlife Enhancemen	t 1,977	2,155	2,798	3,049	2,958	3,224	4,119	3,580	4,412	3,492	92,895	124,659
Project Total	29,682	22 252	26,331	20 600	107 052	117 666	106 206	102 725	150 550	160 700	1,820,323	0.055.005

	Assump-	Assump-
	tion 1	tion 2
Cost Escalation Rate	6%	9%
Bond Interest Rate	9%	12%
Sinking Fund Rate	8%	10.5%

Table 37 shows the allocation of financial costs of the traditional non-Federal share of the project among beneficiaries for both sets of assumptions. This allocation was made in accordance with the discussion of cost sharing principles in Chapter 4. Table A-37 shows the same information computed by the proposed cost sharing formula.

A comparison of Table 37 with Table 30 reveals the following:

- The escalated summed capital costs for the flood control and fish and wildlife enhancement purposes are substantially greater than the financial costs for these purposes.
- The escalated summed capital costs for the recreation purpose are less than the financial costs for this purpose.

This difference results from the future stage costs associated with both flood control and fish and wildlife enhancement. No future stage costs are associated with recreation. Because of the sinking fund assumption discussed in Chapter 4 (Assumptions for Financial Analysis), the large effect of escalating future stage costs on the sum of capital costs is more than compensated for in the financial analysis. This mitigating effect is not significant enough to reduce the recreation financial costs below the sum of the escalated capital costs for recreation.

Tables 38 and 39 show the suballocation to individual islands and tracts of the financial obligation allocated to the islands/tracts category in Table 37. This suballocation was made using the assumptions discussed in Chapter 4 (Assumptions for traditional Cost Sharing Analysis). The suballocation was made using the annual repayment equivalent of the total bond repayment obligation shown in Table 37. Annual unit repayment values by levee mile and acre are provided, as well as the portion of operation and maintenance

Table 37

MODIFIED SYSTEM PLAN ALLOCATION OF REPAYMENT OBLIGATION -- TRADITIONAL COST SHARING

(In Millions of Dollars)

	To	tal*	St	ate	Co	unty	Is lands	/Tracts*	Water P	rojects er Users
Purpose	**6%/9%	9%/12%	6%/9%	9%/12%	6X/9X	9%/12%	5%/9%	9%/12%	6%/9%	9%/12%
Flood Control Percent	738 100	1,120 100	375 50	567 50	••		344 47	523 47	19 3	30 3
Recreation Percent	44 100	64 100	22 50	32 50	22 50	32 50			 	
Fish/Wildlife Enhancement Percent	32 100	48 100	16 50	24 50	16 50	24 50				
TOTAL PROJECT Percent	815 100	1,232 100	413 51	623 51	38 5	56 5	344 42	523 42	20	30 2

* Includes relocation betterments.

**Percents of Escalation/Bond Rate.

MODIFIED SYSTEM PLAN ALLOCATION OF ISLAND OR TRACT REPAYMENT OBLIGATION AND OPERATION AND MAINTENANCE COSTS TRADITIONAL COST SHARING 6 PERCENT ESCALATION / 9 PERCENT BOND INTEREST

	Annu	al Repayment			B Bond Sale Annual Repa	yment**		O&M Costs Price Level)
		Per Mile	Per		Per Mile	Per		Per Mile	Per
Island or Tract	Total	of Levee	Acre	Total	of Levee	Acre	Total	of Levee	Acre
Andrus-Brannan*	1,348,000	133,000	90	1,068,000	106,000 .		40,000	3,911	3
Bacon*	359,000	25,000	65	285,000	20,000	51	57,000	3,981	10
Bethe1	3,854,000	335,000	1,095	2,418,000	210,000	687	268,000	23,339	76
Bishop	738,000	127,000	340	584,000	101,000	269	23,000	4,007	11
Bouldin*	179,000	10,000	30	179,000	10,000	30	71,000	3,938	12
Brack*	87,000	8,000	18	87,000	8,000	18	44,000	4,088	9
Bradford	1,523,000	206,000	711	1,207,000	163,000	563	29,000	3,925	14
Byron	2,862,000	301,000	413	1,795,000	189,000	259	38,000	4,036	6
Canal Ranch	1,216,000	128,000	406	963,000	101,000	321	38,000	4,036	13
Coney	434,000	80,000	464	272,000	50,000	291	21,000	3,873	22
Deadhors e	501,000	200,000	2,375	353,000	141,000	1,674	9,000	3,718	44
Drexler*	84,000	9,000	27	75,000	8,000	24	36,000	4,047	11
Empire*	120,000	12,000	32	120,000	12,000	32	41,000	3,948	11
Holland	1,893,000	174,000	448	1,335,000	122,000	316	43,000	3,944	10
Hotchkiss*	22,000	3,000	7	16,000	2,000	5	63,000	7,469	19
Jersey	1,870,000	120,000	539	1,481,000	95,000	427	62,000	3,948	18
Jones, Lower/Upper*	203,000	11,000	17	181,000	10,000	15	71,000	3,982	6
King	1,158,000	129,000	355	816,000	91,000	250	35,000	3,873	11
Mandeville*	70,000	5,000	13	70,000	5,000	13	72,000	5,038	14
McCormack-Williamson	1,078,000	124,000	658	760,000	87,000	464	35,000	4,007	21
McDonald*	44,000	3,000	7	39,000	3,000	6	53,000	3,901	9
New Hope	2,273,000	185,000	233	1,602,000	130,000	164	49,000	3,968	5
Orwood, Upper	292,000	65,000	172	292,000	65,000	172	24,000	5,422	14
Palm	1,232,000	158,000	506	868,000	111,000	356	33,000	4,171	13
Rindge*	156,000	10,000	23	139,000	9,000	20	62,000	3,922	9
Rio Blanco	379,000	119,000	569	267,000	84,000	401	13,000	3,994	19
Roberts,	441 000	10 000	1.4	202 000	17 000	12	202,000	8,714	6
Lower/Middle/Upper*	441,000	19,000	14	393,000	17,000				13
Shima	791,000	98,000	330	557,000	69,000	233	31,000	3,873	
Shin Kee	223,000	117,000	207	223,000	117,000	207	8,000	4,281	8
Staten	3,555,000	139,000	391	2,506,000	98,000	276	101,000	3,964	11
Terminous*	250,000	16,000	24	250,000	. 16,000	24	65,000	4,041	6
Tyler*	291,000	27,000	34	231,000	22,000	27	48,000	4,452	6
Veale	269,000	47,000	207	269,000	47,000	207	22,000	3,873	17
Victoria	1,420,000	94,000	196	891,000	59,000	123	59,000	3,924	8
Webb*	54,000	4,000	10	48,000	4,000	9	50,000	3,903	9
Woodward	1,337,000	154,000	734	1,059,000	122,000	581	35,000	4,007	19
Wright-Elmwood	836,000	123,000	394	524,000	77,000	247	27,000	3,930	13
	222,300	,	'					- • - • -	

Islands and tracts in Federal plan.
 Common base for comparison of relative financial obligation.

MODIFIED SYSTEM PLAN ALLOCATION OF ISLAND OR TRACT REPAYMENT OBLIGATION AND OPERATION AND MAINTENANCE COSTS TRADITIONAL COST SHARING 9 PERCENT ESCALATION / 12 PERCENT BOND INTEREST

		al Repayment			8 Bond Sale Annual Repa		/1000	OLM Costs Price Level	`
	Annu	Per Mile	Per	Equivalent	Per Mile	Per	(1303	Per Mile	Per
Island or Tract	Total	of Levee	Acre	Total	of Levee	Acre	Total	of Levee	Acre
Andrus-Brannan*	2,470,000	245,000	165	1,750,000	173,000	117	49,000	4,890	3
8acon*	658,000	46,000	119	466,000	33,000	84	71,000	4,977	13
8ethel	7,919,000	689,000	2,250	3.974.000	346,000	1,129	336,000	29,178	95
Sishop	1,374,000	237,000	633	973,000	168,000	449	29,000	5,009	13
Bouldin*	294,000	16,000	49	294,000	16,000	49	89,000	4,923	15
Brack*	142,000	13,000	29	142,000	13,000	29	55,000	5,111	11
8radford	2,909,000	393,000	1,358	2,061,000	279,000	962	36,000	4,907	17
Byron	5,859,000	617,000	845	2,940,000	310,000	424	48,000	5,046	7
Canal Ranch	2,244,000	236,000	749	1,590,000	167,000	531	48,000	5,046	16
Coney	889,000	165,000	950	446,000	83,000	477	26,000	4,842	28
Deadhorse	979,000	392,000	4,640	584,000	233,000	2,766	12,000	4,648	55
Drexler*	145,000	16,000	46	122,000	14,000	39	45,000	5,060	14
Empire*	196,000	19,000	53	196,000	19,000	53	51,000	4,936	14
Holland	3,726,000	342,000	882	2,222,000	204,000	526	54,000	4,931	13
Hotchkiss*	43,000	5,000	13	26,000	3,000	8	78,000	9,338	23
Jersey	3,430,000	220,000	988	2,430,000	156,000	700	77,000	4,935	22
Jones, Lower/Upper*	352,000	20,000	29	296,000	17,000	24	89,000	4,978	7
King	2,249,000	250,000	690	1,341,000	149,000	411	44,000	4,842	13
Mandeville*	114,000	8,000	22	114,000	8.000	22	90,000	6,298	17
McCormack-Williamson	2,106,000	242,000	1,285	1,256,000	144,000	766	44,000	5,009	27
McOonald*	77,000	6,000	12	65,000	5,000	11	67,000	4,877	11
New Hope	4,401,000	358,000	451	2,624,000	213,000	269	61,000	4,960	6
Orwood, Upper	478,000	106,000	281	478,000	106,000	281	31,000	6,779	18
Palm	2,426,000	311,000	996	1,446,000	185,000	594	41,000	5,214	17
Rindge*	270,000	17,000	39	227,000	14,000	33	77,000	4,904	11
Rio Blanco	736,000	230,000	1,103	439,000	137,000	658	16,000	4,993	24
Roberts,	764,000	33,000	23	643,000	28,000	20	253,000	10.894	8
Lower/Middle/Upper* Shima			643	918,000	113,000	383	39,000	4,842	16
Shin Kee	1,539,000 364,000	190,000 192,000	339	364,000	192,000	339	10,000	5,352	9
Staten	7,078,000	278,000	779	4,220,000	165,000	464	126,000	4,956	14
Terminous*	410,000	25,000	39	410,000	25,000	39	81,000	5,052	8
Tyler*	534,000	50,000	62	378,000	35,000	44	60,000	5,566	7
Veale	440,000	77,000	339	440,000	77,000	339	28,000	4,842	21
	2,934,000		405		98,000	203	74,000	4,906	10
Victoria		194,000	403	1,473,000					
Webb*	94,000	7,000	1 202	79,000	6,000 205,000	14 979	62,000 44,000	4,880 5,009	11 24
Woodward	2,518,000	289,000	1,382	1,784,000		.407		4,913	16
Wright-Elmwood	1,721,000	253,000	811	864,000	127,000	,407	33,000	4,313	10

 ^{*} Islands and tracts in Federal plan.
 ** Common base for comparison of relative financial obligation.

costs allocated to each island and tract. The operation and maintenance costs are escalated to the price level expected in 1989, the year of the start of construction.

To facilitate the comparison of the relative obligations of each of the islands and tracts, a 1988 bond sale equivalent capital cost repayment obligation is presented in Tables 38 and 39. These figures assume that construction on all islands and tracts would be initiated in 1989 and that bond repayment for all islands and tracts would begin on that same date. This was a necessary assumption for comparison purposes because the figures in the first three columns are based on three bond sales over a 10-year construction period. With inflation assumed to continue during this period, the relative values of each of the bond sales would differ, a dollar of repayment obligation stemming from the first sale being worth substantially more in real terms than a dollar of repayment obligation incurred with the final bond sale.

Proposed Cost Sharing Program

While not yet approved by Congress, a revision of traditional cost sharing methods is under consideration at the federal level. Under the proposed cost sharing formula, nonfederal interests would be required to contribute 35 percent (up front) of the cost of a federally authorized flood control project,* and to assume 100 percent of the fish and wildlife enhancement costs and 50 percent of the recreation costs. Under this proposed cost sharing formula, assuming federal participation on 19 islands and tracts in the Modified System Plan as shown on Figure 20, the cost allocation for the total project (1981 prices), as shown in Table A-29 of Appendix A, would be 37 percent (\$306 million) federal, 63 percent (\$523 million) non-Federal.

Tables similar to Tables 29, 30, 34, 35, 36, 37, 38, and 39, computed under the proposed cost sharing formula are presented as the same table number preceded by the letter "A" in Appendix A. The differences in allocation between the traditional and proposed cost sharing can be compared between the corresponding tables.

^{*} The 35 percent share is assumed to be computed after all relocation betterment costs are allocated to the nonfederal participants.

Chapter 7. INCREMENTAL PLAN

The Incremental Plan is based on the concept that each island in the Delta is independent of the others and that the flood control benefits for each island should exceed its flood control costs. This is the concept used by the Corps of Engineers to develop the selected Federal plan that would maximize net benefits, that is, maximize the differences between annual flood control benefits and annual flood control costs.

Federally funded efforts to reclaim recently flooded islands have been justified, in part, on the theory that if one island is left flooded following a levee failure, the flood risk on adjoining islands increases (domino theory) because of greater wave action and increased seepage. If this is true, it reduces the feasibility of the Incremental Plan because the Corps assumed continued restoration of flooded islands and the Corps' cost estimates do not take into account the increased costs to combat the increased wave action and seepage proglems on adjacent islands. Nevertheless, the Corps of Engineers' draft feasibility report presents the Incremental Flood Control Plan as its selected plan for levee rehabilitation in the Delta. This federal plan, based on the without-project assumptions that the Peripheral Canal would be built and that islands would be reclained if flooded, would include 15 islands.

Under the without-project assumptions of this bulletin that the Peripheral Canal would not be built but islands would be reclaimed if flooded, levees on four additional tracts (Bouldin Island, Drexler Tract, Middle Roberts Island, and Upper Roberts Island) — for a total of 19 islands — would be economically feasible for restoration and would be included in a Federal plan. These 19 islands are depicted by the shaded area

on Figure 22, and are the islands considered in this chapter.

Changing the Corps' other withoutproject assumption so that islands would
not be reclaimed if flooded, restoration
of levees would be economically justified on nine additional tracts (Bishop,
Canal Ranch, Holland, King, New Hope,
Upper Orwood, Shin Kee, Veal, and
Victoria). Under these assumptions,
however, Bouldin Island would not be
economically justified, which would
provide a total of 27 islands in a
Federal incremental flood control plan.

If a Federal project is authorized, the ultimate number of islands and tracts that would receive flood control improvements would depend upon results of post-authorization studies including reevaluation of the assumed "without project conditions".

The Incremental Plan discussed in this chapter also includes the same land use management, flood hazard mitigation program, and recreation features that were included in the Corps' Incremental Flood Control Plan that was presented in its draft feasibility report.

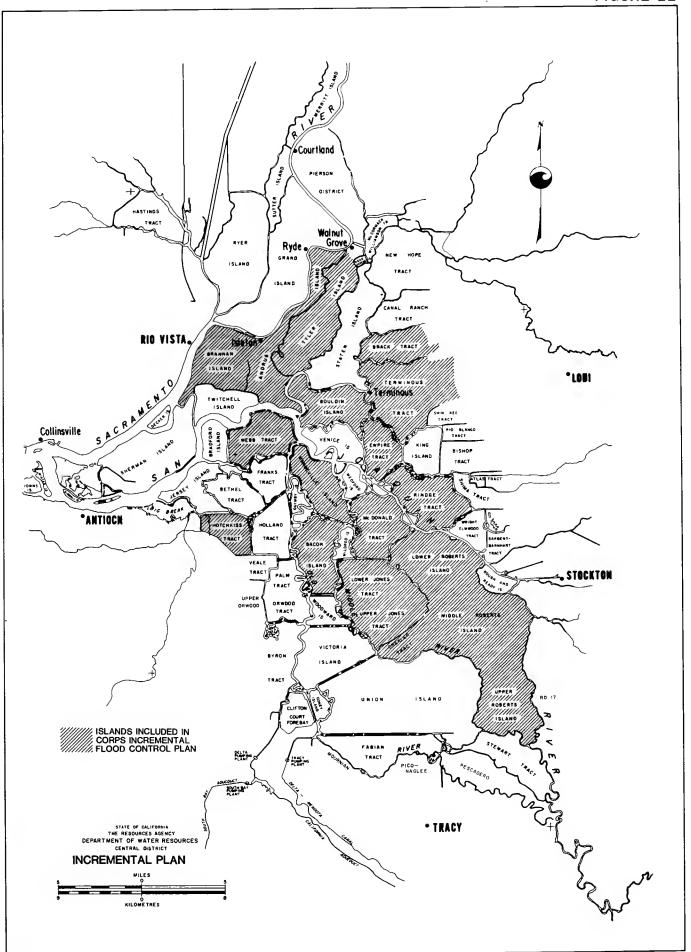
The Incremental Plan would satisfy to a lesser extent than either the System Plan or the Modified System Plan, the intent of the Legislature to preserve the integrity of the Delta levee system (refer to Chapter 2 "Basis for Study"). But to some extent, the Incremental Plan would reduce flooding and reduce the periods of water quality impairment by reducing the frequency of salinity intrusion caused by island flooding. Like the System and Modified System Plans, this plan would provide needed public access and recreation facilities, and would preserve and enhance, essentially to the same extent, some of the

Delta's natural resources and scenic areas.

As for the islands and tracts that would not be included in the Incremental Plan, it was assumed that maintaining and upgrading these levees would be the responsibility of the respective maintaining agencies. If funds are appropriated by the Legislature, the State may assist these agencies through the Delta Levee Maintenance Subventions Program (Way Bill), whereby the State reimburses local agencies for a portion of the cost to maintain and rehabilitate their levees.

Should a levee failure occur on the excluded islands, they could be eligible for a federal restoration program being proposed by the Corps of Engineers in its draft feasibility report. This Flood Hazard Mitigation Program, which would be for islands and tracts not included in a federal levee restoration program, involves financial assistance under Public Law 84-99. Financial assistance under Public Law 84-99, which is administered by the Corps of Engineers, is limited to supplementing local floodfight activities to save lives and prevent or mitigate property damage and to restoring flood preventative structures (but not reclamation structures, as nonproject levees in the Delta are now classified). Under the Flood Hazard Mitigation Program, application of Public Law 84-99 authority for nonproject levees in the Delta would be proposed according to the following criteria:

- Nonproject levees not authorized for Federal flood control improvements would be considered eligible for assistance if non-Federal interests improve and maintain the levees to a Federal standard.
- Minimum levee standards would be as follows:
 - Where the levee protects only agricultural lands, the minimum


- levee crown elevation would equal the 50-year flood stage elevation plus a 1.5-foot minimum freeboard.
- Where the levee provides protection to urban areas, the minimum elevation of the levee crown would be based on the 100-year flood stage plus a 3.0-foot minimum freeboard.
- The minimum levee section used in raising the existing levees should have a crown width of not less than 12 feet and side slopes of 1 vertical on 2 horizontal, or flatter.
- The levee crown would be required to have an all-weather surface for vehicular access and flood patrols.
- ° Continuous maintenance and inspection of the levees would be required. The maintenance program would be prescribed by the Corps of Engineers.

A discussion of allowing flooded islands to remain flooded is presented in Chapter 8.

Flood Control Features

Flood control features consist of levee rehabilitation, land use management, and fish and wildlife mitigation. The stage construction method of levee rehabilitation would be used on most of the islands. About 3-1/2 miles of sheet pile flood walls would be used on parts of Hotchkiss Tract to avoid relocation of existing urban development along the levees. Setback levees would be used to protect riparian habitat on Brack Tract. After rehabilitation, all 19 islands would have an expected frequency of failure of less than once in 100 years during the 50-year economic life of the project.

Although the probability of flooding on all islands would be reduced to less than once in 100 years, the Department believes that most islands, especially those below sea level, would not be

suitable for urbanization. This is because consequences of failure of a levee, possible even during the summer, would be too severe on urban populations.

Figure 23 shows the general locations of the various types of levee improvements. More specific locations are shown on Plates 2 through 31 (exclusive of 8, 9, 12, 14, 15, 22, 23, 27, and 28) of the Plan Formulation Appendix of the Corps' draft feasibility report.

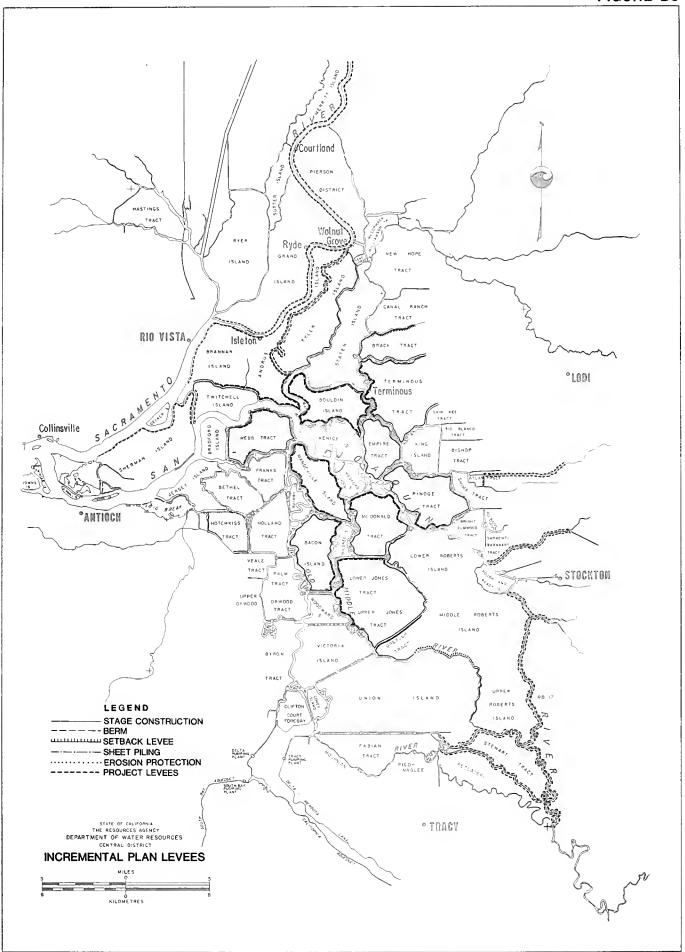
Land use management would be a required feature of this plan to ensure that the natural and beneficial values of the flood plain are preserved. This feature would include enactment and enforcement of zoning regulations that would prevent project—induced urban growth on agricultural islands. Urban developments would be required to be consistent with city and county General Plans and the California Environmental Quality Act, and would be limited to areas incapable of sustained economic agricultural production (refer to Chapter 4, "Land Use Planning and Regulation").

Levee rehabilitation would result in a loss of riparian habitat, wetland vegetation, and agricultural land. The U.S. Fish and Wildlife Service Indicates that the most significant fish and wildlife impact would be the loss of scarce riparian habitat. Adverse impacts on the fishery would be minimal. It is estimated that about 810 acres of agricultural land would be purchased for mitigation of the adverse impacts resulting from construction of the Incremental Plan. As in the System and Modified System Plans, these lands would be small parcels of marginal agricultural land that would be allowed to develop into mature riparian habitat through natural establishment and succession of plant species.

Flood Control Costs

Table 40 shows the summed capital costs (initial construction plus staged

construction) and the annual operation and maintenance costs for flood control by island and tract (1981 prices) and also the cost per mile of levee and cost per acre for each island and tract. These costs per levee mile and per acre are a measure of the cost of providing flood control in the Delta. As shown in the table, the capital costs per mile of levee range from \$4 million for Andrus-Brannan Island down to \$835,000 for Hotchkiss Tract. The costs per acre of land range from \$11,600 for Bouldin Island down to \$1,200 for Roberts Island.


After the levees are rehabilitated, the annual operation and maintenance costs range from about \$7,500 per mile for Roberts Island down to about \$3,400 per mile for most of the other islands.

The estimated total capital cost for flood control, including the cost of fish and wildlife mitigation, is \$448 million. The average cost per mile of levee rehabilitation is \$2.2 million, or an average of about \$3,500 per acre.

Recreation Features

Recreation features, including costs and benefits allocated to recreation, would be the same as those used in the System and Modified System Plans. New recreation features under all plans would be located on 45 sites in the study area, and would consist of 14 recreation areas, 23 fishing access sites, 8 boater destination sites, and 145 miles of trails. Figure 18 (Chapter 5) shows the types and locations of the recreation features.

Relatively few of the recreation facilities are located on islands and tracts that qualify for levee rehabilitation under the Incremental Plan. However, the majority of these sites could be developed independent of levee rehabilitation and are needed to provide for the existing recreation demand in the Delta. The recreation features are considered to be consistent with the work proposed

INCREMENTAL PLAN
SUMMED CAPITAL COSTS AND OPERATION AND MAINTENANCE COSTS FOR FLOOD CONTROL, BY ISLAND OR TRACT

(In Dollars, At 1981 Prices)

	C	apital Cost*		Annual Ope	rations and Main	
		Per Mile	Per		Per Mile	Per
Island or Tract	Total	of Levee	Acre	Total	of Levee	Acr
Andrus-Brannan	40,695,000	4,029,000	2,712	34,000	3,366	2
Bacon	29,044,000	2,031,000	5,237	49,000	3,427	9
Bouldin	69,885,000	3,883,000	11,557	61,000	3,389	10
Brack	20,392,000	1,888,000	4,185	38,000	3,519	8
Orex ler	17,094,000	1,921,000	5,401	31,000	3,483	10
Empire	15,392,000	1,494,000	4,132	35,000	3,398	9
lotchkiss	7,015,000	835,000	2,089	54,000	6,429	16
Jones, Lower/Upper	28,978,000	1,628,000	2,384	61,000	3,427	Ē
Mandeville	27,218,000	1,903,000	5,196	62,000	4,336	12
1cDona1d	28,295,000	2,065,000	4,605	46,000	3,358	7
Rindge	20,989,000	1,337,000	3,067	53,000	3,376	8
Roberts, Lower/Middle/Upper	39,516,000	1,703,000	1,214	174,000	7,500	!
Terminous	48,096,000	2,987,000	4,594	56,000	3,478	!
Tyler	22,904,000	2,141,000	2,669	41.000	3,832	!
Vebb	30,439,000	2,378,000	5,544	43,000	3,359	8
Subtotal	445,952,000			838,000		
ish and Wildlife Mitigation	2,482,000			a3a,000		
Total	448,434,000			838,000		
Average		2,174,000	3,452		4,086	6
Average Computed With Mitigation	n	2,186,000	3,471		4,086	è

under the Incremental Plan and fall within the Federal guidelines for recreation in conjunction with a flood control project. As with the flood control features, the location and extent of recreation facilities would depend on the results of post-authorization studies, including reevaluation of the compatibility of the recreation facilities with the flood risk and other factors of a specific island.

For a further discussion of these recreation features and an expansion of the discussion on costs and benefits presented below, refer to Chapter 5.

Recreation Costs

Table 13, in Chapter 5, lists the recreation facilities, the first cost, and

the annual operation and maintenance cost of each facility (1981 prices). The first cost includes the cost of constructing the recreation facilities and the cost of lands, easements, and rights of way, plus associated engineering, design, construction supervision, and administration. The table also lists the first cost associated with the trail system. The total first cost for the recreation features (45 recreation sites and the trail system) amounts to \$40 million (1981 prices). The equivalent annual cost, based on a 7-5/8 percent interest rate and a 50-year project economic life, would be \$3 million. Annual operation and maintenance cost associated with the recreation features amounts to \$966,000, which translates to about 40 cents per recreation day. total equivalent annual cost, including operation and maintenance, amounts to \$4 million.

Recreation Benefits

Recreation benefits were computed by the Corps of Engineers in accordance with the Water Resources Council's National Economic Development Evaluation Procedures, using the travel/cost method. The equivalent annual benefits for recreation use, based on a 7-5/8 percent interest rate and a 50-year project economic life, were estimated at \$21 million. This value includes recreation benefits attributable to the fish and wildlife management area. equivalent annual benefits attributed to general recreation only amount to \$13 million, which provides a benefit/ cost ratio of 3.3 to 1.0.

Fish and Wildlife Enhancement Features

Fish and wildlife enhancement features include acquiring public interest in lands to preserve and enhance their natural resources and scenic values. These environmental features would be the same as those discussed in the System and Modified System Plans, except the setback levees on Canal Ranch, McCormack-Williamson, and New Hope were excluded as enhancement features. Setback levees could be considered as mitigation but, for compatibility with the Corps report, levee setbacks have been treated as enhancement in this bulletin. Excluding these setback levees, Figure 19 (Chapter 5) shows the locations of enhancement features.

Specifically, the acquired lands would provide a diversity of terrain, including about 1,000 acres of significant upland and riparian habitat, about 1,500 acres of channel tule islands with valuable riparian habitat and freshwater marshes, and about 3,500 acres of highly diversified habitat set aside for wildlife management areas on Little Mandeville, Medford, Mildred, Quimby, and Rhode Islands. For further discussion of these fish and wildlife enhancement features and an expansion on the

discussion of costs and benefits presented below, refer to Chapter 5.

Fish and Wildlife Enhancement Costs

First and annual costs for fish and wildlife enhancement features (1981 prices) are shown in Table 14 (Chapter 5). The first cost of the enhancement areas amounts to about \$7 million. The cost to repair the levees around the wildlife management areas was estimated at \$32 million, and the cost of the lands was estimated at \$9 million, for a total first cost of \$41 million for the wildlife management areas. The increased construction cost for setback levees would be decreased to \$425,000 because setback levees would be included only on Brack Tract, making a total first cost for the fish and wildlife enhancement features of about \$49 million instead of nearly \$57 million. (The Corps of Engineers considers the cost increase resulting from using setback levees instead of the stage construction method to be enhancement. The Department considers at least part of these costs to be costs to avoid mitigation. This difference in cost classification would be resolved during post-authorization studies.)

Fish and Wildlife Enhancement Benefits

The tangible monetary benefits were based primarily on the percentage of total recreation benefits associated with fish and wildlife activities. This was determined to be 37 percent of the total annual recreation benefits of \$21 million, and provided the annual benefits of \$8 million assigned to the fish and wildlife enhancement areas. Additional fish and wildlife benefits based on waterfowl factors were estimated to be at least \$322,000. A monetary value was not assigned to the riparian vegetation saved by setback levees. Therefore, the total annual

fish and wildlife enhancement benefits, estimated at \$8 million, did not change.

Economics of the Incremental Plan

The first cost for initial and stage construction of this plan includes costs for levee construction, acquisition of lands, easements, and rights of way, relocation of existing facilities, construction of recreation features, providing fish and wildlife mitigation and enhancement features, and the related engineering, design, construction supervision, and administration. The annual costs include amortization of the first costs and the annual operation and maintenance costs for the levees, recreation facilities, and wildlife areas.

The annual benefits include reduction of physical flood losses, reduction of floodfight costs, water quality and water supply benefits, recreation benefits from increased recreation use, and fish and wildlife benefits from reduced waterfowl losses, contributions to the National Migratory Bird Conservation Program, reduced crop depredation, and new hunting and visitation access on the proposed wildlife management areas.

As shown on Table 41, the plan has an estimated cost of about \$537 million at 1981 prices. If these prices were escalated at 6 percent, the plan would cost about \$1.8 billion. The plan has an overall benefit/cost ratio of 1.9 to 1. For purposes of comparison, figures both with and without the Peripheral Canal have been shown. The figures in the columns under "With Peripheral Canal" were taken from the Corps of Engineers' draft feasibility report dated October 1982. The figures in the columns under "Without Peripheral Canal" were based on the same basic assumptions used by the Corps. Changing to the "Without Peripheral Canal" assumption increases both the costs and benefits of the plan.

As indicated in this table, the summed first cost (initial construction plus staged construction) without the Peripheral Canal is \$122 million greater than with the Peripheral Canal; the corresponding annual cost is \$7.7 million greater.

The annual benefits increased by \$13.7 million. The overall benefit/cost ratio of 1.9 for the Incremental Plan did not change.

As stated in Chapter 4, there is considerable logic in support of the non-restoration assumption, as well as the without Peripheral Canal assumption for computing the benefits of the plan. According to the Corps' sensitivity analysis, the combination of these assumptions would result in an overall benefit/cost ratio of 2.3 for the Incremental Plan and of 2.2 and for the flood control features of the plan.

For compatibility with the Corps' report, the assumptions for this report are based on the following:

- Federal interest in participating in flood control improvements in the Delta would be limited to those locations where the improvements are economically justified. (Authorization of the federal Incremental Flood Control Plan would make this official policy.)
- Islands will be reclaimed after levee breaks.

On this basis, the federally authorized project would include levee improvements on all 19 islands in the Incremental Plan and also recreation and fish and wildlife enhancement features. (The ultimate number of islands and tracts that would receive flood control improvements under a Federal program would depend on results of postauthorization studies, including reevaluation of the assumed without-project conditions.)

ECONOMIC SUMMARY, INCREMENTAL PLAN

(At 1981 Prices and a 7-5/8 Percent Discount Rate, Under 1990-2040 Project Conditions)

	With Per Subtotals	ipheral Canal Totals	Without Per Subtotals	ipheral Canal Totals
FIRST COST*				
Flood Control and Water Quality**		\$ 326,000,000		\$ 448,000,000
Initial Construction*** Stage Construction	\$225,000,000 101,000,000		\$308,000,000 140,000,000	
Recreation		40,000,000		40,000,000
Fish and Wildlife Enhancement		49,000,000		49,000,000
TOTAL FIRST COST		\$ 415,000,000		\$ 537,000,000
ANNUAL COST				
Flood Control and Water Quality		\$ 20,900,000		\$ 28,600,000
Interest and Amortization Operation and Maintenance	\$ 20,300,000 600,000		\$ 27,800,000 800,000	
Recreation		4,000,000		4,000,000
Interest and Amortization Operation and Maintenance	\$ 3,000,000 1,000,000		\$ 3,000,000 1,000,000	
Fish and Wildlife Enhancement		3,200,000		3,200,000
Interest and Amortization Operation and Maintenance	\$ 2,900,000 300,000		\$ 2,900,000 300,000	
TOTAL ANNUAL COST		\$ 28,100,000		\$ 35,800,000
ANNUAL BENEFITS				
Flood Control and Water Quality Recreation		\$ 32,600,000		\$ 46,300,000
Fish and Wildlife Enhancement		13,100,000 8,100,000		13,100,000 8,100,000
TOTAL ANNUAL BENEFITS		\$ 53,800,000		\$ 67,500,000
BENEFIT-COST RATIOS				
Flood Control and Water Quality Recreation Fish and Wildlife Enhancement		1.6:1 3.3:1 2.5:1		1.6:1 3.3:1 2.5:1
TOTAL PROJECT SENEFIT-COST RATIO	•	1.9:1		1.9:1
NET BENEFITS (Excess of Benefits Over Costs)		\$ 25,700,000		\$ 31,700,000

^{*} Rounded to nearest \$1 million.

** The draft Corps report excludes Reclamation District 17; this bulletin excludes both Reclamation District 17 and Stewart Tract because both are protected exclusively by project levees.

*** Includes \$2,000,000 in fish and wildlife mitigation costs under with Peripheral Canal assumption, and \$2,500,000 under without Peripheral Canal assumption.

Table 42 shows the summed capital costs (1981 prices) allocated between Federal and non-Federal participants under the traditional cost sharing method used in the Corps of Engineers' draft feasibility report. The Federal Government would pay \$407 million of the flood control costs and also \$20 million of

Table 42

ALLOCATION O	ONAL COST	CAPITAL COST SHARING	
Item	Project Total	Federal Allocation	Nonfederal
Flood Control, Federal Participation 1	slands an	d Tracts	
Construction Mitigation Lands, Easements,	405,000 2,500	405,000 2,200	300
Rights of Way Relocations Relocation Betterments	24,200 8,100 8,600		24,200 8,100 8,600
Total Flood Control Percent	448,400 100%	407,200 91%	41,200
Recreation and Fish and	l Wildlife	Enhancement	
Recreation Percent	40,000 100%	20,000 50%	20,000 50%
Fish and Wildlife Enhancement Percent	49, 000 100%	36,800 75%	12,200 25%
PROJECT TOTALS PERCENT	537,400 100%	464,000 86%	73,400 14%

costs allocated to recreation and \$37 million of fish and wildlife enhancement costs. Non-Federal participants would pay \$41 million for lands, easements, rights of way, relocations, and relocation betterments, \$20 million for recreation facilities, and \$12 million for fish and wildlife enhancement. For the total project, the Federal Government would be responsible for 86 percent of the total capital costs and the non-Federal interests would be allocated 14 percent.

The Federal Government is proposing to increase the up-front cost sharing required from non-Federal sources. Comparable cost figures for this proposed formula, contained in Appendix A, show that the Federal share would be reduced from 86 percent to 57 percent, as shown on Table A-42.

Table 43 shows the traditional allocation of the summed capital costs to Federal, State, counties, islands and tracts, and to water projects and water users, in 1981 prices and in costs escalated at 6 percent and 9 percent to the time of construction. Table A-43, in Appendix A, shows the same information for the proposec cost sharing. Of the non-Federal flood control costs, 59 percent was allocated to the State, 38 percent to the islands and tracts, and 3 percent to the water projects and local users. The costs of recreation

Table 43

INCREMENTAL PLAN ALLOCATION OF ESCALATED SUMMED CAPITAL COSTS, BY PARTICIPANT TRADITIONAL COST SHARING

(In Millions of Dollars)

											-Federa	1						
		ral Tot			Total			State			County			is/Trac		Water Pr		
	1981	Escal		1981	Escala		1981	Escala		1981	Escala			Escala		1981	Escala	
Purpose	<u>Prices</u>	6%	9%	Prices	6%	9%	<u>Prices</u>	6%	9%	Prices.	6%	9%	<u>Pr1ces</u>	6%	9%	<u>Prices</u>	6%	9%
Flood Control	407	1.457	3,576	41	77	105	25	46	62	_	_	_	15	29	41	1	2	,
Percent				100	100	100	60	59	59	-	-	-	15 37	38	39	3	3	2
Recreation	20	38	51	20	38	51	10	19	26	10	19	25	_	_	_	-	-	_
Percent				100	100	100	50	50	50	50	50	50	-	-	-	-	-	-
Fish/Wildlife																		
Enhancement	37	130	311	12	44	104	6	22	52	6	22	52	-	_	_	_	_	-
Percent				100	100	100	50	50	50	50	50	50	-	-	-	-	-	-
TOTAL	464	1,625	3,938	73	159	260	41	87	140	16	41	77	15	29	41	1	2	2
Percent		•		100	100	100	56	54	54	22	26	30	21	19	16	ī	ī	ō

and fish and wildlife enhancement were divided equally between the State and the counties. Overall, the State was assigned 55 percent of the total cost of the project.

Construction Schedule and Expenditures

Before a levee rehabilitation project can be initiated, six steps are required:

- Federal and State authorization of a project must be obtained.
- Advanced planning and an environmental impact report must be completed.
- Design and specifications for the work must be completed.
- Funds must be available for financing the work.
- Contracts detailing repayment obligations must be signed between the State and the local levee maintaining agencies.

Contracts must be signed to provide for construction, operation, and maintenance.

Considering these steps, it is estimated that the earliest date for beginning construction would be 1989. Assuming maximum annual construction contract amounts in the \$70 million range (1981 prices) to reflect the availability of construction equipment and the logistics associated with construction, the initial construction period would extend over a 6-year period. The construction schedule was developed on the basis of repairing the levees with the estimated highest frequency of failure rate first. frequency of failure rate first. The initial construction for each island would be completed within a 2-year period. Following the initial construction, areas where settlement or other major problems that are considered beyond the normal maintenance work performed by local levee maintaining agencies will be corrected as part of the levee restoration project. The construction schedule and expenditures for the total project based on 1981 prices, are shown on Table 44.

Table 44

Terminous 13,937 13,937 1,410 18,813 Empire 5,170 5,170 340 4,713 Brack 9,083 9,083 2,227 Mandeville 8,676 8,676 9,867 McDonald 8,252 8,252 11,791 Rindge 9,333 9,333 2,324 Webb 7,909 7,909 14,621 Roberts, Lower/Middle/Upper 19,573 19,573 370 14,621 Brack 9,083 9,083 2,324 Webb 3,846 3,846 9,402 Jones, Lower/Middle/Upper 19,573 19,573 370 12,451 12,451 4,076 Bacon 12,451 12,451 4,076 Bacon 12,451 12,451 4,076 Bacon 8,704 8,704 11,636 Andrus-Brannan 11,279 11,279 18,137 Tyler 10,337 10,337 2,231 Hotchkiss 3,508 3,508 Flood Control Subtotal 57,440 57,440 48,913 48,913 46,648 48,028 138,571 Flood Control Total 57,860 57,860 49,362 49,362 47,019 48,399 138,571 Recreation 6,070 6,070 7,051 7,051 7,162 7,162		(10.0	housands	of Doll	COSTS, 1	1 Prices	3)		
Terminous 13,937 13,937 1,410 18,813 Empire 5,170 5,170 340 4,713 Brack 9,083 9,083 2,227 Mandeville 8,676 8,676 9,867 McDonald 8,252 8,252 11,791 Rindge 9,333 9,333 2,324 Webb 7,909 7,909 14,621 Roberts, Lower/Middle/Upper 19,573 19,573 370 2,324 Webb School 3,846 3,846 9,402 Jones, Lower/Upper 19,573 19,573 370 14,621 Roberts, Lower/Upper 19,573 19,573 370 14,621 Roberts, Lower/Upper 19,573 19,573 370 10,337 12,311 12,451 4,076 Rodrus-Brannan 12,451 12,451 4,076 Rodrus-Brannan 11,279 11,279 18,137 Tyler 10,337 10,337 2,231 Hotchkiss 3,508 3,508 Flood Control Subtotal 57,440 57,440 48,913 48,913 46,648 48,028 138,571 Flood Control Total 57,860 57,860 49,362 49,362 47,019 48,399 138,571 Recreation 6,070 6,070 7,051 7,051 7,162 7,162	Island or Tract	1989	1990	1991	1992	1993	1994		Total
Empire 5,170 5,170 340 4,713 Brack 9,083 9,083 2,227 Mandeville 8,676 8,676 9,867 McDonald 8,252 8,252 11,791 Rindge 9,333 9,333 2,324 Webb 7,909 7,909 14,621 Roberts, Lower/Middle/Upper 19,573 19,573 370 14,621 Brack 9,083 9,083 2,324 Webb 7,909 7,909 14,621 Roberts, Lower/Middle/Upper 19,573 19,573 370 9,402 Jones, Lower/Upper 12,451 12,451 4,076 Bacon 12,451 12,451 4,076 Bacon 12,451 12,451 4,076 Bacon 11,279 11,279 18,137 Tyler 10,337 10,337 2,231 Hotchkiss 10,337 10,337 2,231 Hotchkiss 3,508 3,508 Flood Control Subtotal 57,440 57,440 48,913 48,913 46,648 48,028 138,571 Flood Control Total 57,860 57,860 49,362 49,362 47,019 48,399 138,571 Recreation 6,070 6,070 7,051 7,051 7,162 7,162	uldin ·	20,576	20,576					28,733	69,885
Brack 9,083 9,083 2,227 Mandeville 8,676 8,676 9,867 McDonald 8,252 8,252 11,791 Rindge 9,333 9,333 2,324 Webb 7,909 7,909 14,621 Roberts, Lower/Middle/Upper 19,573 19,573 370 Drexler 3,846 3,846 9,402 Jones, Lower/Upper 12,451 12,451 4,076 Bacon 8,704 8,704 11,636 Andrus-Brannan 11,279 11,279 18,137 Tyler 10,337 10,337 2,231 Hotchkiss 3,508 3,508 Flood Control Subtotal 57,440 57,440 48,913 48,913 46,648 48,028 138,571			13,937				1,410	18,813	48,096
Mandeville 8,676 8,676 9,867 McDonald 8,252 8,252 11,791 Rindge 9,333 9,333 2,324 Webb 7,909 7,909 14,621 Roberts, Lower/Middle/Upper 19,573 19,573 370 Drexler 3,846 3,846 9,402 Jones, Lower/Upper 12,451 12,451 4,076 Bacon 8,704 8,704 11,636 Andrus-Brannan 11,279 11,279 18,137 Tyler 10,337 10,337 2,231 Hotchkiss 3,508 3,508 Flood Control Subtotal 57,440 57,440			5,170				340	4,713	15,392
McDonald 8,252 8,252 11,791 Rindge 9,333 9,333 2,324 Webb 7,909 7,909 14,621 Roberts, 19,573 19,573 370 Drexler 3,846 3,846 9,402 Jones, Lower/Upper 12,451 12,451 4,076 Bacon 8,704 8,704 11,636 Andrus-Brannan 10,337 10,337 2,231 Tyler 10,337 10,337 2,231 Hotchkiss 3,508 3,508 Flood Control Subtotal 57,440 57,440 48,913 48,913 46,648 48,028 138,571 Flood Control Total			9,083					2,227	20,392
Rindge 9,333 9,333 2,324 Webb 7,909 7,909 14,621 Roberts, Lower/Middle/Upper 19,573 19,573 370 9,402 Jones, Lower/Upper 3,846 3,846 9,402 Jones, Lower/Upper 12,451 12,451 4,076 Bacon 8,704 8,704 11,636 Andrus-Brannan 11,279 11,279 18,137 Tyler 10,337 10,337 2,231 Hotchkiss 10,337 10,337 2,231 Hotchkiss 3,508 3,508 Flood Control Subtotal 57,440 57,440 48,913 48,913 46,648 48,028 138,571 Fish/Wildlife Mitigation 420 420 450 450 371 371 Flood Control Total 57,860 57,860 49,362 49,362 47,019 48,399 138,571 Recreation 6,070 6,070 7,051 7,051 7,162 7,162		8,676	8,676			~ -		9,867	27,218
Webb 7,909 7,909 14,621 Roberts, Lower/Middle/Upper 19,573 19,573 370 Drexler 3,846 3,846 9,402 Jones, Lower/Upper 12,451 12,451 4,076 Bacon 8,704 87,04 11,636 Andrus-Brannan 11,279 11,279 18,137 Tyler 10,337 10,337 2,231 Hotchkiss 3,508 3,508 Flood Control Subtotal 57,440 57,440 48,913 48,913 46,648 48,028 138,571 Fish/Wildlife Mitigation 420 450 450 371 371 Flood Control Total 57,860 57,860 49,362 49,362 47,019 48,399 138,571 Recrea	Donald			8,252	8,252			11,791	28,295
Roberts, Lower/Middle/Upper 19,573 19,573 370 9,402 Jones, Lower/Upper 3,846 3,846 9,402 Jones, Lower/Upper 12,451 12,451 4,076 Bacon 8,704 8,704 11,636 Andrus-Brannan 11,279 11,279 18,137 Tyler 10,337 10,337 2,231 Hotchkiss 10,337 10,337 2,231 Hotchkiss 3,508 3,508 Flood Control Subtotal 57,440 57,440 48,913 48,913 46,648 48,028 138,571 Fish/Wildlife Mitigation 420 420 450 450 371 371 Flood Control Total 57,860 57,860 49,362 49,362 47,019 48,399 138,571 Recreation 6,070 6,070 7,051 7,051 7,162 7,162				9,333	9,333			2,324	20,989
Lower/Middle/Upper 19,573 19,573 370 9,402 Drexler 3,846 3,846 9,402 Jones, Lower/Upper 12,451 12,451 4,076 Bacon 8,704 8,704 11,636 Andrus-Brannan 11,279 11,279 18,137 Tyler 10,337 10,337 2,231 Hotchkiss 3,508 3,508 Flood Control Subtotal 57,440 57,440 48,913 48,913 46,648 48,028 138,571 Fish/Wildlife Mitigation 420 420 450 450 371 371 Flood Control Total 57,860 57,860 49,362 49,362 47,019 48,399 138,571 Recreation 6,070 6,070 7,051 7,051 7,162 7-162	=			7,909	7,909			14,621	30,439
Drexler 3,846 3,846 9,402 Jones, Lower/Upper 12,451 12,451 4,076 Bacon 8,704 8,704 11,636 Andrus-Brannan 11,279 11,279 18,137 Tyler 10,337 10,337 2,231 Hotchkiss 3,508 Flood Control Subtotal 57,440 57,440 48,913 48,913 46,648 48,028 138,571 Fish/Wildlife Mitigation 420 420 450 450 371 371 Flood Control Total 57,860 57,860 49,362 49,362 47,019 48,399 138,571 Recreation 6,070 6,070 7,051 7,162 7,162									
Jones, Lower/Upper 12,451 12,451 4,076 Bacon 8,704 8,704 11,636 Andrus-Brannan 11,279 11,279 18,137 Tyler 10,337 10,337 2,231 Hotchkiss 3,508 3,508 Flood Control Subtotal 57,440 57,440 48,913 48,913 46,648 48,028 138,571 Fish/Wildlife Mitigation 420 420 450 450 371 371 Flood Control Total 57,860 57,860 49,362 49,362 47,019 48,399 138,571 Recreation 6,070 6,070 7,051 7,051 7,162 7,162					19,573	370			39,516
Bacon 8,704 8,704 11,636 Andrus-Brannan 11,279 11,279 18,137 Tyler 10,337 10,337 2,231 Hotchkiss 3,508 3,508 Flood Control Subtotal 57,440 57,440 48,913 48,913 46,648 48,028 138,571 Fish/Wildlife Mitigation 420 420 450 450 371 371 Flood Control Total 57,860 57,860 49,362 49,362 47,019 48,399 138,571 Recreation 6,070 6,070 7,051 7,051 7,162 7,162				3,846	3,846				17,094
Andrus-Brannan 11,279 11,279 18,137 Tyler 10,337 10,337 2,231 Hotchkiss 3,508 3,508 Flood Control Subtotal 57,440 57,440 48,913 48,913 46,648 48,028 138,571 Fish/Wildlife Mitigation 420 420 450 450 371 371 Flood Control Total 57,860 57,860 49,362 49,362 47,019 48,399 138,571 Recreation 6,070 6,070 7,051 7,051 7,162 7-162						12,451	12,451	4,076	28,978
Tyler 10,337 10,337 2,231 Hotchkiss 3,508 3,508 Flood Control Subtotal 57,440 57,440 48,913 48,913 46,648 48,028 138,571 Fish/Wildlife Mitigation 420 420 450 450 371 371 Flood Control Total 57,860 57,860 49,362 49,362 47,019 48,399 138,571 Recreation 6,070 6,070 7,051 7,051 7,162 7,162						8,704	8,704	11,636	29,044
Hotchkiss 3,508 3,508 Flood Control Subtotal 57,440 57,440 48,913 48,913 46,648 48,028 138,571 Fish/Wildlife Mitigation 420 420 450 450 371 371 Flood Control Total 57,860 57,860 49,362 49,362 47,019 48,399 138,571 Recreation 6,070 6,070 7,051 7,051 7,162 7,162						11,279	11,279	18,137	40,695
Flood Control Subtotal 57,440 57,440 48,913 48,913 46,648 48,028 138,571 Fish/Wildlife Mitigation 420 420 450 371 371 Flood Control Total 57,860 57,860 49,362 49,362 47,019 48,399 138,571 Recreation 6,070 6,070 7,051 7,051 7,162 7,162						10,337		2,231	22,904
Fish/Wildlife Mitigation 420 420 450 450 371 371 Flood Control Total 57,860 57,860 49,362 49,362 47,019 48,399 138,571 Recreation 6,070 6,070 7,051 7,051 7,162 7,162	tchkiss					3,508	3,508		7,015
Fish/Wildlife Mitigation 420 420 450 450 371 371 Flood Control Total 57,860 57,860 49,362 49,362 47,019 48,399 138,571 Recreation 6,070 6,070 7,051 7,051 7,162 7,162	ood Control Subtotal	57,440	57,440	48,913	48,913	46,648	48.028	138.571	445,952
Recreation 6,070 6,070 7,051 7,162 7,162		420	420	450					2,482
Recreation 6.070 6.070 7.051 7.162 7.162	Flood Control Total	57,860	57,860	49,362	49,362	47,019	48,399	138,571	448,434
		6,070	6.070		-	-			40,566
Fish/Wildlife Enhancement 5,039 5,039 5,346 5,346 5,691 5,691 16,525	sh/Wildlife Enhancement	t 5,039						16.525	48,677

Recognizing that construction probably will not begin until 1989 and that prices will escalate during the interim (as well as after construction begins), an evaluation was made to ascertain the effect of price escalation on project costs. Table 45 presents the cost information of Table 44 escalated at a rate of 6 percent. As a result of this

escalation rate, capital costs during the initial construction period (1989 through 1994) would increase by about \$300 million and costs for stage construction after year 1994 would increase by over \$900 million. The total project costs associated with the 6 percent escalation rate amount to about \$1.8 billion.

Table 45

SCHEDULE	0F	TOTAL PROJECT COSTS, INCREMENTA	L PLAN
		6 PERCENT ESCALATION RATE	
		(In Thousands of Dollars)	

Island or Tract	1989	1990	1991	1992	1993	1994	Future Stage	Total
Bouldin	32,795	34,763					187,144	254,702
Terminous	22,213	23,545				3,007	146,805	195,571
Empire	8,239	8,734				725	23,699	41,398
Brack	14,476	15,345					5,997	35,818
Mandeville	13,827	14,657					77,561	106,045
McDonald			14,778	15,665			79,757	110,200
Rindge			16,713	17,716			28,585	63,014
Webb			14,164	15,014			124,592	153,769
Roberts,								
Lower/Middle/Upper			35,052	37,155	745			72,952
Drexler			6,888	7,301			58,578	72,766
Jones, Lower/Upper					25,054	26,557	24,815	76,426
Bacon					17,514	18,565	59,890	95,969
Andrus-Brannan					22,696	24,057	131,741	178,494
Tyler					20,799	22,047	15,261	58,107
Hotchkiss					7,058	7,481		14,539
Flood Control Subtotal Fish/Wildlife Mitigation	91,551 n 670	97,044 710	87,595 805	92,851 853	93,865 746	102,440 791	964,426	1,529,771 4,576
Flood Control Total	92,221	97,754	88,400	93,704	94,611	103,231	964,426	1,534,347
Recreation	9,675	10,255	12,627	13,385	14,411	15,276		75,629
Fish/Wildlife Enhanceme	nt 8,031	8,513	9,574	10,148	11,451	12,138	113,345	173,201
Project Total.	109,927	116,522	110,601	117,237	120.474	130.646	1,077,771	1,783,178

To further evaluate the sensitivity of price escalation on project costs, an analysis was made of the effect of a 9 percent rate of escalation. Table 46 presents the cost information of Table 44 escalated at a rate of 9 percent. The total project costs associated with the 9 percent escalation rate amount to about \$4.2 billion.

The total difference between the 6 percent and 9 percent rates of escalation amounts to over \$2.4 billion during the 50-year life of the project.

Cost allocation by the traditional method of cost sharing was previously discussed. The following discussion addresses the non-Federal portion of the

Table 46

SCHEDULE	0F	TOTAL PROJECT COSTS, INCREMENTAL I	PLAN
Ann		9 PERCENT ESCALATION RATE	
		(In Thousands of Dollars)	

Island or Tract	1989	1990	1991	1992	1993	1994	Future Stage	Total
Bouldin	40,999	44,689					533,392	619,080
Terminous	27,769	30,269				4,323	462,052	524,413
Empire	10,301	11,228				1,042	54,073	76,643
Brack	18,097	19,726					9,638	47,46
Mandeville	17,286	18,842					256,897	293,02
McDona1d			19,535	21,294			236,851	277,680
Rindge			22,093	24,082			108,489	154,66
Webb			18,723	20,409			438,129	477,26
Roberts,								
_Lower/Middle/Upper			46,336	50,507	1,041			97,884
Drex ler			9,105	9,924			167,178	186,20
Jones, Lower/Upper					35,020	38,172	58,946	132,13
Bacon					24,481	26,685	143,562	194,728
Andrus-Br a nnan					31,724		407,963	474,26
Tyler					29,073	31,690	38,333	99,09
Hotchkiss					9,865	10,753		20,619
Flood Control Subtotal	114 453	124 754	115 794	126, 215	131, 205	147.244	2,915,503	3,675,168
Fish/Wildlife Mitigation	838	913			1,043			6,15
Flood Control Total	115,291	125,667	116,858	127,375	132,248	148,381	2,915,503	3,681,32
Recreation	12,095	13,183	16,692	18,195	20,144	21,957	 ·	102,26
Fish/Wildlife Enhancement	10,041	10,944	12,656	13,795	16,007	17,447	333,646	414,530
Project Total	137,426	149.794	146,206	159.365	168, 399	187.786	3,249,150	4, 198, 12

capital costs of the Incremental Plan.
Table 47 shows the construction schedule
and non-Federal costs portion of the
plan, in 1981 prices. The total nonFederal capital costs during the initial

construction period (1989 through 1994) would amount to about \$73 million. The future stage construction was considered to be a Federal cost, consisting of costs for construction.

Table 47

SCHEDULE OF NON-FEDERAL COSTS, INCREMENTAL PLAN TRADITIONAL COST SHARING (In Thousands of Dollars, 1981 Prices)

Island or Tract	1989	1990	1991	1992	1993	1994	Future Stage	Total
Bouldin	1,102	1,102						2,203
Terminous	1,665	1,665						3,330
Empire	966	966						1,931
Brack	478	478						956
Mandeville	547	547						1,093
McDonald			530	530				1,060
Rindge			1,036	1,036				2,072
Webb			461	461				921
Roberts,								
Lower/Middle/Upper			3,882	3,882				7,763
Drexler			492	492				984
Jones, Lower/Upper					1,892	1,892		3,783
Bacon					1,258	1,258		2,515
Andrus-Br a nnan					4,423	4,423		8,846
Tyler					1,340	1,340		2,679
Hotchkiss					97	97		194
Flood Control Subtotal Fish/Wildlife Mitigation	4,757 48	4,757 48	6,400 51	6,400 51	9,009	9,009		40,330 283
•				•				
Flood Control Total	4,804	4,804	6,451	6,451	9,051	9,051		40,613
Recreation	3,035	3,035	3,526	3,526	3,581	3,581		20,283
Fish/Wildlife Enhancement	1,260	1,260	1,337	1,337	1,423	1,423		12,169
Project Total	9,099	9,099	11,313	11,313	14,055	14,055		73,065

Table 48 shows the nonfederal costs escalated at a rate of 6 percent.

Compared to the 1981 prices the effect of a 6 percent escalation rate would

increase non-Federal costs by \$85 million, for a total project cost of about \$158 million.

Table 48

SCHEDULE OF NON-FEDERAL COSTS, INCREMENTAL PLAN TRADITIONAL COST SHARING 6 PERCENT ESCALATION RATE (In Thousands of Dollars)

Island or Tract	1989	1990	1991	1992	1993	1994	Future Stage	Total
Bouldin	1,756	1,861						3,617
Terminous	2,654	2,813						5,467
Empire	1,539	1,631						3,170
Brack	762	808						1,569
Mandeville	871	923		••				1,794
McDonald			949	1,006				1,955
Rindge			1,855	1,967				3,822
Webb			825	874				1,699
Roberts,								
Lower/Middle/Upper			6,951	7,368				14,319
Drexler			881	934				1,815
Jones, Lower/Upper					3,806	4,034		7,841
Bacon					2,530	2,682		5,212
Andrus-Brannan					8,900	9,434		18,334
Tyler					2,695	2,857		5,552
Hotchkiss		••			195	207		402
Flood Control Subtotal	7,581	8,036	11,461	12,149	18,127	19,214		76,569
Fish/Wildlife Mitigation	7,361	81	92	97	85	90		522
rishi/wildille mitigation	70	or	72	7/	00	30		522
Flood Control Total	7,658	8,117	11,553	12,246	18,212	19,305		77,091
Recreation	4,837	5,128	6,314	6,692	7,206	7.,638		37,815
Fish/Wildlife Enhancement	2,008	2,128	2,393	2,537	2,863	3,035		43,300
	_,	-,	-,	_,	-,	- •		
Project Total	14,503	15,373	20,260	21,476	28,280	29,977		158,206

Table 49 shows the non-Federal costs escalated at a rate of 9 percent. Compared to the 1981 prices, the total project costs associated with the 9 percent escalation rate amount to \$260 million.

Tables A-47, A-48, and A-49 in Appendix A show the schedule of non-Federal costs of the Incremental Plan, in 1981 prices, escalated prices at 6 percent, and escalated prices at 9 percent, respectively, computed by the cost sharing formula proposed by the Reagan Administration.

Project Financing

The allocation of the escalated capital costs to the traditional non-Federal participants shown in Table 43 were used to calculate the total amount of the bonds that would have to be authorized for State issue and the bond repayment obligation of each of the project participants. Two sets of financial market rate assumptions were used for these analyses (see Chapter 4 for a full discussion of the financial assumptions):

Table 49

SCHEDULE OF NON-FEDERAL COSTS, INCREMENTAL PLAN TRADITIONAL COST SHARING 9 PERCENT ESCALATION RATE (In Thousands of Dollars)

Island or Tract	1989	1990	1991	1992	1993	1994	Future Stage	Total
Bouldin	2,195	2,392						4,587
Terminous	3,318	3,616						6,934
Empire	1,924	2,097						4,021
Brack	952	1,038						1,991
Mandeville	1,089	1,187						2,276
McDonald			1,255	1,368				2,622
Rindge			2,453	2,673				5,126
Webb			1,090	1,188				2,278
Roberts,								
Lower/Middle/Upper			9,189	10,016				19,205
Drexler			1,165	1,270		,		2,434
Jones, Lower/Upper					5,320	5,799		11,119
Bacon					3,537	3,855		7,392
Andrus-Brannan					12,440	13,560		26,000
Tyler					3,768	4,107		7,874
Hotchkiss					273	297		570
Flood Control Subtotal	9,478	10,331	15,151	16,515	25,338	27,618		104,430
Fish/Wildlife Mitigation	96	104	121	132	119	130	•-	702
Flood Control Total	9,573	10,435	15,272	16,647	25,457	27,748		105,132
Recreation	6,047	6,592	8,346	9,097	10,072	10,979		51,133
Fish/Wildlife Enhancement	2,510	2,736	3,164	3,449	4,002	4,362		103,634
Project Total	18,131	19,762	26,783	29,193	39,531	43,088		259,899

		Assumption 2
Cost Escalation Rate	6%	9%
Bond Interest Rate	9%	12%
Sinking Fund Rate	8%	10.5%

Table 50 shows the allocation of financial costs of the non-Federal share of the project among beneficiaries for both sets of assumptions. This allocation was made in accordance with the discussion of cost sharing principles in Chapter 4. Table A-50 shows the same information computed by the proposed cost sharing formula.

The effect of the change in the escalation rate assumption on the allocation of flood control costs results from the variation in the State's share of each component of the flood control cost in conjunction with the fact that future stage costs are associated with only the construction cost component; that is, this component is disproportionately affected by escalation.

Tables 51 and 52 show the suballocation to individual islands and tracts of the

financial obligation allocated to the islands/tracts category in Table 50. This suballocation was made using the assumptions discussed in Chapter 4 (Assumptions for Traditional Cost Sharing Analysis). The suballocation was made using the annual repayment equivalent of the total bond repayment obligation shown in Table 50. Annual unit repayment values by levee mile and acre are provided, as well as the portion of operation and maintenance costs allocated to each island and tract. The operation and maintenance costs are escalated to the price level expected in 1989, the year of the start of construction.

To facilitate the comparison of the relative obligations of each of the islands and tracts, a 1988 bond sale equivalent capital cost repayment obligation is presented in Tables 51 and 52. These figures assume that construction on all islands and tracts would be initiated in 1989 and that bond repayment for all islands and tracts would begin on that same date. This was a necessary assumption for comparison purposes because the figures in the first

Table 50

INCREMENTAL PLAN ALLOCATION OF REPAYMENT OBLIGATION -- TRADITIONAL COST SHARING

(In Millions of Dollars)

	Total		St	tate	County		Islands	Islands/Tracts*		Water Projects and Water Users		
Purpose	**6%/9%	9%/12%	6%/9%	9%/12%	<u>6%/9%</u>	9%/12%	6%/9%	9%/12%	6%/9%	9%/12%		
Flood Control Percent	82 100	113 100	49 59	66 59			31 39	44 39	2	3 2		
Recreation Percent	40 100	.54 1'00	20 50	27 50	20 50	27 50				·		
Fish/Wildlife Enhancement Percent	26 100	40 100	13 50	20 50	13 50	20 50						
TOTAL PROJECT Percent	147 100	207 100	81 55	113 55	33 23	47 23	31 21	44 21	2 1	3 1		

^{*} Includes relocation betterments.

^{**}Percents of Escalation/Bond Rate.

INCREMENTAL PLAN ALLOCATION OF ISLAND OR TRACT REPAYMENT OBLIGATION AND OPERATION AND MAINTENANCE COSTS TRADITIONAL COST SHARING 6 PERCENT ESCALATION / 9 PERCENT BOND INTEREST

	Annu	al Repayment		1988 Bond Sale OLM Cost: Equivalent Annual Repayment** (1989 Price Le						
		Per Mile	Per		Per Hile	Per		Per Mile	Per	
Island or Tract	Total	of Levee	Acre	Total	of Levee	Acre	Total	of Levee	Acre	
Andrus-Brannan*	1,108,000	110,000	74	877,000	87,000	58	39,000	3,899	3	
Bacon*	280,000	20,000	51	222,000	16,000	40	57,000	3,969	10	
Bouldin*	130,000	7,000	22	130,000	7,000	22	71,000	3,925	12	
Brack*	68,000	6,000	14	68,000	6,000	14	44,000	4,076	9	
Orexler*	86,000	10,000	27	76,000	9,000	24	36,000	4,035	11	
Empire*	68,000	7,000	18	68,000	7,000	18	41,000	3,936	11	
Hotchkiss*	8,000	1,000	2	7,000	1,000	2	63,000	7,446	19	
Jones, Lower/Upper*	213,000	12,000	18	169,000	9,000	14	71,000	3,970	6	
Mandeville*	40,000	3,000	8	40,000	3,000	8	72,000	5,022	14	
McDonald*	47,000	3,000	8	42,000	3,000	7	53,000	3,889	9	
Rindge*	160,000	10,000	23	142,000	9,000	21	61,000	3,910	9	
Roberts,	•				• • • • • • • • • • • • • • • • • • • •					
Lower/Middle/Upper*	457,000	20,000	14	407,000	18,000	13	202,000	8,687	6	
Terminous*	171,000	11,000	16	171,000	11,000	16	65,000	4,029	6	
Tyler*	167,000	16,000	19	132,000	12,000	15	47,000	4,438	6	
Webb*	56,000	4,000	10	50,000	4,000	9	50,000	3,891	ģ	

Table 52

INCREMENTAL PLAN ALLOCATION OF ISLAND OR TRACT REPAYMENT OBLIGATION AND OPERATION AND MAINTENANCE COSTS TRADITIONAL COST SHARING 9 PERCENT ESCALATION / 12 PERCENT BOND INTEREST

	Annu	al Repayment			8 Bond Sale O&M Costs Annual Repayment** (1989 Price Le			OEM Costs. Price Level	e1)
taland on Total	Total	Per Mile	Per	Tokal	Per Mile	Per	7-4-1	Per Mile	Per
Island or Tract	Total	of Levee	Acre	Total	of Levee	Acre	<u>Total</u>	of Levee	Acre
Andrus-Brannan*	2,028,000	201,000	135	1,437,000	142,000	96	49,000	4,875	3
Bacon*	513,000	36,000	93	363,000	25,000	66	71.000	4,962	13
Bouldin*	213,000	12,000	93 35	213,000	12,000	35	88,000	4,907	15
8rack*	111,000	10,000	23	111,000	10,000	23	55,000	5,095	11
Orexler*	148,000	17,000	47	125,000	14,000	39	45,000	5,044	14
Empire*	111,000	11,000	30	111,000	11,000	30	51,000	4,921	14
Hotchkiss*	15,000	2,000	5	11,000	1,000	3	78,000	9,309	23
Jones, Lower/Upper*	390,000	22,000	32	277,000	16,000	23	88,000	4,963	7
Mandeville*	66,000	5,000	13	66,000	5,000	13	90,000	6,278	17
McOonald*	81,000	6,000	13 13	68,000	5,000	11	67,000	4,862	11
Rindge*	276,000	18,000	40	233,000	15,000	34	77,000	4,888	11
Roberts.	•				·				
Lower/Middle/Upper*	792,000	34,000	24	666,000	29,000	20	252,000	10,861	8
Terminous*	280,000	17,000	27	280,000	17,000	27	81,000	5,037	ě
Tyler*	305,000	29,000	36	216,000	20,000	25	59,000	5,549	7
Webb*	97,000	8,000	18	82,000	6,000	15	62,000	4,865	11

^{*} Islands and tracts in Federal plan.

 ^{*} Islands and tracts in Federal plan.
 ** Common base for comparison of relative financial obligation.

^{**} Common base for comparison of relative financial obligation.

three columns are based on three bond sales over a 6-year construction period. With inflation assumed to continue during this period, the relative values of each of the bond sales would differ, a dollar of repayment obligation stemming from the first sale being worth substantially more in real terms than a dollar of repayment obligation incurred with the final bond sale.

Proposed Cost Sharing Program

While not yet approved by Congress, a revision of traditional cost sharing methods is under consideration at the federal level. Under the proposed cost sharing formula, nonfederal interests would be required to contribute 35 percent (up front) of the cost of a

federally authorized flood control project,* and to assume 100 percent of the fish and wildlife enhancement costs and 50 percent of the recreation costs. Under this proposed cost sharing formula, assuming federal participation on all islands and tracts in the Incremental Plan, the cost allocation for the total project (1981 prices) would be 57 percent (\$306 million) Federal, 43 percent (\$232 million) non-Federal, as shown on Table A-42.

Tables similar to Tables 42, 43, 47, 48, 49, 50, 51, and 52, computed under the proposed cost sharing formula are presented as the same table number, preceded by the letter "A" in Appendix A. The differences in allocation between the traditional and proposed cost sharing can be compared between the corresponding tables.

^{*} The 35 percent share is assumed to be computed after all relocation betterment costs are allocated to the nonfederal participants.

		<u> </u>
	· •	

Chapter 8. NO-ACTION PLAN ALTERNATIVE

Earlier, this report presented alternative projects designed to perpetuate, at least into the near-term future, all or a substantial part of the present configuration of Delta islands and waterways. This chapter extends the previous analysis by describing, in general terms, futures for the Delta if none of these projects are undertaken and by identifying uncertainties and difficulties inherent in all of these projects; that is, the long term preservation of the Delta as it presently exists is problematic.

Background

Levee maintenance and rehabilitation for the 537 miles of nonproject levees, essential for preserving the Delta, are primarily the responsibility of local reclamation districts, levee districts, and governmental entities.

Without a levee improvement project, preservation of the Delta will depend on a number of existing State and Federal Government programs. These programs finance, to some extent, part of the necessary preservation work and the efforts of a variety of interested parties with a stake in some portion of the Delta -- local reclamation districts, utilities, private landowners, various individual State and Federal agencies, and private corporations whose economic activities encompass the Delta. Although public interest in the Delta is widespread, quantifying the extent of these interests is complicated and exacerbated by the uncertainties inherent in any Delta levee program, including continued reclamation after flooding.

The effect of present expenditures on maintenance and rehabilitation, however,

is not sufficient to substantially improve the structural stability of nonproject levees and reduce the probability of levee failure. From estimates of the existing and future probabilities of levee failure developed by the Corps of Engineers (Table 9 and Figures 12 and 13, in Chapter 3), it is clear that without a levee rehabilitation program, the flood hazard in the Delta will increase substantially through time.

State and Federal Assistance Programs

Levee sections, waterside bank protection, and local maintenance practices on nonproject levees are not adequate in comparison to standards considered necessary by the Corps of Engineers.

The State Delta Levee Maintenance Subvention Program (Way Bill), established by the Legislature in 1973, provides some financial support to assist in preserving the nonproject levees in the Delta through improved maintenance and rehabilitation. The dollar amount of this aid has varied. The program was funded at a level of \$200,000 per year during fiscal years 1973-74 and 1974-75. In 1976, with passage of Senate Bill 1390, the program was reestablished and funded at \$200,000 per year during fiscal years 1976-77, 1977-78, and 1978-79. The legislation was amended in 1981, and \$1.5 million per year was made available for the program from the Energy and Resources Fund (State Tidelands Oil Revenues) for continuation of the program during fiscal years 1981-82 and 1982-83.

The program has encouraged local agencies to increase maintenance and rehabilitation activities. Claims for financial assistance were submitted by

27 of the 29 districts that applied for participation in the 1981-82 program. (Two districts did not submit claims because they did not do any of the proposed work.) The total expenditure under this program for fiscal year 1981-82 was \$3,512,024, of which \$1,420,871 was reimbursed (\$1,500,000 minus the State's administration cost). The work accomplished included various kinds of maintenance, enlarging or raising 130,000 feet of levee, repairs on three boil or seepage areas, and constructing 11,700 feet of all-weather patrol road.

Without a major rehabilitation effort, the future configuration of the Delta depends almost entirely on the magnitude of the effort to restore the inevitable succession of flooded islands and tracts. The magnitude of restoration efforts is difficult to predict, depending as it does primarily on the willingness and financial ability of public and private interests in the Delta to reclaim and restore flooded islands and tracts.

In the past, almost all flooded islands have been reclaimed. The major exception is Franks Tract, which flooded twice (in 1936 and 1938) during the Great Depression, and was subsequently abandoned. Major financial assistance in reclaiming flooded islands has been provided in recent years (pre-1980 floods) by federal agencies -- the Corps of Engineers, through Public Law 84-99, and the Federal Emergency Management Agency, through Public Law 93-288. Continued financial support from these programs for restoration is becoming less certain. Both agencies are becoming more reluctant to approve funds for restoration of Delta islands following levee breaks. Experience from the recent breaks points out the critical problems.

On August 23, 1982, following the McDonald Island levee break, the Department of Water Resources requested the Corps of Engineers to determine if it

could provide assistance in repairing the break under Public Law 84-99, which the Corps administers. On August 31, the Corps of Engineers, Sacramento District, replied that assistance could not be provided and listed guidelines for its position on levee breaks in the Delta:

"1. Following a flood occurrence, the following parameters apply to restoration of flood control structures.

a. The damaged structure must be a viable flood preventative structure.

b. Structures built for channel alignment, navigation, recreation, fish and wildlife, land reclamation, drainage, or to protect against land erosion and which are not designed and constructed to have appreciable and dependable effects in preventing damage by irregular and unusual rises in water level are not classed as flood control works, and are ineligible for PL 84-99 rehabilitation.

"2. Rehabilitation of protective control structures damaged by occurrences other than floods, hurricanes or coastal storms is not authorized under PL 84-99.

"The McDonald Island levee failure did not occur as a result of a flood and the levees are reclamation levees, not flood control levees. Only flood control levees damaged by floods are eligible for restoration under the provisions of PL 84-99, amended."

Earlier, following the 1980 Delta flooding, the Corps of Engineers made similar determinations: most of the nonproject levees in the Delta are reclamation levees rather than flood control levees, they are poorly designed and poorly maintained, and a permanent solution to the flood problem should be encouraged. Assistance would be limited to local

floodfight activities to save lives and prevent or mitigate property damage and to restore flood prevention structures, where the problem is clearly beyond local and State resources.

The Federal Emergency Management Agency is also reluctant to participate in future restoration efforts. Following the 1982 McDonald Island break, the Agency originally denied Governor Brown's request that the President proclaim San Joaquin County a federal emergency area, stating that, based on preliminary damage information submitted by the State Office of Emergency Services, the impact was insufficient to warrant declaring a federal emergency. The Agency argued that only a few individuals were affected and concluded that mitigation was within the capacity of Reclamation District 2030 and the State. After appeal, funds were granted with a provision that an improved hazard mitigation program would be a condition for any future assistance from the Agency in restoring flooded islands.

The 1980 Delta flooding had elicited a similar response from the Federal Emergency Management Agency. In a later review of emergency declarations during 1980, the Agency indicated that without significant non-federal efforts to improve these levees so that future levee breaks would be rare, it might not be possible to recommend similar presidential declarations in the future. The Agency expressed the concern that such federal expenditures are not as effective on an ad hoc basis as comparable nonemergency funding would have been to upgrade and maintain these levees.

A decision has not yet been made on whether Federal or State funds will be made available to reclaim Venice Island, which flooded November 30, 1982.

Agricultural Interests

Agriculture, the primary economic activity in the Delta with a strong interest

in reclaiming flooded islands, has not generally expressed a willingness to pay restoration costs. Government subsidy or extensive contributions from other beneficiaries have been, and continue to be, required for restoration.

During the first part of the century, the Delta was one of the most productive agricultural areas in California. Today, however, many Delta farming enterprises are at a low ebb. The relative decline in productive value was the result of the shift from vegetable crops to the lower valued field crops. The Delta is no longer a major producer of summer potatoes, asparagus, and fall celery. Onions now occupy only a fraction of their past acreage. The shift to lower valued crops is illustrated below.

Crop		ercent of ped Acre 1968	-
Vegetable Orchard/Vineyard Field Crops Alfalfa Pasture	27 4 45 12 12	21 4 54 11 10	14 5 64 9 8
Total Acres Cropped (in thousands)	517	52 2	520

Because of the shift to lower valued crops, particularly corn, the ability to pay for levee maintenance and restoration, based on standard payment capacity analysis, is low. An island's payment capacity depends on the productivity of its soils, the crops grown, and the cost structure of each individual owner. Those islands with lower payment capacities tend to be dominated by the lower valued crops, such as corn, grain, and pasture, while those with higher valued payment capacity grow a substantially higher proportion of high valued crops, such as asparagus and tomatoes.

A Department of Water Resources (Central District) 1981 analysis of annual

payment capacity for nine islands showed a range from zero to about \$220 per acre. A comparison of these payment capacities with the amortized costs of reclaiming Webb Tract, McDonald Island, and Holland Tract provides a rough indication of the financial capabilities of Delta agricultural interests, based on the economics of onsite operation, to reclaim flooded islands. Assuming a 30-year loan, amortized at 8 percent, reclamation would cost between \$188 and \$324 per acre. If the levee were to fail and the island flood before the end of the 30-year loan repayment period, the per-acre costs would be higher. Many islands have a likelihood of failing more than once in 30 years.

Few islands have payment capacities within the \$188 to \$324 per acre range. Moreover, if any island were to flood more than once during the relatively short time span, the burden of reclamation costs would, no doubt, exceed local financial resources.

Future repayment capacities are not likely to improve substantially. The basic cause of the loss of vegetable crop acreage was a failure to meet the competition from other areas. This was probably because of farming methods and special problems found in the Delta. These problems were summarized in a 1980 report by Madrone Associates titled, "Sacramento/San Joaquin Delta Wildlife Habitat Protection and Restoration Plan". A partial list follows.

- Land Tenure. With increasing absentee landlords (often foreign), there is a tendency to "mine" the soil and less concern with maintaining the original fertility.
- Drainage and Subsidence. Lowering of the land surface of the islands has increased the hydraulic pressure from the surrounding channels, with a corresponding increase in seepage and costs for drainage pumping, and in risk of levee failure.

- Soil Salinity. Frequent leaching is required to maintain suitable growing conditions for crops.
- Fertility Problems. Although peat is rich in nitrogen, other nutrient problems are often inherent in peat soils.
- Transportation. Movement of produce can be difficult because of the limited roadway system and increasing costs of shipping.

Another rough measure of financial ability of local agricultural interests is given by comparison of land value to restoration costs. Land values, along with total island valuations including improvements as of 1980 are shown in Table 53.

Restoration costs are often more than the land and improvement values of a flooded island, as illustrated by two recent events. Webb Tract, flooded in 1980, covered 5,495 acres and was appraised at \$9 million. About \$20 million has been spent in connection with flood recovery activities -- repair of the levee break, restoration of levees around the island, and pumping floodwater from the island. The Corps of Engineers estimates that full restoration will cost another \$2.1 million (1981 dollars). For Holland Tract, also flooded in 1980, about \$9 million was spent on flood recovery activities, while the estimated value of land and appurtenances was about \$10 million in 1980. McDonald Island, flooded in 1982, had an appraised land value of \$10 million in 1980, while restoration cost estimates exceed \$13 million. Venice Island had an appraised land value of about \$4.5 million in 1981; restoration costs are not yet available.

It is clear that it is not unusual for restoration costs to approach or exceed land values for a flooded island in the Delta.

Table 53

DELTA ISLANOS VALUATION ESTIMATE JULY 1980 (In Dollars)

TV	(In Dol	lars)	
Icland on Track	land Value	Improve-	Total Value
Island or Tract	Land Value	ments Value	Total Value
Andrus Atlas	32,543,560 604,780	14,110,500	46,654,060 604,780
8acon	11,248,550	1,415,000	12,663,550
Bethe1	65,575,040	62,863,550	128,438,590
8ishop	4,874,270	549,000	5,423,270
8ouldin	10,650,730	500,000	11,150,730
Brack	9,458,820	3,453,000	12,911,820
Bradford Brannan	4,528,610 20,334,810	928,000 5,787,000	5,456,610 26,121,810
Byron	85,156,400	80,795,000	165,951,400
Canal Ranch	5,662,640	459,000	6,121,640
Coney	1,637,370	73,000	1,710,370
Deadhorse Drexler	528,040 6,765,680	255,000 629,000	783,040 7,394,680
Empire	8,435,780	313,000	8,748,780
Fabian	26,158,460	2,803,000	28,961,460
Holland	6,532,500	217,000	6,749,500
Hotchkiss	23,175,380	31,231,000	54,406,380
Jersey Jones, Lower	5,846,720 11,775,090	165,000 703,000	6,011,720 12,478,090
·			
Jones, Upper King	11,784,220	748,000	12,532,220
Little Frank	8,100,960 499,500	1,304,500	9,405,460 499,500
Mandeville	9,658,280	600,000	10,258,280
McCormack- Williamson	2,970,700	89,000	3,059,700
McOonald	10,881,000	233,000	11,114,000
Medford	1,880,920	29,400	1,910,320
Mildred	1,678,640	116,250	1,794,890
New Hope	25,694,380	5,357,000	31,051,380
Orwood	5,659,280	1,868,000	7,527,280
Palm	4,165,000	95,000	4,260,000
Pescadero Area Quimby	76,944,850 1,153,500	33,464,000 58,000	110,408,850 1,211,500
Rindge	14,753,000	302,000	15,055,000
Rio Blanco	2,134,000	225,000	2,359,000
Roberts, Lower	23,374,400	3,474,000	26,848,400
Roberts, Middle	31,589,000	9,854,000	41,443,000
Roberts, Upper Sargent-Barnhart	19,029,340 3,649,000	5,210,000 1,482,000	24,239,340 5,131,000
Sherman	21,343,240	2,485,000	23,828,240
Shima	4,903,400	123,500	5,026,900
Shin Kee	2,100,740	11,000	2,111,740
Staten Terminous	16,306,850 22,309,230	2,452,000 4,543,000	18,758,850 26,852,230
Twitchell	6,277,820	667,000	6,944,820
Tyler	15,209,080	7,133,000	22,342,080
Union (East)	20,697,080	2,528,000	23,225,080
Union (West) Veale	30,491,600 2,372,590	2,216,000 230,000	32,707,600 2,602,590
Venice	3,942,900	522,000	4,464,900
Victoria	14,047,360	1,169,700	15,217,060
Walnut Grove	1,755,500	457,000	2,212,500
Webb Woodward	9,162,810 3,124,730	145,000 82,000	9,307,810 3,206,730
Wright-Elmwood	5,778,610	351,000	6,129,610
TOTAL	776,916,740	296,873,400	1,073,790,140
<u> </u>			

State and Federal Water Project Interests

Both State Water Project and federal Central Valley Project interests are affected by inundation of Delta islands. These interests relate to the water quantity, water quality, and economic costs to the projects. As discussed in Chapter 3, Delta channels provide an important link for the interbasin transfer of water for both projects. The efficiency of the link is threatened to some extent by flooding, both temporary and permanent.

In the short term, there are two sources of potential loss due to a Delta levee break and the resulting salinity intrusion during low flow conditions. First, extra water is required to restore Delta water quality standards. Second, if a central or southern Delta island floods, some of the intruded salt water cannot be readily flushed back to the Bay; therefore export water quality is degraded, with associated physical and economic losses to the water user. (If salt water intrudes during the irrigation season, local Delta irrigators will also be affected.)

The Contra Costa Canal of the Central Valley Project is most vulnerable to export quality degradation. State Water Project exports can be sharply curtailed and blended with water in San Luis and Del Valle Reservoirs to minimize quality detriments. There would be relatively minor effects on quality, particularly in the South Bay service area. The Central Valley Project could temporarily increase releases from New Melones Reservoir to reduce the salinity and to maintain quality standards at its Tracy Pumping Plant. Such releases could, however, result in loss of energy from hydroelectric generation.

Some extra Delta outflow must be furnished from upstream State Water Project and Central Valley Project storage to restore Delta water quality criteria

after a large inundation. Whether the extra outflow causes a significant loss of project yield is determined by weather conditions during the following 18 months. In most years, the following winter produces enough runoff to refill the storage reservoirs. However, if such a break were to occur during a critical dry period, such as 1928 through 1934, there would be some loss in yield to both projects. If the island were reclaimed, water flooding the island would eventually become available (probably for Delta outflow) as the island was dewatered.

These losses (increased Delta outflow, salinity damage, and energy losses) were discussed earlier in this bulletin when estimating water supply and water quality benefits for a Delta levee reconstruction program. If a flooded island were not reclaimed, these values could lead water project managers to seek practical solutions when islands remain flooded. Solutions might include maintaining levees on flooded islands in such a way as to minimize adverse impacts on water project operations.

In the western Delta, a breach could result in increased mixing of intruded ocean water, which could require an increase in Delta outflow. If determined to be economically feasible, the projects could protect the water supply by placing riprap on the inside of the levee and closing the breach. In the event of a drought, the lake would be partially emptied and the remaining water would evaporate. In this way, the yield of the State and Federal projects would be increased by the amount that would not otherwise be required for farming. Other uses by the water projects are discussed in Chapter 9.

Retaining the islands in a filled condition could reduce the probability of levee failure, and also maintenance costs. Because of the decreased differential hydrostatic pressure against the levee, smaller breaches could be repaired easily and less subsidence would be expected. Also, oxidation of the interior peat lands would be eliminated. These changes, however, have not been studied.

One additional impact concerns the relationship between permanent flooding and State Water Resources Control Board Water Right Decision 1485.

Present Delta water quality control standards are contained in Decision 1485, which imposes terms and conditions on the water right permits of the federal Central Valley Project and the State Water Project. Most Decision 1485 standards are based on flow and quality conditions that would exist today if the two projects had not been built. This basis reflects the need for protecting existing beneficial uses and water rights and for providing mitigation for project impacts on fish and wildlife.

Permanent flooding of Delta islands could significantly alter the way in which Delta water quality responds to freshwater inflow. Most likely, more freshwater Delta inflow (and outflow) would be needed to meet Decision 1485 standards.

The State Water Resources Control Board has indicated that it will periodically review Decision 1485 standards. It is likely that the Board will account for increased nonproject development and for changes in the physical makeup of the Delta when it reconsiders the standards. Therefore, it is likely that the Board's periodic review (every 5 to 10 years) will result in changes in standards to redefine the obligation of the State Water Project and the federal Central Valley Project, but these changes are not known. Failure of Delta levees. which significantly affects Delta flowsalinity relationships, could occur at any time. Revision of standards might cause a significant reduction in project water supply yield but, like future

changes, the effects are unknown at this time.

Other Interests

Interests other than agriculture and the State and Federal water projects have a stake in the Delta. Additional justification to reclaim an island may come from a variety of sources, that is, the need to protect State highways, county roads, railroads, or facilities of the natural gas industry or water purveyors such as the East Bay Municipal Utility District, among others.

Table 6 (in Chapter 2), which lists resources of Delta islands, gives a rough indication of the extent of these interests. However, the amount of financial support that each of these interests might contribute to preserving Delta islands is limited because most interests have alternatives that do not depend on islands being reclaimed after flooding.

As an example, the East Bay Municipal Utility District has three large pipelines crossing the Delta and connecting the District's principal sources of water in the Sierra Nevada with its distribution area in Contra Costa and Alameda counties. During the 1981 conference on the "Future of the Delta", District representatives indicated that its concern with Delta levee vulnerability centers on the immediate effects a levee break might have on continuous operation of these three aqueducts, which cross five tracts in the Delta: Orwood, Woodward, Jones, Roberts, and Sargent-Barnhart. Since these aqueducts rest on piles of timber and concrete, the District is concerned about effects of a levee break on aqueduct support systems. A levee break too close to an aqueduct river crossing would likely result in extensive scour that could put all three aqueducts out of service for a year. Flooding of adjacent islands might also result in serious damage to aqueduct support systems, but with less

time needed to place the system back in service.

Without a major levee rehabilitation program, East Bay Municipal Utility District is evaluating methods for improving the long term security of the Mokelumne Aqueduct. Alternatives include isolation of the aqueducts behind new or improved levees, elevating and deepening the aqueduct pile support system, a joint utilities transportation causeway, and relocation of one or more of the aqueducts, both within and outside the Delta. Study of such alternatives indicates that District interest in preserving the islands has limits.

The natural gas industry may have a major interest in preserving the Delta. The Delta natural gas reservoir, one of the largest in the nation, makes natural gas a resource of regional and national importance. Operating fields in the five Delta counties total 35, with major fields around Rio Vista. Cumulative production of gas from the Delta now stands at 4.1 trillion cubic feet, with gas reserves estimated to be about 1.5 trillion cubic feet at the end of 1974, compared with a reserve of 5.8 trillion cubic feet throughout the State. However, Delta gas fields can probably produce only until the turn of the century. Even though some of the abandoned fields are used to store imported gas, the industry's interest in preserving the Delta is relatively short term. Also, like East Bay Municipal Utility District, the natural gas operations have some capability to operate under flooded conditions or to adopt other alternatives.

Alternative Futures Without A Major Island Rehabilitation Project

The changing policies of key Federal agencies that have traditionally financed much of the cost of restoration have substantially increased the degree of uncertainty about how extensive future efforts at restoring flooded

islands and tracts will be. Where human life and extensive public works or utilities are in jeopardy (municipal water supply or gas mains), the State and the U. S. Army Corps of Engineers can be expected to fight floods in the Delta if local resources are exhausted. Floodfight efforts, however, can in no way substitute for stable levees and good maintenance.

Because of the changing policies, it is impossible to describe one future for the Delta under a no-action plan alternative. Instead, outlined below are two possible futures, each based on the premise that a major Delta levee improvement plan will not be implemented in the near future. The two futures differ in one essential element -- the degree of State and Federal participation in reclaiming flooded islands.

Each of the two futures was used as a base case by the Corps of Engineers in evaluating the cost effectiveness of Delta levee rehabilitation projects. For the base case of continual restoration after flooding, both the base case and the restoration projects had high costs. When substantial rehabilitation is compared with continual restoration after flooding on an island-by-island basis, substantial rehabilitation is more cost effective for only a few islands. This base case was adopted by the Corps and used for benefit-cost analysis in its draft report.

The second base case, without continual restoration after flooding, is also discussed in the Corps report and significantly increases the number of islands for which substantial rehabilitation is cost effective on an individual island basis.

The Delta With Continued Restoration

One possible future for the Delta is defined by the assumption that, following flooding, all Delta islands

are restored. This assumption defines the non-project case for the economic analysis of the Corps of Engineers' draft feasibility report and for the Department's cost sharing analysis presented earlier in this bulletin.

This future is characterized by substantial periodic expenditures for restoration, large property damage costs, and water supply costs, all resulting from more frequent flooding. The extent of the damage, in terms of expected value (\$65 million per year, at 1981 prices), is indicated in Table 54, taken from the Corps' draft report. A subsequent Department analysis of the System Plan indicated the water quality portion of the value is about \$1.5 million per year rather than \$10.8 million as shown in the Corps' draft report.

The Delta Without Continued Restoration

Although many levels of decreased State and Federal assistance in reclaiming flooded islands are possible, this section describes the limiting case of no significant assistance and explores factors affecting decisions to reclaim. This future is the one most opposite to total preservation of the Delta's present configuration of islands, tracts, and waterways. While many hope this future can be avoided, its possibility must be faced.

Without substantial Federal financial assistance in reclaiming flooded islands, and with no overall rehabilitation plan, permanent flooding of some Delta islands becomes highly probable. Failure to continually reclaim Delta islands and tracts flooded as a result of levee overtopping or instability would lead to the evolution of a large inland lake in the central and western Delta. The physical dimensions of this inland sea, its eventual stability, the time span over which it might evolve, and the consequences for the Delta are all significant unknowns.

AVERAGE ANNUAL MITHOUT-PROJECT DAMAGES, MITHOUT PERIPHERAL CANAL (In Thousands of Dollars, October 1981 Price Levels, 7-5/8 Percent Interest)

Action	Island or Tract	Agri- cultural Crops Cleanup	Fare- Stead	Residen- tial Struc- tures	Residen- tial Contents	Public and Semi- Public	Ener- gency	Levee Repair & Island Dewater- ing	Comer- cial	Mobile Struc- tures	Mobile Struc- ture Contents	Roads, Util- ities, Debris	Other	Sub- Total	Water Quality	Total
Bacon 866 91 58 14 28 18 596 - - 1,671 268 1,12 1,711 203 14 66 37 44 102 34 132 1,21 1,21 37 1,21 81 81 100 133 41 - - 14 1 62 - - 3,155 1,21 37 1,21 81 81 86 9 48 - - 62 4 411 - - - 3,155 1,282 10 21 28 23 11 3 - - 1,782 21 20 - - - - - 63 37 0 - - - - 13 13 -			-	1,386	614	323	111	1,150	141	150	83	89	521	5,178	1,394	6,572
Bethel 18 - 710 203 14 56 37 44 102 34 13² 1241 37 12 18 18 18 19 1 - 14 1 62 271 21 2 18 18 19 1 - 14 1 62 271 21 2 1 2 1		•			-14	20	10			-	-		-	•	-	4
81shop 153 41										102		-	1 72			1,939 1,278
Brack 799 448 - 62 4 471 - 1784 216 2 8 8 8 8 8 8 8 6 6 7 1 1 2 74 - 6 8 3 162 - 3 1784 216 2 8 8 8 8 8 8 6 6 7 1 2 8 8 8 8 8 6 6 7 1 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8			41							-	-	-	-			292
Bradford 112 74 - 6 3 162 - -357 103 88 27 2 284 80 45 53 19 133 - 637 80 5 Coney 16 3 - - 1 2 - - 31 13 13 13 13 10 10 10 10 10 10 10 10 10 11 13 29 - - 1 242 150 1,1 15 14 16 1,2 12 150 1,1 14 1,2					-				-	-	-	-	-	3,155	1,081	4,236
8yron				•	-					-	-	-	-			2,000
Canal Ranch 414 61 - 26 2 134 - 637 80 2 1				294	90					-	-		-			460
Deadhorse				-						-	-					670 717
Deadhorse	Coney	16	3	-	-	-	-	12	-	-			_	31	13	44
Fabian				-	-			8	-	-	-	-	-			49
Holland 127 26 - 11 3 297 - 63 470 148 6 Hotchkiss 47 63 1,367 708 23 142 65 97 - 2,512 41 2,5 Jersey 107 17 - 12 2 227 - 365 232 23 Jones, Roberts 4,353 2,249 - 719 76 3,455 7 - 10,859 1,221 12,0 King 166 79 23 - 27 13 139 26 - 473 91 25 Jones, Roberts 6 590 91 - 33 4 761 15,599 353 1,594 Mandeville 690 91 - 33 4 761 15,599 353 1,594 McCormack-Williamson 90 11 - 12 - 69 1,559 353 1,594 McCormack-Williamson 90 11 - 12 - 69 1,554 566 2,1 McCormack-Williamson 90 11 - 12 - 69 1,554 566 2,1 McCormack-Williamson 90 11 - 12 - 69 1,554 566 2,1 McCormack-Williamson 90 11 - 12 - 69 1,554 566 2,1 McCormack-Williamson 90 11 - 12 - 69 1,554 566 2,1 McCormack-Williamson 90 11 - 12 - 69 1,554 566 2,1 McCormack-Williamson 90 11 - 12 - 69 1,554 566 2,1 McCormack-Williamson 90 11 - 12 300 45 3 McCormack-Williamson 90 11 - 12 300 45 3 McCormack-Williamson 90 11 - 12 300 591 3 60 2,1 McCormack-Williamson 90 11 - 12 307 591 3 60 2,1 McCormack-Williamson 90 11 - 12 307 591 3 60 2,1 McCormack-Williamson 90 11 - 12 307 591 3 60 2,1 McCormack-Williamson 90 11 - 12 307 591 3 60 2,1 McCormack-Williamson 90 11 - 12 307 591 3 60 2,1 McCormack-Williamson 90 11 - 12 307 591 3 60 2,1 McCormack-Williamson 90 11 - 12 307 591 3 60 2,1 McCormack-Williamson 90 11 - 12 307 591 3 60 2,1 McCormack-Williamson 90 11 - 12 357 400 12 44 60 37 78 16 256 10 3 60 2,1 McCormack-Williamson 90 11 - 12 357 400 12 45 3 McCormack-Williamson 90 11 - 12 357 9 1 1 1 1 22 11 1 1 6 1 1 1 1 22 11 1 1 6 1 2 - 2 1 1 1 1 6 1 2 1 1 1 6 1 2 1 1 1 6 1 2 1 1 1 6 1 2 1 1 1 6 1 2 1 1 1 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1		504	71	-	-	18	3	646	-	-	-	-	-		150	1,392
Hotchkiss		-	- 26	-	-	٠.,	٠.	-	-	-	-	-				0
Jersey 107 17 - 12 2 227 - 3365 232 12.0	norrand	127	20	-		11	3	297	-	-	-	-	63	470	148	618
Jones, Roberts				1,367					97	-	•	-	-			2,553
King 166 79 23 - 27 13 139 26 473 391 18 18 18 18 18 18 18 18 18 18 18 18 18				-	-					-	-	-	-			597
Mandeville 690 91 - 33 4 761 - - 1,579 353 1,579 353 1,579 353 1,579 353 1,579 353 1,579 353 1,579 353 1,579 353 1,579 353 1,579 353 1,579 353 1,579 353 1,579 353 1,579 353 1,579 363 1,579 363 1,579 363 1,579 363 1,579 363 1,579 363 1,579 363 1,579 363 1,579 363 1,579 363 1,579 363 1,579 363 1,579 363 1,579 363 1,579 363 1,579 363 2,11 1,589 - - 302 45 36 2,1 36 1 36 2,1 36 1 30 30 30 30 30 30 30 30 30 30 30 30				- 23	-					•		-	-			12,080
McDonald 692 51 - 26 3 782 - - 1,554 566 2,1 Medford 125 9 - 9 1 158 - - 302 45 3 3 57 - - - 119 36 1 86 1 146 - - 307 919 3 9 Orwood Upper 14 1 - 1 1 122 - - 111 150 16 1 12 4 1 - - 1 - - 111 150 16 1 12 - - 357 407 12 4 4 0 - - 357 9 1 1 16 - - - 256 103 3 9 1 1 16 - - 256 1 1 6 - -					-					-		-	:			564 1,932
McDonald 692 51 - 26 3 782 - - 1,554 566 2,1 Medford 125 9 - 9 1 158 - - 307 519 36 1 Mew Hope 262 71 78 24 46 37 78 16 - - 307 919 36 1 New Hope 262 71 78 24 46 37 78 16 - 307 919 36 1 Orwood, Upper 14 1 - 1 122 - - 357 407 12 40 Palm 92 9 - 8 1 146 - - 256 10 33 3 12 - - 256 10 33 3 3 7 - 28 - - 256 1 1 6	McCormack-Williamson	90	11	-	_	12	_	69	-	-	-	_	_	182	,	189
Mildred 50 9 - 3 - 57 119 36 1 New Hape 262 71 78 24 46 37 78 16 - 3075 919 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9				-	-		3	782	-	-	-	-	-			2,120
New Hape 262 71 78 24 46 37 78 16 - 3075 919 3 99 0 90 919 0 3 99 0 9 919 0 3 99 0 9 919 0 3 99 0 9 919 0 3 99 0 9 919 0 3 99 0 919				-	-		1		-	-	-	-	-			347
Orwood, Upper 14 1 - 1 12 - - 3574 407 12 40 12 40 12 0 11 122 - - 111 150 16 11 12 - - 111 150 16 11 12 - - 111 150 16 11 12 - - 111 150 16 11 12 - - 111 150 16 11 12 - - 111 150 16 11 13 3 12 - - - 340 13 3 13 3 18 - - - 340 13 3 13 3 18 - - - 340 13 3 13 18 - - - - 340 13 3 18 - <t< td=""><td></td><td></td><td></td><td></td><td></td><td>-</td><td>37</td><td></td><td></td><td>-</td><td>-</td><td>-</td><td>- 307^S</td><td></td><td></td><td>155 922</td></t<>						-	37			-	-	-	- 307 ^S			155 922
Orwood, Upper 14 1 1 1 122 114 150 16 17 18 19 19 19 19 19 19 19 19 19 19 19 19 19	Orwand	21	16			,		•								
Palm 92 9 - 8 1 146 - - 256 103 3 Pescadero Area 205 85 - - 33 5 12 - - 340 13 3 Quimby 6 3 - - 28 - - 340 13 3 Rindge 722 63 - - 13 3 789 - - - 1,590 498 2,0 Rio Blanco 36 12 - 1 1 6 - - 56 1 Sargent-Barnhart 17 - 35 9 1 1 10 - - 1471 50 1,9 Shim Ke 155 6 - - 6 1 72 - - 240 2 2 Staten 137 4 - - 6 2					-		- ₁		-	-	-	-	114			419 166
Pescadero Area 205 85 - - 33 5 12 - - 340 13 3 Quimby 6 3 - - - 28 - - - 340 13 3 789 - - - 1,590 498 2,0 Rio Blanco 36 12 - - 1 1 6 - - - 56 1 2 - 1 1 6 - - - 56 1 2 - 1 1 0 - - 1471 520 1,9 58 - - 6 - 56 7 568 7 - - 1,471 520 1,9 58 1,9 1,9 1,9 1,9 1,9 1,9 1,9 1,9 1,9 1,9 1,9 1,9 1,9 1,9 1,9 1,9 1,9 1,9 1,9				-	-							-	-**			359
Rindge 722 63 13 3 789 1,590 498 2,0 Rio Blanco 36 12 1 1 1 6 566 1 Sargent-Barnhart 17 - 35 9 1 1 1 10 1 1 74 0 Sherman 475 138 276 7 568 7 1,471 520 1,9 Shima 78 8 6 - 95 187 46 2 Staten 78 8 6 - 95 187 46 2 Staten 495 176 26 2 632 1,331 594 1,9 Stewart 137 4 7 3 8 159 8 1 Terminous 2,017 462 519 212 1,777 273 1,129 6,389 1,040 7,4 Twitchell 146 40 9 1 288 1,480 424 1,9 Union 1,370 289 1,6 Valet 4 123 63 1,370 289 1,6 Valet 4 178 23 1,370 289 1,6 Victoria 178 23 1,370 289 1,6 Width Grove			85	-	-				-	•	-	-	-			353
Rio Blanco 36 12 - 1 1 1 6 - 5 56 1	Quimby	6	3	-	-	-	-	28	-	-	-	-	-	37		50
Sargent-Barnhart 17 - 35 9 1 1 10 - - 14 74 0 15 Sherman 475 138 - - 276 7 568 7 - - 1,471 520 1,93 1,93 1,93 1,411 520 1,93 1,93 1,411 520 1,93				-	-		-		-	-	-	-	-	1,590	498	2,088
Sherman 475 138 - - 276 7 568 7 - - 1,471 520 1,98 Shima 78 8 - - 6 - 95 - - 1,471 520 1,98 Shima 78 8 - - 6 - 95 - - 1,471 520 1,98 Shima 78 8 - - - - - 1,471 46 2 Shima 78 8 - - - - 240 2 2 Shima 48 - - - 26 2 632 - - - 1,331 594 1,9 Staten 137 4 - - 26 2 632 - - 1,59 8 1,9 Terminous 2,017 462 - - 1,283 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td>57</td>									-	-	-	-				57
Shima 78 8 - 6 - 95 - - 187 46 2 Shin Kee 155 6 - - 6 1 72 - - - 240 2 2 Staten 495 176 - 26 2 632 - - - 1,331 594 1,9 Stewart 137 4 - - 7 3 8 - - - 159 8 1 Terminous 2,017 462 - 519 212 1,777 273 1,129 - - 6,389 1,040 7,4 Twitchell 146 40 - - 9 1 288 - - - 6,389 1,040 7,4 Tyler 536 339 - 10 6 544 45 - - 1,480 424 1,9 Union - - - - - 10 0 0			_		-				٠,				1,			74 1.991
Staten 495 176 - 26 2 632 - - - 1,331 594 1,9 Stewart 137 4 - - 7 3 8 - - - 159 8 1 Terminous 2,017 462 - - 519 212 1,777 273 1,129 - - 6,389 1,040 7,4 Twitchell 146 40 - - 9 1 288 - - - 6,389 1,040 7,4 Twitchell 146 40 - - 9 1 288 - - - 6,389 1,040 7,4 Twitchell 146 40 - - 9 1 288 - - - 1,480 424 1,9 Union - - - - - - - - - - - 1,90 - - - - - - -					-		- '		- '	-	-	-	:			233
Staten 495 176 - - 26 2 632 - - 1,331 594 1,9 Stewart 137 4 - - 7 3 8 - - - 159 8 1 Terminous 2,017 462 - - 519 212 1,777 273 1,129 - - 6,389 1,040 7,4 Twitchell 146 40 - 9 1 288 - - - 6,389 1,040 7,4 Twitchell 146 40 - 9 1 288 - - - 1,480 424 1,9 Union - - - - 10 6 544 45 - - 1,480 424 1,9 Union - - - - - 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Shin Kee	155	6	-	-	6	1	72				_		240	2	242
Terminous 2,017 462 - 519 212 1,777 273 1,129 - 6,389 1,040 7,4 Twitchell 146 40 - 9 1 288 6,389 1,040 7,4 Twitchell 146 40 - 9 1 288 6,389 1,040 7,4 Twitchell 146 40 9 1 288 6,389 1,040 7,4 Twitchell 146 40 9 1 288 6,389 1,040 7,4 Twitchell 146 40 6,389 1,040 7,4 Twitchell 146 40 9 1 288 1,480 424 1,9 Twitchell 148 63 1,480 424 1,9 Twitchell 148 63 326 14 3 Twitchell 148 63 326 14 3 Twitchell 148 63 1,370 289 1,6 Twitchell 148 73 - 73 - 185 1,370 289 1,6 Twitchell 148 73				•	-				-	-	-	-	-	1,331	594	1,925
Twitchell 146 40 - 9 1 288 484 220 7 Tyler 536 339 - 10 6 544 45 1,480 424 1,9 Union 0 0 Veale 123 63 - 19 5 116 1266 14 3 Venice 479 98 - 15 2 776 1,370 289 1,6 Victoria 178 23 - 73 - 185 459 190 6 Walnut Grove 0 0 Webb 421 18 - 9 2 793 1,243 602 1,8 Woodward 141 16 - 15 - 186 229 587 75 6 Wright-Elmwood 34 10 - 2 2 - 37 83 29 1			•	-	-				-		-	-	-			167
Union Veale 123 63 19 5 116 326 14 3 Venice 479 98 15 2 776 1,370 289 1,6 Victoria 178 23 73 - 185 459 190 Walnut Grove Webb 421 18 9 2 793 1,243 602 1,8 Woodward 141 16 15 - 186 2229 587 75 6 Wright-Elmwood 34 10 2 - 37 83 29 1					-				- 2/3	1,129	-	-	-			7,429 704
Union Veale 123 63 19 5 116 326 14 3 Venice 479 98 15 2 776 1,370 289 1,6 Victoria 178 23 73 - 185 459 190 Walnut Grove Webb 421 18 9 2 793 1,243 602 1,8 Woodward 141 16 15 - 186 2229 587 75 6 Wright-Elmwood 34 10 2 - 37 83 29 1	Tyler	536	339		-	10	6	544	45	_	_	_	_	1 480		1,904
Veale 123 63 - 19 5 116 - - - 326 14 3 Venice 479 98 - 15 2 776 - - - 1,370 289 1,6 Victoria 178 23 - - 73 - 185 - - - - 459 190 6 Walnut Grove - - - - - - - - - - - - 1,243 602 1,8 Webb 421 18 - - 9 2 793 - - - - 1,243 602 1,8 Woodward 141 16 - - 15 - 186 - - - 229 587 75 5 Wright-Elmwood 34 10 - - 2 - 37 - - - - - - 83 29 1	Union	-	-	-	-					-	-	-	-			1,504
Victoria 178 23 - 73 - 185 - - - 459 190 6 Walnut Grove - - - - - - - 0 0 Webb 421 18 - - 9 2 793 - - - - 1,243 602 1,8 Woodward 141 16 - - 15 - 186 - - - 229 587 75 6 Wright-Elmwood 34 10 - - 2 - 37 - - - - 83 29 1					-				-	-	-	-	-	326	14	340
Walnut Grove 0 0 0 Webb 421 18 9 2 793 1,243 602 1.8 Woodward 141 16 15 - 186 229 587 75 6 Wright-Elmwood 34 10 2 - 37 83 29 1					-		- 2		-	-	•	:	:			1,659 649
Webb 421 18 - - 9 2 793 - - - - 1,243 602 1,8 Woodward 141 16 - - 15 - 186 - - - - 229 587 75 6 Wright-Elmwood 34 10 - - 2 - 37 - - - - 83 29 1	Walnut Grove		_		_	_										0
Woodward 141 16 15 - 186 229 587 75 6 Wright-Elmwood 34 10 2 - 37 83 29 1		421	18	-		٠,	٠,	793	-	-	:	-	-			1.845
Wright-Elmwood 34 10 2 - 37 83 29 1	Woodward			-					-	-		-				662
	Wright-Elmwood	34		<u>-</u>												112
TOTAL 18,344 5,246 3,941 1,652 3,064 799 17,918 789 1,381 117 89 976 54,316 10,842 65,1	TOTAL	18,344	E 246	2 041	1 662	3.064	700	17.010	700	1 201				54.336	10.040	65,158

¹Lots and cleanup.

²Boats on land.

³Marina.

⁴East Bay Municipal Utility Oistrict aqueduct.

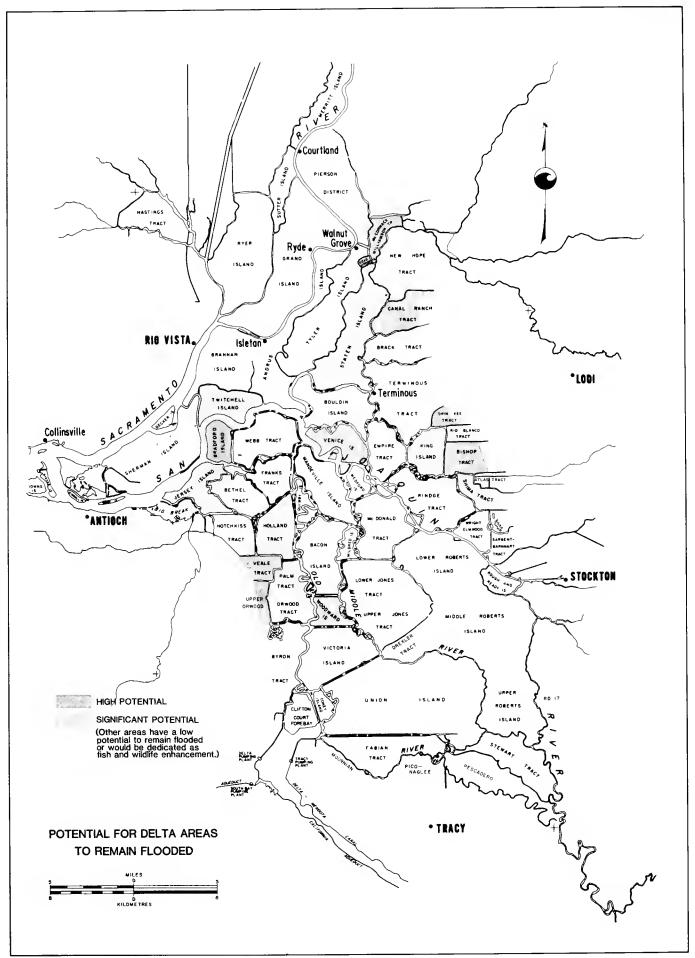
⁵Industrial.

The Department of Water Resources attempted to define the physical boundaries of the inland lake future for the Delta during 1975 legislative hearings on Bulletin 192, "Plan for Improvement of the Delta Levees". The area of hypothetical permanent flooding consisted of 16 islands in the central and western Delta and included the area from Jersey Island to Empire Tract and from Twitchell Island to Woodward Island. The area could also be described as the central portion of the Delta most prone to levee failure (see Figure 12 in Chapter 3). The number of islands that could become part of the inland lake could be significantly larger under present conditions (Figure 12), and would be even larger in the future (Figure 13). The analysis was based on a 1973-74 assessment of levee stability, combined with an economic analysis of the financial ability of local interests to pay the costs of reclaiming a flooded island without Federal or State assistance. Another consideration was the possible inability to begin restoration work before the entire levee was destroyed by erosion.

The above is essentially a short-run view of the possible evolution of an inland lake, with the limited financial resources of local Delta agricultural interests as the key factor. Although the ability of local interests to finance restoration is difficult to determine, cursory analysis of payment capacity of Delta agriculture does indicate that private financial resources are limited in comparison to the likely costs.

Earlier sections indicated the large costs of restoring recently flooded islands. These amounts, in dollars per acre, would be \$3,600 for Webb, \$2,100 for Holland, and \$2,100 for McDonald.

The magnitude of these costs raises the question of whether local interests could finance and justify this type of reclamation, based on future agricultural productivity and on probabilities of levee failure.


Factors Affecting Reclamation of Flooded Islands

A number of factors are used to evaluate the advisability of reclaiming Delta islands and tracts after a levee failure. Value of land, public utilities and transportation needs, urban developments, effect on Delta water transfer, and political factors are but a few elements that could be considered.

As an example, the potential for Delta islands to remain flooded was analyzed using the factors listed below. The significant outcome, shown in Table 55 and Figure 24, was not the numeric probability, but the placing of islands in groups based on their potential to remain flooded in the absence of outside assistance. The islands with a significant potential to remain flooded are shown on Figure 24.

- Areas where the levees are considered to have a low probability of failure (and assuming they are properly maintained) stand a good chance of not being flooded during the period of the proposed Corps of Engineers' project. Areas with levee probability of failure less than 0.0200* were included in this category.
- Because of the high property values and the number of people affected, areas with urban development will probably be reclaimed after a levee failure.

^{*}To determine frequency of failure from probability of failure, multiply the probability value by 100. The result will be the number of failures that would be expected in a 100-year period if there are no changes in assumed conditions. For example, a probability of 0.200 would be equivalent to a frequency of two expected failures sometime during a 100-year period.

-					
ı	a	n.	10	5.5)

Table 55		
POTENTIAL FOR DELTA	AREAS TO REMAIN	FL000E0 .
Island or Tract	Existing Probability of Levee Failure	Flood Control Benefit/Cost Ratio
LOW POTENTIAL	TO REMAIN FLOODE	0
Low Probability of Levee Fai		
Sherman Coney	0.0154 0.0142	0.49 0.14
Wright-Elmwood	0.0131 0.0130	0.19
Sargent-Barnhart Victoria	0.0130	0.22 0.66
Pescadero Stewart	0.0094 0.0094	0.41 0.32
Atlas	0.0065	0.02
Orwood Walnut Grove	0.0016 0.0002	0.67 0.00
Fabian	Negligible Negligible	0.00 0.00
Union	• •	0.00
Reclaimed for Urban Developm		
Andrus-Brannan Hotchkiss	0.0464 0.0280	2.61 4.05
New Hope	0.0182	0.57
8ethel 8yron	0.0020 0.0013	0.48 0.39
Economically Justified to Re	claim	
8ouldin	0.1825	1.01
Terminous	0.1540 0.1300	2.64 1.23
8rack Empire	0.1300	1.40
Webb McOonald	0.0881 0.0765	1.09 1.21
Rindge	0.0714	1.31
Mandeville Jones-Roberts Flood Plain	0.0685 0.0665	1.15 1.86
Bacon Tyler	0.0563 0.0517	1.06 1.05
SIGNIFICANT POTEN		
Fish and Wildlife Enhancemen	t Areas	
Medford	0.1690	
Mildred	0.0406 0.0284	
Quimby		
Significant Probability of L Low Economic Feasibility for	Reclamation	
Holland	0.0417	0.50
King Palm	0.0391 0.0387	0.68 0.43
Rio Blanco	0.0352 0.0349	0.21 0.36
Jersey Twitchell	0.0285	0.28
Shima Staten	0.0221 0.0219	0.39 0.88
	O REMAIN FLOODED	00
 High Probability of Levee Fa	ilure and	
Low Economic Feasibility for	Reclamation	
Venice Shin Kee	0.1643 0.1308	0.51 0.83
Veale	0.1209	0.92
Orwood, Upper Woodward	0.1178 0.0686	0.47 0.69
8ishop Canal Ranch	0.0567 0.0522	0.50 0.70
Deadhorse	0.0508	0.15
McCormack-Williamson Bradford	0.0503 0.0500	0.25 0.46

- Areas where a levee restoration project is economically justified from a flood control standpoint will probably upgrade levees. If a project such as that proposed by the Corps of Engineers is implemented, these areas would be included in the project, and would then be eligible for Federal and State financial assistance (as has been the practice on project levees) for the majority of the restoration costs, and probably would elect to reclaim.
- ° Certain areas of the Delta, if dedicated for wildlife purposes, would not have levees upgraded to project standards. It is reasonable to expect that some of these areas would be flooded within 35 years. Although the potential for flooding and for remaining flooded is significant, proposed wildlife habitat improvement measures, consisting of raising part of the island interiors, would diminish the magnitude of flooding. These areas were classified along with those that would be reclaimed.
- Based on flood damage benefits, the remaining islands and tracts have low economic justification for a levee restoration project and the levees probably would not be upgraded. In case of levee failure, these areas probably would be eligible for only minor assistance to defray reclamation costs. Areas in this category that have an existing probability of levee failure of between 0.0500 and 0.0200 have a significant potential to remain flooded.

Consequences of Permanent Flooding

Permanent flooding of some islands or groups of islands is a possibility. No details exist on the consequences of allowing a large inland sea to form in part of the Delta through failure to reclaim flooded islands. Speculation as to these consequences is based solely on

experience with flooding of individual islands, mostly for a few months. At the request of the Federal Emergency Management Administration, tests on the long term effects of Delta island flooding on outflows required for water quality control are being performed by the Corps of Engineers on its hydraulic model. Results of these tests are not yet available.

While the Delta's valuable resources, both natural environment and economy, will be affected to some extent, a few specific problem areas have been the primary focus of concern.

Levee Stability

The fear exists that flooding of individual islands or groups of islands will cause increased frequency of levee failures and flooding of the remaining Delta islands. Physical factors that can increase the risk of flooding adjacent islands are increased windgenerated wave erosion and increased seepage.

The increased water surface created by premanent flooding produces a longer fetch (distance of open water surface in the direction of the wind), allowing the wind to generate larger waves. The largest fetches occur in the lower Sacramento and San Joaquin Rivers, with fetches of 7 and 6 miles, respectively. The longest fetch over open water, where the width is at least equal to length, is about three miles, over Franks Tract.

Wave heights from trough to crest have been determined for 50-mile per hour winds, which can be expected to occur every year in the Delta, using the longest fetches.

Calculations using 50-mile an hour winds indicate maximum wave heights could be four feet adjacent to Franks Tract and at other locations, such as the Sacramento and San Joaquin Rivers, where the

expanse of open water surface ranges from 4,000 to 6,000 feet. In most areas of the Delta, reaches of open water surface range from 2,000 to 4,000 feet and waves in the channels were calculated to have heights of about one to two feet.

Levee failures would increase the fetch and wave heights on adjacent remaining island levees. One consequence of increased fetch and higher wave heights, is the requirement for higher levees on adjacent islands for any given degree of overtopping protection. Another consequence is to increase the erosion rate on the remaining exposed levees. Permanent inundation of small islands would not significantly affect the stability of adjacent levees from this cause because only a limited distance for generation of waves would be provided.

Experienced Delta observers say, and recent island flooding experience indicates, that flooding an island can open new seepage paths and increase the rate of seepage accumulating on adjacent islands. However, it has been suggested that this problem will diminish with time, as new seepage paths are clogged with silt.

Fish and Wildlife

Permanent flooding of Delta islands would have substantial impacts on fish and wildlife habitat. The following discussion of these impacts relies heavily on the study by Madrone Associates and on discussions at the 1981 conference on the "Future of the Delta", both mentioned earlier in this chapter.

The effects on fish and wildlife of island flooding through levee failure and of intentional controlled flooding to create marshland habitat are substantially different.

Insights gained from past flooding of islands such as Franks Tract, Big Break, and Lower Sherman Island, all

extensively used as a habitat area by striped bass and catfish, show that flooding of islands could expand the habitat for a variety of fish. Adult striped bass migrating back into the Delta in the fall tend to concentrate in these flooded islands (especially Franks Tract) before moving into the channels to spawn in spring. Catfish and juvenile bass also use the island extensively in their first two years.

Effects of present and future flooding will probably be quite different from those in the past. Flooded islands have been more heavily used by fish because phytoplankton productivity, at the base of the food chain, has tended to be higher due to the lower exchange rate of water and the relatively shallow depth of flooded islands. Because recent subsidence will have caused a greater depth of water, newly flooded islands in the central Delta probably would have significantly less production of phytoplankton, and hence be of lower value to the fishery.

Flooding the Delta islands would also produce some indirect effects on fishery resources. If the present minimum outflows are maintained, no significant indirect effects are expected. However, if flooding resulted in a decision to reduce minimum outflows, the effects would probably be negative. The "entrapment zone" of the estuary is the most productive zone for the fishery. Under normal outflow conditions, this area is generally located in the Suisun Bay region, and adjoins the shallow embayments of Grizzly and Honker Bays on the north side of the channel. This allows the high production of phytoplankton in the shallows to "exchange" into the deeper channels and contribute to the productivity of that reach.

During droughts, the entrapment zone moves upstream from Suisun Bay, resulting in a dramatic decrease of its area and, subsequently, of phytoplankton production. The reduction or abandonment of minimum outflows would dramatically

decrease production in this area. It is possible that flooded islands might play the same exchange role as the flats in Grizzly and Honker Bays; however, because the islands would be deeper, it is unlikely. The length of time before these effects would occur in relatively deep flooded islands is related to the rate of sediment buildup on the island floor. Lower rates of exchange in flow across the islands might result in significant sedimentation but, because it occurs deep under water, there would not be an accumulation of marshland. Instead, the sedimentation would be inorganic suspended material. Specific questions as to rate of deposit need to be assessed.

A major resource not thought to be affected directly by loss of islands is the salmon fishery. These fish tend to stay in the channels during both upstream and downstream migration. However, they are affected by other concerns of Delta management. Salmon depend on flow direction and magnitude to guide their migration. It is possible that flooded islands might further alter channel flows and thus upset migration.

The limiting factor for waterfowl on the Pacific Coast is the availability of wintering habitat in California. That habitat has dwindled from over 5 million acres of wetlands to about 450,000 acres. Winter use of the Delta by waterfowl has increased from about 0.5 million birds 20 years ago to about 1.5 million today. This is a substantial portion of the typical Pacific Flyway fall flight of 8 million to 10 million birds. This increased use is thought to result from two food factors: the salt-tolerant plants of the Suisun Marsh and the waste grain left after harvesting corn on the Delta islands. Failure to maintain levees, and subsequent flooding of the islands, would have damaging effects on these food sources and, consequently, on waterExcept for agricultural lands, the main terrestrial wildlife habitats are riparian, taking the form of linear corridors along the levees. The way in which the levees are now managed plays a large role in the continuance of three major habitat types: waterfowl, riparian woodland, and tule marsh.

Flooding an island would not create habitat for birds and mammals, except around the fringe. Fields that are seasonally flooded for leaching are used by migratory and wintering waterfowl as feeding areas. Waterfowl feed on either the grain lost during harvest or the emergent food plants that grow in shallow water. Because the water covering flooded islands would be far too deep to support vegetation for waterfowl feed, habitat that would be destroyed by flooding is more valuable for terrestrial and water-associated wildlife than the type of vegetation the flooded island would create.

Chapter 9. ADDITIONAL LONG TERM PROBLEMS AND OPPORTUNITIES

The Legislature has adopted a policy of maintaining the Delta in its present configuration. Permanent flooding of Delta islands is possible as a result of short term economic forces. Additionally, a long term view of the Delta indicates that, even with substantial Federal, State, and local expenditures, permanent flooding may eventually result as portions of islands continue to subside if alternative strategies are not developed.

The land surface of many islands is already over 15 feet below sea level, and in 50 to 100 years may be from 25 to 30 feet below sea level. These low elevations, resulting primarily from oxidation of organic soils, raise the question of the physical ability to build and sustain levees against the pressures created by these depths. The physical problems and financial costs also raise significant public policy questions.

Studies of the Delta by the U. S. Army Corps of Engineers have developed construction proposals that the Corps and the Department believe will, if implemented, result in viable Delta levees for perhaps another 50 years. However, once Delta levees are called upon to withstand the forces caused by over 35 feet of water pressure, the problems begin to exceed engineering and economic confidence limits. Even if levees can be designed and strategies effected to reduce subsidence rates so that these water pressures could be withstood, it may not be possible to build and maintain the levees at affordable costs. Even if these exceedingly large levees can be built and maintained, the seepage rates may be so great as to make agricultural use of the lands uneconomical.

Table 56, Figure 3 (year 1978), and Figure 25 (years 2020 and 2080) show present and expected levels of subsidence in the Delta. Within 50 to 100 years, subsidence will have ceased on a number of islands, but as the figures indicate, many islands could be well over 30 feet below sea level. The subsidence rate may slow in the future, as surface soils begin to contain a higher percentage of inorganic (mineral) content.

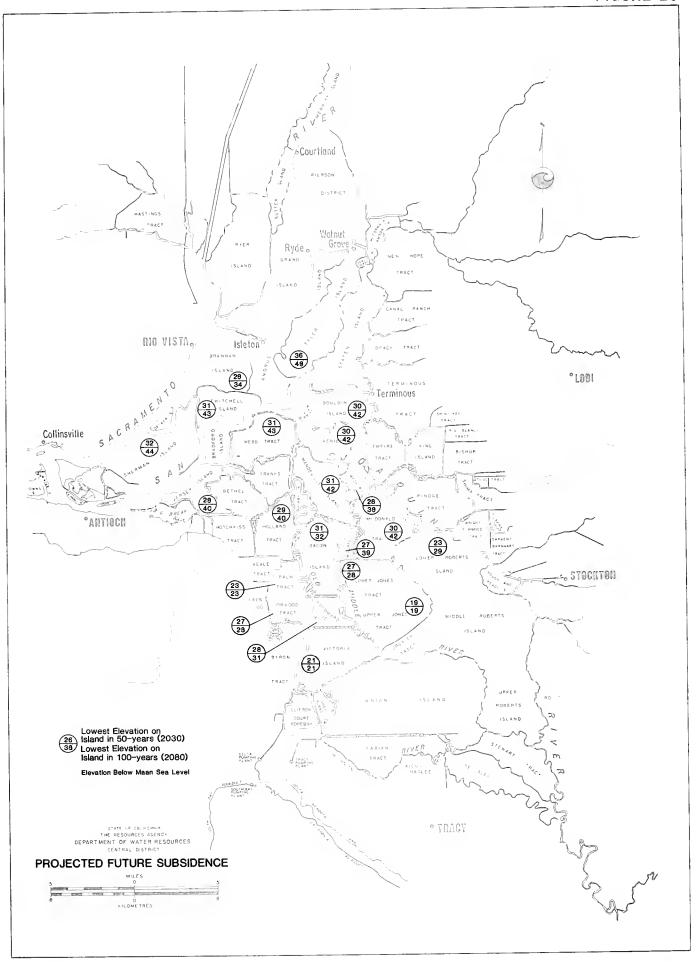
Buffer Zones

As island surface elevations become lower, the problem of increased pressure on levees caused by the elevation difference between the low point on the island and the top of the levee also The increase in relative increases. elevation is more dangerous if it develops in a short horizontal distance. The problem of dealing with excessive levee heights in a narrow band of land could be mitigated by creating buffer zones on the landward side of levees adjacent to soils having a significant thickness of peat. The buffer zones would be managed with the objective of not disturbing the surface and of keeping a moderate moisture level near the surface. The intent of these actions would be to slow the rate of peat soil loss and thereby reduce the threat of levee failure.

Polders

Another method of dealing with excessive levee height is combining islands into polders. The larger areal extent of polders would permit more room on the landward side of levees for construction of berms and still leave a usable areas within the polders. In addition, the polder plan would permit lowering of water levels in blocked channels to lessen the hazard of failure and reduce seepage problems.

A plan to preserve the Delta by using polders could be in two phases. The first phase could be improvement of existing levees and construction of new levees to preserve the Delta in a configuration similar to, but not necessarily the same as, that now existing. The second phase, which could occur over about 30 to 50 years, would join groups of islands together in polders. Before the levees could be improved in the first phase, it would be necessary to plan the location of the polders. However, economic and physical factors could result in some or all of the polders being included in the first phase.


The Corps of Engineers' draft report indicates a polder plan with a positive cost-benefit ratio. Earlier polder

plans studied by the Department envisioned polders considerably larger than those considered by the Corps. For example, one Department plan would have provided master levees to divide most of the Delta covered by the System Plan into five large polders; the Corps of Engineers' polders consisted of two groups of two islands i.e., 4 of the 15 islands in its incremental plan.

Many changes and trade-offs would result from polders. Channels available for boating would be reduced, but land recreation and water access sites could be increased. Some species of fish could lose habitat, but this might be mitigated by widening some channels. Wildlife habitat could be enhanced by conversion of blocked sloughs as long as drainage capability is maintained. Although frequency of flooding would be decreased and level of maintenance increased, failure of a polder levee would result in a greater amount of damage.

Table 56

	Pi	ROJECTED FUTURE MAX	IMUM SUBSIDENCE			
	Subsidence Since Reclamation	Estimated Maximum Thickness of Organic Soils	Estimated Rate of Subsidence		jected Subside (Feet)	
Island or Tract	(Feet)	(Feet)	(Inches/Year)	50 Years	75 Years	100 Years
Tyler Brannan Webb Mandeville Sherman	17 21 18 19 19	32 29 33 34 	1.6 - 4.6 1.6 3.0 2.8 3.0	24 - 36 28 31 31 32	27 - 46 31 37 37 38	30 - 48 34 43 42 44
Venice Bacon Bouldin Upper Jones Lower Roberts	17 18 17 11 16	30 18 31 8 17	3.0 3.0 3.0 2.9 1.6	30 31 30 19 23	36 30 36 19 26	42 32 42 19 29
Holland Jersey Lower Jones Medford Mildred	16 15 15 14 14	24 30 13 22	3.0 3.0 2.9 3.0 (3.0)	29 28 27 26 27	35 34 28 33 33	40 40 28 36 39
McDonald Orwood Palm Twitchell Victoria Woodward	17 14 13 18 14	14 10 10 7 16	(3.0) 1.6 - 3.0 3.0 3.0 3.0 3.0	30 23 - 27 23 31 21 28	36 24 - 28 23 37 21 31	42 27 - 28 23 43 21 31

Adoption of the two-phase polder alternative would depend on adoption of a policy by the Legislature that would adjust over the long term from the goal of maintaining the Delta in its current configuration.

Permanent Flooding

The Delta with its 700 miles of meandering waterways contained within the levee system maintained in essentially its present physical configuration is a unique State resource, particularly from a recreation standpoint.

Should some of the islands flood and be permitted to remain flooded, not all of the Delta's uniqueness need be lost if actions are taken to preserve the remaining levees of an island following inundation. Conditions such as those presently existing in Old River adjacent to Franks Tract allow large waves to develop from the long fetch across Franks Tract and make this reach of Old River undesirable for boaters. Mitigation of the effects of waves that would be generated by the open water surface of the flooded island, would include placing erosion protection, such as a rock blanket, on the interior levee slope. Protecting the remaining levee would be necessary to preclude the waves generated on the flooded island from creating additional maintenance problems on levees of adjacent islands. existence of a water surface on both sides of the levee may reduce the probability of structural failure of the levee from hydrostatic forces; would also preclude further oxidation of organic soils and subsequent subsidence of the island floor; but may also increase the portion of the levee that is saturated.

From the point of view of the State Water Project and the Federal Central Valley Project, permanent inundation of Delta islands would be limited to any water quantity, water quality, or economic costs to the projects. With respect to water quantity, a flooded island where the breach is not closed would evaporate more water than would be used to irrigate crops grown on the island (about 5 feet of evaporation versus about 3 feet of consumptive use). The magnitude of the water quantity effect on the projects depends on the type of water year that prevails. A wet year that would refill storage reservoirs would have little effect. In a dry year, the increased evaporation would decrease, to some extent, the amount of water that could be exported.

If found to be cost effective the flooded island could be operated as a stabilized flooded island. The breach would be closed with a new levee section, with or without a structure to control flow in and out of the island; rip rapping of the island side of levees would be done to preserve the levees, and the water surface on the island would be managed to control evaporation from the island water surface and seepage through the levees from the channel areas.

A higher level of development would be operation of the flooded island as a reservoir with pumps transferring water from the island lake to Delta channels during drought and refilling the island during the next high flow period.

Operation of islands as off stream reservoirs could increase the yield of the State and federal water projects but has not been subjected to an economic analysis.

Appendix A

REAGAN ADMINISTRATION PROPOSED COST SHARING ON WATER PROJECTS

			V

CONTENTS, APPENDIX A

		Page
PROPOSEI	REVISION OF FEDERAL/NON-FEDERAL COST SHARING FORMULA	167
	DUM FOR THE PRESIDENT FROM JAMES WATT, COST SHARING ON ROJECTS, JUNE 15, 1982	169
TABLES E	BASED ON PROPOSED COST SHARING FORMULA	
A-16	System Plan, Allocation of Summed Capital Costs, Proposed Cost Sharing	173
A-17	System Plan, Allocation of Escalated Summed Capital Costs, By Participant, Proposed Cost Sharing	173
A-21	Schedule of Non-Federal Costs, System Plan Proposed Cost Sharing	174
A-22	Schedule of Non-Federal Costs, System Plan Proposed Cost Sharing, 6 Percent Escalation Rate	175
A-23	Schedule of Non-Federal Costs, System Plan Proposed Cost Sharing, 9 Percent Escalation Rate	176
A-24	System Plan, Allocation of Repayment Obligation Proposed Cost Sharing	177
A-25	System Plan, Allocation of Island or Tract Repayment Obligation and Operation and Maintenance Costs, Proposed Cost Sharing, 6 Percent Escalation / 9 Percent Bond Interest	178
A-26	System Plan, Allocation of Island or Tract Repayment Obligation and Operation and Maintenance Costs, Proposed Cost Sharing, 9 Percent Escalation / 12 Percent Bond Interest	179
A-29	Modified System Plan, Allocation of Summed Capital Costs, Proposed Cost Sharing	181
A-30	Modified System Plan, Allocation of Escalated Summed Capital Costs, By Participant, Proposed Cost Sharing	181
A-34	Schedule of Non-Federal Costs, Modified System Plan Proposed Cost Sharing	182
A-35	Schedule of Non-Federal Costs, Modified System Plan Proposed Cost Sharing, 6 Percent Escalation Rate	183

		Page
A-36	Schedule of Non-Federal Costs, Modified System Plan Proposed Cost Sharing, 9 Percent Escalation Rate	184
A-37	Modified System Plan, Allocation of Repayment Obligation Proposed Cost Sharing	185
A-38	Modified System Plan, Allocation of Island or Tract Repayment Obligation and Operation and Maintenance Costs, Proposed Cost Sharing, 6 Percent Escalation / 9 Percent Bond Interest	186
A-39	Modified System Plan, Allocation of Island or Tract Repayment Obligation and Operation and Maintenance Costs, Proposed Cost Sharing, 9 Percent Escalation / 12 Percent Bond Interest	187
A-42	Incremental Plan, Allocation of Summed Capital Costs, Proposed Cost Sharing	189
A-43	Incremental Plan, Allocation of Escalated Summed Capital Costs, By Participant, Proposed Cost Sharing	189
A-47	Schedule of Non-Federal Costs, Incremental Plan, Proposed Cost Sharing	190
A-48	Schedule of Non-Federal Costs, Incremental Plan, Proposed Cost Sharing, 6 Percent Escalation Rate	191
A-49	Schedule of Non-Federal Costs, Incremental Plan, Proposed Cost Sharing, 9 Percent Escalation Rate	192
A-50	Incremental Plan, Allocation of Repayment Obligation Proposed Cost Sharing	193
A-51	Incremental Plan, Allocation of Island or Tract Repayment Obligation and Operation and Maintenance Costs, Proposed Cost Sharing, 6 Percent Escalation / 9 Percent Bond Interest	193
A-52	Incremental Plan, Allocation of Island or Tract Repayment Obligation and Operation and Maintenance Costs, Proposed Cost Sharing, 9 Percent Escalation / 12 Percent Bond Interest	194

PROPOSED REVISION OF FEDERAL/NON-FEDERAL COST SHARING FORMULA

The Corps of Engineers' draft feasibility report assumes the traditional Federal/non-Federal cost sharing relationships, wherein the Corps would pay 100 percent of flood control construction costs and a proportional share of mitigation costs. The Corps' report also assumes that 50 percent of the recreation costs and 75 percent of the wildlife enhancement costs would be Federal costs. The Corps assumes other costs to be non-Federal. The cost allocations and financial analysis presented in Chapters 5, 6, and 7 are based on this traditional Federal/non-Federal cost sharing formula.

Although not yet approved by Congress, the Reagan Administration has proposed a new cost sharing formula, as described in a June 15, 1982 memorandum. Under this formula, non-Federal interests would be expected to pay 35 percent (up front) of all flood control costs*, 50 percent of recreation costs, and 100 percent of wildlife enhancement costs.

This appendix presents similar tabulations on cost allocation and financial analyses as were presented in Chapters 5, 6, and 7, but modified to reflect the Reagan Administration's proposed cost sharing formula. These modified tables have the same table number as their traditional formula counterpart, but preceded by the letter "A". For example, in Chapter 5, Table 16 shows the summed capital costs (1981 prices) allocated between Federal and non-Federal participants based on the traditional cost sharing formula. In this appendix, the comparable table based on the proposed cost sharing formula is numbered A-16.

A further discussion of the assumptions used for the cost sharing and financial analysis in this bulletin is presented in Chapter 4.

^{*} The 35 percent share is assumed to be computed after all relocation betterment costs are allocated to the non-Federal participants.

		ļ
		•

THE WHITE HOUSE

WASHINGTON

June 15, 1982

MEMORANDUM FOR THE PRESIDENT

FROM:

JAMES G. WATT, CHAIRMAN PRO TEMPORE

CABINET COUNCIL ON NATURAL RESOURCES AND ENVIRONMENT

SUBJECT:

Cost Sharing on Water Projects

Attached is the Cabinet Council's decision memo and recommendation.

You will be pleased to know that some progress has been made on these issues already. The Department of the Army has been successful in obtaining letters of intent from non-federal entities interested in ten new Civil Works project starts to provide 78 percent of the cost, as opposed to their providing only 13 percent under the historical policies. The non-federal groups also agreed to pay that amount "up front," that is, as spent, rather than by repaying the federal outlays over a number of years. "Up front" financing by non-federal interests would relieve the burden on the federal budget.

THE WHITE HOUSE

WASHINGTON

June 15, 1981 (sic)

MEMORANDUM FOR THE PRESIDENT

FROM: JAMES G. WATT, CHAIRMAN AND PRO TEMPORE

CABINET COUNCIL ON NATURAL RESOURCES AND ENVIRONMENT

ISSUE:

What kind of cost sharing arrangements should the Administration require for federal water projects?

BACKGROUND:

Water projects have contributed significantly to the health, prosperity, and quality of American life. In this era of federal fiscal austerity, the continued development of such projects will require non-federal participation in project planning, finance, and management. Without such cost-sharing arrangements, much needed development of this vital resource is in jeopardy.

DISCUSSION:

The two important federal water project responsibilities have been (1) project planning and evaluation, and (2) project finance and repayment. The Cabinet Council on Natural Resources and Environment, in conjunction with the Water Resources Council, has recommended new Principles and Guidelines for planning and evaluating economically viable, environmentally sound water projects. These guidelines replace the very rigid and cumbersome Principles and Standards that have contributed to a hiatus in water project development. In addition to these Principles and Guidelines, the Cabinet Council now recommends, as part of this Administration's comprehensive water project development policy, the adoption, as policy, of cost sharing with non-federal project beneficiaries.

In the current era of budgetary stringency, some cost sharing for water projects is a necessity. Set forth below are the cost sharing recommendations of the Cabinet Council.

Purpose

Non-Federal Share of Capital Costs

Urban and rural flood protection and rural drainage Variable (no less than 35 percent)

Agricultural water

Variable (no less than 35 percent) depending

on benefits to users

Recreation (excluding costs for minimum safety and sanitation facilities

50 percent of joint and separable costs

Municipal water

100 percent of costs

Navigation

(Subject of pending legislation)

Fish and Wildlife mitigation

(100 percent project cost -- allocated in

proportion to project costs)

Fish and Wildlife enhancement

100 percent of costs

Industrial water

No less than 100 percent

Hydroelectric power

Publicly financed

No less than 100 percent

Privately financed

Payment for right to use a federal facility for

partnership arrangement

Operation and maintenance costs would be the responsibility of beneficiaries.

The principles behind these proposals are:

- 1. In general, recipients of services or benefits should pay for the cost of those services.
- 2. In cases where the value of water service is greater than the cost, consideration should be given to recovery of more than project cost.
- 3. Certain services, such as agricultural water and flood control, need a greater degree of leeway. However, they still should be required to pay a significant portion of the cost. The 35 percent minimum figure used here will be raised where the irrigator gets greater benefits (based on the benefits estimated in the cost-benefit study used to justify the project).

RECOMMENDATION:		
The Council recommends approwater projects.	val of these cost sharing g	uidelines for federal
DECISION:		
APPROVE	DISAPPROVE	

Table A-16 SYSTEM PLAN ALLOCATION OF SUMMED CAPITAL COSTS PROPOSED COST SHARING

(In Thousands of Dollars, 1981 Prices)

Item	Project Total	Federal Allocation	Nonfederal Allocation
Flood Control, Federal Participation I	slands an	d Tracts	
Construction Mitigation Lands, Easements, Rights of Way Relocations Relocation Betterments			
Subtotal Percent	448,400 100%	285,800 64%	162,600 36%
Flood Control, Nonfederal Participation	on Islands	and Tracts	
Construction Mitigation	424,100 9,200		424,100 9,200
Lands, Easements, Rights of Way Relocations Relocation Betterments	30,200 9,000 9,700		30,200 9,000 9,700
Subtotal Percent	482,200 100%		482,200 100%
Flood Control Subtotal Percent	930,600 100%		644,700 69%
Recreation and Fish an	d Wildlif	e Enhancemen	<u>t</u>
Recreation Percent	40,000 100%		20,000 50%
Fish and Wildlife Enhancement Percent	57,000 100%		57,000 100%
PROJECT TOTALS PERCENT	1,027,600		721,700 70%

Table A-17 SYSTEM PLAN ALLOCATION OF ESCALATED SUMMED CAPITAL COSTS, BY PARTICIPANT PROPOSED COST SHARING

										Non	-Federa	1				Water Pr	adaata/	leave
	Fede	ral Tot	al		Total			State		1001	County	Hon		Escala		1981	Escala	
Purpose	1981 Prices	Escale 6%	9%	1981 Prices	Escala 6%	9%	1981 Prices	Escala 6%	9%	1981 Prices	6%	9%	Prices	6%	9%	Prices	6 X	9%
Flood Control Percent	286	1,000	2,423	645 100	2,365 100	5,840 100	318 49	1,161 49	2,856 49	-	-	-	309 48	1,139 48	2,822 48	18 3	65 3	162 3
Recreation Percent	20	47	71	20 100	46 100	70 100	10 50	23 50	35 50	10 50	23 50	35 50	-	-	-	-	-	-
Fish/Wildlife Enhancement Percent	-	-	-	57 100	206 100	482 100	29 50	103 50	241 50	28 50	103 50	241 50	:	-	-	:	:	-
TOTAL Percent	306	1,047	2,494	722 100	2,617 100	6,392 100	357 49	1,287 49	3,132 49	38 5	126 5	276 4	309 43	1,139 43	2,822 44	18 3	65 3	162 3

Table A-21
SCHEDULE OF NON-FEDERAL COSTS, SYSTEM PLAN -- PROPOSED COST-SHARING
(In Thousands of Dollars, 1981 Prices)

Island or Tract	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	<u> 1999</u>	2000	Future Stage	Total
Bouldin*	7,330	7,330					2,336					2,151	5,570	24,717
	10,295	10,295		4,824		4,824		4,824		4,824			28,942	68,827
Terminous*	5,010	5,010				493				1,376			5,208	17,099
Empire*	1,810	1,810			'	119				160			1,490	5,388
Veale	2,153	2,153												4,305
Brack*	3,262	3,262								779				7,303
Shin Kee			1,794	1,794										3,587
Orwood, Upper			2,077	2,D77										4,154
Mandeville*			3,042	3,042				••					3,453	9,537
McDonald*			2,888	2,888				860				740	2,526	9,903
Rindge*			3,418	3,418								103	710	7,649
Webb*			2,803	2,803				741					4,377	10,723
Roberts,			7 100	7 100	120									14,341
Lower/Middle/Upper* Orexler*			7,106 1,440	7,106 1,440	129		1,208						2,083	6,170
			•	•			-						1 427	10.240
Jones, Lower/Upper*					4,457	4,457							1,427	10.340
Woodward					3,927	3,927	2,316					1 400	5,498	15,667
Bacon*					3,375	3,375						1,492	2,580	10,822
Andrus-Brannan*					5,334	5,334	301			648		301	5,097	17,015
Canal Ranch					5,920	5,920							1,021	12,860
Bishop					3,154	3,154							1,870	8,178
Tyler*				••	3,718	3,718						••	781	8,216
Bradford					4,811	4,811							8,934	18,555
Jersey .							9,803	9,803						19,605
Holland							6,580	6,580				778	3,624	17,562
Sherman							25,190	25,190						50,379
McCormack-Williamson							4,550	4,550					767	9,867
Deadhorse							1,930	1,930				80	507	4,447
King				••	••		4,824	4,824					393	10,041
Twitchell									13,759	13,759			11,931	39,448
Staten									12,164	12,164			10,701	35,029
Palm			••						4,527	4,527			2,493	11,546
Hotchkiss*									1,228	1,228				2,455
Shima			••						3,294	3,294			489	7,077
Rio Blanco			•-						1,626	1,626			47	3,299
New Hope		••							9,733	9,733				19,465
Wright-Elmwood											3,211	3,211	558	6,979
Victoria											5,443	5,443	1,232	12,117
Coney				••							1,777	1,777		3,553
Pescadaro Area											4,621	4,621		9,242
Sargent-Barnhart							••				1,846	1,846	283	3,974
Bethe l									••		15,018	15,018	1,489	31,525
Orwood											3,700	3,700	1,066	8,465
Atlas											1,260	1,260		2,520
Byron								••			9,291	9,291		18,582
Walnut Grove											624	624		1,247
Union						••				••	1,026	1,026		2,052
Fabian											4,378	4,378		8,756
Flood Control Subtotal	29.859	29,859	24,566	29,390	34,823	40,130	59,037	59,301	46,329n	54,117	52,192	57,838	117,147	634,588
Fish/Wildlife Mitigation	424	424	425	425	567	567	641	641	787	787	1,513	1,513	•	8,712
Flood Control Total	30,283	30,283	24,991	29,815	35,389	40,696	59,678	59,942	47,116	54,904	53,705	59,351	117,147	643,300
Recreation	1,849	1,849	1,192	1,192	1,338	1,338	1,453	1,453	2,196	2,196	2.116	2,115		20,283
Fish/Wildlife Enhancement	3,525	3,525	4,205	4,205	3,707	3,706	4,328	3,330	3,385	2,667	2,629	3,626	13,312	56,650

174

Table A-22
SCHEDULE OF NON-FEDERAL COSTS, SYSTEM PLAN -- PROPOSED COST SHARING
6 PERCENT ESCALATION RATE
(In Thousands of Dollars)

Island or Tract	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	Future Stage	Tota
ouldin*	11,683	12,384	+-				5,280					6,508	53,712	89,5
enice	16,408	17,392		9,157		10,289		11,561		12,990		-,	228,832	306.6
erminous*	7,986	8,465				1,053		,		3,706			47,676	68,8
pire*	2 004					254				430				
	2,884	3,057								430			7,865	14,
eale	3,431	3,637												7,0
ack*	5,199	5,511								2,099				12,
in Kee	••	••	3,212	3,405	••									6.
wood, Upper			3,720	3,943										7.
ndeville*			5,447	5,774									30,502	41,
Donald*			5,172	5,483				2,062				2,240	23,614	38,
ndge*			6,121	5 400				L,00L				312		22.
				6,488									9,692	
b* erts.			5,020	5,321				1,775					41,832	53,
ower/Middle/Upper*			12,725	13,489	261								·	26,
exler*			2,578	2,733			2,731						17,771	25
es. Lower/Upper*					8,968	9,506							0 606	27.
							6 226						8,685	
dward					7,901	8,375	5,236						38,750	60,
on*					6,790	7,198						4,515	16,446	34,
rus-Brannan*					10,733	11,377	681			1,745		912	42,771	68
al Ranch					11,911	12,626							9,346	33.
hop		••			6,346	6,727							10,740	23,
						7 020								
er*					7,480	7,929	'						5,341	20,
dford					9,680	10,260							97,080	117
sey							22,163	23,492						45
land							14,877	15,769				2,354	29,575	62
rman							56,951	60,368					••	117
ormack-Williamson							10,287	10,904					33,859	55
			••		••							242		
idhorse							4,364	4,625					4,112	13,
19							10,907	11,561					3,021	25,
tchell									34,951	37,049			100,256	172,
iten									30,901	32,755			184,932	248
m.									11,499	12,189			21,530	45
chkiss*									3,119	3,306			,	6
ma													2.750	
									8,368	8,870			3,758	20,
81anco									4,131	4,378			771	9,
Hope									24,724	26,207				50
ght-Elmwood											9,164	9,714	4.546	23.
toria											15,535		15,998	48
ey											5,071	5,375		10
												3,3/3		
cadaro Area	**										13,190			27
gent-Barnhart											5,268	5,584	1,533	12
hel											42,866	45,438	14,449	102
ood											10.560	11,193	18,524	40
as		••									3,596	3,812		7
on							4.	•••			26,520	28,111		54.
nut Grove									,		1,780	1,886		3
óu				<i>.</i>					'		2,929	3,104		6
ian				*-					•-		12,496	13,246		25
od Control Subtotal	47,591	50,446	43,995	55,792	70,070								1,127,521	2,343
h/Wildlife Mitigation	675	716	760	806	1,140	1,208	1,450	1,537	1,999	2,119	4,318	4,578		21
Flood Control Total	48,266	51,162	44,755	56,598	71,210	86,802	134,926	143,655	119,692	147,843	153,292	179,573	1,127,521	2,365
reation	2,946	3,123	2,134	2,262	2,692	2,854	3,284	3.481	. 5,579	5,912	6,038	6,399		46,
	-	•		-	-				-				100 030	
sh/Wildlife Enhancement		5,955	7,531	7,982	7,459	7,905	9,785	7,981	9,869	7,182	7,504	10,971	109,979	205,
Project Total	56.830	60,240	54,419	66,842	81.361	97.560	147,995	155,116	135,139	160.936	166.835	196,943	1,237,500	2,617

Table A-23
SCHEDULE OF NON-FEDERAL COSTS, SYSTEM PLAN -- PROPOSED COST SHARING
9 PERCENT ESCALATION RATE
(In Thousands of Dollars)

Island or Tract	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	Future Stage	Total
ouldin*	14,606	15,921					7,805					11,060	167,822	217,2
	20,512	22,359		12,448		14,789		17,571		20,877			688,126	796.6
erminous*	9,983	10,882				1,513				5,956			155,763	184,0
npire*	3,606	3,930				365				691			18,235	26,8
eale	4,289	4,675												8,9
rack*	6,499	7,084								3,373				16,9
nin Kee			4,246	4,628										8,8
rwood, Upper			4,917	5,360										10,2
andeville*			7,201	7,849									106,827	121,8
:Donald*								3,134				3,806	75,958	97,1
			6,837	7,453				3,134					37,440	
indge*			8,091	8,819								531		54,8
ebb* oberts,			6,636	7,233	•-			2,698					150,648	167,2
Lower/Middle/Upper*			16,822	18,336	364									35,5
rexler*			3,408	3,715			4,036						54,476	65,6
ones, Lower/Upper*					12,535	13,663							20,631	46,8
oodward					11,044	12,038	7,739						105,840	136,6
acon*					9,492	10,346						7,673	42,573	70,0
drus-Brannan*					15,002	16,352	1,007			2,805		1,549	137,426	174,1
nal Ranch					16,650	18,148							26,992	61.7
shop					8,871	9,670							24,811	43,3
													13,417	35,2
ler* adford					10,456 13,530	11,397 14,748							359,549	387,8
rsey			••				32,757	35,705						68,4
lland					••			23,968				4,000	85,461	135,4
							21,989						65,401	
erman							84,176	91,752						175,9
Cormack-Williamson							15,205	16,573					207,739	239,
adhorse ng							6,450 16,120	7,030 17,571				411	11,640 8,023	25,9 41,7
itchell									54,625	EO E42			315,513	429,6
aten										59,542				
									48,295	52,641			877,594	978,5
1m									17,972	19,589			60,465	98,0
tchkiss*									4,874	5,313				10,1
ima									13,078	14,255			9,982	37,3
o Blanco									6,456	7,037			2,942	16,4
w Hope									38,641	42,119				80,7
ight-Elmwood											15,144	16,507	12,416	44,0
ctoria											25,673	27,983	54,623	108,2
ney											8,380	9,134		17,9
scadaro Area											21,798			45,5
rgent-8arnhart											8,705	9,489	3,445	21,6
he l											70,842		42,907	190,
wood											17,451	19,022	72,720	109
											17,431			
las											5,944	6,478		12,4
on											43,827	47,771		91,
lnut Grove											2,941	3,206		6,
ion											4,840	5,275		10,
ian											20,652	22,510		43,
. 4 6 1 6 1				75 040	07.044		107.000						2 050 000	
ood Control Subtotal sh/Wildlife Mitigation	59,496 844	64,851 920	58,158 1,005	75,84D 1,096	1,593	1,737	2,143	2,336	3,125	3,406	7,137	7,779	3,952,002	5,806,33,
Flood Control Total	60,340	65,771	59,163	76,936	99,538	124,766	199,428	218,338	187,065	237,603	253,333	305,164	3,952,002	5,839,4
creation	3,683	4,015	2,821	3,075	3,763	4,102	4,854	5,291	. 8,719	9,501	9,979	10,875		70,6
sh/Wildlife Enhancement	7,024	7,656	9,955	10,851	10,427	11,362	14,463	12,129	15,425	11,542	12,401	18,644	339,613	481,4
Project Total	71,047	77,441	71,938	90.861	113.728	140 230	218 745	235.758	211 209	259 646	275 713	334 683	4,291,615	6.391.

176

Table A-24
SYSTEM PLAN
ALLOCATION OF REPAYMENT OBLIGATION -- PROPOSED COST SHARING

	To	Total*		ate	Co	ounty	Islands	/Tracts*	Water Projects and Water Users		
Purpose	** 6%/9%	9%/12%	6%/9%	9%/12%	6%/9%	9%/12%	6%/9%	9%/12%	6%/9%	9%/12%	
Flood Control Percent	1,450 100	2,238 100	717 49	1,107 49			694 48	1,070 48	39 3	61 3	
Recreation Percent	50 100	76 100	25 50	38 50	25 50	38 50		 			
Fish/Wildlife Enhancement Percent	131 100	205 100	66 50	103 50	65 50	102 50			 	 	
TOTAL PROJECT Percent	1,631 100	2,519 100	807 49	1,247 49	90 6	140 6	694 43	1,071 43	39 2	61 2	

^{*} Includes relocation betterments. **Percents of Escalation/Bond Rate.

Table A-25
SYSTEM PLAN
ALLOCATION OF ISLAND OR TRACT REPAYMENT OBLIGATION AND OPERATION AND MAINTENANCE COSTS
PROPOSED COST SHARING
6 PERCENT ESCALATION / 9 PERCENT BOND INTEREST

	Annu	al Repayment			8 Bond Sale Annual Rep		OLM Costs (1989 Price Level)			
Island or Tract	Total	Per Mile of Levee	Per Acre	Total	Per Mile of Levee	Per Acre	Total	Per Mile of Levee	Per Acre	
Andrus-8rannan*	2,018,000	200,000	135	1,598,000	158,000	107	40,000	3,911	3	
Atlas	349,000	113,000	1,030	195,000	63,000	575	12,000	3,748	34	
Bacon*	1,102,000	77,000	199	873,000	61,000	157	57,000	3,981	10	
Bethel	4,398,000	382,000	1,250	2,456,000	214,000	698	268,000	23,339	76	
Bishop	772,000	133,000	356	611,000	105,000	282	23,000	4,007	11	
Bouldin*	1,806,000	100,000	299	1,806,000	100,000	299	71,000	3,938	12	
Brack*	606,000	56,000	124	606,000	56,000	124	44,000	4,088	9	
Bradford	1,591,000	215,000	743	1,261,000	170,000	588	29,000	3,925	14	
Byron	3,248,000	342,000	468	1,814,000	191,000	262	38,000	4,036	6	
Canal Ranch	1,271,000	134,000	424	1,007,000	106,000	336	38,000	4,036	13	
Coney	495,000	92,000	530	277,000	51,000	296	21,000	3,873	22	
Deadhorse	498,000	199,000	2,359	351,000	140,000	1,663	9,000	3,718	44	
Drexler*	513,000	58,000	162	457,000	51,000	144	36,000	4,047	11	
Empire*	399,000	39,000	107	399,000	39,000	107	41,000	3,948	11	
Fabian	1,230,000	65,000	188	687,000	37,000	105	74,000	3,955	11	
Holland	1,880,000	173,000	445	1,326,000	122,000	314	43,000	3,944	10	
Hotchkiss*	316,000	38,000	94	199,000	24,000	59	63,000	7,469	19	
Jersey	2,227,000	143,000	642	1,570,000	101,000	452	62,000	3,948	18	
Jones, Lower/Upper*	1,023,000	57,000	84	810,000	46,000	67	71,000	3,982	6	
King	1,150,000	128,000	353	811,000	90,000	249	35,000	3,873	11	
Mandeville*	760,000	53,000	145	677,000	47,000	129	72,000	5,038	14	
McCormack-Williamson	1,070,000	123,000	653	755,000	87,000	460	35,000	4,007	21	
McDonald*	790,000	58,000	129	703,000	51,000	114	53,000	3,901	9	
New Hope	2,568,000	209,000	263	1,611,000	131,000	165	49,000	3,968	5	
Orwood	1,203,000	188,000	493	672,000	105,000	275	26,000	3,994	10	
Orwood, Upper	405,000	90,000	239	360,000	80,000	212	24,000	5,422	14	
Palm	1,392,000	178,000	571	873,000	112,000	359	33,000	4,171	13	
Pescadero Area	1,280,000	55,000	82	715,000	31,000	46	93,000	3,972	6	
Rindge*	705,000	45,000	103	628,000	40,000	92	62,000	3,922	9	
Rio Blanco	429,000	134,000	643	269,000	84,000	403	13,000	3,994	19	
Roberts, Lower/Middle/Upper* Sargent-Barnhart Sherman Shima Shin Kee	1,368,000 558,000 5,781,000 894,000 322,000	59,000 223,000 590,000 110,000 170,000	42 459 555 373 300	1,217,000 311,000 4,076,000 561,000 287,000	52,000 125,000 416,000 69,000 151,000	37 256 391 234 267	202,000 9,000 43,000 31,000 8,000	8,714 3,718 4,387 3,873 4,281	6 8 4 13 8	
Staten	4,019,000	158,000	442	2,521,000	99,000	277	101,000	3,964	11	
Terminous*	1,245,000	77,000	119	1,245,000	77,000	119	65,000	4,041	6	
Twitchell	4,788,000	504,000	1,318	3,004,000	316,000	.827	38,000	4,036	11	
Tyler*	829,000	77,000	97	656,000	61,000	76	48,000	4,452	6	
Union	284,000	10,000	11	159,000	6,000	6	101,000	3,510	4	
Veale	351,000	62,000	270	351,000	62,000	270	22,000	3,873	17	
Venice	4,627,000	376,000	1,437	4,627,000	376,000	1,437	49,000	3,968	15	
Victoria	1,622,000	107,000	224	906,000	60,000	125	59,000	3,924	8	
Walnut Grove	184,000	92,000	282	103,000	51,000	158	7,000	3,486	11	
Webb*	839,000	66,000	153	746,000	58,000	136	50,000	3,903	9	
Woodward	1,401,000	161,000	769	1,109,000	128,000	609	35,000	4,007	19	
Wright-Elmwood	954,000	140,000	450	533,000	78,000	251	27,000	3,930	13	

 ^{*} Islands and tracts in Federal plan.
 ** Common base for comparison of relative financial obligation.

Table A-26
SYSTEM PLAN
ALLOCATION OF ISLAND OR TRACT REPAYMENT OBLIGATION AND OPERATION AND MAINTENANCE COSTS
PROPOSED COST SHARING
9 PERCENT ESCALATION / 12 PERCENT BOND INTEREST

	Annu	al Repayment			Bond Sale Annual Repa			OLM Costs Price Level	
Island or Tract	Total	Per Mile of Levee	Per Acre	Total	Per Mile of Levee	Acre	Total	Per Mile of Levee	Per Acre
Andrus-Brannan*	3,765,000	373,000	251	2,667,000	264,000	178	49,000	4,890	3
Atlas	756,000	244,000	2,230	319,000	103,000	942	15,000	4,686	43
Bacon*	2,060,000	144,000	371	1,459,000	102,000	263	71,000	4,977	13
Bethel	9,556,000	831,000	2,715	4,037,000	351,000	1,147	336,000	29,178	95
Bishop	1,437,000	248,000	663	1,018,000	176,000	469	29,000	5,009	13
Bouldin*	3,045,000	169,000	504	3,045,000	169,000	504	89,000	4,923	15
Brack*	997,000	92,000	205	997,000	92,000	205	55,000	5,111	11
Bradford	3,038,000	411,000	1,418,	2,153,000	291,000	1,004 .	36,000	4,907	17
Byron	7,031,000	740,000	1,014	2,970,000	313,000	428	48,000	5,046	7
Canal Ranch	2,345,000	247,000	783	1,661,000	175,000	555	48,000	5,046	16
Coney	1,073,000	199,000	1,147	453,000	84,000	485	26,000	4,842	28
Deadhorse	972,000	389,000	4,608	580,000	232,000	2,748	12,000	4,648	55
Orex1er*	916,000	103,000	290	771,000	87,000	244	45,000	5,060	14
Empire*	668,000	65,000	179	668,000	65,000	179	51,000	4,936	14
Fabian	2,664,000	142,000	408	1,125,000	60,000	172	93,000	4,945	14
Holland	3,700,000	339,000	876	2,206,000	202,000	522	54,000	4,931	13
Hotchkiss*	648,000	77,000	193	325,000	39,000	97	78,000	9,338	23
Jersey	4,312,000	276,000	1,242	2,571,000	165,000	741	77,000	4,935	22
Jones, Lower/Upper*	1,893,000	106,000	156	1,341,000	75,000	110	89,000	4,978	7
King	2,234,000	248,000	685	1,332,000	148,000	409	44,000	4,842	13
Mandeville*	1,355,000	95,000	259	1,141,000	80,000	218	90,000	6,298	17
McCormack-Williamson	2,091,000	240,000	1,276	1,247,000	143,000	761	44,000	5,009	27
McDonald*	1,408,000	103,000	229	1,185,000	86,000	193	67,000	4,877	11
New Hope	5,259,000	428,000	539	2,639,000	215,000	271	61,000	4,960	6
Orwood	2,635,000	412,000	1,080	1,113,000	174,000	456	32,000	4,993	13
Orwood, Upper	702,000	156,000	413	591,000	131,000	348	31,000	6,779	18
Palm	2,899,000	372,000	1,190	1,455,000	187,000	597	41,000	5,214	17
Pescadero Area	2,772,000	118,000	177	1,171,000	50,000	75	116,000	4,966	7
Rindge*	1,232,000	78,000	180	1,037,000	66,000	152	77,000	4,904	11
Rio Blanco	879,000	275,000	1,318	441,000	138,000	661	16,000	4,993	24
Roberts, Lower/Middle/Upper* Sargent-Barnhart Sherman Shima Shin Kee	2,369,000 1,211,000 11,194,000 1,839,000 559,000	102,000 484,000 1,142,000 227,000 294,000	73 997 1,074 768 520	1,994,000 512,000 6,674,000 923,000 470,000	86,000 205,000 681,000 114,000 247,000	61 421 641 386 438	253,000 12,000 54,000 39,000 10,000	10,894 4,648 5,484 4,842 5,352	8 10 5 16 9
Staten	8,458,000	332,000	931	4,245,000	166,000	467	126,000	4,956	14
Terminous*	2,105,000	131,000	201	2,105,000	131,000	201	81,000	5,052	8
Twitchell	9,997,000	1,052,000	2,752	5,017,000	528,000	1,381	48,000	5,046	13
Tyler*	1,529,000	143,000	178	1,083,000	101,000	126	60,000	5,566	7
Union	615,000	21,000	25	260,000	9,000	10	126,000	4,388	5
Veale	575,000	101,000	443	575,000	101,000	443	28,000	4,842	21
Venice	7,947,000	646,000	2,468	7,947,000	646,000	2,468	61,000	4,960	19
Victoria	3,543,000	235,000	489	1,496,000	99,000	206	74,000	4,906	10
Walnut Grove	398,000	199,000	611	168,000	84,000	258	9,000	4,358	13
Webb*	1,505,000	118,000	274	1,267,000	99,000	231	62,000	4,880	11
Woodward	2,636,000	303,000	1,447	1,867,000	215,000	1,025	44,000	5,009	24
Wright-Elmwood	2,077,000	305,000	979	877,000	129,000	414	33,000	4,913	16

^{*} Islands and tracts in Federal plan.
** Common base for comparison of relative financial obligation.

	j

Table A-29 MODIFIED SYSTEM PLAN ALLOCATION OF SUMMED CAPITAL COSTS PROPOSED COST SHARING

(In Thousands of Dollars, 1981 Prices)

Item	Project Total	Federal Allocation	Nonfederal Allocation
Flood Control, Federal Participation	Islands an	d Tracts	
Construction Mitigation Lands, Easements, Rights of Way Relocations Relocation Betterments	i		
Subtotal Percent	448,400 100%	285,800 64%	162,600 36%
Flood Control, Nonfederal Participati	on Islands	and Tracts	
Construction Mitigation	244,800 5,800		244,800 5,800
Lands, Easements,	•		
Rights of Way Relocations	19,800 6,200		19,800 6,200
Relocation Betterments			7,200
Subtotal Percent	283,800 100%		283,800 100%
Flood Control Subtota Percent	732,200 100%	285,800 39%	445,400 61%
Recreation and Fish ar	nd Wildlife	Enhancement	<u>t</u>
Recreation Percent	40,000 100%	20,000 50%	20,000 50%
Fish and Wildlife Enhancement Percent	57,000 100%		57,000 100%
PROJECT TOTALS PERCENT	829,800 100%	305,800 37%	523,400 63%

Table A-30 MODIFIED SYSTEM PLAN ALLOCATION OF ESCALATED SUMMED CAPITAL COSTS, BY PARTICIPANT PROPOSEO COST SHARING

				_						Non	-federa	1						
		ral To			Total			State			County		Island	is/Trac	ts	Water Pr	ojects/	Users
Purpose	1981 Prices	Escal 6%	ation 9%	1981 Prices	Escal:	9%	1981 Prices	Esca la	tion 9X	1981 Prices	Escala 6%	tion 9%	1981 Prices	Escala 6%	tion 9%	1981 Prices	Escala 6%	stion 9%
Flood Control Percent	286	1,119	2,369	447 100	1,627 100	3,868 100	220 49	796 49	1,887 49	:	-	:	215 48	787 48	1,874 48	12 3	44 3	107 3
Recreation Percent	20	42	59	20 100	42 100	60 100	10 50	21 50	30 50	10 50	21 50	30 50	:	-	:	-	:	-
Fish/Wildlife Enhancement Percent	-	-	-	57 100	206 100	498 100	29 50	103 50	249 50	28 50	· 103	249 50	:	-	:	-	-	-
TOTAL Percent	306	1,161	2,428	523 100	1,875 100	4,426 100	258 49	920 49	2,166 49	38 7	124 7	279 7	215 41	787 4 2	1,874 42	12 3	44 2	107 2

Table A-34
SCHEDULE OF NON-FEDERAL COSTS, MODIFIED SYSTEM PLAN -- PROPOSED COST SHARING
(In Thousands of Dollars, 1981 Prices)

0,000	1000	1000									Future	
Island or Tract	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	Stage	Total
Bouldin*	7,330	7,330					2,336				7,721	24,717
Terminous*	5,010	5,010				493				1,376	5,208	17,099
Empire*	1,810	1,810				119				160	1,490	5,388
Veale	2,153	2,153									<u>-</u> -	4,305
Brack*	3,262	3,262								779		7,303
Shin Kee	1,794	1,794										3,587
Orwood, Upper	2,077	2,077										4,154
Mandeville*	3,042	3,042									3,453	9,537
McDonald*			2,888	2,888				860			3,267	9,903
Rindge*			3,418	3,418							813	7,649
Webb*			2,803	2,803				741			4,377	10,723
Roberts,			2,000	2,000				, 4.			4,5//	10,723
Lower/Middle/Upper*			7,106	7,106	129							14 241
Drexler*			1,440	1,440								14,341
							1,208				2,083	6,170
Jones, Lower/Upper*			4,457	4,457							1,427	10,340
Woodward					3,927	3,927	2,316				5,498	15,667
8acon*					3,375	3,375					4,073	10,822
Andrus-Brannan*					5,334	5,334	301			648	5,398	17,015
Canal Ranch					5,920	5,920					1,021	12,860
Bishop					3,154	3,154					1,870	8,178
Tyler*					3,718	3,718					781	8,216
Bradford					4,811	4,811					8,934	18,555
Jersey					9,803	9,803						19,605
Holland							6,580	6,580			4,402	17,562
McCormack-Williamson							4,550	4,550			767 <i>-</i> -	9,867
Deadhorse							1,930	1,930			587	4,447
King							4.824	4.824			393	10.041
Staten							12,164	12,164			10,701	35,029
Palm							4,527	4,527			2,493	11,546
Hotchkiss*							1,228	1,228				2,455
Shima							3,294	3,294			489	7,077
Rio 81anco							1,626	1,626			47	3,299
New Hope											47	
new nope							9,733	9,733				19,465
Wright-Elmwood									3,211	3,211	558	6,979
Victoria									5,443	5,443	1,232	12,117
Coney									1,777	1,777		3,553
Bethel									15,018	15,018	1,489	31,525
8yron									9,291	9,291		18,582
												
Flood Control Subtotal	26,477	26,477	22,111	22,111	40,168	40,651	56,615	52,056	34,739	37,702	80,572	439,678
Fish/Wildlife Mitigation	n 377	377	334	334	614	614	941	941	500	500		5,531
Flood Control Total	26,854	26,854	22,445	22,445	40,782	41,265	57,557	52,997	35,238	38,202	80,572	445,209
Recreation	2,913	2,913	1,535	1,534	2,166	2,166	1,958	1,957	1,572	1,572		20,283
Fish/Wildlife Enhancemen	nt 3,969	3,969	4,728	4,727	4,207	4,206	4,930	3,931	4,445	3,228	14,310	56,650
Project Total	33,736	33,735	28,707	28,706	47,155	47,637	64,444	58,885	41,255	43,001	94,882	522,142
*Islands included in Fed	deral pla	ın.										

Table A-35
SCHEDULE OF NON-FEDERAL COSTS, MODIFIED SYSTEM PLAN -- PROPOSED COST SHARING
6 PERCENT ESCALATION RATE
(In Thousands of Dollars)

Island or Tract	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	Future Stage	Total
Bouldin*	11,683	12,384	••	••	••		5,280				60,220	89,568
Terminous*	7,986	8,465			••	1,053				3,706	47,676	68,885
Empire*	2,884	3,057				254				430	7,865	14,490
Veale	3,431	3,637									-,	7,067
Brack*	5,199	5,511								2,099		12,808
Shin Kee	2,859	3,030										5,889
Orwood, Upper	3,310	3,509					••					
Mandeville*											27 146	6,819
Manded Lite.	4,848	5,139			••						27,146	37,133
McDonald*			5,172	5,483		••		2,062			25,853	38,570
Rindge*			6,121	6,488							10,005	22,614
Webb*			5,020	5,321				1,775			41,832	53,948
Roberts,								•			•	•
Lower/Middle/Upper*			12,725	13,489	261							26,474
Orexler*			2,578	2,733		••	2,731				17,771	25,813
Jones, Lower/Upper*			7,981	8,460			•					
dones, cower, opper			7,301	0,400			••				7,730	24,171
Woodward					7,901	8,375	5,236				38,750	60,262
Bacon*					6,790	7,198					20,962	34,950
Andrus-Brannan*					10,733	11,377	681			1,745	43,683	68,219
Canal Ranch					11,911	12,626					9,346	33,884
Bishop					6,346	6,727					10,740	23,814
Tyler*					7,480	7,929					5,341	20,751
Bradford					9,680	10,260					97,080	117,020
Jersey					19,725	20,908						40,633
52. 203					13,723	20,300						40,033
Holland				••		••	14,877	15,769			31,929	62,575
McCormack-Williamson							10,287	10,904			33,859	55,051
Deadhorse							4,364	4,625			4,354	13,343
King							10,907	11,561			3,021	25,488
Staten							27,502	29,152			164,588	221,242
Palm	'						10,234	10,848			19,161	40,243
Hotchkiss*							2,776	2,942			••	5,718
Shima							7,447	7,894	••		3,345	18,687
Rio Blanco							3,676	3,897			686	8,259
New Hope					<u></u> .							
new nope							22,004	23,325				45,329
Wright-Elmwood			••						8,156	8,645	4,046	20,847
Victoria									13,826	14,655	14,238	42,720
Coney									4,513	4,784		9,297
Bethel									38,151	40,440	12,859	91,450
Byron									23,602	25,019		48,621
Flood Control Subtotal	42,200	44,732	39,597	41,973	80,827			124,754		101,523	764,088	1,542,651
Fish/Wildlife Mitigation	601	637	597	633	1,235	1,309	2,128	2,256	1,270	1,346		1,2,012
Flood Control Total	42,801	45,369	40,195	42,607	82,062	88,015	130,130	127,010	89,518	102,869	764,088	1,554,663
Recreation	4,643	4,921	2,748	2,912	4,358	4,619	4,426	4,690	3,992	4,232		41,540
Fish/Wildlife Enhancement	6,326	6,706	8,467	8,973	8,465	8,971	11,146	9,421	11,292	8,692	118,174	206,634
Project Total	53,770	56,995	51,410	54,492	94,885	101,605	145,702	141,121	104,802	115,793	882,262	1,802,837
*Islands included in Fed	eral pla	n.										

Table A-36
SCHEDULE OF NON-FEDERAL COSTS, MODIFIED SYSTEM PLAN -- PROPOSED COST SHARING
9 PERCENT ESCALATION RATE
(In Thousands of Dollars)

Island or Tract	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	Future Stage	Total
Bouldin*	14,606	15,921					7,805				178,882	217,214
Terminous*	9,983	10,882				1,513				5,950	155,763	184,097
Empire*	3,606	3,930				365				691	18,235	26,827
Veale			-									8,954
Brack*	4,289	4,675										
	6,499	7,084								3,373		16,957
Shin Kee	3,574	3,895						·				7,469
Orwood, Upper	4,139	4,511										8,650
Mandeville*	6,061	6,606					•				89,914	102,581
McDonald*			6,837	7,453				3,134			79,764	97,188
Rindge*			8,091	8,819							37,971	54,882
Webb*			6,636	7,233				2,698			150,648	167,214
Roberts,			•	•				•				·
Lower/Middle/Upper*			16,822	18,336	364							35,522
Drexler*		••	3,408	3,715			4,036				54,476	65,635
Jones, Lower/Upper*			10,551	11,500							17,365	39,415
dolles, cower / opper			10,551	11,500							17,303	39,413
Woodward					11,044	12,038	7,739				105,840	136,662
Bacon*					9,492	10,346					50,247	70,085
Andrus-Brannan*					15,002	16,352	1,007			2,805	138,975	174,142
Canal Ranch					16,650	18,148					26,992	61,769
8ishop					8,871	9,670					24,811	43,351
Tyler*					10,456	11,397					13,417	35,270
Bradford					13,530	14,748					359,549	387,827
Jersey					27,571	30,053						57,624
Holland							21,989	23,968			89,462	135,418
McCormack-Williamson							15,205	16,573			207,739	239,517
Deadhorse							6,450	7,030			12,051	25,531
			••									
King							16,120				8,023	41,715
Staten							40,649	44,307			738,654	823,610
Palm							15,126				50,892	82,506
Hotchkiss*							4,102	4,472				8,574
Shima							11,008	11,998			8,402	31,408
Rio Blanco							5,434	5,923			2,476	13,832
New Hope							32,523	35,450				67,974
Wright-Elmwood									12,747	13,894	10,450	37,091
Victoria									21,608			91,137
Coney									7,053	7,688		14,741
8ethel									59,626			160,732
Byron									36,888	•		77,096
Flood Control Subtotal	52,756	57,505	52,345								2,713,085	3,850,243
Fish/Wildlife Mitigatio		819	790	861	1,726	1,881	3,145	3,428	1,985	2,163		17,550
Flood Control Total	53,508	58,323	53,135	57,917	114,706	126,511	192,338	193,040	139,907	165,324	2,713,085	3,867,793
Recreation	5,804	6,326	3,633	3,958	6,092	6,639	6,541	7,128	6,239	6,801		59,162
Fish/Wildlife Enhanceme	nt 7,908	8,620	11,193	12,198	11,833	12,895	16,475	14,319	17,648	13,970	371,578	498,636
Project Total	67,220	73,269	67,960	74,073	132,631	146,044	215,355	214,487	163,795	186,094	3,084,663	4,425,591
*Islands included in Fe	deral pla	ın.										

Table A-37
MODIFIED SYSTEM PLAN
ALLOCATION OF REPAYMENT OBLIGATION -- PROPOSED COST SHARING

	To	tal*	St	ate	Co	unty	Islands	s/Tracts*		rojects er Users
Purpose	**6%/9%	9%/12%	6%/9%	9%/12%	6%/9%	9%/12%	6%/9%	9%/12%	6%/9%	9%/12%
Flood Control Percent	946 100	1,408 100	465 49	692 49	••	,	456 48	678 48	25 3	38 3
Recreation Percent	44 100	64 100	22 50	32 50	22 50	32 · 50	••			••
Fish/Wildlife Enhancement Percent	126 100	194 100	63 50	97 50	63 50	97 50		 		
TOTAL PROJECT Percent	1,116 100	1,666 100	550 49	821 49	85 8	1 29 8	456 41	678 41	25 2	38 2

^{*} Includes relocation betterments. **Percents of Escalation/Bond Rate.

Table A-38

MODIFIED SYSTEM PLAN
ALLOCATION OF ISLAND OR TRACT REPAYMENT OBLIGATION AND OPERATION AND MAINTENANCE COSTS
PROPOSED COST SHARING
6 PERCENT ESCALATION / 9 PERCENT BOND INTEREST

	Annual Repayment				Bond Sale Annual Rep		OEM Costs (1989 Price Level) Per Mile Per			
Island or Tract	Total	Per Mile of Levee	Per Acre	Total	Per Mile of Levee	Per Acre	Total	Per Mile of Levee	Per Acre	
Andrus-Brannan*	2,027,000	201,000	135	1,606,000	159,000	107	40,000	3,911	.3	
8acon*	1,110,000	78,000	200	879,000	61,000	158	57,000	3,981	10	
Bethel	3,854,000	335,000	1,095	2,418,000	210,000	687	268,000	23,339	76	
8ishop	778,000	134,000	359	616,000	106,000	284	23,000	4,007	11	
Bouldin*	1,795,000	100,000	297	1,795,000	100,000	297	71,000	3,938	12	
Brack*	602,000	56,000	124	602,000	56,000	124	44,000	4,088	9	
Bradford	1,604,000	217,000	749	1,271,000	172,000	593	29,000	3,925	14	
Byron	2,862,000	301,000	413	1,795,000	189,000	259	38,000	4,036	6	
Canal Ranch	1,281,000	135,000	428	1,015,000	107,000	339	38,000	4,036	13	
Coney	434,000	80,000	464	272,000	50,000	291	21,000	3,873	22	
Deadhorse	502,000	201,000	2,378	354,000	142,000	1,677	9,000	3,718	44	
Orexler*	507,000	57,000	160	451,000	51,000	143	36,000	4,047	11	
Empire*	396,000	38,000	106	396,000	38,000	106	41.000	3,948	îī	
Holland	1,896,000	174,000	449	1,336,000	123,000	316	43,000	3,944	10	
Hotchkiss*	280,000	33,000	84	198,000	24,000	59	63,000	7,469	19	
Jersey	1,975,000	127,000	569	1,564,000	100,000	451	62,000	3,948.	18	
Jones, Lower/Upper*	911,000	51,000	75	811,000	46,000	67	71,000	3,982	6	
King	1.160,000	129,000	356	818,000	91,000	251	35,000	3,873	11	
Mandeville*			130						14	
	682,000	48,000		682,000	48,000	130	72,000	5,038		
McCormack-Williamson	1,079,000	124,000	659	761,000	87,000	464	35,000	4,007	21	
McOonald*	779,000	57,000	127	694,000	51,000	113	53,000	3,901	9	
New Hope	2,276,000	185,000	233	1,604,000	130,000	164	49,000	3,968	5	
Orwood, Upper	363,000	81,000	214	363,000	81,000	214	24,000	5,422	14	
Palm	1,233,000	158,000	506	869,000	111,000	357	33,000	4,171	13	
Rindge*	697,000	44,000	102	620,000	40,000	91	62,000	3,922	9	
		•		020,000	40,000	7.	02,000			
Rio Blanco Roberts,	380,000	119,000	569	268,000	84,000	401	13,000	3,994	19	
Lower/Middle/Upper*	1,351,000	58,000	42	1,203,000	52,000	37	202,000	8,714	6	
Shima	792,000	98,000	331	558,000	69,000	233	31,000	3,873	13	
Shin Kee	289,000	152,000	269	289,000	152,000	269	8,000	4,281	8	
Staten	3,561,000	140,000	392	2,510,000	98,000	276	101,000	3,964	11	
Terminous*	1,238,000	77,000	· 118	1,238,000	77,000	118	65,000	4,041	6	
Tyler*	835,000	78,000	97	662,000	62,000	77	48,000	4,452	6	
Veale	349,000	61,000	269	349,000	61,000	269	22,000	3,873	17	
Victoria	1,420,000	94,000	196	891,000	59,000	123	59,000	3,924	8	
				031,000	37,000	123	37,000	3,724	0	
Webb*	828,000	65,000	151	737,000	58,000	134	50,000	3,903	9	
Woodward	1,412,000	162,000	775	1,119,000	129,000	614	35,000	4,007	19	
Wright-Elmwood	836,000	123,000	394	524,000	77,000	247	27,000	3,930	13	
	-	-		•	•		•	•		

 ^{*} Islands and tracts in Federal plan.
 ** Common base for comparison of relative financial obligation.

Table A-39
MODIFIED SYSTEM PLAN
ALLOCATION OF ISLAND OR TRACT REPAYMENT OBLIGATION AND OPERATION AND MAINTENANCE COSTS
PROPOSED COST SHARING
9 PERCENT ESCALATION / 12 PERCENT BOND INTEREST

	Annual Repayment				Bond Sale Annual Repa	ayment**	O&M Costs (1989 Price Level)			
		Per Mile	Per		Per Mile	Per		Per Mile	Per	
Island or Tract	Total	of Levee	Acre	<u>Total</u>	of Levee	Acre	<u>Total</u>	of Levee	Acre	
Andrus-Brannan*	3,782,000	374,000	252	2,680,000	265,000	179	49,000	4,890	3	
Bacon*	2,073,000	145,000	374	1,469,000	103,000	265	71,000	4,977	13	
8ethel	7,919,000	689,000	2.250	3,974,000	346,000	1.129	336,000	29,178	95	
8ishop	1,448,000	250,000	668	1,026,000	177,000	473	29,000	5,009	13	
8ouldin*	3,026,000	168,000	500	3,026,000	168,000	500	89,000	4,923	15	
Brack*	991,000	92,000	203	991,000	92,000	203	55,000	5,111	11	
Bradford	3,062,000	414,000	1,429	2,169,000	293,000	1,012	36,000	4,907	17	
Byron	5,859,000	617,000	845	2,940,000	310,000	424	48,000	5,046	7	
Canal Ranch	2,363,000	249,000	789	1,674,000	176,000	559	48,000	5,046	16	
Coney	889,000	165,000	950	446,000	83,000	477	26,000	4,842	28	
Deadhorse	980,000	392,000	4,646	584,000	234,000	2,770	12,000	4,648	55	
Orexler*	906,000	102,000	286	762,000	86,000	241	45,000	5,060	14	
Empire*	664,000	64,000	178	664,000	64,000	178	51,000	4,936	14	
Holland	. 3,731,000	342,000	883	2,225,000	204,000	527	54,000	4,931	13	
Hotchkiss*	543,000	65,000	162	324,000	39,000	96	78,000	9,338	23	
Jersey	3,619,000	232,000	1,043	2,564,000	164,000	739	77,000	4,935	22	
Jones, Lower/Upper*	1,594,000	90,000	131	1,341,000	75,000	110	89,000	4,978	7	
King	2,252,000	250,000	691	1,343,000	149,000	412	44,000	4,842	13	
Mandeville*	1,150,000	80,000	220.	1,150,000	80,000	220	90,000	6,298	17	
McCormack-Williamson	2,109,000	242,000	1,287	1,258,000	145,000	767	44,000	5,009	27	
McDonald*	1,389,000	101,000	226	1,169,000	85,000	190	67,000	4,877	11	
New Hope	4,407,000	358,000	452	2,628,000	214,000	269	61,000	4,960	6	
Orwood, Upper	595,000	132,000	350	595,000	132,000	350	31,000	6,779	18	
Palm	2,429,000	311,000	997	1,448,000	186,000	595	41,000	5,214	17	
Rindge*	1,218,000	78,000	178	1,026,000	65,000	. 150	77,000	4,904	11	
Rio Blanco Roberts,	737,000	230,000	1,104	439,000	137,000	658	16,000	4,993	24	
Lower/Middle/Upper*	2,342,000	101,000	72	1,971,000	85,000	61	253,000	10,894	8	
Shima	1,541,000	190,000	644	919,000	113,000	384	39,000	4,842	16	
Shin Kee	474,000	249,000	441	474,000	249,000	441	10,000	5,352	9	
Staten	7,087,000	278,000	780	4,226,000	166,000	465	126,000	4,956	14	
Terminous*	2,092,000	130,000	200	2,092,000	130,000	200	81,000	5,052	8	
Tyler*	1,541,000	144,000	180	1,091,000	102,000	127	60,000	5,566	7	
Veale	571,000	100,000	440	571,000	100,000	440	28,000	4,842	21	
Victoria	2,934,000	194,000	405	1,473,000	98,000	203	74,000	4,906	10	
Webb*	1,486,000	116,000	271	1,251,000	98,000	228	62,000	4,880	11	
Woodward '	2,657,000	305,000	1,458	1,883,000	216,000	1,033	44,000	5,009	24	
Wright-Elmwood	1,721,000	253,000	811	864,000	127,000	407	33,000	4,913	16	
		•		23.,000	,000	107	33,000	7,713	10	

 ^{*} Islands and tracts in Federal plan.
 ** Common base for comparison of relative financial obligation.

		Í

Table A-42 INCREMENTAL PLAN ALLOCATION OF SUMMED CAPITAL COSTS PROPOSED COST SHARING

(In Thousands of Dollars, 1981 Prices)

Item	Project	Federal	Monfederal
	Total	Allocation	Allocation
Flood Control, Federal Participation	Islands an	d Tracts	
Construction Mitigation Lands, Easements, Rights of Way Relocations Relocation Betterments			
Total Flood Control	448,400	285,800	,162,600
Percent	100%	6 4%	36%
Recreation and Fish and	d Wildlife	Enhancement	,
Recreation Percent	40,000	20,000	20,000
	100%	50%	50%
Fish and Wildlife Enhancement Percent	49,000 100%		49,000
PROJECT TOTALS PERCENT	537,400	305,800	231,600
	100%	57%	43%

Table A-43 INCREMENTAL PLAN ALLOCATION OF ESCALATED SUMMED CAPITAL COSTS, BY PARTICIPANT PROPOSED COST SHARING

				Non-Federal															
	Fede	ral Tot	tal		Total			State					Island	S/Trac	ts	Water Projects/Users			
	1981	Escal		1981	Escala		1981	Escala		1981	Escala			Escala		1981	Escala		
Purpose	<u>Prices</u>	6%	9%	<u>Prices</u>	6%	9%	Prices	6%	9%	<u>Prices</u>	6%	9%	Prices	6%	9%	<u>Prices</u>	6%	9%	
Flood Control Percent	286	986	2,378	163 100	548 100	1,304 100	78 48	264 48	628 48	:	:	-	80 49	268 49	636 49	5 3	16 3	40 3	
Recreation Percent	20	38	51	20 100	38 100	52 100	10 50	19 50	26 50	10 50	, 19 , 50	26 50	-	-	-	-	-	-	
Fish/Wildlife Enhancement Percent	-	130	-	48 100	44 100	414 100	25 50	22 50	207 50	24 50	22 50	207 50	:	:	-	:	:	:	
TOTAL Percent	306	1,154	2,429	231 100	630 100	1,770 100	112 48	305 48	861 49	34 15	41 6	233 13	80 35	268 43	636 36	5 2	16 3	40 2	

Table A-47

SCHEDULE OF NON-FEDERAL COSTS, INCREMENTAL PLAN
PROPOSED COST SHARING
(In Thousands of Dollars, 1981 Prices)

Island or Tract	1989	1990	1991	1992	1993	1994	Future Stage	Total
Bouldin	7,330	7,330					10,057	24,717
Terminous	5,010	5,010				493	6,585	17,099
Empire	1,810	1,810				119	1,650	5,388
Brack	3,262	3,262					779	7,303
Mandeville	3,042	3,042					3,453	9,537
McDonald			2,888	2,888			4,127	9,903
Rindge			3,418	3,418			813	7,649
Webb			2,803	2,803			5,117	10,723
Roberts,						•		
Lower/Middle/Upper			7,106	7,106	129			14,341
Orex ler			1,440	1,440			3,291	6,170
Jones, Lower/Upper					4,457	4,457	1,427	10,340
Bacon					3,375	3,375	4,073	10,822
Andrus-Brannan					5,334	5,334	6,348	17,015
Tyler					3,718	3,718	781	8,216
Hotchkiss	••				1,228	1,228		2,455
Flood Control Subtotal	20,454	20,454	17,654	17,654	18,240	18,723	48,500	161,678
Fish/Wildlife Mitigation		147	157	157	130	130		869
Flood Control Total	20,601	20,601	17,812	17,812	18,370	18,853	48,500	162,547
Recreation	3,035	3,035	3,526	3,526	3,581	3,581		20,283
Fish/Wildlife Enhancemer	nt 5,039	5,039	5,346	5,346	5,691	5,691	16,525	48,677
Project Total	28,675	28,675	26,683	26,683	27,642	28,125	65,025	231,507

Table A-48

SCHEDULE OF NON-FEDERAL COSTS, INCREMENTAL PLAN
PROPOSED COST SHARING
6 PERCENT ESCALATION RATE
(In Thousands of Dollars)

Island or Tract	1989	1990	1991	1992	1993	1994	Future Stage	Total
Bouldin	11,683	12,384					65,500	89,568
Terminous	7,986	8,465				1,053	51,382	68,885
Empire	2,884	3,057				254	8,295	14,490
Brack	5,199	5,511					2,099	12,808
Mandeville	4,848	5,139					27,146	37,133
McDonald			5,172	5,483			27,915	38,570
Rindge			6,121	6,488			10,005	22,614
Webb			5,020	5,321			43,607	53,948
Roberts,								
Lower/Middle/Upper			12,725	13,489	261			26,474
Drexler			2,578	2,733			20,502	25,813
Jones, Lower/Upper					8,968	9,506	8,685	27,159
Bacon					6,790	7,198	20,962	34,950
Andrus-Brannan					10,733	11,377	46,110	68,219
Tyler					7,480	7,929	5,341	20,751
Hotchkiss		••			2,470	2,618		5,089
Flood Control Subtotal	32,600	34,556	31,616	33,513	36,702	39,934	337,549	546,471
Fish/Wildlife Mitigation		249	282	299	261	277	••	1,602
Flood Control Total	32,835	34,805	31,898	33,812	36,963	40,211	337,549	548,073
Recreation	4,837	5,128	6,314	6,692	7,206	7,638		37,815
Fish/Wildlife Enhancemen	nt 8,031	8,513	9,574	10,148	11,451	12,138	113,345	173,201
Project Total	45,703	48,446	47,785	50,653	55,620	59,988	450,894	759,089

SCHEDULE OF NON-FEDERAL COSTS, INCREMENTAL PLAN PROPOSED COST SHARING
9 PERCENT ESCALATION RATE
(In Thousands of Dollars)

Island or Tract	1989	1990	1991	1992	1993	1994	Future Stage	<u>Total</u>
Bouldin	14,606	15,921					186,687	217,214
Terminous	9,983	10,882				1,513	161,718	184,097
Empire	3,606	3,930				365	18,925	26,827
Brack	6,499	7,084					3,373	16,957
Mandeville	6,061	6,606					89,914	102,581
McDonald			6,837	7,453			82,898	97,188
Rindge			8,091	8,819			37,971	54,882
webb			6,636	7,233			153,345	167,214
Roberts,			•					
Lower/Middle/Upper			16,822	18,336	364			35,522
Drexler			3,408	3,715			58,512	65,635
Jones, Lower/Upper					12,535	13,663	20,631	46,829
Bacon					9,492	10,346	50,247	70,085
Andrus-Brannan					15,002	16,352	142,787	174,142
Tyler					10,456	11,397	13,417	35,270
Hotchkiss					3,453	3,764		7,217
Flood Control Subtotal Fish/Wildlife Mitigation	40,755 293	44,423 320	41,794 372	45,556 406	51,302 365	57,400 398	1,020,426	1,301,657 2,154
Flood Control Total	41,049	44,743	42,167	45,962	51,667	57,798	1,020,426	1,303,812
Recreation	6,047	6,592	8,346	9,097	10,072	10,979		51,133
Fish/Wildlife								
Enhancement	10,041	10,944	12,656	13,795	16,007	17,447	333,646	414,536
Project Total	57,136	62,279	63,169	68,854	77,746	86,224	1,354,072	1,769,481

Table A-50
INCREMENTAL PLAN
ALLOCATION OF REPAYMENT OBLIGATION -- PROPOSED COST SHARING

	Total*		State		Ca	ounty	Is lands	/Tracts*	Water Projects and Water Users		
Purpose	**6%/9%	9%/12%	6%/9%	9%/12%	6%/9%	9%/12%	6%/9%	9%/12%	6%/9%	9%/12%	
Flood Control Percent	290 100	402 100	138 48	191 48			144 49	199 49	8	12 3	
Recreation Percent	40 100	54 100	20 50	27 50	20 50	27 50					
Fish/Wildlife Enhancement Percent	104 100	156 100	52 50	78 50	52 50	78 50			 		
TOTAL PROJECT Percent	434 100	613 100	210 48	296 48	72 17	106 17	144 33	199 33	8 2	12 , 2	

^{*} Includes relocation betterments.

Table A-51
INCREMENTAL PLAN
ALLOCATION OF ISLAND OR TRACT REPAYMENT OBLIGATION AND OPERATION AND MAINTENANCE COSTS
PROPOSED COST SHARING
6 PERCENT ESCALATION / 9 PERCENT BOND INTEREST

	Annu	al Repayment			8 Bond Sale Annual Repa	yment**	O&M Costs (1989 Price Level)				
Inland on Total	Todal	Per Mile	Per	T-A-3'	Per Mile	Per		Per Mile	Per		
Island or Tract	<u>Total</u>	of Levee	Acre	Total	of Levee	Acre	Total	of Levee	Acre		
Andrus-Brannan*	1,997,000	198,000	133	1,582,000	157,000	105	39,000	3,899	3		
Bacon*	1,086,000	76,000	196	860,000	60,000	155	57,000	3,969	10		
Bouldin*	1,781,000	99,000	295	1,781,000	99,000	295	71,000	3,925	12		
Brack*	598,000	55,000	123	598,000	55,000	123	44,000	4,076	- 9		
Drexler*	506,000	57,000	160	451,000	51,000	142	36,000	4,035	11		
Empire*	393,000	38,000	106	393,000	38,000	106	41,000	3,936	11		
Hotchkiss*	240,000	29,000	71	190,000	23,000	57	63,000	7,446	19		
Jones, Lower/Upper*	1,005,000	56,000	83	796,000	45,000	66	71,000	3,970	6		
Mandeville*	677,000	47,000	129	677,000	47,000	129	72,000	5,022	14		
McDonald*	778,000	57,000	127	693,000	51,000	113	53,000	3,889	9		
Rindge* Roberts.	696,000	44,000	102	619,000	39,000	91	61,000	3,910	9		
Lower/Middle/Upper*	1,349,000	58,000	41	1,201,000	52,000	37	202,000	8,687	6		
Terminous*	1,228,000	76,000	117	1,228,000	76,000	117	65,000	4,029	6		
Tyler*	815,000	76,000	95	645,000	60,000	75	47,000	4,438	š		
Webb*	827,000	65,000	151	736,000	57,000	134	50,000	3,891	9		

^{**}Percents of Escalation/Bond Rate.

 ^{*} Islands and tracts in Federal plan.
 ** Common base for comparison of relative financial obligation.

Table A-52
INCREMENTAL PLAN
ALLOCATION OF ISLAND OR TRACT REPAYMENT OBLIGATION AND OPERATION AND MAINTENANCE COSTS
PROPOSED COST SHARING
9 PERCENT ESCALATION / 12 PERCENT BOND INTEREST

	Annu	al Repayment			8 Bond Sale Annual Repa	yment**	OWM Costs (1989 Price Level)				
Island or Tract	Total	Per Mile of Levee	Per Acre	Total	Per Mile of Levee	Per Acre	Total	Per Mile of Levee	Per Acre		
Andrus-8rannan* 8acon* Bouldin* 8rack* Orexler*	3,727,000 2,029,000 3,004,000 984,000 904,000	369,000 142,000 167,000 91,000 102,000	248 366 497 202 286	2,640,000 1,437,000 3,004,000 984,000 761,000	261,000 101,000 167,000 91,000 86,000	176 259 497 202 240	49,000 71,000 88,000 55,000 45,000	4,875 4,962 4,907 5,095 5,044	3 13 15 11 14		
Empire* Hotchkiss* Jones, Lower/Upper* Mandeville* McDonald*	659,000 440,000 1,860,000 1,141,000 1,387,000	64,000 52,000 105,000 80,000 101,000	177 131 153 218 226	659,000 312,000 1,318,000 1,141,000 1,167,000	64,000 37,000 74,000 80,000 85,000	177 93 108 218 190	51,000 78,000 88,000 90,000 67,000	4,921 9,309 4,963 6,278 4,862	14 23 7 17 11		
Rindge* Roberts, Lower/Middle/Upper* Terminous* Tyler* Webb*	1,217,000 2,338,000 2,077,000 1,503,000 1,483,000	77,000 101,000 129,000 140,000 116,000	178 72 198 175 270	1,024,000 1,968,000 2,077,000 1,065,000 1,248,000	65,000 85,000 129,000 100,000 98,000	150 60 198 124 227	77,000 252,000 81,000 59,000 62,000	4,888 10,861 5,037 5,549 4,865	11 8 8 7 11		

 ^{*} Islands and tracts in Federal plan.
 ** Common base for comparison of relative financial obligation.

Appendix B

ENABLING STATE LEGISLATION

CONTENTS, APPENDIX B

																		Page
Water	Code	Section	12981,	et.	seq.	•	•	•	•	•	•	•	•	•	•	•	•	199
Water	Code	Section	12225,	et.	seq.	•	•	•	•	•	•	•	•	•	•	•	•	200
Water	Code	Section	12881.4	4. Se	ec. 3	•												202

WATER CODE

PART 9. DELTA LEVEE MAINTENANCE

Part 9 was added by Stats. 1973, c. 717, p. 1292, § 1, urgency, eff. Sept. 24, 1973.

12981. Unique resources with statewide significance; preservation

The Legislature hereby finds and declares that the delta is endowed with many invaluable and unique resources and that these resources are of major statewide significance. The Legislature further finds and declares that the delta's uniqueness is particularly characterized by its hundreds of miles of meandering waterways and the many islands adjacent thereto, that in order to preserve the delta's invaluable resources, which include highly productive agriculture, recreational assets, and wildlife environment, the physical characteristics of the delta should be preserved essentially in their present form, and that the key to preserving the delta's physical characteristics is the system of levees defining the waterways and producing the adjacent islands. (Added by Stats. 1973, c. 717, p. 1293, § 1, urgency, eff. Sept. 24, 1973.)

Senate Bill No. 1390

CHAPTER 1302

An act to amend Section 12987 of, and to add Chapter 3 (commencing with Section 12225) to Part 4.5 of Division 6 of, the Water Code, relating to Sacramento-San Joaquin Delta levees, making an appropriation therefor, and declaring the urgency thereof, to take effect immediately.

[Approved by Governor September 28, 1976 Filed with Secretary of State September 29, 1976.]

The people of the State of California do enact as follows:

SECTION 1. Chapter 3 (commencing with Section 12225) is added to Part 4.5 of Division 6 of the Water Code, to read:

CHAPTER 3. SACRAMENTO-SAN JOAQUIN DELTA LEVEES

Article 1. Plan for Improvement

12225. The plan for improvement of the Sacramento-San Joaquin Delta levees, as set forth in Bulletin No. 192 of the Department of Water Resources, dated May 1975, is approved as a conceptual plan to guide the formulation of projects to preserve the integrity of the delta levee system.

Article 2. Construction

12226. The department may prepare detailed plans and specifications for the improvement of the levees or levee segments specified in Section 12225.

12226.1. The department shall report on its recommendations to the Legislature concerning the improvement of the levees specified in Section 12225, including, but not limited to, recommendations concerning construction, cost sharing, land use, zoning, fiood control, recreation, fish and wildlife habitat, and aesthetic values. The department shall submit interim reports to the Legislature concerning the status of the delta levees program on or before January 15 of each year beginning in 1978, with the final report on its recommendations to be made on or before January 15, 1980.

12226.2. The department may proceed immediately with the improvement of a pilot levee project which the department determines, after a public hearing, is in critical need of improvement and which is highly susceptible to failure in the absence of such immediate improvement. Prior to commencing such improvement, the department shall enter into an agreement with a local agency whereby the local agency will bear at least 20 percent of the cost of the improvement.

Article 3. Short Title

12227. This chapter shall be known and may be cited as the "Nejedly-Mobley Delta Levees Act".

SEC. 2. Section 12987 of the Water Code is amended to read: 12987. Local agencies maintaining nonproject levees shall be

eligible for reimbursement pursuant to the provisions of this part upon submission to and approval by the board of plans for the maintenance and improvement of such nonproject levees, including plans for the annual routine maintenance of such levees, in accordance with the criteria adopted by the board. Such plans shall also be compatible with the plan for improvement of the delta levees as set forth in Bulletin No. 192 of the department, dated May, 1975, and as approved in Section 12225, and shall include such provision for protection of the wildlife habitat as the board deems proper. Such plans shall also take into account the most recently updated Delta Master Recreation Plan prepared by the Resources Agency. Upon approval of such plans by the board, the local agencies shall enter into an agreement with the board to perform the maintenance and improvement work, including the annual routine maintenance work, specified in such plans. In the event that applications for state funding in any year exceed the state funds available, the board shall apportion the funds among those levees or levee segments that are identified by the department as most critical and beneficial, considering the needs of flood control, water quality, recreation, and wildlife.

SEC. 3. The sum of three hundred fifty thousand dollars (\$350,000) is hereby appropriated from the General Fund in accordance with the following schedule:

Schedule:

(a) To the Department of Water Resources for expenditure without regard to fiscal years for the purposes of Chapter 3 (commencing with Section 12225) of Part 4.5 of Division 6 of the Water Code

\$150,000

\$200,000

SEC. 4. This act is an urgency statute necessary for the immediate preservation of the public peace, health, or safety within the meaning of Article IV of the Constitution and shall go into immediate effect. The facts constituting such necessity are:

In order to make available for expenditure during the 1976-77 fiscal year the funds appropriated by this act for the maintenance and improvement of levees in the Sacramento-San Joaquin Delta and to provide vitally needed flood protection at the earliest possible time, it is necessary that this act take effect immediately.

Assembly Bill No. 4193

CHAPTER 970

An act to authorize a levee subsidence program, and to amend Section I2881.4 of the Water Code, relating to water projects.

[Approved by Governor September 14, 1975, Filed with Secretary of State September 14, 1976]

The people of the State of California do enact as follows:

SECTION 1. Section 12881.4 of the Water Code is amended to read:

12881 4. In the administration of this chapter, the department and the commission shall give preference to projects involving the development of new basic water supplies. If the water supply function of a dam and reservoir facility is operationally limited or eliminated for dam safety purposes, pursuant to Part 1 commencing with Section 6000) of Division 3, the department and the commission may give consideration to projects which would rehabilitate the dam and reservoir for water supply purposes. The rehabilitation of facilities may include comparable replacement facilities.

SEC. 2. The Legislature finds and declares that:

- (a) Peatlands in the Sacramento-San Joaquin Deita are subsiding up to three inches per year due to soil oxidation, compaction, and wind erosion.
- (b) Because of continued subsidence, much of the delta lands have failen below sea level, and larger and larger levees have had to be constructed in order to restrain tidal and flood waters from permanently inundating these valuable delta agricultural lands.
- (c) Without major levee works or without preventing subsidence, local levee maintenance districts will have increased economic difficulties in maintaining a viable levee system.
- (d) A partial alternative to costly state and rederal major levee works would be a subsidence control program undertaken along the landside of levees, if such control is determined to be economically and engineeringly viable.
- SEC. 3. The Department of Water Resources is hereby directed to undertake an investigation of the viability of a subsidence control program in the Sacramento-San Joaquin Delta. The department shall report its findings to the Legislature.

Appendix C

DEPARTMENT OF WATER RESOURCES COMMENTS ON U. S. ARMY CORPS OF ENGINEERS DRAFT FEASIBILITY REPORT AND DRAFT ENVIRONMENTAL IMPACT STATEMENT SACRAMENTO-SAN JOAQUIN DELTA

CONTENTS, APPENDIX C

		Page
Letter:	Colonel Arthur E. Williams, District Engineer, Sacramento District, Corps of Engineers, to Ronald Robie, Director, Department of Water Resources, October 13, 1982	207
Letter:	Ronald B. Robie, Director, Department of Water Resources, to Colonel Arthur E. Williams, District Engineer, Sacramento District, Corps of Engineers, November 5, 1982	208
Letter:	Ronald B. Robie, Director, Department of Water Resources, to Colonel Arthur E. Williams, District Engineer, Sacramento District, Corps of Engineers, December 9, 1982	210

				•

DEPARTMENT OF THE ARMY

SACRAMENTO DISTRICT, CORPS OF ENGINEERS 650 CAPITOL MALL SACRAMENTO, CALIFORNIA 95814

13 October 1982

Mr. Ronald Robie, Director Department of Water Resources Resources Building 1416 Ninth Street Sacramento, CA 95814

Dear Mr. Robie:

We will be releasing the draft feasibility report concerning solutions to the flood problems of the Sacramento-San Joaquin Delta in the near future. Preparation of this report has been a successful example of cooperation between our respective agencies.

For the past several years, we have looked to the non-Federal sponsor of studies or projects to chair public meetings in connection with these studies. However, we realize that your Department is working with local entities to develop mutually acceptable divisions of sharing non-Federal costs identified with any potential project to be participated in by the Federal Government. We realize that discussions of cost-sharing are being conducted by your staff with reclamation districts, recreationists, and other interests, and that final cost-sharing arrangements are yet to be determined. In view of these circumstances, I believe it would be appropriate in this instance for the Corps of Engineers to conduct the public meetings concerning this study. We believe this approach would preclude addressing local cost-sharing, which is not relevant to the Federal interest in the Delta.

We plan to hold two informal workshops on 9 and 10 November in Rio Vista and Stockton, respectively. These workshops will be followed by two formal public meetings on 17 and 18 November in Stockton and Rio Vista, respectively. Since this study has been a joint effort between the Department and the Corps, we would appreciate participation in the workshops and public meetings by your Department. In addition, we believe an expression of support from you for the potential plan of improvement is warranted, particularly since the Department of Water Resources will be expected to provide the local cooperation for the flood control and recreation features of a recommended plan.

We sincerely appreciate the assistance and cooperation of your staff, and I am sure we can develop a mutually acceptable plan to protect the features of the Delta.

Sincerely,

ARTHUR E. WILLIAMS

Anhart le illem.

Colonel, CE

District Engineer

DEPARTMENT OF WATER RESOURCES

P.O BOX 388 SACRAMENTO 95802

(916) 445-9248

November 5, 1982

Colonel Arthur E. Williams District Engineer Sacramento District U. S. Corps of Engineers Department of the Army 650 Capitol Mall, Room 6309 Sacramento, CA 95814

Dear Colonel Williams:

This is in response to your letter of October 13, 1982, regarding release of the Corps' draft feasibility report concerning solutions to the flood problems of the Sacramento-San Joaquin Delta. Subsequently, we received a number of copies of that report entitled "Draft Feasibility Report and Draft Environmental Impact Statement, Sacramento-San Joaquin Delta, California", October 1982. We also received the information brochure under the same date describing the study and Corps' findings as a basis for the public meetings and workshops which you have scheduled.

We agree that it would be appropriate for the Corps of Engineers to conduct the public meetings concerning your report. We concur that the matter of sharing nonfederal costs, on which our staff has been working, is not a proper subject for the public meetings on the Corps' report. We will address this issue in our report to the Legislature later this year.

The Department would be pleased to participate in the workshops and public meetings. Our representatives will be Wayne MacRostie, Chief of the Central District, and members of his staff who have participated in the study with the Corps.

Regarding your statement about support for the potential plan of improvement, we will also address this matter in our report to the Legislature. It is our intent to include in our report a description of the alternative plans of improvement that have been studied, an analysis of their costs and benefits, allocations of the costs between federal and nonfederal

Colonel Arthur E. Williams Page 2 November 5, 1982

interests and alternative means by which nonfederal costs might be shared among State and local interests. Since the cost of improvement is most significant, the Legislature must decide what plan to support and the degree to which the State will participate in any federal program.

We do, of course, strongly support the maximum possible participation by the Federal Government in any Delta levee improvement project supported by the Legislature.

We shall provide specific comments on the draft feasibility report and environmental impact statement before your deadline of December 3, 1982. We shall also discuss with you which of these comments are of a nature that would be appropriate to discuss in the workshops and the formal public meetings.

Sincerely,

/s/ Ron

Ronald B. Robie Director

ARTMENT OF WATER RESOURCES

MENTO

5802 i) 445-9248

December 9, 1982

Colonel Arthur E. Williams District Engineer Sacramento District U. S. Corps of Engineers Department of the Army 650 Capitol Mall Sacramento, CA 95814

Dear Colonel Williams:

This supplements our letter to you dated November 5, 1982, which responded to your October 13 letter regarding Department participation in the workshops and public meetings on your "Draft Feasibility Report and Draft Environmental Impact Statement, Sacramento-San Joaquin Delta, California", October 1982. The Department is hereby submitting written comments on this report as specifically requested in your letter of transmittal to "all interested parties" dated October 14.

As you are aware, the Department has been working on its report on the investigation of alternative levee improvement programs in which the Corps and Department cooperated. We appreciate the assistance provided by your staff, particularly in making information available to us on descriptions of alternative plans, estimates of costs and benefits, cost apportionment between federal and nonfederal interests and other factors before your draft report was published so that we might have a starting point for our analyses.

As our November 5 letter stated, our report will present alternative plans, cost-sharing possibilities for nonfederal costs and other information which will enable the California Legislature to decide what plan to support and the degree to which the State will participate financially in any federal program and in any supplemental nonfederal program. We believe that the Legislature must make these important public policy determinations in view of the most significant cost of improving Delta levees. Legislature must also determine to what degree the State is willing to provide the various nonfederal assurances listed on pages 126 through 128 of the Corps' draft report. Further, as our letter stated, we hope that whatever overall plan is supported by the Legislature, it will receive the maximum possible degree of federal participation.

Colonel Arthur E. Williams Page 2 December 9, 1982

For our report, we have been focusing on the ways in which nonfederal costs might be financed and shared among the State and other benefited interests. This has required us to consider the benefits that would accrue to various functions or interests, both federal and nonfederal. These studies are the bases for the comments that follow.

Analyses of the Corps' Alternatives

A major part of our report will consist of descriptions and financial analyses of the "System", "Modified System" and "Incremental Flood Control Plans" identified by the Corps, but modified for the without Peripheral Canal conditions. For those analyses, we have used the basic federal-nonfederal flood control cost apportionments developed by the Corps for its Incremental Plan. Proceeding from the nonfederal costs for that plan and, for the other candidate plans, adding the respective supplemental flood control costs required to improve the present nonproject levees, we have made sample analyses of cost sharing among the State of California, local flood control beneficiaries, State and Federal water supply projects and consumers of Delta water.

The initial cost allocations between flood control and water quality-water supply functions have been based on the respective benefits. The flood control benefits have been those estimated by the Corps based on the assumption that the base (without project) condition would be without the Peripheral Canal and with continued restoration of Delta islands when levees fail in the future. In the evaluation of benefits from reduction of adverse water quality and water supply impacts in the Delta and in areas to which Delta water is exported, when islands flood in low flow months, we have departed from the Corps' analysis. The benefits would be two-fold: reduction of fresh water loss and reduction of water quality problems created by a break.

We now estimate that the net quantities of water needed to flush the Delta after repair of such breaks would be considerably less than the estimates used by the Corps. Under State Water Resources Control Board Water Right Decision 1485, the water in the western Delta and upper Suisun Bay would be less saline during future breaks in low flow periods than it was in 1972 when Brannan and Andrus Islands flooded, the situation on which the Corps based its benefit estimates. Also, under the continued restoration assumption, the water quality-water supply effects would be short term.

Colonel Arthur E. Williams Page 3 December 9, 1982

Much of the volume of water in the flooded islands would be recovered later in the low flow months when the water is pumped from the islands and would be available to meet Delta demands and salinity control outflows. In most cases, this would largely compensate for flushing water released earlier from State Water Project and Federal Central Valley Project reservoirs. Finally, if the winter following the break is sufficiently wet to permit filling any net loss of storage in project reservoirs due to flushing releases, the project yields would be unaffected.

The second category of benefits (reduction of water quality problems) was not considered by the Corps. The saline water resulting from a break, without the Peripheral Canal, that could not be flushed out would have to be used for irrigation or domestic purposes in the Delta or in export service areas. A reduction in the number of levee failures would reduce resulting economic losses. One method of measuring such benefits is to equate them to the costs of programs required to prevent or mitigate adverse quality impacts.

The net result of accounting for these two benefit factors under the continued restoration assumption is to substantially reduce the water quality and water quantity benefits attributable to the lessening of the frequency of such events from a levee improvement program. If a Delta levee program is authorized by Congress, and the continued restoration assumption is adopted as the without project condition (see our recommendations below on this point and the Peripheral Canal), we believe that the Corps' post-authorization studies should account for these revised benefit factors. Of course if the nonrestoration assumption is adopted as the base condition, the analyses would have to consider both short and long term effects.

There is one further aspect of the Corps' analyses described in the draft feasibility report that should be noted. It is our understanding that the annual operation and maintenance (0&M) costs for flood control and water quality presented in Tables 3, 4 and 5 represent total 0&M costs between phases of staged construction. Further, we understand that total annualized costs of continuing staged construction are included as parts of the annual cost. If these views are correct, the annual capital and 0&M costs are overstated and the resulting benefit-cost ratios are understated. The proper values of such costs to be compared with benefits should include only those costs in excess of the annual amounts presently expended for 0&M and the raising of levees to compensate for settlement.

Colonel Arthur E. Williams Page 4 December 9, 1982

If such incremental 0&M and staged construction costs were used, it is possible that benefit-cost ratios only slightly less than one to one would be increased to greater than unity and levee improvement on additional islands would be considered economically justified. This possible reduction in annual costs should also be addressed during the Corps' post-authorization studies if the project is authorized by the Congress.

Alternative Without Project Assumptions

We have also evaluated, largely from a qualitative viewpoint, the results of assuming the nonrestoration alternative as a without project condition. Under this assumption, the levees would not be repaired and the islands would not be pumped out after they are flooded. The Corps' sensitivity analysis of candidate plans (Table 10) indicates that the net benefits from all of the alternative plans would be greatest with this assumption combined with the without Peripheral Canal assumption.

We believe that with the ever increasing costs of repairing levees and evacuating water from flooded islands, the decreasing availability of local and State funds and the serious questions that have been raised by the Federal Emergency Management Agency about its financial participation in future island restorations after floods, the nonrestoration assumption should either be totally adopted by the Corps or given substantial weight in relation to the continued restoration assumption. Further, the adverse decision by the California voters at the June 1982 primary election on Proposition 9, which would have authorized the Peripheral Canal, makes it more logical at this time to assume as a without project condition that that proposed facility will not be built. With such revised assumptions, it appears that a levee improvement project more extensive than the Corps' Incremental Flood Control Plan would be found to have economic justification.

Scope of Federal Participation

In view of the foregoing and of the importance and broad value of the Delta from Federal, State, and local points of view, we return to our recommendation that the Federal Government participate to the greatest degree possible in any Delta levee improvement plan supported by the California Legislature. It is our opinion that the Corps' report adopts an unnecessarily restrictive approach to the determination of federal interest in Delta flood control improvements. We believe that there is a legitimate federal interest in the Delta. We believe that the State should

Colonel Arthur E. Williams Page 5 December 9, 1982

have the primary responsibility for selecting a plan for Delta levees improvement and that the California Legislature is the logical forum for selecting that plan. It is our opinion that the Corps could and should justify recommendation of the System Flood Control Plan. This is particularly significant because it is certain that if something less than the total Delta is covered by a levee improvement program, the levees remaining after successive flooding of islands would be subjected to greater wave wash, seepage and possibly other factors and be more susceptible to failure than with the present configuration of the Delta islands and channels.

Possible Use of Polders

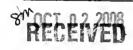
Finally, our report will acknowledge the Legislature's policy declaration that the Delta should be preserved in its present physical form by means of a levee improvement program. However, we recognize that the cost of achieving this objective may be greater than the Federal, State, and local interests are able to afford. Our report will state without elaboration and analysis that the Legislature may choose to amend its policy so as to permit the further study of levee improvements to form large polders in order to preserve as many of the values of the Delta as possible, with some sacrifice of recreational, environmental and aesthetic factors because of financial limitations.

We shall welcome discussions with you or your staff in regard to these comments.

Sincerely,

/s/ Ronald B. Robie

Ronald B. Robie Director



HAY I .

1675

THIS BOOK IS DUE ON THE LAST DATE STAMPED BELOW

BOOKS REQUESTED BY ANOTHER BORROWER ARE SUBJECT TO IMMEDIATE RECALL

OCT 0 3 2008

Physical Sciences Library

LIBRARY, UNIVERSITY OF CALIFORNIA, DAVIS

D4613-1 (5/02)M

CONVERSION FACTORS

Quantity	To Convert from Metric Unit	To Customary Unit	Multiply Metric Unit By	To Convert to Metric Unit Multiply Customary Unit By
Length	millimetres (mm)	inches (in)	0.03937	25.4
3	centimetres (cm) for snow depth	inches (in)	0.3937	2.54
	metres (m)	feet (ft)	3.2808	0.3048
	kilometres (km)	miles (mi)	0.62139	1.6093
Area	square millimetres (mm²)	square inches (in²)	0.00155	645.16
•	square metres (m²)	square feet (ft²)	10.764	0.092903
	hectares (ha)	acres (ac)	2.4710	0.40469
	square kilometres (km²)	square miles (mi²)	0.3861	2.590
Volume	litres (L)	gallons (gal)	0.26417	3.7854
	megalitres	million gallons (106 gal)	0.26417	3.7854
	cubic metres (m³)	cubic feet (ft³)	35.315	0.028317
	cubic metres (m³)	cubic yards (yd³)	1.308	0.76455
	cubic dekametres (dam³)*	acre-feet (ac-ft)	0.8107	1.2335
Flow	cubic metres per second (m³/s)	cubic feet per second (ft³/s)	35.315	0.028317
	litres per minute (L/min)	gallons per minute (gal/min)	0.26417	3.7854
	litres per day (L/day)	gallons per day (gal/day)	0.26417	3.7854
	megalitres per day (ML/day)	million gallons per day (mgd)	0.26417	3.7854
	cubic dekametres per day (dam³/day)	acre-feet per day (ac- ft/day)	0.8107	1.2335
Mass	kilograms (kg)	pounds (Ib)	2.2046	0.45359
	megagrams (Mg)	tons (short, 2,000 lb)	1.1023	0.90718
Velocity	metres per second (m/s)	feet per second (ft/s)	3.2808	0.3048
Power	kilowatts (kW)	horsepower (hp)	1.3405	0.746
Pressure	kilopascals (kPa)	pounds per square inch (psi)	0.14505	6.8948
	kilopascals (kPa)	feet head of water	0.33456	2.989
Specific Capacity	litres per minute per metre drawdown	gallons per minute per foot drawdown	0.08052	12.419
Concentration	milligrams per litre (mg/L)	parts per million (ppm)	1.0	1.0
Electrical Conductivity	microsiemens per centimetre (uS/cm)	micromhos per centimetr	e 1.0	1.0
Temperature	degrees Celsius (°C)	degrees Fahrenheit (°F)	(1.8 × °C)+	32 (°F-32)/1.8

State of California—Resources Agency Department of Water Resources P.O. Box 388 Sacramento 95802

CALIFORNIA, UNIVERSITY OF SHIELDS LIBRARY, DOCUMENTS DEPT

FOURTH CLASS MAIL

