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I, Dr. Richard B. Deriso declare: 

I. INTRODUCTION .............................................................................................................. 1 

II. TURBIDITY AND OMR FLOW DATA CAN BE USED TO CONSTRUCT A 
NORMALIZED SALVAGE MODEL PREDICTING WINTER SALVAGE 
RATES ................................................................................................................................ 2 

III. THE MANAGEMENT OF OMR FLOWS BETWEEN DECEMBER AND 
MARCH TO PROTECT PRE-SPAWNING ADULT DELA SMELT SHOULD 
UTILIZE THREE-DAY AVERAGE TURBIDITY DATA AND 
CORRESPONDING OMR FLOW LIMITS ...................................................................... 4 

IV. AN INCIDENTAL TAKE LIMIT (ITL) FOR ADULT DELTA SMELT 
SHOULD BE SET AT THE 80% UPPER CONFIDENCE INTERVAL UNDER 
LOG-NORMAL DISTRIBUTION..................................................................................... 9 

V. AN INCIDENTAL TAKE LIMIT (ITL) FOR JUVENILE DELTA SMELT SHOULD BE 
SET AT THE 80% UPPER CONFIDENCE INTERVAL UNDER LOG-NORMAL 
DISTRIBUTION………………………………………………………………………….11 

 
VI. LIFE CYCLE MODELING SHOWS THAT ENTRAINMENT IS NOT A 

SIGNIFICANT FACTOR IMPACTING THE SMELT POPULATION GROWTH RATE 
BUT THAT SEVERAL ENVIRONMENTAL FACTORS ARE ……………………….14 

 
 
I. INTRODUCTION 

1. In my previous declarations, dated July 31, 2009, November 13, 2009, December 

7, 2009, January 26, 2010, and March 1, 2010, I set forth my comprehensive explanation of the 

analysis that the United States Fish and Wildlife Service (“FWS”) performed in its 2008 Delta 

Smelt Biological Opinion (“BiOp”), including its clear, fundamental errors in its analysis of OMR 

flows, Fall X2, and the incidental take levels.  See Doc. 167; Doc. 401; Doc. 455; Doc. 508; Doc. 

605. 

2. In this declaration, I specifically focus on management measures for Old and 

Middle River (“OMR”) flows that will reduce entrainment events during the smelt adult period 

from what has historically occurred.  I have also developed revised incidental take limit (“ITL”) 

calculations, based on these management measures, for the adult period.  I also propose a revised 

ITL for juvenile smelt. 

3. The management measures proposed are based on turbidity.  The data reveals that 

turbidity measurements can be a powerful “trigger” for setting OMR flows to avoid entrainment.  

In other words, turbidity is used as the controlling factor for setting OMR flows because of the 
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strong relationship between turbidity and entrainment.  I have developed a mathematical model (a 

formula) and fitted it to normalized delta smelt salvage (salvage/previous FMWT) for the period 

December through March 1988-2009 as a function of turbidity at Clifton Court and OMR flow. 

4. In this declaration, I have provided results for a three-day model, in which the 

previous three-day average turbidity at Clifton Court is used to estimate the daily OMR flow limit 

for the current day that would provide substantial reduction in daily normalized salvage of adult 

delta smelt.   

5. In developing the three-day model, predicted normalized salvage was highly 

statistically significantly correlated with observed normalized salvage (p-value < 0.00001).  This 

means that the model performed very well in using prior data on turbidity and OMR flow to 

predict the historic entrainment events that occurred over the December through March 1988-

2009 record.  Because the model can predict entrainment events, it can be used in managing the 

projects to avoid or reduce such events in the future. 

6. At the end of this declaration, I also introduce and explain the life cycle model that 

I developed with Dr. Mark Maunder, which shows that entrainment is not a significant factor 

impacting the smelt population growth rate, but that several other environmental factors are. 

7. My qualifications and experience are set forth in my previous declaration, Doc. 

#401 ¶¶ 5-10 and Exhibits A and B thereto. 

II. TURBIDITY AND OMR FLOW DATA CAN BE USED TO CONSTRUCT A 
NORMALIZED SALVAGE MODEL PREDICTING WINTER SALVAGE RATES   

8. In developing the turbidity approach model for adult salvage, I modified the 

analysis from my previous declaration (Doc. 455 ¶ 16) that was presented as a prediction of 

normalized winter salvage (salvage/previous FMWT).  That original analysis graphed adult 

normalized salvage (y-axis) against salvage-weighted average OMR flow for the December 

through March time period (x-axis).  The graph consisted of a flat line for flows less negative 

than an OMR salvage-weighted average of -6,100 cfs, as shown below in Figure 1.  Therefore, 

those results suggested that salvage rates, when graphed only against OMR flows, do not increase 
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Cumulative Salvage Index vs OMR flow
 including best piece-wise linear fit
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until flows are more negative than -6,100 cfs; the OMR flow where salvage rates begin to 

increase is defined as the OMR trigger. 

Figure 1.  
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

9. That prior analysis only looked at two variables—OMR flow and normalized 

salvage.1  The advanced approach that I have developed for this declaration allows the OMR 

trigger to be dependent on an additional variable—turbidity.  A model utilizing OMR limits based 

on the level of turbidity predicts normalized salvage far better than a simple piece-wise model, 

such as Figure 1, which did not depend on turbidity.  The model used in this analysis can be 

written as: 
 
 
 
 
 
 
 
 

                                                 
1 I purposefully limited my prior declaration to reviewing the approach contained in the Smelt Biological Opinion. 
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where OMR* is the OMR trigger, TUR* is the turbidity trigger, (a, a’, b, b’) are constants, OMR is 

daily OMR flow, TUR is previous 3-day average Clifton Court turbidity, and S is the daily  

normalized salvage (specific parameter estimates used for the model set forth in this declaration 

are referenced below in ¶11, Table 2).   

10. Parameters for the normalized salvage model were estimated by non-linear least-

squares minimization of the difference between predicted and observed normalized salvage for 

each daily time period within the months of December through March of 1988-2009, provided 

that the data were available to the minimum specifications detailed below.2 

III. THE MANAGEMENT OF OMR FLOWS BETWEEN DECEMBER AND MARCH 
TO PROTECT PRE-SPAWNING ADULT DELA SMELT SHOULD UTILIZE 
THREE-DAY AVERAGE TURBIDITY DATA AND CORRESPONDING OMR 
FLOW LIMITS 

11. The results of the model show that predicted normalized salvage is highly 

correlated with observed normalized salvage using the previous three-day average turbidity       

(p-value < 0.00001).  As a comparison, I also fitted a linear regression model of turbidity and 

OMR flow to normalized salvage, and the results of that model were also statistically significant.  

However, the three-day analysis that I ran performed measurably better.  Comparing the three-day 

model to the linear model, the three-day model’s Akaike Information Criteria (AIC) score was 

more that 400 lower than the linear fit.3  Paraphrasing the seminal text on AIC scores by Burnham 

and Anderson,4 models that are 10 or more AIC units above the best model have essentially no 

                                                 
2 Data on OMR flows, turbidity, and salvage were obtained by the Metropolitan Water District of Southern California 
(“MWD”) from a Freedom of Information Act (“FOIA”) request to FWS and from certain websites. The FOIA 
request was submitted by MWD to FWS on August 10, 2009. FWS responded to the FOIA request by providing data 
through March 2006 in an excel worksheet titled “Take Analysis.xls” (see Chart 3). Data for dates after March 2006 
were obtained from the following websites: turbidity (http://cdec.water.ca.gov/cgi-progs/staMeta?station_id=CLC); 
OMR (http://waterdata.usgs.gov/ca/nwis/sw; salvage: http://www.usbr.gov/mp/cvo/fishrpt.html); salvage 
(http://www.usbr.gov/mp/cvo/fishrpt.html). The FMWT data used to normalize salvage was obtained from 
http://www.dfg.ca.gov/delta/data/fmwt/charts.asp. Two days of Middle River flows were estimated using a 
correlation between Old and Middle River flows. See data points for 12/21 and 12/22 of the 2008 OMR data set at 
http://waterdata.usgs.gov/ca/nwis/sw. 
3 AIC represents a measure of the goodness of fit of an estimated statistical model and is utilized as a tool for model 
selection. To interpret AIC scores, one compares the AIC values for a set of models fit to the same data set. The 
model with the lowest AIC score (in this case, the 3-day model) is the preferred model.   
4  Burnham, K. P. and Anderson, D.A. 2004. Multimodel inference, understanding AIC and BIC in model selection, 
Socio. Methods & Res. 33(2): 261-304. 
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support.  Therefore, the linear model has essentially no support when compared to the three-day 

model I developed, as it is more than 400 units above the three-day model.  In simplest terms, the 

three-day turbidity model that I have presented here is far superior to a linear regression model of 

turbidity.  Table 1, below, demonstrates the AIC score results between the linear regression model 

and the three-day model version.  Table 2 contains the parameter estimates used for the 

coefficients in the three-day model formula. 

Table 1. AIC score comparison: fits to daily normalized salvage 
  
 Model   Linear Three-day model version 
Number of Parameters 4 6 
Number of observations 1880 1880 

RSS  234 186 
ln(likelihood)  -5,128 -4,914 

AIC  10,263 9,840 
Difference in AIC   - 423 

  
            Table 2. 

Coefficient            Three-day 
average

a 0.061
b   -0.00021
b’ 402.21
TUR* 28.747
a’ -3590

12. Statistics fitting the three-day average turbidity and daily OMR flow in a multiple 

linear regression model to daily normalized salvage are calculated in Appendix 1.  As seen in the 

tabled outputs, both turbidity and OMR flow are highly statistically significant covariates. 

13. The huge improvement in AIC score (more than 600 units) by increasing model 

complexity (by adding the additional variable of turbidity and going non-linear) to the basic 

piece-wise approach described in paragraph 8 is statistically well-supported.  Figure 2, below, 

plots both the actual observed daily normalized salvage of delta smelt for December-March  

1988-2009, and also the normalized salvage that the three-day model would have predicted using 

the historic turbidity data.  Predictions are based on the best fit of the model with prior three-day 
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average turbidity at Clifton Court and daily OMR flow to observed normalized salvage.  As seen 

in Figure 2, the model predicts most of the days with increased normalized salvage (defined as 

salvage rate in the figure). 

 
Figure 2. 
 
 
 

 
 

 

 

 

 

 

 

 

 

 
  

14. Figure 2 shows that the model using turbidity has a powerful ability to predict 

when salvage events will occur. 

15. Figure 3, below, shows a bubble plot in which the OMR trigger is shown on the Y-

axis as a function of prior three-day average turbidity on the X-axis, along with observed 

normalized salvage (the bubbles).  Data is shown only if there are three previous days with 

turbidity estimates and it is restricted to days with negative daily OMR flow (for a total of 1880 

days).  The size of the bubbles is proportional to the amount of observed daily normalized 

salvage; the bigger the bubble, the larger the percentage of the population salvaged.  As seen in 

Figure 3, most of the larger normalized salvage events (the larger bubbles) lie in the region that 
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the data suggests would be avoided by using the proposed OMR limits (i.e., the events in the 

region below and to the right of the OMR trigger would be avoided).   
 
Figure 3.  

 
 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

16. Table 3, below, provides the specific numerical values of the proposed individual 

flow limits (based on the OMR trigger) for each unit of turbidity.  The table also places the OMR 

flow limits in five-unit “bins.”  More specifically, a median OMR flow limit is shown for each 

five-unit range of turbidity levels greater than 15 and less than 30 (i.e., one flow limit is proposed 

for turbidity values of 16-20 and another for turbidity 21-25).  These “bin” values are shown 

because it is my understanding they may be more operationally feasible than constantly changing 

flow limits with every single change in turbidity value.  Limits are given for use with the previous 

three-day turbidity model, and the OMR flow limits were constrained at -9,000 for purposes of 

this table.  While the OMR limit at turbidity levels of 15 and less would be more negative than 

-9000 cfs, this is based on an assumption that the projects would not be restricted in any other 
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way.  I am informed, in fact, that there are a number of other limitations and practical restrictions 

that would necessarily limit OMR flows.5  Thus, for purposes of Table 3, I constrained OMR 

limits to -9000 cfs for turbidity levels 1-15. 
 
Table 3.  

 
Three-day turbidity 
model 

  
Bin size: 1-unit  5-unit 

Turbidity 
OMR 
limit OMR limit 

1-15 -9,000 -9,000 
16 -8,717 
17 -8,315 
18 -7,913 
19 -7,510 
20 -7,108 

-7,913 

21 -6,706 
22 -6,304 
23 -5,902 
24 -5,499 
25 -5,097 

-5,902 

26 -4,695 
27 -4,293 
28 -3,891 
29 -3,590 

-4,012 

30+ -3,590 -3,590 
 

17. The expected salvage rate corresponding to all OMR limits in Table 3 is 5.02 (i.e., 

the median salvage rate for the years 1988-2009 using the turbidity model).  That is, we expect 

that about half of the time salvage rates will be above 5.02 if the daily flow controls are followed. 

18. The three-day operational approach provides an approximate 58% reduction in 

adult normalized salvage when compared to the historical average for 1988-2009 (December 

through March).  Stated another way, assuming the projects had been run historically according to 

                                                 
5 I also understand that there are instances where turbidity may be isolated in Clifton Court Forebay, and that in these 
particular conditions smelt may not arrive at the project pumps. For instance, current conditions at Clifton Court 
Forebay show high levels of turbidity but no salvage has been occurring. My understanding is that the proposed 
interim remedy order submitted by Plaintiffs deals with this circumstance by providing for specific turbidity levels to 
be met at Prisoner’s Point, Victoria Canal, and Holland Cut, in keeping with the use of those three monitoring 
stations in the Biological Opinion. 
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this proposal, the model predicts that the normalized salvage would have been 58% lower than 

what did occur.  For the purpose of comparison, this reduction is better than the estimated 57% 

reduction in normalized salvage that would have occurred if flows had been continually limited to 

a flat -3,000 cfs (based on the average normalized salvage for daily OMR flows between -2,500 

cfs and -3,500 cfs during December through March of 1988-2009).  Therefore, this proposal 

provides for much more water, but also substantially reduces and avoids entrainment.  

19. Based on my analyses, the data persuasively demonstrates that daily OMR flow 

limits are accurately calculated by utilizing three-day turbidity data and corresponding OMR flow 

limits. 

IV. AN INCIDENTAL TAKE LIMIT (ITL) FOR ADULT DELTA SMELT SHOULD 
BE SET AT THE 80% UPPER CONFIDENCE INTERVAL UNDER LOG-
NORMAL DISTRIBUTION 

20. An incidental take limit is an amount of salvage that is greater than what is 

expected under normal operations and which requires consultation with the agency when and if it 

is exceeded.  This paper proposes a method for calculating a proper ITL for adult smelt.  In 

developing the proposed limit, I followed a two-part approach: i) estimate what the expected 

salvage rate would be in the future, and ii) find an amount above the expected rate that could 

serve as a trigger for further consultation.   

21. My adult Delta smelt ITL calculations are based on the assumption that future 

daily flow controls are limited to those specified in my OMR recommendations in Section III 

above.  The estimated salvage rates that would have occurred by following the daily flow controls 

were calculated for a subset of days6 in the December through March time frame for the years 

1988-2009.  The average of the daily estimated salvage rates for a given water year were then 

multiplied by the total number of days in the time period December-March to obtain a season 

total salvage rate.  Those rates are listed below in Table 4. 

 
 
                                                 
6 The subset consisted of days in which the previous three days had turbidity measurements and the current day had 
negative OMR flow. 
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Table 4. Winter adult salvage rates obtained by following daily flow controls and that are 
used in the calculation of confidence intervals 

 
Year Estimated 

Salvage Rate 
1988 1.67
1989 12.28
1990 3.67
1991 3.40
1992 2.37
1993 9.21
1994 0.54
1995 23.46
1996 8.98
1997 25.20
1998 3.30
1999 2.44
2000 8.13
2001 9.50
2002 4.90
2003 14.30
2004 8.84
2005 4.93
2006 9.30
2007 0.93
2008 9.00
2009 1.10

Median 
Salvage 

Rate
5.02

 
 

22. With respect to this proposal, the median salvage rate for those 22 years using the 

turbidity model is 5.02.  Given that 5.02 is the median, we expect that about half of the time 

salvage rates will be above 5.02 if the daily flow controls are followed.7   This median is lower 

than the median in the smelt BiOp (i.e., more protective) because the three-day turbidity model is 

more effective at reducing and avoiding entrainment.   

23. In order to determine a reasonable incidental take limit based on salvage rates, I 

propose using an upper one-sided confidence interval of 80% as an acceptable level of risk.  I 
                                                 
7 The ITL in the 2008 smelt BiOp is calculated using the average cumulative salvage index (BiOp at 287).  That 
means that consultation will be triggered about 50% of the time, or roughly every other year. 
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understand that in discussions over acceptable levels of risk for various species, NMFS has relied 

upon 80%, and that this is a conservative number that favors the species relative to higher 

confidence intervals.8  Using an 80% confidence level results in a salvage rate of 12.4.  

Correspondingly, the likelihood that the salvage rate for any given future year will exceed 12.4 is 

about 20% of the time provided the daily flow limit proposal is implemented.      

24. That leads to the following proposed ITL: 

Adult Incidental Take Limit = 12.4 * Prior year’s FMWT index 

To calculate the percentage of the population entrained at this take limit, I conservatively relied 

on the same estimates from a publication that was relied on in the BiOp, namely the Kimmerer 

2008 study.  I took the ratio of Kimmerer’s estimates of annual adult entrainment to the annual 

normalized salvage for the years 1995-2006 (following the date range he used in his study) and 

calculated the median of those annual ratios.  That median ratio is the coefficient used to scale the 

salvage rates into a percentage entrainment of the adult population.9  When this estimate is 

performed, the proposed take limit effectively equates to 4.80% of the smelt population. 

25. The above analysis demonstrates that based on my estimates of what expected 

salvage rates will be in the future, an ITL for adult Delta smelt should be set at the 80% upper 

confidence interval under log-normal distribution.  Using an 80% upper confidence level will 

result in monitoring take levels and initiating reconsultation action in instances where take 

exceeds a modest 4.80%. 

V. AN INCIDENTAL TAKE LIMIT (ITL) FOR JUVENILE DELTA SMELT 
SHOULD BE SET AT THE 80% UPPER CONFIDENCE INTERVAL UNDER 
LOG-NORMAL DISTRIBUTION 

26. In my previous declaration (Doc. #455, ¶¶ 23-29), I presented several analyses that 

demonstrate there is no statistically significant relationship between OMR flows and juvenile 

Delta smelt salvage rates (juvenile salvage/20-mm survey index).  The graph from page 13 of my 

                                                 
8 Pers. comm. with Dr. Kenneth Burnham.  
9 While the underlying assumption of Kimmerer that entrainment is proportional to OMR flow remains unsupported 
for all the reasons set forth in my prior declarations (see Doc. 401 ¶¶ 71-76; Doc. 455 ¶16; Doc. 508 ¶¶ 10-22), 
Kimmerer’s proportionality co-efficient, which contains expanded salvage data that includes other sources of 
mortality in Clifton Court Forebay, provides one way to translate the ITL into a percentage of the population. 
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previous declaration is reproduced below as Figure 4 to show visually that there is no relationship 

between juvenile salvage rates and OMR flows. 

Figure 4. 
 

 
 

 

 

 

 

 

 

27. In Figure 5, below, I plotted monthly data for May and June, the two months 

where most salvage occurs.  The y-axis is monthly salvage/previous FMWT (which is the 

juvenile salvage rate).  OMR flows are given on the x-axis.  As seen in Figure 5, there is no visual 

relationship between the monthly juvenile salvage rate and OMR. 
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Figure 5. 

 

 

 

 

 

 

 

 

28. To calculate the Juvenile Salvage Index (JSI), I followed the approach discussed in 

the BiOp (page 389), which defined the Juvenile Salvage Index as:  

Monthly Juvenile Salvage Index (JSI) = cumulative seasonal salvage ≥ 20 mm by 
month end divided by current WY FMWT 
Index 

29. I constructed Table 5, below, to show the average JSI for years in which OMR 

flow in the spring was negative.  Given that the data do not evidence a relationship between 

negative OMR flow and juvenile salvage rates, salvage rates located near the average value would 

be expected in the future, irrespective of any OMR flow controls that may be implemented.  This 

leads to a proposed ITL calculation of: 

Juvenile Incidental Take Limit =   (upper 80% confidence interval JSI)* Prior year’s 
FMWT index 
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Table 5.  NOTE: The zero value for April 2005 was not used in the log-normal calculation. 
 

Year prior FMWT Juvenile Salvage/prior FMWT  
 April May June July Apr-Jul
   

1995 102   
1996 899 0.12 33.81 10.50 0.16 44.60
1997 127 9.13 258.49 62.02 4.25 333.88
1998 303   
1999 420 1.02 140.31 174.69 47.20 363.21
2000 864 2.02 57.29 58.44 1.72 119.47
2001 756 0.69 17.42 3.20 0.01 21.31
2002 603 0.62 78.54 19.78 0.04 98.98
2003 139 3.63 117.33 72.63 0.09 193.68
2004 210 1.31 27.38 30.44 0.09 59.21
2005 74 0.00 7.39 15.96 0.00 23.35
2006 27   
2007 41 0.59 10.44 36.80 17.27 65.10
2008 28 0.14 33.21 27.04 0.50 60.89
2009 23 0.00 18.39 13.65 0.00 32.04

 Average 1.61 66.67 43.76 5.94 117.98
 stand dev 2.59 73.97 46.74 13.89 118.10
 JSI 1.61 68.27 112.03 117.98 117.98
  JSI for corresponding upper confidence 

interval 
of 80% under log-normal distribution 

 JSI Upper confidence  interval of 80% 3.1 109.1 175.4 184.9 184.9
2011 Juvenile Incidental take limit based on 

80% confidence interval and previous 
FMWT 89 3,164 5,087 5,362 5,362

 
 

30. All of the above analyses demonstrate that based on my estimates of what 

expected salvage rate will be in the future, and the calculation of a trigger for further consultation 

above that expected rate, ITLs for adult and juvenile Delta smelt should be set at the 80% upper 

confidence interval under log-normal distribution.  

VI. LIFE CYCLE MODELING SHOWS THAT ENTRAINMENT IS NOT A 
SIGNIFICANT FACTOR IMPACTING THE SMELT POPULATION GROWTH 
RATE BUT THAT SEVERAL ENVIRONMENTAL FACTORS ARE 

31. The foregoing discussion is designed to monitor and address entrainment of Delta 

smelt.  The important issue remains over what is causing, and what may remedy, the population 

decline of the species.  As both I and others have previously explained, a life cycle model is the 

common tool used for this type of population analysis.   
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32. Dr. Mark Maunder and I have used available data on the Delta smelt and 

developed a life cycle model; the results of the model provide important information that may be 

used for future management of the species.  Specifically, the model indicates that food 

abundance, temperature, predator abundance, and density dependence are the most critical factors 

impacting the Delta smelt population—not entrainment from water export operations.  See 

Exhibit A. (Mark Maunder and Richard Deriso, “A state-space multi-stage lifecycle model to 

evaluate population impacts in the presence of density dependence: illustrated with application to 

delta smelt” (Dec. 27, 2010) (under review) (hereinafter “Maunder and Deriso”)).    

33. The model Dr. Maunder and I developed represents the different life cycle stages 

of the species (adult, larval, juvenile) and how the population abundance changes between stages.  

It models survival from one life stage to the next, as well as the stock-recruit relationship between 

adults and larvae.  It allows multiple factors or covariates (including factors relating to 

environmental conditions and mortality rates based on entrainment) to influence the survival and 

stock-recruit relationships.  Each factor represents a hypothesis about what conditions or events 

make a difference for smelt survival and recruitment. 

34. The survey data upon which the model is based spans the period 1972 to 2006.  It 

comes from Manly 201010 and Nations 2007,11 and includes: the 20mm trawl survey (1995 to 

2006) [larvae]; the Summer tow net survey (1972 to 2006) [juveniles]; and the Fall mid-water 

trawl survey (1972 to 2006, but no data for years 1974 and 1979) [pre-adults].  The Spring 

Kodiak trawl survey was not used because it was only recently initiated and does not go back 

enough years.  The environmental data examined with the model were taken from Manly 2010, 

with the exception of secchi depth data, which Dr. Manly provided in a personal communication.  

All survey and environmental data is set forth in Tables S1 and S2 in Maunder and Deriso.  

Maunder and Deriso at pps. 69-74.  Entrainment rates (i.e., normalized salvage) were 

                                                 
10 Manly, B.F.J. 2010. Initial analyses of delta smelt abundance changes from Fall to Summer, Summer to Fall, and 
Fall to Fall. Western EcoSystems Technology, Inc. 2003 Central Avenue, Cheyenne, Wyoming, 82001, unpublished 
report. 
11 Nations, C. 2007. Variance in Abundance of Delta Smelt from 20 mm Surveys. Western EcoSystems Technology, 
Inc. 2003 Central Avenue, Cheyenne, Wyoming, 82001, unpublished report. 
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conservatively estimated by fitting regression models based on OMR flow to the entrainment 

estimates in Kimmerer (2008).12 

35. We fit the model to the data, and used a model selection procedure to determine 

which factors (covariates) are important for explaining changes in smelt survival and 

recruitment.  That procedure involved using Akaike Information Criterion (AIC) to rank models 

that included different mixes of co-variates based on the strength of evidence in the data for 

including each co-variate in the better models.   

36. Through this winnowing process, testing multiple co-variates and multiple 

combinations of co-variates, we determined that of all the factors we tested, food abundance, 

temperature, predator abundance, and density dependence are the most important factors 

controlling the population dynamics of delta smelt.  Maunder & Deriso at p. 31.  Survival is 

positively related to food abundance and negatively related to temperature and predator 

abundance.  Maunder & Deriso at p. 31.  The model selection procedure did not select 

entrainment in the larval-juvenile life stage as an important factor affecting the population growth 

rate.  While we found some support for adult entrainment as a factor affecting the population 

growth rate, it was not one of the main factors and the coefficient was unrealistically high and 

highly negatively correlated with the coefficient for water clarity.  Maunder & Deriso at p. 31.  

Impact analysis further showed that if adult entrainment has any effect on smelt population 

growth rate, it is minor.  Maunder & Deriso at p. 24. 

37. These results indicate that the use of the turbidity-based approach for limiting 

increases in the adult smelt entrainment rate, described above, is a conservative approach that errs 

on the side of protecting the species.  More generally, the data shows that imposing restrictions on 

the projects to avoid entrainment is not a sensible approach to improving the smelt population and 

that, instead, efforts should be focused on addressing environmental conditions affecting the 

species, such as its food supply. 

                                                 
12 Kimmerer, W.J. 2008. Losses of Sacramento River Chinook salmon and delta smelt to entrainment in water 
diversions in the Sacramento-San Joaquin Delta. San Francisco Estuary Watershed Science 6(2): 1-27. 
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I declare under penalty of perjury under the laws of the State of California and the United 

States that the foregoing is true and correct and that this declaration was executed on January 28, 

2011 at Del Mar, California. 
 

 

 
DR. RICHARD B. DERISO 
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Appendix 1.  Statistics Fitting the Average Turbidity and Daily OMR Flow in a Multiple 
Linear Regression Model to Daily Normalized Salvage 

Statistics fitting the three-day average turbidity and daily OMR flow in a multiple linear 
regression model to daily normalized salvage are shown below in Table 1.  As seen in the tabled 
outputs, both turbidity and OMR flow are highly statistically significant covariates. 
 
 

Table 1. SUMMARY OUTPUT for linear regression of daily normalized 
salvage 
          

Regression Statistics    
Multiple R 0.44  multiple linear 

regression  
R Square 0.20  for normalized 

salvage 
Adjusted R 
Square 

0.20    

Standard 
Error 

0.35    

Observations 1880    
     
ANOVA     

  df SS MS F 
Regression 2 57.16 28.58 229.33
Residual 1877 233.91 0.12  
Total 1879 291.07     
     

  Coefficients Standard 
Error 

t Stat P-value 

Intercept -2.74E-01 2.25E-02 -
1.22E+01 

6.78E-
33

turbidity 3-
day average 

1.69E-02 9.48E-04 1.78E+01 6.87E-
66

Daily OMR -3.29E-05 3.05E-06 -
1.08E+01 

2.54E-
26
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Appendix 2.  Details on the Calculation of Upper Confidence Intervals 

The one-sided confidence interval I calculated for the proposed ITL is based on a t-test statistic 
for testing whether the means of two distributions are equal.  The test statistic is based on the 
assumptions that the two distributions have equal variances and samples are of different sample 
size.  In this application, one of the distributions represents salvage rate in a future year for a 
single year.  The other distributions are historical samples.  The test statistic is: 
 
 
 
 
 
 
In the above calculation, the sample mean of the historical data is the standard deviation of the 
historical data is S, the single sample from a future year is , and sample size is N.  The t-
statistic has N-1 degrees of freedom.  The application in this paper uses the equation above for a 
given t value to solve for the corresponding .  For example, with N=9 and upper one-sided 
confidence interval probability of 0.95, the t value is 1.86.  Substitute 1.86 in the equation above 
along with estimates of the sample mean and standard deviation then solve for the  which 
would be the salvage rate at the upper one-sided 95% confidence interval.  For the log-normal 
distribution the data were log-transformed to calculated confidence intervals which were then 
back transformed. 
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Court by using the Court’s CM/ECF system. 

Participants in the case who are registered CM/ECF users will be served by the Court’s 

CM/ECF system. 

I further certify that the court-appointed experts are not registered CM/ECF users.  I have 

emailed the foregoing document to the following:  
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SERVICE LIST 

Dr. André Punt 
University of Washington 
School of Aquatic and Fishery Sciences 
P.O. Box 355020 
Seattle, WA 98195 
ThePuntFam@aol.com 

Dr. Thomas Quinn 
University of Washington 
School of Aquatic and Fishery Sciences 
P.O. Box 355020 
Seattle, WA 98195 
TQuinn@U.Washington.edu 
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Abstract 19 

Multiple factors acting on different life stages influence population dynamics and 20 

complicate the assessment and management of populations. To provide appropriate 21 

management advice, the data should be used to determine which factors are important 22 

and what life stages they impact. It is also important to consider density dependence 23 

because it can modify the impact of some factors. We develop a state-space multi-stage 24 

life cycle model that allows for density dependence and environmental factors to impact 25 

different life stages. Models are ranked using a two-covariate-at-a-time stepwise 26 

procedure based on AICc model averaging to reduce the possibility of excluding factors 27 

that are detectable in combination, but not alone. Impact analysis is used to evaluate the 28 

impact of factors on the population. The framework is illustrated by application to delta 29 

smelt, a threatened species that is potentially impacted by multiple anthropogenic factors. 30 

Our results indicate that density dependence and a few key factors impact the delta smelt 31 

population. Temperature, prey, and predators dominated the factors supported by the data 32 

and operated on different life stages. The included factors explain the recent declines in 33 

delta smelt abundance and may provide insight into the cause of the pelagic species 34 

decline in the San Francisco Estuary.    35 

 36 

Key words: delta smelt; density dependence; model selection; population dynamics; 37 

state-space model;  38 
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Introduction 39 

Multiple factors acting on different life stages influence population dynamics and 40 

complicate the assessment and management of natural populations. To provide 41 

appropriate management advice, the available data should be used to determine which 42 

factors are important and what life stages they impact. It is also important to consider 43 

density dependent processes because they can modify the impact of some factors and the 44 

strength of density dependence can vary among life stages. Management can then better 45 

target limited resources to actions that are most effective. Unfortunately, the relationships 46 

among potential factors, the life stages that they influence, and density dependence are 47 

often difficult to piece together through standard correlation or linear regression analyses.    48 

Life cycle models are an essential tool in evaluating factors influencing 49 

populations of management concern (Buckland et al. 2007). They can evaluate multiple 50 

factors that simultaneously influence different stages in the presence of density 51 

dependence. They also link the population dynamics from one time period to the next 52 

propagating the information and uncertainty. This link allows information relating to one 53 

life stage (i.e., abundance estimates) to inform processes influencing other life stages and 54 

is particularly important when data is not available for all life stages for all time periods. 55 

The life cycle model should be fit to the available data to estimate the model parameters, 56 

including parameters that represent density dependence, and determine the data based 57 

evidence of the different factors that are thought to influence the population dynamics. 58 

Finally, the model should be used to direct research or provide management advice.   59 

Deriso et al. (2008) present a framework for evaluating alternative factors 60 

influencing the dynamics of a population. It extends earlier work by Maunder and 61 
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Watters (2003), Maunder and Deriso (2003), and Maunder (2004) and is similar to 62 

approaches taken by others (e.g., Besbeas et al. 2002; Clark and Bjornstad 2004; 63 

Newman et al. 2006). The Deriso et al. framework involves several components. First, 64 

the factors to be considered are identified. Second, the population dynamics model is 65 

developed to include these factors and then fitted to the data. Third, hypothesis tests are 66 

performed to determine which factors are important. Finally, in order to provide 67 

management advice, the impact of the factors on quantities of management interest, are 68 

assessed. They illustrate their framework using an age-structured fisheries stock 69 

assessment model fit to multiple data sets. Their application did not allow for density 70 

dependence in the population dynamics, except through the effect of density on the 71 

temporal variation in which ages are available to the fishery.  72 

Inclusion of density dependence is important in evaluating the impacts on 73 

populations. Without density dependence, modeled populations can increase 74 

exponentially. This is unrealistic and can also cause computational or convergence 75 

problems in fitting population dynamics models to data. Density dependence can also 76 

moderate the effects of covariates. This is important because factors affecting density 77 

independent survival may be much less influential in the presence of density dependence 78 

compared to factors that affect carrying capacity (e.g., habitat). It is also important to 79 

correctly identify the timing of when the factors influence the population with respect to 80 

the timing of density dependence processes and available data. The approach also 81 

provides a framework for amalgamating the two paradigms of investigating population 82 

regulation outlined by Krebs (2002); the density paradigm and the mechanistic paradigm. 83 
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Here we develop a life cycle model that allows for density dependence at multiple 84 

life stages and allows for factors to impact different life stages. We apply the framework 85 

of Deriso et al. (2008) where the first component also includes identifying the life stages 86 

that are impacted by each factor and where density dependence occurs. We illustrate the 87 

framework by applying it to Delta smelt. Delta smelt is an ideal candidate to illustrate the 88 

modeling approach because there are several long-term abundance time series for 89 

different life stages and a range of hypothesized factors influencing its survival for which 90 

covariate data is available. Life cycle models have been recommended to evaluate the 91 

factors effecting delta smelt (Bennett 2005; Mac Nally et al. 2010; Thomson et al. 2010).    92 

Delta smelt is of particular management concern due to declines in abundance and 93 

the myriad of anthropogenic factors that could be causing the decline. Delta smelt is 94 

endemic to the San Francisco Estuary, which has multiple stressors including habitat 95 

modification, sewage outflow, farm runoff, and water diversions, to name just a few. 96 

Delta smelt was listed as threatened under the U.S. and California Endangered Species 97 

Acts in 1993. Several other pelagic species in the San Francisco Estuary have also 98 

experienced declines, but the factors causing the declines are still uncertain (Bennett 99 

2005; Sommer et al. 2007).  Recent studies have investigated the factors hypothesized to 100 

have caused the declines at both the species and ecosystem level, but the results were not 101 

conclusive (Mac Nally et al. 2010; Thomson et al. 2010). 102 

 103 

Materials and Methods  104 

Model 105 
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The model is stage based with consecutive stages being related through a function 106 

that incorporates density dependence. For simplicity and to be consistent with the 107 

predominant dynamics of delta smelt, we assume an annual life cycle. However, it is 108 

straightforward to extend the model to a multiple year life cycle or to stages that cover 109 

multiple years (i.e., adding age structure; e.g., Rivot et al. 2004; Newman and Lindley 110 

2006). Within a year the number of individuals in each stage is a function of the numbers 111 

in the previous stage. The number of individuals in the first stage is a function of the 112 

numbers in the last stage in the previous year (i.e., the stock-recruitment relationship), 113 

except for the numbers in the first stage in the first year, which is estimated as a model 114 

parameter. The functions describing the transition from one stage to the next are modeled 115 

using covariates. A state space model (Newman 1998; Buckland et al. 2004; Buckland et 116 

al. 2007) is used to allow for annual variability in the equation describing the transition 117 

from one life stage to the next. Traditionally, state space models describe demographic 118 

variability (e.g., using a binomial probability distribution to represent the number of 119 

individuals surviving based on a given survival rate; e.g., Dupont 1983;  Besbeas et al. 120 

2002) however environmental variability generally overwhelms demographic variability 121 

(Buckland et al. 2007) so we model the process variability (e.g., Rivot et al. 2004; 122 

Newman and Lindley 2006) using a lognormal probability distribution (Maunder and 123 

Deriso 2003). Our approach differs from modeling the log abundance and assuming 124 

additive normal process variability (e.g., Quinn and Deriso 1999, page 103) and the 125 

population dynamics function models the expected value rather than the median. The 126 

difference in the expectation will simply be a scaling factor ( [ ]25.0exp σ− ) unless the 127 

variance of the process variability changes with time.    128 
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 129 

(1) ( )( ) 1,Lognormal~ 2
11,, >−− sNfN sstst σ      130 

 131 

(2) ( )( )2
,11, ,Lognormal~ nstagesnstagestt NfN σ−       132 

 133 

Where t is time, s is stage, nstages is the number of stages in the model, and sσ is the 134 

standard deviation of the variation not explained by the model (process variability) in the 135 

transition from stage s to the next stage.  136 

The three parameter Deriso-Schnute stock-recruitment model (Deriso 1980; 137 

Schnute 1985) is used to model the transition from one stage to the next. The Deriso-138 

Schnute model is a flexible stock-recruitment curve in which the third parameter (γ ) can 139 

be set to represent the Beverton-Holt ( 1−=γ ) and Ricker ( 0→γ ) stock-recruitment 140 

models (Quinn and Deriso 1999, page 95).    141 

 142 

(3) ( ) ( )γγ
1

1 NbaNNf −=         143 

 144 

where the parameter a can be interpreted as the number of recruits per spawner at low 145 

spawner abundance or the survival fraction at low abundance levels. In cases for which 146 

only the relative abundance at each stage can be modeled (as in the delta smelt example), 147 

a also contains a scaling factor from one survey to the next. The parameter b determines 148 

how the number of recruits per spawner or the survival rate decreases with abundance. 149 

Constraints can be applied to the parameters to keep the relationship realistic: a ≥ 0, b ≥ 150 
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0. The additional constraint a ≤ 1 can be applied when the relationship is used to describe 151 

survival and the consecutive stages are modeled in the same units.    152 

Covariates are implemented to influence the abundance either before density 153 

dependence [ ( )xNg , ] or after density dependence [ ( )xh ]. Although, when no density 154 

dependence is present the two methods are identical.    155 

 156 

(4) ( ) ( ) ( )( ) ( )xhxNgbxNagNf γγ
1

,1, −=       157 

 158 

(5) ( ) [ ]∑= xNxNg λexp,        159 

 160 

(6) ( ) [ ]∑= xxh βexp         161 

 162 

Where λ  and β  are the coefficients of the covariate (x) for before and after density 163 

dependence, respectively, and are estimated as model parameters.  164 

For survival it might be important to keep the impact of the environmental factors within 165 

the range 0 to 1 and the logistic transformation can be used, e.g., 166 

 167 

(7) ( ) [ ]
[ ]∑
∑
+′+

+′
=

xa
xa

NxNag
λ

λ
exp1

exp
,        168 

 169 

Where the parameter a′  defines the base level of survival (i.e. [ ]
[ ]a

aa
′+

′
=

exp1
exp ) and 170 

replaces a of the density dependence function. 171 
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If the covariate values are all positive, the negative exponential can be used, e.g.,  172 

 173 

(8) ( ) [ ]∑−= xNxNg λexp,    00 ≥≥ xλ    174 

 175 

A combination of the above three options may be appropriate depending on the 176 

application. 177 

The importance of the placement of the covariates (i.e., before or after density 178 

dependence) relates to both the timing of density dependence and the timing of the 179 

surveys, which provide information on abundance. Covariates could be applied to the 180 

other model parameters. For example, covariates that are thought to be related to the 181 

carrying capacity (e.g., habitat) could be used to model b.  182 

The model is fit to indices of abundance (It,s). The abundance indices are assumed 183 

to be normally distributed, but other sampling distributions could be assumed if 184 

appropriate. Typically, if the index of abundance is a relative index and not an estimate of 185 

the absolute abundance, the model is fit to the index by scaling the model’s estimate of 186 

abundance using a proportionality constant (q, often called the catchability coefficient) 187 

(Maunder and Starr 2003).  188 

 189 

(9) ( )2
,,, ,Normal~ ststst qNI ν         190 

 191 

However, the scaling factor is completely confounded with the a parameter of the Deriso-192 

Schnute model and therefore the population is modeled in terms of relative abundance 193 

that is related to the scale of the abundance indices for each life stage and only makes 194 
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sense in terms of total abundance if the abundance indices are also in terms of total 195 

abundance. Therefore, the proportionality constant (q) should be set to one. Other data 196 

could also be used in the analysis if appropriate (e.g., information on survival from mark-197 

recapture studies; Besbeas et al. 2002; Maunder 2004). 198 

 199 

Model parameters to estimate 200 

The model parameters estimated include the initial abundance of the first stage 201 

1,1N , the parameters of the stock-recruitment model for each stage γba ,, , the 202 

coefficients of the covariates βλ, , the standard deviation of the process variability for 203 

each stage σ , and the standard deviation of the observation error (used in defining the 204 

likelihood function) for each index of abundance ν . The observation error standard 205 

deviation, ν , is often fixed based on the survey design or restricted so that there is not a 206 

parameter to estimate for each survey and time period (e.g. Maunder and Starr 2003). The 207 

state space model can be implemented by treating the process variability as random effect 208 

parameters (de Valpine 2002). The likelihood function that is optimized is calculated by 209 

integrating over these parameters (Skaug 2002; Maunder and Deriso 2003). Therefore, 210 

they are not treated as parameters to estimate. However, realizations of the random 211 

effects can be estimated by using empirical Bayes methods (Skaug and Fournier 2006) so 212 

that the unexplained process variation can be visualized. The estimated parameters of the 213 

model are: 214 

 215 

Parameters = { }νσβλγba ,,,,,,,1,1N  216 

 217 
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Implementation in AD Model Builder 218 

Dynamic models like the multistage life cycle model described here can be 219 

computationally burdensome if they are carried out in a state-space modeling framework 220 

(i.e., integrating over the state-space or equivalently the process variability) and efficient 221 

parameter estimation is needed if multiple hypotheses are being tested. Implementation is 222 

facilitated by the use of Markov chain Monte Carlo and related methods (Newman et al. 223 

2009) and their use has increased in recent years (Lunn et al. 2009). In particular, authors 224 

have found a Bayesian framework convenient for implementation (Punt and Hilborn 225 

1997). An alternative approach is to use the Laplace approximation to implement the 226 

integration (Skaug 2002). AD Model Builder (http://admb-project.org/) has an efficient 227 

implementation of the Laplace approximation using automatic differentiation (Skaug and 228 

Fournier 2006). The realizations of the random effects are estimated by using empirical 229 

Bayes methods adjusted for the uncertainty in the fixed effects (Skaug and Fournier 230 

2006). ADMB was originally designed as a function minimizer and therefore likelihoods 231 

are implemented in terms of negative log-likelihoods and probability distributions are 232 

implemented in terms of negative log-probabilities. A more complete description of 233 

ADMB and its implementation of random effects can be found in Fournier et al. (in 234 

review).  235 

The population is modeled using random effects to implement the state space 236 

model (de Valpine 2002) 237 

 238 

(12) ( ) [ ]2
11,11,, 5.0exp −−−− −= sstsstst NfN σεσ       239 

 240 
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(13) ( ) [ ]2
,1,11, 5.0exp nstagesnstagestnstagesnstagestt NfN σεσ −= −−      241 

 242 

(14) ( )1,0~, Nstε           243 

 244 

A penalty is added to the objective function to implement the random effects,     245 

  246 

(15) ∑
st

st
,

2
,ε . 247 

 248 

The negative log-likelihood function for the abundance indices ignoring constants is  249 

 250 

(16) [ ] [ ] ( )
∑

−
+=−

st st

stst
st

qNI
L

,
2
,

2
,,

, 2
lnln

ν
ν        251 

 252 

Model selection 253 

Model selection (Hilborn and Mangel 1997) can be used to determine if the data 254 

supports density dependence for a particular stage or the factors that impact the 255 

population dynamics. In our analysis different models are represented by different values 256 

of the model parameters. The relationship between one stage and the next is density 257 

independent if b = 0. Therefore, a test for density dependence tests if b = 0. When b = 0, 258 

γ  has no influence on the results and unless a hypothesis about γ  is made (i.e., 259 

Beverton-Holt, 1−=γ  or Ricker, 0→γ ), testing between density independence and 260 

density dependence requires the estimation of two additional parameters ( γ,b ). A factor 261 
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has no influence on the model when its coefficient ( βλ, ) is fixed at zero. Therefore, 262 

testing a factor requires estimating one parameter for each factor tested. There are a 263 

variety of methods available for model selection and hypothesis testing, each with their 264 

own set of issues (e.g., Burnham and Anderson 1998; Hobbs and Hilborn 2006). Given 265 

these issues, we rely on Akaike information criteria adjusted for sample size (AICc) and 266 

AICc weights to rank models and provide an idea of the strength of evidence in the data 267 

about an a priori set of alternative hypotheses (factors) but they are not used as strict 268 

hypothesis tests (Andersen et al. 2000; Hobbs and Hilborn 2006).   269 

The AIC is useful for ranking alternative hypotheses when multiple covariates 270 

and density dependence assumptions are being considered. The AICc (Burnham and 271 

Anderson 2002), is given by 272 

 273 

(10) ( )
1
122ln2

−−
+

++−=
Kn
KKKLAICc       274 

 275 

where L is the likelihood function evaluated at its maximum, K is the number of 276 

parameters, and n is the number of observations. A better model fit is one with a 277 

smaller AICc score.    278 

 279 

 280 

AIC weights are often used to provide a measure of the relative support for a 281 

model and to conduct model averaging (Hobbs and Hilborn 2006). AIC weights are 282 

essentially the rescaled likelihood penalized by the number of parameters, which is 283 

considered the likelihood for the model (Anderson et al. 2000).  284 
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 285 

 (11) 
[ ]
[ ]∑ Δ−

Δ−
=

j
j

i
iw

5.0exp
5.0exp

        286 

Where Δ is the difference in the AICc score from the minimum AICc score. 287 

The correct modeling of observation and process variability (error) is important 288 

for hypothesis testing. If process variability is not modeled, likelihood ratio and AIC 289 

based tests are biased towards incorrectly accepting covariates (Maunder and Watters 290 

2003). Other tests, such as randomization tests, should be used if it is not possible to 291 

model the additional process variability (e.g., Deriso et al. 2008). Incorrect sampling 292 

distribution assumptions (e.g., assumed values for the variance) can influence the 293 

covariate selection process and the weighting given to each data set can change which 294 

covariates are chosen (Deriso et al 2007). If data based estimates of the variance are not 295 

available, estimating the variances as model parameters or using concentrated likelihoods 296 

is appropriate (Deriso et al. 2007). Missing covariate data need to be dealt with 297 

appropriately, such as by using the methods described in Gimenez et al. (2009) and 298 

Maunder and Deriso (2010).     299 

Parameter estimation of population dynamics models generally requires iterative 300 

methods, which take longer than calculations based on algebraic solutions, and therefore 301 

limit the number of models that can be tested (Maunder at al. 2009). This is problematic 302 

when testing hypotheses because, arguably, all possible combinations of the covariates 303 

and density dependent possibilities should be evaluated. All possible combinations 304 

should be used because a covariate by itself may not significantly explain process 305 

variation, but in combination they do (Deriso et al. 2008) and some covariates may only 306 
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be significant if density dependence is taken into consideration. However, modeling of 307 

process variability, as we suggest, may minimize this possibility. In many cases, time and 308 

computational resource limitations may prevent testing all possible combinations and 309 

therefore we suggest the strategy described in Table 1. 310 

We stop evaluating covariates when the lowest AICc model in the current 311 

iteration is at least 4 AICc units higher than the model with the lowest overall AICc (step 312 

2e). The approach is based on a compromise between eliminating models for which there 313 

is definite, strong, or very strong evidence that the model is not the K-L best model 314 

( Δ≤4 )) and the fact that there is a maximum Δ  when adding covariates to the lowest 315 

AICc model. We have chosen to carry out the selection process by using the sum of the 316 

AICc weights over all models that include the corresponding factor (step 2d). This 317 

selection process chooses factors that have high support in general, work in combination 318 

with other factors, and are therefore less likely to preclude additional factors in 319 

subsequent steps. This approach embraces the multiple hypothesis weight of evidence 320 

framework and is somewhat consistent with model averaging. We also remove models 321 

for which any of the estimated covariate coefficients are the incorrect sign as assumed a 322 

priori (step 2b). Modification of this procedure may be needed depending on the available 323 

computational resources, the number of covariates and model stages, and the relative 324 

difference in the weight of evidence among models.     325 

Burnham and Anderson (2002) note that in general, there are situations where 326 

choosing to make inferences using a model other than the lowest AICc model can be 327 

justified (page 330) based on professional judgment, but only after the results of formal 328 

selection methods have been presented (page 334). For example, model parameterizations 329 
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that do not make sense biologically might be eliminated from consideration. Burnham 330 

and Anderson (2002) give an example (page 197) where a quadratic model is rejected 331 

because it could not produce the monotonic increasing dose response that was desired. 332 

Sometimes AICc will select a model that fits to quirks or noise in the data but does not 333 

provide a useful model. The selected best model is a type of estimate, and so like a 334 

parameter estimate it can sometimes be a poor estimate (Ken Burnham, Colorado State 335 

University, personal communication). 336 

Parameter estimates from stock recruitment models in integrated assessments are 337 

often biased towards extremely strong density dependent survival (recruitment is 338 

independent of stock size) (Conn et al. 2010) and this is unrealistic for stocks that have 339 

obtained very low population sizes. We therefore identify values of the Deriso-Shnute 340 

stock-recruitment relationship (for the Beverton-Holt and Ricker special cases) b 341 

parameter that are realistic (see Appendix). We assume that recruitment (or the 342 

individuals surviving) can’t be greater than 80% of that expected from the average 343 

population size when the population is at 5% of the average population size seen in the 344 

surveys during the period studied. Models with unrealistic density dependence are given 345 

zero weight in that step of the model selection prodecure (step 2b).               346 

 347 

 348 

Impact analysis        349 

To determine the impact of the different factors on the stock, we conducted 350 

analyses using values of the covariates modified to represent a desired (e.g. null) effect. 351 

Following Deriso et al. (2008) these analyses were conducted simultaneously within the 352 
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code of the original analyses so that the impact assessments shared all parameter values 353 

with the original analyses. This allowed estimation of uncertainty in the difference 354 

between the models with the covariate included and with the desired values of the 355 

covariate. The results are then compared for the quantities of interest, which may be a 356 

derived quantity other than the covariate’s coefficients. For example, if a covariate is 357 

related to some form of mortality, the coefficient is set to zero to determine what the 358 

abundance would have been in the absence of that mortality (e.g., Wang et al. 2009).     359 

 360 

Application to Delta smelt 361 

The multi-stage lifecycle model is applied to delta smelt to illustrate the 362 

application of the model, covariate selection procedure, and impact analysis. Delta smelt 363 

effectively live for one year and one spawning season. Some adults do survive to spawn a 364 

second year, but the proportion is low (Bennett 2005) and we ignore them in this 365 

illustration of the modeling approach. The delta smelt life cycle is broken into three 366 

stages (Figure 1). The model stages are associated with the timing of the three main 367 

surveys, (1) 20mm trawl (20mm), (2) summer tow net (STN), and (3) fall mid-water tow 368 

(FMWT), and roughly correspond to the life stages larvae, juveniles, and adults, 369 

respectively. The reason for associating the model stages with the surveys is because the 370 

surveys are the only data used in the model and therefore information is only available on 371 

processes operating between the surveys. The population is modeled from 1972 to 2006 372 

because these are the years for which data for most of the factors are available. The STN 373 

abundance index is available for the whole time period. The FMWT abundance index is 374 

available for the whole time period except for 1974 and 1979. The 20mm abundance 375 
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index is only available starting in 1995. Other survey data are available (e.g., the Spring 376 

Kodiak trawl survey), but they are not used in this analysis.    377 

The FMWT and STN survey indices of abundance are the estimates taken from 378 

Manly (2010b) tables 2.1 and 2.2. The standard errors were calculated by bootstrap 379 

procedures (Manly, 2010a). The 20mm survey index was taken from Nations (2007). The 380 

index values and standard errors are given in the supplementary material. The results of 381 

the bootstrap analysis suggest that the abundance indices are normally distributed (Manly 382 

2010a). 383 

Two types of factors are used in the model (Table 2). The first are standard factors 384 

relating to environmental conditions. The second are mortality rates based on estimates of 385 

entrainment at the water pumps. The mortality rates are converted to the appropriate scale 386 

to use in the model. Let u represent the mortality fraction such that the survival fraction is 387 

[ ]xu βexp1 =−  and x will be used as a covariate in the model. Setting 1=β  gives 388 

[ ]ux −= 1ln .   389 

Several factors were chosen for inclusion in the model (Table 3). These factors 390 

are used for illustrative purposes only and they may differ in a more rigorous 391 

investigation of the factors influencing delta smelt. The environmental factors are taken 392 

as those proposed by Manly (2010b). The entrainment mortality rates are calculated 393 

based on Kimmerer (2008); the rates were obtained by fitting a piece-wise linear 394 

regression model of winter Old Middle River (OMR) flow to his adult entrainment 395 

estimates and his larval/juvenile entrainment estimates were fitted to a multiple linear 396 

regression model with spring OMR flow and spring low salinity zone (as measured by 397 

X2). The values from Kimmerer (2008) were used for years in which they are available 398 
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and the linear regression predictions were used for the remaining years. Manly (2010b) 399 

provided several variables as candidates to account for the changes in delta smelt 400 

abundance from fall to summer and summer to fall. The fall to summer covariates could 401 

influence the adult and larvae stages, while the summer to fall covariates could influence 402 

the juvenile stage. The factors proposed by Manly (2010b) are those that are considered 403 

to act directly on delta smelt. There are many other proposed factors that act indirectly 404 

through these factors. We also include secchi disc depth as a covariate for water 405 

turbidity/clarity since it was identified as a factor by Thomson et al. (2010). Exports were 406 

also identified as an important factor and were assumed to be related to entrainment. 407 

However, we chose to use direct measures of entrainment. Interactions among the factors 408 

were not considered in the application. However, some of the covariates implicitly 409 

include interactions in their definition and construction.   410 

Some manipulation of the data was carried out before use in the model (the 411 

untransformed covariates values used in the model are given in the supplementary 412 

material). Delta smelt average length was missing for 1972-1974, 1976, and 1979, and 413 

was set to the mean based on Maunder and Deriso (2010). The factors were normalized 414 

(mean subtracted and divided by standard deviation) to improve model performance, 415 

except for the covariates relating to predator abundance, which were just divided by the 416 

mean, and the entrainment mortality rates, which were not transformed. These exceptions 417 

are factors that are hypothesized to have a have a unidirectional impact and setting their 418 

coefficients to zero is needed for impact analysis. Setting the coefficient for the 419 

entrainment mortality rate covariates to one can be used to determine the impact if the 420 

entrainment estimates are assumed to be correct.   421 

Case 1:09-cv-00407-OWW-DLB   Document 772    Filed 01/28/11   Page 42 of 116



 20

 The standard approach outlined above and in table 1 is applied to the delta-smelt 422 

application. The Ricker model was approximated by setting [ ]10exp −−=γ . We also 423 

constrained γ < 0 to avoid computational errors. It is difficult to scale the survey data to 424 

absolute abundance, so they are all treated as relative abundance and are not on the same 425 

scale. The scaling parameter a is not limited to a ≤ 1 and the exponential model is used 426 

for all covariates. To illustrate the impact analysis, we implement three scenarios. In the 427 

first scenario, the covariates are all set to zero. This means that environmental conditions 428 

are average, predation is zero, and entrainment is zero. We implement the second 429 

scenario if one or both of the entrainment covariates are selected for inclusion in the 430 

model. In this case, only the entrainment coefficients are set to zero. In the third scenario 431 

we take the final set of covariates and add the entrainment covariates (or substitute them 432 

if they we already included in the model) with their coefficients set to one and rerun the 433 

model. In this case, only the entrainment coefficients are set to zero in the impact 434 

analysis.   435 

 436 

Results 437 

AICc values and weights were calculated for all possible combinations of density 438 

dependence that included no density dependence (No), a Beverton-Holt Model (BH), a 439 

Ricker model (R), and estimation of both b and γ  (DD) (Table 3). Density dependence 440 

was clearly preferred for survival from juveniles to adults (J), but it is not clear if the 441 

density dependence is Beverton-Holt, Ricker, or somewhere in between. The Beverton-442 

Holt and Ricker models for juvenile survival appear to be influenced by three consecutive 443 

data points (years 1976-1978) of high juvenile abundance with corresponding average 444 
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adult abundance (Figures 2 and 3). The evidence for and against density dependence is 445 

about the same for the stock-recruitment relationship from adults to larvae (A). With 446 

slightly more evidence for no density dependence if survival from juveniles to adults is 447 

Beverton-Holt and slightly more evidence for Beverton-Holt density dependence if the 448 

survival from juveniles to adults is Ricker. The evidence for no density dependence in 449 

survival from larvae to juveniles (L) is moderately (3 to 4 times) higher than for density 450 

dependence. Therefore, we proceed with four density dependence scenarios: (1) 451 

Beverton-Holt density dependence in survival from juveniles to adults (JBH); and (2) 452 

Beverton-Holt density dependence in survival from juveniles to adults and a Beverton-453 

Holt stock-recruitment relationship from adults to larvae (JBHABH); (3) Ricker density 454 

dependence in survival from juveniles to adults (JR); and (4) Ricker density dependence 455 

in survival from juveniles to adults and a Beverton-Holt stock-recruitment relationship 456 

from adults to larvae (JRABH).           457 

The number and the type of factors supported by the data depended on the 458 

assumptions made about density dependence (Tables 4 and 5). The models with density 459 

dependence for both survival from juveniles to adults and a stock recruitment relationship 460 

for adults to larvae included more covariates in the lowest AICc models (8 and 9 461 

covariates for Beverton-Holt and Ricker density dependence in survival from juveniles to 462 

adults, respectively) than the models that included only density dependence for survival 463 

from juveniles to adults (5 covariates each). Several temperature, prey and predator 464 

covariates (TpAJ, EPAJ, EPJA, TpJul, Pred1) were selected in the first few steps and 465 

were included in all models. The April-June abundance of predators (Pred2) was selected 466 

in the first few steps in one model, but not selected at all in the others.    467 
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Overall, the model with Ricker density dependence in survival from juveniles to 468 

adults and a Beverton-Holt stock-recruitment relationship from adults to larvae had better 469 

AICc scores than the other models (Table 5). This differs from the similarity in scores 470 

obtained when no covariates were included in the models (Table 3). For all density 471 

dependent assumptions, there were alternatives with more (or less) covariates than the 472 

lowest AICc model (within the models for that density dependence assumption), for 473 

which there was not definite, strong, or very strong evidence that the model is not the K-L 474 

best model ( Δ≤4 ) suggesting that these factors should also be considered as possible 475 

factors that influence the population dynamics of delta smelt (Table 5). Although, the 476 

asymmetrical nature of the AICc scores for nested models should be kept in mind.     477 

The magnitude and the sign of the covariate coefficients are generally consistent 478 

across models (Table 6). The covariates were standardized so that the size of the 479 

coefficients are generally comparable across covariates. The coefficients are similar 480 

magnitudes for most covariates except those for water clarity (Secchi) and, particularly, 481 

adult entrainment (Aent), which had much larger effects. These both occurred before the 482 

stock-recruitment relationship from adults to larvae, which had a very strong density 483 

dependence effect. Pred2 had a small effect. The confidence intervals on the coefficients 484 

support inclusion of the covariates in the lowest AICc models except for Pred2 (Table 6). 485 

The effects for Secchi and Aent appear to be unrealistically large and their coefficients 486 

have a moderately high negative correlation. This appears to be a consequence of the 487 

unrealistically strong density dependence estimated in the stock-recruitment relationship 488 

from adults to larvae for those models (see Table S6).   489 
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The five lowest AICc models in iteration 6 of the two factors at a time procedure 490 

had a b parameter of the Beverton-Holt stock recruitment relationship from adult to 491 

larvae that was substantially greater than the critical value used to define realistic values 492 

of the parameter. The sixth model had an AIC of 812.53, which is worse than the lowest 493 

AICc model of iteration 5. The lowest AICc model with Beverton-Holt survival from 494 

juveniles to adults and Beverton-Holt stock recruitment relationship from adult to larvae 495 

also had an unrealistic b parameter and the next lowest AICc model had an AIC of 496 

812.33. Therefore, the lowest AICc model after accounting for realistic parameter values 497 

is the lowest AICc model from iteration 5 with Ricker survival from juveniles to adults 498 

and Beverton-Holt stock recruitment relationship from adult to larvae with one additional 499 

covariate (Table 5, AICc = 808.47). The confidence intervals for the pred2 covariate for 500 

this model contained zero and removing the Pred2 covariate essentially had no effect on 501 

the likelihood. Therefore, we chose this model without the Pred2 covariate as the lowest 502 

AICc model (AICc = 806.63). Several models had an AICc score within 2 units of this 503 

model, which according to the Burnham and Anderson guidelines “there is no credible 504 

evidence that the model should be ruled out”. Therefore, to illustrate the sensitivity of 505 

results to the model choice we also provide results for the model with the fewest 506 

parameters that was within 2 AICc units of the lowest AICc model. This alternative 507 

model is that selected with two additional parameters in iteration 3 of the selection 508 

procedure (Table 5, AICc=810.20). Removing the Pred2 covariate improved the AICc 509 

score (808.63) so we also eliminated the Pred2 covariate from this model.        510 

The models fit the survey data well (Figures 4 and 5), in fact better than expected 511 

from the survey standard errors, indicating that most of the variation in abundance was 512 
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modeled by the covariates or unexplained process variability. The unexplained process 513 

variability differed among the stages (Figure 6; Table 7). Essentially all the variability in 514 

survival between larvae and juveniles was explained by the covariates. The amount of 515 

variability in the survival from juveniles to adults explained was higher than in the stock-516 

recruitment relationship, but they show similar patterns (Figure 6; Table 7).  517 

The impact analysis of the selected covariates shows that the adult abundance 518 

under average conditions, with no predators, and entrainment mortality set to zero, differs 519 

moderately from that estimated in the original model (Figure 7). In particular, the recent 520 

decline is not as substantial under average conditions indicating that the covariates 521 

describe some of the decline, although there is still substantial unexplained variation and 522 

a large amount of uncertainty in the recent abundance estimates. Entrainment is estimated 523 

to have only a small impact on the adult abundance in either the lowest AICc model, 524 

which uses the estimated adult entrainment coefficient and the juvenile entrainment 525 

coefficient is zero, or the alternative model, in which both the juvenile and adult 526 

entrainment coefficients are set to one (Figure 8). The lowest AICc model with the two 527 

entrainment coefficients set at 1 did not converge and results are not shown for that 528 

analysis, although the results are expected to be similar. 529 

 530 

Discussion 531 

We developed a state-space multi-stage lifecycle model to evaluate population 532 

impacts in the presence of density dependence. Application to delta-smelt detected strong 533 

evidence for a few key factors and density dependence operating on the population. Both 534 

environmental factors (e.g., Deriso et al. 2008) and density dependence (e.g., Brook and 535 
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Bradshaw 2006) have been detected in a multitude of studies either independently or in 536 

combination (e.g., Sæther 1997; Ciannelli et al. 2004). Brook and Bradshaw (2006) used 537 

long-term abundance data for 1198 species to show that density dependence was a 538 

pervasive feature of population dynamics that holds across a range of taxa. However, the 539 

data they used did not allow them to identify what life stages the density dependence 540 

operates on. Ciannelli et al. (2004) found density dependence in different stages of 541 

walleye Pollock. In our application we found evidence against density dependent survival 542 

from larvae to juveniles, strong evidence for density dependence in survival from 543 

juveniles to adults, and weak evidence for density dependence in the stock-recruitment 544 

relationship from adults to larvae, which includes egg and early larval survival. Other 545 

studies have suggested that density dependence is more predominant at earlier life stages 546 

(e.g., Fowler 1987; Gaillard et al. 1998), although the life history of these species differs 547 

substantially from delta smelt. The density dependence in survival from juveniles to 548 

adults found in our study was probably heavily influenced by three consecutive years of 549 

data. Unfortunately, this is a common occurrence in which autocorrelated environmental 550 

factors cause autocorrelation in abundance within a stage and this likely influences other 551 

studies as well. We only allowed factors to influence density independent survival, either 552 

before or after density dependence, however the factors could also influence the strength 553 

or form of the density dependence (Walters 1987). For example, Ciannelli et al. (2004) 554 

found that high wind speed induced negative density dependence in the survival of 555 

walleye Pollock eggs. Our analysis is one of the few, but expanding, applications 556 

investigating both density dependent and density independent factors in a rigorous 557 

statistical framework that integrates multiple data sets within a life cycle model. The 558 
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framework amalgamates the density and the mechanistic paradigms of investigating 559 

population regulation outlined by Krebs (2002) while accommodating the fact that most 560 

available data is observational rather than experimental. More detailed mechanistic 561 

processes could be included in the model if the appropriate observational or experimental 562 

data are available. 563 

One factor is often erroneously singled out as the only major cause of population 564 

decline (e.g., over fishing; Sibert et al. 2006). However, there is a substantial 565 

accumulation of evidence that multiple factors interact to cause population declines. Our 566 

analysis found support for a variety of factors that influence delta smelt population 567 

dynamics. We also showed that together these factors explain the decline in the delta 568 

smelt population. Deriso et al. (2008) also found support that multiple factors influenced 569 

the decline and suppression of the Prince William Sound herring population, including 570 

one or more unidentified factors related to a particular year.       571 

Three of the first four factors included in the delta smelt application acted on the 572 

survival between larvae and juveniles. This is also the period where no density 573 

dependence in survival occurred. The final model estimates that the factors explain all the 574 

variability in survival from larvae to Juveniles. The 20mm trawl survey, which provides 575 

information on juvenile abundance, only starts in 1995 so there is less data to explain and 576 

this may be partly why the unexplained process variability variance goes to zero. The 577 

process variability for the other stages may partly absorb the variability in survival from 578 

larvae to juveniles.    579 

Deriso et al. (2008) showed that multiple factors influence populations and that 580 

analysis of factors in isolation can be misleading. We also found that multiple factors 581 
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influence the dynamics of delta smelt and that evaluating factors in isolation can produce 582 

different results than evaluating them in combination. The type of density dependence 583 

assumed also impacted what factors were selected. Specifically, one predator covariate 584 

(Pred2) would be the first selected covariate based simply on AICc for two of the density 585 

dependent assumptions, but was not selected by the two factor stepwise procedure (see 586 

supplementary material). However, this covariate was selected in the first step of the two 587 

factor stepwise procedure for another density dependent assumption, which happened to 588 

be the final model with the lowest AICc. In the final model the confidence intervals on 589 

the coefficient indicate that this factor should not be included in the model. Exploratory 590 

analysis showed that this covariate had about a 0.6 correlation with a temperature (TpAJ) 591 

and a prey covariate (EPAJ) that were consistently selected in the first or seconds steps, 592 

which operated on the same stage (larvae), when these covariates were combined 593 

together. The covariate was also highly correlated with time (see supplementary 594 

material). We did find, to some extent, which other covariates were included in the model 595 

and the order in which they were included changed depending on the density dependence 596 

assumptions. However, apart from the one predator covariate, the four density 597 

dependence assumptions tended to select the same factors in the first few steps of the 598 

model selection procedure, although the order of selection differed.       599 

There was substantial correlation among estimated parameters (see supplementary 600 

material). The parameters of the density dependence function were highly positively 601 

correlated as previously observed for stock-recruitment relationships (Quinn and Deriso 602 

1999) and reparameterization might improve the estimation algorithm. The relative 603 

number of larvae in the first year is negatively correlated with parameters influencing 604 
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larval survival including the survival fraction at low abundance (a), the standard 605 

deviation of the process variability, and the prey covariate coefficients. The coefficients 606 

for the prey and temperature covariates influencing larval survival are correlated. This is 607 

partly related to the fact that some of these covariates are also correlated. The coefficients 608 

for water clarity (Secchi) and adult entrainment (Aent) in the lowest AIC model were 609 

highly negatively correlated and were correlated with the parameters of the adult density 610 

dependence survival function. The coefficient for adult entrainment is also unrealistically 611 

large suggesting that the model including water clarity and adult entrainment is 612 

unreliable. 613 

The covariates were included in the model as simple log-linear terms. There may 614 

be more appropriate relationships between survival and the covariates. For example, good 615 

survival may be limited to a range of covariate values so a polynomial that describes a 616 

dome shape cure may be more appropriate. There may also be interactions among the 617 

covariates. Neither of these was considered in the delta smelt application. Although, 618 

some of the covariates were developed based on combining different factors such as 619 

water clarity and predator abundance. Some of the covariates were highly correlated (see 620 

supplementary material), but those with the highest correlations were either for different 621 

stages or not selected in the final models.     622 

 Density dependence and environmental factors could influence other population 623 

processes (e.g. growth rates) or the ability (catchability) of the survey to catch delta 624 

smelt. Modeling of catchability has been extensively researched for indices of abundance 625 

based on commercial catch data (Maunder and Punt 2004) and results have shown that 626 

the relationship between catch-per-unit-effort and abundance can be nonlinear (Harley et 627 
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al. 2001; Walters 2003). Rigorous statistical methods have been developed to account for 628 

habitat quality in the development of indices of abundance from catch and effort data 629 

(Maunder et al. 2006).  Methods have been developed to integrate the modeling of 630 

catchability within population dynamics models as a random walk (Fournier et al. 1998) 631 

or as a function of covariates (Maunder 2001; Maunder and Langley 2004). Surveys are 632 

less likely to be effected by systematic changes in catchability because sampling effort 633 

and survey design tend to be more consistent over time than effort conducted by 634 

commercial fishing fleets. Most fisheries stock assessments assume that there are no 635 

systematic changes in survey catchability unless there is an obvious change (e.g. change 636 

in survey vessel). However, catchability may changes due to factors such as changes in 637 

the spatial distribution of the species or population density. Similar methods as used for 638 

survival can be used to model catchability as a function of density or environmental 639 

factors. Random influences on catchability beyond those caused by simple random 640 

sampling can be accommodated by estimating the standard deviation of the likelihood 641 

function used to fit the model to the survey data (Maunder and Starr 2003). However, the 642 

fit to the delta smelt data appears better than expected from the bootstrap confidence 643 

intervals suggesting that the observation error is smaller than estimated by the bootstrap 644 

procedure. Systematic and additional random variation in catchability could bias the 645 

evaluation of strength and statistical significance of density dependence and 646 

environmental factors (Deriso et al. 2007). 647 

 The estimates of the b parameter of the Beverton-Holt stock-recruitment 648 

relationship between adults and larvae produced density dependence that was 649 

unrealistically strong in a few models. Consequently, this caused estimates of some 650 
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coefficients that were also unrealistic (e.g., the coefficient for adult entrainment was 651 

nearly two orders of magnitude higher than expected). Even when a model was selected 652 

for which the b parameter was considered reasonable, the coefficient for adult 653 

entrainment was still an order of magnitude greater than expected. This illustrates that 654 

naively following AICc model selection without use of professional judgment is not 655 

recommended. We could have included all models in the sum of the AICc weights by 656 

bounding the b parameter in the parameter estimation process (the parameter would 657 

probably be at the bound), but we considered inference based on models with a parameter 658 

at the bound inappropriate. An alternative approach would be to use an informative prior 659 

for b (Punt and Hilborn 1997) to pull it away from unrealistic values, but we did not have 660 

any prior information that was considered appropriate.         661 

Andersen et al. (2000) warn against data dredging as a method to test factors that 662 

influence population dynamics. In their definition of data dredging they include the 663 

testing of all possible models, unless, perhaps, if model averaging is used. This provides 664 

somewhat of a dilemma when using a multi-stage life cycle model because there are often 665 

multiple candidate factors for each life stage and they may only be detectable if included 666 

in the model together. For this reason, we use an approximation to all possible models 667 

and rely on AICc and AICc weights to rank models and provide an idea of the strength of 668 

evidence in the data about the models and do not apply strict hypothesis tests. Some form 669 

of model averaging using AICc weights might be applicable to the impact analysis, 670 

although the estimates of uncertainty would have to include both model and parameter 671 

uncertainty. The estimates of uncertainty in our impact analysis under estimate 672 

uncertainty because they do not include model selection uncertainty and use of model 673 
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averaging might provide better estimates of uncertainty (Burnham and Anderson 2002). 674 

In addition, we use symmetric confidence intervals and approaches that provide 675 

asymmetric confidence intervals may be more appropriate (e.g., based on profile 676 

likelihood or Bayesian posterior distribution).         677 

Our results suggest that of all the factors that we tested, food abundance, 678 

temperature, predator abundance and density dependence are the most important factors 679 

controlling the population dynamics of delta smelt. Survival is positively related to food 680 

abundance and negatively related to temperature and predator abundance. There was also 681 

some support for a negative relationship with water clarity and adult entrainment, and a 682 

positive relationship with the number of days where the water temperature was 683 

appropriate for spawning. The first variables to be included in the model were those 684 

related to survival from larvae to juveniles, followed by survival from juveniles to adults, 685 

and finally the stock-recruitment relationship. Mac Nally et al. (2010) also found that 686 

high summer water temperatures had an inverse relationship with delta smelt abundance. 687 

Thomson et al. (2010) found exports and water clarity as important factors. We did not 688 

include exports, but included explicit estimates of entrainment. We found some support 689 

for adult entrainment, but it was not one of the main factors and the coefficient was 690 

unrealistically high and highly correlated with the coefficient for water clarity. Mac Nally 691 

et al. (2010) and Thomson et al. (2010) only used the FMWT data and did not look at the 692 

different life stages, which probably explains why the factors supported by their analyses 693 

differ from what we found.   694 

We found strong evidence for density dependence in survival from juveniles to 695 

adults, some evidence for density dependence for the stock-recruitment relationship from 696 
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adults to larvae and evidence against density dependence in survival from larvae to 697 

juveniles. This might be surprising since the population is of conservation concern due to 698 

low abundance levels. However, the available data covers years, particularly in the 1970s, 699 

where the abundance was high and data for these years provide information on the form 700 

and strength of the density dependence. At the recent levels of abundance, density 701 

dependence is probably not having a substantial impact on the population and survival is 702 

impacted mainly by density independent factors. Previous studies only found weak 703 

evidence for a stock-recruitment relationship and suggested that density independent 704 

factors regulate the delta smelt population (e.g., Moyle et al. 1992). Bennett (2005) found 705 

that the strongest evidence for density dependence was between juveniles and pre-adults. 706 

Mac Nally et al. (2010) found strong support for density dependence, but Thomson et al. 707 

(2010) did not.      708 

Several pelagic species in the San Francisco Estuary have also experienced 709 

declines, but the factors causing the declines are still uncertain (Bennett 2005; Sommer et 710 

al. 2007). Thomson et al. (2010) used Bayesian change point analysis to determine when 711 

the declines occurred and included covariates to investigate what caused the declines. 712 

They were unable to fully explain the decline and unexplained declines were still 713 

apparent in the early 2000s. The impact analysis we applied to delta smelt suggests that 714 

the factors included in the model explain the low levels of delta smelt in the mid 2000s. 715 

Although, there is still substantial annual variation in the delta smelt abundance and 716 

uncertainty in the estimates of abundance for these years.     717 

The theory for state-space stage-structured life cycle models is well developed 718 

(Newman 1998; de Valpine, P. 2002; Maunder 2004), they have been promoted 719 
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(Thomson et al. 2010; Mac Nally et al. 2010), they facilitate the use of multiple data sets 720 

(Maunder 2003), provide more detailed information about how factors impact a 721 

population, and we have shown that they can be implemented. Therefore, we recommend 722 

that they are an essential tool for evaluating factors impacting species of concern such as 723 

delta smelt.      724 
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Appendix: Calculating realistic values for the b parameter of the 899 

Beverton-Holt and Ricker versions of the Deriso-Schnute stock-900 

recruitment model. 901 

The third parameter (γ ) of the Deriso-Schnute stock-recruitment model (Deriso 902 

1980; Schnute 1985)  903 

 904 

( ) ( )γγ
1

1 NbaNNf −=         905 

 906 

can be set to represent the Beverton-Holt ( 1−=γ ) and Ricker ( 0→γ ) models (Quinn 907 

and Deriso 1999, page 95), which correspond to    908 

 909 

( )
bN

aNNf
+

=
1

 and ( ) [ ]bNaNNf −= exp  910 

 911 

The recruitment at a given reference abundance level (e.g., the carrying capacity N0) can 912 

be calculated as 913 

 914 

0

0
0 1 bN

aN
R

+
= and [ ]000 exp bNaNR −=  915 

 916 

The recruitment when the abundance is at a certain fraction (p) of this reference level can 917 

be calculated as  918 

 919 
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0

0

1 bpN
apN

Rp +
=  and [ ]00 exp bpNaNRp −=  920 

 921 

A standard reference in fisheries is the recruitment as a fraction of the recruitment 922 

in the absence of fishing (the carrying capacity) that is achieved when the abundance is 923 

20% of the abundance in the absence of fishing (steepness).    924 

 925 

bN

bN
R
R

h
+

+
==

0

0

0

2.0

5

1
 and [ ]0

0

2.0 8.0exp2.0 bN
R
R

h ==  926 

 927 

To set b for a given steepness 928 

 929 

00

15
hNN

hb
−
−

= and [ ]
08.0

5ln
N
hb =  930 

 931 

The 20% reference level was probably chosen because the objective of fisheries 932 

management has traditionally been to maximize yield and it is generally considered that 933 

when a population falls below 20% of its unexploited level the stock cannot sustain that 934 

level of yield. In the delta smelt application the concern is about low levels of population 935 

abundance and we do not estimate the unexploited population size. Therefore, a more 936 

appropriate reference level might be 5% of the average level observed in the surveys.      937 

 938 
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 940 
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−

−
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95.0
20ln

N
h

b =  942 

 943 

This specification is also more appropriate when considering both the Beverton-Holt and 944 

Ricker models because the Ricker model reduces at high abundance levels and the 945 

recruitment at an abundance level that is 20% of the carrying capacity could be higher 946 

than the recruitment at carrying capacity. We restrict the models to those that have b 947 

estimates such that the expected recruitment when the population is at 5% of its average 948 

level (over the survey period) is equal to or less than 80% of the recruitment expected 949 

when the population is at its average level (Table A1). This is equivalent to a Beverton-950 

Holt h0.2 = 0.95 based on the abundance reference level being the average abundance 951 

from the surveys, which is probably conservative is the sense of not rejecting high values 952 

of b. 953 

 954 
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Table A1. Maximum values of the parameter b for inclusion of models in the model 962 

selection process. 963 

 964 

  Maximum b 

  Average 

abundance

Beverton‐

Holt Ricker

20mm (larvae)  7.99 9.3867 0.3653

STN (juveniles)  6140 0.0122 0.0005

FMWT (adults)  459 0.1634 0.0064

  965 
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Table 1. Algorithm for evaluating covariates for the delta smelt application. 

1) Evaluate density dependence 

a) Calculate all combinations of density dependent processes without the inclusion of factors. 

 Combinations include: a) density independent; b) Beverton-Holt; c) Ricker; and d) estimate both b and γ. These can be 

at any of the three stages.  

b) Choose the density dependence combination that has the lowest AICc or if there are several that have similar support, 

choose multiple combinations.  

2) Evaluate covariates 

a) For each densitity dependence scenario chosen in (1b) run all possible one and two covariate combinations 

b) For each combination, set the AICc weight to zero if the sign is wrong for either of the coefficients in the combination 

or if the b parameter of a density dependence function is unrealistically high.     

c) Sum AICc weights for a given covariate across all models that include that covariate 

d) Select the two covariates with the highest summed AICc weights to retain for the next iteration 

e) Iterate a-d until the AICc value of the best model in the current iteration is more than 4 units higher than the lowest 

AICc model  

3) Double check all included covariates 
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a. Check confidence intervals of the estimated coefficients for all included covariates to see if they contain zero. 

b. For all coefficients that contain zero remove the associated covariate and see if the AICc is degraded. If the AICc is not 

degraded, exclude that covariate from the model. 

 

 

Table 2. The variables used as candidates to account for the changes in delta smelt abundance. A = occurs between adult and larval 

stages, L = occurs between larval and juvenile stages, J = occurs between juvenile and adult stages. Norm = subtract mean and divide 

by standard deviation, Mean = divide by mean, Raw = not scaled. The covariate is attributed to after density dependence unless it is 

known to occur before density dependence. This is because density dependence generally reduces the influence of the covariate. *= 

the effect of entrainment on survival is negative, but the covariate is formulated so setting the coefficient to 1 implies the assumption 

that entrainment is known without error, so the coefficient should be positive.   

 

Factor  Name  Covar  Stage 

B(efore)/

A(fter)  Sign  Description 

Data 

scaling Justification 

1  SpDys  1  A  B  +  Days where temperature is in  Norm  This measures the number of days of 
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the range 11‐20C  spawning—the longer the spawning season, 

presumably the better chance of survival. 

2  TpAJ  2  L  B  ‐ or + 

Average water temperature 

Apr‐Jun in delta smelt habitat  Norm 

Temperature affects growth rate and survival of 

early life stages. 

3  TpAJ  2  A  A  ‐ or +       

4  TpJul  3  L  A  ‐ 

Average water temperature 

July in delta smelt habitat  Norm 

Higher water temperatures can be lethal. Could 

also include August temperature. 

5  EPAJ  4  L  B  + 

Minimum eurytemora and 
pseudodiaptomus 

density April‐Jun  Norm 

Measures height of food “gap” in spring, as 

eurytemora falls from spring maximum and 

pseudodiaptomus rises from ~0. 

6  EPAJ  4  A  A  +       

7  EPJul  5  L  A  + 

Average eurytemora 

and pseudodiaptomus 

density July  Norm 

Measures food availability in summer until STN 

survey, identified as problem by Bennett based 

on smelt condition. 

8  Pred1  6  J  A  ‐  Sep‐Dec abundance other  Mean  Predation is a source of direct mortality, 
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predators  measured as the  product of relative density 

from beach seine data with the square of 

average sechi depth 

9  Pred1  6  A  B  ‐       

10  Pred1  6  A  A  ‐       

11  StBass  7  J  A  ‐ 

Sep‐Dec abundance striped 

bass  Mean 

A major predator, whose abundance is 

measured as actual number of adults. 

12  StBass  7  A  B  ‐       

13  StBass  7  A  A  ‐       

14  DSLth  8  L  A  +  Delta smelt average length  Norm 

See Bennett (2005) for length vs fecundity 

relationship, linear for 1‐year‐olds. 

15  DSLth  8  J  A  +       

16  DSLth  8  A  A  +       

17  TpJS  9  J  A  ‐ 

Maximum 2‐week average 

temperature Jul‐Sep  Norm 

Measure of whether lethal temperature is 

reached in hot months. 

18  EPJA  10  J  A  +  Average eurytemora Norm  Measures food availability in summer between 
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and pseudodiaptomus 

density July‐August 

STN and FMWT surveys, identified as problem 

by Bennett based on smelt condition. 

19  Secchi  11  A  B  ‐ 

Jan‐Feb Weighted Secchi 

depth  Norm  Protection from predators 

20  Secchi  11  A  A  ‐       

21  Jent  12  L  A  + *  Juvenile entrainment  Raw  Entrained in by water pumps 

22  Aent  13  A  B  + *  Adult entrainment  Raw  Entrained in by water pumps 

23  Pred2  14  L  B  ‐ 

Apr‐Jun abundance other 

predators  Mean 

Predation is a source of direct mortality, 

measured as the  product of relative density 

from beach seine data with the square of 

average sechi depth 

24  Pred2  14  A  A  ‐       

 

 

 

 

Case 1:09-cv-00407-OWW-DLB   Document 772    Filed 01/28/11   Page 73 of 116



 51

Table 3. AICc weights for all possible density dependence models without covariates. L = survival from larvae to juveniles; J = 

survival from juveniles to larvae; A = the stock recruitment relationship from adults to larvae; No = no density dependence, BH = 

Beverton-Holt density dependence; R = Ricker density dependence; DD = Deriso-Schnute density dependence (i.e. estimate γ)  

 

    J‐No  J‐BH J‐R J‐DD Sum

L‐No  A‐No  0.000  0.079 0.062 0.027 0.168

  A‐BH  0.000  0.075 0.067 0.026 0.168

  A‐R  0.000  0.059 0.052 0.020 0.131

  A‐DD  0.000  0.069 0.064 0.023 0.156

  Sum  0.000  0.281 0.245 0.096 0.622

L‐BH  A‐No  0.000  0.022 0.017 0.007 0.047

  A‐BH  0.000  0.020 0.018 0.007 0.045
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  A‐R  0.000  0.016 0.014 0.005 0.035

  A‐DD  0.000  0.018 0.017 0.006 0.040

  Sum  0.000  0.076 0.066 0.025 0.167

L‐R  A‐No  0.000  0.022 0.017 0.007 0.047

  A‐BH  0.000  0.020 0.018 0.007 0.045

  A‐R  0.000  0.016 0.014 0.005 0.035

  A‐DD  0.000  0.018 0.017 0.006 0.040

  Sum  0.000  0.076 0.066 0.025 0.167

L‐DD  A‐No  0.000  0.006 0.005 0.002 0.013

  A‐BH  0.000  0.005 0.005 0.002 0.012

  A‐R  0.000  0.004 0.004 0.001 0.009

  A‐DD  0.000  0.004 0.004 0.001 0.010

  Sum  0.000  0.020 0.017 0.006 0.043
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Table 4. 

Order of inclusion of factors into the analysis. JBH = Beverton-Holt density dependence from the Juvenile to Adult stage; JBHABH = 
Beverton-Holt density dependence from the juvenile to adult stage and Beverton-Holt density dependence from the adult to larvae 
stage (the stock-recruitment relationship); JR = Ricker density dependence from the Juvenile to Adult stage; JRBH = Ricker density 
dependence from the juvenile to adult stage and Beverton-Holt density dependence from the adult to larvae stage (the stock-
recruitment relationship). See Tables 2 and 3 for definitions. *This covariate was excluded from the final model because the 
confidence interval of its coefficient included zero and including the covariate degraded the AICc.   
 

Factor name Stage B(efore)/A(fter) JBH JBHABH JR JRABH 

2 TpAJ L B 1 1 2 2 

4 TpJul L A 2 2 2 3 

5 EPAJ L B 1 1 1 1 

7 EPJul L A  4  5 

8 Pred1 J A 2 2 3 3 

18 EPJA J A 3 3 1 2 

19 Secchi A B  3  4 

22 Aent A B  4  4 

23 Pred2 L B    1* 
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Table 5. AICc values for each step in the model selection process. Shaded values are the lowest AICc for that density dependence 

configuration. See Table 4 for definitions.  

 

 Step 1  Step 2  Step 3  Step 4  Step 5  Step 6  Step 7  

 covar1 covar2 covar1 covar2 covar1 covar2 covar1 covar2 covar1 covar2 covar1 covar2 covar1 covar2 

JBH 841.06 833.44 827.58 824.00 823.01 823.30 824.61 825.95 828.28 831.08     

JBHABH 832.46 824.68 818.25 815.18 813.92 814.32 814.17 811.85 812.33 814.75     

JR 841.80 833.67 826.25 821.40 820.00 821.10 822.58 823.71 826.26 828.86     

JRBH 833.16 824.93 817.96 814.72 811.60 810.20 810.72 810.38 808.47 809.23 810.86 813.39 817.03 820.83 
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Table 6. Estimates of coefficients (and 95% confidence intervals) from the lowest AICc models for each density dependence 

assumption. Definitions of abbreviations and a description of the covariates can be found in Table 2 and the density dependence 

configurations in Table 4. The alternative model is the model that has the fewest covariates and the AICc is less than 2 AICc units 

greater than the lowest AICc model. 

Factor name Stage B/A JBH  JBHABH  JR  JRABH 

JRABH 

no Pred2  Alternative 

2 TpAJ L B -0.32 (-0.46, -0.18) -0.21 (-0.36, -0.07) -0.32 (-0.45, -0.19) -0.20 (-0.34, -0.06) -0.22 (-0.36, -0.09) -0.31 (-0.44, -0.18) 

4 TpJul L A -0.29 (-0.50, -0.08) -0.30 (-0.49, -0.12) -0.28 (-0.49, -0.07) -0.28 (-0.47, -0.09) -0.32 (-0.50, -0.13) -0.30 (-0.50, -0.11) 

5 EPAJ L B 0.39 (0.15, 0.63) 0.40 (0.18, 0.62) 0.37 (0.13, 0.61) 0.32 (0.09, 0.55) 0.36 (0.14, 0.58) 0.47 (0.23, 0.71) 

7 EPJul L A  0.32 (0.07, 0.58)  0.31 (0.05, 0.56) 0.33 (0.07, 0.59)  

8 Pred1 J A -0.45 (-0.84, -0.06) -0.49 (-0.90, -0.08) -0.37 (-0.71, -0.03) -0.42 (-0.77, -0.07) -0.44 (-0.78, -0.09) -0.40 (-0.75, -0.05) 

18 EPJA J A 0.21 (0.00, 0.42) 0.22 (0.00, 0.45) 0.44 (0.21, 0.66) 0.46 (0.22, 0.69) 0.46 (0.22, 0.69) 0.46 (0.23, 0.69) 

19 Secchi A B  -1.08 (-1.97, -0.19)  -1.24 (-2.27, -0.22) -1.15 (-2.11, -0.20)  

22 Aent A B  9.50 (0.62, 18.38)  10.97 (0.93, 21.01) 10.32 (0.99, 19.65)  

23 Pred2 L B    -0.19 (-0.52, 0.13)   

 a L  396 (334, 458) 451 (373, 529) 396 (337, 456) 593 (307, 879) 454 (376, 532) 410 (340, 481) 

 a J  0.74 (0.01, 1.48) 0.77 (-0.02, 1.56) 0.39 (0.18, 0.6) 0.42 (0.19, 0.65) 0.43 (0.2, 0.66) 0.41 (0.19, 0.63) 

 a A  0.03 (0.02, 0.04) 0.2 (-0.13, 0.53) 0.03 (0.02, 0.04) 0.27 (-0.24, 0.78) 0.25 (-0.18, 0.67) 0.08 (0, 0.16) 

 b  L  0  0  0  0  0  0  

 b (10-4) J  8.38 (-0.19, 16.95) 7.95 (-0.57, 16.48) 1.43 (1.01, 1.84) 1.42 (1.01, 1.84) 1.44 (1.02, 1.85) 1.43 (1.01, 1.84) 
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 b (10-2) A  0  1.48 (-1.41, 4.38) 0  2.35 (-2.77, 7.47) 1.93 (-1.96, 5.81) 0.52 (-0.34, 1.39) 

 γ L              

 γ J  -1  -1  0  0  0  0  

 γ A    -1    -1  -1  -1  

 σ L  0.07 (-0.32, 0.45) 0 (-0.35, 0.35) 0.04 (-0.5, 0.59) 0 (-0.35, 0.35) 0 (-0.26, 0.26) 0.1 (-0.2, 0.39) 

 σ J  0.52 (0.36, 0.67) 0.55 (0.39, 0.71) 0.46 (0.31, 0.6) 0.48 (0.32, 0.63) 0.48 (0.32, 0.63) 0.47 (0.32, 0.62) 

 σ A  0.79 (0.57, 1.01) 0.61 (0.45, 0.77) 0.82 (0.59, 1.04) 0.61 (0.45, 0.77) 0.62 (0.46, 0.78) 0.71 (0.52, 0.9) 

 h0.05 L  1  1  1  1  1  1  

 h0.05 J  0.24 (0.09, 0.4) 0.24 (0.08, 0.4) 0.11 (0.09, 0.14) 0.11 (0.09, 0.14) 0.12 (0.09, 0.14) 0.11 (0.09, 0.14) 

 h0.05 A  1  0.29 (-0.06, 0.64) 1  0.38 (-0.09, 0.85) 0.34 (-0.07, 0.75) 0.15 (0, 0.3) 

          

          

          

          

 

 

 

 Table 7. Estimates of standard deviation of the process variation and the percentage of the process variation explained by the 

covariates for the lowest AICc model. 
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Standard 

deviation 

without 

covariates 

Standard 

deviation 

with 

covariates 

%variation 

explained 

Larvae  0.72  0.00  100%

Juvenile  0.63  0.48  43%

Adult  0.71  0.62  24%
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Figure captions 

 

Figure 1. Life cycle diagram of delta smelt with survey, entrainment, and density 

dependence timing. 

 

Figure 2. Relationship among stages in the model for the lowest AICc model that has 

Ricker survival from juveniles to adults and a Beverton-Holt stock-recruitment 

relationship. Points are the model estimates of abundance, lines are the estimates from the 

stock recruitment models without covariates or process variation, crosses are the 

estimates without covariates. 

 

Figure 3. Relationship among stages in the alternative model (the model that has the 

fewest covariates and the AIC is less than 2 AIC units greater than the lowest AIC 

model). Points are the model estimates of abundance, lines are the estimates from the 

stock recruitment models without covariates or process variation, crosses are the 

estimates without covariates. 

 

Figure 4. Fit (line) to the survey abundance data (circles) for the lowest AICc model that 

includes Ricker survival between juveniles and adults and a Beverton-Holt stock-

recruitment relationship. Confidence intervals are the survey observations plus and minus 

two standard deviations as estimated from bootstrap analysis.   
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Figure 5. Fit (line) to the survey abundance data (circles) for the alternative model (the 

model that has the fewest covariates and the AIC is less than 2 AIC units greater than the 

lowest AIC model) that includes Ricker survival from juveniles to adults and a Beverton-

Holt stock recruitment relationship. Confidence intervals are the survey observations plus 

and minus two standard deviations as estimated from bootstrap analysis.    

 

Figure 6. Estimates of the realizations of the process variation random effects 

( [ ]2
, 5.0exp ssts σεσ − ) for the lowest AICc model that includes Ricker survival between 

juveniles and adults and a Beverton-Holt stock-recruitment relationship (top) and the 

alternative model (the model that has the fewest covariates and the AIC is less than 2 AIC 

units greater than the lowest AIC model) (bottom). 

 

Figure 7. Estimates of abundance with and without covariates (coefficients of the 

covariates set to zero) (top) and ratio of the two with 95% confidence intervals (bottom, 

y-axis limited to show details) from the lowest AICc (left panels) model that has Ricker 

survival from juveniles to adults and a Beverton-Holt stock-recruitment relationship and 

the alternative model (the model that has the fewest covariates and the AIC is less than 2 

AIC units greater than the lowest AIC model) (right panels). 

 

Figure 8. Estimates of the adult abundance with and without adult entrainment (top) and 

the ratio of adult abundance without adult entrainment to with adult entrainment (bottom, 

y-axis limited to show details) from the lowest AICc model (left panels) with Ricker 
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survival from juveniles to adults and a Beverton-Holt stock-recruitment relationship and 

the alterative model (the model that has the fewest covariates and the AIC is less than 2 

AIC units greater than the lowest AIC model) (right panels). 
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Supplementary material 

The following tables provide the data used in the analysis, a complete set of results for all the covariates evaluated in the analysis, and 

correlation matrices for the factors and estimated parameters. 

 

Table S1. Indices of abundance and standard errors used in the delta smelt application.  

 

  20mm    STN   FMWT  

Year  value  SE  value SE value SE

1972      20005 5577 1265 155

1973      11185 1722 1145 108.7

1974      12147 2175    

1975      8786 989 697 77.8

1976      24000 1802 328 67.7

1977      25965 2681 480 69.7

1978      31758 6867 572 41.2
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1979      5484 853    

1980      7068 646 1654 235.6

1981      6300 1043 374 49.9

1982      7242 820 333 108.5

1983      1390 279 132 43.6

1984      779 147 182 35.2

1985      387 67 110 21.6

1986      3057 406 212 42.7

1987      2743 227 280 71

1988      764 129 174 40.7

1989      647 52 366 63.7

1990      747 125 364 83.3

1991      2486 334 689 108.8

1992      471 68 156 27.8

1993      5763 996 1078 226.6

1994      4156 380 102 45.4
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1995  2.933692  0.563774  2490 307 899 132.6

1996  22.25453  2.437344  6162 701 127 31

1997  9.437214  1.371236  2362 353 303 55

1998  2.704639  0.526823  2209 694 420 67

1999  12.00716  1.428904  7478 1142 864 146.2

2000  14.02919  2.160034  4178 519 756 139.9

2001  10.10347  2.983169  2897 332 603 156.2

2002  4.63569  1.04671  1115 163 139 25.2

2003  6.043828  1.479269  1329 174 210 64.9

2004  3.380115  0.967356  649 113 74 19

2005  3.981609  0.693923  393 97 27 6.6

2006  4.372327  0.779492  352 117 41 11.9
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Table S2. Untransformed covariate values. See Table 2 for definitions. 

 

Year SpDys TpAJ TpJul EPAJ EPJul Preds1 StBass DSLth TpJS EPJA Secci JEnt AEnt Preds2

1972 110 17.8 21.3 1243.77 4725 586 36498   21.8 4303 50 0.28136 0.02626 354

1973 104 18.6 21.3 754.234 1547 1041 27596  21.9 2082 26 0.1174 0.02626 793

1974 85 17.7 21.0 614.313 4202 850 32314  22.5 3799 44 0.0814 0.02626 446

1975 92 17.2 20.1 479.507 1520 735 41650 65.1 21.5 1545 44 0.06449 0.02626 280

1976 130 17.6 21.4 666.081 4125 19410 65427  21.9 2895 74 0.31567 0.0952 6118

1977 118 17.0 21.1 581.151 4194 22324 40655 65.6 21.5 3972 59 0.35274 0.02626 7095

1978 110 17.8 21.1 1457.95 2082 14726 28399 65.3 22.4 1391 13 0 0.02626 8423

1979 90 18.0 21.0 516.84 947 37712 25761  22.1 722 34 0.15945 0.02626 18631

1980 137 16.8 20.5 428.147 548 20360 20254 70.3 22.5 647 11 0.03108 0.02626 15120

1981 108 18.7 21.8 787.671 922 22248 20621 67.2 22.8 724 42 0.22261 0.02626 17070

1982 105 17.0 20.6 19.4272 636 30605 21560 66.2 21.4 670 31 0.00746 0.02626 23570

1983 102 17.3 20.7 271.066 530 28422 31059 62.2 22.2 544 28 0 0.02626 13957

1984 100 18.3 22.4 251.49 1560 29082 35459 69.5 22.8 1545 50 0.20125 0.02626 20444
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1985 105 18.5 22.0 134.587 548 62483 46997 69.1 22.5 543 76 0.26546 0.06687 30364

1986 122 18.1 21.2 648.516 626 30255 22752 68.1 21.5 534 60 0 0.02626 22921

1987 102 19.0 20.6 534.328 392 42089 41144 64.8 21.3 519 65 0.26078 0.02626 26771

1988 125 17.8 22.4 119.215 364 36828 30207 69.5 23.1 360 46 0.3583 0.16922 26668

1989 108 17.9 21.1 383.708 2558 38551 29441 67.8 21.7 3641 67 0.27032 0.13226 24067

1990 100 18.4 22.0 200.219 3616 57128 32336 63.9 22.7 3837 46 0.36378 0.22385 26671

1991 108 17.2 21.3 150.931 2542 63209 39881 62.5 21.8 3059 87 0.3181 0.02626 23754

1992 99 19.2 21.3 531.604 2733 89736 44102 57.9 22.5 2828 82 0.28653 0.04369 42138

1993 112 17.8 21.5 602.607 1184 48487 27938 54.7 22.2 1425 23 0.06506 0.05702 25301

1994 102 17.8 21.1 1112 965 61942 32635 62.9 21.4 856 75 0.21454 0.02626 53729

1995 142 17.0 21.5 573.935 2366 59091 34966 58.5 22.0 1431 27 0 0.18 38412

1996 115 18.3 21.4 380.924 533 72056 44927 55.1 22.6 731 38 0.01 0.025 52547

1997 104 19.3 21.2 369.14 590 64436 56551 57.6 21.8 800 22 0.14 0.025 33056

1998 117 16.3 21.3 271.886 1002 25623 32979 59.3 22.6 842 30 0 0.01 21106

1999 112 17.3 21.3 751.657 1308 29853 42465 59.1 22.0 1091 56 0.07 0.03 21961

2000 118 18.9 20.8 411.035 825 74907 60639 59.3 22.2 1007 64 0.13 0.05 50114

2001 73 19.5 21.3 423.892 758 81186 48811 63.5 22.0 484 57 0.19 0.05 50992
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2002 108 18.6 21.8 105.105 641 75565 32632 62.2 22.2 462 36 0.26 0.16 59540

2003 106 18.0 22.2 136.244 787 86509 40081 58.6 23.2 1525 35 0.17 0.22 56424

2004 108 19.1 21.3 153.943 354 109036 82253 62.0 22.3 1012 37 0.21 0.19 50151

2005 123 18.1 22.0 57.0556 849 119419 58943 59.6 22.8 466 49 0.03 0.09 68310

2006 95 17.8 22.6 121.846 1321 116848 41977 58.0 23.7 884 39 0 0.03 53328
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Table S3a. AICc weights for each step in the two factor analysis for the model with Beverton-Holt survival from juvenile to adult. In 

the Stage column A=Adults, L=Larvae, and J=Juveniles. In the B/A column B=before density dependence and A=after density 

dependence. # = not included in AICc weights calculation because it was selected in previous step. * = not included in AICc weights 

calculation because a similar covariate was selected in previous step. The shaded cells indicate the two models chosen to retain in 

subsequent tests. 

 

Run Name Stage B/A 1st 2nd 3rd 4th 5th 

1 SpDys A B 0.01 0.05 0.17 0.33 # 

2 TpAJ L B 0.63 # # # # 

3 TpAJ A A 0.02 0.04 0.08 0.15 0.25 

4 TpJul L A 0.31 0.68 # # # 

5 EPAJ L B 0.56 # # # # 

6 EPAJ A A 0.01 0.00 0.00 0.00 0.00 

7 EPJul L A 0.01 0.03 0.12 0.30 # 

8 Pred1 J A 0.13 0.43 # # # 

9 Pred1 A B 0.00 0.00 0.00 0.00 0.00 
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10 Pred1 A A 0.00 0.00 0.00 0.00 0.00 

11 StBass J A 0.01 0.06 0.08 0.17 0.25 

12 StBass A B 0.00 0.00 0.00 0.00 0.00 

13 StBass A A 0.00 0.00 0.00 0.00 0.00 

14 DSLth L A 0.00 0.03 0.09 0.19 0.24 

15 DSLth J A 0.00 0.03 0.00 0.00 0.00 

16 DSLth A A 0.00 0.00 0.00 0.00 0.00 

17 TpJS J A 0.00 0.02 0.06 0.00 0.00 

18 EPJA J A 0.06 0.27 0.41 # # 

19 Secchi A B 0.01 0.08 0.23 # # 

20 Secchi A A 0.01 0.08 0.23 * * 

21 Jent L A 0.01 0.00 0.00 0.00 0.00 

22 Aent A B 0.01 0.03 0.08 0.16 0.33 

23 Pred2 L B 0.18 0.06 0.10 0.18 0.25 

24 Pred2 A A 0.00 0.03 0.06 0.00 0.00 
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Table S3b. AICc weights for each step in the two factor analysis for the model with Beverton-Holt survival from juvenile to adult and 

a Beverton-Holt stock-recruitment relationship. In the Stage column A=Adults, L=Larvae, and J=Juveniles. In the B/A column 

B=before density dependence and A=after density dependence. # = not included in AICc weights calculation because it was selected 

in previous step. * = not included in AICc weights calculation because a similar covariate was selected in previous step. The shaded 

cells indicate the two models chosen to retain in subsequent tests. 

 

Run name Stage B/A 1st 2nd 3rd 4th 5th 

1 SpDys A B 0.00 0.01 0.04 0.08 0.26 

2 TpAJ L B 0.40 # # # # 

3 TpAJ A A 0.02 0.03 0.06 0.07 0.14 

4 TpJul L A 0.05 0.71 # # # 

5 EPAJ L B 0.89 # # # # 

6 EPAJ A A 0.04 0.03 0.11 0.13 0.17 

7 EPJul L A 0.01 0.03 0.15 0.37 # 

8 Pred1 J A 0.09 0.32 # # # 

9 Pred1 A B 0.00 0.00 0.01 0.05 0.04 

10 Pred1 A A 0.01 0.04 0.10 0.22 0.23 
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11 StBass J A 0.01 0.06 0.07 0.09 0.15 

12 StBass A B 0.00 0.00 0.00 0.00 0.00 

13 StBass A A 0.00 0.00 0.00 0.00 0.00 

14 DSLth L A 0.00 0.02 0.07 0.09 0.18 

15 DSLth J A 0.00 0.02 0.00 0.00 0.00 

16 DSLth A A 0.00 0.00 0.00 0.01 0.08 

17 TpJS J A 0.00 0.02 0.05 0.00 0.00 

18 EPJA J A 0.04 0.28 0.36 # # 

19 Secchi A B 0.01 0.06 0.24 # # 

20 Secchi A A 0.01 0.06 0.16 * * 

21 Jent L A 0.01 0.00 0.00 0.00 0.00 

22 Aent A B 0.01 0.07 0.14 0.37 # 

23 Pred2 L B 0.34 0.10 0.11 0.13 0.19 

24 Pred2 A A 0.02 0.06 0.12 0.12 0.10 
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Table S3c. AICc weights for each step in the two factor analysis for the model with Ricker survival from juvenile to adult. In the Stage 

column A=Adults, L=Larvae, and J=Juveniles. In the B/A column B=before density dependence and A=after density dependence. # = 

not included in AICc weights calculation because it was selected in previous step. * = not included in AICc weights calculation 

because a similar covariate was selected in previous step. The shaded cells indicate the two models chosen to retain in subsequent 

tests.  

 

Run name Stage B/A 1st 2nd 3rd 4th 5th 

1 SpDys A B 0.01 0.03 0.18 # # 

2 TpAJ L B 0.39 0.91 # # # 

3 TpAJ A A 0.01 0.04 0.08 0.13 0.26 

4 TpJul L A 0.17 0.50 # # # 

5 EPAJ L B 0.44 # # # # 

6 EPAJ A A 0.00 0.00 0.00 0.00 0.00 

7 EPJul L A 0.01 0.02 0.11 0.24 # 

8 Pred1 J A 0.02 0.16 0.38 # # 

9 Pred1 A B 0.00 0.00 0.00 0.00 0.00 

10 Pred1 A A 0.00 0.00 0.00 0.00 0.00 
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11 StBass J A 0.01 0.03 0.09 0.00 0.00 

12 StBass A B 0.00 0.00 0.00 0.00 0.00 

13 StBass A A 0.00 0.00 0.00 0.00 0.00 

14 DSLth L A 0.00 0.02 0.11 0.17 0.27 

15 DSLth J A 0.00 0.04 0.17 0.15 0.26 

16 DSLth A A 0.00 0.00 0.00 0.00 0.00 

17 TpJS J A 0.00 0.00 0.00 0.00 0.00 

18 EPJA J A 0.53 # # # # 

19 Secchi A B 0.01 0.04 0.18 0.26 # 

20 Secchi A A 0.01 0.04 0.18 0.26 * 

21 Jent L A 0.01 0.01 0.00 0.00 0.00 

22 Aent A B 0.01 0.02 0.08 0.14 0.30 

23 Pred2 L B 0.37 0.09 0.11 0.18 0.26 

24 Pred2 A A 0.00 0.01 0.04 0.00 0.00 
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Table S3d. AICc weights for each step in the two factor analysis for the model with Ricker survival from juvenile to adult and a 

Beverton-Holt stock-recruitment relationship. In the Stage column A=Adults, L=Larvae, and J=Juveniles. In the B/A column 

B=before density dependence and A=after density dependence. # = not included in AICc weights calculation because it was selected 

in previous step. * = not included in AICc weights calculation because a similar covariate was selected in previous step. The shaded 

cells indicate the two models chosen to retain in subsequent tests. 

 

Run name Stage B/A 1st 2nd 3rd 4th 5th 6th 7th 

1 SpDys A B 0.00 0.02 0.04 0.03 0.23 # # 

2 TpAJ L B 0.32 0.38 # # # # # 

3 TpAJ A A 0.01 0.04 0.05 0.08 0.12 0.48 # 

4 TpJul L A 0.04 0.09 0.61 # # # # 

5 EPAJ L B 0.78 # # # # # # 

6 EPAJ A A 0.03 0.02 0.07 0.19 0.18 0.00 0.00 

7 EPJul L A 0.01 0.03 0.06 0.21 0.61 # # 

8 Pred1 J A 0.01 0.13 0.30 # # # # 

9 Pred1 A B 0.00 0.00 0.00 0.00 0.06 0.00  

10 Pred1 A A 0.01 0.00 0.04 0.11 0.10 0.00  
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11 StBass J A 0.00 0.04 0.08 0.00 0.00 0.00 0.00 

12 StBass A B 0.00 0.00 0.00 0.00 0.00 0.17 0.00 

13 StBass A A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

14 DSLth L A 0.00 0.00 0.02 0.08 0.12 0.23 # 

15 DSLth J A 0.00 0.04 0.09 0.09 0.10 0.20 0.54 

16 DSLth A A 0.00 0.00 0.00 0.00 0.00 0.17 0.00 

17 TpJS J A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

18 EPJA J A 0.35 0.89 # # # # # 

19 Secchi A B 0.01 0.09 0.17 0.37 # # # 

20 Secchi A A 0.00 0.04 0.09 0.15 * * * 

21 Jent L A 0.00 0.03 0.00 0.00 0.00 0.00 0.00 

22 Aent A B 0.01 0.07 0.15 0.23 # # # 

23 Pred2 L B 0.39 # # # # # # 

24 Pred2 A A 0.01 0.00 0.05 0.10 0.04 0.05 0.53 
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Table S4a. AICc values and covariates included for each step in the two factor analysis for the model with Beverton-Holt survival 

from juvenile to adult. y = covariate included in lowest AICc model, # = covariate selected in previous step, * = covariate not 

considered because it is similar to another covariate. 

 

     test1  test2  test3  test4  test5  

     covar1 covar2 covar1 covar2 covar1 covar2 covar1 covar2 covar1 covar2 

    AICc 841.06 833.44 827.58 824.00 823.01 823.30 824.61 825.95 828.28 831.08 

    Δ 18.05 10.43 4.57 0.99 0.00 0.28 1.60 2.94 5.27 8.07 

Run Name Stage B/A            

1 SpDys A B        y y # # 

2 TpAJ L B   Y # # # # # # # # 

3 TpAJ A A           y 

4 TpJul L A    y y # # # # # # 

5 EPAJ L B   Y # # # # # # # # 

6 EPAJ A A            

7 EPJul L A         y # # 

8 Pred1 J A     y # # # # # # 

9 Pred1 A B            

10 Pred1 A A            

11 StBass J A            

12 StBass A B            
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13 StBass A A            

14 DSLth L A            

15 DSLth J A            

16 DSLth A A            

17 TpJS J A            

18 EPJA J A      y y # # # # 

19 Secchi A B       y # # # # 

20 Secchi A A       * * * * * 

21 Jent L A            

22 Aent A B          y y 

23 Pred2 L B  y          

24 Pred2 A A            
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Table S4b. AICc values and covariates included for each step in the two factor analysis for the model with Beverton-Holt survival 

from juvenile to adult and a Beverton-Holt stock-recruitment relationship. y = covariate included in the lowest AICc model, # = 

covariate selected in previous step, * = covariate not considered because it is similar to another covariate. 

     test1  test2  test3  test4  test5  

     covar1 covar2 covar1 covar2 covar1 covar2 covar1 covar2 covar1 covar2 

    AICc 832.46 824.68 818.25 815.18 813.92 814.32 814.17 811.85 812.33 814.75 

    AICc-min(AICc) 20.60 12.83 6.40 3.33 2.06 2.46 2.32 0.00 0.48 2.90 

Run Name Stage B/A            

1 SpDys A B           y 

2 TpAJ L B   y # # # # # # # # 

3 TpAJ A A           y 

4 TpJul L A    y y # # # # # # 

5 EPAJ L B  Y y # # # # # # # # 

6 EPAJ A A            

7 EPJul L A        y y # # 

8 Pred1 J A     y # # # # # # 

9 Pred1 A B            

10 Pred1 A A          y  

11 StBass J A            

12 StBass A B            

13 StBass A A            
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14 DSLth L A            

15 DSLth J A            

16 DSLth A A            

17 TpJS J A            

18 EPJA J A      y y # # # # 

19 Secchi A B       y # # # # 

20 Secchi A A        * * * * 

21 Jent L A            

22 Aent A B         y # # 

23 Pred2 L B            

24 Pred2 A A            
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Table S4c. AICc values and covariates included for each step in the two factor analysis for the model with Ricker survival from 

juvenile to adult. y = covariate included in lowest AICc model, # = covariate selected in previous step, * = covariate not considered 

because it is similar to another covariate. 

 

     test1  test2  test3  test4  test5  

     covar1 covar2 covar1 covar2 covar1 covar2 covar1 covar2 covar1 covar2 

    AICc 841.80 833.67 826.25 821.40 820.00 821.10 822.58 823.71 826.26 828.86 

    Δ 21.81 13.68 6.25 1.40 0.00 1.11 2.58 3.72 6.26 8.86 

Run name Stage B/A            

1 SpDys A B       y # # # # 

2 TpAJ L B    y y # # # # # # 

3 TpAJ A A           y 

4 TpJul L A     y # # # # # # 

5 EPAJ L B    # # # # # # # # 

6 EPAJ A A            

7 EPJul L A         y # # 

8 Pred1 J A      y y # # # # 

9 Pred1 A B            

10 Pred1 A A            

11 StBass J A            

12 StBass A B            
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13 StBass A A            

14 DSLth L A            

15 DSLth J A            

16 DSLth A A            

17 TpJS J A            

18 EPJA J A   Y # # # # # # # # 

19 Secchi A B        y y # # 

20 Secchi A A        * * * * 

21 Jent L A            

22 Aent A B          y y 

23 Pred2 L B  y Y         

24 Pred2 A A            
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Table S4d. AICc values and covariates included for each step in the two factor analysis for the model with Ricker survival from 

juvenile to adult and a Beverton-Holt stock-recruitment relationship. y = covariate included in lowest AICc model, # = covariate 

selected in previous step, * = covariate not considered because it is similar to another covariate. Additional covariates increased the 

AICc by more than 4 units and are not shown.   

 

     test1  test2  test3  test4  test5  test6  test7  

     covar1 covar2 covar1 covar2 covar1 covar2 covar1 covar2 covar1 covar2 covar1 covar2 covar1 covar2 

    AICc 833.16 824.93 817.96 814.72 811.60 810.20 810.72 810.38 808.47 809.23 810.86 813.39 817.03 820.83 

    AICc-min(AICc) 24.68 16.46 9.49 6.25 3.12 1.73 2.25 1.91 0.00 0.75 2.38 4.92 8.55 12.36 

Run name Stage B/A                

1 SpDys A B           y # # # # 

2 TpAJ L B   y  y # # # # # # # # # # 

3 TpAJ A A            y y # # 

4 TpJul L A      y y # # # # # # # # 

5 EPAJ L B  Y y # # # # # # # # # # # # 

6 EPAJ A A                

7 EPJul L A          y y # # # # 

8 Pred1 J A       y # # # # # # # # 

9 Pred1 A B                

10 Pred1 A A                
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11 StBass J A                

12 StBass A B                

13 StBass A A                

14 DSLth L A             y # # 

15 DSLth J A              y y 

16 DSLth A A                

17 TpJS J A                

18 EPJA J A    y y # # # # # # # # # # 

19 Secchi A B        y y # # # # # # 

20 Secchi A A          * * * * * * 

21 Jent L A                

22 Aent A B         y # # # # # # 

23 Pred2 L B    # # # # # # # # # # # # 

24 Pred2 A A               y 
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Table S5. Correlation matrix for the covariates used in the analysis. See table 2 for definitions. 

  Year SpDys TpAJ TpJul EPAJ EPJul Preds1 StBass DSLth TpJS EPJA Secci JEnt AEnt Preds2 

Year 1.00               

SpDys 0.03 1.00              

TpAJ 0.28 -0.41 1.00             

TpJul 0.41 0.06 0.21 1.00            

EPAJ -0.48 0.03 -0.04 -0.31 1.00           

EPJul -0.47 0.01 -0.23 -0.02 0.38 1.00          

Preds1 0.87 -0.06 0.44 0.45 -0.51 -0.36 1.00         

StBass 0.44 0.01 0.40 0.08 -0.23 0.00 0.54 1.00        

DSLth -0.67 0.03 -0.10 -0.08 0.03 0.01 -0.53 -0.40 1.00       

TpJS 0.36 0.01 0.08 0.73 -0.35 -0.14 0.40 0.04 -0.16 1.00      

EPJA -0.42 -0.07 -0.15 -0.04 0.27 0.94 -0.31 0.00 0.02 -0.16 1.00     

Secci 0.04 -0.13 0.21 0.06 -0.03 0.28 0.17 0.30 0.15 -0.26 0.31 1.00    

JEnt -0.13 -0.11 0.33 0.25 -0.05 0.38 0.03 0.19 0.32 -0.09 0.47 0.60 1.00   

AEnt 0.38 0.22 0.15 0.45 -0.38 0.03 0.40 0.23 -0.04 0.30 0.10 -0.04 0.35 1.00  

Preds2 0.90 0.00 0.41 0.41 -0.44 -0.49 0.93 0.40 -0.50 0.33 -0.46 0.12 -0.05 0.39 1.00 
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Table S6. Correlation matrix for the parameters estimated in the model for the lowest AICc model that has Ricker survival from 

juveniles to adults and a Beverton-Holt stock-recruitment relationship. Many parameters are estimated on the log scale. See table 2 for 

covariate definitions. 

   Correlation                 

Parameter Value SD ln(aL) ln(aJ) Ln(bJ) Ln(aA) Ln(bA) Ln(Ninit) Ln(σL) Ln(σJ) Ln(σA) TpAJ TpJul EPAJ EPJul Pred1 EPJA Secchi Aent 

ln(aL) 6.12 0.09 1.00                 

ln(aJ) -0.84 0.27 -0.02 1.00                

Ln(bJ) -8.85 0.15 -0.03 0.74 1.00               

Ln(aA) -1.40 0.87 0.12 0.06 0.05 1.00              

Ln(bA) -3.95 1.01 0.19 0.06 0.06 0.98 1.00             

Ln(Ninit) 2.03 0.42 -0.55 0.01 -0.02 -0.14 -0.17 1.00            

Ln(σL) -10.30 3891.30 0.00 0.00 0.00 0.00 0.00 0.00 1.00           

Ln(σJ) -0.74 0.16 -0.03 0.06 -0.12 -0.01 -0.02 -0.01 0.00 1.00          

Ln(σA) -0.48 0.13 -0.03 0.03 0.03 0.08 0.02 0.07 0.00 -0.03 1.00         

TpAJ -0.22 0.07 0.07 0.07 0.03 0.06 0.04 -0.38 0.00 0.03 -0.01 1.00        

TpJul -0.32 0.09 -0.22 0.02 -0.02 -0.24 -0.27 -0.07 0.00 0.05 -0.08 0.16 1.00       

EPAJ 0.36 0.11 -0.05 -0.02 -0.06 -0.05 -0.03 -0.30 0.00 0.05 -0.08 0.14 0.46 1.00      

EPJul 0.33 0.13 0.51 0.02 0.00 0.19 0.20 -0.64 0.00 0.00 -0.02 0.44 -0.17 -0.35 1.00     

Pred1 -0.44 0.17 -0.01 -0.86 -0.53 -0.07 -0.07 -0.02 0.00 0.04 -0.01 -0.07 -0.03 0.03 -0.03 1.00    

EPJA 0.46 0.12 -0.01 0.22 0.42 0.04 0.04 0.15 0.00 -0.06 0.04 -0.02 -0.02 -0.04 -0.03 -0.06 1.00   

Secchi -1.15 0.48 -0.27 -0.08 -0.06 -0.81 -0.80 0.25 0.00 0.01 -0.01 -0.13 0.25 0.10 -0.35 0.08 -0.04 1.00  

Aent 10.32 4.67 0.18 0.07 0.06 0.89 0.85 -0.17 0.00 -0.01 0.01 0.11 -0.15 -0.13 0.29 -0.07 0.04 -0.71 1.00 
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Table S7. Correlation matrix for the parameters estimated in the alternative model (the model that has the fewest covariates and the 

AIC is less than 2 AIC units greater than the lowest AIC model). Many parameters are estimated on the log scale. See table 2 for 

covariate definitions. 

   Correlation             

Parameter Value SD ln(aL) ln(aJ) Ln(bJ) Ln(aA) Ln(bA) Ln(Ninit) Ln(σL) Ln(σJ) Ln(σA) TpAJ TpJul EPAJ Pred1 EPJA 

ln(aL) 6.02 0.09 1.00              

ln(aJ) -0.89 0.27 -0.08 1.00             

Ln(bJ) -8.85 0.15 -0.07 0.74 1.00            

Ln(aA) -2.52 0.52 0.05 0.04 0.02 1.00           

Ln(bA) -5.25 0.83 0.19 0.03 0.02 0.95 1.00          

Ln(Ninit) 2.67 0.39 -0.45 0.07 0.00 -0.13 -0.20 1.00         

Ln(σL) -2.32 1.50 0.35 -0.14 -0.11 0.11 0.16 -0.34 1.00        

Ln(σJ) -0.76 0.16 -0.03 0.05 -0.12 0.03 0.02 0.00 -0.02 1.00       

Ln(σA) -0.34 0.13 -0.08 0.08 0.05 0.14 0.01 0.13 -0.18 0.00 1.00      

TpAJ -0.31 0.07 -0.19 0.09 0.04 0.04 0.00 -0.11 -0.10 0.03 0.06 1.00     

TpJul -0.30 0.10 -0.16 0.05 0.00 -0.16 -0.19 -0.20 -0.13 0.02 -0.05 0.27 1.00    

EPAJ 0.47 0.12 0.28 -0.04 -0.08 0.16 0.21 -0.76 0.27 0.03 -0.14 0.29 0.40 1.00   

Pred1 -0.40 0.17 0.04 -0.87 -0.54 -0.05 -0.03 -0.08 0.13 0.05 -0.06 -0.08 -0.07 0.05 1.00  

EPJA 0.46 0.12 -0.02 0.22 0.41 0.01 0.01 0.17 -0.06 -0.07 0.03 0.00 -0.01 -0.07 -0.07 1.00 
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