site: no distinct migration patterns were evident.

$$
\cdots-37-
$$

LITERATURE CITED

Clark, G. H. 1936. A second report on striped bass tagging. Calif. Fish and Game, 22(4): 272-283. Ganssle, David. 1966. Fishes and decapods of the San Pablo and Suisun Bays, p. 64-94. In D.W. Kelley (ed.), Ecological studies of the Sacramento-San Joaquin Estuary. Caliit. Dept. Fish and Game, Fish Bull. (133) : 1-133. Mansueti, Romeo J. 1961. Age. growth and movements of the striped bass taken in size, selective fishing gear in Maryiand. Chesapeake Sci.; 2(1): 9-36. Massmann, William H., and Anthony L. Pacheco, 1961. Movements of striped bass tagged in Virginia waters of Chesapeake Bay. Chesapeake Sci., 2(1): 37-44. Merriman, Daniel. 1941. Studies of the striped bass, Roccus saxatilis, of the Atlantic Coast. U.S. Fish and Wild. Serv. Fish Bull., 50(35) : 1-77 Morgan, Alfred R., and Arthur R, Gerlach. 1950. Striped bass studies on Coos Bay, Oregon in 1949 and 1950. Oregon Fish Comm. Contrib., (14): 1-31. Robinson, John B. 1960. The age and growth of striped bass (Roccus saxatilis) in California. Calif. Fish and Game, 45(3): 279-290. Turner, Jery L., and William Heubach. 1966. Distribution and concentration of Neomysis awatschensis in the Sacramento-San Joaquin Detta, p. 105-112. In D. W. Kelley (ed.), Ecological studies of the Sacramento-San Joaquin Estuary. Calif. Dept. Fish and Game, Fish Bull., (133) : 1-133. Vladykov, Vadim D., and David H. Wallace. 1938. Is the striped bass (Roccus lineatus) of Chesapeake Bay a migratory fish? Trans. Amer. Fish. Soc., $67: 67-86$.

$$
-(68)-
$$

FOOD HABITS OF STRIPED BASS, ROCCUS SAXATILIS, IN THE SACRAMENTO SAN JOAQUIN DELTA

DONALDE. STEVENS

This paper describes the food habits of striped bass older than three months, in the Delta of the Sacramento and San Joaquin rivers. Most of the older descriptions (Smith, 1896; Scofield, 1910; Scofield and Coleman, 1910; Scofield and Bryant, 1926; Scofield, 1928, 1931; Shapovalov, 1936; Hatton. 1940; Johnson and Calhoun, 1952) of striped bass food habits in the Sacramento-San Joaquin estuary are merely qualitative or fragmentary. More recently, Heubach, Toth, and McCready (1963) examined a large number of stomachs of bass younger than 6 months from the Delta, but they examined few stomachs of older bass. Ganssle (1966) has described striped bass food habits in the estuary between the Delta and the lower end of San Pablo Bay, and Thomas (1967) has studied the diet of striped bass from the Sacramento and San Joaquin rivers above the Delta down to San Francisco Bay. To avoid duplication of my work, Thomas did not attempt Delta-wide coverage.

This paper is based on an analysis of stomach contents of 8,628 striped bass from eight types of Della environments. The stomachs were collected from September 1963 through August 1964. The mysid shrimp. Neomysis awatschensis, and the amphipods, Corophium stimpsoni and Corophiun spinicome, were the mos important foods of young bass. As bass grew their diet shifted to forage fishes, primarily small striped bass and the threadin shad, Dorosoma petenense. The composition of the diet varied by season and area.

There is some evidence that N. awatschensis was a preferred food of young bass. Stomach contents differed for bass collected by different sampling gear. The amount of food in stomachs of year-old bass decreased significantly from the lower to the middie to the upper San Joaquin River. Differences in the length and coefficient of condition of bass from these same zones may be a direct result of the differences in food intake.

METHODS

Collecting methods are described by Turner (see p. 12). Stomachs were examined on the boat as the fish were removed from the nets. Most food organisms were counted and measured at this time. Only those food organisms that could not be identified on the boat were taken to the laboratory for analysis.

The data were analyzed by percent frequency of occurrence in the stomachs and percent of diet by volume Volumes of the food organisms were not measured directly. For the most common foods, mean volumes were determined and they were multiplied by the number of organisms eaten "fan : These means were determined from the volume of water displaced by a known number of each food organism freshly collected from the Delta. Volumes of foods eaten infrequently were visually estimated.

$$
-69-
$$

Variations in the digestion rates of food organisms were not compensated for in the analysis. In their study of young-of-the-year striped bass food habits, Heubach, et al. (1963) found under controlled conditions that Neomysis mercedis (now N. awatschensis) was recognizable 6 hours after ingestion whereas Corophium spinicome could be identified after 8 hours. Large organisms. such as forage fishes, are probably recognizable longer after consumption than most small invertebrates, so the value of invertebrates as compared with forage fishes may be underestimated in the analysis by frequency of occurrence. This error was probably reduced in the volume analysis, since when making that analysis, each food item was considered to be at pre-ingestion size.

TABLE 1
Mean Volume Displacement (ac) of Food Organisms of Striped Bass

tagle 1
Mean Volume Displacement (icc) of Food Organisms of Striped Bass

To be considered important, a food must be eaten by a significantly large proportion of the bass in significantly large amounts. No objective limits to what is and what is not "significantly large" were set, so my classification of a food as important is a matter of my own judgment after reviewing its frequency of occurrence in bass stomachs and the volume with which it was found.

In this paper, the diet of bass of different sizes during each season of the year is described first. Then local variations in diet that are essential to an understanding of the ecology of the Delta are described. After these seasonal and geographic differences in food habits are documented, this information is reviewed and conclusions are drawn about the individual important foods of striped bass. These sections are followed by sections on food selectivity, differences in stomach contents of bass caught by cifferent sampling gear, and the growth of bass as related to their food intake.
general delta-wide food habits
To obtain Delta-wide coverage of the food habits of each of four age-groups of bass, an attempt was made to examine 20 stomachs from bass of each age-group collected with each of three types of net at each

$$
-70-
$$

station each month. Most of the time, that many bass of each age-group were not caught with each type of net at each station, so the sample was somewhat smaller. Yet, the sample was still stratified, so to portray the diet with reasonable accuracy, the result from each stratum was weighted by the proportion of the total Delta bass population that it represented.

FIGURE 1. Lecation of sampling stations ond oreas of similar environments.

FIGURE 1 Location of sampling stations and areas of similar envronments
Sasaki (see p. 50) has divided the Delta into eight environmental zones based on river systems and flow (Figure 1). From his catches of young bass and the area of each of these zones, he has estimated the percentage of the total population of young bass in the Delta in each zone during each season (see p. 54). He has done the same for juvenile
bass (see p. 65), and Radtke has done it for subadult and adult bass (see pp. 22 and 21). My analysis of the Deltawide food habits of each age-group of striped bass is based on food habit data from each of these zones weighted by the percent of the total population found there

The percentage of the population of bass in the Delta utilizing a food item was estimated by multiplying the percentage of the total Delta population of bass in each zone by the percent occurrence of the food item in the stomachs of bass in the appropriate zones and summing the products of these catculations fostic:

TABIE 2

The percentage of the total diet volume formed by a food item was estimated in a similar manner. First the percentage of the total Delta population of bass in each zone was multiplied by the mean volume of that food item in the stomachs of bass from the appropriate zone, and the products were summed to obtain a total weighted mean volume

TABLE 3
Method of Estimating the Total Weighted Mean Volume of a food Item

Enviroumental Zone	Percentage of Population	Mean Yolume (cc) of Yood Item A in Stomachs			Weighted Mean Volumes of Food A
Lower San Joacuin River.	42.7	\times	0.0317	=	0.185
Middle San Joaquin River.	3.0	\times	0.0171	…	0.005
Upper San Joaquin River	1.0	\times	0.0000	$=$	0.000
Sacramento River.	31.8	x	0.044	$=$	0.141
Mokelumme River	0.5	x	0.0092	\cdots	0.000
South Delfa	6.2	\times	0,0067	"	0.004
Flooded Islands.	13.1	x	0.0108	w.	0.026
Dead-end Sloughs.	1.7	\times	0.0701	=	0.012
	Total of Weighte Food A.		lumes of	$=$	0.323

TAELE 3
Method of Estimating the Total Weighted Mean Volume of a Food hem
[hisw 3 . Then, to obtain the percentage of total volume formed by that food item, the total weighted mean volume was divided by the sum of the total weighted mean volumes of all food items 5 wim til

The estimates resulting from these calculations are presented in Tables 5 through 8 for all food organisms.

TABLE 4
Method of Estimating the Percentage of Total Diet Valume Formed by a Food Item

I See Table 3 for method of estimating total of weighted mean wolumes.
tafle 4
Methoo of Estinating the Percentage of Total Diet Votume Formed by a Food ltem

Diet of Young Bass

Young bass are defined by Sasaki (see p. 44) as the 1963 year-class. They were hatched about 3 months before this study started in the fall of 1963 and were a few months past 1 -year old when the study terminated in the summer of 1964. During this period, they grew from a range of 5 to 12 cm in September 1963 to a range of 12 to 23 cm in August 1964.
N. awatschensis was their most important food [imase an . This mysid was the only organism consumed in quantity by a large percentage of the young bass during every season.

Significant amounts of the amphipods, C. stimpsoni and C. spinicome, were eaten by about a third to a half of the young bass. I judge Corophium to be the second most important food of young bass.

A very few of the young bass ate small threadifin shad as early as the fall of 1963 when threadins were abundant (see Tumer p. 160), and the bass themselves were only a few months old. During the winter and spring, the bass were larger. but small fish were not abundant and were rarely eaten. In the summer, the bass were even larger. and they fed occasionally on the new crops of threadfin shad and small striped bass.

During the winter, a few young bass fed extensively on pieces of sardine and anchovy bait discarded by anglers or stolen from their hooks.

In the fall, cladocerans and copepods were eaten by less than one percent of the young bass. In contrast, Heubach, et al. (1963) found that these plankton were eaten quite frequently by young bass during this season. The difference in my results could be due to differences in food availability from one year to another, but i believe the difference really reflects differences in food selection by bass of different sizes. The bass collected by Heubach, et al., were all shorfer than $11 \mathrm{~cm}(2.0-4.5 \mathrm{in})$. Because stomachs of bass shorter than 11 cm are too small to handle expediently in the field, most of the bass in my samples were longer than that length.

$$
-73-
$$

TABLE 5
Stomach Contents of Young Striped Bass in the Delta ${ }^{1}$

I Stomach content data for woung trass in each of the eight environmental zones in the Delta were weighted by the percent of the total Delta popolation of young bass found there and summed (see text, p. 71).

TABLE S

Stomach Contents of Young Striped Bass in the Defta

Diet of Juvente Bass
Juvenile bass are the 1962 year-class (see Sasaki, p. 59). They were slightly more than 1 year old at the start of the study and had passed the end of their second year at the end of the study. Their lengths varied from 13 to 25 cm in September 1963 to 24 to 35 cm in August 1964.
N. awatschensis was a very important food each season [atizill. It was especially important in the winter and spring.

Juvenile bass often fed on fishes. In the fall, the distribution of the juveniles was such that a large percentage were in areas where threadfin shad were abundant; as a result threadfins were eaten by about one quarter of the population and by volume made up most of the diet. In the winter and spring, small fishes were scarce in the Delta and only a few were eaten. Large numbers of small striped bass of the new year-class became avallable in the summer (see Sasaki, p. 47); they were preyed upon by about one-quarter of the juveniles.

About one-quarter to one-third of the juveniles fed on some Corophium each season, but they consumed relatively small quantities, so Corophium were not really too important.

In the winter and spring, about 10 percent of the juveniles ate portions of sardine and anchovies which had been used for bait by anglers.

TABLE 6
Stomach Contents of Juvenile Bass in the Delta ${ }^{1}$

Food Iterns	Fall		Winter		Spring		Summer		Average	
	$\begin{gathered} \% \\ \text { Freq } \\ \text { Oct } \end{gathered}$	$\begin{aligned} & \text { 窘 } \\ & \text { by } \\ & \text { Vol } \end{aligned}$	$\begin{gathered} \% \\ \text { Fred } \\ \text { Fec } \end{gathered}$	$\begin{aligned} & \% \\ & b y \\ & \text { by } \\ & \text { Vol } \end{aligned}$	$\begin{aligned} & \% \\ & \text { Freq } \\ & \text { Oeet } \end{aligned}$	$\begin{aligned} & \% \% \\ & \text { by } \\ & \text { vol } \end{aligned}$	$\begin{gathered} \text { \% } \\ \text { Freq } \\ \text { Oes } \end{gathered}$	$\begin{aligned} & \% \\ & 6 \\ & \text { Vol } \\ & \text { Vol } \end{aligned}$	$\begin{gathered} \text { \% } \\ \text { Freq } \\ \text { Occ } \end{gathered}$	$\begin{aligned} & \% \\ & \text { by } \\ & \text { Vol } \end{aligned}$
Annelids Polychacke (Neanthes limnicola)		Tr		\cdots	**	"*	**	*m	Tr	Tr
Crustaceans										
Cladocerans and/or Copepods-..--..--	39	2	T 8	11	79	Tr		11	39 60	${ }_{13}$
Isopod (Exosphaeroma oregonensis).....					Tr	Tr			T	Tr
Amphipods (Corophium)	22	Tr	27	Tr	31	Tr		2	28	1
Crayfish (Pacifastacus leniusexlas)	Tr	Tr		-	Tr	1	Tr	Tr	Tr	Tr
Crab (Rhithroparopeus harrisia).	1	1				-			T	Tr
Unidentifable shrimp...........	-.	-..	,	Tr	--	\ldots	1	1	Tr	Tr
Insects.										
Tendipedids	9	Tr			1	Tr	3	Tr	3	Tr
Other insects.	**	--	\%	Tr	--	--		--	Tr	Tr
Molluses Asiatic clam (Corbicula funinea)		Tr	--	--	--	--			Ts	Tr
Iishon Unidentified Ammocoste									T	Tr
Threadin shad (Dorosoma pelenense).	37	72		38	1	11	2	4	$\stackrel{1}{8}$	31
American shat (Alosa sapidissima).-	2	3	-	--				4	1	2
	\ldots	\ldots	-	--	4	,	1	3	Tr	1
Pond smelt (Ifypomesus transpatificus)	-	-		\cdots	1	3	2	8	1	3
White eatfish (Ielaturus catus)....							Tr	Tr	Tr	Tr
Striped bass (Roccus sazatilis).	4	7	1	8	Ir	1		50	8	18
Unidentifable fishes.	15	14		7	5	29		11	7	15
Gardine and anchovy bait.............		1		36		24			0	15
Stomachs cxamitad.	65		36				473			
Pereent containing food.	69		7				6			

${ }^{1}$ Stomach content data for juvenile bass in each of the eight environmental zones in the Delta were weighted by the pereent of the total Delta popalation of jupenile bass found there and summed (see text, p. 71).

TABLE 6
Stomach Contents of Juverite Bass in the Delfa

Diet of Subacult Bass

Subadult bass are defined by Radtke (see p. 15) as the 1961 year-class. These bass were 2 years old several months before the start of the study; they were 3 years of age shortly before the study terminated. In September, subadults were 26 to 37 cm long; by August they were 35 to 47 cm long.

Subadults fed primarily on fishes wassm. In the fall, threadin shad and small striped bass were abundant in the Delta and both were consumed by more than one-third of the subadult bass. In the winter, even though numbers of threadfin shad and small striped bass in the Delta decreased, they still made up most of the diet. The percentage of the subadults that ate small bass did decrease somewhat; however, the percentage of the subadults that fed on threadfins increased slightly. By spring, there were few threadfin shad and striped bass of a size suitable for food in the Delta. Correspondingly, the occurrence of these fishes in stomachs of subadults decreased appreciably. In the summer, when the new year-classes of striped bass and threadfin shad became available, they were preyed upon more frequently. Small bass were especially prevalent in the summer diet of the subadults.

A significant percentage of the subadults fed on N . awatschensis in the winter, spring, and summer, and on Corphium in the spring; but

$$
-75
$$

because the amounts that were consumed were relatively small. I consider these crustaceans to be of minor importance.

TABLE 7
Stomach Contents of Sub－Adult Bass in the Deltal

Food ltems	黣刮		Winter		Bpring		Summer		Average	
	$\begin{aligned} & \% \\ & \text { Frea } \\ & \text { Oce } \end{aligned}$	\％ by Fol	$\begin{gathered} \% \\ \text { Freq } \\ \text { Oed } \end{gathered}$	\％ by Yol	$\%$ Frea Oce	$\begin{aligned} & \% \\ & \text { by } \\ & \text { Vol } \end{aligned}$	$\begin{gathered} \% \\ \text { Frea } \\ \text { Oce } \end{gathered}$	$\%$ by Vol	$\begin{gathered} \% \\ \%+e q \\ 0 \mathrm{ec} \end{gathered}$	$\%$ by Vol
Crustaceans										
Mysid shrimp（Veomysis autatschensta）－	6	1 H	22	＇	37	2	34	2	25	1
Amphipods（Corophiam）．．．	2	Tr	5	Tr	21	Tr	13	量r	10	Tr
Crayish（Pacifastacus leniusculus）	1	3 3	Tr	${ }^{\mathrm{T}}$	2	6	${ }^{7}$	T	星	2
Unidentifiable shrimp．．．	TT	${ }^{31}$	2	T ${ }^{4}$	－－	－－	－－	－－	1	Tr
mageets										
Other insects．	－－	\cdots	－m	－＊	－	－－	1	－－	Tr	Tr
Fishes										
					T	Tr			Tr	Tr
Threadin shad（Dorosome petenense）．．．．．．．．．．．－	36	67	39	68	5	13	12	25	23	43
American shad（Alosa sapidissima）．．．．．．．．．．．．	3	2	1	1			\sim	－－	1	1
Pacific herring（Clupea pallasi）．．．				－	1	宔	＊	＊	Tr	Tr
Unidentifable Clupeids	驁	Tr	6	2			3	4	2	2
King salmon（Oncorhymehua tshawytscha）．．．．．．－	Tr	1		－	4	10	＊＊	－	1	3
	1	Tr	1	＋	2	4	－－	－m	1	1
Carp（Cipatinus tarpio）	Tr	Tr	\cdots	－－	－－	－－	－\％	－．	Tr	Tr
White eatfish（Ietalurus cotus）	Tr	Tr							Tr	Tr
Striped hass（Rocess saxalilis）	39	23	20	22	1	41	42	$\stackrel{3}{4}$	29	35
Unidentifiable Centrarchids．							Tr	Tr	Tr	${ }^{T} \times$
	21	4	6			20	12	15	14	10
Sardine and anchovy bait．．．．．．．．．－－－．．．．．．．．．．－	4	1	9	3	7	5	－	－	5	2
Stomachs examined	45		234		312		24			
Percent containing food．			58		20		3			

1 Stomach content data for subudult bass in each of the eight envirommental zones in the Delta were weighted by the percent of the total Delta population of subudult bass found there and summed（see text，p．7．）．

TABLE ：
Stomach Contents of Sub－Adu？Bass in the Delta

Diet of Aduh Gass

All bass older than 3 years in the fall of 1963 were classified as adult bass（see Radike，p．15）．In the summer of 1964，at the end of the study，they were all older than 4 years．In September 1963 ，these bass were 38 cm or longer；in August 1964 they were 48 cm or longer．

The diet of adults was almost entirely fishes，especially small bass and threadfin shad firs\％：17 in the fall，small bass were eaten by almost one－half of the adults and threadfin shad were eaten by about one－quarter of the adults．In the winter，the percentage of the adults that fed on small bass decreased somewhat，but the percentage of adults that preyed upon threadin shad increased；so both of these fishes were eaten by about one－third of the adults．

In the spring，when few threadin shad and small bass were in the Delta，they were each eaten by about one－ quarter of the adult bass．The occurrence of threadfin shad in the stomachs of adults decreased to 6 percent and that of small bass increased to 50 percent in the summer；however，oniy 21 stomachs with food were examined so these percentages may not be very meaningful．

Sardine and anchovy bait occurred in about one－sixth of the stomachs during the fall，winter，and summer．Bait did not occur in any stomachs in the spring sample

TABLE 8
Stomach Contents of Aulult Bass in the Deltal

Food Iterns	Fall		Winter		Spring		Summer		Average	
	F Freq Oec	$\begin{aligned} & \% \\ & \text { by } \\ & \text { Vol } \end{aligned}$	\% Freq Occ	$\begin{aligned} & \% \\ & \text { fy } \\ & \text { vo } \end{aligned}$	\% Freq Oce	$\begin{aligned} & \% \\ & \text { Yy } \\ & \text { Yot } \end{aligned}$	Freq Freq Oce	$\begin{aligned} & y \% \\ & b y \\ & \text { bol } \end{aligned}$	$\stackrel{\%}{\%}$ Occ	$\begin{aligned} & \% \\ & \% \\ & \text { 然 } \\ & \text { Yot } \end{aligned}$
Crustaceana										
Mysid sbrinup (Veomysis autathensis) . .	-*	-"	**	-	16	Tr	"	--	4	Tr
Amphipods (Corophium)-		\cdots		\cdots		Tr			2	Tr
Crayfish (Pacijastacus leniusculus)		Tr				Tr		\cdots	Tr	Tr
Crsb (Rhithroganopeas harrisi) -	-			Tr	\ldots	w-			Tr	Tr
Undentifiable shrimp.		--		Tr		--	10	1	3	Tr
Fishes										
Threadfin shad (Dorosoma petenense) .-..........-		15	34	56	24	27	8	4	22	26
American shad (dosa doyidictima)		12		6					3	4
Unidentifiable Clupeids...........		--		2					4	Tr
King salmon (Oncorhymehtas thaspytscha)		-m				3	5	1	3	1
Pond smelt (fypomesus transpacifous).......-	\cdots	-		Tr	2	Tr	\ldots	-	1	Tr
Carp (Cyprinus carpio) --..-	.-	--				-			Tt	Tr
Goldfish (Carasious nuratus) --.-:		${ }^{17}$			-	--	Tr	Tr
Sactamento black fish (Orthodon microlepidolus)	--	--	\cdots	--	Tr	孚	--	--	Tr	Tr_{T}
Sacramento hitch (Lasiria enziauda).		56		26	${ }_{25}^{\mathrm{Tr}}$	7r	30	48	Tr	${ }_{45}$
Bluegill (Iepuomis matrockisue).		$\stackrel{1}{1}$				5		4	Tr	2
Black erappie (Pomoxis nigromaculahis)		-		Tr		$\stackrel{\text { Tr }}{ }$		-m	Tr	Tr
Three-spined stickleback (Gatefrasteus aculeatus)										
Unidentifable fishes.		9		4	18	9		3	17	8
Sardine and anchory bat-		7				--		49	13	15
Stomachs examined.	223		574		531					
Pereent cortaining food.	41		37		12		12			

${ }^{2}$ Stomach content data for adult bass in each of the eight environmental zones in the Detta were weighted by the percent of the total Delta population of adult bass found there and summed (see text, p. 71).

TABLE 8
Stomach Contenls of Adult Eass in the Delta
In both the spring and early summer, only a very small percentage of the stomachs contained food. Although few small fishes were available at this time, I do not believe that the scarcity of food in the stomachs was a result of poor forage conditions. If it was merely a lack of suitable forage that caused the reduced food intake, angler catches should be rather large in the Delta in the spring since adult bass are so abundant in the Delta during that season (see Radtke, p. 17; Calhoun, 1952). However, catches by anglers are actually quite small. The mean catch of bass on sport-fishing party boats in the Delta was not above 0.14 per angler hour during any spring between 1961 and 1904, and a creel census conducted by the Calfornia Department of Fish and Game, indicated that the catch on many days was as low as 0.05 bass per angler hour (Thomas Doyle, pers. commun.). A suggestion (Hollis. 1952) that striped bass do not feed heavily when they near spawning is relevant. Bass spawn in the Delta during April, May, and June (see Farley, p. 30), and most of the stomachs examined during the spring and summer were collected during these months.
geographical variations in diet

In this section, the diet and abundance of bass and the abundance of their food organisms in each environmental zone of the Delta are reviewed.

$$
-77-
$$

Lower San Joaquin River [Fwly

This zone was one of the most important nursery areas in the Defta for young bass (see Sasaki, p. 57): it was also a very important nursery for juvenile bass (see Sasaki, p. 64). The large quantities of N. awatschensis that were constmed by these bass reflected the large concentrations of N . awatschensis that were present (Turner and Heubach. 1966). Stomachs of the young bass contained as many as 100 or 150 individual N. awatschensis. Stomachs of the juvenile bass often held 200 to 300 N . awatschensis. Corophium were of some importance to young bass in the fall, but only small amounts were consumbed by young bass during the rest of the year. The abundant young bass provided most of the forage for large bass.

Middle San Joaqain River (tamo 10n

During the fall, winter, and spring. N. awatschensis was the most important invertebrate eaten by bass in this zone: however, only a sinall percentage of the young bass in the Delta were here until the summer (see Sasaki, p. 52) when concentrations of N. awatschensis in the environment (Tumer and Heubach, 1966) had decreased from the relatively high winter and spring levels, and Corophium had become a more important food.

The large numbers of threadin shad which were eaten here in the fall and winter reflected the extreme concentrations of this species in the environment (see Turner, p. i61). Stomachs of acult bass contained as many as 24 threadfins averaging 10 cm FL . In the fall, the threadfin shad was the most important food of juvenile bass, and in that season about one-half of the juveniles in the Delta were in this zone (Sasaki, p. 63). The bass in this area also ate a few of their own young.

Upper San Joaquin River［nazta 1：7］
The upper San Joaquin River was not an important zone for bass of any age－group．Each season only a very small percentage of the bass in the Delta were here（see Sasaki，pp． 54 and 65；Radtke，pp． 21 and 22）．The few young bass inhabiting this area fed primarily on Corophium．A significant percentage of these bass also fed on the tendipedid larvae and pupae which were fairly abundant in the bottom sediments（Hazel and Kelley，1966）．N． awatschensis was scarce（Tumer and Heubach，1966），and was consumed in quantity only by juvenile bass in the fall．Much of the diet of juveniles was formed by Corophium and sardine and anchovy bait．The threadfin shad was the most common forage fish in stomachs of large bass．It was consumed most frequently in the winter and spring．

South Delta［Fzole 1m
Relatively few bass of any size inhabited the south Delta（see Sasaki，pp． 54 and 55；Radtke，pp． 21 and 22）．The young bass in this area usually fed on Corophium，although in the winter N ．awatschensis was a more important food．N．awatschensis was never particularly abundant in the environment（Tumer and Heubach，1966），but it was still the most important food of juvenile bass．

TABEE 9
Stomach Contents of Striped Bass in the Lower San Joaquin River

hockillumo	Vommy nass				Juvaile lass				Sub－kduli Has				
	禹衰	Winter	Svxixg	Sumuser	Fall	Winter	Siring	Surbmer	Fat	Wrimer	Spxing	Sumber	F
									$\begin{aligned} & 29 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$				镱
Crutageans													
Cladocerana sud Comaxis．．．．n．．．．．．．			1 Tr 9 8				${ }_{0} 174$						
						5212			30				．
	30）葠		复 4	${ }_{32}{ }^{2}$	$21 \times$	24 策	34 Tr	号	5 T	${ }_{6} 9$	12 Tr	5 等	\cdots
Unidentsfatle strisap．a	．．．．．	～．．．．	Tr 2		．．．－	1 Tr		\ldots	2 fr	6 Tr		．．－－	\cdots
Iraientis Tendipeditis													
Mollusea													
Fishay													
Wnidentisal Arawesocte．								11					
Thesedina shad（Dorengmn petanerse）	… ．．．	－．．－		－．．－－	1 \％	1 3	．．．．．	\cdots	1i ${ }^{\text {in }}$	32%	49	511	
		\cdots	12	～～$\quad . \sim$	－．－－	－－－－		＂＊	$11 \quad 12$	‥ ．．．		－－－－	14
King ramoun Orcomprethis iskurytuchet			\cdots					－			$11{ }^{4}$	\cdots	\sim
			\cdots						$2{ }^{2} 1$				
	．－－＊	－．．－－－			124	116	4	2 ES		418		40	
Baidentionble frhes． Satdine and znehoty but－．．．．．．．．．．．．．．．		．	Tr ${ }^{\text {Tr }}$	Tr	（1） $\begin{aligned} & 2 \\ & 2 \\ & 2\end{aligned} 12$	3235	$\begin{array}{\|cc\|}4 & 32 \\ 4 & 4 \\ 4\end{array}$	\％ 14	$\begin{array}{ll}6 & 5 \\ 3 & 1\end{array}$	125	7	$10 \quad 24$	36
Pramethe conamined foed	$\frac{195}{3}$	$\begin{aligned} & 292 \\ & 3 \\ & 30 \end{aligned}$	$\frac{29}{49}$	2118	174	$\frac{138}{70}$	$\frac{19 x}{70}$	$\begin{gathered} 1835 \\ 630 \end{gathered}$	$\frac{89}{5}$	$\begin{aligned} & 35 \\ & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 99 \\ & 48 \end{aligned}$	$\begin{aligned} & 52 \\ & 88 \end{aligned}$	s

TABLE 9
Stomach Contents of Striped Bass in the Lower San Joaquin River

Stomoch Comtents of Striped \#ass in the Maddlo Sun Joamqun River													
Foem hems	Young Baxs				duvarle Ea*				Sab-Atuit Mass				
	Fall	Wixter	Sprinus	Supminar	Fall	Wirter	Spring	Sumater	Fall	Wiater	Spriof	Sumamer	F
											$\begin{array}{ll} 3 & 2 \\ 3 & 2 \\ 3 & 2 \\ 9 & 4 \\ 6 \end{array}$		2 3 3 3 8 8
Crustaxats			818	2 Tr	${ }^{\circ}$	效 7	$\overline{6}$ 3 5 3 46 1 2 8 \cdots	2i ${ }_{\text {a }}^{\text {a }}$	-- --	苞	40	… 3	\cdots
		-			is					29,	40 4	\cdots	
Amphipods (Cowntinnt		$3{ }^{3} 1$	5319	$6{ }^{6} 8$	it	374		20	\cdots	${ }^{6} \mathrm{E}$ T	\% 4 Tr	if	-
		\cdots			- 2				-		\cdots	\cdots	\because
Insetets Tembedids	\cdots	n* -	1 Tr	14 3 7	12 Tr	..	+.. .-	12 Tr	5 Tr	$\cdots \times$	-. ...	\cdots	\cdots
Feghes	25 5	… $-\cdots$	\sim - \sim	$\begin{array}{cc} 14 & 75 \\ \cdots & \cdots \end{array}$	${ }^{43} 8$	480	58	2138	34 35	6933	… $\quad .$.	218	518
		\cdots	** *x			\cdots	\cdots	- --	\cdots				
										4			\cdots
			\because			--					\cdots		is
				311	5 5 24 4				$\begin{array}{cc}6 \\ 26 & \frac{1}{3}\end{array}$	$\begin{array}{ll}8 \\ 8 & \\ 9 & \\ 4\end{array}$	60100	21 19 21 20	if
		278	1312			$12 \quad 12$	2630			${ }_{3}{ }^{\text {\% }}$	(0) 100		
Stomactis examinex ${ }^{\text {S }}$	4	$\stackrel{37}{89}$		$\begin{array}{r} 613 \\ 78 \end{array}$	$\begin{aligned} & 98 \\ & 48 \end{aligned}$	78	${ }_{70}$	$\begin{aligned} & 84 \\ & 38 \end{aligned}$	$\begin{aligned} & 50 \\ & 54 \\ & \hline 15 \end{aligned}$	$\begin{aligned} & \hat{9} 9 \\ & \frac{1}{52} \end{aligned}$	$\begin{aligned} & 32 \\ & 16 \end{aligned}$	${ }^{3} 4$	
Peracat coothinimg fogic.													

TABLE 10
Stomash Contents of Striped Bass in the Miodie San Joaquin River

TABEE 11
Stomach Contents of Striped Buss in the Uppet San Joaquin River

TABLE 11
Sfonmach Contents of Striped Bass in the Upoer San Jcaquin River
$-81-$
table 12
Sfomach Contents of Striped Bess in the South Delta

Fouk Liens	Young Bass				Jaxerile Basis				Suthatult Baxs				
	Fall	Winter	Snring	Surmer	Fall	Wister	Snring	Sunmer	1\％1	Winter	Spring	Sumater	I
	$\begin{aligned} & 3 \\ & \frac{3}{2} \\ & \frac{3}{8} \\ & 0 \\ & 0 \end{aligned}$				$\begin{aligned} & 2 \\ & 3 \\ & 3 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$					$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 0 \\ & 0 \end{aligned}$			䢒
Anecids 				1 \％	2 Tk			－＂．－－			－．．．	－＊	－－
Cryetactsist													
	4\％ 40	${ }_{55}^{10} 3{ }^{2}$	${ }_{58}{ }_{5} \mathrm{Tr}_{20}$		等 ${ }^{3}$	新 3 移			\cdots	$3_{3}{ }^{3}$＊	100 103	$\because \sim$	：
Amphipeds（Comytiant	－9818	$\begin{array}{cc}1 & 1 \\ 51 & 17\end{array}$	䦠 ${ }^{\text {2 }}$	Si is	等 7	4 4	35 ${ }^{\text {3 }}$	蓒 0					
	10.	a	－	st 18	－	41－3	3.	管 0		${ }_{3}^{3}$ \％ 6			\cdots
Fuecta Texdipexids．．．．．．	14	3 Tr	141		322		59 fr	－－				－．－－	－
Nollescs 		123			22							\cdots	－
Fistes													
Inidentifici Ammocoete．													\sim
	\cdots	$\therefore \sim$	ㅍ．．	1 者	\cdots	\cdots		파…				\cdots	
Suribel hass flocem statilisi．．．．．．	ㅍ．．	\cdots	\cdots		－2 40	二	\cdots						190
Euidentbubl fler								…	$33^{3} 19$				\because
Sardire mad anclave Litit．．．．．．．．	\％ 70	（1）	Tr 28	1 1	1133	苼	12 Of						
Stomaths examinot Permit eorataing food．	${ }^{17}$	188	$\stackrel{260}{87}$	${ }^{154}$	5985	漦	㨋	8	10	74	31	\％	：

table 12
Stomach Contants of Sfripod Bass in the South Delta
－82－
Few stomachs of the older bass had food．Threadin shad were the most important forage fish．They were present in 11 of the 22 stomachs of adult bass，and 2 of the 13 stomachs of subadult bass that contained food．All except one were eaten during the winter．In the fall，winter，and summer，a few of the stomachs contained small bass．

Sacramento River［Tata tol
In the fall，about one－third of the young bass in the Delta were in the Sacramento River，but during the rest of the year this proportion was much smaller（See Sasaki，p．54）．The proportion of the juvenile bass in this area was quite small in the fall，but it increased each season untl the summer when it peaked at about one－quarter of the population in the Delta（see Sasaki．p．65）．N．awatschensis was quite abundant in the emvironment（Tumer and Heubach，1966）and was the most important food of these age－groups．These bass also consumed a fair number of Corophium．Young striped bass were the predominant forage fish．

Mokelumne River fitule tin
The Mokelumne River was of smatl importance as a nursery area for young and juvente bass（see Sasaki，pp． 58 and 66）．Tumer and Heubach（1966）found that N ．awatschensis was scarce here in all seasons，but this mysid was the most important food of the juveniles from this area and of those young bass here in the winter and spring In the fall and summer，young bass fed more often on Corophium．

Only a few stomachs from the older bass contained food．The threadfin shad was the most common of the forage fishes in them．

Flooded Islands［tate ；$]$
The proportion of the Delta population of young and juvenile bass in flooded islands varied seasonally from 5 to 18 percent．These bass fed largely on N ．awatschensis in the winter and spring．In the fall and summer，Corophitm were a more important food source．In contrast，Turner and Heubach（1966）did not collect any N．awatschensis in these areas duling the winter，but they did collect a few in the other seasons．

Depending on season，from 20 to 52 percent of the subadut and adult bass in the Delta inthabited the fooded islands（see Radke．pp． 21 and 22）．These bass preyed primarily on small striped bass and threadfin shad．

Dead－end Sloughs［itue sf］
Few bass of any size populated the dead－end sloughs（see Sasaki，pp． 54 and 65；Radike，pp． 21 and 22）．N awatschensis was the most important invertebrate utilized as food，although it was never abundant in the environment（Turner and Heubach，1966）．Corophium were only of small importance as a food．The threadfin shad，which was so abundant in these sloughs（see Tumer，p．161）was，by far，the most important forage fish． Stomachs of adult and subadult bass often contained more than 10 threadfins．Juvenile bass in these sloughs also consumed a substantial number of threadfins．A few individuals of many other species of fishes were also eaten by the larger bass．

TABLE 13
Stomach Contents of Striped Bass in the Sacramento Riwer

Yood Yems	Young Hass				Juveule Rams				Subutudt Brss				F：
	Fal	Winter	Spring	Sambert	Fall	Winter	Spring	Satatast	Fall	Whäter	Ematis	Suntmat	
							$\begin{aligned} & 2 \\ & 3 \\ & \frac{x}{2} \\ & 0 \end{aligned}$						哭
Crustacomes													
	管紹	515	38 75 Tr 10	渴 $\quad 5$	53	$36 \quad 7$	旡 4	5710	－．	的 7	30×1	271	j＊
Ispmat（Ezobzhzeroma bregonenais）．．．．．．		30										－－－－	－－
	क 21	38	\＄0 19	$3{ }^{3} 2$	35 \＄	$2{ }^{2}$ Tr	18 T	17 Tr			10 10	～	14
				－${ }_{\text {\％}}$	$\sim \sim$			2 ${ }^{3}$		（1）＂3		\sim	
Insests													
Tendipedids．	3 Tr	$14 \quad 2$	4 Tr		0 Tr			\＃${ }^{\text {T }}$		－	－－－－	－	－
Otzer Insects．				1 Tr	．．－－	32	．－．－	．．．－－	－－－－	－－－－	－－－－	－－．－．	－－
Fishes													
		\sim	i ${ }^{-1}$	4 269	231	\cdots	325		${ }_{5}{ }^{\text {a }}$	208	\cdots	20 it	\cdots
			\cdots	48			3 3	288					
				\％${ }^{\text {\％}}$			311	${ }_{3}{ }^{2}$	－${ }^{\text {a }}$		10． 41		
		＊＊．	．＊．\times	1230				33^{42}	昭	208	293	㜢	43
				11	$2{ }^{2} 5$	${ }^{9} 30$	$1{ }^{18} 24$	57	$\begin{array}{cc}20 & 4 \\ 10 & 18\end{array}$			77	99
Sarmine and anebovy xat					$0{ }^{6} 15$	276	1534						29
		新	145	140	6	37	6	69	52	14	39	27	1
		5	77	89	\＄	41	5	68	35	53	20	50	3

TABLE 13
Stomach Contents of Stnped Bass in the Sacramento River

TABLE 14
Stomach Contents of Striped Bass in the Mokelumne River

TABAE 15
Stomach contents of Striped Bass in Flooded Istands

	Young Sass				Juvenite Bass				Sub-iduth Bass				
	Fal ${ }^{\text {a }}$	Whicer	Spring	Sumbuer	Fall	Winter	Spring	Smmar	Fall	Writer	Spring	Suareer	Pa
Fexil heras:			$\left[\begin{array}{ll} 2 \\ \frac{3}{2} \\ \frac{3}{3} \end{array}\right.$			$\frac{3}{\frac{3}{3}} \frac{3^{2}}{2}$	$\frac{2}{2}$		$\frac{1}{2}$	$\left[\begin{array}{l} 28 \\ \frac{2}{2} \\ \frac{2}{2} \\ 0 \end{array}\right.$	$\frac{1}{2}$	$\begin{aligned} & 3 \\ & \frac{3}{2} \\ & 8 \end{aligned}$	$\begin{aligned} & 2 \approx \\ & \frac{2}{7} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$
© ristutcemà Cladoetans and Coymepds... Arattipath (Corpribiom) Onidentifiathe whimpl				$\frac{11}{7} \text { it }$	$\begin{aligned} & \frac{1}{2} \frac{1}{9} 8 \end{aligned}$	$\left[\begin{array}{c} 69 \\ 8 \\ 8 \\ 8 \end{array}\right.$		(\% $\begin{gathered}\text { \% } \\ 7 \\ \cdots\end{gathered}$				54	\cdots
insects Tcndipectids...		1 等		3 Tr								8 Tr	-
 Gnidentiondo fishes. \qquad			$\left[\begin{array}{ll} \because & : \\ \hdashline & \because \\ \hdashline & n \\ \hdashline i & 10 \end{array}\right.$										18
Stozawhe axathinuc Rextert. comtaning foos	109	${ }^{748}$	${ }_{8}^{88}$	208	${ }^{124}$	${ }_{78}^{38}$	${ }_{86}^{63}$	${ }_{61}^{81}$	188	${ }_{47}^{57}$	${ }_{10}^{64}$	$\stackrel{45}{29}$	${ }_{3}^{48}$

TABLE 16

TABLE 16
Stomach Contents of Striped Bass in Dead-End Stoughs

$$
-87-
$$

IMPORTANCE OF INOIVIDUAL FOODS

In any season, only five items ever occurred in more than 10 percent of the stomachs of bass of any age. These items were N. awatschensis, Corophium, small striped bass; threadfin shad, and discarded or stolen sardine and anchovy bait. In this section their importance to each of the four age groups of bass is reviewed.

Neomysis awatschensis

N. awatschensis was by far the most important food of young bass. During the fall, winter and spring, it was consumed by more than 84 percent of the young bass. In the summer, even though concentrations of N . awatschensis peaked in the environment (Turner and Heubach, 1966), its occurrence in the stomachs of young bass decreased to 65 percent. This decrease reflected a change in the relative abundance and distribution of the young bass. In the fall, winter and sping, a large percentage of the young bass in the Delta inhabited the lower San Joaquin River where concentrations of N. awatschensis were high. In the summer, the percentage of the bass in this area decreased considerably and the percentage increased in the middle San Joaquin River (see Sasaki, 0 . 54) where N. awalschensis was not as available.
N. awatschensis was also a very important food of juvenile bass. In the winter and spring, more than 79 percent of the juveniles consumed N . awatschensis. During the fall and summer, when forage fishes were readily available, fewer juveniles fed on N awatschensis.
N. awatschensis was eaten by a few subadult and adult bass, but it was not an important part of their diet.

Corophium
Corophium were eaten by large numbers of young and juvenile bass, especially by young bass in those areas of the Detta where N. awatschensis was scarce. They were consumed by a few subadult and adult bass also. These amphipods are too small to be a very important food of any but the young bass.

Smant Striped Bass
about two-fifths of the subadults and adults. In the winter and spring, as the young bass became less abundant and larger (see Sasaki, p. 49), they were eaten less frequently. In the summer, when the new year-class of young bass became available, there was a sharp increase in the percentage of the subadults and adults that had eaten small bass. These new young-of-the-year bass were also of importance as a food of juvenile bass.

Threadifin Shad

Threadfin shad were also a very importent food source for subadult and adult bass. They were especially important in the fall when they were extremely abundant in the middle San Joaquin River and the dead-end sloughs, and in the winter when their numbers were decreasing (see Turner, p. 164). In the winter, numbers of small bass also decreased (see Sasaki, p. 49), so the threadfins were still one of the more available forage species. In the fall, the threadfins were also

-88-

quite prominent in the diet of juvenile bass. They were eaten by only a very few young bass.

Sardine and Anchovy Ealf

A surprisingly large percentage of the adult bass had eaten quantities of sardine and anchovy bait which had either been discarded by anglers or stolen from their hooks. In the winter and spring, bait was also consumed by a small but significant percentage of the juvenile bass. It was eaten by relatively few young or subadull bass.

FOOD SELECTIVTY

Some organisms in the Delta that were of a size suitable for food were seldom eaten. For example, small American shad were very abundant during the summer and fall (see Stevens, p. 101), but few were consumed by bass. Similarly, Hazel and Kelley (1966) collected zoobenthos from the Delta belonging to 35 taxa; they found that the two species of Corophium, tendipedids, Corbicula fluminea, and oligochaetes were abundant; however, bass stomachs contained benthic organisms belonging to only 8 taxa and Corophium were the only benthos utilized in appreciable quantity.

Young bass seem to prefer N. awatschensis over Corophium [ixelsw m. Indices of concentrations of N. awatschensis and Corophium in the environment when compared with the frequency of occurrence of these organisms in the stomachs of young bass. show that young bass fed primarily on Corophium only if Corophium were abundant and N . awatschensis was scarce. If N . awatschensis and Corophium were abundant, if N . awatschensis was abundant and Corophium were not, and if N . awatschensis and Corophium were scarce, young bass fed primarily on N . awatschensis.

TABLE 17

Occurrence of Neomy Striped Bass Co	sis awotschens mpared with t and Corophium	and Coroph Abundance in the Environ	in Stomac N. awatsch nent	of Young sis
Area	Mean Seasonal Percent Frequency of Occurrences of N. ascatschensis in Stomachs of Young Bass	Mean Scasoral Percent Irequency of Occurrence of Corophium in Stomachs of Young Bass	Abundance of N. awaischensis in Environment	Abundance ol Gorophiam in Environment
Lower San Joaquin River	94.8	29.5	A	A
Dead-End Sloughs........	84.3	29.4	8	3
Sactamento River...	75.2	32.8	A	A
Pranks Tract--...-......	73.3	55.5	\$	S
Middle San Joaquin River.	66.1	51.3	A	
North Fork of Mokelumme Miver and South Fork of Mokelumne River at New Hope Landing.	59.7	45.1	S	,
Old Miver-Fabian and Bell Camal.	58.4	72.0	\$	A
Mokelumne River at Terminous.--	52.3	65.2	8	,
Upper San Joaquin River.......	12,3	88.2	8	A

- Based on mean season cateh of N. aeadechensis with a Clarke-Bumpas plankton net (Turner and Heubach, 1966). $\mathrm{A}=$ abundant $(28-75 \mathrm{~N}$, awatstsensis per cubie meter of water).
$\mathrm{S}=$ scarce $\quad(0-0 \mathrm{~N}$ aupatschensis per cubie meter of water)
a Based on mean numbers of Corophium calaghe with a Peterson dredge by Hazel and Kelley (1066). $A=$ abundant ($30-577$ Corophium per square toot).
$B=$ scare $\quad(6-20$ Corophium per square foot) $)$
tagle fit
Occurrence of feomysis awatschensis and Corophium in Stomachs of Young Striped Bass Compared with the Abundance of N. awetscinensis and Corophium in the Environment

$-89-$

Small bass and threadfin shad were eaten at a rate more directly related to their density in the environment. Turner (see p. 161) indicates that threadfin were most concentrated in the middle San Joaquin River and dead-end sloughs, and in these areas large bass preyed on them heaviest. Sasaki (see p. 49) has shown that the greatest concentrations of small bass occurred in the lower San Joaquin River, Sacramento River, and flooded islands, and they were utilized by large bass more frequently in these areas than in the rest of the Deita.

It has been shown in this paper that bass stomach contents differed in the various environmental zones of the Delta. These differences are probably an effect of differences in the avaliability of foods in the different zones, and food preferences.

There were also differences in the availability of different kinds of food organisms within each zone, particularly at different depths of the channels. N. awatschensis (Tumer and Heubach, 1966) and Corophium are generally most abundant near the bottom of the channels, the vertical distribution of small striped bass is quite variable (Chadwick, 1964: see Sasaki, p. 46), and threadfin shad are most abundant at the surface (see Turner, p. 160). Because the otter trawi collected bass from near the bottom of the channels and the midwater trawl collected bass from near the sufface, it was possible to compare the stomach contents of bass coilected at different depths, and consequently determine if the results of this study might have been influenced by the proportion of the sample collected by each type of trawl. Chi square. two-way classification tests were used to determine if in the summer of 1964 the proportion of young bass utilizing each of the important food organisms was significantly different from each type of trawl.
 contained threadfin shad was significantly larger in the sample from the midwater trawl than in the sample from the otter trawl, and the proportions of the stomachs that contained N . awatschensis and Corophium were significantly larger in the sample from the otler trawl than in the sample from the midwater trawl.

TABLE 18
Frequency of Important Foods Compared 党er Stomachs of Young Striped Bass Collected in the Midwater and Otfer Trawls in Summer, 1964 in All Environmental Zones

Food 1tem	Midwater Traw		Otter Trawl		X ${ }^{2}$	Percentile (1 dif.)
	Obs. Treç.	Exp. Freq.	Obs. Frea.	Exp. Freq.		
N. unatshencis....	218	236	4313	410	10.13	0.905
Coraptium.	183	213	393	365	13.38	0.995
Thresdin Shad.	31	13	5	22	37.32	0.995
Striped Bass	25	27	48	46	0.09	--
Stomachs Containing Food						

TABLE $\frac{18}{}$
Frequency of mportant Foods Compared for Stomachs of Young Slizped Bass Coffected in the Midwater and Otter Traws in Summer, 1904 in All Environmentai Zones

$-90-$

These differences in stomach contents could have resulted directly (i) from bass caught at different depths having fed on different organisms or (ii) from bass caught in the midwater trawl having formed a larger than normal proportion of the sample from zones where threadfin shad were most available and/or from bass caught in the otter trawl having formed a larger than normat propotion of the sample from zones where N . awatschensis and Corophium were most available.

Further inspection of the data revealed that in the two zones, (middle San Joaquin River and dead-end sloughs) where threadfin shad were most densely distributed, the propotion of the sample formed by bass caught in the midwater trawl was, in fact, large. Bass caught in the midwater trawl formed 47 percent of the trawl-caught sample in these wo zones: whereas they made up only 37 percent of the trawlcaught sample for all zones combined. Therefore, the proportion of bass utilizing each food organism was also compared for the midwater and otter trawl samples from the middle San Joaquin River and dead-end sloughs only. Chi square tests indicated that the same three differences in stomach contents were significant [itme tial.

TABLE 19
Frequency of lmportant Foods Compared for Stomachs of Young Striped Bass Collected in the Midwater and Otter Trawls in Summer; 1964 in Middle San Joaquin River and Deaciend Sloughs

On the basis of the chi square tests, I have concluded that the results of this food habits study were influenced by the proportion of the sample collected with each type of trawl. The validity of the results of this study might have been increased if it were possible to weight accurately the sample from each trawl according to the proportion of the population in the strata of water that it represented. However, the catch data indicate that the vertical distribution of young bass varied considerably over time and between sampling stations (see Sasaki, Table 2, p. 47). and only fragmentary data were available on the vertical distribution of other age groups; therefore, it was not possible to estimate meaningful weight factors.

The proportion of the stomachs that contained food also varied with the sampling gear (figure 2). To demonstrate this point it was necessary to compare proportions representing each gear for only one age-group of bass because the proportion of the stomachs containing food varied with the age of the bass (Tables 5-8) and each gear caught a different proportion of the total sample of each age-group. Large numbers of individuals from only the juvenile age-group were caught by all three types of gear so this group was selected.

FIGURE 2. Percentage of juvenite bass stomachs that were emply compared to method by which the bass were collected. Numbers of stomachs examined are in porentheses.

FIGURE 2. Percentage of juverile bass stomachs that were empty compared to method by which the bass were collecied. Numbers of

```
stomachs exmmined arg in pareniheses.
```

Two-way classification chi square tests indicated thet the proportion of bass stomachs that contained food for each type of gear was significantly different from the propotion for each of the other two types of gear twam ? The proportion of the bass with empty stomachs that were caught in the midwater trawl was larger than the proportion of the bass with empty stomachs from the otter trawl, and the proportion of bass with emply stomachs that were caught in the gill net was larger than that proportion for both the otter trawl and midwater trawl samples. The former difference probably reflected a greater abundance of food near the bottom, and the latter difference probably resulted from some of the stomachs' content being digested while the bass were in the net and unable to feed.

TABLE 20
Frequency of Empty Stomachs Compared for Juvenile Bass Collected by Three Types of Sampling Gear

table 20
Fraquancy of Emply Stomachs Compared for Juvenile Bass Coilected by Threa Types of Sampling Geer

$$
-92-
$$

FOOD INTAKE AND BASS GROWTH

In the summer of 1964 there was a progressive change in the composition of the stomach contents of year-old bass from the lower to the middle to the upper San Joaquin River. In the lower fiver (Table 9), N. awatschensis occurred in almost all stomachs, Corophium were in about one-third of the stomachs, and tendipedids occurred in aimost no stomachs. In the middle river (Table 10), only two-fith of the stomachs contained N . awatschensis, Corophium occurred in more than two-thirds of the stomachs and were the most common food item. and tendipedids were in 14 percent of the stomachs. In the upper river (Table 11), N . awatschensis was in almost no stomachs, but seven-eights of the stomachs contained Corophium, and more than one-half contained tendipedids. These changes in diet almost certainly reflected a change in the kinds of food available (see p. 88).

There was not only the progressive change in diet composition, but there was also a corresponding progressive change in the intensity of food consumption. The amount of food in bass stomachs decreased significantly from the lower to the middle to the upper river pemeral. This decrease suggests that the total food availability decreased from the lowermost to the uppermost zone. In regard to this hypothesis, Ellis and Gowing (1957) found that the amount of food in stomachs of brown trout, Salmo trutta, was directly related to the amount of food in the section of the stream from which the trout were collected; and in a series of experiments, ivlev (1961, pp. 19-40) found that the amount of food consumed by fishes depended on the mean concentration and degree of aggregation of food in the environment.

TABLE 21
Comparison of Mean Volumes of Food in Stomachs of Striped Bass from Three Environmental Zones of the San Joaquin River'

Environmental Zones and Mean Volumes of Fool (ee)	- Value	Tegrees of Ireedom	Pereentile
Lover River 0.18 z . Hpper River 0.0172	3.61	88	0.99
Lower River ve. Mudde River 0.1875	2.17	08	0.98
Middle River vs. Uper River 0.0845 0.012	3.28	80	0.93

 minimize varations in stomach conpotites and to maximize the sampe size withous using ofort additional to the regular sampline program.

TABLE 21
Compaison of Mean Volumes of Food in Stomachs of Striped Bass from Three Enviromental Zones of the San Joaquin Rever

Sasaki (see p. 55) describes differences in the mean length and mean coefficient of condilion of year-old bass from the same three environmental zones. It seems reasonable to expect that these differences were related to the food intake. in support of this theory the mean length and mean coefficient of condition of the bass from the lower river was greater than that of the bass from the middle and upper river (Figire 3). However. the trends in food intake, fork length, and coefficient of condition of bass from the middie to the upper river do not agree. The mean fork length of bass from the middle river was the same as that of bass from the upper river, and the mean ccefficient

$$
-93-
$$

FIGURE 3. Mean volume of food per stomach, mean length, and mean coefficient of condition of year-old bass from the three envirommental zones of the San Joaquin River during the summer of 1964.

FIGURE 3. Mean volume of food per stomach, maan length. and mean coefficient of condition of yeor-old bass from the three environmental

$$
\text { zones of the San Joaquin River during the summer of } 1964 .
$$

of condition of bass from the midale river was smaller, although not significantly smaller, than bass from the upper river; whereas the food intake was higher in the middle river than in the upper river. However, it should be noted here that there was a large increase in Sasaki's catches of year-old bass in the middle river from spring to summer (see p. 52); therefore, bass must have migrated there from another area. They may have come from upstream too recently to have put on growth consistent with their increased food intake. It is releyant that in the study by Ellis and Gowing (1957) the coefficient of condition of brown trout was highest in the section of the stream in which the food supply and food intake was highest.

DISCUSSION AND SUMMARY

The bass stomachs contained more than 30 different foods, but only 5 of these foods, N . awatschensis, Corophium, small striped bass, threadfin shad, and bait, were eaten by an appreciable percentage of bass during any season.

Young bass entered their first fall, feeding almost entirely on invertebrates (Figure A). They continued to do so through the winter and spring. In their second summer of life, they began feeding on small fish, primarily new young-of-the-year striped bass and threadin shad.

In the second fall of their life, the bass, now juveniles, fed nearly half on fish and half on invertebrates. During this period, threadifin shad and small striped bass were abundant and at the proper size. In the winter and spring when many of the small bass had moved

FGGURE 4. Percent frequency of pccurrence of hishes and invertebrates in stomachs of striped bass of different ages from fall 1963 through summer 1964.

FIGURE 4. Percont frequency of occurence of fistes end invertabrates in stomachs of striped otess of different ages from fall 1963 through summer 1964.
down into the bays below the Delta (see Sasaki. p. 49; and Ganssle, 1966), and the threadfin shad had died out (see Turner, p. 164), the juvenile bass retumed to a diet formed largely by invertebrates. When the new crop of young-of-the-year bass and threadin shad became available in the summer. the juveniles turned again toward a diet of small fish.

In the fall, the abundant small striped bass and threadfin shad comprised nearly the entire diet of the subadult bass. Like the juveniles, the subadults consumed less fish and more invertebrates in the winter and spring when small ishes were less numerous. The subadults retumed to an almost exclusive fish diet when the new crops of smal bass and threadfin shad arrived in the summer.

Adult bass fed primarily on small bass and threadfin shad. In the spring and early summer the adults reduced their food intake. This reduction was probably related to their spawning activities.

The shift from the diet of young bass which consisted primarily of invertebrates to the diet of the adult bass which was formed predominately by fishes was obviously a result of selective feeding by bass of different sizes. This shift in diet was not unexpected in view of findings of many other studies and conforms with the results of Ivlev's (1961, pp. 82-91) experiments showing that predators prefer to devour victims of the largest possible size.

Corophium were the only zoobenthos that bass utilized in significant amounts. These amphipods were the most abundant of the macro-organisms collected from the bottom of the Detta channels by Hazel and Kelley (1966).
Corophium also are often found on the substrate

$$
-95-
$$

rather than in it, so are probably more available than those less abundant benthic animals which live in the substrate.

Few bass stomachs contained small king salmon. Oncorhynchus tshawytscha. Several biologists (Scofield; 1931; Shapovalov, 1936; Hatton, 1940) have speculated on how much striped bass prey upon seaward migrating salmon. Hatton (1940) analyzed stomach contents of 224 adult bass from the Delta during the salmon migration primarily to determine the extent of this predation. He found no salmon in the stomachs and concluded that they were not an important food source. Adult bass are spawning during the salmon migration; therefore, they would not be serious predators because they do not feed heavily then.

Recently, Thomas (1966) reported that juvenile bass consumed quantities of small salmon in the spring and summer in the Sacramento River above the Delta. This suggests that salmon are more available there than in the Delta. This availability may be a direct result of the greater clarity and/or small width of the river. The small salmon are necessarity more concenirated when in the relatively narrow river than when in the broad and diverging channels of the Delta. The availability of small salmon to striped bass in the Delta during the summer might also be low because other forage fishes; particularly young-of-the-year striped bass, act as a buffer against predation on the salmon.

Relatively few small American shad were eaten by striped bass, even during the summer when small shad were quite abundant. Thomas (1966) did not find many American shad in the stomachs of striped bass either. Why more bass did not prey upon this species is unknown.

Sardine and anchovy bait were consumed with surprising frequency by juvenile and adult bass. These baits may have either been discarded by anglers or stolen from their hooks.

Young bass grew best in the lower San Joaquin River where the mysid, N. awatschensis, was extremely abundant. A decrease in the concentration of N. awatschersis here would almost certainly reduce the rate of growth and perhaps the survival of these bass. Since this zone is the most important nursery area in the Delta for young bass (see Sasaki. p. 44), such a reduction would probably seriously affect the structure of the entire bass population.

Suitable forage fishes for striped bass were scarce in the Delta during the winter and spring. Both juvenile and subadult bass fed on invertebrates during this period. The rate of growth and survival of these bass might be improved if small forage fishes were more available at this time.

Because the availability of food organisms varied with depth, bass stomach contents varied with the depth at which the bass were collected. Different sampling gear was used to collect bass at different depths; therefore, the results of this study were influenced to some extent by the proportion of the sample collected by each type of gear

LITERATURE CITED

Calhoun. Alex J. 1952. Annual migrations of California striped bass. Calif. Fish and Game, 38(3): 391-403. Chadwick. Harold K. 1964. Annual abundance of young striped bass, Roccus saxatilis, in the Sacramento-San Joaquin Delta, California. Calif. Fish and Game, 50(2) : 69-99.

-96-

Ellis, Robert J., and Howard Gowing. 1957. Relationship between food supply and condition of wild brown trout. Salmo trutta Linnaeus, in a Michigan stream. Limnol. and Oceanog., 2(4):299-308. Ganssle, David. 1966. Fishes and decapods of San Pablo and Suisun Bays, p. 64-94. In D. W. Kelley. (ed.), Ecological studies of the Sacramento-San Joaquin Estuary. Calif. Fish and Game, Fish Bull., (133): 1-133. Hatton, S. Ross. 1940. Progress report on Central Valley fisheries investigation, 1939. Calif. Fish and Game, 26(4): 335-373. Hazel, Charles R., and D. W. Kelley. 1966. Zoobenthos of the Sacramento-San Joaquin Delta, p. 113-133. In D. W. Kelley, (ed.), Ecological studies of the Sacramento-San Joaquin Estuary. Calif. Fish and Game, Fish Bull., (133) 1-133. Heubach, William, Robert J. Toth and Alan M. McCready. 1963. Food of young-of-the-year striped bass (Roccus saxatilis) in the Sacramento-San Joaquin River system. Calif. Fish and Game, 49(4): 224-239. Holis, Edgar Hamison. 1952. Variations in the feeding habits of the striped bass, Roccus saxatilis (Walbaum) in Chesapeake Bay. Bingham Oceanogr. Coll., Bull., 14(1): 111-131. Ivlev, V. S. 1961. Experimental ecology of the feeding of fishes. Yale Univ. Press, New Haven, 302 p. Johnson, W. C., and A. J. Calhoun. 1952. Food habits of California striped bass. Calif. Fish and Game, 38(4):531-534. Scofield, E. C. 1928. Striped bass studies. Calif. Fish and Game, 14(1) : 29-37. Scofield. E. C. 1931. The striped bass of California. Calif. Div. Fish and Game, Fish Bull. (29) : 1-82. Scofield. N. B. 1910. Notes on the striped bass in California. Calif. Fish and Game Comm., Bien. Rept., (21) : 104-109. Scofield, N. B., and H. C. Bryant. 1926. The striped bass in California. Calif. Fish and Game, 12(2):55-74. Scofield, N. B., and G. A. Coleman. 1910. Notes on the spawning and hatching of striped bass eggs at Bouldin Island Hatchery. Calif. Fish and Game Comm., Bien. Rept. (21): 109-117. Shapovalov. Leo. 1936. Food of the striped bass. Calif. Fish and Game, 22(4): 261-271. Smith, H. M. 1896. A review of the history and results of attempts to acclimatize fish and other water animals in the Pacific states. U.S. Fish Comm., Buil., 15 : 449-458. Thomas; John L. 1967. The diet of juvenile and adutt striped bass, Roccus saxatils, in the Sacramento-San Joaquin River system. Calif. Fish and Game, $53(1): 49-62$. Tumer, Jerry L., and Wiliam Heubach. 1966. Distribution and concentration of Neomysis awatschensis in the Sacramento-San Joaquin Delta, p. 105-112. In D. W. Kelley, (ed.), Ecological studies of the Sacramento-San Joaquin Estuary. Calif. Fish and Game, Fish Bull., (133): 1-133.

$$
-(97)-
$$

DISTRIBUTION AND FOOD HABITS OF THE AMERICAN SHAD, ALOSA

 SAPIDISSIMA, IN THE SACRAMENTOSAN JOAQUIN DELTA
DONALDE. STEVENS

This paper describes the distribution, migrations and food habits of the American shad in the Sacramento-San Joaquin Delta. The description is based on catches of shad in gill nets and trawls, on the estimation of gonad maturation in adult shad, and on the examination of contents of 268 stomachs of adult shad.

Adult shad were abundant in the Delta only during their spawning migration. The Sacramento and Mokelumne River systems supported larger runs than the San joaquin River. There is evidence that while most shad spawned far upstream, some spawned in several areas in the Deita itself. The catch and gonad maturation data suggest that a large percentage of the adults die shortly after spawning, although there is also evidence that some spent shad do migrate seaward. Adult shad fed primarily on a mysid, Neomysis awatschensis, and copepods and claciocerans. Percentages of stomachs containing food were directly related to concentrations of food organisms in the environment.

Young shad were abundant in the Delta from July through November. Greatest concentrations occurred in the Sacramento River, Mokelumne River, dead-ends sloughs tributary to the Mokelumne River, and the San Joaquin River below the mouth of the Mokelumne River. Most of the young shad in the latter area probably originated in the Sacramento and Mokelumne rivers.

Some migrations of young shad within the Delta appeared to be related to the food supply.

METHODS

The frawling and gill netting procedures, locations of the sampling stations, and the method of estimating gonad maturation are described by Tumer (see p. 12). Procedures used in the food habits analysis are the same as those described for striped bass by Stevens (see p. 68).

