REUSABLE TUNNEL MATERIAL TESTING REPORT

Delta Habitat Conservation and Conveyance Program Standard Agreement 4600008104, Task Order WGI 14

March 2014

Prepared for:

STATE OF CALIFORNIA DEPARTMENT OF WATER RESOURCES Division of Engineering 1416 9th Street, Room 510 Sacramento, CA 95814

Prepared by:

2870 Gateway Oaks Drive, Suite 150 Sacramento, CA 95833

In Association with:

California Department Of Water Resources Advancing the Bay Delta Conservation Plan Delta Habitat Conservation & Conveyance Program

DWR-207

EXE	CUTI	/E SUMM	MARY	ES-1
1.0	INTR	ODUCT	ON	
	1.1	Proiect	Background	
	1.2	-	e and Scope	
	1.3	•	face Conditions	
2.0	TEQI		OGRAM	2.4
2.0	2.1		mple Selection	
	2.1		nditioning	
	2.2	2.2.1	Typical Construction Procedures	
		2.2.1	Conditioner Products and Sample Preparation	
	2.3		• Testing	
	2.0	2.3.1	Geotechnical Properties	
		2.3.1	Environmental Properties	
		2.3.3	Planting Suitability Properties	
		2.0.0		
3.0	RESI	ULTS AN	ND CONCLUSIONS	3-1
	3.1	Geotec	hnical Properties	3-1
		3.1.1	Physical and Index Properties	3-1
		3.1.2	Compressibility and Strength Properties	3-5
		3.1.3	Permeability Properties	3-7
		3.1.4	Geotechnical Property Conclusions	3-7
	3.2	Environ	mental Properties	3-8
		3.2.1	Analytical Results	3-8
		3.2.2	Waste Characterization	3-15
		3.2.3	Human Health	3-19
		3.2.4	Ecological Resources	
		3.2.5	Environmental Property Conclusions	
	3.3	Planting	g Suitability Properties	
		3.3.1	Conditioner Effects on Soil Properties	
		3.3.2	Planting Suitability Conclusions	3-23
4.0	ACK	NOWLE	DGEMENTS AND LIMITATIONS	4-1
	4.1	Acknow	/ledgements	4-1
	4.2	Limitatio	ons	4-1
5.0	REFE	ERENCE	S	5-1

Tables

Table 2-1.	Summary of 2009 through 2012 Investigation Results	2-1
Table 2-2.	Soil Conditioner Parameters	2-2
Table 2-3.	Summary of Conditioner Products and Testing Program	2-3
Table 2-4.	Summary of Soil Conditioning Test Parameters	2-5
Table 2-5.	Quality Assessment Summary of Environmental Test Data	2-7
Table 2-6.	Summary of Analytes not Qualified by Laboratory	2-12
Table 3-1.	Summary of Geotechnical Test Results	3-3
Table 3-2.	Summary of Lime-Treatment Testing on Conditioned Soil Sample 3B	3-8
Table 3-3.	Analytical Results Summary for Baseline and Conditioned Soil Samples	3-9
Table 3-4.	Waste Characterization Results for Baseline and Conditioned Soil Samples	3-17
Table 3-5.	Ecological Screening Guidelines for Detected Analytes	3-21
Table 3-6.	Summary of Planting Suitability Test Results	3-25

Figures

Figure 1-1.	Proposed Pipeline Tunnel Alignment	1-3
Figure 1-2.	Process for Disposal and Reuse of Material from Construction	1-5
Figure 1-3.	Soil Types Encountered Within Tunnel Zone	1-7
Figure 2-1.	Schematic Representation of Earth Pressure Balance TBM	2-2
Figure 2-2.	Sample Identification for Suites of Tests Performed	2-4
Figure 3-1.	Comparison of Baseline versus Conditioned Soil Particle Size	3-1
Figure 3-2.	Comparison of Baseline versus Conditioned Soil Liquid Limit	3-2
Figure 3-3.	Comparison of Baseline versus Conditioned Soil Plasticity Index	3-2
Figure 3-4.	Comparison of Baseline versus Conditioned Soil Compressibility	3-5
Figure 3-5.	Comparison of Baseline versus Conditioned Soil Shear Strength	3-6
Figure 3-6.	Comparison of Baseline versus Conditioned Soil Permeability	3-7

Appendices

Appendix A	Baseline Soil Sample Generation Process
Appendix B	Soil Conditioning Process
Appendix C	Geotechnical Properties Testing Data
Appendix D	Environmental Properties Testing Data
Appendix E	Planting Suitability Properties Testing Data

Acronyms and Abbreviations

Term	Description					
ASTM	ASTM International					
C _F	conditioner concentration					
CVRWQCB	Central Valley Regional Water Quality Control Board					
DHCCP	Delta Habitat Conservation and Conveyance Program					
DTSC	California Department of Toxic Substances Control					
DWR	California Department of Water Resources					
EPA	United States Environmental Protection Agency					
FER	foam expansion ratio					
FIR	foam injection ratio					
RTM	Reusable Tunnel Material					
RWQCB	Regional Water Quality Control Board					
STLC	soluble threshold limit concentration					
SWRCB	California State Water Resources Control Board					
ТВМ	tunnel boring machine					
TTLC	total threshold limit concentration					
URS	URS Corporation					
USACE	United States Army Corps of Engineers					

EXECUTIVE SUMMARY

The California Department of Water Resources' (DWR's) Delta Habitat Conservation and Conveyance Program (DHCCP) is considering water conveyance through the Delta in a series of pipelines/tunnels. The pipelines/tunnels would transmit water from multiple on-bank intakes located between the towns of Freeport and Courtland to an intermediate forebay. Water collected in the intermediate forebay would flow by gravity or pumping through a two-bore tunnel system to the Clifton Court Forebay. Water would then be conveyed to the existing pumping plants serving the State Water Project and Central Valley Project. Figure 1-1 shows the pipeline/tunnel alignment proposed at commencement of this testing program.

Subsurface material removed during tunnel excavation is commonly referred to as tunnel muck, and consists of a mixture of soil, water, air, and conditioners. Conditioners are typically added to native soils to facilitate advancement of a tunnel boring machine (TBM). Tunnel muck generated by an earth pressure balance TBM in soft ground conditions (which are anticipated in the DHCCP tunnels) typically has a consistency similar to toothpaste. Tunnel muck generated in DHCCP tunnels is referred to as reusable tunnel material (RTM). Following storage and drying, and if acceptable based on chemical and physical testing as illustrated on Figure 1-2, potential beneficial uses of RTM include:

- Strengthening Delta levees identified for maintenance and repair
- Using RTM for habitat restoration and as fill on subsiding Delta islands
- Using RTM as structural fill for construction of conveyance facilities.

A significant quantity (approximately 27 million cubic yards) of saturated RTM will result from tunnel boring activities. This study consisted of mixing native soil samples collected from the potential tunnel zone with representative soil conditioner products and conducting laboratory tests to measure RTMs:

- · Geotechnical properties to evaluate constructability if used as structural fill
- Environmental properties to characterize potential toxicity if placed in the environment
- Planting suitability to assess sustainability for habitat growth and agricultural use

Based on the results of the geotechnical, environmental, and planting suitability tests, RTM appears to be suitable for the above proposed beneficial uses following storage and drying. Consultation with the governing regulatory agency would be required to obtain the necessary approvals and permits. This study consisted of a limited number of samples and tests, and does not constitute a complete evaluation of RTM. RTM and associated decant liquid will undergo chemical characterization by the contractor(s) prior to reuse or discharge, respectively.

9

1.0 INTRODUCTION

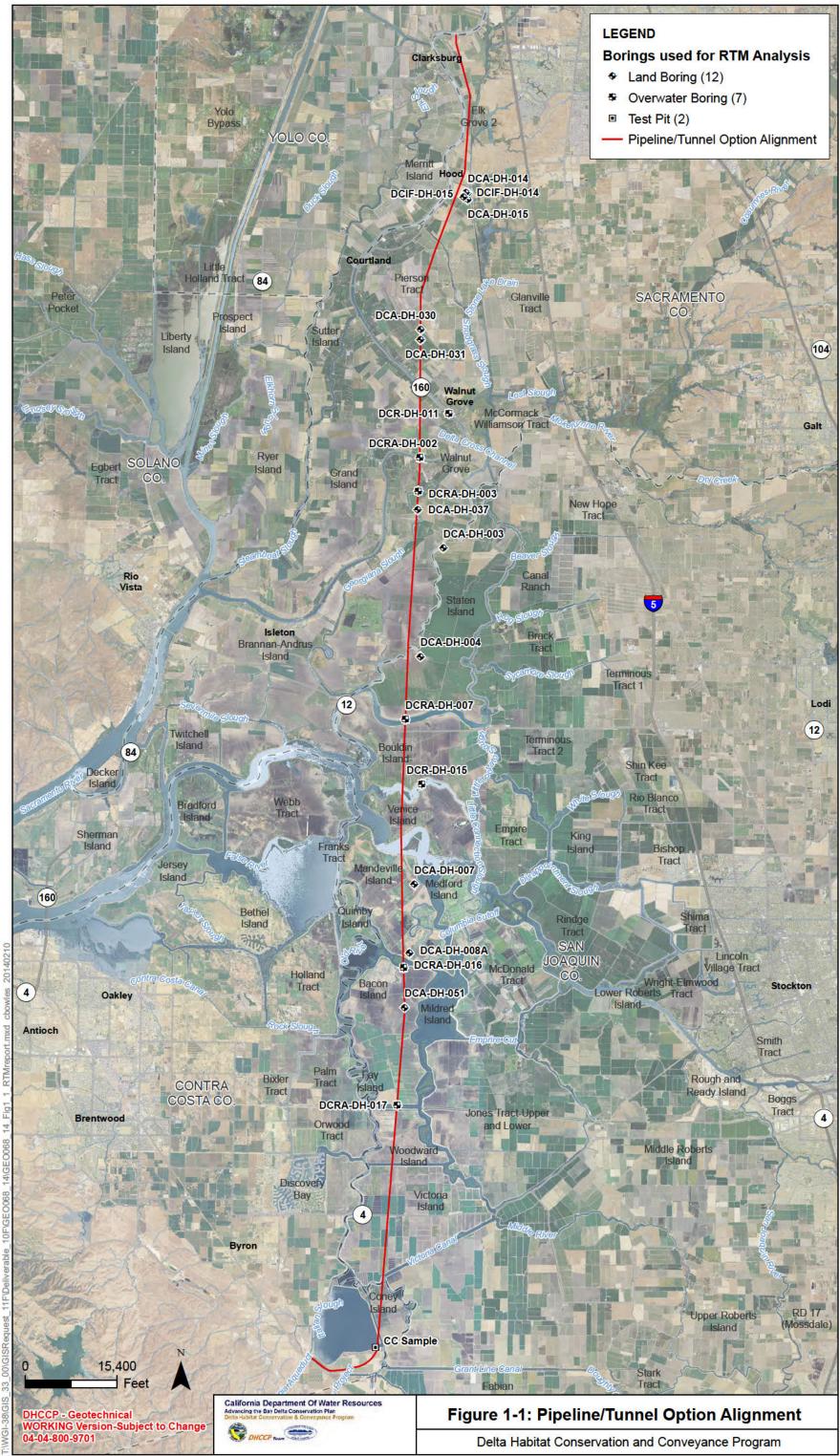
1.1 Project Background

The California Department of Water Resources' (DWR's) Delta Habitat Conservation and Conveyance Program (DHCCP) is considering water conveyance through the Delta in a series of pipelines/tunnels. The pipelines/tunnels would transmit water from multiple on-bank intakes located between the towns of Freeport and Courtland to an intermediate forebay. Water collected in the intermediate forebay would flow by gravity or pumping through a twobore tunnel system to the Clifton Court Forebay. Water would then be conveyed to the existing pumping plants serving the State Water Project and Central Valley Project. Figure 1-1 shows the pipeline/tunnel alignment proposed at commencement of this testing program.

Subsurface material removed during tunnel excavation is commonly referred to as tunnel muck, and consists of a mixture of soil, water, air, and conditioners. Conditioners are typically added to native soils to facilitate advancement of a tunnel boring machine (TBM). Tunnel muck generated by an earth pressure balance TBM in soft ground conditions (which are anticipated in the DHCCP tunnels) typically has a consistency similar to toothpaste. Tunnel muck generated in DHCCP tunnels is referred to as reusable tunnel material (RTM).

1.2 Purpose and Scope

DHCCP tunnel construction will generate approximately 27 million cubic yards of saturated RTM (CH2MHILL, 2012). Following storage and drying, and if acceptable based on chemical and physical testing as illustrated on Figure 1-2, potential beneficial uses of RTM include:

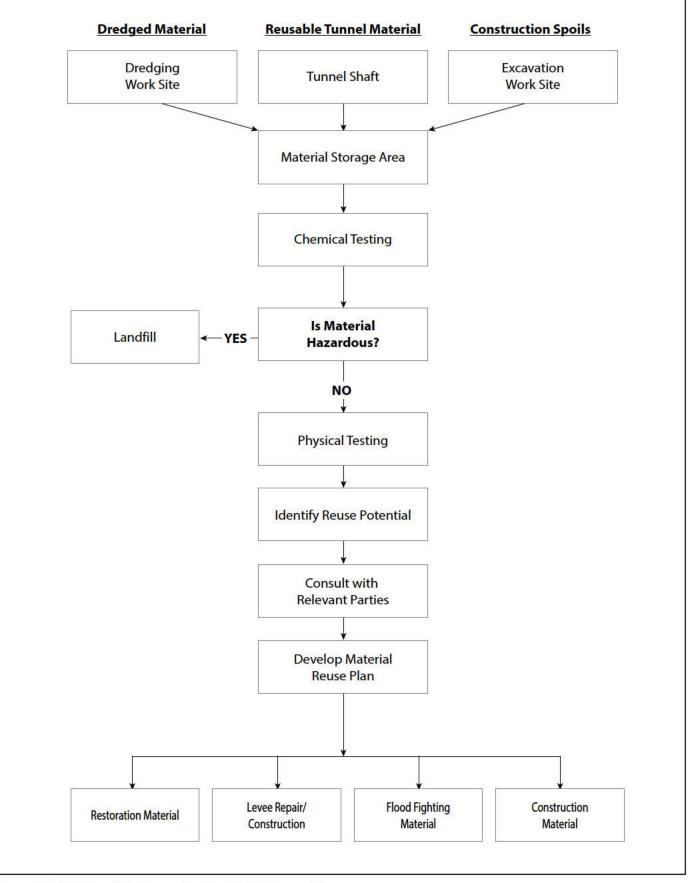

- · Strengthening Delta levees identified for maintenance and repair
- Using RTM for habitat restoration and as fill on subsiding Delta islands
- Using RTM as structural fill for construction of conveyance facilities

The RTM testing program's scope of work is defined in the *Excavated Tunnel Material Testing Plan* (URS Corporation [URS], 2013a). The study consisted of mixing native soil samples collected from the potential tunnel zone with representative soil conditioner products and conducting laboratory tests to measure RTMs:

- · Geotechnical properties to evaluate constructability if used as structural fill
- Environmental properties to characterize potential toxicity if placed in the environment
- · Planting suitability to assess sustainability for habitat growth and agricultural use

This report describes the test methods that were developed and the test procedures that were used. Conclusions presented in this report are based on the results of the tests conducted. This study consisted of a limited number of samples and tests, and does not constitute a complete evaluation of RTM. RTM and associated decant liquid will undergo chemical characterization by the contractor(s) prior to reuse or discharge, respectively.

10 SECTION 1.0


Source: DHCCP Eng PTO (Rev 10c)

2

U.

12 SECTION 1.0

1-4

Source: ICF. 2013. Bay Delta Conservation Plan Draft Environmental Impact Report/Environmental Impact Statement. December.

Graphics/... BDCP EIR-EIS/App 3B (09-16-13)

FIGURE 1-2 Process for Disposal and Reuse of Material from Construction 14 SECTION 1.0

1.3 Subsurface Conditions

Geologic units mapped in the area of the tunnel alignment are dominated by marsh and tidal estuary deposits associated with the Delta and by alluvium deposited by the Sacramento and San Joaquin rivers and their tributaries (Gorman and Wells, 2000). These units are lithologically diverse and exhibit complex interfingering of sand, silt, and clay typical of a deltaic depositional environment.

Groundwater over much of the area of the tunnel alignment is controlled by farming activities, including irrigation and pumping, to maintain groundwater levels below the root zones of cultivated crops. In general, groundwater is approximately 5 feet below the ground surface throughout the Delta, except in areas immediately adjacent to a riverbank, where groundwater elevations typically rise to within 1 or 2 feet of the surface (DWR, 2009).

TBM excavation is expected to encounter saturated, variable soft ground conditions. Within the proposed tunnel zone (ranging in elevation from -100 to -170 feet), soil types consist of interlayered alluvial deposits of lean to fat clays, silts, silty and clayey sands, and poorly-graded sands.

Figure 1-3 shows the distribution of soil types encountered within the proposed tunnel zone based on compilation of geotechnical investigation data collected from 2009 through 2012 (URS, 2013b). Soil types were classified according to ASTM International (ASTM) specifications D2488 and ASTM D2487. Identification of and criteria for the soil group symbols shown below are presented in these ASTM specifications.

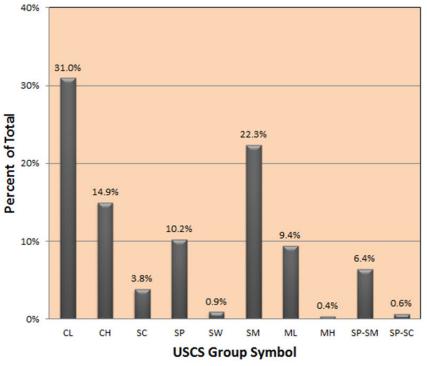


Figure 1-3. Soil Types Encountered Within Tunnel Zone

DHCCP_RTM-Final_20140307 docx

2.0 TESTING PROGRAM

2.1 Soil Sample Selection

Table 2-1 lists a combination of the soil type data shown on Figure 1-3 and laboratory test results on proposed tunnel zone soil samples collected during geotechnical investigations from 2009 through 2012 (URS, 2013b). Statistical evaluation of subsurface data collected to date indicates that an average mixture of tunnel zone soils would classify as sandy lean clay according to the Unified Soil Classification System.

Soil Index Properties	Test Method	Average Values in Tunnel Zone
Moisture Content (%)	ASTM D2216	33
Liquid Limit (%)	ASTM D4318	44
Plasticity Index (%)	ASTM D4318	23
Fines Content (%)*	ASTM D422	56
Sand Content (%)	ASTM D422	44
Gravel Content (%)	ASTM D422	0
Soil Classification	ASTM D2487	Sandy Lean Clay (sCL)
*Fines = percent passing a #200 s	ieve (silt and clay)	

Table 2-1.	Summarv	of 2009 through	2012 Investigation	Results
	Gammary	or Looo unough	Lo I L III Vooligation	i toouito

DHCCP soil core sample boxes are currently stored at the DWR warehouse in West Sacramento. DWR and URS representatives reviewed soil core samples, and specific samples within the proposed tunnel zone (ranging in elevation from -100 to -170 feet) were chosen for this RTM testing program. Figure 1-1 shows 19 boring locations along the proposed tunnel alignment where samples were obtained. Soil core samples were mixed together with the intention of generating uniform baseline soil samples representative of average tunnel zone material. Subsequent testing demonstrated that the baseline soil samples were uniform and classified as sandy lean clay. Appendix A contains a description of the baseline soil sample generation process.

2.2 Soil Conditioning

2.2.1 Typical Construction Procedures

Soil conditioners such as foams and polymers are typically added in front of the TBM cutterhead, in the working chamber, and sometimes along the screw conveyor (see Figure 2-1) to increase soil workability and facilitate transportation of soil cuttings outside of the tunnel excavation. Soil conditioner products vary and are typically selected by the tunneling contractor.

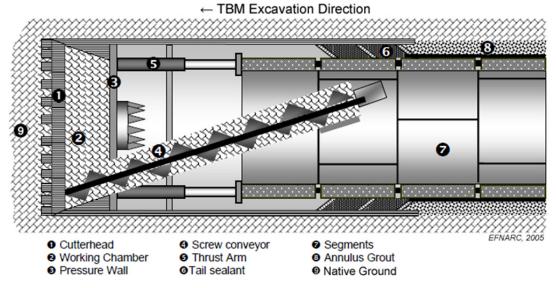


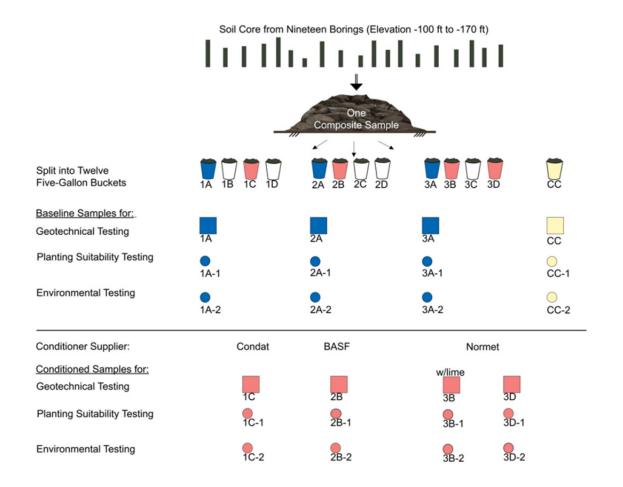
Figure 2-1. Schematic Representation of Earth Pressure Balance TBM

Boring logs and laboratory test data pertaining to anticipated soil conditions in the tunnel zone were provided to three soil conditioner manufacturers: Condat, BASF, and Normet. These manufacturers provided soil conditioner product samples and recommendations for conditioner concentration (C_F), foam expansion ratio (FER), and foam injection ratio (FIR). Table 2-2 lists soil conditioner parameters and their definitions.

Term	Definition					
C _F	concentration of surfactant agent in water (foaming solution)					
C _F	100 x m _{surfactant} /m _{foam solution}					
M _{surfactant}	mass of surfactant in foaming solution					
m _{foam solution}	mass of foaming solution					
FER	foam expansion ratio (higher values indicate drier foam)					
FER	V _{foam} /V _{foam solution}					
V _{foam}	volume of foam at working pressure					
V _{foam solution}	volume of foaming solution					
FIR	100 x V _{foam} /V _{soil}					
V _{foam}	volume of foam at working pressure					
V _{soil}	volume of in situ soil to be excavated					

Table 2-2.	Soil Conditioner	Parameters

2.2.2 Conditioner Products and Sample Preparation


Three baseline soil samples were prepared for geotechnical, environmental, and planting suitability testing before and after the addition of soil conditioner products for a total of six suites of testing. One additional suite of testing was performed on a conditioned soil sample treated with 3 percent high-calcium quicklime. A separate suite of testing was performed on a near-surface soil sample collected by DWR from the Clifton Court Forebay. The location of this sample (designated CC) is shown on Figure 1-1. The soil conditioner products used and sample identification for each suite of tests is summarized in Table 2-3 and illustrated on Figure 2-2.

ltem	Lab		Sample ID without Conditioner Added		Conditioner Added and Sample ID				
Conditioner Manufacturer	-	_	_	_	_	Condat	BASF	Normet	Normet
Conditioner Product	-	-	-	-	-	CLB F5/M™	Rheosoil 127	TamSoil 200CF	TamSoil 200CF with 3% lime
Geotechnical Properties	URS	1A	2A	ЗA	CC*	1C	2B	3D	3B
Planting Suitability Properties	Wallace	1A-1	2A-1	3A-1	CC-1	1C-1	2B-1	3D-1	3B-1
Environmental Properties	EMAX	1A-2	2A-2	3A-2	CC-2	1C-2	2B-2	3D-2	3B-2

Table 2-3. Summary of Conditioner Products and Testing Program

Test samples were prepared at URS's Santa Ana laboratory to create conditioner foams with different C_F and FER from the three conditioner product samples. To simulate the foam that would be created by a TBM, a high-speed propeller-type stirrer was used in accordance with laboratory foam generation guidelines (EFNARC, 2005).

Baseline soils were placed in a Hobart paddle-type mixer, moisture conditioned to simulate field conditions, and then mixed in two batches (initial and final), with different conditioner foams at different FIRs. Photographs of the foam generated and soil sample mixing are in Appendix B.

Figure 2-2. Sample Identification for Suites of Tests Performed

Slump testing was performed on moisture-conditioned baseline soils (without conditioner added), and initial and final conditioned soil samples in accordance with ASTM C143. Slump tests are used to measure the consistency of conditioned soil and help guide conditioner type selection and application rates. Photographs of the slump tests are in Appendix B.

Table 2-4 summarizes soil conditioning test parameters. The resulting conditioned soil samples were saturated; therefore, they were allowed to air dry at room temperature in the laboratory for approximately one week before additional testing was performed. The original testing plan (URS, 2013a) had intended for conditioned soil samples to be air dried for one month to simulate anticipated field construction procedures and allow for biodegradation of the conditioner products. However, after one week the conditioned soil samples were dry enough for testing to begin, which helped expedite the schedule for this testing program.

ltem	Recomm	Manufacture endations for		Conditioner Added in Testing Program			
Sample ID		—		1C	2B	3D	3B
Conditioner Product	Condat CLB F5/M™	BASF Rheosoil 127	Normet TamSoil 200CF	Condat CLB F5/M™	BASF Rheosoil 127	Normet TamSoil 200CF	Normet TamSoil 200CF with 3% lime
C _F (%)	2 to 2.2	3	2.5 to 3	3	5	4	4
FER	12 to 15	15 to 18	10	14	11	10	10
FIR (%)	50	80	25 to 35	180	140	70	100
Slump (inches)*	_	_	_	6	9.5	7	_
Conditioner Application Rate (%)	0.04	0.08	0.04	0.21	0.32	0.15	0.23
Moisture Content of Conditioned Soil (%)	_	_	_	42	45	38	41

Table 2-4.	Summary	of Soil Conditioning	Test Parameters

*Typical recommended values range from 4 to 8 inches (Thewes, 2010)

2.3 Sample Testing

2.3.1 Geotechnical Properties

Geotechnical tests were conducted on the baseline and conditioned soil samples identified in Table 2-3 and Table 2-4 (as illustrated on Figure 2-2) at URS's Santa Ana laboratory. The purpose of these tests was to evaluate the strength, compressibility, and constructability of conditioned soils for use as structural fill. The following tests were performed in accordance with ASTM standards:

- Moisture content (ASTM D2216), Atterberg limits (ASTM D4318), gradation and hydrometer (ASTM D422)
- Optimum moisture content and maximum dry density (ASTM D698)
- Remolded unconsolidated undrained triaxial shear strength (ASTM D2850)
- Remolded consolidated undrained triaxial shear strength with pore pressure measurements (ASTM D4767)
- Remolded consolidation (ASTM D2435) and permeability (ASTM D5084)

Remolded specimens were compacted to 95 percent of maximum dry density at optimum moisture content determined in accordance with ASTM D698.

Laboratory test reports are in Appendix C. A discussion of results is in Section 3.1.

DHCCP_RTM-Final_20140307 docx

2.3.2 Environmental Properties

Environmental tests were conducted on the baseline and conditioned soil samples identified in Table 2-3 and Table 2-4 (as illustrated on Figure 2-2) at EMAX Laboratories, Inc., located in Torrance, California. The purpose of these tests was to characterize the conditioned soil's potential toxicity if placed in the environment. The following tests were performed in accordance with industry standards:

- Total solids (E160.3)
- Polyaromatic hydrocarbons (SW8270SIM)
- Methyl mercury (laboratory standard operating procedure)
- Butyltins (Krone Method)
- Ammonia (SM4500NH3)
- Nitrate/nitrite (SM4500NO3)
- Metals (SW6020)
- Soluble metals (soluble threshold limit concentration [STLC] using deionized water [Di-WET] SW6020)
- Mercury (SW7471)
- Soluble mercury (STLC SW7470)
- Hexavalent chromium (SW7196)
- Total petroleum hydrocarbons (modified SW8015)
- Chlorinated pesticides (SW8081)
- Polychlorinated biphenyls (SW8082)
- Herbicides (SW8151)
- Semi-volatile organics (SW8270/SW8270 SIM)
- Total organic carbon (Walkley-Black)

As discussed in the testing plan (URS, 2013a), these tests were selected based on several guidance documents, including:

- Inner Bair Island Restoration Project Quality Assurance Project Plan (United States Fish and Wildlife Service, 2008).
- Draft Staff Report, Beneficial Reuse of Dredged Materials: Sediment Screening and Testing Guidelines (San Francisco Bay Regional Water Quality Control Board [RWQCB], 2000).
- Order No. R5-2009-0085, General Waste Discharge Requirements for Maintenance Dredging Operations, Sacramento-San Joaquin Delta (General Order). (California RWQCB, 2008)

Test data were reviewed following applicable United States Environmental Protection Agency (EPA) guidance, including:

• EPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review, EPA-540-R-08-0, June 2008

DHCCP_RTM-Final_20140307 docx

 EPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review, Office of Solid Waste and Emergency Response 9240.1-5, EPA 540-R-10-01, January 2010.

Test data were evaluated using laboratory quality control samples (blanks, laboratory control samples, duplicates, and surrogate spikes for organic analyses). The samples were prepared and handled in a manner anticipated to simulate field construction conditions.

There were no systematic problems noted with the analyses. However, there were several analytes that were reported between the detection limit and reporting limit, where variability is inherent, and several other analytes that are determined to be estimated concentrations based on quality control samples that did not meet method or laboratory requirements. Table 2-5 summarizes quality assessment of environmental test data. Table 2-6 lists those analytes not qualified by the laboratory (i.e., detections reported between the detection limit and reporting limit).

Method	Parameter Name	Units	Result	Lab Flag	EPA Flag	Result	Lab Flag	EPA Flag
TTLC (Total)								
Sample ID			1A	-2 (Baselin	ie)	1C-2	(Condition	ned)
160.3M	Total Solids	percent	84.3	=		<mark>91.8</mark>		
SM4500NH3	Ammonia (NH3-N)	mg/kg	2.57			0.738	J	
SM4500NO3	Nitrate/Nitrite	mg/kg	12.6			0.45	J	
SW6020A	Arsenic	mg/kg	3.47			4.03		
SW6020A	Barium	mg/kg	190			200		
SW6020A	Beryllium	mg/kg	0.591			0.607		
SW6020A	Cadmium	mg/kg	0.305	J		0.348	J	
SW6020A	Chromium	mg/kg	59		J-	56.1		J-
SW6020A	Cobalt	mg/kg	16.7			15.9		J
SW6020A	Copper	mg/kg	35		J	33.7		J
SW6020A	Lead	mg/kg	7.28			7.75		
SW6020A	Molybdenum	mg/kg	0.255	J		0.282	J	
SW6020A	Nickel	mg/kg	72.5			75.7		
SW6020A	Selenium	mg/kg	0.177	J		0.153	J	
SW6020A	Thallium	mg/kg	0.147	J		0.165	J	
SW6020A	Vanadium	mg/kg	61.9			59.9		
SW6020A	Zinc	mg/kg	62.4			154		
SW7471A	Mercury	mg/kg	0.0398	J		ND		
WLKYBLK	тос	mg/kg	981			1670		
		Sample ID	2A	-2 (Baselin	ie)	2B-2	(Condition	ned)
160.3M	Total Solids	percent	73.5	=		90.1		
CAS SOP	Methyl Mercury	ng/g	0.05	=, J		ND		
SM4500NH3	Ammonia (NH3-N)	mg/kg	3.29			0.797	J	

Table 2-5.	Quality Assessment	Summary of Environmental Test Data
------------	---------------------------	------------------------------------

Method	Parameter Name	Units	Result	Lab Flag	EPA Flag	Result	Lab Flag	EPA Flag
SM4500NO3	Nitrate/Nitrite	mg/kg	12.7			0.315	J	
SW6020A	Antimony	mg/kg	ND			0.229	J	J-
SW6020A	Arsenic	mg/kg	3.52			4.51		
SW6020A	Barium	mg/kg	207			172		J+
SW6020A	Beryllium	mg/kg	0.518	J		ND		
SW6020A	Cadmium	mg/kg	0.415	J		0.342	J	
SW6020A	Chromium	mg/kg	57.7			50.1		J
SW6020A	Cobalt	mg/kg	15.4			14.3		J
SW6020A	Copper	mg/kg	31.9			34.7		J-
SW6020A	Lead	mg/kg	7.11			6.9		
SW6020A	Molybdenum	mg/kg	0.325	J		0.315	J	
SW6020A	Nickel	mg/kg	68.6			68		J-
SW6020A	Selenium	mg/kg	0.156	J		0.183	J	
SW6020A	Thallium	mg/kg	0.14	J		0.159	J	
SW6020A	Vanadium	mg/kg	63.7			53.5		
SW6020A	Zinc	mg/kg	61.4		J+	64		
SW7471A	Mercury	mg/kg	0.0291	J		ND		
WLKYBLK	TOC	mg/kg	1090			2090		
SW7471A	Mercury	mg/kg	0.0291	J		0.0368	J	
BNASIM	Naphthalene	µg/kg	ND			4	J	
BNASIM	Phenanthrene	µg/kg	ND			3.9	J	
SW8015B	Diesel	mg/kg	ND			56		
Krone	n-Butyltin Cation	µg/kg	ND			0.33	J	
		Sample ID	3A-	2 (Baselin	e)	3D-2	(Condition	ned)
160.3M	Total Solids	percent	84.7	=		87.9		
SW8081A	4,4-DDE	µg/kg	<u>24 - 25</u>			ND		
BNASIM	Naphthalene	µg/kg	3.2	J		<u>₩</u> -1		
SM4500NH3	Ammonia (NH3-N)	mg/kg	2.96			ND		
SM4500NO3	Nitrate/Nitrite	mg/kg	12.5			0.315	J	
SW6020A	Antimony	mg/kg	<u>10</u> 75			0.270	J	
SW6020A	Arsenic	mg/kg	3.77			4.23		
SW6020A	Barium	mg/kg	188			197		
SW6020A	Beryllium	mg/kg	0.54	J		0.538	J	
SW6020A	Cadmium	mg/kg	0.325	J		0.439	J	
SW6020A	Chromium	mg/kg	58.3			56.6		
SW6020A	Cobalt	mg/kg	15.7			15		
SW6020A	Copper	mg/kg	32.6			31.5		
SW6020A	Lead	mg/kg	7.19			8.03		
A CARLES AND A CARLES AND A CARLES AND A								

Method	Parameter Name	Units	Result	Lab Flag	EPA Flag	Result	Lab Flag	EPA Flag
SW6020A	Nickel	mg/kg	70.1			66		
SW6020A	Selenium	mg/kg	0.166	J		0.175	J	
SW6020A	Silver	mg/kg				0.139	J	
SW6020A	Thallium	mg/kg	0.15	J		0.169	J	
SW6020A	Vanadium	mg/kg	61.4			60.8		
SW6020A	Zinc	mg/kg	67.6		J+	66.9		
SW7471A	Mercury	mg/kg	0.0242	J		0.0246	J	
WLKYBLK	TOC	mg/kg	1220			1150		
Krone	Di-n-Butyltin cation	µg/kg	<u>2</u> _3			0.28	J	
Krone	n-Butyltin cation	µg/kg	15 0			0.32	J	
SW8015D	Diesel	mg/kg				27		
*SW8270 SIM	1,4-Dioxane	µg/kg		-		ND		8 .
		Sample ID	cc	-2 (Baselin	ie)	3B-2 (Cor	ditioned P	lus Lime)
160.3M	Total Solids	percent	80.5			77.4		
SW8081A	4,4-DDE	µg/kg	0.75	J		ND		
SM4500NH3	Ammonia (NH3-N)	mg/kg	16			2.31		
SM4500NO3	Nitrate/Nitrite	mg/kg	12.3			ND		
SW6020A	Antimony	mg/kg	ND			0.262	J	
SW6020A	Arsenic	mg/kg	4.37			4.03		
SW6020A	Barium	mg/kg	133			188		
SW6020A	Beryllium	mg/kg	0.360	J		0.519	J	
SW6020A	Cadmium	mg/kg	0.313	J		0.466	J	
SW6020A	Chromium	mg/kg	32.9			54.3		
SW6020A	Cobalt	mg/kg	10.7			14.3		
SW6020A	Copper	mg/kg	18.4			29.1		
SW6020A	Lead	mg/kg	6.31			7.11		
SW6020A	Molybdenum	mg/kg	0.427	J		0.439	J	
SW6020A	Nickel	mg/kg	36.4			60.8		
SW6020A	Selenium	mg/kg	0.182	J		0.19	J	
SW6020A	Silver	mg/kg	ND			ND		
SW6020A	Thallium	mg/kg	0.170	J		0.161	J	
SW6020A	Vanadium	mg/kg	44.0			63.2		
SW6020A	Zinc	mg/kg	62.8			62.6		
SW7471A	Mercury	mg/kg	ND			ND		
WLKYBLK	тос	mg/kg	2620			1270		
Krone	Di-n-Butyltin cation	µg/kg	0.31	J		ND	U	
Krone	n-Butyltin cation	µg/kg	0.57	J		ND	U	
SW8015D	Diesel	mg/kg	ND			24		

Method	Parameter Name	Units	Result	Lab Flag	EPA Flag	Result	Lab Flag	EPA Flag	
STLC RESU	ILTS (soluble)								
		Sample ID	1A	1A-2 (Baseline)			1C-2 (Conditioned)		
SW6020A	Antimony	µg/L	1.36		J-	1.8			
SW6020A	Arsenic	µg/L	17.2			10.9			
SW6020A	Barium	µg/L	320		J+	85.3		J+	
SW6020A	Beryllium	µg/L	0.662	J		ND		12.00	
SW6020A	Cadmium	µg/L	0.28	J		ND			
SW6020A	Chromium	µg/L	39.3		J-	0.971	J		
SW6020A	Cobalt	µg/L	9.07		J	0.428	J		
SW6020A	Copper	µg/L	38.3		J	15.2		J+	
SW6020A	Lead	µg/L	8.17			1.6			
SW6020A	Molybdenum	µg/L	4.82		J-	7.59			
SW6020A	Nickel	µg/L	39.8			2.33			
SW6020A	Selenium	µg/L	9.67			8.77			
SW6020A	Vanadium	µg/L	72.1		J-	19.9			
SW6020A	Zinc	µg/L	87.3			43.9		J+	
		Sample ID	2A-2 (Baseline)			2B-2 (Conditioned)			
SW6020A	Antimony	µg/L	1.54			1.75		J-	
SW6020A	Arsenic	µg/L	13.1			14.7			
SW6020A	Barium	µg/L	103			62.3			
SW6020A	Beryllium	µg/L	0.186	J		0.228	J		
SW6020A	Chromium	µg/L	11.9			16.9			
SW6020A	Cobalt	µg/L	2.39			3.19			
SW6020A	Copper	µg/L	11.2			15.7		J	
SW6020A	Lead	µg/L	2.93			4.05			
SW6020A	Molybdenum	µg/L	6.97			7.08		J-	
SW6020A	Nickel	µg/L	11.5			14.7		J	
SW6020A	Selenium	µg/L	8.77			9.1			
SW6020A	Vanadium	µg/L	38.3			46.7			
SW6020A	Zinc	µg/L	92.6			41.2			
		Sample ID	3A	-2 (Baselin	e)	3D-2	2 (Condition	ned)	
SW6020A	Antimony	μg/L	1.44			1.59	1.042		
SW6020A	Arsenic	µg/L	17.4			11.3			
SW6020A	Barium	µg/L	134			78.7			
SW6020A	Beryllium	µg/L	0.296	J		0.109	J		
SW6020A	Cadmium	µg/L	50 - 51			ND			
SW6020A	Chromium	µg/L	17.4			7.98			
SW6020A	Cobalt	µg/L	3.38			1.14			
SW6020A	Copper	µg/L	15.6			7.92			

Method	Parameter Name	Units	Result	Lab Flag	EPA Flag	Result	Lab Flag	EPA Flag
SW6020A	Lead	µg/L	4.58			2.65		
SW6020A	Molybdenum	µg/L	5.68			5.93		
SW6020A	Nickel	µg/L	14.7			6.35		
SW6020A	Selenium	µg/L	8.83			8.38		
SW6020A	Silver	µg/L	<u>20.</u> 25			ND		
SW6020A	Thallium	µg/L	80- 0			ND		
SW6020A	Vanadium	µg/L	50.6			26.4		
SW6020A	Zinc	µg/L	22.4			16.7	J	
	•	Sample ID	CC	-2 (Baselin	e)	3B-2	ned)	
SW6020A	Antimony	µg/L	1.05			ND		
SW6020A	Arsenic	µg/L	2.27			0.435	J	
SW6020A	Barium	µg/L	96.1			295		
SW6020A	Beryllium	µg/L	ND			ND		
SW6020A	Cadmium	µg/L	ND			ND		
SW6020A	Chromium	µg/L	7.42			12.5		
SW6020A	Cobalt	µg/L	0.939	J		0.610	J	
SW6020A	Copper	µg/L	5.09			11.8		
SW6020A	Lead	µg/L	1.46			0.199	J	U
SW6020A	Molybdenum	µg/L	3.98			8.33		
SW6020A	Nickel	µg/L	5.60			0.568	J	U
SW6020A	Selenium	µg/L	3.56			3.34		
SW6020A	Silver	µg/L	ND			ND		
SW6020A	Thallium	µg/L	ND			ND		
SW6020A	Vanadium	µg/L	13.2			4.29		
SW6020A	Zinc	µg/L	12.9	J		14.1	J	

Notes:

J = estimated concentration

J+ = estimated concentration; potential high bias J- = estimated concentration; potential low bias U = result is considered not detected and attributed to external contamination ND = not detected

mg/kg = milligrams per kilogram µg/L = micrograms per liter * Lab ID for supplemental sample testing is 3B-3

Method	Sample ID	Analyte	Result	Flag	Reason
SW6020A	1A-2	Chromium	59 mg/kg	J-	Low analytical spike recovery
		Copper	35 mg/kg	J	Serial dilution recovery not met
STLC/	1A-2	Antimony	1.36 µg/L	J-	Low matrix spike recovery
SW6020A		Barium	320 µg/L	J+	High analytical spike recovery
		Chromium	39.3 µg/L	J-	Low matrix spike recovery
		Cobalt	9.07 µg/L	J	Serial dilution recovery not met
		Copper	38.3 µg/L	J	Serial dilution recovery not met
		Molybdenum	4.82 µg/L	J-	Low matrix spike recovery
		Vanadium	72.1 µg/L	J-	Low matrix spike recovery
		Zinc	87.3 µg/L	J+	Associated with blank contamination
	2A-2	Zinc	92.6 µg/L	J+	Associated with blank contamination
	3A-2	Zinc	22.4 µg/L	J+	Associated with blank contamination
SW6020A	1C-2	Chromium	56.1 mg/kg	J-	Low analytical spike recovery
		Cobalt	15.9 mg/kg	J	Serial dilution recovery not met
		Copper	33.7 mg/kg	J	Serial dilution recovery not met
STLC/	1C-2	Barium	85.3 µg/L	J+	High matrix and analytical sp ke
SW6020A		Copper	15.2 µg/L	J	Serial dilution recovery not met
		Zinc	43.9 µg/L	J+	High matrix spike recovery
SW8270C	3B-2	2,4,5-Trichlorophenol	ND	R	Low surrogate spike recoveries
		2,4,6-Trichlorophenol	ND	R	Low surrogate spike recoveries
		2,4-Dichlorophenol	ND	R	Low surrogate spike recoveries
		2,4-Dimethylphenol	ND	R	Low surrogate spike recoveries
		2,4-Dinitrophenol	ND	R	Low surrogate spike recoveries
		2-Chlorophenol	ND	R	Low surrogate spike recoveries
		2-Methylphenol	ND	R	Low surrogate spike recoveries
		2-Nitrophenol	ND	R	Low surrogate spike recoveries
		4,6-Dinitro-2-methylphenol	ND	R	Low surrogate spike recoveries
		4-Chloro-3-methylphenol	ND	R	Low surrogate spike recoveries
		4-Methylphenol	ND	R	Low surrogate spike recoveries
		4-Nitrophenol	ND	R	Low surrogate spike recoveries
		Pentachlorophenol	ND	R	Low surrogate spike recoveries
		Phenol	ND	R	Low surrogate spike recoveries
SW6020	3B-2	Lead	0.199J	U	Method blank contamination; below R
		Nickel	0.568J	U	Method blank contamination; below R
		Copper	11.8	J-	Low matrix spike recovery; serial dilution out
		Zinc	14.1J	J-	Low matrix spike recovery
Notes: ND = not de J = estimate J- = estimate	d result	ential low bias	R = reje RL = rep U = resu	cted; data orting lim	dered not detected and attr buted to

Table 2-6.	Summary of Analytes not Qualified by Laboratory
------------	---

Laboratory test reports are in Appendix D. A discussion of results is in Section 3.2.

2.3.3 Planting Suitability Properties

Planting suitability tests were conducted on the baseline and conditioned soil samples identified in Table 2-3 and Table 2-4 (as illustrated on Figure 2-2) at Wallace Laboratories located in El Segundo, California. The purpose of these tests was to assess conditioned soil's sustainability for habitat growth and agricultural use.

Plant suitability testing consisted of agricultural soil suitability analysis (Wallace, 2013) that identified the amounts of plant extractable by the Ammonium Bicarbonate/DTPA Extraction Method (Lindsay, Norvell, 1978), elemental and saturation extract of macronutrients, micronutrients, trace and toxic elements, and:

- ph
- Electroconductivity (soil salinity)
- Cation exchange capacity
- Sodium adsorption ratio
- Infiltration rate
- Soil texture
- Organic matter content
- Natural moisture content
- Half saturation percentage
- Lime content

Laboratory test reports are in Appendix E. A discussion of results is in Section 3.3.

3.0 RESULTS AND CONCLUSIONS

3.1 Geotechnical Properties

Table 3-1 summarizes geotechnical property test results on baseline and conditioned soil samples. The soil conditioner products provided by the manufactures are foam surfactants that help separate soil particles. The effects of the soil conditioners on the test samples are identified below. Where applicable, requirements of Title 23 of the California Code of Regulations (Title 23) for levee fill material are shown on some figures for comparison purposes.

3.1.1 Physical and Index Properties

While the total percent fines (silt and clay) remained relatively constant between the baseline and conditioned soil samples, the percent of silt size particles decreased and the percent of clay size particles increased in the conditioned soil samples (see Figure 3-1). This can be attributed to the soil conditioners' dispersive effects.

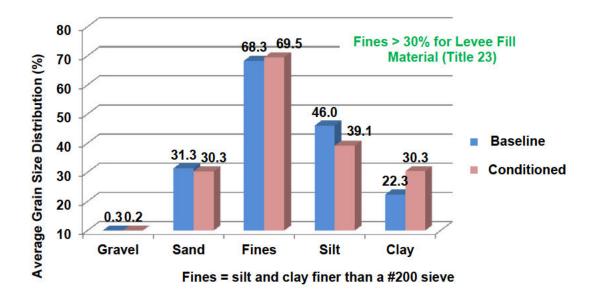


Figure 3-1. Comparison of Baseline versus Conditioned Soil Particle Size

The liquid limit and plasticity index increased for the conditioned soil samples (see Figure 3-2 and Figure 3-3). This can be attributed to the decrease in percent silt size particles and increase in percent clay size particles in the conditioned soil samples.

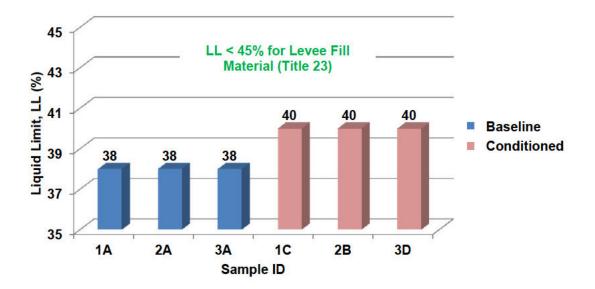


Figure 3-2. Comparison of Baseline versus Conditioned Soil Liquid Limit

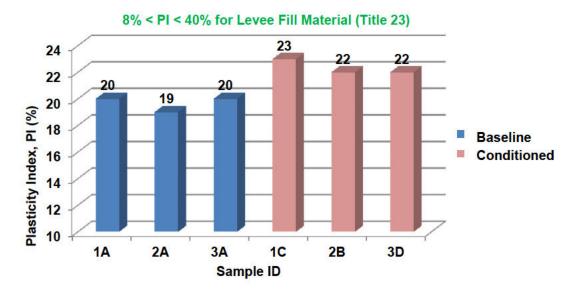


Figure 3-3. Comparison of Baseline versus Conditioned Soil Plasticity Index

33

	Soil Sample	Baseline	Without Co	nditioner		With 0	Conditioner	Added	
Sample Information	n				3				
Sample ID	1A	2A	3A	CC*	1C	2B	3D	3B*	
USCS		sCL	sCL	sCL	SC	sCL	CLs	sCL	sML
Soil Sample Descriptio	n	Sandy Lean Clay	Sandy Lean Clay	Sandy Lean Clay	Clayey Sand	Sandy Lean Clay	Lean Clay with Sand	Sandy Lean Clay	Sandy Silt
Conditioner Manufactu	rer	NA	NA	NA	NA	Condat	BASF	Normet	Normet
Conditioner Product		NA	NA	NA	NA	CLB F5/M™	Rheosoil 127	TamSoil 200CF	TamSoil 200CF with 3% lime
Physical and Index	Property Tests			, , ,		•			1
Particle Size Analysis	% Gravel	0	0	1	1	0	0	0	0
	% Sand	31	31	32	54	30	29	32	35
	% Fines	69	69	67	45	70	71	68	65
Hydrometer	% Silt	46	47	45	29	39	43	36	55
	% Clay	23	22	22	16	31	28	32	10
Atterberg Limits	Liquid Limit, LL (%)	38	38	38	32	40	40	40	46
	Plastic Limit, PL (%)	18	19	18	18	17	18	18	37
	Plasticity Index, PI (%)	20	1 9	20	14	23	22	22	9
Compaction Tests	* *		•					-	
	Maximum Dry Unit Weight (pcf)		103.0		101.5	105.0	104.5	104.5	89.5
	Optimum Moisture Content (%)		19.5		20.5	17.5	18.0	19.0	25.0

Table 3-1. Summary of Geotechnical Test Results

34

	Soil Sample	Baseline	Without Co	nditioner	With Conditioner Added						
Sample Informa	ition										
Sample ID		1A	2A	3A	CC*	1C	2B	3D	3B*		
Compressibility	and Strength Tests		β. n	(i.		5		<u>,</u>		
Consolidation	Compression Ratio, Ccc=Cc/(1+e0)	0.13	0.15	0.13	0.13	0.13	0.13	0.13	0.25		
	Recompression Ratio, Cre=Cr/(1+eo)	0.025	0.033	0.033	0.013	0.031	0.030	0.020	0.013		
Triaxial ICU	Effective Stress Cohesion, c' (psf)	70	135	54	35	90	30	60	-		
	Effective Stress Friction Angle, ϕ' (degrees)	32	32	34	32	29	32	31	-		
	Total Stress Cohesion, c (psf)	400	420	20	170	130	200	90			
	Total Stress Friction Angle,	11	11	19	10	12	12	15			
Triaxial UU	Undrained Shear Strength, S _u (psf)	2,527	2,299	2,134	909	1,933	1,989	1,740	7,840		
Permeability Te	ests			•	,						
	Vertical Hydraulic Conductivity (cm/s)	1.6E-05	7.7E-06	1.0E-05	1.9E-05	4.2E-07	9.6E-08	3.8E-08	8.8E-05		
Notes: Clay size smaller th pcf = pounds per c psf = pounds per s	ubic foot	8.	UU = unconso	ed Soil Classific blidated undrain cally consolidat	ed						

Table 3-1. Summary of Geotechnical Test Results

psf = pounds per square foot

ICU = isotropically consolidated undrained

*Additional suites of testing performed for information only, not to compare the before and after effects of adding soil conditioner. Sample CC is from Clifton Court. Sample 3B is lime treated.

3.1.2 Compressibility and Strength Properties

While the compression ratios and recompression ratios of the baseline and conditioned soil samples were similar, incremental loads greater than 5,000 pounds per square foot resulted in slightly more vertical strain/compression for the conditioned soil samples (see Figure 3-4).

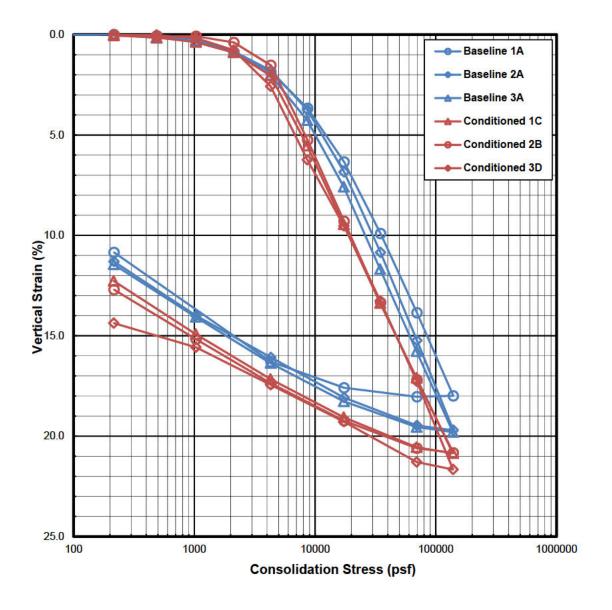


Figure 3-4. Comparison of Baseline versus Conditioned Soil Compressibility

The undrained shear strength of the conditioned soil samples was slightly lower than the baseline samples, and exhibited more strain to generate peak stress (see Figure 3-5). The drained shear strength of the samples did not appear to be significantly affected by the soil conditioners.

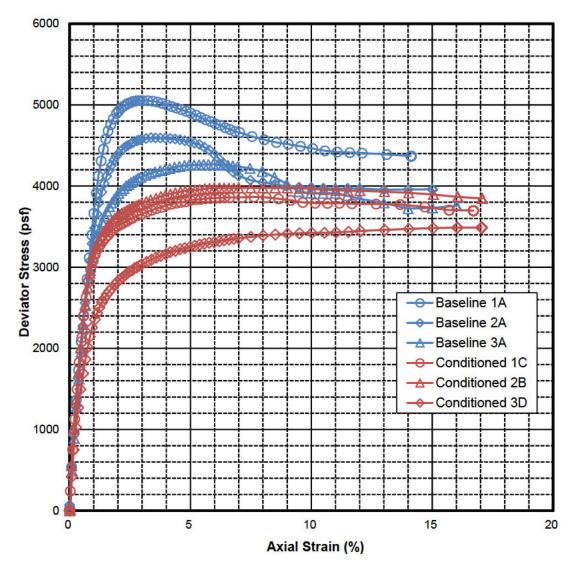


Figure 3-5. Comparison of Baseline versus Conditioned Soil Shear Strength

The slight increase in compressibility and slight decrease in undrained shear strength for the conditioned soil samples can be attributed to the soil conditioners' dispersive effects that reduce inter-particle bonds.

3.1.3 Permeability Properties

The hydraulic conductivity (vertical permeability) of the conditioned soil samples was substantially lower than the baseline samples (see Figure 3-6). This can be attributed to the soil conditioners' dispersive effects that increased the percent of clay size particles and reduced the effective pore diameter.

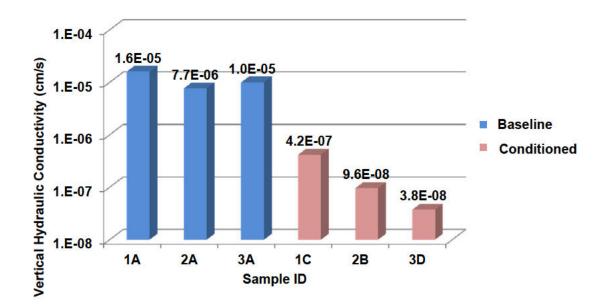


Figure 3-6. Comparison of Baseline versus Conditioned Soil Permeability

3.1.4 Geotechnical Property Conclusions

The soil conditioner application rates used for this RTM testing program were purposefully higher than industry typical values that were recommended by the conditioner manufacturers. As a result, the observed effects of adding conditioners to the soil's geotechnical properties are likely magnified over what might be expected for RTM. Even with increased rates of conditioner application, the testing performed indicates that the baseline and conditioned soil samples meet current Title 23 requirements for use as levee fill. Based on the variable nature of the subsurface soils, not all RTM is expected to meet current Title 23 requirements for use as levee fill upon direct removal from the tunnel excavations. Processing and mixing should be anticipated as discussed below and processing and mixing may be required for fill not intended to meet Title 23 requirements. Due to the dispersive effects of the soil conditioners, pinhole dispersion tests are recommended on additional conditional soil samples to confirm they are not erodible.

RTM will be saturated and significantly above the moisture content range necessary to meet compaction requirements. The conditioned soil samples from this testing program were approximately 20 to 25 percent above optimum moisture content, and required

DHCCP_RTM-Final_20140307.docx

approximately one week of air drying at room temperature in the laboratory before additional testing could be performed.

Under favorable weather conditions during construction it is expected that RTM could be dried at a rate of approximately 2 percent per day given a maximum lift thickness of 12 to 18 inches and several passes per day with a disc to turn the material over. Without continued processing, drying RTM would develop a crust and remain saturated below the surface. The size of the storage area and rate at which RTM is generated will determine how much handling will be required to maintain the maximum lift thickness.

To expedite drying and reduce soil plasticity, high-calcium quicklime could be added, as demonstrated by the laboratory test results in Table 3-2. However, because the addition of quicklime elevates pH values, lime-treated soil should be kept away from areas where plant growth is desirable. Furthermore, the test results on Sample 3B indicate the Liquid Limit exceeds Title 23 requirements for levee fill material when 1 to 3 percent quicklime is added. Accordingly, additional testing of RTM is expected due to the variable nature of the subsurface soils and anticipated processing and mixing of material.

Table 3-2. Su	mmary of Lime-Treatment Te	esting on Conditioned Soil Sample 3B
---------------	----------------------------	--------------------------------------

Initial Moisture Content*	Quicklime Added	Moisture Content After 2 Days	Moisture Reduction	Liquid Limit	Plasticity Index	USCS
41.2%	1%	29.3%	28.9%	49	19	sML
41.2%	2%	28.7%	30.3%	47	15	sML
41.2%	3%	24.5%	40.5%	46	9	sML
41.2%	4%	23.9%	42.0%			

*Optimum moisture content for non-lime-treated soil is approximately 20%

3.2 Environmental Properties

3.2.1 Analytical Results

Environmental constituents detected in the baseline and conditioned soil samples include metals, ammonia, and nitrate/nitrite, which are natural soil components. Several chemical compounds were detected sporadically. Methyl mercury in baseline sample 2A-2 and naphthalene in baseline sample 3A-2 were detected at concentrations below the reporting limit. Naphthalene, phenanthrene and total petroleum hydrocarbons in the diesel range were detected in conditioned soil sample 2B-2 and may be a constituent of the conditioning process because these analytes were not detected in the corresponding baseline sample. Table 3-3 compares baseline and conditioned soil sample scan, in part, be attributed to natural variation of compounds present in different soil samples.

		Human	Health, Unrest	ricted-Use Soi	l (mg/kg)					Sample Res	ults (mg/kg)				
		USEP	A RSL ^a		odified ng Level ^b	Bas	eline	Condat-C	onditioned	BASF-Co	onditioned	Normet-C	onditioned		onditioned % Lime)
Group Analyte	Screening-Level Surrogate	Carcinogenic	Non- carcinogenic	Carcinogenic	Non- carcinogenic	Maximum Detected	Maximum MDL	Maximum Detected	Maximum MDL	Maximum Detected	Maximum MDL	Maximum Detected	Maximum MDL	Maximum Detected	Maximum MDL
Inorganic Constituents			÷					-	2	•					
Ammonia	Nitrite	**	7,800	**	**	16	17 4.1 42	0.738	1	0.831	State -	1	0.689	2.31	575
Antimony		**	31	**	**	8 <u>.22</u>	1.16	<u>117</u> 3	1.1	0.229	8 <u>280</u> %	0.27	<u>897</u>	0.262	222
Arsenic		0.61	34	0.062	**	4.37°	20 - 20	4.03°		4.51°	244.0	4.23°		4.03°	3 <u>444</u>
Barium		**	15,000	**	**	207	10 10	200	-	172	19 71 -1	197		188	
Beryllium		1400	160	1400	16	0.591	2 7-11 -2	0.642	175	275	0.541	0.538	-	0.519	17
Cadmium		1800	70	788	4	0.579	3 <u>313</u> 33	0.548	252	0.342	8 <u>480</u> N	0.439	<u>199</u> 2	0.466	8222
Chromium	Chromium(III)	**	120,000	**	**	62.3	(<u></u>)	60.3		50.1	1222	56.6		54.3	222
Chromium (VI)		0.29	230	**	**	0 -0	0.594		0.547		0.552)	0.568		0.645
Cobalt		370	23	**	**	18.3	2747.0	19.1	-	14.3	S. S.R.	15		14.3	1.77
Copper		**	3,100	**	**	38.4	2 <u>010</u> 00	37.5	<u>22</u> 1	34.7	12 <u>22</u> 5	31.5	2227	29.1	8 <u>22</u>
Lead		**	400	**	**	7.28		7.75		6.9	1000	8.03	<u></u>	7.11	822
Mercury		**	10	**	**	0.0398	(.)		0.0219	0.0368	-	0.0246		-	0.0258
Molybdenum		**	390	**	**	1.16	17 031 02	1.1		0.315	1000	0.384	- 8753	0.439	
Nickel		13,000	1,500	**	**	72.5	1000	75.7	22	68	8 <u>280</u> %	66	<u></u>	60.8	822
Nitrate/Nitrite	Nitrite	**	7,800	**	**	12.7	N	0.45	==	0.315	122	0.315		(222)	0.258
Selenium		**	390	**	**	0.579	5 77 55	0.548		0.183	3 73 -1	0.175		0.19	0 70
Silver		**	390	**	**	177	0.579	55/	0.548	2000	0.108	0.139			0.129
Thallium		**	1	**	**	0.579	1000	0.548	22	0.159	1 <u>111</u> 1	0.169	022	0.161	122
Vanadium		**	390	**	**	65.6	5.000 S	63.8	==	53.5	122	60.8		63.2	122
Zinc		**	23,000	**	**	67.6	10 10	NA		64	3 70 -3	66.9		62.6	
Organically Complexed Meta	ls			l		1			÷		9		50	A.	
n-Butyltin Cation	Di- and tri-butyltin compounds	**	18	**	**	0.00057			0.00028		0.00029	0.00032		-	0.00026
Di-n-butyltin Cation	Di- and tri-butyltin compounds	**	18	**	**	0.00031	1. 		0.00021		0.00021	0.00028			0.00019
Tri-n-butyltin Cation	Di- and tri-butyltin compounds	**	18	**	**	5 <u>2 10 1</u>	0.00059	<u>2005</u>	0.00046	1000	0.00048	8 <u>800</u> 8	0.00043	<u>0.00</u> 2	0.00043
Tetra-n-butyltin	Di- and tri-butyltin compounds	**	18	**	**		0.0006		0.00047		0.00049	44 3	0.00044		0.00044
Methylmercury		**	7.8	**	**	0.00005			0.00004		0.00004		0.00004		0.00005
Volatile Organic Compounds	(VOCs)	1	1	1.	1	1	1	r.	1	1	1	1	1:	1	
2-Chloronaphthalene		**	6,300	**	**		0.4		0.18		0.18		0.19		0.22
2-Chlorophenol		**	390	**	63	8 <u>22</u>	0.4	<u></u>	0.18	122	0.18		0.19	<u>11.0</u>	0.22
Dibenzofuran		**	78	**	**	1	0.4	-	0.18	6442	0.18	223)	0.19	-	0.22
1,2-Dichlorobenzene		**	1,900	**	**		0.4		0.18		0.18		0.19		0.22
1,3-Dichlorobenzene		**	**	**	530		0.4		0.18	1-77	0.18		0.19		0.22
1,4-Dichlorobenzene		2.4	3,500	**	**	122	0.4		0.18	1210	0.18		0.19	12.0	0.22
bis(2-Chloroethyl) ether		0.21	**	**	**		0.4	a. <u>1962</u> M	0.18	(222	0.18	22.0	0.19		0.22
bis-Chloroisopropyl ether		4.6	3,100	**	**		0.4		0.18		0.18		0.19	-	0.22

Table 3-3. Analytical Results Summary for Baseline and Conditioned Soil Samples

Table 3-3. Analytical Results Summary for Baseline and Conditioned Soil Samples

		Human	Health, Unrest	tricted-Use Soi	l (mg/kg)					Sample Res	ults (mg/kg)				
		USEP	A RSL ^a		odified ng Level ^b	Bas	eline	Condat-Co	onditioned	BASF-Co	nditioned	Normet-C	onditioned		onditioned % Lime)
Group Analyte	Screening-Level Surrogate	Carcinogenic	Non- carcinogenic	Carcinogenic	Non- carcinogenic	Maximum Detected	Maximum MDL	Maximum Detected	Maximum MDL	Maximum Detected	Maximum MDL	Maximum Detected	Maximum MDL	Maximum Detected	Maximum MDL
4-chlorophenyl phenyl Ether	2,2',4,4'-Tetrabromodiphenyl ether	**	6.1	**	**	2.72	0.4		0.18	675	0.18	1000	0.19	15.17)	0.22
2-Methylnaphthalene		**	230	**	**	8222	0.4	22%	0.18	3200	0.18	1220	0.19	122	0.22
Naphthalene		3.6	140	**	**	0.4			0.18	0.18	2 26 10		0.19	-	0.22
2-Nitrophenol	2,4-Dinitrophenol	**	120	**	**	5 	0.4	-	0.18	(0.18		0.19		0.22
Nitrobenzene		4.8	130	**	**	2.55	0.4	The second s	0.18	177	0.18	1000	0.19	15.17)	0.22
1,2,4-Trichlorobenzene		22	62	**	**	0222	0.4	22%	0.18	<u>2000</u>	0.18	200	0.19	1222	0.22
Semivolatile Organic Compo	unds (SVOCs)	•									•				
4-Chloroaniline		2.4	240	**	**		0.4		0.18	(<u></u>	0.18		0.19		0.22
3,3'-Dichlorobenzidine		1.1	**	**	**		0.4		0.18		0.18		0.19		0.22
2,4-Dichlorophenol		**	180	**	**		0.4		0.18		0.18		0.19	100	0.22
2,4-Dimethylphenol		**	1,200	**	**	Y <u>-22</u>	0.4	<u>22</u> 2	0.18	1200	0.18	. <u></u>	0.19	7 <u>1.10</u>	0.22
2,4-Dinitrophenol		**	120	**	**	100	0.4	<u>200</u> 3)	0.18	(111)	0.18	<u></u>	0.19	(22)	0.22
2,4-Dinitrotoluene		1.6	120	**	**		0.4		0.18		0.18		0.19		0.22
2,6-Dinitrotoluene		0.33	18	**	**	6770	0.4		0.18	1-70	0.18		0.19	1770	0.22
4-Bromophenyl phenyl ether	2,2',4,4'-Tetrabromodiphenyl ether	**	6.1	**	**	822	0.4	<u>22</u> 3	0.18	122	0.18	. <u></u>	0.19	7 <u>1.10</u>	0.22
Hexachlorobenzene		0.3	49	**	**		0.4	<u>202</u> 3	0.18	(222	0.18	220	0.19		0.22
Hexachlorobutadiene		6.2	61	**	**		0.4		0.18		0.18		0.19	-	0.22
Hexachlorocyclopentadiene		**	370	**	**	1.00	0.4	-	0.18		0.18	1.0	0.19	1000	0.22
Hexachloroethane		12	43	**	**	Y <u>-22</u>	0.4	<u>22</u> 2	0.18	1200	0.18	. <u></u>	0.19	7 <u>1.10</u>	0.22
Isophorone		510	12,000	**	**		0.4	<u>202</u> 3	0.18	(222	0.18	220	0.19		0.22
bis(2-Chloroethoxy) methane		**	180	**	**		0.4		0.18		0.18	 .	0.19		0.22
2-Methylphenol		**	3,100	**	**	1.00	0.4	- 	0.18		0.18	1.0	0.19		0.22
4-Methylphenol		**	6,100	**	**	8.22	0.4	<u>87</u> 28	0.18	122	0.18		0.19	72.12	0.22
4,6-Dinitro-2-methylphenol		**	4.9	**	**	222	0.4	228	0.18	(222)	0.18		0.19		0.22
4-Chloro-3-methylphenol		**	6,100	**	**		0.4		0.18	. 	0.18		0.19	-	0.22
2-Nitroaniline		**	610	**	**	1.77	0.4		0.18	2.00	0.18	1.1.2	0.19	1.50	0.22
3-Nitroaniline		**	**	**	18	8.22	0.4	<u>87</u> 28	0.18	122	0.18		0.19	72.12	0.22
4-Nitroaniline		24	240	**	**	222	0.4	228	0.18	200	0.18		0.19		0.22
4-Nitrophenol	2,4-Dinitrophenol	**	120	**	**		0.4		0.18) 	0.18		0.19	-	0.22
N-Nitrosodiphenylamine		99	**	**	: **:	677	0.4	-	0.18	1770	0.18		0.19	100	0.22
N-Nitrosodipropylamine		0.069	**	**	**	223	0.4	227	0.18	122	0.18		0.19	29	0.22
Pentachlorophenol		0.89	230	**	**	122	0.4	223	0.18	(22	0.18		0.19		0.22
Phenol		**	18,000	**	**	-	0.4		0.18	-	0.18		0.19	-	0.22
bis(2-Ethylhexyl) phthalate		35	1,200	**	**		0.4		0.18		0.18		0.19	100	0.22
Butyl benzyl phthalate		260	12,000	**	**	122	0.4		0.18	122	0.18	-227	0.19	120	0.22
Diethyl phthalate		**	49,000	**	**		0.4	223	0.18	(22	0.18	220	0.19		0.22

		Human Health, Unrestricted-Use Soil (mg/kg) USEPA RSL ^a CA-modified Screening Level ^b eening-Level Surrogate Carcinogenic Carcinogenic Non- carcinogenic								Sample Res	ults (mg/kg)				
		USEP	A RSL ^a	CA-m Screeni	odified ng Level ^b	Bas	eline	Condat-C	onditioned	BASF-Co	nditioned	Normet-C	onditioned		onditioned % Lime)
Group Analyte	Screening-Level Surrogate	Carcinogenic	Non- carcinogenic	Carcinogenic	Non- carcinogenic	Maximum Detected	Maximum MDL	Maximum Detected	Maximum MDL	Maximum Detected	Maximum MDL	Maximum Detected	Maximum MDL	Maximum Detected	Maximum MDL
1,4-Dioxane		4.9	1,800	**	**	NA	NA	NA	NA	NA	NA		0.058	NA	NA
Dimethyl Phthalate		**	**	100000	**	0.200	0.4	223	0.18	<u> 1977</u>	0.18	<u>210</u> 0	0.19	1222	0.22
di-n-Butyl Phthalate		**	6,100	**	**		0.4		0.18	1	0.18		0.19		0.22
di-n-Octyl Phthalate		**	610	**	2400	1	0.4		0.18	(0.18		0.19		0.22
2,4,5-Trichlorophenol		**	6,100	**	**	2.55	0.4		0.18	1578	0.18	1000	0.19	5.57	0.22
2,4,6-Trichlorophenol		44	61	6.9	**	122	0.4	200	0.18	3222	0.18		0.19	122	0.22
Polycyclic Aromatic Hydroca	rbons (PAHs)	•		•									•		
Acenaphthene		**	3,400	**	**	200	0.4		0.18	(<u></u>	0.18		0.19		0.22
Acenaphthylene	Acenaphthene	**	3,400	**	**		0.4		0.18). 	0.18		0.19		0.22
Anthracene		**	17,000	**	**	677	0.4	552	0.18	1000	0.18		0.19		0.22
Benzo[a]anthracene		0.15	**	**	**	225	0.4	<u>85</u> 3	0.18	120	0.18	-222	0.19	7 <u>2 19</u>	0.22
Benzo[b]fluoranthene		0.15	**	**	**	122	0.4		0.18	1222	0.18		0.19		0.22
Benzo[k]fluoranthene		1.5	**	0.38	**		0.4	-	0.18	,	0.18		0.19	-	0.22
Benzo[g,h,i]perylene	Pyrene	**	1,700	**	**	्रत्त्व	0.4	554	0.18	1000	0.18		0.19	1775	0.22
Benzo[a]pyrene		0.015	**	**	**		0.4		0.18		0.18		0.19	7 <u>2.11</u>	0.22
Chrysene		15	**	3.8	**	1.22	0.4	<u>(2002</u>)	0.18	6444	0.18	<u></u>))	0.19		0.22
Dibenz[a,h]anthracene		0.015	**	**	**		0.4		0.18		0.18		0.19		0.22
Fluoranthene		**	2,300	**	**	6770	0.4		0.18	1770	0.18		0.19		0.22
Fluorene		**	2,300	**	**	8 <u>-22</u>	0.4	<u>200</u> 2	0.18	1200	0.18	<u></u>	0.19	7 <u>1.10</u>	0.22
Indeno[1,2,3-cd]pyrene		0.15	**	**	**	222	0.4		0.18	1222	0.18	220	0.19		0.22
Phenanthrene	Anthracene	**	17,000	**	**		0.4		0.18	0.18			0.19		0.22
Pyrene		**	1,700	**	**		0.4		0.18	1.77	0.18	1	0.19	1777	0.22
Pesticides															
Aldrin		0.029	1.8	**	**	2.55	0.00048		0.00044	1977	0.00044	1	0.00045	1	0.00052
alpha-Chlordane	Chlordane (technical grade)	1.6	35	**	**	() <u>2160</u>	0.00048	<u>1418</u> 9	0.00044	<u></u>	0.00044	1 <u></u> 1	0.00045		0.00052
beta-Chlordane	Chlordane (technical grade)	1.6	35	**	**		0.00048		0.00044		0.00044	 3	0.00045		0.00052
Dalapon		**	1,800	**	**	1	0.006		0.0055	C ere	0.0055		0.0057		0.0065
4,4'-DDD		2	**	**	**	877	0.00048		0.00044	177	0.00044		0.00045	15.00	0.00052
4,4'-DDE		1.4	**	**	**	0.00075	10 <u>471</u> 01	<u>121125</u>	0.00044	<u>1000</u>	0.00044	<u></u>	0.00045	10.000	0.00052
4,4'-DDT		1.7	36	**	**		0.00048		0.00044		0.00044		0.00045		0.00052
Dicamba		**	1,800	**	**		0.006		0.0055	(0.0055		0.0057		0.0065
2,4-Dichlorophenoxyacetic acid		**	690	**	**	1.55	0.006		0.0055	1777.	0.0055	(TR)	0.0057	1.27	0.0065
2,4-Dichlorophenoxybutyric acid		**	490	**	**	0.200	0.006	<u>1210</u> %	0.0055	<u>1000</u>	0.0055	<u></u> 2	0.0057		0.0065
Dichloroprop	Месоргор	**	61	**	**	-	0.006	-	0.0055		0.0055		0.0057		0.0065
Dieldrin		0.03	3.1	**	**	1	0.00048		0.00044	(0.00044	 11	0.00045		0.00052
Dinoseb		**	61	**	**	2.75	0.006		0.0055	-	0.0055	- 22-2	0.0057	1770	0.0065

Table 3-3. Analytical Results Summary for Baseline and Conditioned Soil Samples

		Human	Health, Unrest	ricted-Use Soi	l (mg/kg)					Sample Res	ults (mg/kg)				
		USEP	A RSL ^a		odified ng Level ^b	Bas	eline	Condat-Co	onditioned	BASF-Co	nditioned	Normet-C	onditioned	Nomet-Co (with 3	onditioned % Lime)
Group Analyte	Screening-Level Surrogate	Carcinogenic	Non- carcinogenic	Carcinogenic	Non- carcinogenic	Maximum Detected	Maximum MDL								
Endosulfan I	Endosulfan (technical grade)	**	370	**	**	8.555	0.00048		0.00044		0.00044	100	0.00045	1 <u>5 (5</u>)	0.00052
Endosulfan II	Endosulfan (technical grade)	**	370	**	**	1200	0.00048	2225	0.00044	<u> 1977</u>	0.00044	<u></u>	0.00045	122	0.00052
Endosulfan Sulfate	Endosulfan (technical grade)	**	370	**	**		0.00048		0.00044		0.00044	<u>44</u>)	0.00045		0.00052
Endrin		**	18	**	**	1	0.00048		0.00044	C un	0.00044		0.00045	(71	0.00052
Endrin Aldehyde	Endrin	**	18	**	**	8.555	0.00048		0.00044		0.00044		0.00045	1.550 C	0.00052
Endrin ketone	Endrin	**	18	**	**	0 <u>2000</u>	0.00048	2005	0.00044	<u>1000</u>	0.00044	<u></u>	0.00045	1000	0.00052
alpha-HCH		0.077	490	**	**		0.00048		0.00044		0.00044		0.00045		0.00052
beta-HCH		0.27	**	**	**	1	0.00048		0.00044	(0.00044		0.00045	(777).	0.00052
delta-HCH	HCH (mixed isomers)	0.27	**	**	**	275	0.00048	1	0.00044	1770	0.00044		0.00045	570	0.00052
gamma-HCH		0.52	21	**	**	122	0.00048	225	0.00044		0.00044		0.00045		0.00052
Heptachlor		0.11	31	**	**		0.00048		0.00044		0.00044		0.00045		0.00052
Heptachlor Epoxide		0.053	0.79	**	**		0.00048		0.00044	(0.00044		0.00045		0.00052
MCPA		**	31	**	**	275	1.2	1	1.1	1770	1.1		1.1	2770	1.3
Месоргор		**	61	**	**	122	1.2	225	1.1		1.1		1.1		1.3
Methoxychlor		**	310	**	**		0.0048		0.0044		0.0044		0.0045	-	0.0052
Silvex		**	490	**	**		0.006		0.0055	(0.0055		0.0057		0.0065
Toxaphene		0.44	**	**	**	277	0.012	5 7779	0.011	1270.	0.011		0.011	1770	0.013
2,4,5-Trichlorophenoxyacetic acid		**	610	**	**	122	0.006	<u></u>	0.0055		0.0055		0.0057		0.0065
Polychlorinated Biphenyls (PCB	s) - Mixtures			•			•	•			•		•		
PCB-1016		6.3	3.9	**	**		0.02	<u></u>	0.018	(222	0.018	<u>212</u>)	0.019		0.022
PCB-1221		0.14	**	**	**		0.02		0.018		0.018		0.019		0.022
PCB-1232	рс	0.14	**	**	**	0.75	0.02	-	0.018		0.018		0.019		0.022
PCB-1242		0.22	**	**	**	8.22	0.02	222	0.018	122	0.018	. <u></u>	0.019	22	0.022
PCB-1248		0.22	**	**	**	122	0.02	223	0.018	(222	0.018	1223)	0.019	-	0.022
PCB-1254		0.22	1.1	**	**	-	0.02		0.018		0.018		0.019		0.022
PCB-1260		0.22	**	**	**	6776	0.02	- 	0.018	1000	0.018	-	0.019	1.55	0.022
Total Petroleum Hydrocarbons ((TPH)	•		P		1									
TPH-gasoline (low molecular-weight range TPH)		1.1	86	**	**	-	0.58	-	0.53		0.55		0.56		0.63
TPH-diesel (medium molecular-weight range TPH)		0.61	100	**	**		6	- 570)	5.5	56		27		24	-
Total Organic Carbon (TOC)															
TOC		1000 ** 6000 (range for RSL estimation)		**	**	2620	-	1670		2090	-	1150	_	1380	-

Table 3-3. Analytical Results Summary for Baseline and Conditioned Soil Samples

Table 3-3. Analytical Results Summary for Baseline and Conditioned Soil Samples

Notes:

^a USEPA. 2013. Regional Screening Levels (RSL) for Chemical Contaminants at Superfund Sites. RSL Table update. May, 2013. http://www.epa.gov/region9/superfund/prg/index.html ^b DTSC. 2013. DTSC recommended methodology for use of U.S. EPA Regional Screening Levels (RSLs) in the human health risk assessment process at hazardous waste sites and permitted facilities. Human Health Risk Assessment (HHRA) Note Number 3. California Department of Toxic Substances Control (DTSC), Human and Ecological Risk Office (HERO). Issue Date: May 21, 2013. http://www.dtsc.ca.gov/AssessingRisk/upload/HHRA-Note-3-2.pdf ^cValue is less than estimated Delta soil background concentration of 9.36 mg/kg (CVRWQCB, 2002), the mean concentration of 7.2 mg/kg for soil of the conterminous western U.S. (Shacklette and Boerngen, 1984), and the remediation cleanup level of 12 mg/kg (DTSC, 2009) imum soil-screening concer

-- = no value (if the analyte was detected, the maximum detected concentration is presented and the method detection limit is presented; if the analyte was not detected, then a maximum detected concentration is not presented but the maximum value of the method detection limit is presented). ESL = environmental screening level

NA = not available. Based on assumption that carcinogenic risk <1x10⁻⁶ and non-carcinogenic hazard index <1.0 are acceptable for unlimited exposure and unrestricted use.

RSL = regional screening level

CVRWQCB = California Regional Water Quality Control Board, Central Valley Region SFRWQCB = California Regional Water Quality Control Board, San Francisco Bay Region

USEPA = U.S. Environmental Protection Agency

shaded values = Indicate Concern ** = no published screening value

MDL = method detection limit

44 SECTION 3.0

3-14

45

There does not appear to be a consistent trend except for the STLC results for baseline sample 1A-2 and conditioned soil sample 1C-2, where the conditioned soil sample appears to have consistently lower concentrations. Although some results were qualified as having estimated concentrations, as discussed in Section 2.3.2, all data can be used for evaluating environmental conditions.

3.2.2 Waste Characterization

RTM will be a mixture of native subsurface soils and soil conditioner additives. While manufacturer information on typical examples of soil conditioners indicate the compounds generally are not classified as hazardous, care in use and disposal is still necessary as is common practice when using chemicals in accordance with standard industry protocols. Soils are anticipated to consist of inorganic constituents present at naturally occurring background concentrations. A potential concern is that the soil conditioners alter the geochemical conditions in the excavated soil and change the character or leachability of inorganic constituents.

Waste classification in California is accomplished, in part, through comparison of material characteristics (e.g., chemical content) to regulatory thresholds. Thresholds include the total threshold limit concentration, based on solid-phase concentrations of the soil matrix, and STLC, based on an extraction procedure that releases soil-bound materials into liquid in soil pores. As presented in Table 3-4, total concentrations of inorganic constituents and dissolved concentrations of inorganic constituents in baseline and conditioned soil samples are generally orders-of-magnitude lower than corresponding waste-classification thresholds. In general, concentrations of inorganic constituents were broadly similar among the baseline and conditioned soil samples.

Group Analyte	TTLC ^a		Sam	ple Maximum (mg	/kg)		STLC ^a		Di-WET	Sample Maximum	n (µg/L)	
	(mg/kg)	Baseline	Condat- Conditioned	BASF- Conditioned	Normet- Conditioned	Normet- Conditioned (Lime)	(µg/L)	Baseline	Condat- Conditioned	BASF- Conditioned	Normet- Conditioned	Normet- Conditioned (with 3% Lime)
Inorganic Constituents												
Antimony and/or antimony compounds	500	<1.16	<0.219	0.229	0.27	0.262	15,000	1.54	1.8	1.75	1.59	<0.5
Arsenic and/or arsenic compounds	500	4.37	4.03	4.51	4.23	4.03	5,000	17.4	10.9	14.7	11.3	0.435
Barium and/or barium compounds ^b	10,000	207	200	172	197	188	100,000	320	85.3	62.3	78.7	295
Beryllium and/or beryllium compounds	75	0.591	0.642	<0.541	0.538	0.519	750	0.662	<0.1	0.228	0.109	<0.1
Cadmium and/or cadmium compounds	100	0.579	0.548	0.342	0.439	0.466	1,000	0.28	<0.2	<0.2	<0.2	<0.2
Chromium (VI) compounds	500	<0.594	<0.547	<0.552	<0.568	<0.645	5,000					-
Chromium and/or chromium (III) compounds	2,500	62.3	60.3	50.1	56.6	54.3	5,000	39.3	0.971	16.9	7.98	12.5
Cobalt and/or cobalt compounds	8,000	18.3	19.1	14.3	15	14.3	80,000	9.07	0.428	3.19	1.14	0.61
Copper and/or copper compounds	2,500	38.4	37.5	34.7	31.5	29.1	25,000	38.3	15.2	15.7	7.92	11.8
Lead and/or lead compounds	1,000	7.28	7.75	6.9	8.03	7.11	5,000	8.17	1.6	4.05	2.65	0.199
Mercury and/or mercury compounds	20	0.0398	<0.0219	0.0368	0.0246	<0.0258	200	<0.1	<0.1	<0.1	<0.1	<0.1
Molybdenum and/or molybdenum compounds	3,500	1.16	1.1	0.315	0.384	0.439	350,000	6.97	7.59	7.08	5.93	8.33
Nickel and/or nickel compounds	2,000	72.5	75.7	68	66	60.8	20,000	39.8	2.33	14.7	6.35	0.568
Selenium and/or selenium compounds	100	0.579	0.548	0.183	0.175	0.19	1,000	9.67	8.77	9.1	8.38	3.34
Silver and/or silver compounds	500	<0.579	<0.548	<0.108	0.139	<0.129	5,000	<0.2	<0.2	<0.2	<0.2	<0.2
Thallium and/or thallium compounds	700	0.579	0.548	0.159	0.169	0.161	7,000	<0.2	<0.2	<0.2	<0.2	<0.2
Vanadium and/or vanadium compounds	2,400	65.6	63.8	53.5	60.8	63.2	24,000	72.1	19.9	46.7	26.4	4.29
Zinc and/or zinc compounds	5,000	67.6	NA	64	66.9	62.6	250,000	92.6	43.9	41.2	16.7	14.1

Table 3-4. Waste Characterization Results for Baseline and Conditioned Soil Samples

Notes: ^a California Code of Regulations, Title 22, Chapter 11, Article 3. ^b Excluding barite -- = not analyzed TTLC = total threshold limit concentration STLC = soluble threshold limit concentration mg/kg = milligrams per kilogram µg/L = micrograms per liter

3-17

48 SECTION 3.0

3.2.3 Human Health

Characterization of health risks at sites commonly involves the use of exposure scenarios as a combined set of conditions (e.g., chemical concentrations) and activities (e.g., household use of well water) to simulate the potential exposure of people (receptors) and to quantify or qualify the potential threats to human health from that exposure (a dose–response relationship).

Characterization of health risks at sites is accomplished at both the federal and state levels generally through a three-tiered triage. Unrestricted land use or *de minimis* (inconsequential) conditions are those where chemicals may be present, but at levels below regulatory-agency-derived health-protective standards and, in essence, a person could be continually exposed for a lifetime to the material without expectation of adverse health effects. The uppermost tier is the opposite: conditions are such that exposure would be expected to elicit adverse health effects, and some sort of response action or mitigation is required. The middle tier is the gray area, where preventive or mitigative measures are controllable options to prevent adverse effects.

De minimis standards for characterizing soil concentrations of chemical releases have been developed by both the EPA and the California Department of Toxic Substances Control (DTSC). These regional screening levels from EPA (EPA, 2013) or the California-Modified Screening Levels from DTSC (DTSC, 2013) represent health-protective soil concentrations acceptable for unlimited exposure and unlimited use. Concentrations of chemicals in soil less than corresponding unrestricted-use screening levels are understood to be without an appreciable threat to human health.

Table 3-3 presents the *de minimis* screening levels with the maximum detected concentrations or the maximum detection limit (per soil sample type) for each of the analytes measured with the methods described in Section 2.3.2. The majority of results for organic constituents were concentrations below the method detection limit, whereas most of the inorganic analytes were detected. In comparison to the screening levels, the majority of detected concentrations and detection limits are below the health protective screening levels, (i.e., are at concentrations which would typically be acceptable for unrestricted land use).

Several entries in Table 3-3 are in red, highlighted with yellow shading; these values indicate a soil sample concentration that exceeds the minimum (lowest) available screening criteria. These exceedances occur for arsenic concentrations detected in baseline and conditioned soil samples, and not-detected method detection limit values for one semi-volatile organic compound, a few polycyclic aromatic hydrocarbons, and total petroleum hydrocarbon as diesel. For the detected concentrations of arsenic, the EPA and DTSC screening levels for potential carcinogenic effects are below typical background concentrations (Shacklette and Boerngen, 1984; CVRWQCB, 2002) and/or regulatory-agency-acceptable remediation goals, which for California sites range up to approximately 12 mg/kg (DTSC, 2007, 2009; Duverge, 2011; Hunter et al., 2005). Consequently, the arsenic screening values are derived mathematical constructs, independent from natural environmental conditions; the soil sample results are representative of background conditions. The non-arsenic highlighted values in Table 3-3 represent typical detection limit concentrations, which, for the most part, are relatively close to but greater than the minimum screening levels. If future sampling is focused toward these eight analytes, then analytical methodological adjustments may be

needed to achieve lower detection limits. In general, analytical methods were sufficiently sensitive to characterize *de minimis* concentrations for a common suite of chemical contaminants and inorganic constituents.

3.2.4 Ecological Resources

As with human exposures, characterization of ecological risks at sites commonly involves the use of exposure scenarios as a combined set of conditions (e.g., chemical contamination) and activities (e.g., plants directly growing in, or animals foraging on, tunnel spoils) to simulate the potential exposure of ecological receptors and to quantify or qualify the potential threats to the environment from that exposure.

Conceptually similar to the soil screening levels developed to protect human health, ecological soil screening levels have been developed by the EPA and other organizations that are protective of birds, mammals, plants, and soil microflora and microfauna. Concentrations of detected analytes are presented in Table 3-5 along with ecologically based soil screening levels. The table highlights several instances where detected concentrations exceed a soil screening benchmark. However, all the exceedances in the conditioned soil samples also occur in the corresponding baseline samples. Screening benchmarks can often be calculated to be at concentrations less than naturally occurring background concentrations. Therefore, the applicability of the ecological soil screening benchmarks should be verified with regulatory agency and/or permitting agency authorities.

Analyte		Maximum	Detected Concentration	n in Soil (mg/kg)			USEPA Eco-SS	Ls ^a (mg/kg)		Terrestrial	Soil Organisms
	Baseline	Condat-Conditioned	BASF-Conditioned	Normet-Conditioned	Normet-Conditioned (with 3% Lime)	Plant	Soil Invertebrate	Bird	Mammal	Plants ^b (mg/kg)	and Microbial Processes ^c (mg/kg)
Inorganic Constituents								- 5			
Ammonia	16	0.738	0.831		2.31	**	**	**	**	**	**
Antimony	5 <u>22</u>	32 <u>11</u> 33	0.229	0.27	0.262	**	78	**	0.27	5	**
Arsenic	4.37	4.03	4.51	4.23	4.03	18	**	43	46	10	60
Barium	207	200	172	197	188	**	330	**	2,000	500	3,000
Beryllium	0.591	0.642		0.538	0.519	**	40	**	21	10	**
Cadmium	0.579	0.348	0.342	0.439	0.466	32	140	0.77	0.36	4	20
Chromium (total)	62.3	60.3	50.1	56.6	54.3	**	**	**	**	1	0.4
Cr(III)	8 -1	30 3	-	—		**	**	26	34	**	**
Cr(VI)	0.55	10 -11 -2	5 		177	**	**	**	130	**	**
Cobalt	18.3	19.1	14.3	15	14.3	13	**	120	230	20	1,000
Copper	38.4	37.5	34.7	31.5	29.1	70	80	28	49	100	60
Lead	7.28	7.75	6.9	8.03	7.11	120	1,700	11	56	50	500
Mercury	0.0398	19-12-2		0.0246	1000	**	**	**	**	0.3	0.1
Molybdenum	1.16	0.282	0.315	0.384	0.439	**	**	**	**	2	200
Nickel	72.5	75.7	68	66	60.8	38	280	210	130	30	90
Nitrate/Nitrite	12.7	0.45	0.315	0.315		**	**	**	**	**	**
Selenium	0.579	0.153	0.183	0.175	0.19	0.52	4.1	1.2	0.63	1	70
Silver	622	3.2237	<u></u>	0.139	1201	560	**	4.2	14	2	50
Thallium	0.579	0.165	0.159	0.169	0.161	**	**	**	**	1	**
Vanadium	65.6	63.8	53.5	60.8	63.2	**	**	7.8	280	2	20
Zinc	67.6	NA	64	66.9	62.6	160	120	46	79	50	100
Organically Complexed M	letals				1			-			•
Methylmercury ^d	0.00005	3 <u>111</u> 33		<u></u>		**	<0.001	**	0.00158	**	**
Organochlorine Pesticide	s				·						
4,4'-DDE	0.00075		<u></u>			**	**	0.093	0.021	**	**
Volatile Organic Compou				1					19.000 (1997) (1978)		
Naphthalene ^e	0.0032		2005		<u></u>	**	29	**	100	**	**

Table 3-5. Ecological Screening Guidelines for Detected Analytes

^a U.S. Environmental Protection Agency (USEPA) Ecological Soil Screening Levels (Eco-SSLs) (http://www.epa.gov/ecotox/ecossl/index.html) ^b Efroymson, R.A., M.E. Will, G.W. Suter II, and A.C. Wooten. 1997a. Toxicological Benchmarks for Screening Contaminants of Potential Concern for Effects on Terrestrial Plants: 1997 Revision. ES/ER/TM-85/R3. Prepared for the U.S. Department of Energy, Office of Environmental

Management. Prepared by Lockheed Martin Energy Systems, Inc., for the East Tennessee Technology Park, Oak Ridge National Laboratory, Oak Ridge, TN. ° Efroymson, R.A., M.E. Will, and G.W. Suter II. 1997b. Toxicological Benchmarks for Contaminants of Potential Concern for Effects on Soil and Litter Invertebrates and Heterotrophic Processes: 1997 Revision. ES/ER/TM-126/R2. Prepared for the U.S. Department of Energy, Office of Environmental Management. Prepared by Lockheed Martin Energy Systems, Inc., for the East Tennessee Technology Park, Oak Ridge National Laboratory, Oak Ridge, TN. ^d USEPA Region 5 Eco screening levels (www.epa.gov/reg5rcra/ca/)

^e Assessed as a low molecular weight PAH

shaded cells indicate concentration
** = no published screening value on exceeds at least one ecological screening guideline

-- = not detected

51 **SECTION 3.0** 52 SECTION 3.0

3.2.5 Environmental Property Conclusions

Based on the test results in Table 3-3 and 3-4, there is no indication that RTM would require handling as hazardous waste material. RTM would be expected to meet conditions acceptable for unrestricted land uses, with or without added soil conditioners.

However, exposure of people, wildlife and plants to conditioned soil has not been fully assessed under unrestricted-use conditions, creating an uncertainty for potential adverse effects. If RTM is to be placed in the environment where people could contact the soil, either directly (e.g., through skin contact) or indirectly (e.g., as airborne particulate, or as leachate in surface or drinking water), then human health risk assessment(s) will need to be developed. Development of appropriate exposure scenarios for evaluation in the risk assessment will depend on the specific environmental context; for example, uses as surficial landscape fill for a residential area or subsurface use at a construction site. Determination of appropriate exposure scenarios, and the specific risk-assessment details, is a collaborative process with regulatory agency and/or permitting agency authorities (e.g., the California RWQCB, the United States Army Corps of Engineers (USACE), or the DTSC), depending on the re-use option. The scoping process would be used to determine if additional evaluation efforts are necessary to meet agency requirements for allowing re-use (e.g., benthic invertebrate bioassays if spoils are intended for wetland fill, or phytotoxicity testing if spoils are intended for upland re-use).

3.3 Planting Suitability Properties

3.3.1 Conditioner Effects on Soil Properties

A comparison between the planting suitability test results on baseline and conditioned soil samples are presented in Table 3-6. Except for sample 3B-1 that was lime-treated, there does not appear to be a consistent trend between the baseline and conditioned soil test results. Sample 3B-1 exhibited an elevated pH value; therefore, lime-treated soil should be kept away from areas where plant growth is desirable. To increase planting suitability, RTM would require soil amendments as the native soils within the tunnel zone have a low organic content.

3.3.2 Planting Suitability Conclusions

The soil conditioner application rates used for this RTM testing program were purposefully higher than industry typical values that were recommended by the conditioner manufacturers. As a result, the effects of adding conditioners on the soil's planting suitability properties are likely to be higher than would be expected for RTM. Even with increased rates of conditioner application, the testing performed indicates that the conditioner products do not appear to pose a significant threat to planting suitability.

Although the tests performed indicate favorable results for reusability of RTM, if conditioned soil is to be placed in the environment for large-scale uses then additional plant growth tests may be required by regulatory agency and/or permitting agency authorities. These tests are unique and specific to certain conditions, and therefore should be scoped in collaboration with pertinent agencies (e.g., California State Water Resources Control Board (SWRCB) and/or Central Valley Regional Water Quality Control Board (CVRWQCB), California Office

DHCCP_RTM-Final_20140307 docx

of Environment Health Hazard Assessment, DTSC or the California Environmental Protection Agency).

The safety of human or animal consumption of agricultural crops grown in the conditioned soil was outside the scope of this study. Consultation with the California Department of Food and Agriculture would be required to evaluate this issue further.

Table 3-6. Summary of Planting Suitability Test Results

Sample Description	Base	ple 1A-1 line (No ditioner)	Base	ple 2A-1 line (No litioner)	Bas	mple 3A-1 seline (No nditioner)	Sample	e CC-1		mple 1C-1 t-Conditioned		mple 2B-1 -Conditioned		ple 3D-1 Conditioned	Normet	mple 3B-1 t-Conditioned n 3% Lime)
Elements																
	ppm		ppm		ppm		ppm		ppm		ppm		ppm		ppm	
phosphorus	2.80		2.98		2.84		21.34	1	2.79		2.24		2.29		6.98	
potassium	139.43		146.12		137.97		84.25	2	141.87		123.42		132.56		138.35	
iron	14.11		18.46		16.28	er en	160.87		11.52		10.87		13.68		90.69	
manganese	14.86		14.87		14.19		35.47		12.93		8.70		4.94		15.60	
zinc	0.88		0.90		0.77		1.24		NA		2.78	8	1.12		1.42	
copper	6.81		6.71		6.58		4.05		6.52		5.49		5.57		8.85	
boron	0.12		0.17		0.21		0.21		0.34		0.09		0.18		0.12	
calcium	269.75		251.56		234.30		292.61		281.93		299.28		330.63		359.78	
magnesium	613.44		700.26		673.00		416.37		770.55		754.82		775.29		245.53	
sodium	385.61		400.72		369.28		189.24		472.55		454.68		440.14		328.41	
sulfur	117.79		97.32		91.08		61.27		177.37		132.93		157.19		286.02	
molybdenum	0.07		0.07		0.06		0.01		0.20		0.08	8	0.05		0.10	
nickel	0.49		0.44	3	0.43		0.96		0.33		0.25	8	0.23		0.99	
aluminum	ND		ND		ND		ND		ND	~~~	ND		ND		ND	
arsenic	0.21		0.26		0.22		0.25		0.22		0.15		0.17		0.59	
barium	0.99		1.12		1.07		0.90		1.24		0.80		0.99		0.29	
cadmium	0.04		0.04		0.04		0.06		0.06		0.04		0.05		0.05	
chromium	0.02		0.02		0.03		0.06	2	ND		0.02		ND		0.27	
cobalt	0.20		0.20		0.31		0.16		0.15		0.13		0.14		0.28	
lead	1.55		1.63		1.59		1.33		1.45		1.20		1.16		2.24	
lithium	0.25		0.25		0.23		0.26		0.26		0.28	5	0.34		0.30	
mercury	ND		ND		ND		ND		ND		ND		ND		ND	
selenium	ND		0.37		ND		ND		ND		ND		ND		ND	
silver	ND		ND		ND		ND		ND		ND		ND		ND	
strontium	2.68		2.92		2.69		2.85	1	3.24		3.28		3.66		0.43	
tin	ND		ND		ND		ND	2 	ND		ND		ND		ND	
vanadium	1.20		1.32		1.25		1.25		1.29		1.13		1.31		3.53	
Saturation Extract	1								· · · · · · · · · · · · · · · · · · ·						ő	
pH value	7.86 ^a	ĺ	7.91 ^ª		7.87ª		7.85ª		7.75 ^a		7.87 ^a		8.79 ^ª		13.36ª	
ECe (milli-mho/cm)	1.84		1.33	1	2.14		1.23	2	1.72		2.14		1.54		6.48	
an 1673	ppm	millieq/l	ppm	millieq/l	ppm	millieq/l	ppm	millieq/l	ppm	millieq/l	ppm	millieq/l	ppm	millieq/l	ppm	millieq/l
calcium	82.6	4.1	56.2	2.8	114.2	5.7	72.3	3.6	92.7	4.6	114.2	5.7	200.6	10.0	359.6	18.0
magnesium	35.5	2.9	23.4	1.9	37.2	3.1	29.4	2.4	37.0	3.1	37.2	3.1	16.9	1.4	1.8	0.1
sodium	191.8	8.3	150.6	6.5	251.7	10.9	124.2	5.4	206.9	9.0	251.7	10.9	168.5	7.3	248.4	10.8
potassium	7.4	0.2	6.7	0.2	13.5	0.3	7.9	0.2	9.5	0.2	13.5	0.3	17.4	0.4	12.3	0.3

Table 3-6.	Summary of Planting Suitability Test Results	
------------	--	--

Sample Description	Base	ple 1A-1 eline (No ditioner)	Base	ple 2A-1 eline (No ditioner)	Bas	nple 3A-1 seline (No nditioner)	Sample	e CC-1		nple 1C-1 -Conditioned		nple 2B-1 Conditioned		ple 3D-1 Conditioned	Normet	nple 3B-1 -Conditioned n 3% Lime)
cation sum		15.6		11.5		20.1		11.6		16.9		20.1		19.2		29.2
chloride	171	4.8	123	3.5	232	6.5	110	3.1	163	4.6	232	6.5	131	3.7	114	3.2
nitrate as N	19	1.4	15	1.0	3	0.2	14	1.0	3	0.2	3	0.2	1	0.1	2	0.2
phosphorus as P	0.2	0.0	0.2	0.0	0.4	0.0	0.2	0.0	0.2	0.0	0.4	0.0	0.4	0.0	0.2	0.0
sulfate as S	169.4	10.6	111.0	6.9	220.1	13.8	97.2	6.1	195.4	12.2	220.1	13.8	161.0	10.1	3.9	0.2
anion sum		16.8		11.5		20.5		10.2		17.0		20.5		13.9		3.6
boron as B	0.22		0.18		0.11		0.28		0.14		0.11		0.24		0.04	
SAR	4.4		4.3		5.2		3.1		4.6		5.2		3.1		3.6	
est. gypsum requirement-lbs./1000 ft ²	185		217		244		87		252		244		248		56	
infiltration rate inches/hour	0.22	sand -36.9%	0.33	sand - 34.6%	0.08	sand - 33.7%	11.10	sand - 57.3%	0.28	sand - 34.0%	0.08	sand - 33.7%	0.69	sand - 33.0%	7.66	sand - 39.5%
soil texture	clay Ioam	silt - 34.5%	clay Ioam	silt - 36.6%	clay Ioam	silt - 35.1%	sandy clay loam	silt - 22.1%	clay Ioam	silt - 35.8%	clay Ioam	silt - 35.1%	clay Ioam	silt - 36.5%	loam	silt - 34.9%
lime (calcium carbonate)	no	clay - 28.6%	no	clay - 28.88%	no	clay - 31.2%	no	clay - 20.6%	no	clay - 30.3%	no	clay - 31.2%	no	clay - 30.5%	yes	clay - 25.6%
organic matter	low/fair		low/fair		low		low/fair		very low		low		low		low/fai r	
moisture content of soil	5.2%	gravel > 2 mm	5.2%	gravel > 2 mm	9.4%	gravel over 2 mm	19.3%	gravel over 1/4"	9.7%	gravel over 2 mm	9.4%	gravel over 2 mm	14.3%	gravel over 1/4"	29.8%	gravel over 1/4"
half saturation percentage	27.0%	0.5%	28.2%	0.5%	27.8%	2.5%	26.0%	0.0%	29.7%	0.4%	27.8%	2.5%	29.2%	0.0%	34.8%	0.2%
Cations																
	millieq	% saturation	millieq	% saturation		% saturation		% saturation	millieq	% saturation		% saturation		% saturation		% saturation
potassium	0.35	2%	0.39	1%	0.32	1%	0.25	2%	0.35	1%	0.32	1%	0.34	1%	0.38	0%
sodium	1.23	5%	1.40	5%	1.38	6%	0.72	5%	1.54	6%	1.38	6%	1.51	5%	1.05	1%
calcium	13.76	59%	14.83	58%	13.79	56%	8.65	55%	15.86	62%	13.79	56%	19.66	68%	106.29	98%
magnesium	6.45	28%	6.99	27%	6.64	27%	4.69	30%	7.00	27%	6.64	27%	7.10	25%	1.26	1%
hydrogen	1.60	7%	2.16	8%	2.32	9%	1.52	10%	0.96	4%	2.32	9%	0.32	1%	0.00	0%
total millieq/100 grams	23.39		25.77		24.44		15.83		25.71		24.44		28.93		108.98	

Notes: ^a Central Valley Regional Water Quality Control Board screening level for pH without reuse/disposal restrictions is 6.5 to 8.5 shaded cells indicate concentration exceeds screening guideline

4.0 ACKNOWLEDGEMENTS AND LIMITATIONS

4.1 Acknowledgements

The DHCCP project team wishes to acknowledge the valuable expertise and participation of the following individuals in the preparation of this report:

- Tom Cudzilo, contributing author, URS
- Ed Fendick, contributing author, URS
- Chris Hargreaves, contributing author, URS
- Gyeong-Taek Hong, contributing author, URS
- Nicholas Hightower, contributing author, DWR
- Stacy Louie, contributing author, URS
- Rob Nixon, Task Order Manager, URS
- Mark Pagenkopp, contributing author, DWR
- David Pieczynski, contributing author, URS
- Praba Pirabarooban, Task Order Manager, DWR
- George Strnad, contributing author, URS

The project team gratefully acknowledges all team members for their contributions. The project team also thanks the following soil conditioner manufacturers' representatives that contributed to this effort:

- Jan Babendererde, BASF
- Bobby Cannon, DSI Underground Systems, Inc. (representing Condat)
- Chris Gause, Normet
- Jaime Ibarra, BASF
- Cristobal Lozano, Condat

4.2 Limitations

This report, associated data collection, and preparation have been performed in accordance with the standard of care commonly used as the state-of-practice in the engineering profession. Standard of care is defined as the ordinary diligence exercised by fellow practitioners in this area performing the same services under similar circumstances during the same period.

No warranty, express or implied, is made in the furnishing of this report. Data provided by others has not been independently validated or verified. Data should not be applied to any other projects outside the scope of this study.

This testing program was developed to evaluate RTM for the planned long-term uses identified in Section 1.2. The data obtained is based on the soil and conditioner product samples provided and procedures described herein. Conclusions presented in this report are based on the results of the tests conducted.

DHCCP_RTM-Final_20140307 docx

5.0 REFERENCES

- California Department of Toxic Substances Control. 2007. Arsenic Strategies: Determination of Arsenic Remediation; Development of Arsenic Cleanup Goals for Proposed and Existing School Sites. March.
- California Department of Toxic Substances Control. 2009. Arsenic Strategies: Determination of Arsenic Remediation – Development of Arsenic Cleanup Goals. January.
- California Department of Toxic Substances Control. 2013. DTSC Recommended Methodology for Use of U.S. EPA Regional Screening Levels (RSLs) in the Human Health Risk Assessment Process at Hazardous Waste Sites and Permitted Facilities. Human Health Risk Assessment (HHRA) Note Number 3. California Department of Toxic Substances Control (DTSC), Human and Ecological Risk Office (HERO). May 21. http://www.dtsc.ca.gov/AssessingRisk/upload/HHRA-Note-3-2.pdf
- California Department of Water Resources. 2009. *Groundwater Level Data Reports in the Water Data Library*, maintained by the Division of Statewide Integrated Water Management, available at www.water.ca.gov/waterdatalibrary/ (data provided by DWR to DHCCP team on September 2.
- California Regional Water Quality Control Board, Central Valley Region; California Department of Fish and Game; Delta Protection Commission. 2002. *Delta Dredging and Reuse Strategy*. Volumes I and 11. June.
- California Regional Water Quality Control Board. 2008. Order R5-2009-0085, General Waste Discharge Requirements for Maintenance Dredging Operations Sacramento-San Joaquin Delta. June.
- CH2MHILL. 2012. Conceptual Engineering Report, Modified Pipeline Tunnel Option, DHCCP, Final Draft, December 21.
- Duverge, D. 2011. *Establishing Background Arsenic in Soil of the Urbanized San Francisco Bay Region*. Master's thesis accepted by San Francisco State University, San Francisco, California. December.
- EFNARC. 2005. Specification and Guidelines for the Use of Specialist Products for Mechanised Tunnelling (TBM) in Soft Ground and Hard Rock. April.
- Gorman, M., and Wells, L., 2000. "Trends in river flow affecting the northeastern reach of the San Francisco Bay Estuary over the past 7,000 years." *Quaternary Research*.
- Hunter, P., Davis, B., Roach, F. 2005. *Inorganic Chemicals in Ground Water and Soil: Background Concentrations at California Air Force Bases*, presented at the 44th Annual Meeting of the Society of Toxicology, New Orleans, Louisiana, March 10.
- ICF. 2013. Bay Delta Conservation Plan Draft Environmental Impact Report/Environmental Impact Statement, December.

DHCCP_RTM-Final_20140307 docx

- Lindsay, W., Norvell, W. 1978. "Development of a DTPA Soil Test for Zinc, Iron, Manganese, and Copper." *Soil Science Society of America Journal*. 42:421-428.
- San Francisco Bay Regional Water Quality Control Board. 2000. Draft Staff Report, Beneficial Reuse of Dredged Materials: Sediment Screening and Testing Guidelines. May.
- Shacklette and Boerngen. 1984. *Elemental Composition of the Conterminous United States:* USGS Prof. Paper 1270.
- Thewes, M., Budach, C., Galli, M. 2010. "Laboratory Tests with various conditioned Soils for Tunnelling with Earth Pressure Balance Shield Machines." http://www.tunnelonline.info/en/artikel/tunnel_201006_Laboratory_Tests_with_various_conditioned_ Soils_for_Tunnelling_with_Earth_997325.html#
- United States Environmental Protection Agency. 2013. Regional Screening Levels (RSL) for Chemical Contaminants at Superfund Sites. RSL Table update. May. http://www.epa.gov/region9/superfund/prg/index.html
- United States Fish and Wildlife Service. 2008. *Quality Assurance Project Plan, Inner Bair Island Fill Import and Placement,* March 13.
- URS Corporation. 2013a. Excavated Tunnel Material Testing Plan. June.
- URS Corporation. 2013b. 2009 through 2012 Geotechnical Data Report, Pipeline/Tunnel Option, DHCCP, April.

APPENDIX A

Baseline Soil Sample Generation Process

DWR-207

BASELINE SOIL SAMPLE GENERATION PROCESS

1. Sampling

- A. Soil core boxes were selected between elevation -100 to -170 feet mean sea level from borings along the proposed tunnel alignment. An effort was taken to pick an even distribution of borings from north to south.
 - i. Sample selection and mixing was performed by Nicholas Hightower (DWR) and Dave Pieczynski (URS) at the DHCCP sample warehouse in West Sacramento between the dates of July 15 to July 18, 2013.
- B. Soil core samples were split in half lengthwise for the entire interval retained in the core box, except where limited material was available the core was not split nor used for this testing program.
- C. Samples were divided into three general classifications:
 - i. "Clean" Sand
 - ii. "Dirty" Sand
 - iii. Fines (silt and clay)
- D. Samples were kept separate into different buckets based on the classifications above until mixing.
- E. Samples were split using a spackling (or putty) knife and a rock hammer (where needed).
- F. Once a bucket was filled with split sample core, the sample was poured out on a tarp and broken down by a tamper, rock hammer, and/or putty knife.
- G. The broken up soil was placed back in the bucket and set aside for mixing.
- H. Core was removed from a total of 19 holes. Twelve 5-gallon buckets were filled with the split sample core. The samples from the Hood area were initially kept separate from the rest of the samples; they were later added during mixing.

2. Mixing

- A. Each classification type was mixed with the other buckets of the same classification (e.g. all the dirty sand buckets were combined together and mixed separate from the clean sand and fines).
 - i. The soil was poured out of the bucket onto a tarp.
 - ii. The material was mixed by folding the tarp over and over and by using shovels to hand mix the material.
 - iii. The fines were mixed in two batches because of their larger volume.
 - iv. Once each batch was mixed, the fines were mixed together.

- B. The fines were spread over the tarp in a thin layer.
 - i. The clean sand was spread evenly over the fines layer.
 - ii. The clean sand and fines were mixed by folding the tarp over and mixing by shovel.
 - iii. The clean sand and fines were spread thin over the tarp.
 - iv. The mixed dirty sand was evenly spread over the clean sand and fines mixture.
 - v. All of the soil was mixed thoroughly using the same method as above.
 - vi. The mixture was run through again with a tamper, putty knife, and/or rock hammer to break up the larger pieces.
- C. The soil mixture was then screened through a ³/₄ inch sieve.
- D. The soil was divided equally among twelve 5-gallon buckets, labeled (1A to 1D, 2A to 2D, 3A to 3D), and sealed with a lid and tape.

3. Splitting

- A. Two 2-pound bags of soil were needed for testing by subcontractor laboratories (EMAX and Wallace).
- B. The 1A, 2A and 3A buckets were taken to DWR's Bryte Soil Laboratory for sample splitting.
- C. Samples were split down to generate 2-pound bag samples. The split samples were labeled 1A-1, 1A-2, 2A-1, 2A-2, 3A-1, and 3A-2.

APPENDIX B

Soil Conditioning Process

DWR-207

As-received soil moisture content (approximately 17 percent).

Moisture added to simulate native conditions (approximately 33 percent).

Slump testing of simulated native soil without conditioner.

Foam generated from conditioner product using laboratory stirrer.

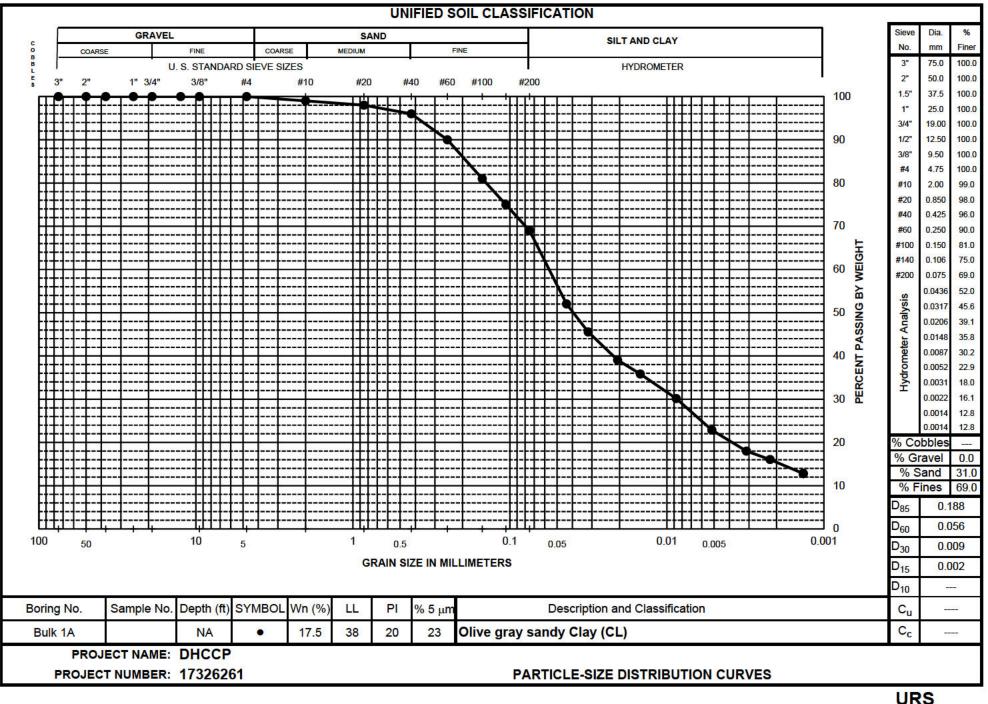
Initial batch of foam conditioner added to simulate RTM.

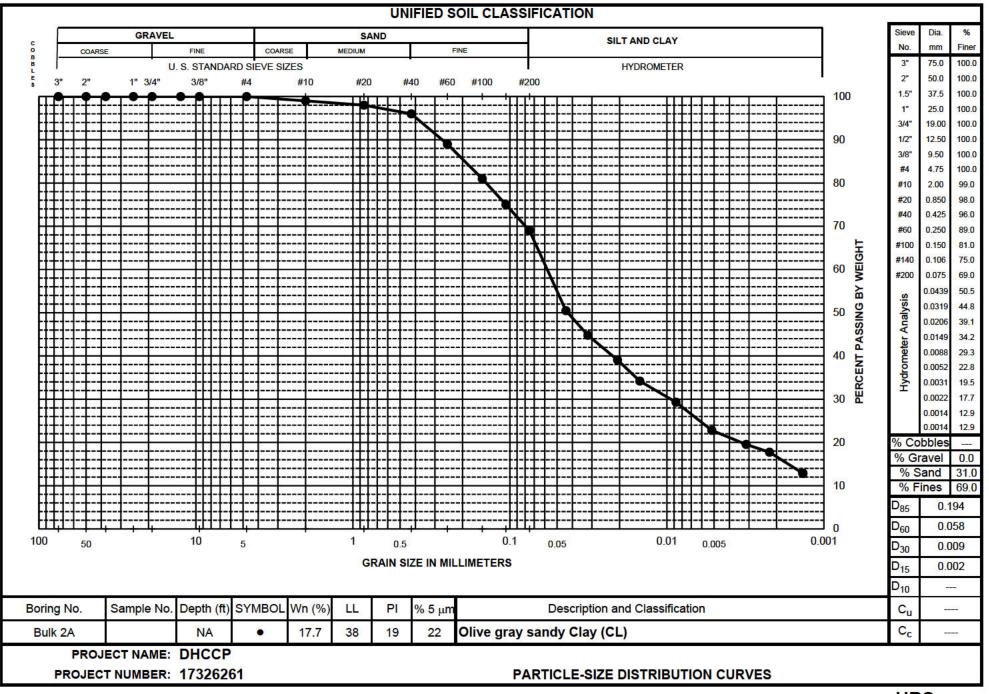
Mixing of soil with initial batch of foam conditioner added.

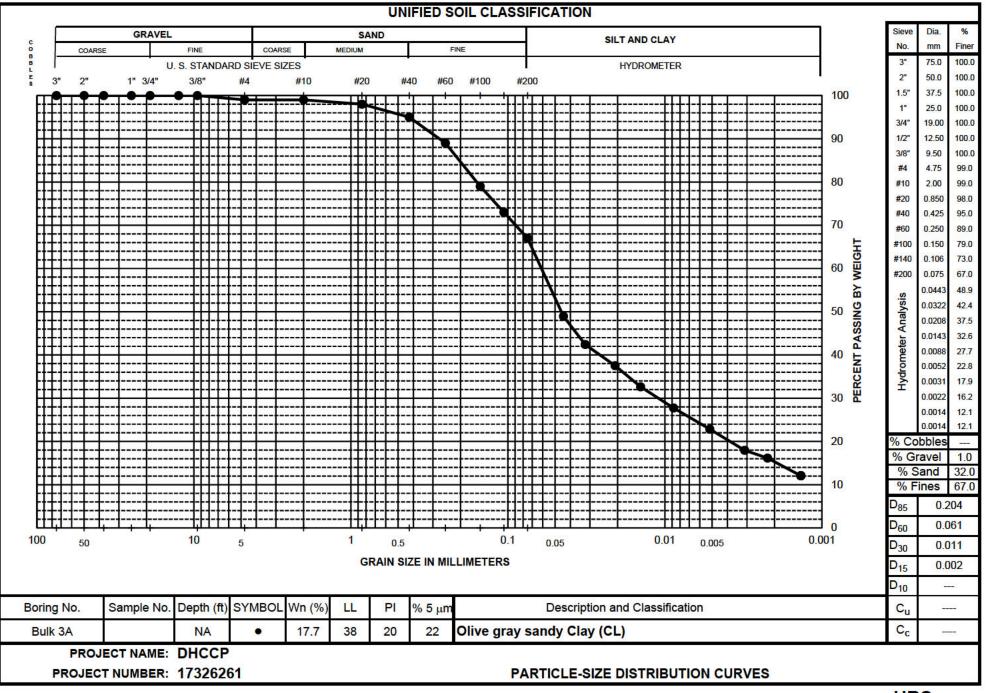
Slump testing of initial batch of conditioned soil.

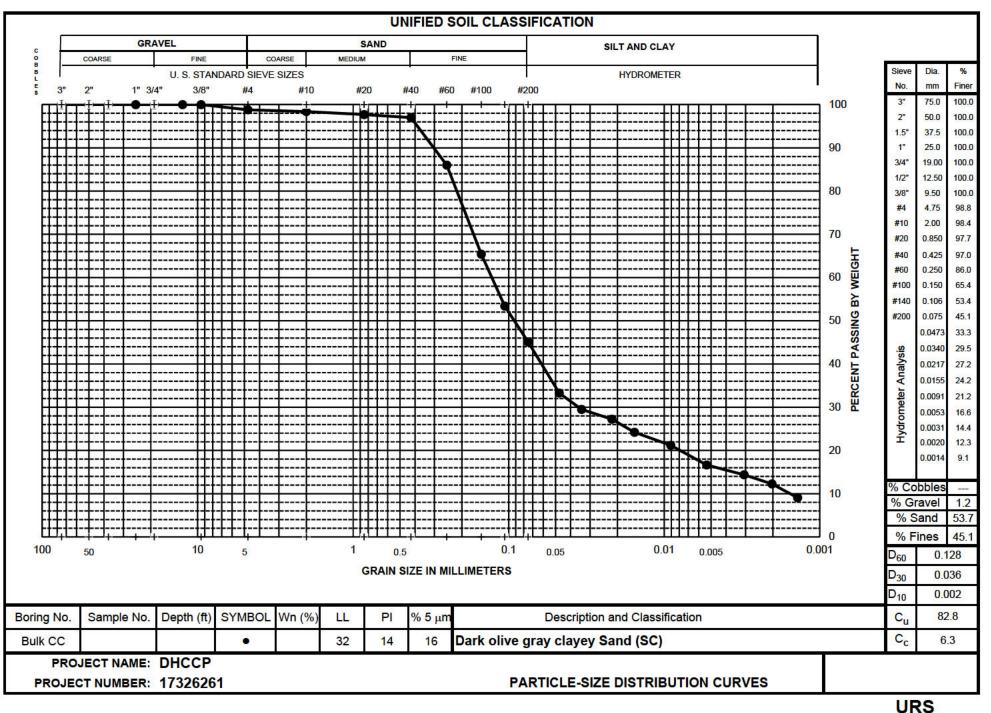
Second (final) batch of foam conditioner added for this testing program.

Mixing of soil with second (final) batch of foam conditioner added.

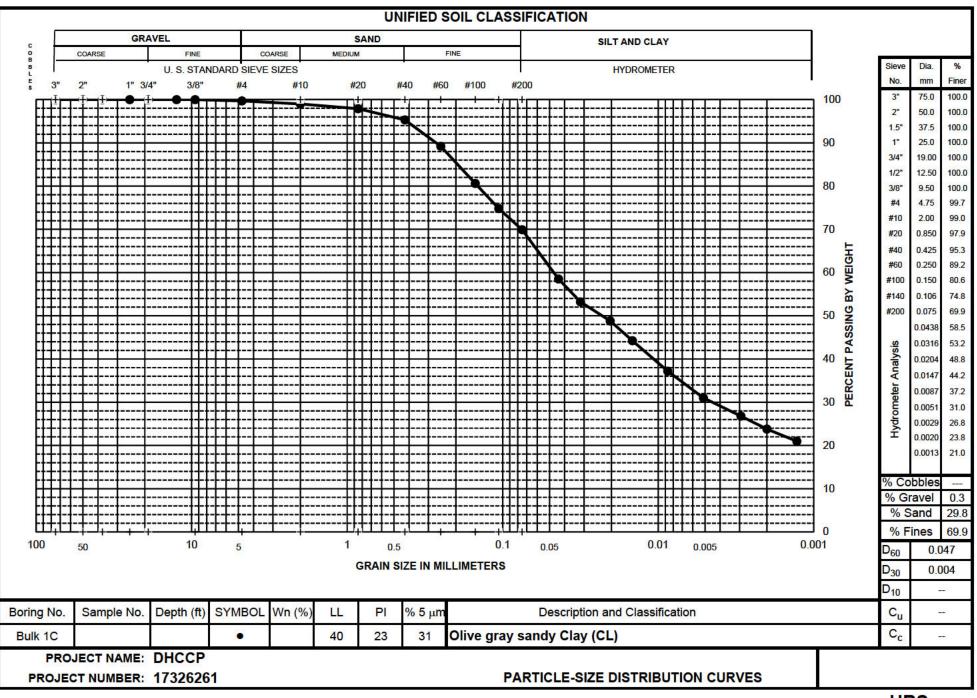


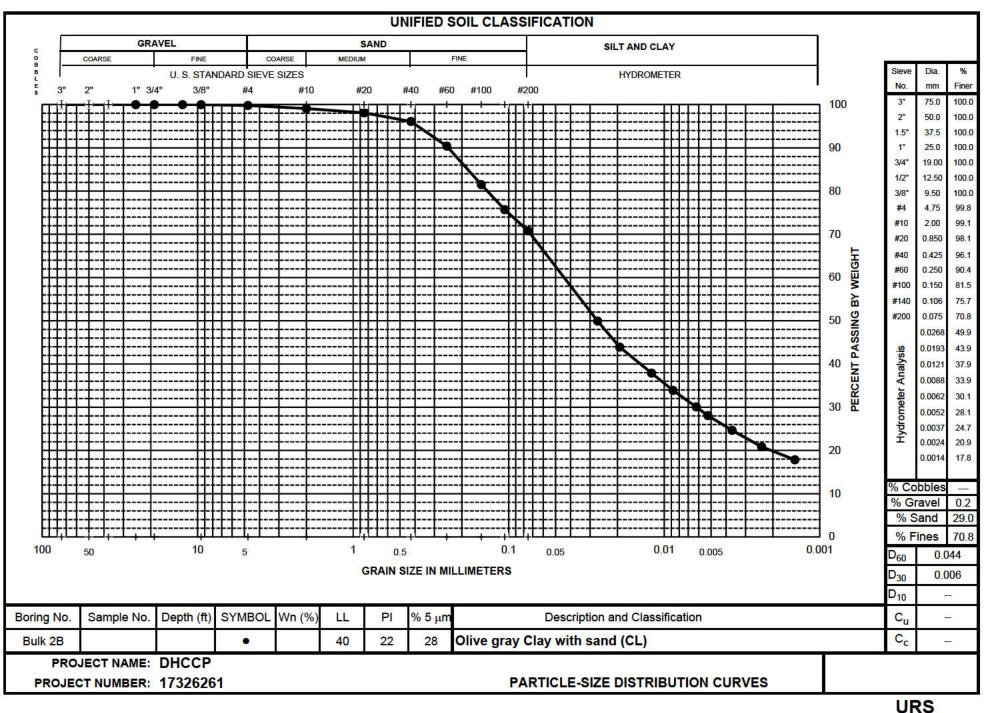

Slump testing of second (final) batch of conditioned soil.

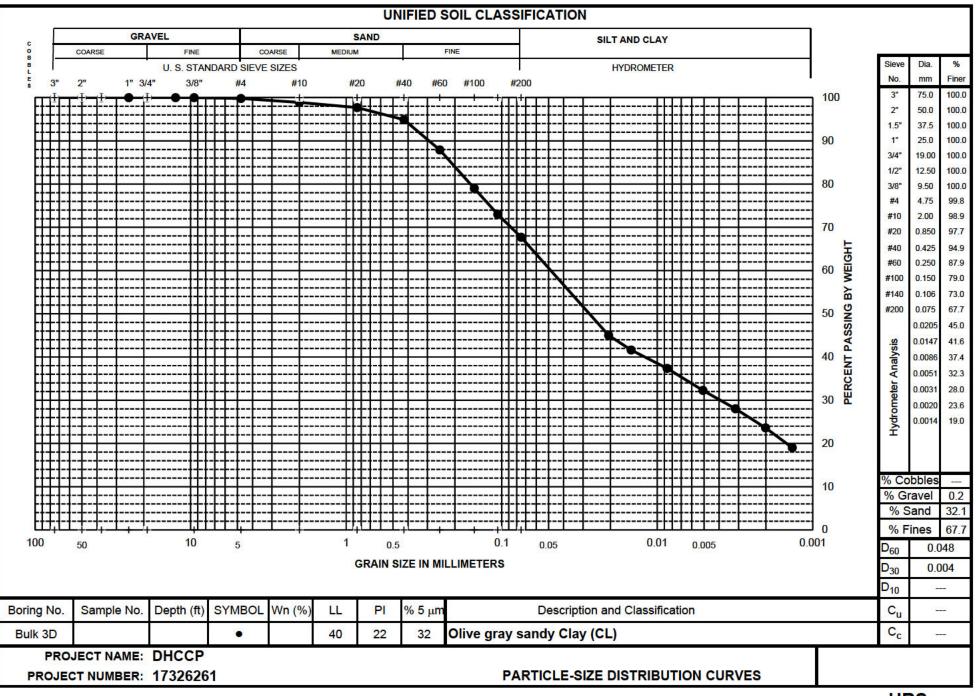

DWR-207


APPENDIX C

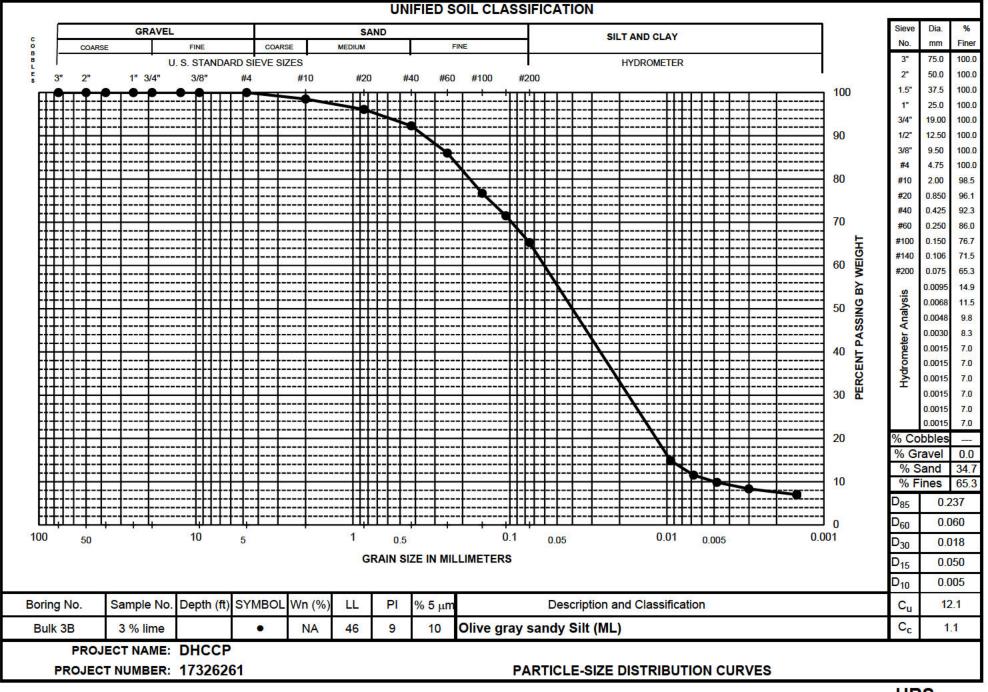
Geotechnical Properties Testing Data

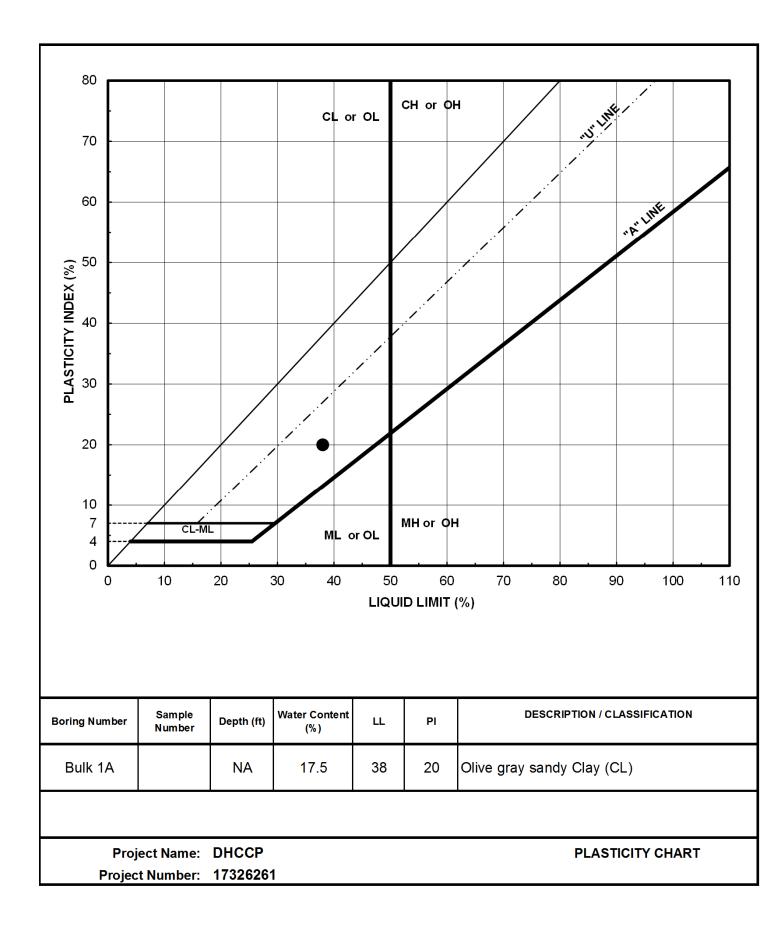


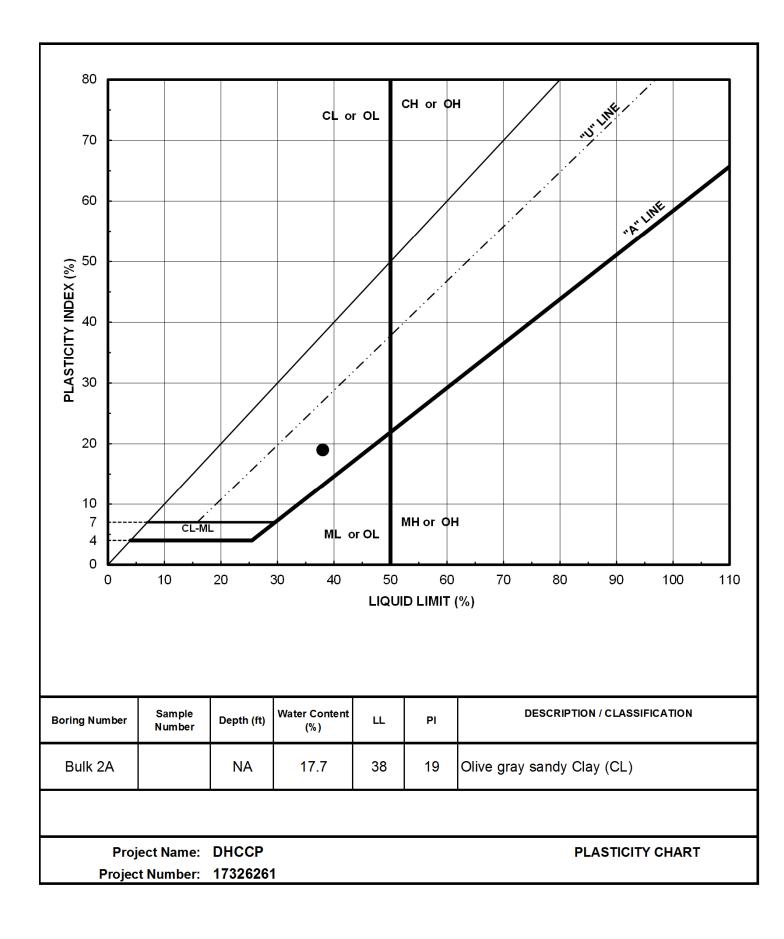


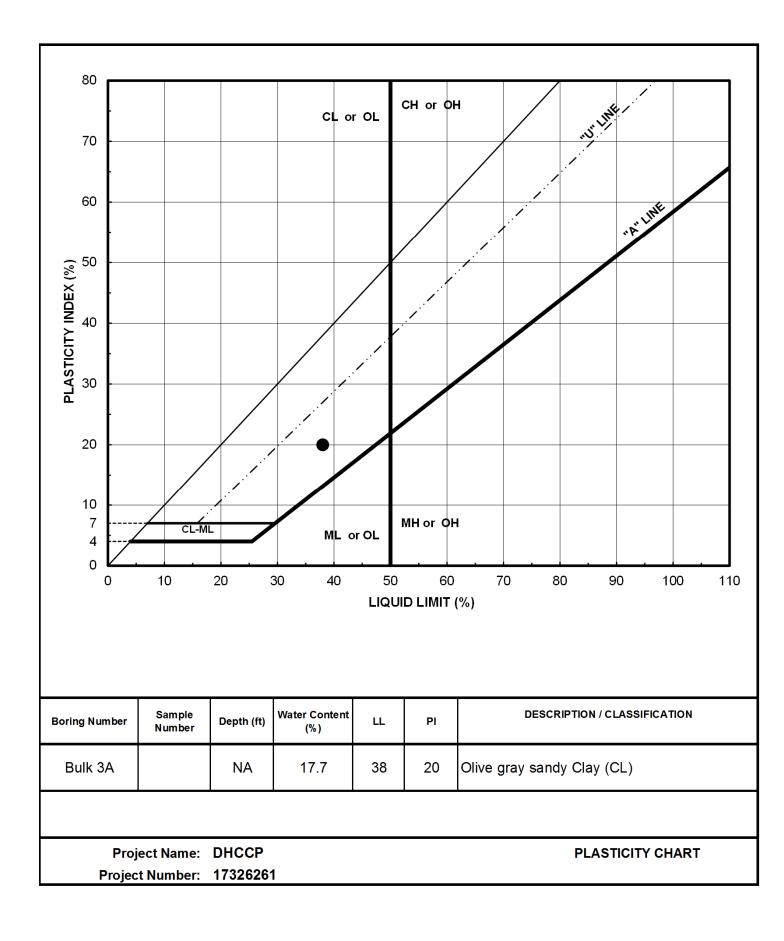


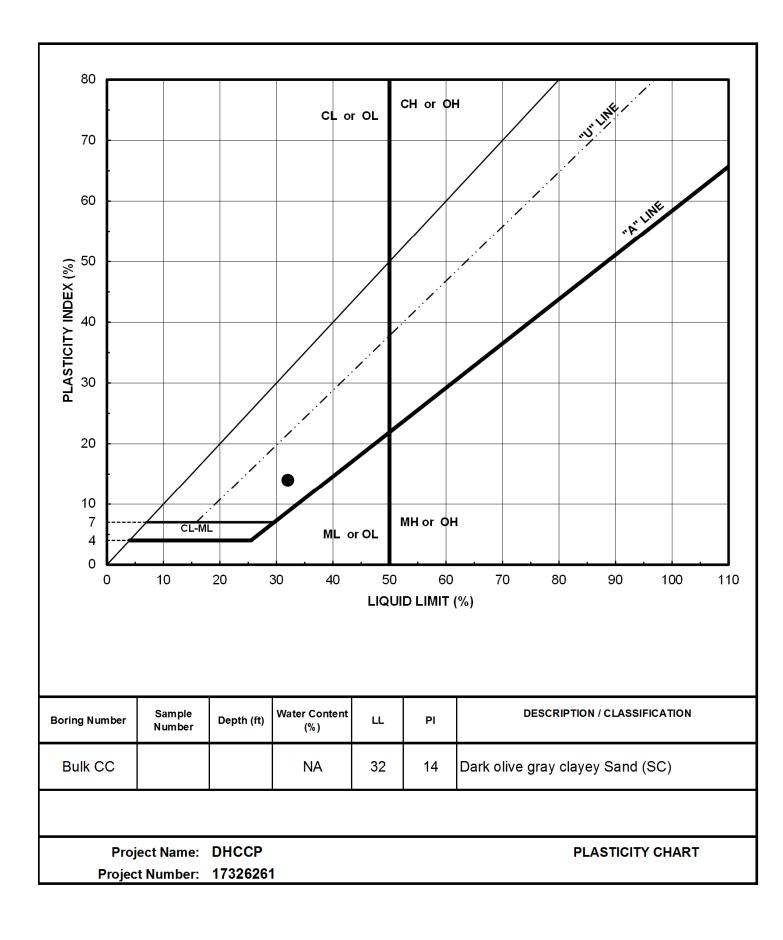
78

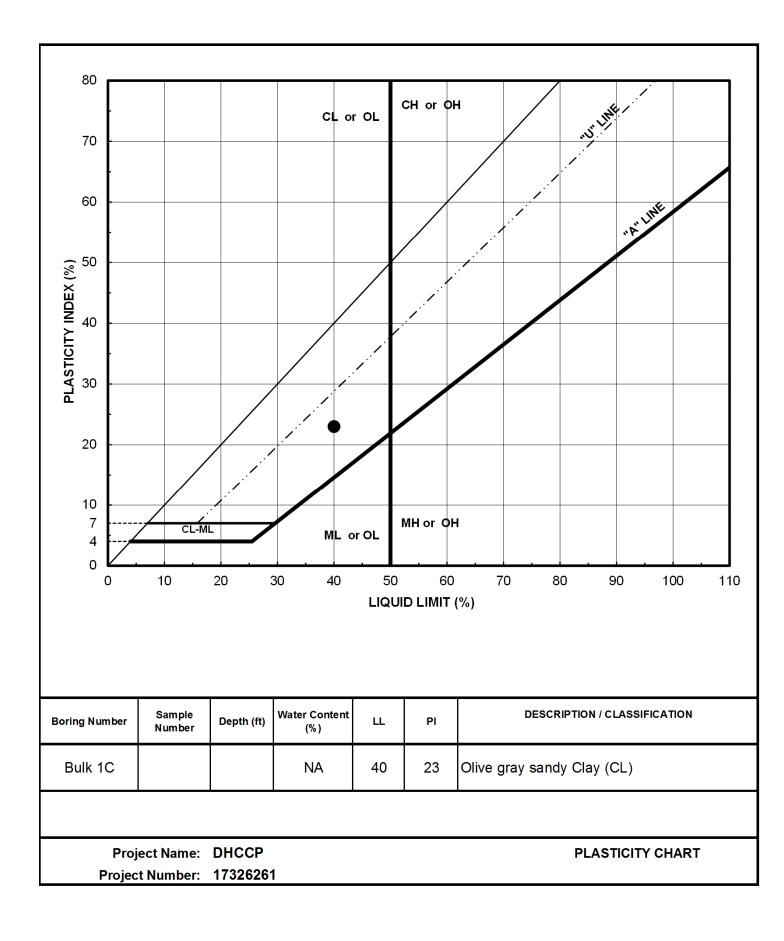


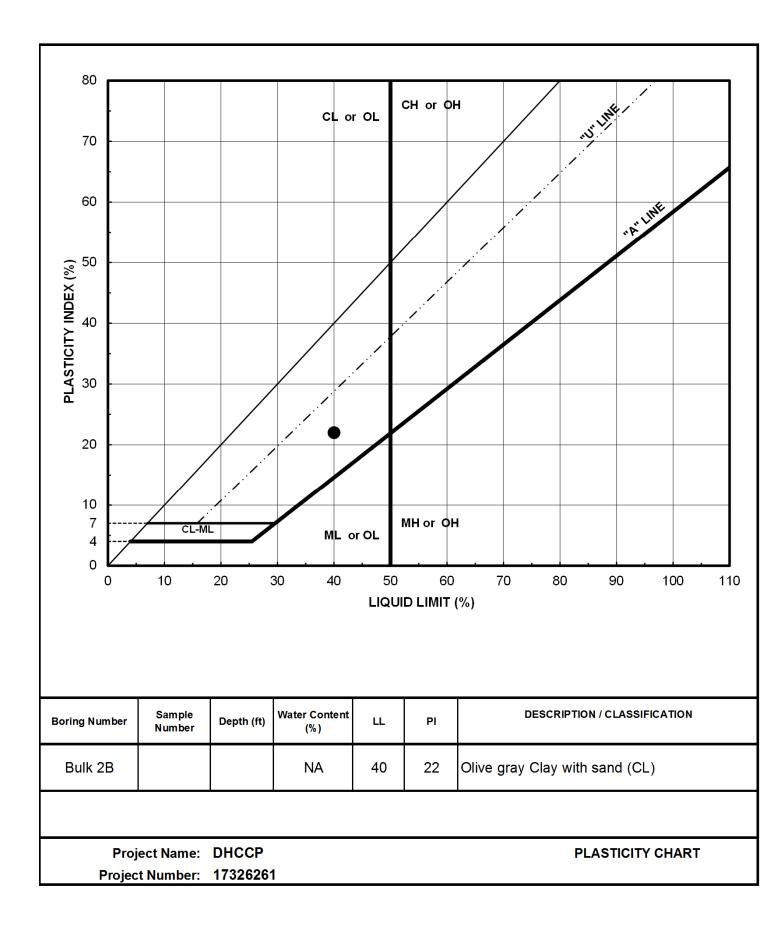

80

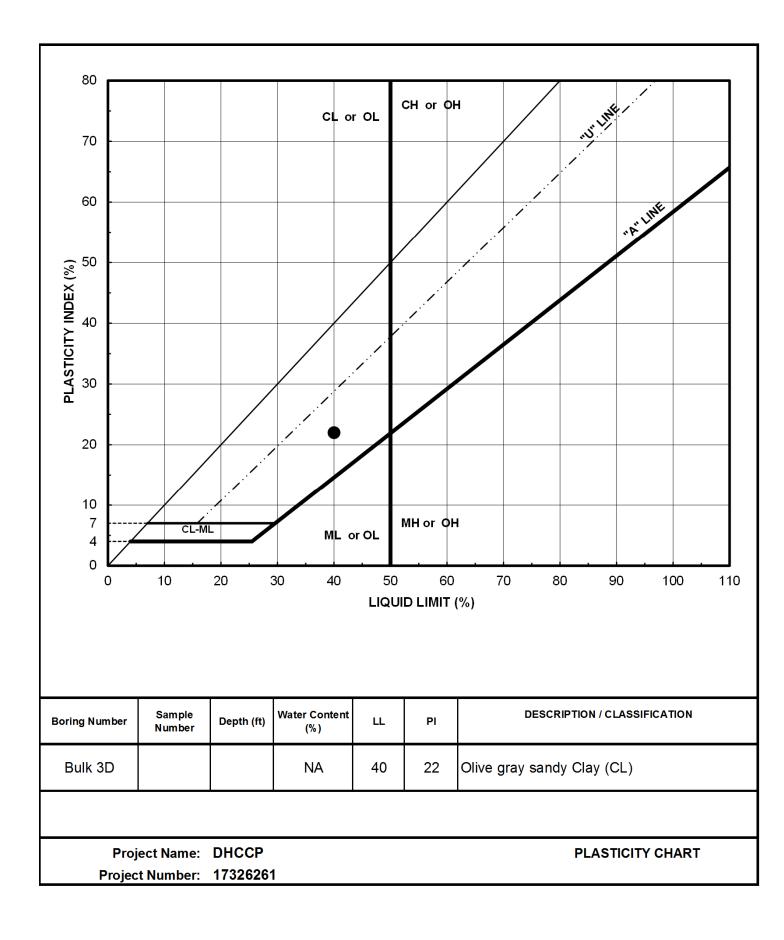

81

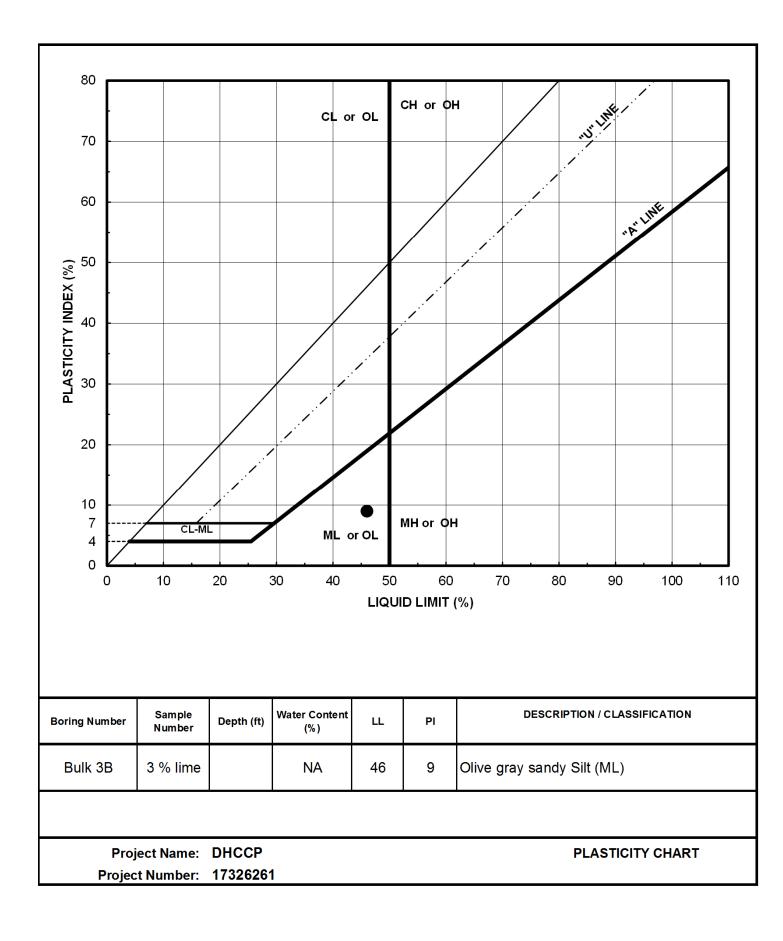


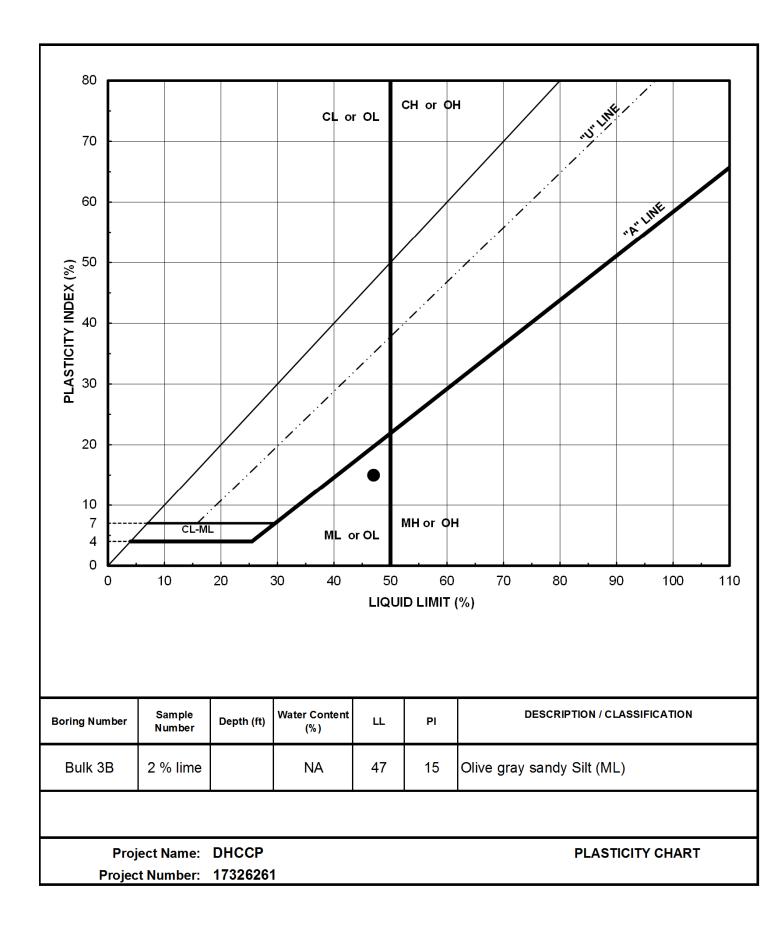


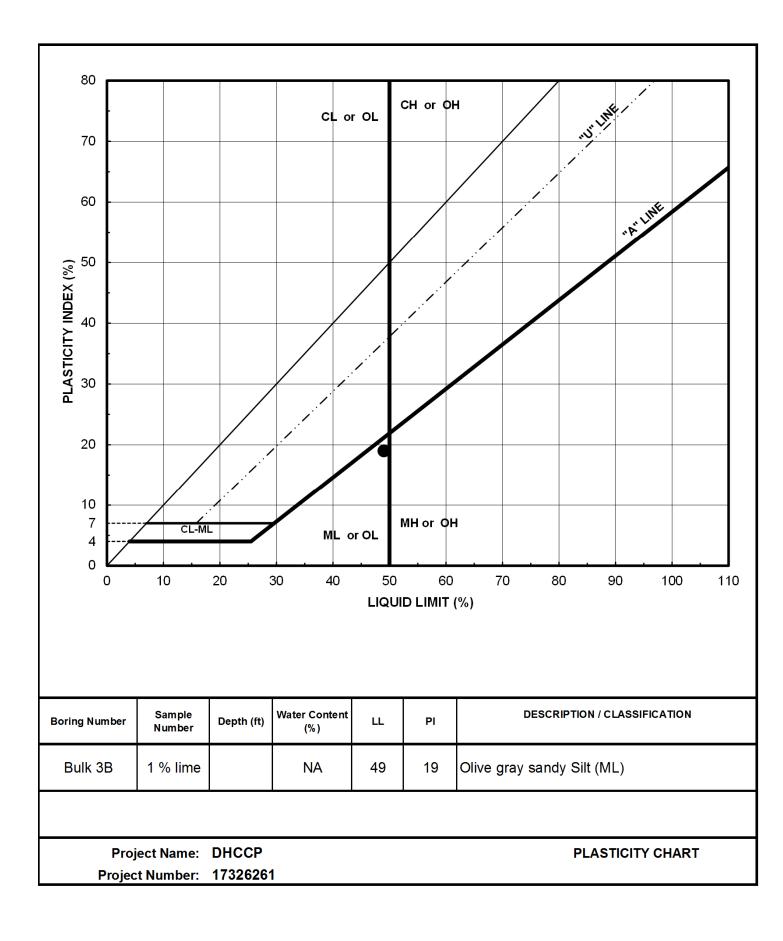


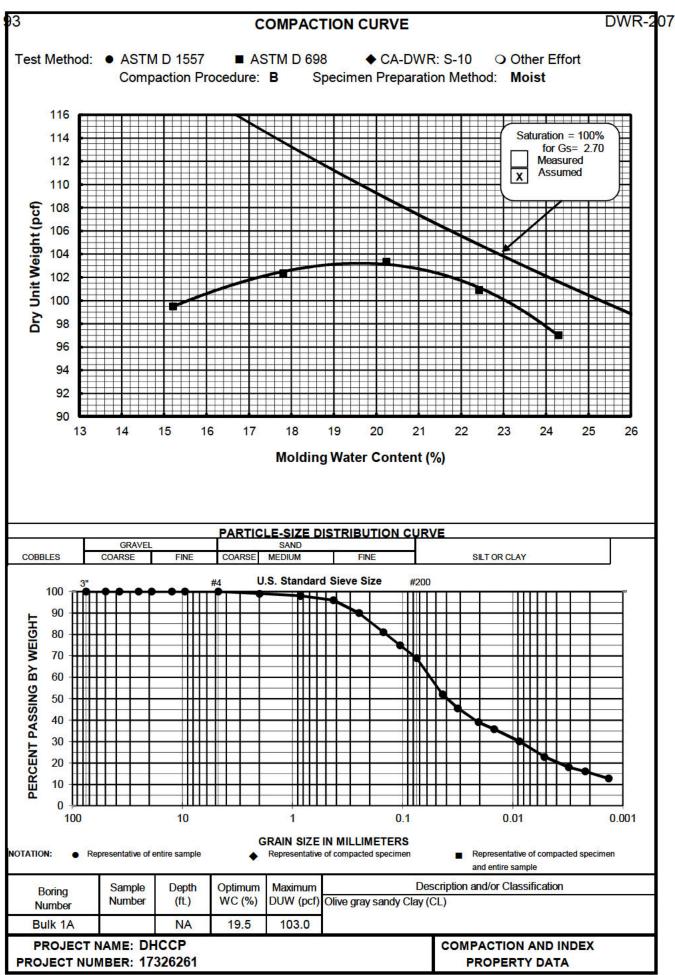


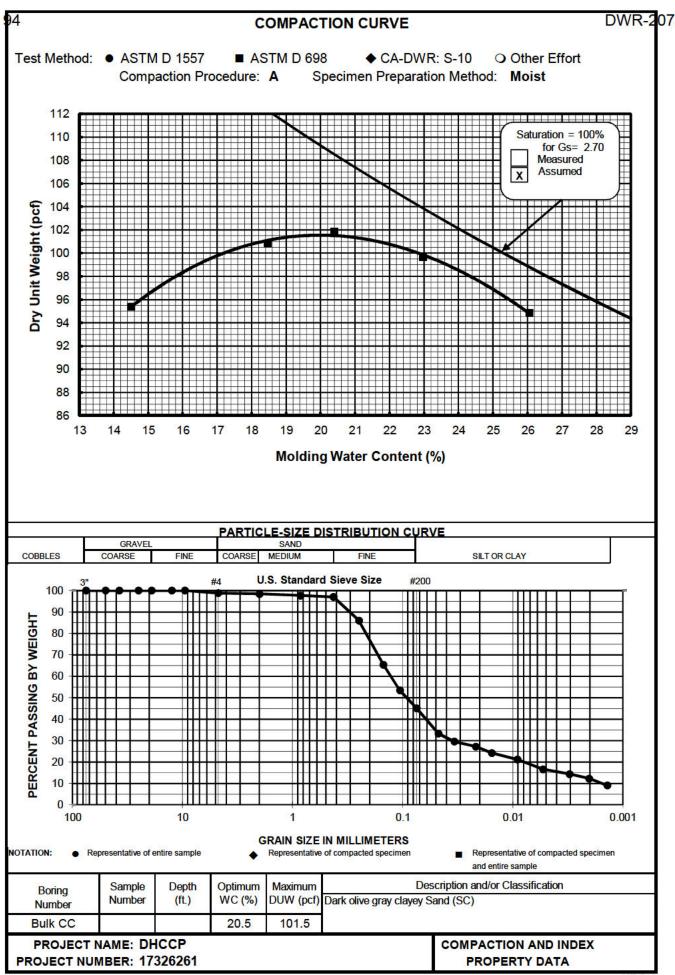


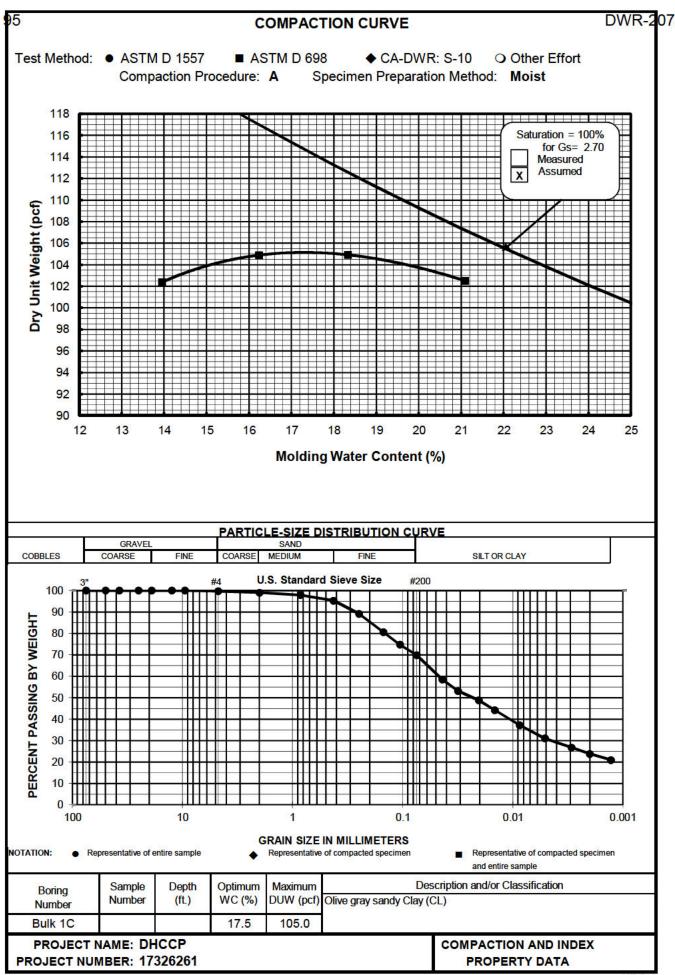


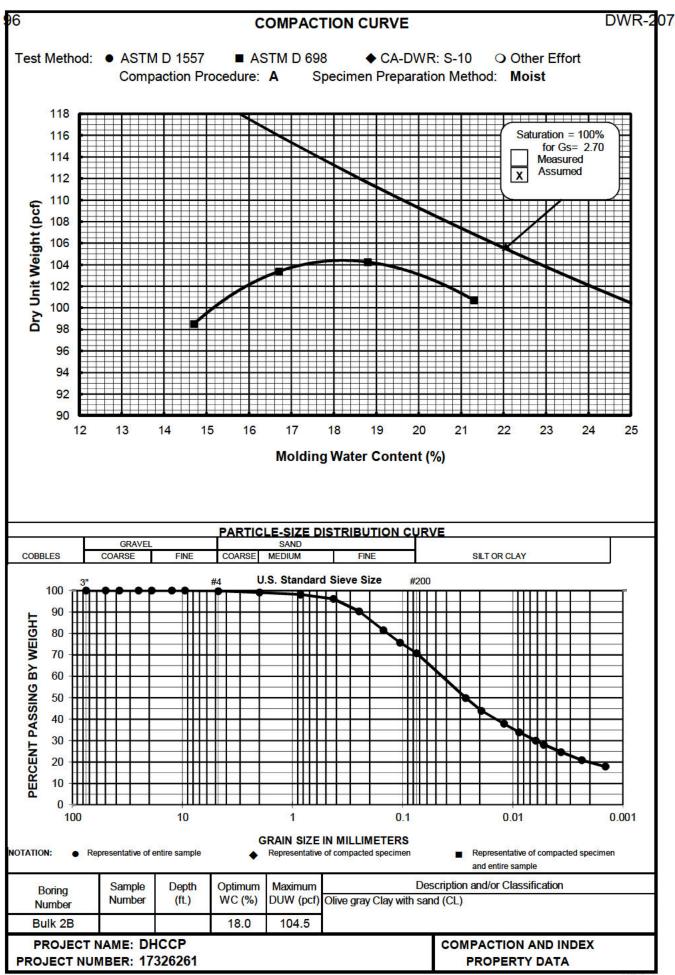


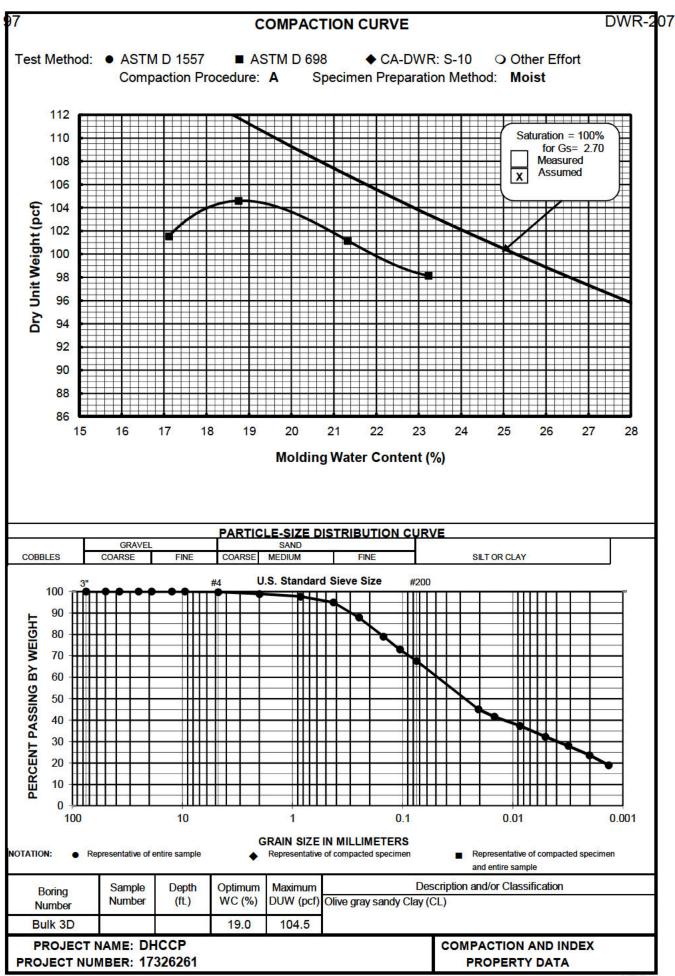


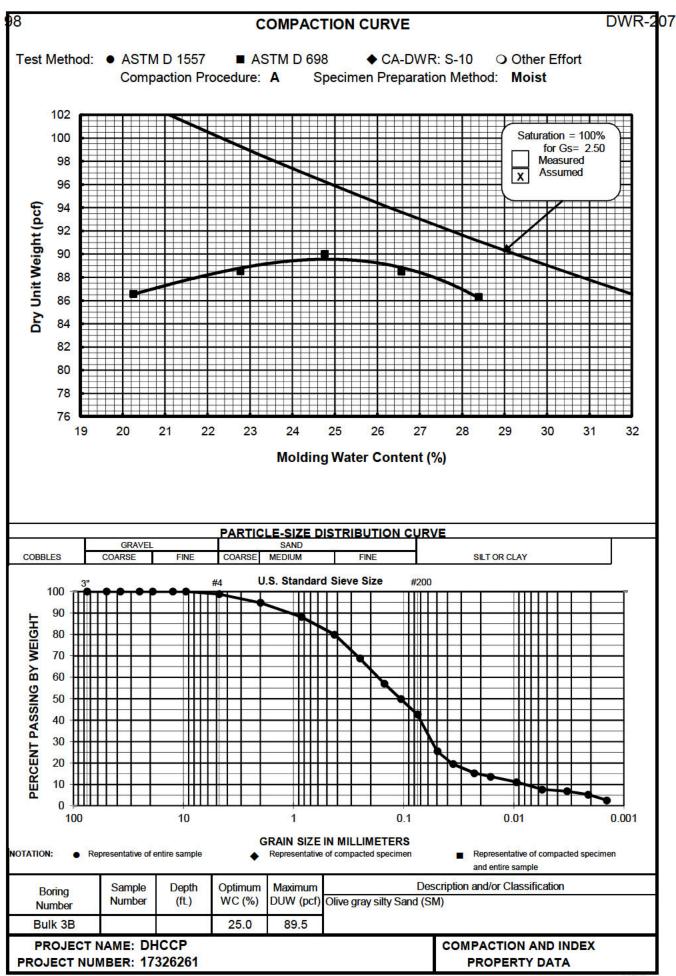


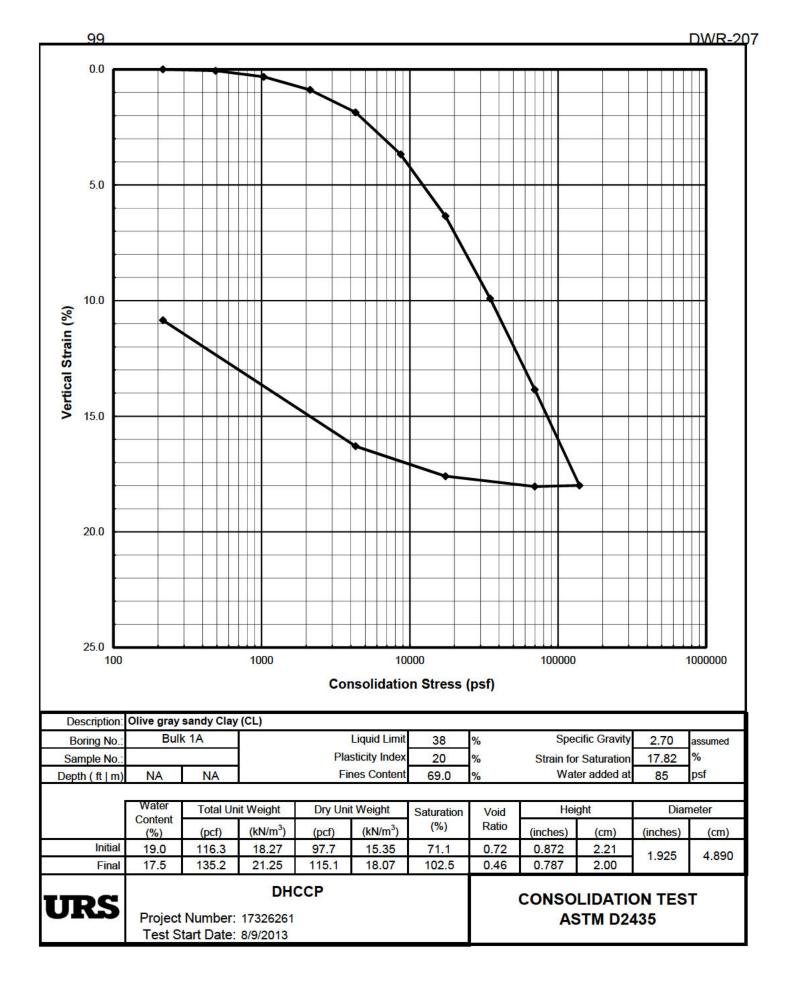


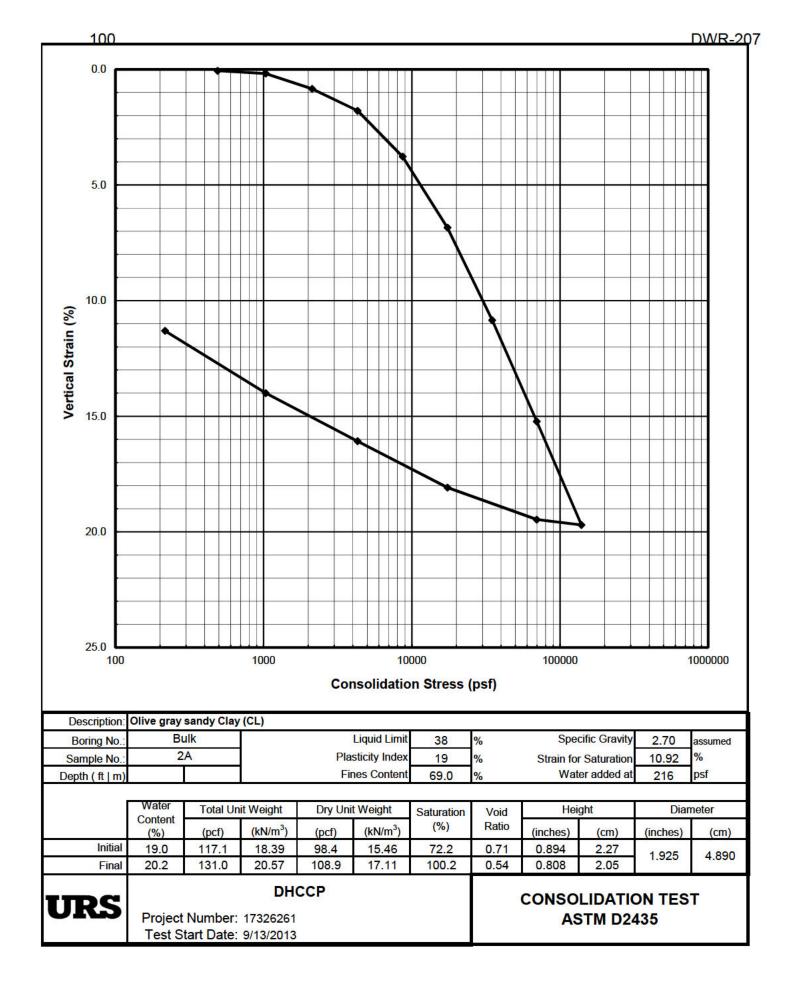


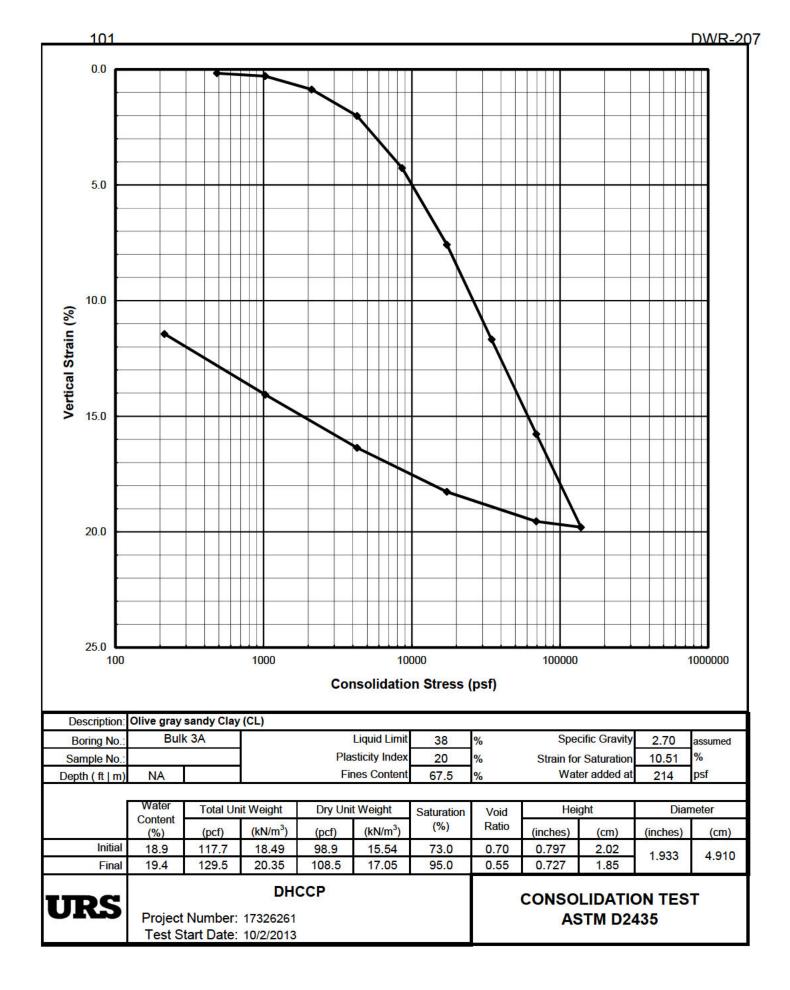


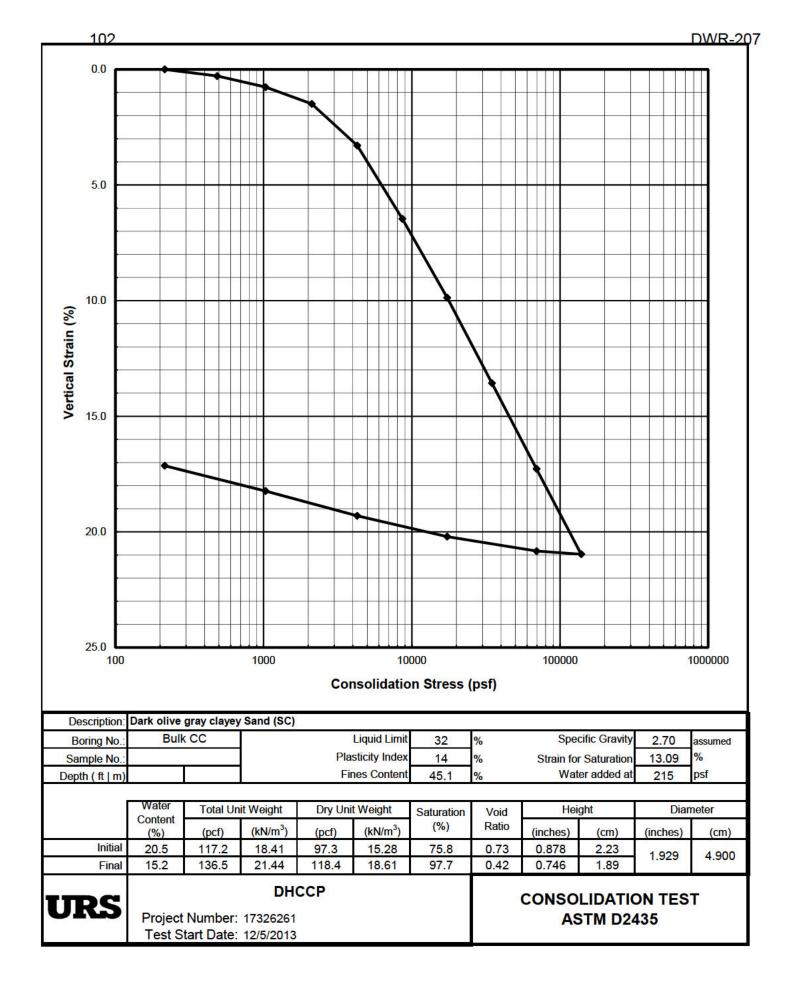


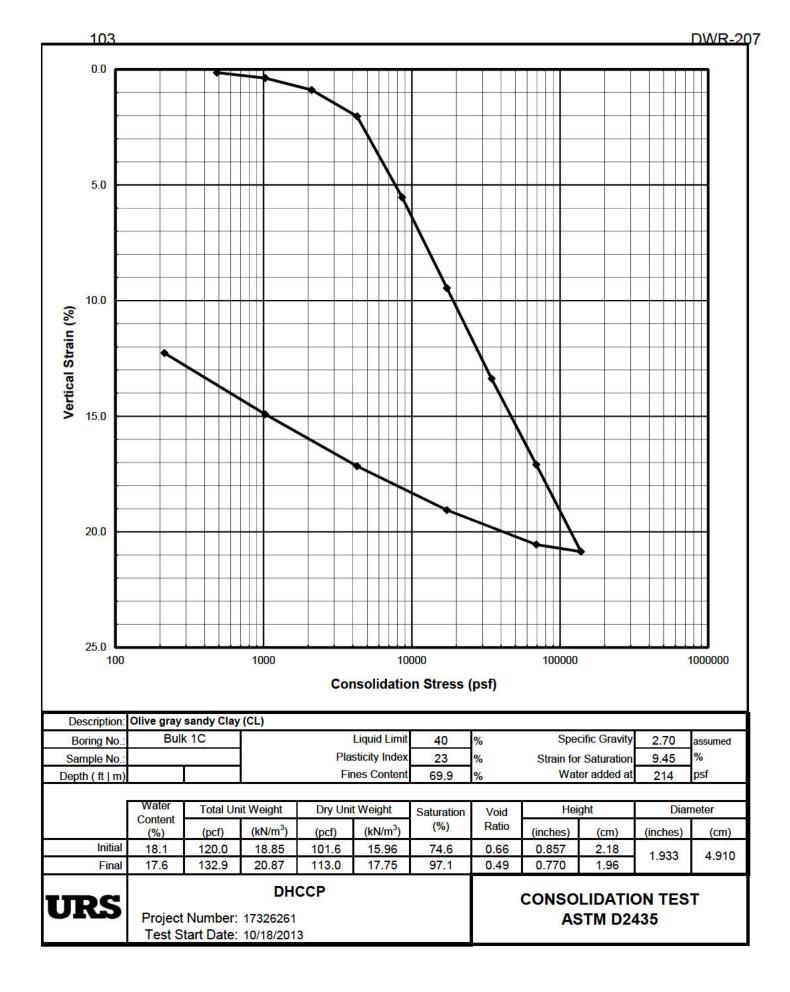


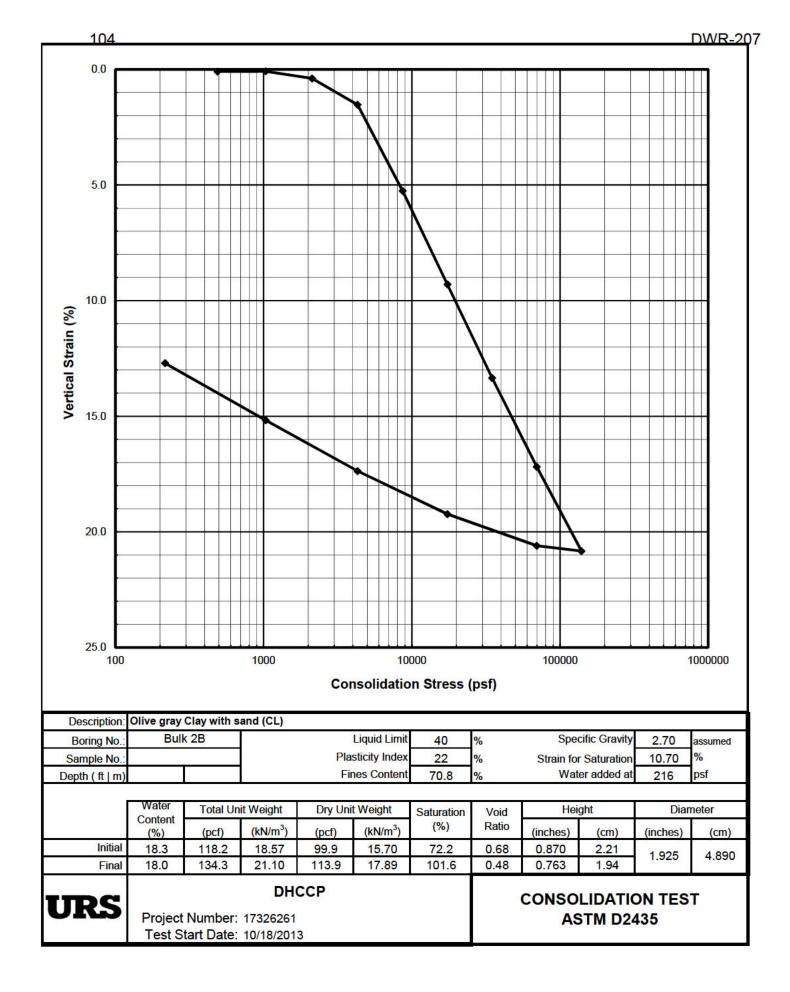


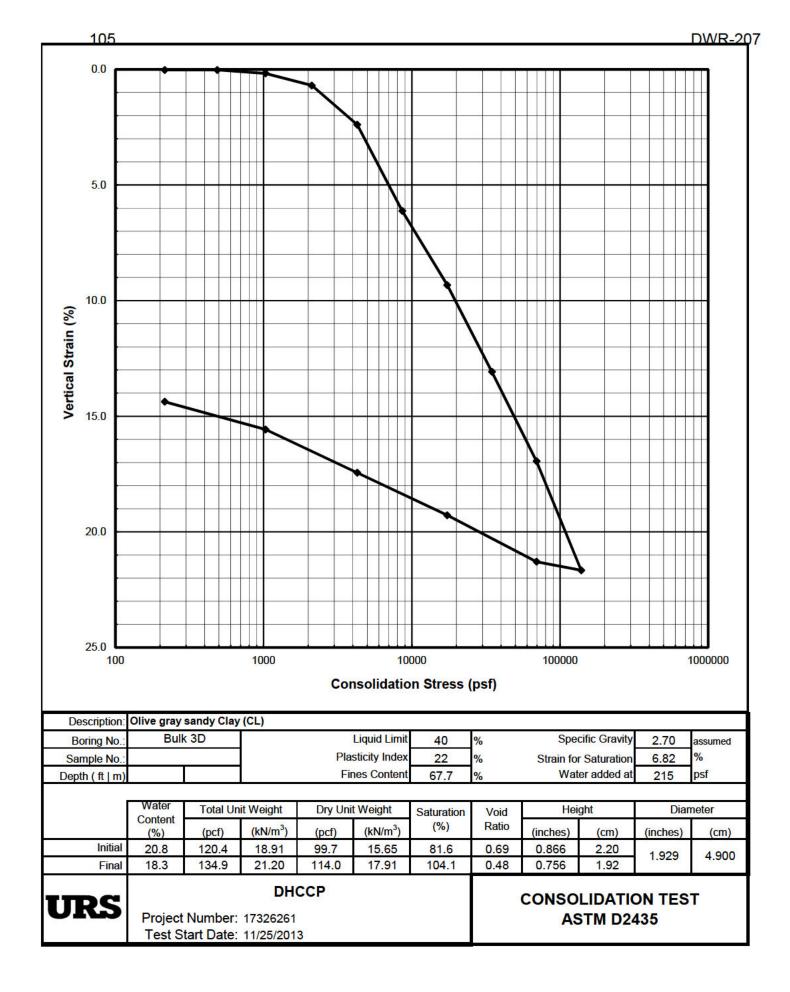


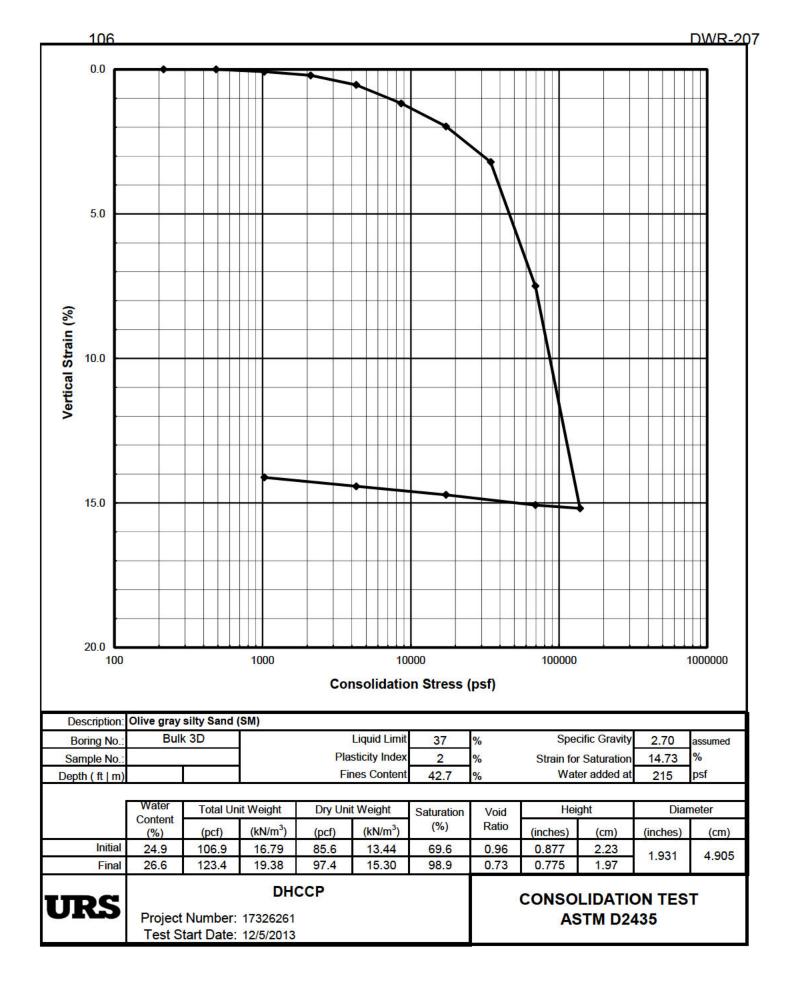












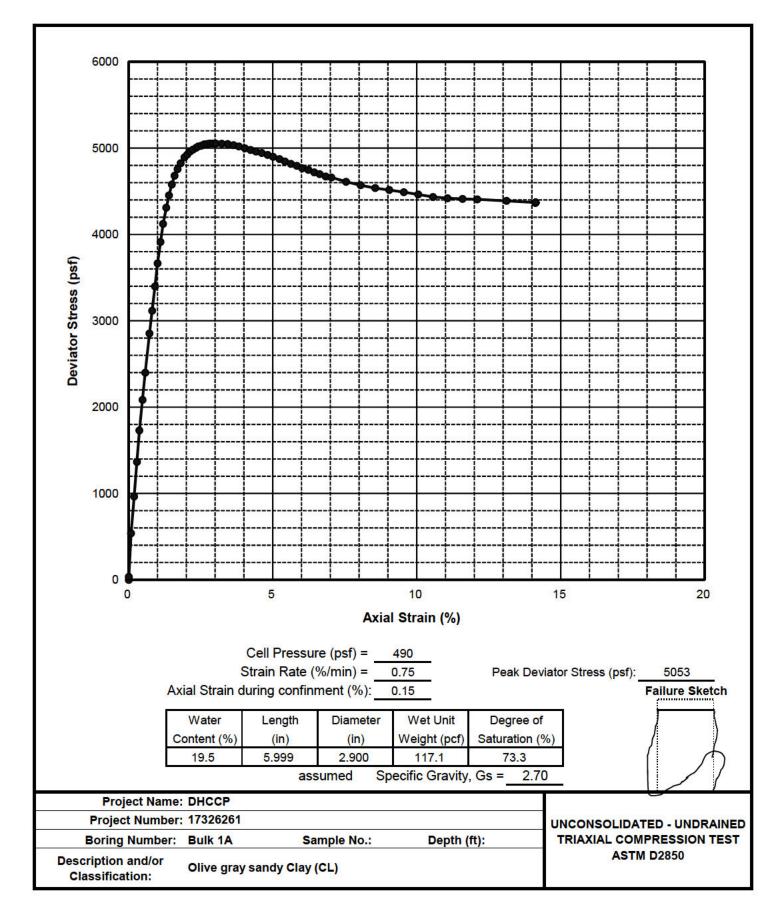
DHCCP Hydraulic Conductivity Test ASTM D 5084

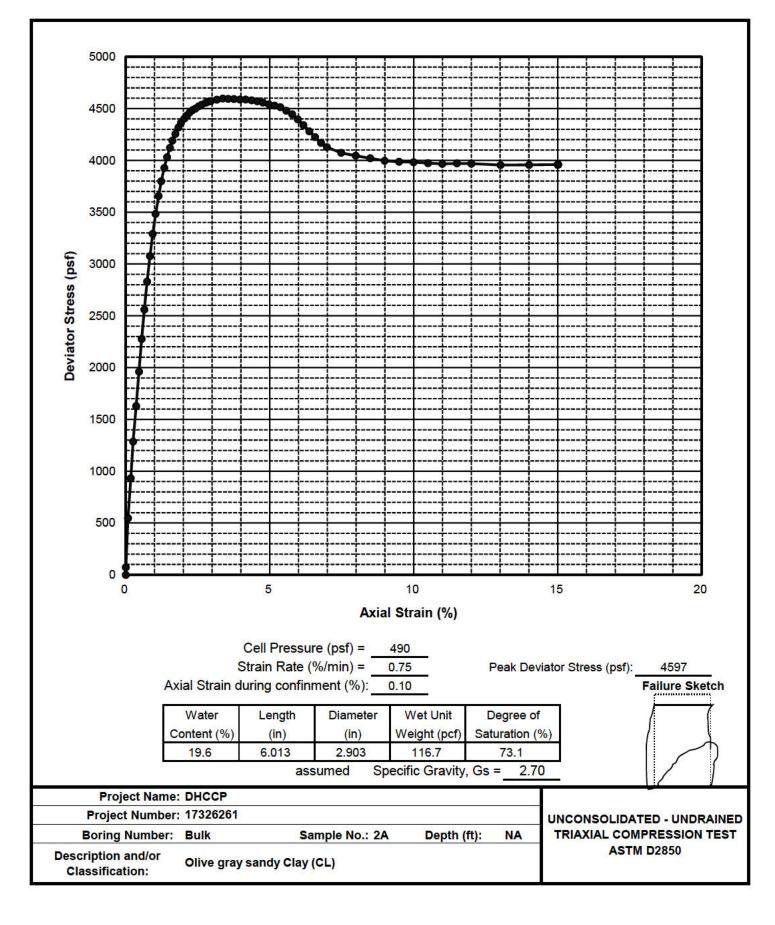
Exploration Number	Bulk 1A	
Sample Number		
Depth (feet)		
USCS Classification	CL	
Liquid Limit (%)	38	
Plasticity Index (%)	20	
Percent Fines (-#200 sieve)	69.0	
Specific Gravity (assumed)	2.70	
Consolidation Pressure (ksf)	Set-up	1.0
Specimen Height (in)	2.986	2.979
Specimen Area (in ²)	6.619	6.653
Specimen Volume (in ³)	19.76	19.82
Water Content (%)	19.5	26.9
Wet Unit Weight (pcf)	117.7	124.8
Dry Unit Weight (pcf)	98.5	98.3
Degree of Saturation (%)	74.0	101.4
Void Ratio	0.71	0.72
Hydraulic Conductivity, K ₂₀ C (cm/sec)	XXX	1.6E-05

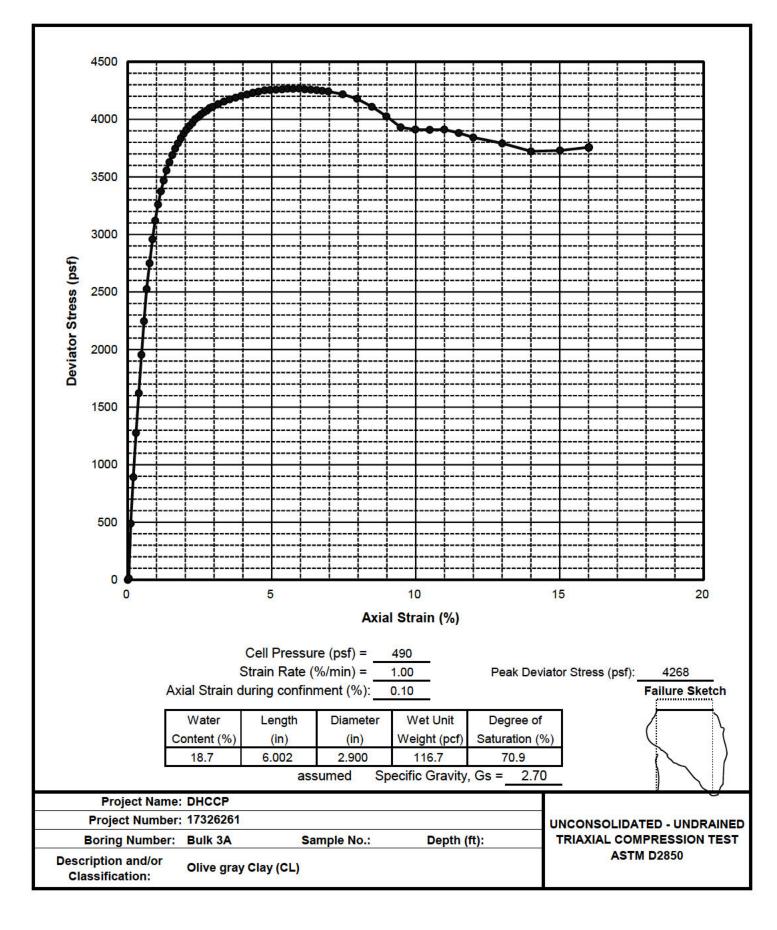
DHCCP Hydraulic Conductivity Test ASTM D 5084

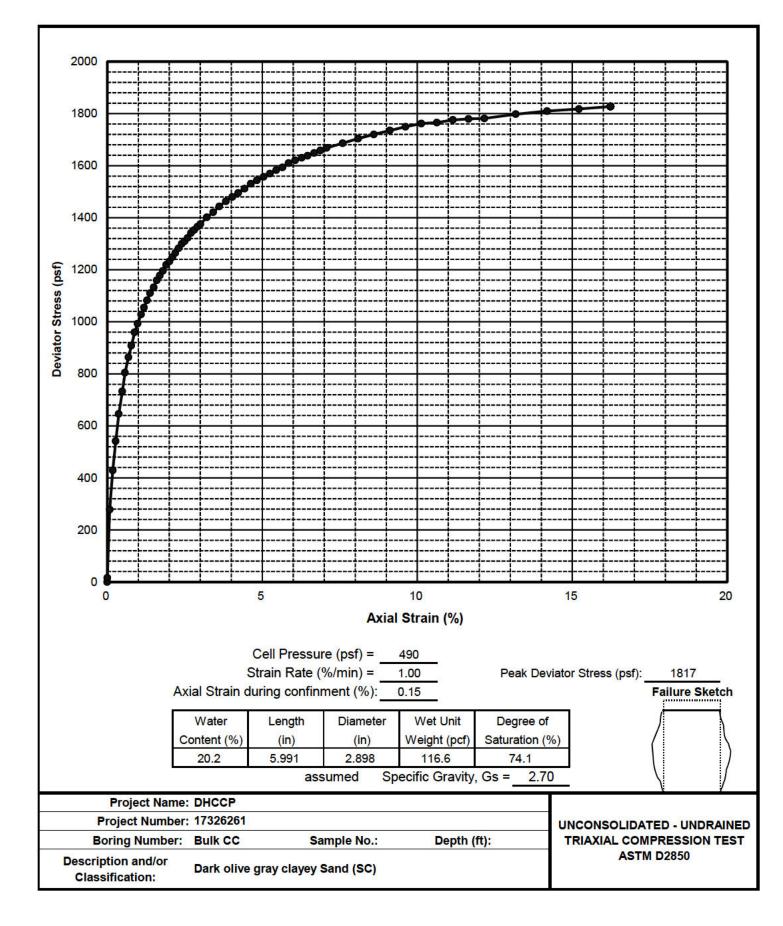
Exploration Number	Bulk 2A	
Sample Number		
Depth (feet)		
USCS Classification	CL	
Liquid Limit (%)	38	
Plasticity Index (%)	19	
Percent Fines (-#200 sieve)	69.0	
Specific Gravity (assumed)	2.70	
Consolidation Pressure (ksf)	Set-up	1.1
Specimen Height (in)	3.948	3.937
Specimen Area (in ²)	6.633	6.591
Specimen Volume (in ³)	26.19	25.95
Water Content (%)	20.1	27.6
Wet Unit Weight (pcf)	117.0	125.4
Dry Unit Weight (pcf)	97.4	98.3
Degree of Saturation (%)	74.2	104.2
Void Ratio	0.73	0.71
Hydraulic Conductivity, K ₂₀ C (cm/sec)	XXX	7.7E-06

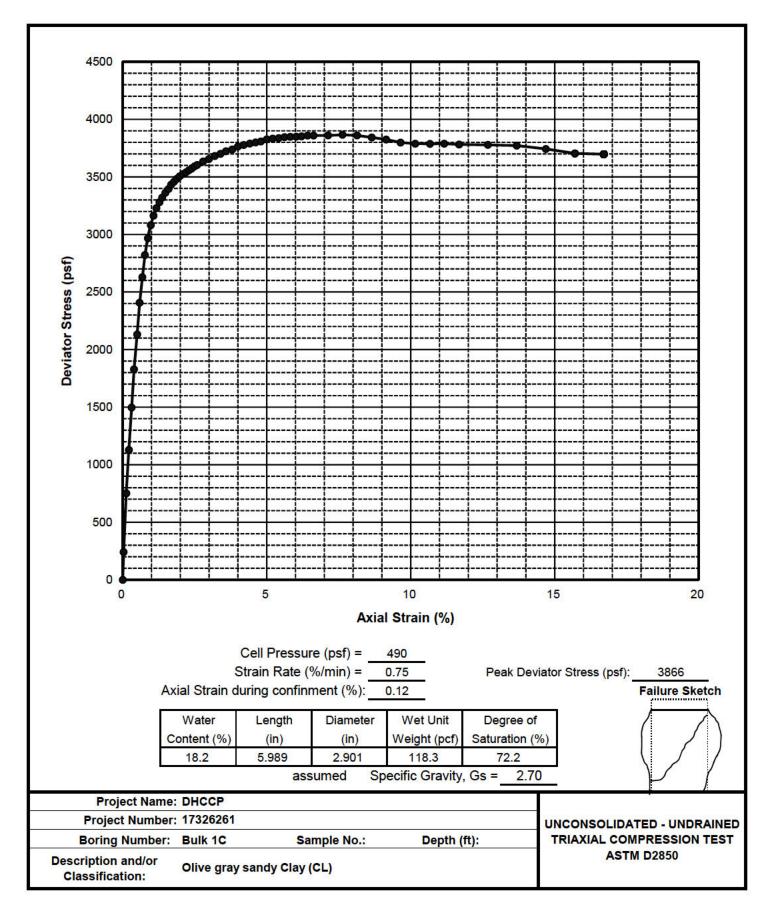
Exploration Number	Bulk 3A		
Sample Number			
Depth (feet)			
USCS Classification	(CL	
Liquid Limit (%)		38	
Plasticity Index (%)		20	
Percent Fines (-#200 sieve)	67.2		
Specific Gravity (assumed)	2	2.70	
Consolidation Pressure (ksf)	Set-up	1.0	
Specimen Height (in)	3.639	3.647	
Specimen Area (in ²)	6.637	6.593	
Specimen Volume (in ³)	24.15	24.04	
Water Content (%)	18.7	27.4	
Wet Unit Weight (pcf)	115.9	123.5	
Dry Unit Weight (pcf)	97.6	97.0	
Degree of Saturation (%)	69.4	102.8	
Void Ratio	0.73	0.72	
Hydraulic Conductivity, K ₂₀ C (cm/sec)	XXX	1.0E-05	

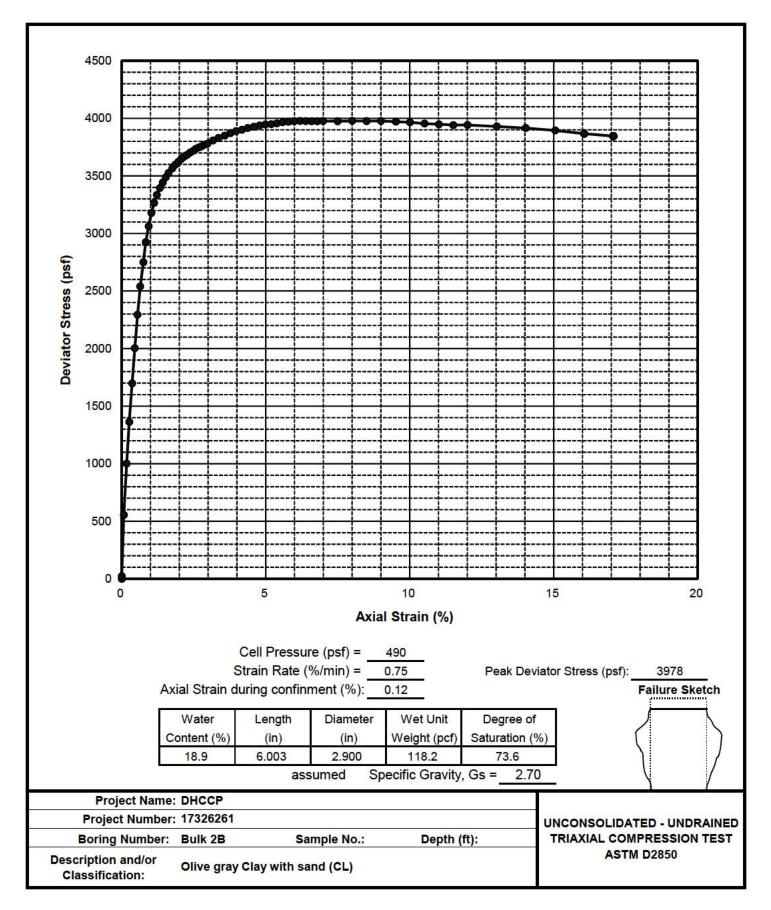

Exploration Number	Bulk CC		
Sample Number			
Depth (feet)			
USCS Classification		SC	
Liquid Limit (%)		32	
Plasticity Index (%)		14	
Percent Fines (-#200 sieve)	45.1		
Specific Gravity (assumed)	2.70		
Consolidation Pressure (ksf)	Set-up	1.0	
Specimen Height (in)	5.991	5.962	
Specimen Area (in ²)	6.596	6.402	
Specimen Volume (in ³)	39.52	38.17	
Water Content (%)	20.2	25.0	
Wet Unit Weight (pcf)	116.8	126.1	
Dry Unit Weight (pcf)	97.2	100.9	
Degree of Saturation (%)	74.2	100.1	
Void Ratio	0.73	0.67	
Hydraulic Conductivity, K ₂₀ C (cm/sec)	XXX	1.9E-05	

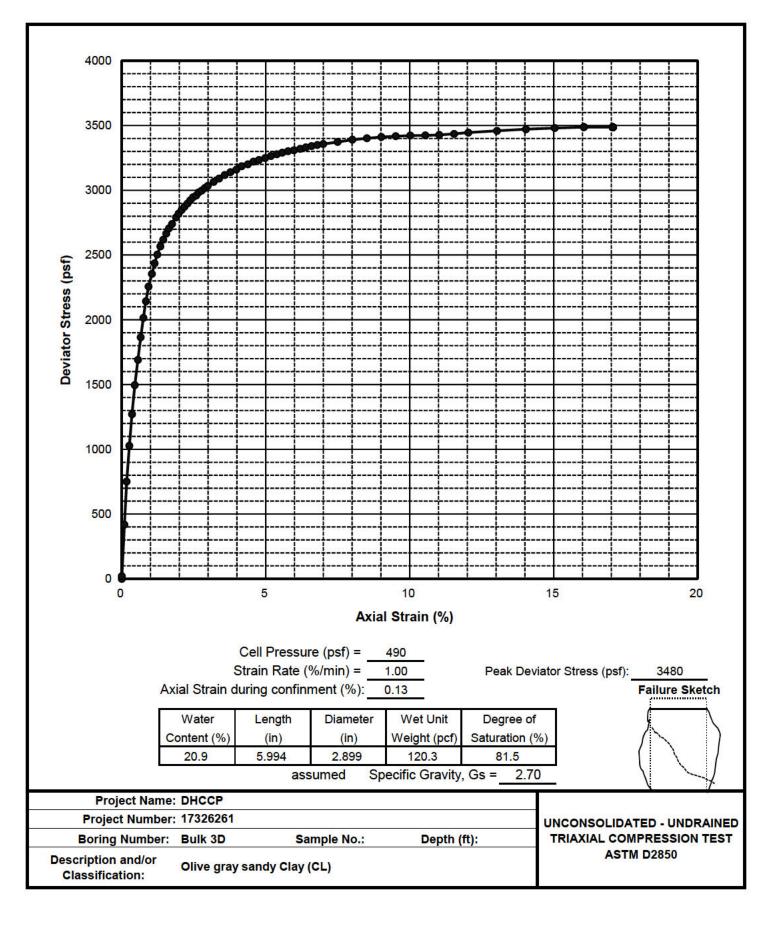

Boring Number	Bulk 1C		
Sample Number			
Depth (feet)			
USCS Classification	(CL	
Liquid Limit (%)		40	
Plasticity Index (%)	23		
Percent Fines (-#200 sieve)	69.9		
Specific Gravity (assumed)	2.70		
Consolidation Pressure (ksf)	Set-up	1.0	
Specimen Height (in)	5.998	5.966	
Specimen Area (in ²)	6.610	6.559	
Specimen Volume (in ³)	39.65	39.13	
Water Content (%)	18.3	25.0	
Wet Unit Weight (pcf)	119.0	127.6	
Dry Unit Weight (pcf)	100.6	102.0	
Degree of Saturation (%)	73.2	103.2	
Void Ratio	0.68	0.65	
Hydraulic Conductivity, K ₂₀ C (cm/sec)	XXX	4.2E-07	

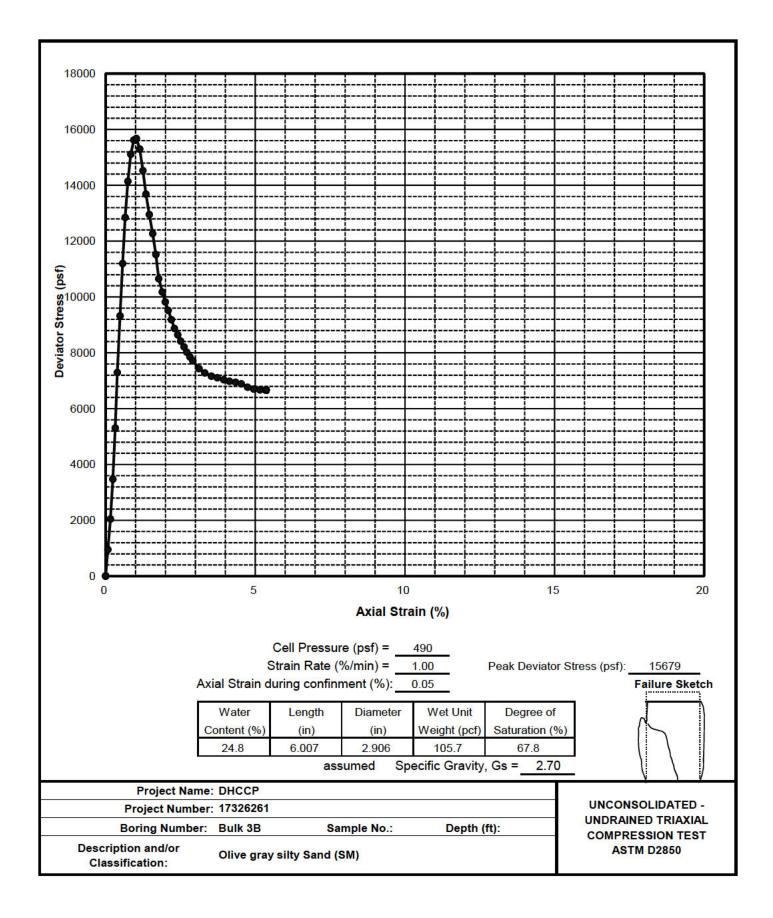

Boring Number	Bulk 2B		
Sample Number			
Depth (feet)			
USCS Classification	CL		
Liquid Limit (%)		40	
Plasticity Index (%)	22		
Percent Fines (-#200 sieve)	70.8		
Specific Gravity (assumed)	2.70		
Consolidation Pressure (ksf)	Set-up	1.0	
Specimen Height (in)	5.999	5.996	
Specimen Area (in ²)	6.614	6.592	
Specimen Volume (in ³)	39.68	39.52	
Water Content (%)	19.0	25.4	
Wet Unit Weight (pcf)	118.1	125.1	
Dry Unit Weight (pcf)	99.3	99.8	
Degree of Saturation (%)	73.4	99.1	
Void Ratio	0.70	0.69	
Hydraulic Conductivity, K ₂₀ C (cm/sec)	XXX	9.2E-08	

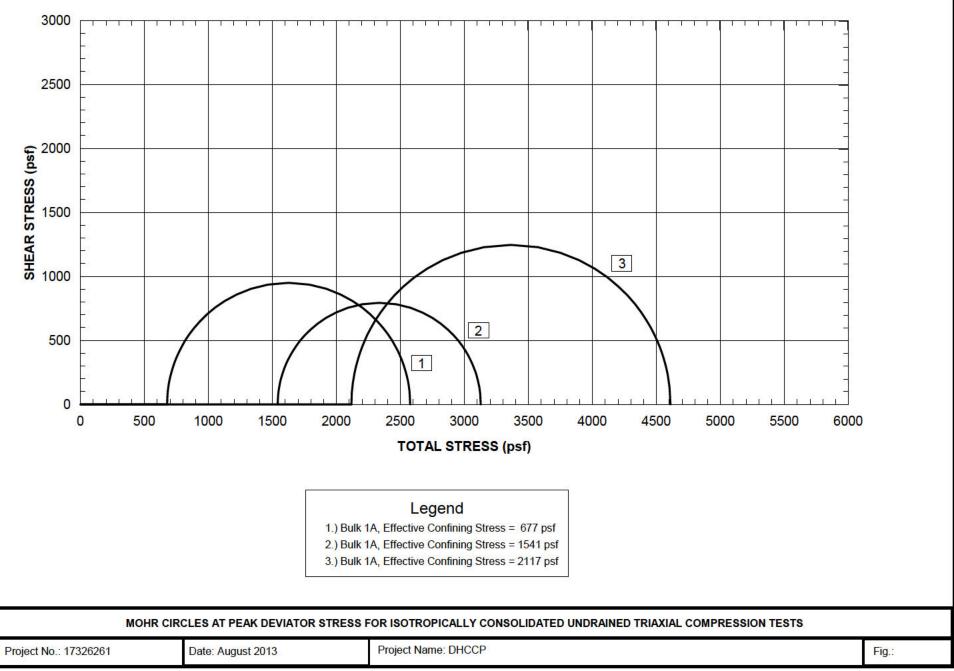

Exploration Number	Bulk 3D		
Sample Number			
Depth (feet)			
USCS Classification	CL		
Liquid Limit (%)	4	40	
Plasticity Index (%)	22		
Percent Fines (-#200 sieve)	67.7		
Specific Gravity (assumed)	2.70		
Consolidation Pressure (ksf)	Set-up	1.0	
Specimen Height (in)	2.979	2.972	
Specimen Area (in ²)	6.605	6.520	
Specimen Volume (in ³)	19.68	19.38	
Water Content (%)	20.8	24.3	
Wet Unit Weight (pcf)	120.7	126.3	
Dry Unit Weight (pcf)	100.0	101.6	
Degree of Saturation (%)	81.7	99.2	
Void Ratio	0.69	0.66	
Hydraulic Conductivity, K ₂₀ C (cm/sec)	XXX	3.8E-08	

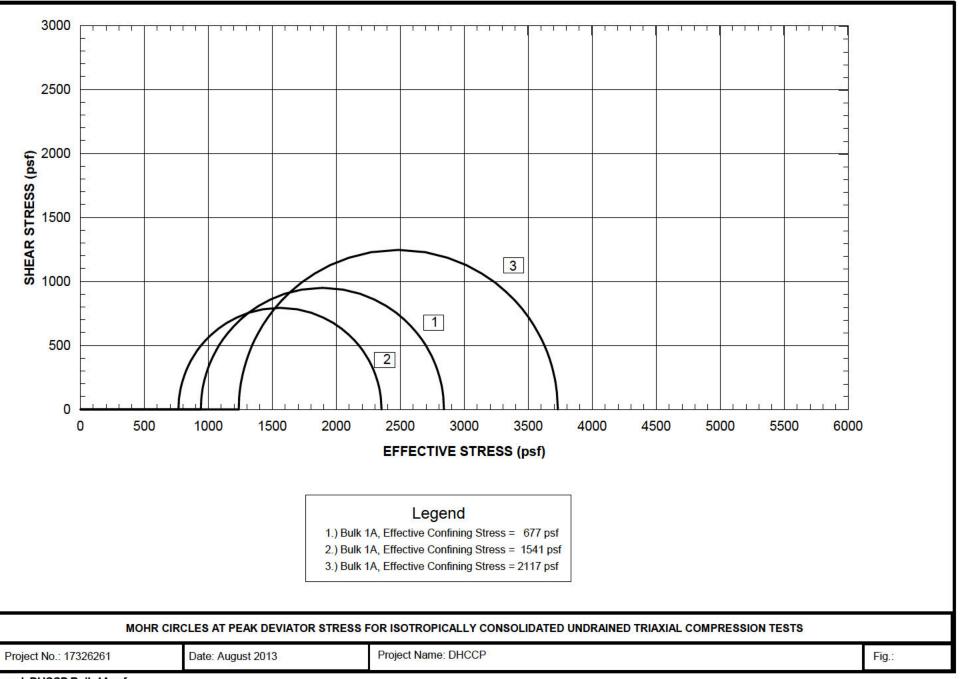

Exploration Number	Bulk 3B		
Sample Number			
Depth (feet)			
USCS Classification	S	SM	
Liquid Limit (%)		37	
Plasticity Index (%)		2	
Percent Fines (-#200 sieve)	42.7		
Specific Gravity (assumed)	2.70		
Consolidation Pressure (ksf)	Set-up	1.0	
Specimen Height (in)	6.010	6.004	
Specimen Area (in ²)	6.642	6.510	
Specimen Volume (in ³)	39.92	39.09	
Water Content (%)	24.8	35.5	
Wet Unit Weight (pcf)	105.3	116.7	
Dry Unit Weight (pcf)	84.4	86.1	
Degree of Saturation (%)	67.1	100.3	
Void Ratio	1.00	0.96	
Hydraulic Conductivity, K ₂₀ C (cm/sec)	XXX	8.8E-05	

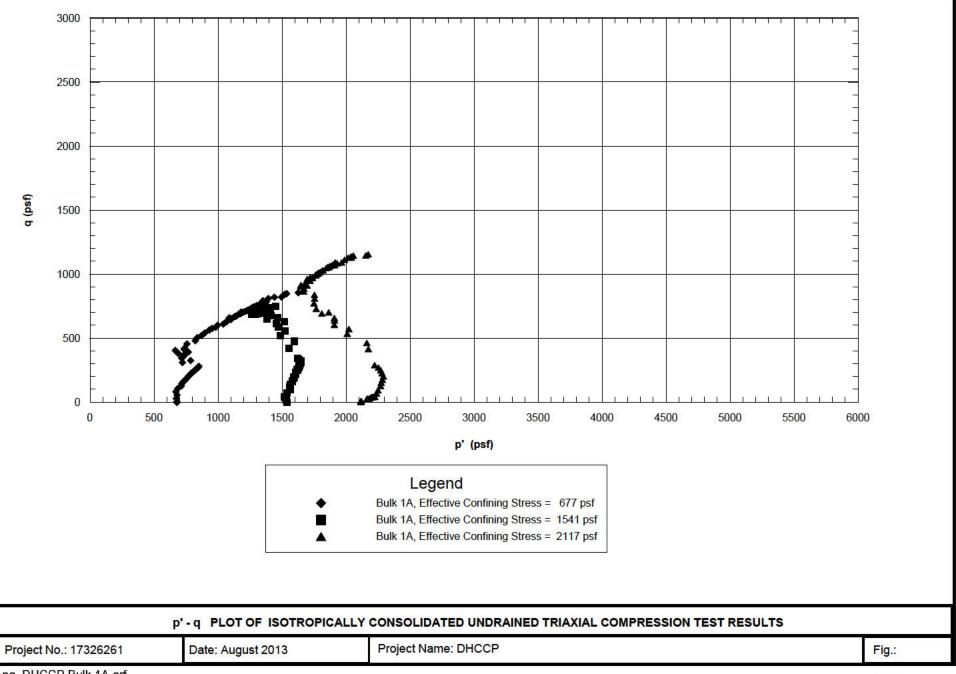


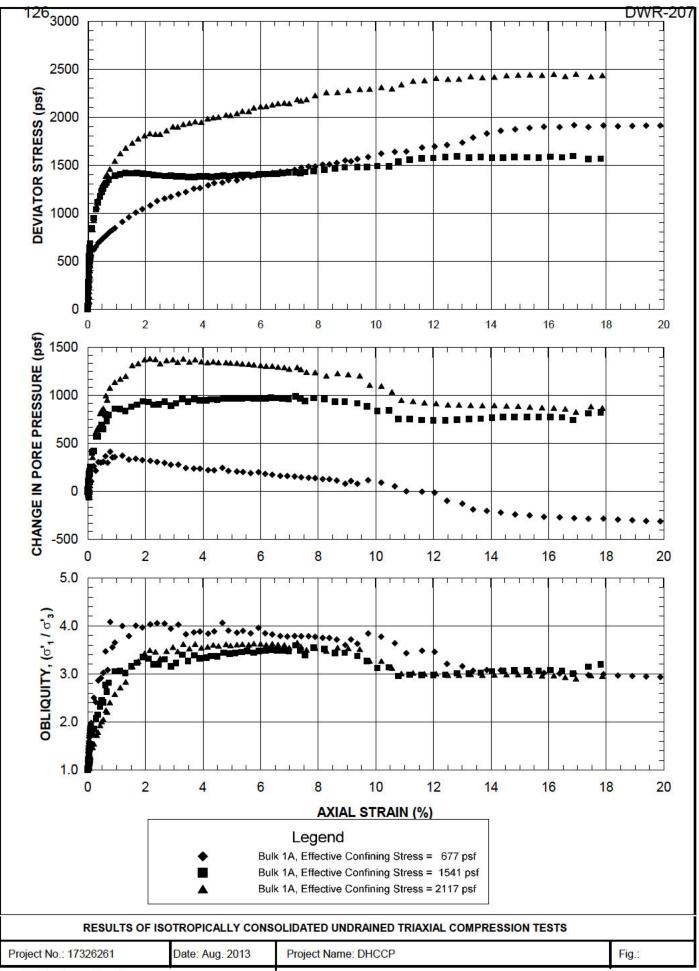


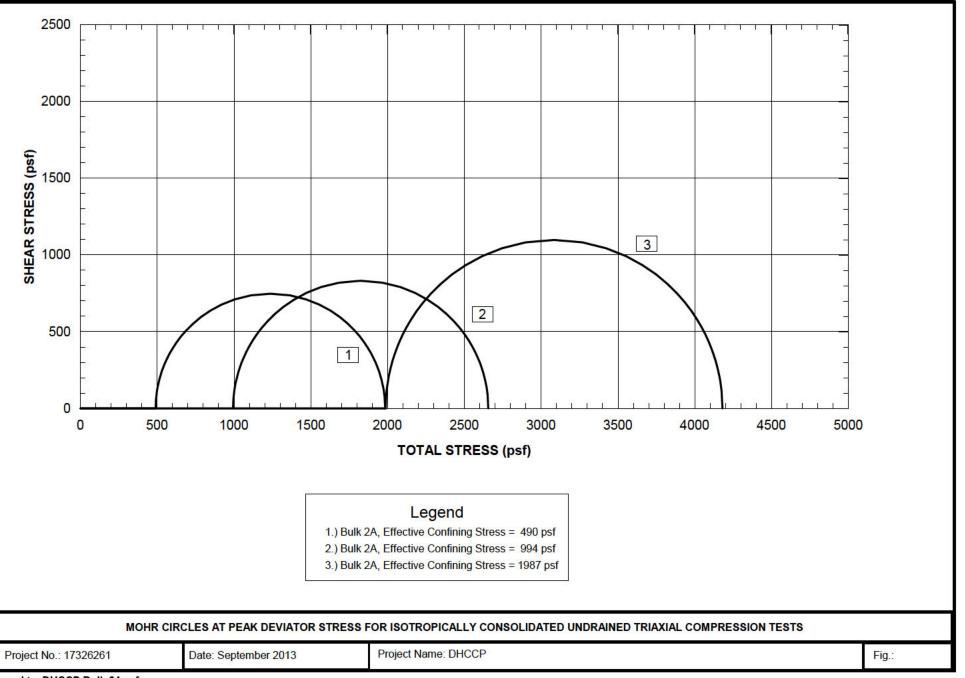


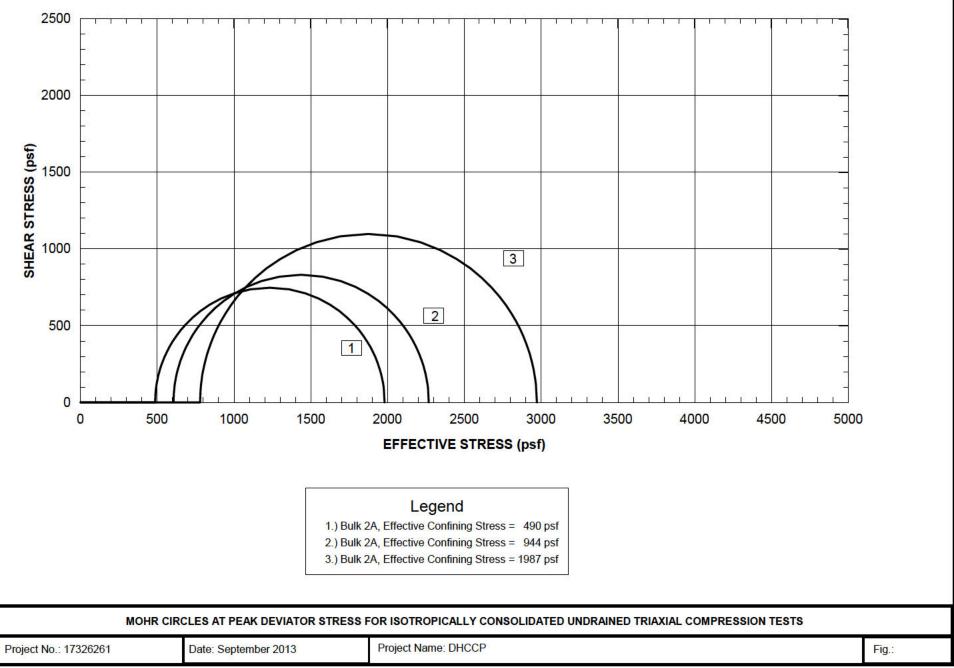


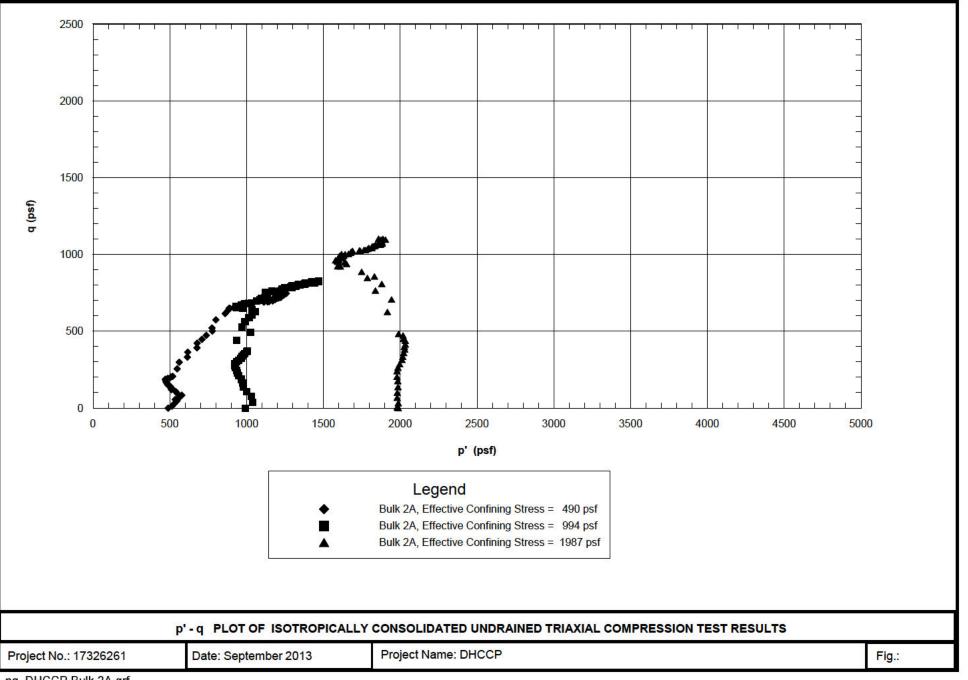


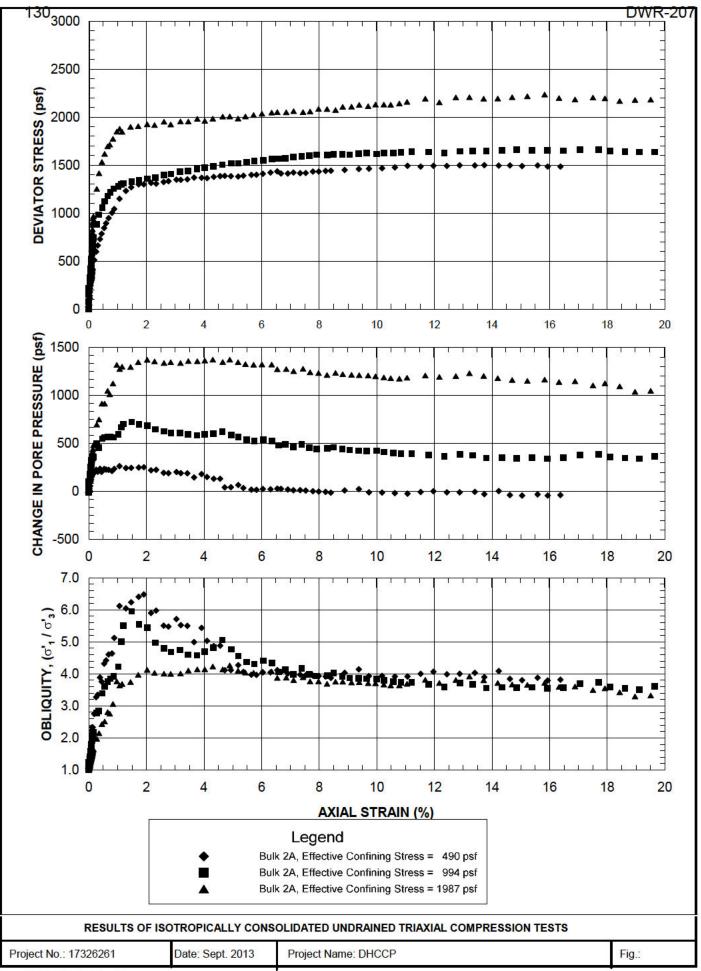


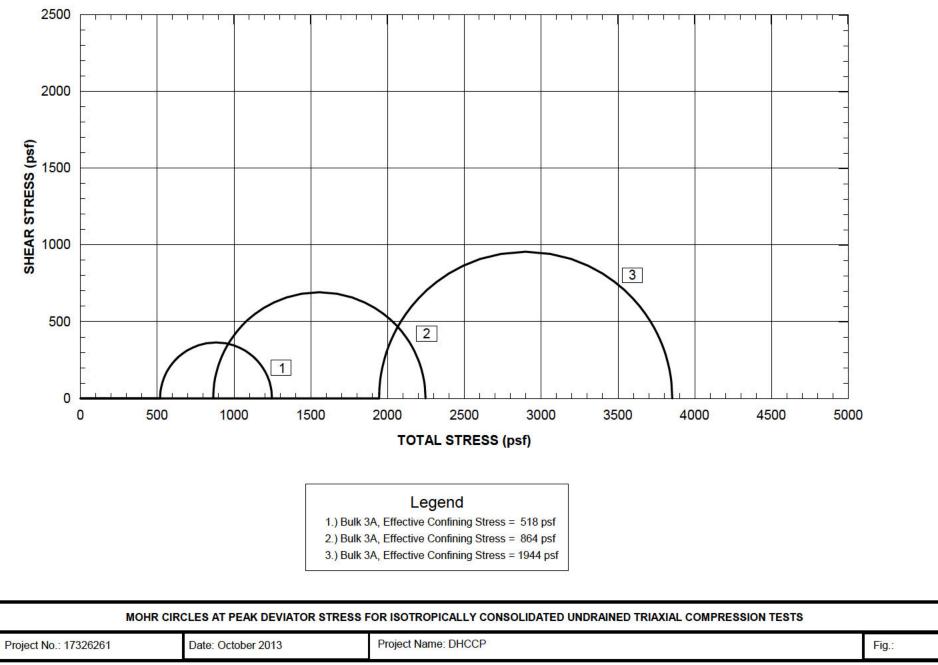


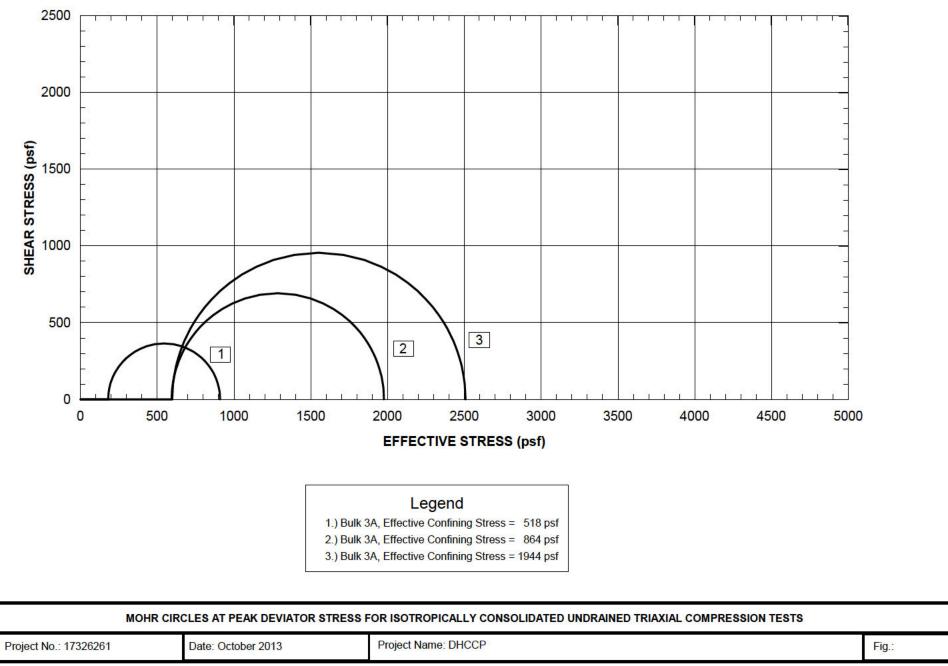


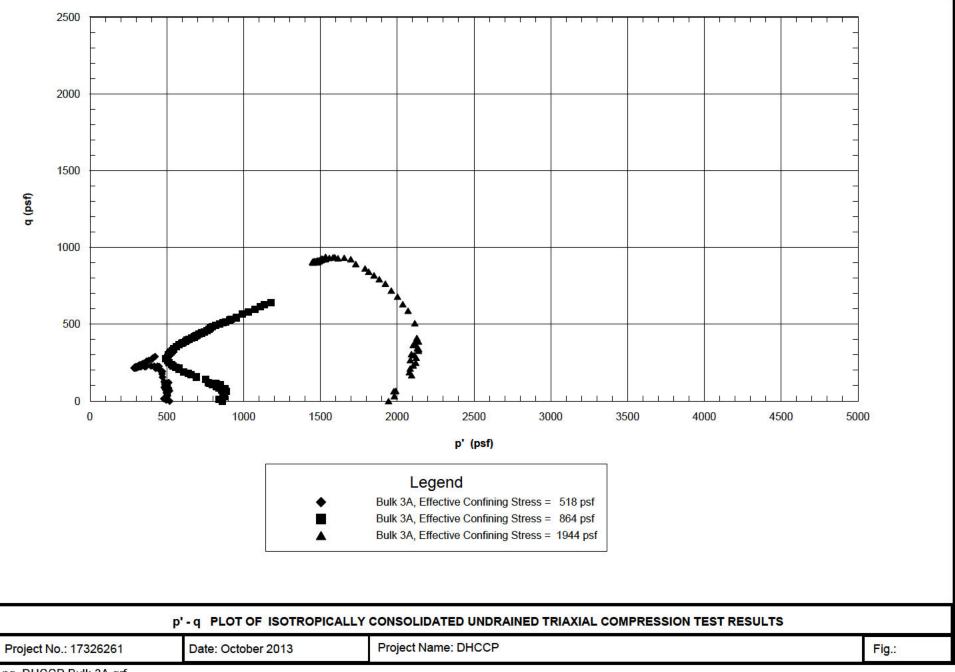


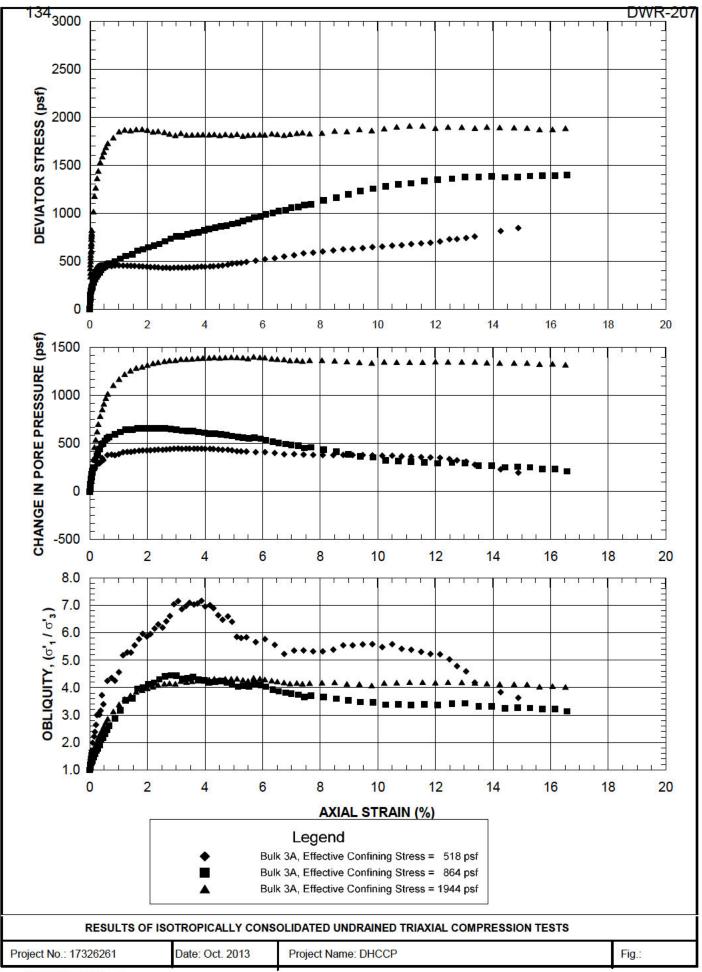


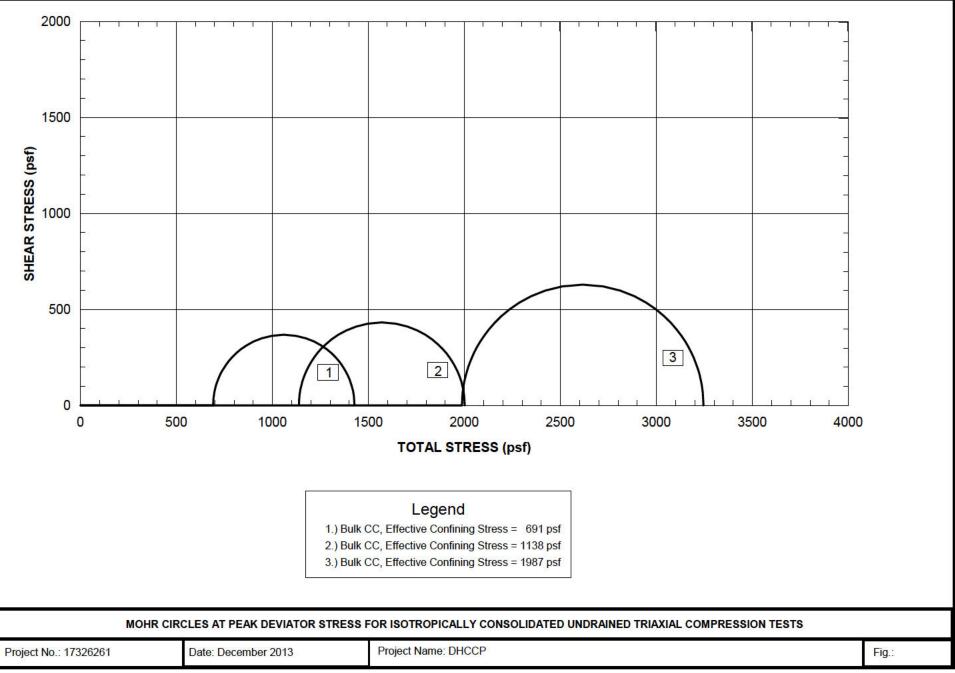


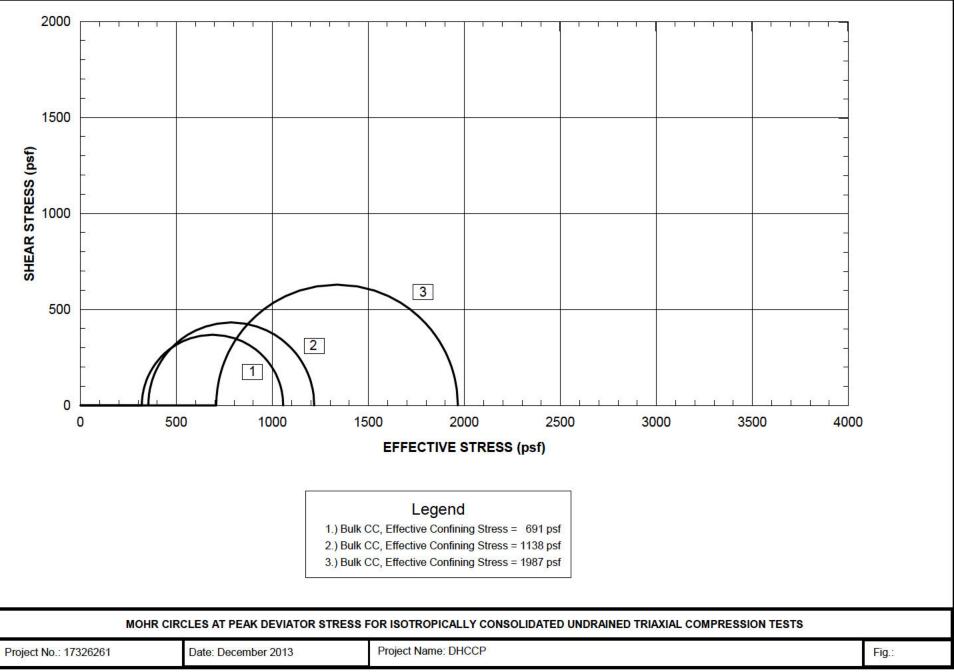




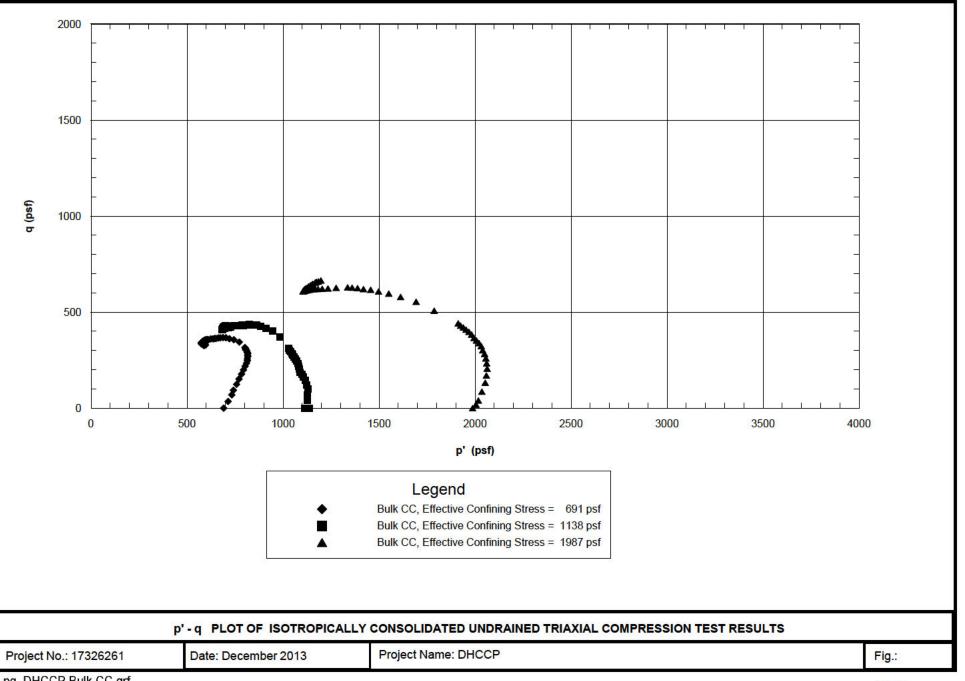


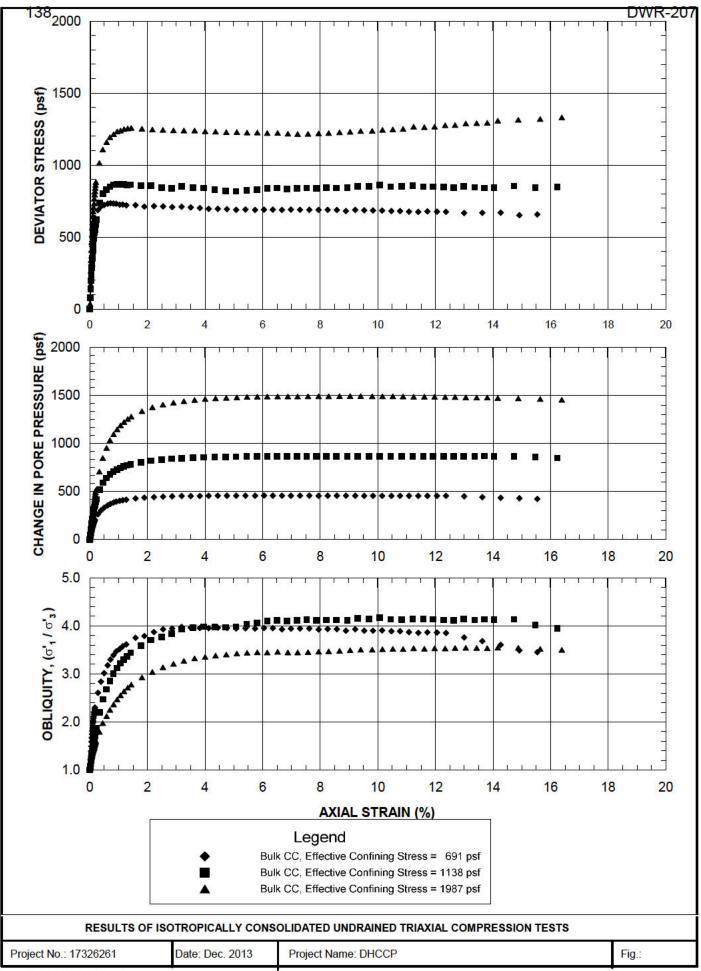


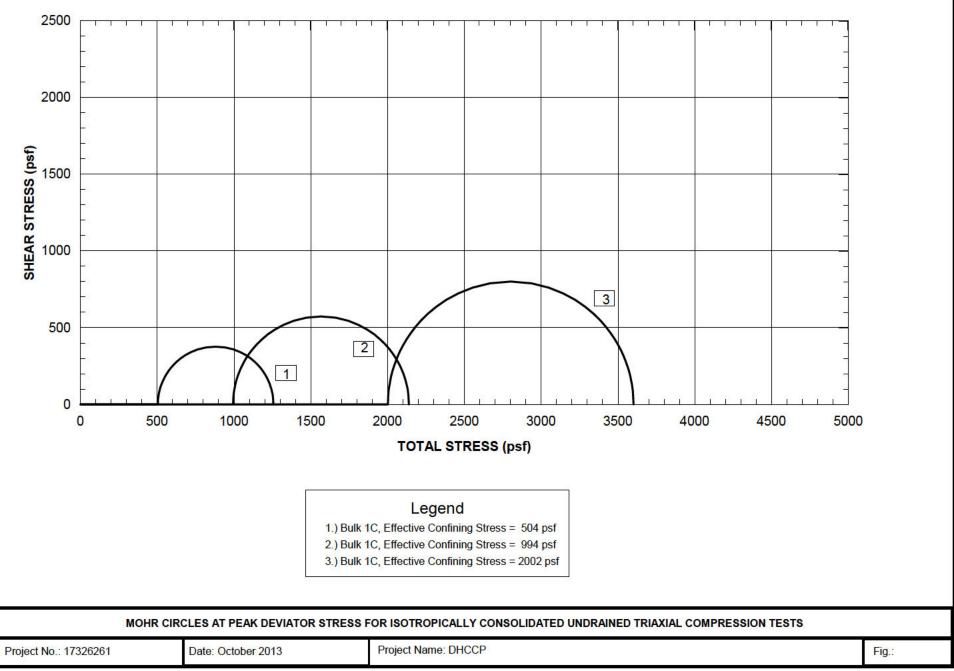


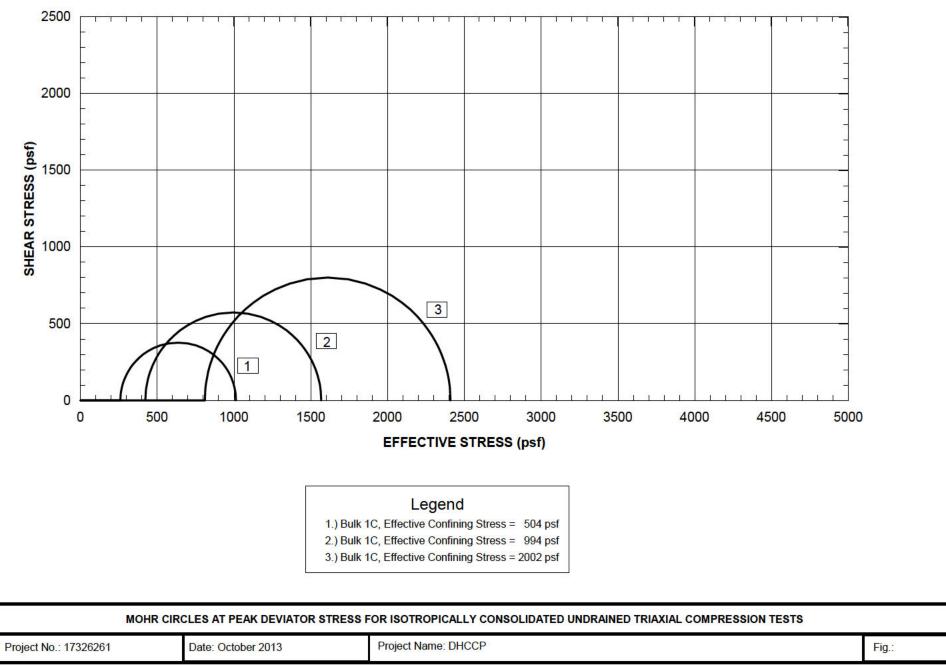

133

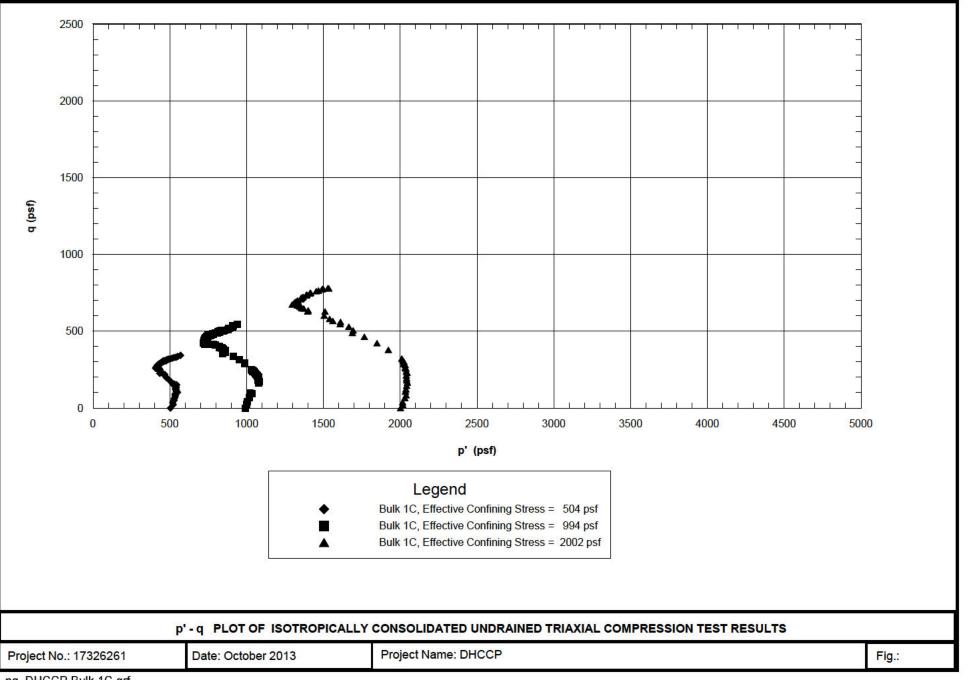
pq_DHCCP Bulk 3A.grf

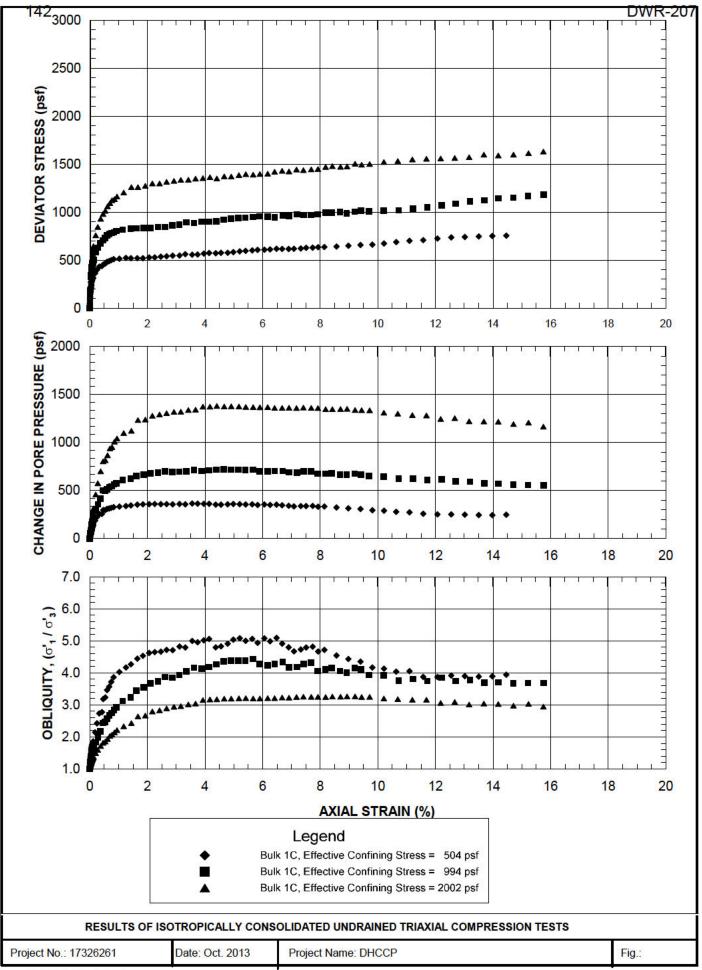


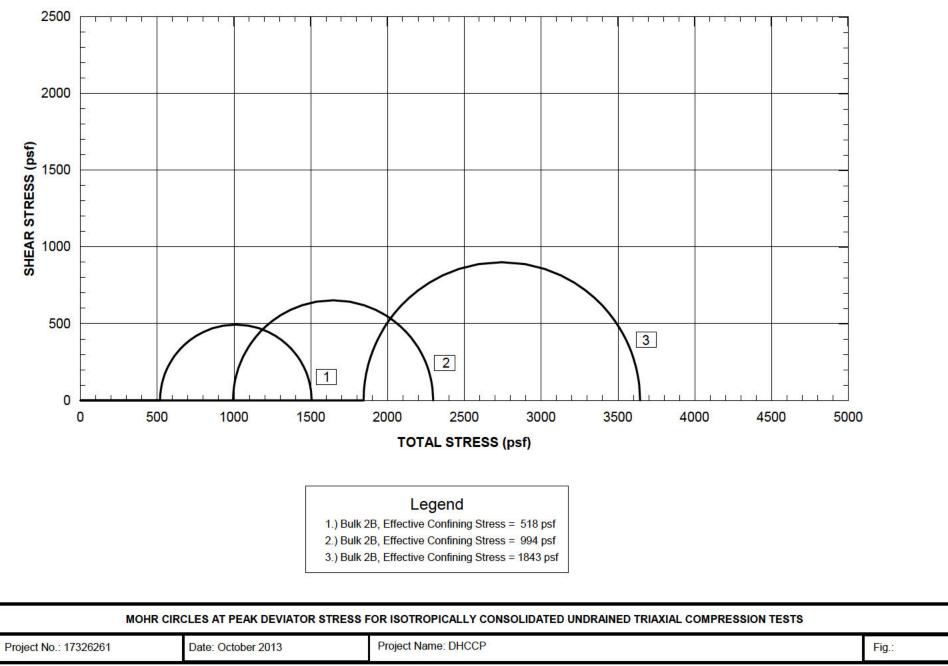


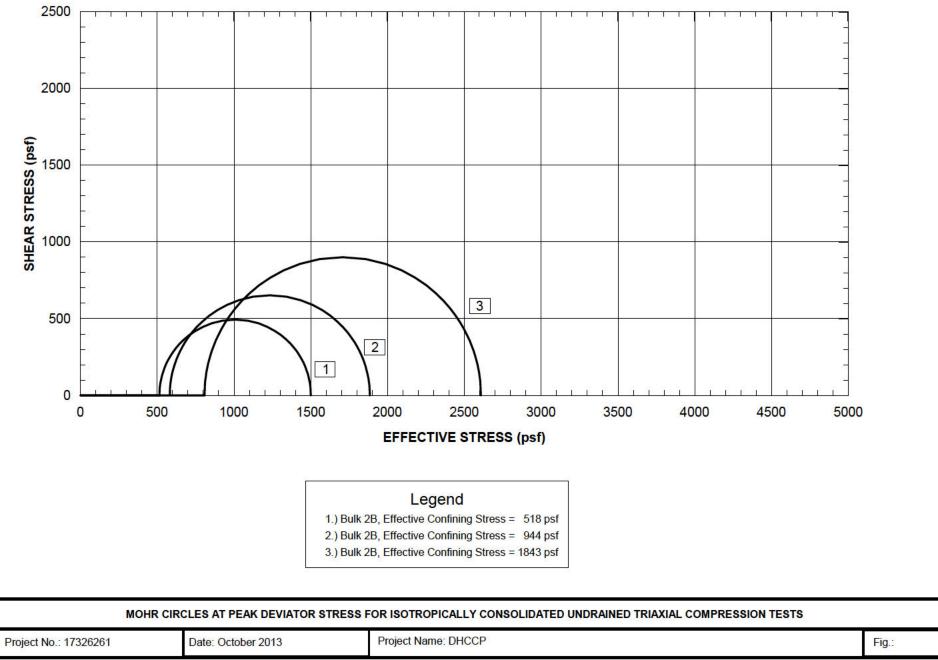

mcd ts_DHCCP Bulk CC.grf

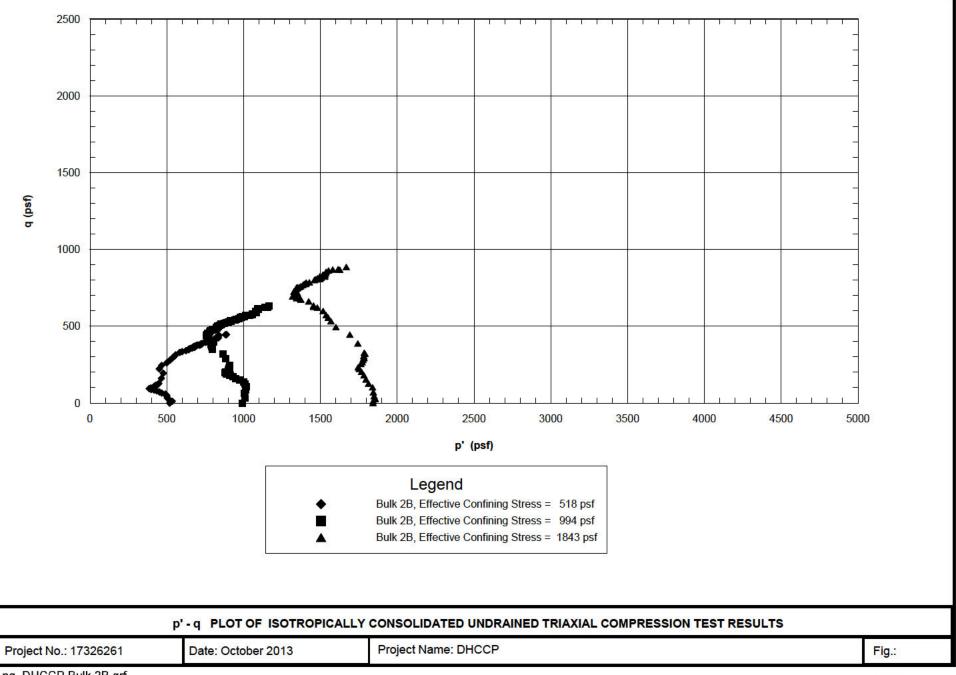


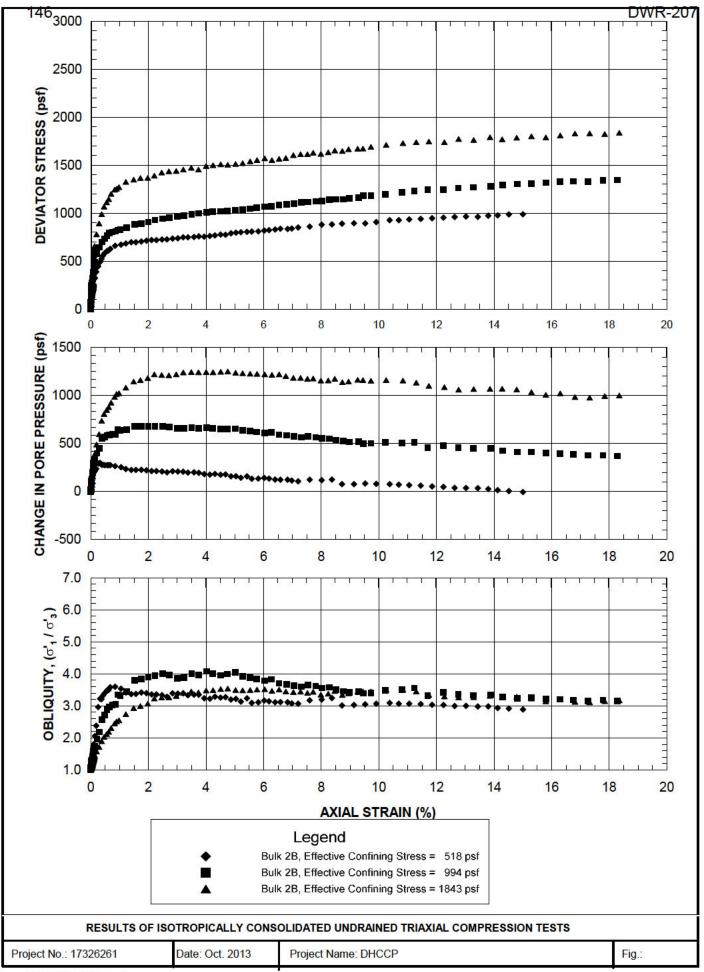

mcd_DHCCP Bulk CC.grf

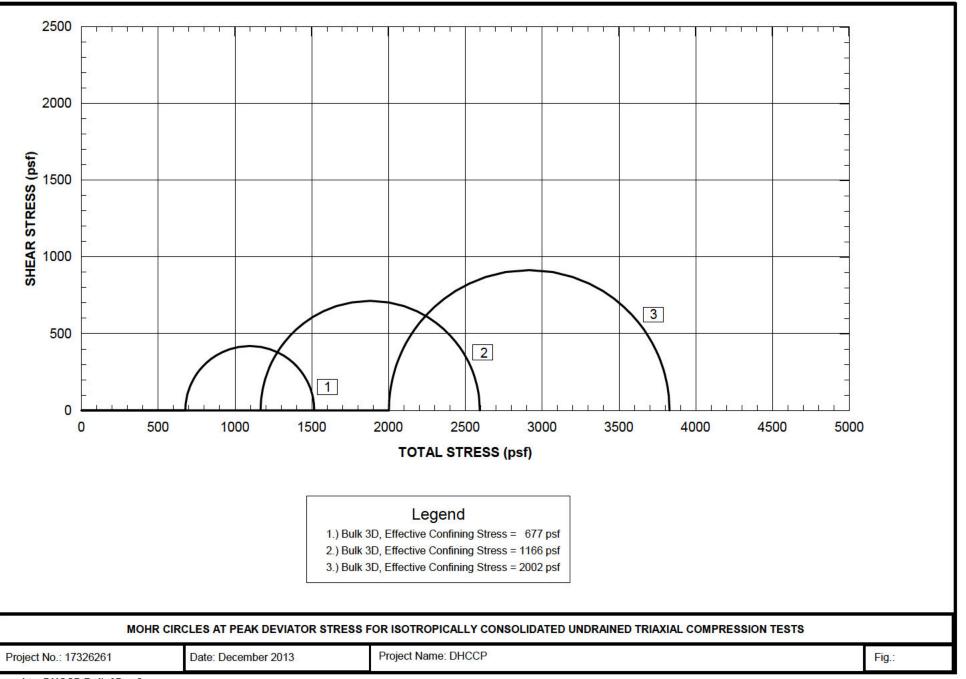


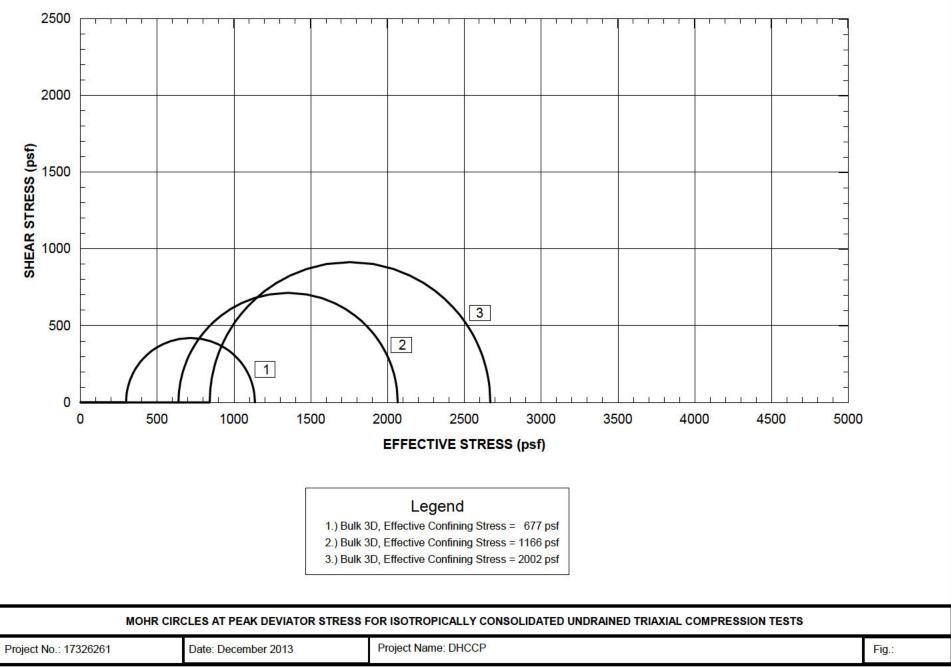


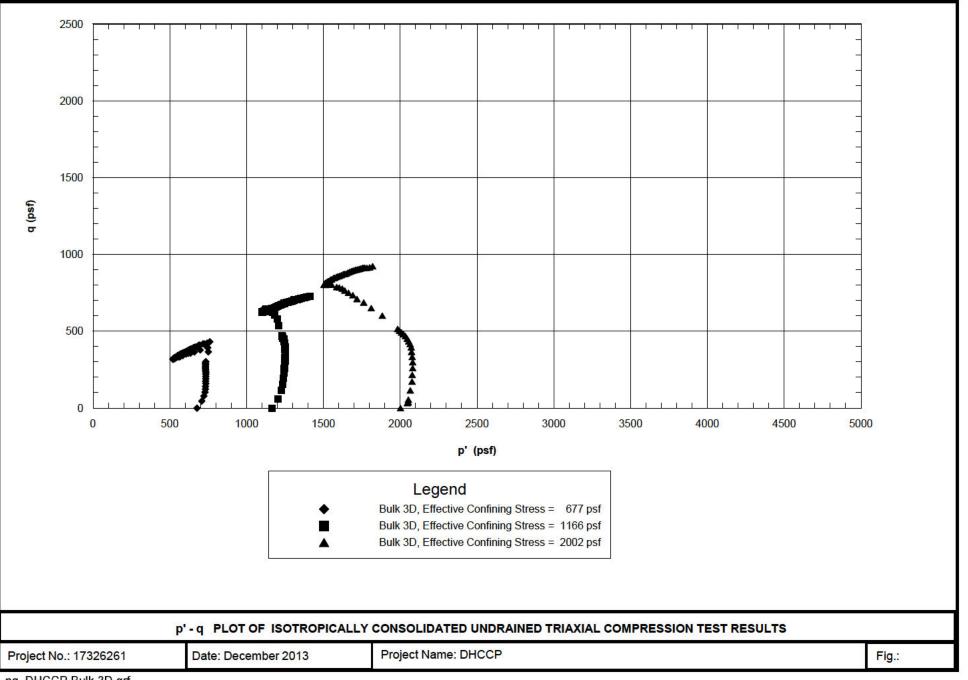


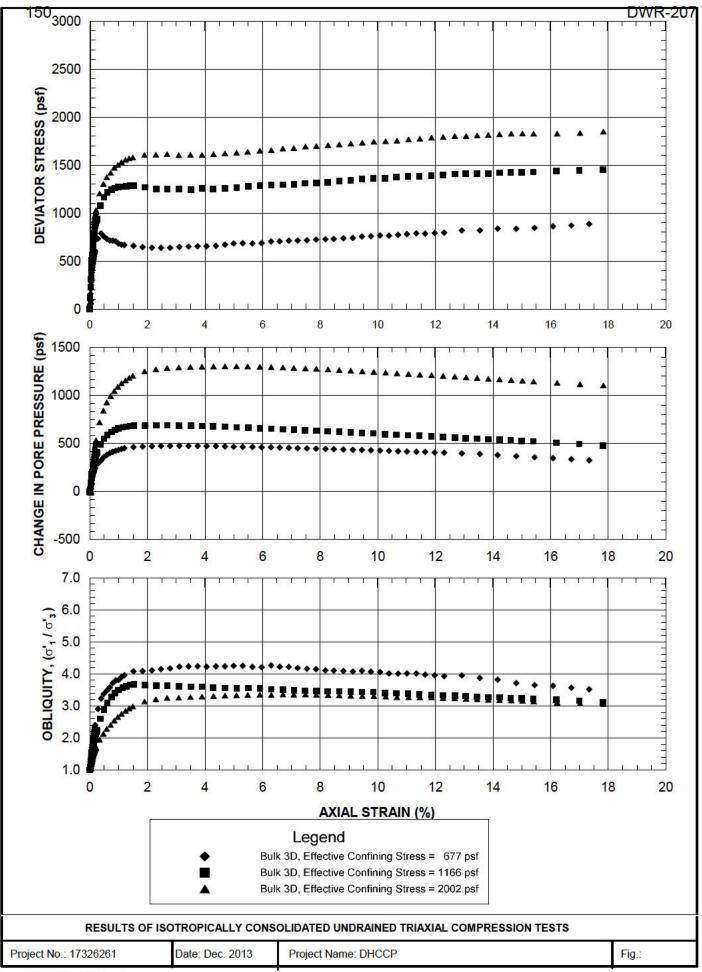



143


mcd ts_DHCCP Bulk 2B.grf






pq_DHCCP Bulk 2B.grf

APPENDIX D

Environmental Properties Testing Data

DWR-207

TABLE OF CONTENTS

CLIENT:	URS
PROJECT:	DHCCP
SDG:	13H125

SECTION		PAGE
Cover Letter, CO	DC/Sample Receipt Form	1000 – 1007
GC/MS-VOA	**	2000
GC/MS-SVOA	METHOD 3550B/8270C METHOD 3550B/8270C SIM	3000 – 3009 3010 – 3019
GC-VOA	METHOD 5030B/8015B	4000 - 4009
GC-SVOA	METHOD 3550B/8015B METHOD 3550B/8081A METHOD 3550B/8082 METHOD 8151A	5000 5009 5010 5019 5020 5029 5030 5039
HPLC	**	6000
METALS	METHOD 6020A METHOD DI WET/6020A METHOD 7471A METHOD DI WET/7470A	7000 7009 7010 7020 7021 7024 7025 7029
WET	METHOD SM4500NH3F METHOD SM4500NO3E METHOD 7196A METHOD WALKLEY-BLACK	8000 - 8005 8006 - 8010 8011 - 8016 8017 - 8020
OTHERS	BUTYLTINS METHYL MERCURY	

** - Not Requested

LABORATORIES, INC. 1835 W. 205th Street Torrance, CA 90501 Tel: (310) 618-8889 Fax: (310) 618-0818

Date: 09-17-2013 EMAX Batch No.: 13H125

ATTN: Rob Nixon

URS 2870 Gateway Oak #300 Sacramento, CA 95833

Subject: Laboratory Report Project: DHCCP

.....

Enclosed is the Laboratory report for samples received on 08/14/13. The data reported relate only to samples listed below :

Sample ID	Control #	Col Date	Matrix	Analysis
1A-2	H125-01	07/18/13	SOIL	MOISTURE CONTENT DETERMINATION TPH-GASOLINE TPH DIESEL METALS DI-WET METALS CAM MERCURY NITRATE/NITRITE AS N PAH BY 8270C SIM PESTICIDES ORGANOCHLORINE POLYCHLORINATED BIPHENYLS (PCBS) SEMIVOLATILE ORGANICS BY GCMS AMMONIA-N BY SM4500-NH3 F CHROMIUM HEXAVALENT CHLORINATED HERBICIDES TRIBUTYL TIN(MONO-, DI-, AND TRIB MERCURY BY DI WET METHYL MERCURY BY 1630M TOTAL ORGANIC CARBON
2A-2	H125-02	07/18/13	SOIL	MOISTURE CONTENT DETERMINATION

Sample ID	Control #	Col Date	Matrix	Analysis
ЗА-2	H125-03			TPH-GASOLINE TPH DIESEL METALS DI-WET METALS CAM MERCURY NITRATE/NITRITE AS N PAH BY 8270C SIM PESTICIDES ORGANOCHLORINE POLYCHLORINATED BIPHENYLS (PCBS) SEMIVOLATILE ORGANICS BY GCMS AMMONIA-N BY SM4500-NH3 F CHROMIUM HEXAVALENT CHLORINATED HERBICIDES TRIBUTYL TIN(MONO-, DI-, AND TRIB MERCURY BY DI WET METHYL MERCURY BY 1630M TOTAL ORGANIC CARBON MOISTURE CONTENT DETERMINATION TPH-GASOLINE TPH DIESEL METALS DI-WET METALS CAM MERCURY NITRATE/NITRITE AS N PAH BY 8270C SIM PESTICIDES ORGANOCHLORINE POLYCHLORINATED BIPHENYLS (PCBS) SEMIVOLATILE ORGANICS BY GCMS AMMONIA-N BY SM4500-NH3 F CHROMIUM HEXAVALENT CHLORINATED HERBICIDES TRIBUTYL TIN(MONO-, DI-, AND TRIB MERCURY BY DI WET METALS CAM

The results are summarized on the following pages.

Please feel free to call if you have any questions concerning these results.

Sincerely yours,

Caspar J. Pang / Laboratory Director

This report is confidential and intended solely for the use of the individual or entity to whom it is addressed. This report shall not be reproduced except in full or without the written approval of EMAX.

EMAX certifies that results included in this report meets all NELAC & DOD requirements unless noted in the Case Narrative.

NELAC Accredited Certificate Number 02116CA L-A-B Accredited DoD ELAP and ISO/IEC 17025 Certificate Number L2278 Testing

REPORTING CONVENTIONS

DATA QUALIFIERS:

Lab Qualifier	AFCEE Qualifier	Description
J	F	Indicates that the analyte is positively identified and the result is less than RL but greater than MDL.
N		Indicates presumptive evidence of a compound.
В	В	Indicates that the analyte is found in the associated method blank as well as in the sample at above QC level.
E	J	Indicates that the result is above the maximum calibration range.
*	*	Out of QC limit.

Note: The above qualifiers are used to flag the results unless the project requires a different set of qualification criteria.

ACRONYMS AND ABBREVIATIONS:

CRDL	Contract Required Detection Limit
RL	Reporting Limit
MRL	Method Reporting Limit
PQL	Practical Quantitation Limit
MDL	Method Detection Limit
DO	Diluted out

<u>DATES</u>

The date and time information for leaching and preparation reflect the beginning date and time of the procedure unless the method, protocol, or project specifically requires otherwise.

LABORATORY REPORT FOR

URS

DHCCP

METHOD 3550B/8270C SEMI VOLATILE ORGANICS BY GC/MS

SDG#: 13H125

Client : URS

Project : DHCCP

SDG : 13H125

METHOD 3550B/8270C SEMI VOLATILE ORGANICS BY GC/MS

A total of three (3) soil samples were received on 08/14/13 for Semivolatile Organics by GCMS analysis, Method 3550B/8270C in accordance with USEPA SW-846, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods.

Holding Time Samples were received out of prescribed holding time and without thermal preservation. The samples were analyzed upon client advice to proceed with the analysis.

Instrument Performance and Calibration Instrument tune check was performed prior to calibration. Instrument mass ratios as well as DDT breakdown were evaluated. Results were within acceptance criteria. Tailing factor for Benzidine and Pentachlorophenol were also verified and results were within the method limits. Multicalibration points were generated to establish initial calibration (ICAL). ICAL was verified using secondary source (ICV). Continuing calibration (CCV) was carried on at a frequency required by the project. All project calibration requirements were satisfied. Refer to calibration summary forms of ICAL, ICV and CCV for details.

Method Blank

Method blank was analyzed at the frequency required by the project. For this SDG, one method blank was analyzed with the samples. Result was compliant to project requirement.

Lab Control Sample A set of LCS/LCD was analyzed with the samples in this SDG. Percent recoveries for SVH029SL/C were all within QC limits.

Matrix QC Sample No matrix QC sample was designated in this SDG.

Surrogate Surrogates were added on QC and field samples. Surrogate recoveries were within project QC limits. Refer to sample result forms for details.

Sample Analysis

Samples were analyzed according to prescribed analytical procedures. All project requirements were met otherwise anomalies were discussed within the associated QC parameter.

LAB CHRONICLE SEMI VOLATILE ORGANICS BY GC/MS

Client : URS Project : DHCCP ===================================			=======			=======================================		SDG NO. Instrum	: 13H125 ent ID : E4
				SO	IL				
Client	Laboratory	Dilution	%	Analysis	Extraction	Sample	Calibration	Prep.	
Sample ID	Sample ID	Factor	Moist	DateTime	DateTime	Data FN		Batch	Notes
MBLK1S	SVH029SB	1	NA	08/15/1320:27	08/15/1312:30	RHJ221	RGJ400	SVH029S	Method Blank
LCS1S	SVH029SL	1	NA	08/15/1320:47	08/15/1312:30	RHJ222	RGJ400	SVH029S	Lab Control Sample (LCS)
_CD1S	SVH029SC	1	NA	08/15/1321:06	08/15/1312:30	RHJ223	RGJ400	SVH029S	LCS Duplicate
1A-2	H125-01	1	14.0	08/16/1320:50	08/15/1312:30	RHJ251	RGJ400	SVH029S	Field Sample
2A-2	H125-02	1	13.8	08/16/1321:10	08/15/1312:30	RHJ252	RGJ400	SVH029S	Field Sample
3A-2	H125-03	1	14.0	08/16/1321:29	08/15/1312:30	RHJ253	RGJ400	SVH029S	Field Sample

FN - Filename % Moist - Percent Moisture

SAMPLE RESULTS

METHOD 3550B/8270C SEMI VOLATILE ORGANICS BY GC/MS

Client : URS Project : DHCCP Batch No. : 13H125 Sample ID: 1A-2 Lab Samp ID: H125-01 Lab File ID: RHJ251 Ext Btch ID: SVH029S Calib. Ref.: RGJ400			07/18/13 08/14/13 08/15/13 12:30 08/16/13 20:50 1 SOIL 14.0 T-OE4
PARAMETERS 1,2,4-TRICHLOROBENZENE 1,2-DICHLOROBENZENE 1,3-DICHLOROBENZENE 2,4,5-TRICHLOROPHENOL 2,4,5-TRICHLOROPHENOL 2,4,5-TRICHLOROPHENOL 2,4-DINITROTOLUENE 2,4-DINITROANILINE 4,5-DINITROTOLUENE 2,5-DINITROTOLUENE 2,5-DINITROTOLUENE 4,7-CHLOROPHENYL-PHENYL ETHER 4,6-DINITROTOLUENE 4,7-CHLOROPHENYL-PHENYL ETHER 4,7-CHLOROPHENYL-PHENYL ETHER 4,7-CHLOROPHENYL-PHENYL ETHER 4,7-NITROANILINE 4-NITROANILINE 4-NITROANILINE 4-NITROPHENOL 4-CUNAPHTHENE ACENAPHTHYLENE ANTHRACENE BENZO(A)ANTHRACENE BENZO(A)ANTHRACENE BENZO(A)FLUORANTHENE BENZO(G H, 1)PERYLENE ANTHRACENE BIS(2-CHLOROTHYL)ETHER BIS(2-CHLOROTHYL)ETHER BIS(2-CHLOROTHYL)ETHER BIS(2-CHLOROTHYL)ETHER BIS(2-CHLOROTHYL)ETHER BIS(2-CHLOROTHYL)ETHER BIS(2-CHLOROTHYL)ETHER BIS(2-CHLOROTHYL)ETHER BIS(2-CHLOROTHYL)ETHER BIS(2-CHLOROTHAN DIETHYLPHTHALATE DI-N-BUTYLPHTHALATE DI-N-BUTYLPHTHALATE DIENZO(A, H)ANTHRACENE DIENZO(A, H)ANTHRACENE ATROBENZENE ATROBENZENE ATROBENZENE ATROBENZENE ATROBENZENE ATROBENZENE ATROBENZENE ATROB	RESULTS (ug/kg) ND ND ND ND ND ND ND ND ND ND ND ND ND	RL (ug/kg) 390 390 390 390 390 390 390 390 390 390	MDL (ug/kg)
SURROGATE PARAMETERS 2,4,6-TRIBROMOPHENOL 2-FLUOROBIPHENYL 2-FLUOROPHENOL NITROBENZENE-D5 PHENOL-D5 TERPHENYL-D14	RESULTS 2480 567 1810 534 1940 809	2326 775.2	OVERY QC LIMIT 107 40-130 73.1 40-130 77.6 30-130 68.9 30-130 83.6 40-130 104 60-130

(1): Cannot be separated from 3-Methylphenol
(2): Cannot be separated from Diphenylamine

METHOD 3550B/8270C SEMI VOLATILE ORGANICS BY GC/MS

162 METHOD 3550 SEMI VOLATILE ORGA Client : URS Project : DHCCP	NICS BY GC/MS	Date Collected	: 07/18/13
Batch No. : 13H125 Sample ID: 2A-2 Lab Samp ID: H125-02 Lab File ID: RHJ252 Ext Btch ID: SVH029S Calib. Ref.: RGJ400		Date Analyzed Dilution Factor Matrix % Moisture Instrument ID	: SOIL : 13.8 : T-OE4
PARAMETERS 1.2.4.TRICHLOROBENZENE 1.3.0 DICHLOROBENZENE 1.4.0 DICHLOROBENZENE 2.4.5.TRICHLOROPHENOL 2.4.5.TRICHLOROPHENOL 2.4.0 INTROTOLUENE 2.4.0 INTROPHENOL 3.3.1.0 ICHLOROBENZIDINE 3.7.1 INCONILINE 2.4.0 INTROANILINE 2.4.0 INTROASINE 3.7.1 INCONILINE 4.5.0 INTROASINE 4.5.0 INTROASINE 5.5.0 INTROASINE	RESULTS (ug/kg) ND ND ND ND ND ND ND ND ND ND ND ND ND	RL (ug/kg) 390 390 390 390 390 390 390 390 390 390	MDL (ug/kg) 190 190 190 190 190 190 190 190 190 190
SURROGATE PARAMETERS 2,4,6-TRIBROMOPHENOL 2-FLUOROBIPHENYL 2-FLUOROBHENOL NITROBENZENE-D5 PHENOL-D5 ZERPHENYL-D14	RESULTS 2240 476 1650 455 1790 743		COVERY QC LIMIT 96.5 40-130 61.6 40-130 71.1 30-130 58.9 30-130 77.3 40-130 96.1 60-130

(1): Cannot be separated from 3-Methylphenol (2): Cannot be separated from Diphenylamine

3.8

In Percentation

METHOD 3550B/8270C SEMI VOLATILE ORGANICS BY GC/MS

Client : URS Project : DHCCP Batch No. : 13H125 Sample ID: 3A-2 Lab Samp ID: H125-03 Lab File ID: RHJ253 Ext Btch ID: SVH029S Calib. Ref.: RGJ400		Date Collected: Date Received: Date Extracted: Date Analyzed: Dilution Factor: Matrix : % Moisture : Instrument ID :	07/18/13 08/14/13 08/15/13 12:30 08/16/13 21:29 1 SOIL 14.0 T-0E4
المعاملة الم	RESULTS (ug/kg)	RL (ug/kg)	MDL (ug/kg)
1,2,4 - TRICHLOROBENZENE 1,2 - DICHLOROBENZENE 1,3 - DICHLOROBENZENE 1,4 - DICHLOROBENZENE 2,4 - 5 - TRICHLOROPHENOL 2,4 - 0 IMETHYLPHENOL 2,4 - 0 IMITROTOLUENE 2,4 - 0 IMITRO-2 - METHYLPHENOL 3,3 - DICHLOROBENZIDINE 3,4 - 1 TROANILINE 4,6 - 0 IMITRO-2 - METHYLPHENOL 4,6 - 0 IMITRO-3 - METHYLPHENOL 4,6 - 0 IMITRO-3 - METHYLPHENOL 4,6 - CHLOROAMILINE 4,6 - CHLOROAMILINE 4,6 - CHLOROAMILINE 4,6 - MITROAMILINE 4,6 - 0 IMORAMITHENE BENZO(A)ANTHRACENE BENZO(A)ANTHRACENE BENZO(A)ANTHRACENE BENZO(A)ANTHRACENE BENZO(A)FYENE BENZO(A)FYENE BIS(2,2 - CHLOROETHAXYMETHANE BIS(2,2 - CHLOROETHAXYMETHALATE DIFMITHYLPHTHALATE DIFMITHYLPHTHALATE DIBENZO(A, H)ANTHRACENE DIENZO(A, H)ANTHRACENE MEXACHLOROETHANE HEXACHLOROE		390 390 390 390 390 390 390 390 390 390	190 190 190 190 190 190 190 190 190 190
SURROGATE PARAMETERS 2,4,6-TRIBROMOPHENOL 2-FLUOROBIPHENYL 2-FLUOROPHENOL NITROBENZENE-D5 PHENOL-D5 TERPHENYL-D14	RESULTS 2260 514 1680 481 1820 775	775.2 6 2326 7 775.2 6 2326 7	OVERY QC LIMIT 07.1 40-130 06.3 40-130 72.2 30-130 22.0 30-130 78.4 40-130 99.9 60-130

(1): Cannot be separated from 3-Methylphenol (2): Cannot be separated from Diphenylamine

QC SUMMARIES

METHOD 3550B/8270C SEMI VOLATILE ORGANICS BY GC/MS

Client : URS Project : DHCCP Batch No. : 13H125 Sample ID: MBLK1S Lab Samp ID: SVH029SB Lab File ID: RHJ221 Ext Btch ID: SVH029S Calib. Ref.: RGJ400		Date Collected: Date Received: Date Extracted: Date Analyzed: Dilution Factor: Matrix : % Moisture : Instrument ID :	NA 08/15/13 08/15/13 12:30 08/15/13 20:27 1 SOIL NA T-OE4
PARAMETERS	RESULTS (ug/kg)	RL (ug/kg)	MDL (ug/kg)
2.4 - TRICHLOROBENZENE 2.4 - DICHLOROBENZENE 1.4 - DICHLOROBENZENE 2.4 - 5 TRICHLOROPHENOL 2.4 - 0.1 KICHOROPHENOL 2.4 - 0.1 KIROPHENOL 2.4 - 0.1 KIROPHENOL 2.5 - 0.1 KIROPHENOL 2.5 - 0.1 KIROPHENOL 3.3 - 0.1 CHLOROBENZIDINE 3.4 - 0.1 KIROPHENOL 4.5 - 0.1 KIROPHENOL 5.5		330 330 330 330 330 330 330 330	170 170 170 170 170 170 170 170 170 170
SURROGATE PARAMETERS 2,4,6-TRIBROMOPHENOL 2-FLUOROBIPHENYL 2-FLUOROBIPHENOL NITROBENZENE-D5 PHENOL-D5 TERPHENYL-D14	RESULTS 1650 485 1410 429 1410 57 3	2000 666.7 2000 666.7 2000	OVERY QC LIMIT B2.5 30-140 72.7 30-130 64.4 40-130 70.6 40-130 70.6 40-130 85.9 40-140

(1): Cannot be separated from 3-Methylphenol
(2): Cannot be separated from Diphenylamine

166

March 1997

EMAX QUALITY CONTROL DATA LCS/LCD ANALYSIS

CLIENT: PROJECT: BATCH NO.: METHOD:	URS DHCCP 1 3 H125 METHOD 3550B/	/8270r									
MATRIX: DILUTION FACTOR:	\$01L	1				STURE:	NA	********	==========	=============	z
SAMPLE ID: LAB SAMP ID: LAB FILE ID: DATE EXTRACTED: DATE ANALYZED: PREP. BATCH: CALIB. REF:	MBLK1S SVH029SB RHJ221 08/15/1312:30 08/15/1320:27 SVH029S RGJ400	SVH029SL RHJ222 0 08/15/13 7 08/15/13 SVH029S RGJ400	RHJ2 12:30 08/1	029sC 223 15/1312:30 15/1321:06 029s 00	DATE DATE	COLLECTED: RECEIVED:	NA 08/15/13				
ACCESSION: PARAMETER	В	SLNK RSLT (ug/kg)	SPIKE AMT (ug/kg)	BS RSLT (ug/kg)	BS % REC	SPIKE AMT (ug/kg)	BSD RSLT (ug/kg)	BSD % REC	RPD (%)	QC LIMIT (%)	MAX RPD (%)
1.2,4-Trichlorob 1,2-Dichlorobenz 1,4-Dichlorobenz 2,4,5-Trichlorop 2,4-Dichlorobenz 2,4,5-Trichlorop 2,4-Dinitrotolue 2,4-Dinitrotolue 2,4-Dinitrotolue 2,4-Dinitrotolue 2,6-Dinitrotolue 2-Nitroaniline 2-Nitroaniline 2-Nitroaniline 3,3'-Dichloroben 3,3'-Dichloroben 3,3'-Dichloroben 3,3'-Dichloroben 3,3'-Dichloroben 3,3'-Dichloroben 4,6-Dinitro-2-Me 4-Bromophenyl-pi 4-Chloro-3-Methy 4-Chloro-3-Methy 4-Chloro-3-Methy 4-Chloro-3-Methy 4-Chloroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 5(2)fluorant Benzo(a)anthrace Benzo(a)anthrace Benzo(a)fluorant Benzo(b)fluorant Benzo(b)fluorant Dis(2-Chloroethy Dis(2-Chloroethy Dis(2-Chloroethy Dis(2)fluorant Disethylphthal Dibenzofuran Diethylphthalate Di-n-butylphthal Dibenzofuran Diethylphthalate Dimethylphthalate Dimethylphthalate Dimethylphthalate Din-Nitroso-di-n-p Nitroso-di-n-p Nitroso-di-n-p Nitroso-di-n-p P-Nitroso-di-n-p Phenanthene Phenol Phenol	ene ene henol henol ol ol i ne ne ene ene zidine thylphenol enyl ether lphenol henyl ether lphenol hene hene lene xy)methane l)ether ropyl)ether jphthalate late ate ate ate racene e ene entadiene pyrene lamine l		1330 1330 1330 1330 1330 1330 1330 1330	952 885 893 1130 1010 1090 1250 1150 903 924 1400 1080 1120 1120 1120 1120 1020 1140 1020 1050 1020 1140 1020 1120 100 10	716677533612246844946444551152239986226522745661677221117664778888788888887568766779797681 188623998627666788870018866867987778888888886664887888888888888	1330 1330 1330 1330 1330 1330 1330 1330	988 890 901 1120 1140 1030 1130 1240 1150 1040 1010 964 897 1020 1150 1040 1150 1100 1410 1160 1150 1100 1410 1000 1410 1000 1410 1000 1410 1000 1410 1000 1150 1000 1150 1080 1110 1080 1120 1080 1120 1080 1150 1080 1150 1080 1150 1080 1150 1080 1150 1080 1150 1080 1150 1080 1150 1080 1150 1080 1150 1080 1150 1080 1150 1080 1150 1080 1150 1080 1150 1080 1150 1090 1090	74 678 688 84 69 77 89 868 76 67 665 55 37 54 26 68 76 97 77 88 88 88 88 88 88 88 88 88 88 88 88	41120345310424503110225153220132412432341243234151223451431451434	130 130 130 13000 1300 1300 13000 1300 1300 1300 1300 1300 1	50000000000000000000000000000000000000
SURROGATE PARAME	S TER	SPIKE AMT (ug/kg)	BS RSLT (ug/kg)	BS SF % REC (IKE AMT ug/kg)	BSD RSLT (ug/kg)	BSD QC % REC (LIMIT %)			
2,4,6-Tribromoph 2-Fluorobiphenyl 2-Fluorophenol Nitrobenzene-d5 Phenol-d5 Terphenyl-d14	enol	2000 667 2000 667 2000 667	1760 437 1230 382 1290 570	88 66 61 57 65 86	2000 667 2000 667 2000 667	1800 476 1280 397 1340 557	71 3 64 4 60 4 67 4	0-140 0-130 0-130 0-130 0-130 0-140			

LABORATORY REPORT FOR

URS

DHCCP

METHOD 3550B/8270C SIM PAH BY GC/MS

SDG#: 13H125

CASE NARRATIVE

Client : URS

Project : DHCCP

SDG : 13H125

METHOD 3550B/8270C SIM PAHS BY GC/MS

A total of three (3) soil samples were received on 08/14/13 for PAH BY 8270C SIM analysis, Method 3550B/8270C SIM in accordance with USEPA SW-846, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods.

Holding Time Samples were received out of prescribed holding time and without thermal preservation. The samples were analyzed upon client advice to proceed with the analysis.

Instrument Performance and Calibration Instrument tune check was performed prior to calibration. Instrument mass ratios were evaluated and results were within acceptance criteria. Multicalibration points were generated to establish initial calibration (ICAL). ICAL was verified using secondary source (ICV). Continuing calibration (CCV) was carried on at a frequency required by the project. All project calibration requirements were satisfied. Refer to calibration summary forms of ICAL, ICV and CCV for details.

Method Blank Method blank was analyzed at the frequency required by the project. For this SDG, one method blank was analyzed with the samples. Result was compliant to project requirement.

Lab Control Sample A set of LCS/LCD was analyzed with the samples in this SDG. Percent recoveries for SVH029SL/C were all within QC limits.

Matrix QC Sample No matrix QC sample was designated in this SDG.

Surrogate Surrogates were added on QC and field samples. Surrogate recoveries were within project QC limits. Refer to sample result forms for details.

Sample Analysis Samples were analyzed according to prescribed analytical procedures. All project requirements were met otherwise anomalies were discussed within the associated QC parameter.

LAB CHRONICLE PAHS BY GC/MS

========		=======================================						
Client	: URS	SDG NO.	: 13 H125					
Project	: DHCCP	Instrument ID	: E4					

SOIL											
Client	Laboratory	Dilution	%	Analysis	Extraction	Sample	Calibratio	n Prep.			
Sample ID	Sample ID	Factor	Moist	DateTime	DateTime	Data FN	Data FN	Batch	Notes		
MBLK1S	SVH029SB	1	NA	08/15/1320:27	08/15/1312:30	RHJ221	RGJ400	SVH029S	Method Blank		
LCS1S	SVH029SL	1	NA	08/15/1320:47	08/15/1312:30	RHJ222	RGJ400	SVH029S	Lab Control Sample (LCS)		
LCD1S	SVH029SC	1	NA	08/15/1321:06	08/15/1312:30	RHJ223	RGJ400	SVH029S	LCS Duplicate		
1A-2	H125-01	1	14.0	08/16/1320:50	08/15/1312:30	RHJ251	RGJ400	SVH029S	Field Sample		
2A-2	H125-02	1	13.8	08/16/1321:10	08/15/1312:30	RHJ252	RGJ400	SVH029S	Field Sample		
3A-2	H125-03	1	14.0	08/16/1321:29	08/15/1312:30	RHJ253	RGJ400	SVH029S	Field Sample		

FN - Filename

% Moist - Percent Moisture

SAMPLE RESULTS

1,14167

 $\frac{d}{dt} = \frac{1}{dt} \frac{dt}{dt} = \frac{1}{dt} \frac{dt}{dt$

ħ Å) $\frac{\beta}{2} = \frac{k}{2}$

client : URS									
Project : DHCCP		Date Collected: 07/18/13 Date Received: 08/14/13							
Batch No. : 13H125	Date Received: 08/14/15 Date Extracted: 08/15/13 12:30								
Sample ID: 1A-2		nalyzed: 08/16/1							
Lab Samp ID: H125-01		Factor: 1	5 20.50						
Lab File ID: RHJ251	Matrix	: SOIL							
EXT Btch ID: SVH029S	% Moistur								
		t ID : T-OE4							
Calib. Ref.: RGJ400				=======					
	RESULTS	RL		MDL					
PARAMETERS	(ug/kg)	(ug/kg)		(ug/kg)					
ACENAPHTHENE	ND	12		2.9					
ACENAPHTHYLENE	ND	12		2.9					
ANTHRACENE	ND	12		2.9					
BENZO(A)ANTHRACENE	ND	12		2.9					
BENZO(A)PYRENE	ND	12		2.9					
BENZO(B)FLUORANTHENE	ND	12		2.9					
BENZO(K) FLUORANTHENE	ND	12		2.9					
BENZO(G, H, I)PERYLENE	ND	12		2.9					
EHRYSENE	ND	12		2.9					
IBENZO(A, H)ANTHRACENE	ND	12		2.9					
EUORANTHENE	ND	12		2.9					
PLUORENE	ND	12		2.9					
8 (1), (1)	ND	12		2.9					
NDENO(1,2,3-CD)PYRENE	ND	12		2.9					
HENANTHRENE	ND	12		2.9					
YRENE	ND	12		2.9					
	ND	12		L.,					
URROGATE PARAMETERS	RESULTS	SPK_AMT		C LIMIT					
2-FLUOROBIPHENYL	493	775.2	63.6	30-160					
ITROBENZENE-D5	536	775.2	69.2	30-160					
TERPHENYL-D14	802	775.2	103	40-150					
N.									
NOT									
As which i									
筆祭(位) 第11章 第11章 第11章									

Read Articles is produced as

172			
	HOD 3550B/8270C SIM PAHS BY GC/MS		
Client : URS Project : DHCCP			ected: 07/18/13 eived: 08/14/13
Batch No. : 13H125			acted: 08/15/13 12:3
Sample ID: 2A-2			lyzed: 08/16/13 21:1
Lab Samp ID: H125-02 Lab File ID: RHJ252		Dilution Fa Matrix	soil
Ext Btch ID: SVH029S		% Moisture	: 13.8
Calib. Ref.: RGJ400		Instrument	ID : T-OE4
- 考			
ARAMETERS	RESULTS (ug/kg)	RL (ug/kg)	MD (ug/kg
ACENAPHTHENE	ND	12	2.
ACENAPHTHYLENE ANTHRACENE	ND ND	12 12	2.
BENZO(A)ANTHRACENE	ND	12	2.
3ENZO(A)PYRENE	ND	12	2.
BENZO(B)FLUORANTHENE BENZO(K)FLUORANTHENE	ND ND	12 12	2. 2.
ŠENZO(G,H,I)PERYLENE	ND	12	2.
	ND	12	2.
DIBENZO(A,H)ANTHRACENE FLÜORANTHENE	ND ND	12 12	2.
LÜORENE	ND	12	2.
NDENO(1,2,3-CD)PYRENE	ND	12 12	2. 2.
NAPHTHALENE PHENANTHRENE	ND ND	12	2.
PYRENE	ND	12	2.9
SURROGATE PARAMETERS	RESULTS	SPK_AMT	% RECOVERY QC LIMI
2 FLUOROBIPHENYL	418	773.4	54.0 30-16
NITROBENZENE-D5 TERPHENYL-D14	482 678	773.4 773.4	62.3 30-16 87.6 40-15
	0/0	119.4	07:0 40 12
- A			
арана Алана (1996)			

DWR-207

(4) A start of the start of

Cljent : URS			lected: 07/18				
Project : DHCCP	Date Received: 08/14/13						
Batch No. : 13H125			racted: 08/15				
Sample ID: 3A-2		Date An	alyzed: 08/16	5/13 21:29			
Lab Samp ID: H125-03		Dilution	Factor: 1				
բab File ID: RHJ253		Matrix	: SOIL				
Ext Btch ID: SVH029S			e :14.0				
Calib. Ref.: RGJ400			t ID : T-OE4				
	RESULTS	RL		MDL			
PARAMETERS	(ug/kg)	(ug/kg)		(ug/kg)			
ACENAPHTHENE	ND	12		2.9			
ACENAPHTHYLENE	ND	12		2.9			
ANTHRACENE	ND	12		2.9			
BENZO(A)ANTHRACENE	ND	12		2.9			
BENZO(A)PYRENE	ND	12		2.9			
BENZO(B)FLUORANTHENE	ND	12		2.9			
BENZO(K)FLUORANTHENE	ND	12		2.9			
SENZO(G,H,I)PERYLENE	ND	12		2.9			
ÉHRYSENE	ND	12		2.9			
JIBENZO(A,H)ANTHRACENE	ND	12		2.9			
FLÜORANTHENE	ND	12		2.9			
LÜORENE	ND	12		2.9			
NDENO(1,2,3-CD)PYRENE	ND	12		2.9			
APHTHALENE	3.2J	12		2.9			
PHÊNANTHRENE	ND	12		2.9			
^{\$} YRENE	ND	12		2.9			
SURROGATE PARAMETERS	RESULTS	SPK_AMT	% RECOVERY	QC LIMIT			
				70 4/0			
2-FLUOROBIPHENYL	455	775.2	58.7				
NITROBENZENE-D5	492	775.2	63.5				
ÊÊPHENYL-D14	706	775.2	91.1	40-150			

QC SUMMARIES

-

- and the

一般を見て

and the second

and a straight of the

Client : URS			llected: NA					
Project : DHCCP		Date Re	eceived: 08/15/13					
Batch No. : 13H125 Date Extracted: 08/15/13								
Sample ID: MBLK1S Date Analyzed:								
Lab Samp ID: SVH029SB		Dilution	Factor: 1					
Lab File ID: RHJ221		Matrix	: SOIL					
Ext Btch ID: SVH029S		% Moistur	re :NA					
Çalib. Ref.: RGJ400			nt ID : T-OE4					
	=======================================							
	RESULTS	RL	MDL					
PARAMETERS	(ug/kg)	(ug/kg)	(ug/kg)					
な <u>ためたいといという</u> でき返す「			(
ACENAPHTHENE	ND	10	2.5					
ACENAPHTHYLENE	ND	10	2.5					
ANTHRACENE	ND	10	2.5					
BENZO(A)ANTHRACENE	ND	10	2.5					
BENZO(A)PYRENE	ND	10	2.5					
BENZO(B)FLUORANTHENE	ND	10	2.5					
BENZO(K) FLUORANTHENE	ND	10	2.5					
BENZO(G, H, I)PERYLENE	ND	10	2.5					
ÉHRYSENE	ND	10	2.5					
DIBENZO(A,H)ANTHRACENE	ND	10	2.5					
FLÜORANTHENE	ND	10	2.5					
FLÜORENE	ND	10	2.5					
INDENO(1,2,3-CD)PYRENE	ND	10	2.5					
NAPHTHALENE	ND	10	2.5					
PHENANTHRENE	ND	10	2.5					
PYRENE	ND	10	2.5					
	110							
SURROGATE PARAMETERS	RESULTS	SPK_AMT	% RECOVERY QC LIMIT					
	421	666.7	63.1 30-130					
Ž营FLUOROBIPHENYL	446	666.7	66.9 40-130					
NITROBENZENE-D5	440 597	666.7	89.6 40-140					
NERPHENYL-D14	297	000.7	89.8 40-140					
(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)								
Ale and Ale								

176			E		UALITY CS/LCD			TA					DW	/R-207
CLIENT: PROJECT: BATCH NO.: METHOD:	URS DHCCP 13H125 METHOD 3550B/8		=======	=====										=
DATE ANALYZED: PREP. BATCH: CALIB. REF:	SOIL 1 MBLK1S SVH029SB RHJ221 08/15/1312:30 08/15/1320:27 SVH029S RGJ400		R 12:30 0 20:47 0 S	VH029 HJ223 8/15/	1312:30 1321:06	J	DATE	STURE: COLLECTED: RECEIVED:	NA NA 08/15/	13				
ACCESSION:		LNK RSLT	SPIKE A		BS RSLT		BS	SPIKE AMT		RSLT	BSD	RPD	QC LIMIT	MAX RPD
PARAMETER Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracer Benzo(a)pyrene Benzo(b)fluoranth Benzo(c)fluoranth Benzo(g,h,i)peryl Chrysene Dibenzo(a,h)anthr Ftuoranthene Ftuorene Indeno(1,2,3-cd)p Naphthalene Pyrene	ne nene Lene racene	(Ug/kg) ND ND ND ND ND ND ND ND ND ND ND ND ND	(ug/kg 13 13 13 13 13 13 13 13 13 13 13 13 13	30 30 30 30 30 30 30 30 30 30 30 30 30 3	(ug/kg) 103 109 109 119 122 112 115 102 117 109 119 89 99 106	50 50 50 50 50 50 50 50 50 50	REC 77 82 75 81 89 92 84 86 77 88 82 83 89 67 75 80	(ug/kg) 1330 1330 1330 1330 1330 1330 1330 133		kg) 1030 1090 995 1110 1170 1160 1120 1130 1030 1160 1080 1080 1080 1070 919 994 1060	% REC 78 82 75 83 88 87 84 85 78 87 81 81 81 88 69 75 79	(%) 1 0 1 2 5 0 1 1 1 1 2 1 3 0 1	(%) 50-130 40-130 50-130 50-130 50-130 50-130 50-130 50-130 50-130 50-130 50-130 50-130 50-130 50-130 50-130	(%) 50 50 50 50 50 50 50 50 50 50 50 50 50
SURROGATE PARAMET		======== PIKE AMT (ug/kg)	BS RSLT		BS REC	SPIKE (ug/		BSD RSLT (ug/kg)	BSD % REC		LIMIT %)			-
2 Fluorobiphenyl Nitrobenzene-d5 Terphenyl-d14		667 667 667	39 39 54	1	59 59 81		667 667 667	415 413 546	62 62 82	2 30 2 40	D- 130 D- 130 D- 140			

LABORATORY REPORT FOR

URS

DHCCP

METHOD 5030B/8015B TOTAL PETROLEUM HYDOCARBONS BY PURGE AND TRAP

SDG#: 13H125

Client : URS

Project : DHCCP

SDG : 13H125

METHOD 5030B/8015B TOTAL PETROLEUM HYDROCARBONS BY PURGE AND TRAP

A total of three (3) soil samples were received on 08/14/13 for TPH-Gasoline analysis, Method 5030B/8015B in accordance with USEPA SW-846, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods.

Holding Time Samples were received out of prescribed holding time and without thermal preservation. The samples were analyzed upon client advice to proceed with the analysis.

Calibration Multi-calibration points were generated to establish initial calibration (ICAL). ICAL was verified using a secondary source (ICV). Continuing calibration (CCV) verifications were carried on a frequency specified by the project. All calibration requirements were within acceptance criteria. Refer to calibration summary forms of ICAL, ICV and CCV for details.

Method Blank Method blank was analyzed at the frequency required by the project. For this SDG, one method blank was analyzed with the samples. Result was compliant to project requirement.

Lab Control Sample A set of LCS/LCD was analyzed with the samples in this SDG. Percent recoveries for GMH004SL/C were all within QC limits.

Matrix QC Sample No matrix QC sample was designated in this SDG.

Surrogate Surrogate was added on QC and field samples. Surrogate recoveries were within project QC limits. Refer to sample result forms for details.

Sample Analysis Samples were analyzed according to prescribed analytical procedures. All project requirements were met otherwise anomalies were discussed within the associated QC parameter.

LAB CHRONICLE TOTAL PETROLEUM HYDROCARBONS BY PURGE AND TRAP

client Project	: URS : DHCCP			***********			* = = = = = = = = = = = = = = = = = = =	SDG NO. : 13H125 Instrument ID : GCT039
Client		Laboratory Dilutic	on %	Analysis	SOIL	raction	Sample	Calibration Prep.

Sample ID	Sample ID Fa	actor	Moist	DateTime	DateTime	Data FN	Data FN	Batch	Notes

MBLK1S	GMH004SB	1	NA	08/21/1301:45	08/21/1301:45	EH19059A	EH19055A	GMH004S	Method Blank
LCS1S	GMH004SL	1	NA	08/20/1323:47	08/20/1323:47	EH19056A	EH19055A	GMH004S	Lab Control Sample (LCS)
LCD1S	GMH004SC	1	NA	08/21/1300:27	08/21/1300:27	EH19057A	EH19055A	GMH004S	LCS Duplicate
1A-2	H125-01	0.99	14.0	08/21/1303:42	08/21/1303:42	EH19062A	EH19055A	GMH004S	Field Sample
2A-2	H125-02	0.99	13.8	08/21/1304:21	08/21/1304:21	EH19063A	EH19055A	GMH004S	Field Sample
3A-2	H125-03	0.97	14.0	08/21/1305:01	08/21/1305:01	EH19064A	EH19055A	GMH004S	Field Sample

FN - Filename % Moist - Percent Moisture

1

SAMPLE RESULTS

. METHOD 5030B/8015B TOTAL PETROLEUM HYDROCARBONS BY PURGE AND TRAP

	===============		
Client : URS		Date Collect	ed: 07/18/13
Project : DHCCP		Date Receiv	red: 08/14/13
Batch No. : 13H125			ed: 08/21/13 03:42
Sample ID: 1A-2		Date Analyz	ed: 08/21/13 03:42
Lab Samp ID: H125-01		Dilution Fact	or: 0.99
Lab File ID: EH19062A		Matrix	: SOIL
Ext Btch ID: GMH004S		% Moisture	: 14.0
Calib. Ref.: EH19055A		Instrument ID	: GCT039
		=======================================	
	RESULTS	RL	MDL
PARAMETERS	(mg/kg)	(mg/kg)	(mg/kg)
GASOLINE	ND	1.2	0.58
SURROGATE PARAMETERS	RESULTS	SPK_AMT %	RECOVERY QC LIMIT
BROMOFLUOROBENZENE	1.94	2.302	84.1 10-160

METHOD 5030B/8015B TOTAL PETROLEUM HYDROCARBONS BY PURGE AND TRAP

		=======================================	
Client : URS		Date Collected	d: 07/18/13
Project : DHCCP		Date Received	d: 08/14/13
Batch No. : 13H125			d: 08/21/13 04:21
Sample ID: 2A-2		Date Analyzed	d: 08/21/13 04:21
Lab Samp ID: H125-02		Dilution Factor	r: 0.99
Lab File ID: EH19063A		Matrix	: SOIL
Ext Btch ID: GMH004S		% Moisture	: 13.8
Calib. Ref.: EH19055A		Instrument ID	: GCT039
		D	MDI
	RESULTS	RL	MDL
PARAMETERS	(mg/kg)	(mg/kg)	(mg/kg)
			 0 E7
GASOLINE	ND	1.1	0.57
			COVERY QC LIMIT
SURROGATE PARAMETERS	RESULTS	SPK_AMT % RE	COVERY QC LIMIT
		2 207	86.2 10-160
BROMOFLUOROBENZENE	1.98	2.297	00.2 TU-100

METHOD 5030B/8015B TOTAL PETROLEUM HYDROCARBONS BY PURGE AND TRAP

		=======================================		
Client : URS		Date Col	lected: 07/18/	/13
Project : DHCCP		Date Re	ceived: 08/14/	/13
Batch No. : 13H125			racted: 08/21,	
Sample ID: 3A-2		Date Ar	halyzed: 08/21/	/13 05:01
Lab Samp ID: H125-03		Dilution	Factor: 0.97	
Lab File ID: EH19064A		Matrix	: SOIL	
Ext Btch ID: GMH004S		% Moistur	e :14.0	
Calib. Ref.: EH19055A		Instrumer	nt ID : GCT039	2

	RESULTS	RL		MDL
PARAMETERS	RESULTS (mg/kg)	RL (mg/kg)		MDL (mg/kg)
PARAMETERS				
PARAMETERS GASOL INE				
	(mg/kg)	(mg/kg)	% RECOVERY	(mg/kg)
GASOLINE	(mg/kg) 	(mg/kg) 1.1	% RECOVERY	(mg/kg) 0.56 QC LIMIT

QC SUMMARIES

METHOD 5030B/8015B TOTAL PETROLEUM HYDROCARBONS BY PURGE AND TRAP

			=
Client : URS		Date Collected: NA	
Project : DHCCP		Date Received: 08/21/13	
Batch No. : 13H125		Date Extracted: 08/21/13 01:4	
Sample ID: MBLK1S		Date Analyzed: 08/21/13 01:4	-5
Lab Samp ID: GMH004SB		Dilution Factor: 1	
Lab File ID: EH19059A		Matrix : SOIL	
Ext Btch ID: GMH004S		% Moisture : NA	
Calib. Ref.: EH19055A		Instrument ID : GCT039	
			:=
	RESULTS	RL MD	L
PARAMETERS	(mg/kg)	(mg/kg) (mg/kg))
			-
GASOLINE	ND	1.0 0.5	0
SURROGATE PARAMETERS	RESULTS	SPK_AMT % RECOVERY QC LIMI	T
BROMOFLUOROBENZENE	1.76	2.000 87.8 70-14	-

CLIENT: PROJECT: BATCH NO.: METHOD: ====================================	URS DHCCP 13H125 METHOD 50308	3/8015B						=========		=======			=
MATRIX: DILUTION FACTOR:		1	1			% MOIS	STURE:	NA					
SAMPLE ID: LAB SAMP ID: LAB FILE ID: DATE EXTRACTED: DATE ANALYZED: PREP. BATCH: CALIB. REF:	MBLK1S GMH004SB EH19059A 08/21/1301:4 08/21/1301:4 GMH004S EH19055A		A E 323:47 0 323:47 0 G	MH004SC H19057A 8/21/1300: 8/21/1300: 8/21/1300 H19055A			COLLECTED: RECEIVED:	NA 08/20/13	3				
ACCESSION:													
PARAMETER		BLNK RSLT (mg/kg)	SPIKE A (mg/kg			BS % REC	SPIKE AMT (mg/kg)	BSD RS (mg/kg		BSD % REC	RPD (%)	QC LIMIT (%)	MAX RPD (%)
Gasoline		ND	25	.0 2	4.4	97	25.0	22	2.9	92	6	60-130	50
SURROGATE PARAME		SPIKE AMT (mg/kg)	BS RSLT (mg/kg)			IKE AMT	BSD RSLT (mg/kg)	BSD % REC		======= LIMIT %)	=======	********	=
Bromofluorobenze	ene	2.00	2.1			2.00	2.06	103	70	- 140			

LABORATORY REPORT FOR

URS

DHCCP

METHOD 3550B/8015B PETROLEUM HYDROCARBONS BY EXTRACTION

SDG#: 13H125

Client : URS

Project : DHCCP

SDG : 13H125

METHOD 3550B/8015B PETROLEUM HYDROCARBONS BY EXTRACTION

A total of three (3) soil samples were received on 08/14/13 for TPH Diesel analysis, Method 3550B/8015B in accordance with USEPA SW-846, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods.

Holding Time Samples were received out of prescribed holding time and without thermal preservation. The samples were analyzed upon client advice to proceed with the analysis.

Calibration Multi-calibration points were generated to establish initial calibration (ICAL). ICAL was verified using a secondary source (ICV). Continuing calibration (CCV) verifications were carried on a frequency specified by the project. All calibration requirements were within acceptance criteria. Refer to calibration summary forms of ICAL, ICV and CCV for details.

Method Blank Method blank was analyzed at the frequency required by the project. For this SDG, one method blank was analyzed with the samples. Result was compliant to project requirement.

Lab Control Sample A set of LCS/LCD was analyzed with the samples in this SDG. Percent recoveries for DSH023SL/C were all within QC limits.

Matrix QC Sample No matrix QC sample was designated in this SDG.

Surrogate Surrogates were added on QC and field samples. Surrogate recoveries were within project QC limits. Refer to sample result forms for details.

Sample Analysis Samples were analyzed according to prescribed analytical procedures. All project requirements were met otherwise anomalies were discussed within the associated QC parameter.

LAB CHRONICLE PETROLEUM HYDROCARBONS BY EXTRACTION

Client : URS Project : DHCCP		=======================================	=======================================			SDG NO. Instrumer	: 13H1 ht ID : GCT1		==
Client Sample ID	Laboratory Sample ID	Dilution Factor	% Moist	SOIL Analysis DateTime	Extraction DateTime	Sample Data FN	Calibratic Data FN	on Prep. Batch	Notes
MBLK1S	DSH023SB	1	NA	08/15/1318:11	08/15/1315:12	LH15005A	LH15003A	DSH023S	Method Blank
LCS1S	DSH023SL	1	NA	08/15/1318:28	08/15/1315:12	LH15006A	LH15003A	DSH023S	Lab Control Sample (LCS)
LCD1S	DSH023SC	1	NA	08/15/1318:45	08/15/1315:12	LH15007A	LH15003A	DSH023S	LCS Duplicate
1A-2	H125-01	1	14.0	08/15/1320:10	08/15/1315:12	LH15012A	LH15003A	DSH023S	Field Sample
2A-2	H125-02	1	13.8	08/15/1320:27	08/15/1315:12	LH15013A	LH15003A	DSH023S	Field Sample
3A-2	H125-03	1	14.0	08/15/1320:44	08/15/1315:12	LH15014A	LH15003A	DSH023S	Field Sample

FN - Filename % Moist - Percent Moisture

189

. Historia

Ň

SAMPLE RESULTS

				==========
Client : URS		Date Col	lected: 07/18	5/13
Project : DHCCP		Date Re	eceived: 08/14	/13
Batch No. : 13H125		Date Ext	racted: 08/15	/13 15:12
Sample ID: 1A-2		Date Ar	nalyzed: 08/15	/13 20:10
Lab Samp ID: H125-01		Dilution	Factor: 1	
Lab File ID: LH15012A		Matrix	: SOIL	
Ext Btch ID: DSH023S		% Moîstur	re : 14.0	
Calib. Ref.: LH15003A		Instrumer	nt ID : GCT10	15
	RESULTS	RL		MDL
PARAMETERS	(mg/kg)	(mg/kg)		(mg/kg)
DIESEL	ND	12		5.8
SURROGATE PARAMETERS	RESULTS	SPK_AMT	% RECOVERY	QC LIMIT
BROMOBENZENE	96.3	116.3	82.9	50-130
HEXACOSANE	32.6	29.07	112	40-160
RL : Reporting Limit				

RL :	Reporting	Limit
Parameter	H - C	Range
Diesel	C10-	-C24

Client : URS			lected: 07/18	
Project : DHCCP			ceived: 08/14	-
Batch No. : 13H125			racted: 08/15 alyzed: 08/15	
Sample ID: 2A-2				20:27
Lab Samp ID: H125-02			Factor: 1	
Lab File ID: LH15013A			: SOIL	
Ext Btch ID: DSH023S			e : 13.8	-
Calib. Ref.: LH15003A		Instrumer	nt ID : GCT10	15
PARAMETERS	RESULTS (mg/kg)	RL (mg/kg)		MDL (mg/kg)
PARAMETERS				(mg/kg)
	(mg/kg)	(mg/kg)	% RECOVERY	_
DIESEL	(mg/kg) ND	(mg/kg) 12	% RECOVERY 	(mg/kg) 5.8 QC LIMIT

RL :	Reporting	Limit
Parameter	H-C	Range
Diesel	C10-	-C24

DWR-207

			/13 20:44
	Instrumer	nt ID : GCT10	15
RESULTS	RL		MDL
(mg/kg)	(mg/kg)		(mg/kg)
(mg/kg) ND	(mg/kg) 12		
		% RECOVERY	5.8
ND	12	% RECOVERY	5.8 QC LIMIT
	RESULTS	Date Re Date Ext Date Ar Dilution Matrix % Moistur Instrumer	Dilution Factor: 1 Matrix : SOIL % Moisture : 14.0 Instrument ID : GCT10

RL :	Reporting	Limit
Parameter	H - C	Range
Diesel	C10-	-C24

QC SUMMARIES

Client : URS			lected: NA	
Project : DHCCP			eceived: 08/15	
Batch No. : 13H125		-	racted: 08/15	
Sample ID: MBLK1S		Date Ar	nalyzed: 08/15	/13 18:11
Lab Samp ID: DSH023SB		Dilution	Factor: 1	
Lab File ID: LH15005A		Matrix	: SOIL	
Ext Btch ID: DSH023S		% Moistur	re :NA	
Calib. Ref.: LH15003A		Instrumer	nt ID : GCT1C	15
			a pape and then and the side side side and bot and the	
PARAMETERS	RESULTS (mg/kg)	RL (mg/kg)		MDL (mg/kg)
PARAMETERS DIESEL				
	(mg/kg)	(mg/kg)	% RECOVERY	(mg/kg) 5.0
DIESEL	(mg/kg) ND	(mg/kg) 10	% RECOVERY 	(mg/kg) 5.0 QC LIMIT

RL :	Reporting	Limit
Parameter	H-C	Range
Diesel	C10-	·C24

Bromobenzene Hexacosane		100 25.0	92.2 27.2	92 109	100 25.0	91.9 27.1	92 109	50-130 60-130			
SURROGATE PARAME		SPIKE AMT (mg/kg)	BS RSLT (mg/kg)	BS % REC	SPIKE AMT (mg/kg)	BSD RSLT (mg/kg)	BSD % REC	QC LIMIT (%)	=======		=
Diesel		ND	500	41	2 82	500	4	20 84	2	60-130	50
PARAMETER		BLNK RSLT (mg/kg)	SPIKE AMT (mg/kg)	BS RSLT (mg/kg)		SPIKE AMT (mg/kg)	BSD RS (mg/kg		RPD (%)	QC LIMIT (%)	MAX RPD (%)
ACCESSION:											
SAMPLE ID: LAB SAMP ID: LAB FILE ID: DATE EXTRACTED: DATE ANALYZED: PREP. BATCH: CALIB. REF:	MBLK1S DSH023SB LH15005A 08/15/1315:1 08/15/1318:1 DSH023S LH15003A		LH1 515:12 08/ 518:28 08/ DSH	023sC 5007A 15/1315:12 15/1318:45 023s 5003A		COLLECTED: RECEIVED:	NA 08/15/13	5			
MATRIX: DILUTION FACTOR:	SOIL 1	1	1		% M OI	STURE:	NA				
CLIENT: PROJECT: BATCH NO.: METHOD:	URS DHCCP 13H125 METHOD 3550B	/8015B	*********								=

LABORATORY REPORT FOR

URS

DHCCP

METHOD 3550B/8081A PESTICIDES

SDG#: 13H125

CASE NARRATIVE

Client : URS

Project : DHCCP

SDG : 13H125

METHOD 3550B/8081A PESTICIDES

A total of three (3) soil samples were received on 08/14/13 for Pesticides Organochlorine analysis, Method 3550B/8081A in accordance with USEPA SW-846, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods.

Holding Time Samples were received out of prescribed holding time and without thermal preservation. The samples were analyzed upon client advice to proceed with the analysis.

Instrument Performance and Calibration Instrument performance was checked prior to calibration. DDT and Endrin breakdown were within specification. Multi-calibration points were generated to establish initial calibration (ICAL). ICAL was verified using secondary source (ICV). Continuing calibration (CCV) was carried on at a frequency required by the project. All project calibration requirements were satisfied. Refer to calibration summary forms of ICAL, ICV and CCV for details.

Method Blank Method blank was analyzed at the frequency required by the project. For this SDG, one method blank was analyzed with the samples. Result was compliant to project requirement.

Lab Control Sample A set of LCS/LCD was analyzed with the samples in this SDG. Percent recoveries for CPH019SL/C were all within QC limits.

Matrix QC Sample No matrix QC sample was designated in this SDG.

Surrogate Surrogates were added on QC and field samples. Surrogate recoveries were within project QC limits. Refer to sample result forms for details.

Sample Analysis

Samples were analyzed according to prescribed analytical procedures. All project requirements were met otherwise anomalies were discussed within the associated QC parameter. Positive sample results were confirmed by a second column. Relative percentage difference (RPD) between the two results was evaluated. If RPD is less than 40% and peaks are well defined the higher result is reported. Where RPD is greater than 40% the chromatogram is checked for anomalies and results are selected based on processed knowledge. If there is no evidence of any chromatographic ambiguity, the higher result is reported.

LAB CHRONICLE PESTICIDES

Client : URS Project : DHCCP							=======================================	SDG NO. Instrum	: 13H125 ent ID : E8 ====================================
				SO	IL				
Client	Laboratory	Dilution	%	Analysis	Extraction	Sample	Calibratio	n Prep.	
Sample ID	Sample ID	Factor	Moist	DateTime	DateTime	Data FN	Data FN	Batch	Notes
MBLK1S	CPH019SB	1	NA	08/17/1303:10	08/16/1315:47	MH16028A	MH16024A	CPH019S	Method Blank
LCS1S	CPH019SL	1	NA	08/17/1303:30	08/16/1315:47	MH16029A	MH16024A	CPH019S	Lab Control Sample (LCS
LCD1S	CPH019SC	1	NA	08/17/1303:50	08/16/1315:47	MH16030A	MH16024A	CPH019S	LCS Duplicate
1A-2	H125-01	1	14.0	08/17/1304:11	08/16/1315:47	MH16031A	MH16024A	CPH019S	Field Sample
2A-2	H125-02	1	13.8	08/17/1304:31	08/16/1315:47	MH16032A	MH16024A	CPH019S	Field Sample
3A-2	H125-03	1	14.0	08/17/1304:51	08/16/1315:47	MH16033A	MH16024A	CPH019S	Field Sample

FN - Filename % Moist - Percent Moisture

199

SAMPLE RESULTS

•

METHOD 3550B/8081A PESTICIDES

Client : URS		Date Col	lected: 07/18/13	
Project : DHCCP		Date Re	eceived: 08/14/13	
Batch No. : 13H125		Date Ext	racted: 08/16/13 1	5:47
Sample ID: 1A-2		Date Ar	nalyzed: 08/17/13 C	04:11
Lab Samp ID: H125-01		Dilution	Factor: 1	
Lab File ID: MH16031A		Matrix	: SOIL	
Ext Btch ID: CPH019S		% Moistur	re : 14.0	
Calib. Ref.: MH16024A			nt ID : GCE8	
	RESULTS	RL	MDL	
PARAMETERS	(ug/kg)	(ug/kg)	(ug/kg)	
ALPHA-BHC	(ND) ND	2.3	0.47 0.47	
GAMMA-BHC (LINDANE)	(ND) ND	2.3	0.47 0.47	
BETA-BHC	(ND) ND	2.3	0.47 0.47	
HEPTACHLOR	(ND) ND	2.3	0.47 0.47	
DELTA-BHC	(ND) ND	2.3	0.47 0.47	
ALDRIN	(ND) 0.88J	2.3	0.47 0.47	
HEPTACHLOR EPOXIDE	(ND) ND	2.3	0.47 0.47	
ĠAMMA-CHLORDANE	(ND) ND	2.3	0.47 0.47	
ÅLPHA-CHLORDANE	(ND) ND	2.3	0.47 0.47	
ENDOSUL FAN I	(ND) ND	2.3	0.47 0.47	
4,4'-DDE	(ND) ND	2.3	0.47 0.47	
ÐIËLDRIN	(ND) ND	2.3	0.47 0.47	
ÉNDRIN	(ND) ND	2.3	0.47 0.47	
4,4'-DDD	(ND) ND	2.3	0.47 0.47	
ÉNDOSULFAN II	(ND) ND	2.3	0.47 0.47	
4,4'-DDT	(ND) ND	2.3	0.47 0.47	
ÉNDRIN ALDEHYDE	(ND) ND	2.3	0.47 0.47	
ENDOSULFAN SULFATE	(ND) ND	2.3	0.47 0.47	
ENDRIN KETONE	(ND) ND	2.3	0.47 0.47	
METHOXYCHLOR	(ND) 6.4J	12	4.7 4.7	
TÓXAPHENE ALP:	(ND) ND	58	12 12	
SURROGATE PARAMETERS	RESULTS	SPK_AMT	% RECOVERY	QC LIMI
				50-14
TETRACHLORO-M-XYLENE	(14.67) 14.65	15.50	(94.6) 94.5	
ĎEĆACHLOROBIPHENYL A ©	(14.56) 14.11	15.50	(94.0) 91.0	10-16

RL : Reporting limit

Left of \mid is related to first column ; Right of \mid related to second column final result indicated by ()

공 공간 4	FLSTICIDLS			
an in the second se				
Client : URS			lected: 07/18/13	
Brøject : DHCCP			eceived: 08/14/13	
Batch No. : 13H125			racted: 08/16/13 1	5:47
Sample ID: 2A-2			nalyzed: 08/17/13 C	
Lab Samp ID: H125-02			Factor: 1	
Lab File ID: MH16032A		Matrix	: SOIL	
Ext Btch ID: CPH019S		% Moistur		
Calib. Ref.: MH16024A			t ID : GCE8	
				====
	RESULTS	RL	MDL	
PARAMETERS	(ug/kg)	(ug/kg)	(ug/kg)	
ALPHA-BHC	(ND) ND	2.3	0.46 0.46	
GAMMA-BHC (LINDANE)	(ND) ND	2.3	0.46 0.46	
BETA-BHC	(ND) ND	2.3	0.46 0.46	
HEPTACHLOR	(ND) ND	2.3	0.46 0.46	
DELTA-BHC	(ND) ND	2.3	0.46 0.46	
ALDRIN	(ND) 1.0J	2.3	0.46 0.46	
HEPTACHLOR EPOXIDE	(ND) ND	2.3	0.46 0.46	
GAMMA-CHLORDANE	(ND) ND	2.3	0.46 0.46	
ALPHA-CHLORDANE	(ND) ND	2.3	0.46 0.46	
ENDOSULFAN I	(ND) ND	2.3	0.46 0.46	
2,4'-DDE	(ND) ND	2.3	0.46 0.46	
Ď PÊLDRIN	(ND) ND	2.3	0.46 0.46	
ENDRIN	(ND) ND	2.3	0.46 0.46	
4,4'-DDD	(ND) ND	2.3	0.46 0.46	
ÈNDOSULFAN II	(ND) ND	2.3	0.46 0.46	
4,4'-DDT	(ND) ND	2.3	0.46 0.46	
ÉNÓRIN ALÐEHYDE	(ND) ND	2.3	0.46 0.46	
ENDOSULFAN SULFATE	(ND) ND	2.3	0.46 0.46	
ENDRIN KETONE	(ND) ND	2.3	0.46 0.46	
ME#HOXYCHLOR	(ND)[5.4J	12	4.6 4.6	
TOXAPHENE { Γ	(ND) ND	58	12 12	
SURROGATE PARAMETERS	RESULTS	SPK_AMT	% RECOVERY	QC LIMI
8 - 4 				
TETRACHLORO-M-XYLENE	(15.10) 15.03	15.46	(97.6) 97.2	50-14
DECACHLOROBIPHENYL ALDF	(14.92)[14.17	15.46	(96.5) 91.6	10-16

REP: Reporting limit

があると

日日日 書 名

 $\frac{d_{12}}{d_{12}} = \frac{d_{12}}{d_{12}}$

9 B 2 J

tert of | is related to first column ; Right of | related to second column

final result indicated by ()

Cljent : URS			lected: 07/18/13	
Project : DHCCP		Date Re	ceived: 08/14/13	
Batch No. : 13H125		Date Ext	racted: 08/16/13 1	5:47
Sample ID: 3A-2		Date Ar	alyzed: 08/17/13 0)4 : 51
Lab Samp ID: H125-03		Dilution	Factor: 1	
Lab File ID: MH16033A		Matrîx	: SOIL	
Ext Btch ID: CPH019S		% Moistur	e : 14.0	
Calib. Ref.: MH16024A			nt ID : GCE8	
		=======================================	=======================================	
	RESULTS	RL	MDL	
PARAMETERS	(ug/kg)	(ug/kg)	(ug/kg)	
ALPHA-BHC	(ND) ND	2.3	0.47 0.47	
GAMMA-BHC (LINDANE)	(ND) ND	2.3	0.47 0.47	
BETA-BHC	(ND) ND	2.3	0.47 0.47	
HEPTACHLOR	(ND) ND	2.3	0.47 0.47	
DELTA-BHC	(ND) ND	2.3	0.47 0.47	
ALDRIN	(ND) 0.81J	2.3	0.47 0.47	
HEPTACHLOR EPOXIDE	(ND) ND	2.3	0.47 0.47	
GAMMA-CHLORDANE	(ND) ND	2.3	0.47 0.47	
ALPHA-CHLORDANE	(ND) ND	2.3	0.47 0.47	
ENDÓSULFAN I	(ND) ND	2.3	0.47 0.47	
4,4'-DDE	(ND) ND	2.3	0.47 0.47	
DIELDRIN	(ND) ND	2.3	0.47 0.47	
ENDRIN	(ND) ND	2.3	0.47 0.47	
4,4'-DDD	(ND) ND	2.3	0.47 0.47	
ENDOSULFAN II	(ND) ND	2.3	0.47 0.47	
44-4-DDT	(ND) ND	2.3	0.47 0.47	
신 김 양성	(ND) ND	2.3	0.47 0.47	
ENDRIN ALDEHYDE	(ND) ND	2.3	0.47 0.47	
ENDOSULFAN SULFATE		2.3	0.47 0.47	
ENDRIN KETONE		12	4.7 4.7	
	(ND) 6.3J	58	12 12	
Î OXAPHENE	(ND) ND	00	12/12	
SURROGATE PARAMETERS	RESULTS	SPK_AMT	% RECOVERY	QC LIMI
TETRACHLORO-M-XYLENE	(14.94) 14.33	15.50	(96.4) 92.4	50-14
DECACHLOROBIPHENYL	(15.03) 14.51	15.50	(97.0) 93.6	10-16

RL : Reporting limit

and a start of the second start of the second

í.

ę

(3) All set of the state of the set of the state of th

Left of \mid is related to first column ; Right of \mid related to second column final result indicated by ()

QC SUMMARIES

1 M

6

£ 13

豪

ŝ. 1 Ê.

And the second

预行 $\underline{A} \in \{1\}$ SER 38.47 1 er 100 Gi en

 $\tilde{f}_{1}=\tilde{\xi}_{1}$

Client : URS			llected: NA	
Project : DHCCP			eceived: 08/16/13	45 47
Batch No. : 13H125			tracted: 08/16/13	
Sample ID: MBLK1S			nalyzed: 08/17/13	03:10
Lab Samp ID: CPH019SB			Factor: 1	
Lab File ID: MH16028A		Matrix	: SOIL	
Ext Btch ID: CPH019S		% Moistu		
Calib. Ref.: MH16024A			nt ID : GCE8 ====================================	
	RESULTS	RL	MDL	
PARAMETERS	(ug/kg)	(ug/kg)	(ug/kg)	
AUPHA-BHC	(ND) ND	2.0 2.0	0.40 0.40 0.40 0.40	
SAMMA-BHC (LINDANE)	(ND) ND	2.0	0.40 0.40	
BETA-BHC	(ND) ND	2.0	0.40 0.40	
	(ND) ND	2.0	•	
DELTA-BHC	(ND) ND	2.0	0.40 0.40 0.40 0.40	
ALDRIN	(ND) ND	2.0	0.40 0.40	
REPTACHLOR EPOXIDE	(ND) ND	2.0	0.40 0.40	
	(ND) ND	2.0	1	
ALPHA-CHLORDANE	(ND) ND	2.0	0.40 0.40 0.40 0.40	
ENDOSULFAN I	(ND) ND	2.0	0.40 0.40	
4,4'-DDE	(ND) ND	2.0	0.40 0.40	
	(ND) ND	2.0	0.40 0.40	
ENĎRIN (Ži dod	(ND) ND	2.0	0.40 0.40	
4,4'-DDD ENDOSULFAN II	(ND) ND (ND) ND	2.0	0.40 0.40	
,4'-DDT	(ND) ND	2.0	0.40 0.40	
ENDRIN ALDEHYDE	(ND) ND	2.0	0.40 0.40	
	(ND) ND	2.0	0.40 0.40	
ENDOSULFAN SULFATE ENDRIN KETONE	(ND) ND	2.0	0.40 0.40	
TETHOXYCHLOR	(ND) ND	10	4.0 4.0	
TOXAPHENE	(ND) ND	50	10 10	
URAPHENE		00	10110	
SURROGATE PARAMETERS	RESULTS	SPK_AMT	% RECOVERY	QC LIM
TETRACHLORO-M-XYLENE	12.75 (12	77) 13.33	95.7 (95.8)	60-13
DE CACHLOROBIPHENYL	(13.14) 12.		(98.5) 96.7	60-14

RL : Reporting limit

Eet of | is related to first column ; Right of | related to second column

Einal result indicated by ()

EMAX QUALITY CONTROL DATA LCS/LCD ANALYSIS

e en entre partie de la constance en l'arreste de la partie de la constance de la constance de la constance de Ante market de la constance en ante en arteste de de la constance en al constance de la constance de la constanc

CLIENT: PROJECT: BATCH NO.: METHOD:	URS DHCCP 13H125 SW3550B/8081A										
MATRIX: DILUTION FACTOR:	SOIL : 1	1	1	% MOISTURE:	NA						
SAMPLE ID: LAB SAMP ID: LAB FILE ID: DATE EXTRACTED: DATE ANALYZED: PREP. BATCH: CALIB. REF:	MBLK1S CPH019SB MH16028A 08/16/1315:47 08/17/1303:10 CPH019S MH16024A				: NA 08/16/13						
ACCESSION:											
PARAMETER		BLNK RSLT (ug/kg)	SPIKE AMT (ug/kg)	BS RSLT (ug/kg)	BS % REC	SPIKE AMT (ug/kg)	BSD RSLT (ug/kg)	BSD % REC	RPD (%)	QC LIMIT (%)	MAX RPD (%)
alpha-BHC	-	(ND) ND	6.67	6.53 (6.75)	98 (101)	6.67	6.66 (6.89)	100 (103)	2 (2)	50-140	50
gamma-BHC (Linda beta-BHC	ane)	(ND) ND	6.67 6.67	6.54 (6.60) (7.79) 7.30	98 (99)	6.67	6.68 (6.74)	100 (101)	2 (2)	60-130	50
Heptachlor		(ND) ND (ND) ND	6.67	(6.77) 6.66	(117) 109 (101) 100	6.67 6.67	(7.90) 7.64 (6.81) 6.77	(118) 115 (102) 101	(1) 5 (1) 2	50-1 3 0 50-140	50 50
delta-BHC		(ND) ND	6.67	7.44 (7.53)	112 (113)	6.67	7.67 (7.70)	115 (115)	3 (2)	50-140	50
Aldrin		(ND) ND	6.67	6.39 (6.49)	96 (97)	6.67	6.51 (6.55)	98 (98)	2 (1)	60-140	50
Heptachlor Epoxi	ide	(ND) ND	6.67	6.72 (6.85)	101 (103)	6.67	6.96 (7.01)	104 (105)	4 (2)	70-130	50
gamma-Chlordane		(ND) ND	6.67	6.76 (7.08)	101 (106)	6.67	6.94 (7.22)	104 (108)	3 (2)	70-130	50
alpha-Chlordane		(ND) ND	6.67	6.70 (6.83)	100 (102)	6.67	6.86 (6.96)	103 (104)	2 (2)	70-130	50
Endosulfan I		(ND) ND	6.67	6.43 (6.88)	96 (103)	6.67	6.59 (7.02)	99 (105)	2 (2)	60-130	50
4,4'-DDE		(ND) ND	6.67	6.52 (7.05)	98 (106)	6.67	6.70 (7.19)	100 (108)	3 (2)	70-140	50
Dieldrin Endrin		(ND) ND (ND) ND	6.67 6.67	6.76 (7.33) 6.87 (7.33)	101 (110) 103 (110)	6.67	6.95 (7.53)	104 (113)	3 (3)	70-140	50 50
4,4'-DDD		(ND) ND	6.67	6.80 (7.64)	102 (115)	6.67 6.67	7.06 (7.48) 7.00 (7.83)	106 (112) 105 (117)	3 (2) 3 (2)	70-150 70-140	50 50
Endosulfan II		(ND) ND	6.67	6.79 (7.16)	102 (107)	6.67	7.03 (7.23)	105 (108)	3 (1)	70-140	50
4,4'-DDT		(ND) ND	6.67	(7.74) 7.49	(116) 112	6.67	(7.97) 7.72	(119) 116	(3) 3	70-150	50
Endrin aldehyde		(ND) ND	6.67	7.11 (7.58)	107 (114)	6.67	7.25 (7.75)	109 (116)	2 (2)	70-130	50
Endosulfan Sulfa	ate	(ND) ND	6.67	7.17 (7.42)	107 (111)	6.67	7.28 (7.73)	109 (116)	2 (4)	70-150	50
Endrin Ketone		(ND) ND	6.67	6.83 (7.29)	102 (109)	6.67	7.03 (7.51)	105 (113)	3 (3)	70-140	50
Methoxychlor		(ND) ND	66.7	71.2 (76.2)	107(114)	66.7	73.1 (78.0)	110 (117)	3 (2)	70-130	50
										art vizi 921 922 922 925 922	
SURROGATE PARAME	ETER	PIKE AMT (ug/kg)	BS RSLT (ug/kg)	BS SPIKE % REC (ug/l		D RSLT g/kg)	BSD QCL % REC (%)			
Tetrachloro-m-xy Decachlorobipher	ylene						(90.1) 88.8 60-1 (94.5) 90.5 60-1	30			

206

DWR-207

LABORATORY REPORT FOR

URS

DHCCP

METHOD 3550B/8082 PCBS

SDG#: 13H125

CASE NARRATIVE

Client : URS

Project : DHCCP

SDG : 13H125

METHOD 3550B/8082 PCBS

A total of three (3) soil samples were received on 08/14/13 for Polychlorinated Biphenyls (PCBs) analysis, Method 3550B/8082 in accordance with USEPA SW-846, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods.

Holding Time Samples were received out of prescribed holding time and without thermal preservation. The samples were analyzed upon client advice to proceed with the analysis.

Calibration Multi-calibration points were generated to establish initial calibration (ICAL). ICAL was verified using a secondary source (ICV). Continuing calibration (CCV) verifications were carried on a frequency specified by the project. All calibration requirements were within acceptance criteria. Refer to calibration summary forms of ICAL, ICV and CCV for details.

Method Blank Method blank was analyzed at the frequency required by the project. For this SDG, one method blank was analyzed with the samples. Result was compliant to project requirement.

Lab Control Sample A set of LCS/LCD was analyzed with the samples in this SDG. Percent recoveries for 60H019SL/C were all within QC limits.

Matrix QC Sample No matrix QC sample was designated in this SDG.

Surrogate Surrogates were added on QC and field samples. Surrogate recoveries were within project QC limits. Refer to sample result forms for details.

Sample Analysis Samples were analyzed according to prescribed analytical procedures. All project requirements were met otherwise anomalies were discussed within the associated QC parameter. Sample extracts subjected to appropriate cleanup technique to reduce matrix interference are recorded in extraction log. LAB CHRONICLE PCBs

Client Project	: URS : DHCCP		SDG NO. Instrument ID	: 13H125 : 08
=======				
		SOIL		

Client	,	ilution	%	Analysis	Extraction	Sample	Calibration	п Ргер.	
Sample ID	Sample ID	Factor	Moist	DateTime	DateTime	Data FN	Data FN	Batch	Notes
MBLK1S	60H019SB	1	NA	08/19/1311:32	08/16/1315:47	SH19007A	SH19003A	CPH019S	Method Blank
LCS1S	60H019SL	1	NA	08/19/1311:50	08/16/1315:47	SH19008A	SH19003A	CPH019S	Lab Control Sample (LCS)
LCD1S	60H019SC	1	NA	08/19/1312:08	08/16/1315:47	SH19009A	SH19003A	CPH019S	LCS Duplicate
1A-2	H125-01	1	14.0	08/19/1312:27	08/16/1315:47	SH19010A	SH19003A	CPH019S	Field Sample
2A-2	H125-02	1	13.8	08/19/1312:45	08/16/1315:47	SH19011A	SH19003A	CPH019S	Field Sample
3a-2	H125-03	1	14.0	08/19/1313:03	08/16/1315:47	SH19012A	SH19003A	CPH019S	Field Sample

FN - Filename % Moist - Percent Moisture

209

SAMPLE RESULTS

DWR-207

THOD	3000	JR/808
ŀ	PCBs	

Client : URS		Date Col	lected: 07/18/13			
Project : DHCCP		Date Re	ceived: 08/14/13			
Batch No. : 13H125		Date Ext	racted: 08/16/13 1	5:47		
Sample ID: 1A-2		Date An	alyzed: 08/19/13 1	2:27		
Lab Samp ID: H125-01		Dilution Factor: 1				
Lab File ID: SH19010A		Matrix	: SOIL			
Ext Btch ID: CPH019S		% Moistur	e :14.0			
Calib. Ref.: SH19003A		Instrument ID : 08				
				====		
:	RESULTS	RL	MDL			
PARAMETERS	(ug/kg)	(ug/kg)	(ug/kg)			
PCB-1016	(ND) ND	58	19 19			
PCB-1221	(ND) ND	58	19 19			
PCB-1232	(ND) ND	58	19 19			
PCB-1242	(ND) ND	58	19 19			
PCB-1248	(ND) ND	58	19 19			
PCB-1254	(ND) ND	58	19 19			
PCB-1260	(ND) ND	58	19 19			
SURROGATE PARAMETERS	RESULTS	SPK_AMT	% RECOVERY	QC LIMIT		
150						
TETRACHLORO-M-XYLENE	14.99 (15.14)		96.7 (97.7)			
DÊCACHLOROBIPHENYL	(16.77) 14.97	15.50	(108) 96.6	50-150		

```
3
```

 $\hat{\gamma}_{k}$

Léft of | is related to first column ; Right of | related to second column

Final result indicated by ()

* Out side of QC Limit

and the second second PCE と思いていた。 ្តែ · [2] 8 8 2 40 - 2 - 2 4

ġ

Ŷ	PCBs	
================		=======================================

Client : URS		Date Col	lected: 07/18/13	
Project : DHCCP		Date Re	ceived: 08/14/13	
Batch No. : 13H125		Date Ext	racted: 08/16/13 1	5:47
Sample ID: 2A-2		Date An	alyzed: 08/19/13 1	2:45
Lab Samp ID: H125-02		Dilution	•	
Lab File ID: SH19011A		Matrix	: SOIL	
Ext Btch ID: CPH019S			e : 13.8	
Calib. Ref.: SH19003A			t ID : 08	
		=======================================		a mana ana ang ang ang ang ang ang ang ang
	RESULTS	RL	MDL	
PARAMETERS	(ug/kg)	(ug/kg)	(ug/kg)	
- -				
PCB-1016	(ND) ND	58	19 19	
PCB-1221	(ND) ND	58	19 19	
PCB-1232	(ND) ND	58	19 19	
PCB-1242	(ND) ND	58	19 19	
PCB-1248	(ND) ND	58	19 19	
PCB-1254	(ND) ND	58	19 19	
PCB-1260	(ND) ND	58	19 19	
	·		·	
SURROGATE PARAMETERS	RESULTS		% RECOVERY	QC LIMIT
2: 2				
TÊTRACHLORO-M-XYLENE	16.04 (16.17)			
DECACHLOROBIPHENYL	(17.48) 15.57	15.46	(113) 101	50-150

```
J, a,
Lat
```

3.000

Eft of | is related to first column ; Right of | related to second column

Final result indicated by ()

* Out side of QC Limit ž

1.1.2 47.5

22 e ê

3 5. R.F $\left[\cdot \right]_{i=1}^{k}$

PCBs

				= = = =			
Client : URS		Date Col	lected: 07/18/13				
Project : DHCCP		Date Received: 08/14/13					
Batch No. : 13H125		Date Ext	racted: 08/16/13 1	5:47			
Sămple ID: 3A-2		Date Analyzed: 08/19/13 13:03					
Lab Samp ID: H125-03		Dilution Factor: 1					
Lab File ID: SH19012A		Matrix : SOIL					
Ext Btch ID: CPH019S		% Moistur	e :14.0				
Calib. Ref.: SH19003A		Instrument ID : 08					
	RESULTS	RL	MDL				
	(ug/kg)	(ug/kg)					
PARAMETERS			(ug/kg)				
PCB-1016		58	19 19				
PCB~1010		58	19 19				
1. Le	(ND) ND	58					
PCB-1232	(ND) ND		19 19				
P¢B-1242	(ND) ND	58	19 19				
PCB-1248		58					
PCB-1254	(ND) ND	58					
PCB-1260	(ND) ND	58	19 19				
SURROGATE PARAMETERS	RESULTS	SPK_AMT	% RECOVERY	QC LIMIT			
TÉTRACHLORO-M-XYLENE	15.07 (15.26)	15.50	97.2 (98.5)	50-130			
DÊCACHLOROBIPHENYL	(16.73) 15.49	15.50	;	50-150			

```
ŝ
```

Left of | is related to first column ; Right of | related to second column

Final result indicated by ()

* Out side of QC Limit

3,

QC SUMMARIES

PCBs

Client : URS		Date Col	lected: NA				
Project : DHCCP		Date Received: 08/16/13 Date Extracted: 08/16/13 15:47 Date Analyzed: 08/19/13 11:32 Dilution Factor: 1 Matrix : SOIL					
Batch No. : 13H125							
Sample ID: MBLK1S							
Lab Samp ID: 60H019SB							
Lab File ID: SH19007A							
Ext Btch ID: CPH019S		% Moistur	e :NA				
Calib. Ref.: SH19003A		Instrument ID : 08					
			=============================				
<u>.</u>	RESULTS	RL	MDL				
PARAMETERS	(ug/kg)	(ug/kg)	(ug/kg)				
PCB-1016	(ND) ND	50	17 17				
РСВ-1221	(ND) ND	50	17 17				
PCB-1232	(ND) ND	50	17 17				
PCB-1242	(ND) ND	50	17 17				
PCB-1248	(ND) ND	50	17 17				
PCB-1254	(ND) ND	50	17 17				
PČB-1260 ਪ੍ਰੋਛੰਡ	(ND) ND	50	17 17				
SURROGATE PARAMETERS	RESULTS	SPK_AMT	% RECOVERY	QC LIMI			
TETRACHLORO-M-XYLENE	12.67 (13.41)	13.33	95.0 (101)	60-130			
DECACHLOROB I PHENYL	(14.29) 13.60	13.33	(107) 102	70-140			

日本

ri egitu

「「「「「」」」の「「」」」の「「」」」の「「」」」の「「」」」の「「」」の「」」の「」」の「」」の「」」の「」」の「」」の「」」の「」」の「」」の「」」の「」」の「」」の「」」の「」」の「」」の「」」の「

· .2·

Left of | is related to first column ; Right of | related to second column

Final result indicated by ()

* Out side of QC Limit

DWR-207

EMAX QUALITY CONTROL DATA LCS/LCD ANALYSIS

CLIENT: PROJECT: BATCH NO.: METHOD: ======================	URS DHCCP 13H125 METHOD 3550B/8	3082									
MATRIX: DILUTION FACTOR:		1	1	% MOISTURE:	NA						
SAMPLE ID: LAB SAMP ID: LAB FILE ID: DATE EXTRACTED: DATE ANALYZED: PREP. BATCH: CALIB. REF:	MBLK1S 60H019SB SH19007A 08/16/1315:47 08/19/1311:32 CPH019S SH19003A	60H019SL SH19008A 08/16/1315:47 08/19/1311:50 CPH019S SH19003A	60H019SC SH19009A 08/16/1315:47 08/19/1312:08 CPH019S SH19003A								
ACCESSION:											
PARAMETER		BLNK RSLT (ug/kg)	SPIKE AMT (ug/kg)	BS RSLT (ug/kg)	BS % REC	SPIKE AMT (ug/kg)	BSD RSLT (ug/kg)	BSD % REC	RPD (%)	QC LIMIT (%)	MAX RPD (%)
PCB-1016 PCB-1260		(ND) ND (ND) ND	167 167	151 (170) 153 (156)	91 (102) 92 (94)	167 167	149 (170) 149 (153)	89 (102) 89 (92)	1 (0) 3 (2)	70-140 70-140	50 50
SURROGATE PARAME			ES RSLT (ug/kg)	BS SPIKI % REC (ug,		SD RSLT Jg/kg)		C LIMIT (%)			
Tetrachloro-m-xy Decachlorobipher			.99 (12.09) 73) 12.66		13.33 12.5 13.33 (15.1)	52 (12.61) 0) 12.93		50-130 70-140			

216

LABORATORY REPORT FOR

URS

DHCCP

METHOD 8151A HERBICIDES

SDG#: 13H125

Client : URS

Project : DHCCP

SDG : 13H125

METHOD 8151A HERBICIDES

A total of three (3) soil samples were received on 08/14/13 for Chlorinated Herbicides analysis, Method 8151A in accordance with USEPA SW-846, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods.

Holding Time Samples were received out of prescribed holding time and without thermal preservation. The samples were analyzed upon client advice to proceed with the analysis.

Calibration Multi-calibration points were generated to establish initial calibration (ICAL). ICAL was verified using a secondary source (ICV). Continuing calibration (CCV) verifications were carried on a frequency specified by the project. All calibration requirements were within acceptance criteria. Refer to calibration summary forms of ICAL, ICV and CCV for details.

Method Blank Method blank was analyzed at the frequency required by the project. For this SDG, one method blank was analyzed with the samples. Result was compliant to project requirement.

Lab Control Sample A set of LCS/LCD was analyzed with the samples in this SDG. Percent recoveries for HEH006SL/C were all within QC limits.

Matrix QC Sample No matrix QC sample was designated in this SDG.

Surrogate Surrogate was added on QC and field samples. Surrogate recoveries were within project QC limits. Refer to sample result forms for details.

Sample Analysis Samples were analyzed according to prescribed analytical procedures. All project requirements were met otherwise anomalies were discussed within the associated QC parameter. LAB CHRONICLE HERBICIDES

Client : URS Project : DHCCP ===================================		============	=======================================					SDG NO. Instrum	: 13H125 ent ID : 16
				SO	í L				
Client	Laboratory	Dilution	%	Analysis	Extraction	Sample	Calibration	Prep.	
Sample ID	Sample ID	Factor	Moist	DateTime	DateTime	Data FN	Data FN	Batch	Notes
MBLK1S	HEHOO6SB	1	NA	08/19/1311:37	08/16/1315:48	WH19007A	WH19002A	HEH006S	Method Blank
LCS1S	HEH006SL	1	NA	08/19/1312:08	08/16/1315:48	WH19008A	WH19002A	HEH006S	Lab Control Sample (LCS)
LCD1S	HEH006SC	1	NA	08/19/1312:39	08/16/1315:48	WH19009A	WH19002A	HEH006S	LCS Duplicate
1A-2	H125-01	1	14.0	08/19/1313:09	08/16/1315:48	WH19010A	WH19002A	HEH006S	Field Sample
2A-2	H125-02	1	13.8	08/19/1313:40	08/16/1315:48	WH19011A	WH19002A	HEHOO6S	Field Sample
3A-2	H125-03	1	14.0	08/19/1314:11	08/16/1315:48	WH19012A	WH19002A	HEH006S	Field Sample

FN - Filename % Moist - Percent Moisture

219

SAMPLE RESULTS

• •

ô

्रिंग व - _ _ _

10**5**0 - 10

ş

3) 2

METHOD 8151A HERBICIDES

Client : URS		Date Col	.ected: 07/18/13	
Project : DHCCP		Date Rec	ceived: 08/14/13	
Batch No. : 13H125		Date Extr	acted: 08/16/13 1	5:48
Sample ID: 1A-2		Date Ana	lyzed: 08/19/13 1	3:09
Lab Samp ID: H125-01		Dilution A	actor: 1	
Lab File ID: WH19010A		Matrix	: SOIL	
Ext Btch ID: HEH006S		% Moisture	e : 14.0	
Calib. Ref.: WH19002A		Instrument	: ID : GCT016	
		=======================================		====
	RESULTS	RL	MDL	
PARAMETERS	(ug/kg)	(ug/kg)	(ug/kg)	
2,4-D	(ND) ND	12	5.8 5.8	
2,4-DB	(ND) ND	12	5.8 5.8	
2,4,5-T	(ND) ND	12	5.8 5.8	
2,4,5-TP(SILVEX)	(ND) ND	12	5.8 5.8	
DALAPON	(ND) ND	12	5.8 5.8	
DICAMBA	(ND) ND	12	5.8 5.8	
DICHLOROPROP	(ND) ND	12	5.8 5.8	
DÍNOSEB	(ND) ND	12	5.8 5.8	
MCPA	(ND) ND	2300	1200 1200	
MCPP	(ND) ND	2300	1200 1200	
1. Alexandre and the second	·		•	
SURROGATE PARAMETERS	RESULTS	SPK_AMT	% RECOVERY	QC LIMI
- äk				
2 [*] ,4-DCPAA	(622.4) 617.2	581.4	(107) 106	20-15

Left of \mid is related to first column; Right of \mid related to second column Final result indicated by ()

2,4-DCPAA	(635.6) 629.0	580.0	(110) 108	20-150
SÚRROGATE PARAMETERS	RESULTS	SPK_AMT	% RECOVERY	QC LIMIT
MĈPP	(ND) ND	2300	1200 1200	
	(ND) ND		1	
MCPA	1	2300		
DICHLOROPROP DINOSEB	(ND) ND (ND) ND	12	5.8 5.8	
			5.85.8	
		12		
2,4,5-TP(SILVEX) DALAPON	•	12	5.8 5.8	
	(ND) ND	12		
2,4-DB 2,4,5-T	(ND) ND	12		
2,4-DB	(ND) ND		5.8 5.8	
2,4-D	(ND) ND	12	5.8 5.8	
PARAPIETERS		(ug/kg)		
PARAMETERS	(ug/kg)	(ug/kg)	(ug/kg)	
	RESULTS	RL	MDL	
Calib. Ref.: WH19002A		Instrumen	t ID : GCT016	
Ext Btch ID: HEH006S			e : 13.8	
Lab File ID: WH19011A			: SOIL	
Lab Samp ID: H125-02		Dilution I		
Sample ID: 2A-2			alyzed: 08/19/13 1	5:40
Batch No. : 13H125			racted: 08/16/13 1	
Project : DHCCP			ceived: 08/14/13	F (0
Client : URS			lected: 07/18/13	

 $\tilde{L}\tilde{e}ft$ of | is related to first column; Right of | related to second column #Ynal result indicated by ()

4

 $(A_{ij}, \dots, i_{i}) \to A_{inter}$

たい 痛望 ないひょうせい とう

Client : URS		Date Col	lected: 07/18/13	
Project : DHCCP		Date Red	ceived: 08/14/13	
Batch No. : 13H125		Date Ext	racted: 08/16/13	15:48
Sample ID: 3A-2		Date Ana	alyzed: 08/19/13	14:11
Lab Samp ID: H125-03		Dilution	Factor: 1	
Lab File ID: WH19012A		Matrix	: SOIL	
Ext Btch ID: HEH006S		% Moistur	e : 14.0	
Calib. Ref.: WH19002A		Instrumen [.]	t ID : GCT016	
		=======================================		=====
-	RESULTS	RL	MDL	
PARAMETERS	(ug/kg)	(ug/kg)	(ug/kg)	
FARAPLE I ERS		(09/kg)	(49/69/	
2,4-D	(ND) ND	12	5.8 5.8	
2,4-DB	(ND) ND	12		
2,4,5-1	(ND) ND	12	5.8 5.8	
2,4,5-TP(SILVEX)	(ND) ND	12	5.8 5.8	
DALAPON	(ND) ND	12	5.8 5.8	
DICAMBA	(ND) ND	12		
DICHLOROPROP	(ND) ND	12	5.8 5.8	
DINOSEB	(ND) ND	12	5.8 5.8	
MCPA	(ND) ND	23 00	1200 1200	
MCPP	(ND) ND	2300	1200 1200	
98 27	·		,	
SURROGATE PARAMETERS	RESULTS	SPK_AMT	% RECOVERY	QC LIMIT
- <u>é</u>				
2 [°] ,4-DCPAA	(592.1) 588.3	581.4	(102) 101	20-150

Left of \mid is related to first column; Right of \mid related to second column Final result indicated by ()

 Million and Constrained and American Street and American S American Street and American Stree

 $\dot{\hat{\mu}}$

QC SUMMARIES

1000

 $e \to q_{\mu} \to \infty$

 $[0, \frac{1}{2}]_{\mathcal{X}}^{(n)}$

24-DCPAA	(546.0) 542.3	500.0	(109) 108	60-140
SURROGATE PARAMETERS	RESULTS	SPK_AMT	% RECOVERY	QC LIMIT
· · · · · · · · · · · · · · · · · · ·	1		·	
MČPP	(ND) ND	2000	1000 1000	
MCPA	(ND) ND	2000	1000 1000	
DINOSEB	(ND) ND	10	5.0 5.0	
DICHLOROPROP	(ND) ND	10	5.0 5.0	
DICAMBA	(ND) ND	10	5.0 5.0	
DALAPON	(ND) ND	10	5.0 5.0	
2,4,5-TP(SILVEX)	(ND) ND	10	5.0 5.0	
2,4,5-T	(ND) ND	10	5.0 5.0	
2,4-DB	(ND) ND	10	5.0 5.0	
2,4-D	(ND) ND	10	5.0 5.0	
PARAMETERS	(ug/kg)	(ug/kg)	(ug/kg)	
DADAMETERO	RESULTS	RL	MDL	
-,~====================================			=======================================	====
Calib. Ref.: WH19002A		Instrument	ID : GCT016	
Ext Btch ID: HEH006S		% Moisture	e :NA	
Lab File ID: WH19007A		Matrix	: SOIL	
Lab Samp ID: HEH006SB		Dilution I	•	
Sample ID: MBLK1S		Date Ana	alyzed: 08/19/13 1	1:37
Batch No. : 13H125			racted: 08/16/13 1	5:48
Project : DHCCP		Date Red	ceived: 08/16/13	
Client : URS		Date Col	ectea: NA	

Left of \mid is related to first column; Right of \mid related to second column Final result indicated by ()

EMAX QUALITY CONTROL DATA LCS/LCD ANALYSIS

CLIENT: PROJECT: BATCH NO.: METHOD:	URS DHCCP 13H125 METHOD 8151A										
MATRIX: DILUTION FACTOR: SAMPLE ID:	SOIL 1 MBLK1S	1	1	% MOISTURE:	NA					=====	
SAMPLE ID: LAB SAMP ID: LAB FILE ID: DATE EXTRACTED: DATE ANALYZED: PREP. BATCH: CALIB. REF:	MBLKTS HEH006SB WH19007A 08/16/1315:48 08/19/1311:37 HEH006S WH19002A	HEH006SL WH19008A 08/16/1315:48 08/19/1312:08 HEH006S WH19002A		DATE COLLECTED DATE RECEIVED:							
ACCESSION:											
PARAMETER		BLNK RSLT (ug/kg)	SPIKE AMT (ug/kg)	BS RSLT (ug/kg)	BS % REC	SPIKE AMT (ug/kg)	BSD RSLT (ug/kg)	BSD % REC	RPD (%)	QC LIMIT (%)	MAX RPD (%)
2,4-D 2,4-DB 2,4,5-T		(ND) ND (ND) ND (ND) ND (ND) ND	50.0 50.0 50.0 50.0	(56.0) 53.5 (57.0) 52.8 53.8 (56.4)	(112) 107 (114) 106 108 (113)	50.0 50.0 50.0	(58.0) 56.1 54.0 (59.2) 54.5 (61.3)	(116) 112 108 (118) 109 (123)	(4) 5 5 (11) 1 (8)	60-150 60-140 60-140	50 50 50
2,4,5-TP(Silvex) Dalapon		(ND) ND (ND) ND	50.0 50.0 50.0 50.0	55.5 (56.3) 48.2 (58.4)	111 (113) 96 (117)	50.0 50.0	56.8 (57.5) 49.3 (66.6)	114 (115) 99 (133)	2 (2) 2 (13)	50-150 10-160	50 50
Dicamba Dichloroprop Dinoseb		(ND) ND (ND) ND (ND) ND	50.0 50.0 2500	50.8 (52.6) 58.6 (59.4) (50.1) 45.6	102 (105) 117 (119) (100) 91	50.0 50.0 50.0	53.3 (53.5) 60.4 (60.7) (50.7) 47.4	107 (107) 121 (121) (101) 95	5 (2) 3 (2) (1) 4	30-130 30-130 30-130	50 50 50
МСРА МСРР		(ND) ND (ND) ND	2500	2380 (2490) (2530) 2250	95 (100) (101) 90	2500 2500	2520 (2570) (2670) 2240	101 (103) (107) 90	6 (3) (5) 0	30-130 30-130	50 50

SURROGATE PARAME			BS RSLT (ug/kg)	BS SPIKE % REC (ug/		D RSLT g/kg)	% REC	C LIMIT (%)			
2,4-DCPAA		500.0 51	0.7 (511.5)	102 (102) 5	00.0 (558.7) 554.4		0-140			

226

LABORATORY REPORT FOR

URS

DHCCP

METALS / MERCURY

SDG#: 13H125

Client : URS

Project : DHCCP

SDG : 13H125

METHOD 6020A METALS BY ICP-MS

A total of three (3) soil samples were received on 08/14/13 for Metals CAM analysis, Method 6020A in accordance with USEPA SW-846, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods.

Holding Time Samples were analyzed within the prescribed holding time.

Calibration Initial Calibration was established as prescribed by the method and was verified using a secondary source. Interference checks were performed and results were within required limits. Continuing calibration verifications and continuing calibration blanks were carried out at the frequency specified by the project. All calibration requirements were within acceptance criteria.

Method Blank Method blank was analyzed at the frequency required by the project. For this SDG, one method blank was analyzed with the samples. Result was compliant to project requirement.

Lab Control Sample A set of LCS/LCD was analyzed with the samples in this SDG. Percent recoveries for IMH034SL/C were all within QC limits.

Matrix QC Sample No matrix QC sample was designated for this SDG. Analytical spike and serial dilution were analyzed for matrix interference evaluation. Results were within method acceptance criteria.

Sample Analysis Samples were analyzed according to prescribed analytical procedures. All project requirements were met otherwise anomalies were discussed within the associated QC parameter.

LAB CHRONICLE METALS BY ICP-MS

Client : URS Project : DHCCP							ana ana ang ang ang ang ang ang ang ang	SDG NO. Instrum	: 13H125 ent ID : T-I98
				S01	[L				
Client	Laboratory	Dilution	x	Analysis	Extraction	Sample	Calibratic	n Prep.	
Sample ID	Sample ID	Factor	Moist	DateTime	DateTime	Data FN	Data FN	Batch	Notes
				•••••					·····
MBLK1S	IMH034SB	1	NA	08/28/1319:01	08/20/1317:30	98H13038	98H13036	IMH034S	Method Blank
LCS1S	IMH034SL	1	NA	08/28/1319:05	08/20/1317:30	98H13039	98H13036	IMH034S	Lab Control Sample (LCS)
LCD1S	IMH034SC	1	NA	08/28/1319:10	08/20/1317:30	98H13040	98H13036	IMH034S	LCS Duplicate
1A-2	H125-01	0.995	14.0	08/28/1319:18	08/20/1317:30	98H13042	98H13036	IMH034S	Field Sample
1A-2DL	H125-01J	4.98	14.0	08/28/1319:23	08/20/1317:30	98H13043	98H13036	IMH034S	Diluted Sample
2A-2	H125-02	0.985	13.8	08/28/1319:27	08/20/1317:30	98H13044	98H13036	IMH034S	Field Sample
3A-2	H125-03	0.990	14.0	08/28/1319:31	08/20/1317:30	98H13045	98H13036	IMH034S	Field Sample
1A-2AS	H125-01A	0.995	14.0	08/28/1319:36	08/20/1317:30	98H13046	98H13036	IMH034S	Analytical Spike Sample

FN - Filename % Moist - Percent Moisture

230

Client : URS	Date Col	llected: 07/18	/13
Project : DHCCP	Date Re	eceived: 08/14	/13
SDG NO. : 13H125	Date Ext	tracted: 08/20	/13 17:30
Sample ID: 1A-2	Date Ar	nalyzed: 08/28	/13 19:18 # 08/28/13 20:23
Lab Samp ID: H125-01	Dilution	Factor: 0.995	# 4.98
Lab File ID: 98H13042	Matrix	: SOIL	
Ext Btch ID: IMH034S	% Moistur	re : 14.0	
Calib. Ref.: 98H13036 #98H13048	Instrumer	nt ID : T-198	
	RESULTS	RL	MDL
PARAMETERS	(mg/kg)	(mg/kg)	(mg/kg)
Antimony	ND	0.578	0.231
Arsenic	3.47	0.578	0.116
Barium	190	0.578	0.116
Beryllium	0.591	0.578	0.116
Cadmium	0.305J	0.578	0.116
Chromium	59.0	0.578	0.116
Cobalt	16.7 35.0	0.578 0.578	0.116 0.231
Copper	7.28	0.578	0.116
Lead Molybdenum	0.255J	0.578	0.231
# Nickel	72.5	2.90	0.579
Selenium	0.177J	0.578	0.116
Silver	ND	0.578	0.116
Thallium	0.147J	0.578	0.116
Vanadium	61.9	0.578	0.289
Zinc	62.4	2.31	1.16

Members of the Associated File

METHOD 6020A METALS BY ICP-MS

Client : URS	Date	Collected: 0	7/18/13				
Project : DHCCP	Date Received: 08/14/13						
SDG NO. : 13H125	Date	Extracted: 0	8/20/13 17:30				
Sample ID: 2A-2	Date	Analyzed: 0	8/28/13 19:27				
Lab Samp ID: H125-02	Diluti	ion Factor: 0	. 985				
Lab File ID: 98H13044	Matri	« : S	OIL				
Ext Btch ID: IMH034S	% Mois	sture : 1	3.8				
Calib. Ref.: 98H13036	Instru	ument ID : T	- 198				
	RESULTS	RL	MDL				
PARAMETERS	(mg/kg)	(mg/kg)	(mg/kg)				
Antimony	ND	0.571	0.229				
Arsenic	3.52	0.571	0.114				
Barium	207	0.571	0.114				
Beryllium	0.518J	0.571	0.114				
Cadmium	0.415J	0.571	0.114				
Chromium	57.7	0.571	0.114				
Cobalt	15.4	0.571	0.114				
Copper	31.9	0.571	0.229				
Lead	7.11	0.571	0.114				
Molybdenum	0.325J	0.571	0.229				
Nickel	68.6	0.571	0.114				
Selenium	0.156J	0.571	0.114				
Silver	ND	0.571	0.114				
Thallium	0.140J	0.571	0.114				
Vanadium	63.7	0.571	0.286				
Zinc	61.4	2.29	1.14				

METHOD 6020A METALS BY ICP-MS

Client : URS Project : DHCCP	Date Date	Collected: Received:			
SDG NO. : 13H125	Date	Extracted:	08/20/13 17:30		
Sample ID: 3A-2	Date	Analyzed:	08/28/13 19:31		
Lab Samp ID: H125-03	Dilut	ion Factor:	0.990		
Lab File ID: 98H13045	Matrix		SOIL		
Ext Btch ID: IMH034S	∦ Mois	sture :	14.0		
Calib. Ref.: 98H13036	Instru	ument ID :	T-198		
		RL	MDL		
	RESULTS				
PARAMETERS	(mg/kg)	(mg/kg)	(mg/kg)		
Antimony	ND	0.576	0.230		
Arsenic	3.77	0.576	0.115		
Barium	188	0.576	0.115		
Beryllium	0.540J	0.576	0.115		
Cadmium	0.325J	0.576	0.115		
Chromium	58.3	0.576	0.115		
Cobalt	15.7	0.576	0.115		
Copper	32.6	0.576	0.230		
Lead	7.19	0.576	0.115		
Molybdenum	0.296J	0.576	0.230		
Nickel	70.1	0.576	0.115		
Selenium	0.166J	0.576	0.115		
Silver	ND	0.576	0.115		
Thallium	0.150J	0.576	0.115		
Vanadium	61.4	0.576	0.288		
Zinc	67.6	2.30	1.15		

Client : URS	Date	Collected:	NA		
Project : DHCCP	Date	Received:			
SDG NO. : 13H125	Date		08/20/13 17:30		
Sample ID: MBLK1S	Date	Analyzed:	08/28/13 19:01		
Lab Samp ID: IMH034SB		ion Factor:			
Lab File ID: 98H13038	Matri		SOIL		
Ext Btch ID: IMH034S	∦ Mois		NA		
Calib. Ref.: 98H13036	Instru	ument ID :	T-198		
	RESULTS	RL	MDL		
PARAMETERS	(mg/kg)	(mg/kg)	(mg/kg)		
A 1 1	ND	0 500	0.200		
Antimony	ND ND	0.500 0.500	0.200		
Arsenic	ND	0.500	0.100		
Barium	ND	0.500	0.100		
Beryllium Cadmium	ND	0.500	0.100		
Chromium	ND	0.500	0.100		
Cobalt	ND	0.500	0.100		
Copper	ND	0.500	0.200		
Lead	ND	0.500	0.100		
Molybdenum	ND	0.500	0.200		
Nickel	ND	0.500	0.100		
Selenium	ND	0.500	0.100		
Silver	ND	0.500	0.100		
Thallium	ND	0.500	0.100		
Vanadium	ND	0.500	0.250		
Zinc	ND	2.00	1.00		

CLIENT: PROJECT: SDG NO.: METHOD:	URS DHCCP 13H125 METHOD 6020A										
MATRIX: DILTN FACTR: SAMPLE ID:	SOIL 1 MBLK1S	1	1		∦ MOIST	TURE: NA	L				
CONTROL NO.: LAB FILE ID: DATIME EXTRCTD: DATIME ANALYZD: PREP. BATCH: CALIB. REF:	IMH034SB 98H13038 08/20/1317:30 08/28/1319:01 IMH034S 98H13036	IMH034SL 98H13039 08/20/13 08/28/13 IMH034S 98H13036	98H13 17:30 08/20 19:05 08/28 IMH03	8040 0/1317:30 8/1319:10 84S		DLLECTED: NA CEIVED: 08	/20/13				
ACCESSION:											
PARAMETER		.NK RSLT mg/kg	SPIKE AMT mg/kg	BS RSLT mg/kg	BS ∦ REC	SPIKE AMT mg/kg	BSD RSLT mg/kg	BSD ∦ REC	RPD %	QC LIMIT %	MAX RPD %
Antimony		ND	25.0	25.5	102	25.0	25.1	100	1	80-120	20
Arsenic		ND	25.0	25.4	102	25.0	25.2	100	1	80-120	20
Barium		ND	25.0	26.7	107	25.0	26.3	105	2	80-120	20
Beryllium		ND	25.0	26.4	106	25.0	25.9	104	2	80-120	20
Cadmium		ND	25.0	25.6	102	25.0	25.3	101	1	80-120	20
Chromium		ND	25.0	26.0	104	25.0	25.9	104	1	80-120	20
Cobalt		ND	25.0	26.1	104	25.0	25.9	104	1	80-120	20
Copper		ND	25.0	25.4	102	25.0	25.5	102	0	80-120	20
Lead		ND	25.0	26.3	105	25.0	26.4	106	0	80-120	20
Molybdenum		ND	25.0	25.3	101	25.0	25.2	101	0	80-120	20
Nickel		ND	25.0	25.6	102	25.0	25.6	102	0	80-120	20
Selenium		ND	25.0	25.8	103	25.0	25.7	103	0	80-120	20
Silver		ND	25.0	26.2	105	25.0	25.9	104	1	80-120	20
Thallium		ND	25.0	25.5	102	25.0	25.6	102	0	80-120	20
Vanadium		ND	25.0	25.4	102	25.0	25.5	102	0	80-120	20 20
Zinc		ND	50.0	49.9	100	50.0	50.2	100	1	80-120	20

EMAX QUALITY CONTROL DATA SERIAL DILUTION ANALYSIS

	CLIENT: PROJECT: BATCH NO.: METHOD:	URS DHCCP 13H125 METHOD 6020A			
. :	MATRIX:	SOIL		% MOISTURE:	14.0
	DILUTION FACTOR:	0.995	4.98		
	SAMPLE ID:	1A-2	1A-2DL		
	EMAX SAMP ID:	H125-01	H125-01J		
	LAB FILE ID:	98H13042	98H13043		
	DATE EXTRACTED:	08/20/1317:30	08/20/1317:30	DATE COLLECTED:	07/18/13
	DATE ANALYZED:	08/28/1319:18	08/28/1319:23	DATE RECEIVED:	08/14/13
	PREP. BATCH:	IMH034S	IMH034S		

ACCESSION:

CALIB. REF:

PARAMETER	SMPL RSLT (mg/kg)	SERIAL DIL RSLT (mg/kg)	DIF RSLT %	QC LIMIT (%)
A				
Antimony	ND	ND	0	10
Arsenic	3.47	3.64	5	10
Barium	190	183	4	10
Beryllium	0.591	ND	NA	10
Cadmium	0.305J	ND	NA	10
Chromium	59.0	63.7	8	10
Cobalt	16.7	18.4	10	10
Copper	35.0	39.2	12*	10
Lead	7.28	7.39	2	10
Molýbdenum	0.255J	ND	NA	10
# Nickel	72.5	79.3	9	10
Selenium	0.177J	ND	NA	10
Silver	ND	ND	0	10
Thallium	0.147J	ND	NA	10
Vanadium	61.9	66.3	7	10
Zinc	62.4	66.8	7	10

98H13036

98H13036

1.1.1

H125-01J : Analyzed at DF 24.9 on 08/28/13 20:19 | File ID 98H13056

한 영국 관람 것

1. 485 11889 11. 428 1

1

Ę

.....*

÷

EMAX QUALITY CONTROL DATA ANALYTICAL SPIKE ANALYSIS

	CLIENT: PROJECT:	URS DHCCP							
	SDG NO.:	13H125							
	METHOD:	METHOD 6020A							
							======		=
	MATRIX: DILTN FACTR:	SOIL 0.995	0.995		% MC	DISTURE:	14.0		
	SAMPLE ID:	1A-2							
	CONTROL NO.:	H125-01 98H13042	H125-01A 98H13046						
	LAB FILE ID:	08/20/1317:30		17.30	DATE	COLLECTED:	07/18/	/13	
	DATIME ANALYZD:	08/28/1319:18				RECEIVED:	08/14/		
	PREP. BATCH:	IMH0 3 4s	IMH034S						
· •	CALIB. REF:	98H13036	98H13036						
	ACCESSION:								
	PARAMETER		PL RSLT mg/kg)	SPIKE AM (mg/kg)		AS RSLT (mg/kg) %	AS G REC	CLIMIT (%)	
	Antimony		ND	28	.9	29.4	102	80-120	
	Arsenic		3.47	28	.9	32.0	99	80-120	
	Barium		190	28		219	100	80-120	
	Beryllium		0.591	28		30.4	103	80-120	
	Cadmium		0.305J	28		29.2	100	80-120	
	Chromium		59.0	28		80.5	74*		
	Cobalt		16.7 35.0	28 28		41.7	86	80-120	
	Copper Lead		55.0 7.28	28		58.1 35.8	80 99	80-120 80-120	
	Molybdenum		0.255J	28		29.2	100	80-120	
#	Nickel		72.5		45	212	96	80-120	
	Selenium		0.177J	28		29.3	101	80-120	
	Silver		ND	28		28.9	100	80-120	
	Thallium		0.147J	28		28.8	99	80-120	
	Vanadium		61.9	28		86.0	83	80-120	
	Zinc		62.4	57.		122	103	80-120	

an an Angel An Angel An Angel

1998 # H125-01A : Analyzed at DF 4.98 on 08/28/13 20:38 | File ID 98H13058

÷

Client : URS

Project : DHCCP

SDG : 13H125

METHOD DI WET/6020A DI WET METALS BY ICP-MS

A total of three (3) soil samples were received on 08/14/13 for Metals DI-WET analysis, Method DI WET/6020A in accordance with USEPA SW-846, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods.

Holding Time Samples were analyzed within the prescribed holding time.

Calibration Initial Calibration was established as prescribed by the method and was verified using a secondary source. Interference checks were performed and results were within required limits. Continuing calibration verifications and continuing calibration blanks were carried out at the frequency specified by the project. All calibration requirements were within acceptance criteria.

Method Blank Method blanks were analyzed at the frequency required by the project. For this SDG, two (2) method blanks were analyzed with the samples. All results were compliant to project requirement. Refer to QC result summary forms for details.

Lab Control Sample A set of LCS/LCD was analyzed with the samples in this SDG. Percent recoveries for IMH039WL/C were all within QC limits.

Matrix QC Sample Matrix QC sample was analyzed at the frequency prescribed by the project. Percent recoveries were within project QC limits except for results qualified with [*] in H125-01M/H125-01S summary form, most likely due to matrix interference. Check QC summary form for details. In addition Analytical spike and serial dilution were analyzed for matrix interference evaluation. Results were within method acceptance criteria.

Sample Analysis Samples were analyzed according to prescribed analytical procedures. All project requirements were met otherwise anomalies were discussed within the associated QC parameter. LAB CHRONICLE DI WET METALS BY ICP-MS

Client : URS Project : DHCCP		<u></u>						SDG NO. Instrum	: 13H125 ent ID : T-I98
				LEAC	CHATE				
Client	Laboratory	Dilution	*	Analysis	Extraction	Sample	Calibratio	n Prep.	
Sample ID	Sample ID	Factor	Moist	DateTime	DateTime	Data FN	Data FN	Batch	Notes
MBLK1W	IMH039WB	1	NA	08/28/1317:27	08/26/1310:15	98H13019	98H13016	IMH039W	Method Blank
LCS1W	IMH039WL	1	NA	08/28/1317:31	08/26/1310:15	98H13020	98H13016	IMH039W	Lab Control Sample (LCS)
LCD1W	IMH039WC	1	NA	08/28/1317:35	08/26/1310:15	98H13021	98H13016	IMH039W	LCS Duplicate
MBLK2W	WTH005SB	1	NA	08/28/1317:40	08/26/1310:15	98H13022	98H13016	IMH039W	Method Blank
1A-2MS	H125-01M	1	NA	08/28/1317:44	08/26/1310:15	98H13023	98H13016	IMH039W	Matrix Spike Sample (MS)
1A-2MSD	H125-01S	1	NA	08/28/1317:48	08/26/1310:15	98H13024	98H13016	IMH039W	MS Duplicate (MSD)
1A-2AS	H125-01A	1	NA	08/28/1318:06	08/26/1310:15	98H13028	98H13026	IMH039W	Analytical Spike Sample
1A-2	H125-01	1	NA	08/28/1318:10	08/26/1310:15	98H13029	98H13026	IMH039W	Field Sample
1A-2DL	H125-01J	5	NA	08/28/1318:14	08/26/1310:15	98H13030	98H13026	IMH039W	Diluted Sample
2A-2	H125-02	1	NA	08/28/1318:19	08/26/1310:15	98H13031	98H13026	IMH039W	Field Sample
3A-2	H125-03	1	NA	08/28/1318:23	08/26/1310:15	98H13032	98H13026	IMH039W	Field Sample

FN - Filename

% Moist - Percent Moisture

238

Client : URS Project : DHCCP	Date Date	Collected: 07 Received: 08	
SDG NO. : 13H125	Date	Extracted: 08	8/26/13 10:15
Sample ID: 1A-2	Date	Analyzed: 08	8/28/13 18:10
Lab Samp ID: H125-01	Diluti	on Factor: 1	
Lab File ID: 98H13029	Matrix	: LE	ACHATE
Ext Btch ID: IMH039W	% Mois	sture : NA	۱.
Calib. Ref.: 98H13026	Instru	ment ID : T-	198
	RESULTS	RL	MDL
PARAMETERS	(ug/L)	(ug/L)	(ug/L)
Antimony	1.36	1.00	0.500
Arsenic	17.2	1.00	0.200
Barium	320	1.00	0.500
Beryllium	0.662J	1.00	0.100
Cadmium	0.280J 39.3	1.00 1.00	0.200 0.200
Chromium	39.3 9.07	1.00	0.200
Cobalt	38.3	1.00	0.200
Copper Lead	36.3 8.17	1.00	0.100
Molybdenum	4.82	2.00	0.500
Nickel	39.8	1.00	0.200
Selenium	9.67	1.00	0.300
Silver	ND	1.00	0.200
Thallium	ND	1.00	0.200
Vanadium	72.1	1.00	0.500
Zinc	87.3	20.0	10.0
41119	0,.0		

Client : URS	Date	Collected: 07	/18/13
Project : DHCCP	Date	Received: 08	/14/13
SDG NO. : 13H125	Date	Extracted: 08	/26/13 10:15
Sample ID: 2A-2	Date	Analyzed: 08	/28/13 18:19
Lab Samp ID: H125-02	Diluti	on Factor: 1	
Lab File ID: 98H13031	Matrix		ACHATE
Ext Btch ID: IMH039W	لا Mois		
Calib. Ref.: 98H13026	Instru	ment ID : T·	198
	RESULTS	RL	MDL
PARAMETERS	(ug/L)	(ug/L)	(ug/L)
• • •		1 00	0.500
Antimony	1.54	1.00	0.500
Arsenic	13.1	1.00	0.200
Barium	103	1.00	0.500
Beryllium	0.186J ND	1.00 1.00	0.100
Cadmium	11.9	1.00	0.200
Chromium Cobalt	2.39	1.00	0.200
Copper	11.2	1.00	0.200
Lead	2.93	1.00	0.100
Molybdenum	6.97	2.00	0.500
Nickel	11.5	1.00	0.200
Selenium	8.77	1.00	0.300
Silver	ND	1.00	0.200
Thallium	ND	1.00	0.200
Vanadium	38.3	1.00	0.500
Zinc	92.6	20.0	10.0
2.110	22.0		

Client : URS Project : DHCCP SDG NO. : 13H125 Sample ID: 3A-2 Lab Samp ID: H125-03 Lab File ID: 98H13032 Ext Btch ID: IMH039W Calib. Ref.: 98H13026	Date Collected: 07/18/ Date Received: 08/14/ Date Extracted: 08/26/ Date Analyzed: 08/28/ Dilution Factor: 1 Matrix : LEACHA * Moisture : NA Instrument ID : T-198	13 13 10:15 13 18:23
PARAMETERS	RESULTS RL (ug/L) (ug/L)	MDL (ug/L)
Antimony	1.44 1.00	0.500
Arsenic	17.4 1.00	0.200
Barium	134 1.00	0.500
Beryllium	0.296J 1.00	0.100
Cadmium	ND 1.00	0.200
Chromium	17.4 1.00	0.200
Cobalt	3.38 1.00	0.200
Copper	15.6 1.00	0.500
Lead	4.58 1.00	0.100
Molybdenum	5.68 2.00	0.500
Nickel	14.7 1.00	0.200
Selenium	8.83 1.00	0.300
Silver	ND 1.00	0.200
Thallium	ND 1.00	0.200
Vanadium Zinc	50.61.0022.420.0	0.500 10.0

Client : URS Project : DHCCP SDG NO. : 13H125 Sample ID: MBLK1W Lab Samp ID: IMH039WB Lab File ID: 98H13019 Ext Btch ID: IMH039W Calib. Ref.: 98H13016	Date Date Date Diluti Matrix % Mois	Analyzed: ion Factor: c : sture :	08/26/13 08/26/13 10:15 08/28/13 17:27
PARAMETERS	RESULTS (ug/L)	RL (ug/L)	MDL (ug/L)
Antimony	ND	1.00	0.500
Arsenic	ND	1.00	0.200
Barium	ND	1.00	0.500
Beryllium	ND	1.00	0.100
Cadmium	ND	1.00	0.200
Chromium	ND	1.00	0.200
Cobalt	ND	1.00	0.200
Copper	ND	1.00	0.500
Lead	ND	1.00	0.100
Molybdenum	ND	2.00	0.500
Nickel	ND	1.00	0.200
Selenium	ND	1.00	0.300
Silver	ND	1.00	0.200 0.200
	ND	1.00	0.200
Thallium Vanadium	ND	1.00	0.500

Client : URS Project : DHCCP SDG NO. : 13H125 Sample ID: MBLK2W Lab Samp ID: WTH005SB Lab File ID: 98H13022 Ext Btch ID: IMH039W Calib. Ref.: 98H13016	Date Re Date Ext	:WATER e :NA	
PARAMETERS	RESULTS (ug/L)		MDL ug/L)
Antimony	ND		0.500
Arsenic	ND	1.00	0.200
Barium	1.94	1.00	0.500
Beryllium	ND	1.00	0.100
Cadmium	ND	1.00	0.200
Chromium	ND	1.00	0.200
Cobalt	ND		0.200
Copper	0.632J		0.500
Lead	0.111J		0.100
Molybdenum	ND		0.500
Nickel	ND		0.200
Selenium	ND		0.300
Silver	ND		0.200
Thallium	ND		0.200
Vanadium -	ND		0.500
Zinc	14.4J	20.0	10.0

Copper

Nickel

Silver

Zinc

Selenium

Thallium

Vanadium

Molybdenum

Lead

20

20

20

20

20

20

20

20

20

80-120

80-120

80-120

80-120

80-120

80-120

80-120

80-120

2 80-120

2

1

1

2

1

1

1

2

CLIENT: PROJECT: SDG NO.: METHOD:	URS DHCCP 13H125 METHOD DI WET	/6020A									
MATRIX: DILTN FACTR:	WATER 1	1	1		∦ MOIST	URE: N	A				
SAMPLE ID: CONTROL NO.: LAB FILE ID: DATIME EXTRCTD: DATIME ANALYZD: PREP. BATCH: CALIB. REF:	MBLK1W IMH039WB 98H13019 08/26/1310:15 08/28/1317:27 IMH039W 98H13016	IMH039WL 98H13020 08/26/13: 08/28/13: IMH039W 98H13016		021 /1310:15 /1317:35 9W	DATE CC DATE RE		IA 18/26/13				
ACCESSION:											
PARAMETER	BI	_NK RSLT ug/L	SPIKE AMT ug/L	BS RSLT ug/L	BS ∦ REC	SPIKE AMT ug/L	BSD RSLT ug/L	BSD ∦ REC	RPD *	QC LIMIT %	MAX RPD *
Antimony	-	ND	25.0	25.4	102	25.0	25.1	100	1	80-120	20
Arsenic		ND	25.0	25.3	101	25.0	25.5	102	1	80-120	20
Barium		ND	25.0	26.3	105	25.0	26.2	105	0	80-120	20
Beryllium		ND	25.0	26.8	107	25.0		107	0		20
Cadmium		ND	25.0	25.5	102	25.0		101	1	80-120	20
Chromium		ND	25.0	26.3	105	25.0		103	2	80-120	20
Cobalt		ND	25.0	26.1	104	25.0	25.9	104	1	80-120	20

26.7

27.0

24.8

26.4

25.3

26.6

26.1

25.9

52.9

107

108

99

106

101

106

104

104

106

25.0

25.0

25.0

25.0

25.0

25.0

25.0

25.0

50.0

26.0

26.7

24.6

25.9

25.5

26.3

25.8

25.4

52.0

104

107

98

104

102

105

103

102

104

ND

ND

ND

ND

ND

ND

ND

ND

ND

25.0

25.0

25.0

25.0

25.0

25.0

25.0

25.0

50.0

CLIENT: PROJECT: SDG NO.: METHOD:	URS DHCCP 13H125 METHOD DI WET/6020A	

MATRIX:	LEACHATE			<pre>% MOISTURE:</pre>	NA
DILTN FACTR:	1	1	1		
SAMPLE ID:	1A-2				
CONTROL NO.:	H125-01	H125-01M	H125-01S		
LAB FILE ID:	98H13029	98H13023	98H13024		
DATIME EXTRCTD:	08/26/1310:15	08/26/1310:15	08/26/1310:15	DATE COLLECTED:	07/18/13
DATIME ANALYZD:	08/28/1318:10	08/28/1317:44	08/28/1317:48	DATE RECEIVED:	08/14/13
PREP. BATCH:	IMH039W	IMH039W	IMH039W		
CALIB. REF:	98H13026	98H13016	98H13016		

ACCESSION:

PARAMETER	SMPL RSLT ug/L	SPIKE AMT ug/L	MS RSLT ug/L	MS % REC	SPIKE AMT ug/L	MSD RSLT ug/L	MSD 浆 REC	RPD %	QC LIMIT : %	MAX RPD X
	1.20		10.0		ог о	11 0	 39*	10	75-125	20
Antimony	1.36	25.0	12.3	44*	25.0	11.2		10		
Arsenic	17.2	25.0	42.4	101	25.0	42.7	102	1	75-125	20
Barium	320	25.0	358	152*	25.0	358	152*	0	75-125	20
Beryllium	0.662J	25.0	27.8	109	25.0	27.7	108	1	75-125	20
Cadmium	0.280J	25.0	25.7	102	25.0	25.7	102	0	75-125	20
Chromium	39.3	25.0	55.5	65*	25.0	54.2	60*	2	75-125	20
Cobalt	9.07	25.0	32.9	95	25.0	32.6	94	1	75-125	20
Copper	38.3	25.0	65.9	110	25.0	65.5	109	0	75-125	20
Lead	8.17	25.0	34.0	103	25.0	34.0	103	0	75-125	20
Molybdenum	4.82	25.0	20.2	62*	25.0	17.8	52*	12	75-125	20
Nickel	39.8	25.0	61.6	87	25.0	61.0	85	1	75-125	20
Selenium	9.67	25.0	34.6	100	25.0	34.9	101	1	75-125	20
Silver	ND	25.0	25.7	103	25.0	25.7	103	0	75-125	20
Thallium	ND	25.0	24.8	99	25.0	24.8	99	0	75-125	20
Vanadium	72.1	25.0	87.0	60*	25.0	84.8	51*	3	75-125	20
Zinc	87.3	50.0	140	105	50.0	139	103	0	75-125	20

CLIENT: PROJECT: SDG NO.: METHOD:	URS DHCCP 13H125 METHOD DI WET	/6020A				
MATRIX: DILTN FACTR: SAMPLE ID:	LEACHATE 1 1A-2	1		∜ MOISTURE:	NA	
CONTROL NO.: LAB FILE ID: DATIME EXTRCTD: DATIME ANALYZD: PREP. BATCH: CALIB. REF:	H125-01 98H13029 08/26/1310:15 08/28/1318:10 IMH039W	98H13028 08/26/13 08/28/13 IMH039W	10:15 18:06	DATE COLLECTED DATE RECEIVED:		8/13 4/13
ACCESSION:						
PARAMETER	S		SPIKE AMT (ug/L)	T AS RSLT (ug/L)		QC LIMIT (%)
Antimony	•	1.36	25.	.0 27.7	105	80-120
Arsenic		17.2	25.	.0 42.7	102	80-120
Barium		320	25.	.0 355	140	* 80-120
Beryllium		0.662J	25.	.0 28.7	112	80-120
Cadmium		0.280J	25.	.0 26.4	104	
Chromium		39.3		.0 64.4	100	
Cobalt		9.07		.0 33.1		
Copper		38.3	25.			
Lead		8.17	25.		111	80-120

4.82

39.8

9.67

ND

ND

72.1

87.3

25.0

25.0

25.0

25.0

25.0

25.0

50.0

30.8

63.8

35.5

26.3

26.9

96.8

137

80-120

80-120

80-120 80-120

80-120

80-120

80-120

104

96

103

105

108

99

99

A

Molybdenum

Nickel

Silver

Selenium

Thallium

Vanadium

Zinc

URS

PROJECT: BATCH NO.: METHOD:	DHCCP 13H125 METHOD DI WET/0	6020A		<u></u>
MATRIX: DILUTION FACTOR: SAMPLE ID: EMAX SAMP ID: LAB FILE ID:	LEACHATE 1 1A-2 H125-01 98H13029	5 1A-2DL H125-01J 98H13030	% MOISTURE:	NA
DATE EXTRACTED: DATE EXTRACTED: DATE ANALYZED: PREP. BATCH: CALIB. REF:	08/26/1310:15 08/28/1318:10 IMH039W 98H13026	08/26/1310:15 08/28/1318:14 IMH039W 98H13026	DATE COLLECTED: DATE RECEIVED:	07/18/13 08/14/13

ACCESSION:

CLIENT:

PARAMETER	SMPL RSLT (ug/L)	SERIAL DIL RSLT (ug/L)	DIF RSLT %	QC LIMIT (省)
Antimony	1.36	ND	NA	10
Arsenic	17.2	17.7	3	10
Barium	320	321	0	10
Beryllium	0.662J	0.727J	NA	10
Cadmium	0.280J	ND	NA	10
Chromium	39.3	42.2	7	10
Cobalt	9.07	10.3	13*	10
Copper	38.3	42.9	12*	10
Lead	8.17	8.62	6	10
Molybdenum	4.82	4.69J	NA	10
Nickel	39.8	43.5	9	10
Selenium	9.67	9.56	1	10
Silver	ND	ND	0	10
Thallium	ND	ND	0	10
Vanadium	72.1	75.6	5	10
Zinc	87.3	97.6J	NA	10

Client : URS

Project : DHCCP

SDG : 13H125

METHOD 7471A MERCURY BY COLD VAPOR

A total of three (3) soil samples were received on 08/14/13 for Mercury analysis, Method 7471A in accordance with USEPA SW-846, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods.

Holding Time Samples were out of prescribed holding time upon resolution of discrepancies and were received without thermal preservation. The samples were analyzed upon client advice to proceed with the analysis.

Calibration Multi-calibration points were generated to establish initial calibration (ICAL). ICAL was verified using a secondary source. Continuing calibration verifications were carried out at the frequency specified by the project. All calibration requirements were within acceptance criteria.

Method Blank Method blank was analyzed at the frequency required by the project. For this SDG, one method blank was analyzed with the samples. Result was compliant to project requirement.

Lab Control Sample A set of LCS/LCD was analyzed with the samples in this SDG. Percent recoveries for HGH023SL/C were all within QC limits.

Matrix QC Sample No matrix QC sample was designated in this SDG.

Sample Analysis Samples were analyzed according to prescribed analytical procedures. All project requirements were met otherwise anomalies were discussed within the associated QC parameter.

LAB CHRONICLE MERCURY BY COLD VAPOR

Client : URS	SDG NO. : 13H125
Project : DHCCP	Instrument ID : 47

				SO	IL				
Client	Laboratory	Dilution	%	Analysis	Extraction	Sample	Calibratio	on Prep.	
Sample ID	Sample ID	Factor	Moist	DateTime	DateTime	Data FN	Data FN	Batch	Notes
MBLK1S	HGH023SB	1	NA	08/17/1316:26	08/17/1313:00	M47H016051	M47H016	HGH023S	Method Blank
LCS1S	HGH023SL	1	NA	08/17/1316:28	08/17/1313:00	M47H016052	M47H016	HGH023S	Lab Control Sample (LCS)
LCD1S	HGH023SC	1	NA	08/17/1316:30	08/17/1313:00	M47H016053	M47H016	HGH023S	LCS Duplicate
1A-2	H125-01	· 1	14.0	08/17/1317:23	08/17/1313:00	M47H016079	M47H016	HGH023S	Field Sample
2A-2	H125-02	1	13.8	08/17/1317:25	08/17/1313:00	M47H016080	M47H016	HGH023S	Field Sample
3A-2	H125-03	1	14.0	08/17/1317:31	08/17/1313:00	M47H016083	M47H016	HGH023S	Field Sample

FN - Filename % Moist - Percent Moisture

METHOD 7471A MERCURY BY COLD VAPOR

Client : URS Project : DHCCP Batch No. : 13H125											Matrix Instru	: SOIL mentID : 47	250
CLIENT SAMPLE ID	EMAX SAMPLE ID	RESULTS (mg/kg)	DIL'N FACTOR	MOIST (%)	LOQ (mg/kg)	LOD (mg/kg)	ANALYSIS DATETIME	PREPARATION DATETIME	DATA FILE ID	CAL REF	PREP BATCH	COLLECTION DATETIME	RECEIVED DATETIME
MBLK1S LCS1S	HGH023SB HGH023SL	ND 0.352	1	NA NA	0.0998 0.0995		08/17/1316:26 08/17/1316:28						NA NA
LCD1S 1A-2 2A-2 3A-2	HGH023SC H125-01 H125-02 H125-03	0.357 0.0398J 0.0291J 0.0242J	1 1 1 1	NA 14.0 13.8 14.0	0.100 0.115 0.115 0.116	0.0200 0.0231 0.0230 0.0232	08/17/1317:25	08/17/1313:00 08/17/1313:00	M47H016079 M47H016080	M47H016 M47H016	HGH023S HGH023S	NA 07/18/1315:30 07/18/1315:30 07/18/1315:30	NA 08/14/13 08/14/13 08/14/13

CLIENT	: URS		
PROJECT	: DHCCP		
BATCH NO.	: 13H125		
METHOD	: 7471A		
MATRIX	: SOIL		% MOISTURE: N/A
DILUTION FAC	TOP - 1	1	1

DILUTION FACTOR	:	1	1	1
SAMPLE ID	:	MBLK1S	LCS1S	LCD1S
LAB SAMPLE ID	:	HGH023SB	HGH023SL	HGH023SC
LAB FILE ID	:	M47H016051	M47H016052	M47H016053
DATE PREPARED	:	08/17/1313:00	08/17/1313:00	08/17/1313:00
DATE ANALYZED	:	08/17/1316:26	08/17/1316:28	08/17/1316:30
PREP BATCH	:	HGH023S	HGH023S	HGH023S
CALIBRATION REF	:	M47H016	M47H016	M47H016

ACCESSION:

PARAMETER	MB RESULT	SPIKE AMT	BS RESULT	BS REC	SPIKE AMT	BSD RESULT	BSD REC	RPD	QC LIMIT	MAX RPD
	(mg/kg)	(mg/kg)	(mg/kg)	(%)	(mg/kg)	(mg/kg)	(%)	(%)	(%)	(%)
Mercury	ND	0.331	0.352	106	0.333	0.357	107	1	80-120	20

CASE NARRATIVE

Client : URS

252

Project : DHCCP

SDG : 13H125

METHOD DI WET/7470A DI WET MERCURY BY COLD VAPOR

A total of three (3) soil samples were received on 08/14/13 for Mercury by DI WET analysis, Method DI WET/7470A in accordance with USEPA SW-846, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods.

Holding Time Samples were out of prescribed holding time upon resolution of discrepancies and were received without thermal preservation. The samples were analyzed upon client advice to proceed with the analysis.

Calibration Multi-calibration points were generated to establish initial calibration (ICAL). ICAL was verified using a secondary source. Continuing calibration verifications were carried out at the frequency specified by the project. All calibration requirements were within acceptance criteria.

Method Blank Method blanks were analyzed at the frequency required by the project. For this SDG, two (2) method blanks were analyzed with the samples. All results were compliant to project requirement. Refer to QC result summary forms for details.

Lab Control Sample A set of LCS/LCD was analyzed with the samples in this SDG. Percent recoveries for HGH046WL/C were all within QC limits.

Matrix QC Sample Matrix QC sample was analyzed at the frequency prescribed by the project. Percent recoveries for H125-01M/S are within project QC limits.

Sample Analysis Samples were analyzed according to prescribed analytical procedures. All project requirements were met; otherwise, anomalies were discussed within the associated QC parameter.

LA8 CHRONICLE DI WET MERCURY BY COLD VAPOR

Client : URS Project : DHCCP				vi	n ta al a si si sa sa sa sa si si ta a sa			SDG NO. Instrum	: 13H125 ent ID : 47
				LEACH	ATE				
Client	Laboratory	Dilution	x	Analysis	Extraction	Sample	Calibration	Prep.	
Sample ID	Sample ID	Factor	Moist	DateTime	DateTime	Data FN	Data FN	Batch	Notes
MBLK1W	HGH046WB	1	NA	08/28/1320:09	08/28/1315:30	M47H028048	M47H028	HGH046W	Method Blank
LCS1W	HGH046WL	1	NA	08/28/1320:11	08/28/1315:30	M47H028049	M47H028	HGH046W	Lab Control Sample (LCS)
LCD1W	HGH046WC	1	NA	08/28/1320:12	08/28/1315:30	M47H028050	M47H028	HGH046W	LCS Duplicate
MBLK2W	WTH005SB	1	NA	08/28/1320:51	08/28/1315:30	M47H028069	M47H028	HGH046W	Method Blank
1A-2	H125-01	1	NA	08/28/1320:59	08/28/1315:30	M47H028073	M47H028	HGH046W	Field Sample
1A-2MS	H125-01M	1	NA	08/28/1321:03	08/28/1315:30	M47H028075	M47H028	HGH046W	Matrix Spike Sample (MS)
1A-2MSD	H125-01S	1	NA	08/28/1321:05	08/28/1315:30	M47H028076	M47H028	HGH046W	MS Duplicate (MSD)
2A-2	H125-02	1	NA	08/28/1321:07	08/28/1315:30	M47H028077	M47H028	HGH046W	Field Sample
3A-2	H125-03	1	NA	08/28/1321:08	08/28/1315:30	M47H028078	M47H028	HGH046W	Field Sample

FN - Filename

% Moist - Percent Moisture

253

METHOD DI WET/7470A DI WET MERCURY BY COLD VAPOR

Client : URS Project : DHCCP Batch No. : 13H125											Matrix Instru	k : LEAC umentID : 47	CHATE
CLIENT	EMAX	RESULTS	DIL'N	MOIST	LOQ	LOD	ANALYSIS	PREPARATION	DATA	CAL	PREP	COLLECTION	RECEIVED
SAMPLE ID	SAMPLE ID	(ug/L)	FACTOR	(%)	(ug/L)	(ug/L)	DATETIME	DATETIME	FILE ID	REF	BATCH	DATETIME	DATETIME
MBLK1W	HGH046WB			NA	0.500	0.100	08/28/1320.09	08/28/1315:30	M47H028048	M//7H028	HGH046W	ΝΛ	NA
LCS1W	HGH046WL	2.44	1	NA	0.500	0.100		08/28/1315:30			HGH046W		NA
LCD1W	HGH046WC	2.40	1	NA	0.500	0.100	08/28/1320:12	2 08/28/1315:30	M47H028050	M47H028	HGH046W	NA	NA
MBLK2W	WTH005SB	ND	1	NA	0.500	0.100	08/28/1320:51	08/28/1315:30	M47H028069	M47H028	HGH046W	NA	NA
1A-2	H125-01	ND	1	NA	0.500	0.100	08/28/1320:59	08/28/1315:30	M47H028073	M47H028	HGH046W	07/18/1315:30	08/14/13
1A-2MS	H125-01M	2.86	1	NA	0.500	0.100	08/28/1321:03	8 08/28/1315:30	M47H028075	M47H028	HGH046W	07/18/1315:30	08/14/13
1A-2MSD	H125-01S	2.58	1	NA	0.500	0.100	08/28/1321:05	08/28/1315:30	M47H028076	M47H028	HGH046W	07/18/1315:30	08/14/13
2A-2	H125-02	ND	1	NA	0.500	0.100	08/28/1321:07	08/28/1315:30	M47H028077	M47H028	HGH046W	07/18/1315:30	08/14/13
3A-2	H125-03	ND	1	NA	0.500	0.100	08/28/1321:08	8 08/28/1315:30	M47H028078	M47H028	HGH046W	07/18/1315:30	08/14/13

DateTime Leached: 08/17/13 11:00

Note: 5 ml leachate was diluted to 50 ml reagent water prior to digestion.

CLIENT	: URS
PROJECT	: DHCCP
BATCH NO.	: 13H125
METHOD	: DI WET/7470A
<u></u>	

MATRIX :	LEACHATE		<pre>% MOISTURE: N/A</pre>
DILUTION FACTOR:	1	1	1
SAMPLE ID :	MBLK1W	LCS1W	LCD1W
LAB SAMPLE ID :	HGH046WB	HGH046WL	HGH046WC
LAB FILE ID :	M47H028048	M47H028049	M47H028050
DATE PREPARED :	08/28/1315:30	08/28/1315:30	08/28/1315:30
DATE ANALYZED :	08/28/1320:09	08/28/1320:11	08/28/1320:12
PREP BATCH :	HGH046W	HGH046W	HGH046W
CALIBRATION REF:	M47H028	M47H028	M47H028

	MB RESULT	SPIKE AMT	BS RESULT	BS REC	SPIKE AMT	BSD RESULT	BSD REC	RPD	QC LIMIT	MAX RPD
PARAMETER	(ug/L)	(ug/L)	(ug/L)	(%)	(ug/L)	(ug/L)	(%)	(%)	(%)	(%)
							• • • • • • • • • • • • • • • • • • •			
Mercury	ND	2.50	2.44	98	2.50	2.40	96	2	80-120	20

CLIENT : URS			
PROJECT : DHCCF)		
BATCH NO. : 13H12	25		
METHOD : DI WE	T/7470A		
MATRIX : LEACH	IATE	∦ MOISTURE: NA	
DILUTION FACTOR: 1	1	1	
SAMPLE ID : 1A-2	1A-2MS	1A-2MSD	
LAB SAMPLE ID : H125	-01 H125-01M	H125-01S	
LAB FILE ID : M47H0	028073 M47H028075	M47H028076	
DATE PREPARED : 08/28	3/1315:30 08/28/1315:30	08/28/1315:30	
DATE ANALYZED : 08/28	3/1320:59 08/28/1321:03	08/28/1321:05	
PREP BATCH : HGH04	16W HGH046W	HGH046W	
CALIBRATION REF: M47H	D28 M47H028	M47H028	

	PARENT RESULT	SPIKE AMT	MS RESULT	MS REC	SPIKE AMT	MSD RESULT	MSD REC	RPD	QC LIMIT	MAX RPD
PARAMETER	(ug/L)	(ug/L)	(ug/L)	(%)	(ug/L)	(ug/L)	(%)	(%)	(%)	(%)
	•••••									
Mercury	ND	2.50	2.86	114	2.50	2.58	103	10	75-125	20

LABORATORY REPORT FOR

URS

DHCCP

WET CHEMICAL ANALYSES

SDG#: 13H125

Client : URS

Project : DHCCP

SDG : 13H125

project limit.

SM 4500NH3F AMMONIA (NH3-N)

A total of three (3) soil samples were received on 08/14/13 for Ammonia-N by SM4500-NH3 F analysis, Method SM 4500NH3F in accordance with Standard Methods for the Examination of Water and Wastewater, 21st Edition.

Holding Time Samples were out of prescribed holding time upon resolution of discrepancies and were received without thermal preservation. The samples were analyzed upon client advice to proceed with the analysis.

Calibration Multi-calibration points were generated to establish initial calibration (ICAL). ICAL was verified using a secondary source. Continuing calibration verifications were carried out at the frequency specified by the project. All calibration requirements were within acceptance criteria.

Method Blank Method blank was analyzed at the frequency required by the project. For this SDG, one method blank was analyzed with the samples. Result was compliant to project requirement.

Lab Control Sample A set of LCS/LCD was analyzed with the samples in this SDG. Percent recoveries for NHH006SL/C were all within QC limits.

Matrix QC Sample Matrix QC sample was analyzed at the frequency prescribed by the project. Percent recovery for H125-01M was within project QC limits. Sample duplicate was also analyzed with the samples. RPD was within

Sample Analysis Samples were analyzed according to prescribed analytical procedures. All project requirements were met; otherwise, anomalies were discussed within the associated QC parameter.

SM 4500NH3F AMMONIA (NH3-N)

Client : URS Project : DHCCP Batch No. : 13H125			=========	======							Matrix Instru	a : SOIL mentID : 70	259
CLIENT	EMAX	RESULTS	DFxPREP	MOIST	LOQ	LOD	ANALYSIS	PREPARATION	DATA	CAL	PREP	COLLECTION	RECEIVED
SAMPLE ID	SAMPLE ID	(mg/kg)	FACTOR	(%)	(mg/kg)	(mg/kg)	DATETIME	DATETIME	FILE ID	REF	BATCH	DATETIME	DATETIME
MBLK1S	NHH006SB	ND	1	NA	1	0.6	08/21/1319:13	08/21/1314:04	13NHH00611	13NHH006	NHH006S	NA	NA
LCS1S	NHH006SL	4.45	1	NA	1	0.6		08/21/1314:04					NA
LCD1S	NHH006SC	4.90	1	NA	1	0.6	08/21/1319:13	08/21/1314:04	13nhh00613	13NHH006	NHHOO6S	NA	NA
1A-2	H125-01	2.57	1	14.0	1.16	0.698	08/21/1319:13	08/21/1314:04	13NHH00614	13NHH006	NHH006S	07/18/1315:30	08/14/13
1A-2DUP	H125-01D	2.54	0.991	14.0	1.15	0.691	08/21/1319:13	08/21/1314:04	13NHH00615	13NHH006	NHHOO6S	07/18/1315:30	08/14/13
1A-2MS	H125-01M	6.97	1.01	14.0	1.17	0.705	08/21/1319:14	08/21/1314:04	13nhh00616	1 3NH H006	NHHOO6S	07/18/1315:30	08/14/13
2A-2	н125-02	3.29	0.997	13.8	1.16	0.694	08/21/1319:14	08/21/1314:04	13nhh00617	13NHH006	NHHOO6S	07/18/1315:30	08/14/13
3A-2	H125-03	2.96	0.993	14.0	1.15	0.693	08/21/1319:14	08/21/1314:04	13NHH00618	13NHH006	NHHOO6S	07/18/1315:30	08/14/13

PROJECT BATCH NO.	: URS : DHCCP : 13H125 : SM 4500NH3F				
MATRIX	: SOIL			% MOISTURE:	NA
	: 1 : MBLK1S : NHH006SB	1 LCS1S NHHOO6SL	1 LCD1S NHHOO6SC		

LAB FILE ID	: 13NHH00611	13nhh00612	13NHH00613
DATE PREPARED	: 08/21/1314:04	08/21/1314:04	08/21/1314:04
DATE ANALYZED	: 08/21/1319:13	08/21/1319:13	08/21/1319:13
PREP BATCH	: NHHOO6S	NHHOO6S	NHHOO6S
CALIBRATION REF	F: 13NHH006	13NHH006	13NHH006

PARAMETER	MB RESULT	SPIKE AMT	BS RESULT	BS REC	SPIKE AMT	BSD RESULT	BSD REC	RPD	QC LIMIT	MAX RPD
	(mg/kg)	(mg/kg)	(mg/kg)	(%)	(mg/kg)	(mg/kg)	(%)	(%)	(%)	(%)
Ammonia (NH3-N)	ND	5	4.45	89	5	4.90	98	10	80-120	20

	: URS	
PROJECT	: DHCCP	
BATCH NO.	: 13H125	
METHOD	: SM 4500NH3F	
=================		
MATRIX	: SOIL	% MOISTURE: 14.0
DILUTION FACTOR:	: 1	1.01
SAMPLE ID	: 1A-2	1A-2MS
LAB SAMPLE ID	: H125-01	H125-01M
LAB FILE ID	: 13NHH00614	13NHH00616
DATE PREPARED	: 08/21/1314:04	08/21/1314:04
DATE ANALYZED	: 08/21/1319:13	08/21/1319:14
PREP BATCH	: NHH006S	NHH006S
CALIBRATION REF	: 13NHHOO6	13NHH006

	PARENT RESULT	SPIKE AMT	MS RESULT	MS REC	QC LIMIT
PARAMETER	(mg/kg)	(mg/kg)	(mg/kg)	(%)	(%)
Ammonia (NH3-N)	2.57	5	6.97	88	75-125

CLIENT	: URS
PROJECT	: DHCCP
BATCH NO.	: 13H125
METHOD	: SM 4500NH3F

MATRIX	: SOIL	
DILUTION FACTOR:	: 1	0.991
SAMPLE ID	: 1A-2	1A-2DUP
LAB SAMPLE ID	: H125-01	H125-01D
LAB FILE ID	: 13NHH00614	13NHH00615
DATE PREPARED	: 08/21/1314:04	08/21/1314:04
DATE ANALYZED	: 08/21/1319:13	08/21/1319:13
PREP BATCH	: NHHOO6S	NHHOO6S
CALIBRATION REF	: 13NHH006	13NHH006

	PARENT RESULT	DUP RESULT	RPD	MAX RPD
PARAMETER	(mg/kg)	(mg/kg)	(%)	(%)
Ammonia (NH3-N)	2.57	2.54	1	20

CASE NARRATIVE

Client : URS

263

Project : DHCCP

SDG : 13H125

SM 4500NO3E NITRATE/NITRITE

A total of three (3) soil samples were received on 08/14/13 for Nitrate/Nitrite as N analysis, Method SM 4500NO3E in accordance with Standard Methods for the Examination of Water and Wastewater, 21st Edition.

Holding Time Samples were out of prescribed holding time upon resolution of discrepancies and were received without thermal preservation. The samples were analyzed upon client advice to proceed with the analysis.

Calibration

Multi-calibration points were generated to establish initial calibration (ICAL). ICAL was verified using a secondary source. Continuing calibration verifications were carried out at the frequency specified by the project. All calibration requirements were within acceptance criteria.

Method Blank Method blank was analyzed at the frequency required by the project. For this SDG, one method blank was analyzed with the samples. Result was compliant to project requirement.

Lab Control Sample A set of LCS/LCD was analyzed with the samples in this SDG. Percent recoveries for NAH003SL/C were within QC limits.

Matrix QC Sample

Matrix QC sample was analyzed at the frequency prescribed by the project. Percent recovery for H125-03M was within project QC limits. Sample duplicate was also analyzed with the samples. RPD was within project limit.

Sample Analysis

Samples were analyzed according to prescribed analytical procedures. All project requirements were met; otherwise, anomalies were discussed within the associated QC parameter.

SM 4500NO3E NITRATE/NITRITE

Client : URS Project : DHCCP Batch No. : 13H125				======						*******	Matrix Instru	(: SOIL mentID : 70	264
CLIENT	EMAX	RESULTS	DFxPREP	MOIST	LOQ	LOD	ANALYSIS	PREPARATION	DATA	CAL	PREP	COLLECTION	RECEIVED
SAMPLE ID	SAMPLE ID	(mg/kg)	FACTOR	(%)	(mg/kg)	(mg/kg)	DATETIME	DATETIME	FILE ID	REF	BATCH	DATETIME	DATETIME
MBLK1S	NAH003SB	ND	1	NA	0,5	0.2	08/19/1318:44	08/19/1311:15	13NAH00310	13NAH003	NAHOO3S	ΝΔ	NA
LCS1S	NAH003SL	5.32	1	NA	0.5	0.2		08/19/1311:15					NA
LCD1S	NAH003SC	5.37	1	NA	0.5	0.2	08/19/1318:44	08/19/1311:15	13NAH00312	13NAH003	NAH003S	NA	NA
1A-2	H125-01I	12.6	1.99	14.0	1.16	0.463	08/19/1318:55	08/19/1311:15	13NAH00320	13NAH003	NAH003S	07/18/1315:30	08/14/13
2A-2	H125-02I	12.7	1.99	13.8	1.15	0.462	08/19/1318:55	08/19/1311:15	13NAH00321	13NAH003	NAH003S	07/18/1315:30	08/14/13
3A-2	H125-03I	12.5	2	14.0	1.16	0.465	08/19/1318:56	08/19/1311:15	13NAH00322	13NAH003	NAH003S	07/18/1315:30	08/14/13
3A-2DUP	H125-03ID	12.5	2	14.0	1.16	0.465	08/19/1318:56	08/19/1311:15	13NAH00323	13NAH003	NAH003S	07/18/1315:30	08/14/13
3A-2MS	H125-03IM	18.0	2	14.0	1.16	0.465	08/19/1318:56	08/19/1311:15	13NAH00324	13NAH003	NAH003S	07/18/1315:30	08/14/13

13NAH003

CLIENT PROJECT BATCH NO. METHOD	: URS : DHCCP : 13H125 : SM 4500NO3E		
MATRIX	: SOIL		% MOISTURE: NA
DILUTION FACTO	DR: 1	1	1
SAMPLE ID	: MBLK1S	LCS1S	LCD1S
LAB SAMPLE ID	: NAHOO3SB	NAHOO3SL	NAHOO3SC
LAB FILE ID	: 13NAH00310	13NAH00311	13NAH00312
DATE PREPARED	: 08/19/1311:15	08/19/1311:15	08/19/1311:15
DATE ANALYZED	: 08/19/1318:44	08/19/1318:44	08/19/1318:44
PREP BATCH	: NAH003S	NAH003S	NAHOO3S

ACCESSION:

CALIBRATION REF: 13NAH003

13NAH003

PARAMETER	MB RESULT	SPIKE AMT	BS RESULT	BS REC	SPIKE AMT	BSD RESULT	BSD REC	RPD	QC LIMIT	MAX RPD
	(mg/kg)	(mg/kg)	(mg/kg)	(%)	(mg/kg)	(mg/kg)	(%)	(%)	(%)	(%)
NITRATE/NITRITE	ND	5	5.32	106	5	5.37	107	1	80-120	20

CLIENT PROJECT BATCH NO. METHOD	:	URS DHCCP 13H125 SM 4500N03E			
MATRIX	:	SOIL		% MOISTURE:	14.0
DILUTION FACTO	DR:	2	2		
SAMPLE ID	:	3A-2	3A-2MS		
LAB SAMPLE ID	:	H125-03I	H125-03IM		
LAB FILE ID	:	13NAH00322	13NAH00324		
DATE PREPARED	:	08/19/1311:15	08/19/1311:15		
DATE ANALYZED	:	08/19/1318:56	08/19/1318:56		
PREP BATCH	:	NAH003S	NAH003S		
CALIBRATION RE	F:	13NAH003	13NAH003		

	PARENT RESULT	SPIKE AMT	MS RESULT	MS REC	QC LIMIT
PARAMETER	(mg/kg)	(mg/kg)	(mg/kg)	(%)	(%)
NITRATE/NITRITE	12.5	5	18.0	110	75-125

 CLIENT
 : URS

 PROJECT
 : DHCCP

 BATCH NO.
 : 13H125

 METHOD
 : SM 4500NO3E

MATRIX	:	SOIL	
DILUTION FACTOR	::	2	2
SAMPLE ID	:	3A-2	3A-2DUP
LAB SAMPLE ID	:	H125-03I	H125-03ID
LAB FILE ID	:	13NAH00322	13NAH00323
DATE PREPARED	:	08/19/1311:15	08/19/1311:15
DATE ANALYZED	:	08/19/1318:56	08/19/1318:56
PREP BATCH	:	NAHOO3S	NAH003S
CALIBRATION REF	:	13NAH003	13NAH003

	PARENT RESULT	DUP RESULT	RPD	MAX RPD
PARAMETER	(mg/kg)	(mg/kg)	(%)	(%)
NITRATE/NITRITE	12.5	12.5	0	20

Client : URS

Project : DHCCP

SDG : 13H125

METHOD 7196A HEXAVALENT CHROMIUM

A total of three (3) soil samples were received on 08/14/13 for Chromium Hexavalent analysis, Method 7196A in accordance with USEPA SW-846, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods.

Holding Time Samples were out of prescribed holding time upon resolution of discrepancies and were received without thermal preservation. The samples were analyzed upon client advice to proceed with the analysis.

Calibration Multi-calibration points were generated to establish initial calibration (ICAL). ICAL was verified using a secondary source. Continuing calibration verifications were carried out at the frequency specified by the project. All calibration requirements were within acceptance criteria.

Method Blank Method blank was analyzed at the frequency required by the project. For this SDG, one method blank was analyzed with the samples. Result was compliant to project requirement.

Lab Control Sample

Percent recovery for CIH009SL was within QC limits. Percent recovery for CSH009SL was within QC limits.

Matrix QC Sample Matrix QC sample was analyzed at the frequency prescribed by the project. Percent recoveries for H125-02M/M (insoluble and soluble) were within project QC limits. Sample duplicate was also analyzed with the samples. RPD was within project limit. Analytical spike was analyzed for matrix interference evaluation. Results were within method acceptance criteria.

Sample Analysis Samples were analyzed according to prescribed analytical procedures. All project requirements were met otherwise anomalies were discussed within the associated QC parameter.

METHOD 7196A HEXAVALENT CHROMIUM

Client : URS Project : DHCCP Batch No. : 13H125												Matrix InstrumentID	: SOIL : 70
CLIENT SAMPLE ID	EMAX SAMPLE ID	RESULTS (mg/kg)		MOIST (%)	LOQ (mg/kg	LOD g)(mg/kg	ANALYSIS)DATETIME	PREPARATION DATETIME	DATA FILE ID	CAL REF	PREP BATCH	COLLECTION DATETIME	RECEIVED DATETIME
MBLK1S	CRH009SB	ND	1	NA	1	0.5	08/20/1317:12	08/16/1315:16	13CRH00909	13CRH009	CRH009S	NA	NA
LCS1S	CSH009SL	10.9	1	NA	1	0.5	08/20/1317:13	08/16/1315:16	13CRH00910	13CRH009	CRH009S	NA	NA
LCS2S	CIHOO9SL	549	50	NA	50	25	08/20/1317:13	08/16/1315:16	13CRH00911	13CRH009	CRH009S	NA	NA
1A-2	H125-01	ND	1.02	14.0	1.19	0.593	08/20/1317:13	08/16/1315:16	13CRH00912	13CRH009	CRH009S	07/18/1315:30	08/14/13
2A-2	H125-02	ND	1	13.8	1.16	0.58	08/20/1317:13	08/16/1315:16	13CRH00913	13CRH009	CRH009S	07/18/1315:30	08/14/13
2A-2DUP	H125-02D	ND	1.02	13.8	1.18	0.592	08/20/1317:14	08/16/1315:16	13CRH00914	13CRH009	CRH009S	07/18/1315:30	08/14/13
2A-2MS	H125-02M	13.0	1.01	13.8	1.17	0.586		08/16/1315:16					
2A-2MS	H125-02M	650	50.4	13.8	58.5	29.2		08/16/1315:16					
2A-2AS	H125-02A	12.7	1	13.8	1.16	0.58		08/16/1315:16					• •
3A-2	H125-03	ND	0.997	14.0	1.16	0.58		08/16/1315:16					

CLIENT	: URS
PROJECT	: DHCCP
BATCH NO.	: 13H125
METHOD	: METHOD 7196A
=======================================	

:	SOIL	
:	1	1
:	MBLK1S	LCS1S
:	CRH009SB	CSH009SL
:	13crh00909	13CRH00910
:	08/16/1315:16	08/16/1315:16
:	08/20/1317:12	08/20/1317:13
:	CRH009S	CRH009S
:	13CRH009	13CRH009
		: SOIL : 1 : MBLK1S : CRH009SB : 13CRH00909 : 08/16/1315:16 : 08/20/1317:12 : CRH009S : 13CRH009

PARAMETER	MB RESULT (mg/kg)	SPIKE AMT (mg/kg)	BS RESULT (mg/kg)	BS REC (%)	QC LIMIT (%)
Hexavalent Chromium	ND	12	10.9	91	75~125

	URS DHCCP			
	13H125			
	METHOD 7196A			
	=======================================	=======================================		
MATRIX :	SOIL		% MOISTURE:	13.8
DILUTION FACTOR:	1	1.01		
SAMPLE ID :	2A-2	2A-2MS		
LAB SAMPLE ID :	H125-02	H125-02M		
LAB FILE ID :	13CRH00913	13CRH00915		
DATE PREPARED :	08/16/1315:16	08/16/1315:16		
DATE ANALYZED :	08/20/1317:13	08/20/1317:14		
PREP BATCH :	CRH009S	CRH009S		
CALIBRATION REF:	13CRH009	13CRH009		

	PARENT RESULT	SPIKE AMT	AS RESULT	AS REC	QC LIMIT
PARAMETER	(mg/kg)	(mg/kg)	(mg/kg)	(%)	(%)
Hexavalent Chromium	ND	14.1	13.0	92	75-125

CLIENT	: URS			
PROJECT	: DHCCP			
BATCH NO.	: 13H125			
METHOD	: METHOD 7196A			
				. Dan den men men men mer har sin den den den gen gen gen
MATRIX	: SOIL		% MOISTURE:	13.8
PREPxDIL FAC	TOR: 1	1.02		
SAMPLE ID	: 2A-2	2A-2DUP		
LAB SAMPLE I	D : H125-02	H125-02D		
LAB FILE ID	: 13CRH00913	13CRH00914		
DATE PREPARE	D : 08/16/1315:16	08/16/1315:16		
DATE ANALYZE	D : 08/20/1317:13	08/20/1317:14		
PREP BATCH	: CRH009S	CRH009S		
CALIBRATION	REF: 13CRH009	13CRH009		
ACCESSION:				

PARENT RESULT DUP RESULT RPD MAX RPD PARAMETER (%) (mg/kg) (mg/kg) (%) _____ ---------------------ND 0 20 Hexavalent Chromium ND

PROJECT BATCH NO.	: URS DHCCP : 13H125 : METHOD			
MATRIX	: SOIL	 	MOISTURE:	13.8
DILUTION FACTOR	: 1	1 24-2		

SAMPLE ID	:	2A-2	2A-2
LAB SAMPLE ID	:	H125-02	H125-02A
LAB FILE ID	:	13CRH00913	13CRH00917
DATE PREPARED	:	08/16/1315:16	08/16/1315:16
DATE ANALYZED	:	08/20/1317:13	08/20/1317:15
PREP BATCH	:	CRH009S	CRH009S
CALIBRATION REP	:	13CRH009	13CRH009

	PARENT RESULT	SPIKE AMT	AS RESULT	AS REC	QC LIMIT
PARAMETER	(mg/kg)	(mg/kg)	(mg/kg)	(%)	(%)
Hexavalent Chromium	ND	13.9	12.7	91	75-125

Client : URS

Project : DHCCP

SDG : 13H125

WALKLEY-BLACK TOC BY WALKLEY-BLACK METHOD

A total of three (3) soil samples were received on 08/14/13 for Total Organic Carbon analysis, MethodWALKLEY-BLACK in accordance with Walkley-Black Procedure (Walkley, 1946; Peech et al., 1947; Greweling & Peech, 1960).

Holding Time Samples were out of prescribed holding time upon resolution of discrepancies and were received without thermal preservation. The samples were analyzed upon client advice to proceed with the analysis.

Method Blank Method blank was analyzed at the frequency required by the project. For this SDG, one method blank was analyzed with the samples. Result was compliant to project requirement.

Lab Control Sample A set of LCS/LCD was analyzed with the samples in this SDG. Percent recoveries for WBH005SL/C were all within QC limits.

Matrix QC Sample No matrix QC sample was designated for this SDG. However, sample duplicate was analyzed with the samples. RPD was within project limit.

Sample Analysis Samples were analyzed according to prescribed analytical procedures. All project requirements were met otherwise anomalies were discussed within the associated QC parameter.

WALKLEY-BLACK TOC BY WALKLEY-BLACK METHOD

Client : URS Project : DHCCP Batch No. : 13H125				======	=========								: SOIL 275
CLIENT SAMPLE ID	EMAX SAMPLE ID	RESULTS (mg/kg)	PREP. FACTOR	MOIST (%)	LOQ (mg/kg)	LOD (mg/kg)	ANALYSIS DATETIME	PREPARATION DATETIME	DATA FILE ID	CAL REF	PREP BATCH	COLLECTION DATETIME	RECEIVED DATETIME
MBLK1S	WBH005SB	ND	1	NA	600	600	08/19/1312:44	08/19/1312:44	13WBH00501	13wBH005	WBH005S	NA	NA
LCS1S	WBH005SL	2230	1	NA	600	60 0	08/19/1312:44	08/19/1312:44	13WBH00502	13wBH005	WBH005S	NA	NA
LCD1S	WBH005SC	2230	1	NA	600	600	08/19/1312:44	08/19/1312:44	13WBH00503	13WBH005	WBH005S	NA	NA
1A-2	H125-01	981	0.966	14.0	674	674	08/19/1312:44	08/19/1312:44	13wBH00504	13WBH005	WBH005S	07/18/1315:30	08/14/13
1A-2DUP	H125-01D	1010	0.999	14.0	674	674	08/19/1312:44	08/19/1312:44	13WBH00505	13WBH005	WBH005S	07/18/1315:30	08/14/13
2A-2	H125-02	1090	0.972	13.8	677	677	08/19/1312:44	08/19/1312:44	13WBH00506	13WBH005	WBH005S	07/18/1315:30	08/14/13
3A-2	н125-03	1220	0.987	14.0	689	689	08/19/1312:44	08/19/1312:44	13WBH00507	13WBH005	WBH005S	07/18/1315:30	08/14/13

e

CLIENT	: URS		
PROJECT	: DHCCP		
BATCH NO.	: 13H125		
METHOD	: WALKLEY-BLACK		
=======================================			***************************************
MATRIX	: SOIL		% MOISTURE: NA
DILUTION FACTOR	: 1	1	1
SAMPLE ID	: MBLK1S	LCS1S	LCD1S
LAB SAMPLE ID	: WBH005SB	WBH005SL	WBH005sc
LAB FILE ID	: 13WBH00501	13wBH00502	13WBH00503
DATE EXTRACTED	: 08/19/1312:44	08/19/1312:44	08/19/1312:44
DATE ANALYZED	: 08/19/1312:44	08/19/1312:44	08/19/1312:44
PREP BATCH	: WBH005S	WBH005S	WBH005S
CALIBRATION REF	: 13WBH005	13WBH005	13WBH005

PARAMETER	(mg/kg)	SPIKE AMT (mg/kg)	BS RESULT (mg/kg)	(%)	(mg/kg)	(mg/kg)	(%)	RPD (%)	QC LIMIT (%)	MAX RPD (%)
TOC	ND	2000	2230	112	2000	2230	112	0	80-120	20

CLIENT : URS PROJECT : DHCCP BATCH NO. : 13H125 METHOD : WALKLEY-BLACK

MATRIX :	SOIL	MOISTURE: 14.0
DILUTION FACTOR:	1	1
SAMPLE ID :	1A-2	1A-2DUP
LAB SAMPLE ID :	H125-01	H125-01D
LAB FILE ID :	13WBH00504	13wBH00505
DATE PREPARED :	08/19/1312:44	08/19/1312:44
DATE ANALYZED :	08/19/1312:44	08/19/1312:44
PREP BATCH :	WBH005S	WBH005S
CALIBRATION REF:	13wвноо5	13WBH005

	PARENT RESULT	DUP RESULT	RPD	MAX RPD
PARAMETER	(mg/kg)	(mg/kg)	(%)	(%)
TOC	981	1010	3	20

LABORATORY REPORT FOR

URS

DHCCP

SUBCONTRACTED ANALYSES (ALS-KELSO)

BUTYLTINS METHYL MERCURY

SDG#: 13H125

279

September 5, 2013

Analytical Report for Service Request No: K1308384

Caspar Pang Emax Laboratories, Incorporated 1835 W. 205th St. Torrance, CA 90501

RE: DHCCP/13H125

Dear Caspar:

Enclosed are the results of the samples submitted to our laboratory on August 19, 2013. For your reference, these analyses have been assigned our service request number K1308384.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at <u>www.alsglobal.com</u>. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please call if you have any questions. My extension is 3364. You may also contact me via Email at Howard.Holmes@alsglobal.com.

Respectfully submitted,

ALS Group USA Corp. dba ALS Environmental

Howard Holmes Project Manager

HH/ln

Page 1 of 21

ADDRESS 1317 S. 13th Avenue, Kelso, WA 98626 USA | PHONE +1 360 577 7222 | FAX +1 360 636 1068 ALS Group USA, Corp. Part of the ALS Group An ALS Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

Acronyms

	v
ASTM	American Society for Testing and Materials
A2LA	American Association for Laboratory Accreditation
CARB	California Air Resources Board
CAS Number	Chemical Abstract Service registry Number
CFC	Chlorofluorocarbon
CFU	Colony-Forming Unit
DEC	Department of Environmental Conservation
DEQ	Department of Environmental Quality
DHS	Department of Health Services
DOE	Department of Ecology
DOH	Department of Health
EPA	U. S. Environmental Protection Agency
ELAP	Environmental Laboratory Accreditation Program
GC	Gas Chromatography
GC/MS	Gas Chromatography/Mass Spectrometry
LOD	Limit of Detection
LOQ	Limit of Quantitation
LUFT	Leaking Underground Fuel Tank
М	Modified
MCL	Maximum Contaminant Level is the highest permissible concentration of a substance
	allowed in drinking water as established by the USEPA.
MDL	Method Detection Limit
MPN	Most Probable Number
MRL	Method Reporting Limit
NA	Not Applicable
NC	Not Calculated
NCASI	National Council of the Paper Industry for Air and Stream Improvement
ND	Not Detected
NIOSH	National Institute for Occupational Safety and Health
PQL	Practical Quantitation Limit
RCRA	Resource Conservation and Recovery Act
SIM	Selected Ion Monitoring
TPH	Total Petroleum Hydrocarbons
tr	Trace level is the concentration of an analyte that is less than the PQL but greater
	than or equal to the MDL.

281

Inorganic Data Qualifiers

- The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- ${f J}$ The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Agency	Web Site	Number
Alaska DEC UST	http://dec.alaska.gov/applications/eh/ehllabreports/USTLabs.aspx	UST-040
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0339
Arkansas - DEQ	http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637
California DHS (ELAP)	http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2286
DOD ELAP	http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm	L12-28
Florida DOH	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412
Georgia DNR	http://www.gaepd.org/Documents/techguide_pcb.html#cel	881
Hawaii DOH	Not available	-
Idaho DHW	http://www.healthandwelfare.idaho.gov/Health/Labs/CertificationDrinkingWaterLabs/tabid/1833/Default.aspx	· · · · · · · · · · · · · · · · · · ·
Indiana DOH	http://www.in.gov/isdh/24859.htm	C-WA-01
ISO 17025	http://www.pjlabs.com/	L12-27
Louisiana DEQ	http://www.deq.louisiana.gov/portal/DIVISIONS/PublicParticipationandPer mitSupport/LouisianaLaboratoryAccreditationProgram.aspx	3016
Maine DHS	Not available	WA0035
Michigan DEQ	http://www.michigan.gov/deq/0,1607,7-135-3307_4131_4156,00.html	9949
Minnesota DOH	http://www.health.state.mn.us/accreditation	0 5 3-999-368
Montana DPHHS	http://www.dphhs.mt.gov/publichealth/	CERT0047
Nevada DEP	http://ndep.nv.gov/bsdw/labservice.htm	WA35
New Jersey DEP	http://www.nj.gov/dep/oqa/	WA005
North Carolina DWQ	http://www.dwqlab.org/	605
Oklahoma DEQ	http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
Oregon – DEQ (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaborator yAccreditation/Pages/index.aspx	WA200001
South Carolina DHEC	http://www.scdhec.gov/environment/envserv/	61002
Texas CEQ	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	704427-08-TX
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C1203
Wisconsin DNR	http://dnr.wi.gov/	998386840
Wyoming (EPA Region 8)	http://www.epa.gov/region8/water/dwhome/wyomingdi.html	-
Kelso Laboratory Website	www.alsglobal.com_	NA

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.caslab.com or at the accreditation bodies web site

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

ALS ENVIRONMENTAL

Client: Emax Laboratories, Incorporated **Project:** DHCCP/13H125 Sample Matrix: Soil

Service Request No.: Date Received:

K1308384 08/19/13

Case Narrative

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses. Additional quality control analyses reported herein include: Laboratory Duplicate (DUP), Matrix Spike (MS), Matrix/Duplicate Matrix Spike (MS/DMS), Laboratory Control Sample (LCS), and Laboratory/Duplicate Laboratory Control Sample (LCS/DLCS).

Sample Receipt

Three soil samples were received for analysis at ALS Environmental on 08/19/13. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

Total Metals

No anomalies associated with the analysis of these samples were observed.

Organotin Compounds

Calibration Verification Exceptions:

The analysis of Butyltins requires the use of dual column confirmation. When the Continuing Calibration Verification (CCV) criterion is met for both columns, the lower of the two sample results is generally reported. The primary evaluation criteria were not met on the confirmation column for Tri-n-propyltin and Tetra-n-butyltin in 0830F014. The results were reported from the column with an acceptable CCV. The data quality was not affected. No further corrective action was necessary.

Holding Time Exceptions:

These field samples were received past holding time. The analysis was performed as soon as possible after receipt by the laboratory. The data was flagged to indicate the holding time violation.

Matrix Spike Recovery Exceptions:

The matrix spike recovery of n-Butyltin for sample Batch QC was outside control criteria. Recovery in the Laboratory Control Sample (LCS) was acceptable, which indicated the analytical batch was in control. The matrix spike outlier suggested a potential low bias in this matrix. No further corrective action was appropriate.

No other anomalies associated with the analysis of these samples were observed.

Approved by Hwallblum

CHAIN OF CUSTODY

				CH	AIN	OF	CUS	no.	DY							K1308384
RAX 1835 W. 205th Tel #: 310-618								EM	IAX C	ONT	ROL	nnonen maandeleen op onen anderen en anderen A NO. *				
LABORATORIES, INC. Email: info@o)10-019-08	918	SAMPLE STORAGE			nnessan na kana baya kate	oncessie etsteres	- 0400000000000000000000000000000000000	aranji generati t	en estere est	PR	OJEC	T CO	DE:	13 H 12 5
CLIENT URS		n de la la companya (na seconda da companya da companya da companya da companya da companya da companya da comp	national de la constant de la const	l N	ATRIX (CODE		NDE LVATIVE		S.	ANAL	โลมันการประเทศการป	approximate a Mathematic	040trangerationarcelie	innin fördjorde	13 H 12 5 TAT
PROJECT DHCCP				DW-D	rinking Wate	n na stand a s	IC = Ice	deste lana terretakana		30		n Alber (1985) - San	EQUIRI	1-DougledDeykDessond		Restaurantiete annual and an annual and an annual and a second seco
COORDINATOR				GM#G	round Water		HC = HC		Sinusgoursh	(je	ar ang	10 March 10	Transformation of the second se	nad was to be		Rushdays
TEL FAX	EMAIL.			₩₩=γ	Vaste Water		HN-HNO	3	articlessical and a local and	Hercury	>		window to address and	rfwradol ofenne	- Production of the second	T days
SEND REPORT TO CAS PAN PANG (CPANG	8 emaxlat)s.can)		SD-So	lid Waste SI	L-Sludge	SH-NaC	H	(Foldsteininge	eva		Company and	and an even over	-Article and the		🔀 14 days
COMPANY EMAX				SS-Soi	V Sedimont		ST-Na25	203	ч. Ч.	Σ			essen og en de service	n fa gui chun da thirt	changed and the second s	21 days
ADDRESS				₩P=W	ipes PP=Pu	re Producis	ZA=Zinc	Acetat	Buty ltin	ethy	hispanetype ¹¹	and the second	ta fa anna ann		, Ann an Anna an Anna Anna Anna Anna Anna	🔲 30 days
				AR-Ai	r		HS=H2S	0 ₄	34	Met						days
EMAX PM CASPAV PANG	2012/01/2012/01/01/01/01/01/01/01/01/01/01/01/01/01/		na santarat ing tang	and a constant		August (Adapted Students)										,
SAMPLE ID	S/	MPLING			CONTAI	NER	MATRIX	oc			PRESI	INVAI	IVE COI	ЖĘ		COMMENTS
LAB CLIENT	LOCATION	DATE	TTME	NO.	SIZE	TYPE	CODE									
× 1A - 2		7/18/13	15:30	1	802.	Jar	33		X	X				and the second second		H125-01
· 2 2A 2A-2									1				1			-02
· 3 8 elicita 3A - 2				$ \downarrow $		\downarrow			V	\downarrow			armout an annual			-03
												Second Provide Second	all-victory - Prove			
													and the set of the set	of the second second		
					-											
														2010 THE COMMON		
	and the second							ġ		,						
+ 9													ACCOUNTS OF THE OWNER OF THE OWNE		Woodsee	
Instructions Level 2 report					199 dis 1 al 199 di se da s								Cooler #	Tem	p. (°C)	Sample #s
	1111-1111-11-11-11-11-11-11-11-11-11-11	and the second second second second second	-		and the second											Sub to: ALS
												ALC: STATE				1317 S. 13th Ave.
																Kelso, WA 98626
SAMPLER	/			Cour	RIER/AIR	BILL	, ,				09409W7059024490		anninge af stage of going and			ATTN : Howard Holmes
RELINQUISHED BY	. /	Date	Time			899 (1997 (19	RECEIV	ED BY	1999-992259469469944	499965649999999	- 1		1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -			
alectric the	N.	15/12	11.11	5	Mil	151	A15	101	4	ন্দ্ৰ	TUT	好	<u></u>			An en en sen an en general sen band au se a general an
)	1	1 Barris	1 c	i de la de l	فكالمستحد الم	and a the second and			koncerner		Ĥ	C		dinementajo sentren	
	n ann an an an an ann an ann an ann an a			-				***********	5-0		******		yn annoe one yn derddaff ar ar ar ar			
NOTICE: Turn-around-time (TAT) for samples shell not begin until all dis	screpancies have been	i msolved. For se	l unples receive	d and dis	erepacies res	olved after 15	500 hrz, TA1	F shall man	t at 0500 1	her the is	ext busin	ness day.	The client is	responsib	ole for all	cost associted with sample disposal. Samples shall be disposed of
soon as practical (but not prior to fifteen (15) calendar stays) after issuance client's expense unless directed in writing otherwise,	of analytical report uni	less a different s	sample disposs	d schedul	e is pre-arree	iged with EN	4AX. Dispos	ial fee for s	amples d	efined by	y CA Tit	ic 22 as n	on-hazardou	s shall be	\$5.00 pc	r sample. EMAX will return hazardous samples to the clien! at the

Client / Project: <u>EMAX</u> Service Request K13 Received: <u>AUG 119, 2013</u> Opened: <u>AUG 119, 2013</u> By: <u>SD</u> Unloaded:		89		
Received: <u>AUG 16, 2013</u> Opened: <u>AUG 16, 2013</u> By: <u>SD</u> Unloaded;	Arra 11071	10		-
	- ich fice c	<u>)</u> [] By:	<u>SA)</u>	
1. Samples were received via? Mail Fed Ex UPS DHL PDX Courier	Hand Delive	ered		•
2. Samples were received in: (circle) Cooler Box Envelope Other			NA	•
. Were <u>custody seals</u> on coolers? NA Y 🐼 If yes, how many and where	e?		· . ·	
If present, were custody seals intact? Y N If present, were they sign	ned and dated?		Y N)
Coaler/COCLD	a mackin	gNumber		
Coblegement Coolergemp germpBlank, seempBlank, set actors, Rechard M.				led y
40 41 20 27 701 540 09	ALAN	$\frac{0152}{500}$	2	
$\frac{5.0551.01501}{10115701}$		5127		
0.7 0.7 3.4 3.000 328		5111		
0.5 0.5 1.2 1.2 0.0 328	•	5100		
Packing material: Inserts Baggies Bubble Wrap Gel Packs (Wet Ice) Dry Ice Slee	eves			
Were custody papers properly filled out (ink, signed, etc.)?		NA	N N	Į .
5. Did all bottles arrive in good condition (unbroken)? Indicate in the table below.		NA	<u>х</u> и	[
. Were all sample labels complete (i.e analysis, preservation, etc.)?		NA	Y N	
. Did all sample labels and tags agree with custody papers? Indicate major discrepancies in the to	able on page 2.		N W	
Were appropriate bottles/containers and volumes received for the tests indicated?	, , , , , , , , , , , , , , , , , , , 	NA	X N	
0. Were the pH-preserved bottles (see SMO GEN SOP) received at the appropriate pH? Indicate in	the table below	-	Y. N	
1. Were VOA vials received without headspace? Indicate in the table below.		ATA)	Y N	
2. Was C12/Res negative?		(NA)	Y N	
				R -
Sample ID on Bottle	. Identified	lious		
		· · · · ·		
				4
Bottle Count Out of Head-	Jumer i Reager			
Bottle Grant Ontrol Head- SampleID Bottle Iyps Riemp space Broke of	boed Num	ber i finit	iais: Minne.	展察部
		· • • • • • • • • • • •		
				-
				4
				-
				4
				1
otes, Discrepancies, & Resolutions:				<u> </u>
	· · · · · · · · · · · · · · · · · · ·			
			· · ·	
		Page	of	

286

ALS Group USA, Corp. dba ALS Environmental

DWR-207

Analytical Results

Client:	Emax Laboratories, Incorporated	Service Request:	K1308384
Project:	DHCCP/13H125		
Sample Matrix:	Soil		

Total Solids

Prep Method: Analysis Method:	NONE 160.3M			Units: Basis:	PERCENT Wet
Test Notes:					

Sample Name		Lab Code	Date Collected	Date Received	Date Analyzed	Result	Result Notes
1A-2		K1308384-001	07/18/2013	08/19/2013	08/28/2013	84.3	
2A-2		K1308384-002	07/18/2013	08/19/2013	08/28/2013	73.5	
3A-2	~	K1308384-003	07/18/2013	08/19/2013	08/28/2013	84.7	
	~						

ALS Group USA, Corp. dba ALS Environmental

QA/QC Report

		F		
Client:	Emax Laboratories, Incorporated		Service Request:	K1308384
Project:	DHCCP/13H125		Date Collected:	07/18/2013
Sample Matrix:	Soil		Date Received:	08/19/2013
			Date Analyzed:	08/28/2013
	Duplicate San	nple Summary		
	Total	Solids		
Prep Method:	NONE		Units:	PERCENT
Analysis Method:	160.3M		Basis:	Wet
Test Notes:				
		Durlianta	Polotivo	

Sample Name	Lab Code	Sample Result	Sample Result	Average	Percent Difference	Result Notes
1A-2	K1308384-001	84.3	84.5	84.4	<1	

Page

÷

ALS Group USA, Corp. dba ALS Environmental Analytical Report

Client: Project: Sample Matrix:	Emax Laboratories, Incorporated DHCCP/13H125 Soil	Service Request: 1 Date Collected: (Date Received: (07/18/13
		Methyl Mercury	
Prep Method: Analysis Method: Test Notes:	CAS SOP CAS SOP	Units: 1 Basis: 1	ÇÇ

			MDI	Dilution	Date	Date	D	Result
Sample Name	Lab Code	MRL	MDL	Factor	Extracted	Analyzed	Result	Notes
1A-2	K1308384-001	0.4	0.04	1	08/27/13	08/29/13	ND	
2A-2	K1308384-002	0.4	0.04	Ĩ	08/27/13	08/29/13	0.05	J
3A-2	K1308384-003	0.4	0.04	1	08/27/13	08/29/13	ND	
Method Blank 1	K1308384-MB1	0.4	0.04	1	08/27/13	08/29/13	ND	
Method Blank 2	K1308384-MB2	0.4	0.04	1	08/27/13	08/29/13	ND	
Method Blank 3	K1308384-MB3	0.4	0.04	1	08/27/13	08/29/13	ND	

Clients

Client: Project: Sample Matrix:	Emax Laborato DHCCP/13H12 Soil	· .	nted							Da Da Da	vice Request: ate Collected: ate Received: te Extracted: ate Analyzed:	07/18/13 08/19/13 08/27/13	
]	Matrix S	pike/D	-	Matrix Sp tals	ike Sum	nmary					
Sample Name: Lab Code: Test Notes:	1A-2 K1308384-0011	MS,	K1308	384-00)1MSD						Units: Basis:		
Analyte	Prep Method	Analysis Method	MRL	Spika MS	e Level DMS	Sample Result	Spike MS	Result DMS	Per MS	cent DMS	R e c o v e r y CAS Acceptance Limits	Relative Percent Difference	Result Notes
Methyl Mercury	CAS SOP	CAS SOP	0.4	115	111	ND	106	98.0	92	88	65-135	8	

289

11

....

QA/QC Report

Client: Project: LCS Matrix:	Emax Laborator DHCCP/13H12 Water	5					Service Request: Date Collected: Date Received: Date Extracted: Date Analyzed:	NA NA 08/27/13
		Ongoin	g Precision a	nd Recove	ry (OPR) S	Sample Sum	mary	
				Meta	ls			
Sample Name:	Ongoing Precisi	on and Recov	ery (Initial)				Units:	pg
							Basis:	NA
		Ргер	Analysis	True		Percent	CAS Percent Recovery Acceptance	Result
Analyte		Method	Method	Value	Result	Recovery	-	Notes
Methyl Mercury		CAS SOP	CAS SOP	100	90.8	91	67-133	

Client: Project: LCS Matrix:	Emax Laboratories, Incorpora DHCCP/13H125 Water	ted				Service Request: Date Collected: Date Received: Date Extracted: Date Analyzed:	NA NA 08/27/13
	Ongoin	g Precision a	nd Recove	ry (OPR) S	Sample Sum	mary	
			Meta	ls			
Sample Name:	Ongoing Precision and Recover	ery (Final)				Units:	pg
						Basis:	NA
						CAS Percent Recovery	
	Prep	Analysis	True		Percent	Acceptance	Result
Analyte	Method	Method	Value	Result	Recovery	Limits	Notes

100

CAS SOP CAS SOP

97.2

97

67-133

Methyl Mercury

Client: Project: LCS Matrix:	Emax Laboratories, Incorpora DHCCP/13H125 Soil	ited				Service Request: Date Collected: Date Received: Date Extracted: Date Analyzed:	NA NA 08/27/13
		Quality Cor	ntrol Samp	le (QCS) S	ummary	v	
			Total M	etals			
Sample Name:	Quality Control Sample					Units:	ng/g
						Basis:	Dry
Source:	ERM - CC580 Estuarine Sedi	ment				CAS Percent Recovery	
Analyte	Prep Method	Analysis Method	True Value	Result	Percent Recovery	Acceptance Limits	Result Notes
Methyl Mercury	CAS SOP	CAS SOP	75.0	66.7	89	67-133	с.

DWR-207

Analytical Results

Client:	Emax Laboratories, Incorporated	Service Request:	K1308384
Project:	DHCCP/13H125	Date Collected:	07/18/2013
Sample Matrix:	Soil	Date Received:	08/19/2013

Butyltins (as cation)

Sample Name:	1A-2	Units:	00
Lab Code:	K1308384-001	Basis:	
Extraction Method: Analysis Method:	Method Krone	Level:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Tetra-n-butyltin	ND U	1.2	0.53	1	08/22/13	08/30/13	KWG1309233	*
Tri-n-butyltin Cation	ND U	1.2	0.51	1	08/22/13	08/30/13	KWG1309233	*
Di-n-butyltin Cation	ND U	1.2	0.23	1	08/22/13	08/30/13	KWG1309233	*
n-Butyltin Cation	ND U	1.2	0.31	1	08/22/13	08/30/13	KWG1309233	*

* See Case Narrative

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Tri-n-propyltin	79	10-120	08/30/13	Acceptable

Comments:

٠

DWR-207

Analytical Results

Client:	Emax Laboratories, Incorporated	Service Request:	K1308384
Project:	DHCCP/13H125	Date Collected:	07/18/2013
Sample Matrix:	Soil	Date Received:	08/19/2013

Butyltins (as cation)

Sample Name:	2A-2	Units:	ug/Kg
Lab Code:	K1308384-002	Basis:	Dry
Extraction Method: Analysis Method:	Method Krone	Level:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lət	Note
Tetra-n-butyltin	ND U	1.4	0.60	1	08/22/13	08/30/13	KWG1309233	*
Tri-n-butyltin Cation	ND U	1.4	0.59	1	08/22/13	08/30/13	KWG1309233	*
Di-n-butyltin Cation	ND U	1.4	0.26	1	08/22/13	08/30/13	KWG1309233	*
n-Butyltin Cation	ND U	1.4	0.36	1	08/22/13	08/30/13	KWG1309233	*

* See Case Narrative

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Tri-n-propyltin	76	10-120	08/30/13	Acceptable	

Comments:

Merged

Page

DWR-207

Analytical Results

Client:	Emax Laboratories, Incorporated	Service Request:	K1308384
Project:	DHCCP/13H125	Date Collected:	07/18/2013
Sample Matrix:	Soil	Date Received:	08/19/2013

Butyltins (as cation)

Sample Name:	3A-2	Units: ug/Kg
Lab Code:	K1308384-003	Basis: Dry
Extraction Method: Analysis Method:	Method Krone	Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Tetra-n-butyltin	ND U	1.2	0.52	1	08/22/13	09/03/13	KWG1309233	*
Tri-n-butyltin Cation	ND U	1.2	0.51	1	08/22/13	09/03/13	KWG1309233	*
Di-n-butyltin Cation	ND U	1.2	0.23	1	08/22/13	09/03/13	KWG1309233	*
n-Butyltin Cation	ND U	1.2	0.31	1	08/22/13	09/03/13	KWG1309233	*

* See Case Narrative

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Tri-n-propyltin	87	10-120	09/03/13	Acceptable

Comments:

Merged

296

ALS Group USA, Corp. dba ALS Environmental

DWR-207

	Analytical Results		
Client:	Emax Laboratories, Incorporated	Service Request:	K1308384
Project:	DHCCP/13H125	Date Collected:	NA
Sample Matrix:	Sediment	Date Received:	NA

Butyltins (as cation)

Sample Name:	Method Blank	Units:	00
Lab Code:	KWG1309233-4	Basis:	
Extraction Method: Analysis Method:	Method Krone	Level:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Tetra-n-butyltin	ND U	0.98	0.44	1	08/22/13	08/30/13	KWG1309233	
Tri-n-butyltin Cation	ND U	0.98	0.43	1	08/22/13	08/30/13	KWG1309233	
Di-n-butyltin Cation	ND U	0.98	0.19	1	08/22/13	08/30/13	KWG1309233	
n-Butyltin Cation	ND U	0.98	0.26	1	08/22/13	08/30/13	KWG1309233	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Tri-n-propyltin	43	10-120	08/30/13	Acceptable

Comments:

Merged

QA/QC Report

Client:
Project:
Sample Matrix:

Emax Laboratories, Incorporated DHCCP/13H125 Sediment

> Surrogate Recovery Summary Butyltins (as cation)

Extraction Method: Analysis Method:

Method Krone Units: Percent Level: Low

Service Request: K1308384

Sample Name	Lab Code	<u>Sur1</u>
Batch QC	K1308299-001	72
1A-2	K1308384-001	79
2A-2	K1308384-002	76
3A-2	K1308384-003	87
Method Blank	KWG1309233-4	43
Batch QCMS	KWG1309233-1	65
Batch QCDMS	KWG1309233-2	74
Lab Control Sample	KWG1309233-3	75

Surrogate Recovery Control Limits (%)

Sur1 = Tri-n-propyltin

10-120

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Page

DWR-207

Service Request: K1308384

 Date Extracted:
 08/22/2013

 Date Analyzed:
 08/30/2013

QA/QC Report

Client:	
Project:	
Sample Matrix:	

Emax Laboratories, Incorporated DHCCP/13H125 Sediment

Matrix Spike/Duplicate Matrix Spike Summary Butyltins (as cation)

Sample Name:	Batch QC	Units:	0 0
Lab Code:	K1308299-001	Basis:	
Extraction Method:	Method	Level:	
Analysis Method:	Krone	Extraction Lot:	

		KV	atch QCMS VG1309233-1 Matrix Spike	l	KV	atch QCDMS VG1309233-2 cate Matrix Sp	2			
Analyte Name	Sample Result	Result	Spike Amount	%Rec	Result	Spike Amount	%Rec	%Rec Limits	RPD	RPD Limit
Tetra-n-butyltin	ND	16.9	30.0	56	21.0	30.0	70	16-126	21	40
Tri-n-butyltin Cation	ND	20.5	26.6	77	23.9	26.6	90	10-115	15	40
Di-n-butyltin Cation	ND	13.4	23.0	58	15.0	23.0	65	10-133	11	40
n-Butyltin Cation	ND	1.42	18.7	8 *	1.38	18.7	7 *	10-124	3	40

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client: Project: Sample Matrix: Emax Laboratories, Incorporated DHCCP/13H125 Sediment

Service Request: K1308384 Date Extracted: 08/22/2013 Date Analyzed: 08/30/2013

Lab Control Spike Summary Butyltins (as cation)

Extraction Method: Analysis Method:	Krone	Lab (KW	Control Sampl /G1309233-3 Control Spike			Ba	its: ug/Kg sis: Dry el: Low ot: KWG1309233
Analyte Name		Result	Spike Amount	%Rec	%Rec Limits		
Tetra-n-butyltin		21.4	25.0	86	19-130		
Tri-n-butyltin Cation		23.9	22.2	107	10-122		
Di-n-butyltin Cation		17.6	19.2	92	12-136		
n-Butyltin Cation		15.9	15.6	102	10-150		

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

DWR-207

ALS ENVIRONMENTAL

Client:Emax Laboratories, IncorporatedProject:DHCCP/ 13H125Sample Matrix:Soil

Service Request No.: Date Received: K1308384 08/19/13

Case Narrative

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses. Additional quality control analyses reported herein include: Laboratory Duplicate (DUP), Matrix Spike (MS), Matrix/Duplicate Matrix Spike (MS/DMS), Laboratory Control Sample (LCS), and Laboratory/Duplicate Laboratory Control Sample (LCS/DLCS).

Sample Receipt

Three soil samples were received for analysis at ALS Environmental on 08/19/13. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

Total Metals

No anomalies associated with the analysis of these samples were observed.

Organotin Compounds

Calibration Verification Exceptions:

The analysis of Butyltins requires the use of dual column confirmation. When the Continuing Calibration Verification (CCV) criterion is met for both columns, the lower of the two sample results is generally reported. The primary evaluation criteria were not met on the confirmation column for Tri-n-propyltin and Tetra-n-butyltin in 0830F014. The results were reported from the column with an acceptable CCV. The data quality was not affected. No further corrective action was necessary.

Holding Time Exceptions:

These field samples were received past holding time. The analysis was performed as soon as possible after receipt by the laboratory. The data was flagged to indicate the holding time violation.

Matrix Spike Recovery Exceptions:

The matrix spike recovery of n-Butyltin for sample Batch QC was outside control criteria. Recovery in the Laboratory Control Sample (LCS) was acceptable, which indicated the analytical batch was in control. The matrix spike outlier suggested a potential low bias in this matrix. No further corrective action was appropriate.

No other anomalies associated with the analysis of these samples were observed.

302			(CH	AIN	OF	CUS	TO	DY							K1 30 DWR-207
MAX 1835 W. 205th St Tel #: 310-618-88) NUM							EMAX CONTROL NO. *				NO. *
LABORATORIES, INC. Email: info@email		17-910-90	18.08	[SAMP]	LE STORAG	E						PROJECT CODE: 13H125				
CLIENT URS			201999999999999999999999999999999999999	N	AATRIX (CODE		CVATIVE" DDE		S		SIS RI	EQUIRE	D		TAT
PROJECT DHCCP				low-o	rinking Wate	5	IC = Ice	*****		30						Rushhrs.
COORDINATOR			****	GW=G	round Water	and addressed in protocol and a second	HC = HCI		in the second second	Š		Trianing) adquire?	Are for the second second	abd names systems		Rushdays
TEL FAX EN	ZAIL			WW=V	Vaste Water		HN=HNO	3		ury		10 FEED COLORING		tel maille moderne po		🗌 7 days
SEND REPORT TO CASPAr Pang (cpang @) emaxlab	s.can)		SD=Sci	lid Weste SI	Sludge	SH=NaC)}}		erc	100 Kanada Kana	a Tellippolytick on	over and descent	had provident starting per		🔀 14 days
COMPANY EMAX				SS-Soi	i/ Sediment	x++678.3668(30+5682+62+6525)part	ST=Na2S	203	. S	Σ	ere sta succession	navilleindoses	e sub original real-reaso e	and and and and and		21 days
ADDRESS				wp=-w	ipes PP=Pu	r Products	ZA=Zinc	Accesic	Butyltin	Methy	and a second sec	- Addampic octorio	A NUMBER OF STREET	www.ingly.delayor.ch.ch	es a a a a a a a a a a a a a a a a a a a	30 days
	la di falta de mandre de la difacto de la falta de la grada por propositado de la difacto de la difacto de la d	alandi wili qui anci wili di uli ingici a yaqi adaqidi y		AR-AI	í		HS=H2S	04	341	Jet	te de situation de la constante	(Some permanal)	The second se	"A an a factor of the second second		days
EMAX PM Caspar Pang				0=	onen al analise pogna fan belander.					-	and and a second second	l en statement	NUCLES STORE	TOTAL SALES	outro control	J. J
SAMPLE ID	SA	MPLING			CONTAI	NER	MATRIX	QC			PRESER	VATT	VECOL)Ê		COMMENTS
LAB CLIENT	LOCATION	DATE	TIME	NO.	SIZE	TYPE	CODE									CONVERTING 13
* 1 1A - 2		7/19/13	15:30	1	8 02.	Jar	SS		×	Х						H125-01
· 2 2A 2A-2	and a second			1	1 1		}		i	1						-02
• 3 8 elisha 3A - 2			Ţ	V	L.				V	\checkmark	Control to out of the		And a second			-03
							-franciska Constantion	generative enclosed and the second	ci	and the second second						
			and and an an offer a state of the state of											nonferonamenter		ልጠኛ მეველიცია ყო ფაის გან წენებანებენ ტევიად დი და და დ ³ ი 100 წერი მამები მემი მემი მა მა და
		lind a sine and many instead of a graph of	arayyo 100-102-103-103-103-103-103-103-103-103-103-103				**					() (
	******		on and a start pay of the Contraction provided		neritinaa () i faq () jarapit ^a Stada						***************************************					
			an teacher ann an teacher an teacher and teacher		9722244444444444444444447 ⁴ 0000				(anna an						
					anan manana ang kang kang kang kang kang kang						sieterosaan feranas	nassered conserved	10.200 -			Ĭĸĸĸĸĸĸĸĸţĸĸţĸĸţġġġġġġġġġġġġġġġġġġġġġġġ
		*******************								eneralitetetetetetetetetetetetetetetetetetete	niti ing ting pangalang nanggang ng					ֈ֎ՠ֎ֈՠ֎ֈՠ֎ՠՠ֎ՠ֎ֈֈֈֈֈֈֈֈֈֈֈֈֈֈֈֈֈֈֈֈֈֈֈ
Instructions Level 2 report	annanna ann an Anna Anna Anna Anna Anna		<u>an an a</u>	ส์เฉลาสารและส่		Landingsonnaries	baanaa aa ah	lanason an	hannanda	waaaand	an a		Cooler #	Tem	n (°C)	Sample #s
	1240000-00000000000000000000000000000000		g g d de de popular en anno en anticipa de la compañía		Klariinis Danbaya Jamay 707 9044		llenen de la classica de la constituie de l		*****	Sipistogiaan (NDSIN)	***	~~~{~~				Subto: ALS
	nederanden en e	internet in the second and being the		r banddillarfod adaminun yn e							eren er en	T				1317 S. 13th Ave.
	undersonsonsponsoportalization dell'Altradiation	ni in Cigini mina mananya gani dan 1990		*****	anna ann ann ann ann ann ann ann ann an	9689/9492206020014929164/944(44444990	ana amin'ny faritr'o dia mampiasa	yarışı Mittalari erindi kalmalaraş	575559494949494974974974	000.04 8.0000.000 ⁰ 000000.000	مىرىمە بەسەرىرىلاردۇمىرىلاردۇمەر مەدەرىيە		antagaugh Mithathänikkon			Kelso, WA 98626
SAMPLER		501550/05102060/0700055(2012-00-000 10-171-17			i kan in serier of the	99900000000000000000000000000000000000	sistimén di managena		Antonyo ana sa			ATTN : Howard Holmes
RELINQUERED BY	1	Data	ana an		RIER/AIR		DECCE	271 DV	101000000000000000000000000000000000000	ujitestejakana				where the second se		ATTN - HOWARD HOTHICS
lester le	$\neg \checkmark$	Date	Time	2	$\overline{\mathbf{N}}$	15/	RECEIV		6.	6	IUT I	z-				ĸŎĊĸĊŎĸŎŦĸĹĸĿĿĊĸĊŊŎĿĹŎĊĸĹĹŎĸŎĊŎŎŎŎŎĊĹĿĸĸĿĿĿĸŎĸŎĸŎŎŎŎŎŎŎŎŎŎ
Lacon Car	<u> </u>	12	167	7-2	in	i p	10	rel	L		0	itt	2			₩₽₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩
	****		00400000000000000000000000000000000000	ļ	antited to can and an opportunited built	2011-00-00-00-00-00-00-00-00-00-00-00-00-	azan an an an an an an an an Ann	normality and a second	1	an pangangan kana kana kana kana kana kana k	www.conferences.com					
															eanonana	
NOTICE: Turn-around-time (TAT) for samples shall not begin until all discrep soon as practical (but not prior to fifteen (15) calendar days) after issuance of an client's expense unless directed in writing otherwise,																

DWR-207

Service Request: K1308384

Analytical Results

Client:Emax Laboratories, IncorporatedProject:DHCCP/13H125Sample Matrix:Soil

Total Solids

Prep Method:	NONE	Units: PERCEN
Analysis Method:	160.3M	Basis: Wet
Test Notes:		

		Date	Date	Date		Result Notes
Sample Name	Lab Code	Collected	Received	Analyzed	Result	
1A-2	K1308384-001	07/18/2013	08/19/2013	08/28/2013	84.3	
2A-2	K1308384-002	07/18/2013	08/19/2013	08/28/2013	73.5	
3A-2	K1308384-003	07/18/2013	08/19/2013	08/28/2013	84.7	

30	4
----	---

		QA/QC Report				
Client:	Emax Laboratories, Incorporated			5	Service Request:	K1308384
Project:	DHCCP/13H125				Date Collected:	07/18/2013
Sample Matrix:	Soil				Date Received:	08/19/2013
					Date Analyzed:	08/28/2013
		Duplicate Sample Summa	ary			
		Total Solids				
	NONE				T T •4	
Prep Method:	NONE				Units:	PERCENT
Analysis Method:	160.3M				Basis:	Wet
Test Notes:						
		Sample	Duplicate Sample Result		Relative Percent Difference	Result Notes
Sample Name	Lab Code	Result	ixcoult	Average	Difference	
1A-2	K1308384-001	84.3	84.5	84.4	<1	

Analytical Report

Client:	Emax Laboratories, Incorporated	Service Request:	K1308384
Project:	DHCCP/13H125	Date Collected:	07/18/13
Sample Matrix:	Soil	Date Received:	08/19/13

Methyl Mercury

Prep Method: CAS SOP Analysis Method: CAS SOP Test Notes: Units: ng/g Basis: Dry

Sample Name	Lab Code	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
1A-2	K1308384-001	0.4	0.04	1	08/27/13	08/29/13	ND	
2A-2	K1308384-002	0.4	0.04	1	08/27/13	08/29/13	0.05	J
3A-2	K1308384-003	0.4	0.04	1	08/27/13	08/29/13	ND	
Method Blank 1	K1308384-MB1	0.4	0.04	1	08/27/13	08/29/13	ND	
Method Blank 2	K1308384-MB2	0.4	0.04	1	08/27/13	08/29/13	ND	
Method Blank 3	K1308384-MB3	0.4	0.04	1	08/27/13	08/29/13	ND	

Client: Project: Sample Matrix:		Emax Laboratories, Incorporated DHCCP/13H125 Soil								Da Da Dat	vice Request: te Collected: ate Received: te Extracted: te Analyzed:	07/18/13 08/19/13 08/27/13	
		Ν	Matrix S	pike/D	-	Matrix Sp etals	ike Sum	mary					
Sample Name: Lab Code: Test Notes:	1A-2 K1308384-0011	1A-2 K1308384-001MS, K1308384-001MSD									Units: Basis:	00	
Analyte	Prep Method	Analysis Method	MRL	Spike MS	e Level DMS	Sample Result	Spike MS	Result DMS	Per	cent DMS	R e c o v e r y CAS Acceptance Limits	Relative Percent Difference	Result Notes
Methyl Mercury	CAS SOP	CAS SOP	0.4	115	111	ND	106	98.0	92	88	65-135	8	notes

Client: Project: LCS Matrix:	Emax Laboratories, In DHCCP/13H125 Water	ncorporated					Service Request: Date Collected: Date Received: Date Extracted: Date Analyzed:	NA NA 08/27/13
	(Ongoing P	recision an	d Recovery	(OPR) S	ample Sum	mary	
				Metals	5			
Sample Name:	Ongoing Precision and	d Recovery	(Initial)				Units:	pg
							Basis:	NA
	р	Prep A	Analysis	True		Percent	CAS Percent Recovery Acceptance	Result
Analyte		-	Method	Value	Result	Recovery	Limits	Notes

 Methyl Mercury
 CAS SOP
 CAS SOP
 100
 90.8
 91
 67-133

Client: Project: LCS Matrix:	Emax Laboratorie DHCCP/13H125 Water	· •	ted				Service Request: Date Collected: Date Received: Date Extracted: Date Analyzed:	NA NA 08/27/13
		Ongoin	g Precision a	nd Recover	y (OPR) S	Sample Sum	mary	
			-	Metal	S		•	
Sample Name:	Ongoing Precision	n and Recove	ery (Final)				Units:	pg
-			-				Basis:	NA
		Prep	Analysis	True		Percent	CAS Percent Recovery Acceptance	Result
Analyte		Method	Method	Value	Result	Recovery	Limits	Notes

 Methyl Mercury
 CAS SOP
 CAS SOP
 100
 97.2
 97
 67-133

Client: Project: LCS Matrix:	Emax Laboratories, Incorporated DHCCP/13H125 Soil	Service Request: Date Collected: Date Received: Date Extracted: Date Analyzed:	NA NA 08/27/13
	Quality Control Sample (QCS) Summary		
	Total Metals		
Sample Name:	Quality Control Sample	Units:	ng/g
		Basis:	Dry
Source:	ERM - CC580 Estuarine Sediment	CAS Percent Posovory	
Analyte	Prep Analysis True Percen Method Method Value Result Recover	r	Result Notes

75.0

CAS SOP CAS SOP

89

66.7

67-133

Methyl Mercury

DWR-207

31	0
----	---

	Analytical Results		
Client:	Emax Laboratories, Incorporated	Service Request:	K1308384
Project:	DHCCP/13H125	Date Collected:	07/18/2013
Sample Matrix:	Soil	Date Received:	08/19/2013

Butyltins (as cation)

Sample Name:	1A-2	Units:	ug/Kg
Lab Code:	K1308384-001	Basis:	Dry
Extraction Method: Analysis Method:	Method Krone	Level:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Tetra-n-butyltin	ND U	1.2	0.53	1	08/22/13	08/30/13	KWG1309233	*
Tri-n-butyltin Cation	ND U	1.2	0.51	1	08/22/13	08/30/13	KWG1309233	*
Di-n-butyltin Cation	ND U	1.2	0.23	1	08/22/13	08/30/13	KWG1309233	*
n-Butyltin Cation	ND U	1.2	0.31	1	08/22/13	08/30/13	KWG1309233	*

* See Case Narrative

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Tri-n-propyltin	79	10-120	08/30/13	Acceptable

Comments:

Merged

Form 1A - Organic

DWR-207

3	1	1
~		

	Analytical Results		
Client:	Emax Laboratories, Incorporated	Service Request:	K1308384
Project:	DHCCP/13H125	Date Collected:	07/18/2013
Sample Matrix:	Soil	Date Received:	08/19/2013

Butyltins (as cation)

Sample Name:	2A-2	Units:	ug/Kg
Lab Code:	K1308384-002	Basis:	Dry
Extraction Method: Analysis Method:	Method Krone	Level:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Tetra-n-butyltin	ND U	1.4	0.60	1	08/22/13	08/30/13	KWG1309233	*
Tri-n-butyltin Cation	ND U	1.4	0.59	1	08/22/13	08/30/13	KWG1309233	*
Di-n-butyltin Cation	ND U	1.4	0.26	1	08/22/13	08/30/13	KWG1309233	*
n-Butyltin Cation	ND U	1.4	0.36	1	08/22/13	08/30/13	KWG1309233	*

* See Case Narrative

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Tri-n-propyltin	76	10-120	08/30/13	Acceptable

Comments:

Merged

DWR-207

	Analytical Resu	lts	
Client:	Emax Laboratories, Incorporated	Service Request:	K1308384
Project:	DHCCP/13H125	Date Collected:	07/18/2013
Sample Matrix:	Soil	Date Received:	08/19/2013

Butyltins (as cation)

Sample Name:	3A-2	Units:	ug/Kg
Lab Code:	K1308384-003	Basis:	Dry
Extraction Method: Analysis Method:	Method Krone	Level:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Tetra-n-butyltin	ND U	1.2	0.52	1	08/22/13	09/03/13	KWG1309233	*
Tri-n-butyltin Cation	ND U	1.2	0.51	1	08/22/13	09/03/13	KWG1309233	*
Di-n-butyltin Cation	ND U	1.2	0.23	1	08/22/13	09/03/13	KWG1309233	*
n-Butyltin Cation	ND U	1.2	0.31	1	08/22/13	09/03/13	KWG1309233	*

* See Case Narrative

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Tri-n-propyltin	87	10-120	09/03/13	Acceptable

Comments:

Merged

DWR-207

	Analytical Results	
Client:	Emax Laboratories, Incorporated	Service Request: K1308384
Project:	DHCCP/13H125	Date Collected: NA
Sample Matrix:	Sediment	Date Received: NA

Butyltins (as cation)

Sample Name:	Method Blank	Units:	ug/Kg
Lab Code:	KWG1309233-4	Basis:	Dry
Extraction Method: Analysis Method:	Method Krone	Level:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Tetra-n-butyltin	ND U	0.98	0.44	1	08/22/13	08/30/13	KWG1309233	
Tri-n-butyltin Cation	ND U	0.98	0.43	1	08/22/13	08/30/13	KWG1309233	
Di-n-butyltin Cation	ND U	0.98	0.19	1	08/22/13	08/30/13	KWG1309233	
n-Butyltin Cation	ND U	0.98	0.26	1	08/22/13	08/30/13	KWG1309233	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Tri-n-propyltin	43	10-120	08/30/13	Acceptable

Comments:

Merged

Form 1A - Organic

QA/QC Report

Service Request: K1308384

Client: Emax Laboratories, Incorporated DHCCP/13H125 **Project:** Sample Matrix: Sediment

> Surrogate Recovery Summary **Butyltins (as cation)**

Extraction Method: Analysis Method:

Method Krone

Units: Percent Level: Low

<u>Sample Name</u>	Lab Code	<u>Sur1</u>
Batch QC	K1308299-001	72
1A-2	K1308384-001	79
2A-2	K1308384-002	76
3A-2	K1308384-003	87
Method Blank	KWG1309233-4	43
Batch QCMS	KWG1309233-1	65
Batch QCDMS	KWG1309233-2	74
Lab Control Sample	KWG1309233-3	75

Surrogate Recovery Control Limits (%)

Sur1 = Tri-n-propyltin

10-120

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

315

QA/QC Report

Client:Emax Laboratories, IncorporatedProject:DHCCP/13H125Sample Matrix:Sediment

 Service Request:
 K1308384

 Date Extracted:
 08/22/2013

 Date Analyzed:
 08/30/2013

Matrix Spike/Duplicate Matrix Spike Summary Butyltins (as cation)

Sample Name:	Batch QC	Units:	
Lab Code:	K1308299-001	Basis:	
Extraction Method:	Method	Level:	
Analysis Method:	Krone	Extraction Lot:	

			Batch QCMS KWG1309233-1 Matrix Spike			Batch QCDMS KWG1309233-2 Duplicate Matrix Spike				
Analyte Name	Sample Result	Result	Spike Amount	%Rec	Result	Spike Amount	%Rec	%Rec Limits	RPD	RPD Limit
Tetra-n-butyltin	ND	16.9	30.0	56	21.0	30.0	70	16-126	21	40
Tri-n-butyltin Cation	ND	20.5	26.6	77	23.9	26.6	90	10-115	15	40
Di-n-butyltin Cation	ND	13.4	23.0	58	15.0	23.0	65	10-133	11	40
n-Butyltin Cation	ND	1.42	18.7	8 *	1.38	18.7	7 *	10-124	3	40

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded

316	ALS Group USA, Corp. dba ALS Environmental		DWR-207	
510	QA/QC Report			
Client:	Emax Laboratories, Incorporated	Service Request:	K1308384	
Project:	DHCCP/13H125	Date Extracted:	08/22/2013	
Sample Matrix:	Sediment	Date Analyzed:	08/30/2013	
	Lab Control Snike Summary			

Lab Control Spike Summary **Butyltins (as cation)**

Extraction Method:	Method		Units:	ug/Kg
Analysis Method:	Krone		Basis:	Dry
			Level:	Low
			Extraction Lot:	KWG1309233
		Lab Control Sample		
		KWC1200222 2		

	KW Lab			
Analyte Name	Result	Spike Amount	%Rec	%Rec Limits
Tetra-n-butyltin	21.4	25.0	86	19-130
Tri-n-butyltin Cation	23.9	22.2	107	10-122
Di-n-butyltin Cation	17.6	19.2	92	12-136
n-Butyltin Cation	15.9	15.6	102	10-150

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded

LABORATORY REPORT FOR

URS

DHCCP

METHOD 3550B/8270C SEMI VOLATILE ORGANICS BY GC/MS

SDG#: 13J055

CASE NARRATIVE

Client : URS

Project : DHCCP

SDG : 13J055

METHOD 3550B/8270C SEMI VOLATILE ORGANICS BY GC/MS

One(1) soil sample was received on 10/07/13 for Semivolatile Organics by GCMS analysis, Method 3550B/8270C in accordance with USEPA SW-846, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods.

Holding Time The sample was analyzed within the prescribed holding time.

Instrument Performance and Calibration Instrument tune check was performed prior to calibration. Instrument mass ratios as well as DDT breakdown were evaluated. Results were within acceptance criteria. Tailing factor for Benzidine and Pentachlorophenol were also verified and results were within the method limits. Multicalibration points were generated to establish initial calibration (ICAL). ICAL was verified using secondary source (ICV). Continuing calibration (CCV) was carried on at a frequency required by the project. All project calibration requirements were satisfied. Refer to calibration summary forms of ICAL, ICV and CCV for details.

Method Blank Method blank was analyzed at the frequency required by the project. For this SDG, one method blank was analyzed with the samples. Result was compliant to project requirement.

Lab Control Sample A set of LCS/LCD was analyzed with the samples in this SDG. Percent recoveries for SVJ009SL/C were all within QC limits.

Matrix QC Sample Was designated in this SDG.

Surrogate Surrogates were added on QC and field samples. Surrogate recoveries were within project QC limits. Refer to sample result forms for details.

Sample Analysis The sample was analyzed according to prescribed analytical procedures. All project requirements were met otherwise anomalies were discussed within the associated QC parameter.

LAB CHRONICLE SEMI VOLATILE ORGANICS BY GC/MS

	: URS				SDG NO.	: 13J055
roject	: DHCCP				Instrument ID	: E4
		 	 	 ============	 =======================================	
			0011			
			SOIL			

Client	Laboratory	Dilution	%	Analysis	Extraction	Sample	Calibratio	n Prep.	
Sample ID	Sample ID	Factor	Moist	DateTime	DateTime	Data FN	Data FN	Batch	Notes
MBLK1S	SVJ009SB	1	NA	10/08/1313:16	10/07/1311:35	RJJ194	RGJ400	SVJ009S	Method Blank
LCS1S	SVJ009SL	1	NA	10/08/1313:35	10/07/1311:35	RJJ195	RGJ400	SVJ009S	Lab Control Sample (LCS)
LCD1S	SVJ009SC	1	NA	10/08/1313:55	10/07/1311:35	RJJ196	RGJ400	SVJ009S	LCS Duplicate
1C-2	J055-01	1	8.7	10/09/1320:56	10/07/1311:35	RJJ254	RGJ400	SV1009S	Field Sample

FN - Filename

% Moist - Percent Moisture

- 10

SAMPLE RESULTS

METHOD 3550B/8270C SEMI VOLATILE ORGANICS BY GC/MS

Client : URS Project : DHCCP Batch No. : 13J055 Sample ID: 1C-2 Lab Samp ID: J055-01 Lab File ID: RJJ254 Ext Btch ID: SVJ009S Calib. Ref.: RGJ400		Date Collected Date Received Date Extracted Date Analyzed Dilution Factor Matrix % Moisture Instrument ID	09/27/13 10/07/13 10/07/13 11:35 10/09/13 20:56 1 SOIL 8.7 T-OE4
PARAMETERS 1,2,4-TRICHLOROBENZENE 1,2-DICHLOROBENZENE 1,3-DICHLOROBENZENE 1,4-DICHLOROBENZENE 2,4-DIRUCHOROPHENOL 2,4-DINITROPHENOL 2,4-DINITROPHENOL 2,4-DINITROTOLUENE 2,6-DINITROTOLUENE 2,6-DINITROTOLUENE 2,6-DINITROTOLUENE 2,6-DINITROTOLUENE 2,6-DINITROTOLUENE 2,6-DINITROTOLUENE 2,6-DINITROTOLUENE 2,6-DINITROTOLUENE 2,6-DINITROTOLUENE 2,6-DINITROTOLUENE 2,6-DINITROTOLUENE 2,6-DINITROTOLUENE 2,6-DINITROTOLUENE 2,6-DINITROTOLUENE 2,6-DINITROTOLUENE 2,6-DINITROTOLUENE 2,7-DICHLOROBENZIDINE 3,3'-DICHLOROBENZIDINE 3,3'-DICHLOROBENZIDINE 3,3'-DICHLOROBENZIDINE 3,3'-DICHLOROBENZIDINE 3,3'-DICHLOROBENZIDINE 3,3'-DICHLOROBENZIDINE 3,3'-DICHLOROBENZIDINE 3,3'-DICHLOROBENZIDINE 3,3'-DICHLOROBENZIDINE 3,3'-DICHLOROBENZIDINE 3,3'-DICHLOROBENZIDINE 3,3'-DICHLOROBENZIDINE 3,3'-DICHLOROBENZIDINE 4-NITROPHENUL 4-RENAMOPHENYL-PHENYL ETHER 4-CHLOROPHENYL-PHENYL ETHER 4-CHLOROPHENYL-PHENYL ETHER 4-CHLOROPHINYL-PHENYL ETHER 4-CHLOROPHINYL-PHENYL ETHER 4-CHLOROPHINYL-PHENYL ETHER 50,2'-CHLOROTINE 50,2'-CHLOROTINE 51,2'-CHLOROTINENE 51,2'-CH	RESULTS (ug/kg) ND ND ND ND ND ND ND ND ND ND ND ND ND	RL (ug/kg) 360 360 360 360 360 360 360 360 360 360	MDL (ug/kg)
SURROGATE PARAMETERS 2,4,6-TRIBROMOPHENOL 2-FLUOROBIPHENYL 2-FLUOROPHENOL NITROBENZENE-D5 PHENOL-D5 TERPHENYL-D14	RESULTS 2250 462 1530 423 1740 673	2191 730.2 2191 730.2 2191	OVERY QC LIMIT 103 40-130 63.3 40-130 69.8 30-130 57.9 30-130 57.9 30-130 92.1 60-130

(1): Cannot be separated from 3-Methylphenol(2): Cannot be separated from Diphenylamine

QC SUMMARIES

323

METHOD 3550B/8270C SEMI VOLATILE ORGANICS BY GC/MS

Client : URS Project : DHCCP Batch No. : 13J055 Sample ID: MBLK1S Lab Samp ID: SVJ009SB Lab File ID: RJJ194 Ext Btch ID: SVJ009S Calib. Ref.: RGJ400		Date Collected Date Received Date Extracted Date Analyzed Dilution Factor: Matrix % Moisture Instrument ID	NA 10/07/13 10/07/13 11:35 10/08/13 13:16 1
PARAMETERS 1, 2, 4 - TRICHLOROBENZENE 1, 3 - DICHLOROBENZENE 1, 3 - DICHLOROBENZENE 2, 4, 5 - TRICHLOROPHENOL 2, 4, 5 - TRICHLOROPHENOL 2, 4, - DINITROTOLUGNE 2, 4, - DINITROTOLUENE 2, 6 - DINITROTOLUENE 3, 3 - DICHLOROBENZIDINE 3, 4 - CHLOROPHENYL - PHENYL ETHER 4, 6 - DINITRO-2 - METHYLPHENOL 4 - CHLOROPHENYL - PHENYL ETHER 4 - CHLOROPHENYL - PHENYL ETHER 4 - CHLOROPHENYL - PHENYL ETHER 4 - METHYLPHENOL 1, 4 - NITROANILINE 4 - MITROPHENOL 4 - MELOROPHENYL - PHENYL ETHER 4 - METHYLPHENOL 4 - CHLOROPHENYL - PHENYL ETHER 4 - METHYLPHENOL 4 - CHLOROPHENYL - PHENYL ETHER 5 - CHLOROS - METHYLPHENOL 4 - METAYLPHENE ACENAPHTHENE ACENAPHTHENE BENZO(A)ANTHRACENE BENZO(A)ANTHRACENE BENZO(A)ANTHRACENE BENZO(A)ANTHRACENE BENZO(A)ANTHRACENE BENZO(A)ANTHRACENE BENZO(A)ANTHRACENE BENZO(A)ANTHRACENE BENZO(A)ANTHRACENE BENZO(A)ANTHRACENE BIS(2 - CHLOROETHAY)METHANE BIS(2 - CHLOROETHAY)DETHER BIS(2 - CHLOROETHAY DETHER BIS(2 - CHLOROETHAY DIETHYLPHTHALATE DIBENZOFURAN DIETHYLPHTHALATE DIBENZOFURAN DIETHYLPHTHALATE DIBENZOFURAN HEXACHLOROBENZENE PENTACHLOROPHENOL PHENNE PHENNE PHENNE PHENNE PH	RESULTS (ug/kg) ND ND ND ND ND ND ND ND ND ND ND ND ND	RL (ug/kg) 330 330 330 330 330 330 330 330 330 33	MDL (ug/kg) 170 170 170 170 170 170 170 170 170 170
SURROGATE PARAMETERS 2,4,6-TRIBROMOPHENOL 2-FLUOROBIPHENYL 2-FLUOROPHENOL NITROBENZENE-D5 PHENOL-D5 TERPHENYL-D14	RESULTS 1640 519 1670 459 1780 560	SPK_AMT % REC 2000 666.7 2000 666.7 2000 666.7	SOVERY QC LIMIT 82.1 30-140 77.8 30-130 83.6 40-130 68.9 40-130 89.1 40-130 84.1 40-140

(1): Cannot be separated from 3-Methylphenol(2): Cannot be separated from Diphenylamine

	CCP 1055 FHOD 3550B/8	270C									• · ·
MATRIX: SOI		1	1		% MOIS		NA				
LAB SAMP ID: SVJ LAB FILE ID: RJJ DATE EXTRACTED: 10/ DATE ANALYZED: 10/ PREP. BATCH: SVJ	_K1S J009SB J194 /07/1311:35 /08/1313:16 J009S J400	' SVJ009SL RJJ195 10/07/13 10/08/13 SVJ009S RGJ400	SVJ(RJJ1	17/1311:35 08/1313:55 109S	DATE C DATE R	OLLECTED: ECEIVED:	NA 10/07/13				
		NK RSLT	SPIKE AMT	BS RSLT	BS	SPIKE AMT	BSD RSLT	BSD	RPD	QC LIMIT (%)	MAX RPD (%)
PARAMETER 	ine lphenol i ether nol /i ether /i ether /i ether /i ether /i ether ene diene ene / adiene ene	Jg/kg) ND ND ND ND ND ND ND ND ND ND	(ug/kg) 1330 130	(ug/kg) 1070 1090 1080 1090 1080 1070 1060 957 1300 1220 1000 1050 1150 1070 1070 1050 1150 1070 1070 1070 1050 1150 1070 1050 1150 1050 1150 1050 1150 1050 1120 1050 1150 1050 1150 1050 1150 1050 1150 1050 1150 1050 1150 1050 1150 1050 1150 1050 1150 1050 1150 1050 1150	x =	(ug/kg) 13300 1330 1330 1330 1330 1330 1330 1330 1330 1330 13	1080 1090 1040 1060 1030 951 1290 1210 1020 1020 1020 1020 1130 1080 1020 1130 1090 1130 1090 1130 1090 1130 1090 109	%) 	$ \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & $	<pre></pre>
SURROGATE PARAMETER 2,4,6-Tribromophenol 2-Fluorobiphenyl 2-Fluorophenol Nitrobenzene-d5 Phenol-d5 Terphenyl-d14	SP (IKE AMT ug/kg) 2000 667 2000 667 2000 667	BS RSLT (ug/kg) 1890 501 1640 461 1730 564	BS SF	IKE AMT ug/kg) 2000 667 2000 667 2000 667	BSD RSLT (ug/kg) 1890 518 1690 474 1850 595	BSD QI % REC 95 78 84 71 93	C LIMIT (%) 30-140 30-130 40-130 40-130 40-130 40-140			-

LABORATORY REPORT FOR

URS

DHCCP

METHOD 3550B/8270C SIM PAH BY GC/MS

SDG#: 13J055

CASE NARRATIVE

Client : URS

Project : DHCCP

SDG : 13J055

METHOD 3550B/8270C SIM PAHS BY GC/MS

One(1) soil sample was received on 10/07/13 for PAH BY 8270C SIM analysis, Method 3550B/8270C SIM in accordance with USEPA SW-846, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods.

Holding Time The sample was analyzed within the prescribed holding time.

Instrument Performance and Calibration Instrument tune check was performed prior to calibration. Instrument mass ratios were evaluated and results were within acceptance criteria. Multi-calibration points were generated to establish initial calibration (ICAL). ICAL was verified using secondary source (ICV). Continuing calibration (CCV) was carried on at a frequency required by the project. All project calibration requirements were satisfied. Refer to calibration summary forms of ICAL, ICV and CCV for details.

Method Blank Method blank was analyzed at the frequency required by the project. For this SDG, one method blank was analyzed with the samples. Result was compliant to project requirement.

Lab Control Sample A set of LCS/LCD was analyzed with the samples in this SDG. Percent recoveries for SVJ009SL/C were all within QC limits.

Matrix QC Sample Was designated in this SDG.

Surrogate Surrogates were added on QC and field samples. Surrogate recoveries were within project QC limits. Refer to sample result forms for details.

Sample Analysis The sample was analyzed according to prescribed analytical procedures. All project requirements were met otherwise anomalies were discussed within the associated QC parameter.

LAB CHRONICLE PAHS BY GC/MS

	***======*=======		===================		=======================================		===========		=======================================	
Client	: URS								SDG NO.	: 13J055
Project	: DHCCP								Instrume	ent ID : E4
===========			===========						2222222222	
					SO	IL				
Client		Laboratory	Dilution	%	Analysis	Extraction	Sample	Calibration	n Prep.	
Sample ID		Sample ID	Factor	Moist	DateTime	DateTime	Data FN	Data FN	Batch	Notes
MBLK1S		SVJ009SB	1	NA	10/08/1313:16	10/07/1311:35	RJJ194	RGJ400	SVJ009S	Method Blank

10/07/1311:35

10/07/1311:35

10/07/1311:35 RJJ254

RJJ195

RJJ196

RGJ400

RGJ400

RGJ400

SVJ009S

svj009s

svjooas

Lab Control Sample (LCS)

LCS Duplicate

Field Sample

NA 10/08/1313:35

8.7 10/09/1320:56

10/08/1313:55

NA

FN - Filename

LCS1S

LCD1S

1c-2

% Moist - Percent Moisture

SVJ009SL

SVJ009SC

J055-01

1

1

1

SAMPLE RESULTS

Client : URS		Date Col	lected: 09/27	/13			
Project : DHCCP			ceived: 10/07				
Batch No. : 13J055		Date Ext	racted: 10/07	/13 11:35			
Sample ID: 1C-2		Date Analyzed: 10/09/13 20:56					
Lab Samp ID: J055-01		Dilution Factor: 1					
Lab File ID: RJJ254		Matrix	: SOIL				
Ext Btch ID: SVJ009S		% Moisture	e :8.7				
Calib. Ref.: RGJ400		Instrumen	t ID : T-OE4				
	RESULTS	RL		MDL			
PARAMETERS	(ug/kg)	(ug/kg)		(ug/kg)			
ACENAPHTHENE	ND	11		2.7			
ACENAPHTHYLENE	ND	11		2.7			
ANTHRACENE	ND	11		2.7			
BENZO(A)ANTHRACENE	ND	11		2.7			
BENZO(A)PYRENE	ND	11		2.7			
BENZO(B)FLUORANTHENE	ND	11		2.7			
BENZO(K)FLUORANTHENE	ND	11		2.7			
BENZO(G,H,I)PERYLENE	ND	11		2.7			
CHRYSENE	ND	11		2.7			
DIBENZO(A,H)ANTHRACENE	ND	11		2.7			
FLUORANTHENE	ND	11		2.7			
FLUORENE	ND	11		2.7			
INDENO(1,2,3~CD)PYRENE	ND	11		2.7			
NAPHTHALENE	ND	11		2.7			
PHENANTHRENE	ND	11		2.7			
PYRENE	ND	11		2.7			
SURROGATE PARAMETERS	RESULTS	SPK_AMT	% RECOVERY	QC LIMIT			
2-FLUOROBIPHENYL	407	730.2	55.8	30-160			
NITROBENZENE-D5	414	730.2	56.7	30-160			
TERPHENYL-D14	650	730.2	89.0	40-150			

DWR-207

QC SUMMARIES

Client : URS		Date Colle	ected: NA
Project : DHCCP		Date Rece	ived: 10/07/13
Batch No. : 13J055		Date Extra	acted: 10/07/13 11:35
Sample ID: MBLK1S		Date Anal	yzed: 10/08/13 13:16
Lab Samp ID: SVJ009SB		Dilution Fa	actor: 1
Lab File ID: RJJ194		Matrix	: SOIL
Ext Btch ID: SVJ009S		% Moisture	: NA
Calib. Ref.: RGJ400		Instrument	ID : T-OE4
	RESULTS	RL	MDL
PARAMETERS	(ug/kg)	(ug/kg)	(ug/kg)
ACENAPHTHENE	ND	10	2.5
ACENAPHTHYLENE	ND	10	2.5
ANTHRACENE	ND	10	2.5
BENZO(A)ANTHRACENE	ND	10	2.5
BENZO(A)PYRENE	ND	10	2.5
BENZO(B)FLUORANTHENE	ND	10	2.5
BENZO(K)FLUORANTHENE	ND	10	2.5
BENZO(G,H,I)PERYLENE	ND	10	2.5
CHRYSENE	ND	10	2.5
DIBENZO(A,H)ANTHRACENE	ND	10	2.5
FLUORANTHENE	ND	10	2.5
FLUORENE	ND	10	2.5
INDENO(1,2,3-CD)PYRENE	ND	10	2.5
NAPHTHALENE	ND	10	2.5
PHENANTHRENE	ND	10	2.5
PYRENE	ND	10	2.5
SURROGATE PARAMETERS	RESULTS	SPK_AMT	% RECOVERY QC LIMIT
2-FLUOROBIPHENYL		666.7	65.8 30-130
NITROBENZENE-D5	458	666.7	68.7 40-130
TERPHENYL-D14	556	666.7	83.4 40-140
IERFILMIE ⁻ UI9	220	000.7	33.4 10 140

CLIENT: PROJECT: BATCH NO.: METHOD:	URS DHCCP 13J055 METHOD 3550	-									:
MATRIX: DILUTION FACTOR:		1	1		% MOI	STURE:	NA				
SAMPLE ID: LAB SAMP ID: LAB FILE ID: DATE EXTRACTED: DATE ANALYZED: PREP. BATCH: CALIB. REF:	MBLK1S SVJ009SB RJJ194 10/07/1311: 10/08/1313: SVJ009S RGJ400		RJJ' 311:35 10/0	07/1311:35 08/1313:55 009s		COLLECTED: RECEIVED:	NA 10/07/13	3			
ACCESSION:											
PARAMETER		BLNK RSLT (ug/kg)	SPIKE AMT (ug/kg)	BS RSL1 (ug/kg)) % REC	SPIKE AMT (ug/kg)	(ug/kg		RPD (%)	QC LIMIT (%)	MAX RPD (%)
Acenaphthene		ND	1330	107	70 80	1330	10	50 79	2	50-130	50
Acenaphthylene		ND	1330	116	50 87	1330	11	140 85	2	40-130	50
Anthracene		ND	1330	108	30 81	1330	10	070 80	1	40-130	50
Benzo(a)anthrace	ne	ND	1330	115	50 86	1330	11	30 84	2	50-130	50
Benzo(a)pyrene		ND	1330	125	50 94	1330	12	230 92	1	50-130	50
Benzo(b)fluorant	hene	ND	1330	122	20 91	1330	12	200 90	2	50-130	50
Benzo(k)fluorant	hene	ND	1330	124	40 93	1330	12	20 91	2	50-130	50
Benzo(g,h,i)pery	lene	ND	13 3 0	127	70 95	1330	12	250 94	1	50-130	50
Chrysene		ND	1330	111	10 83	1330	11	100 82	1	50-130	50
, Dibenzo(a,h)anth	racene	ND	1330	124	40 93	1330	12	230 92	1	50-130	50
Fluoranthene		ND	1330	112	20 84	1330	1 '	10 83	1	50-130	50
Fluorene		ND	1330	106	60 80	1330	10	50 79	1	50-130	50
Indeno(1,2,3-cd)	pyrene	ND	1330	126	60 95	1330	12	250 94	1	50-130	50
Naphthalene		ND	1330	108	30 81	1330	10	060 79	2	50-130	50
Phenanthrene		ND	1330	106	50 79	13 30	10	040 78	2	50-130	50
Pyrene		ND	1330	111	10 83	1330	11	100 83	1	50-130	50
=======================================						===========	=========			=======================================	:
		SPIKE AMT	BS RSLT	BS	SPIKE AMT	BSD RSLT	BSD	QC LIMIT			
SURROGATE PARAME		(ug/kg)	(ug/kg)	% REC	(ug/kg)	(ug/kg)	% REC	(%)			
2-Fluorobiphenyl		667	444	67	667	460	69	30-130			
Nitrobenzene-d5		667	459	69	667	483	72	40-130			
Terphenyl-d14		667	540	81	667	567	85	40-140			
reipiicityt ur u		007	540		001	507		10 110			

LABORATORY REPORT FOR

URS

DHCCP

METHOD 5030B/8015B TOTAL PETROLEUM HYDROCARBONS BY PURGE AND TRAP

SDG#: 13J055

CASE NARRATIVE

Client : URS

Project : DHCCP

SDG : 13J055

METHOD 5030B/8015B TOTAL PETROLEUM HYDROCARBONS BY PURGE AND TRAP

One(1) soil sample was received on 10/07/13 for TPH-Gasoline analysis, Method 5030B/8015B in accordance with USEPA SW-846, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods.

Holding Time The sample was analyzed within the prescribed holding time.

Calibration

Multi-calibration points were generated to establish initial calibration (ICAL). ICAL was verified using a secondary source (ICV). Continuing calibration (CCV) verifications were carried on a frequency specified by the project. All calibration requirements were within acceptance criteria. Refer to calibration summary forms of ICAL, ICV and CCV for details.

Method Blank Method blank was analyzed at the frequency required by the project. For this SDG, one method blank was analyzed with the samples. Result was compliant to project requirement.

Lab Control Sample A set of LCS/LCD was analyzed with the samples in this SDG. Percent recoveries for GMJ003SL/C were all within QC limits.

Matrix QC Sample No matrix QC sample was designated in this SDG.

Surrogate Surrogate was added on QC and field samples. Surrogate recoveries were within project QC limits. Refer to sample result forms for details.

Sample Analysis The sample was analyzed according to prescribed analytical procedures. All project requirements were met otherwise anomalies were discussed within the associated QC parameter.

LAB CHRONICLE TOTAL PETROLEUM HYDROCARBONS BY PURGE AND TRAP

			=======================
Client	: URS	SDG NO.	: 13J055
Project	: DHCCP	Instrument ID	: GCT039
=========			==============================

				SO	IL				
Client	Laboratory	Dilution	%	Analysis	Extraction	Sample	Calibratio	n Prep.	
Sample ID	Sample ID	Factor	Moist	DateTime	DateTime	Data FN	Data FN	Batch	Notes
MBLK1S	GMJ003SB	1	NA	10/09/1314:09	10/09/1314:09	EJ09006A	EJ09003A	GMJ003S	Method Blank
LCS1S	GMJ003SL	1	NA	10/09/1312:50	10/09/1312:50	EJ09004A	EJ09003A	GMJ003S	Lab Control Sample (LCS)
LCD1S	GMJ003SC	1	NA	10/09/1313:27	10/09/1313:27	EJ09005A	EJ09003A	GMJ003S	LCS Duplicate
10-2	J055-01	.97	8.7	10/10/1300:11	10/10/1300:11	EJ09022A	EJ09015A	GMJ003S	Field Sample

FN - Filename

% Moist - Percent Moisture

SAMPLE RESULTS

METHOD 5030B/8015B TOTAL PETROLEUM HYDROCARBONS BY PURGE AND TRAP

Client : URS		Date Colle	ected: 09/27/13
Project : DHCCP		Date Rece	eived: 10/07/13
Batch No. : 13J055			acted: 10/10/13 00:11
Sample ID: 1C-2		Date Anal	yzed: 10/10/13 00:11
Lab Samp ID: J055-01		Dilution Fa	actor: .97
Lab File ID: EJ09022A		Matrix	: SOIL
Ext Btch ID: GMJ003S		% Moisture	: 8.7
Calib. Ref.: EJ09015A		Instrument	ID : GCT039
=======================================			
	RESULTS	RL	MDL
	-	–	(mg/kg)
PARAMETERS	(mg/kg)	(mg/kg)	(1197 K97
GASOLINE	ND	1.1	0.53
SURROGATE PARAMETERS	RESULTS	SPK_AMT	% RECOVERY QC LIMIT
BROMOFLUOROBENZENE	1.66	2.125	78.2 10-160

Parameter H-C Range Gasoline C6-C10

QC SUMMARIES

METHOD 5030B/8015B TOTAL PETROLEUM HYDROCARBONS BY PURGE AND TRAP

	=======================================		
Client : URS		Date Coll	ected: NA
Project : DHCCP		Date Rec	eived: 10/09/13
Batch No. : 13J055			acted: 10/09/13 14:09
Sample ID: MBLK1S		Date Ana	lyzed: 10/09/13 14:09
Lab Samp ID: GMJ003SB		Dilution F	actor: 1
Lab File ID: EJ09006A		Matrix	: SOIL
Ext Btch ID: GMJ003S		% Moisture	e : NA
Calib. Ref.: EJ09003A		Instrument	ID : GCT039
	==============================		
	RESULTS	RL	MDL
PARAMETERS	(mg/kg)	(mg/kg)	(mg/kg)
GASOLINE	ND	1.0	0.50
SURROGATE PARAMETERS	RESULTS	SPK_AMT	% RECOVERY QC LIMIT
BROMOFLUOROBENZENE	1.73	2.000	86.4 70-140

Parameter H-C Range Gasoline C6-C10

CLIENT: PROJECT: BATCH NO.: METHOD:	URS DHCCP 13J055 METHOD 5030E	9/8015B									=
MATRIX: DILUTION FACTOR:		1	1		% MOI	STURE:	NA				
SAMPLE ID: LAB SAMP ID: LAB FILE ID: DATE EXTRACTED: DATE ANALYZED: PREP. BATCH: CALIB. REF:	MBLK1S GMJ003SB EJ09006A 10/09/1314:C 10/09/1314:C GMJ003S EJ09003A		EJC 312:50 10/ 312:50 10/ GMJ	003SC 19005A 09/1313:21 09/1313:21 003S 19003A		COLLECTED: RECEIVED:	NA 10/09/13	3			
ACCESSION:											
PARAMETER		BLNK RSLT (mg/kg)	SPIKE AMT (mg/kg)	BS RSL (mg/kg		SPIKE AMT (mg/kg)	BSD RS (mg/kg			QC LIMIT) (%)	MAX RPD (%)
Gasoline		ND	25.0	23	.6 95	25.0	2	3.4	93	1 60-130	50
SURROGATE PARAME		SPIKE AMT (mg/kg)	BS RSLT (mg/kg)	BS % REC	SPIKE AMT (mg/kg)	BSD RSLT (mg/kg)	BSD % REC	QC LIMI (%)	======== T		
Bromofluorobenze	ene	2.00	2.07	104	2.00	2.02	101	70-140			

LABORATORY REPORT FOR

URS

DHCCP

METHOD 3550B/8015B TOTAL PETROLEUM HYDROCARBONS BY EXTRACTION

SDG#: 13J055

CASE NARRATIVE

Client : URS

Project : DHCCP

SDG : 13J055

METHOD 3550B/8015B PETROLEUM HYDROCARBONS BY EXTRACTION

One(1) soil sample was received on 10/07/13 for TPH Diesel analysis, Method 3550B/8015B in accordance with USEPA SW-846, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods.

Holding Time The sample was analyzed within the prescribed holding time.

Calibration Multi-calibration points were generated to establish initial calibration (ICAL). ICAL was verified using a secondary source (ICV). Continuing calibration (CCV) verifications were carried on a frequency specified by the project. All calibration requirements were within acceptance criteria. Refer to calibration summary forms of ICAL, ICV and CCV for details.

Method Blank Method blank was analyzed at the frequency required by the project. For this SDG, one method blank was analyzed with the samples. Result was compliant to project requirement.

Lab Control Sample A set of LCS/LCD was analyzed with the samples in this SDG. Percent recoveries for DSJ004SL/C were all within QC limits.

Matrix QC Sample No matrix QC sample was designated in this SDG.

Surrogate Surrogates were added on QC and field samples. Surrogate recoveries were within project QC limits. Refer to sample result forms for details.

Sample Analysis The sample was analyzed according to prescribed analytical procedures. All project requirements were met otherwise anomalies were discussed within the associated QC parameter.

LAB CHRONICLE PETROLEUM HYDROCARBONS BY EXTRACTION

Client	: URS						SDG NO.	: 13J0		
Project =======	: DHCCP		=======================================			=======================================	Instrumen	t ID : GCT1	U5 :==========:	56 MA
					SOIL					
Client		Laboratory	Dilution	%	Analysis	Extraction	Sample	Calibratio	on Prep.	
Sample ID		Sample ID	Factor	Moist	DateTime	DateTime	Data FN	Data FN	Batch	Notes
MBLK1S		DSJ004SB	1	NA	10/08/1317 : 54	10/08/1315:45	LJ08005A	LJ08003A	DSJ004S	Method Blank
LCS1S		DSJ004SL	1	NA	10/08/1318:11	10/08/1315 : 45	LJ08006A	LJ08003A	DSJ004S	Lab Control Sample (LCS)
LCD1S		DSJ004SC	1	NA	10/08/1318:28	10/08/1315:45	LJ08007A	LJ08003A	DSJ004S	LCS Duplicate
1c-2		J055-01	4	8.7	10/08/1318:45	10/08/1315:45	LJ08008A	LJ08003A	DSJ004S	Field Sample

FN - Filename

% Moist - Percent Moisture

SAMPLE RESULTS

METHOD 3550B/8015B PETROLEUM HYDROCARBONS BY EXTRACTION

Client : URS			lected: 09/27	
Project : DHCCP			eceived: 10/07	
Batch No. : 13J055			racted: 10/08	
Sample ID: 1C-2		Date Ar	nalyzed: 10/08	/13 18:45
Lab Samp ID: J055-01		Dilution	Factor: 1	
Lab File ID: LJ08008A		Matrix	: SOIL	
Ext Btch ID: DSJ004S		% Moistur	e:8.7	
Calib. Ref.: LJ08003A		Instrumer	nt ID : GCT10	5
PARAMETERS	RESULTS (mg/kg)	RL (mg/kg)		MDL (mg/kg)
	(mg/kg)	(mg/kg)		(mg/kg)
PARAMETERS DIESEL				
	(mg/kg)	(mg/kg)	% RECOVERY	(mg/kg) 5.5
DIESEL	(mg/kg) ND	(mg/kg) 11	% RECOVERY 76.1	(mg/kg) 5.5 QC LIMIT

RL :	•	Reporting	Limit
Parameter	~	H - C	Range
Diesel		C10	-C24

QC SUMMARIES

METHOD 3550B/8015B PETROLEUM HYDROCARBONS BY EXTRACTION

Client : URS		Date Col	lected: NA	
Project : DHCCP			eceived: 10/08	
Batch No. : 13J055			racted: 10/08	
Sample ID: MBLK1S		Date Ar	nalyzed: 10/08	3/13 17:54
Lab Samp ID: DSJ004SB		Dilution	Factor: 1	
Lab File ID: LJ08005A		Matrix	: SOIL	
Ext Btch ID: DSJ004S		% Moistur	re :NA	
Calib. Ref.: LJ08003A		Instrumer	nt ID : GCT1C)5
	RESULTS	RL		MDL
PARAMETERS	RESULTS (mg/kg)	RL (mg/kg)		MDL (mg/kg)
	(mg/kg)	(mg/kg)		(mg/kg)
PARAMETERS DIESEL				
	(mg/kg)	(mg/kg)	% RECOVERY	(mg/kg) 5.0
DIESEL	(mg/kg) ND RESULTS 	(mg/kg) 10 SPK_AMT		(mg/kg) 5.0 QC LIMIT
DIESEL	(mg/kg) ND	(mg/kg) 10		(mg/kg) 5.0 QC LIMIT 50-130

RL :	•	Reporting	Limit
Parameter	^	H ~ C	Range
Diesel		C10-	-C24

CLIENT: PROJECT: BATCH NO.: METHOD: =================	URS DHCCP 13J055 METHOD 3550	B/8015B							=======		=
MATRIX:	SOIL	4	4		% MOI	STURE:	NA				
DILUTION FACTOR: SAMPLE ID:	MBLK1S	1	1								
LAB SAMP ID: LAB FILE ID: DATE EXTRACTED: DATE ANALYZED: PREP. BATCH: CALIB. REF:	DSJ004SB LJ08005A 10/08/1315: 10/08/1317: DSJ004S LJ08003A		LJO8 315:45 10/0 318:11 10/0 DSJ0	004sc 3007A 08/1315:45 08/1318:28 004s 3003A		COLLECTED: RECEIVED:	NA 10/08/13	3			
ACCESSION:											
PARAMETER		BLNK RSLT (mg/kg)	SPIKE AMT (mg/kg)	BS RSLT (mg/kg)	BS % REC	SPIKE AMT (mg/kg)	BSD RS (mg/kg		RPD (%)	QC LIMIT (%)	MAX RPD (%)
Diesel		ND	500	458	92	500	22222	30 86	6	60-130	50
SURROGATE PARAME		SPIKE AMT (mg/kg)	BS RSLT (mg/kg)		======== PIKE AMT (mg/kg)	BSD RSLT (mg/kg)	BSD % REC	QC LIMIT (%)	=======		=
Bromobenzene Hexacosane		100 25.0	81.2 24.5	81 98	100 25.0	83.9 25.3	84 101	50-130 60-130			

LABORATORY REPORT FOR

URS

DHCCP

METHOD 3550B/8081A PESTICIDES

SDG#: 13J055

Client : URS

Project : DHCCP

SDG : 13J055

METHOD 3550B/8081A PESTICIDES

One(1) soil sample was received on 10/07/13 for Pesticides Organochlorine analysis, Method 3550B/8081A in accordance with USEPA SW-846, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods.

Holding Time The sample was analyzed within the prescribed holding time.

Instrument Performance and Calibration Instrument performance was checked prior to calibration. DDT and Endrin breakdown were within specification. Multi-calibration points were generated to establish initial calibration (ICAL). ICAL was verified using secondary source (ICV). Continuing calibration (CCV) was carried on at a frequency required by the project. All project calibration requirements were satisfied. Refer to calibration summary forms of ICAL, ICV and CCV for details.

Method Blank Method blank was analyzed at the frequency required by the project. For this SDG, one method blank was analyzed with the samples. Result was compliant to project requirement.

Lab Control Sample A set of LCS/LCD was analyzed with the samples in this SDG. Percent recoveries for CPJ013SL/C were all within QC limits.

Matrix QC Sample No matrix QC sample was designated in this SDG.

Surrogate Surrogates were added on QC and field samples. Surrogate recoveries were within project QC limits. Refer to sample result forms for details.

Sample Analysis The sample was analyzed according to prescribed analytical procedures. All project requirements were met otherwise anomalies were discussed within the associated QC parameter. Positive sample results were confirmed by a second column. Relative percentage difference (RPD) between the two results was evaluated. If RPD is less than 40% and peaks are well defined the higher result is reported. Where RPD is greater than 40% the chromatogram is checked for anomalies and results are selected based on processed knowledge. If there is no evidence of any chromatographic ambiguity, the higher result is reported.

LAB CHRONICLE PESTICIDES

client	: URS		============				=======================================		==================	SDG NO.		: 13J055
Project =======	: DHCCP ===================================									Instrum ======	ent ID : =======	: FY ====================================
						SOIL						
Client		,		%	Analysis		Extraction	Sample	Calibration	•		
Sample ID		Somplo ID	Eactor	Moict	DataTima		DataTimo	Doto EN	Doto EN	Patab	Natas	

Sample ID	Sample ID	Factor	MUISU	Daternie	Daternie	Data FN	Datarn	patch	NOLES
MBLK1S	CPJ013SB	1	NA	10/17/1318:50	10/09/1314:12	RJ16076A	RJ16072A	CPJ013S	Method Blank
LCS1S	CPJ013SL	1	NA	10/17/1319:09	10/09/1314:12	RJ16077A	RJ16072A	CPJ013S	Lab Control Sample (LCS)
LCD1S	CPJ013SC	1	NA	10/17/1319:28	10/09/1314:12	RJ16078A	RJ16072A	CPJ013S	LCS Duplicate
1C-2	J055-01	1	8.7	10/17/1321:56	10/09/1314:12	RJ16086A	RJ16072A	CPJ013S	Field Sample

FN - Filename % Moist - Percent Moisture

SAMPLE RESULTS

TETRACHLORO-M-XYLENE DECACHLOROBIPHENYL	11.77 (13.64) 12.76 (13.30)	14.60 14.60	80.6 (93.5) 87.4 (91.1)	50-14 10-16			
SURROGATE PARAMETERS	RESULTS	SPK_AMT	% RECOVERY	QC LIMI			
TOXAPHENE	(ND) ND	55	11 11				
METHOXYCHLOR	(ND) ND	11	4.4 4.4				
ENDRIN KETONE	(ND) ND	2.2	0.44 0.44				
ENDOSULFAN SULFATE	(ND) ND	2.2	0.44 0.44				
ENDRIN ALDEHYDE	(ND) ND	2.2	0.44 0.44				
4,4'-DDT	(ND) 0.48J	2.2	0.44 0.44				
ENDOSULFAN II	(ND) ND	2.2	0.44 0.44				
4,4'-DDD	(ND) ND	2.2	0.44 0.44				
ENDRIN	(ND) ND	2.2	0.44 0.44				
DIELDRIN	(ND) ND	2.2	0.44 0.44				
4,4'-DDE	(ND) ND	2.2	0.44 0.44				
ENDOSULFAN I	(ND) ND	2.2	0.44 0.44				
ALPHA-CHLORDANE	(ND) ND	2.2	0.44 0.44				
GAMMA-CHLORDANE	(ND) ND	2.2	0.44 0.44				
HEPTACHLOR EPOXIDE	(ND) 0.60J	2.2	0.44 0.44				
ALDRIN	(ND) 1.2J	2.2	0.44 0.44				
DELTA-BHC	(ND) ND	2.2	0.44 0.44				
HEPTACHLOR	(ND) ND	2.2	0.44 0.44				
BETA-BHC	1.4J (ND)	2.2	0.44 0.44				
GAMMA-BHC (LINDANE)	(ND) ND	2.2	0.44 0.44				
ALPHA-BHC	(ND) ND	2.2	0.44 0.44				
PARAMETERS	(ug/kg)	(ug/kg)	(ug/kg)				
0.0.4/CT-00	RESULTS	RL	MDL				
Calib. Ref.: RJ16072A		Instrument	ID : F9				
Ext Btch ID: CPJ013S		% Moisture					
Lab File ID: RJ16086A		Matrix	: SOIL				
Lab Samp ID: J055-01		Dilution F					
Sample ID: 1C-2			lyzed: 10/17/13 2	1:56			
Batch No. : 13J055		Date Extracted: 10/09/13 14:12					
Project : DHCCP			eived: 10/07/13				
Client : URS			ected: 09/27/13				

RL : Reporting limit Left of | is related to first column ; Right of | related to second column Final result indicated by ()

QC SUMMARIES

				====
Client : URS		Date Coll	ected: NA	
Project : DHCCP		Date Rec	eived: 10/09/13	
Batch No. : 13J055		Date Extr	acted: 10/09/13 14	4:12
Sample ID: MBLK1S		Date Ana	lyzed: 10/17/13 18	3:50
Lab Samp ID: CPJ013SB		Dilution F		
Lab File ID: RJ16076A		Matrix	: SOIL	
Ext Btch ID: CPJ013S		% Moisture	: NA	
Calib. Ref.: RJ16072A		Instrument	ID : F9	
	RESULTS	RL	MDL	
PARAMETERS	(ug/kg)	(ug/kg)	(ug/kg)	
ALPHA-BHC	(ND) ND	2.0	0.40 0.40	
GAMMA-BHC (LINDANE)	(ND) ND	2.0	0.40 0.40	
BETA-BHC	(ND) ND	2.0	0.40 0.40	
HEPTACHLOR	(ND) ND	2.0	0.40 0.40	
DELTA-BHC	(ND) ND	2.0	0.40 0.40	
ALDRIN	(ND) ND	2.0	0.40 0.40	
HEPTACHLOR EPOXIDE	(ND) ND	2.0	0.40 0.40	
GAMMA-CHLORDANE	(ND) ND	2.0	0.40 0.40	
ALPHA-CHLORDANE	(ND) ND	2.0	0.40 0.40	
ENDOSULFAN I	(ND) ND	2.0	0.40 0.40	
4,4'-DDE	(ND) ND	2.0	0.40 0.40	
DIELDRIN	(ND) ND	2.0	0.40 0.40	
ENDRIN	(ND) ND	2.0	0.40 0.40	
4,4'-DDD	(ND) ND	2.0	0.40 0.40	
ENDOSULFAN II	(ND) ND	2.0	0.40 0.40	
4,4'-DDT	(ND) ND	2.0	0.40 0.40	
ENDRIN ALDEHYDE	(ND) ND	2.0	0.40 0.40	
ENDOSULFAN SULFATE	(ND) ND	2.0	0.40 0.40	
ENDRIN KETONE	(ND) ND	2.0	0.40 0.40	
METHOXYCHLOR	(ND) ND	10	4.0 4.0	
TOXAPHENE	(ND) ND	50	10 10	
SURROGATE PARAMETERS	RESULTS	SPK_AMT	% RECOVERY	QC LIMIT
TETRACHLORO-M-XYLENE	12.62 (13.52)	13.33	94.6 (101)	60-130
DECACHLOROBIPHENYL	12.99 (13.08)	13.33	97.4 (98.1)	60-140

RL : Reporting limit Left of | is related to first column ; Right of | related to second column Final result indicated by ()

CLIENT: PROJECT: BATCH NO.: METHOD:	URS DHCCP 13J055 SW3550B/8081A				
MATRIX:	SOIL			% MOISTURE:	NA
DILUTION FACTOR:	1	1	1		
SAMPLE ID:	MBLK1S				
LAB SAMP ID:	CPJ013SB	CPJ013SL	CPJ013SC		
LAB FILE ID:	RJ16076A	RJ16077A	RJ16078A		
DATE EXTRACTED:	10/09/1314:12	10/09/1314:12	10/09/1314:12	DATE COLLECTED:	NA
DATE ANALYZED:	10/17/1318:50	10/17/1319:09	10/17/1319:28	DATE RECEIVED:	10/09/13

CPJ013S

RJ16072A

CPJ013S

RJ16072A

CALIB. REF: ACCESSION:

PREP. BATCH:

CPJ013S

RJ16072A

PARAMETER	BLNK RSL1 (ug/kg)	SPIKE AMT (ug/kg)	BS RSLT (ug/kg)	E % F	BS REC	SPIKE AMT (ug/kg)	BSD RSL1 (ug/kg)	BSD % REC	:	RPD (%)	QC LIMIT (%)	MAX RPD (%)
alpha-BHC	(ND) ND	6.67	6.40 (6.7	1) 96	(101)	6.67	6.73 (7.1	3) 101/(1	07)	5 (6)	50-140	50
gamma-BHC (Lindane)	(ND) ND	6.67	(6.17) 6.10	(93)		6.67	(6.51) 6.40			(5) 5	60-130	50
beta-BHC	(ND) ND	6.67	(6.75) 6.52			6.67	(7.12) 6.75			(5) 3	50-130	50
Heptachlor	(ND) ND	6.67	6.10 (6.4		(96)	6.67	6.47 (6.7			6 (5)	50-140	50
delta-BHC	(ND) ND	6.67	6.25 (6.6		(100)	6.67	6.64 (7.2	100 (1	08)	6 (7)	50-150	50
Aldrin	(ND) ND	6.67	6.17 (6.4	7) 93	(97)	6.67	6.51 (6.7	70) 98 (1	00)	5 (3)	60-140	50
Heptachlor Epoxide	(ND) ND	6.67	6.35 (6.5	6) 95	(98)	6.67	(6.74) 6.72	(101) 10	01 0	(6) 2	70-130	50
gamma-Chlordane	(ND) ND	6.67	6.30 (6.7	2) 94	(101)	6.67	6.69 (7.1	1) 100 (1		6 (6)	70-130	50
alpha-Chlordane	(ND) ND	6.67	6.29 (6.4	4) 94	(97)	6.67	6.67 (6.7	78) 100 (1	02)	6 (5)	70-130	50
Endosulfan I	(ND) ND	6.67	6.09 (6.3	5) 91	(95)	6.67	6.44 (6.7	2) 97 (1	01)	6 (6)	60-130	50
4,4'-DDE	(ND) ND	6.67	6.29 (6.6	1) 94	(99)	6.67	6.63 (7.0	0) 99 (1	05)	5 (6)	70-140	50
Dieldrin	(ND) ND	6.67	6.50 (6.5)		(98)	6.67	6.89 (6.9	A) 103 (1	04)	6 (6)	70-140	50
Endrin	(ND) ND	6.67	6.53 (6.8	4) 98	(103)	6.67	6.92 (7.1	7) 104 (1	07)	6 (5)	70-150	50
4,4'-DDD	(ND) ND	6.67	6.50 (6.6		(100)	6.67	6.87 (6.9	8) 103 (1	05)	6 (5)	70-140	50
Endosulfan II	(ND) ND	6.67	7.10 (7.1		(107)	6.67	(7.49) 7.48			(5) 4	70-130	50
4,4'-DDT	(ND) ND	6.67	(7.40) 6.90		103	6.67	(7.79) 7.3	(117) 11	0	(5) 6	70-150	50
Endrin aldehyde	(ND) ND	6.67	6.87 (7.1		(107)	6.67	7.12 (7.3	54) 107 (1	10)	4 (3)	70-130	50
Endosulfan Sulfate	(ND) ND	6.67	6.76 (6.9	3) 101	(104)	6.67	7.11 (7.2	25) 107 (1	09)	5 (5)	70-150	50
Endrin Ketone	(ND) ND	6.67	6.74 (6.9		(104)	6.67	7.02 (7.2	28) 105 (1	09)	4 (5)	70-140	50
Methoxychlor	(ND) ND	66.7	65.0 (70.)	3) 97	(105)	66.7	67.9 (73.	7) 102 (1	10)	4 (5)	70-130	50
SURROGATE PARAMETER	SPIKE AMT (ug/kg)	BS RSLT (ug/kg)	BS % REC	SPIKE AMT (ug/kg)		 D RSLT g/kg)	BSD % REC	QC LIMIT (%)			=====	
Tetrachloro-m-xylene Decachlorobiphenyl	13.33 13.33	11.23 (11.74) 11.33 (11.55)	84.3 (88.0) 85.0 (86.6)	13.33 13.33		8 (12.40) 5 (11.97)	88.4 (93.0) 88.2 (89.8)	60-130 60-140				

356

LABORATORY REPORT FOR

URS

DHCCP

METHOD 3550B/8081A PCBS

SDG#: 13J055

CASE NARRATIVE

Client : URS

Project : DHCCP

SDG : 13J055

METHOD 3550B/8082 PCBS

One(1) soil sample was received on 10/07/13 for Polychlorinated Biphenyls (PCBs) analysis, Method 3550B/8082 in accordance with USEPA SW-846, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods.

Holding Time The sample was analyzed within the prescribed holding time.

Calibration Multi-calibration points were generated to establish initial calibration (ICAL). ICAL was verified using a secondary source (ICV). Continuing calibration (CCV) verifications were carried on a frequency specified by the project. All calibration requirements were within acceptance criteria. Refer to calibration summary forms of ICAL, ICV and CCV for details.

Method Blank Method blank was analyzed at the frequency required by the project. For this SDG, one method blank was analyzed with the samples. Result was compliant to project requirement.

Lab Control Sample A set of LCS/LCD was analyzed with the samples in this SDG. Percent recoveries for 60J013SL/C were all within QC limits.

Matrix QC Sample No matrix QC sample was designated in this SDG.

Surrogate Surrogates were added on QC and field samples. Surrogate recoveries were within project QC limits. Refer to sample result forms for details.

Sample Analysis The sample was analyzed according to prescribed analytical procedures. All project requirements were met otherwise anomalies were discussed within the associated QC parameter. Sample extracts subjected to appropriate cleanup technique to reduce matrix interference are recorded in extraction log. LAB CHRONICLE PCBs

Client : UF Project : DF ========		=======================================					=====	SDG NO. Instrum	: 13J055 ent ID : 71
				SOI	[L				
Client	Laboratory	Dilution	%	Analysis	Extraction	Sample	Calibratio	n Prep.	
Sample ID	Sample ID	Factor	Moist	DateTime	DateTime	Data FN	Data FN	Batch	Notes
MBLK1S	60J013SB		NA	10/10/1321:02	10/09/1314:12	KJ09070A	KJ09068A	CPJ013S	Method Blank
LCS1S	60J013SL	1	NA	10/10/1321:26	10/09/1314:12	KJ09071A	KJ09068A	CPJ013S	Lab Control Sample (LCS)
LCD1S	60J013SC	1	NA	10/10/1321:50	10/09/1314:12	KJ09072A	KJ09068A	CPJ013S	LCS Duplicate
1c-2	J055-01	1	8.7	10/10/1322:14	10/09/1314:12	KJ09073A	KJ09068A	CPJ013S	Field Sample

FN - Filename % Moist - Percent Moisture

DWR-207

SAMPLE RESULTS

METHOD 3550B/8082 PCBs

Client : URS		Date Col	lected: 09/27/13	
Project : DHCCP		Date Re	ceived: 10/07/13	
Batch No. : 13J055		Date Ext	racted: 10/09/13 1	4:12
Sample ID: 1C-2		Date An	alyzed: 10/10/13 2	2:14
Lab Samp ID: J055-01		Dilution	Factor: 1	
Lab File ID: KJ09073A		Matrix	: SOIL	
Ext Btch ID: CPJ013S		% Moistur	e :8.7	
Calib. Ref.: KJ09068A		Instrumen	t ID : GCT071	
PARAMETERS	RESULTS (ug/kg)	RL (ug/kg)	MDL (ug/kg)	
PCB-1016	(ND) ND	55	18 18	
PCB-1221	(ND) ND	55	18 18	
PCB-1232	(ND) ND	55	18 18	
PCB-1242	(ND) ND	55	18 18	
PCB-1248	(ND) ND	55	18 18	
PCB-1254	(ND) ND	55	18 18	
PCB-1260	(ND) ND	55	18 18	
SURROGATE PARAMETERS	RESULTS	SPK_AMT	% RECOVERY	QC LIMIT
TETRACHLORO-M-XYLENE	(14.28) 13.17	14.60	(97.8) 90.2	50-130
DECACHLOROBIPHENYL	(14.14) 14.05	14.60	(96.9) 96.2	50-150

Left of \mid is related to first column ; Right of \mid related to second column Final result indicated by ()

* Out side of QC Limit

QC SUMMARIES

PCBs	

Client : URS Project : DHCCP Batch No. : 13J055 Sample ID: MBLK1S Lab Samp ID: 60J013SB Lab File ID: KJ09070A Ext Btch ID: CPJ013S Calib. Ref.: KJ09068A		Date Re Date Ext Date An Dilution Matrix % Moistur	lected: NA ceived: 10/09/13 racted: 10/09/13 alyzed: 10/10/13 Factor: 1 : SOIL e : NA t ID : GCT071	
	RESULTS	RL	MDL	
PARAMETERS	(ug/kg)	(ug/kg)	(ug/kg)	
PCB-1016	(ND) ND	50	17 17	
PCB-1221	(ND) ND	50	17 17	
PCB-1232	(ND) ND	50	17 17	
PCB-1242	(ND) ND	50	17 17	
PCB-1248	(ND) ND	50	17 17	
PCB-1254	(ND) ND	50	17 17	
PCB-1260	(ND) ND	50	17 17	
SURROGATE PARAMETERS	RESULTS	SPK_AMT	% RECOVERY	QC LIMIT
TETRACHLORO-M-XYLENE	(12.69) 11.84	13.33	(95.2) 88.8	60-130
DECACHLOROBIPHENYL	(13.54) 13.46	13.33	(102) 101	70 -1 40

Left of | is related to first column ; Right of | related to second column

Final result indicated by ()

* Out side of QC Limit

CLIENT: PROJECT: BATCH NO.: METHOD:	URS DHCCP 13J055 METHOD 3550B/8	3082									004 4
MATRIX: DILUTION FACTOR	SOIL : 1	1	1	% MOISTURE:	NA						
SAMPLE ID: LAB SAMP ID: LAB FILE ID: DATE EXTRACTED: DATE ANALYZED: PREP. BATCH: CALIB. REF:	MBLK1S 60J013SB KJ09070A 10/09/1314:12 10/10/1321:02 CPJ013S KJ09068A										
ACCESSION:											
PARAMETER		BLNK RSLT (ug/kg)	SPIKE AMT (ug/kg)	BS RSLT (ug/kg)	BS % REC	SPIKE AMT (ug/kg)	BSD RSLI (ug/kg)	BSD % REC	RPD (%)	QC LIMIT (%)	MAX RPD (%)
PCB-1016 PCB-1260	-	(ND) ND (ND) ND	167 167	(148) 143 151 (152)	(89) 86 91 (91)	167 167	(159) 155 161 (163	(95) 93 5) 97 (98)	(7) 8 6 (7)	70-140 70-140	50 50
SURROGATE PARAM		PIKE AMT (ug/kg)	BS RSLT (ug/kg)	BS SPIKI % REC (ug,		========== D RSLT g/kg)	BSD % REC	QC LIMIT (%)		======	
Tetrachloro-m-x Decachlorobiphe		13.33 (12) 13.33 (13)	.80) 12.30 .30) 13.21		13.33 (13.05 13.33 (13.44) 12.45) 13.34	(97.9) 93.4 (101) 100	60-130 70-140			

LABORATORY REPORT FOR

URS

DHCCP

METHOD 8151A HERBICIDES

SDG#: 13J055

CASE NARRATIVE

Client : URS

Project : DHCCP

SDG : 13J055

METHOD 8151A HERBICIDES

One(1) soil sample was received on 10/07/13 for Chlorinated Herbicides analysis, Method 8151A in accordance with USEPA SW-846, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods.

Holding Time The sample was analyzed within the prescribed holding time.

Calibration Multi-calibration points were generated to establish initial calibration (ICAL). ICAL was verified using a secondary source (ICV). Continuing calibration (CCV) verifications were carried on a frequency specified by the project. All calibration requirements were within acceptance criteria. Refer to calibration summary forms of ICAL, ICV and CCV for details.

Method Blank Method blank was analyzed at the frequency required by the project. For this SDG, one method blank was analyzed with the samples. Result was compliant to project requirement.

Lab Control Sample A set of LCS/LCD was analyzed with the samples in this SDG. Percent recoveries for HEJ003SL/C were all within QC limits.

Matrix QC Sample No matrix QC sample was designated in this SDG.

Surrogate Surrogate was added on QC and field samples. Surrogate recoveries were within project QC limits. Refer to sample result forms for details.

Sample Analysis The sample was analyzed according to prescribed analytical procedures. All project requirements were met otherwise anomalies were discussed within the associated QC parameter.

LAB CHRONICLE HERBICIDES

		==========				=======================================	==========	
Client : URS Project : DHCCP							SDG NO. Instrum	
	=======================================						========	************************
			SO	IL				
Client	Laboratory Diluti	n %	Analysis	Extraction	Sample	Calibration	Prep.	
Sample ID	Sample ID Fact	or Moist	DateTime	DateTime	Data FN	Data FN	Batch	Notes
MBLK1S	HEJOO3SB	I NA	10/11/1313:11	10/10/1316:30	WJ11003A	WJ11002A	HEJ003S	Method Blank
LCS1S	HEJ003SL	I NA	10/11/1313:41	10/10/1316:30	WJ11004A	WJ11002A	HEJ003S	Lab Control Sample (LCS)
LCD1S	HEJ003SC	I NA	10/11/1314:12	10/10/1316:30	WJ11005A	WJ11002A	HEJ003S	LCS Duplicate
10-2	J055-01	8.7	10/11/1318:17	10/10/1316:30	WJ11012A	WJ11002A	HEJ003S	Field Sample

FN - Filename % Moist - Percent Moisture

367

Client : URS		Date Coll	ected: 09/27/13	
Project : DHCCP		Date Rec	eived: 10/07/13	
Batch No. : 13J055		Date Extr	acted: 10/10/13 1	6:30
Sample ID: 1C-2		Date Ana	lyzed: 10/11/13 1	8:17
Lab Samp ID: J055-01		Dilution F	actor: 1	
Lab File ID: WJ11012A		Matrix	: SOIL	
Ext Btch ID: HEJ003S		% Moisture	: 8.7	
Calib. Ref.: WJ11002A		Instrument	ID : GCT016	
				====
	RESULTS	RL	MDL	
PARAMETERS	(ug/kg)	(ug/kg)	(ug/kg)	
2,4-D	(ND) ND	11	5.5 5.5	
2,4-DB	(ND) ND	11	5.5 5.5	
2,4,5-T	(ND) ND	11	5.5 5.5	
2,4,5-TP(SILVEX)	(ND) ND	11	5.5 5.5	
DALAPON	(ND) ND	11	5.5 5.5	
DICAMBA	(ND) ND	11	5.5 5.5	
DICHLOROPROP	(ND) ND	11	5.5 5.5	
DINOSEB	(ND) ND		5.5 5.5	
MCPA	(ND) ND	2200	1	
MCPP	(ND) ND	2200	1100 1100	
SURROGATE PARAMETERS	RESULTS	SPK_AMT	% RECOVERY	QC LIMI
2 / DCDAA	558 01(408 2)	547.6	102 (111)	20-15
2,4-DCPAA	558.0 (608.2)	547.0	1021(111)	20 10

Left of \mid is related to first column; Right of \mid related to second column Final result indicated by ()

QC SUMMARIES

Client : URS		Date Coll	ected: NA	
Project : DHCCP		Date Rec	ceived: 10/10/13	
Batch No. : 13J055		Date Extr	acted: 10/10/13 1	6:30
Sample ID: MBLK1S		Date Ana	alyzed: 10/11/13 1	3:11
Lab Samp ID: HEJ003SB		Dilution F	actor: 1	
Lab File ID: WJ11003A		Matrix	: SOIL	
Ext Btch ID: HEJ003S		% Moisture	e :NA	
Calib. Ref.: WJ11002A		Instrument	: ID : GCT016	
	RESULTS	RL	MDL	
PARAMETERS	(ug/kg)	(ug/kg)	(ug/kg)	
2,4-D	(ND) ND	10	5.0 5.0	
2,4-DB	(ND) ND	10	5.0 5.0	
2,4,5-T	(ND) ND	10	5.0 5.0	
2,4,5-TP(SILVEX)	(ND) ND	10	5.0 5.0	
DALAPON	(ND) ND	10	5.0 5.0	
DICAMBA	(ND) ND	10	5.0 5.0	
DICHLOROPROP	(ND) ND	10	5.0 5.0	
DINOSEB	(ND) ND	10	5.0 5.0	
МСРА	(ND) ND	2000	1000 1000	
МСРР	(ND) ND	2000	1000 1000	
SURROGATE PARAMETERS	RESULTS	SPK_AMT	% RECOVERY	QC LIMIT
2,4-DCPAA	481.9 (507.4)	500.0	96.4 (101)	60-140
	'			

Left of \mid is related to first column; Right of \mid related to second column Final result indicated by ()

CLIENT: PROJECT: BATCH NO.: METHOD:	URS DHCCP 13J055 METHOD 8151A										
MATRIX: DILUTION FACTOR: SAMPLE ID: LAB SAMP ID: LAB FILE ID:	SOIL 1 MBLK1S HEJ003SB WJ11003A	1 HEJ003SL WJ11004A	1 HEJ003SC WJ11005A	% MOISTURE:	NA						
DATE EXTRACTED: DATE ANALYZED: PREP. BATCH: CALIB. REF:	10/10/1316:30 10/11/1313:11 HEJOO3S WJ11002A	10/10/1316:30 10/11/1313:41 HEJ003S WJ11002A	10/10/1316:30 10/11/1314:12 HEJ003S WJ11002A	DATE COLLECTED: DATE RECEIVED:	NA 10/10/13						
ACCESSION:											
PARAMETER		BLNK RSLT (ug/kg)	SPIKE AMT (ug/kg)	BS RSLT (ug/kg)	BS % REC	SPIKE AMT (ug/kg)	BSD RSLT (ug/kg)	BSD % REC	RPD (%)	QC LIMIT (%)	MAX RPD (%)
2,4-D 2,4-DB 2,4,5-T		(ND) ND (ND) ND (ND) ND	50.0 50.0 50.0	53.5 (53.9) (55.6) 55.5 50.9 (61.2)	107 (108) (111) 111 102 (122)	50.0 50.0 50.0	51.7 (51.8) (55.2) 53.5 49.2 (62.8)	103 (104) (110) 107 98 (126)	3 (4) (1) 4 3 (3)	60-150 60-140 60-140	50 50 50
2,4,5-TP(Silvex) Dalapon Dicamba		(ND) ND (ND) ND (ND) ND	50.0 50.0 50.0	52.4 (57.4) 45.9 (56.0) 48.8 (54.1)	105 (115) 92 (112) 98 (108)	50.0 50.0 50.0	50.4 (54.0) 43.3 (51.0) 47.4 (51.7)	101 (108) 87 (102) 95 (103)	4 (6) 6 (9) 3 (5)	50-150 10-160 30-130	50 50 50
Dichloroprop Dinoseb MCPA MCPP		(ND) ND (ND) ND (ND) ND (ND) ND	50.0 50.0 2500 2500	54.7 (56.8) 54.6 (55.8) 1710J (2770) (2220) 2170	109 (114) 109 (112) 68 (111) (89) 87	50.0 50.0 2500 2500	51.9 (54.3) (50.8) 50.5 1600J (2640) (2430) 2030	104 (109) (102) 101 64 (106) (97) 81	5 (5) (7) 10 7 (5) (9) 7	30-130 30-130 30-130 30-130 30-130	50 50 50 50
					=======================================		(2450) [2050		(7) /	0-130	0
SURROGATE PARAME			BS RSLT (ug/kg)	BS SPIKE % REC (ug/k		RSLT /kg)	% REC (%				
2,4-DCPAA		500.0 48	1.5 (513.6)	96.3 (103) 50	0.0 479.9	(499.6)	96.0 (99.9) 60-				

LABORATORY REPORT FOR

URS

DHCCP

METALS/MERCURY

SDG#: 13J055

CASE NARRATIVE

Client : URS

Project : DHCCP

SDG : 13J055

METHOD 6020A METALS BY ICP-MS

One(1) soil sample was received on 10/07/13 for Metals CAM analysis, Method 6020A in accordance with USEPA SW-846, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods.

Holding Time The sample was analyzed within the prescribed holding time.

Calibration Initial Calibration was established as prescribed by the method and was verified using a secondary source. Interference checks were performed and results were within required limits. Continuing calibration verifications and continuing calibration blanks were carried out at the frequency specified by the project. All calibration requirements were within acceptance criteria.

Method Blank Method blank was analyzed at the frequency required by the project. For this SDG, one method blank was analyzed with the samples. Result was compliant to project requirement.

Lab Control Sample A set of LCS/LCD was analyzed with the samples in this SDG. Percent recoveries for IMJ024SL/C were all within QC limits.

Matrix QC Sample Analytical spike and serial dilution were analyzed for matrix interference evaluation. Results were within method acceptance criteria.

Sample Analysis The sample was analyzed according to prescribed analytical procedures. All project requirements were met otherwise anomalies were discussed within the associated QC parameter.

LAB CHRONICLE METALS BY ICP-MS

Client : URS	SDG NO. : 13J055
Project : DHCCP	Instrument ID : T-198

				\$0	IL				
Client	Laboratory	Dilution	%	Analysis	Extraction	Sample	Calibratio	n Prep.	
Sample ID	Sample ID	Factor	Moist	DateTime	DateTime	Data FN	Data FN	Batch	Notes
	~ ~								
MBLK1S	IMJ024SB	1	NA	10/17/1318:10	10/10/1314:00	98J10020	98J10017	IMJ024S	Method Blank
LCS1S	IMJ024SL	1	NA	10/17/1318:14	10/10/1314:00	98J10021	98J10017	IMJ024S	Lab Control Sample (LCS)
LCD1S	IMJ024SC	1	NA	10/17/1318:18	10/10/1314:00	98J10022	98J10017	IMJ024S	LCS Duplicate
1C-2AS	J055-01A	1.00	8.7	10/17/1318:22	10/10/1314:00	98J10023	98J10017	IMJ024S	Analytical Spike Sample
1C-2	J055-01	1.00	8.7	10/17/1318:27	10/10/1314:00	98J10024	98J10017	IMJ024S	Field Sample
1C-2DL	J055-01J	5.00	8.7	10/17/1318:31	10/10/1314:00	98J10025	98J10017	IMJ024S	Diluted Sample

FN - Filename

% Moist - Percent Moisture

METHOD 6020A METALS BY ICP-MS

		=======================================	
Client : URS Project : DHCCP SDG NO. : 13J055 Sample ID: 1C-2 Lab Samp ID: J055-01 #J055-011 Lab File ID: 98J10024 #98J10048 Ext Btch ID: IMJ024S	Date R Date Ex Date A Dilution Matríx % Moistu	Factor: 1.00 ; : SOIL re : 8.7	/13 /13 14:00 /13 18:27 # 10/17/13 20:32
Calib. Ref.: 98J10017 #98J10040	Instrume		
PARAMETERS	RESULTS (mg/kg)	RL (mg/kg)	MDL (mg/kg)
Antimony	ND	0.548	0.219
Arsenic	4.03	0.548	0.110
Barium	200	0,548	0.110
Beryllium	0.607	0.548	0.110
Cadmium	0.348J	0.548	0.110
Chromium	56.1	0.548	0.110
Cobalt	15.9	0.548	0.110
Copper	33.7	0.548	0.219
Lead	7.75	0.548	0.110
Molybdenum	0.282J	0.548	0.219
# Nickel	75.7	2.74	0.548
Selenium	0.153J	0.548	0.110
Silver	ND	0.548	0.110
Thallium	0.165J	0.548	0.110
Vanadium	59.9	0.548	0.274
Zinc	154	2.19	1.10

Members of the Associated File

Client : URS Project : DHCCP SDG NO. : 13J055 Sample ID: MBLK1S Lab Samp ID: IMJ024SB Lab File ID: 98J10020	Date Date Dilut Matrix	Analyzed: ion Factor:	10/10/13 10/10/13 14:00 10/17/13 18:10 1 SOIL
Ext Btch ID: IMJ024S Calib. Ref.: 98J10017	% Mois Instru		NA T-198
	RESULTS	RL	MDL
PARAMETERS	(mg/kg)	(mg/kg)	(mg/kg)
Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Lead Molybdenum Nickel Selenium	ND ND ND ND ND ND ND ND ND ND ND ND	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.200 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.200 0.100 0.100 0.100 0.100 0.100
Silver Thallium Vanadium Zinc	ND ND ND ND	0.500 0.500 0.500 2.00	0.100 0.100 0.250 1.00

CLIENT: PROJECT: SDG NC.: METHOD:	URS DHCCP 13J055 METHOD 6020A								*======		
MATRIX: DILTN FACTR: SAMPLE ID: CONTROL NO.: LAB FILE ID: DATIME EXTRCTD: DATIME ANALYZD: PREP. BATCH: CALIB. REF:	SOIL 1 MBLK1S IMJ024SB 98J10020 10/10/1314:00 10/17/1318:10 IMJ024S 98J10017	1 IMJ024SL 98J10021 10/10/13 10/17/13 IMJ024S 98J10017	98J10 14:00 10/10 18:14 10/17 IMJ02	0022 0/1314:00 7/1318:18 24S	% MOIST DATE CC DATE RE	LLECTED: NA					
ACCESSION: PARAMETER		LNK RSLT mg/kg	SPIKE AMT mg/kg	BS RSLT mg/kg	BS % REC	SPIKE AMT mg/kg	BSD RSLT mg/kg	BSD % REC	RPD %	QC LIMIT %	MAX RPD %
Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Lead Molybdenum Nickel Selenium Silver Thallium Vanadium Zinc		ND ND ND ND ND ND ND ND ND ND ND ND ND N	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	25.6 25.4 26.0 27.6 25.1 25.1 26.0 25.3 25.4 25.7 25.2 25.0 25.9 25.9 25.3 25.5 48.8	102 102 104 110 100 104 101 102 103 101 100 104 101 102 98	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	25.5 25.1 25.8 26.7 24.6 25.3 25.7 25.7 25.6 25.2 25.3 25.2 25.5 25.4 25.6 49.9	102 100 103 107 98 101 103 103 102 101 101 101 101 102 102 102 102	0 1 3 2 1 1 1 1 2 0 1 1 1 1 2	80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120	20 20 20 20 20 20 20 20 20 20 20 20 20 2

EMAX QUALITY CONTROL DATA SERIAL DILUTION ANALYSIS

	CLIENT: PROJECT: BATCH NO.: METHOD:	URS DHCCP 13J055 METHOD 6020A					
	MATRIX: DILUTION FACTOR: SAMPLE ID: EMAX SAMP ID:	SOIL 1.00 1C-2 J055-01	5.00 1C-2DL J055-01J 98J10025		% MOISTUR	E:	8.7
	LAB FILE ID: DATE EXTRACTED: DATE ANALYZED: PREP. BATCH: CALIB. REF:	98J10024 10/10/1314:00 10/17/1318:27 IMJ024S 98J10017	10/10/131		DATE COLL DATE RECE		09/27/13 10/07/13
	ACCESSION:						
	PARAMETER		MPL RSLT (mg/kg)	SERIAL DIL RSLT (mg/kg)	DIF RSLT %	QC LIMIT (%)	
	Antimony		ND	ND	0	10	
	Arsenic		4.03	4.21	5	10	
	Barium		200	189	6	10	
	Beryllium		0.607	0.577J	NA	10	
	Cadmium		0.348J	ND	NA	10	
	Chromium		56.1	60.7	8	10	
	Cobalt		15.9	18.2	14*	10	
	Copper		33.7	38.1	13*	10	
	Lead		7.75	7.83	1	10	
щ	Mólÿbdenum		0.282J	ND 87 O	NA 10	10	
Ħ	Nickel Selenium		75.7 0.153J	83.0 ND	10 NA	10 10	
	Silver		0.155J ND	ND	NA 0	10	
	Thallium		0.165J	ND	NA	10	
	Vanadium		59.9	UN 64.8	NA 8	10	
	Zinc		154	159	3	10	
	E 11 IG		1.74	1.59	J	10	

J055-01J : Analyzed at DF 25 on 10/17/13 20:36 | File ID 98J10049

a. C. a. a i più con ŝ c $t = 2 \hat{V} t$

EMAX QUALITY CONTROL DATA ANALYTICAL SPIKE ANALYSIS

	CLIENT: PROJECT: SDG NO.: METHOD:	URS DHCCP 13J055 METHOD 6020A					
	MATRIX: DILTN FACTR: SAMPLE ID: CONTROL NO.: LAB FILE ID: DATIME EXTRCTD: DATIME ANALYZD: PREP. BATCH: CALIB. REF:	SOIL 1.00 1C-2 J055-01 98J10024 10/10/1314:00 10/17/1318:27 IMJ024S 98J10017	1.00 J055-01A 98J10023 10/10/13	14:00 D#	MOISTURE: ATE COLLECTED: ATE RECEIVED:	8.7 09/27, 10/07,	
	ACCESSION: PARAMETER		PL RSLT mg/kg)	SPIKE AMT (mg/kg)	AS RSLT (mg/kg)	AS (% REC	QC LIMIT (%)
#	Antimony Arsenic Barium Beryllium Cadmium Cobalt Copper Lead Molybdenum Nickel Selenium Silver Thallium Vanadium Zinc		ND 4.03 200 0.607 0.348J 56.1 15.9 33.7 7.75 0.282J 75.7 0.282J 75.7 0.153J ND 0.165J 59.9 154	27.4 27.4 27.4 27.4 27.4 27.4 27.4 27.4	30.4 230 28.9 26.9 77.7 38.3 55.1 33.7	100 96 110 103 97 79* 82 78 95 100 91 98 102 101 80 95	80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120

J055-01A : Analyzed at DF 5 on 10/17/13 20:28 | File ID 98J10047

CASE NARRATIVE

Client : URS

Project : DHCCP

SDG : 13J055

METHOD DI WET/6020A DI WET METALS BY ICP-MS

One (1) soil sample was received on 10/07/13 for Metals DI-WET analysis, Method DI WET/6020A in accordance with USEPA SW-846, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods.

Holding Time The sample was analyzed within the prescribed holding time.

Calibration Initial Calibration was established as prescribed by the method and was verified using a secondary source. Interference checks were performed and results were within required limits. Continuing calibration verifications and continuing calibration blanks were carried out at the frequency specified by the project. All calibration requirements were within acceptance criteria.

Method Blank Method blanks were analyzed at the frequency required by the project. For this SDG, two (2) method blanks were analyzed with the samples. All results were compliant to project requirement. Refer to QC result summary forms for details.

Lab Control Sample A set of LCS/LCD was analyzed with the samples in this SDG. Percent recoveries for IMJ029WL/C were all within QC limits.

Matrix QC Sample Matrix QC sample was analyzed at the frequency prescribed by the project. Percent recoveries were within project QC limits except for results qualified with [*] in J055-01M/S summary form, most likely due to low spike level as compared to concentration of parent sample. Check QC summary form for details. In addition, analytical spike and serial dilution were analyzed for matrix interference evaluation. Results were within method acceptance criteria.

Sample Analysis The sample was analyzed according to prescribed analytical procedures. All project requirements were met; otherwise, anomalies were discussed within the associated QC parameter.

LAB CHRONICLE DI WET METALS BY ICP-MS

=======================================		
Client : URS		SDG NO. : 13J055
Project : DHCCP		Instrument ID : T-198
=======================================		
	LEACHATE	

Client	Laboratory	Dilution	%	Analysis	Extraction	Sample	Calibratic	n Prep.	
Sample ID	Sample ID	Factor	Moist	DateTime	DateTime	Data FN	Data FN	Batch	Notes
~~~~									
MBLK1W	IMJ029WB	1	NA	10/17/1318:57	10/15/1310:48	98J1003 <b>1</b>	98J10029	IMJ029W	Method Blank
LCS1W	IMJ029WL	1	NA	10/17/1319:02	10/15/1310:48	98J10032	98J10029	IMJ029W	Lab Control Sample (LCS)
LCD1W	IMJ029WC	1	NA	10/17/1319:06	10/15/1310:48	98J10033	98J10029	IMJ029W	LCS Duplicate
MBLK2W	WTJ004SB	1	NA	10/17/1319:10	10/15/1310:48	98J10034	98J10029	IMJ029W	Method Blank
1C-2MS	J055-01M	1	NA	10/17/1320:06	10/15/1310:48	98J10042	98J10040	IMJ029W	Matrix Spike Sample (MS)
1C-2MSD	J055-0 <b>1</b> S	1	NA	10/17/1320:10	10/15/1310:48	98J10043	98J10040	IMJ029W	MS Duplicate (MSD)
1C-2AS	J055-0 <b>1</b> A	1	NA	10/17/1320:15	10/15/1310:48	98J10044	98J10040	IMJ029W	Analytical Spike Sample
1C-2	J055~01	1	NA	10/17/1320:19	10/15/1310:48	98J10045	98J10040	IMJ029W	Field Sample
1C-2DL	J055-01J	5	NA	10/17/1320:23	10/15/1310:48	98J10046	98J10040	IMJ029W	Diluted Sample

FN - Filename

% Moist - Percent Moisture

Client : URS Project : DHCCP SDG NO. : 13J055 Sample ID: 1C-2 Lab Samp ID: J055-01 Lab File ID: 98J10045 Ext Btch ID: IMJ029W Calib. Ref.: 98J10040	Date Date Date Diluti Matrix % Mois	Analyzed: on Factor: : ture :	
PARAMETERS Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Lead Molybdenum Nickel Selenium Silver	RESULTS (ug/L)  1.80 10.9 85.3 ND ND 0.971J 0.428J 15.2 1.60 7.59 2.33 8.77 ND	RL (ug/L) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2.00 1.00 1	MDL (ug/L)  0.500 0.200 0.500 0.200 0.200 0.200 0.500 0.100 0.500 0.200 0.300 0.200
Thallium Vanadium Zinc	ND 19.9 43.9	1.00 1.00 20.0	0.200 0.500 10.0

SPLP EXTRACTION DATE: 10/10/13 16:30

Client : URS Project : DHCCP SDG NO. : 13J055 Sample ID: MBLK1W Lab Samp ID: IMJ029WB Lab File ID: 98J10031 Ext Btch ID: IMJ029W Calib. Ref.: 98J10029	Date Date Date Diluti Matrix % Mois	Analyzed: on Factor: : ture :	
PARAMETERS Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Lead Molybdenum Nickel Selenium Silver Thallium Vanadium Zinc	RESULTS (ug/L) ND ND ND ND ND ND ND ND ND ND ND ND ND	RL (ug/L) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	MDL (ug/L)  0.500 0.200 0.500 0.200 0.200 0.200 0.500 0.100 0.500 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200

MATRIX:       WATER       % MOISTURE:       NA         DILTN FACTR:       1       1       1         SAMPLE ID:       MBLK1W       CONTROL NO.:       IMJ029WB       IMJ029WL       IMJ029WC         LAB FILE ID:       98J10031       98J10032       98J10033       DATE COLLECTED:       NA         DATIME EXTRCTD:       10/15/1310:48       10/15/1310:48       10/15/1310:48       DATE COLLECTED:       NA         DATIME ANALYZD:       10/17/1318:57       10/17/1319:02       10/17/1319:06       DATE RECEIVED:       10/15/13         PREP. BATCH:       IMJ029W       IMJ029W       IMJ029W       DATE RECEIVED:       10/15/13         CALIB. REF:       98J10029       98J10029       98J10029       ACCESSION:         BLNK RSLT SPIKE AMT BS RSLT       BS SPIKE AMT BSD RSLT       BSD RPD QC LIM         PARAMETER       ug/L       ug/L       ug/L       ug/L       % REC       % %	
BLNK RSLT SPIKE AMT BS RSLT BS SPIKE AMT BSD RSLT BSD RPD QC LIM PARAMETER ug/L ug/L ug/L % REC ug/L ug/L % REC % %	
PARAMETER ug/L ug/L ug/L % REC ug/L ug/L % REC % %	T MAX RPD
	%
Antimony ND 25.0 24.3 97 25.0 23.4 94 4 80-1	-
Arsenic ND 25.0 25.7 103 25.0 24.6 98 4 80-1	
Balliuli ND ESto Eoti Interneti and A	
Bellyttidiii AD 23:0 Editor 104 Editor 2010	
Molybdenum ND 25.0 25.4 102 25.0 24.6 98 3 80-1 Nickel ND 25.0 25.1 100 25.0 24.4 98 3 80-1	
Selenium ND 25.0 24.8 99 25.0 24.2 97 2 80-1	
Silver ND 25.0 24.9 100 25.0 24.6 98 1 80-1	0 20
Thallium ND 25.0 25.8 103 25.0 25.3 101 2 80-1	0 20
Vanadium ND 25.0 25.0 100 25.0 24.8 99 1 80-1	
Zinc ND 50.0 54.7 109 50.0 50.4 101 8 80-1	0 20

Client : URS Project : DHCCP SDG NO. : 13J055 Sample ID: MBLK2W Lab Samp ID: WTJ004SB Lab File ID: 98J10034 Ext Btch ID: IMJ029W Calib. Ref.: 98J10029	Date Date Date Diluti Matrix % Mois	Analyzed: on Factor: : ture :	
PARAMETERS	RESULTS (ug/L)	RL (ug/L)	MDL (ug/L)
Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Lead Molybdenum Nickel Selenium Silver Thallium Vanadium	ND ND ND ND ND ND ND ND ND ND ND ND ND N	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.500 0.200 0.500 0.200 0.200 0.200 0.200 0.500 0.100 0.500 0.200 0.300 0.200 0.200 0.200 0.500 10.0

SPLP EXTRACTION DATE: 10/10/13 16:30

CLIENT: PROJECT: SDG NO.: METHOD:	URS DHCCP 13J055 METHOD DI WET	/6020A									
MATRIX: DILTN FACTR: SAMPLE ID:	LEACHATE 1 1c-2	1	1		% MOIST	URE: NA	l.				
CONTROL NO.: LAB FILE ID: DATIME EXTRCTD: DATIME ANALYZD: PREP. BATCH: CALIB. REF:	J055-01 98J10045 10/15/1310:48 10/17/1320:19 IMJ029W 98J10040		98J1 10:48 10/1	5/1310:48 7/1320:10 29W	DATE CO DATE RE		9/27/13 //07/13				
ACCESSION:											
PARAMETER	S	MPL RSLT ug/L	SPIKE AMT ug/L	MS RSLT ug/L	MS % REC	SPIKE AMT ug/L	MSD RSLT ug/L	MSD % REC	RPD %	QC LIMIT %	MAX RPD %
Antimony	-	1.80	25.0		80	25.0	22.1	81	2		20
Arsenic		10.9	25.0		94	25.0	35.4	98	3		20
Barium		85.3	25.0		575*		227	567*	1	75-125	20
Beryllium		ND	25.0		98	25.0	24.6	98 93	1	75 - 125 75 - 125	20 20
Cadmium		ND	25.0		91	25.0	23.2	93 97	2		20 20
Chromium		0.971J	25.0		93	25.0 25.0	25.1 23.4	97 92	4		20
Cobalt		0.428J 15.2	25.0 25.0		89 78	25.0	23.4 35.4	92 81	2		20
Copper		15.2	25.0		78 95	25.0	25.4	95	0		20
Lead		7.59	25.0		92	25.0	30.7	92	0		20
Molybdenum Nickel		2.33	25.0		95	25.0	26.8	98	2		20
Selenium		8.77	25.0		91	25.0	31.7	92	1		20
Silver		ND	25.0		92	25.0	23.5	94	3	75-125	20
Thallium		ND	25.0		93	25.0	23.8	95	2	75-125	20
Vanadium		19.9	25.0		92	25.0	44.4	98	3	75-125	20
Zinc		43.9	50.0		146*	50.0	122	156*	5	75-125	20

#### EMAX QUALITY CONTROL DATA SERIAL DILUTION ANALYSIS

CLIENT: PROJECT: BATCH NO.: METHOD:	URS DHCCP 13J055 METHOD DI WET,	-				
					========	
MATRIX:	LEACHATE			% MOISTU	RE:	NA
DILUTION FACTOR:	1	5				
SAMPLE ID:	1C-2	1C-2DL				
EMAX SAMP ID:	J055-01	J055-01J				
LAB FILE ID:	98J10045	98J10046				
DATE EXTRACTED:	10/15/1310:48			DATE COL		09/27/13
DATE ANALYZED:	10/17/1320:19		0:23	DATE REC	EIVED:	10/07/13
PREP. BATCH:	IMJ029W	IMJ029W				
CALIB. REF:	98J10040	98J10040				
ACCESSION:						
	SI	MPL RSLT	SERIAL DIL RSLT		QC LIMI	Т
PARAMETER		(ug/L)	(ug/L)	%	(%)	_
Antimony		1.80	ND	NA	1	0
Arsenic		10.9	11.4	4	1	0
Barium		85.3	87.7	3	1	D
Beryllium		ND	ND	0	1(	C
Cadmium		ND	ND	0	11	0
Chromium		0.971J	ND	NA	10	
Cobalt		0.428J	ND	NA	10	
Copper		15.2	19.7	30*	10	
Lead		1.60	1.84J	NA	1(	
Molybdenum		7.59	7.31J	NA	10	
Nickel		2.33	2.57J	NA	11	
Selenium		8.77	9.15	4	1	
Silver		ND	ND	0 0	1) 1)	
Thallium		ND 10.0	ND 20.2	2	1	
Vanadium		19.9 43.9	20.2 51.2J	Z NA	1	
Zinc		43.9	1.23	NA	1	J .

## EMAX QUALITY CONTROL DATA ANALYTICAL SPIKE ANALYSIS

CLIENT: PROJECT: SDG NO.: METHOD:	URS DHCCP 13J055 METHOD DI WET/						
MATRIX: DILTN FACTR: SAMPLE ID: CONTROL NO.: LAB FILE ID: DATIME EXTRCTD: DATIME ANALYZD: PREP. BATCH: CALIB. REF:	LEACHATE 1 1C-2 J055-01 98J10045 10/15/1310:48 10/17/1320:19 IMJ029W 98J10040	1 J055-01A 98J10044 10/15/131	0:48	% MOISTURE: DATE COLLEC DATE RECEIVE			
ACCESSION: PARAMETER		PL RSLT (ug/L)	SPIKE AMT (ug/L)	AS RSLT (ug/L)	AS % REC	QC LIMIT (%)	
Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Lead Molybdenum Nickel Selenium Silver Thallium Vanadium Zinc		1.80 10.9 85.3 ND 0.971J 0.428J 15.2 1.60 7.59 2.33 8.77 ND ND 19.9 43.9	25. 25. 25. 25. 25. 25. 25. 25. 25. 25.	0       35.         0       12         0       25.         0       25.         0       25.         0       25.         0       25.         0       38.         0       27.         0       34.         0       34.         0       32.         0       32.         0       26.         0       25.         0       26.         0       25.         0       26.         0       25.         0       26.         0       25.         0       26.         0       25.         0       26.         0       25.         0       26.         0       25.         0       44.	9         100           20         139*           .7         103           .9         100           .2         97           .0         98           .7         104           .5         108           .5         97           .3         94           .0         104           .8         103           .5         98	80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120	

CASE NARRATIVE

Client : URS

Project : DHCCP

SDG : 13J055

#### METHOD 7471A MERCURY BY COLD VAPOR

One(1) soil sample was received on 10/07/13 for Mercury analysis, Method 7471A in accordance with USEPA SW-846, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods.

Holding Time The sample was analyzed within the prescribed holding time.

Calibration Multi-calibration points were generated to establish initial calibration (ICAL). ICAL was verified using a secondary source. Continuing calibration verifications were carried out at the frequency specified by the project. All calibration requirements were within acceptance criteria.

Method Blank Method blank was analyzed at the frequency required by the project. For this SDG, one method blank was analyzed with the samples. Result was compliant to project requirement.

Lab Control Sample A set of LCS/LCD was analyzed with the samples in this SDG. Percent recoveries for HGJ015SL/C were all within QC limits.

Matrix QC Sample Analytical spike and serial dilution from another SDG were analyzed for matrix evaluation. Results were within method acceptance criteria.

Sample Analysis The sample was analyzed according to prescribed analytical procedures. All project requirements were met otherwise anomalies were discussed within the associated QC parameter. LAB CHRONICLE MERCURY BY COLD VAPOR

Client : URS Project : DHCCP		971112-1172-11-11-11-11-11-11-11-11-11-11-11-11-11					utation for a many subsection that any sector	SDG NO. Instrume	: 13J055 ent ID : 47				
SOIL													
Client	Laboratory	Dilution	z	Analysis	Extraction	Sample	Calibration	Prep.					
Sample ID	Sample ID	Factor	Moist	DateTime	DateTime	Data FN	Data FN	Batch	Notes				
					* * * * * * * * * * * * * * *								
MBLK1S	HGJ015SB	1	NA	10/09/1318:59	10/09/1316:30	M47J010011	M47J010	HGJ015S	Method Blank				
LCS1S	HGJ015SL	1	NA	10/09/1319:01	10/09/1316:30	M47J010012	M47J010	HGJ015S	Lab Control Sample (LCS)				
LCD1S	HGJ015SC	1	NA	10/09/1319:03	10/09/1316:30	M47J010013	M47J010	HGJ015S	LCS Duplicate				
1C-2	J055-01	1	8.7	10/09/1319:18	10/09/1316:30	M47J010020	M47J010	HGJ015S	Field Sample				

FN - Filename

% Moist - Percent Moisture

METHOD 7471A MERCURY BY COLD VAPOR

Client : URS Project : DHCCP Batch No. : 13J055												mentID : 47	
CLIENT SAMPLE ID	EMAX SAMPLE ID	(mg/kg)	DIL'N FACTOR	(%)	LOQ (mg/kg)	LOD (mg/kg)	ANALYSIS DATETIME	PREPARATION DATETIME	DATA FILE ID	CAL REF	PREP BATCH	COLLECTION DATETIME	RECEIVED DATETIME
MBLK1S	HGJ015SB	ND	1	NA	0.1	0.02	10/09/1318:59	10/09/1316:30	M47J010011	M47J010	HGJ015S	NA	NA
LCS1S	HGJ015SL	0.422	1	NA	0.1	0.02	10/09/1319:01	10/09/1316:30	M47J010012	M47J010	HGJ015S	NA	NA
LCD1S	HGJ015SC	0.428	1	NA	0.1	0.02	10/09/1319:03	10/09/1316:30	M47J010013	M47J010	HGJ015S	NA	NA
1C-2	J055-01	ND	1	8.7	0.11	0.0219	10/09/1319:18	10/09/1316:30	M47J010020	M47J010	HGJ015S	09/27/1312:00	10/07/13

CLIENT	: URS	
PROJECT	: DHCCP	
BATCH NO.	: 13J055	
METHOD	: 7471A	
MATRIX	: SOIL	% MOISTURE: N/A

FRINIA .	JUIL		a hoistoke. N/A
DILUTION FACTOR:	1	1	1
SAMPLE ID :	MBLK1S	LCS1S	LCD1S
LAB SAMPLE ID :	HGJ015SB	HGJ015SL	HGJ015SC
LAB FILE ID :	M47J010011	M47J010012	M47J010013
DATE PREPARED :	10/09/1316:30	10/09/1316:30	10/09/1316:30
DATE ANALYZED :	10/09/1318:59	10/09/1319:01	10/09/1319:03
PREP BATCH :	HGJ015S	HGJ015S	HGJ015S
CALIBRATION REF:	M47J010	M47J010	M47J010

ACCESSION:

	MB RESULT	SPIKE AMT	BS RESULT	BS REC	SPIKE AMT	BSD RESULT	BSD REC	RPD	QC LIMIT	MAX RPD
PARAMETER	(mg/kg)	(mg/kg)	(mg/kg)	(%)	(mg/kg)	(mg/kg)	(%)	(%)	(%)	(%)
Mercury	ND	0.417	0.422	101	0.417	0.428	103	1	80-120	20

CASE NARRATIVE

Client : URS

Project : DHCCP

SDG : 13J055

#### METHOD DI WET/7470A DI WET MERCURY BY COLD VAPOR

One(1) soil sample was received on 10/07/13 for Mercury by DI WET analysis, Method DI WET/7470A in accordance with USEPA SW-846, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods.

Holding Time The sample was analyzed within the prescribed holding time.

Calibration Multi-calibration points were generated to establish initial calibration (ICAL). ICAL was verified using a secondary source. Continuing calibration verifications were carried out at the frequency specified by the project. All calibration requirements were within acceptance criteria.

Method Blank Method blanks were analyzed at the frequency required by the project. For this SDG, two (2) method blanks were analyzed with the samples. All results were compliant to project requirement. Refer to QC result summary forms for details.

Lab Control Sample A set of LCS/LCD was analyzed with the samples in this SDG. Percent recoveries for HGJ022WL/C were all within QC limits.

Matrix QC Sample Matrix QC sample was analyzed at the frequency prescribed by the project. Percent recoveries for J055-01M/J055-01S are within project QC limits.

Sample Analysis The sample was analyzed according to prescribed analytical procedures. All project requirements were met otherwise anomalies were discussed within the associated QC parameter.

#### LAB CHRONICLE DI WET MERCURY BY COLD VAPOR

Client : URS Project : DHCCP	10.70							SDG NO. : 13J055 Instrument ID : 47		
				LEAC	HATE					
Client	Laboratory	Dilution	X	Analysis	Extraction	Sample	Calibratic	n Prep.		
Sample ID	Sample ID	Factor	Moist	DateTime	DateTime	Data FN	Data FN	Batch	Notes	
MBLK1W	HGJ022WB	1	NA	10/17/1311:06	10/16/1317:45	M47J016011	M47J016	HGJ022W	Method Blank	
LCS1W	HGJ022WL	1	NA	10/17/1311:09	10/16/1317:45	M47J016012	M47J016	HGJ022W	Lab Control Sample (LCS	
LCD1W	HGJ022WC	1	NA	10/17/1311:11	10/16/1317:45	M47J016013	M47J016	HGJ022W	LCS Duplicate	
MBLK2W	WTJ004SB	1	NA	10/17/1312:46	10/16/1317:45	M47J016056	M47J016	HGJ022W	Method Blank	
1C-2	J055-01	1	NA	10/17/1312:55	10/16/1317:45	M47J016060	M47J016	HGJ022W	Field Sample	
1C-2MS	J055-01M	1	NA	10/17/1312:59	10/16/1317:45	M47J016062	M47J016	HGJ022W	Matrix Spike Sample (MS	
1C-2MSD	J055-01S	1	NA	10/17/1313:02	10/16/1317:45	M47J016063	M47J016	HGJ022W	MS Duplicate (MSD)	

FN - Filename

% Moist - Percent Moisture

#### METHOD DI WET/7470A DI WET MERCURY BY COLD VAPOR

Client : URS Project : DHCCP Batch No. : 13J055											Matrix Instru	( : LEA umentID : 47	
CLIENT SAMPLE ID	EMAX SAMPLE ID	RESULTS (ug/L)	DIL'N FACTOR	MOIST (%)	LOQ (ug/L)	LOD (ug/L)	ANALYSIS DATETIME	PREPARATION DATETIME	DATA FILE ID	CAL REF	PREP BATCH	COLLECTION DATETIME	RECEIVED DATETIME
MBLK1W	HGJ022WB	ND	· 1	NA	0.5	0.1	10/17/1311:06	5 10/16/1317:45	M47J016011	M47J016	HGJ022W	NA	NA
LCS1W	HGJ022WL	2.48	1	NA	0.5	0.1		0/16/1317:45					NA
LCD1W	HGJ022WC	2.45	1	NA	0.5	0.1	10/17/1311:11	10/16/1317:45	M47J016013	M47J016	HGJ022W	NA	NA
MBLK2W	WTJ004SB	ND	1	NA	0.5	0.1	10/17/1312:46	5 10/16/1317:45	M47J016056	M47J016	HGJ022W	NA	NA
10-2	J055-01	ND	1	NA	0.5	0.1	10/17/1312:55	10/16/1317:45	M47J016060	M47J016	HGJ022W	09/27/1312:00	10/07/13
1C-2MS	J055-01M	2.62	1	NA	0.5	0.1	10/17/1312:59	10/16/1317:45	M47J016062	M47J016	HGJ022W	09/27/1312:00	10/07/13
1C-2MSD	J055-01S	2.63	1	NA	0.5	0.1	10/17/1313:02	2 10/16/1317:45	M47J016063	M47J016	HGJ022W	09/27/1312:00	10/07/13

DateTime Leached: 10/08/13 14:15

CLIENT	: URS
PROJECT	: DHCCP
BATCH NO.	: 13J055
METHOD	: DI WET/7470A
diameter providence	

MATRIX :	WATER		% MOISTURE: N∕A
DILUTION FACTOR:	1	1	1
SAMPLE ID :	MBLK1W	LCS1W	LCD1W
LAB SAMPLE ID :	HGJ022WB	HGJ022WL	HGJ022WC
LAB FILE ID :	M47J016011	M47J016012	M47J016013
DATE PREPARED :	10/16/1317:45	10/16/1317:45	10/16/1317:45
DATE ANALYZED :	10/17/1311:06	10/17/1311:09	10/17/1311:11
PREP BATCH :	HGJ022W	HGJ022W	HGJ022W
CALIBRATION REF:	M47J016	M47J016	M47J016

#### ACCESSION:

	MB RESULT	SPIKE AMT	BS RESULT	BS REC	SPIKE AMT	BSD RESULT	BSD REC	RPD	QC LIMIT	MAX RPD
PARAMETER	(ug/L)	(ug/L)	(ug/L)	(%)	(ug/L)	(ug/L)	(%)	(%)	(%)	(%)
Mercury	ND	2.50	2.48	99	2.50	2.45	98	1	80-120	20

CLIENT	: URS		
PROJECT	: DHCCP		
BATCH NO.	: 13J055		
METHOD	: DI WET/7470A		
MATRIX	: LEACHATE		<pre>% MOISTURE: NA</pre>
DILUTION FACT	TOR: 1	1	1

SAMPLE ID	: 1C-2	1C-2MS	1C-2MSD
LAB SAMPLE ID	: J055-01	J055-01M	J055-01S
LAB FILE ID	: M47J016060	M47J016062	M47J016063
DATE PREPARED	: 10/16/1317:45	10/16/1317:45	10/16/1317:45
DATE ANALYZED	: 10/17/1312:55	10/17/1312:59	10/17/1313:02
PREP BATCH	: HGJ022W	HGJ022W	HGJ022W
CALIBRATION REF	: M47J016	M47J016	M47J016

	PARENT RESULT	SPIKE AMT	MS RESULT	MS REC	SPIKE AMT	MSD RESULT	MSD REC	RPD	QC LIMIT	MAX RPD
PARAMETER	(ug/L)	(ug/L)	(ug/L)	(%)	(ug/L)	(ug/L)	(省)	(%)	(%)	(%)
	********									
Mercury	ND	2.50	2.62	105	2.50	2.63	105	0	75.125	20

# LABORATORY REPORT FOR

URS

DHCCP

WET CHEMICAL ANALYSES

SDG#: 13J055

Client : URS

Project : DHCCP

SDG : 13J055

#### SM 4500NH3F AMMONIA (NH3-N)

One(1) soil sample was received on 10/07/13 for Ammonia-N by SM4500-NH3 F analysis, MethodSM 4500NH3F in accordance with Standard Methods for the Examination of Water and Wastewater, 21st Edition.

Holding Time The sample was analyzed within the prescribed holding time.

Calibration Multi-calibration points were generated to establish initial calibration (ICAL). ICAL was verified using a secondary source. Continuing calibration verifications were carried out at the frequency specified by the project. All calibration requirements were within acceptance criteria.

Method Blank Method blank was analyzed at the frequency required by the project. For this SDG, one method blank was analyzed with the samples. Result was compliant to project requirement.

Lab Control Sample A set of LCS/LCD was analyzed with the samples in this SDG. Percent recoveries for NHJ006SL/C were all within QC limits.

Matrix QC Sample Matrix QC sample was analyzed at the frequency prescribed by the project. Percent recoveries for J055-01M is within project QC limits. Sample duplicate was also analyzed with the samples. RPD was within project limit.

Sample Analysis The sample was analyzed according to prescribed analytical procedures. All project requirements were met otherwise anomalies were discussed within the associated QC parameter.

## SM 4500NH3F AMMONIA (NH3-N)

Client : URS Project : DHCCP Batch No. : 13J055			========	=====	========						Matrix Matrix Instru		400
CLIENT SAMPLE ID	EMAX SAMPLE ID	RESULTS (mg/kg)	DFxPREP FACTOR	MOIST (%)	LOQ (mg/kg)	LOD (mg/kg)	ANALYSIS DATETIME	PREPARATION DATETIME	DATA FILE ID	CAL REF	PREP BATCH	COLLECTION DATETIME	RECEIVED DATETIME
MBLK1S LCS1S LCD1S 1C-2 1C-2DUP	NHJ006SB NHJ006SL NHJ006SC J055-01 J055-01D	ND 4.68 4.97 0.738J 0.686J	-	NA NA NA 8.7 8.7	1 1 1_09 1.10	0.6 0.6 0.6 00.651 00.657	10/11/1319:46 10/11/1319:46 10/11/1319:47	10/10/1318:08 10/10/1318:08 10/10/1318:08 10/10/1318:08 10/10/1318:08 10/10/1318:08	13NHJ00612 13NHJ00613 13NHJ00616	13NHJ006 13NHJ006 13NHJ006	NHJOO6S NHJOO6S NHJOO6S	NA NA 09/27/1312:00	NA NA NA 10/07/13 10/07/13

PROJECT : BATCH NO. :	URS DHCCP 13J055 SM 4500NH3F		
MATRIX :	SOIL		% MOISTURE: NA
DILUTION FACTOR:	1	1	1
SAMPLE ID :	MBLK1S	LCS1S	LCD1S
LAB SAMPLE ID :	NHJ006SB	NHJ006SL	NHJOO6SC
LAB FILE ID :	13NHJ00611	13NHJ00612	13NHJ00613
DATE PREPARED :	10/10/1318:08	10/10/1318:08	10/10/1318:08
DATE ANALYZED :	10/11/1319:45	10/11/1319:46	10/11/1319:46
PREP BATCH :	NHJ006S	NHJ006S	NHJOO6S
CALIBRATION REF:	13NHJ006	13NHJ006	13NHJ006

	MB RESULT	SPIKE AMT	BS RESULT	BS REC	SPIKE AMT	BSD RESULT	BSD REC	RPD	QC LIMIT	MAX RPD
PARAMETER	(mg/kg)	(mg/kg)	(mg/kg)	(%)	(mg/kg)	(mg/kg)	(%)	(%)	(%)	(%)
*******										
Ammonia (NH3-N)	ND	5	4.68	94	5	4.97	99	6	80-120	20

CLIENT	: URS	
PROJECT	: DHCCP	
BATCH NO.	: 13J055	
METHOD	: SM 4500NH3F	
		=======================================
MATRIX	: SOIL	% MOISTURE: 8.7
DILUTION FACTOR	R: 0.991	0.996
SAMPLE ID	: 1C-2	1C-2MS
LAB SAMPLE ID	: J055-01	J055-01M
LAB FILE ID	: 13NHJ00616	13NHJ00618
DATE PREPARED	: 10/10/1318:08	10/10/1318:08
DATE ANALYZED	: 10/11/1319:47	10/11/1319:48
PREP BATCH	: NHJ006S	NHJ006S
CALIBRATION REF	F: 13NHJ006	13nhj006

	PARENT RESULT	SPIKE AMT	MS RESULT	MS REC	QC LIMIT
PARAMETER	(mg/kg)	(mg/kg)	(mg/kg)	(%)	(%)
	~~~~~~~~				
Ammonia (NH3-N)	0.738J	5.45	5.13	81	75-125

CLIENT	: URS
PROJECT	: DHCCP
BATCH NO.	: 13J055
METHOD	: SM 4500NH3F
===========	

MATRIX

: SOIL

PIAIKIX		SUIL	
DILUTION FACTOR	:	0.991	1
SAMPLE ID	:	1C-2	1C-2DUP
LAB SAMPLE ID	:	J055-01	J055-01D
LAB FILE ID	:	13NHJ00616	13NHJ00617
DATE PREPARED	:	10/10/1318:08	10/10/1318:08
DATE ANALYZED	;	10/11/1319:47	10/11/1319:47
PREP BATCH	:	NHJOOGS	NHJ006S
CALIBRATION REF	::	13NHJ006	13NHJ006

	PARENT RESULT	DUP RESULT	RPD	MAX RPD
PARAMETER	(mg/kg)	(mg/kg)	(%)	(%)
Ammonia (NH3-N)	0.738J	0.686J	NA	20

DWR-207

CASE NARRATIVE

Client	:	URS

404

Project : DHCCP

SDG : 13J055

SM 4500NO3E NITRATE/NITRITE

One (1) soil sample was received on 10/07/13 for Nitrate/Nitrite as N analysis, Method SM 4500NO3E in accordance with Standard Methods for the Examination of Water and Wastewater, 21st Edition.

Holding Time

The sample was analyzed within the prescribed holding time.

Calibration

Multi-calibration points were generated to establish initial calibration (ICAL). ICAL was verified using a secondary source. Continuing calibration verifications were carried out at the frequency specified by the project. All calibration requirements were within acceptance criteria.

Method Blank Method blank was analyzed at the frequency required by the project. For this SDG, one method blank was analyzed with the samples. Result was compliant to project requirement.

Lab Control Sample A set of LCS/LCD was analyzed with the samples in this SDG. Percent recoveries for NAJ002SL/C were all within QC limits.

> Matrix QC Sample No matrix QC sample was designated for this SDG.

Sample Analysis The sample was analyzed according to prescribed analytical procedures. All project requirements were met; otherwise, anomalies were discussed within the associated QC parameter.

SM 4500NO3E NITRATE/NITRITE

Client : URS Project : DHCCP Batch No. : 13J055				=====							Matrix Instru	soil mentID : 70	405
CLIENT SAMPLE ID	EMAX SAMPLE ID	RESULTS (mg/kg)	DFxPREP FACTOR	MOIST (%)	LOQ (mg/kg)	LOD (mg/kg)	ANALYSIS DATETIME	PREPARATION DATETIME	DATA FILE ID	CAL REF	PREP BATCH	COLLECTION DATETIME	RECEIVED DATETIME
MBLK1S LCS1S LCD1S 1C-2	NAJ002SB NAJ002SL NAJ002SC J055-01	ND 4.88 5.01 0.450J	1 1 1 0.997	NA NA NA 8.7	0.5 0.5 0.5 0.546	0.2 0.2 0.2 0.218	10/11/1318:30	10/11/1310:14 10/11/1310:14	13NAJ00211 13NAJ00212	13NAJ002 13NAJ002	NAJOO2S NAJOO2S	NA	NA NA NA 10/07/13

13NAJ002

PROJECT BATCH NO.	: URS : DHCCP : 13J055 : SM 4500N03E		
MATRIX	: SOIL		% MOISTURE: NA
DILUTION FACTOR	: 1	1	1
SAMPLE ID	: MBLK1S	LCS1S	LCD1S
LAB SAMPLE ID	: NAJOO2SB	NAJ002SL	NAJOO2SC
LAB FILE ID	: 13NAJ00210	13NAJ00211	13NAJ00212
DATE PREPARED	: 10/11/1310:14	10/11/1310:14	10/11/1310:14
DATE ANALYZED	: 10/11/1318:29	10/11/1318:29	10/11/1318:30
PREP BATCH	: NAJ002S	NAJ002S	NAJOO2S

120

ACCESSION:

CALIBRATION REF: 13NAJ002

13NAJ002

PARAMETER	MB RESULT (mg/kg)	SPIKE AMT (mg/kg)	BS RESULT (mg/kg)	BS REC (%)				RPD	QC LIMIT	MAX RPD
PARAMETER		(mg/kg/		(/0)	(mg/kg)	(mg/kg)	(%)	(%)	(%)	(%)
NITRATE/NITRITE	ND	5	4.88	98	5	5.01	100	3	80~120	20

CASE NARRATIVE

Client : URS

Project : DHCCP

SDG : 13J055

METHOD 7196A HEXAVALENT CHROMIUM

One (1) soil sample was received on 10/07/13 for Chromium Hexavalent analysis, Method 7196A in accordance with USEPA SW-846, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods.

Holding Time The sample was analyzed within the prescribed holding time.

Calibration Multi-calibration points were generated to establish initial calibration (ICAL). ICAL was verified using a secondary source. Continuing calibration verifications were carried out at the frequency specified by the project. All calibration requirements were within acceptance criteria.

Method Blank Method blank was analyzed at the frequency required by the project. For this SDG, one method blank was analyzed with the samples. Result was compliant to project requirement.

Lab Control Sample Two (2) LCS were analyzed with the samples in this SDG. Percent recovery for CSJ001SL (soluble) was within QC limits. Percent recovery for CIJ001SL (insoluble) was within QC limits.

Matrix QC Sample Matrix QC sample was analyzed at the frequency prescribed by the project. Percent recoveries for J055-01M/M (soluble and insoluble) were within project QC limits. Sample duplicate was also analyzed with the samples. RPD was within project limit. Analytical spike was analyzed for matrix interference evaluation. Result was within method acceptance criteria.

Sample Analysis The sample was analyzed according to prescribed analytical procedures. All project requirements were met; otherwise, anomalies were discussed within the associated QC parameter.

METHOD 7196A HEXAVALENT CHROMIUM

Client : URS Project : DHCCP Batch No. : 13J055		=======================================	=======================================	=============				*===>==================================				Matrix InstrumentID	: SOIL : 70
CLIENT SAMPLE ID	EMAX SAMPLE ID	RESULTS (mg/kg)	DFXPREP	MOIST (%)	LOQ (ma/k	LOD	ANALYSIS g)DATETIME	PREPARATION DATETIME	DATA FILE ID	CAL REF	PREP BATCH	COLLECTION DATETIME	RECEIVED DATETIME
	SAM EE ID				~		gydanchine				DATCH		DATETIME
MBLK1S	CRJ001SB	ND	1	NA	1	0.5	10/11/1311:39	10/08/1315:01	13cr J00109	13CRJ001	CRJ001S	NA	NA
LCS1S	CSJ001SL	10.9	1	NA	1	0.5	10/11/1311:39	10/08/1315:01	13CRJ00110	13CRJ001	CRJ001S	NA	NA
LCS2S	CIJO01SL	593	50	NA	50	25	10/11/1311:40	10/08/1315:01	13CRJ00111	13CRJ001	CRJ001S	NA	NA
10-2	J055-01	ND	0.997	8.7	1.09	0.546	10/11/1311:41	10/08/1315:01	13CRJ00114	13CRJ001	CRJ001S	09/27/1312:00	10/07/13
1C-2DUP	J055-01D	ND	0.999	8.7	1.09	0.547	10/11/1311:41	10/08/1315:01	13CRJ00115	13CRJ001	CRJ001S	09/27/1312:00	10/07/13
1C-2MS	J055-01M	12.3	0.998	8.7	1.09	0.547	10/11/1311:41	10/08/1315:01	13CRJ00116	13CRJ001	CRJ001S	09/27/1312:00	10/07/13
1C-2MS	J055-01M	699	50	8.7	54.8	27.4	10/11/1311:41	10/08/1315:01	13CRJ00117	13CRJ001	CRJ001S	09/27/1312:00	10/07/13
1C-2AS	J055-01A	14.1	0.997	8.7	1.09	0.546	10/11/1311:42	10/08/1315:01	13crj00118	13CRJ001	CRJ001S	09/27/1312:00	10/07/13

1 10 1 10 1 10	-	501L	
DILUTION FACTOR	:	1	1
SAMPLE ID	:	MBLK1S	LCS1S
LAB SAMPLE ID	:	CRJ001SB	CSJ001SL
LAB FILE ID	:	13CRJ00109	13CRJ00110
DATE PREPARED	:	10/08/1315:01	10/08/1315:01
DATE ANALYZED	:	10/11/1311:39	10/11/1311:39
PREP BATCH	:	CRJ001S	CRJ001S
CALIBRATION REF		13CRJ001	13CRJ001

ACCESSION:

	MB RESULT	SPIKE AMT	BS RESULT	BS REC	QC LIMIT
PARAMETER	(mg/kg)	(mg/kg)	(mg/kg)	(%)	(%)
Hexavalent Chromium	ND	12	10.9	91	85-115

: URS			
: DHCCP			
: 13J055			
: METHOD 7196A			
			====
: SOIL		% MOISTURE:	8.7
: 0.997	0.998		
: 1C-2	1C-2MS		
: J055-01	J055-01M		
: 13CRJ00114	13CRJ00116		
: 10/08/1315:01	10/08/1315:01		
: 10/11/1311:41	10/11/1311:41		
: CRJ001S	CRJ001S		
: 13CRJ001	13CRJ001		
	: DHCCP : 13J055 : METHOD 7196A : SOIL : 0.997 : 1C-2 : J055-01 : 13CRJ00114 : 10/08/1315:01 : 10/11/1311:41 : CRJ001S	E DHCCP 1 13J055 METHOD 7196A SOIL 0.997 1C-2 J055-01 13CRJ00114 13CRJ00114 10/08/1315:01 10/11/1311:41 CRJ001S CRJ001S CRJ001S	DHCCP 13J055 METHOD 7196A SOIL % MOISTURE: 0.997 0.998 1C-2 1C-2MS J055-01 J055-01M 13CRJ00114 13CRJ00116 10/08/1315:01 10/08/1315:01 10/11/1311:41 10/11/1311:41 CRJ001S CRJ001S

	PARENT RESULT	SPIKE AMT	MS RESULT	MS REC	QC LIMIT
PARAMETER	(mg/kg)	(mg/kg)	(mg/kg)	(%)	(%)

Hexavalent Chromium	ND	13.1	12.3	94	85-115

 CLIENT
 : URS

 PROJECT
 : DHCCP

 BATCH NO.
 : 13J055

 METHOD
 : METHOD 7196A

MATRIX	:	SOIL	
DILUTION FACTOR	2:	1	50
SAMPLE ID	:	MBLK1S	LCS2S
LAB SAMPLE ID	:	CRJ001SB	CIJ001SL
LAB FILE ID	:	13CRJ00109	13CRJ00111
DATE PREPARED	:	10/08/1315:01	10/08/1315:01
DATE ANALYZED	:	10/11/1311:39	10/11/1311:40
PREP BATCH	:	CRJ001S	CRJ001S
CALIBRATION REI	::	13CRJ001	13CRJ001

	MB RESULT	SPIKE AMT	BS RESULT	BS REC	QC LIMIT	
PARAMETER	(mg/kg)	(mg/kg)	(mg/kg)	(%)	(%)	
Hexavalent Chromium	ND	637	593	93	80-120	

CLIENT PROJECT BATCH NO. METHOD	:	URS DHCCP 13J055 METHOD 7196A			
MATRIX	:	SOIL		% MOISTURE:	8.7
DILUTION FACTO	OR:	0.997	50		
SAMPLE ID	:	1C-2	1C-2MS		
LAB SAMPLE ID	:	J055-01	J055-01M		
LAB FILE ID	:	13CRJ00114	13CRJ00117		
DATE PREPARED	:	10/08/1315:01	10/08/1315:01		
DATE ANALYZED	:	10/11/1311:41	10/11/1311:41		
PREP BATCH	:	CRJ001S	CRJ001S		
CALIBRATION RE	EF:	13CRJ001	13CRJ001		

	PARENT RESULT	SPIKE AMT	MS RESULT	MS REC	QC LIMIT
PARAMETER	(mg/kg)	(mg/kg)	(mg/kg)	(%)	(%)
Hexavalent Chromium	ND	663	699	105	75-125

CLIENT PROJECT BATCH NO. METHOD	: URS : DHCCP : 13J055 : METHOD 7196A			
MATRIX	: SOIL		% MOISTURE:	8 7
PREPXDIL FACTO		0.999	N HOTOTOKE	
SAMPLE ID	: 1C-2	1C-2DUP		
LAB SAMPLE ID	: J055-01	J055-01D		
LAB FILE ID	: 13CRJ00114	13CRJ00115		
DATE PREPARED	: 10/08/1315:01	10/08/1315:01		
DATE ANALYZED	: 10/11/1311:41	10/11/1311:41		
PREP BATCH	: CRJ001S	CRJ001S		
CALIBRATION RE	EF: 13CRJ001	13CRJ001		

	PARENT RESULT	DUP RESULT	RPD	MAX RPD
PARAMETER	(mg/kg)	(mg/kg)	(%)	(%)
Hexavalent Chromium	ND	ND	0	20

Client : URS

Project : DHCCP

SDG : 13J055

WALKLEY-BLACK TOC BY WALKLEY-BLACK METHOD

One(1) soil sample was received on 10/07/13 for Total Organic Carbon analysis, Method WALKLEY-BLACK in accordance with Walkley-Black Procedure (Walkley, 1946; Peech et al., 1947; Greweling & Peech, 1960).

Holding Time The sample was analyzed within the prescribed holding time.

Method Blank Method blank was analyzed at the frequency required by the project. For this SDG, one method blank was analyzed with the samples. Result was compliant to project requirement.

Lab Control Sample A set of LCS/LCD was analyzed with the samples in this SDG. Percent recoveries for WBJ001SL/C were all within QC limits.

Matrix QC Sample No matrix QC sample was designated for this SDG.

Sample Analysis The sample was analyzed according to prescribed analytical procedures. All project requirements were met otherwise anomalies were discussed within the associated QC parameter.

WALKLEY-BLACK TOC BY WALKLEY-BLACK METHOD

Client : URS Project : DHCCP Batch No. : 13J055													: SOIL : NA	415
CLIENT SAMPLE ID	EMAX SAMPLE ID	RESULTS (mg/kg)	PREP. FACTOR	MOIST (%)	LOQ LO (mg/kg)(mg		SIS TETIME	PREPARATION DATETIME	DATA FILE ID	CAL RE F	PREP BATCH	COLLECTION DATETIME	RECEIVED DATETIME	
MBLK1S LCS1S LCD1S 1C-2	WBJ001SB WBJ001SL WBJ001SC J055-01	ND 2110 2310 1670	1.00 1.00 1.00 0.990	NA NA NA 8.7	600 60 600 60	00 10/11/ 00 10/11/	1314:44 1314:45	10/11/1314:43 10/11/1314:44 10/11/1314:45 10/11/1314:54	13WBJ00102 13WBJ00103	13WBJ001 13WBJ001	WBJOO1S WBJOO1S	NA NA NA 09/27/1312:00	NA NA NA 10/07/13	

PROJECT BATCH NO.	: URS : DHCCP : 13J055 : WALKLEY-BLACK			
MATRIX	: SOIL	1	% MOISTURE:	NA

DILUTION FACTOR:	1	1	1
SAMPLE ID :	MBLK1S	LCS1S	LCD1S
LAB SAMPLE ID :	WBJ001SB	WBJ001SL	WBJ001SC
LAB FILE ID :	13WBJ00101	13WBJ00102	13WBJ00103
DATE EXTRACTED :	10/11/1314:54	10/11/1314:54	10/11/1314:54
DATE ANALYZED :	10/11/1314:43	10/11/1314:44	10/11/1314:45
PREP BATCH :	WBJ001S	WBJ001S	WBJ001S
CALIBRATION REF:	13WBJ001	13WBJ001	13WBJ001

PARAMETER	(mg/kg)	SPIKE AMT (mg/kg)	(mg/kg)	(%)	(mg/kg)	BSD RESULT (mg/kg)	BSD REC (%)	RPD (%)	QC LIMIT (%)	MAX RPD (%)
тос	ND	2000	2110	106	2000	2310	116	9	80-120	20

October 28, 2013

Analytical Report for Service Request No: K1310791

Caspar Pang Emax Laboratories, Incorporated 1835 W. 205th St. Torrance, CA 90501

RE: DHCCP/13J055

Dear Caspar:

Enclosed are the results of the sample submitted to our laboratory on October 08, 2013. For your reference, these analyses have been assigned our service request number K1310791.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at <u>www.alsglobal.com</u>. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please call if you have any questions. My extension is 3364. You may also contact me via Email at Howard.Holmes@alsglobal.com.

Respectfully submitted,

ALS Group USA Corp. dba ALS Environmental

Howard Holmes Project Manager

HH/ln

Page 1 of _____

ADDRESS 1317 S. 13^h Avenue, Kelso, WA 98626 USA | PHONE +1 360 577 7222 | FAX +1 360 636 1068 ALS Group USA, Corp. Part of the ALS Group An ALS Limited Company

Environmental 💭

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

418	DWR-2 Acronyms
ASTM	American Society for Testing and Materials
A2LA	American Association for Laboratory Accreditation
CARB	California Air Resources Board
CAS Number	Chemical Abstract Service registry Number
CFC	Chlorofluorocarbon
CFU	Colony-Forming Unit
DEC	Department of Environmental Conservation
DEQ	Department of Environmental Quality
DHS	Department of Health Services
DOE	Department of Ecology
DOH	Department of Health
EPA	U. S. Environmental Protection Agency
ELAP	Environmental Laboratory Accreditation Program
GC	Gas Chromatography
GC/MS	Gas Chromatography/Mass Spectrometry
LOD	Limit of Detection
LOQ	Limit of Quantitation
LUFT	Leaking Underground Fuel Tank
М	Modified
MCL	Maximum Contaminant Level is the highest permissible concentration of a substance
	allowed in drinking water as established by the USEPA.
MDL	Method Detection Limit
MPN	Most Probable Number
MRL	Method Reporting Limit
NA	Not Applicable
NC	Not Calculated
NCASI	National Council of the Paper Industry for Air and Stream Improvement
ND	Not Detected
NIOSH	National Institute for Occupational Safety and Health
PQL	Practical Quantitation Limit
RCRA	Resource Conservation and Recovery Act
SIM	Selected Ion Monitoring
TPH	Total Petroleum Hydrocarbons
tr	Trace level is the concentration of an analyte that is less than the PQL but greater
	than or equal to the MDL.

419

Inorganic Data Qualifiers

- * The result is an outlier See case narrative
- # The control limit criteria is not applicable See case narrative
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards
- E The result is an estimate amount because the value exceeded the instrument calibration range
- J The result is an estimated value
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project The detection limit is adjusted for dilution
- $i \,$ $\,$ The MRL/MDL or LOQ/LOD is elevated due to a matrix interference
- X See case narrative
- Q See case narrative One or more quality control criteria was outside the limits
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory

Metals Data Qualifiers

- # The control limit criteria is not applicable See case narrative
- J The result is an estimated value
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample
- M The duplicate injection precision was not met
- N The Matrix Spike sample recovery is not within control limits See case narrative
- S The reported value was determined by the Method of Standard Additions (MSA)
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL
- DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project The detection limit is adjusted for dilution
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference
- X See case narrative
- + The correlation coefficient for the MSA is less than 0 995
- Q See case narrative One or more quality control criteria was outside the limits

Organic Data Qualifiers

- * The result is an outlier See case narrative
- # The control limit criteria is not applicable See case narrative
- A A tentatively identified compound, a suspected aldol-condensation product
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data
- D The reported result is from a dilution
- E The result is an estimated value
- J The result is an estimated value
- N The result is presumptive The analyte was tentatively identified, but a confirmation analysis was not performed
- P The GC or HPLC confirmation criteria was exceeded The relative percent difference is greater than 40% between the two analytical results
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project The detection limit is adjusted for dilution
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference
- X See case narrative
- Q See case narrative One or more quality control criteria was outside the limits

Additional Petroleum Hydrocarbon Specific Qualifiers

- ${f F}$ The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard
- Z The chromatographic fingerprint does not resemble a petroleum product

ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Agency	Web Site	Number
Alaska DEC UST	http://dec.alaska.gov/applications/eh/ehllabreports/USTLabs.aspx	UST-040
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0339
Arkansas - DEQ	http://www.adeq.state.ar.us/techsvs/labcert htm	88-0637
California DHS (ELAP)	http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2286
DOD ELAP	http://www.denix.osd mil/edqw/Accreditation/AccreditedLabs.cfm	L12-28
Florida DOH	http://www.doh.state fl.us/lab/EnvLabCert/WaterCert.htm	E87412
Georgia DNR	http://www.gaepd.org/Documents/techguide_pcb.html#cel	881
Hawaii DOH	Not available	-
Idaho DHW	http://www.healthandwelfare.idaho.gov/Health/Labs/CertificationDrinkingWaterLabs/tabid/1833/Default.aspx	-
Indiana DOH	http://www.in.gov/isdh/24859.htm	C-WA-01
ISO 17025	http://www.pjlabs.com/	L12-27
Louisiana DEQ	http://www.deq.louisiana.gov/portal/DIVISIONS/PublicParticipationandPer mitSupport/LouisianaLaboratoryAccreditationProgram.aspx	3016
Maine DHS	Not available	WA0035
Michigan DEQ	http://www.michigan.gov/deq/0,1607,7-135-3307_4131_4156,00.html	9949
Minnesota DOH	http://www.health.state.mn.us/accreditation	053-999-368
Montana DPHHS	http://www.dphhs mt.gov/publichealth/	CERT0047
Nevada DEP	http://ndep.nv.gov/bsdw/labservice.htm	WA35
New Jersey DEP	http://www.nj.gov/dep/oqa/	WA005
North Carolina DWQ	http://www.dwqlab.org/	605
Oklahoma DEQ	http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
Oregon – DEQ (NELAP)	http://public health.oregon.gov/LaboratoryServices/EnvironmentalLaborator yAccreditation/Pages/index.aspx	WA200001
South Carolina DHEC	http://www.scdhec.gov/environment/envserv/	61002
Texas CEQ	http://www.tceq.texas.gov/field/qa/env_lab_accreditation html	704427-08-TX
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation html	C1203
Wisconsin DNR	http://dnr.wi.gov/	998386840
Wyoming (EPA Region 8)	http://www.epa.gov/region8/water/dwhome/wyomingdi.html	-
Kelso Laboratory Website	www.alsglobal.com	NA

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.caslab.com or at the accreditation bodies web site

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

ALS ENVIRONMENTAL

Client:Emax LaboratoriesProject:DHCCPSample Matrix:Soil

 Service Request No.:
 K1310791

 Date Received:
 10/8/13

Case Narrative

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses. Additional quality control analyses reported herein include: Laboratory Duplicate (DUP), Matrix Spike (MS), and Laboratory Control Sample (LCS).

Sample Receipt

One soil sample was received for analysis at ALS Environmental on 10/8/13. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

Methyl Mercury by EPA 1630M

No anomalies associated with this analysis were observed.

Organotin Compounds

Matrix Spike Recovery Exceptions:

The matrix spike recovery of Di-n-butyltin and n-Butyltin for sample Batch QC was outside control criteria. Recovery in the Laboratory Control Sample (LCS) was acceptable, which indicated the analytical batch was in control. No further corrective action was appropriate.

No other anomalies associated with this analysis were observed.

422			I	CH	AIN	OF	CUS	TO	DY						13	DWR-207
E MAX	1835 W. 205th Street, Torra			P(O NUN	IBER:					ŀ	EMAX CONTROL NO. *				
LABORATORIES, INC.	Tel #: 310-618-8889 Fax #: 3 Email: info@emaxlabs.com	310-618-0	818	SAMPLE STORAGE				PROJECT CODE: 13 JØ55								
CLIENT URS				MATRIX CODE PRESERVATIVE CODE CODE				ANAL YSI	SIS REQUIRED TAT							
PROJECT DHCCP				DW=D	rinking Wate	1 	IC = Ice			ethyl Hercury (1631		Subarra Anna Al 1910	evoluti evoluti olimitetta	BALLEN AND BEEN	Rushhrs.	
COORDINATOR			*****	GW=G	round Water		HC - HCI	والمساوية والمارة المرارة ومراجع والحري ساوم		びメ		La La Participa de la Calcola	an county Ministerior	NCC-ST ST	Rushdays	
TEL FAX	EMAIL.				Vaste Water	****	HN=HNO	3		Cr D	, ,				7 days	
SEND REPORT TO CUSPAN Pa	is Copangeem	axtib	Sacom	SD=So	lid Waste SI	,≈Sludge	SH=NaO	Hi	_	Ę			A (1975) Seriessander		🔀 14 days	
COMPANY	ne en e			SS-Soi	il/ Sediment		ST=Na2S2	203	Butyltin	1					21 days	
ADDRESS	n seli de Freider in de Minister Minister de Minister de ante ante de Marty de Marter de Verten de en site summ			WP=W	ipes PP=Pu	e Products	ZA=Zinc A	Apelate	Ż	-1			an operation of the second		30 days	
	ananan daga majara dalam di kuliga da kanan da kanana da ana anan di anan mananga manana manana manana manana d			AR-Ai	f		HS=H ₂ S	04	ちゃ	X					days	*****
EMAX PM Carpor Po	~>			0=					1	l	RESERV					
SAMPLE ID	SA	MPLING	r		CONTAI	NER	MATRIX	QC	-	ľ	RESERV.	AUVEU	UDB		COMMI	ents
LAB CLIENT	LOCATION	DATE	TIME	NO.	SIZE	TYPE			•							
10-2		9/12/13	12:00	1	802	Jur	\$5		X	X					5055-01	
* 2	01%+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+					ļ			ļ							anna marta ar an anna - para a casta a casa - Porto Martin Martin Martin Martin Martin Martin Martana an amar
* 3					y											
* 4					an en anne i							-				San da Katilan Tantan mana mangan katika yang at Philip San
ак 5 Балагананан бананан каканан как																
6 					an demonstration and the second											
4 7								e Frank Interna An								alabiya dinamban yi kuma waxaa magamaa guu kuu mini in ƙanƙasa waxay wayoo ya may sar yu k
					hereraadoo koldo adaa dayo o ahariidagara							-				
9									ļ					The second states of the secon		
$0 \end{bmatrix} \\$					****					netura parte da como da						
Instructions Level II Re	post + Standard -S Service Reques	EDD	9419 ¹¹ 919			and and a star of a star of the star of th		energialet billionito of more				Coole	# Te	emp (°C)	Sample	5 ĤS
See AL	-9 Service Reques	1 K	130	338	54										Sub to:	
an and and washing and an angle angle angle angle at the state of the	0						nannan Furananananan						i an		ALS	
													and an and a second		1317 5. 134	" Ave
SAMPLER				COUR	UER/AIR	BILL									Kelso, WA	98626
RELINQUI	SHED BY	Date	Time	rndi tilassa lõndnda	. ^.	f	RECEIY	ED _/ BY		99699999 ⁹⁹⁹ 999999999					Kelso, WA Atta: Howar	1 Holmes
EMAX mc mgg		10/7/13	15:40		Str.		10/8	1/13	Ò	116					ga manana da ana da ana ana ana ana ana ana	, damanda, napon con mangananan ar torra ar ar ar ar ar anganan gan ang a na ang ang ang ang ang ang ang
ana amin'ny fanisa amin'ny tanàna amin'ny tanàna mandritry amin'ny tanàna mandritry amin'ny tanàna amin'ny tanà							an,	alaan aan ah ah 1944 dalah d	and the second		ti al-al-la ini ini ang kana ana ang kitarang	1		generative constraints and a second starte		
	anta-niko-sisteman sela kata anta kata kata kata kata kata kat				and the second secon			Mattice Production and		ganne-datarro		L		metinintamentikajia		
NOTICE Tam-around-time (TAT) for samples shal soon as practical (but not prior to fifteen (15) calend client's expense unless directed in writing otherwise	lar days) after issuance of analytical report unli															

(ALS) 423	Cooler	Receipt and Pr	eservation For	m	PC_ // DW	7 <u>7</u> R-207
lient / Project:	FMAL		Service Request	K13 10791		
Received: 10 5 13	Opened: 10/8 /1	<u>3</u> By:	Fill_Unlos	aded: 10/5/13		6
. Samples were received via?	Mail Fed Ex	UPS DHI)" . PDX Cou	rier Hand Delivere	d	
. Samples were received in: (Box Envel			NA	
. Were <u>custody seals</u> on coole			-	where? And	Fickt	
If present, were custody sea				ey signed and dated?	Ŷ	N
Raw Corrected Raw	Corrected Corr.		Cooler/COC ID	Tracking	Number	
Cooler Temp Cooler Temp Blan	K Temp Blank Factor	321	NA	1.910 4917	0111-5	NA Filed
	2.09				J17 ~	
L Desline meterial. Leanted	Paratian Parkhia Wa	- Col Bash	Wet Ico Der Ico	Sleeves		
 H. Packing material: Inserts Were custody papers proper 	And a final state of the second state of the s		wei ice / Dry ice	Sieeves	NA (Ŷ	N
 Did all bottles arrive in good 			ble below.		NA Y	N
 Were all sample labels comp 					NA Y	N
3. Did all sample labels and tag			or discrepancies in	the table on page 2.	NA Y	N
). Were appropriate bottles/co			-		NA (Y	N
0. Were the pH-preserved bot	tles (see SMO GEN SOP) :	received at the app	ropriate pH? Indic	ate in the table below	(NA Y	N
1. Were VOA vials received v	without headspace? Indi	icate in the table be	elow.		NA Y	Ν
12. Was C12/Res negative?					NA Y	N
Sample Dion Bottle		Sample ID on COC		loentified b	y.	
	Bottle Count Du	ut of Head-		Volume Reagent		the Automation
Sample ID	Bottle Count Di Bottle Type Te	emp space Broke	pH Reagent	added Numbe	LOI Initials	Time
	· · ·					· · · · · · · · · · · ·
n						
9						
votes, Discrepancies, & Res	olutions:					
Preid 2-40	2 Jans , Not	Fred Sino .				
K.						

Page____of____

ALS Group USA, Corp. dba ALS Environmental

DWR-207

Service Request: K1310791

Analytical Results

Client:	Emax Laboratories, Incorporated
Project:	DHCCP/13J055
Sample Matrix:	Soil

Total Solids

Prep Method: Analysis Method: Test Notes:	NONE 160.3M					Units: Basis:	PERCENT Wet
Sample Name		Lab Code	Date Collected	Date Received	Date Analyzed	Result	Result Notes
1C-2		K1310791-001	09/27/2013	10/08/2013	10/22/2013	91.8	

ALS Group USA, Corp. dba ALS Environmental Analytical Report

Client: Project: Sample Matrix:	Emax Laboratories, Incorporated DHCCP/13J055 Soil		Service Request: K1310791 Date Collected: 09/27/13 Date Received: 10/08/13
		Methyl Mercury	

Prep Method: ALS SOP Analysis Method: ALS SOP Test Notes: Units: ng/g Basis: Dry

Sample Name	Lab Code	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
1C-2	K1310791-001	0.4	0.04	1	10/22/13	10/23/13	ND	
Method Blank 1	K1310791-MB 1	0.4	0.04	1	10/22/13	10/23/13	ND	
Method Blank 2	K1310791-MB 2	0.4	0.04	1	10/22/13	10/23/13	ND	
Method Blank 3	K1310791-MB 3	0.4	0.04	1	10/22/13	10/23/13	ND	

Client: Project: Sample Matrix:	Emax Laborator DHCCP/13J055 Soil	· 1	nted							Da Da Da	vice Request: te Collected: ate Received: te Extracted: te Analyzed:	NA NA 10/22/13	
		I	Matrix S	pike/D	-	Matrix Sp tals	ike Sum	imary					
Sample Name: Lab Code: Test Notes:	Batch QC K1311280-0011	MS,	K1311	280-00)1MSD						Units: Basis:	00	
	Prep	Analysis		•	e Level	Sample	-	Result			Recovery CAS Acceptance	Relative Percent	Result
Analyte Methyl Mercury	Method CAS SOP	Method CAS SOP	MRL 0.4	MS 96	DMS 100	Result ND	MS 92.9	DMS 84.3	MS 97	DMS 84	Limits 65-135	Difference 10	Notes

Client: Project: LCS Matrix:	Emax Laboratories, Incor DHCCP/13J055 Water	porated				Service Request: Date Collected: Date Received: Date Extracted: Date Analyzed:	NA NA 10/22/13
	Ong	oing Precision	and Recove	ry (OPR) S	Sample Sum	mary	
			Meta	ls			
Sample Name:	Ongoing Precision and Re	covery (Initial)				Units:	pg
						Basis:	NA
	Prep	•			Percent	CAS Percent Recovery Acceptance	Result
Analyte	Metho	d Method	Value	Result	Recovery	Limits	Notes

100

95.1

95

67-133

CAS SOP CAS SOP

Methyl Mercury

Client: Project: LCS Matrix:	Emax Laboratories, Incorporat DHCCP/13J055 Water	ed				Service Request: Date Collected: Date Received: Date Extracted: Date Analyzed:	NA NA 10/22/13
	Ongoing	g Precision a	nd Recover	y (OPR) S	Sample Sum	mary	
			Metal	S			
Sample Name:	Ongoing Precision and Recove	ery (Final)				Units:	pg
						Basis:	NA
Analyte	Prep Method	Analysis Method	True Value	Result	Percent Recovery	CAS Percent Recovery Acceptance Limits	Result Notes

 Methyl Mercury
 CAS SOP
 CAS SOP
 100
 69.5
 70
 67-133

Client: Project: LCS Matrix:	Emax Laboratories, Incorporated DHCCP/13J055 Soil	Service Request: Date Collected: Date Received: Date Extracted: Date Analyzed:	NA NA 10/22/13
	Quality Control Sample (QCS) Summar	у	
	Total Metals		
Sample Name:	Quality Control Sample	Units:	ng/g
		Basis:	Dry
Source:	ERM - CC580 Estuarine Sediment	CAS Percent	
Analyte	Prep Analysis True Perc Method Method Value Result Recov	r	Result Notes

75.0

CAS SOP CAS SOP

59.9

80

67-133

Methyl Mercury

ALS Group USA, Corp. dba ALS Environmental

DWR-207

430

	Analytical Results		
Client:	Emax Laboratories, Incorporated	Service Request:	K1310791
Project:	DHCCP/13J055	Date Collected:	09/27/2013
Sample Matrix:	Soil	Date Received:	10/08/2013

Butyltins (as cation)

Sample Name:	1C-2	Units:	ug/Kg
Lab Code:	K1310791-001	Basis:	Dry
Extraction Method: Analysis Method:	Method Krone	Level:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Tetra-n-butyltin	ND U	1.1	0.47	1	10/11/13	10/24/13	KWG1311556	
Tri-n-butyltin Cation	ND U	1.1	0.46	1	10/11/13	10/24/13	KWG1311556	
Di-n-butyltin Cation	ND U	1.1	0.21	1	10/11/13	10/24/13	KWG1311556	
n-Butyltin Cation	ND U	1.1	0.28	1	10/11/13	10/24/13	KWG1311556	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Tri-n-propyltin	62	10-120	10/24/13	Acceptable

Comments:

Merged

ALS Group USA, Corp. dba ALS Environmental

DWR-207

431

	Analytical Results		
Client:	Emax Laboratories, Incorporated	Service Request:	K1310791
Project:	DHCCP/13J055	Date Collected:	NA
Sample Matrix:	Sediment	Date Received:	NA

Butyltins (as cation)

Sample Name:	Method Blank	Units:	ug/Kg
Lab Code:	KWG1311556-4	Basis:	Dry
Extraction Method: Analysis Method:	Method Krone	Level:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Tetra-n-butyltin	ND U	0.98	0.44	1	10/11/13	10/24/13	KWG1311556	
Tri-n-butyltin Cation	1.1	0.98	0.43	1	10/11/13	10/24/13	KWG1311556	
Di-n-butyltin Cation	ND U	0.98	0.19	1	10/11/13	10/24/13	KWG1311556	
n-Butyltin Cation	ND U	0.98	0.26	1	10/11/13	10/24/13	KWG1311556	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Tri-n-propyltin	68	10-120	10/24/13	Acceptable

Comments:

Merged

QA/QC Report

Service Request: K1310791

Client:	Emax Laboratories, Incorporated
Project:	DHCCP/13J055
Sample Matrix:	Soil

Surrogate Recovery Summary **Butyltins (as cation)**

Extraction Method: Method **Analysis Method:**

Krone

Units: Percent Level: Low

Sample Name	Lab Code	<u>Sur1</u>
1C-2	K1310791-001	62
Batch QC	K1310857-014	57 D
Method Blank	KWG1311556-4	68
Batch QCMS	KWG1311556-1	69 D
Batch QCDMS	KWG1311556-2	75 D
Lab Control Sample	KWG1311556-3	68

Surrogate Recovery Control Limits (%)

Sur1 = Tri-n-propyltin

10-120

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

ALS Group USA, Corp. dba ALS Environmental

433

QA/QC Report

Client:Emax Laboratories, IncorporatedProject:DHCCP/13J055Sample Matrix:Sediment

 Service Request:
 K1310791

 Date Extracted:
 10/11/2013

 Date Analyzed:
 10/24/2013

Matrix Spike/Duplicate Matrix Spike Summary Butyltins (as cation)

Sample Name:	Batch QC	Units:	ug/Kg
Lab Code:	K1310857-014	Basis:	Dry
Extraction Method:	Method	Level:	
Analysis Method:	Krone	Extraction Lot:	

		KV	atch QCMS VG1311556-1 Matrix Spike	l	KV	atch QCDMS VG1311556-2 cate Matrix Sp	2			
Analyte Name	Sample Result	Result	Spike Amount	%Rec	Result	Spike Amount	%Rec	%Rec Limits	RPD	RPD Limit
Tetra-n-butyltin	ND	24.4	40.2	61	21.2	39.5	54	16-126	14	40
Tri-n-butyltin Cation	23	59.1	35.7	100	55.1	35.1	91	10-115	7	40
Di-n-butyltin Cation	21	48.2	30.9	88	223	30.3	667 *	10-133	129 *	40
n-Butyltin Cation	10	16.7	25.1	26	49.1	24.6	158 *	10-124	98 *	40

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded

434

ALS Group USA, Corp. dba ALS Environmental

Service Request: K1310791

Date Extracted: 10/11/2013

Date Analyzed: 10/24/2013

 QA/QC Report

 Client:
 Emax Laboratories, Incorporated

 Project:
 DHCCP/13J055

 Sample Matrix:
 Sediment

Lab Control Spike Summary Butyltins (as cation)

Extraction Method:	Method		Units:	ug/Kg
Analysis Method:	Krone		Basis:	Dry
			Level:	Low
			Extraction Lot:	KWG1311556
		Lab Control Sample		

	KW	G1311556-3 Control Spike		
Analyte Name	Result	Spike Amount	%Rec	%Rec Limits
Tetra-n-butyltin	13.7	25.0	55	19-130
Tri-n-butyltin Cation	17.5	22.2	79	10-122
Di-n-butyltin Cation	4.81	19.2	25	12-136
n-Butyltin Cation	16.4	15.6	105	10-150

Results flagged with an asterisk (\ast) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded

LABORATORY REPORT FOR

URS

DHCCP

METHOD 3550B/8270C SEMI VOLATILE ORGANICS BY GC/MS

SDG#: 13J124

CASE NARRATIVE

Client : URS

Project : DHCCP

SDG : 13J124

METHOD 3550B/8270C SEMI VOLATILE ORGANICS BY GC/MS

One(1) soil sample was received on 10/14/13 for Semivolatile Organics by GCMS analysis, Method 3550B/8270C in accordance with USEPA SW-846, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods.

Holding Time The sample was analyzed within the prescribed holding time.

Instrument Performance and Calibration Instrument tune check was performed prior to calibration. Instrument mass ratios as well as DDT breakdown were evaluated. Results were within acceptance criteria. Tailing factor for Benzidine and Pentachlorophenol were also verified and results were within the method limits. Multicalibration points were generated to establish initial calibration (ICAL). ICAL was verified using secondary source (ICV). Continuing calibration (CCV) was carried on at a frequency required by the project. All project calibration requirements were satisfied. Refer to calibration summary forms of ICAL, ICV and CCV for details.

Method Blank Method blank was analyzed at the frequency required by the project. For this SDG, one method blank was analyzed with the samples. Result was compliant to project requirement.

Lab Control Sample A set of LCS/LCD was analyzed with the samples in this SDG. Percent recoveries for SVJ026SL/C were all within QC limits.

Matrix QC Sample Was designated in this SDG.

Surrogate Surrogates were added on QC and field samples. Surrogate recoveries were within project QC limits. Refer to sample result forms for details.

Sample Analysis The sample was analyzed according to prescribed analytical procedures. All project requirements were met otherwise anomalies were discussed within the associated QC parameter.

LAB CHRONICLE SEMI VOLATILE ORGANICS BY GC/MS

	####========##########################
Client : URS	SDG NO. : 13J124
Project : DHCCP	Instrument ID : E4
	\$
SOIL	

Client	Laboratory	Dilution	%	Analysis	Extraction	Sample	Calibratio	on Prep.	
Sample ID	Sample ID	Factor	Moist	DateTime	DateTime	Data FN	Data FN	Batch	Notes
MBLK1S	SVJ026SB	1	NA	10/18/1316:21	10/17/1311:45	RJ.J453	RGJ400	SVJ026S	Method Blank
LCS1S	SVJ026SL	1	NA	10/18/1316:41	10/17/1311:45	RJJ454	RGJ400	SVJ026S	Lab Control Sample (LCS)
LCD1S	SVJ026SC	1	NA	10/18/1317:00	10/17/1311:45	RJJ455	RGJ400	SVJ026S	LCS Duplicate
2B-2	J124-01	1	9.4	10/18/1320:32	10/17/1311:45	RJJ466	RGJ400	SVJ026S	Field Sample

FN - Filename

% Moist - Percent Moisture

SAMPLE RESULTS

439

METHOD 3550B/8270C SEMI VOLATILE ORGANICS BY GC/MS

Client : URS Project : DHCCP Batch No. : 13J124 Sample ID: 2B-2 Lab Samp ID: J124-01 Lab File ID: RJJ466 Ext Btch ID: SVJ026S Calib. Ref.: RGJ400 ===================================		Date Collected Date Received Date Extracted Date Analyzed Dilution Factor Matrix % Moisture Instrument ID	: 10/07/13 : 10/14/13 : 10/17/13 11:45 : 10/18/13 20:32 : 1 : SOIL : 9.4 : T-0E4
PARAMETERS 1.2.4 - TRICHLOROBENZENE 1.2.4 - TRICHLOROBENZENE 1.3 - DICHLOROBENZENE 1.4 - DICHLOROBENZENE 2.4.5 - TRICHLOROPHENOL 2.4.6 - TRICHLOROPHENOL 2.4.0 INITROTOLUENE 2.4.0 INITROTOLUENE 2.6 - DINITROTOLUENE 2.6 - DINITROTOLUENE 2.6 - DINITROTOLUENE 2.7 - CHLOROPHENOL 2.4.1 TROANHTHALENE 2.6 - DINITROTOLUENE 2.7 - CHLOROPHENOL 2.4.1 TROANILINE 2.7 - TROANILINE 2.8 - TITROANILINE 3.3 - DICHLOROBENZIDINE 3.7 - DICHLOROBENZIDINE 3.7 - DICHLOROBENZIDINE 3.7 - DICHLOROBENZIDINE 3.7 - TIROANILINE 4 CHLORO-3 - METHYLPHENOL 4 CHLORO-4 - METHYLPHENOL 4 CHLORO-4 - METHYLPHENOL 4 CHLORO-4 - METHYLPHENOL 4 NITROANILINE 4 NITROANILINE 4 NITROANILINE 4 NITROANILINE 4 NITROANILINE 4 NITROANILINE 4 NITROANILINE 4 NITROANILINE 4 NITROANILINE 4 NITROANILINE 5 CHLOROETHYL-PHENYL ETHER 4 METHYLPHENOL 4 NITROANILINE 5 CHLOROETHYL-PHENYL ETHER BENZO(A) ANTHRACENE BENZO(C) J PURENE BENZO(C) J FLUORANTHENE BENZO(C) J FLUORANTHENE BENZO(C) J FLUORANTHENE BIS(2 - CHLOROETHYL) ETHER BIS(2 - CHLOROETHYL) FLOROENE HEXACHLOROETHANE NITROSODIPHENOL A - NITROSODIPHENOL A	RESULTS (Ug/kg) ND ND ND ND ND ND ND ND ND ND ND ND ND	RL (ug/kg) 370 370 370 370 370 370 370 370 370 370	MDL (ug/kg)
SURROGATE PARAMETERS 2,4,6-TRIBROMOPHENOL 2-FLUOROBIPHENYL 2-FLUOROPHENOL NITROBENZENE-D5 PHENOL-D5 TERPHENYL-D14	RESULTS 2110 442 1700 415 1760 628	SPK_AMT % RE 2208 735.9 2208 735.9 2208 735.9 2208 735.9	QC LIMIT 95.7 40-130 60.1 40-130 77.1 30-130 56.3 30-130 79.8 40-130 85.3 60-130

(1): Cannot be separated from 3-Methylphenol(2): Cannot be separated from Diphenylamine

QC SUMMARIES

441

METHOD 3550B/8270C SEMI VOLATILE ORGANICS BY GC/MS

Client : URS Project : DHCCP Batch No. : 13J124 Sample ID: MBLK1S Lab Samp ID: SVJ026SB Lab File ID: RJJ453 Ext Btch ID: SVJ026S Calib. Ref.: RGJ400		Date Collected Date Received Date Extracted Date Analyzed Dilution Factor Matrix % Moisture Instrument ID	: NA : 10/17/13 : 10/17/13 11:45 : 10/18/13 16:21 : 1 : SOIL : NA : T-OE4
PARAMETERS 1, 2, 4 - TRICHLOROBENZENE 1, 2 - DICHLOROBENZENE 1, 4 - DICHLOROBENZENE 1, 4 - DICHLOROBENZENE 2, 4, 5 - TRICHLOROPHENOL 2, 4 - DINITROPHENOL 2, 4 - DINITROPHENOL 2, 4 - DINITROPHENOL 2, 4 - DINITROTOLUENE 2, 6 - DINITROTOLUENE 2, 7 - DICHLOROBENZIDINE 3, 3 - DICHLOROBENZIDINE 4, 6 - DINITRO-2-METHYLPHENOL 4, 6 - NITROANILINE 4, 6 - DINITRO-2-METHYLPHENOL 4, 6 - DINITRO-3-METHYLPHENOL 4, 6 - DISENZO(A) PYRENE BENZO(G) PHENCH BENZO(G) H, 1) PETHENE BENZO(G) H, 1) PETHENE BIS(2 - CHLOROETHOXY) METHANE BIS(2 - CHLOROETHANE NOENO(1, 2, 3 - CD) PYRENE ISOPHORONE NA	RESULTS (ug/kg) ND ND ND ND ND ND ND ND ND ND ND ND ND	RL (ug/kg) 	MDL (ug/kg)
SURROGATE PARAMETERS 2,4,6-TRIBROMOPHENOL 2-FLUOROBIPHENYL 2-FLUOROPHENOL NITROBENZENE-D5 PHENOL-D5 TERPHENYL-D14	RESULTS 1790 474 1730 504 1810 608		COVERY QC LIMIT 89,3 30-140 71.1 30-130 86.4 40-130 75.6 40-130 90.5 40-130 91.2 40-140

(1): Cannot be separated from 3-Methylphenol(2): Cannot be separated from Diphenylamine

PROJECT: BATCH NO.: METHOD:	URS DHCCP 13J124 METHOD 35501										_
DILUTION FACTOR: SAMPLE ID: LAB SAMP ID: LAB FILE ID: DATE EXTRACTED: DATE ANALYZED: PREP. BATCH:	SOIL 1 MBLK1S SVJ026SB RJJ453 10/17/1311: 10/18/1316: SVJ026S RGJ400	1 SVJ026SL RJJ454 45 10/17/13	1 SVJO RJJ4 11:45 10/1	26sc 55 7/1311:45 8/1317:00 26s	% MOIS DATE 0		NA NA 10/17/13				-
PARAMEIER 1,2,4-Trichlorobenze 1,2-Dichlorobenze 1,3-Dichlorobenze 2,4,5-Trichloroph 2,4,6-Trichloroph 2,4-Dinitrotoluen 2,4-Dinitrotoluen 2,4-Dinitrotoluen 2,6-Dinitrotoluen 2,6-Dinitrotoluen 2,6-Dinitrotoluen 2,6-Dinitrotoluen 2,6-Dinitrotoluen 2,6-Dinitrotoluen 2,6-Dinitrotoluen 2,6-Dinitrotoluen 2,6-Dinitrotoluen 2,6-Dinitrotoluen 2,6-Dinitrotoluen 2,6-Dinitrotoluen 2,6-Dinitrotoluen 2,7-Dichlorobenz 3,3'-Dichlorobenz 3,3'-Dichlorobenz 4,6-Dinitro-2-Methyl 4,6-Dinitro-2-M	ne ne enol enol l l e e e ne idine hylphenol nyl ether phenol enyl ether phenol enyl ether opyl)ether phthalate ate te tacene ne ntadiene yrene opylamine	BLNK RSLT (ug/kg) ND ND ND ND ND ND ND ND ND ND ND ND ND	SPIKE AMT (ug/kg) 1330 1330 1330 1330 1330 1330 1330 133	BS RSLT (ug/kg) 1020 1040 1050 1050 1050 1180 1150 1200 1120 1020 942 1070 942 1070 942 1070 942 1070 942 1070 942 1080 970 1160 1120 1050 944 1050 944 1050 1120 1050 105	BS C 77899388673046111413738898771877347709449509988899988992884546601494549948	SPIKE AMT (ug/kg) 1330 1330 1330 1330 1330 1330 1330 133	BSD RSLT (ug/kg) 1130 1120 1140 1050 1230 1240 999 1250 1030 1030 1030 1030 1040 1230 1140 1230 1140 1230 1140 1230 1140 1230 1140 1230 1140 1230 1140 1230 1140 1230 1140 1230 1140 1230 1140 1230 1140 1250 1140 1250 1170 1330 140 1250 1140 1250 1140 1250 1140 1250 1140 1250 1140 1250 1140 1250 1140 1250 1140 1250 1170 1250 1270 1270 1270 1270 1270 1270 1270 127	BSD CC	۳۳۵٫٫٫ ۲۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵	$ \begin{array}{c} QC & LIMIT \\ (& N & I \\ (&$	MAX R) 5005500550000000000000000000000000000
SURROGATE PARAMET 2,4,6-Tribromopher 2-Fluorobiphenyl 2-Fluorophenol Nitrobenzene-d5 Phenol-d5 Terphenyl-d14	ER	SPIKE AMT (ug/kg) 2000 667 2000 667 2000 667	BS RSLT (ug/kg) 2050 483 1710 432 1820 609	BS SP1	KE AMT Jg/kg) 2000 667 2000 667 2000 667	BSD RSLT (ug/kg) 2060 497 1640 464 1990 637	BSD QC % REC (103 3 74 3 82 4 70 4 99 4	LIMIT %) 0-140 0-130 0-130 0-130 0-130 0-140			-

LABORATORY REPORT FOR

4**64**, 11

URS

DHCCP

METHOD 3550B/8270C SIM PAH BY GC/MS

SDG#: 13J124

CASE NARRATIVE

Client : URS

Project : DHCCP

SDG : 13J124

METHOD 3550B/8270C SIM PAHS BY GC/MS

One(1) soil sample was received on 10/14/13 for PAH BY 8270C SIM analysis, Method 3550B/8270C SIM in accordance with USEPA SW-846, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods.

Holding Time The sample was analyzed within the prescribed holding time.

Instrument Performance and Calibration Instrument tune check was performed prior to calibration. Instrument mass ratios were evaluated and results were within acceptance criteria. Multi-calibration points were generated to establish initial calibration (ICAL). ICAL was verified using secondary source (ICV). Continuing calibration (CCV) was carried on at a frequency required by the project. All project calibration requirements were satisfied. Refer to calibration summary forms of ICAL, ICV and CCV for details.

Method Blank Method blank was analyzed at the frequency required by the project. For this SDG, one method blank was analyzed with the samples. Result was compliant to project requirement.

Lab Control Sample A set of LCS/LCD was analyzed with the samples in this SDG. Percent recoveries for SVJ026SL/C were all within QC limits.

Matrix QC Sample was designated in this SDG.

Surrogate Surrogates were added on QC and field samples. Surrogate recoveries were within project QC limits. Refer to sample result forms for details.

Sample Analysis The sample was analyzed according to prescribed analytical procedures. All project requirements were met otherwise anomalies were discussed within the associated QC parameter.

LAB CHRONICLE PAHS BY GC/MS

Client	: URS		SDG NO. : 13J124
Project	: DHCCP		Instrument ID : E4
=========	=======================================		
		SOIL	

Client	Laboratory D	ilution	%	Analysis	Extraction	Sample	Calibratior	n Prep.	
Sample ID	Sample ID	Factor	Moist	DateTime	DateTîme	Data FN	Data FN	Batch	Notes
MBLK1S	SVJ026SB	1	NA	10/18/1316:21	10/17/1311:45	RJJ453	RGJ400	svj026s	Method Blank
LCS1S	SVJ026SL	1	NA	10/18/1316:41	10/17/1311:45	RJ.1454	RGJ400	SVJ026S	Lab Control Sample (LCS)
LCD1S	SVJ026SC	1	NA	10/18/1317:00	10/17/1311:45	RJJ455	RGJ400	SVJ026S	LCS Duplicate
2B-2	J124-01	1	9.4	10/18/1320:32	10/17/1311:45	RJJ466	RGJ400	SVJ026S	Field Sample

FN - Filename

% Moist - Percent Moisture

DWR-207

SAMPLE RESULTS

ð

METHOD 3550B/8270C SIM PAHS BY GC/MS

Client : URS		Date Colle	cted: 10/07/	13
Project : DHCCP			ived: 10/14/	
Batch No. : $13J124$		Date Extra	cted: 10/17/	13 11:45
Sample ID: 2B-2		Date Anal	yzed: 10/18/	13 20:32
Lab Samp ID: J124-01		Dilution Fa	ctor: 1	
Lab File ID: RJJ466		Matrix	: SOIL	
Ext Btch ID: SVJ026S		% Moisture	: 9.4	
Calib. Ref.: RGJ400		Instrument	ID : T-OE4	
	RESULTS	RL		MDL
PARAMETERS	(ug/kg)	(ug/kg)		(ug/kg)
ACENAPHTHENE	ND	11		2.8 2.8
ACENAPHTHYLENE	ND	11 11		2.8
ANTHRACENE	ND			2.8
BENZO(A)ANTHRACENE	ND	11		2.8
BENZO(A)PYRENE	ND	11 11		2.8
BENZO(B) FLUORANTHENE	ND	11		2.8
BENZO(K)FLUORANTHENE	ND	11		2.8
BENZO(G, H, I)PERYLENE	ND	11		2.8
	ND ND	11		2.8
DIBENZO(A, H)ANTHRACENE	ND	11		2.8
FLUORANTHENE	ND	11		2.8
FLUORENE	ND	11		2.8
INDENO(1,2,3-CD)PYRENE	4.0J	11		2.8
NAPHTHALENE PHENANTHRENE	4.03 3.9J	11		2.8
	ND	11		2.8
PYRENE	ND	11		2.0
SURROGATE PARAMETERS	RESULTS	SPK_AMT	% RECOVERY	QC LIMIT
2-FLUOROBIPHENYL	424	735.9	57.7	
NITROBENZENE-D5	434	735.9	59.0	30-160
TERPHENYL-D14	659	735.9	89.6	40-150

QC SUMMARIES

Client : URS		Date Colle		
Project : DHCCP		Date Rece	eived: 10/17	/13
Batch No. : 13J124		Date Extra	acted: 10/17	/13 11:45
Sample ID: MBLK1S		Date Anal	yzed: 10/18	/13 16:21
Lab Samp ID: SVJ026SB		Dilution Fa	actor: 1	
Lab File ID: RJJ453		Matrix	: SOIL	
Ext Btch ID: SVJ026S		% Moisture	: NA	
Calib. Ref.: RGJ400		Instrument	ID : T-OE4	
	=======================================	=======================================		
	RESULTS	RL		MDL
PARAMETERS	(ug/kg)	(ug/kg)		(ug/kg)
ACENAPHTHENE	ND	10		2.5
ACENAPHTHYLENE	ND	10		2.5
ANTHRACENE	ND	10		2.5
BENZO(A)ANTHRACENE	ND	10		2.5
BENZO(A)PYRENE	ND	10		2.5
BENZO(B)FLUORANTHENE	ND	10		2.5
BENZO(K)FLUORANTHENE	ND	10		2.5
BENZO(G,H,I)PERYLENE	ND	10		2.5
CHRYSENE	ND	10		2.5
DIBENZO(A,H)ANTHRACENE	ND	10		2.5
FLUORANTHENE	ND	10		2.5
FLUORENE	ND	10		2.5
INDENO(1,2,3-CD)PYRENE	ND	10		2.5
NAPHTHALENE	ND	10		2.5
PHENANTHRENE	ND	10		2.5
PYRENE	ND	10		2.5
SURROGATE PARAMETERS	RESULTS	SPK_AMT	% RECOVERY	
2-FLUOROBIPHENYL	448	666.7	67.2	
NITROBENZENE-D5	456	666.7	68.5	40-130
TERPHENYL-D14	590	666.7	88.4	40-140

CLIENT: PROJECT: BATCH NO.: METHOD:	URS DHCCP 13J124 METHOD 3550B/										
			=======================================					=================			:
MATRIX:	SOIL				% MOI	STURE:	NA				
DILUTION FACTOR:		1	1								
SAMPLE ID:	MBLK1S	04102401	01/1)26SC							
LAB SAMP ID: LAB FILE ID:	SVJ026SB RJJ453	SVJ026SI RJJ454	- SVJ(RJJ4								
DATE EXTRACTED:	10/17/1311:45			• <u></u> 17/1311:4	5 DATE	COLLECTED:	NA				
DATE ANALYZED:	10/18/1316:21			18/1317:0		RECEIVED:	10/17/1	3			
PREP. BATCH:	SVJ026S	SVJ026S	SVJ(-	o DATE		10, 11, 1				
CALIB. REF:	RGJ400	RGJ400	RGJ4								
ACCESSION:											
	В	SLNK RSLT	SPIKE AMT	BS RSL	T BS	SPIKE AMT	BSD R	SLT BSD	RPD	QC LIMIT	MAX RPD
PARAMETER		(ug/kg)	(ug/kg)	(ug/kg) % REC	(ug/kg)	(ug/k	g) % REC	(%)	(%)	(%)
Acenaphthene	-	ND	1330	10		1330	1	050 79	4	50-130	50
Acenaphthylene		ND	1330	10	40 78	1330	1	090 82	5	40-130	50
Anthracene		ND	1330	11	00 83	1330	1	160 87	5	40-130	50
Benzo(a)anthrace	ne	ND	1330	11		1330		220 92	5	50-130	50
Benzo(a)pyrene		ND	1330	12		1330		280 96	5	50-130	50
Benzo(b)fluorant	hene	ND	1330	12		1330		300 97	6	50-130	50
Benzo(k)fluorant		ND	1330	11		1330		160 87	4	50-130	50
Benzo(g,h,i)pery	lene	ND	1330	11		1330		250 93	7	50-130	50
Chrysene		ND	1330	10		1330		130 84	5	50-130	50 50
Dibenzo(a,h)anth	racèné	ND	1330	12		1330		280 96	6 5	50-130 50-130	50
Fluoranthene		ND	1330 1330	11 10		1330 1330		160 87 100 82	5	50~130 50~130	50
Fluorene		ND	1330	10	÷ - · ·	1330		290 97	4	50-130	50
Indeno(1,2,3-cd)	pyrene	ND ND	1330		68 73	1330		040 78	7	50-130	50
Naphthalene Phenanthrene		ND	1330	10		1330		120 84	5	50-130	50
Pyrene		ND	1330	10		1330		140 86	5	50-130	50
		SPIKE AMT	BS RSLT	 BS	SPIKE AMT	BSD RSLT	======= BSD	QC LIMIT			<u>-</u>
SURROGATE PARAME	TER	(ug/kg)	(ug/kg)	% REC	(ug/kg)	(ug/kg)	% REC	(%)			
2-Fluorobiphenyl		667	460	69	667	480	72	30-130			
Nitrobenzene-d5		667	443	66	667	469	70	40-130			
Terphenyl-d14		667	597	90	667	621	93	40-140			

LABORATORY REPORT FOR

URS

DHCCP

METHOD 5030B/8015B TOTAL PETROLEUM HYDROCARBONS BY PURGE AND TRAP

SDG#: 13J124

CASE NARRATIVE

Client : URS

Project : DHCCP

SDG : 13J124

METHOD 5030B/8015B TOTAL PETROLEUM HYDROCARBONS BY PURGE AND TRAP

One(1) soil sample was received on 10/14/13 for TPH-Gasoline analysis, Method 5030B/8015B in accordance with USEPA SW-846, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods.

Holding Time The sample was analyzed within the prescribed holding time.

Calibration

Multi-calibration points were generated to establish initial calibration (ICAL). ICAL was verified using a secondary source (ICV). Continuing calibration (CCV) verifications were carried on a frequency specified by the project. All calibration requirements were within acceptance criteria. Refer to calibration summary forms of ICAL, ICV and CCV for details.

Method Blank Method blank was analyzed at the frequency required by the project. For this SDG, one method blank was analyzed with the samples. Result was compliant to project requirement.

Lab Control Sample A set of LCS/LCD was analyzed with the samples in this SDG. Percent recoveries for GMJ010SL/C were all within QC limits.

Matrix QC Sample Was designated in this SDG.

Surrogate Surrogate was added on QC and field samples. Surrogate recoveries were within project QC limits. Refer to sample result forms for details.

Sample Analysis The sample was analyzed according to prescribed analytical procedures. All project requirements were met otherwise anomalies were discussed within the associated QC parameter.

LAB CHRONICLE TOTAL PETROLEUM HYDROCARBONS BY PURGE AND TRAP

Client : URS	SDG NO. : 13J124
Project : DHCCP	Instrument ID : GCT039
=======================================	
	SOIL

Client	Laboratory [Dilution	%	Analysis	Extraction	Sample	Calibratio	n Prep.	
Sample ID	Sample ID	Factor	Moist	DateTime	DateTime	Data FN	Data FN	Batch	Notes

MBLK1S	GMJ010SB	1	NA	10/16/1321:47	10/16/1321:47	EJ16014A	EJ16013A	GMJ010S	Method Blank
LCS1S	GMJ010SL	1	NA	10/16/1322:24	10/16/1322:24	EJ16015A	EJ16013A	GMJ010S	Lab Control Sample (LCS)
LCD1S	GMJ010SC	1	NA	10/16/1323:01	10/16/1323:01	EJ16016A	EJ16013A	GMJ010S	LCS Duplicate
2B-2	J124-01	.99	9.4	10/17/1300:16	10/17/1300:16	EJ16018A	EJ16013A	GMJ010S	Field Sample

FN - Filename

% Moist - Percent Moisture

SAMPLE RESULTS

			=======================================
Client : URS		Date Coll	ected: 10/07/13
Project : DHCCP		Date Rec	eived: 10/14/13
Batch No. : 13J124		Date Extr	acted: 10/17/13 00:16
Sample ID: 2B-2		Date Ana	lyzed: 10/17/13 00:16
Lab Samp ID: J124-01		Dilution F	actor: .99
Lab File ID: EJ16018A		Matrix	: SOIL
Ext Btch ID: GMJ010S		% Moisture	: 9.4
Calib. Ref.: EJ16013A		Instrument	ID : GCT039
	=======================================		=============================
	RESULTS	RL	MDL
PARAMETERS	(mg/kg)	(mg/kg)	(mg/kg)
GASOLINE	ND	1.1	0.55
SURROGATE PARAMETERS	RESULTS	SPK_AMT	% RECOVERY QC LIMIT
BROMOFLUOROBENZENE	1.68	2.185	77.1 10-160

Parameter Gasoline

H-C Range C6-C10

DWR-207

QC SUMMARIES

METHOD 5030B/8015B TOTAL PETROLEUM HYDROCARBONS BY PURGE AND TRAP

			=======================
Client : URS		Date Collect	ed: NA
Project : DHCCP		Date Receiv	ed: 10/16/13
Batch No. : 13J124		Date Extract	ed: 10/16/13 21:47
Sample ID: MBLK1S		Date Analyz	ed: 10/16/13 21:47
Lab Samp ID: GMJ010SB		Dilution Fact	or: 1
Lab File ID: EJ16014A		Matrix	: SOIL
Ext Btch ID: GMJ010S		% Moisture	: NA
Calib. Ref.: EJ16013A		Instrument ID	: GCT039
		=======================================	
	RESULTS	RL	MDL
PARAMETERS	(mg/kg)	(mg/kg)	(mg/kg)
GASOLINE	ND	1.0	0.50
SURROGATE PARAMETERS	RESULTS	SPK_AMT %	RECOVERY QC LIMIT
BROMOFLUOROBENZENE	1.60	2.000	79.9 70-140

Parameter H-C Range Gasoline

C6-C10

CLIENT: PROJECT: BATCH NO.: METHOD:	URS DHCCP 13J124 METHOD 50301	3/8015B									=
MATRIX: DILUTION FACTOR: SAMPLE ID:	SOIL 1 MBLK1S	1	1		% MOI	STURE:	NA				
LAB SAMPLE ID: LAB SAMP ID: LAB FILE ID: DATE EXTRACTED: DATE ANALYZED: PREP. BATCH: CALIB. REF:	GMJ010SB EJ16014A 10/16/1321:4 10/16/1321:4 GMJ010S EJ16013A		A EJ16 322:24 10/1 322:24 10/1 GMJC	010SC 0016A 6/1323:01 6/1323:01 010S 0013A		COLLECTED: RECEIVED:	NA 10/16/13	;			
ACCESSION:											
PARAMETER		BLNK RSLT (mg/kg)	SPIKE AMT (mg/kg)	BS RSLT (mg/kg)		SPIKE AMT (mg/kg)	BSD RS (mg/kg		RPD (%)	QC LIMIT (%)	MAX RPD (%)
Gasoline		ND	25.0	22.	6 90	25.0	21	.1 85	7	60-130	50
SURROGATE PARAME		SPIKE AMT (mg/kg)	BS RSLT (mg/kg)	BS % REC	SPIKE AMT (mg/kg)	BSD RSLT (mg/kg)	BSD % REC	QC LIMIT (%)			=
Bromofluorobenze	ene	2.00	1.87	93	2.00	1.82	91	70-140			

LABORATORY REPORT FOR

URS

DHCCP

METHOD 3550B/8015B TOTAL PETROLEUM HYDROCARBONS BY EXTRACTION

SDG#: 13J124

CASE NARRATIVE

Client : URS

Project : DHCCP

SDG : 13J124

METHOD 3550B/8015B PETROLEUM HYDROCARBONS BY EXTRACTION

One(1) soil sample was received on 10/14/13 for TPH Diesel analysis, Method 3550B/8015B in accordance with USEPA SW-846, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods.

Holding Time The sample was analyzed within the prescribed holding time.

Calibration Multi-calibration points were generated to establish initial calibration (ICAL). ICAL was verified using a secondary source (ICV). Continuing calibration (CCV) verifications were carried on a frequency specified by the project. All calibration requirements were within acceptance criteria. Refer to calibration summary forms of ICAL, ICV and CCV for details.

Method Blank Method blank was analyzed at the frequency required by the project. For this SDG, one method blank was analyzed with the samples. Result was compliant to project requirement.

Lab Control Sample A set of LCS/LCD was analyzed with the samples in this SDG. Percent recoveries for DSJ012SL/C were all within QC limits.

Matrix QC Sample No matrix QC sample was designated in this SDG.

Surrogate Surrogates were added on QC and field samples. Surrogate recoveries were within project QC limits. Refer to sample result forms for details.

Sample Analysis The sample was analyzed according to prescribed analytical procedures. All project requirements were met otherwise anomalies were discussed within the associated QC parameter.

The sample displayed mix hydrocarbons.

LAB CHRONICLE PETROLEUM HYDROCARBONS BY EXTRACTION

	=======================================		=======================================	========					===========	==
Client Project	: URS : DHCCP						SDG NO. Instrumer	: 13J1 ht ID : GCT1		
	=======================================			========		=======================================	*===========			21
					SOIL					
Client		Laboratory	Dilution	%	Analysis	Extraction	Sample	Calibratic	on Prep.	
Sample ID		Sample ID	Factor	Moist	DateTime	DateTime	Data FN	Data FN	Batch	Notes
MBLK1S		DC 1013CD			10/10/1740 22	40.47.4744.70				
		DSJ012SB	I	NA	10/18/1319:22	10/16/1311:42	LJ18053A	LJ 18 045A	DSJ012S	Method Blank
LCS1S		DSJ012SL	1	NA	10/18/1319:39	10/16/1311:42	LJ18054A	LJ 18 045A	DSJ012S	Lab Control Sample (LCS)
LCD1S		DSJ012SC	1	NA	10/18/1319:56	10/16/1311:42	LJ18055A	LJ18045A	DSJ012S	LCS Duplicate
2B-2		J124-01	1	9.4	10/18/1320:13	10/16/1311:42	LJ18056A	LJ18045A	DSJ012S	Field Sample

FN - Filename

% Moist - Percent Moisture

SAMPLE RESULTS

			=======================================	========
Client : URS		Date Col	lected: 10/07	/13
Project : DHCCP		Date Re	ceived: 10/14	/13
Batch No. : 13J124			racted: 10/16	
Sample ID: 2B-2		Date Ar	alyzed: 10/18	3/13 20:13
Lab Samp ID: J124-01		Dilution	Factor: 1	
Lab File ID: LJ18056A		Matrix	: SOIL	
Ext Btch ID: DSJ012S		% Moistur	re : 9.4	
Calib. Ref.: LJ18045A		Instrumer	nt ID : GCT1C)5
	=======================================		**********	======
	RESULTS	RL		MDL
PARAMETERS	RESULTS (mg/kg)	RL (mg/kg)		MDL (mg/kg)
PARAMETERS				
PARAMETERS DIESEL				
	(mg/kg)	(mg/kg)	% RECOVERY	(mg/kg) 5.5
DIESEL	(mg/kg) 56	(mg/kg) 11	% RECOVERY	(mg/kg) 5.5
DIESEL	(mg/kg) 56	(mg/kg) 11	70.7	(mg/kg) 5.5 QC LIMIT 50-130
DIESEL SURROGATE PARAMETERS	(mg/kg) 56 RESULTS 	(mg/kg) 11 SPK_AMT		(mg/kg) 5.5 QC LIMIT 50-130

RL :	Reporting	Limit
Parameter	H - C	Range
Diesel	C10-	-C24

QC SUMMARIES

METHOD 3550B/8015B PETROLEUM HYDROCARBONS BY EXTRACTION

		============		
Client : URS		Date Co	llected: NA	
Project : DHCCP		Date Re	eceived: 10/16	5/13
Batch No. : 13J124		Date Ext	tracted: 10/16	5/13 11:42
Sample ID: MBLK1S			nalyzed: 10/18	3/13 19:22
Lab Samp ID: DSJ012SB		Dilution	Factor: 1	
Lab File ID: LJ18053A		Matrix	: SOIL	
Ext Btch ID: DSJ012S			re :NA	
Calib. Ref.: LJ18045A		Instrumer	nt ID : GCT10)5
PARAMETERS	RESULTS (mg/kg)	RL (mg/kg)		MDL (mg/kg)
DIESEL	ND	10		5.0
SURROGATE PARAMETERS	RESULTS	SPK_AMT	% RECOVERY	QC LIMIT
BROMOBENZENE	81.4	100.0	81.4	50-130
HEXACOSANE	22.2	25.00	88.9	60-130
RL : Reporting Limit				

RL :	Reporting	Limit
Parameter	H - C	Range
Diesel	C10	-C24

CLIENT: PROJECT: BATCH NO.: METHOD:	URS DHCCP 13J124 METHOD 3550	B/8015B							========		<u>-</u>
MATRIX:	SOIL		4		% MOI	STURE:	NA				
DILUTION FACTOR: SAMPLE ID:	: 1 MBLK1S	1	1								
LAB SAMP ID:	DSJ012SB LJ18053A		LJ18 311:42 10/ 319:39 10/ DSJ0	012sc 3055A 16/1311:42 18/1319:56 012s 3045A		COLLECTED: RECEIVED:	NA 10/16/13	3			
ACCESSION:											
PARAMETER		BLNK RSLT (mg/kg)	SPIKE AMT (mg/kg)	BS RSLT (mg/kg)	BS % REC	SPIKE AMT (mg/kg)	BSD RS (mg/kg		RPD (%)	QC LIMIT (%)	MAX RPD (%)
Diesel		ND	500	430) 86	500) 4	24 85	2	60-130	50
SURROGATE PARAME	TER	SPIKE AMT (mg/kg)	BS RSLT (mg/kg)	BS S % REC	SPIKE AMT (mg/kg)	BSD RSLT (mg/kg)	BSD % REC	QC LIMIT (%)			-
Bromobenzene Hexacosane		100 25.0	91.3 24.2	91 97	100 25.0	87.4 23.7	87 95	50-130 60-130			

LABORATORY REPORT FOR

URS

DHCCP

METHOD 3550B/8081A PESTICIDES

SDG#: 13J124

CASE NARRATIVE

Client : URS

Project : DHCCP

SDG : 13J124

METHOD 3550B/8081A PESTICIDES

One(1) soil sample was received on 10/14/13 for Pesticides Organochlorine analysis, Method 3550B/8081A in accordance with USEPA SW-846, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods.

Holding Time The sample was analyzed within the prescribed holding time.

Instrument Performance and Calibration Instrument performance was checked prior to calibration. DDT and Endrin breakdown were within specification. Multi-calibration points were generated to establish initial calibration (ICAL). ICAL was verified using secondary source (ICV). Continuing calibration (CCV) was carried on at a frequency required by the project. All project calibration requirements were satisfied. Refer to calibration summary forms of ICAL, ICV and CCV for details.

Method Blank Method blank was analyzed at the frequency required by the project. For this SDG, one method blank was analyzed with the samples. Result was compliant to project requirement.

Lab Control Sample A set of LCS/LCD was analyzed with the samples in this SDG. Percent recoveries for CPJ020SL/C were all within QC limits.

Matrix QC Sample No matrix QC sample was designated in this SDG.

Surrogate Surrogates were added on QC and field samples. Surrogate recoveries were within project QC limits. Refer to sample result forms for details.

Sample Analysis The sample was analyzed according to prescribed analytical procedures. All project requirements were met otherwise anomalies were discussed within the associated QC parameter. Positive sample results were confirmed by a second column. Relative percentage difference (RPD) between the two results was evaluated. If RPD is less than 40% and peaks are well defined the higher result is reported. Where RPD is greater than 40% the chromatogram is checked for anomalies and results are selected based on processed knowledge. If there is no evidence of any chromatographic ambiguity, the higher result is reported.

LAB CHRONICLE PESTICIDES

======== Client Project =========	: URS : DHCCP			=======================================				=======================================	SDG NO. Instrum	: 13J124 ent ID : F9
					SO	(L				
Client		Laboratory	Dilution	%	Analysis	Extraction	Sample	Calibratic	n Prep.	
Sample ID		Sample ID	Factor	Moist	DateTime	DateTime	Data FN	Data FN	Batch	Notes
MBLK1S		CPJ020SB	1	NA	10/21/1322:32	10/17/1314:30	RJ21035A	RJ21030A	CPJ020S	Method Blank
LCS1S		CPJ020SL	1	NA	10/21/1322:50	10/17/1314:30	RJ21036A	RJ21030A	CPJ020S	Lab Control Sample (LCS)
LCD1S		CPJ020SC	1	NA	10/21/1323:09	10/17/1314:30	RJ21037A	RJ21030A	CPJ020S	LCS Duplicate
2B-2		J124-01	1	9.4	10/21/1323:46	10/17/1314:30	RJ21039A	RJ21030A	CPJ020S	Field Sample

FN - Filename

% Moist - Percent Moisture

469

DWR-207

SAMPLE RESULTS

METHOD 3550B/8081A PESTICIDES

Client : URS		Date Coll	ected: 10/07/13	
Project : DHCCP		Date Rec	eived: 10/14/13	
Batch No. : 13J124		Date Extr	acted: 10/17/13 '	14:30
Sample ID: 2B-2		Date Ana	lyzed: 10/21/13 2	23:46
Lab Samp ID: J124-01		Dilution F	actor: 1	
Lab File ID: RJ21039A		Matrix	: SOIL	
Ext Btch ID: CPJ020S		% Moisture	: 9.4	
Calib. Ref.: RJ21030A		Instrument	ID : F9	
	RESULTS	RL	MDL	
PARAMETERS	(ug/kg)	(ug/kg)	(ug/kg)	
ALPHA-BHC	(ND) ND	2.2	0.44 0.44	
GAMMA-BHC (LINDANE)	(ND) ND	2.2	0.44 0.44	
BETA-BHC	(ND) ND	2.2	0.44 0.44	
HEPTACHLOR	(ND) ND	2.2	0.44 0.44	
DELTA-BHC	(ND) ND	2.2	0.44 0.44	
ALDRIN	(ND) ND	2.2	0.44 0.44	
HEPTACHLOR EPOXIDE	(ND) 0.53J	2.2	0.44 0.44	
GAMMA-CHLORDANE	(ND) ND	2.2	0.44 0.44	
ALPHA-CHLORDANE	(ND) 0.54J	2.2	0_44 0_44	
ENDOSULFAN I	(ND) 0.77J	2.2	0.44 0.44	
4,4'-DDE	(ND) ND	2.2	0.44 0.44	
DIELDRIN	(ND) ND	2.2	0.44 0.44	
ENDRIN	(ND) ND	2.2	0.44 0.44	
4,4:-DDD	(ND) ND	2.2	0.44 0.44	
ENDOSULFAN II	(ND) ND	2.2	0.44 0.44	
4,4'-DDT	(ND) ND	2.2	0.44	
ENDRIN ALDEHYDE	(ND) ND	2.2	0.44 0.44	
ENDOSULFAN SULFATE	(ND) ND	2.2	0.44 0.44	
ENDRIN KETONE	(ND) ND	2.2	0.44 0.44	
METHOXYCHLOR	(ND) ND	11	4 . 4 4 . 4	
TOXAPHENE	(ND) ND	55	11 11	
SURROGATE PARAMETERS	RESULTS	SPK_AMT	% RECOVERY	QC LIMIT
TETRACHLORO-M-XYLENE	12.47 (14.64)	14.71	84.8 (99.5)	50-140
DECACHLOROBIPHENYL	13.18 (14.31)	14.71	89.6 (97.2)	10-160

RL : Reporting limit Left of \mid is related to first column ; Right of \mid related to second column Final result indicated by ()

QC SUMMARIES

				====
Client : URS		Date Coll		
Project : DHCCP		Date Rec	eived: 10/17/13	
Batch No. : 13J124		Date Extr	acted: 10/17/13 14	:30
Sample ID: MBLK1S		Date Ana	lyzed: 10/21/13 22	2:32
Lab Samp ID: CPJ020SB		Dilution F	actor: 1	
Lab File ID: RJ21035A		Matrix	: SOIL	
Ext Btch ID: CPJ020S		% Moisture	: NA	
Calib. Ref.: RJ21030A		Instrument		
	RESULTS	RL	MDL	
PARAMETERS	(ug/kg)	(ug/kg)	(ug/kg)	
PARAMETERS		(49/19/	(~g) (g)	
ALPHA-BHC	(ND) ND	2.0	0.40 0.40	
GAMMA-BHC (LINDANE)	(ND) ND	2.0	0.40 0.40	
BETA-BHC	(ND) ND	2.0	0.40 0.40	
HEPTACHLOR	(ND) ND	2.0	0.40 0.40	
DELTA-BHC	(ND) ND	2.0	0.40 0.40	
ALDRIN	(ND) ND	2.0	0.40 0.40	
HEPTACHLOR EPOXIDE	(ND) ND	2.0	0.40 0.40	
GAMMA-CHLORDANE	(ND) ND	2.0	0.40 0.40	
ALPHA-CHLORDANE	(ND) ND	2.0	0.40 0.40	
ENDOSULFAN I	(ND) ND	2.0	0.40 0.40	
4,4'-DDE	(ND) ND	2.0	0.40 0.40	
DIELDRIN	(ND) ND	2.0	0.40 0.40	
ENDRIN	(ND) ND	2.0	0.40 0.40	
4,41-DDD	(ND) ND	2.0	0.40 0.40	
ENDOSULFAN II	(ND) ND	2.0	0.40 0.40	
4,4'-DDT	(ND) ND	2.0	0.40 0.40	
ENDRIN ALDEHYDE	(ND) ND	2.0	0.40 0.40	
ENDOSULFAN SULFATE	(ND) ND	2.0	0.40 0.40	
ENDRIN KETONE	(ND) ND	2.0	0.40 0.40	
METHOXYCHLOR	(ND) ND	10	4.0 4.0	
TOXAPHENE	(ND) ND	50	10 10	
SURROGATE PARAMETERS	RESULTS	SPK_AMT	% RECOVERY	QC LIMI
TETRACHLORO-M-XYLENE	12.21 (13.03)	13.33	91.6 (97.8)	60-13
DECACHLOROBIPHENYL	12.73 (13.50)	13.33	95.5 (101)	60-14

RL : Reporting limit Left of | is related to first column ; Right of | related to second column Final result indicated by ()

PROJECT: BATCH NO.: METHOD:	DHCCP 13J124 SW3550B/8081A				
MATRIX:	SOIL			% MOISTURE:	ΝΑ
DILUTION FACTOR:	1	1	1		
SAMPLE ID:	MBLK1S				
LAB SAMP ID:	CPJ020SB	CPJ020SL	CPJ020SC		
LAB FILE ID:	RJ21035A	RJ21036A	RJ21037A		
DATE EXTRACTED:	10/17/1314:30	10/17/1314:30	10/17/1314:30	DATE COLLECTED:	NA
DATE ANALYZED:	10/21/1322:32	10/21/1322:50	10/21/1323:09	DATE RECEIVED:	10/17/13
PREP. BATCH:	CPJ020S	CPJ020S	CPJ020S		
CALIB. REF:	RJ21030A	RJ21030A	RJ21030A		

ACCESSION:

CLIENT:

URS

PARAMETER	BLNK RSLT (ug/kg)	SPIKE AMT (ug/kg)	BS RSLT (ug/kg)	B % R	-	SPIKE AMT (ug/kg)	BSD RSL (ug/kg)		RPD (%)	QC LIMIT (%)	MAX RPD (%)
alpha-BHC	(ND) ND	6.67	7.19 (7.5	59) 108	(114)	6,67	7.25 (7.)	83) 109(117)	1 (3)	50-140	50
gamma-BHC (Lindane)	(ND) ND	6.67	(7.00) 6.95			6.67	(7.11) 6.9		(2) 1	60-130	50
beta-BHC	(ND) ND	6.67	7.46 (7.5		(113)	6.67	(7.55) 7.3	9 (113) 111	(1) 2	50-130	50
Heptachlor	(ND) ND	6.67	7.26 (7.4	2) 109	(111)	6.67	7.06 (7.		3 (2)	50-140	50
delta-BHC	(ND) ND	6.67	7.09 (7.9	9) 106	(120)	6.67	7.06 (8.	00) 106 (120)	0 (0)	50-150	50
Aldrin	(ND) ND	6.67	7.14 (7.4	5) 107	(112)	6.67	7.41 (7.	68) 111 (115)	4 (3)	60-140	50
Heptachlor Epoxide	(ND) ND	6.67	7.66 (7.7	75) 115	(116)	6.67	7.65 (7.	70) 115 (115)	0 (1)	70-130	50
gamma-Chlordane	(ND) ND	6.67	7.57 (8.2		(123)	6.67	7.67 (8.		1 (1)	70-130	50
alpha-Chlordane	(ND) ND	6.67	7.56 (7.8	35) 113	(118)	6.67	7.64 (7.		1 (1)	70-130	50
Endosulfan I	(ND) ND	6.67	7.16 (7.7	70) 107	(115)	6.67	7.26 (7.	74) 109 (116)	1 (1)	60-130	50
4,4'-DDE	(ND) ND	6.67	7.66 (8.2		(124)	6.67	7.75 (8.		1 (1)	70-140	50
Dieldrin	(ND) ND	6.67	7.76 (7.9		(119)	6.67	7.92 (8.		2 (3)	70-140	50
Endrin	(ND) ND	6.67	8.01 (8.3		(126)	6.67	8.04 (8.		0(1)	70-150	50
4,4'-DDD	(ND) ND	6.67	8.07 (8.3		(125)	6.67	8.09 (8.		0 (1)	70-140	50
Endosulfan II	(ND) ND	6.67	8.35 (8.5		(128)	6.67	8.53 (8.		2 (1)	70- 13 0	50
4,4'-DDT	(ND) ND	6.67	(8.89) 8.53			6.67	(9.12) 8.6		(3) 1	70-150	50
Endrin aldehyde	(ND) ND	6.67	7.93 (8.3	· · ·	(125)	6.67	7.99 (8.			70-130	50
Endosulfan Sulfate	(ND) ND	6.67	7.99 (8.3		(125)	6.67	8.17 (8.		2 (1)	70-150	50
Endrin Ketone	(ND) ND	6.67	7.87 (8.2		(123)	6,67	8.09 (8.		3 (3)	70-140	50
Methoxychlor	(ND) ND	66.7	75.2 (83	.2) 113	(125)	66.7	76.5 (84	.6) 115 (127)	2 (2)	70-130	50
SURROGATE PARAMETER	SPIKE AMT	BS RSLT (ug/kg)	BS % REC	SPIKE AMT (ug/kg)		RSLT (kg)	BSD % REC	QC LIMIT		=====	
SURROUATE PARAMETER	(ug/kg)	(uy/ky/	/0 KEL	(uy/ky/		1/ NGJ	/0 KLU	<pre> /º /</pre>			
Tetrachloro-m-xylene Decachlorobiphenyl	13.33 13.33	12.83 (13.72) 13.27 (13.91)	96.3 (103) 99.6 (104)	13.33 13.33		2 (13.68) 2 (13.67)	94.7 (103) 99.2 (103)	60-130 60-140			

LABORATORY REPORT FOR

URS

DHCCP

METHOD 3550B/8081A PCBS

SDG#: 13J124

CASE NARRATIVE

Client : URS

Project : DHCCP

SDG : 13J124

METHOD 3550B/8082 PCBS

One(1) soil sample was received on 10/14/13 for Polychlorinated Biphenyls (PCBs) analysis, Method 3550B/8082 in accordance with USEPA SW-846, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods.

Holding Time The sample was analyzed within the prescribed holding time.

Calibration Multi-calibration points were generated to establish initial calibration (ICAL). ICAL was verified using a secondary source (ICV). Continuing calibration (CCV) verifications were carried on a frequency specified by the project. All calibration requirements were within acceptance criteria. Refer to calibration summary forms of ICAL, ICV and CCV for details.

Method Blank Method blank was analyzed at the frequency required by the project. For this SDG, one method blank was analyzed with the samples. Result was compliant to project requirement.

Lab Control Sample A set of LCS/LCD was analyzed with the samples in this SDG. Percent recoveries for 60J020SL/C were all within QC limits.

Matrix QC Sample No matrix QC sample was designated in this SDG.

Surrogate Surrogates were added on QC and field samples. Surrogate recoveries were within project QC limits. Refer to sample result forms for details.

Sample Analysis The sample was analyzed according to prescribed analytical procedures. All project requirements were met otherwise anomalies were discussed within the associated QC parameter. Sample extracts subjected to appropriate cleanup technique to reduce matrix interference are recorded in extraction log.

Client : URS Project : DHCCP								SDG NO. Instrum	: 13J124 ent ID : 71
				SO)	[L				
Client	Laboratory	Dilution	%	Analysis	Extraction	Sample	Calibration	Prep.	
Sample ID	Sample ID	Factor	Moist	DateTime	DateTime	Data FN	Data FN	Batch	Notes
MBLK1S	60J020SB	1	NA	10/18/1311:43	10/17/1314:30	KJ18005A	KJ18002A	CPJ020S	Method Blank
LCS1S	60J020SL	1	NA	10/18/1312:08	10/17/1314:30	KJ18006A	KJ18002A	CPJ020S	Lab Control Sample (LCS)
LCD1S	60J020SC	1	NA	10/18/1312:32	10/17/1314:30	KJ18007A	KJ18002A	CPJ020S	LCS Duplicate
2B-2	J124-01	1	9.4	10/18/1313:20	10/17/1314:30	KJ18009A	KJ18002A	CPJ020S	Field Sample

FN - Filename

% Moist - Percent Moisture

477

SAMPLE RESULTS

METHOD 3550B/8082 PCBs

				-
Client : URS		Date Col	lected: 10/07/13	
Project : DHCCP		Date Re	eceived: 10/14/13	
Batch No. : 13J124		Date Ext	racted: 10/17/13 1	14:30
Sample ID: 2B-2		Date Ar	nalyzed: 10/18/13 1	3:20
Lab Samp ID: J124-01		Dilution	Factor: 1	
Lab File ID: KJ18009A		Matrix	: SOIL	
Ext Btch ID: CPJ020S		% Moistur	re : 9.4	
Calib. Ref.: KJ18002A		Instrumer	nt ID : GCT071	
	RESULTS	RL	MDL	
PARAMETERS	(ug/kg)	(ug/kg)	(ug/kg)	
		55	10110	
PCB-1016	(ND) ND	55	18 18	
PCB-1221		55	18 18 18 18	
PCB-1232 PCB-1242		55	18 18	
PCB-1242 PCB-1248		55	18 18	
	(ND) ND	55	18 18	
PCB-1254		55	18 18	
PCB-1260	(ND) ND		10 10	
SURROGATE PARAMETERS	RESULTS	SPK_AMT	% RECOVERY	QC LIMIT
TETRACHLORO-M-XYLENE	(14.27) 14.07	14.71	(97.0) 95.6	50-130
DECACHLOROBIPHENYL	(14.76) 14.34	14.71	(100) 97.5	50-150

Left of | is related to first column ; Right of | related to second column

Final result indicated by ()

* Out side of QC Limit

QC SUMMARIES

PCBs	

				====
Client : URS		Date Col	lected: NA	
Project : DHCCP		Date Re	ceived: 10/17/13	
Batch No. : 13J124		Date Ext	racted: 10/17/13	14:30
Sample ID: MBLK1S		Date An	alyzed: 10/18/13	11:43
Lab Samp ID: 60J020SB		Dilution	Factor: 1	
Lab File ID: KJ18005A		Matrix	: SOIL	
Ext Btch ID: CPJ020S		% Moistur	e :NA	
Calib. Ref.: KJ18002A		Instrumen	t ID : GCT071	
=======================================				====
	RESULTS	RL	MDL	
PARAMETERS	(ug/kg)	(ug/kg)	(ug/kg)	
PCB-1016	(ND) ND	50	17 17	
PCB-1221	(ND) ND	50	17 17	
PCB-1232	(ND) ND	50	17 17	
PCB-1242	(ND) ND	50	17 17	
PCB-1248	(ND) ND	50	17 17	
PCB-1254	(ND) ND	50	17 17	
PCB-1260	(ND) ND	50	17 17	
SURROGATE PARAMETERS	RESULTS	SPK_AMT	% RECOVERY	QC LIMIT
TETRACHLORO-M-XYLENE	(12.86) 12.56		(96.5) 94.2	60-130
DECACHLOROBIPHENYL	14.02 (14.10)	13.33	105 (106)	70-140

Left of | is related to first column ; Right of | related to second column

Final result indicated by () * Out side of QC Limit

CLIENT: PROJECT: BATCH NO.: METHOD:	URS DHCCP 13J124 METHOD 3550B/8	3082										1 70 7
MATRIX: DILUTION FACTOR:		1	1	% MOISTU	RE:	NA						
SAMPLE ID: LAB SAMP ID: LAB FILE ID: DATE EXTRACTED: DATE ANALYZED: PREP. BATCH: CALIB. REF:	MBLK1S 60J020SB KJ18005A 10/17/1314:30 10/18/1311:43 CPJ020S KJ18002A	60J020SL KJ18006A 10/17/1314:30 10/18/1312:08 CPJ020S KJ18002A				№ A 10/17/13						
ACCESSION:												
PARAMETER		BLNK RSLT (ug/kg)	SPIKE AMT (ug/kg)	BS RSLT (ug/kg)		BS % REC	SPIKE AMT (ug/kg)	BSD RSL (ug/kg)	-	RPD (%)	QC LIMIT (%)	MAX RPD (%)
РСВ-1016 РСВ-1260		(ND) ND (ND) ND	167 167	(177) 177 183 (188	(1	06) 106 110 (113)	167 167	(176) 175 181 (186	(106) 105 6) 109 (112)	(1) 1 1 (1)	70-140 70-140	50 50
=======================================					12=======			=======================================				
SURROGATE PARAME		PIKE AMT (ug/kg)	BS RSLT (ug/kg)	BS % REC	SPIKE AM (ug/kg)		RSLT g∕kg)	BSD % REC	QC LIMIT (%)			
Tetrachloro-m-xy Decachlorobipher		13.33 (13 13.33 1/	.93) 13.85 4.86 (14.91)	(105) 104 111 (112)	13.3 13.3) 13.82) (14.81)	(105) 104 111 (111)	60-130 70-140			

482

LABORATORY REPORT FOR

URS

DHCCP

METHOD 8151A HERBICIDES

SDG#: 13J124

CASE NARRATIVE

Client : URS

Project : DHCCP

SDG : 13J124

METHOD 8151A HERBICIDES

One(1) soil sample was received on 10/14/13 for Chlorinated Herbicides analysis, Method 8151A in accordance with USEPA SW-846, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods.

Holding Time The sample was analyzed within the prescribed holding time.

Calibration Multi-calibration points were generated to establish initial calibration (ICAL). ICAL was verified using a secondary source (ICV). Continuing calibration (CCV) verifications were carried on a frequency specified by the project. All calibration requirements were within acceptance criteria. Refer to calibration summary forms of ICAL, ICV and CCV for details.

Method Blank Method blank was analyzed at the frequency required by the project. For this SDG, one method blank was analyzed with the samples. Result was compliant to project requirement.

Lab Control Sample A set of LCS/LCD was analyzed with the samples in this SDG. Percent recoveries for HEJ005SL/C were all within QC limits.

Matrix QC Sample No matrix QC sample was designated in this SDG.

Surrogate Surrogate was added on QC and field samples. Surrogate recoveries were within project QC limits. Refer to sample result forms for details.

Sample Analysis The sample was analyzed according to prescribed analytical procedures. All project requirements were met otherwise anomalies were discussed within the associated QC parameter. LAB CHRONICLE HERBICIDES

======= Client Project ========	: URS : DHCCP								SDG NO. Instrum	: 13J124 ent ID : 16
					SO	IL				
Client		Laboratory	Dilution	%	Analysis	Extraction	Sample	Calibratic	n Prep.	
Sample ID		Sample ID	Factor	Moist	DateTime	DateTime	Data FN	Data FN	Batch	Notes
MBLK1S		HEJ005SB	1	NA	10/17/1310:44	10/16/1312:45	WJ17003A	WJ17002A	HEJ005S	Method Blank
LCS1S		HEJ005SL	1	NA	10/17/1311:14	10/16/1312:45	WJ17004A	WJ17002A	HEJ005S	Lab Control Sample (LCS)
LCD1S		HEJ005SC	1	NA	10/17/1311:45	10/16/1312:45	WJ17005A	WJ17002A	HEJ005S	LCS Duplicate
2B-2		J124-01	1	9.4	10/17/1312:16	10/16/1312:45	WJ17006A	WJ17002A	HEJ005S	Field Sample

FN - Filename % Moist - Percent Moisture

SAMPLE RESULTS

Client : URS		Date Coll	ected: 10/07/13	
Project : DHCCP			eived: 10/14/13	
Batch No. : 13J124			acted: 10/16/13 1	2:45
Sample ID: 2B-2			lyzed: 10/17/13 1	
Lab Samp ID: J124-01		Dilution F	•	
Lab File ID: WJ17006A		Matrix	: SOIL	
Ext Btch ID: HEJ005S		% Moisture	: 9.4	
Calib. Ref.: WJ17002A			ID : GCT016	
				====
	RESULTS	RL	MDL	
PARAMETERS	(ug/kg)	(ug/kg)	(ug/kg)	
2,4-D	(ND) ND	11	5.5 5.5	
2,4-DB	(ND) ND	11	5.5 5.5	
2,4,5-T	(ND) ND	11	5.5 5.5	
2,4,5-TP(SILVEX)	(ND) 15	11	5.5 5.5	
DALAPON	(ND) ND	11	5.5 5.5	
DICAMBA	(ND) ND	11	5.5 5.5	
DICHLOROPROP	(ND) ND	11	5.5 5.5	
DINOSEB	(ND) ND	11	5.5 5.5	
МСРА	(ND) ND	2200	1100 1100	
MCPP	(ND) ND	2200	1100 1100	
SURROGATE PARAMETERS	RESULTS	SPK_AMT	% RECOVERY	QC LIMI
2,4-DCPAA	486.9 (555.5)	551.9	88.2 (101)	20-15

Left of \mid is related to first column; Right of \mid related to second column Final result indicated by ()

QC SUMMARIES

Client : URS		Date Coll	ected: NA	
Project : DHCCP		Date Rec	eived: 10/16/13	
Batch No. : 13J124		Date Extr	acted: 10/16/13 1	2:45
Sample ID: MBLK1S		Date Ana	lyzed: 10/17/13 1	0:44
Lab Samp ID: HEJ005SB		Dilution F	actor: 1	
Lab File ID: WJ17003A		Matrix	: SOIL	
Ext Btch ID: HEJ005S		% Moisture	e :NA	
Calib. Ref.: WJ17002A		Instrument	ID : GCT016	
	RESULTS	RL	MDL	
PARAMETERS	(ug/kg)	(ug/kg)	(ug/kg)	
2,4-D	(ND) ND	10	5.0 5.0	
2,4-DB	(ND) ND	10	5.0 5.0	
2,4,5-т	(ND) ND	10	5.0 5.0	
2,4,5-TP(SILVEX)	(ND) ND	10	5.0 5.0	
DALAPON	(ND) ND	10	5.0 5.0	
DICAMBA	(ND) ND	10	5.0 5.0	
DICHLOROPROP	(ND) ND	10	5.0 5.0	
DINOSEB	(ND) ND	10	5.0 5.0	
МСРА	(ND) ND	2000	1000 1000	
MCPP	(ND) ND	2000	1000 1000	
SURROGATE PARAMETERS	RESULTS	SPK_AMT		QC LIMI
2,4-DCPAA	438.1 (461.6)	500.0	87.6 (92.3)	60-14

Left of \mid is related to first column; Right of \mid related to second column Final result indicated by ()

CLIENT: PROJECT: BATCH NO.: METHOD:	URS DHCCP 13J124 METHOD 8151A										L C C
MATRIX: DILUTION FACTOR: SAMPLE ID:	SOIL 1 MBLK1S	1	1	% MOISTURE:	NA						
LAB SAMPLE ID: LAB SILE ID: DATE EXTRACTED: DATE ANALYZED: PREP. BATCH: CALIB. REF:	HEJ005SB WJ17003A 10/16/1312:45 10/17/1310:44 HEJ005S WJ17002A	HEJ005SL WJ17004A 10/16/1312:45 10/17/1311:14 HEJ005S WJ17002A		DATE COLLECTED: DATE RECEIVED:	NA 10/16/13						
ACCESSION:											
PARAMETER		BLNK RSLT (ug/kg)	SPIKE AMT (ug/kg)	BS RSLT (ug/kg)	BS % REC	SPIKE AMT (ug/kg)	BSD RSLT (ug/kg)	BSD % REC	RPD (%)	QC LIMIT (%)	MAX RPD (%)
2,4-D 2,4-DB		(ND) ND (ND) ND	50.0 50.0	47.5 (48.3) 48.6 (49.9)	95 (97) 97 (100)	50.0 50.0	49.3 (49.9) (50.4) 48.7	99 (100) (101) 97	4 (3) (4) 2	60-150 60-140	50 50
2,4,5-T 2,4,5-TP(Silvex) Dalapon		(ND) ND (ND) ND (ND) ND	50.0 50.0 50.0	45.5 (53.3) 47.3 (51.1) 39.1 (42.5)	91 (107) 95 (102) 78 (85)	50.0 50.0 50.0	47.0 (55.9) 49.0 (52.6) 44.8 (49.2)	94 (112) 98 (105) 90 (98)	3 (5) 4 (3) 14 (15)	60-140 50-150 10-160	50 50 50
Dicamba Dichloroprop Dinoseb		(ND) ND (ND) ND (ND) ND	50.0 50.0 50.0	43.8 (49.7) 47.7 (49.6) (45.3) 43.2	88 (99) 95 (99)	50.0 50.0	44.6 (49.6) 49.4 (52.3)	89 (99) 99 (105)	2 (0) 4 (5)	30-130 30-130	50 50
МСРА МСРР		(ND) ND (ND) ND	2500 2500	(43.3) (43.2 1490J (2340) (2240) 1800J	(91) 86 60 (94) (90) 72	50.0 2500 2500	(49.5) 46.8 1580J (2390) (2020) 1950J	(99) 94 63 (96) (81) 78	(9) 8 6 (2) (10) 8	30-130 30-130 30-130	50 50 50
	=======================================									n as in 12 12 12 12 02	
SURROGATE PARAME			BS RSLT (ug/kg)	BS SPIKE % REC (ug/k		RSLT g/kg)	% REC (%				
2,4-DCPAA		500.0 45	4.2 (492.7)	90.8 (98.5) 50	0.0 474.8	3 (499.5)	95.0 (99.9) 60-7				

LABORATORY REPORT FOR

URS

DHCCP

METALS/MERCURY

SDG#: 13J124

CASE NARRATIVE

Client : URS

Project : DHCCP

SDG : 13J124

METHOD 6020A METALS BY ICP-MS

One (1) soil sample was received on 10/14/13 for Metals CAM analysis, Method 6020A in accordance with USEPA SW-846, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods.

Holding Time The sample was analyzed within the prescribed holding time.

Calibration Initial Calibration was established as prescribed by the method and was verified using a secondary source. Interference checks were performed and results were within required limits. Continuing calibration verifications and continuing calibration blanks were carried out at the frequency specified by the project. All calibration requirements were within acceptance criteria.

Method Blank Method blank was analyzed at the frequency required by the project. For this SDG, one method blank was analyzed with the samples. Results were compliant to project requirement.

Lab Control Sample A set of LCS/LCD was analyzed with the samples in this SDG. Percent recoveries for IMJ031SL/C were all within QC limits.

Matrix QC Sample Matrix QC sample was analyzed at the frequency prescribed by the project. Percent recoveries were within project QC limits except for results qualified with [*] in J124-01M/S summary form, most likely due to matrix interference and low spike level as compared to concentration of parent sample. Check QC summary form for details. In addition, analytical spike and serial dilution were analyzed for matrix interference evaluation. Results were within method acceptance criteria.

Sample Analysis The sample was analyzed according to prescribed analytical procedures. All project requirements were met; otherwise, anomalies were discussed within the associated QC parameter.

492

493

Client : URS	Date Collected: 10/07/13 Date Received: 10/14/13
Project : DHCCP	Date Received: 10/14/13 Date Extracted: 10/17/13 16:30
SDG NO. : 13J124 Sample ID: 2B-2	Date Analyzed: 10/11/13 16:30 Date Analyzed: 10/21/13 16:27 # 10/21/13 17:01
	Dilution Factor: 0.980 # 4.9
Lab File ID: F6J10048 #F6J10056	Matrix : SOIL % Moisture : 9.4
Ext Btch ID: IMJ031S	
Calib. Ref.: F6J10040 #F6J10052	Instrument ID : T-IF6
	RESULTS RL MDL
PARAMETERS	(mg/kg) (mg/kg) (mg/kg)
Antimony	0.229J 0.541 0.216
Arsenic	4.51 0.541 0.108
Barium	172 0.541 0.108
# Beryllium	ND 2.70 0.541
Cadmium	0.342J 0.541 0.108
Chromium	50.1 0.541 0.108
Cobalt	14.3 0.541 0.108
# Copper	34.7 2.70 1.08
Lead	6.90 0.541 0.108
Molybdenum	0.315J 0.541 0.216
# Nickel	68.0 2.70 0.541
Selenium	0.183J 0.541 0.108
Silver	ND 0.541 0.108
Thallium	0.159J 0.541 0.108
Vanadium	53.5 0.541 0.270
Zinc	64.0 2.16 1.08

Members of the Associated File

Client : URS Project : DHCCP SDG NO. : 13J124 Sample ID: MBLK1S Lab Samp ID: IMJ031SB Lab File ID: F6J10042 Ext Btch ID: IMJ031S Calib. Ref.: F6J10040	Date Collected: NA Date Received: 10/17/13 Date Extracted: 10/17/13 1 Date Analyzed: 10/21/13 1 Dilution Factor: 1 Matrix : SOIL % Moisture : NA Instrument ID : T-IF6	
PARAMETERS		MDL /kg)
Antimony		. 200
Arsenic		.100
Barium		.100
Beryllium		.100
Cadmium		. 100
Chromium	ND 0.500 0	. 100
Cobalt	ND 0.500 0	. 100
Copper	ND 0.500 0	. 200
Lead	ND 0.500 0	.100
Molybdenum	ND 0.500 0	. 200
Nickel	ND 0.500 0	.100
Selenium	ND 0.500 0	.100
Silver		.100
Thallium		.100
Vanadium		. 250
Zinc	ND 2.00	1.00

CLIENT: PROJECT: SDG NO.: METHOD:	URS DHCCP 13J124 METHOD 6020A										
MATRIX: DILTN FACTR: SAMPLE ID:	SOIL 1 MBLK1S	1	1		∦ MOIST	URE: NA					
CONTROL NO.: LAB FILE ID: DATIME EXTRCTD: DATIME ANALYZD: PREP. BATCH: CALIB. REF:	IMJ031SB F6J10042 10/17/1316:30 10/21/1316:03 IMJ031S F6J10040	IMJ031SL F6J10043 10/17/13 10/21/13 IMJ031S F6J10040	F6J10 16:30 10/1 16:07 10/2 IMJ00	0044 7/1316:30 1/1316:11 31S		DLLECTED: NA CEIVED: 10	/17/13				
ACCESSION:											
PARAMETER	BL	.NK RSLT mg∕kg	SPIKE AMT mg/kg	BS RSLT mg/kg	BS ∦ REC	SPIKE AMT mg/kg	BSD RSLT mg/kg	BSD ∦ REC	RPD %	QC LIMIT %	MAX RPD %
Antimony		ND	25.0	23.6	94	25.0	24.0	96	2	80-120	20
Arsenic		ND	25.0	23.6	94	25.0	23.5	94	1		20
Barium		ND	25.0	24.8	99	25.0	24.9	100	0	80-120	20
Beryllium		ND	25.0	23.3	93	25.0	22.9	92	2	80-120	20
Cadmium		ND	25.0	24.1	96	25.0	24.4	98	1	80-120	20
Chromium		ND	25.0	23.6	94	25.0	23.5	94	1		20
Cobalt		ND	25.0	24.7	99	25.0	24.2	97	2		20
Copper		ND	25.0	23.5	94	25.0	23.0	92	2		20
Lead		ND	25.0	23.8	95	25.0	24.3	97	2		20
Molybdenum		ND	25.0	24.8	99	25.0	25.1	100	1	80-120	20
Nickel		ND	25.0	23.4	94	25.0	23.1	92	1	80-120	20
Selenium		ND	25.0	23.3	93	25.0	23.2	93	0	80-120	20 20
Silver		ND	25.0	24.8	99	25.0	24.8	99 97	0 0	80-120 80-120	20 20
Thallium		ND	25.0	24.2	97 07	25.0	24.2 23.9	97 96	0	80-120	20 20
Vanadium		ND ND	25.0 50.0	24.3 46.7	97 93	25.0 50.0	23.9 46.6	96 93	0	80-120	20
Zinc		ND	5U.U	40./	22	50.0	40.0	20	U	00-120	20

CLIENT:	URS DHCCP										
PROJECT: SDG NO.:	13J124										
METHOD:	METHOD 6020A										_
===============											-
MATRIX:	SOIL				% MOIST	URE: 9.	4				
DILTN FACTR: SAMPLE ID:	0.980 2B-2	0.976	0.99	0							
CONTROL NO.:	J124-01	J124-01M									
LAB FILE ID: DATIME EXTRCTD:	F6J10048 10/17/1316:30	F6J10045 0 10/17/13		0046 7/1316:30		DLLECTED: 10	107/17				
DATIME ANALYZD:				1/1316:19			/14/13				
PREP. BATCH:	IMJ031S	IMJ031S	IMJO								
CALIB. REF:	F6J10040	F6J10040) F6J1	0040							
ACCESSION:											
PARAMETER	s	SMPL RSLT mg/kg	SPIKE AMT mg/kg	MS RSLT mg/kg	MS % REC	SPIKE AMT mg/kg	MSD RSLT mg/kg	MSD % REC	RPD %	QC LIMIT %	MAX RPD %
Antimony		0.229.	26.9	14.7	54*	27.3	15.5	56*	5	75-125	5 20
Arsenic		4.51	26.9		82	27.3	27.7	85	5		
Barium # Beryllium		172 ND	26.9 26.9		130* 80	27.3 27.3	215 22.1	157* 81	4		
Cadmium		0.3425				27.3	26.7	96	4		
Chromium Cobalt		50.1 14.3	26.9 26.9		101 83	27.3 27.3	79.2 38.1	107 87	2 4		
# Copper		34.7	26.9		53*		51.1	60*	4		
Lead Molybdenum		6.90 0.315J	26.9 I 26.9	31.3 24.1	91 88	27.3 27.3	33.2 25.5	96 92	6		
# Nickel		68.0	26.9		56*		86.1	66*	3		
Selenium Silver		0.183. ND	26.9 26.9		86 95	27.3 27.3	24.4 27.0	89 99	4 5		
Thallium		0.159.	26.9	24.8	91	27.3	26.2	95	5	75-125	20
Vanadium Zinc		53.5 64.0	26.9 53.9		106 95	27.3 54.6	85.8 119	118 101	4		
2400 284 2		04.0			,,,	54.0		101	5		20
1993年1月1日) 1993年1月1日(日))											
BATIAE NOS											
·영화학원 · 유명· 고려나 아내 · 고려											
navirský do lietov – Alexandre Statistický (* 1990) – Alexandre Statistický (* 1990)											
7											
··· ·											
en o Kracio											
d or i ta											24
n sanyi tika Ngabatan											200 201 201
$C \to c \in c_0, V \in c_0$											
											: 11
· La											20 20
1 - C - 10 - 11											23
li⊈istani Antonio di											10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -
的弟子,说 上有一句											2.5 2.5
4 e											2
229 - 24 AG - C. 1											
·希望在2											
2013 建造业的 1985 年 - 1913											
n ar an											

. .

n se Artica 2 Carter

EMAX QUALITY CONTROL DATA ANALYTICAL SPIKE ANALYSIS

i Antonio Service Service Service Antonio	CLIENT: PROJECT: SDG NO.: METHOD:	URS DHCCP 13J124 METHOD 6020A				। या भा राज कर कर कर	
	MATRIX: DILTN FACTR:	SOIL 0.980	0.980	%	MOISTURE:	9.4	
· 机晶体的 · 机晶体的 · 和晶体的 · 和晶体的 · 和晶体的 · 和晶体的	SAMPLE ID: CONTROL NO.: LAB FILE ID: DATIME EXTRCTD: DATIME ANALYZD: PREP. BATCH: CALIB. REF: ACCESSION:	2B-2 J124-01 F6J10048 10/17/1316:30 10/21/1316:27 IMJ031S F6J10040	J124-01A F6J10047 10/17/13 10/21/13 IMJ031S F6J10040		ATE COLLECTED: ATE RECEIVED:	10/0 10/1	•
Č.		SMI	PL RSLT	SPIKE AMT	AS RSLT	AS	QC LIMIT
	PARAMETER		ng/kg)	(mg/kg)	(mg/kg)	% REC	(%)
# 	Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Lead Molybdenum Nickel Selenium Silver Thallium Vanadium Zinc		0.229J 4.51 172 ND 0.342J 50.1 14.3 34.7 6.90 0.315J 68.0 0.183J ND 0.159J 53.5 64.0	27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0	25.7 29.1 198 122 26.1 71.8 36.7 156 32.0 27.3 189 25.1 26.6 25.8 76.7 113	94 91 96 90 95 80 83 93 100 93 100 90 92 98 95 86 91	80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120
2 1918年1 1918年 1918年 1918年 1918年 1918年 1918年 1918年 1919 1919 1911 1010 1000 1000 1000 100000000		zed at DF 4.9 or	10/21/13	3 16:57 Fi	le ID F6J1005	5	

eard METHOD: Dearemented	URS DHCCP 13J124 METHOD 6020A					
denten av den den denten av z general MATRIX :	SOIL			% MOISTU		9.4
PREP. BATCH:	2B-2 J124-01 F6J10048			DATE COL DATE REC		10/07/13 10/14/13
ACCESSION:	SM	IPL RSLT	SERIAL DIL RSLT	DIF RSLT		r
PARAMETER		mg/kg)	(mg/kg)	%	(%)	
Antimony		0.229J	ND	NA	1(
Arsenic		4.51	4.87	8	10	
Barium # Beryllium		172 ND	171 ND	1 NA	1(1(
Cadmium		0.342J	ND	NA	10	
Chromium		50.1	55.5	11*		
Cobalt # Coppor		14.3 34.7	16.2 40.9	13* 18*		
# Copper Lead		54.7 6.90	7.51	9	10	
Mólybdenum		0.315J	ND	NA	10)
# Nickel		68.0	73.5	8	10	
Selenium Silver		0.183J ND	ND ND	NA O	10 10	
Thallium		0.159J	ND	NĂ	1(
Vanadium		53.5	59.1	10	10	
Zinc		64.0	70.1	9	10)
Concert 1 4 Ann 1 # J124-01J : Analy: 20 20 20 20 20 20 20 20 20 20 20 20 20	zed at DF 24.5	on 10/21/13	17:05 File ID	F6J10057		
 C. Assa # J124-01J : Analy: Analy: <		on 10/21/13	17:05 File ID	F6J10057		
 (本) (x) (x)		on 10/21/13	17:05 File ID	F6J10057		

CASE NARRATIVE

Client : URS

Project : DHCCP

SDG : 13J124

METHOD DI WET/6020A DI WET METALS BY ICP-MS

One(1) soil sample was received on 10/14/13 for Metals DI-WET analysis, Method DI WET/6020A in accordance with USEPA SW-846, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods.

Holding Time The sample was analyzed within the prescribed holding time.

Calibration Initial Calibration was established as prescribed by the method and was verified using a secondary source. Interference checks were performed and results were within required limits. Continuing calibration verifications and continuing calibration blanks were carried out at the frequency specified by the project. All calibration requirements were within acceptance criteria.

Method Blank Method blanks were analyzed at the frequency required by the project. For this SDG, two (2) method blanks were analyzed with the samples. All results were compliant to project requirement. Refer to QC result summary forms for details.

Lab Control Sample A set of LCS/LCD was analyzed with the samples in this SDG. Percent recoveries for IMJ035WL/C were all within QC limits.

Matrix QC Sample Matrix QC sample was analyzed at the frequency prescribed by the project. Percent recoveries were within project QC limits except for results qualified with [*] in J124-01M/J124-01S summary form, most likely due to matrix interference. Check QC summary form for details. In addition Analytical spike and serial dilution were analyzed for matrix interference evaluation. Results were within method acceptance criteria.

Sample Analysis The sample was analyzed according to prescribed analytical procedures. All project requirements were met otherwise anomalies were discussed within the associated QC parameter. LAB CHRONICLE DI WET METALS BY ICP-MS

Client : URS Project : DHCCP					e <u></u>			SDG NO. Instrum	: 13J124 ent ID : T-IF6
				LEAG	CHATE				
Client	Laboratory	Dilution	X	Analysis	Extraction	Sample	Calibratic	on Prep.	
Sample ID	Sample ID	Factor	Moist	DateTime	DateTime	Data FN	Data FN	Batch	Notes
MBLK1W	IMJ035WB	1	NA	10/21/1314:15	10/21/1310:00	F6J10018	F6J10016	IMJ035W	Method Blank
LCS1W	IMJ035WL	1	NA	10/21/1314:19	10/21/1310:00	F6J10019	F6J10016	IMJ035W	Lab Control Sample (LCS
LCD1W	IMJ035WC	1	NA	10/21/1314:24	10/21/1310:00	F6J10020	F6J10016	IMJ035W	LCS Duplicate
MBLK2W	WTJ006SB	1	NA	10/21/1315:15	10/21/1310:00	F6J10031	F6J10028	IMJ035W	Method Blank
2B-2MS	J124-01M	1	NA	10/21/1315:19	10/21/1310:00	F6J10032	F6J10028	IMJ035W	Matrix Spike Sample (MS
2B - 2MSD	J124-01S	1	NA	10/21/1315:24	10/21/1310:00	F6J10033	F6J10028	IMJ035W	MS Duplicate (MSD)
2B-2AS	J124-01A	1	NA	10/21/1315:28	10/21/1310:00	F6J10034	F6J10028	IMJ035W	Analytical Spike Sample
2B-2	J124-01	1	NA	10/21/1315:32	10/21/1310:00	F6J10035	F6J10028	IMJ035₩	Field Sample
2B-2DL	J124-01J	5	NA	10/21/1315:36	10/21/1310:00	F6J10036	F6J10028	IMJ035W	Diluted Sample

FN - Filename

% Moist - Percent Moisture

Client : URS Project : DHCCP SDG NO. : 13J124 Sample ID: 28-2 Lab Samp ID: J124-01 Lab File ID: F6J10035 Ext Btch ID: IMJ035W Calib. Ref.: F6J10028	Date Date Diluti Matrix % Mois	Analyzed: on Factor: : ture :	10/14/13 10/21/13 10:00 10/21/13 15:32
	RESULTS	RL	MDL
PARAMETERS	(ug/L)	(ug/L)	(ug/L)
Antimony	1.75	1.00	0,500
Arsenic	14.7	1.00	0,200
Barium	62.3	1.00	0.500
Beryllium	0.228J	1.00	0.100
Cadmium	ND	1.00	0.200
Chromium	16.9	1.00	0.200
Cobalt	3.19	1.00	0.200
Copper	15.7	1.00	0.500
Lead	4.05	1.00	0.100
Molybdenum	7.08	2.00	0.500
Nickel	14.7	1.00	0.200
Selenium	9.10	1.00	0.300
Silver	ND	1.00	0.200
Thallium	ND	1.00	0.200
Vanadium	46.7	1.00	0.500
Zinc	41.2	20.0	10.0

DI EXTRACTION DATE: 10/16/13 12:00

Client : URS Project : DHCCP SDG NO. : 13J124 Sample ID: MBLK1W Lab Samp ID: IMJ035WB Lab File ID: F6J10018 Ext Btch ID: IMJ035W Calib. Ref.: F6J10016	Date Date Date Diluti Matrix % Mois	Analyzed: on Factor: c : sture :	
	RESULTS	RL	MDL
PARAMETERS	(ug/L)	(ug/L)	(ug/L)
Antimony	ND	1.00	0,500
Arsenic	ND	1.00	0.200
Barium	ND	1.00	0.500
Beryllium	ND	1.00	0.100
Cadmium	ND -	1.00	0.200
Chromium	ND	1.00	0.200
Cobalt	ND	1.00	0.200
Copper	ND	1.00	0.500
Lead	ND	1.00	0.100
Molybdenum	ND	2.00	0.500
Nickel	ND	1.00	0.200
Selenium	ND	1.00	0.300
Silver	ND	1.00	0.200
Thallium	ND	1.00	0.200
Vanadium Zinc	ND ND	1.00 20.0	0.500 10.0

Client : URS Project : DHCCP SDG NO. : 13J124 Sample ID: MBLK2W	Date Collected: NA Date Received: 10/21/13 Date Extracted: 10/21/13 10:0 Date Analyzed: 10/21/13 15:1
Lab Samp ID: WTJ006SB	Dilution Factor: 1
Lab File ID: F6J10031	Matrix : LEACHATE
Ext Btch ID: IMJ035W	% Moisture : NA Instrument ID : T-IF6
Calib. Ref.: F6J10028	Instrument ID : T-IF6
	RESULTS RL MD
PARAMETERS	(ug/L) (ug/L) (ug/L)
Antimony	ND 1.00 0.50
Arsenic	ND 1.00 0.20
Barium	ND 1.00 0.50
Beryllium	ND 1.00 0.10
Cadmium	ND 1.00 0.20
Chromium	ND 1.00 0.20
Cobalt	ND 1.00 0.20
Copper	ND 1.00 0.50
Lead	ND 1.00 0.10
Molybdenum	ND 2.00 0.50
Nickel	ND 1.00 0.20
Selenium	ND 1.00 0.30
Silver	ND 1.00 0.20
Thallium	ND 1.00 0.20
Vanadium	ND 1.00 0.50
Zinc	ND 20.0 10.

DI EXTRACTION DATE: 10/16/13 12:00

URS

CLIENT:

PROJECT: SDG NO.: METHOD:	DHCCP 13J124 METHOD DI WET/6020A										
MATRIX: DILTN FACTR: SAMPLE ID:	WATER 1 MBLK1W	1	1		% MOIST	fure: Na					
CONTROL NO.: LAB FILE ID: DATIME EXTRCTD: DATIME ANALYZD: PREP. BATCH: CALIB. REF:	IMJ035WB F6J10018 10/21/1310:00 10/21/1314:15 IMJ035W F6J10016	IMJ035WL F6J10019 10/21/13 10/21/13 IMJ035W F6J10016	9 F6J10020 310:00 10/21/1310:00 314:19 10/21/1314:24 IMJ035W		DATE COLLECTED: NA DATE RECEIVED: 10/21/13						
ACCESSION:											
PARAMETER	BL	.NK RSLT ug/L	SPIKE AMT ug/L	BS RSLT ug/L	BS % REC	SPIKE AMT ug/L	BSD RSLT ug/L	BSD ∦ REC	RPD %	QC LIMIT %	MAX RPD %
Antimony		ND	25.0	24.5	98	25.0	24.3	97	1	80-120	20
Arsenic		ND	25.0	24.3	97	25.0	24.4	98	0	80-120	20
Barium		ND	25.0	25.2	101	25.0	25.3	101	0	80-120	20
Beryllium		ND	25.0	23.1	92	25.0	23.1	92	0	80-120	20
Cadmium		ND	25.0	24.7	99	25.0	24.8	99	0	80-120	20
Chromium		ND	25.0	24.4	98	25.0	24.3	97	0	80-120	20
Cobalt		ND	25.0	24.8	99	25.0	25.2	101	1	80-120	20
Copper		ND	25.0	25.1	100	25.0	25.0	100	0	80-120	20
Lead		ND	25.0	25.5	102	25.0	25.4	102	0	80-120	20
Molybdenum		ND	25.0	25.0	100	25.0	24.9	100	0	80-120	20
Nickel		ND	25.0	24.4	98	25.0	25.0	100	2	80-120	20
Selenium		ND	25.0	24.6	98	25.0	24.7	99	0	80-120	20
Silver		ND	25.0	25.5	102	25.0	25.3	101	1	80-120	20
Thallium		ND	25.0	26.0	104	25.0	25.6	102	2	80-120	20
Vanadium Ti		ND	25.0	24.8	99	25.0	24.7	99	0	80-120	20
Zinc		ND	50.0	52.8	106	50.0	52.6	105	0	80-120	20

URS

CLIENT:

PROJECT: SDG NO.: METHOD:	DHCCP 13J124 METHOD DI WET/	/6020A				- waa aan ah daa ka daa bad badaad badaad badaad badaa da da			****	<u></u>	
MATRIX: DILTN FACTR: SAMPLE ID:	LEACHATE 1 28-2	1	1		% MOIST	FURE: NA					
CONTROL NO.: LAB FILE ID: DATIME EXTRCTD: DATIME ANALYZD: PREP. BATCH: CALIB. REF:	J124-01 F6J10035 10/21/1310:00 10/21/1315:32 IMJ035W F6J10028	J124-01M F6J10032 10/21/13 10/21/13 IMJ035W F6J10028	F6J10 10:00 10/21 15:19 10/21 IMJ03	033 /1310:00 /1315:24 5W			/07/13 /14/13				
ACCESSION:											
	SM	1PL RSLT	SPIKE AMT	MS RSLT	MS	SPIKE AMT	MSD RSLT	MSD	RPD	QC LIMIT	MAX RPD
PARAMETER		ug/L	ug/L	ug/L	% REC	ug/L	ug/L	% REC	*	ل ة 	4
Antimony		1.75	25.0	13.2	46*	25.0	14.9	53*	12	75-125	20
Arsenic		14.7	25.0	38.5	95	25.0	37.7	92	2		20
Barium		62.3	25.0	86.7	98	25.0	89.7	110	3	75-125	20
Beryllium		0.228J	25.0	22.2	88	25.0	20.9	83	6	75-125	20
Cadmium		ND	25.0	23.8	95	25.0	23.2	93	3	75-125	20
Chromium		16.9	25.0	39.5	90	25.0	42.8	104	8		20
Cobalt		3.19	25.0	24.4	85	25.0	24.2	84	1		20
Copper		15.7	25.0	37.2	86	25.0	37.7	88	1		20
Lead		4.05	25.0	27.2	93	25.0	26.7	91 76	2		20
Molybdenum		7.08	25.0	25.3	73*		26.1	76	3		20 20
Nickel Salarium		14.7 9.10	25.0 25.0	36.6 32.9	88 95	25.0 25.0	38.6 32.3	96 93	5 2	75 - 125 75 - 125	20 20
Selenium Silver		9.10 ND	25.0 25.0	32.9 22.4	90 90	25.0 25.0	32.3 23.0	93 92	2	75-125	20
Thallium		ND	25.0 25.0	22.4	90 93	25.0	23.0	92 92	5 1	75-125	20
Vanadium		46.7	25.0	70.5	95 95	25.0	74.5	111	6	75-125	20
Zinc		41.2	50.0	86.5	91	50.0	85.5	89	1	75-125	20
=									-		

CLIENT: PROJECT: SDG NO.: METHOD:	URS DHCCP 13J124 METHOD DI WET/	6020A				
MATRIX: DILTN FACTR: SAMPLE ID: CONTROL NO.:	LEACHATE 1 2B-2 J124-01	1 J124-01A		% MOISTURE	Ē: N/	4
LAB FILE ID: DATIME EXTRCTD: DATIME ANALYZD: PREP. BATCH: CALIB. REF:	F6J10035 10/21/1310:00 10/21/1315:32 IMJ035W F6J10028	F6J10034 10/21/13 10/21/13 IMJ035W F6J10028	10:00 15:28	DATE COLLECTE DATE RECEIVED		
ACCESSION:						
PARAMETER	-	PL_RSLT (ug/L)	SPIKE AMT (ug/L)	AS RSLT (ug/L)	AS % REC	QC LIMIT (光)
Antimony		 1.75		0 25.9	 9 97	80-120
Arsenic		14.7	25.	0 37.9	9 93	80-120
Barium		62.3	25.			80-120
Beryllium		0.228J				80-120
Cadmium		ND	25.			80-120
Chromium		16.9	25.			80-120
Cobalt		3.19	25.			80-120
Copper		15.7	25.			80-120
Lead		4.05	25.			80-120
Molybdenum		7.08	25. 25.			80-120 80-120
Nickel Selecture		14.7 9.10	25. 25.			80-120 80-120
Selenium Silver		9.10 ND	25. 25.			80-120
Thallium		ND	25. 25.			80-120
Vanadium		46.7	25.			80-120
Zinc		41.2	50.			80-120

CLIENT: PROJECT: BATCH NO.: METHOD:	URS DHCCP 13J124 METHOD DI WET/	6020A			
MATRIX: DILUTION FACTOR: SAMPLE ID: EMAX SAMP ID: LAB FILE ID: DATE EXTRACTED: DATE ANALYZED: PREP. BATCH: CALIB. REF:	2B-2 J124-01 F6J10035			∦ MOISTU DATE COL DATE REC	LECTED: 10/07/13
ACCESSION:					
PARAMETER		PL RSLT (ug/L)	SERIAL DIL RSLT (ug/L)	DIF RSLT	QC LIMIT (%)
Antimony Arsenic Barium		1.75 14.7 62.3	ND 15.9 63.6	NA 8 2	10 10 10
Beryllium Cadmium Chromium Cobalt		0.228J ND 16.9 3.19	ND ND 18.0 3.56J	NA 0 6 NA	10 10 10 10
Copper Lead Molybdenum		15.7 4.05 7.08	17.9 4.34J 7.06J	14* NA NA	
Nickel Selenium Silver		14.7 9.10 ND	16.4 9.76 ND	11* 7 0	10 10
Thallium Vanadium Zinc		ND 46.7 41.2	ND 49.6 53.3J	0 6 NA	10 10 10

CASE NARRATIVE

Client : URS

Project : DHCCP

SDG : 13J124

METHOD 7471A MERCURY BY COLD VAPOR

One(1) soil sample was received on 10/14/13 for Mercury analysis, Method 7471A in accordance with USEPA SW-846, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods.

Holding Time The sample was analyzed within the prescribed holding time.

Calibration Multi-calibration points were generated to establish initial calibration (ICAL). ICAL was verified using a secondary source. Continuing calibration verifications were carried out at the frequency specified by the project. All calibration requirements were within acceptance criteria.

Method Blank Method blank was analyzed at the frequency required by the project. For this SDG, one method blank was analyzed with the samples. Result was compliant to project requirement.

Lab Control Sample A set of LCS/LCD was analyzed with the samples in this SDG. Percent recoveries for HGJ024SL/C were all within QC limits.

Matrix QC Sample Analytical spike and serial dilution from another SDG were analyzed for matrix evaluation. Results were within method acceptance criteria.

Sample Analysis The sample was analyzed according to prescribed analytical procedures. All project requirements were met otherwise anomalies were discussed within the associated QC parameter.

LAB CHRONICLE MERCURY BY COLD VAPOR

Client : URS Project : DHCC		SDG NO. Instrument ID	: 13J124 : 47
	SOIL	<u>e notre divide entra est</u>	

Client	Laboratory	Dilution	z	Analysis	Extraction	Sample	Calibratio	n Prep.	
Sample ID	Sample ID	Factor	Moist	DateTime	DateTime	Data FN	Data FN	Batch	Notes
MBLK1S	HGJ024SB	1	NA	10/18/1313:29	10/18/1311:30	M47J017011	M47J017	HGJ024S	Method Blank
LCS1S	HGJ024SL	1	NA	10/18/1313:31	10/18/1311:30	M47J017012	M47J017	HGJ024S	Lab Control Sample (LCS)
LCD1S	HGJ024SC	1	NA	10/18/1313:33	10/18/1311:30	M47J017013	M47J017	HGJ024S	LCS Duplicate
2B-2	J124-01	1	9.4	10/18/1313:46	10/18/1311:30	M47J017019	M47J017	HGJ024S	Field Sample

FN - Filename

% Moist - Percent Moisture

509

METHOD 7471A MERCURY BY COLD VAPOR

Client : URS Project : DHCCP Batch No. : 13J124	-					<u>y</u>			2		Matrix Instru	: SOIL mentID : 47	
CLIENT SAMPLE ID			DIL'N FACTOR		LOQ (mg/kg)	LOD (mg/kg)		PREPARATION DATETIME	DATA FILE ID	CAL REF	PREP BATCH	COLLECTION DATETIME	RECEIVED DATETIME
MBLK1S	HGJ024SB	ND	1	NA	0.1	0.02	10/18/1313:29	10/18/1311:30	M47J017011	M47J017	HGJ024S	NA	NA
LCS1S	HGJ024SL	0.430	1	NA	0.1	0.02	10/18/1313:31	10/18/1311:30	M47J017012	M47J017	HGJ024S	NA	NA
LCD1S	HGJ024SC	0.428	1	NA	0.1	0.02	10/18/1313:33	10/18/1311:30	M47J017013	M47J017	HGJ024S	NA	NA
2B-2	J124-01	0.0368J	1	9.4	0.11	0.0221	10/18/1313:46	10/18/1311:30	M47J017019	M47J017	HGJ024S	10/07/1312:00	10/14/13

510

PROJECT BATCH NO.	: DHCCP : 13J124	
METHOD	: 7471A	
62229900009 00		
MATRIX	: SOIL	<pre>% MOISTURE: N/A</pre>

DILUTION FACTOR	:	1	1	1
SAMPLE ID	:	MBLK1S	LCS1S	LCD1S
LAB SAMPLE ID	:	HGJ024SB	HGJ024SL	HGJ024SC
LAB FILE ID	:	M47J017011	M47J017012	M47J017013
DATE PREPARED	:	10/18/1311:30	10/18/1311:30	10/18/1311:30
DATE ANALYZED	:	10/18/1313:29	10/18/1313:31	10/18/1313:33
PREP BATCH	:	HGJ024S	HGJ024S	HGJ024S
CALIBRATION REF	:	M47J017	M47J017	M47J017

	MB RESULT	SPIKE AMT	BS RESULT	BS REC	SPIKE AMT	BSD RESULT	BSD REC	RPD	QC LIMIT	MAX RPD
PARAMETER	(mg/kg)	(mg/kg)	(mg/kg)	(%)	(mg/kg)	(mg/kg)	(%)	(%)	(%)	(%)
			· · · · · · · · · · ·							
Mercury	ND	0.417	0.430	103	0.417	0.428	103	0	80-120	20

Client : URS

Project : DHCCP

SDG : 13J124

METHOD DI WET/7470A DI WET MERCURY BY COLD VAPOR

One(1) soil sample was received on 10/14/13 for Mercury by DI WET analysis, Method DI WET/7470A in accordance with USEPA SW-846, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods.

Holding Time The sample was analyzed within the prescribed holding time.

Calibration

Multi-calibration points were generated to establish initial calibration (ICAL). ICAL was verified using a secondary source. Continuing calibration verifications were carried out at the frequency specified by the project. All calibration requirements were within acceptance criteria.

Method Blank Method blanks were analyzed at the frequency required by the project. For this SDG, two (2) method blanks were analyzed with the samples. All results were compliant to project requirement. Refer to QC result summary forms for details.

Lab Control Sample A set of LCS/LCD was analyzed with the samples in this SDG. Percent recoveries for HGJ025WL/C were all within QC limits.

Matrix QC Sample Matrix QC sample was analyzed at the frequency prescribed by the project. Percent recoveries for J124-01M/J124-01S are within project QC limits.

Sample Analysis The sample was analyzed according to prescribed analytical procedures. All project requirements were met otherwise anomalies were discussed within the associated QC parameter.

METHOD DI WET/7470A DI WET MERCURY BY COLD VAPOR

Client : URS Project : DHCCP Batch No. : 13J124									=============	========	Matrix Instru	k : LEAC umentID : 47	
CLIENT SAMPLE ID	EMAX SAMPLE ID	RESULTS (ug/L)	DIL'N FACTOR		LOQ (ug/L)	LOD (ug/L)	ANALYSIS DATETIME	PREPARATION DATETIME	DATA FILE ID	CAL REF	PREP BATCH	COLLECTION DATETIME	RECEIVED DATETIME
MBLK1W	HGJ025WB	ND	1	NA	0.5	0.1	10/21/1316:12	10/21/1312:00	M47J018011	M47J018	HGJ025W	NA	NA
LCS1W	HGJ025WL	2.54	1	NA	0.5	0.1	10/21/1316:15	10/21/1312:00	M47J018012	M47J018	HGJ025W	NA	NA
LCD1W	HGJ025WC	2.56	1	NA	0.5	0.1	10/21/1316:17	10/21/1312:00	M47J018013	M47J018	HGJ025W	NA	NA
MBLK2W	WTJ006SB	ND	1	NA	0.5	0.1		10/21/1312:00					NA
2B-2	J124-01	ND	1	NA	0,5	0.1	10/21/1317:09	10/21/1312:00	M47J018037	M47J018	HGJ025W	10/07/1312:00	10/14/13
2B-2MS	J124-01M	2.64	1	NA	0.5	0.1	10/21/1317:14	10/21/1312:00	M47J018039	M47J018	HGJ025W	10/07/1312:00	10/14/13
2B-2MSD	J124-01\$	2.73	1	NA	0.5	0.1	10/21/1317:16	10/21/1312:00	M47J018040	M47J018	HGJ025W	10/07/1312:00	10/14/13

DateTime Leached: 10/16/13 12:00

METHOD	: DI WET/7470A
BATCH NO.	: 13J124
PROJECT	: DHCCP
CLIENT	: URS

MATRIX	;	WATER		<pre>% MOISTURE: N/A</pre>
DILUTION FACTOR	:	1	1	1
SAMPLE ID	:	MBLK1W	LCS1W	LCD1W
LAB SAMPLE ID	:	HGJ025WB	HGJ025WL	HGJ025WC
LAB FILE ID	:	M47J018011	M47J018012	M47J018013
DATE PREPARED	:	10/21/1312:00	10/21/1312:00	10/21/1312:00
DATE ANALYZED	:	10/21/1316:12	10/21/1316:15	10/21/1316:17
PREP BATCH	:	HGJ025W	HGJ025W	HGJ025W
CALIBRATION REF	:	M47J018	M47J018	M47J018

	MB RESULT	SPIKE AMT	BS RESULT	BS REC	SPIKE AMT	BSD RESULT	BSD REC	RPD	QC LIMIT	MAX RPD
PARAMETER	(ug/L)	(ug/L)	(ug/L)	(%)	(ug/L)	(ug/L)	(%)	(%)	(%)	(⁴ / ₂)
Mercury	ND	2.50	2.54	102	2.50	2.56	102	1	80-120	20

CLIENT	: URS
PROJECT	: DHCCP
BATCH NO.	: 13J124
METHOD	: DI WET/7470A

MATRIX :	LEACHATE		岩 MOISTURE: NA
DILUTION FACTOR:	1	1	1
SAMPLE ID :	2B-2	2B-2MS	2B - 2MSD
LAB SAMPLE ID :	J124-01	J124-01M	J124-01S
LAB FILE ID :	M47J018037	M47J018039	M47J018040
DATE PREPARED :	10/21/1312:00	10/21/1312:00	10/21/1312:00
DATE ANALYZED :	10/21/1317:09	10/21/1317:14	10/21/1317:16
PREP BATCH :	HGJ025W	HGJ025W	HGJ025W
CALIBRATION REF:	M47J018	M47J018	M47J018

	PARENT RESULT	SPIKE AMT	MS RESULT	MS REC	SPIKE AMT	MSD RESULT	MSD REC	RPD	QC LIMIT	MAX RPD
PARAMETER	(ug/L)	(ug/L)	(ug/L)	(%)	(ug/L)	(ug/L)	(%)	(%)	(%)	(%)
								• • • • • • • • • •		
Mercury	ND	2.50	2.64	106	2.50	2.73	109	3	75-125	20

LABORATORY REPORT FOR

URS

DHCCP

WET CHEMICAL ANALYSES

SDG#: 13J124

Client : URS

Project : DHCCP

SDG : 13J124

SM 4500NH3F AMMONIA (NH3-N)

One(1) soil sample was received on 10/14/13 for Ammonia-N by SM4500-NH3 F analysis, MethodSM 4500NH3F in accordance with Standard Methods for the Examination of Water and Wastewater, 21st Edition.

Holding Time The sample was analyzed within the prescribed holding time.

Calibration Multi-calibration points were generated to establish initial calibration (ICAL). ICAL was verified using a secondary source. Continuing calibration verifications were carried out at the frequency specified by the project. All calibration requirements were within acceptance criteria.

Method Blank Method blank was analyzed at the frequency required by the project. For this SDG, one method blank was analyzed with the samples. Result was compliant to project requirement.

Lab Control Sample A set of LCS/LCD was analyzed with the samples in this SDG. Percent recoveries for NHJ008SL/C were all within QC limits.

Matrix QC Sample Matrix QC sample was analyzed at the frequency prescribed by the project. Percent recoveries for J124-01M is within project QC limits. Sample duplicate was also analyzed with the samples. RPD was within project limit.

Sample Analysis The sample was analyzed according to prescribed analytical procedures. All project requirements were met otherwise anomalies were discussed within the associated QC parameter.

SM 4500NH3F AMMONIA (NH3-N)

Client : URS Project : DHCCP Batch No. : 13J124											Matrix Instru	soll mentID : 70	518
CLIENT SAMPLE ID	EMAX SAMPLE ID	RESULTS (mg/kg)	DFxPREP FACTOR	MOIS1 (%)	LOQ (mg/kg)	LOD (mg/kg)	ANALYSIS DATETIME	PREPARATION DATETIME	DATA FILE ID	CAL RE F	PREP BATCH	COLLECTION DATETIME	RECEIVED DATETIME
MBLK1S	NHJ008SB	ND	1	NA	1	0.6	10/23/1314:43	10/22/1315:05	13NHJ00811	13NHJ008	NHJ008S	NA	NA
LCS1S	NHJ008SL	4.61	1	NA	1	0.6		10/22/1315:05					NA
LCD1S	NHJ008SC	4.35	1	NA	1	0.6	10/23/1314:44	10/22/1315:05	13NHJ00813	13NHJ008	NHJ008S	NA	NA
2B-2	J124-01	0.797J	0.987	9.4	1.09	0.654	10/23/1314:44	10/22/1315:05	13N HJ00814	13NHJ008	NHJ008S	10/07/1312:00	10/14/13
2B-2DUP	J124-01D	0.831J	0.993	9.4	1.10	0.658		10/22/1315:05					
2B-2MS	J124-01M	5.92	0.971	9.4	1.07	0.643	10/23/1314:44	10/22/1315:05	13 NHJ00816	13NHJ008	NHJ008S	10/07/1312:00	10/14/13

CLIENT	: URS						
PROJECT	: DHCCP						
BATCH NO.	: 13J124						
METHOD	: SM 4500NH3F						
MATDIN				* NOTOTUDE		 	****
MATRIX	: SOIL			% MOISTURE:	NA	 	****
		1	1	% MOISTURE:	NA	 	****
MATRIX DILUTION FAC SAMPLE ID		1 LCS1S	1 LCD1S	% MOISTURE:	NA	 	

LAB FILE ID	:	13NHJ00811	13NHJ00812	13NHJ00813
DATE PREPARED	:	10/22/1315:05	10/22/1315:05	10/22/1315:05
DATE ANALYZED	:	10/23/1314:43	10/23/1314:44	10/23/1314:44
PREP BATCH	:	NHJ008S	NHJ008S	NHJ008S
CALIBRATION REP	-	13NHJ008	13NHJ008	13NHJ008

PARAMETER	MB RESULT	SPIKE AMT	BS RESULT	BS REC	SPIKE AMT	BSD RESULT	BSD REC	RPD	QC LIMIT	MAX RPD
	(mg/kg)	(mg/kg)	(mg/kg)	(%)	(mg/kg)	(mg/kg)	(%)	(%)	(%)	(%)
Ammonia (NH3-N)	ND	5	4.61	92	5	4.35	87	6	80-120	20

 CLIENT
 : URS

 PROJECT
 : DHCCP

 BATCH NO.
 : 13J124

 METHOD
 : SM 4500NH3F

MATRIX

: SOIL

	PARENT RESULT	DUP RESULT	RPD	MAX RPD
PARAMETER	(mg/kg)	(mg/kg)	(%)	(%)
Ammonia (NH3-N)	0.797J	0.831J	NA	20

CLIENT	: URS			
PROJECT	: DHCCP			
BATCH NO.	: 13J124			
METHOD	: SM 4500NH3F			
	******	=======================================		=
MATRIX	: SOIL		% MOISTURE: 9.4	
DILUTION FAC	TOR: 0.987	0.971		
SAMPLE ID	: 2B-2	2B-2MS		
LAB SAMPLE I	D : J124-01	J124-01M		
LAB FILE ID	: 13NHJ00814	13NHJ00816		
DATE PREPARE	D : 10/22/1315:05	10/22/1315:05		
DATE ANALYZE	D: 10/23/1314:44	10/23/1314:44		

PREP BATCH : NHJ008S

CALIBRATION REF: 13NHJ008

PARAMETER	PARENT RESULT (mg/kg)	SPIKE AMT (mg/kg)	MS RESULT (mg/kg)	MS REC (%)	QC LIMIT (%)
Ammonia (NH3-N)	0.797J	5.36	5.92	96	75-125

NHJ008S

13NHJ008

Client : URS

Project : DHCCP

SDG : 13J124

SM 4500NO3E NITRATE/NITRITE

One(1) soil sample was received on 10/14/13 for Nitrate/Nitrite as N analysis, MethodSM 4500NO3E in accordance with Standard Methods for the Examination of Water and Wastewater, 21st Edition.

Holding Time The sample was analyzed within the prescribed holding time.

Calibration Multi-calibration points were generated to establish initial calibration (ICAL). ICAL was verified using a secondary source. Continuing calibration verifications were carried out at the frequency specified by the project. All calibration requirements were within acceptance criteria.

Method Blank Method blank was analyzed at the frequency required by the project. For this SDG, one method blank was analyzed with the samples. Result was compliant to project requirement.

Lab Control Sample A set of LCS/LCD was analyzed with the samples in this SDG. Percent recoveries for NAJ004SL/C were all within QC limits.

Matrix QC Sample No matrix QC sample was designated for this SDG.

Sample Analysis The sample was analyzed according to prescribed analytical procedures. All project requirements were met otherwise anomalies were discussed within the associated QC parameter.

SM 4500NO3E NITRATE/NITRITE

		=======================================		=====		============		==============================	=======================================		===========		
Client : URS											Matrîx	: SOIL	U U
Project : DHCCP											Instru	mentID : 70	N N N
Batch No. : 13J124													
***************************************		===========		=====				=======================================	=============		=======================================	=======================================	
CLIENT	EMAX	RESULTS	DFxPREP	MOIST	1.00	LOD	ANALYSIS	PREPARATION	DATA	CAL	PREP	COLLECTION	RECEIVED
SAMPLE ID	SAMPLE ID	(mg/kg)	FACTOR	(%)	(mg/kg)	(mg/kg)	DATETIME	DATETIME	FILE ID	REF	BATCH	DATETIME	DATETIME
MBLK1S	NAJ004SB	ND	1	NA	0.5	0.2	10/22/1317:42	10/21/1316:48	13NAJ00410	13NAJ004	NAJ004S	NA	NA
LCS1S	NAJ004SL	5.15	1	NA	0.5	0.2	10/22/1317:43	10/21/1316:48	13NAJ00411	13NAJ004	NAJ004S	NA	NA
LCD1S	NAJ004SC	5.02	1	NA	0.5	0.2	10/22/1317:44	10/21/1316:48	13NAJ00412	13NAJ004	NAJO04S	NA	NA
2B-2	J124-01	0.315J	1	9.4	0.552	0.221	10/22/1317:46	10/21/1316:48	13NAJ00413	13NAJ004	NAJ004S	10/07/1312:00	10/14/13

PROJECT BATCH NO.	: URS : DHCCP : 13J124 : SM 4500NO3E		
	======================================		
MATRIX	: SOIL		% MOISTURE: NA
DILUTION FACTOR	: 1	1	1
SAMPLE ID	: MBLK1S	LCS1S	LCD1S
LAB SAMPLE ID	: NAJOO4SB	NAJ004SL	NAJOO4SC
LAB FILE ID	: 13 NAJ00410	13NAJ00411	13NAJ00412
DATE PREPARED	: 10/21/1316:48	10/21/1316:48	10/21/1316:48

 DATE ANALYZED
 10/22/1317:42
 10/22/1317:43
 10/22/1317:44

 PREP BATCH
 NAJ004S
 NAJ004S
 NAJ004S

 CALIBRATION REF:
 13NAJ004
 13NAJ004
 13NAJ004

	MB RESULT	SPIKE AMT	BS RESULT	BS REC	SPIKE AMT	BSD RESULT	BSD REC	RPD	QC LIMIT	MAX RPD
PARAMETER	(mg/kg)	(mg/kg)	(mg/kg)	(%)	(mg/kg)	(mg/kg)	(%)	(%)	(%)	(%)

NITRATE/NITRITE	ND	5	5.15	103	5	5.02	100	3	80-1 20	20

Client : URS

Project : DHCCP

SDG : 13J124

METHOD 7196A HEXAVALENT CHROMIUM

One(1) soil sample was received on 10/14/13 for Chromium Hexavalent analysis, Method 7196A in accordance with USEPA SW-846, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods.

Holding Time The sample was analyzed within the prescribed holding time.

Calibration Multi-calibration points were generated to establish initial calibration (ICAL). ICAL was verified using a secondary source. Continuing calibration verifications were carried out at the frequency specified by the project. All calibration requirements were within acceptance criteria.

Method Blank Method blank was analyzed at the frequency required by the project. For this SDG, one method blank was analyzed with the samples. Result was compliant to project requirement.

Lab Control Sample A Lab Control Sample was analyzed with the samples in this SDG. Percent recovery for CSJ002SL (soluble) was within QC limits. Percent recovery for CIJ002SL (insoluble) was within QC limits.

Matrix QC Sample Matrix QC sample was analyzed at the frequency prescribed by the project. Percent recoveries for J124-01M (soluble and insoluble is within project QC limits. Sample duplicate was also analyzed with the samples. RPD was within project limit. Analytical spike was analyzed for matrix interference evaluation. Result was within method acceptance criteria.

Sample Analysis The sample was analyzed according to prescribed analytical procedures. All project requirements were met otherwise anomalies were discussed within the associated QC parameter.

METHOD 7196A HEXAVALENT CHROMIUM

Client : URS Project : DHCCP Batch No. : 13J124												Matrix InstrumentID	: SOIL : 70
CLIENT SAMPLE ID	EMAX SAMPLE ID	RESULTS (mg/kg)	DFxPREP FACTOR	MOIST (%)	LOQ (mg∕k	LOD g)(mg/kg	ANALYSIS)DATETIME	PREPARATION DATETIME	DATA FILE ID	CAL REF	PREP BATCH	COLLECTION DATETIME	RECEIVED DATETIME
MBLK1S	CRJ002SB	ND	1	NA	· 1	0.5	10/21/1316:04	10/17/1311:07	13CRJ00209	13CRJ002	CRJ002S	NA	NA
LCS1S	CSJ002SL	11.3	1	NA	1	0.5		10/17/1311:07					NA NA
LCS2S 2B-2	CIJ002SL J124-01	560 ND	50 1	NA 9.4	50 1.1	25 0 .5 52		10/17/1311:07 10/17/1311:07				NA 10/07/1312:00	NA 10/14/13
2B-2DUP 2B-2MS	J124-01D J124-01M	ND 12.6	0.998	9.4 9.4	1.1	0.551						10/07/1312:00 10/07/1312:00	10/14/13 10/14/13
2B-2MS 2B-2MS 2B-2AS	J124-01M J124-01M J124-01A	694 12.7	49.9 1	9.4 9.4 9.4	55.1 1.1	27.5 0.552	10/21/1316:05	10/17/1311:07	13CR J00215	13CRJ002	CRJ002S	10/07/1312:00 10/07/1312:00	10/14/13

526

CLIENT	: URS
PROJECT	: DHCCP
BATCH NO.	: 13J124
METHOD	: METHOD 7196A
==============	

MATRIX : SOIL DILUTION FACTOR: 1

SAMPLE ID :	MBLK1S	LCS1S
LAB SAMPLE ID :	CRJ002SB	CSJ002SL
LAB FILE ID :	13CRJ00209	13CRJ00210
DATE PREPARED :	10/17/1311:07	10/17/1311:07
DATE ANALYZED :	10/21/1316:04	10/21/1316:05
PREP BATCH	CRJ002S	CRJ002S
CALIBRATION REF:	13CRJ002	13CRJ002

1

	MB RESULT	SPIKE AMT	BS RESULT	BS REC	QC LIMIT
PARAMETER	(mg/kg)	(mg/kg)	(mg/kg)	(%)	(%)
Hexavalent Chromium	ND	12	11.3	94	85-115

CLIENT PROJECT BATCH NO. METHOD	: URS : DHCCP : 13J124 : METHOD 7196A
MATRIX	· S011

MAIRIX	Ξ.	SUIL	
DILUTION FACTOR	:	1	50
SAMPLE ID	:	MBLK1S	LCS2S
LAB SAMPLE ID	:	CRJ002SB	CIJOO2SL
LAB FILE ID	:	13CRJ00209	13CRJ00211
DATE PREPARED	:	10/17/1311:07	10/17/1311:07
DATE ANALYZED	:	10/21/1316:04	10/21/1316:05
PREP BATCH	:	CRJ002S	CRJ002S
CALIBRATION REF	:	13CRJ002	13CRJ002

	MB RESULT	SPIKE AMT	BS RESULT	BS REC	QC LIMIT
PARAMETER	(mg/kg)	(mg/kg)	(mg/kg)	(%)	(%)
Hexavalent Chromium	ND	618	560	91	75-125

CLIENT	: URS			
PROJECT	: DHCCP			
BATCH NO.	: 13J124			
METHOD	: METHOD 7196A			
MATRIX	: SOIL		% MOISTURE:	9.4
DILUTION FACTO	IR: 1	1		
SAMPLE ID	: 2B-2	2B-2MS		
LAB SAMPLE ID	: J124-01	J124-01M		
LAB FILE ID	: 13CRJ00212	13CRJ00214		
DATE PREPARED	: 10/17/1311:07	10/17/1311:07		
DATE ANALYZED	: 10/21/1316:05	10/21/1316:05		
PREP BATCH	: CRJ002S	CRJ002S		
	F: 13CRJ002	13CRJ002		

PARENT RESULT SPIKE AMT AS RESULT AS REC QC LIMIT (%) PARAMETER (mg/kg) (mg/kg) (%) (mg/kg) --------------_____ -----Hexavalent Chromium ND 13.3 12.6 95 85-115

529

CLIENT PROJECT BATCH NO. METHOD	:	URS DHCCP 13J124 METHOD 7196A			
MATRIX	:	SOIL		% MOISTURE:	9.4
DILUTION FACTO	OR:	1	49.9		
SAMPLE ID	:	2B-2	2B-2MS		
LAB SAMPLE ID	:	J124-01	J124-01M		
LAB FILE ID	:	13CRJ00212	13CRJ00215		
DATE PREPARED	:	10/17/1311:07	10/17/1311:07		
DATE ANALYZED	:	10/21/1316:05	10/21/1316:05		
PREP BATCH	:	CRJ002S	CRJ002S		
CALIBRATION RE	EF:	13CRJ002	13CRJ002		

	PARENT RESULT	SPIKE AMT	AS RESULT	AS REC	QC LIMIT
PARAMETER	(mg/kg)	(mg/kg)	(mg/kg)	(%)	(%)
Hexavalent Chromium	ND	709	694	98	75-125

530

CLIENT PROJECT BATCH NO. METHOD	: URS : DHCCP : 13J124 : METHOD 7196A		
MATRIX PREP×DIL FACT	: SOIL	0.998	% MOISTURE: 9.4
	: 2B-2	2B-2DUP	
SAMPLE ID			
LAB SAMPLE ID	: J124-01	J124-01D	
LAB FILE ID	: 13CRJ00212	13CRJ00213	
DATE PREPARED	: 10/17/1311:07	10/17/1311:07	
DATE ANALYZED	: 10/21/1316:05	10/21/1316:05	
PREP BATCH	: CRJ002S	CRJ002S	
CALIBRATION R		13CRJ002	

	PARENT RESULT	DUP RESULT	RPD	MAX RPD
PARAMETER	(mg/kg)	(mg/kg)	(%)	(%)
Hexavalent Chromium	ND	ND	0	20

DWR-207

PROJECT	: URS : DHCCP : 13J124			
	: METHOD 7196A			
MATRIX	: SOIL		% MOISTURE:	9.4
DILUTION FACTOR	: 1	1		
SAMPLE ID	: 2B-2	28-2		
LAB SAMPLE ID	; J124-01	J124-01A		
LAB FILE ID	: 13CRJ00212	13CRJ00216		
DATE PREPARED	: 10/17/1311:07	10/17/1311:07		
DATE ANALYZED	: 10/21/1316:05	10/21/1316:06		
PREP BATCH	: CRJ002S	CRJ002S		
CALIBRATION REF	: 13CRJ002	13CRJ002		

	PARENT RESULT	SPIKE AMT	AS RESULT	AS REC	QC LIMIT
PARAMETER	(mg/kg)	(mg/kg)	(mg/kg)	(%)	(%)
Hexavalent Chromium	ND	13.3	12.7	95	85-115

Client : URS

Project : DHCCP

SDG : 13J124

WALKLEY-BLACK TOC BY WALKLEY-BLACK METHOD

One(1) soil sample was received on 10/14/13 for Total Organic Carbon analysis, MethodWALKLEY-BLACK in accordance with USEPA SW-846, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods.

Holding Time The sample was analyzed within the prescribed holding time.

Calibration Multi-calibration points were generated to establish initial calibration (ICAL). ICAL was verified using a secondary source. Continuing calibration verifications were carried out at the frequency specified by the project. All calibration requirements were within acceptance criteria.

Method Blank Method blank was analyzed at the frequency required by the project. For this SDG, one method blank was analyzed with the samples. Result was compliant to project requirement.

Lab Control Sample A set of LCS/LCD was analyzed with the samples in this SDG. Percent recoveries for WBJ002SL/C were all within QC limits.

Matrix QC Sample No matrix QC sample was designated for this SDG.

Sample Analysis The sample was analyzed according to prescribed analytical procedures. All project requirements were met otherwise anomalies were discussed within the associated QC parameter.

WALKLEY-BLACK TOC BY WALKLEY-BLACK METHOD

Client : URS Project : DHCCP Batch No. : 13J124					=======								SOIL 53 NA 4
CLIENT SAMPLE ID	EMAX SAMPLE ID	RESULTS (mg/kg)	PREP. FACTOR	MOIST (%)	LOQ (mg/kg	LOD (mg/kg	ANALYSIS) DATETIME	PREPARATION DATETIME	DATA FILE ID	CAL REF	PREP BATCH	COLLECTION DATETIME	RECEIVED DATETIME
MBLK1S LCS1S LCD1S 2B-2	WBJ002SB WBJ002SL WBJ002SC J124-01	ND 2290 2290 2090	1.00 1.00 1.00 1.00	NA NA NA 9.4	600 600 600 662	600 600	10/22/1312:31 10/22/1312:32	10/22/1312:30 10/22/1312:31 10/22/1312:32 10/22/1312:34	13WBJ00202 13WBJ00203	13WBJ002 13WBJ002	WBJ002S WBJ002S	NA NA NA 10/07/1312:00	NA NA NA 10/14/13

CLIENT PROJECT BATCH NO. METHOD	:	URS DHCCP 13J124 WALKLEY-BLACK				
MATRIX	-	soil			% MOISTURE:	:: NA
DILUTION FACT	OR:	1	1	1		
SAMPLE ID	:	MBLK1S	LCS1S	LCD1S		
LAB SAMPLE ID	:	WBJ002SB	WBJ002SL	WBJ002SC		
LAB FILE ID	:	13WBJ00201	13WBJ00202	13WBJ00203		
DATE EXTRACTE	D :	10/22/1312:34	10/22/1312:34	10/22/1312:	34	

DATE	EXIRALIED	:	10/22/1312:34	10/22/1512:54	10/22/1312:34
DATE	ANALYZED	:	10/22/1312:30	10/22/1312:31	10/22/1312:32
PREP	ВАТСН	:	WBJ002S	WBJ002S	WBJ002S
CALIE	BRATION REF	::	13WBJ002	13WBJ002	13WBJ002

PARAMETER	MB RESULT (mg/kg)	SPIKE AMT (mg/kg)	BS RESULT (mg/kg)	BS REC (%)	SPIKE AMT (mg/kg)	BSD RESULT (mg/kg)	BSD REC (%)	RPD (%)	QC LIMIT (%)	MAX RPD (%)
TOC	ND	2000	2290	114	2000	2290	114	0	80-120	20

DWR-207

November 7, 2013

Analytical Report for Service Request No: K1311280

Caspar Pang Emax Laboratories, Incorporated 1835 W. 205th St. Torrance, CA 90501

RE: DHCCP/13J124

Dear Caspar:

Enclosed are the results of the samples submitted to our laboratory on October 17, 2013. For your reference, these analyses have been assigned our service request number K1311280.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at <u>www.alsglobal.com</u>. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please call if you have any questions. My extension is 3364. You may also contact me via Email at Howard.Holmes@alsglobal.com.

Respectfully submitted,

ALS Group USA Corp. dba ALS Environmental

Howard Holmes Project Manager

HH/mj

Page 1 of _____

ADDRESS 1317 S. 13^h Avenue, Kelso, WA 98626 USA | PHONE +1 360 577 7222 | FAX +1 360 636 1068 ALS Group USA, Corp. Part of the ALS Group An ALS Limited Company

Environmental 💭

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

	Acronyms
ASTM	American Society for Testing and Materials
A2LA	American Association for Laboratory Accreditation
CARB	California Air Resources Board
CAS Number	Chemical Abstract Service registry Number
CFC	Chlorofluorocarbon
CFU	Colony-Forming Unit
DEC	Department of Environmental Conservation
DEQ	Department of Environmental Quality
DHS	Department of Health Services
DOE	Department of Ecology
DOH	Department of Health
EPA	U. S. Environmental Protection Agency
ELAP	Environmental Laboratory Accreditation Program
GC	Gas Chromatography
GC/MS	Gas Chromatography/Mass Spectrometry
LOD	Limit of Detection
LOQ	Limit of Quantitation
LUFT	Leaking Underground Fuel Tank
Μ	Modified
MCL	Maximum Contaminant Level is the highest permissible concentration of a substance
	allowed in drinking water as established by the USEPA.
MDL	Method Detection Limit
MPN	Most Probable Number
MRL	Method Reporting Limit
NA	Not Applicable
NC	Not Calculated
NCASI	National Council of the Paper Industry for Air and Stream Improvement
ND	Not Detected
NIOSH	National Institute for Occupational Safety and Health
PQL	Practical Quantitation Limit
RCRA	Resource Conservation and Recovery Act
SIM	Selected Ion Monitoring
TPH	Total Petroleum Hydrocarbons
tr	Trace level is the concentration of an analyte that is less than the PQL but greater

than or equal to the MDL.

Acronyms

539

Inorganic Data Qualifiers

- * The result is an outlier See case narrative
- # The control limit criteria is not applicable See case narrative
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards
- E The result is an estimate amount because the value exceeded the instrument calibration range
- J The result is an estimated value
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project The detection limit is adjusted for dilution
- $i \,$ $\,$ The MRL/MDL or LOQ/LOD is elevated due to a matrix interference
- X See case narrative
- Q See case narrative One or more quality control criteria was outside the limits
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory

Metals Data Qualifiers

- # The control limit criteria is not applicable See case narrative
- J The result is an estimated value
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample
- M The duplicate injection precision was not met
- N The Matrix Spike sample recovery is not within control limits See case narrative
- S The reported value was determined by the Method of Standard Additions (MSA)
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL
- DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project The detection limit is adjusted for dilution
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference
- X See case narrative
- + The correlation coefficient for the MSA is less than 0 995
- Q See case narrative One or more quality control criteria was outside the limits

Organic Data Qualifiers

- * The result is an outlier See case narrative
- # The control limit criteria is not applicable See case narrative
- A A tentatively identified compound, a suspected aldol-condensation product
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data
- D The reported result is from a dilution
- E The result is an estimated value
- J The result is an estimated value
- N The result is presumptive The analyte was tentatively identified, but a confirmation analysis was not performed
- P The GC or HPLC confirmation criteria was exceeded The relative percent difference is greater than 40% between the two analytical results
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project The detection limit is adjusted for dilution
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference
- X See case narrative
- Q See case narrative One or more quality control criteria was outside the limits

Additional Petroleum Hydrocarbon Specific Qualifiers

- ${f F}$ The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard
- Z The chromatographic fingerprint does not resemble a petroleum product

ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Agency	Web Site	Number
Alaska DEC UST	http://dec.alaska.gov/applications/eh/ehllabreports/USTLabs.aspx	UST-040
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0339
Arkansas - DEQ	http://www.adeq.state.ar.us/techsvs/labcert htm	88-0637
California DHS (ELAP)	http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2286
DOD ELAP	http://www.denix.osd mil/edqw/Accreditation/AccreditedLabs.cfm	L12-28
Florida DOH	http://www.doh.state fl.us/lab/EnvLabCert/WaterCert.htm	E87412
Georgia DNR	http://www.gaepd.org/Documents/techguide_pcb.html#cel	881
Hawaii DOH	Not available	-
Idaho DHW	http://www.healthandwelfare.idaho.gov/Health/Labs/CertificationDrinkingWaterLabs/tabid/1833/Default.aspx	
Indiana DOH	http://www.in.gov/isdh/24859.htm	C-WA-01
ISO 17025	http://www.pjlabs.com/	L12-27
Louisiana DEQ	http://www.deq.louisiana.gov/portal/DIVISIONS/PublicParticipationandPer mitSupport/LouisianaLaboratoryAccreditationProgram.aspx	3016
Maine DHS	Not available	WA0035
Michigan DEQ	http://www.michigan.gov/deq/0,1607,7-135-3307_4131_4156,00.html	9949
Minnesota DOH	http://www.health.state.mn.us/accreditation	053-999-368
Montana DPHHS	http://www.dphhs mt.gov/publichealth/	CERT0047
Nevada DEP	http://ndep.nv.gov/bsdw/labservice.htm	WA35
New Jersey DEP	http://www.nj.gov/dep/oqa/	WA005
North Carolina DWQ	http://www.dwqlab.org/	605
Oklahoma DEQ	http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
Oregon – DEQ (NELAP)	http://public health.oregon.gov/LaboratoryServices/EnvironmentalLaborator yAccreditation/Pages/index.aspx	WA200001
South Carolina DHEC	http://www.scdhec.gov/environment/envserv/	61002
Texas CEQ	http://www.tceq.texas.gov/field/qa/env_lab_accreditation html	1704427-08-TX
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation html	C1203
Wisconsin DNR	http://dnr.wi.gov/	998386840
Wyoming (EPA Region 8)	http://www.epa.gov/region8/water/dwhome/wyomingdi.html	-
Kelso Laboratory Website	www.alsglobal.com	NA

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.caslab.com or at the accreditation bodies web site

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

ALS ENVIRONMENTAL

Client:Emax LaboratoriesProject:DHCCPSample Matrix:Soil

 Service Request No.:
 K1311280

 Date Received:
 10/17/13

Case Narrative

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses. Additional quality control analyses reported herein include: Matrix Spike (MS), and Laboratory Control Sample (LCS).

Sample Receipt

One soil sample was received for analysis at ALS Environmental on 10/17/13. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

Methyl Mercury by EPA 1630M

No anomalies associated with this analysis were observed.

Organotin Compounds

Matrix Spike Recovery Exceptions:

The control criteria for matrix spike recovery of all analytes for sample batch QC were not applicable. The Batch QC contained a high level on non-target background interferences. The batch QC was not reported due to any reanalysis requiring a dilution such that the added spike concentration was diluted below the reporting limit. No further corrective action was required.

No other anomalies associated with this analysis were observed.

CHAIN OF CUSTODY

COOLER TEMPERATURE

Tel#: 310-618-8889_FAX#: 310-618-0818 email: info@emaxlabs.com

LABORATORIES, INC.

SEND REPORT TO: EMAX LABORATORIES, INC. 1835 W. 205TH ST. CA 90501 CLIENT: URS PROJECT: DHCCP

ATTN: Caspar

EMAX CONTROL NO	13J124
PROJECT CODE	URS1311_
TURN-AROUND-TIME	STANDARD

ALS S. 13th Avenue 1317 S. 13th Avenue Kelso, WA 98626 Attn: Howard Holmes.

SEND

EMAX Sample ID	Client Sample ID	Collection Date	CollectionTime	Matrix	Method		Method		COMMENTS
J124-01	2B-2	10/7/2013	12:00:00 PM	SOIL	EPA 1630M	Methyl Mercury by 1630M			
J124-01	2B-2	10/7/2013	12:00:00 PM	SOIL	GC-FPD(b)	Tributyl tin(mono-, di-,and trib			

INSTRUCTION: Please los in using client sample IP.

Level I with standard EDD.

RELINQUISHED BY	PATE,	TIME	RECEIVED BY	DATE	TIME
ality and	10/16/13	15:30	SDavis ALS RELSO	10/17/13	ONO
	1	1			

54	3] תו	DWR-20)7
(ALS)			Cooler	Pacaint and	Preservation For		P	C THE	
Client / Project	Emax		Coolei	Receipt anu	Service Reques		280	- -	
Received:	DURKIT, I	20pened:_	DIT) By:_	D Unlo	aded: 10/17	By:	D	
. Samples wer	e received via?	Mail	(Fed Ex)	UPS D	HL PDX Con	urier Hand Deliver	ed		
2. Samples we	e received in: (c	ircle)	Cooler	Box En	velope Other			NA	
Were custod	<u>y seals</u> on cooler	rs?	NA (Y	N N	If yes, how many and	i where? [-Fro	14		
If present, w	ere custody seal	s intact?	X) n	If present, were th	ey signed and dated?)	Ν
	acted. Raw r Temp Temp Blank	Corrected Temp Blank	Corr. Factor	Thermometer ID	Cooler/COC ID	Tracking	I Number	NA	File
-0.3-0	31.3	1.3	0.0	333		LAGGLAM	432	3	
Packing mat	erial: Inserts	Baggies	Bubble Wr	ap Gel Packs	Wet Ice Dry Ice	Sleeves			
	y papers properl		(ink, signed	, etc.)?		· · ·	NA	(V)	N
. Did all bottl	es arrive in good	condition (unbroken)?	Indicate in the	table below.		NA	Ŷ	Ν
. Were all sam	ple labels compl	ete (i.e anal	ysis, preser	vation, etc.)?			NA	X	Ν
. Did all samp	e labels and tags	agree with	custody pap	pers? Indicate n	najor discrepancies ir	n the table on page 2.	NA	\mathbf{Q}	Ν
. Were approp	riate bottles/con	tainers and	volumes rec	ceived for the te	sts indicated?		NA	(Y)	Ν
0. Were the pH	-preserved bottl	es (see SMO	GEN SOP)	received at the a	ppropriate pH? Indic	cate in the table below	(NA)	Y	Ν
1. Were VOA	vials received w	ithout heads	space? Indi	cate in the table	below.		NA	Y	Ν
							Share of the		

		- Alberton -
Sample ID on Bottle	Sample ID on COC	Identified by:

Sample 1D	Bottle Count Bottle Type	Out of Temp	Head- space	Broke	рH	Reagent	Volume added	Reagent Lot Number	Initials	Time

Notes, Discrepancies, & Resolutions:

ALS Group USA, Corp. dba ALS Environmental

Analytical Results

Client:	Emax Laboratories, Incorporated
Project:	DHCCP
Sample Matrix:	Soil

Service Request: K1311280

Total Solids

Prep Method: Analysis Method: Test Notes:	NONE 160.3M					Units: Basis:	PERCENT Wet
Sample Name		Lab Code	Date Collected	Date Received	Date Analyzed	Result	Result Notes
2B-2		K1311280-001	10/07/2013	10/17/2013	10/29/2013	90.1	

545	
-----	--

ALS Group USA, Corp. dba ALS Environmental

DWR-207

		QA/QC Report				
Client:	Emax Laboratories, Incorporated			5	Service Request:	K1311280
Project:	DHCCP				Date Collected:	10/07/2013
Sample Matrix:	Soil				Date Received:	10/17/2013
					Date Analyzed:	10/29/2013
		Duplicate Sample Summa	ıry			
		Total Solids				
Prep Method:	NONE				Units:	PERCENT
Analysis Method:	160.3M				Basis:	Wet
Test Notes:						
Sample Name	Lab Code	Sample Result	Duplicate Sample Result	Average	Relative Percent Difference	Result Notes
2B-2	K1311280-001	90.1	90.4	90.3	<1	

ALS Group USA, Corp. dba ALS Environmental

Analytical Report

Client: Project: Sample Matrix:	Emax Laboratories, Incorporated DHCCP Soil		Service Request: Date Collected: Date Received:	10/07/13
		Methyl Mercury		
Prep Method: Analysis Method: Test Notes:	ALS SOP ALS SOP		Units: Basis:	00

Sample Name	Lab Code	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
2B-2	K1311280-001	0.4	0.04	1	10/22/13	10/23/13	ND	
Method Blank 1	K1311280-MB1	0.4	0.04	1	10/22/13	10/23/13	ND	
Method Blank 2	K1311280-MB2	0.4	0.04	1	10/22/13	10/23/13	ND	
Method Blank 3	K1311280-MB3	0.4	0.04	1	10/22/13	10/23/13	ND	

Client: Project: Sample Matrix:	Emax Laborato DHCCP Soil	ries, Incorpora	nted							Da Da Da	vice Request: te Collected: ate Received: te Extracted: te Analyzed:	10/07/13 10/17/13 10/22/13	
		I	Matrix S	pike/D	-	Matrix Sp tals	ike Sum	mary					
Sample Name: Lab Code: Test Notes:	2B-2 K1311280-001	MS,	K1311	280-00	01MSD						Units: Basis:	00	
	Ргер	Analysis		Snike	e Level	Sample	Snika	Result	Per	c e n t	R e c o v e r y CAS Acceptance	Relative Percent	Result
Analyte	Method	Method	MRL	MS	DMS	Result	MS	DMS	MS	DMS	Limits	Difference	Notes
Methyl Mercury	CAS SOP	CAS SOP	0.4	107	111	ND	103	93.5	96	84	65-135	10	

Client: Project: LCS Matrix:	Emax Laboratories, Incorpora DHCCP Water	ited				Service Request: Date Collected: Date Received: Date Extracted: Date Analyzed:	NA NA 10/22/13
	Ongoin	g Precision a	nd Recover	y (OPR) S	Sample Sum	mary	
			Metal	S			
Sample Name:	Ongoing Precision and Recov	ery (Initial)				Units:	pg
						Basis:	NA
Analyte	Prep Method	Analysis Method	True Value	Result	Percent Recoverv	CAS Percent Recovery Acceptance Limits	Result Notes

100

95.1

95

67-133

CAS SOP

CAS SOP

Methyl Mercury

Client: Project: LCS Matrix:	Emax Laboratorie DHCCP Water	es, Incorporat	ted				Service Request: Date Collected: Date Received: Date Extracted: Date Analyzed:	NA NA 10/22/13
		Ongoing	g Precision a	nd Recover	y (OPR) S	Sample Sum	mary	
			_	Metal	S	-	-	
Sample Name:	Ongoing Precision	n and Recove	ery (Final)				Units:	pg
-							Basis:	NA
		Prep	Analysis	True		Percent	CAS Percent Recovery Acceptance	Result
Analyte		Method	Method	Value	Result	Recovery	Limits	Notes

100

CAS SOP CAS SOP

69.5

70

67-133

Methyl Mercury

Client: Project: LCS Matrix:	Emax Laboratories, Incorporated DHCCP Soil	Service Request: Date Collected: Date Received: Date Extracted: Date Analyzed:	NA NA 10/22/13
	Quality Control Sample (QCS) Summary		
	Total Metals		
Sample Name:	Quality Control Sample	Units:	ng/g
		Basis:	Dry
Source:	ERM - CC580 Estuarine Sediment	CAS Percent Recovery	
Analyte	Prep Analysis True Percent Method Method Value Result Recover	Acceptance	Result Notes

75.0

CAS SOP CAS SOP

59.9

80

67-133

Methyl Mercury

ALS Group USA, Corp. dba ALS Environmental

551	Als Group USA, Corp. aba Alis Environmentar		DWR-207
	Analytical Results		
Client:	Emax Laboratories, Incorporated	Service Request:	K1311280
Project:	DHCCP/13J124	Date Collected:	10/07/2013
Sample Matrix:	Soil	Date Received:	10/17/2013

Butyltins (as cation)

Sample Name:	2B-2	Units:	ug/Kg
Lab Code:	K1311280-001	Basis:	Dry
Extraction Method: Analysis Method:	Method Krone	Level:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Tetra-n-butyltin	ND U	1.1	0.49	1	10/21/13	11/05/13	KWG1311893	
Tri-n-butyltin Cation	ND U	1.1	0.48	1	10/21/13	11/05/13	KWG1311893	
Di-n-butyltin Cation	ND U	1.1	0.21	1	10/21/13	11/05/13	KWG1311893	
n-Butyltin Cation	0.33 J	1.1	0.29	1	10/21/13	11/05/13	KWG1311893	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Tri-n-propyltin	96	10-120	11/05/13	Acceptable

Comments:

Merged

ALS Group USA, Corp. dba ALS Environmental

DWR-207

	Analytical Res	ults	
Client:	Emax Laboratories, Incorporated	Service Request:	K1311280
Project:	DHCCP/13J124	Date Collected:	NA
Sample Matrix:	Soil	Date Received:	NA

Butyltins (as cation)

Sample Name:	Method Blank	Units:	ug/Kg
Lab Code:	KWG1311893-4	Basis:	Dry
Extraction Method: Analysis Method:	Method Krone	Level:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Tetra-n-butyltin	ND U	0.98	0.44	1	10/21/13	11/05/13	KWG1311893	
Tri-n-butyltin Cation	2.1	0.98	0.43	1	10/21/13	11/05/13	KWG1311893	
Di-n-butyltin Cation	ND U	0.98	0.19	1	10/21/13	11/05/13	KWG1311893	
n-Butyltin Cation	ND U	0.98	0.26	1	10/21/13	11/05/13	KWG1311893	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Tri-n-propyltin	77	10-120	11/05/13	Acceptable

Comments:

552

Merged

553

ALS Group USA, Corp. dba ALS Environmental

QA/QC Report

Client: Project: Sample Matrix: Emax Laboratories, Incorporated DHCCP/13J124 Soil

Service Request: K1311280

Surrogate Recovery Summary Butyltins (as cation)

Extraction Method:	Method
Analysis Method:	Krone

Units: Percent Level: Low

Sample Name	Lab Code	<u>Sur1</u>
2B-2	K1311280-001	96
Method Blank	KWG1311893-4	77
Lab Control Sample	KWG1311893-3	66

Surrogate Recovery Control Limits (%)

Sur1 = Tri-n-propyltin

10-120

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

554	ALS Gre	ALS Group USA, Corp. dba ALS Environmental			
		QA/QC Report			
Client:	Emax Laboratories, Incorporated		Service Request:	K1311280	
Project:	DHCCP/13J124		Date Extracted:	10/21/2013	
Sample Matrix:	Soil		Date Analyzed:	11/05/2013	
		Lab Control Spike Summary Butyltins (as cation)			

%Rec Limits

19-130

10-122

12-136

10-150

Lab Control Sample KWG1311893-3 Lab Control Spike Spike

Amount

25.0

22.2

19.2

15.6

Result

14.9

19.6

12.7

13.8

%Rec

60

88

66

89

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded

Extraction Method:

Analysis Method:

Analyte Name

Tetra-n-butyltin

Tri-n-butyltin Cation

Di-n-butyltin Cation

n-Butyltin Cation

Method

Krone

Units: ug/Kg

Basis: Dry Level: Low Extraction Lot: KWG1311893

TABLE OF CONTENTS

CLIENT:	URS	
PROJECT:	DHCCP	
SDG:	13K014	
SECTION		PAGE
Cover Letter, CC General Narrativ	0C/Sample Receipt Form e	1 10
GC/MS-SVOA	METHOD 3550B/8270C METHOD 3550B/8270C SIM	11 21
GC-VOA	METHOD 5030B/8015B	31
GC-SVOA	METHOD 3550B/8015B METHOD 3550B/8081A METHOD 3550B/8082 METHOD 8151A	41 51 61 71
METALS	METHOD 6020A METHOD 7471A METHOD DI WET/6020A METHOD DI WET/7470A	82 89 93 104
WET	METHOD SM4500NH3F METHOD SM4500NO3E METHOD 7196A METHOD WALKLEY-BLACK	112 117 122 129
OTHERS	SUBCONTRACT BUTYLTINS / METHYL MERCURY	133

556 EMAX

LABORATORIES, INC. 1835 W. 205th Street Torrance, CA 90501 Tel: (310) 618-8889 Fax: (310) 618-0818

Date: 11-22-2013 EMAX Batch No.: 13K014

ATTN: Rob Nixon

URS 2870 Gateway Oak #300 Sacramento, CA 95833

Subject: Laboratory Report Project: DHCCP

Enclosed is the Laboratory report for samples received on 11/05/13. The data reported relate only to samples listed below :

Sample ID	Control #	Col Date	Matrix	Analysis
3B-2	K014-01	11/04/13	SOIL	MOISTURE CONTENT DETERMINATION TPH-GASOLINE TPH DIESEL METALS DI-WET METALS CAM MERCURY PAH BY 8270C SIM PESTICIDES ORGANOCHLORINE POLYCHLORINATED BIPHENYLS (PCBS) SEMIVOLATILE ORGANICS BY GCMS CHROMIUM HEXAVALENT CHLORINATED HERBICIDES TRIBUTYL TIN(MONO-, DI-,AND TRIB MERCURY BY DI WET METHYL MERCURY BY 1630M TOTAL ORGANIC CARBON AMMONIA-N BY SM4500-NH3 F NITRATE/NITRITE AS N
3D-2	K014-02	11/04/13	SOIL	MOISTURE CONTENT DETERMINATION

DWR-207

Sample ID Control # Col Date Matrix Analysis TPH-GASOLINE TPH DIESEL METALS DI-WET METALS CAM MERCURY PAH BY 8270C SIM PESTICIDES ORGANOCHLORINE POLYCHLORINATED BIPHENYLS (PCBS) SEMIVOLATILE ORGANICS BY GCMS CHROMIUM HEXAVALENT CHLORINATED HERBICIDES TRIBUTYL TIN(MONO-, DI-, AND TRIB MERCURY BY DI WET METHYL MERCURY BY 1630M TOTAL ORGANIC CARBON AMMONIA-N BY SM4500-NH3 F NITRATE/NITRITE AS N 11/04/13 SOIL MOISTURE CONTENT DETERMINATION CC-2 K014-03 TPH-GASOLINE TPH DIESEL METALS DI-WET METALS CAM MERCURY PAH BY 8270C SIM PESTICIDES ORGANOCHLORINE POLYCHLORINATED BIPHENYLS (PCBS) SEMIVOLATILE ORGANICS BY GCMS CHROMIUM HEXAVALENT CHLORINATED HERBICIDES TRIBUTYL TIN(MONO-, DI-, AND TRIB MERCURY BY DI WET METHYL MERCURY BY 1630M TOTAL ORGANIC CARBON AMMONIA-N BY SM4500-NH3 F NITRATE/NITRITE AS N

Methods Methyl Mercury and Tributyl Tin were analyzed by ALS Lab.

The results are summarized on the following pages.

Please feel free to call if you have any questions concerning these results.

Sincerely yours,

Caspar J. Pang Laboratory Director

This report is confidential and intended solely for the use of the individual or entity to whom it is addressed. This report shall not be reproduced except in full or without the written approval of EMAX.

 EMAX certifies that results included in this report meets all NELAC & DOD requirements unless noted in the Case Narrative.

NELAC Accredited Certificate Number 02116CA L-A-B Accredited DoD ELAP and ISO/IEC 17025 Certificate Number L2278 Testing

1835 W. 205th Street, Torrance, CA 90501 Tel: (310) 618-8889 Fax: (310) 618-0818

Page000002

REPORTING CONVENTIONS

DATA QUALIFIERS:

Lab Qualifier	AFCEE Qualifier	Description
J	F	Indicates that the analyte is positively identified and the result is less than LOQ/RL but greater than LOD/MDL/DL.
N		Indicates presumptive evidence of a compound.
В	В	Indicates that the analyte is found in the associated method blank as well as in the sample at above QC level.
E	J	Indicates that the result is above the maximum calibration range.
*	*	Out of QC limit.

Note: The above qualifiers are used to flag the results unless the project requires a different set of qualification criteria.

ACRONYMS AND ABBREVIATIONS:

CRDL	Contract Required Detection Limit
RL	Reporting Limit
MRL	Method Reporting Limit
MDL	Method Detection Limit
DL	Detection Limit
LOD	Limit of Detection
LOQ	Limit of Quantitation
DO	Diluted out

<u>DATES</u>

The date and time information for leaching and preparation reflect the beginning date and time of the procedure unless the method, protocol, or project specifically requires otherwise.

CASE NARRATIVE

•

Cett in .

Client : URS

Project : DHCCP

SDG : 13K014

A total of three (3) soil samples were received on 11/05/13 for various analyses.

Sample Receipt Notes: Samples received at room temperature without thermal preservation, outside of method recommendations. Analyses proceeded based on client instructions. See Sample Receipt Form (SRF) for details.

Analytical Notes: See each method for details.

LABORATORY REPORT FOR

URS

DHCCP

METHOD 3550B/8270C SEMI VOLATILE ORGANICS BY GC/MS

SDG#: 13K014

CASE NARRATIVE

Client : URS

6³⁹⁰.

561

Project : DHCCP

SDG : 13K014

METHOD 3550B/8270C SEMI VOLATILE ORGANICS BY GC/MS

A total of three (3) soil samples were received on 11/05/13 for Semivolatile Organics by GCMS analysis, Method 3550B/8270C in accordance with USEPA SW-846, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods.

Holding Time Samples were analyzed within the prescribed holding time.

Instrument Performance and Calibration

Instrument tune check was performed prior to calibration. Instrument mass ratios as well as DDT breakdown were evaluated. Results were within acceptance criteria. ICAL was verified using secondary source (ICV). Continuing calibration (CCV) was carried on at a frequency required by the project. All project calibration requirements were satisfied. Refer to calibration summary forms of ICAL, ICV and CCV for details.

Method Blank Method blank was analyzed at the frequency required by the project. For this SDG, one method blank was analyzed with the samples. Result was compliant to project requirement.

Lab Control Sample A set of LCS/LCD was analyzed with the samples in this SDG. Percent recoveries for SVK009SL/C were all within QC limits.

Matrix QC Sample No matrix QC sample was designated in this SDG.

Surrogate

Surrogates were added on QC and field samples. Recoveries of 2-Fluorophenol, Phenol-d5 and 2,4,6-Tribromphenol for sample K014-01 were biased low. The sample was re-extracted and re-analyzed, and the result was confirmed. Only the initial result was reported. Surrogate recoveries of other samples were within project QC limits. Refer to sample result forms for details.

Sample Analysis

Samples were analyzed according to prescribed analytical procedures. All project requirements were met otherwise anomalies were discussed within the associated QC parameter.

Sample K014-03 was analyzed at dilution due to coloration in extract and to reduce possible matrix interference.

LAB CHRONICLE SEMI VOLATILE ORGANICS BY GC/MS

=========			
Client	: URS	SDG NO.	: 13K014
Project	: DHCCP	Instrument ID	: E7
========			

SOIL

Laboratory	Dilution	%	Analysis	Extraction	Sample	Calibratio	on Prep.	
Sample ID	Factor	Moist	DateTime	DateTime	Data FN	Data FN	Batch	Notes
SVK009SB	1	NA	11/06/1314:54	11/06/1310:50	RKH107	RJH024	SVK009S	Method Blank
SVK009SL	1	NA	11/06/1315:13	11/06/1310:50	RKH108	RJH024	SVK009S	Lab Control Sample (LCS)
SVK009SC	1	NA	11/06/1315:32	11/06/1310:50	RKH109	RJH024	SVK009S	LCS Duplicate
K014-01	1	22.5	11/06/1318:44	11/06/1310:50	RKH119	RJH024	SVK009S	Field Sample
K014-02	1	12.0	11/06/1319:03	11/06/1310:50	RKH120	RJH024	SVK009S	Field Sample
K014-03	2	16.0	11/06/1319:22	11/06/1310:50	RKH121	RJH024	SVK009S	Field Sample
	Sample ID SVK009SB SVK009SL SVK009SC K014-01 K014-02	Sample ID Factor SVK009SB 1 SVK009SL 1 SVK009SC 1 K014-01 1 K014-02 1	Sample ID Factor Moist SVK009SB 1 NA SVK009SL 1 NA SVK009SC 1 NA K014-01 1 22.5 K014-02 1 12.0	Sample IDFactorMoistDateTimeSVK009SB1NA11/06/1314:54SVK009SL1NA11/06/1315:13SVK009SC1NA11/06/1315:32K014-01122.511/06/1318:44K014-02112.011/06/1319:03	Sample IDFactorMoistDateTimeDateTimeSVK009SB1NA11/06/1314:5411/06/1310:50SVK009SL1NA11/06/1315:1311/06/1310:50SVK009SC1NA11/06/1315:3211/06/1310:50K014-01122.511/06/1318:4411/06/1310:50K014-02112.011/06/1319:0311/06/1310:50	Sample IDFactorMoistDateTimeDateTimeData FNSVK009SB1NA11/06/1314:5411/06/1310:50RKH107SVK009SL1NA11/06/1315:1311/06/1310:50RKH108SVK009SC1NA11/06/1315:3211/06/1310:50RKH109K014-01122.511/06/1318:4411/06/1310:50RKH119K014-02112.011/06/1319:0311/06/1310:50RKH120	Sample ID Factor Moist DateTime DateTime Data FN Data FN SVK009SB 1 NA 11/06/1314:54 11/06/1310:50 RKH107 RJH024 SVK009SL 1 NA 11/06/1315:13 11/06/1310:50 RKH108 RJH024 SVK009SC 1 NA 11/06/1315:32 11/06/1310:50 RKH109 RJH024 K014-01 1 22.5 11/06/1318:44 11/06/1310:50 RKH119 RJH024 K014-02 1 12.0 11/06/1319:03 11/06/1310:50 RKH120 RJH024	Sample ID Factor Moist DateTime DateTime DateTime Data FN Data FN Batch SVK009SB 1 NA 11/06/1314:54 11/06/1310:50 RKH107 RJH024 SVK009S SVK009SL 1 NA 11/06/1315:13 11/06/1310:50 RKH108 RJH024 SVK009S SVK009SC 1 NA 11/06/1315:32 11/06/1310:50 RKH109 RJH024 SVK009S K014-01 1 22.5 11/06/1318:44 11/06/1310:50 RKH119 RJH024 SVK009S K014-02 1 12.0 11/06/1319:03 11/06/1310:50 RKH120 RJH024 SVK009S

% Moist - Percent Moisture

SAMPLE RESULTS

564

METHOD 3550B/8270C SEMI VOLATILE ORGANICS BY GC/MS

Client : URS Project : DHCCP Batch No. : 13K014 Sample ID: 3B-2 Lab Samp ID: K014-01 Lab File ID: RKH119 Ext Btch ID: SVK009S Calib. Ref.: RJH024		Date Collected Date Received Date Extracted Date Analyzed Dilution Factor Matrix % Moisture Instrument ID	: 11/04/13 : 11/05/13 : 11/06/13 10:50 : 11/06/13 18:44 : 1 : SOIL : 22.5 : T-0E7
PARAMETERS 1,2,4-TRICHLOROBENZENE 1,3-DICHLOROBENZENE 1,3-DICHLOROBENZENE 1,4-DICHLOROBENZENE 2,4-DIRUTROROPHENOL 2,4-DINTTROPHENOL 2,4-DINTTROPHENOL 2,4-DINTTROPHENOL 2,4-DINTTROPHENOL 2,4-DINTTROPHENOL 2,4-DINTTROPHENOL 2,4-DINTROPHENOL 2,4-DINTROPHENOL 2,4-DINTROPHENOL 2,4-DINTROPHENOL 2,4-DINTROPHENOL 2,4-DINTROPHENOL 2,4-DINTROPHENOL 2,4-DINTROPHENOL 2,4-DINTROPHENOL 2,4-DINTROPHENOL 2,4-DINTROPHENOL 2,4-DINTROPHENOL 2,4-DINTROPHENOL 2,4-DINTROPHENOL 2,4-DINTROPHENUL 2,5-DINTROPHENUL 2,5-DINTROPHENUL 3,3'-DICHLOROBENZIDINE 3,3'-DICHLOROBENZIDINE 3,3'-DICHLOROBENZIDINE 3,3'-DICHLOROBENZIDINE 3,3'-DICHLOROBENZIDINE 3,3'-DICHLOROBENZIDINE 3,3'-DICHLOROBENZIDINE 3,3'-DICHLOROBENZIDINE 3,3'-DICHLOROBENZIDINE 3,3'-DICHLOROBENZIDINE 3,3'-DICHLOROBENZIDINE 3,3'-DICHLOROBENZIDINE 3,3'-DICHLOROBENZIDINE 3,3'-DICHLOROBENZIDINE 3,3'-DICHLOROBENZIDINE 3,3'-DICHLOROBENZIDINE 3,3'-DICHLOROBENZIDINE 4,0'-NITROANILINE 4,0'-CHLOROPHENYL-PHENYL ETHER 4,0'-CHLOROPHENYL-PHENYL ETHER 4,0'-CHLOROPHENYL-PHENYL ETHER BENZO(A)ANTHRACENE BENZO(A)ANTHRACENE BENZO(A)ANTHRACENE BENZO(C), FLUORANTHENE BENZO(C), FLUORANTHENE BENZO(C), FLUORANTHENE BENZO(C), FLUORANTHENE BENZO(C), FLUORANTHENE BENZO(C), FLUORANTHENE BIS(2'-CHLOROSENZENE DISC', CHLOROSENZENE DISC', CHLOROSENZENE HEXACHLOROBENZENE HEXACHLOROBENZENE HEXACHLOROBENZENE HEXACHLOROBENZENE HEXACHLOROBENZENE HEXACHLOROBENZENE HEXACHLOROBENZENE HEXACHLOROBENZENE HEXACHLOROBENZENE HEXACHLOROBENZENE HEXACHLOROBENZENE HEXACHLOROPHENOL PHENOL	RESULTS (ug/kg) ND ND ND ND ND ND ND ND ND ND ND ND ND	RL (ug/kg) 430 430 430 430 430 430 430 430 430 430	MDL (ug/kg) 220 220 220 220 220 220 220 220 220 22
SURROGATE PARAMETERS 2,4,6-TRIBROMOPHENOL 2-FLUOROBIPHENYL 2-FLUOROPHENOL NITROBENZENE-D5 PHENOL-D5 TERPHENYL-D14	47.6 494 139 466 827 720		OVERY QC LIMIT 1.84* 40-130 57.5 40-130 5.39* 30-130 54.1 30-130 32.0* 40-130 83.7 60-130

METHOD 3550B/8270C SEMI VOLATILE ORGANICS BY GC/MS

Client : URS Project : DHCCP Batch No. : 13K014 Sample ID: 3D-2 Lab Samp ID: K014-02 Lab File ID: RKH120 Ext Btch ID: SVK009S Calib. Ref.: RJH024		Date Collecte Date Receive Date Extracte Date Analyze Dilution Facto Matrix % Moisture Instrument ID	: SOIL : 12.0 : T-0E7
PARAMETERS 1, 2, 4-TRICHLOROBENZENE 1, 2-DICHLOROBENZENE 1, 3-DICHLOROBENZENE 1, 4-DICHLOROBENZENE 2, 4, 5-TRICHLOROPHENOL 2, 4-DINITROTOLURENE 2, 4-DINITROTOLUENE 2, 4-DINITROTOLUENE 3, 31-DICHLOROBENZIDINE 3, 31-DICHLOROBENZENE 4, 4-CHLOROPHENYL-PHENYL ETHER 4, 4-CHLOROBHNYL-PHENYL ETHER BENZO(A)ANTHRACENE BENZO(A)ANTHRACENE BENZO(A)ANTHRACENE BENZO(A)ANTHRACENE BENZO(A)ANTHRACENE BENZO(A)ANTHRACENE BIS(2-CHLOROBINZENE DI-N-BUTYLPHTHALATE DIS(2-CHLOROBINZENE HEXACHLOROBENZENE	RESULTS (ug/kg) ND ND ND ND ND ND ND ND ND ND ND ND ND	RL (ug/kg) 380 380 380 380 380 380 380 380 380 380	MDL (ug/kg)
PYRENE SURROGATE PARAMETERS 2.4.6-TRIBROMOPHENOL 2-FLUOROBIPHENYL 2-FLUOROPHENOL NITROBENZENE-D5 PHENOL-D5 TERPHENYL-D14	ND RESULTS 2050 464 1480 429 1680 706		190 200VERY QC LIMIT 90.3 40-130 61.3 40-130 65.3 30-130 56.6 30-130 74.1 40-130 93.2 60-130

DWR-207

566

METHOD 3550B/8270C SEMI VOLATILE ORGANICS BY GC/MS

Client : URS Project : DHCCP Batch No. : 13KO14 Sample ID: CC-2 Lab Samp ID: KO14-03 Lab File ID: RKH121 Ext Btch ID: SVK009S Calib. Ref.: RJH024		Date Collected: Date Received: Date Extracted: Date Analyzed: Dilution Factor: Matrix : % Moisture : Instrument ID :	11/04/13 11/05/13 11/06/13 10:50 11/06/13 19:22 2 SOIL 16.0 T-OE7
Calib. Ref.: RJH024 ====================================	RESULTS (ug/kg) ND ND ND ND ND ND ND ND ND ND ND ND ND	RL (ug/kg) 790 790 790 790 790 790 790 790 790 790	MDL (ug/kg) 400 400 400 400 400 400 400 400 4
DIETAUPUNTALATE DIETHYLPHTHALATE FLUORANTHENE FLUORENE HEXACHLOROBENZENE HEXACHLOROBUTADIENE HEXACHLOROCYCLOPENTADIENE HEXACHLOROCYCLOPENTADIENE HEXACHLOROCYCLOPENTADIENE INDENO(1,2,3-CD)PYRENE ISOPHORONE N-NITROSO-DI-N-PROPYLAMINE N-NITROSODIPHENYLAMINE (2) NAPHTHALENE PITROSENZENE PENTACHLOROPHENOL PHENOL PHENE	ND ND ND ND ND ND ND ND ND ND ND ND ND N	790 790 790 790 790 790 790 790 790 790	400 400
SURROGATE PARAMETERS 2,4,6-TRIBROMOPHENOL 2-FLUOROBIPHENYL 2-FLUOROPHENOL NITROBENZENE-D5 PHENOL-D5 TERPHENYL-D14	RESULTS 2100 559 1790 532 1910 669	793.7 2381 793.7 2381	OVERY QC LIMIT 88.0 40-130 70.5 40-130 75.4 30-130 67.0 30-130 80.4 40-130 84.3 60-130

QC SUMMARIES

568

METHOD 3550B/8270C SEMI VOLATILE ORGANICS BY GC/MS

Client : URS Project : DHCCP Batch No. : 13K014 Sample ID: MBLK1S Lab Samp ID: SVK009SB Lab File ID: RKH107 Ext 8tch ID: SVK009S Calib. Ref.: RJH024		Date Collected Date Received Date Extracted Date Analyzed Dilution Factor Matrix % Moisture Instrument ID	NA 11/06/13 11/06/13 10:50 11/06/13 14:54 1 SOIL NA T-0E7
PARAMETERS 1,2,4-TRICHLOROBENZENE 1,3-DICHLOROBENZENE 1,4-DICHLOROBENZENE 1,4-DICHLOROBENZENE 2,4,5-TRICHLOROPHENOL 2,4-DINITROPHENOL 2,4-DINITROPHENOL 2,4-DINITROTOLUENE 2,4-DINITROANILINE 4,6-DINITRO-2-METHYLPHENOL 4-CHLOROANILINE 4,6-DINITROT-2-METHYLPHENOL 4-CHLOROANILINE 4-CHLOROANILINE 4-CHLOROPHENYL-PHENYL ETHER 4-CHLOROPHENYL-PHENYL ETHER 4-CHLOROPHENYL-PHENYL ETHER 4-NITROPHENOL 4-CHLOROPHENYL-PHENYL ETHER 4-NITROPHENOL 4-CHLOROPHENYL-PHENYL ETHER 4-NITROPHENOL 4-CHLOROPHENYL-PHENYL ETHER 5-CICHLOROETHYLPHENE BENZO(A,JANTHRACENE BENZO(G, H, JPERYLENE BENZO(G, H, JPERYLENE BIS(2-CHLOROETHYLY)ETHER BIS(2-CHLOROETHYLY)ETHER BIS(2-CHLOROETHYLY)ETHER BIS(2-CHLOROETHYLY)ETHER BIS(2-CHLOROETHYLY)ETHER BIS(2-CHLOROETHYLY)ETHER BIS(2-CHLOROETHYLY)ETHER BIS(2-CHLOROETHYLY)ETHER BIS(2-CHLOROETHYLY)ETHER BIS(2-CHLOROETHYLY)ETHER BIS(2-CHLOROETHYLY)ETHER BIS(2-CHLOROETHYLY)ETHER BIS(2-CHLOROETHYLY)ETHER BIS(2-CHLOROETHYLY)ETHER BIS(2-CHLOROETHYLY)ETHER BIS(2-CHLOROETHYLY)ETHER BIS(2-CHLOROETHYLY)ETHER BIS(2-CHLOROETHALATE DI-N-BUTYLPHTHALATE DI-N-BUTYLPHTHALATE DI-N-NUTYLPHTHALATE DI-N-NUTYLPHTHALATE DIENENENE HEXACHLOROBENZE	RESULTS (ug/kg) ND ND ND ND ND ND ND ND ND ND ND ND ND	RL (ug/kg) 330 330 330 330 330 330 330 330 330 33	MDL (ug/kg) 170 170 170 170 170 170 170 170 170 170
SURROGATE PARAMETERS 2,4,6-TRIBROMOPHENOL 2-FLUOROBIPHENYL 2-FLUOROPHENOL NITROBENZENE-D5 PHENOL-D5 TERPHENYL-D14	RESULTS 1630 503 1570 473 1680 608	2000	OVERY QC LIMIT 81.5 30-140 75.5 30-130 78.3 40-130 70.9 40-130 83.8 40-130 91.1 40-140

DWR-207

EMAX QUALITY CONTROL DATA LCS/LCD ANALYSIS

CLIENT: PROJECT: BATCH NO.: METHOD:	URS DHCCP 13K014 METHOD 3550								an men was 1000 May 1000 May 100		-
MATRIX: DILUTION FACTOR: SAMPLE ID: LAB SAMP ID: LAB FILE ID: DATE EXTRACTED: DATE ANALYZED: PREP. BATCH: CALIB. REF: ACCESSION:	SOIL	1 SVK009SI RKH108 50 11/06/13	1 - SVK0 RKH1 310:50 11/0	09sc 09 6/1310:50 6/1315:32 09s	% MOIS		NA NA 11/06/13				-
PARAMETER 1,2,4-Trichlorob 1,2-Dichlorobenz 1,3-Dichlorobenz 1,4-Dichlorobenz 2,4,5-Trichlorop 2,4,6-Trichlorop 2,4-Dinitrotolue 2,6-Dinitrotolue 2,6-Dinitrotolue 2,6-Dinitrotolue 2,6-Dinitrotolue 2,6-Dinitrotolue 2,6-Dinitrotolue 2,6-Dinitrotolue 2,6-Dinitrotolue 2,6-Dinitrotolue 3,3'-Dichlorober 3,3'-Dichlorober 3,3'-Dichlorober 4,6-Dinitro-2-Met 4,	ene tene tene tene bhenol bhenol bol bol bol ene ene ene ene thylphenol enyl ether tlphenol bhenyl ether tlphenol bhenyl ether ropyl)ether opyl)ether opyl)ether opyl)ether phthalate late ate ate ate ate ene entadiene pyrene tlamine l	BLNK RSLT (ug/kg) ND ND ND ND ND ND ND ND ND ND ND ND ND	SPIKE AMT (ug/kg) 1330 1330 1330 1330 1330 1330 1330 133	BS RSLT (ug/kg) 1160 1090 11100 1260 970 1100 1260 1040 1320 1040 1040 1040 1310 1040 1310 1240 1240 1200 1200 1200 1240 1200 1240 124	BS RE- 873 881499732788189998899998439999817747797194849753000310485886811998989899998439999811138999346877477971948497530003109810849898989898989898989898989898989898989	SPIKE AMT (ug/kg) 1330 1330 1330 1330 1330 1330 1330 133	BSD RSLT (ug/kg) 1170 1130 1130 1130 1140 977 1080 1270 1030 1270 1030 1270 1030 1270 1030 1270 1030 1270 1030 1270 1030 1270 1030 1270 1030 1270 1030 1270 1030 1270 1030 1270 1250 1250 1250 1250 1250 1250 1250 125	% REC % REC 885 885 885 885 885 885 885 88	>	$ \begin{array}{c} QC & L \\ M \\ $	MAX R) 500 550000000000000000000000000000000
SURROGATE PARAME 2,4,6-Tribromoph 2-Fluorobiphenyl 2-Fluorophenol Nitrobenzene-d5 Phenol-d5 Terphenyl-d14	TER	SPIKE AMT (ug/kg) 2000 667 2000 667 2000 667	BS RSLT (ug/kg) 1750 463 1480 441 1600 535	BS SPI	KE AMT Jg/kg) 2000 667 2000 667 2000 667	BSD RSLT (ug/kg) 1880 478 1530 452 1610 548	BSD Q % REC 94 72 76 68 81	C LIMIT (%) 30-140 30-130 40-130 40-130 40-130 40-140			

LABORATORY REPORT FOR

കും .

URS

DHCCP

METHOD 3550B/8270C SIM PAH BY GC/MS

SDG#: 13K014

Page000021

Client : URS

Project : DHCCP

SDG : 13K014

METHOD 3550B/8270C SIM PAHS BY GC/MS

A total of three (3) soil samples were received on 11/05/13 for PAH BY 8270C SIM analysis, Method 3550B/8270C SIM in accordance with USEPA SW-846, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods.

Holding Time Samples were analyzed within the prescribed holding time.

Instrument Performance and Calibration Instrument tune check was performed prior to calibration. Instrument mass ratios were evaluated and results were within acceptance criteria. Multi-calibration points were generated to establish initial calibration (ICAL). ICAL was verified using secondary source (ICV). Continuing calibration (CCV) was carried on at a frequency required by the project. All project calibration requirements were satisfied. Refer to calibration summary forms of ICAL, ICV and CCV for details.

Method Blank Method blank was analyzed at the frequency required by the project. For this SDG, one method blank was analyzed with the samples. Result was compliant to project requirement.

Lab Control Sample A set of LCS/LCD was analyzed with the samples in this SDG. Percent recoveries for SVK009SL/C were all within QC limits.

Matrix QC Sample was designated in this SDG.

Surrogate Surrogates were added on QC and field samples. Surrogate recoveries were within project QC limits. Refer to sample result forms for details.

Sample Analysis Samples were analyzed according to prescribed analytical procedures. All project requirements were met otherwise anomalies were discussed within the associated QC parameter.

LAB CHRONICLE

PAHS	ΒY	GC/MS
		20,110

Client Project	: URS : DHCCP								SDG NO. Instrum	: 13K014 ent ID : E7
					so	IL				
Client		Laboratory	Dilution	%	Analysis	Extraction	Sample	Calibratio	on Prep.	
Sample ID		Sample ID	Factor	Moist	DateTime	DateTime	Data FN	Data FN	Batch	Notes
		********				·				
MBLK1S		SVK009SB	1	NA	11/06/1314:54	11/06/1310:50	RKH107	RJH024	SVK009S	Method Blank
LCS1S		SVK009SL	1	NA	11/06/1315:13	11/06/1310:50	RKH108	RJH024	SVK009S	Lab Control Sample (LCS
LCD1S		SVK009SC	1	NA	11/06/1315:32	11/06/1310:50	RKH109	RJH024	SVK009S	LCS Duplicate
3B-2		K014-01	1	22.5	11/06/1318:44	11/06/1310:50	RKH119	RJH024	SVK009S	Field Sample
		K014-02		12.0	11/06/1319:03	11/06/1310:50	RKH120	RJH024	SVK009S	Field Sample

11/06/1310:50 RKH121

RJH024

SVK009S Field Sample

FN - Filename

CC-2

% Moist - Percent Moisture

K014-03

2

16.0 11/06/1319:22

572

SAMPLE RESULTS

574

METHOD 3550B/8270C SIM PAHS BY GC/MS

Client : URS		Date Coll	ected: 11/04/13
Project : DHCCP		Date Rec	eived: 11/05/13
Batch No. : 13K014		Date Extr	acted: 11/06/13 10:50
Sample ID: 3B-2		Date Ana	lyzed: 11/06/13 18:44
Lab Samp ID: K014-01		Dilution F	
Lab File ID: RKH119		Matrix	: SOIL
Ext Btch ID: SVK009S		% Moisture	: 22.5
Calib. Ref.: RJH024		Instrument	ID : T-OE7
		= = = = = = = = = = = = = = = = = = = =	=============================
	RESULTS	RL	MDL
PARAMETERS	(ug/kg)	(ug/kg)	(ug/kg)
ACENAPHTHENE	ND	13	3.2
ACENAPHTHYLENE	ND	13	3.2
ANTHRACENE	ND	13	3.2
BENZO(A)ANTHRACENE	ND	13	3.2
BENZO(A)PYRENE	ND	13	3.2
BENZO(B)FLUORANTHENE	ND	13	3.2
BENZO(K)FLUORANTHENE	ND	13	3.2
BENZO(G, H, I)PERYLENE	ND	13	3.2
CHRYSENE	ND	13	3.2
DIBENZO(A,H)ANTHRACENE	ND	13	3.2
FLUORANTHENE	ND	13	3.2
FLUORENE	ND	13	3.2
INDENO(1,2,3-CD)PYRENE	ND	13	3.2
NAPHTHALENE	ND	13	3.2
PHENANTHRENE	ND	13	3.2
PYRENE	ND	13	3.2
SURROGATE PARAMETERS	RESULTS	SPK_AMT	% RECOVERY QC LIMIT
2-FLUOROBIPHENYL	480	860.3	55.8 30-160
NITROBENZENE-D5	509	860.3	59.2 30-160
TERPHENYL-D14	754	860.3	87.6 40-150

METHOD 3550B/8270C SIM PAHS BY GC/MS

				the set of the set of the set of the
Client : URS		Date Coll	ected: 11/04	/13
Project : DHCCP		Date Rec	eived: 11/05	/13
Batch No. : 13K014		Date Extr	acted: 11/06	/13 10:50
Sample ID: 3D-2		Date Ana	lyzed: 11/06	/13 19:03
Lab Samp ID: K014-02		Dilution F	actor: 1	
Lab File ID: RKH120		Matrix	: SOIL	
Ext Btch ID: SVK009S		% Moisture	: 12.0	
Calib. Ref.: RJH024			ID : T-OE7	
	RESULTS	RL		MDL
PARAMETERS	(ug/kg)	(ug/kg)		(ug/kg)
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~				
ACENAPHTHENE	ND	11		2.8
ACENAPHTHYLENE	ND	11		2.8
ANTHRACENE	ND	11		2.8
BENZO(A)ANTHRACENE	ND	11		2.8
BENZO(A)PYRENE	ND	11		2.8
BENZO(B)FLUORANTHENE	ND	11		2.8
BENZO(K)FLUORANTHENE	ND	11		2.8
BENZO(G,H,I)PERYLENE	ND	11		2.8
CHRYSENE	ND	11		2.8
DIBENZO(A,H)ANTHRACENE	ND	11		2.8
FLUORANTHENE	ND	11		2.8
FLUORENE	ND	11		2.8
INDENO(1,2,3-CD)PYRENE	ND	11		2.8
NAPHTHALENE	ND	11		2.8
PHENANTHRENE	ND	11		2.8
PYRENE	ND	11		2.8
SURROGATE PARAMETERS	RESULTS	SPK_AMT	% RECOVERY	QC LIMIT
			·····	
2-FLUOROBIPHENYL	481	757.6	63.5	
NITROBENZENE-D5	487	757.6	64.3	30-160
TERPHENYL-D14	677	757.6	89.3	40-150

Client : URS			lected: 11/04				
Project : DHCCP		Date Re	ceived: 11/05	5/13			
Batch No. : 13K014		Date Ext	racted: 11/06	5/13 10:50			
Sample ID: CC-2		Date An	alyzed: 11/06	5/13 19:22			
Lab Samp ID: K014-03	Dilution Factor: 2						
Lab File ID: RKH121		Matrix	: SOIL				
Ext Btch ID: SVK009S		% Moistur	e : 16.0				
Calib. Ref.: RJH024		Instrumen	t ID : T-OE7	7			
			==============				
	RESULTS	RL		MDL			
PARAMETERS	(ug/kg)	(ug/kg)		(ug/kg)			
ACENAPHTHENE	ND	24		6.0			
ACENAPHTHYLENE	ND	24		6.0			
ANTHRACENE	ND	24		6.0			
BENZO(A)ANTHRACENE	ND	24		6.0			
BENZO(A)PYRENE	ND	24		6.0			
BENZO(B)FLUORANTHENE	ND	24		6.0			
BENZO(K)FLUORANTHENE	ND	24		6.0			
BENZO(G, H, I)PERYLENE	ND	24		6.0			
CHRYSENE	ND	24		6.0			
DIBENZO(A, H)ANTHRACENE	ND	24		6.0			
FLUORANTHENE	ND	24		6.0			
FLUORENE	ND	24		6.0			
INDENO(1,2,3-CD)PYRENE	ND	24		6.0			
NAPHTHALENE	ND	24		6.0			
PHENANTHRENE	ND	24		6.0			
PYRENE	ND	24		6.0			
SURROGATE PARAMETERS	RESULTS	SPK_AMT	% RECOVERY	QC LIMIT			
2-FLUOROBIPHENYL	570	793.7	71.9	30-160			
NITROBENZENE-D5	593	793.7	74.7	30-160			
TERPHENYL-D14	697	793.7	87.8	40-150			

QC SUMMARIES

Client : URS		Date Collected:	NA
Project : DHCCP		Date Received:	
Batch No. : 13K014		Date Extracted:	11/06/13 10:50
Sample ID: MBLK1S		Date Analyzed:	11/06/13 14:54
Lab Samp ID: SVK009SB		Dilution Factor:	1
Lab File ID: RKH107			SOIL
Ext Btch ID: SVK009S		% Moisture :	NA
Calib. Ref.: RJH024		Instrument ID :	T-0E7
		==============================	
	RESULTS	RL	MDL
PARAMETERS	(ug/kg)	(ug/kg)	(ug/kg)
ACENAPHTHENE	ND	10	2.5
ACENAPHTHYLENE	ND	10	2.5
ANTHRACENE	ND	10	2.5
BENZO(A)ANTHRACENE	ND	10	2.5
BENZO(A)PYRENE	ND	10	2.5
BENZO(B)FLUORANTHENE	ND	10	2.5
BENZO(K)FLUORANTHENE	ND	10	2.5
BENZO(G,H,I)PERYLENE	ND	10	2.5
CHRYSENE	ND	10	2.5
DIBENZO(A,H)ANTHRACENE	ND	10	2.5
FLUORANTHENE	ND	10	2.5
FLUORENE	ND	10	2.5
INDENO(1,2,3-CD)PYRENE	ND	10	2.5
NAPHTHALENE	ND	10	2.5
PHENANTHRENE	ND	10	2.5
PYRENE	ND	10	2.5
SURROGATE PARAMETERS	RESULTS	_	OVERY QC LIMIT
2-FLUOROBIPHENYL	500		75.1 30-130
NITROBENZENE-D5	526		78.8 40-130
TERPHENYL-D14	597	666.7	89.5 40-140

CLIENT: PROJECT: BATCH NO.:	URS DHCCP 13K014										
METHOD:	METHOD 3550B										
			===========			: :: :: :: :: :: :: :: :: :: :: :: :: :		: = = = = = = = = = = = = = = = = = = =		=========	=
MATRIX:	SOIL		1		% MO	ISTURE:	NA				
DILUTION FACTOR: SAMPLE ID:	MBLK1S	1	1								
LAB SAMP ID:	SVK009SB	SVK009SI	SVK	009SC							
LAB FILE ID:	RKH107	RKH108	RKH								
DATE EXTRACTED:	11/06/1310:5			06/1310:5	0 DATE	COLLECTED:	NA				
DATE ANALYZED:	11/06/1314:5	4 11/06/13	315:13 11/0	06/1315:3	2 DATE	RECEIVED:	11/06/13	3			
PREP. BATCH:	SVK009S	SVK009S	SVK	009s							
CALIB. REF:	RJH024	RJH024	RJHO)24							
ACCESSION:											
		BLNK RSLT	SPIKE AMT	BS RSL	T BS	SPIKE AMT	BSD RS	SLT BSD	RPD	QC LIMIT	MAX RPD
PARAMETER		(ug/kg)	(ug/kg)	(ug/kg) % REC	(ug/kg)	(ug/kg	g) % REC	(%)	(%)	(%)
Acenaphthene		ND	1330	12	90 97			220 91	6	50-130	50
Acenaphthylene		ND	1330	13	50 101	1330	12	260 94	7	40-130	50
Anthracene		ND	1330	11	80 88	1330	1	130 84	5	40-130	50
Benzo(a)anthrace	ne	ND	1330	14	50 109	1330	13	310 98	10	50-130	50
Benzo(a)pyrene		ND	1330	13	10 98	1330	12	250 94	5	50-130	50
Benzo(b)fluorant	hene	ND	1330	13	60 102	1330	13	500 97	4	50-130	50
Benzo(k)fluorant	hene	ND	1330	13	20 99	1330		260 95	4	50-130	50
Benzo(g,h,i)pery	lene	ND	1330	13	40 101	1330		280 96	4	50-130	50
Chrysene		ND	1330		60 102	1330		230 93	9	50-130	50
Dibenzo(a,h)anth	racene	ND	1330	13	50 102	1330		290 97	5	50-130	50
Fluoranthene		ND	1330		80 96	1330		200 90	6	50-130	50
Fluorene		ND	1330		90 97	1330		90 89	8	50-130	50
Indeno(1,2,3-cd)	pyrene	ND	1330		40 100	1330		280 96	5	50-130	50
Naphthalene		ND	1330		50 86	1330		110 83	4	50-130	50
Phenanthrene		ND	1330		70 88	1330		130 85	4	50-130	50
Pyrene		ND	1330	13	50 101	1330	12	260 94	7	50-130	50
											=
				BS	SPIKE AMT	BSD RSLT	BSD	QC LIMIT			
SURROGATE PARAME	TER	SPIKE AMT (ug/kg)	BS RSLT (ug/kg)	% REC	(ug/kg)	(ug/kg)	% REC	(%)			
2-Fluorobiphenyl		667	479	72	667	476	71	30-130			
Nitrobenzene-d5		667	490	74	667	490	73	40-130			
Terphenyl-d14		667	600	90	667	587	88	40-140			
reiphenyt ur4		007	000	,,,	507	201					

LABORATORY REPORT FOR

URS

DHCCP

METHOD 5030B/8015B TOTAL PETROLEUM HYDROCARBONS BY PURGE AND TRAP

SDG#: 13K014

Page000031

CASE NARRATIVE

Client : URS

Project : DHCCP

: 13K014 SDG

METHOD 5030B/8015B TOTAL PETROLEUM HYDROCARBONS BY PURGE AND TRAP

A total of three (3) soil samples were received on 11/05/13 for TPH-Gasoline analysis, Method 5030B/8015B in accordance with USEPA SW-846, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods.

Holding Time Samples were analyzed within the prescribed holding time.

Calibration

Multi-calibration points were generated to establish initial calibration (ICAL). ICAL was verified using a secondary source (ICV). Continuing calibration (CCV) verifications were carried on a frequency specified by the project. All calibration requirements were within acceptance criteria. Refer to calibration summary forms of ICAL, ICV and CCV for details.

Method Blank Method blank was analyzed at the frequency required by the project. For this SDG, one method blank was analyzed with the samples. Result was compliant to project requirement.

Lab Control Sample A set of LCS/LCD was analyzed with the samples in this SDG. Percent recoveries for GMK002SL/C were all within QC limits.

Matrix QC Sample No matrix QC sample was designated in this SDG.

Surrogate Surrogate was added on QC and field samples. Surrogate recoveries were within project QC limits. Refer to sample result forms for details.

Sample Analysis Samples were analyzed according to prescribed analytical procedures. All project requirements were met otherwise anomalies were discussed within the associated QC parameter.

581

LAB CHRONICLE TOTAL PETROLEUM HYDROCARBONS BY PURGE AND TRAP

Client Project	: URS : DHCCP								SDG NO. Instrum	: 13K014 ent ID : GCT039
					SO	IL				
Client		Laboratory	Dilution	%	Analysis	Extraction	Sample	Calibration	Prep.	
Sample ID		Sample ID	Factor	Moist	DateTime	DateTime	Data FN	Data FN	Batch	Notes
MBLK1S		GMK002SB	1	NA	11/08/1307:43	11/08/1307:43	EK07034A	EK07030A	GMK002S	Method Blank
LCS1S		GMK002SL	1	NA	11/08/1306:25	11/08/1306:25	EK07032A	EK07030A	GMK002S	Lab Control Sample (LCS)
LCD1S		GMK002SC	1	NA	11/08/1307:04	11/08/1307:04	EK07033A	EK07030A	GMK002S	LCS Duplicate
3B-2		K014-01	0.97	22.5	11/08/1308:21	11/08/1308:21	EK07035A	EK07030A	GMK002S	Field Sample
3D-2		K014-02	0.99	12.0	11/08/1309:00	11/08/1309:00	EK07036A	EK07030A	GMK002S	Field Sample

11/08/1309:38 EK07037A

EK07030A

16.0 11/08/1309:38

FN - Filename % Moist - Percent Moisture K014-03

0.93

CC-2

582

Field Sample

GMK002S

SAMPLE RESULTS

	=======================================		
Client : URS		Date Collected	1: 11/04/13
Project : DHCCP		Date Received	1: 11/05/13
Batch No. : 13K014			11/08/13 08:21
Sample ID: 3B-2		Date Analyzed	: 11/08/13 08:21
Lab Samp ID: K014-01		Dilution Factor	: 0.97
Lab File ID: EK07035A		Matrix	: SOIL
Ext Btch ID: GMK002S		% Moisture	
Calib. Ref.: EK07030A		Instrument ID	: GCT039
	RESULTS	RL	MDL
PARAMETERS	(mg/kg)	(mg/kg)	(mg/kg)
GASOLINE	ND	1.3	0.63
SURROGATE PARAMETERS	RESULTS	SPK_AMT % RE	COVERY QC LIMIT
BROMOFLUOROBENZENE	2.01	2.503	80.5 10-160

Parameter Gasoline H-C Range C6-C10

Client : URS	Date Collected: 11/04/13
Project : DHCCP	Date Received: 11/05/13
Batch No. : 13K014	Date Extracted: 11/08/13 09:00
Sample ID: 3D-2	Date Analyzed: 11/08/13 09:00
Lab Samp ID: K014-02	Dilution Factor: 0.99
Lab File ID: EK07036A	Matrix : SOIL
Ext Btch ID: GMK002S	% Moisture : 12.0
Calib. Ref.: EK07030A	Instrument ID : GCT039
RESULTS	RL MDL
PARAMETERS (mg/kg)	(mg/kg) (mg/kg)
GASOL I NE ND	1.1 0.56
SURROGATE PARAMETERS RESULTS	SPK_AMT % RECOVERY QC LIMIT
BROMOFLUOROBENZENE 1.81	2.250 80.4 10-160

Parameter H-C Range Gasoline C6-C10

			= = = =
Client : URS		Date Collected: 11/04/13	
Project : DHCCP		Date Received: 11/05/13	
Batch No. : 13K014		Date Extracted: 11/08/13 0	
Sample ID: CC-2		Date Analyzed: 11/08/13 0	9:38
Lab Samp ID: K014-03		Dilution Factor: 0.93	
Lab File ID: EK07037A		Matrix : SOIL	
Ext Btch ID: GMK002S		% Moisture : 16.0	
Calib. Ref.: EK07030A		Instrument ID : GCT039	
	================================		====
	RESULTS	RL	MDL
PARAMETERS	(mg/kg)	(mg/kg) (mg	ı/kg)
GASOLINE	ND	1.1	0.55
SURROGATE PARAMETERS	RESULTS	SPK_AMT % RECOVERY QC L	IMIT
BROMOFLUOROBENZENE	1.94	2.214 87.8 10	- 160

Parameter Gasoline

H-C Range C6-C10

QC SUMMARIES

		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Client : URS		Date Collected: NA	
Project : DHCCP		Date Received: 11/08/13	
Batch No. : 13K014		Date Extracted: 11/08/13 07:43	
Sample ID: MBLK1S		Date Analyzed: 11/08/13 07:43	
Lab Samp ID: GMK002SB		Dilution Factor: 1	
Lab File ID: EK07034A		Matrix : SOIL	
Ext Btch ID: GMK002S		% Moisture : NA	
Calib. Ref.: EK07030A		Instrument ID : GCT039	
	RESULTS	RL MDL	
PARAMETERS	(mg/kg)	(mg/kg) (mg/kg)	
GASOLINE	ND	1.0 0.50	
SURROGATE PARAMETERS	RESULTS	SPK_AMT % RECOVERY QC LIMIT	
BROMOFLUOROBENZENE	1.82	2.000 91.2 70-140	

Parameter Gasoline H-C Range C6-C10

#### EMAX QUALITY CONTROL DATA LCS/LCD ANALYSIS

CLIENT: PROJECT: BATCH NO.: METHOD:	URS DHCCP 13K014 METHOD 5030B	3/8015B		========	=====	======				State Citie will she way with the	========		-
MATRIX: DILUTION FACTOR:	SOIL	1	1			% MOIS	STURE:	NA					
SAMPLE ID: LAB SAMP ID: LAB FILE ID: DATE EXTRACTED: DATE ANALYZED: PREP. BATCH: CALIB. REF:	MBLK1S GMK002SB EK07034A 11/08/1307:4 11/08/1307:4 GMK002S EK07030A		EKC 306:25 11/ 306:25 11/ GMK	002SC 7033A 08/1307:0 08/1307:0 002S 7030A			COLLECTED: ECEIVED:	NA 11/08/13	5				
ACCESSION:													
PARAMETER		BLNK RSLT (mg/kg)	SPIKE AMT (mg/kg)	BS RSL (mg/kg		BS % REC	SPIKE AMT (mg/kg)	BSD RS (mg/kg		BSD % REC	RPD (%)	QC LIMIT (%)	MAX RPD (%)
Gasoline		ND	25.0	22	.3	89	25.0	22	2.9	92	2	60-130	50
		SPIKE AMT	BS RSLT	=== <b>==</b> ==== BS	====== SP I KE		BSD RSLT	======================================	QC L				=
SURROGATE PARAME	TER	(mg/kg)	(mg/kg)	% REC	(mg/	/kg)	(mg/kg)	% REC	( %	·			
Bromofluorobenze	ne	2.00	2.04	102		2.00	2.06	103	70-	140			

### LABORATORY REPORT FOR

URS

## DHCCP

### METHOD 3550B/8015B TOTAL PETROLEUM HYDROCARBONS BY EXTRACTION

### SDG#: 13K014

Page000041

#### CASE NARRATIVE

Client : URS

Project : DHCCP

: 13K014 SDG

#### METHOD 3550B/8015B PETROLEUM HYDROCARBONS BY EXTRACTION

A total of three (3) soil samples were received on 11/05/13 for TPH Diesel analysis, Method 3550B/8015B in accordance with USEPA SW-846, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods.

Holding Time Samples were analyzed within the prescribed holding time.

Calibration

Multi-calibration points were generated to establish initial calibration (ICAL). ICAL was verified using a secondary source (ICV). Continuing calibration (CCV) verifications were carried on a frequency specified by the project. All calibration requirements were within acceptance criteria. Refer to calibration summary forms of ICAL, ICV and CCV for details.

Method Blank Method blank was analyzed at the frequency required by the project. For this SDG, one method blank was analyzed with the samples. Result was compliant to project requirement.

Lab Control Sample A set of LCS/LCD was analyzed with the samples in this SDG. Percent recoveries for DSK003SL/C were all within QC limits.

Matrix QC Sample No matrix QC sample was designated in this SDG.

Surrogate Surrogates were added on QC and field samples. Surrogate recoveries were within project QC limits. Refer to sample result forms for details.

Sample Analysis Samples were analyzed according to prescribed analytical procedures. All project requirements were met otherwise anomalies were discussed within the associated QC parameter. Samples K014-01 and -02 displayed mix hydrocarbons.

591

#### LAB CHRONICLE PETROLEUM HYDROCARBONS BY EXTRACTION

Client : URS Project : DHCCP			=======================================	· · · · · · · · · · · · · · · · · · ·		SDG NO. Instrumer	: 13KC nt ID : GCT1		==
Client Sample ID	Laboratory Sample ID	Dilution Factor	% Moist	SOIL Analysis DateTime	Extraction DateTime	Sample Data FN	Calibratic Data FN	oñ Prep. Batch	Notes
MBLK1S	DSK003SB	1	NA	11/05/1319:39	11/05/1314:55	LK05025A	LK05015A	DSK003S	Method Blank
LCS1S	DSK003SL	1	NA	11/05/1319:05	11/05/1314:55	LK05023A	LK05015A	DSK003S	Lab Control Sample (LCS)
LCD1S	DSK003SC	1	NA	11/05/1319:22	11/05/1314:55	LK05024A	LK05015A	DSK003S	LCS Duplicate
3B-2	K014-01	1	22.5	11/05/1320:47	11/05/1314:55	LK05029A	LK05027A	DSK003S	Field Sample
3D-2	K014-02	1	12.0	11/05/1321:04	11/05/1314:55	LK05030A	LK05027A	DSK003S	Field Sample
CC-2	K014-03	1	16.0	11/05/1319:56	11/05/1314:55	LK05026A	LK05015A	DSK003S	Field Sample

FN - Filename % Moist - Percent Moisture 592

# SAMPLE RESULTS

===========	==========
ted: 11/04	/13
ved: 11/05	-
ted: 11/05	
zed: 11/05	/13 20:47
tor: 1	
: SOIL	
: 22.5	
D : GCT10	15
	MDL
	(mg/kg)
	6.5
RECOVERY	QC LIMIT
82.0	50-130
78.8	40-160
	70.0

RL :	Reporting	LIMIT
Parameter	H-C	Range
Diesel	C10-	·C24

				==========
Client : URS		Date Col	llected: 11/04	/13
Project : DHCCP			eceived: 11/05	•
Batch No. : 13K014			tracted: 11/05	
Sample ID: 3D-2		Date Ar	nalyzed: 11/05	5/13 21:04
Lab Samp ID: K014-02		Dilution	Factor: 1	
Lab File ID: LK05030A		Matrix	: SOIL	
Ext Btch ID: DSK003S			re : 12.0	
Calib. Ref.: LK05027A		Instrumer	nt ID : GCT10	)5
PARAMETERS	RESULTS (mg/kg)	RL (mg/kg)		MDL (mg/kg)
DIESEL	27	11		5.7
SURROGATE PARAMETERS	RESULTS	SPK_AMT	% RECOVERY	QC LIMIT
BROMOBENZENE	95.9	113.6	84.4	50-130
HEXACOSANE	22.7	28.41	80.0	40-160
RL : Reporting Limit				

KL :	Reporting	LIMIT
Parameter	H-C	Range
Diesel	C10-	·C24

			=======================================	===========
Client : URS		Date Col	llected: 11/04	/13
Project : DHCCP			eceived: 11/05	
Batch No. : 13K014			tracted: 11/05	
Sample ID: CC-2		Date Ar	nalyzed: 11/05	/13 19:56
Lab Samp ID: K014-03		Dilution	Factor: 1	
Lab File ID: LK05026A		Matrix	: SOIL	
Ext Btch ID: DSK003S		% Moistur	re : 16.0	
Calib. Ref.: LK05015A		Instrumer	nt ID : GCT10	)5
PARAMETERS	RESULTS (mg/kg)	RL (mg/kg)		MDL (mg/kg)
DIESEL	ND	12		6.0
SURROGATE PARAMETERS	RESULTS	SPK_AMT	% RECOVERY	QC LIMIT
	98.9	119.0	83.0	50-130
BROMOBENZENE	21.6	29.76	72.5	
HEXACOSANE	21.0	27.10	12.5	40 100
RL : Reporting Limit				

RL : Reporting Limit Parameter H-C Range Diesel C10-C24

# QC SUMMARIES

Client : URS			lected: NA	
Project : DHCCP			eceived: 11/05	
Batch No. : 13K014			racted: 11/05	
Sample ID: MBLK1S		Date Ar	nalyzed: 11/05	5/13 19:39
Lab Samp ID: DSK003SB		Dilution	Factor: 1	
Lab File ID: LK05025A		Matrix	: SOIL	
Ext Btch ID: DSK003S		% Moistur	re :NA	
Calib. Ref.: LK05015A		Instrumer	nt ID : GCT10	)5
	RESULTS	======================================		
======================================	RESULTS (mg/kg)	RL (mg/kg)		MDI (mg/kg)
				(mg/kg
DIESEL	(mg/kg)	(mg/kg)	% RECOVERY	(mg/kg) 5.(
PARAMETERS DIESEL SURROGATE PARAMETERS BROMOBENZENE	(mg/kg)  ND	(mg/kg)  10	% RECOVERY 	(mg/kg) 5.( QC LIMI

RL :	Reporting	Limit
Parameter	H - C	Range
Diesel	C10-	-C24

Page000049

CLIENT: PROJECT: BATCH NO.: METHOD:	URS DHCCP 13K014 METHOD 3550B	3/80158									=
MATRIX: DILUTION FACTOR: SAMPLE ID:	SOIL 1 MBLK1S	1	1		% MOI:	STURE:	NA				
LAB SAMP ID: LAB FILE ID: DATE EXTRACTED: DATE ANALYZED: PREP. BATCH:	DSK003SB LK05025A		LK05 514:55 11/0 519:05 11/0 DSK0	003SC 024A 05/1314:55 05/1319:22 003S 0015A		COLLECTED: RECEIVED:	NA 11/05/13	5			
ACCESSION:											
PARAMETER		BLNK RSLT (mg/kg)	SPIKE AMT (mg/kg)	BS RSLT (mg/kg)		SPIKE AMT (mg/kg)			RPD (%)	QC LIMIT (%)	MAX RPD (%)
Diesel		ND	500	41	1 82	500	22222	11 82	0	60-130	50
*****	=======================================				========	============					=
SURROGATE PARAME		SPIKE AMT (mg/kg)	BS RSLT (mg/kg)	BS % REC	SPIKE AMT (mg/kg)	BSD RSLT (mg/kg)	BSD % REC	QC LIMIT			
Bromobenzene Hexacosane		100 25.0	91.6 20.6	92 82	100 25.0	92.2 20.6	92 82	50-130 60-130			

## LABORATORY REPORT FOR

URS

## DHCCP

### METHOD 3550B/8081A PESTICIDES

SDG#: 13K014

Client : URS

Project : DHCCP

SDG : 13K014

#### METHOD 3550B/8081A PESTICIDES

A total of three (3) soil samples were received on 11/05/13 for Pesticides Organochlorine analysis, Method 3550B/8081A in accordance with USEPA SW-846, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods.

Holding Time Samples were analyzed within the prescribed holding time.

Instrument Performance and Calibration Instrument performance was checked prior to calibration. DDT and Endrin breakdown were within specification. Multi-calibration points were generated to establish initial calibration (ICAL). ICAL was verified using secondary source (ICV). Continuing calibration (CCV) was carried on at a frequency required by the project. All project calibration requirements were satisfied. Refer to calibration summary forms of ICAL, ICV and CCV for details.

Method Blank Method blank was analyzed at the frequency required by the project. For this SDG, one method blank was analyzed with the samples. Result was compliant to project requirement.

Lab Control Sample A set of LCS/LCD was analyzed with the samples in this SDG. Percent recoveries for CPK003SL/C were all within QC limits.

Matrix QC Sample Was designated in this SDG.

Surrogate Surrogates were added on QC and field samples. Surrogate recoveries were within project QC limits. Refer to sample result forms for details.

Sample Analysis

Samples were analyzed according to prescribed analytical procedures. All project requirements were met otherwise anomalies were discussed within the associated QC parameter. Positive sample results were confirmed by a second column. Relative percentage difference (RPD) between the two results was evaluated. If RPD is less than 40% and peaks are well defined the higher result is reported. Where RPD is greater than 40% the chromatogram is checked for anomalies and results are selected based on processed knowledge. If there is no evidence of any chromatographic ambiguity, the higher result is reported.

LAB CHRONICLE PESTICIDES

Client : URS Project : DHCCP						************		SDG NO. Instrum	: 13K014 ent ID : E8
				so	IL				
Client	Laboratory	Dilution	%	Analysis	Extraction	Sample	Calibration	Prep.	
Sample ID	Sample ID	Factor	Moist	DateTime	DateTime	Data FN	Data FN	Batch	Notes
MBLK1S	CPK003SB	1	NA	11/07/1314:13	11/06/1310:51	MK06050A	MK06048A	CPK003S	Method Blank
LCS1S	CPK003SL	1	NA	11/07/1314:33	11/06/1310:51	MK06051A	MK06048A	CPK003S	Lab Control Sample (LCS)
LCD1S	CPK003SC	1	NA	11/07/1314:53	11/06/1310:51	MK06052A	MK06048A	CPK003S	LCS Duplicate
3B-2	K014-01	1	22.5	11/07/1315:33	11/06/1310:51	MK06054A	MK06048A	CPK003S	Field Sample
3D-2	K014-02	1	12.0	11/07/1315:53	11/06/1310:51	MK06055A	MK06048A	CPK003S	Field Sample
CC-2	K014-03	1	16.0	11/07/1318:25	11/06/1310:51	MK06062A	MK06058A	CPK003S	Field Sample

FN - Filename % Moist - Percent Moisture

# SAMPLE RESULTS

#### METHOD 3550B/8081A PESTICIDES

		ana ana aona kana kana ang dana kana kana kana kana kana kana kana		
Client : URS			lected: 11/04/13	
Project : DHCCP			ceived: 11/05/13	
Batch No. : 13K014			racted: 11/06/13 1	0:51
Sample ID: 3B-2			alyzed: 11/07/13 1	
Lab Samp ID: K014-01		Dilution	•	
Lab File ID: MK06054A		Matrix	: SOIL	
Ext Btch ID: CPK003S		% Moistur	e : 22.5	
Calib. Ref.: MK06048A		Instrumen	t ID : GCE8	
	=======================================			
	RESULTS	RL	MDL	
PARAMETERS	(ug/kg)	(ug/kg)	(ug/kg)	
ALPHA-BHC	(ND) ND	2.6	0.52 0.52	
GAMMA-BHC (LINDANE)	(ND) ND	2.6	0.52 0.52	
BETA-BHC	(ND) 2.5J	2.6	0.52 0.52	
HEPTACHLOR	(ND) 2.4J	2.6	0.52 0.52	
DELTA-BHC	(ND) ND	2.6	0.52 0.52	
ALDRIN	(ND) ND	2.6	0.52 0.52	
HEPTACHLOR EPOXIDE	(ND) ND	2.6	0.52 0.52	
GAMMA-CHLORDANE	(ND) ND	2.6	0.52 0.52	
ALPHA-CHLORDANE	(ND) ND	2.6	0.52 0.52	
ENDOSULFAN I	(ND) ND	2.6	0.52 0.52	
4,4'-DDE	(ND) ND	2.6	0.52 0.52	
DIELDRIN	(ND) ND	2.6	0.52 0.52	
ENDRIN	(ND) ND	2.6	0.52 0.52	
4,4'-DDD	(ND) ND	2.6	0.52 0.52	
ENDOSULFAN II	(ND) ND	2.6	0.52 0.52	
4,4'-DDT	(ND) ND	2.6	0.52 0.52	
ENDRIN ALDEHYDE	(ND) ND	2.6	0.52 0.52	
ENDOSULFAN SULFATE	(ND) 1.1J	2.6	0.52 0.52	
ENDRIN KETONE	(ND) ND	2.6	0.52 0.52	
METHOXYCHLOR	(ND) ND	13	5.2 5.2	
TOXAPHENE	(ND) ND	65	13   13	
SURROGATE PARAMETERS	RESULTS	SPK_AMT	% RECOVERY	QC LIMIT
TETRACHLORO-M-XYLENE	(22.28)   18.24	17.20	(130) 106	50-140
DECACHLOROBIPHENYL	16.40 (17.45)	17.20	95.4 (101)	10-160
	•			

RL : Reporting limit

Left of  $\mid$  is related to first column ; Right of  $\mid$  related to second column Final result indicated by ( )

#### METHOD 3550B/8081A PESTICIDES

Client : URS		Date Col	lected: 11/04/13	
Project : DHCCP		Date Re	ceived: 11/05/13	
Batch No. : 13K014		Date Ext	racted: 11/06/13 1	0:51
Sample ID: 3D-2		Date Ar	nalyzed: 11/07/13 1	5:53
Lab Samp ID: K014-02		Dilution	Factor: 1	
Lab File ID: MK06055A		Matrix	: SOIL	
Ext Btch ID: CPK003S		% Moistur	re : 12.0	
Calib. Ref.: MK06048A			nt ID : GCE8	
		= = = = = = = = = = = = = = = = = = = =		
	RESULTS	RL	MDL	
PARAMETERS	(ug/kg)	(ug/kg)	(ug/kg)	
ALPHA-BHC	(ND) ND	2.3	0.45 0.45	
GAMMA-BHC (LINDANE)	(ND) ND	2.3	0.45 0.45	
BETA-BHC	(ND) ND	2.3	0.45 0.45	
HEPTACHLOR	(ND) ND	2.3	0.45 0.45	
DELTA-BHC	(ND) ND	2.3	0.45 0.45	
ALDRIN	(ND) ND	2.3	0.45 0.45	
HEPTACHLOR EPOXIDE	(ND) ND	2.3	0.45 0.45	
GAMMA-CHLORDANE	(ND) ND	2.3	0.45 0.45	
ALPHA-CHLORDANE	(ND) ND	2.3	0.45 0.45	
ENDOSULFAN I	(ND) ND	2.3	0.45 0.45	
4,4'-DDE	(ND) ND	2.3	0.45 0.45	
DIELDRIN	(ND) ND	2.3	0.45 0.45	
ENDRIN	(ND) ND	2.3	0.45 0.45	
4,4'-DDD	(ND) ND	2.3	0.45 0.45	
ENDOSULFAN II	(ND) ND	2.3	0.45 0.45	
4,4'-DDT	(ND) ND	2.3	0.45 0.45	
ENDRIN ALDEHYDE	3.5 (ND)	2.3	0.45 0.45	
ENDOSULFAN SULFATE	(ND) 0.95J	2.3	0.45 0.45	
ENDRIN KETONE	(ND) ND	2.3	0.45 0.45	
METHOXYCHLOR	(ND) 6.2J	11	4.5 4.5	
TOXAPHENE	(ND) ND	57	11   11	
SURROGATE PARAMETERS	RESULTS	SPK_AMT	% RECOVERY	QC LIMIT
TETRACHLORO-M-XYLENE	(18.41) 16.41	15.15	(122) 108	50-140
DECACHLOROBIPHENYL	(14.84) 14.70	15.15	(98.0) 97.0	10-160

RL : Reporting limit

Left of | is related to first column ; Right of | related to second column Final result indicated by ( )

				====
Client : URS		Date Col	lected: 11/04/13	
Project : DHCCP			ceived: 11/05/13	
Batch No. : 13K014			racted: 11/06/13 1	0:51
Sample ID: CC-2			alyzed: 11/07/13 1	
Lab Samp ID: K014-03		Dilution		
Lab File ID: MK06062A		Matrix	: SOIL	
Ext Btch ID: CPK003S		% Moistur	e : 16.0	
Calib. Ref.: MK06058A		Instrumen		
			=======================================	====
	RESULTS	RL	MDL	
PARAMETERS	(ug/kg)	(ug/kg)	(ug/kg)	
ALPHA-BHC	(ND) 0.55J	2.4	0.48 0.48	
GAMMA-BHC (LINDANE)	(ND) ND	2.4	0.48 0.48	
BETA-BHC		2.4	0.48 0.48	
HEPTACHLOR		2.4	0.48 0.48	
DELTA-BHC		2.4	0.48 0.48	
ALDRIN		2.4	0.48 0.48	
HEPTACHLOR EPOXIDE		2.4	0.48 0.48	
GAMMA-CHLORDANE		2.4	0.48 0.48	
ALPHA-CHLORDANE	(ND) ND	2.4	0.48 0.48	
ENDOSULFAN I	(ND) ND	2.4	0.48 0.48	
4,4'-DDE	(0.75J) 0.73J	2.4	0.48 0.48	
DIELDRIN	(ND) ND	2.4	0.48 0.48	
ENDRIN	(ND) ND	2.4	0.48 0.48	
4,4'-DDD	(ND) ND	2.4	0.48 0.48	
ENDOSULFAN II	(ND) ND	2.4	0.48 0.48	
4,4'-DDT	(ND) ND	2.4	0.48 0.48	
ENDRIN ALDEHYDE	0.71J (ND)	2.4	0.48 0.48	
ENDOSULFAN SULFATE	(ND) ND	2.4	0.48 0.48	
ENDRIN KETONE	(ND) ND	2.4	0.48 0.48	
METHOXYCHLOR	(ND) ND	12	4.8 4.8	
TOXAPHENE	(ND) ND	60	12 12	
SURROGATE PARAMETERS	RESULTS	SPK_AMT	% RECOVERY	QC LIMI
TETRACHLORO-M-XYLENE	(17.25) 16.21	15.87	(109) 102	50-14
DECACHLOROBIPHENYL	13.15 (15.64)	15.87	82.9 (98.5)	10-160
	,		·	

RL : Reporting limit Left of | is related to first column ; Right of | related to second column Final result indicated by ( )

## **QC SUMMARIES**

#### METHOD 3550B/8081A PESTICIDES

		==================		====			
Client : URS		Date Coll	ected: NA				
Project : DHCCP		Date Rec	eived: 11/06/13				
Batch No. : 13K014		Date Extracted: 11/06/13 10:51					
Sample ID: MBLK1S			lyzed: 11/07/13 1	4:13			
Lab Samp ID: CPK003SB		Dilution F	actor: 1				
Lab File ID: MK06050A		Matrix	: SOIL				
Ext Btch ID: CPK003S		% Moisture	e :NA				
Calib. Ref.: MK06048A			: ID : GCE8				
	RESULTS	RL	MDL				
PARAMETERS	(ug/kg)	(ug/kg)	(ug/kg)				
ALPHA-BHC	(ND) ND	2.0	0.40 0.40				
GAMMA-BHC (LINDANE)	(ND) ND	2.0	0.40 0.40				
BETA-BHC	(ND) ND	2.0	0.40 0.40				
HEPTACHLOR	(ND) ND	2.0	0.40 0.40				
DELTA-BHC	(ND) ND	2.0	0.40 0.40				
ALDRIN	(ND) ND	2.0	0.40 0.40				
HEPTACHLOR EPOXIDE	(ND) ND	2.0	0.40 0.40				
GAMMA-CHLORDANE	(ND) ND	2.0	0.40 0.40				
ALPHA-CHLORDANE	(ND) ND	2.0	0.40 0.40				
ENDOSULFAN I	(ND) ND	2.0	0.40 0.40				
4,4'-DDE	(ND) ND	2.0	0.40 0.40				
DIELDRIN	(ND) ND	2.0	0.40 0.40				
ENDRIN	(ND) ND	2.0	0.40 0.40				
4,4'-DDD	(ND) ND	2.0	0.40 0.40				
ENDOSULFAN II	(ND) ND	2.0	0.40 0.40				
4,4'-DDT	(ND) ND	2.0	0.40 0.40				
ENDRIN ALDEHYDE	(ND) ND	2.0	0.40 0.40				
ENDOSULFAN SULFATE	(ND) ND	2.0	0.40 0.40				
ENDRIN KETONE	(ND) ND	2.0	0.40 0.40				
METHOXYCHLOR	(ND) ND	10	4.0 4.0				
TOXAPHENE	(ND) ND	50	10 10				
SURROGATE PARAMETERS	RESULTS	SPK_AMT	% RECOVERY	QC LIM			
TETRACHLORO-M-XYLENE	13.68 (14.77)	13.33	103 (111)	60-1			
DECACHLOROBIPHENYL	13.24 (13.69)	13.33	99.3 (103)	60-14			

RL : Reporting limit Left of  $\mid$  is related to first column ; Right of  $\mid$  related to second column Final result indicated by ( )

#### EMAX QUALITY CONTROL DATA LCS/LCD ANALYSIS

609

DWR-207

 CLIENT:
 URS

 PROJECT:
 DHCCP

 BATCH NO.:
 13K014

 METHOD:
 SW3550B/8081A

MATRIX:	SOIL			% MOISTURE:	NA
DILUTION FACTOR:	1	1	1		
SAMPLE ID:	MBLK1S				
LAB SAMP ID:	CPK003SB	CPK003SL	CPK003SC		
LAB FILE ID:	MK06050A	MK06051A	MK06052A		
DATE EXTRACTED:	11/06/1310:51	11/06/1310:51	11/06/1310:51	DATE COLLECTED:	NA
DATE ANALYZED:	11/07/1314:13	11/07/1314:33	11/07/1314:53	DATE RECEIVED:	11/06/13
PREP. BATCH:	CPK003S	CPK003S	CPK003S		
CALIB. REF:	MK06048A	MK06048A	MK06048A		

ACCESSION:

PARAMETER	BLNK RSL (ug/kg)		BS RSLT (ug/kg)	BS % RE		BSD RSL (ug/kg)		RPD (%)	QC LIMIT	MAX RPD (%)
alpha-BHC	(ND) ND	6.67	(7.52) 8.3	) (113)	24 6.67	(7.67) 8.3	4 (115) 125	(2)   1	50-140	50
alpha-BHC gamma-BHC (Lindane) beta-BHC Heptachlor	(ND) ND	6.67	(7.21) 7.70					(0) 1	60-130	50
beta-BHC	(ND) ND	6.67	(7.99) 8.1	• • •				(0) 1	50-130	50
Heptachlor	(ND) ND	6.67	7.06 (7.					0 (2)	50-140	50
delta-BHC	(ND) ND	6.67	8.02 (8.)			1.4.1.1		1 (0)	50-150	50
Aldrin	(ND) ND	6.67	7.20 (7.)					1 (1)	60-140	50
Heptachlor Epoxide	(ND) ND	6.67	7.22 (8.					0(0)	70-130	50
gamma-Chlordane	(ND) ND	6.67	7.53 (8.0					2(1)	70-130	50
alpha-Chlordane	(ND) ND	6.67	7.22 (7.0	56) 108 (				0 (0)	70-130	50
Endosulfan I	(ND) ND	6.67	6.87 (8.)			1.		0(0)	60-130	50
4,4'-DDE	(ND) ND	6.67	6.89 (7.8	· · · · · ·				0(0)	70-140	50
Dieldrin	(ND) ND	6.67	7.03 (8.					1 (0)	70-140	50
Endrin	(ND) ND	6.67	6.86 (7.0					2 (1)	70-150	50
4,4'-DDD	(ND) ND	6.67	6.59 (7.8	33) 99 (	(117) 6.67	1 .		1 (2)	70-140	50
Endosulfan II	(ND) ND	6.67	7.13 (7.9	2) 107 (	(119) 6.67			2 (1)	70-130	50
4,4'-DDT	(ND) ND	6.67	(7.82) 7.5					(1) 1	70-150	50
Endrin aldehyde	(ND) ND	6.67	7.52 (8.3	39) 113 (	(126) 6.67			7 (7)	70-130	50
Endosulfan Sulfate	(ND) ND	6.67	7.38 (8.					2 (2)	70-150	50
Endrin Ketone	(ND) ND	6.67	6.88 (7.0	59) 103 (	(115) 6.67			3 (2)	70-140	50
Methoxychlor	(ND) ND	66.7	70.9 (74					2 (1)	70-130	50
SURROGATE PARAMETER	SPIKE AMT (ug/kg)	BS RSLT (ug/kg)	BS % REC	SPIKE AMT (ug/kg)	BSD RSLT (ug/kg)	BSD % REC	QC LIMIT ( % )		======	
Tetrachloro-m-xylene Decachlorobiphenyl	13.33 13.33	13.79 (14.55) (13.59) 13.24	103 (109) (102) 99.3	13.33 13.33	14.47 (15.13) 13.71 (13.92)	109 (113) 103 (104)	60-130 60-140			

## LABORATORY REPORT FOR

URS

## DHCCP

### METHOD 3550B/8081A PCBS

SDG#: 13K014

#### CASE NARRATIVE

Client : URS

Project : DHCCP

SDG : 13K014

#### METHOD 3550B/8082 PCBS

A total of three (3) soil samples were received on 11/05/13 for Polychlorinated Biphenyls (PCBs) analysis, Method 3550B/8082 in accordance with USEPA SW-846, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods.

Holding Time Samples were analyzed within the prescribed holding time.

Calibration

Multi-calibration points were generated to establish initial calibration (ICAL). ICAL was verified using a secondary source (ICV). Continuing calibration (CCV) verifications were carried on a frequency specified by the project. All calibration requirements were within acceptance criteria. Refer to calibration summary forms of ICAL, ICV and CCV for details.

Method Blank Method blank was analyzed at the frequency required by the project. For this SDG, one method blank was analyzed with the samples. Result was compliant to project requirement.

Lab Control Sample A set of LCS/LCD was analyzed with the samples in this SDG. Percent recoveries for 60K003SL/C were all within QC limits.

Matrix QC Sample Was designated in this SDG.

Surrogate Surrogates were added on QC and field samples. Surrogate recoveries were within project QC limits. Refer to sample result forms for details.

Sample Analysis Samples were analyzed according to prescribed analytical procedures. All project requirements were met otherwise anomalies were discussed within the associated QC parameter. Sample extracts subjected to appropriate cleanup technique to reduce matrix interference are recorded in extraction log.

611

LAB CHRONICLE PCBs

Client : URS Project : DHCCP								SDG NO. Instrum	: 13K014 ent ID : 71
				SO	TI				
Client	Laboratory	Dilution	%	Analysis	Extraction	Sample	Calibration	Prep.	
Sample ID	Sample ID	Factor	Moist	DateTime	DateTime	Data FN	Data FN	Batch	Notes
MBLK1S	60K003SB	1	NA	11/06/1316:05	11/06/1310:51	KK05039A	KK05036A	CPK003S	Method Blank
LCS1S	60K003SL	1	NA	11/06/1316:29	11/06/1310:51	KK05040A	KK05036A	CPK003S	Lab Control Sample (LCS)
LCD1S	60K003SC	1	NA	11/06/1316:53	11/06/1310:51	KK05041A	KK05036A	CPK003S	LCS Duplicate
3B-2	K014-01	1	22.5	11/06/1317:42	11/06/1310:51	KK05043A	KK05036A	CPK003S	Field Sample
3D-2	K014-02	1	12.0	11/06/1318:06	11/06/1310:51	KK05044A	KK05036A	CPK003S	Field Sample
cc-2	K014-03	1	16.0	11/06/1318:30	11/06/1310:51	KK05045A	KK05036A	CPK003S	Field Sample

FN - Filename % Moist - Percent Moisture 612

# SAMPLE RESULTS

## METHOD 3550B/8082

PCBs

Client : URS		Date Coll	ected: 11/04/13	
Project : DHCCP		Date Rec	eived: 11/05/13	
Batch No. : 13K014		Date Extr	acted: 11/06/13 1	0:51
Sample ID: 3B-2		Date Ana	lyzed: 11/06/13 1	7:42
Lab Samp ID: K014-01		Dilution F	actor: 1	
Lab File ID: KK05043A		Matrix	: SOIL	
Ext Btch ID: CPK003S		% Moisture	: 22.5	
Calib. Ref.: KK05036A		Instrument	ID : GCT071	
=======================================				
	RESULTS	RL	MDL	
PARAMETERS	(ug/kg)	(ug/kg)	(ug/kg)	
PCB-1016	(ND) ND	65	22 22	
PCB-1221	(ND) ND	65	22 22	
PCB-1232	(ND) ND	65	22 22	
PCB-1242	(ND) ND	65	22 22	
PCB-1248	(ND) ND	65	22 22	
PCB-1254	(ND) ND	65	22 22	
PCB-1260	(ND) ND	65	22 22	
SURROGATE PARAMETERS	RESULTS	SPK_AMT	% RECOVERY	QC LIMIT
TETRACHLORO-M-XYLENE	(17.93)   17.19	17.20	(104) 100	50-130
DECACHLOROBIPHENYL	(17.88) 17.29	17.20	(104) 101	50-150

Left of  $\mid$  is related to first column ; Right of  $\mid$  related to second column Final result indicated by ( )

* Out side of QC Limit

## 615

## METHOD 3550B/8082

PCBs

Client : URS		Date Col	lected: 11/04/13	
Project : DHCCP		Date Re	ceived: 11/05/13	
Batch No. : 13K014		Date Ext	racted: 11/06/13 1	0:51
Sample ID: 3D-2		Date An	alyzed: 11/06/13 1	8:06
Lab Samp ID: K014-02		Dilution	Factor: 1	
Lab File ID: KK05044A		Matrix	: SOIL	
Ext Btch ID: CPK003S		% Moistur	e :12.0	
Calib. Ref.: KK05036A		Instrumen	t ID : GCT071	
	RESULTS	RL	MDL	
PARAMETERS	(ug/kg)	(ug/kg)	(ug/kg)	
PCB-1016	(ND) ND	57	19 19	
PCB-1221	(ND) ND	57	19 19	
PCB-1232	(ND) ND	57	19 19	
PCB-1242	(ND) ND	57	19 19	
PCB-1248	(ND) ND	57	19 19	
PCB-1254	(ND) ND	57	19 19	
РСВ-1260	(ND) ND	57	19 19	
SURROGATE PARAMETERS	RESULTS	SPK_AMT	% RECOVERY	QC LIMIT
TETRACHLORO-M-XYLENE	(15.67)   15.15	15.15	(103) 100	50-130
DECACHLOROBIPHENYL	(15.79) 15.62	15.15	(104) 103	50-150

Left of | is related to first column ; Right of | related to second column

Final result indicated by ( )

* Out side of QC Limit

## METHOD 3550B/8082 PCBs

Client : URS		Date Coll	ected: 11/04/13	
Project : DHCCP		Date Rec	ceived: 11/05/13	
Batch No. : 13K014		Date Extr	acted: 11/06/13 1	0:51
Sample ID: CC-2		Date Ana	alyzed: 11/06/13 1	8:30
Lab Samp ID: K014-03		Dilution F	actor: 1	
Lab File ID: KK05045A		Matrix	: SOIL	
Ext Btch ID: CPK003S		% Moisture	: 16.0	
Calib. Ref.: KK05036A		Instrument	: ID : GCT071	
PARAMETERS	RESULTS (ug/kg)	RL (ug/kg)	MDL (ug/kg)	
PCB-1016	(ND) ND	60	20 20	
PCB-1221	(ND) ND	60	20 20	
PCB-1232	(ND) ND	60	20 20	
PCB-1242	(ND) ND	60	20 20	
PCB-1248	(ND) ND	60	20 20	
PCB-1254	(ND) ND	60	20 20	
РСВ-1260	(ND) ND	60	20 20	
SURROGATE PARAMETERS	RESULTS	SPK_AMT	% RECOVERY	QC LIMIT
TETRACHLORO-M-XYLENE	(15.91)   15.27	15.87	(100)   96.2	50-130
DECACHLOROBIPHENYL	(15.92) 15.82	15.87	(100) 99.7	50-150

Left of | is related to first column ; Right of | related to second column

Final result indicated by ( ) * Out side of QC Limit

# **QC SUMMARIES**

Page000068

### METHOD 3550B/8082 PCBs

Client : URS		Date Col	lected: NA	
Project : DHCCP		Date Re	ceived: 11/06/13	
Batch No. : 13K014		Date Ext	racted: 11/06/13 1	0:51
Sample ID: MBLK1S		Date An	alyzed: 11/06/13 1	6:05
Lab Samp ID: 60K003SB		Dilution	Factor: 1	
Lab File ID: KK05039A		Matrix	: SOIL	
Ext Btch ID: CPK003S		% Moistur	e :NA	
Calib. Ref.: KK05036A		Instrumen	t ID : GCT071	
		=======================================		====
	RESULTS	RL	MDL	
PARAMETERS	(ug/kg)	(ug/kg)	(ug/kg)	
PCB-1016	(ND) ND	50	17 17	
PCB-1221	(ND) ND	50	17   17	
PCB-1232	(ND) ND	50	17 17	
PCB-1242	(ND) ND	50	17 17	
PCB-1248	(ND) ND	50	17 17	
PCB-1254	(ND) ND	50	17 17	
PCB-1260	(ND) ND	50	17 17	
SURROGATE PARAMETERS	RESULTS	SPK_AMT	% RECOVERY	QC LIMIT
TETRACHLORO-M-XYLENE	(12.75) 12.21	17 77	(95.7) 91.6	60-130
		13.33	105 (105)	70-140
DECACHLOROBIPHENYL	13.97 (14.00)	13.33	(601)[601	70-140

Left of | is related to first column ; Right of | related to second column

Final result indicated by ( )

* Out side of QC Limit

CLIEN PROJE BATCH METHC	ECT: H NO.:	URS DHCCP 13K014 METHOD 3550B/	8082									
MATRI		SOIL	1	4	% MOISTURE:	NA						
SAMPL LAB S LAB F DATE DATE PREP	IION FACTOR: LE ID: SAMP ID: FILE ID: EXTRACTED: ANALYZED: . BATCH: 3. REF:	I MBLK1S 60K003SB KK05039A 11/06/1310:51 11/06/1316:05 CPK003S KK05036A	1 60K003SL KK05040A 11/06/1310:5 11/06/1316:24 CPK003S KK05036A									
ACCES	SSION:											
PARAM	METER		BLNK RSLT (ug/kg)	SPIKE AMT (ug/kg)	BS RSLT (ug/kg)	BS % REC	SPIKE AMT (ug/kg)	BSD RSLT (ug/kg)	BSD % REC	RPD (%)	QC LIMIT (%)	MAX RPD (%)
PCB-' PCB-' J	1016	-	(ND)   ND (ND)   ND	167 167	(176)   172 181   (183)	(106)   103 109   (110)	167 167	(167)   163 172   (173	(100)  98 ) 103 (104)	(5) 5 5 (6)	70-140 70-140	50 50
) ===== ) ) ) ) ) SURR(	OGATE PARAME		PIKE AMT (ug/kg)	BS RSLT (ug/kg)			) RSLT g/kg)	BSD % REC	QC LIMIT (%)			
	achloro-m-xy chlorobipher			.77) 13.40 .43) 14.36			)   13 . 14 )   13 . 84	(102) 98.6 (104) 104	60-130 70-140			

Page000070

# LABORATORY REPORT FOR

URS

DHCCP

## METHOD 8151A HERBICIDES

SDG#: 13K014

CASE NARRATIVE

Client : URS

Project : DHCCP

SDG : 13K014

#### METHOD 8151A HERBICIDES

A total of three (3) soil samples were received on 11/05/13 for Chlorinated Herbicides analysis, Method 8151A in accordance with USEPA SW-846, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods.

Holding Time Samples were analyzed within the prescribed holding time.

Calibration

Multi-calibration points were generated to establish initial calibration (ICAL). ICAL was verified using a secondary source (ICV). Continuing calibration (CCV) verifications were carried on a frequency specified by the project. All calibration requirements were within acceptance criteria. Refer to calibration summary forms of ICAL, ICV and CCV for details.

Method Blank Method blank was analyzed at the frequency required by the project. For this SDG, one method blank was analyzed with the samples. Result was compliant to project requirement.

Lab Control Sample A set of LCS/LCD was analyzed with the samples in this SDG. Percent recoveries for HEK001SL/C were all within QC limits.

Matrix QC Sample Was designated in this SDG.

Surrogate Surrogate was added on QC and field samples. Surrogate recoveries were within project QC limits. Refer to sample result forms for details.

Sample Analysis Samples were analyzed according to prescribed analytical procedures. All project requirements were met otherwise anomalies were discussed within the associated QC parameter.

621

LAB CHRONICLE HERBICIDES

Elient Project	: URS : DHCCP			=======================================					SDG NO. Instrum	: 13K014 ent ID : 16
Client		Laboratory	Dilution	%	SOI Analysis	Extraction	Sample	Calibration	,	
Sample ID		Sample ID	Factor	Moist	DateTime	DateTime	Data FN	Data FN	Batch	Notes
MBLK1S LCS1S LCD1S 3B-2 3D-2 CC-2		HEK001SB HEK001SL HEK001SC K014-01 K014-02 K014-03	1 1 1 1 1	NA NA 22.5 12.0 16.0	11/07/1310:47 11/07/1311:15 11/07/1311:42 11/07/1312:10 11/07/1312:37 11/07/1313:05	11/06/1315:03 11/06/1315:03 11/06/1315:03 11/06/1315:03 11/06/1315:03 11/06/1315:03	WK07004A WK07005A WK07006A WK07007A WK07008A WK07009A	WK07002A WK07002A WK07002A WK07002A WK07002A WK07002A WK07002A	HEK001S HEK001S HEK001S HEK001S HEK001S HEK001S	Method Blank Lab Control Sample (LCS) LCS Duplicate Field Sample Field Sample Field Sample

FN - Filename % Moist - Percent Moisture 622

# SAMPLE RESULTS

* *

METHOD 8151A HERBICIDES

Client : URS		Date Col	lected: 11/04/13	
Project : DHCCP		Date Re	ceived: 11/05/13	
Batch No. : 13K014		Date Ext	racted: 11/06/13 '	15:03
Sample ID: 3B-2		Date Ar	alyzed: 11/07/13 '	12:10
Lab Samp ID: K014-01		Dilution	Factor: 1	
Lab File ID: WK07007A		Matrix	: SOIL	
Ext Btch ID: HEK001S		% Moistur	e : 22.5	
Calib. Ref.: WK07002A		Instrumer	t ID : GCT016	
			ND	
	RESULTS	RL	MDL	
PARAMETERS	(ug/kg)	(ug/kg)	(ug/kg)	
2,4-D	(ND) ND	13	6.5 6.5	
2,4-DB	(ND) 16	13	6.5 6.5	
2,4,5-T	(ND) ND	13	6.5 6.5	
2,4,5-TP(SILVEX)	(ND) ND	13	6.5 6.5	
DALAPON	(ND) ND	13	6.5 6.5	
DICAMBA	(ND) ND	13	6.5 6.5	
DICHLOROPROP	(ND) ND	13	6.5 6.5	
DINOSEB	(ND) ND	13	6.5 6.5	
MCPA	(ND) ND	2600	1300 1300	
МСРР	(ND) 2700	2600	1300 1300	
SURROGATE PARAMETERS	RESULTS	SPK_AMT	% RECOVERY	QC LIMI
2,4-DCPAA	(612.7) 604.4	645.2	(95.0) 93.7	20-15

Left of | is related to first column; Right of | related to second column

Final result indicated by ( )

Client : URS		Date Coll	ected: 11/04/13	
Project : DHCCP		Date Rec	eived: 11/05/13	
Batch No. : 13K014			acted: 11/06/13 1	
Sample ID: 3D-2		Date Ana	lyzed: 11/07/13 1	2:37
Lab Samp ID: K014-02		Dilution F	actor: 1	
Lab File ID: WK07008A		Matrix	: SOIL	
Ext Btch ID: HEK001S		% Moisture	: 12.0	
Calib. Ref.: WK07002A		Instrument	ID : GCT016	
=======================================				====
			MD I	
	RESULTS	RL	MDL	
PARAMETERS	(ug/kg)	(ug/kg)	(ug/kg)	
2,4-D	(ND) ND	11	5.7 5.7	
2,4-DB	(ND) 12	11	5.7 5.7	
2,4,5-T	(ND) ND	11	5.7 5.7	
2,4,5-TP(SILVEX)	(ND) ND	11	5.7 5.7	
DALAPON	(ND) ND		5.7 5.7	
DICAMBA	(ND) ND	11	5.7 5.7	
DICHLOROPROP	(ND) ND	11	5.7 5.7	
DINOSEB	(ND) ND	11	5.7 5.7	
MCPA	(ND) ND	2300	1100 1100	
MCPP	(ND) ND	2300	1100 1100	
SURROGATE PARAMETERS	RESULTS	SPK_AMT	% RECOVERY	QC LIMI
2,4-DCPAA	563.1 (570.6)	568.2	99.1 (100)	20-150

Left of  $\mid$  is related to first column; Right of  $\mid$  related to second column Final result indicated by ( )

METHOD 8151A HERBICIDES

	, which down want which down water ware ware ware ware ware basis when ware ware ware water ware ware ware ware	name ware date baar ware ware bate bate ware ware ware ware and ware ware w		====
Client : URS		Date Coll	ected: 11/04/13	
Project : DHCCP		Date Red	eived: 11/05/13	
Batch No. : 13K014		Date Extr	acted: 11/06/13 1	5:03
Sample ID: CC-2		Date Ana	lyzed: 11/07/13 1	3:05
Lab Samp ID: K014-03		Dilution H	actor: 1	
Lab File ID: WK07009A		Matrix	: SOIL	
Ext Btch ID: HEK001S		% Moisture	: 16.0	
Calib. Ref.: WK07002A		Instrument	: ID : GCT016	
****************************				
	RESULTS	RL	MDL	
PARAMETERS	(ug/kg)	(ug/kg)	(ug/kg)	
		(49) (9)	(ug/kg/	
2,4-D	(ND) ND	12	6.0 6.0	
2,4-DB	(ND) ND	12	6.0 6.0	
2,4,5-T	(ND) ND	12	6.0 6.0	
2,4,5-TP(SILVEX)	(ND) ND	12	6.0 6.0	
DALAPON	(ND) ND	12	6.0 6.0	
DICAMBA	(ND) ND	12	6.0 6.0	
DICHLOROPROP	(ND) 7.8J	12	6.0 6.0	
DINOSEB	(ND) ND	12	6.0 6.0	
MCPA	(ND) ND	2400	1200 1200	
МСРР	(ND) ND	2400	1200 1200	
SURROGATE PARAMETERS	RESULTS	SPK_AMT	% RECOVERY	QC LIMIT
2,4-DCPAA	577.2 (582.1)	595.2	97.0 (97.8)	20-150
	,		4	

Left of  $\mid$  is related to first column; Right of  $\mid$  related to second column Final result indicated by ( )

# **QC SUMMARIES**

## METHOD 8151A HERBICIDES

				====
Client : URS		Date Col	lected: NA	
Project : DHCCP			ceived: 11/06/13	
Batch No. : 13K014		Date Ext	racted: 11/06/13 1	5:03
Sample ID: MBLK1S		Date An	alyzed: 11/07/13 1	0:47
Lab Samp ID: HEK001SB		Dilution	Factor: 1	
Lab File ID: WK07004A		Matrix	: SOIL	
Ext Btch ID: HEK001S		% Moistur	e :NA	
Calib. Ref.: WK07002A		Instrumen	t ID : GCT016	
	RESULTS	RL	MDL	
PARAMETERS	(ug/kg)	(ug/kg)	(ug/kg)	
2,4-D	(ND) ND	10	5.0 5.0	
2,4-DB	(ND) ND	10	5.0 5.0	
2,4,5-T	(ND) ND	10	5.0 5.0	
2,4,5-TP(SILVEX)	(ND) ND	10	5.0 5.0	
DALAPON	(ND) ND	10	5.0 5.0	
DICAMBA	(ND) ND	10	5.0 5.0	
DICHLOROPROP	(ND) ND	10	5.0 5.0	
DINOSEB	(ND) ND	10	5.0 5.0	
MCPA	(ND) ND	2000	1000   1000	
MCPP	(ND)   ND	2000	1000 1000	
SURROGATE PARAMETERS	RESULTS	SPK_AMT	% RECOVERY	QC LIMIT
2,4-DCPAA	(438.3) 434.9	500.0	(87.7) 87.0	60-140

Left of | is related to first column; Right of | related to second column Final result indicated by ( ) EMAX QUALITY CONTROL DATA LCS/LCD ANALYSIS

age	2,4-D 2,4-DB 2,4,5-T 2,4,5-TP(Silvex) Dalapon	-	(ug/kg) (ND) ND (ND) ND (ND) ND (ND) ND (ND) ND (ND) ND	(ug/kg) 50.0 50.0 50.0 50.0 50.0 50.0	(52.5) 42.4 48.4 (57.9) (52.0) 50.1 (33.7) 32.0	% REC (102) 96 (105) 85 97 (116) (104) 100 (67) 64	(ug/kg) 50.0 50.0 50.0 50.0 50.0 50.0	(ug/kg) (52.1)  48.8 (50.3)  44.4 49.8 (57.5) (52.3)  51.6 34.7 (35.0)	% REC (104) 98 (101) 89 100 (115) (105) 103 69 (70)	(%) (3) 2 (4) 5 3 (1) (1) 3 3 (9)	(%) 60-150 60-140 60-140 50-150 10-160	(%) 50 50 50 50 50 50
80000	Dicamba Dichloroprop Dinoseb MCPA MCPP		(ND) ND (ND) ND (ND) ND (ND) ND (ND) ND (ND) ND	50.0 50.0 50.0 2500 2500	48.6 (48.9)	97 (98) (106) 106 (86) 76 (93) 89 (94) 85	50.0 50.0 50.0 2500 2500	49.9 (50.7) (54.4) 52.5 (40.5) 37.1 1970J (2290) (2440) 2160	100 (101) (109) 105 (81) 74 79 (92) (98) 86	3 (4) (2) 1 (6) 2 17 (3) (4) 1	30-130 30-130 30-130 30-130 30-130 30-130	50 50 50 50 50
0	MCPP	======================================	PIKE AMT	2500 	(2350) 2130  BS SPIKE		2500	(2440)  2160		(4) 1	30-130	50

# LABORATORY REPORT FOR

URS

## DHCCP

## METALS/MERCURY

## SDG#: 13K014

CASE NARRATIVE

Client : URS

Project : DHCCP

SDG : 13K014

## METHOD 6020A METALS BY ICP-MS

A total of three (3) soil samples were received on 11/05/13 for Metals CAM analysis, Method 6020A in accordance with USEPA SW-846, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods.

Holding Time Samples were analyzed within the prescribed holding time.

Calibration Initial Calibration was established as prescribed by the method and was verified using a secondary source. Interference checks were performed and results were within required limits. Continuing calibration verifications and continuing calibration blanks were carried out at the frequency specified by the project. All calibration requirements were within acceptance criteria.

Method Blank Method blank was analyzed at the frequency required by the project. For this SDG, one method blank was analyzed with the samples. Result was compliant to project requirement.

Lab Control Sample A set of LCS/LCD was analyzed with the samples in this SDG. Percent recoveries for IMK012SL/C were all within QC limits.

Matrix QC Sample Analytical spike and serial dilution from another SDG were analyzed for matrix interference evaluation. Results were within method acceptance criteria.

Sample Analysis Samples were analyzed according to prescribed analytical procedures. All project requirements were met otherwise anomalies were discussed within the associated QC parameter.

631

LAB CHRONICLE METALS BY ICP-MS

Client : URS Project : DHCCP								SDG NO. Instrum	: 13K014 ent ID : T-I98
				S0:	IL.				
Client	Laboratory	Dilution	ž	Analysis	Extraction	Sample	Calibratio	n Prep.	
Sample ID	Sample ID	Factor	Moist	DateTime	DateTime	Data FN	Data FN	Batch	Notes
MBLK1S	IMK012SB	1	NA	11/08/1313:34	11/07/1310:15	98K06019	98K06017	IMK012S	Method Blank
LCS1S	IMK012SL	1	NA	11/08/1313:39	11/07/1310:15	98K06020	98K06017	IMK012S	Lab Control Sample (LCS
LCD1S	IMK012SC	1	NA	11/08/1313:43	11/07/1310:15	98K06021	98K06017	IMK012S	LCS Duplicate
BSBS1045S003AS	K018-23A	0.976	9.2	11/08/1314:59	11/07/1310:15	98K06037	98K06035	IMK012S	Analytical Spike Sample
BSBS1045S003	K018-23	0.976	9.2	11/08/1315:03	11/07/1310:15	98K06038	98K06035	IMK012S	Field Sample
BSBS1045S003DL	K018-23J	4.88	9.2	11/08/1315:07	11/07/1310:15	98K06039	98K06035	IMK012S	Diluted Sample
3B-2	K014-01	1.00	22.5	11/08/1315:12	11/07/1310:15	98K06040	98K06035	IMK012S	Field Sample
3D-2	K014-02	0.995	12.0	11/08/1315:16	11/07/1310:15	98K06041	98K06035	IMK012S	Field Sample
CC-2	K014-03	0.980	16.0	11/08/1315:20	11/07/1310:15	98K06042	98K06035	IMK012S	Field Sample

FN - Filename

% Moist - Percent Moisture

## METHOD 6020A METALS BY ICP-MS

Client : URS Project : DHCCP SDG NO. : 13K014 Sample ID: 3B-2 Lab Samp ID: K014-01 Lab File ID: 98K06040	Date Date Date	Analyzed: ion Factor:	11/05/13 11/07/13 10:15 11/08/13 15:12
Ext Btch ID: IMK012S Calib. Ref.: 98K06035	۲ Moi Instri		22.5 T-I98
PARAMETERS	RESULTS (mg/kg)	RL (mg/kg)	MDL (mg/kg)
Antimony	0.262J	0.645	0.258
Arsenic	4.03	0.645	0.129
Barium	188	0.645	0.129
Beryllium	0.519J	0.645	0.129
Cadmium	0.466J	0.645	0.129
Chromium	54.3	0.645	0.129
Cobalt	14.3	0.645	0.129
Copper	29.1	0.645	0.258
Lead	7.11	0.645	0.129 0.258
Molybdenum	0.439J 60.8	0.645 0.645	0.258
Nickel Selenium	0.190J	0.645	0.129
Silver	0.190J ND	0.645	0.129
Thallium	0.161J	0.645	0.129
Vanadium	63.2	0.645	0.323
Zinc	62.6	2.58	1.29

## METHOD 6020A METALS BY ICP-MS

Client : URS	Date Collected: 11/04/13	
Project : DHCCP	Date Received: 11/05/13	
SDG NO. : 13K014	Date Extracted: 11/07/13 10:	
Sample ID: 3D-2	Date Analyzed: 11/08/13 15:	16
Lab Samp ID: K014-02	Dilution Factor: 0.995	
Lab File ID: 98K06041	Matrix : SOIL	
Ext Btch ID: IMK012S	% Moisture : 12.0	
Calib. Ref.: 98K06035	Instrument ID : T-198	
		DL
PARAMETERS	(mg/kg) (mg/kg) (mg/kg	g)
Antimony	0.270J 0.565 0.22	
Arsenic	4.23 0.565 0.1	
Barium	197 0.565 0.1	
Beryllium	0.538J 0.565 0.1	
Cadmium	0.439J 0.565 0.1	
Chromium	56.6 0.565 0.13	
Cobalt	15.0 0.565 0.1	
Copper	31.5 0.565 0.22	
Lead	8.03 0.565 0.13	
Molybdenum	0.384J 0.565 0.22	
Nickel	66.0 0.565 0.1	
Selenium	0.175J 0.565 0.1	
Silver	0.139J 0.565 0.13	
Thallium	0.169J 0.565 0.1	
Vanadium	60.8 0.565 0.28	
Zinc	66.9 2.26 1.3	13

## METHOD 6020A METALS BY ICP-MS

Client : URS	Date Collected: 11/04/13
Project : DHCCP	Date Received: 11/05/13
SDG NO. : 13K014	Date Extracted: 11/07/13 10:15
Sample ID: CC-2	Date Analyzed: 11/08/13 15:20
Lab Samp ID: K014-03	Dilution Factor: 0.980
Lab File ID: 98K06042	Matrix : SOIL
Ext Btch ID: IMK012S	% Moisture : 16.0
Calib. Ref.: 98K06035	Instrument ID : T-I98
	RESULTS RL MDL
PARAMETERS	(mg/kg) (mg/kg) (mg/kg)
Antimony	ND 0.583 0.233
Arsenic	4.37 0.583 0.117
Barium	133 0.583 0.117
Beryllium	0.360J 0.583 0.117
Cadmium	0.313J 0.583 0.117
Chromium	32.9 0.583 0.117
Cobalt	10.7 0.583 0.117
Copper	18.4 0.583 0.233 6.21 0.502 0.117
Lead	6.31 0.583 0.117 0.503 0.232
Molybdenum	0.427J 0.583 0.233
Nickel	36.4 0.583 0.117 0.182J 0.583 0.117
Selenium	0.182J 0.583 0.117 ND 0.583 0.117
Silver	0.170J 0.583 0.117
Thallium	44.0 0.583 0.292
Vanadium	
Zinc	62.8 2.33 1.17

## METHOD 6020A METALS BY ICP·MS

Client : URS	Date Collected: NA
Project : DHCCP	Date Received: 11/07/13
SDG NO. : 13K014	Date Extracted: 11/07/13 10:15
Sample ID: MBLK1S	Date Analyzed: 11/08/13 13:34
Lab Samp ID: IMK012SB	Dilution Factor: 1
Lab File ID: 98K06019	Matrix : SOIL
Ext Btch ID: IMK012S	% Moisture : NA
Calib. Ref.: 98K06017	Instrument ID : T-198
	RESULTS RL MDL
PARAMETERS	(mg/kg) (mg/kg) (mg/kg)
Antimony	ND 0.500 0.200
Arsenic	ND 0.500 0.100
Barium	ND 0.500 0.100
Beryllium	ND 0.500 0.100
Cadmium	ND 0.500 0.100
Chromium	ND 0.500 0.100
Cobalt	ND 0.500 0.100
Copper	ND 0.500 0.200
Lead	ND 0.500 0.100
Molybdenum	ND 0.500 0.200
Nickel	ND 0.500 0.100
Selenium	ND 0.500 0.100
Silver	ND 0.500 0.100
Thallium	ND 0.500 0.100
Vanadium	ND 0.500 0.250
Zinc	ND 2.00 1.00

## EMAX QUALITY CONTROL DATA LCS/LCD ANALYSIS

CLIENT: PROJECT: SDG NO.: METHOD:	URS DHCCP 13K014 METHOD 6020A										
MATRIX: DILTN FACTR: SAMPLE ID:	SOIL 1 MBLK1S	1	1		% MOIST	FURE: NA	ι.				
CONTROL NO.: LAB FILE ID: DATIME EXTRCTD: DATIME ANALYZD: PREP. BATCH: CALIB. REF:	IMK012SB 98K06019 11/07/1310:15 11/08/1313:34 IMK012S 98K06017	IMK012SL 98K06020 11/07/13 11/08/13 IMK012S 98K06017	98K 10:15 11/ 13:39 11/ IMK	012SC 06021 07/1310:15 08/1313:43 012S 06017		DLLECTED: NA ECEIVED: 11	/07/13				
ACCESSION:											
	BI	NK RSLT	SPIKE AMT	BS RSLT	BS	SPIKE AMT	BSD RSLT	BSD	RPD	QC LIMIT	MAX RPD
PARAMETER		mg/kg	mg/kg	mg/kg	% REC	mg/kg	mg/kg	% REC	%	*	ž
										80-120	20
Antimony		ND	25. 25.		96 97	25.0 25.0	23.8 24.2	95 97	1		20
Arsenic		ND ND	25. 25.		100	25.0	24.2	98	2		20
Barium		ND	25.		105	25.0	26.7	107	1		20
Beryllium Cadmium		ND	25.		96	25.0	23.7	95	1		20
Chromium		ND	25.		97	25.0	24.1	96	1		20
Cobalt		ND	25.		99	25.0	24.7	99	- 0		20
Copper		ND	25.		98	25.0	24.4	98	1		20
Lead		ND	25.		101	25.0	25.0	100	1	80-120	20
Molybdenum		ND	25.		99	25.0	24.2	97	2	80-120	20
Nickel		ND	25.		98	25.0	24.1	96	2	80-120	20
Selenium		ND	25.	0 24.3	97	25.0	24.2	97	0	80-120	20
Silver		ND	25.	0 24.9	100	25.0	24.2	97	3		20
Thallium		ND	25.	0 25.1	100	25.0	24.8	99	1		20
Vanadium		ND	25.		99	25.0	24.6	98	1	00 220	20
Zinc		ND	50.	0 47.4	95	50.0	48.2	96	2	80-120	20

Client : URS

Project : DHCCP

SDG : 13K014

## METHOD 7471A MERCURY BY COLD VAPOR

A total of three (3) soil samples were received on 11/05/13 for Mercury analysis, Method 7471A in accordance with USEPA SW-846, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods.

Holding Time Samples were analyzed within the prescribed holding time.

Calibration Multi-calibration points were generated to establish initial calibration (ICAL). ICAL was verified using a secondary source. Continuing calibration verifications were carried out at the frequency specified by the project. All calibration requirements were within acceptance criteria.

Method Blank Method blank was analyzed at the frequency required by the project. For this SDG, one method blank was analyzed with the samples. Result was compliant to project requirement.

Lab Control Sample A set of LCS/LCD was analyzed with the samples in this SDG. Percent recoveries for HGK007SL/C were all within QC limits.

Matrix QC Sample Analytical spike and serial dilution from another SDG were analyzed for matrix evaluation. Results were within method acceptance criteria.

Sample Analysis Samples were analyzed according to prescribed analytical procedures. All project requirements were met otherwise anomalies were discussed within the associated QC parameter.

638

LAB CHRONICLE MERCURY BY COLD VAPOR

Client : URS Project : DHCCP								SDG NO. Instrume	: 13K014 ent ID : 47
				SO:	IL				
Client	Laboratory	Dilution	*	Analysis	Extraction	Sample	Calibration	Prep.	
Sample ID	Sample ID	Factor	Moist	DateTime	DateTime	Data FN	Data FN	Batch	Notes
MBLK1S	HGK007SB	1	NA	11/13/1317:43	11/13/1314:30	M47K005042	M47K005	HGK007S	Method Blank
LCS1S	HGK007SL	1	NA	11/13/1317:45	11/13/1314:30	M47K005043	M47K005	HGK007S	Lab Control Sample (LCS
LCD1S	HGK007SC	1	NA	11/13/1317:47	11/13/1314:30	M47K005044	M47K005	HGK007S	LCS Duplicate
3B-2	K014-01	1	22.5	11/13/1318:52	11/13/1314:30	M47K005072	M47K005	HGK007S	Field Sample
3D-2	K014-02	1	12.0	11/13/1318:54	11/13/1314:30	M47K005073	M47K005	HGK007S	Field Sample
CC-2	K014-03	1	16.0	11/13/1318:56	11/13/1314:30	M47K005074	M47K005	HGK007S	Field Sample

FN - Filename

% Moist - Percent Moisture

METHOD 7471A MERCURY BY COLD VAPOR

Client : URS Project : DHCCP Batch No. : 13K014											Matri× Instru	: : SOIL mentID : 47	-
CLIENT SAMPLE ID		RESULTS (mg/kg)	DIL'N FACTOR	MOIST (%)	LOQ (mg/kg)	LOD (mg/kg)	ANALYSIS DATETIME	PREPARATION DATETIME	DATA FILE ID	CAL REF	PREP BATCH	COLLECTION DATETIME	RECEIVED DATETIME
MBLK1S	HGK007SB	ND	1	NA	0.1	0.02	11/13/1317:43	11/13/1314:30	M47K005042	M47K005	HGK007S	NA	NA
LCS1S	HGK007SL	0.415	1	NA	0.1	0.02	11/13/1317:45	11/13/1314:30	M47K005043	M47K005	HGK007S	NA	NA
LCD1S	HGK007SC	0.405	1	NA	0.1	0.02	11/13/1317:47	11/13/1314:30	M47K005044	M47K005	HGK007S	NA	NA
3B-2	K014-01	ND	1	22.5	0.129	0.0258	11/13/1318:52	11/13/1314:30	M47K005072	M47K005	HGK007S	11/04/1312:00	11/05/13
3D-2	K014-02	0.0246J	1	12.0	0.114	0.0227	11/13/1318:54	11/13/1314:30	M47K005073	M47K005	HGK007S	11/04/1312:00	11/05/13
CC-2	K014-03	ND	1	16.0	0.117	0.0234	11/13/1318:56	11/13/1314:30	M47K005074	M47K005	HGK007S	11/04/1312:00	11/05/13

CLIENT	: URS
PROJECT	: DHCCP
BATCH NO.	: 13K014
METHOD	: 7471A

MATRIX	:	SOIL		% MOISTURE: N/A
DILUTION FACTOR	::	1	1	1
SAMPLE ID	:	MBLK1S	LCS1S	LCD1S
LAB SAMPLE ID	:	HGK007SB	HGK007SL	HGK007SC
LAB FILE ID	:	M47K005042	M47K005043	M47K005044
DATE PREPARED	:	11/13/1314:30	11/13/1314:30	11/13/1314:30
DATE ANALYZED	:	11/13/1317:43	11/13/1317:45	11/13/1317:47
PREP BATCH	:	HGK007S	HGK007S	HGK007S
CALIBRATION REF		M47K005	M47K005	M47K005

ACCESSION:

Client : URS

Project : DHCCP

SDG : 13K014

## METHOD DI WET/6020A DI WET METALS BY ICP-MS

A total of three (3) leachate samples were received on 11/05/13 for Metals DI-WET analysis, Method DI WET/6020A in accordance with USEPA SW-846, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods.

Holding Time Samples were analyzed within the prescribed holding time.

#### Calibration

Initial Calibration was established as prescribed by the method and was verified using a secondary source. Interference checks were performed and results were within required limits. Continuing calibration verifications and continuing calibration blanks were carried out at the frequency specified by the project. All calibration requirements were within acceptance criteria.

### Method Blank

Method blanks were analyzed at the frequency required by the project. For this SDG, two (2) method blanks were analyzed with the samples. All results were less than reporting limit, except Barium in extraction blank (MBLK2W) was detected above reporting limit. No corrective action was taken since all associated samples were detected at least 14 times higher than the extraction blank level. Refer to QC result summary forms for details.

Lab Control Sample A set of LCS/LCD was analyzed with the samples in this SDG. Percent recoveries for IMK020WL/C were all within QC limits.

#### Matrix QC Sample

Matrix QC sample was analyzed at the frequency prescribed by the project. Percent recoveries were within project QC limits except for results qualified with [*] in K014-01M/S summary form, most likely due to matrix interference and low spike level as compared to concentration of parent sample. Bias low of zinc and copper were confirmed in MSD. RPD were within limits, suggesting deficiencies potentially due to matrix contribution. In addition, analytical spike and serial dilution were analyzed for matrix interference evaluation. Results were within method acceptance criteria. Check QC summary form for details.

## Sample Analysis

Samples were analyzed according to prescribed analytical procedures. All project requirements were met with the aforementioned exceptions.

## LAB CHRONICLE DI WET METALS BY ICP-MS

Client : URS Project : DHCCP			nfaurra				5100	SDG NO. Instrum	: 13K014 ent ID : T-IF6
				LEAC	-ATE				
Client	Laboratory	Dilution	%	Analysis	Extraction	Sample	Calibration	n Prep.	
Sample ID	Sample ID	Factor	Moist	DateTime	DateTime	Data FN	Data FN	Batch	Notes
MBLK1W	IMK020WB	1	NA	11/14/1315:13	11/14/1311:08	F6K08017	F6K08015	IMK020W	Method Blank
LCS1W	IMK020WL	1	NA	11/14/1315:17	11/14/1311:08	F6K08018	F6K08015	IMK020W	Lab Control Sample (LCS)
LCD1W	IMK020WC	1	NA	11/14/1315:21	11/14/1311:08	F6K08019	F6K08015	IMK020W	LCS Duplicate
MBLK2W	WTK002SB	1	NA	11/14/1315:26	11/14/1311:08	F6K08020	F6K08015	IMK020W	Method Blank
3B-2MS	K014-01M	1	NA	11/14/1315:30	11/14/1311:08	F6K08021	F6K08015	IMK020W	Matrix Spike Sample (MS)
3B - 2MSD	K014-01S	1	NA	11/14/1315:34	11/14/1311:08	F6K08022	F6K08015	IMK020W	MS Duplicate (MSD)
3B-2	K014-01	1	NA	11/14/1315:43	11/14/1311:08	F6K08024	F6K08015	IMK020W	Field Sample
3B - 2DL	K014-01J	5	NA	11/14/1315:47	11/14/1311:08	F6K08025	F6K08015	IMK020W	Diluted Sample
3B-2AS	K014-01A	1	NA	11/14/1316:20	11/14/1311:08	F6K08030	F6K08027	IMK020W	Analytical Spike Sample
3D-2	K014-02	1	NA	11/14/1316:24	11/14/1311:08	F6K08031	F6K08027	IMK020W	Field Sample
CC-2	K014-03	1	NA	11/14/1316:29	11/14/1311:08	F6K08032	F6K08027	IMK020W	Field Sample

FN - Filename

% Moist - Percent Moisture

DWR-207

Client : URS	Date Col	lected:	11/04/13
Project : DHCCP	Date Re	ceived:	11/05/13
SDG NO. : 13K014			11/14/13 11:08
Sample ID: 3B-2		-	11/14/13 15:43
Lab Samp ID: K014-01	Dilution		
Lab File ID: F6K08024	Matrix		LEACHATE
Ext Btch ID: IMK020W	% Moistur		NA
Calib. Ref.: F6K08015	Instrumen	t ID :	T-IF6
	RESULTS	RL	MDL
PARAMETERS	(ug/L)	(ug/L)	(ug/L)
Antimony	ND	1.00	0.500
Arsenic	0.435J	1.00	0.200
Barium	295	1.00	0.500
Beryllium	ND	1.00	0.100
Cadmium	ND	1.00	0.200
Chromium	12.5	1.00	0.200
Cobalt	0.610J	1.00	0.200
Copper	11.8	1.00	0.500
Lead	0.199J	1.00	0.100
Molybdenum	. 8.33	2.00	0.500
Nickel	0.568J	1.00	0.200
Selenium	3.34	1.00	0.300
Silver	ND	1.00	0.200
Thallium	ND	1.00	0.200
Vanadium	4.29	1.00	0.500
Zinc	14.1J	20.0	10.0

DI WET EXTRACTION DATE: 11/06/13 11:15

Client : URS Project : DHCCP SDG NO. : 13K014 Sample ID: 3D-2 Lab Samp ID: K014-02 Lab File ID: F6K08031 Ext Btch ID: IMK020W Calib. Ref.: F6K08027	Date Date E Date	Analyzed: on Factor: : :ure :	11/05/13 11/14/13 11:08 11/14/13 16:24
PARAMETERS	RESULTS (ug/L)	RL (ug/L)	MDL (ug/L)
Antimony	1.59	1.00	0.500
Arsenic	11.3	1.00	0.200
Barium	78.7	1.00	0.500
Beryllium	0.109J	1.00	0.100
Cadmium	ND	1.00	0.200
Chromium	7.98	1.00	0.200
Cobalt	1.14	1.00	0.200
Copper	7.92	1.00	0.500
Lead	2.65	1.00	0.100
Molybdenum	5.93	2.00	0.500
Nickel	6.35	1.00	0.200
Selenium	8.38	1.00	0.300
Silver	ND	1.00	0.200
Thallium	ND	1.00	0.200
Vanadium	26.4	1.00	0.500
Zinc	16.7J	20.0	10.0

DI WET EXTRACTION DATE: 11/06/13 11:15

Client : URS Project : DHCCP SDG NO. : 13K014 Sample ID: CC-2 Lab Samp ID: K014-03 Lab File ID: F6K08032 Ext Btch ID: IMK020W Calib. Ref.: F6K08027	Date Receiv Date Extract	: LEACHATE : NA
PARAMETERS	RESULTS (ug/L) (ug/	RL MDL L) (ug/L)
	1.05 1.	00 0.500
Antimony Arsenic		00 0.200
Barium		00 0.500
Beryllium		00 0.100
Cadmium		00 0.200
Chromium		00 0.200
Cobalt	0.939J 1.	00 0.200
Copper	5.09 1.	00 0.500
Lead	1.46 1.	00 0.100
Molybdenum	3.98 2.	00 0.500
Nickel	5.60 1.	00 0.200
Selenium		00 0.300
Silver	ND 1.	
Thallium	ND 1.	
Vanadium	13.2 1. 12.9J 20	00 0.500 .0 10.0
Zinc	14.90 20	.0 10.0

DI WET EXTRACTION DATE: 11/06/13 11:15

Client : URS Project : DHCCP SDG NO. : 13K014 Sample ID: MBLK1W Lab Samp ID: IMK020WB Lab File ID: F6K08017 Ext Btch ID: IMK020W Calib. Ref.: F6K08015	Date Collected: NA Date Received: 11/14/13 Date Extracted: 11/14/13 11:0 Date Analyzed: 11/14/13 15:1 Dilution Factor: 1 Matrix : WATER % Moisture : NA Instrument ID : T-IF6
PARAMETERS	RESULTS RL MD (ug/L) (ug/L) (ug/L)
A	ND 1.00 0.50
Antimony Arsenic	ND 1.00 0.20
Barium	ND 1.00 0.20
Beryllium	ND 1.00 0.10
Cadmium	ND 1.00 0.20
Chromium	ND 1.00 0.20
Cobalt	ND 1.00 0.20
Copper	ND 1.00 0.50
Lead	ND 1.00 0.10
Molybdenum	ND 2.00 0.50
Nickel	0.326J 1.00 0.20
Selenium	ND 1.00 0.30
Silver	ND 1.00 0.20
Thallium	ND 1.00 0.20
Vanadium	ND 1.00 0.50
Zinc	ND 20.0 10.

CLIENT: PROJECT: SDG NO.: METHOD:	URS DHCCP 13K014 METHOD DI WET										
MATRIX: DILTN FACTR: SAMPLE ID: CONTROL NO.: LAB FILE ID: DATIME EXTRCTD: DATIME ANALYZD: PREP. BATCH: CALIB. REF:	WATER 1 MBLK1W IMKO2OWB F6K08017 11/14/1311:08 11/14/1315:13 IMK020W F6K08015		F6K08 511:08 11/14 515:17 11/14 515:17 11/14	019 /1311:08 /1315:21 0W		DLLECTED: NA					
ACCESSION:	В	ILNK RSLT	SPIKE AMT	BS RSLT	BS	SPIKE AMT	BSD RSLT	BSD	RPD	QC LIMIT	
PARAMETER Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper: Lead Molybdenum Nicket Selenium Silver Thallium Vanadium Zinc Al		ug/L ND ND ND ND ND ND ND ND ND ND ND ND ND	ug/L 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	ug/L 25.1 24.7 26.5 25.2 25.5 25.5 26.4 25.9 25.3 25.9 25.5 25.9 26.0 25.7 53.3	% REC 100 99 106 100 101 102 102 106 104 101 104 102 104 104 103 107	ug/L 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	ug/L 25.1 25.3 26.1 25.0 25.4 25.5 26.1 25.7 25.0 25.5 25.5 25.5 25.7 25.6 25.7 55.3	% REC 100 101 104 100 100 102 102 104 103 100 102 102 103 102 103 111	% 0 3 2 0 1 0 1 1 1 1 1 1 1 0 0 1 1 4	80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120	20 20 20 20 20 20
$\in M^{1}(0,\mathbb{R}^{d})$											•

Page000099

Client : URS	Date Collected: NA
Project : DHCCP	Date Received: 11/14/13
SDG NO. : 13K014	Date Extracted: 11/14/13 11:08
Sample ID: MBLK2W	Date Analyzed: 11/14/13 15:26
Lab Samp ID: WTK002SB	Dilution Factor: 1
Lab File ID: F6K08020	Matrix : LEACHATE
Ext Btch ID: IMK020W	% Moisture : NA
Calib. Ref.: F6K08015	Instrument ID : T-IF6
	RESULTS RL MDL
PARAMETERS	(ug/L) (ug/L) (ug/L)
Antimony	ND 1.00 0.500
Arsenic	ND 1.00 0.200
Barium	5.39 1.00 0.500
Beryllium	ND 1.00 0.100
Cadmium	ND 1.00 0.200
Chromium	ND 1.00 0.200
Cobalt	ND 1.00 0.200
Copper	ND 1.00 0.500
Lead	0.142J 1.00 0.100
Molybdenum	ND 2.00 0.500
Nickel	ND 1.00 0.200
Selenium	ND 1.00 0.300
Silver	ND 1.00 0.200
Thallium	ND 1.00 0.200
Vanadium	ND 1.00 0.500
Zinc	ND 20.0 10.0

DI WET EXTRACTION DATE: 11/06/13 11:15

CLIENT: PROJECT: SDG NO.: METHOD:	URS DHCCP 13K014 METHOD DI WET,	/6020A							
MATRIX:	LEACHATE			% MOISTURE:	NA				
DILTN FACTR:	1	1	1						
SAMPLE ID:	3B-2								
CONTROL NO.:	K014-01	K014-01M	K014-01S						
LAB FILE ID:	F6K08024	F6K08021	F6K08022						
DATIME EXTRCTD:	11/14/1311:08	11/14/1311:08		DATE COLLECTED:	11/04/13				
DATIME ANALYZD:	11/14/1315:43	11/14/1315:30		DATE RECEIVED:	11/05/13				
PREP. BATCH:	IMK020W	IMK020W	IMK020W						
CALIB. REF:	F6K08015	F6K08015	F6K08015						
ACCESSION:									
	Sh	MPL RSLT SPIK	E AMT MS RSLT	MS SPIKE A	MT MSD RSLT	MSD	RPD	QC LIMIT N	
PARAMETER		ug/L u	g/L ug/L	% REC ug/L	ug/L	% REC	%	%	ž
								75 105	

PARAMETER	ug/L	ug/L	ug/L	% REC	ug/L	ug/L	% REC	%	%	%
Antimony	ND	25.0	23.4		25.0	23.3	93	0	75-125	20
Arsenic	0.435J	25.0	24.3	95	25.0	25.0	98	3	75-125	20
Barium	295	25.0	585	1160*	25.0	584	1156*	0	75-125	20
Beryllium	ND	25.0	22.5	90	25.0	23.6	94	5	75-125	20
Cadmium	ND	25.0	22.1	88	25.0	22.3	89	1	75-125	20
Chromium	12.5	25.0	32.8	81	25.0	33.4	84	2	75-125	20
Cobalt	0.610J	25.0	22.9	89	25.0	22.8	89	0	75-125	20
Copper	11.8	25.0	29.6	71*	25.0	29.8	72*	1	75-125	20
Lead	0.199J	25.0	23.0	91	25.0	23.0	91	0	75-125	20
Molybdenum	8.33	25.0	32.4	96	25.0	32.4	96	0	75-125	20
Nickel	0.568J	25.0	21.8	85	25.0	22.2	87	2	75-125	20
Selenium	3.34	25.0	26.9	94	25.0	26.8	94	0	75-125	20
Silver	ND	25.0	22.7	91	25.0	20.9	84	8	75-125	20
Thallium	ND	25.0	24.1	96	25.0	24.1	96	0	75-125	20
Vanadium	4.29	25.0	26.9	90	25.0	27.2	92	1	75-125	20
Zinc	14.1J	50.0	48.7	69*	50.0	46.6	65*	4	75-125	20

CLIENT: PROJECT: SDG NO.: METHOD:	URS DHCCP 13K014 METHOD DI WET/6020A		
MATRIX:	LEACHATE	% MOISTURE:	NA

DILTN FACTR:	1	1		
SAMPLE ID:	3B-2			
CONTROL NO.:	K014-01	K014-01A		
LAB FILE ID:	F6K08024	F6K08030		
DATIME EXTRCTD:	11/14/1311:08	11/14/1311:08	DATE COLLECTED:	11/04/13
DATIME ANALYZD:	11/14/1315:43	11/14/1316:20	DATE RECEIVED:	11/05/13
PREP. BATCH:	IMK020W	IMK020W		
CALIB. REF:	F6K08015	F6K08027		

PARAMETER	SMPL RSLT (ug/L)	SPIKE AMT (ug/L)	AS RSLT (ug/L)	AS % REC	QC LIMIT (%)
Antimony	ND	25.0	23.7	95	80.120
Arsenic	0.435J	25.0	24.7	97	80-120
Barium	295	25.0	325	120	80-120
Beryllium	ND	25.0	24.4	98	80-120
Cadmium	ND	25.0	23.7	95	80-120
Chromium	12.5	25.0	36.2	95	80-120
Cobalt	0.610J	25.0	24.8	97	80-120
Copper	11.8	25.0	32.8	84	80-120
Lead	0.199J	25.0	25.2	100	80-120
Molybdenum	8.33	25.0	34.9	106	80-120
Nickel	0.568J	25.0	22.8	89	80-120
Selenium	3.34	25.0	25.9	90	80-120
Silver	ND	25.0	24.2	97	80-120
Thallium	ND	25.0	25.4	102	80-120
Vanadium	4.29	25.0	29.1	99	80-120
Zinc	14.1J	50.0	59.9	92	80-120

CLIENT: PROJECT: BATCH NO.: METHOD:	URS DHCCP 13K014 METHOD DI WET/	6020A			
MATRIX: DILUTION FACTOR: SAMPLE ID: EMAX SAMP ID: LAB FILE ID: DATE EXTRACTED: DATE ANALYZED: PREP. BATCH: CALIB. REF:	LEACHATE 1 3B-2 K014-01 F6K08024 11/14/1311:08 11/14/1315:43 IMK020W F6K08015			% MOISTL DATE COL DATE REC	LECTED: 11/04/13
ACCESSION:					
PARAMETER		PL RSLT (ug/L)	SERIAL DIL RSL (ug/L)	T DIF RSLT %	QC LIMIT (%)
Antimony Arsenic Barium Cadmium Chromium Cobalt Copper Lead Molybdenum Nickel Selenium Silver Thallium Vanadium Zinc		ND 0.435J 295 ND 12.5 0.610J 11.8 0.199J 8.33 0.568J 3.34 ND ND 4.29 14.1J	ND ND 307 ND 12.8 ND 13.5 ND 3.64 ND 3.64 ND 4.34 ND	NA 4 0 3 NA 15* NA J NA J NA J NA 0 0 0	10 10 10 10 10 10 10 10 10 10 10 10 10 1

Client : URS

Project : DHCCP

SDG : 13K014

## METHOD DI WET/7470A DI WET MERCURY BY COLD VAPOR

A total of three (3) soil samples were received on 11/05/13 for Mercury by DI WET analysis, Method DI WET/7470A in accordance with USEPA SW-846, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods.

Holding Time Samples were analyzed within the prescribed holding time.

Calibration Multi-calibration points were generated to establish initial calibration (ICAL). ICAL was verified using a secondary source. Continuing calibration verifications were carried out at the frequency specified by the project. All calibration requirements were within acceptance criteria.

Method Blank Method blanks were analyzed at the frequency required by the project. For this SDG, two (2) method blanks were analyzed with the samples. All results were compliant to project requirement. Refer to QC result summary forms for details.

Lab Control Sample A set of LCS/LCD was analyzed with the samples in this SDG. Percent recoveries for HGK005WL/C were all within QC limits.

Matrix QC Sample Matrix QC sample was analyzed at the frequency prescribed by the project. Percent recoveries for K014-01M/K014-01S are within project QC limits. In addition Analytical spike and serial dilution were analyzed for matrix interference evaluation. Results were within method acceptance criteria.

Sample Analysis Samples were analyzed according to prescribed analytical procedures. All project requirements were met otherwise anomalies were discussed within the associated QC parameter. LAB CHRONICLE DI WET MERCURY BY COLD VAPOR

Client : URS Project : DHCCP								SDG NO. Instrum	: 13K014 ent ID : 47
				LEACH	IATE				
Client	Laboratory	Dilution	2	Analysis	Extraction	Sample	Calibration	Prep.	
Sample ID	Sample ID	Factor	Moist	DateTime	DateTime	Data FN	Data FN	Batch	Notes
MBLK1W	HGK005WB	1	NA	11/12/1320:10	11/12/1313:15	M47K004041	M47K004	HGK005W	Method Blank
LCS1W	HGK005WL	1	NA	11/12/1320:12	11/12/1313:15	M47K004042	M47K004	HGK005W	Lab Control Sample (LCS)
LCD1W	HGK005WC	1	NA	11/12/1320:14	11/12/1313:15	M47K004043	M47K004	HGK.005W	LCS Duplicate
MBLK2W	WTK002SB	1	NA	11/12/1320:16	11/12/1313:15	M47K004044	M47K004	HGK005W	Method Blank
3B-2	K014-01A	1	NA	11/12/1320:23	11/12/1313:15	M47K004047	M47K004	HGK005W	Analytical Spike Sample
3B-2	K014-01	1	NA	11/12/1320:25	11/12/1313:15	M47K004048	M47K004	HGK005W	Field Sample
3B-2	K014-01J	5	NA	11/12/1320:27	11/12/1313:15	M47K004049	M47K004	HGK005W	Diluted Sample
3B-2MS	K014-01M	1	NA	11/12/1320:30	11/12/1313:15	M47K004050	M47K004	HGK005W	Matrix Spike Sample (MS)
3B-2MSD	K014-01S	1	NA	11/12/1320:32	11/12/1313:15	M47K004051	M47K004	HGK005W	MS Duplicate (MSD)
3D-2	K014-02	1	NA	11/12/1320:35	11/12/1313:15	M47K004052	M47K004	HGK005W	Field Sample
CC-2	K014-03	1	NA	11/12/1320:37	11/12/1313:15	M47K004053	M47K004	HGK005W	Field Sample

FN - Filename

% Moist - Percent Moisture

654

### METHOD DI WET/7470A DI WET MERCURY BY COLD VAPOR

Client : URS Project : DHCCP Batch No. : 13K014			=======					===========			Matrix Instru	s : LEAC umentID : 47	CHATE 05
CLIENT SAMPLE ID	EMAX SAMPLE ID	RESULTS (ug/L)	DIL'N FACTOR	MOIST (%)	LOQ (ug/L)	LOD (ug/L)	ANALYSIS DATETIME	PREPARATION DATETIME	DATA FILE ID	CAL REF	PREP BATCH	COLLECTION DATETIME	RECEIVED DATETIME
MBLK1W	HGK005WB	ND	1	NA	0.5	0.1	11/12/1320:10	11/12/1313:15	M47K004041	M47K004	HGK005W	NA	NA
LCS1W	HGK005WL	2.35	1	NA	0.5	0.1	11/12/1320:12	11/12/1313:15	M47K004042	M47K004	HGK005W	NA	NA
LCD1W	HGK005WC	2.36	1	NA	0.5	0.1		11/12/1313:15			HGK005W	NA	NA
MBLK2W	WTK002SB	ND	1	NA	0.5	0.1	11/12/1320:16	11/12/1313:15	M47K004044	M47K004	HGK005W	NA	NA
3B-2	K014-01A	3.17	1	NA	0.5	0.1	11/12/1320:23	11/12/1313:15	M47K004047	M47K004	HGK005W	11/04/1312:00	
3B-2	K014-01	ND	1	NA	0.5	0.1	11/12/1320:25	11/12/1313:15	M47K004048	M47K004	HGK005W	11/04/1312:00	11/05/13
3B-2	K014-01J	ND	5	NA	2.5	0.5	11/12/1320:27	11/12/1313:15	M47K004049	M47K004	HGK005W	11/04/1312:00	11/05/13
3B-2MS	K014-01M	2.11	1	NA	0.5	0.1	11/12/1320:30	11/12/1313:15	M47K004050	M47K004	HGK005W	11/04/1312:00	11/05/13
3B-2MSD	K014-01S	1.95	1	NA	0.5	0.1		11/12/1313:15			HGK005W	11/04/1312:00	
3D-2	K014-02	ND	1	NA	0.5	0.1	11/12/1320:35	11/12/1313:15	M47K004052	M47K004	HGK005W	11/04/1312:00	11/05/13
CC-2	K014-03	ND	1	NA	0.5	0.1	11/12/1320:37	11/12/1313:15	M47K004053	M47K004	HGK005W	11/04/1312:00	

DateTime Leached: 11/06/13 11:15

CLIENT	: URS
PROJECT	: DHCCP
BATCH NO.	: 13K014
METHOD	: DI WET/7470A
Andratates and an and a second	

MATRIX :	WATER		% MOISTURE: N/A
DILUTION FACTOR:	1	1	1
SAMPLE ID :	MBLK1W	LCS1W	LCD1W
LAB SAMPLE ID :	HGK005WB	HGK005WL	HGK005WC
LAB FILE ID :	M47K004041	M47K004042	M47K004043
DATE PREPARED :	11/12/1313:15	11/12/1313:15	11/12/1313:15
DATE ANALYZED :	11/12/1320:10	11/12/1320:12	11/12/1320:14
PREP BATCH :	HGK005W	HGK005W	HGK005W
CALIBRATION REF:	M47K004	M47K004	M47K004

MB RESULT SPIKE AMT BS RESULT BS REC SPIKE AMT BSD RESULT BSD REC RPD	QC LIMIT MAX RPD
PARAMETER (ug/L) (ug/L) (%) (ug/L) (%) (%)	(%) (%)
Mercury ND 2.50 2.35 94 2.50 2.36 94 0	80-120 20

 $\sim$ 

CLIENT	: URS			
PROJECT	: DHCCP			
BATCH NO.	: 13K014			
METHOD	: DI WET/7470A			
MATRIX	: LEACHATE		% MOISTURE: NA	
DILUTION FAC	TOR: 1	1	1	
SAMPLE ID	: 3B-2	3B - 2MS	3B-2MSD	
LAB SAMPLE I	D : K014-01	K014-01M	K014-01S	
LAB FILE ID	: M47K004048	M47K004050	M47K004051	
DATE PREPARE	D : 11/12/1313:15	11/12/1313:15	11/12/1313:15	
DATE ANALYZE	D : 11/12/1320:25	11/12/1320:30	11/12/1320:32	
PREP BATCH	: HGK005W	HGK005W	HGK005W	
CALIBRATION	REF: M47K004	M47K004	M47K004	

	PARENT RESULT	SPIKE AMT				MSD RESULT		RPD	QC LIMIT	MAX RPD
PARAMETER	(ug/L)	(ug/L)	(ug/L)	(%)	(ug/L)	(ug/L)	(%)	(%)	(%)	(光)
				• • • • • • • • •						
Mercury	ND	2.50	2.11	84	2.50	1.95	78	8	75-125	20

PROJECT : BATCH NO. :	URS DHCCP 13K014 DI WET/7470A	
MATRIX :	LEACHATE	% MOISTURE: NA
DILUTION FACTOR:	1	5
SAMPLE ID :	3B-2	3B-2
LAB SAMPLE ID :	K014-01	K014-01J
LAB FILE ID :	M47K004048	M47K004049
DATE PREPARED :	11/12/1313:15	11/12/1313:15
DATE ANALYZED :	11/12/1320:25	11/12/1320:27
PREP BATCH :	HGK005W	HGK005W
CALIBRATION REF:	M47K004	M47K004

	PARENT RESULT	DUP RESULT	RPD	MAX RPD
PARAMETER	(ug/L)	(ug/L)	(%)	(%)
* * * * * * * * * *	• • • • • • • • • • • • • • •			
Mercury	ND	ND	0	10

CLIENT PROJECT BATCH NO. METHOD	: URS : DHCCP : 13K014 : DI WET/7470A	
MATRIX	: LEACHATE	% MOISTURE: NA
DILUTION FACT	OR: 1	1
SAMPLE ID	: 3B-2	3B-2
LAB SAMPLE ID	: K014-01	K014-01A
LAB FILE ID	: M47K004048	M47K004047
DATE PREPARED	: 11/12/1313:15	11/12/1313:15
DATE ANALYZED	: 11/12/1320:25	11/12/1320:23
PREP BATCH	: HGK005W	HGK005W

CALIBRATION REF: M47K004

PARAMETER	PARENT RESULT (ug/L)	SPIKE AMT (uq/L)	MS RESULT (ug/L)	MS REC	QC LIMIT
Mercury	ND	3.00	3.17	106	75-125

M47K004

## LABORATORY REPORT FOR

URS

## DHCCP

## WET CHEMICAL ANALYSES

SDG#: 13K014

CASE NARRATIVE

Client : URS

Project : DHCCP

SDG : 13K014

### SM 4500NH3F AMMONIA (NH3-N)

A total of three (3) soil samples were received on 11/05/13 for Ammonia-N by SM4500-NH3 F analysis, MethodSM 4500NH3F in accordance with Standard Methods for the Examination of Water and Wastewater, 21st Edition.

Holding Time Samples were analyzed within the prescribed holding time.

Calibration

Multi-calibration points were generated to establish initial calibration (ICAL). ICAL was verified using a secondary source. Continuing calibration verifications were carried out at the frequency specified by the project. All calibration requirements were within acceptance criteria.

Method Blank Method blank was analyzed at the frequency required by the project. For this SDG, one method blank was analyzed with the samples. Result was compliant to project requirement.

Lab Control Sample A set of LCS/LCD was analyzed with the samples in this SDG. Percent recoveries for NHK004SL/C were all within QC limits.

Matrix QC Sample Matrix QC sample was analyzed at the frequency prescribed by the project. Percent recoveries for K014-02M is within project QC limits. Sample duplicate was also analyzed with the samples. RPD was within project limit.

Sample Analysis Samples were analyzed according to prescribed analytical procedures. All project requirements were met otherwise anomalies were discussed within the associated QC parameter.

## SM 4500NH3F AMMONIA (NH3-N)

Client : URS Project : DHCCP Batch No. : 13K014			=======================================	======							Matrix Instru	x : SOIL xmentID : 70	662
CLIENT SAMPLE ID	EMAX SAMPLE ID	RESULTS	DFXPREP				ANALYSIS	PREPARATION	DATA	CAL	PREP	COLLECTION	RECEIVED
	SAMPLE ID	(mg/kg)	FACTOR	(%)	(mg/kg)	(mg/kg)	DATETIME	DATETIME	FILE ID	REF	BATCH	DATETIME	DATETIME
MBLK1S	NHK004SB	ND	1	NA	1	0.6	11/14/1314:02	11/13/1314:30	13NHK00411	13NHK004	NHKOO4S	NA	NA
LCS1S	NHK004SL	4.36	1	NA	1	0.6		11/13/1314:30					NA
LCD1S	NHK004SC	4.58	1	NA	1	0.6	11/14/1314:03	11/13/1314:30	13NHK00413	13NHK004	NHKOO4S	NA	NA
3B-2	K014-01	2.31	0.989	22.5	1.28	0.766	11/14/1314:03	11/13/1314:30	13NHK00414	13NHK004	NHKOO4S	11/04/1312:00	11/05/13
3D-2	K014-02	ND	1.01	12.0	1.15	0.689	11/14/1314:03	11/13/1314:30	13NHK00415	13NHK004	NHK004S	11/04/1312:00	11/05/13
3D-2DUP	K014-02D	ND	0.98	12.0	1.11	0.668	11/14/1314:04	11/13/1314:30	13NHK00416	13NHK004	NHKOO4S	11/04/1312:00	11/05/13
3D-2MS	K014-02M	5.36	0.994	12.0	1.13	0.678	11/14/1314:04	11/13/1314:30	13NHK00417	13NHK004	NHKOO4S	11/04/1312:00	11/05/13
CC-2	K014-03I	16.0	4.87	16.0	5.80	3.48	11/14/1314:05	11/13/1314:30	13NHK00421	13NHK004	NHK004S	11/04/1312:00	11/05/13

CLIENT	: URS
PROJECT	: DHCCP
BATCH NO.	: 13K014
METHOD	: SM 4500NH3F

SOIL		%	MOISTURE:	NA
1	1	1		
MBLK1S	LCS1S	LCD1S		
NHKOO4SB	NHKOO4SL	NHKOO4SC		
13NHK00411	13NHK00412	13NHK00413		
11/13/1314:30	11/13/1314:30	11/13/1314:30		
11/14/1314:02	11/14/1314:02	11/14/1314:03		
NHKOO4S	NHKOO4S	NHKOO4S		
13NHK004	13NHK004	13NHK004		
	1 MBLK1S NHK004SB 13NHK00411 11/13/1314:30 11/14/1314:02 NHK004S	1         1           MBLK1S         LCS1S           NHK004SB         NHK004SL           13NHK00411         13NHK00412           11/13/1314:30         11/13/1314:30           11/14/1314:02         11/14/1314:02           NHK004S         NHK004S	1         1         1           MBLK1S         LCS1S         LCD1S           NHK004SB         NHK004SL         NHK004SC           13NHK00411         13NHK00412         13NHK00413           11/13/1314:30         11/13/1314:30         11/13/1314:30           11/14/1314:02         11/14/1314:02         11/14/1314:03           NHK004S         NHK004S         NHK004S	1         1         1           MBLK1S         LCS1S         LCD1S           NHK004SB         NHK004SL         NHK004SC           13NHK00411         13NHK00412         13NHK00413           11/13/1314:30         11/13/1314:30         11/13/1314:30           11/14/1314:02         11/14/1314:02         11/14/1314:03           NHK004S         NHK004S         NHK004S

PARAMETER	MB RESULT (mg/kg)	SPIKE AMT (mg/kg)	BS RESULT (mg/kg)	BS REC (%)	SPIKE AMT (mg/kg)	BSD RESULT (mg/kg)	BSD REC (%)	RPD (%)	QC LIMIT (%)	MAX RPD (%)
Ammonia (NH3-N)	ND	5	4.36	87	5	4.58	92	5	80-120	20

CLIENT	: URS
PROJECT	: DHCCP
BATCH NO.	: 13K014
METHOD	: SM 4500NH3F
=======================================	

MATRIX : SOIL		% MOISTURE:	16.0
DILUTION FACTOR: 1.01	0.994		
SAMPLE ID : 3D-2	3D-2MS		
LAB SAMPLE ID : K014-02	K014-02M		
LAB FILE ID : 13NHK00415	13NHK00417		
DATE PREPARED : 11/13/1314:30	11/13/1314:30		
DATE ANALYZED : 11/14/1314:03	11/14/1314:04		
PREP BATCH : NHK004S	NHKOO4S		
CALIBRATION REF: 13NHK004	13NHK004		

PARAMETER	PARENT RESULT (mg/kg)	SPIKE AMT (mg/kg)		MS REC (%)	QC LIMIT (%)	
		~ ~ ~ ~ ~ ~ ~ ~ ~ ~				
Ammonia (NH3-N)	ND	5.65	5.36	95	75-125	

CLIENT	: URS
PROJECT	: DHCCP
BATCH NO.	: 13K014
METHOD	: SM 4500NH3F

## MATRIX : SOIL

DILUTION FACTOR	:	1.01	0.98
SAMPLE ID	:	3D-2	3D-2DUP
LAB SAMPLE ID	:	K014-02	K014-02D
LAB FILE ID	:	13NHK00415	13NHK00416
DATE PREPARED	:	11/13/1314:30	11/13/1314:30
DATE ANALYZED	:	11/14/1314:03	11/14/1314:04
PREP BATCH	:	NHKOO4S	NHKOO4S
CALIBRATION REF		13NHK004	13NHK004

	PARENT RESULT	DUP RESULT	RPD	MAX RPD	
PARAMETER	(mg/kg)	(mg/kg)	(%)	(%)	
Ammonia (NH3-N)	ND	ND	0	20	
		,			

CASE NARRATIVE

Client : URS

Project : DHCCP

SDG : 13K014

#### SM 4500NO3E NITRATE/NITRITE

A total of three (3) soil samples were received on 11/05/13 for Nitrate/Nitrite as N analysis, MethodSM 4500NO3E in accordance with Standard Methods for the Examination of Water and Wastewater, 21st Edition.

Holding Time Samples were analyzed within the prescribed holding time.

Calibration

Multi-calibration points were generated to establish initial calibration (ICAL). ICAL was verified using a secondary source. Continuing calibration verifications were carried out at the frequency specified by the project. All calibration requirements were within acceptance criteria.

Method Blank Method blank was analyzed at the frequency required by the project. For this SDG, one method blank was analyzed with the samples. Result was compliant to project requirement.

Lab Control Sample A set of LCS/LCD was analyzed with the samples in this SDG. Percent recoveries for NAK003SL/C were all within QC limits.

Matrix QC Sample Matrix QC sample was analyzed at the frequency prescribed by the project. Percent recoveries for K014-01M is within project QC limits. Sample duplicate was also analyzed with the samples. RPD was within project limit.

Sample Analysis Samples were analyzed according to prescribed analytical procedures. All project requirements were met otherwise anomalies were discussed within the associated QC parameter.

666

#### SM 4500NO3E NITRATE/NITRITE

Client : URS Project : DHCCP Batch No. : 13K014				=====							Matrix Instru	mentID : 70	667
	EMAX	RESULTS	DFxPREP			LOD	ANALYSIS	PREPARATION	DATA	CAL	PREP	COLLECTION	RECEIVED
SAMPLE ID	SAMPLE ID	(mg/kg)	FACTOR	(%)	(mg/kg)	(mg/kg)	DATETIME	DATETIME	FILE ID	REF	BATCH	DATETIME	DATETIME
MBLK1S	NAK003SB	ND	1	NA	0.5	0.2	11/08/1316:37	11/08/1311:08	13NAK00310	13NAK003	NAK003S	NA	NA
LCS1S	NAK003SL	5.25	1	NA	0.5	0.2	11/08/1316:38	11/08/1311:08	13NAK00311	13NAK003	NAK003S	NA	NA
LCD1S	NAK003SC	5.17	1	NA	0.5	0.2	11/08/1316:38	3 11/08/1311:08	13NAK00312	13NAK003	NAKOO3S	NA	NA
3B-2	K014-01	ND	1	22.5	0.645	0.258	11/08/1316:38	11/08/1311:08	13NAK00314	13NAK003	NAKOO3S	11/04/1312:00	11/05/13
3B-2DUP	K014-01D	ND	1	22.5	0.645	0.258	11/08/1316:39	11/08/1311:08	13NAK00315	13NAK003	NAKOO3S	11/04/1312:00	11/05/13
3B-2MS	K014-01M	6.58	1	22.5	0.645	0.258	11/08/1316:39	11/08/1311:08	13NAK00316	13NAK003	NAKOO3S	11/04/1312:00	11/05/13
3D-2	K014-02	0.315J	0.998	12.0	0.567	0.227	11/08/1316:39	11/08/1311:08	13NAK00317	13NAK003	NAKOO3S	11/04/1312:00	11/05/13
CC-2	K014-03I	12.3	2	16.0	1.19	0.476	11/08/1316:39	11/08/1311:08	13NAK00319	13NAK003	NAK003S	11/04/1312:00	11/05/13

CLIENT : U	RS
PROJECT : D	HCCP
BATCH NO. : 1	3K014
METHOD : S	M 4500N03E

MATRIX :	SOIL		%	MOISTURE:	NA
DILUTION FACTOR:	1	1	1		
SAMPLE ID :	MBLK1S	LCS1S	LCD1S		
LAB SAMPLE ID :	NAKOO3SB	NAKOO3SL	NAKOO3SC		
LAB FILE ID :	13NAK00310	13NAK00311	13NAK00312		
DATE PREPARED :	11/08/1311:08	11/08/1311:08	11/08/1311:08		
DATE ANALYZED :	11/08/1316:37	11/08/1316:38	11/08/1316:38		
PREP BATCH :	NAKOO3S	NAKOO3S	NAKOO3S		
CALIBRATION REF:	13NAK003	13NAK003	13NAK003		

PARAMETER	MB RESULT	SPIKE AMT	BS RESULT	BS REC	SPIKE AMT	BSD RESULT	BSD REC	RPD	QC LIMIT	MAX RPD
	(mg/kg)	(mg/kg)	(mg/kg)	(%)	(mg/kg)	(mg/kg)	(%)	(%)	(%)	(%)
NITRATE/NITRITE	ND	5	5.25	105	5	5.17	103	2	80-120	20

SAMPLE ID	Ξ	3B-2	3B-2MS
LAB SAMPLE ID	:	K014-01	K014-01M
LAB FILE ID	:	13NAK00314	13NAK00316
DATE PREPARED	:	11/08/1311:08	11/08/1311:08
DATE ANALYZED	:	11/08/1316:38	11/08/1316:39
PREP BATCH	:	NAK003S	NAKOO3S
CALIBRATION REP	:	13NAK003	13NAK003

	PARENT RESULT	SPIKE AMT	MS RESULT	MS REC	QC LIMIT
PARAMETER	(mg/kg)	(mg/kg)	(mg/kg)	(%)	(%)
NITRATE/NITRITE	ND	6.46	6.58	102	75-125

### EMAX QUALITY CONTROL DATA SAMPLE DUPLICATE ANALYSIS

CLIENT	: URS
PROJECT	: DHCCP
BATCH NO.	: 13K014
METHOD	: SM 4500NO3E

MATRIX	:	SOIL	
DILUTION FACTOR	::	1	1
SAMPLE ID	:	3B-2	3B-2DUP
LAB SAMPLE ID	;	K014-01	K014-01D
LAB FILE ID	:	13NAK00314	13NAK00315
DATE PREPARED	:	11/08/1311:08	11/08/1311:08
DATE ANALYZED	:	11/08/1316:38	11/08/1316:39
PREP BATCH	:	NAKOO3S	NAK003S
CALIBRATION REF	:	13NAK003	13NAK003

	PARENT RESULT	DUP RESULT	RPD	MAX RPD
PARAMETER	(mg/kg)	(mg/kg)	(%)	(%)
NITRATE/NITRITE	ND	ND	0	20

Client : URS

Project : DHCCP

SDG : 13K014

## METHOD 7196A HEXAVALENT CHROMIUM

A total of three (3) soil samples were received on 11/05/13 for Chromium Hexavalent analysis, Method 7196A in accordance with USEPA SW-846, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods.

Holding Time Samples were analyzed within the prescribed holding time.

Calibration Multi-calibration points were generated to establish initial calibration (ICAL). ICAL was verified using a secondary source. Continuing calibration verifications were carried out at the frequency specified by the project. All calibration requirements were within acceptance criteria.

Method Blank Method blank was analyzed at the frequency required by the project. For this SDG, one method blank was analyzed with the samples. Result was compliant to project requirement.

Lab Control Sample Two (2) Lab Control Samples were analyzed with the samples in this SDG. Percent recovery for CSK005SL (soluble) was within QC limits. Percent recovery for CIK005SL (insoluble) was within QC limits.

Matrix QC Sample Matrix QC sample was analyzed at the frequency prescribed by the project. Percent recoveries for K014-01M/M (soluble and insoluble) were within project QC limits. Sample duplicate was also analyzed with the samples. RPD was within project limit. Analytical spike was analyzed for matrix interference evaluation. Result was within method acceptance criteria.

Sample Analysis Samples were analyzed according to prescribed analytical procedures. All project requirements were met otherwise anomalies were discussed within the associated QC parameter.

## METHOD 7196A HEXAVALENT CHROMIUM

Client : URS Project : DHCCP Batch No. : 13K014		==============										Matrix InstrumentID	: SOIL : 70
CLIENT SAMPLE ID	EMAX SAMPLE ID	RESULTS (mg/kg)		MOIST (%)	LOQ (mg/k	LOD g)(mg/kg	ANALYSIS DATETIME	PREPARATION DATETIME	DATA FILE ID	CAL REF	PREP BATCH	COLLECTION DATETIME	RECEIVED DATETIME
MBLK1S	CRK005SB	ND	1	NA	1	0.5	11/13/1316:56	11/08/1311:51	13CRK00509	13CRK005	CRK005S	NA	NA
LCS1S	CSK005SL	10.9	1	NA	1	0.5	11/13/1316:56	11/08/1311:51	13CRK00510	13CRK005	CRK005S	NA	NA
LCS2S	CIK005SL	565	50	NA	50	25	11/13/1316:56	11/08/1311:51	13CRK00511	13CRK005	CRK005S	NA	NA
3B-2	К014-01	ND	0.999	22.5	1.29	0.645	11/13/1316:57	11/08/1311:51	13CRK00512	13CRK005	CRK005S	11/04/1312:00	11/05/13
3B-2DUP	K014-01D	ND	0.99	22.5	1.28	0.639	11/13/1316:57	11/08/1311:51	13CRK00513	13CRK005	CRK005S	11/04/1312:00	11/05/13
3B-2MS	K014-01M	14.0	0.994	22.5	1.28	0.641	11/13/1316:57	11/08/1311:51	13CRK00514	13CRK005	CRK005S	11/04/1312:00	11/05/13
3B-2MS	K014-01M	746	50.2	22.5	64.8	32.4	11/13/1316:57	11/08/1311:51	13CRK00515	13CRK005	CRK005S	11/04/1312:00	11/05/13
3B-2AS	K014-01A	14.7	0.999	22.5	1.29	0.645	11/13/1316:58	11/08/1311:51	13CRK00516	13CRK005	CRK005S	11/04/1312:00	11/05/13
3D-2	K014-02	ND	1	12.0	1.14	0.568	11/13/1316:58	11/08/1311:51	13CRK00517	13CRK005	CRK005S	11/04/1312:00	11/05/13
CC-2	K014-03	ND	0.998	16.0	1.19	0.594	11/13/1316:58	11/08/1311:51	13CRK00518	13CRK005	CRK005S	11/04/1312:00	11/05/13

672

 CLIENT
 : URS

 PROJECT
 : DHCCP

 BATCH NO.
 : 13K014

 METHOD
 : METHOD 7196A

MATRIX :	SOIL	
DILUTION FACTOR:	1	1
SAMPLE ID :	MBLK1S	LCS1S
LAB SAMPLE ID :	CRK005SB	CSK005SL
LAB FILE ID :	13CRK00509	13CRK00510
DATE PREPARED :	11/08/1311:51	11/08/1311:51
DATE ANALYZED :	11/13/1316:56	11/13/1316:56
PREP BATCH :	CRK005S	CRK005S
CALIBRATION REF:	13CRK005	13CRK005

#### ACCESSION:

	MB RESULT	SPIKE AMT	BS RESULT	BS REC	QC LIMIT	
PARAMETER	(mg/kg)	(mg/kg)	(mg/kg)	(%)	(%)	
****						
Hexavalent Chromium	ND	12	10.9	91	85-115	

#1

CLIENT	: URS
PROJECT	: DHCCP
BATCH NO.	: 13K014
METHOD	: METHOD 7196A

MATRIX	:	SOIL	
DILUTION FACTOR	::	1	50
SAMPLE ID	:	MBLK1S	LCS2S
LAB SAMPLE ID	:	CRK005SB	CIKO05SL
LAB FILE ID	:	13CRK00509	13CRK00511
DATE PREPARED	:	11/08/1311:51	11/08/1311:51
DATE ANALYZED	:	11/13/1316:56	11/13/1316:56
PREP BATCH	:	CRK005S	CRK005S
CALIBRATION REP	:	13CRK005	13CRK005

	MB RESULT	SPIKE AMT	BS RESULT	BS REC	QC LIMIT	
PARAMETER	(mg/kg)	(mg/kg)	(mg/kg)	(%)	(%)	
Hexavalent Chromium	ND	622	565	91	75-125	

Ň

CLIENT	: URS			
PROJECT	: DHCCP			
BATCH NO.	: 13K014			
METHOD	: METHOD 7196A			
MATRIX	: SOIL		% MOISTURE: 22.5	
MATRIX DILUTION FACT		0.994	% MOISTURE: 22.5	

LAB SAMPLE ID	:	K014-01	K014-01M
LAB FILE ID	:	13CRK00512	13CRK00514
DATE PREPARED	:	11/08/1311:51	11/08/1311:51
DATE ANALYZED	:	11/13/1316:57	11/13/1316:57
PREP BATCH	:	CRK005S	CRK005S
CALIBRATION REF	:	13CRK005	13CRK005

	PARENT RESULT	SPIKE AMT	MS RESULT	MS REC	QC LIMIT
PARAMETER	(mg/kg)	(mg/kg)	(mg/kg)	(%)	(%)
Hexavalent Chromium	ND	15.4	14.0	91	85-115

CLIENT PROJECT BATCH NO. METHOD	:	URS DHCCP 13K014 METHOD 7196A			
	== = = :				
MATRIX	:	SOIL		% MOISTURE:	22.5
DILUTION FACTO	OR:	0.999	50.2		
SAMPLE ID	:	3B-2	3B-2MS		
LAB SAMPLE ID	:	K014-01	K014-01M		
LAB FILE ID	:	13CRK00512	13CRK00515		
DATE PREPARED	:	11/08/1311:51	11/08/1311:51		
DATE ANALYZED	:	11/13/1316:57	11/13/1316:57		
PREP BATCH	:	CRK005S	CRK005S		
CALIBRATION RE	EF:	13CRK005	13CRK005		

	PARENT RESULT	SPIKE AMT	MS RESULT	MS REC	QC LIMIT
PARAMETER	(mg/kg)	(mg/kg)	(mg/kg)	(%)	(%)
Hexavalent Chromium	ND	849	746	88	75-125

## EMAX QUALITY CONTROL DATA POST SPIKE ANALYSIS

CLIENT PROJECT BATCH NO. METHOD	:	URS DHCCP 13K014 METHOD 7196A			
-					
MATRIX	:	SOIL		% MOISTURE:	22.5
DILUTION FACTO	R:	0.999	0.999		
SAMPLE ID	:	3B-2	3B-2		
LAB SAMPLE ID	:	K014-01	K014-01A		
LAB FILE ID	:	13CRK00512	13CRK00516		
DATE PREPARED	:	11/08/1311:51	11/08/1311:51		
DATE ANALYZED	:	11/13/1316:57	11/13/1316:58		
PREP BATCH	:	CRK005S	CRK005S		
CALIBRATION RE	F:	13CRK005	13CRK005		

	PARENT RESULT	SPIKE AMT	AS RESULT	AS REC	QC LIMIT	
PARAMETER	(mg/kg)	(mg/kg)	(mg/kg)	(%)	(%)	
Hexavalent Chromium	ND	15.5	14.7	95	85-115	

Client : URS

Project : DHCCP

SDG : 13K014

## WALKLEY-BLACK TOC BY WALKLEY-BLACK METHOD

A total of three (3) soil samples were received on 11/05/13 for Total Organic Carbon analysis, MethodWALKLEY-BLACK in accordance with Walkley-Black Procedure (Walkley, 1946; Peech et al., 1947; Greweling & Peech, 1960).

Holding Time Samples were analyzed within the prescribed holding time.

Method Blank Method blank was analyzed at the frequency required by the project. For this SDG, one method blank was analyzed with the samples. Result was compliant to project requirement.

Lab Control Sample A set of LCS/LCD was analyzed with the samples in this SDG. Percent recoveries for WBK001SL/C were all within QC limits.

Matrix QC Sample No matrix QC sample was designated for this SDG. However, sample duplicate was analyzed with the samples. RPD was within project limit.

Sample Analysis Samples were analyzed according to prescribed analytical procedures. All project requirements were met otherwise anomalies were discussed within the associated QC parameter.

678

## WALKLEY-BLACK TOC BY WALKLEY-BLACK METHOD

Client : URS Project : DHCCP Batch No. : 13K014		ubility of the second secon											SOIL NA
CLIENT	EMAX	RESULTS	PREP.	MOIST	LOQ	LOD	ANALYSIS	PREPARATION	DATA	CAL.	PREP	COLLECTION	RECEIVED
SAMPLE ID	SAMPLE ID	(mg/kg)	FACTOR	(%)	(mg/kg	g)(mg/kç	g) DATETIME	DATETIME	FILE ID	REF	BATCH	DATETIME	DATETIME
MBLK1S	WBK001SB	ND	1.00	NA	600	600	11/08/1315:55	11/08/1315:55	13WBK00101	13WBK001	WBK001S	NA	NA
LCS1S	WBK001SL	2300	1.00	NA	600	600	11/08/1315:57	11/08/1315:57	13WBK00102	13WBK001	WBK001S	NA	NA
LCD1S	WBK001SC	2300	1.00	NA	600	600	11/08/1315:59	11/08/1315:59	13WBK00103	13WBK001	WBK001S	NA	NA
3B-2	K014-01	1270	0.966	22.5	748	748	11/08/1316:06	11/08/1316:06	13WBK00107	13WBK001	WBK001S	11/04/1312:00	11/05/13
3B-2DUP	K014-01D	1380	0.959	22.5	742	742	11/08/1316:09	11/08/1316:09	13WBK00108	13WBK001	WBK001S	11/04/1312:00	11/05/13
3D-2	K014-02	1150	0.989	12.0	674	674	11/08/1316:11	11/08/1316:11	13WBK00109	13WBK001	WBK001S	11/04/1312:00	11/05/13
CC-2	K014-03	2620	0.955	16.0	682	682	11/08/1316:12	11/08/1316:12	13WBK00110	13WBK001	WBK001S	11/04/1312:00	11/05/13

## EMAX QUALITY CONTROL DATA LAB CONTROL SAMPLE ANALYSIS

CLIENT	: URS
PROJECT	: DHCCP
BATCH NO.	: 13K014
METHOD	: WALKLEY-BLACK

MATRIX	:	SOIL		% MOISTURE: NA	
DILUTION FACTOR	:	1	1	1	
SAMPLE ID	:	MBLK1S	LCS1S	LCD1S	
LAB SAMPLE ID	:	WBK001SB	WBK001SL	WBK001SC	
LAB FILE ID	:	13WBK00101	13WBK00102	13WBK00103	
DATE EXTRACTED	:	11/08/1316:12	11/08/1316:12	11/08/1316:12	
DATE ANALYZED	:	11/08/1315:55	11/08/1315:57	11/08/1315:59	
PREP BATCH	:	WBK001S	WBK001S	WBK001S	
CALIBRATION REF	:	13WBK001	13WBK001	13WBK001	

	MB RESULT	SPIKE AMT	BS RESULT	BS REC	SPIKE AMT	BSD RESULT	BSD REC	RPD	QC LIMIT	MAX RPD
PARAMETER	(mg/kg)	(mg/kg)	(mg/kg)	(%)	(mg/kg)	(mg/kg)	(%)	(%)	(%)	(%)
		· · · · · · · · · ·						• • • • • • • • • •	• • • • • • • • • •	
TOC	ND	2000	2300	115	2000	2300	115	0	80-120	20

## EMAX QUALITY CONTROL DATA SAMPLE DUPLICATE ANALYSIS

CLIENT PROJECT BATCH NO. METHOD	:	URS DHCCP 13K014 WALKLEY-BLACK				
MATRIX	;	SOIL	MOISTURE: 22.5			
DILUTION FACTO	R:	0.966	0.959			
SAMPLE ID	:	3B-2	3B-2DUP			
LAB SAMPLE ID	:	K014-01	K014-01D			
LAB FILE ID	:	13WBK00107	13WBK00108			
DATE PREPARED	:	11/08/1316:06	11/08/1316:09			
DATE ANALYZED	:	11/08/1316:06	11/08/1316:09			
PREP BATCH	:	WBK001S	WBK001S			
CALIBRATION RE	F:	13WBK001	13WBK001			
ACCESSION:						
		PARENT RESULT	DUP RESULT	RPD	MAX RPD	۱. <u>.</u>

	PARENT RESULT	DUP RESULT	RPD	MAX RPD
PARAMETER	(mg/kg)	(mg/kg)	(%)	(%)
	• • • • • • • • • • • • • • • • • • • •			
TOC	1270	1380	8	20

## LABORATORY REPORT FOR

URS

# DHCCP

# SUBCONTRACTED ANALYSES (ALS-KELSO)

BUTYLTINS METHYL MERCURY

SDG#: 13K014

Page000133



November 22, 2013

Analytical Report for Service Request No: K1312129

Caspar Pang Emax Laboratories, Incorporated 1835 W. 205th St. Torrance, CA 90501

## RE: DHCCP/13K014

Dear Caspar:

Enclosed are the results of the samples submitted to our laboratory on N ovember 07, 2013. For your reference, these analyses have been assigned our service request number K1312129.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at <u>www.alsglobal.com</u>. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please call if you have any questions. My extension is 3364. You may also contact me via Email at Howard.Holmes@alsglobal.com.

Respectfully submitted,

ALS Group USA Corp. dba ALS Environmental

Howard Holmes Project Manager

HH/mj

Page 1 of _____

ADDRESS 1317 S. 13^h Avenue, Kelso, WA 98626 USA | PHONE +1 360 577 7222 | FAX +1 360 636 1068 ALS Group USA, Corp. Part of the ALS Group An ALS Limited Company

Environmental 💭

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

## Acronyms

ASTM	American Society for Testing and Materials
A2LA	American Association for Laboratory Accreditation
CARB	California Air Resources Board
CAS Number	Chemical Abstract Service registry Number
CFC	Chlorofluorocarbon
CFU	Colony-Forming Unit
DEC	Department of Environmental Conservation
DEQ	Department of Environmental Quality
DHS	Department of Health Services
DOE	Department of Ecology
DOH	Department of Health
EPA	U. S. Environmental Protection Agency
ELAP	Environmental Laboratory Accreditation Program
GC	Gas Chromatography
GC/MS	Gas Chromatography/Mass Spectrometry
LOD	Limit of Detection
LOQ	Limit of Quantitation
LUFT	Leaking Underground Fuel Tank
Μ	Modified
MCL	Maximum Contaminant Level is the highest permissible concentration of a substance
	allowed in drinking water as established by the USEPA.
MDL	Method Detection Limit
MPN	Most Probable Number
MRL	Method Reporting Limit
NA	Not Applicable
NC	Not Calculated
NCASI	National Council of the Paper Industry for Air and Stream Improvement
ND	Not Detected
NIOSH	National Institute for Occupational Safety and Health
PQL	Practical Quantitation Limit
RCRA	Resource Conservation and Recovery Act
SIM	Selected Ion Monitoring
TPH	Total Petroleum Hydrocarbons
tr	Trace level is the concentration of an analyte that is less than the PQL but greater
	than or equal to the MDL.

#### 685

#### **Inorganic Data Qualifiers**

- * The result is an outlier See case narrative
- # The control limit criteria is not applicable See case narrative
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards
- E The result is an estimate amount because the value exceeded the instrument calibration range
- J The result is an estimated value
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project The detection limit is adjusted for dilution
- $i \,$   $\,$  The MRL/MDL or LOQ/LOD is elevated due to a matrix interference
- X See case narrative
- Q See case narrative One or more quality control criteria was outside the limits
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory

#### **Metals Data Qualifiers**

- # The control limit criteria is not applicable See case narrative
- J The result is an estimated value
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample
- M The duplicate injection precision was not met
- N The Matrix Spike sample recovery is not within control limits See case narrative
- S The reported value was determined by the Method of Standard Additions (MSA)
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL
- DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project The detection limit is adjusted for dilution
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference
- X See case narrative
- + The correlation coefficient for the MSA is less than 0 995
- Q See case narrative One or more quality control criteria was outside the limits

#### **Organic Data Qualifiers**

- * The result is an outlier See case narrative
- # The control limit criteria is not applicable See case narrative
- A A tentatively identified compound, a suspected aldol-condensation product
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data
- D The reported result is from a dilution
- E The result is an estimated value
- J The result is an estimated value
- N The result is presumptive The analyte was tentatively identified, but a confirmation analysis was not performed
- P The GC or HPLC confirmation criteria was exceeded The relative percent difference is greater than 40% between the two analytical results
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL
   DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project The detection limit is adjusted for dilution
- $i \quad \mbox{ The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference}$
- X See case narrative
- Q See case narrative One or more quality control criteria was outside the limits

#### Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard
- Z The chromatographic fingerprint does not resemble a petroleum product

## ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Agency	Web Site	Number
Alaska DEC UST	http://dec.alaska.gov/applications/eh/ehllabreports/USTLabs.aspx	UST-040
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0339
Arkansas - DEQ	http://www.adeq.state.ar.us/techsvs/labcert htm	88-0637
California DHS (ELAP)	http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2286
DOD ELAP	http://www.denix.osd mil/edqw/Accreditation/AccreditedLabs.cfm	L12-28
Florida DOH	http://www.doh.state fl.us/lab/EnvLabCert/WaterCert.htm	E87412
Georgia DNR	http://www.gaepd.org/Documents/techguide_pcb.html#cel	881
Hawaii DOH	Not available	-
Idaho DHW	http://www.healthandwelfare.idaho.gov/Health/Labs/CertificationDrinkingWaterLabs/tabid/1833/Default.aspx	
Indiana DOH	http://www.in.gov/isdh/24859.htm	C-WA-01
ISO 17025	http://www.pjlabs.com/	L12-27
Louisiana DEQ	http://www.deq.louisiana.gov/portal/DIVISIONS/PublicParticipationandPer mitSupport/LouisianaLaboratoryAccreditationProgram.aspx	3016
Maine DHS	Not available	WA0035
Michigan DEQ	http://www.michigan.gov/deq/0,1607,7-135-3307_4131_4156,00.html	9949
Minnesota DOH	http://www.health.state.mn.us/accreditation	053-999-368
Montana DPHHS	http://www.dphhs mt.gov/publichealth/	CERT0047
Nevada DEP	http://ndep.nv.gov/bsdw/labservice.htm	WA35
New Jersey DEP	http://www.nj.gov/dep/oqa/	WA005
North Carolina DWQ	http://www.dwqlab.org/	605
Oklahoma DEQ	http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
Oregon – DEQ (NELAP)	http://public health.oregon.gov/LaboratoryServices/EnvironmentalLaborator yAccreditation/Pages/index.aspx	WA200001
South Carolina DHEC	http://www.scdhec.gov/environment/envserv/	61002
Texas CEQ	http://www.tceq.texas.gov/field/qa/env_lab_accreditation html	1704427-08-TX
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation html	C1203
Wisconsin DNR	http://dnr.wi.gov/	998386840
Wyoming (EPA Region 8)	http://www.epa.gov/region8/water/dwhome/wyomingdi.html	-
Kelso Laboratory Website	www.alsglobal.com	NA

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.caslab.com or at the accreditation bodies web site

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

#### ALS ENVIRONMENTAL

Client:Emax LaboratoriesProject:DHCCPSample Matrix:Soil

 Service Request No.:
 K1312129

 Date Received:
 11/7/13

#### **Case Narrative**

All analyses were performed consistent with the quality assurance program of ALS Envi ronmental. This report contains analytical results for samples designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses. Additional quality control analyses reported herein include: Laboratory Duplicate (DUP), Matrix Spike (MS), and Laboratory Control Sample (LCS).

#### Sample Receipt

Three soil samples were received for analysis at ALS Environm ental on 11/7/13. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

#### Methyl Mercury by EPA 1630M

No anomalies associated with this analysis were observed.

#### **Organotin Compounds**

#### **Relative Percent Difference Exceptions:**

The Relative Percent Difference (RPD) for n-Butyltin Cation in the replicate matrix spike analyses of Batch QC was outside control criteria. In general, the RPD was relatively high for all spiked compounds, which indicates a potential bias in the Matrix Spike (MS)/Matrix Spike Duplicate (MSD). All spike recoveries in the MS, DMS, and associated Laboratory Control Sample (LCS) were within acceptance limits, indicating the analytical batch was in control. No further corrective action was appropriate.

No other anomalies associated with this analysis were observed.



# (3/ PWR 307



Tel#: 310-618-8889 FAX#: 310-618-0818 email: info@emaxlabs.com

LABORATORIES, INC.

ATTN: Caspar

## SEND REPORT TO: EMAX LABORATORIES, INC. 1835 W. 205TH ST. CA 90501

CLIENT: URS PROJECT: DHCCP

# EMAX CONTROL NO13K014PROJECT CODEURS1311TURN-AROUND-TIME14 DAYS

SEND SAMPLES TO:

## **CAS-Columbia** Lab

1317 S. 13th Avenue Kelso, WA 98626

EMAX Sample ID	Client Sample ID	Collection Date	CollectionTime	ction Date CollectionTime N	Matrix		Method	COMMENTS
K014-01	3B-2	2 11/4/2013		SOIL	EPA 1630M	Methyl Mercury by 1630M		
K014-01	3B-2	11/4/2013	12:00:00 PM	SOIL	GC-FPD(b)	Tributyl tin(mono-, di-,and trib		
K014-02	3D-2	11/4/2013	12:00:00 PM	SOIL	EPA 1630M	Methyl Mercury by 1630M		
K014-02	3D-2	11/4/2013	12:00:00 PM	SOIL	GC-FPD(b)	Tributyl tin(mono-, di-,and trib		
K014-03	CC-2	11/4/2013	12:00:00 PM	SOIL	EPA 1630M	Methyl Mercury by 1630M		
K014-03	CC-2	11/4/2013	12:00:00 PM	SOIL	GC-FPD(b)	Tributyl tin(mono-, di-,and trib		

INSTRUCTION:

COOLER TEMPERATURE

Please login using Client Sample ID and report as level 2 with standard EDD.

RELINQUISHED BY	DATE	TIME	RECEIVED BY	DATE	TIME
Spaly	11 6 13	1345	TacodALS-Kilon	11/11/3	CATO

	689
(AL	5)000

## **Cooler Receipt and Preservation Form**

Clie	ent / Project: Ein Cox			Service Request K13 / 1/19	
Rec	eived: <u>NUC. 7.2013</u> Opened	: <u> (1/7</u>	<u></u>	By: 3 Unloaded: 117 By	y:
1.	Samples were received via? Mail	Fed Ex	UPS	DHL PDX Courier Hand Delivered	
2.	Samples were received in: (circle)	Cooler	Box	Envelope Other	NA
3.	Were custody seals on coolers?	NA (Y	N	If yes, how many and where? 1. FILLI	1- KLICK
	If present, were custody seals intact?	Y	N	If present, were they signed and dated?	(Y N
<ul> <li>Control</li> </ul>	Raw Corrected. Raw Correcte		Thermo	and a second	ber NA Fi

Cooler	Temp	Corrected. Cooler Temp	Raw Temp Blank	Corrected Temp Blank	Factor	ID	NA	NA	Filed
01	5	0.2	1.50	15	0.3	34		6919 19199000	
		Contraction of the second s							10.00

## 4. Packing material: Inserts Baggies Bubble Wrap Gel Packs Wet Ice Dry Ice Sleeves

5.	Were custody papers properly filled out (ink, signed, etc.)?	NA	<u>y</u>	Ν
6.	Did all bottles arrive in good condition (unbroken)? Indicate in the table below.	NA	$\subseteq \mathbf{Y}$	N
7.	Were all sample labels complete (i.e analysis, preservation, etc.)?	NA	(Y	Ν
8.	Did all sample labels and tags agree with custody papers? Indicate major discrepancies in the table on page 2.	NA	Y	N
9.	Were appropriate bottles/containers and volumes received for the tests indicated?	NA	$\langle \mathbf{\hat{Y}} \rangle$	N
10.	Were the pH-preserved bottles (see SMO GEN SOP) received at the appropriate pH? Indicate in the table below	NA	Y	N
11.	Were VOA vials received without headspace? Indicate in the table below.	NA	Υ	Ν
12.	Was C12/Res negative?	NA	Y	N

Sample ID on Bottle	Sample ID on COC	Identified by:

Sample ID	Bottle Count Bottle Type	Out of Temp	Head- space	Broke	рH	Reagent	Volume added	Reagent Lot Number	Initials	Time

Notes, Discrepancies, & Resolutions:

3D-2

CC-2

#### ALS Group USA, Corp. dba ALS Environmental

**DWR-207** 

87.9

80.5

Analytical Results

			7 marytical results				
Client:	Emax Laboratories,	Incorporated				Service Request:	K1312129
Project:							
Sample Matrix:	Soil						
			Total Solids				
			Total Solids				
Prep Method:	NONE					Units:	PERCENT
Analysis Method:	160.3M					Basis:	Wet
Test Notes:							
			Date	Date	Date		<b>Result Notes</b>
Sample Name		Lab Code	Collected	Received	Analyzed	Result	
3B-2		K1312129-001	11/04/2013	11/07/2013	11/18/2013	77.4	

11/04/2013

11/04/2013

11/07/2013

11/07/2013

11/18/2013

11/18/2013

K1312129-002

K1312129-003

Printed: 11/22/2013 14:07 u:\Stealth\Crystal rpt\Solids rpt

#### ALS Group USA, Corp. dba ALS Environmental Analytical Report

Client:	Emax Laboratories, Incorporated	Service Request:	K1312129
Project:	DHCCP	Date Collected:	11/04/13
Sample Matrix:	Soil	Date Received:	11/07/13

Methyl Mercury

0.04

0.04

Prep Method: ALS SOP Analysis Method: ALS SOP Test Notes:

Sample Name

Method Blank 1

Method Blank 2

Method Blank 3

3B-2

3D-2

CC-2

Dilution Date Date Result Lab Code MRL MDL Factor Extracted Analyzed Result Notes K1312129-001 0.5 0.05 1 11/13/13 11/14/13 ND K1312129-002 0.4 0.04 1 11/13/13 11/14/13 ND K1312129-003 0.5 0.05 11/13/13 1 11/14/13 ND 0.4 0.04 K1312129-MB1 1 11/13/13 11/14/13 ND

1

1

11/13/13

11/13/13

11/14/13

11/14/13

9

Methyl Merci

0.4

0.4

K1312129-MB2

K1312129-MB3

Units: ng/g Basis: Dry

ND

ND

#### ALS Group USA, Corp. dba ALS Environmental QA/QC Report

Client: Project: Sample Matrix:	Emax Laborato DHCCP Soil									Da Da Da	vice Request: te Collected: ate Received: te Extracted: te Analyzed:	11/04/13 11/07/13 11/13/13	
Matrix Spike/Duplicate Matrix Spike Summary Metals													
Sample Name: Lab Code: Test Notes:	CC-2 K1312129-003MS, K1312129-003MSD								Units: Basis:				
Analyte	Prep Method	Analysis Method	MRL	Spiko MS	e Level DMS	Sample Result	Spike MS	Result DMS	Per MS	cent DMS	R e c o v e r y CAS Acceptance Limits	Relative Percent Difference	Result Notes
Methyl Mercury	CAS SOP	CAS SOP	2.5	122	123	ND	112	104	92	85	65-135	7	

### ALS Group USA, Corp. dba ALS Environmental QA/QC Report

Client: Project: LCS Matrix:	Emax Laboratories, Incorpo DHCCP Water	rated				Service Request: Date Collected: Date Received: Date Extracted: Date Analyzed:	NA NA 11/13/13
	Ongo	ing Precision a	ind Recover	ry (OPR) S	Sample Sum	mary	
	C	C	Metal	ls	1	2	
Sample Name:	Ongoing Precision and Reco	overy (Initial)				Units:	pg
-						Basis:	NA
	Prep	Analysis	True		Percent	CAS Percent Recovery Acceptance	Result
Analyte	Method	Method	Value	Result	Recovery	Limits	Notes

Analyte	Method	Method	Value	Result	Recovery	Limits	
Methyl Mercury	CAS SOP	CAS SOP	100	79.7	80	67-133	

### ALS Group USA, Corp. dba ALS Environmental QA/QC Report

Client: Project: LCS Matrix:	Emax Laboratories, Incorporated DHCCP Water			Service Request: Date Collected: Date Received: Date Extracted: Date Analyzed:	NA : NA : 11/13/13
	Ongoing Precis	on and Recove	ery (OPR) Sample	e Summary	
		Meta	ıls		
Sample Name:	Ongoing Precision and Recovery (Fina	)		Units	; pg
				Basis	: NA
Analyte	Prep Analy Method Meth			CAS Percent Recovery ccent Acceptance overy Limits	Result Notes

Methyl Mercury	CAS SOP	CAS SOP	100	76.5	76	67-133

ALS Group USA, Corp.
dba ALS Environmental
QA/QC Report

Client: Project: LCS Matrix:	Emax Laboratorie DHCCP Soil	s, Incorporat	ed				Service Request: Date Collected: Date Received: Date Extracted: Date Analyzed:	NA NA 11/13/13
			Quality Con	trol Sampl	e (QCS) S	ummary	-	
				Total M	etals			
Sample Name:	Quality Control Sa	ample					Units:	ng/g
							Basis:	Dry
Source:	ERM - CC580 Est	tuarine Sedir	nent				CAS Percent	
Analyte		Prep Method	Analysis Method	True Value	Result	Percent Recovery	Recovery Acceptance Limits	Result Notes

75.0 64.4 86

67-133

CAS SOP CAS SOP

Methyl Mercury

DWR-207

	Analytica	al Results	
Client:	Emax Laboratories, Incorporated	Service Request:	K1312129
Project:	DHCCP/13K014	Date Collected:	11/04/2013
Sample Matrix:	Soil	Date Received:	11/07/2013

#### **Butyltins (as cation)**

Sample Name:	3B-2	Units:	ug/Kg
Lab Code:	K1312129-001	Basis:	Dry
Extraction Method: Analysis Method:	Method Krone	Level:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Tetra-n-butyltin	ND U	0.99	0.44	1	11/12/13	11/14/13	KWG1312702	
Tri-n-butyltin Cation	ND U	0.99	0.43	1	11/12/13	11/14/13	KWG1312702	
Di-n-butyltin Cation	ND U	0.99	0.19	1	11/12/13	11/14/13	KWG1312702	
n-Butyltin Cation	ND U	0.99	0.26	1	11/12/13	11/14/13	KWG1312702	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Tri-n-propyltin	73	10-120	11/14/13	Acceptable

**Comments:** 

696

Merged

DWR-207

	Analytical Results		
Client:	Emax Laboratories, Incorporated	Service Request:	K1312129
Project:	DHCCP/13K014	Date Collected:	11/04/2013
Sample Matrix:	Soil	Date Received:	11/07/2013

#### **Butyltins (as cation)**

Sample Name:	3D-2	Units:	ug/Kg
Lab Code:	K1312129-002	Basis:	Dry
Extraction Method: Analysis Method:	Method Krone	Level:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Tetra-n-butyltin	ND U	0.99	0.44	1	11/12/13	11/14/13	KWG1312702	
Tri-n-butyltin Cation	ND U	0.99	0.43	1	11/12/13	11/14/13	KWG1312702	
Di-n-butyltin Cation	<b>0.28</b> J	0.99	0.19	1	11/12/13	11/14/13	KWG1312702	
n-Butyltin Cation	0.32 J	0.99	0.26	1	11/12/13	11/14/13	KWG1312702	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Tri-n-propyltin	86	10-120	11/14/13	Acceptable

**Comments:** 

697

Merged

DWR-207

	Analytical	Results	
Client:	Emax Laboratories, Incorporated	Service Request: K1312129	9
Project:	DHCCP/13K014	Date Collected: 11/04/201	3
Sample Matrix:	Soil	<b>Date Received:</b> 11/07/201	3

#### **Butyltins (as cation)**

Sample Name:	CC-2	Units:	ug/Kg
Lab Code:	K1312129-003	Basis:	Dry
Extraction Method: Analysis Method:	Method Krone	Level:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Tetra-n-butyltin	ND U	0.99	0.44	1	11/12/13	11/14/13	KWG1312702	
Tri-n-butyltin Cation	ND U	0.99	0.43	1	11/12/13	11/14/13	KWG1312702	
Di-n-butyltin Cation	<b>0.31</b> J	0.99	0.19	1	11/12/13	11/14/13	KWG1312702	
n-Butyltin Cation	<b>0.57</b> J	0.99	0.26	1	11/12/13	11/14/13	KWG1312702	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Tri-n-propyltin	67	10-120	11/14/13	Acceptable

**Comments:** 

698

Merged

699

#### DWR-207

	Analytical Results		
Client:	Emax Laboratories, Incorporated	Service Request: KI	1312129
Project:	DHCCP/13K014	Date Collected: NA	A
Sample Matrix:	Soil	Date Received: NA	A

#### **Butyltins (as cation)**

Sample Name:	Method Blank	Units:	ug/Kg
Lab Code:	KWG1312702-4	Basis:	Dry
Extraction Method: Analysis Method:	Method Krone	Level:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Tetra-n-butyltin	ND U	0.99	0.44	1	11/12/13	11/14/13	KWG1312702	
Tri-n-butyltin Cation	ND U	0.99	0.43	1	11/12/13	11/14/13	KWG1312702	
Di-n-butyltin Cation	ND U	0.99	0.19	1	11/12/13	11/14/13	KWG1312702	
n-Butyltin Cation	ND U	0.99	0.26	1	11/12/13	11/14/13	KWG1312702	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Tri-n-propyltin	81	10-120	11/14/13	Acceptable

**Comments:** 

Merged

Form 1A -Organic

QA/QC Report

Service Request: K1312129

**Client: Project:** Sample Matrix: Emax Laboratories, Incorporated DHCCP/13K014 Sediment

> Surrogate Recovery Summary **Butyltins (as cation)**

Method **Extraction Method: Analysis Method:** 

Krone

Units: Percent Level: Low

Sample Name	<u>Lab Code</u>	<u>Sur1</u>
Batch QC	K1311240-002	54 D
3B-2	K1312129-001	73
3D-2	K1312129-002	86
CC-2	K1312129-003	67
Method Blank	KWG1312702-4	81
Batch QCMS	KWG1312702-1	86 D
Batch QCDMS	KWG1312702-2	83 D
Lab Control Sample	KWG1312702-3	62

Surrogate Recovery Control Limits (%)

Sur1 = Tri-n-propyltin

10-120

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

701

#### QA/QC Report

Client:Emax Laboratories, IncorporatedProject:DHCCP/13K014Sample Matrix:Sediment

 Service Request:
 K1312129

 Date Extracted:
 11/12/2013

 Date Analyzed:
 11/15/2013

Matrix Spike/Duplicate Matrix Spike Summary Butyltins (as cation)

Sample Name:	Batch QC	Units:	ug/Kg
Lab Code:	K1311240-002	Basis:	Dry
Extraction Method:	Method	Level:	
Analysis Method:	Krone	Extraction Lot:	

		Batch QCMS KWG1312702-1 Matrix Spike			Batch QCDMS KWG1312702-2 Duplicate Matrix Spike					
Analyte Name	Sample Result	Result	Spike Amount	%Rec	Result	Spike Amount	%Rec	%Rec Limits	RPD	RPD Limit
Tetra-n-butyltin	ND	26.7	37.0	72	22.9	37.0	62	16-126	15	40
Tri-n-butyltin Cation	3.5	36.2	32.9	100	34.1	32.9	93	10-115	6	40
Di-n-butyltin Cation	6.0	39.4	28.4	117	27.6	28.4	76	10-133	35	40
n-Butyltin Cation	3.0	31.5	23.1	123	14.9	23.1	52	10-124	71 *	40

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded

702		1	ALS Group U	SA, Corp.	dba ALS Environmental		DWR-207			
				QA/QC	Report					
Client: Project: Sample Matrix:	Emax Labora DHCCP/13K Soil	atories, Incorp 014	orated			Service Request: Date Extracted: Date Analyzed:	11/12/2013			
Lab Control Spike Summary Butyltins (as cation)										
<b>Extraction Method:</b>	Method					Units:	ug/Kg			
Analysis Method:	Krone					Basis:				
						Level:	Low			
						<b>Extraction Lot:</b>	KWG1312702			
	Lab Control Sample KWG1312702-3 Lab Control Spike									
Analyte Name		Result	Spike Amount	%Rec	%Rec Limits					
Tetra-n-butyltin		13.2	25.0	53	19-130					
Tri-n-butyltin Cation		18.8	22.2	85	10-122					
Di-n-butyltin Cation		12.6	19.2	65	12-136					
n-Butyltin Cation		8.97	15.6	58	10-150					

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded

1 of 1

CASE NARRATIVE

Client : URS

Project : DHCCP

SDG : 14B108

#### SW 3550B/8270C SIM 1,4-DIOXANE BY GC/MS SIM

One(1) soil sample was received on 02/19/14 for 1,4-Dioxane by 8270 SIM analysis, Method SW 3550B/8270C SIM in accordance with USEPA SW-846, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods.

Holding Time The sample was analyzed within the prescribed holding time.

Instrument Performance and Calibration Instrument tune check was performed prior to calibration. Instrument mass ratios were evaluated and results were within acceptance criteria. Multi-calibration points were generated to establish initial calibration (ICAL). ICAL was verified using secondary source (ICV). Continuing calibration (CCV) was carried on at a frequency required by the project. All project calibration requirements were satisfied. Refer to calibration summary forms of ICAL, ICV and CCV for details.

Method Blank Method blank was analyzed at the frequency required by the project. For this SDG, one method blank was analyzed with the samples. Result was compliant to project requirement.

Lab Control Sample A set of LCS/LCD was analyzed with the samples in this SDG. Percent recoveries for SVB030SL/C were all within QC limits.

Matrix QC Sample was designated in this SDG.

Surrogate Surrogate was added on QC and field samples. Surrogate recoveries were within project QC limits. Refer to sample result forms for details.

Sample Analysis The sample was analyzed according to prescribed analytical procedures. All project requirements were met otherwise anomalies were discussed within the associated QC parameter.

#### LAB CHRONICLE 1,4-Dioxane BY GC/MS SIM

Client	: URS	SDG NO.	: 14B108			
Project	: DHCCP	Instrument ID	: T-052			

				SO	IL				
Client	Laboratory	Dilution	%	Analysis	Extraction	Sample	Calibratio	n Prep.	
Sample ID	Sample ID	Factor	Moist	DateTime	DateTime	Data FN	Data FN	Batch	Notes
MBLK1S	SVB030SB	1	NA	02/21/1410:27	02/20/1414:11	RBK042	RFK007	SVB030S	Method Blank
LCS1S	SVB030SL	1	NA	02/21/1410:45	02/20/1414:11	RBK043	RFK007	SVB030S	Lab Control Sample (LCS)
LCD1S	SVB030SC	1	NA	02/21/1411:04	02/20/1414:11	RBK044	RFK007	SVB030S	LCS Duplicate
3B-3	B108-01	1	14.0	02/21/1411:22	02/20/1414:11	RBK045	RFK007	SVB030S	Field Sample

FN - Filename % Moist - Percent Moisture

# SAMPLE RESULTS

#### SW 3550B/8270C SIM 1,4-Dioxane BY GC/MS SIM

		***************	
Client : URS		Date Collected	d: 02/18/14
Project : DHCCP		Date Received	1: 02/19/14
Batch No. : 14B108		Date Extracted	i: 02/20/14 14:11
Sample ID: 3B-3		Date Analyzed	1: 02/21/14 11:22
Lab Samp ID: B108-01		Dilution Factor	<b>`:</b> 1
Lab File ID: RBK045		Matrix	: SOIL
Ext Btch ID: SVB030S		% Moisture	: 14.0
Calib. Ref.: RFK007		Instrument ID	: T-052
***************************************			
	RESULTS	RL	MDL
PARAMETERS	(ug/kg)	(ug/kg)	(ug/kg)
1,4-DIOXANE	ND	120	58
SURROGATE PARAMETERS	RESULTS	SPK_AMT % RE	COVERY QC LIMIT

RL: Reporting Limit

# **QC SUMMARIES**

#### SW 3550B/8270C SIM 1,4-Dioxane BY GC/MS SIM

Client : URS		Date Col	lected: NA
Project : DHCCP		Date Re	aceived: 02/20/14
Batch No. : 14B108		Date Ext	racted: 02/20/14 14:11
Sample ID: MBLK1S		Date Ar	nalyzed: 02/21/14 10:27
Lab Samp ID: SVB030SB		Dilution	Factor: 1
Lab File ID: RBK042		Matrix	: SOIL
Ext Btch ID: SVB030S		% Moistur	e :NA
Calib. Ref.: RFK007		Instrumer	nt ID : T-052
	RESULTS	RL	MDL
PARAMETERS	(ug/kg)	(ug/kg)	(ug/kg)
1,4-DIOXANE	ND	100	50
SURROGATE PARAMETERS	RESULTS	SPK_AMT	% RECOVERY QC LIMIT
	1070		00 / /0 450
BROMOBENZENE	1070	1333	80.6 40-150

RL: Reporting Limit

Bromobenzene		1330	1050	79	1330	1120	84	40-150			
SURROGATE PARAME		SPIKE AMT (ug/kg)	BS RSLT (ug/kg)	BS % REC	SPIKE AMT (ug/kg)	BSD RSLT (ug/kg)	BSD % REC	QC LIMIT (%)			
1,4-Dioxane		ND	133(	) 92		1330	11	010 76	9	40-150	50
PARAMETER		BLNK RSLT (ug/kg)	SPIKE AM (ug/kg)	BS RSLT (ug/kg)		SPIKE AMT (ug/kg)	BSD R (ug/k		RPD (%)	QC LIMIT (%)	MAX RPD (%)
ACCESSION:											
SAMPLE ID: LAB SAMP ID: LAB FILE ID: DATE EXTRACTED: DATE ANALYZED: PREP. BATCH: CALIB. REF:	MBLK1S SVB030SB RBK042 02/20/1414:1 02/21/1410:2 SVB030S RFK007		RBI +14:11 02, +10:45 02, SVI	3030sc <044 /20/1414:11 /21/1411:04 3030s <007		COLLECTED: RECEIVED:	NA 02/20/1	4			
MATRIX: DILUTION FACTOR:		1	1		% MOI	STURE:	NA				
CLIENT: PROJECT: BATCH NO.: METHOD:	URS DHCCP 14B108 SW 3550B/827	70C SIM					========				=

# **APPENDIX E**

Planting Suitability Properties Testing Data

## WALLACE LABORATORIES, LLC 365 Coral Circle El Segundo, CA 90245 phone (310) 615-0116 fax (310) 640-6863

August 9, 2013

rob.nixon@urs.com, chris.hargreaves@urs.com URS 2870 Gateway Oaks Drive, Suite 150 Sacramento, CA 95833

RE: DHCCP Testing, Job No. WBS014.7

Dear Rob & Chris,

<u>Our ID No.</u>	Sample
13-220-1	1A-1
13-220-2	2A-1
13-220-3	3A-1

These three samples have moderate alkalinity. The pH values range from 7.86 to 7.92. Salinity is moderate and ranges from 1.33 millimho/cm to 1.84 millimho/cm.

Nitrogen is modest. Phosphorus is low. Potassium, sulfur, iron, manganese and copper are sufficient. Zinc is low. Boron is modest. Magnesium is high. Total available sodium is moderately high. SAR (sodium adsorption ratio) ranges from 4.3 to 4.4.

The concentrations of non-essential heavy metals are low. A low amount of plantavailable lead and vanadium are present.

Cation Exchange Capacity ranges from 23.4 to 26.3 milliequivalents per 100 grams. Exchangeable potassium is modest at 1 and 2%. Exchangeable magnesium is high and ranges from 27% to 28%. High magnesium limits the uptake of potassium and calcium. Exchangeable calcium is modest and ranges from 58% to 61%. Exchangeable sodium is slightly high at 5%.

The rates are water percolation are moderately slow and range from 0.22 to 0.34 inches per hour. Excess sodium reduces soil porosity and decreases the rate of drainage.

The soil textures are clay loam.

## Recommendations

General soil preparation on a square foot basis for a 6-inch lift. Broadcast the following materials uniformly. The rates are per 1,000 square feet. Incorporate them homogeneously 6 inches deep:

Potassium sulfate (0-0-50) - 6 pounds
Triple superphosphate (0-45-0) - 4 pounds
agricultural gypsum - 40 pounds
Organic soil amendment - about 3 cubic yards, sufficient for 3% to 6% soil organic matter on a dry weight basis

For the preparation on a volume basis, homogeneously blend the following materials into clean soil. Rates are expressed per cubic yard:

Potassium sulfate (0-0-50) - 1/4 pound Triple superphosphate (0-45-0) - 1/4 pound agricultural gypsum - 2 pounds Organic soil amendment - about 15% by volume, sufficient for 3% to 6% soil organic matter on a dry weight basis

Organic soil amendment:

- 1. Humus material shall have an acid-soluble ash content of no less than 6% and no more than 20%. Organic matter shall be at least 50% on a dry weight basis.
- 2. The pH of the material shall be between 6 and 7.5.
- 3. The salt content shall be less than 10 millimho/cm @ 25° C. in a saturated paste extract.
- 4. Boron content of the saturated extract shall be less than 1.0 part per million.
- 5. Silicon content (acid-insoluble ash) shall be less than 50%.
- 6. Calcium carbonate shall not be present if to be applied on alkaline soils.
- 7. Types of acceptable products are composts, manures, mushroom composts, straw, alfalfa, peat mosses etc. low in salts, low in heavy metals, free from weed seeds, free of pathogens and other deleterious materials.
- 8. Composted wood products are conditionally acceptable [stable humus must be present]. Wood based products are not acceptable which are based on red wood or cedar.
- 9. Sludge-based materials are not acceptable.
- 10. Carbon:nitrogen ratio is less than 25:1.
- 11. The compost shall be aerobic without malodorous presence of decomposition products.
- 12. The maximum particle size shall be 0.5 inch, 80% or more shall pass a No. 4 screen for soil amending.

Maximum total permissible pollutant concentrations in amendment in parts per million on a dry weight basis:

arsenic	20	copper	150	selenium	50
cadmium	15	lead	200	silver	10
chromium	300	mercury	10	vanadium	500
cobalt	50	molybdenum	20	zinc	300
		nickel	100		

For site maintenance, apply ammonium sulfate (21-0-0) at 5 pounds per 1,000 square feet about once per quarter. Apply gypsum at 10 pounds per 1,000 square feet several times a year or as needed to reduce the effects of high exchangeable magnesium. Monitor the site with periodic soil testing. Adjust the fertility program as needed.

Sincerely,

Garn A. Wallace, Ph. D. GAW:n

)WR-207
millieq/l
3.3
2.2
7.2
0.0
0.2
12.8
4.3
1.2
0.0
7.7
13.1
vel > 2 mm
0.1%
% saturation
2%
5%
61%
27%
5%
- -

Elements are expressed as mg/kg dry soil or mg/l for saturation extract.

 $\ensuremath{\mathsf{pH}}\xspace$  and  $\ensuremath{\mathsf{ECe}}\xspace$  are measured in a saturation paste extract. nd means not detected.

Analytical data determined on soil fraction passing a 2 mm sieve.

## WALLACE LABORATORIES, LLC 365 Coral Circle El Segundo, CA 90245 phone (310) 615-0116 fax (310) 640-6863

October 17, 2013

rob.nixon@urs.com, chris.hargreaves@urs.com URS 2870 Gateway Oaks Drive, Suite 150 Sacramento, CA 95833

### RE: DHCCP Testing, Job No. WBS014.7 Revised

Dear Rob & Chris,

<u>Our ID No.</u>	<u>Sample</u>
13-281-12	1C-1
13-287-15	2B-1

These two samples have moderate alkalinity. The pH values are 7.75 and 7.87, respectively. Salinity is moderate at 1.72 and 2.14 millimho/cm, respectively.

Nitrogen is modest. Phosphorus is low. Potassium, sulfur, iron, manganese and copper are sufficient. Zinc is high at 56 parts per million in sample 1C-1. The high concentration of zinc may be from the Hobart blender. Boron is moderate in 1C-1 and is low in sample 2B-1. Magnesium is high. Total available sodium is moderately high. SAR (sodium adsorption ratio) is 4.6 and 5.2, respectively.

The optimal level for zinc is several parts per million. Sensitive plants such as woody plants need plant available zinc below about 30 parts per million. Herbaceous plants need plant available zinc below about 50 parts per million. Excessive zinc causes poor growth, stunting, dieback and discoloration. It interferes with root functions. High zinc restricts the uptake of potassium and other micronutrients. Grasses are fairly tolerant of high zinc. Since heavy metals do not normally migrate through the soil profile, deeper soil is expected to be more suitable. Over time growth may improve as plants root into deeper soil with lower levels of heavy metals.

The concentrations of non-essential heavy metals are low. A low amount of plantavailable lead and vanadium are present.

Cation Exchange Capacity are 25.71 and 24.44 milliequivalents per 100 grams, respectively. Exchangeable potassium is modest at 1%. Exchangeable magnesium is high at 27%. High magnesium limits the uptake of potassium and calcium. Exchangeable calcium is modest and ranges from 62% to 56%, respectively. Exchangeable sodium is slightly high at 6%.

The rates are water percolation is moderately slow at inches per hour for sample 1C-1 and is slow at 0.08 inches per hour for sample 2B-1. Excess sodium reduces soil porosity and decreases the rate of drainage.

## Soil Analyses Plant Analyses Water Analyses

The soil textures are clay loam.

## Recommendations

Use zinc-tolerant plants for sample 1C-1 or a more suitable soil. Evaluate clean soil and the possible contamination from the Hobart blender.

General soil preparation on a square foot basis for a 6-inch lift. Broadcast the following materials uniformly. The rates are per 1,000 square feet. Incorporate them homogeneously 6 inches deep:

Potassium sulfate (0-0-50) - 6 pounds
Triple superphosphate (0-45-0) - 4 pounds
agricultural gypsum - 50 pounds
Organic soil amendment – about 3 cubic yards, sufficient for 3% to 6% soil organic matter on a dry weight basis

For the preparation on a volume basis, homogeneously blend the following materials into clean soil. Rates are expressed per cubic yard:

Potassium sulfate (0-0-50) - 1/4 pound Triple superphosphate (0-45-0) - 1/4 pound agricultural gypsum - 2.5 pounds Organic soil amendment - about 15% by volume, sufficient for 3% to 6% soil organic matter on a dry weight basis

Organic soil amendment:

- 1. Humus material shall have an acid-soluble ash content of no less than 6% and no more than 20%. Organic matter shall be at least 50% on a dry weight basis.
- 2. The pH of the material shall be between 6 and 7.5.
- 3. The salt content shall be less than 10 millimho/cm @ 25° C. in a saturated paste extract.
- 4. Boron content of the saturated extract shall be less than 1.0 part per million.
- 5. Silicon content (acid-insoluble ash) shall be less than 50%.
- 6. Calcium carbonate shall not be present if to be applied on alkaline soils.
- 7. Types of acceptable products are composts, manures, mushroom composts, straw, alfalfa, peat mosses etc. low in salts, low in heavy metals, free from weed seeds, free of pathogens and other deleterious materials.
- 8. Composted wood products are conditionally acceptable [stable humus must be present]. Wood based products are not acceptable which are based on red wood or cedar.
- 9. Sludge-based materials are not acceptable.
- 10. Carbon:nitrogen ratio is less than 25:1.
- 11. The compost shall be aerobic without malodorous presence of decomposition products.
- 12. The maximum particle size shall be 0.5 inch, 80% or more shall pass a No. 4 screen for soil amending.

## Soil Analyses Plant Analyses Water Analyses

Maximum total permissible pollutant concentrations in amendment in parts per million on a dry weight basis:

arsenic	20	copper	100	selenium	50
cadmium	15	lead	200	silver	10
chromium	300	mercury	10	vanadium	500
cobalt	50	molybdenum	20	zinc	200
		nickel	100		

The soil physical properties are expected to improve with deep irrigation and leaching of sodium. Apply ammonium sulfate (21-0-0) at 5 pounds per 1,000 square feet afterwards.

For site maintenance, apply ammonium sulfate (21-0-0) at 5 pounds per 1,000 square feet about once per quarter. Apply gypsum at 10 pounds per 1,000 square feet several times a year or as needed to reduce the effects of high exchangeable magnesium. Monitor the site with periodic soil testing. Adjust the fertility program as needed.

## Suitable Import, Borrow Topsoil or Reclaimed soil

*General* - Topsoil shall be free of roots, clods, stones larger than 1-inch in the greatest dimension, pockets of coarse sand, noxious weeds, sticks, lumber, brush and other litter. It shall not be infested with nematodes or other undesirable disease-causing organisms such as insects and plant pathogens.

Topsoil shall be friable and have sufficient structure in order to give good tilth and aeration to the soil.

*Gradation limits* - soil shall be a sandy loam, loam, or clay loam. The definition of soil texture shall be the USDA classification scheme. Gravel over 2 millimeters in diameter shall be less than 20% by weight.

*Permeability Rate* - Hydraulic conductivity rate shall be not less than one inch per hour nor more than 20 inches per hour when tested in accordance with the USDA Handbook Number 60, method 34b or other approved methods.

*Fertility* - The range of the essential elemental concentration in soil shall be as follows:

	Ammonium Bicarbonate/DTPA Extraction parts per million (mg/kilogram <u>dry weight basis</u>			
phosphorus	10 - 40			
potassium	100 - 220			
iron	5 - 35			
manganese	0.6 - 6			
zinc	1 - 8			
copper	0.3 - 5			
boron	0.2 - 1.0			
magnesium	50 - 150			
sodium	0 - 100			
sulfur	25 - 500			
molybdenum	0.1 - 1.0			

*Acidity* - The soil pH range measured in the saturation extract (Method 21a, USDA Handbook Number 60) shall be 6.5 - 7.9.

Salinity - The salinity range measured in the saturation extract (Method 3a, USDA Handbook Number 60) shall be 0.5 - 2.5 dS/m.

*Chloride* - The maximum concentration of soluble chloride in the saturation extract (Method 3a, USDA Handbook Number 60) shall be 150 mg/l (parts per million).

*Boron* - The maximum concentration of soluble boron in the saturation extract (Method 3a, USDA Handbook Number 60) shall be 1.0 mg/l (parts per million).

Sodium Adsorption Ratio (SAR) - The maximum SAR shall be 3 measured per Method 20b, USDA Handbook Number 60.

*Aluminum* – Available aluminum measured with the Ammonium Bicarbonate/DTPA Extraction shall be less than 3 parts per million.

*Soil Organic Matter Content* - Sufficient soil organic matter shall be present to impart good physical soil properties but not be excessive to cause toxicity or cause excessive reduction in the volume of soil due to decomposition of organic matter. The desirable range is 3% to 6% on a dry weight basis.

*Calcium Carbonate Content* - Free calcium carbonate (limestone) shall not be present for acid-loving plants.

*Heavy Metals* - The maximum permissible elemental concentration in the soil shall not exceed the following concentrations:

## Ammonium Bicarbonate/DTPA Extraction parts per million (mg/kilogram) dry weight basis

arsenic	1
cadmium	1
chromium	10
cobalt	2
lead	30
mercury	1
nickel	5
selenium	3
silver	0.5
vanadium	3

If the soil pH is between 6 and 7, the maximum permissible elemental concentration shall be reduced 50%. If the soil pH is less than 6.0, the maximum permissible elemental concentration shall be reduced 75%. No more than three metals shall be present at 50% or more of the above values.

*Phytotoxic constituent, herbicides, hydrocarbons etc.* - Germination and growth of monocots and dicots shall not be restricted more than 10% compared to the reference soil. Total petroleum hydrocarbons shall not exceed 50 mg/kg dry soil measured per the modified EPA Method No. 8015. Total aromatic volatile organic hydrocarbons (benzene, toluene, xylene and ethylbenzene) shall not exceed 0.5 mg/kg dry soil measured per EPA Methods No. 8020.

Sincerely,

Garn A. Wallace, Ph. D. GAW:n

WALLACE-LABS	SOILS REPORT	Print Date	Oct. 8, 2013	Receive Date	10/7/1
365 Coral Circle	Location	DHCCP, Job No.	WBS014.7, P.O. No.	WBS014.7	
El Segundo, CA 90245	Requester	Rob Nixon, URS	,		
(310) 615-0116	graphic interpretation: * very low				
ammonium bicarbonate/I		* * * * high, * * * *	very high		
extractable - mg/kg soil	Sample ID Numb			]	
Interpretation of data	-	on Sample 1C-1			
low medium high	elements		graphic		
0 - 7 8-15 over 15	phosphorus	2.79	• 1		
0-60 60 -120 121-180	potassium	141.87			
0-4 4 - 10 over 10	iron	11.52			
0-0.5 0.6-1 over 1	manganese		****		
0 - 1 1 - 1.5 over 1.5	zinc	56.35			
0- 0.2 0.3- 0.5 over 0.5	copper		****		
0- 0.2 0.2- 0.5 over 1	boron	0.34	***		
	calcium	281.93	***		
	magnesium	770.55	****		
	sodium	472.55			
	sulfur	177.37			
	molybdenum	0.20	****		
	nickel	0.33	*		
The following trace	aluminum	n d			
elements may be toxic	arsenic	0.22			
The degree of toxicity	barium	1.24			
depends upon the pH of	cadmium	0.06			
the soil, soil texture,	chromium	n d	*		
organic matter, and the	cobalt	0.15	*		
concentrations of the	lead	1.45			
individual elements as	lithium	0.26	*		
well as to their interactions.	mercury	n d	*		
	selenium	n d	*		
The pH optimum depends	silver	n d	*		
upon soil organic	strontium	3.24	*		
matter and clay content-	tin	n d	*		
for clay and loam soils:	vanadium	1.29	**		
under 5.2 is too acidic					
6.5 to 7 is ideal	Saturation Extract				
over 8.0 is too alkaline	pH value	7.75	****		
The ECe is a measure of	ECe (milli-		***		
the soil salinity:	mho/cm)		millieq/l		
1-2 affects a few plants	calcium	92.7	4.6		
2-4 affects some plants,	magnesium	37.0	3.1		
> 4 affects many plants.	sodium	206.9	9.0		
	potassium	9.5	0.2		
	cation sum	7.5	16.9		
problems over 150 ppm	chloride	163	4.6		
good 20 - 30 ppm	nitrate as N	3	4.0 0.2		
0	phosphorus as P	0.2	0.0		
toxic over 800	sulfate as S	195.4	12.2		
	anion sum		17.0	1	
toxic over 1 for many plants	boron as B	0.14			
increasing problems start at 3	SAR	4.6			
est. gypsum requirement-lbs./		252			
	on rate inches/hour	0.28	sand - 34.0%		
soil textu		clay loam			
	cium carbonate)	no			
organic i		very low	-		
U	content of soil	9.7%	gravel over 2 mm		
	ration percentage	29.7%	0.4%		
ideal percentages of cations		<u></u>	% saturation	ı	
abt 5 % potassium	millieq K	0.35	1%		
< 3% sodium	millieq Na	1.54	6%		
abt 70% calcium	millieq Ca	15.86	62%		
10 - 15% magnesium	millieq Mg	7.00	27%		
5-10% hydrogen	millieq H	0.96	4%		

DWR-207

Elements are expressed as mg/kg dry soil or mg/l for saturation extract.

pH and ECe are measured in a saturation paste extract. nd means not detected.

Analytical data determined on soil fraction passing a 2 mm sieve.

WALLACELADS	SOILS REPO	DT	Dist Date	Oct 15 2012	Dereim Dete
WALLACE-LABS			Print Date	Oct. 15, 2013	Receive Date
365 Coral Circle	Location		DHCCP, Project	NO. WBS014.7	
El Segundo, CA 90245	Requester		Rob Nixon, URS		
(310) 615-0116	graphic interpretation	: * very low,			
ammonium bicarbonate/I		l	* * * * high, * * * * *	, ,	
extractable - mg/kg soil	-	ID Number			
Interpretation of data		Description	Sample 2B-1	anombia	
low medium high	elements		2.24	graphic	
0 - 7 8-15 over 15 0-60 60 -120 121-180	phosphorus potassium		2.24 123.42		
$0-00\ 00-120\ 121-180$ $0-4\ 4-10\ \text{over}\ 10$	iron		125.42		
0-0.5 0.6-1 over 1	manganese		8.70		
0 - 1 - 1 - 1.5 over 1.5	zinc			****	
0-0.2 0.3-0.5 over 0.5	copper			****	
0-0.2 0.2-0.5 over 1	boron		0.09	*	
	calcium	L	299.28	***	
	magnesium		754.82	****	
	sodium		454.68	****	
	sulfur		132.93	***	
	molybdenum		0.08	***	
	nickel		0.25		
The following trace	aluminum		n d	*	
elements may be toxic	arsenic		0.15		
The degree of toxicity	barium		0.80		
depends upon the pH of	cadmium		0.04		
the soil, soil texture,	chromium		0.02		
organic matter, and the	cobalt		0.13	*	
concentrations of the individual elements as	lead lithium		1.20 0.28	*	
well as to their interactions.	mercury		0.28 n d	*	
well as to their interactions.	selenium		n d	*	
The pH optimum depends	silver		n d n d	*	
upon soil organic	strontium		3.28	*	
matter and clay content-	tin		n d	*	
for clay and loam soils:	vanadium		1.13	**	
under 5.2 is too acidic					
6.5 to 7 is ideal	Saturation Extra	ct			
over 8.0 is too alkaline	pH value		7.87	****	
The ECe is a measure of	ECe (milli-		2.14	****	
the soil salinity:	mho/cm)			milli	eq/l
1-2 affects a few plants	calcium	-	114.2	:	5.7
2-4 affects some plants,	magnesium		37.2		3.1
> 4 affects many plants.	sodium		251.7		0.9
	potassium		13.5		0.3
	cation sum				0.1
problems over 150 ppm	chloride		232		6.5
good 20 - 30 ppm	nitrate as N phosphorus as P		3 0.4		0.2
toxic over 800	sulfate as S		220.1		3.8
WAIL UTLI UUU	anion sum		220.1	· · · · · · · · · · · · · · · · · · ·	0.5
toxic over 1 for many plants	boron as B		0.11		0.0
increasing problems start at 3	SAR	ľ		***	
est. gypsum requirement-lbs.//		L	244		
	on rate inches/hour		0.08	sand - 33.7%	
soil textu	re		clay loam	silt - 35.1%	
	cium carbonate)		no	clay - 31.2%	
organic n			low		
	content of soil		9.4%	•	ım
L.	ration percentage		27.8%		
ideal percentages of cations				% satura	
abt 5 % potassium	millieq K		0.32		1%
< 3% sodium	millieq Na		1.38		6%
abt 70% calcium	millieq Ca		13.79		56%
10 - 15% magnesium	millieq Mg		6.64	2	27%
5-10% hydrogen	millieq H		2.32 24.44		9%
total mill	ieq/100 grams				

10/14/13

DWR-207

Elements are expressed as mg/kg dry soil or mg/l for saturation extract.

pH and ECe are measured in a saturation paste extract. nd means not detected.

Analytical data determined on soil fraction passing a 2 mm sieve.

## WALLACE LABORATORIES, LLC 365 Coral Circle El Segundo, CA 90245 phone (310) 615-0116 fax (310) 640-6863

November 6, 2013

rob.nixon@urs.com, chris.hargreaves@urs.com URS 2870 Gateway Oaks Drive, Suite 150 Sacramento, CA 95833

RE: DHCCP, Testing, Job No. WBS014.7

Dear Rob & Chris,

CC-1, Our ID No. 13-309-09

The pH is moderately high at 7.85. Salinity is moderate at 1.23 millimho/cm. Potassium and nitrogen are modest. Phosphorus and the micronutrients are high.

The soil texture is sandy clay loam. It contains 57.3% sand, 22.1% silt and 20.6% clay. Gravel is not present.

Cation Exchange Capacity is 15.83 milliequivalents per 100 grams. Exchangeable potassium is modest at 2%. Exchangeable magnesium is high at 30%. High magnesium limits the uptake of potassium and calcium. Exchangeable calcium is modest at 55%. Exchangeable sodium is slightly high at 5%.

The rate of water percolation is rapid at 11.1 inches per hour.

3B-1 Normet Tamsoil 200 CF with 3% Lime, Our ID No. 13-310

The pH is excessively alkaline at 13.36. Limestone is present which induces iron deficiency in iron inefficient or acid-loving plants. Salinity is high at 6.48 millimho/cm. Nitrogen, phosphorus and boron are low. Potassium and the micronutrients are sufficient. Sodium is moderate. Vanadium is high. Vanadium interferes with the metabolism of iron.

Cation Exchange Capacity is 106.29 milliequivalents per 100 grams per the neutral ammonium acetate testing method. The results appear to be excessively high in calcium. Calcium in the lime hydroxide appears to have been extracted.

The soil texture is loam. Based on the non-gravel fraction, it contains 39.5% sand, 34.9% silt and 25.6% clay. The gravel fraction is 0.2%.

The rate of water percolation is rapid at 7.66 inches per hour.

3D-1 Normet Tamsoil 200 CF, Our ID No. 13-311

The pH is high at 8.79. Salinity is moderate at 1.54 millimho/cm. Nitrogen and phosphorus are low. Boron is modest. Potassium and the other micronutrients are sufficient. Gypsum is present. SAR is 3.1.

Soil Analyses Plant Analyses Water Analyses

724

The soil texture is clay loam. It contains 33.0% sand, 36.5% silt and 30.5% clay. Gravel is not present.

Cation Exchange Capacity is 28.93 milliequivalents per 100 grams. Exchangeable potassium is low at 1%. Exchangeable magnesium is high at 25%. Exchangeable calcium is moderate at 68%. Exchangeable sodium is slightly high at 5%.

The rate of water percolation is moderate at 0.69 inches per hour.

## Evaluations

3B-1 Normet Tamsoil 200 CF with 3% Lime, Our ID No. 13-310 is too alkaline to support growth of plants.

## Recommendations for CC-1 and 3D-1 Normet Tamsoil 200 CF

General soil preparation per square foot basis. Broadcast the following materials uniformly. The rates are per 1,000 square feet for a 6-inch lift. Incorporate them homogeneously 6 inches deep:

Potassium sulfate (0-0-50) – 6 pounds for CC-1
Triple superphosphate (0-45-0) – 4 pounds for 3D-1
agricultural gypsum - 20 pounds for CC-1
Organic soil amendment - about 3 cubic yards, sufficient for 3% to 6% soil organic matter on a dry weight basis

For the preparation on a volume basis, homogeneously blend the following materials into excavated soil. Rates are expressed per cubic yard:

Potassium sulfate (0-0-50) – 1/4 pound for CC-1 Triple superphosphate (0-45-0) – 1/4 pound for 3D-1 agricultural gypsum – 1 pound for CC-1 Organic soil amendment – about 15% by volume, sufficient for 3% to 6% soil organic matter on a dry weight basis

Organic soil amendment suggestions:

- 1. Humus material shall have an acid-soluble ash content of no less than 6% and no more than 20%. Organic matter shall be at least 50% on a dry weight basis.
- 2. The pH of the material shall be between 6 and 7.5.
- 3. The salt content shall be less than 10 millimho/cm @ 25° C. on a saturated paste extract.
- 4. Boron content of the saturated extract shall be less than 1.0 part per million.
- 5. Silicon content (acid-insoluble ash) shall be less than 50%.
- 6. Calcium carbonate shall not be present if to be applied on alkaline soils.
- 7. Types of acceptable products are composts, manures, mushroom composts, straw, alfalfa, peat mosses etc. low in salts, low in heavy metals, free from weed seeds, free of pathogens and other deleterious materials.

## Soil Analyses Plant Analyses Water Analyses

- 8. Composted wood products are conditionally acceptable [stable humus must be present]. Wood based products are not acceptable which are based on red wood or cedar.
- 9. Sludge-based materials are not acceptable.
- 10. Carbon:nitrogen ratio is less than 25:1.
- 11. The compost shall be aerobic without malodorous presence of decomposition products.
- 12. The maximum particle size shall be 0.5 inch, 80% or more shall pass a No. 4 screen for soil amending.

Maximum total permissible pollutant concentrations in amendment in parts per million on a dry weight basis:

arsenic	20	copper	150	selenium	50
cadmium	15	lead	200	silver	10
chromium	300	mercury	10	vanadium	500
cobalt	50	molybdenum	20	zinc	300
		nickel	100		

Higher amounts of salinity or boron may be present if the soils are to be preleached to reduce the excess or if the plant species will tolerate the salinity and/or boron.

Leach the 3D-1 Normet Tamsoil 200 CF and lower the alkalinity. Reduce the pH to less than 8.0. Afterwards, apply ammonium sulfate (21-0-0) at 5 pounds per 1,000 square feet.

For site maintenance, apply ammonium sulfate (21-0-0) at 5 pounds per 1,000 square feet about once per quarter. Monitor the site with periodic soil testing. Adjust the maintenance program as needed.

Sincerely,

Garn A. Wallace, Ph. D. GAW:n

Six G cont Crité         DIVCCP. Job No WR3014 7, PO NO WR3014	WALLACE LABS	SOILS REPO	RT	Print Date	Nov 6, 2013	Receive Date	e 11/5/13		
El Segundo         Rob Nicon, CL8 92245         Ropuscion motive "motive "m	121	Location		1		WBS014 7			DWR-207
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									
ansmenting blezchonate/DTEA         *****up:*******************************	8 /	-	: * verv low.	** low, *** moderate					
entremetation of the magnetic marked by any theorem of the magnetic marked by any theorem of the marked by an		e)							
Interpretation of dam         Sample Constraint         Classical and the second secon				÷	, or y mgn	13-309-10	)	13-309-11	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0 0	_		CC-1		3B-1 Normet Tamsoil 200	0 CF with 3% Lime	3D-1 Normet Tar	nsoil 200 CF
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	low medium high	elements			graphic		graphic		graphic
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0 - 7 8-15 over 15	phosphorus	,	21 34	****	6 98	**	2 29	*
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0-60 60 -120 121-180	potassium		84 25	***	138 35	****	132 56	****
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		iron							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		-							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									
calcim magnesium solium         22 (i +) molybdcmm         290 (i +) molybdcmm         290 (i +) molybdcmm         330 (i +) molybdcmm           solium         solium         189 24          324 (i +)         440 (i +)           molybdcmm         0.01          0.06          151 0            The following trace sements may be tool:         aluminum         0.01          0.01          0.05            The deprod upon the pf of confinitions of the matter and they orbait         aluminum         0.06          0.05          0.05          0.05          0.05          0.04          0.06          0.05          0.04          0.05		• •							
magnesium softm         416.7         ***         245.5         ***         77.5         ***           nolybéenn nicked         612         ***         2860         ***         15'10         ***           following trace elements may be toxic         arsenic         000         *         000         ***         001         ***           foldsowing trace elements may be toxic         arsenic         022         *         039         *         037         *           foldsowing trace elements may be toxic         arsenic         023         *         039         *         037         *           foldsowing trace elements may be toxic         cadminum         006         *         023         *         016         *           foldsowing trace elements may be toxic         cadminum         036         *         023         *         016         *         023         *         016         *         016         *         023         *         016         *         016         *         016         *         016         *         016         *         016         *         016         *         016         *         016         *         016         *         016				-					
solion molybdenum nickel         189 24 (1) $2^{-2}$ 2324 (1) $2^{-2}$ 440 (4) $2^{-2}$ nolybdenum nickel         010 $2^{-2}$ 100 $2^{-2}$ 100           The following trace elements my be tokic arrancia         aluminum 00 (1)         010 $2^{-2}$ 010 $2^{-2}$ 010 $2^{-2}$ The degree of toxicity         barium degred upon help (1)         cantum 00 (6) $2^{-2}$ 0.00 $2^{-2}$ 0.00 $2^{-2}$ 0.00 $2^{-2}$ 0.00 $2^{-2}$ 0.00 $2^{-2}$ 0.00 $2^{-2}$ 0.00 $2^{-2}$ 0.00 $2^{-2}$ 0.00 $2^{-2}$ 0.00 $2^{-2}$ 0.00 $2^{-2}$ 0.00 $2^{-2}$ 0.00 $2^{-2}$ 0.00 $2^{-2}$ 0.00 $2^{-2}$ 0.00 $2^{-2}$ 0.00 $2^{-2}$ 0.00 $2^{-2}$ 0.00 $2^{-2}$ 0.00 $2^{-2}$ 0.00 $2^{-2}$ 0.00 $2^{-2}$ 0.00 $2^{-2}$ 0.00 $2^{-2}$ 0.00 $2^{-2}$ 0.00 $2^{-2}$ 0.00 $2^{-2}$									
sulfar         612         **         2860         ***         157 19         ***           The following trace         aluminum         0.06         ***         0.05         ***           aluminum         0.96         *         0.99         *         0.23         *           ale ones may be toxic         arsenic         0.25         *         0.59         **         0.99         *           depends upon the pH of         calanium         0.06         *         0.027         *         0.8         *           red agree of toxics         birtum         0.06         *         0.227         *         0.4         *           organic matter, and the         cobalt         0.16         *         0.227         *         0.4         *           and will as to their inserctions.         scelenium         0.26         0.03         0.34         *           value as to their inserctions.         scelenium         0.26         0.03         *         0.34         *           red as to their inserctions.         scelenium         0.4         *         nd         *         nd         *           to datalize         stratod as coneconiche         nd         *		-							
mickel         0.96         0.93         0.23         -           belowing variable         arsenic         n.d         -         0.99         -         0.09         -         0.09         -         0.09         -         0.09         -         0.09         -         0.09         -         0.09         -         0.09         -         0.09         -         0.09         -         0.09         -         0.09         -         0.09         -         0.09         -         0.09         -         0.09         -         0.09         -         0.09         -         0.09         -         0.09         -         0.09         -         0.09         -         0.09         -         0.09         -         0.09         -         0.09         -         0.09         -         0.09         -         0.09         -         0.01         -         0.01         -         0.01         -         0.01         -         0.01         - <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>									
The following trace       shuminum       nd       *       nd       ·		molybdenum		0 01	**	0 10	****	0 05	***
The depend upon the plot of admin depend upon the plot of admin of a sol texture, oparic matrix, and the collat the old sol texture, oparic matrix, and the collat texture of the lead at so their intractions.0 00 + 000 + 	v								
inc soit acture, organic matrix, and the cohalt       006 *       027 *       n.d *         concentrations of the concentrations of the individual elements as will as to the' interactions.       0.06 *       0.23 *       0.14 *         concentrations of the concentrations of the and as to the' interactions.       113 **       2.24 **       116 **         measure of the pdi prime depends will as to the' interactions.       and *       0.34 *       *         matter and lay content- for clay and loam soils:       and *       n.d *       n.d *         12 S **       0.33 **       0.34 *       *         12 S **       0.43 *       n.d *       n.d *         nuter soit sto content- for clay and loam soits:       vanation       1.25 **       0.43 *       n.d *         12 afters far explants       Staturation Extraction       7.85 ****       1.35 ****       1.81 ***       ****         The ECe is a measure of the soit soin/iters one plants, good 20 * 30 pom       filteration       7.23 ***       3.6       3.59 6       1.80 200 6       0.00         24 affects many plants.       cation sum       7.9       0.2       0.2       0.1       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       <	° ,								
well as to their interactions.         mercury nd *         nd *         nd *         nd *         nd *         nd *           The pH optimum depends silver         silver         nd *         nd *         nd *         nd *         nd *           nud silver         10 *         nd *         nd *         nd *         nd *         nd *           upon soli organic         strontium         12 5 **         353 ****         13 **         13 **           for clay and loam solis:         vanadium         12 5 **         353 ****         13 **         13 **           for clay and loam solis:         vanadium         12 5 **         353 ****         13 **         15 **           for clay and loam solis:         for clay and loam solis:         for clay and loam solis:         15 **         13 **           for clay and loam solis:         for clay and loam solis:         numerclay         16 **         879         ****           6.5 to 7 is ideal         Soliteration Extract         numberclay         numberclay         milliegit         milliegit         milliegit         numberclay         numberclay         milliegit         15 ****           12 affects many plants, sodium         294         2.4         18         01         16 *         10	-								
nd									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	well as to their interactions.	mercury		n d	*	n d	*	n d	*
upon solur organic matter and chy content- for chy and loam soils: under 5.2 is too acidic over 8.0 is too alkaline         trontium in matter and chy content- for chy and loam soils: under 5.2 is too acidic         Saturation Extract matter and chy content- in the soil sating: matter and chy content- int escience of the soil sating: the soil sating: matter and chy content- the soil sating: the soil sating: matter and chy content- the soil sating and		selenium		n d	*	n d	*	n d	*
number and day content- for clay and loam solis: vanadiumind*nd*nd*for clay and loam solis: tor clay and loam solis: under 5.2 is to coaldic 6.5 to to alkalineSaturation Extractnd*1.31*6.5 to 7 is ideal over 8.0 is too alkalineSaturation Extract78****1.336*****1.31*12.2 feets a measure of the soi subinity: 12.4 affects some plants, sodiumECc (milli- mongesium1.22***1.648*****1.54****12.4 affects some plants, sodiummagnesium 2.942.241.80.011.691.012.4 affects some plants, sodiummagnesium 2.942.42.842.031.740.02.4 affects nany plants sodium7.90.221.230.31.740.02.5 or 800sulfate as N1.41.020.21.00.0otic over 800sulfate as S9.726.13.90.21.010.0otic over 1 for many plants solit extract mosture content of soil hard start at sandy clay loamsit - 2.2 1% sandy clay loam0.04*0.0*0.04*10.10sand - 57.3% sandy clay loamsit - 2.2 1% sandy clay loam0.04*0.04*0.010.10sand - 57.3% sandy clay loamsit - 2.2 1% sandy clay loam0.040.04*0.010.10sand - 57.3% sandy clay loamsit - 2.2 1% sandy clay loam0.16<									
under 52 is too acidic 6.5 to 7 is ideal         Saturation Extract $785$ ****         13 36         ***** $879$ ****           The ECc is a measure of the soil salinity:         ECc (milli- mho/cm)         123         ****         13 36         *****         154         ****           12-2 affects few plants. sodium         calcium         72.3         3.6         359.6         18.0         20.0         0.0           2-4 affects some plants, sodium         magnesium         29.4         2.4         1.8         0.1         16.9         1.1           potassium         124.2         5.4         24.84         10.8         16.8         5.7           problems over 150 ppm         nintrate as N         1.4         10         2         0.2         1.1         0.0           txic over 800         suffate as S         97.2         6.1         3.9         0.2         1.0         0.0           txic over 160 many plants boron as B         0.28         ***         0.04         0.0         0.2         1.0         0.0           txic over 160 many plants boron as B         0.28         ***         3.6         ***         3.1         ***           infereasing problems star at 3         SAR	•								
6.5 to 7 is ideal over 8.0 is too alkaline       Saturation Extract pH subscription       Saturation PH subscriptin PH subscription       Saturation	•	vanaulum		1 25		5 55		1 51	
over 8.0 is too alkaline         pH value         7 85         ****         13 36         ****         6.48         ****         1.54         ****           The ECc is a measure of the soil satinfty:         mho(m)         7.3         3.6         359.6         18.0         20.6         10.0           2-4 affects some plants, sodium         magnesium         29.4         2.4         1.8         0.1         16.9         1           2-4 affects some plants, sodium         magnesium         29.4         2.4         1.8         0.1         16.9         1           potassium         7.9         0.2         12.3         0.3         17.4         0.0           good 20 - 30 ppm         cation sum         14         1.0         2         0.2         1         0.0           good 20 - 30 ppm         niftrate as N         14         1.0         2         0.2         161.0         10.0           toxic over 800         sulfate as S         97.2         6.1         3.9         0.2         161.0         10.0           toxic over 1 for many plants         boron as B         0.28 **         0.4 **         0.4 **         0.24 **           imflitration rate inches/hour         sand -57 3%         7.66		Saturation Extra	ct						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				7 85	****	13 36	****	8 79	****
		1							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		-							millieq/l
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1-2 affects a few plants	calcium	1	72 3	3 6	359 6	18 0	200 6	10 0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2-4 affects some plants,	magnesium		29 4	24	18	01	16 9	14
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	> 4 affects many plants.	sodium							73
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		•		79		12 3		17 4	04
good 20 - 30 ppm       nitrate as N       14       10       2       02       1       00         phosphorus as P       02       00       02       00       02       00       02       00       02       00       04       00         toxic over 800       sulfate as S       972       61       30       02       00       04       00         toxic over 1 for many plants       boron as B       028       **       004       *       024       **         increasing problems start at 3       SAR       31       ***       36       ***       044       *       024       **         infitration rate inches/hour       311       ***       36       ***       31       ***         soit exture       sandy clay loam       silt - 22.1%       loam       silt - 34.9%       clay loam       silt - 36.5%       069       sand - 57.3%       0.69       sand - 57.3%       0.60       0.62				110		114		121	19 2
phosphorus as P         0.2         0.0         0.2         0.0         0.2         0.0         0.2         0.0         0.2         0.0         0.2         0.0         0.2         0.0         0.2         0.0         0.2         0.0         0.2         0.0         0.2         0.0         0.2         0.0         0.2         0.0         0.2         0.0         0.2         0.0         0.2         0.0         0.2         0.0         0.2         0.0         0.2         0.0         0.2         0.0         0.2         0.0         0.2         0.0         0.2         0.0         0.2         0.0         0.2         0.0         0.2         0.0         0.2         0.0         0.2         0.0         0.2         0.0         0.2         0.0         0.2         0.0         0.2         0.0         0.2         0.0         0.2         0.0         0.2         0.0         0.2         0.0         0.2         0.0         0.2         0.0         0.2         0.0         0.2         0.0         0.2         0.0         0.2         0.2         0.0         0.2         0.2         0.0         0.2         0.2         0.0         0.2         0.2         0.2         0.2	1 11								37 01
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	• ••								00
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									10 1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		anion sum							13 9
est. gypsum requirement-lbs/1000 sq. ft.         87         56         248           infiltration rate inches/hour soil texture         11 10         sand - 57 3%         7 66         sand - 39 5%         0 69         sand - 33 0%           soil texture         sandy clay loam         silt - 22 1%         loam         silt - 34 9%         clay loam         silt - 36 5%           organic matter         no         clay - 20 6%         yes         clay - 25 6%         no         clay - 30 5%           ideal percentages of cations         19 3%         gravel over 1/4"         29 8%         gravel over 1/4"         14 3%         gravel over 1/4"           abt 5%         potassium         millieq K         0 25         2%         0 38         0%         0 34         151         55           abt 70%         calcium         millieq Ca         8 65         55%         106 29         98%         19 66         66           10 - 15%         magnesium         millieq H         1 52         10%         0 00         0%         0 32         1									
infiltration rate inches/hour soil texture         11 10         sand - 57 3% sandy clay loam         7 66         sand - 39 5%         0 69         sand - 33 0%           lime (calcium carbonate) organic matter moisture content of soil haft saturation percentage         no         clay - 20 6%         loam         silt - 34 9%         clay loam         silt - 36 5%           low/fair         no         clay - 20 6%         yes         clay - 25 6%         no         clay - 30 5%           low/fair         low/fair         low/fair         low         low         sand - 39 5%         0 69         sand - 33 0%           ideal percentages of cations         organic matter         saturation         saturation         saturation         saturation         % satur					***	3 6	***	3 1	***
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	est. gypsum requirement-lbs./1	1000 sq. ft.							
lime (calcium carbonate) organic matter moisture content of soil half saturation percentage         no         clay - 20 6% low/fair         yes         clay - 25 6% low/fair         no         clay - 30 5% low           ideal percentages of cations         millieq K         19 3% 26 0%         gravel over 1/4"         29 8% 34 8%         gravel over 1/4"         14 3% 29 2%         gravel over 1/4"           abt 5 %         potassium         millieq K         0 25         2%         0 38         0%         034         14           abt 70%         calcium         millieq Ca         8 65         55%         106 29         98%         19 66         66           10 - 15%         magnesium         millieq H         1 52         10%         0 00         0%         0 32         1									
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$									
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$					ciay - 20 6%	-	-		ciay - 30 5%
half saturation percentage         26 0%         0 0%         34 8%         0 2%         29 2%         0 0%           ideal percentages of cations         % saturation         % saturation         % saturation         % saturation         % saturation           abt 5 %         potassium         millieq K         0 25         2%         0 38         0%         0 34         0           < 3%         sodium         millieq Na         0 72         5%         1 05         1%         1 51         5           abt 70%         calcium         millieq Ca         8 65         55%         106 29         98%         19 66         68           10 - 15%         magnesium         millieq Mg         4 69         30%         1 26         1%         7 10         25           5-10%         hydrogen         millieq H         1 52         10%         0 00         0%         0 32         1	_				gravel over 1/4"				gravel over 1/4"
ideal percentages of cations         % saturation         % saturation         % saturation           abt 5 %         potassium         millieq K         0.25         2%         0.38         0%         0.34         1           < 3%         sodium         millieq Na         0.72         5%         1.05         1%         1.51         5           abt 70%         calcium         millieq Ca         8.65         55%         106.29         9.8%         19.66         68           10 - 15%         magnesium         millieq Mg         4.69         30%         1.26         1%         7.10         25           5-10%         hydrogen         millieq H         1.52         10%         0.00         0%         0.32         1					0		0		0
abt 5 %         potassium         millieq K         0 25         2%         0 38         0%         0 34         1           < 3%         sodium         millieq Na         0 72         5%         1 05         1%         1 51         55           abt 70%         calcium         millieq Ca         8 65         55%         106 29         98%         19 66         68           10 - 15%         magnesium         millieq Mg         4 69         30%         1 26         1%         7 10         25           5-10%         hydrogen         millieq H         1 52         10%         0 00         0%         0 32         1									% saturation
< 3%		millieq K		0 25					1%
10 - 15% magnesium         millieq Mg         4 69         30%         1 26         1%         7 10         25           5-10%         hydrogen         millieq H         1 52         10%         0 00         0%         0 32         14	*	-							5%
5-10% hydrogen millieq H 1 52 10% 0 00 0% 0 32 H									68%
									25%
totai milieq/100 grams 15 83 108 98 28 93		•			10%		0%		1%
Elements are expressed as mg/kg dry soil or mg/l for saturation extract.						108 98		28 93	

Elements are expressed as mg/kg dry soil or mg/l for saturation extract.

pH and ECe are measured in a saturation paste extract. nd means not detected.

DWR-207