SOUTH DELTA WATER AGENCY

504 BANK OF STOCKTON BUILDING 311 EAST MAIN STREET STOCKTON, CALIFORNIA 95202 TELEPHONE (209) 943-5551

Counsel: Wilson, Hoslett & Whitridge Engineer: Gerald T. Orlob

184

Chairman Jerry Robinson Vice-Chairman Peter Alvarez

Secretary Alex Hildebrand

Directors: Robert K. Ferguson Natalino Bacchetti

Comments by SDWA for SWRCB June 14 Workshop

We are commenting primarily on Topic 3 of the hearing notice: "Effects of upstream water projects other than the CVP and SWP". However, on the San Joaquin System, the synergism between these projects and the effect of the CVP on river inflow and quality is such that they must be addressed together.

Since about 1950 the inflow of the San Joaquin River to the Delta has been, and still is being greatly reduced. There are long periods when there is no net outflow from the river to the Central Delta (WRINT-SDWA 19). This causes stagnant water reaches with loss of salinity control and inadequate dissolved oxygen for fish. Upstream appropriative rights granted by the State Board often exceed the total yield of the river system, and direct diversion rights are based on diversion amounts rather than on consumptive Appropriators, therefore, are able to keep increasing their use. consumptive use of the water they divert with a consequent reduction in return flows. Exports from the Tuolumne River to the Bay Area bypass the stream system and have increased about five fold over the last forty years. SDWA 121 shows the effects of some of these diversions on the Delta in a dry year such as 1977. Appropriators on the tributaries with junior water rights have not been required to bypass sufficient unimpaired flows to protect senior water rights and natural channel depletions in the San Joaquin River and southern Delta. The net effect of CVP operations alone is to reduce river flow upstream of Vernalis by about 130,000 acre feet in dry years and 560,000 acre feet in below normal years. This is discussed in the June 1980 joint report by USBR and SDWA on "The Effects of the CVP Upon The Southern Delta Water Supply". That report was submitted in Phase I of the Delta Hearings as SDWA 4 and a graph depicting those effects is at SDWA 26.

The substantial increase in river salinity is caused primarily by CVP operations. The June 1980 report indicated that the average increase in salt load at Vernalis attributable to the CVP during the period examined in the report was 102,000 tons in dry years and 129,000 tons in below normal years (SDWA 80). Later updated studies indicate that a very large majority of the more recent level of salt load in spring and summer months is attributable to the CVP, and that the CVP Service Area introduces about 30,000 tons of salt per month into the river in those months when flows are typically low (WRINT-SDWA 17).

This salt load which drains from the portion of the CVP service area that lies within the San Joaquin watershed results form the importation of salt in the water imported via the Delta Mendota Canal and the application of that water to westside lands. SDWA-WQCP 21 shows the amount of new salts being transferred to the San Joaquin Valley via the DMC as now over a million tons per year. This imported salt load will be reduced if all of the proposed South Delta Barriers are installed and operated as needed (WRINT-SDWA 35).

Other exhibits we have included show the reduction in natural flow at Vernalis (WRINT 5 vs. 6), the full natural flow for each of the major tributaries to the San Joaquin Basin from 1906-1991 (WRINT 40), the staging of development and storage capacity on the San Joaquin system (SDWA 13) and the mean annual diversions on each tributary (SDWA 30). Also the net salt accumulation within the S.J. Basin (SDWA-WQCP 24). We hope that the board will review these exhibits and the testimony that accompanied them when considering further action and the effect of upstream diversions.

It is difficult to imagine that the State Water Project can have caused any of the degradation of the San Joaquin River. In fact, the project is probably harmed by this degradation of the river inflow. The CVP has contributed substantially to flow reduction in the San Joaquin River, but it is clearly not the only cause of that reduction and is not an increasing cause. The CVP salt load has impacted agriculture along the main stem and in the south Delta, but it is not clear what effect it has had on each of various aspects of the ecology in and along the river. We do not know whether the impact of reduced flows on resident fishery is as great as the impact of the recent proliferation of non-native aquatic plants, for example. Higher flows would help somewhat to control these plants, but not in oxbows and other backwaters. Massive hyacinth growths have impeded migration to and from salmon spawning beds.

It is also not clear to what extent increased salinity and any increase in toxicities would be a problem to the fishery if the flow were not reduced. The lack of flow might be less serious for some species if there were a channel maintenance program. There is no such program, and the elevation of the river bottom from Vernalis to Paradise Cut has been raised by sedimentation during recent decades from below low tide level to above low tide level.

2

In summary, there has been a major deterioration in the flow and quality of the San Joaquin River during the last forty years for the reasons discussed. The deterioration in flow is continuing due to increasing consumptive use of water by other diverters, but the CVP impact is remaining fairly constant and the SWP is not a cause. Introduced aquatic plants and fish have multiplied rapidly. Any proposed shifts in the season of release of available flows to favor migrant species may further exacerbate the inadequate flow and quality of the river's Delta inflow in summer months, and may foster even more pervasive growth of non-native aquatic plants.

• T

WRINT SDWA NO. 5

OBSERVED FLOW, SAN JOAQUIN RIVER AT VERNALIS, 1930 - 1991

...

.

FULL NATURAL FLOW, TAF MEAN 5766 Ø a ø r. 977 0 -| -- 1900 YEAR ,

•

FULL NATURAL FLOW, SAN JOAQUIN BASIN, 1906 - 1991

30 QF STAN QF TUOL QF MERC FISHERIES RELEASES, TAF 20 · ٠, ANNUAL TOTALS, TAF **STANISLAUS** 98.3 TUOLUMNE 64.1 10 MERCED 67.1 0 JAN MAR APR MAY JUN JUL AUG SEP OCT NOV DEC FEB MONTH FISHERIES RELEASE ALLOCATIONS, EASTSIDE STREAMS

SOURCE: DEPARTMENT OF FISH AND GAME, REGION 4

SAN JOAQUIN RIVER NEAR VERNALIS, 1990

GTO 6/92

4

FULL NAT	FURAL FLO				(IN ACRE-
	Data from the	e California I	Dept. of Water	Resources:	
MRC - Merc	ced River @ N	Aerced Falls	STR -Stanisl	aus River @ (Goodwin Dan
SJR -San Joa	quin River @	Friant		mne River @	
WATER YR	MRC	SJR	STR	TUO	Qu, SJBasin
1906	2035100	4367790	2414500	3610020	
1907	2125800	3113900	2834400	3749500	11823600
1908	517900	1163400	620000	1023560	3324860
1909	1475400	2900700	1925900	2669400	8971400
1910	1065900	2041500	1405800	2131700	6644900
1911	2114600	3586000	2356900	3422100	11479600
1912	514700	1043900	599700	1300280	3458580
1913	440500	879400	594000	1081330	2995230
1914	1415700	2883400	1769400	2623700	8692200
1915	1092800	1966300	1300900	2044880	6404880
1916	1455000	2760500	1668500	2498170	8382170
1917	1126100	1936200	1376900	2223030	6662230
1918	831200	1466800	827500	1461590	4587090
1919	682300	1297500	768000	1347180	4094980
1920	686600	1322500	742600	1342310	4094010
1921	1013600	1604400	1262200	2017930	5898130
1922	1420500	2355100	1430400	2470920	7676920
1923	942000	1654300	1130200	1785980	5512480
1924	252200	444100	261100	542630	1500030
1925	910400	1438700	1224500	1932120	5505720
1926	609800	1161400	606500	1109910	3487610
1927	1083800	2001300	1363500	2051400	6500000
1928	736800	1153700	950000	1525020	4365520
1929	486500	862400	516600	979040	2844540
1930	513000	859100	731700	1147570	3251370
1931	262280	480200	315000	602290	1659770
1932	1113200	2047400	1352900	2114250	6627750
1933	516000	1111400	609400	1104370	3341170
1934	360900	691500	424200	807220	2283820
1935	1171400	1923200	1213500	2102870	6410970
1936	1152000	1853300	1321900	2160210	6487410
1937	1214800	2208000	1108800	1997010	6528610
1938	2079800	3688400	2044800	3424330	11237330
1939	476800	920800	526060	981010	2904670
1940	1094600	1880600	1400410	2212840	6588450
1941	1454100	2652500	1338400	2489360	7934360
1942	1286900	2254000	1485400	2355520	7381820
1943	1288940	2053700	1564940	2369810	7277390
1944	684280	1265400	675810	1295310	3920800
1945	1097400	2138100	1277160	2085740	6598400
1946	942440	1729580	1178050	1879310	5729380
1947	564260	1125500	633710	1094180	3417650
1948	688340	1214800	897710	1408550	4209400
1949	637960	1164100	745180	1246130	3793370
1950	718760	1310500	1076120	1546360	4651740
	/ 10/00	1010000	10/0120	1040200	+0,1740

۱ ~

:

.

-

FULL NAT	FURAL FLO				(IN ACRE-
	Data from the	<u>e California E</u>	ept. of Water	Resources:	
	l	[
	ced River @ N		STR -Stanisla		
<u>SJR -San Joa</u>	quin River @	Friant	<u> TUO - Tuolu</u>	mne River @	La Grange
WATER YR		SJR	STR	TUO	<u>Qu, SJBasin</u>
<u> </u>	1225130	1859000	1693700	2475180	7253010
1952	1562600	2840100	1919370	2982360	9304430
1953	626240	1226700	967120	1525400	4345460
1954	667720	1313800	888390	1429180	4299090
1955	533990	1161000	680800	1123700	3499490
1956	1674700	2960100	1882700	3152840	<u>9670340</u>
1957	647700	1326600	894000	<u> 1417570 </u>	4285870
1958	1409400	2631000	1677510	2638370	8356280
1959	455400	949300	584030	<u>989610</u>	<u>297834(</u>
1960	482510	828600	593980	1052380	2957470
1961	312490	646900	403760	732390	2095540
1962	927650	1923600	995030	1765950	5612230
1963	984060	1944900	1267790	2041160	6237910
1964	446990	922200	643410	1130280	3142880
1965	1386350	2272200	1701800	2738370	8098720
<u> </u>	669110	1298600	703300	1306100	3977110
1967	1715630	3232200	1931500	3104610	9983940
1968	426200	862100	640400	1006630	2935330
1969	2188400	4040300	2210500	3852260	12291460
1970	882800	1445600	1320400	1962380	5611180
<u>1971</u>	733100	1417500	1074100	1683130	4907830
<u> </u>	549800	1039000	775900	1206610	3571310
1973	1108300	2047000	1281300	2030700	6467300
<u> </u>	1133400	2190500	1560400	2238900	7123200
1975	1108400	<u> </u>	1241500	2032700	6178300
<u> </u>	298280	629200	371160	670630	1969270
1977	150370	361550	154970	382680	1049570
1978	1755660	3401880	1589900	2903010	9650450
1979	1075440	1830260	1163800	1913670	5983170
1980	1645510	2972680	1804450	3005700	9428340
1981	501010	1068040	591000	939740	3099790
1982		3316050	2345050	3610480	11218770
1983	2786540	4641880	2951580	4430380	14810380
1984		2048850	1434060	2380830	7044350
*1985	567000	1129020	678040	1228613	3602673
*1986	1556859	3031400	1936205	2970896	9495360
*1987	298643	757631	372040	655593	2083907
*1988	415350	862142	378234	821124	2476850
*1989	532557	939165	778307	1311937	3561966
1990	406419	742516	468849	844889	2462673
1991	560456	1034093	511161	1049525	3155235
	000.00			1077343	
*updated value	ues replace the	ose previously	/ reported (19	89)	

.

1 1 9 0 7

ţ

.

.

and and the set of a set of the set

				UNIN	IPAIRED FI	OW FO	R THE SAN	JOAQUIN B.	ASIN (IN AC	CRE-FEET)		······
					Data from the	e Califorr	ia Dept. of Wa	ter Resources:				
				1000	L	L		L	L			
							STR -Stanislau					
				SJR -San Joa	quin River @	Friant	TUO · Tuolum	ine River @ La	Grange			
					On SIDeale	(1)	red runoff) is the		l			
					Qu, SI Basin	Conumpan	rea runorij is u	ne sum of thes	e rim station I	lows.		
WATER YR	MRC	SJR	STR	τυο	Qu, SJBasin		WATER YR	MRC	SJR	STR	TUO	Qu, SJBasi
1906	2035100	4367790	2414500	3610020			1950			1076120	1546360	
1907	2125800	3113900	2834400				1951	1225130		1693700	2475180	
1908	517900	1163400	620000		3324860		1952			1919370	2982360	
1909	1475400	2900700	1925900	2669400			1953			967120	1525400	
1910	1065900	2041500	1405800	2131700	6644900		1954	667720		888390	1429180	
1911	2114600	3586000	2356900	3422100			1955	533990		680800	1123700	
1912	514700	1043900	599700	1300280	3458580		1956		2960100	1882700	3152840	
1913	440500	879400	594000	1081330	2995230		1957	647700		894000	1417570	
1914	1415700	2883400	1769400	2623700	8692200		1958	1409400	2631000	1677510	2638370	
1915	1092800	1966300	1300900	2044880	6404880		1959	455400	949300	584030	989610	
1916	1455000	2760500	1668500	2498170	8382170		1960	482510	828600	593980	1052380	29574
1917	1126100	1936200	1376900	2223030	6662230		1961	312490	646900	403760	732390	20955
1918	831200	1466800	827500	1461590	4587090		1962	927650	1923600	995030	1765950	
1919	682300	1297500	768000	1347180	4094980		1963	984060	1944900	1267790	2041160	623791
1920	686600	1322500	742600	1342310	4094010		1964	446990	922200	643410	1130280	314288
1921	1013600	1604400	1262200	2017930	5898130		1965	1386350	2272200	1701800	2738370	809872
1922	1420500	2355100	1430400	2470920	7676920		1966	669110	1298600	703300	1306100	397711
1923	942000	1654300	1130200	1785980	5512480		1967	1715630	3232200	1931500	3104610	998394
1924	252200	444100	261100	542630	1500030		1968	426200	862100	640400	1006630	293533
1925	910400	1438700	1224500	1932120	5505720		1969	2188400	4040300	2210500	3852260	1229146
1926	609800	1161400	606500	1109910	3487610		1970	882800	1445600	1320400	1962380	561118
1927	1083800	2001300	1363500	2051400	6500000		1971	733100	1417500	1074100	1683130	490783
1928	736800	1153700	950000	1525020	4365520		1972	549800	1039000	775900	1206610	357131
1929	486500	862400	516600	979040	2844540		1973	1108300	2047000	1281300	2030700	646730
1930	513000	859100	731700	1147570	3251370		1974	1133400	2190500	1560400	2238900	712320
1931	262280	480200	315000	602290	1659770		1975	1108400	1795700	1241500	2032700	617830
1932	1113200	2047400	1352900	2114250	6627750		1976	298280	629200	371160	670630	196927
1933	516000	1111400	609400	1104370	3341170		1977	150370	361550	154970	382680	104957
1934	360900	691500	424200	807220	2283820		1978	1755660	3401880	1589900	2903010	965045
1935	1171400	1923200	1213500	2102870	6410970		1979	1075440	1830260	1163800	1913670	598317
1936	1152000	1853300	1321900	2160210	6487410		1980	1645510	2972680	1804450	3005700	942834
1937	1214800	2208000	1108800	1997010	6528610		1981	501010	1068040	591000	939740	309979
1938	2079800	3688400	2044800	3424330	11237330		1982	1947190	3316050	2345050	3610480	1121877
1939	476800	920800	526060	981010	2904670		1983	2786540	4641880	2951580	4430380	1481038
1940	1094600	1880600	1400410	2212840	6588450		1984	1180610	2048850	1434060	2380830	704435
1941	1286900	2254000	1338400	2489360	7934360		1985	567000	1129020	678040	1169500	354356
1942	1288940	2053700	1485400	2355520	7381820							
1943	684280	1265400	675810	1295310	3920800				· · · · · · · · · · · · · · · · · · ·			
1945	1097400	2138100	1277160	2085740	6598400							
1946	942440	1729580	1178050	1879310	5729380							
1947	564260	1125500	633710	1094180	3417650							
1948	688340	1214800	897710	1408550	4209400							
1949	637960	1164100	745180	1246130	3793370							

٠

_

.

ι

.

:

DI	RY	BELOW	NORMAL	ABOVE	NORMAL	W	ET
Year	Runoff	Year	Runoff	Year	Runoff	Year	Runoff
1977	1014	1955	3512	1962	5618	1922	7681
1924	1504	1985	3544	1946	5734	1941	7945
1931	1660	1972	3571	1921	5901	1965	8108
1976	1928	1949	3799	1979	5983	1916	8229
1961	2100	1944	3933	1975	6114	1958	8367
1934	2288	1966	3985	1963	6250	1914	8692
1929	2844	1919	4095	1915	6405	1909	8971
1939	2909	1920	4097	· 1935	6418	1980	9428
1968	2958	1948	4218	1973	6467	1952	9312
1960	2960	1957	4292	1936	6495	1978	9651
1959	2986	1954	4313	1927	6499	1956	9679
1913	2995	1953	4354	· 1937	6530	1967	9993
1981	3100	1928	4365	1940	6596	1982	11219
1964	3151	1918	4587	1945	6612	1938	11248
1930	3254	1950	4656	1932	6622	1911	11480
1908	3325	1971	4870	1910	6645	1907	11824
1933	3356	1925	5505	1917	6662	1969	12295
1947	3424	1923	5512	1984	7044	1906	12427
1912	3458	1970	5587	1974	7146	1983	14810
1926	3493			1951	7262		
				1943	7283		
				1942	7370		

UNIMPAIRED RUNOFF * SAN JOAQUIN RIVER AT VERNALIS, 1906-1985 1000 acre feet

* Sum of unimpaired runoffs for hydrologic year ending 30 September at four stations above major project reservoirs; San Joaquin River at Friant, Merced River at Exchequer, Tuolumne River at Don Pedro, and Stanislaus River at Melones

...

:

ı 1 ۲

.

STAGED DEVELOPMENT OF RESERVOIR CAPACITY IN THE SAN JOAQUIN BASIN, 1900-1985

Notes: Changes are equivalent to CVP impact on runoff of San Joaquin River at Vernalis

> Dry Years: Pre-CVP = 1930, 31, 33, 34, 39 Post-CVP = 1959, 60, 61, 64, 68

Below Normal Years: Pre-CVP = 1944, 48*, 49*, 50* Post-CVP = 1953, 54, 55, 57, 66

*adjusted for the operation of Friant Dam during construction

FLOW DIFFERENCES HISTORICAL PRIOR TO JAN 1944

r

- -

.

×

								,*					
		аст		550					MAV			AUG	SEP
•	1930	0.0	NOV 0.0	DEC 0.0	JAN 0. 0	FEB 0.0	MAR 0. 0	APR 0. 0	MAY 0.0	JUN 0, 0	JUL 0.0.	0.0	0.0
	1931	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0.	0.0	0.0
	1932	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0
_	1933	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	1934	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0. 0
-	1935	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0. 0	0.0
7	1936	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0. 0	0.0
8	1937	0.0	0.0	0.0	0.0	0. 0	0.0	0.0	0. O	0.0	0.0	0.0	0.0
	1738	0.0	0.0	0.0	0.0	0.0	0. 0	0.0	0.0	0.0	0.0	- 0. 0	0.0
	1939	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	1940	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	1941	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	1942	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0. 0	0.0
-	1943	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	1944	0.0	0.0	0.0	-27.1	-22.9	-7.2	53.4	278.4	132.8	0.0	1.1	0.0 -7.1
	1945 1946	-8.4	22.4	28.7	-14.9	80. 7	11.3	12.6 156.5	-19.0 65.2	64.9 63.5	17.5 26.5	-8.4 0.4	-2.8
	1947	-11.4 5.7	-14.5 45.1	-7.2 37.3	-73.3 -14.0	-32. 4 22. 6	98.4 -18.5	0.3	3.5	0.5	28.J 0.0	0.0	0.0
	1948	9.0	2.5	37.3	12.3	13.8	21. 9	77.8	279.5	173.8	2.9	0.0	1.9
	1949	-3.5	-1.9	5.3	6.2	12. 5	22.6	115.1	285.7	129.4	0.5	3.5	5. 5
	1950	4.3	3.8	4.0	32. 9	52.3	45.5	135.0	274.1	136.7	4.1	3. 2	3. 3
	1951	6. 5	145.3	244. 2	45. 2	-55. 5	74.8	118.2	117.2	129.1	40.7	3.3	0. 2
23	1952	10.7	13.0	40.4	150.1	34. 0	186.4	160.2	333. 3	278. 5	298.4	38. 7	5.9
24	1953	-2.2	0.9	-4.8	27.4	22. 6	35. 6	96.4	135.4	148.7	10.5	5. 3	0.0
25	1954	O. 4	3. 0	1.6	24. 4	14. 2	57.2	133. 2	303. 9	95. B	0.0	0. 0	0.0
	1955	-0.4	2. 7	6.6	16. 3	24. 2	34. 7	56.6	229. 2	167.4	0.0	1. 9	1.5
	1956	5.0	7.5	292.7	236. 5	-2.4	321.5	319.0	355.8	499. 5	301.0	35.1	8.7
	1957	4.0	2.8	3. 3	17.7	33. 3	14.6	56.0	215.9	210. 5	0.0	0.0	1. 7
	1958	15.7	11.4	21. 6	68.2	216.8	270.3	-25.0	255.8	349.0	237.4	43. 3	9.3
	1959	-0.5	10.4	12.4	23.7	70.3	12.1	_5.5	0.0	7.7	0.0	0.0	8.2 0.0
	1960 1961	9.5 3.9	6.9	7.2 33.2	8.0	32.7 20.7	11.0	8.9 4.4	3.0 1.7	9.9 7.4	0.0 0.0	0. 0 0. 0	0.0
	1962	3.9	19.7 6.5	10. 2	7.6 17.6	103.9	4.9 80.2	243.5	151.4	249.3	77.1	9.8	10.0
	1963	4.0	-2.1	-1.5	117.1	187.0	83.0	71.2	152.4	218.6	97. B	13.7	16.3
	1964	-9.4	51.9	31.4	19.8	34. 3	49.9	1.0	2.2	10.3	0.0	0.0	0.0
	1965	-20. 1	8.1	97.4	317. 9	275.9	310. 6	256.6	278.3	407.7	247.1	64.6	9.4
	1966	2.8	13.1	-17.3	9.8	24.1	63. 3	134.9	252.3	67.9	0.0	0.0	0.0
	1967	3.0	11.3	101.2	178.7	178.8	579.5	38. 3	-74.9	374.2	497.9	61.6	25. 0
	1968	1.3	7.7	14. 9	21.8	63. 2	-3.1	0.0	0.0	6. 9	0.0	0.0	0.0
40	1969	10.6	12. 1	10.8	622.9		-218. 5	27. 0	209. B	205.4	354. 9	51. i	0.0
41	1970	-2.0	-18.6	1.0	52. 2	-3.4	11.4	51、2	252. 1	132.7	0.4	0.1	a . a
	1971	-3.9	-3.5	-0.6	51. 5	45. 3	46. 7	71.2	193. 2	173. 5	2.6	4.1	4.7
43	1972	0.2	0.1	25. 0	26.4	25. 6	74.4	57.6	188.0	103. 9	0.0	0.0	23. 5
	1973	0.0	0.0	12. 6	72. 8	-31.1	-33. 0	100.0	- 262. 9	217.9	38. 7	.	-3. 9
	1974	-10.3	40. 5	44. 9	150.0	49.9	184. 4	120.5	218. 6	231.4	53. 2	6.4	-0.7
	1975	-7.9	-12.1	3.0	38. 1	15.4	74. 2		197.0	282. 0	49.2	-7.5	-1.0
	1976	10.4	14.4	14.7	2.4	18.1	-6. 3		0.0	0.0	0.0	0.0	0.0
	1977	0.0	0.0	0.0	0.0	2.3	0.0	0.1	0.0	10.6	0.0	0.0	0.0 79.0
	1975	6.6	7.7	52.2	303.0	243.9	413.2		-27.8	633.9	432.4	45. 6 -7. 0	-10. 3
	1979	7.3	11.1	15.6	95.9 544 7	58.6	163.0	117.1	210.5	160.7	42.1	-3.0 41.8	0.0
31	1980	12.0	7.9	7.4	564. 2	385. 0	10. 5	292.6	242. 0	542. 5	422. 2	71. d	U. U

SUMMARY OF REDUCTIONS IN RUNOFF DUE TO CVP, SAN JOAQUIN RIVER AT VERNALIS, JANUARY 1944 THROUGH SEPTEMBER 1980 (Runoff in 1000 acre-feet)

٠

Notes: Changes represent all effects of development upstream of Vernalis including effects of CVP operation on runoff of Upper San Joaquin Basin above mouth of Merced River

> Dry Years: Pre-CVP = 1930, 31, 33, 34, 39 Post-CVP = 1959, 60, 61, 64, 68

Below Normal Years: Pre-CVP = 1944, 48*, 49*, 50* Post-CVP = 1953, 54, 55, 57, 66

*adjusted for the operation of Friant Dam during construction

Mean Annual Agricultu Projects in the	ural Diversions (San Joaquin Bas	-
Basin		Diversion, KAF
Merced River		
North side		22*
Main Merced I.D.		495*
Minor		95*
	Subtotal	612
Tuolumne River		
Turlock I.D.		527
Modesto I.D.		336
Minor		
	Subtotal	881
Stanislaus River		
South San Joaquir	n I.D.	288
Oakdale I.D.		106
Minor		_73
	Subtotal	467
San Joaquin River		
	Total	1960

۲.

£

.

* Estimated from "Water Budgets for Major Streams in the Central Valley California" 1961-1977, USGS survey openfile report 85-401, 1985

ς.

.

.

1.

Ngm , Sar

SAN JOAQUIN RIVER at MOSSDALE

Nole: Unimpaired runoffs were: 1908 (3325 KAF), 1933 (3356 KAF), and 1959 (2986 KAF). Each of the three dry years follows a wet or above normal year, e.g. 1907 (11824 KAF), 1932 (6622 KAF), and 1958 (8367 KAF).

' '.

. .

ł

Note: Unimpaired runoffs were: 1906 (12,427 KAF), 1933 (11,248 KAF), and 1959 (12,295 KAF).

SAN JOAQUIN RIVER at MOSSDALE

SUMMARY OF THE EFFECTS OF THE CVP ON THE QUANTITY AND QUALITY OF THE SAN JOAQUIN RIVER INFLOW TO THE SOUTHERN DELTA AT VERNALIS

AVERAGE FOR PERIOD 1948-1969

				Year Class:	ification	
	Item	Units	Dry	Below Normal	Above Normal	Wet
	Post-CVP flow	1000 acre-feet				
	A-S		196	699	1106	3741
	0-M		761	839	1907	2747
	Year		957	1538	3013	6488
•	Reduction in flow due to CVP	1000 acre-feet				
	A-S		6.5	407	572	760
	0-M		111.0	136	350	633
	Year		115.5	543	922	1393
۱.	Post-CVP TDS	mg/L				
	A-S		659	430	339	217
	0-M		396	312	377	294
	Year		528	371	358	256
	Reduction in Post-CVP TDS due to restoring CVP reduction	mg/L				
	A-S		20	140	99	28
	0- <u>M</u>		44	37	67	46
	Year		51	84	72	36
5.	Increase in Salt Load due to CVP average over period 1948-69	1000 tons				
	A-5		29	38.5	10.5	21.
	0-M		22	26	9.5	13.
	Year			64.5	20.0	35
i.	Reduction in Post-CVP TDS due to removal of average CVP contribution to salt load increase	·				
	to salt Ibad Inclease	mg/L				
	A-5		109	40	7	4
	0-M		21	23	4	3
	Year		39	31	5	4
7.	restoring CVP flow reduction and removing of average CVP contribu-	<i>1</i> -				
	tion to salt load increase	mg/L			•.	
	A-S		125	165	103	-32
	0-M		63	56	54	49
	Year		86	107	76	40

Notes:

r e

-1*

۰.

1. Based on Tables V-2 through V-17

2. From Table V-21, using average values over the ranges indicated

**

3. From Table VI-13

4. Reduction = Post-CVP TDS - Post-CVP flow x Post-CVP TDS + 50 x CVP flow reduction Post-CVP flow + CVP flow reduction

$$= (3) - \frac{(1) \times (3) + 50 \times (2)}{(1) + (2)}$$

5. From Table VI-34; Average Increase Caused by CVP = Total Increase, 1948-69/2 Pre-CVP salt load = Salt Load Increase x 100 Percent of Pre-CVP

- 6. Reduction = $\frac{\text{Salt Load Increase Due to CVP}}{1.36 \times \text{Post-CVP flow}} = \frac{(5) \times 1000}{1.36 (1)}$ 1.36 x Post-CVP flow
- 7. Reduction = Post-CVP TDS Post-CVP flow x Post-CVP TDS Salt Load Incr./1.36 + 50 x CVP flow reduction Post-CVP flow + CVP flow reduction

$$(3) - \frac{(1) \times (3) - (5) \times 1000/1.36 + 50 \times (2)}{(1) + (2)}$$

SUMMARY OF THE EFFECTS OF THE CVP ON THE QUANTITY AND QUALITY OF THE SAN JOAQUIN RIVER INFLOW TO THE SOUTHERN DELTA AT VERNALIS DECADE OF THE 1960s

				Year Clas	sification	
	Item	Units	Dry	Below Normal	Above Normal	Wec
1.	Post-CVP flow	1000 acre-feet				
	A-S	•	190	246	1200	3639
	0-M		695	1450	950	2836
	Year		885	1696	2150	6475
2.	Reduction in flow due to CVP	1000 acre-feet				
	A-S		6.5	407	572	760
	0-M		111.0	136	350	633
	Year		115.5	543	922	1393
3.	Post-CVP TDS	mg/L				
	A-S		673	683	326	225
	0-M		418	284	461	308
	Year		546	484	394	267
4.	Reduction in Post-CVP TDS due to					
	restoring CVP reduction in flow	mg/L				
	A-5		21	395	89	30
	0-M		51	20	111	47
	Year		57	105	103	38
5.	Increase in Salt Load due to CVP,					
	through decade of 1960s	1000 tons				
	A-S		58	77	21	43
	0-M		44	52	19	27
	Year		- 102	129	40	70
6.	Reduction in Post-CVP TDS due to	•				
	removal of CVP contribution to					
	salt load increase	mg/l				
	A-S		224	230	13	9
	0-M		47	26	15	7
	Year		85	56	14	8
7.	restoring CVP flow reduction and					
	removing CVP contribution to salt load increase	mg/L				
		mg/ L				
	A-S		238	481	98	37
	0-M Xa		91	44	121	53
	Year		132	148	113	45

Notes:

۱

٢

1. Based on Tables V-2 through V-17 for decade of 1960s

2. From Table V-21, using average values over the ranges indicated

3. From Table VI-13

4. Reduction = Post-CVP TDS - Post-CVP flow x Post-CVP TDS + 50 x CVP flow reduction on

.

$$= (3) - \frac{(1) \times (3) + 50 \times (2)}{(1) + (2)}$$

5. From Table VI-34; increase caused by CVP through the 1960s; Pre-CVP salt load = Salt Load Increase x 100 Percent of Pre-CVP x 100

6. Reduction = $\frac{\text{Salt Load Increase Due to CVP}}{1.36 \times \text{Post-CVP flow}} = \frac{(5) \times 1000}{1.36 (1)}$

=

$$(3) - \frac{(1) \times (3) - (5) \times 1000/1.36 + 50 \times (2)}{(1) + (2)}$$

SUMMARY OF THE EFFECTS OF THE CVP ON THE QUANTITY AND QUALITY of the SAN JOAQUIN RIVER INFLOW TO THE SOUTHERN DELTA AT VERNALIS

DECADE OF THE 1970s

	•			Year Classif	ication	
	Item	Units	Dry	Below Normal	Above Normal	Wet
1.	Post-CVP flow	1000 acre-feet				
	A-S		196	549	1037	3249
	0-M		780	1579	1601	1421
	Year		976	2128	2638	4670
2.	Reduction in flow due to CVP	1000 acre-feet				
	A-S		6.5	407	572	760
	0-M		111.0	136	350	633
	Year		115.5	543	922	1393
3.	Post-CVP TDS	mg/L				
	A-S		747	481	382	269
	0M		569	290	325	500
	Year		658	385	354	385
ι.	Reduction in Post-CVP due to			-		
	restoring CVP reduction	mg/L				
	A-S		22	183	118	42
	0-M		65	19	49	139
	Year		64	68	79	77
5.	Increase in Salt Load due to CVP					
	through decade of 1960s	1000 tons				
	A-5		58	77	21	43
	0-M		44	22	19	27
	Year		102	129	40	70
5.		•				
	removal of CVP contribution to salt load increase	mg/L				
		mg/L				
	A-S		218	103	15	10
	0-M Year		41	24	9	72
	ieat		77	45	11	1
7.	Reduction in Post-CVP TDS due to restoring CVP flow reduction and					
	removing CVP contribution to salt					
	load increase	mg/L				
	A-S		233	243	128	49
	0-M		101	41	56	148
	Year		133	104	87	85

Notes:

r • •

1. Based on U.S. Geologic Survey records

2. From Table V-21, using average values over the ranges indicated

3. From USBR continuous recorder data

4. Reduction = Post-CVP TDS - Post-CVP flow x Post-CVP TDS + 50 x CVP flow reduction Post-CVP flow + CVP flow reduction

$$= (3) - \frac{(1) \times (3) + 50 \times (2)}{(1) + (2)}$$

5. From Table VI-34; increase caused by CVP through the 1960s; Pre-CVP salt load = Salt Load Increase x 100 Salt Load Increase Due to CVP (5) = 1000

6. Reduction =
$$\frac{\text{Salt Load Increase Due to CVP}}{1.36 \times \text{Post-CVP flow}} = \frac{(5) \times 1000}{1.36 (1)}$$

7. Reduction = Post-CVP TDS - Post-CVP flow x Post-CVP TDS - Salt Load Incr./1.36 + 50 x CVP flow reduction Post-CVP flow + CVP flow reduction

$$= (3) - \frac{(1) \times (3) - (5) \times 1000/1.36 + 50 \times (2)}{(1) + (2)}$$

III lettchy(1) ear III lettchy(1) 944 47500 1945 60200 1946 61700 1947 67410 1950 75300 1953 94500 1954 47500 1955 60700 1956 7300 1957 7310 1959 7310 1955 70300 1955 123000 1955 123000 1956 123000 1957 123500 1958 70300 1958 70300 1956 123000 1956 13500 1957 13500 1958 13500 1959 135300 1951 15500 1970 253300 1971 253300 1972 213300 1971 253300 1972 253300 1971 253300		-			Luolumne Kiv	Fuolumne River Vearly Data						
Mater Wate Intelectivity Mater Year Intelectivity 111 111 111 111 111 111 111 111 111 111 1111 1111 1111 1111 1111 1111 1111 1111 1111 11111 1111 11111 11111 11111 11111 11111 11111 11111 111111 111111 111111 111111 111111 111111 1111111 1111111111 11111111111 $111111111111111111111111111111111111$			11 - 14 14			re-(I)						
189 1530.00 15		a Grnge(2) Mdsto Cnl(3				Water Vear	III letchy(1)	Abv La Grnge(2) Mdsto Cnl(3)	Mdsto Cnl(3)		Turlk Cnl(4) Bw La Gmgc(5) Tuol @TC(6	Tuol @TC(6)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1536300		1536300		161		000111	39(2:00			WLF85
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		2408720		2408720		161				594500	984700	Γ
140120 39110 1405120 1405120 1940 68000 235550 23220 2516230 1949 68500 235551 11000 25230 2516230 1949 68500 23254 121000 156521 1953 12900 1597214 129200 15650 24450 1955 12700 1597214 15600 26500 24450 1955 12700 1597214 158800 255400 216710 1955 12700 1597316 158800 255400 215510 255400 15710 15670 1597316 255600 255400 15710 15700 15670 15700 1597316 255600 255400 15710 157400 1966 15740 1597416 158600 255400 157500 157400 1966 157400 1597416 155600 255400 155710 157400 1966 157400 1597416 155		526M0K		904979		194						
1710050 53210 167070 167070 196710 1968 67400 177513 110000 150710 1273540 1969 73405 177513 110000 150710 150710 1957 9450 1394730 110000 253540 16757 957 957 1394731 11000 257540 19510 955 957 1394740 205600 310617 157070 15707 15707 1394740 205600 35100 255400 255400 956 17306 1607701 158001 255400 265501 19576 17306 1956 2055601 158000 255400 35976 1956 17306 2055601 157601 157510 15776 15716 15716 2055601 157601 157510 15776 15716 15716 2055601 157601 157510 157510 157510 157510 2055601 157560		1405120				194		1121000	296600			
1 13320 231200 231200 231200		1710080	39310		-	194		1207000	331300			
1/12510 110000 1367410 1367410 1957 1956 75400 1/12521 19200 160364 1957 1956 17300 1/12521 19200 160364 1956 17300 1/12521 129200 160364 1958 1956 1956 1/12521 15000 205600 205600 205600 1958 1000 1/12510 18700 150500 16050 17300 15700 1/12510 18810 205600 205600 17510 1958 1000 1/12510 18810 205600 17510 15900 15000 15000 1/12510 11000 25500 25600 17510 15900 15000 1/12510 112010 14000 25600 157140 15600 15600 15600 1/12510 112010 14000 157400 157100 1560 15700 1/12110 11000 25700 160050 17000		2868550	52320			194		1176000	345/600	581900		
2153731 112000 2054340 1953 9530 2153254 12000 2054340 1953 9530 2153254 12000 2054340 1953 9530 3194514 215000 2054340 1953 9530 3194514 215000 2054340 1953 9530 3194514 19400 15500 215700 1953 9500 2535500 255000 2757310 1953 172000 2535500 255000 247510 1953 172000 2535500 255000 245500 245500 155700 155700 2535500 255000 245500 157310 155700 157310 2555600 255600 245500 157410 1960 157700 2555600 255600 245510 57330 19751 15740 2555600 255600 255600 255600 157510 1960 172300 2555600 255600 25500		1478310	006011			195		1416000	360300			
1395140 151000 2235430 1933 94301 1395124 202600 234610 1933 94301 1395124 202500 234610 1953 12200 1395124 205500 151000 237510 1953 12200 1395126 151000 205500 435710 1958 10230 1395120 158100 205500 435710 1958 10201 138301 158100 205500 435710 1958 10701 1391740 158100 215600 215001 455340 15961 17401 1317741 215600 295300 43540 15960 19961 157310 241401 155810 255400 255400 255400 255400 12700 241401 157400 15800 139740 12700 1951 12700 241411 157510 215400 135740 19561 1971 213501 131710 215200 <		1732873	129200		-	195						
1994/289 1994/289 1994/289 1994/289 1994/289 1994/289 1994/289 1994/289 1994/289 1994/289 1994/289 1994/289 1994/289 1994/280 1994/270		2195340	141000			195			347400		-	
3.02914 202600 3204610 954 11200 3.02914 1983.00 3204610 955 19700 3.02910 13050 205600 3204610 955 19700 1.34070 138800 205600 3204610 956 1957 19700 1784350 138800 205000 490350 198300 9560 17300 187150 213200 255400 57500 57500 957300 19560 17300 187150 213200 255400 355400 57500 19560 17300 265700 55700 255000 35900 195740 1966 1957 2555700 55700 35700 35900 19740 1966 19700 2555700 55700 355400 35900 19740 1966 19560 1337740 235500 355400 354900 19740 19780 1966 1337700 3133000 575400 1975		1394289	151000			195		1521000	349100	642500		790900
$\frac{1}{123010}$ $\frac{1}{123010}$ $\frac{1}{12300}$ $\frac{1}{12300}$ $\frac{1}{1230}$ $\frac{1}{1230}$ $\frac{1}{1230}$ $\frac{1}{12300}$ $\frac{1}{12$		33()9514	202600			195		1432000	369200	6015700	457100	678600
544030 2205600 428430 1956 8000 2533570 229500 237710 1958 173400 1784430 1388100 2558700 537710 1958 173400 1059710 188100 255870 537710 1961 173400 1059711 188100 255870 537710 1961 1966 1059711 188100 255600 255670 57503 1963 17400 264701 254700 313000 255700 35500 1955 17400 24300 35500 34500 35300 19550 1961 17400 24300 33006 555400 35400 55640 55640 17950 133760 255400 35490 55640 330066 1957 1966 17400 133760 255400 333096 55540 35640 1966 17780 133760 25740 35306 59550 19770 19770 19770		3402910	198300			561	Γ		292000			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		644030	205600			195			406500		Γ	Γ
1734430 143600 1490500 149050 1958 0000 2534100 253400 235970 533970 1959 167301 1050170 18800 255400 535970 1950 1960 17400 26545150 215000 29500 535970 1950 1961 17400 2654510 215200 29500 495400 153470 1961 1963 177000 2654510 235500 34500 153470 149540 1965 17700 2455560 255700 34500 153470 1953 1973 157300 2455560 255700 33590 175800 15740 1965 177800 1337767 239400 33590 135960 197800 1978 153800 245560 255700 339510 43650 135500 1978 153800 241312 239400 436510 135500 1978 153800 1978 153800 2						561	Γ		341400			
2595316 181100 295500 231710 1959 167301 10530750 135800 235400 63970 1960 1966 17300 2014160 215600 23100 23500 537030 61370 1961 1963 15700 2014160 215600 23100 153703 15300 53500 15300 153700 1961 1963 15700 249840 245400 34500 153700 153700 1960 1963 15200 249840 23500 34900 5500 15970 1960 1963 15700 1330760 25500 35300 15970 19750 19710 19530 1330760 25500 35900 181070 1973 19530 19530 1330760 237300 537300 181070 1971 21300 19530 19730 19730 1963 17500 1330700 133700 23500 131070 123600 1971						195			331300			Ĺ
1050170 158800 255400 635970 635970 19661 19660 2024010 213200 231000 237910 237910 158700 2024010 213200 23100 237910 257910 158700 20141480 2004010 345600 23100 237910 1963 15700 20141480 2004010 345600 235910 19500 1963 195700 2015501 264700 429400 1532470 1960 1963 195700 2015501 256700 34900 59060 1961 1963 195700 134760 255700 34970 532400 59060 1973 205600 134760 255700 34970 53960 1975 25700 1973 21330 241750 24170 24170 24170 1976 1973 21340 134706 245200 135400 135600 1976 1973 25500 1413300 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>561</td><td>Γ</td><td></td><td></td><td></td><td></td><td></td></t<>						561	Γ					
108125() 21320() 253100 5570.0 1961 1730.0 201416() 2016(0) 35510 137910 1963 158300 201416() 2016(0) 35510 137910 1963 158300 201416() 2050(0) 36500 139740 1963 15800 201416() 255100 32300 139560 1963 19530 1337746 225500 35300 135950 1963 19530 1337746 225900 333900 135950 1963 19730 20133760 235300 133660 1973 195300 1973 2133760 23500 384900 63060 1971 1973 20560 2133760 245400 336960 1336960 1971 213300 1973 20560 2133760 143070 1336960 1336960 1971 213300 1974 21360 1974 21360 2133700 11336960 1336700 13760 <td></td> <td></td> <td>255400</td> <td></td> <td></td> <td>196</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			255400			196						
26/24610 21/5010 21/5910 195/51 15/5010 26/24610 21/5001 29/510 5/7001 19/560 15/5001 240/56/510 26/700 4/25/200 15/32470 19/65 15/5001 240/56/510 26/700 4/25/200 15/32470 19/65 15/5001 240/56/510 26/700 3/5100 15/32470 19/66 19/560 15/2001 240/56/510 25/50/0 3/5100 5/50/60 5/50/60 19/270 19/760 19/760 13/76/61 25/50/0 3/5100 5/50/60 5/50/60 19/760 19/760 19/760 24/12/70 3/712/70 3/71200 3/71200 5/75/70 1/75/70 2/75/70 1/75/70 2/75/70 1/75/70 2/75/70 1/75/70 2/75/70 1/75/70 2/75/70 1/75/70 2/75/70 1/75/70 2/75/70 1/75/70 2/75/70 1/75/70 1/75/70 1/75/70 1/75/70 1/75/70 1/75/70 1/75/70 1/75/70 1/75/70			293000			961						
2041145(*) 20040(0) 3456(0) 149548(0) 1550(0) 1550(0) 22355(*) 20290(*) 40520(*) 1591(*) 1965 15700(*) 22355(*) 2547(*) 32330(*) 77340(*) 1966 1950(*) 133076(*) 2577(*) 32330(*) 7734(*) 1966 1950(*) 133076(*) 2570(*) 3889(*) 133076(*) 22320(*) 1966 1950(*) 133076(*) 25710(*) 3889(*) 133076(*) 23230(*) 1970(*) 1973(*) 133076(*) 25910(*) 3889(*) 13307(*) 2373(*) 1970(*) 1973(*) 20256(*) 29926(*) 3889(*) 13307(*) 1971(*) 1971(*) 1971(*) 133076(*) 13307(*) 23730(*) 1375(*) 1373(*) 2370(*) 13307(*) 13307(*) 13307(*) 13337(*) 23730(*) 1971(*) 2350(*) 13307(*) 13337(*) 23730(*) 1376(*) 13730(*) 1971(*) 2350(*)			251100			961						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						196						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			405200	1890740		196						
145686(i) 23640(o) 343100 87748(i) 1966 195200 133774(i) 22500(i) 35490(i) 36490(i) 36490(i) 1966 1967 18220(i) 13376(i) 23510(i) 35500(i) 35490(i) 639550 1966 1971 213300 247127(i) 23910(i) 35500(i) 135430(i) 35490(i) 13950(i) 1971 213300 7517(i) 23710(i) 35490(i) 5530(i) 13560(i) 1971 213300 75137(i) 23710(i) 45310(i) 45360(i) 133610(i) 45730(i) 1971 213300 75137(i) 237130(i) 4650(i) 133610(i) 45760(i) 1973 20560(i) 111500 166772(i) 27130(i) 46550(i) 133710(i) 17610(i) 175300 1974 213500 111200 166772(i) 37130(i) 353710(i) 37560(i) 176130 363740 31470(i) 373510 373510 111200 166772(i) 3730(i)			V	-		961						
133774(i 2325(u) 3859(u) 36908(d) 1967 18220 247127(i) 239100 3890(i) 3890(i) 9968(i) 1968(i) 1978(i) 247127(i) 239100 3890(i) 3890(i) 3890(i) 1971(i) 1973(i) 247127(i) 239130(i) 3890(i) 3890(i) 1810[70 1971(i) 1973(i) 247127(i) 239130(i) 3890(i) 4531(i) 13369(i) 63965(i) 1971(i) 21330(i) 199737(i) 23910(i) 3850(i) 1310(i) 13369(i) 1971(i) 21330(i) 199737(i) 2071(i) 4623(i) 13660(i) 13660(i) 1971(i) 21330(i) 199737(i) 2071(i) 4637(i) 13660(i) 13660(i) 1971(i) 21330(i) 1917327(i) 201(i) 4637(i) 112665(i) 1360(i) 1971(i) 21330(i) 1011327(i) 21680(i) 264(i) 2360(i) 23730(i) 1971(i) 23230(i) 11210(i) 21680(i)						961		1410000	282700	5(X)9(0)		
1330760 255000 385900 690860 1968 27300 2472561 296700 385900 133060 19700 1970 19700 24175701 2373400 535900 69650 19710 19700 19710 213300 24175701 2373400 454700 539500 90770 1971 213300 7513702 3395400 457700 123660 1971 213300 7513702 307104 457700 123660 1971 213300 1972570 307104 457700 123660 1977 225600 19115301 307104 456704 125660 1977 225700 10315301 280100 464900 532320 1974 215700 112101 315300 531200 535300 1977 225700 112101 35400 35400 137800 1977 225700 112101 35400 35400 137800 1977 263700			6.2			196		2531000	345500		1575600	Γ
2472560 296700 385900 133660 - 19780 19780 13770 2371270 239100 453700 339670 19717 19710 198800 13770 237300 453700 453700 453700 239500 19712 249300 751370 299260x 304900 451700 123609 19712 2569400 1975501 20110 45700 452700 123609 19712 2569400 1975501 20110 45700 53710 123600 19712 223600 1975511 2711300 505600 537260 19713 275500 1977 223700 1121310 315500 535500 135500 157800 1976 222700 1121310 315500 335700 135800 137800 1976 223700 1121310 315500 15800 157800 1976 223700 11200 535100 331200 535500 1976 535310						961			2914(8)	482300	1 39530V	
2471270 2771270 2771270 2771270 2771270 2771270 2771270 2771270 17770 1972 260400 751370 737300 90770 93950 90710 1972 260400 751370 377300 90770 125660 1972 260400 751370 377300 90770 125660 1972 260400 751370 377300 90770 256900 1973 256900 131720 301100 465700 175660 1973 255600 160724 301500 577500 175600 1973 255600 112100 160720 375500 375500 1970 252704 11200 64.000 755500 375500 1970 252704 11200 94.100 375500 17636 16724 264300 11200 64.000 77500 1970 252704 1970 252704 11200 64.000 7700 17636 <						961						
1433250 339300 454300 639650 1971 213300 1972 260400 1973 260400 1971 21560 1972 260400 1972 260400 1973 260400 1972 260400 1971 25560 1973 25560 1973 307104 465204 13600 1973 25560 1973 307104 46570 333710 1973 25560 1973 25560 1973 25560 1973 25560 1971 25000 35710 211900 1973 25560 1931 11200 55600 35710 21300 265500 1973 252701 11200 114900 37500 37500 178150 17634 161720 265700 1973 272701 11200 56500 155500 137580 14970 265700 1980 175340 11200 56500 135700 135700 1980						197						-
731370 237300 423100 90700 1972 206400 1972 260400 423100 90710 466200 129500 1972 206400 1203170 307100 465200 433710 1070 1973 205600 1203170 307100 465200 533710 207100 1973 205600 1203170 307100 465800 455800 338710 211900 1973 20500 112110 1607220 315800 465800 338710 211900 1978 215000 11210 759090 18500 465800 338710 211900 235700 1978 255700 112100 54500 338710 211900 235700 1978 255700 11200 545100 315100 317800 1978 15030 15030 11200 545100 135500 135800 135800 1998 255100 11200 547000 13500 135800			-			197						
192600 303700 451700 1236090 1973 205600 197600 307100 465200 125600 1974 215500 1911530 307100 465200 1126630 1974 215500 1911530 307100 465200 1126630 1973 215500 1911530 250100 464900 333710 21900 1973 215500 111200 11121300 503600 533710 378710 1978 161300 11200 515600 175680 178800 178800 1979 253700 11200 55500 178800 178800 1979 253700 11200 55500 178800 178800 1979 253700 11200 55500 176800 17634 255310 11200 55500 195800 19790 253202 11200 55500 125800 15920 16932 27943 11200 55500 125800						197						
1203370 3071AU 4662NA 43070 53500 1975 23500 1607251 271300 505500 1126680 1976 23500 1607251 271300 505500 1126680 1976 23500 1121310 316500 46580 333710 211900 1976 23500 1121310 315500 155500 155500 197500 1976 22700 11200 54400 355100 465500 176390 17639 17639 11200 54400 375500 199100 1976 232015 11200 54400 1765600 19760 1978 233310 11200 55100 492500 1976500 1998 233150 1701 157600 19760 1976 235316 1701 312000 197600 1998 233316 1701 121600 51200 197600 1998 234317 1701 312000 125500						197			340600			
19119su 32010t 46.21M 11.26680 1975 223000 16/17201 280100 46.970 285300 1971 227001 10315301 280100 46.970 285300 1976 256300 1121310 316800 455800 338710 211900 1971 227001 1121310 355001 35500 387300 38710 211900 1973 227015 112100 555001 35500 375001 376300 1979 232015 11200 555001 375001 375001 3753015 161300 11200 555001 375001 375001 375301 17638 5800 11500 555001 1765500 137300 1980 17638 5800 157400 315001 155500 1973 555015 154780 72001 157100 135700 135700 1980 156371 5800 157100 1255600 19980 279435						197						
I6/72201 271300 532320 1970 23700 10315301 26500 45580 553230 1971 22700 112101 116800 45580 358710 211940 1973 232700 112101 316800 45580 358710 211940 1973 23200 11200 75500 37500 358710 211940 1979 232015 11200 57500 37500 35870 35870 19980 17634 11200 56140 35500 19680 35500 19980 17634 38800 187000 152200 19680 1522300 19980 235015 5880 17700 152200 19980 154280 149500 1998 232417 7200 19500 152200 11522800 1497100 1998 232417 7200 19510 1522800 1497100 1998 232417 7200 135300 537400 15950	-			1126650		197						1 9270NH
10315301 250100 464940 250501 1971 222200 112010 155400 33710 137800 1978 161300 759000 3755401 351500 178190 137800 1978 161300 759000 3755401 351500 312700 56500 1978 161300 759000 3755401 351540 351540 312700 1978 161300 759000 19900 1978 161300 161300 176384 11200 544001 3755401 312700 1978 161301 38500 1149100 152200 1981 255510 38500 1974014 123600 1998 16932 7201 199100 123700 1998 23248 7201 199100 123700 1998 23248 7201 122100 134700 1998 23248 7201 122100 134700 1998 23248 7201						191						
11213101 3155001 335700 313700 319700 1999 323310 11200 551501 315500 178190 27500 17534 161300 11200 551501 317500 1978 532310 76343 11200 55160 375501 511300 902300 66500 1999 235310 11200 55100 375501 511300 902300 19990 255310 11200 55100 375500 19580 155330 16973 353310 38500 187000 17500 157300 19990 255310 38500 18500 1499100 122100 19983 232433 1700 3153000 335100 373100 19983 232403 23100 3153000 122100 125400 19983 232467 23100 3153000 123500 139500 19983 232467 23100 3153000 138800 147300 1983						191						
7:90900 155400 591200 176150 176150 176350 19500 19702 253203 11200 964000 75540 90300 15540 17638 15550 19501 15450 17638 11200 964000 75540 105500 19501 19501 15438 56800 1145000 51300 156500 19960 19623 160724 7200 2077000 155500 155500 195500 19632 160724 7200 2077001 312700 256300 139300 19682 154738 7200 115000 154700 125500 199100 19960 236407 7200 315000 315800 128800 147500 19982 279343 7700 192100 122100 315000 138800 1472100 1988 279343 7700 236000 1372400 132400 139502 279413 23607 1988 279417					006117	161				_	292100	
I ROBONOI 3735NUI 5313.00 902300 19580 16354 11200 94,100h 2754NU 317.00 255510 19581 255510 38800 187000 94,100h 274900 502500 19581 555510 56800 187000 97100 139300 1983 152300 1983 152530 56800 187000 152200 139300 1993 169324 255312 56800 187000 152100 1359100 1122800 1479100 1995 273913 7200 19510 135100 135100 135100 2373013 157301 7700 1125800 1477700 11996 273413 273413 7700 235400 335400 353400 135400 1995 273413 71700 1125800 147700 11996 273410 273410 273417 23100 235400 33500 547400 1355400 1995 273417 <t< td=""><td></td><td></td><td></td><td></td><td>13/800</td><td>191</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>					13/800	191						
11200 1149000 325000 312700 235300 1981 235300 31800 17000 2077000 492300 154280 154280 38800 187000 155100 495100 154280 154280 58800 2077000 355100 1955100 19982 154280 7200 195100 195500 19952 154280 7200 195100 155100 195500 19952 154280 7200 195100 125000 1547000 1995 279413 7201 195100 125000 154700 1986 234513 53200 135700 135700 1986 234617 235401 53200 239300 239300 235401 19950 1986 234617 53200 135400 132400 132400 1986 234617 53200 23500 135400 132400 1986 234617 1900 23500 353300 53540					66500	861					-	-
11200 56.4004 2749X00 4923400 196800 152200 1982 153283 35830 187/001 351100 502500 1956500 19983 169724 56810 2077001 351100 502500 1956300 19983 16973 7201 155100 35100 125100 35200 19983 273433 7201 15500 17300 122100 19860 2734343 7201 15500 315000 35700 1672400 1986 2734343 7201 215700 122100 35700 19700 1986 2734543 53100 23500 53700 1672400 113700 1986 2734617 53100 23500 547400 152400 1825600 1 1986 275560 14100 235000 569400 15416668 17460 174800 174500 1 16655 23000 335000 569400 153500 57500 <td< td=""><td></td><td></td><td>_</td><td></td><td>226300</td><td>198</td><td></td><td></td><td></td><td></td><td></td><td>1 726000</td></td<>			_		226300	198						1 726000
38500 1570x00 3170x00 302.540 139.300 19983 10927.34 56800 2077011 355100 355100 355100 355100 355100 19983 232433 72010 1554001 355100 355100 355100 357943 27943 72010 355000 375400 490100 1188800 147700 1983 27943 77010 3155000 373400 357000 357000 373430 27943 23100 315004 375004 1188800 1471700 11986 236617 23100 237001 375004 373400 237300 517300 236600 1 14100 236000 375300 517301 152400 1825600 1 151665 0 14100 2357000 369800 567900 1414800 1723800 3 15655 235000 369800 567900 1419300 1723800 3 05655 235000	11200	_			152200	861						
56800 207/0001 355100 19900 232428 7200 199400 1547000 19855 273428 7200 3153000 3148.00 198500 23450 19855 273428 7700 3153000 3148.00 1847000 19855 273443 57300 315300 31400 710 19955 273443 537400 315300 537400 731700 19955 23461 537400 315300 537400 317700 19955 23461 537400 235400 547400 1127600 1432400 11956 23461 19000 236000 355000 589700 1414800 1743500 2 USGS 23300 359200 558970 1414800 1743500 3 USGS 23300 235900 369800 567900 1127600 3 USGS 23300 235800 1414800 1743500 3 USGS 235700 <td></td> <td></td> <td></td> <td></td> <td>139300</td> <td>861</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>					139300	861						
7200 7300 15400 31300 31400 239300 234617 933 2713700 1983 234617 53200 1251000 315300 31400 239300 234617 234617 53200 1251000 33500 547400 122600 665900 1986 234617 24100 236900 547400 122600 1323400 8040ce 234617 19000 236900 515900 122400 1524400 1325600 1 110556 14100 235000 358900 558900 1414800 1745100 2 05055 23300 358900 567900 1524400 1723800 3 05055 23300 235900 569500 567900 1273800 3 05055 23300 235900 569500 1419300 1723800 3 05055 23300 235900 369500 567900 1419300 1723800 4 0555 23500 </td <td></td> <td></td> <td></td> <td></td> <td>1499100</td> <td>861</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>					1499100	861						
17.00 315.000 573.400 2.295.000 2.17.500 1986 2.346.17 2312.00 212.1000 357.400 537.400 537.400 537.400 234.617 241.00 201.0000 375.000 547.400 1127.600 1.372.400 1 5.000 196.00 236.9000 335.000 5.493.00 1.127.600 1 1.127.600 1 1.127.600 1 1.127.600 1 1.127.600 1 1.127.600 1 1.110.655 1 1 1.110.655 1 1 1.110.655 1 1 1.110.655 1 1 1.110.655 1 1 1.110.655 1 1 1 1.110.655 1					10/ K	198						
532001 1221000 322400 537400 137600 603200 537400 137600 60320<			3		2/13/00	198		2069200	312300	622140	1134000	
24100 20100001 333000 54400 1432400 1432400 1 112.000 1 1100 2 33500 1 1100 2 33500 1 1100 2 33500 1 1100 2 33500 1 1100 2 33500 1 1100 2 33500 1 1100 2 33500 1 1100 2 33500 1 1100 2 35500 1 1100 2 3000 3 11000 2 3000 2 30500 3 11000 2 3000 3 11000 2 3000 3 11000 2 3000 3 11000 2 3000 3 11000 2 3000 3 10005				ľ	00%009							
1 19000 2365000 333300 569300 1524400 1825000 1 <th1< th=""> <th1< th=""> 1 <!--</td--><td>24100</td><td></td><td></td><td></td><td>14324(8)</td><td>Kel.#</td><td>ľ</td><td></td><td></td><td></td><td></td><td></td></th1<></th1<>	24100				14324(8)	Kel.#	ľ					
2 14100 2350000 376300 558900 1414800 1745100 2 USGS 3 25300 2357000 369500 567900 1419900 1723800 3 USGS 4 USGS 5 USGS					1825600		S					•
3 25300 2357000 369800 567900 1419300 1723800 3 0950 4 USGS 5 USGS			5		1745100		usgs	note; after 1969 -	-sum of blw L	Grange , Mode	sto. & Turlock	
	25300				1723800		USGS	noie: 1952 is avg value(nd)	value(nd)			
						4	lusgs					
							USGS					
C DWR					_	9	DWR					

,

ا -

.

•

•

٠

Tuolumne River Runoff and Diversions, 1896-1986

Consulting Engineers G. T. ORLOB & ASSOCIATES

> 1850 de Leu Drive, Green Valley, Suisun, CA 94585 (707) 864-1850

12 July 1987 GTOA 4102

Memo:

To: Alex Hildebrand

From: G. T. Orlob

Re: Effects of Reallocation of Hetch Hetchy Diversion to San Francisco on Water Quality at Vernalis During 1977 Irrigation Season

Reallocation of some portion of the Hetch Hetchy diversion to a "Delta Pool" during dry years could improve water quality at Vernalis, depending upon the quality and quantity of the allocated flow, and the flow in the San Joaquin River.

Three scenarios for reallocation are considered:

- Downstream release of one-half of the average monthly diversion (9.27 KAF during 1977),
- Downstream release sufficient to control quality at Vernalis to a maximum of 500 mg/L TDS, and
- 3. Downstream release sufficient to control quality at Vernalis to a maximum of 450 mg/L TDS.

Using historic flows and qualities at Vernalis for the irrigation season of 1977, we obtain the following estimates: IO: Alex Hildebrand From: G. T. Orlob

۲.

12 July 1987 Page Two

Scenario 1 -- Allocation 1/2 average diversion

Mo.	Vernalis mg/L	TDS H	H-H Allocation* KAF	Modified TDS mg/L
A-77	864		9.27	482
Μ	777		9.27	560
J	888		9.27	382
J	942		9.27	341
А	908		9.27	372
S	844		9.27	438
		Tota1	55.62 KAF	

* TDS assumed at 50 mg/L

Scenario 2 -- Allocate to achieve 500 mg/L TDS

Mo.	Vernalis TDS mg/L	H-H	Allocation KAF	Modified TDS mg/L
A-77	864		8.5	500
М	777		13.5	500
J	888		5.3	500
J	942		4.4	500
А	908		5.1	500
S	844		6.8	500
		Total	43.6 KAF	•

Scenario 3 -- Allocate to achieve 450 mg/L TDS

Mo.	Vernalis TDS mg/L	H-H Allocation KAF	Modified TDS mg/L
A-77	864	10.9	450
Μ	777	18.0	450
J	888	6.7	450
J	942	5.5	450
A	908	б.4	450
S	844	8.8	450
		Total 56.3 KAF	SDWA Exhibit 121

Page 2 of 3

To: Alex Hildebrand From: G. T. Orlob

ï

,

12 July 1987 Page Three

It appears that an allocation to a "Delta Pool" of about onequarter of the 1977 Hetch Hetchy diversion of 222.7 KAF would have been sufficient to markedly improve the quality at Vernalis during the 1977 irrigation season. Additionally, such an allocation would have roughly doubled the net flow into the Delta at Vernalis.

. .

GTO:lo

SDWA Exhibit 121 Page 3 of 3

SDWA-WQCP-21

SDWA-WQCP-24

NET SALT LOAD ACCUMULATION, 1000 TONS

BAY-DELTA OVERSIGHT COUNCIL

DRAFT

BRIEFING PAPER ON INTRODUCED FISH, WILDLIFE AND PLANTS IN THE SAN FRANCISCO BAY/ SACRAMENTO-SAN JOAQUIN DELTA ESTUARY

Bay-Delta Oversight Council

May 1994

EXECUTIVE SUMMARY

INTRODUCTION

Regulatory actions over the past decade in the San Francisco Bay/Sacramento-San Joaquin Delta Estuary have affected the operations of water projects, which provide the water supply for two-thirds of all Californians, as well as irrigation water for millions of acres of agricultural lands. Water management actions have been implemented in the Estuary during this period to protect the native winter-run Chinook salmon, the native delta smelt, and other depleted fishery resources. Some of the water users impacted by those actions have expressed concerns over whether other factors in the Estuary have been given sufficient consideration. One of the factors underlying this concern is the large number of introduced species in the Estuary in relation to the numbers of native species, which have been the focus of these regulatory actions.

In the draft briefing paper, prepared for the Bay-Delta Oversight Council, titled "Biological Resources of the San Francisco Bay/Sacramento-San Joaquin Delta Estuary", specifically the section entitled "Factors Controlling the Abundance of Aquatic Resources", dated September, 1993 the effect of introduced species was presented as a comparatively minor factor affecting the Estuary's fishery resources. Some commentors strongly disagree with this characterization and believe introduced species are a major factor that has and will affect the Council's efforts to "fix" the Delta. One illustration of the concern regarding introduced species is that in 1991 seven of the ten most abundant species salvaged at the State Water Project fish screens were introduced species and the sport catch of introduced species during the 1980s in the Estuary exceeded the catch of native species.

The role of introduced species in the Estuary and any possible limiting effects they may have on the recovery of certain depleted species and the overall restoration and protection of the Estuary ecosystem is not well understood. Conditions in the Estuary are ever changing and new introduced organisms continue to be documented as surveys and field work is conducted in the Estuary.

This briefing paper is intended to provide the Council with an overview of the current state of knowledge with respect to introduced species in the Estuary and discusses how the ecosystem may be affected by their presence.

i

BACKGROUND

Introduced species can affect native fish, wildlife, and plants through a wide variety of mechanisms. These include: competition for space, competition for existing food resources, predation, disturbance, hybridization, pathways for and sources of disease, and physical alteration of the environment. Non-native plants can contribute to the incremental loss of habitats and biological diversity by affecting the ecological process of succession, productivity, stability, soil formation and erosion, mineral cycling, and hydrologic balance.

Introductions of non-native species have occurred from the initial human settlement of the region. Such introductions, intentional or not, impact the native species populations by competing for available resources and habitat and predation. Intentional introductions were often the result of government agencies' intent to provide additional opportunities for anglers or attempt to control a pest species. Nonintentional introductions are incidental to normal day-to-day activities in the Estuary. Ballast water discharges and containerized freight, for example, are thought to be significant pathways.

Introduced species have probably affected the abundance of native species in the Estuary, but only in a few cases is the data available to document that an introduced species is a significant cause of the decline of native species. The ecological complexities of the Estuary are not well understood and the available data on impacts of native and non-native interactions is somewhat imprecise. Little is known about impacts resulting from early introductions due to limited monitoring. However, even with the more extensive monitoring of introduced species in the last 25 years, the current data may not fully document recent introductions to the system. Developing in-depth data for introduced species is difficult as they often are not noticed or studied in detail until they become nuisances.

The primary focus of concern over the role of introduced species within the Estuary are the processes of predation and competition. Evaluation of the consequences of introductions requires the formulation of evidence of the affects of these processes. This assessment is difficult due to the lack of historic data. Species introduced during the early part of the state's history are interacting with the native biota. Thus, potential impacts are difficult to discern due to this interaction. Additionally, the Estuary's ecology is continually evolving as a result of intensified land use and modifications to water project operations. These changes alter conditions to such an extent that the dynamics of the relationships between introduced species and native species interactions are affected.

Monitoring during the last 25 years has been much more extensive than in previous periods and has led Department of Fish and Game (DFG) biologists to conclude that only the depletion of the native copepod (*Eurytemora affinis*) by introduced copepods, and subsequently, the introduced Asian clam provides evidence of competition and predation by introduced species being the principal cause of a decline in the population of a native aquatic species. While another possible example is inland silversides and delta smelt, that needs further evaluation, particularly as to what happened during the 1993 rebound in delta smelt abundance.

Evidence of native wildlife depletion attributable to predation and competition by introduced species is more direct. Adverse effects on native wildlife and plant species by the red fox, Norway rat, Virginia opossum, feral cats, and several terrestrial and aquatic plant species have been documented.

One prominent perspective on the issue of the affects of introduced species on the native flora and fauna is that species such as the striped bass and largemouth bass were introduced into the system and have existed with native species since that time in the Estuary. Although some, and perhaps extensive, alteration of the native fishery resources undoubtedly occurred, the benefits derived from these introduced species were considered sufficient at the time to justify their introduction. In those cases, the non-native species are now considered part of the Estuary's biological system. Many fisheries management experts believe that restoration of the Estuary should include some non-native species such as striped bass which provide important recreational opportunities for sport anglers and contribute to the economy of the State. They also believe that this can be accomplished without compromising the goals of restoring and protecting the Estuary.

A second perspective is that from the very first time that a non-native species was introduced into the system the biotic uniqueness and structure of the Estuary as a whole was altered. This alteration of the Estuary was such that the non-native species were usually the winners and the native species the losers. Advocates of this position also tend to feel that management actions aimed at increasing the abundance of introduced species populations, such as striped bass, are in conflict with goals set for achieving recovery of native species. A third perspective is held by those experts who contend that recovery efforts should focus on ecosystems in a more global nature. For example, Dr. Peter Moyle of the University of California Davis believes introductions may increase local diversity, but they often cause a decrease in global diversity when native species are driven to extinction. The U.S. Congress Office of Technology Assessment (OTA) states that the concept of "vacant niche", (which holds that some ecological roles may not be filled in a community, and species can be selectively introduced to fill these voids) is inappropriate because few species can fit the narrow ecological vacancies identified by managers, and because it is virtually impossible to predetermine the role a species will assume after it has been released. Dr. Phyllis Windle of the OTA further points out that in focussing on declines of natives and the often-ambiguous data on species extinctions, we lose sight of significant ecosystem changes in structure and function that usually accompany the introduction of non-native species.

Attempts to prevent new species from becoming established in the Estuary has resulted in elaborate, expensive, and difficult control efforts spearheaded by the Department of Fish and Game, Department of Boating and Waterways, and Department of Food and Agriculture.

INTRODUCED SPECIES

The Estuary is home to more than 150 introduced aquatic species of plants and animals including over 27 different non-native fish species and over 100 different species of marine invertebrates. The briefing paper discusses this collection in some detail. A selection of the more significant species are highlighted in this executive summary.

<u>Fish</u>

Government agencies have intentionally introduced certain species to expand the opportunities for angling and commercial fishing, to expand the forage base for predators, and to control pest populations. Other mechanisms for introduction include unauthorized transplants by individuals, and non-intentional introductions occurring incidental to commercial and sporting activities (i.e. discharge of ship ballast water, transport of organisms on the hulls of fishing boats, etc.).

iv

Striped bass (*Morone saxatilis*) were introduced into the Sacramento-San Joaquin Estuary in the late 1800s. Striped bass were stocked by the DFG from 1982 through 1992 in an effort to support and maintain the existing population in the Sacramento-San Joaquin Estuary. This practice was suspended by the DFG in response to concerns that the stocking of striped bass, which was only a small portion of the natural process, was adding predators to the system which could harm populations of the winter-run Chinook salmon.

1

Ł

It is reasonable to believe that a top of the food chain predator like striped bass, which in the late 19th century became a dominant fish in the estuarine ecosystem, must have decreased the abundance of some other species. However, available evidence is not sufficient to identify those declines. Thus striped bass are an important part of the introduced species issue both because their introduction may have influenced the abundance of other species, and because more recent introductions of other species may have a role in the recent decline of striped bass. The evidence indicates striped bass decrease salmon abundance, but are not the principal controlling factor in recent declines of salmon or delta smelt.

The **largemouth bass** (*Micropterus salmoides*), a species introduced in the late 1800's to enhance sport fishing, is one of several members of the sunfish family which, it is theorized, may have collectively out-competed the native Sacramento perch for habitat. They have also been implicated in the decline of the red- and yellow-legged frogs in areas where they coexist. While the prevailing judgement is that largemouth bass probably contributed to declines in various native fishes in the Delta, conclusive evidence has not yet been demonstrated.

The **chameleon goby** (*Tridentigor trigonocephalus*), introduced sometime in the 1950's, had become the third most abundant species identified in the DWR's southern Delta egg and larval sampling by 1989, and it was the most abundant fish by 1990. Chameleon goby was the only species more abundant than 6 mm striped bass in 1991. However, there is insignificant data to assess the impacts of the chameleon goby's on native species.

The **inland silversides** (*Menidia beryllina*) was introduced into Clear Lake and migrated to the Delta by the mid 1970s. DFG biologists have argued that silversides had little effect on other species because increases in silversides did not coincide with the decline in other species. Dr. Bill Bennett of U.C. Davis, however, has hypothesized that predation by silversides on eggs and larvae of delta smelt may be important in the decline of delta smelt. Predation by inland silversides on delta smelt larvae in controlled experiments and the possibility that silversides may be more abundant than the DFG surveys indicate since shoreline areas are not sampled as extensively as midchannel areas has led other experts to concur with his hypothesis. While Dr. Bennett's hypothesis appears to have merit, further evaluation is necessary, particularly to explain the 1993 rebound in delta smelt abundance.

Amphibians

Builfrogs (Rana catesbeiana) successfully introduced into California have been noted to prey upon and out compete native species such as the red-legged and yellow-legged frogs in areas where they coexist.

<u>Reptiles</u>

The impact of introduced **sliders** (*Psuedemys scripta*) and **softshell turtles** (*Trionyx spiniferus*) on native organisms is unknown. However, they do feed on frogs, aquatic invertebrates, and carrion. In addition, the release of aquarium trade turtles has the potential to introduce pathogens and parasites into southwestern pond turtle populations and can result in competition for resources.

Invertebrates

The changes in invertebrate populations have been more dramatic than those for fish in recent years. Several new species of zooplankton have dramatically changed the species composition in the brackish and freshwater portions of the Estuary.

Introduction of the **asian clam** (*Potomocorbula amurensis*) in 1986 and its consequential biological effects on the food chain have been detected by long term monitoring programs. The clam occupies bottom space to the exclusion of other benthic species, as measured by the reductions in their average densities, and also alters the benthic community's species structure. The asian clam has a higher plankton filtration rate than most native invertebrates and has been implicated in the reduction in chlorophyll biomass and production rate in Suisun Bay. Some experts theorize that this reduction in biomass could affect the quality of the entrapment zone and its ability to sustain larval fish and other native invertebrate populations. However, the ecological significance of these changes remains to be evaluated further.

<u>Wildlife</u>

Several non-native wildlife species reside in the Estuary. A number of these species may be viewed as desirable; providing hunting and other recreational opportunities. Other non-native wildlife species which were introduced have expanded their numbers into the Estuary and have increased predation upon the native wildlife populations, thus disrupting natural predator-prey relationships of the Estuary.

- 1

Norway rats (*Rattus norvegicus*) introduced and well established in many areas by the 1800s, are predators on waterfowl and nesting California clapper rails; reportedly taking about 33 percent of the eggs laid by clapper rails in southern portions of the Estuary. Once rats become established on colonial bird nesting islands, the reproductive success of these bird colonies may be greatly affected by these opportunistic predators.

Feral cats (Felix catus), abandoned and wild, are a major predator for bird and mammal populations in the wetland areas of the Estuary.

Red Fox (Vulpes Vulpes) was brought to California for hunting and for fur farming during the late 1800s. The red fox preys on eggs of Caspian terns and California least terns in the Bay area, causing complete nesting failure of entire colonies. The red fox is also implicated in contributing to the decline of the California clapper rail in the Estuary. Along the bay, red fox prey upon the eggs of black necked stilts, American avocets, and snowy plovers. The increase in the range and population of the red fox is due to the species ability to adapt to urbanization and the subsequent elimination of larger predators such as the coyote which would normally help in controlling the numbers of red foxes.

Terrestrial Plants

There is a long history of concern about the impact of non-native plant species on wetland areas. The extent or cumulative effect of these species on the native vegetation in the Estuary is not fully understood and more information is needed to better understand the complex, usually indirect, interactions of plants in natural environments; both for scientific understanding and to promote better vegetation management.

Broadleaf pepper grass (*Lepidium latifolium*) is widely distributed in the state, difficult to quarantine, and an economic threat to agriculture.

Eucalyptus (*Eucalyptus sp.*), in certain situations, may have crowded out native grasses and forbs by shading out these species, by the destroying the understory with debris and oils released by the trees, and competing for soil and water.

Aquatic Plants

Impacts on the Delta ecosystem from aquatic weeds include blocking flood control channels, increasing mosquito habitat, increasing siltation, changing water temperature, changing dissolved oxygen, obstructing boating recreation activities, and decreasing property values for properties adjacent to affected channels. Waterhyacinth (Eichhornia crassipes) provides additional escape cover for fish and other organisms, but the relative value of escape cover provided by submerged native aquatic plants in contrast to cover provided by the submerged portion of hyacinths is not known. Although the effects on fish and wildlife are not well understood, the additional shade provided by the waterhyacinth negatively impacts phytoplankton and can cause rooted submergent plants to die.

PERSPECTIVES ON INTRODUCED SPECIES

An earlier version of the draft briefing paper was submitted to a diverse review panel representing federal, state, and local organizations for review and comment. In addition, they were requested to submit a separate perspective paper based on the particular focus of their agency or group which may have differing viewpoint than presented in the briefing paper. These perspective papers are reproduced, as submitted, and included as part of this briefing packet. The following summaries highlight only certain points within the papers and should not be considered substitutes for the full text.

The United States Congressional Office of Technology Assessment (OTA) submitted a report brief on "Harmful Non-indigenous Species in the United States" The brief states that harmful non-indigenous species have exacted a significant toll on U.S. natural areas, ranging from wholesale changes in ecosystems to more subtle ecological alterations. They have found that fundamental changes in structure and function of habitat were as much of a concern as species declines. That is, non-natives change the players, but can also change the rules of the game. The OTA believes the concept of "vacant niche", (which holds that some ecological roles may not be filled in a community, and species can be selectively introduced to fill these voids) is inappropriate because few species can fit the narrow ecological vacancies identified by managers, and because it is virtually impossible to predetermine the role a species will assume after it has been released.

Dr. Phyllis Windle of the Office of Technology Assessment comments that in focussing on declines of natives and the often-ambiguous data on species extinctions, we lose sight of these significant ecosystem changes. In addition, Dr. Peter Moyle of the University of California Davis comments that introductions may increase local diversity, but often cause a decrease in global diversity when native species are driven to extinction.

Lars Anderson of the Agricultural Research Service (ARS) comments that the objectives of the ARS are to sustain species diversity and improve aquatic habitats, as well as to conduct ongoing research and advise several state/federal programs which complement and partially address specific objectives of the BDOC process. In addition, he identifies three major needs: 1) increased systems-level approach to answering questions related to "fixing" the Delta; 2) efficient research coordination across federal, state, university, and private groups; and 3) current vegetation surveys coupled with the generation of GPS/GIS to establish a "baseline" so that future research can be planned and executed efficiently and effectively.

In support of the opinion that introduced species add diversity and value to the Estuary, Don Stevens, a senior biologist of the DFG comments that an appropriate goal is to restore a biologically diverse ecosystem which maximizes production of desirable recreational and economically important species while not jeopardizing the existence of natives. He states that, for the most part, native fishes have endured despite numerous more or less indiscriminate intentional introductions that have dominated the Delta's fish fauna for more than a century. In addition, he comments that the present declines of both native and introduced species have occurred concurrently with major changes in water management.

Randy Brown, Chief of the Environmental Services Office in the Department of Water Resources comments that introduced species and other factors result in a constantly changing Estuary and one where few management measures can be successfully used to control these species. He states that the scientific community does not have a good understanding of the interactions between newly introduced species and those already present. He comments that without a stable system it is almost impossible to define management actions that will result in specific changes in populations of target species and that deliberations regarding these actions should recognize that they may not achieve their intended objectives because of this instability. In addition, he believes federal and state agencies must do all in their power to limit future introductions, since it is essentially impossible to control species in the Estuary once they are introduced. He states that one of the most important unresolved issues related to introduced species, especially fish, is their impacts on native species through competition for the same, often scarce, food resources.

Dr. Peter Moyle of the University of California Davis comments that even when species overlap in diet and use of space does not mean they compete since the food source or space may not be in short supply. He continues that because competition has not been demonstrated it does not mean that it does not exist. Karen Wiese, of the California Native Plant Society (CNPS) comments that the CNPS views the introduction and proliferation of non-native plants in the San Francisco Bay/Sacramento-San Joaquin Delta Estuary as a threat that disrupts and displaces native ecosystems resulting in a loss of biodiversity. She states that the loss of biodiversity implies reduced functional values (or benefits) to the ecosystem and the region as a whole. In addition, she comments that introduced plants have had a history of detrimental effects on the native flora, thus, adversely altering the biodiversity of the ecosystem. The CNPS recommends that when aggressive non-native plants threaten to displace and destroy native plant habitat, control and eradication programs be implemented for those invasive species.

Ross O'Connell of the California Department of Food and Agriculture (CDFA) comments that the potential introduction and establishment of additional non-native species is not addressed in the briefing paper. He states that Hydrilla verticillata and the zebra mussel could be very devastating if they become established in the Delta. The CDFA has an eradication program that spends approximately one million dollars a year in eradication and detection survey efforts. In addition, various biocontrol agents are used to help in the control of "A" rated weeds in situations where current technology makes eradication unfeasible due to terrain or the size of the infestation. Plants rated "A", present an economic threat to agriculture and occur in very localized areas of the state.

Larry Thomas of the Department of Boating and Waterways (DBW) comments that there are at least three other non-native species (Egaria, Parrot feather, and Waterprimrose) in addition to waterhyacinth which have become a problem, or have the potential to become a problem. He states that the DBW agrees studies should be undertaken to better understand the significance of introduced species on the Estuary's fish, wildlife, and plants.

CONCLUSIONS

This paper acknowledges that the effects of introduced species and ecological complexities in the Estuary are far from definitive and more study is necessary to define the problem. Hence, continuing analysis of existing data and additional studies are warranted. However, by necessity, the BDOC will likely need to consider the issue utilizing existing information.

The effect of introduced plants has been pronounced in the Estuary. Aggressive non-native plants have significantly altered the California landscape and the Bay-Delta Estuary is no exception. Introduced fish species have undoubtedly affected the abundance of native species in the Estuary, but the magnitude of such effects is very uncertain.

· •.

Few opportunities exist to effectively reduce or eliminate introduced species from the Estuary. Most introduced species cannot be totally eliminated from the Estuary. Still, most resource managers agree that additional introductions are generally undesirable. Consequently, management activities focus on preventing additional incidental introductions and managing the existing mix of species. The desire to minimize the likelihood of new species becoming established has resulted in elaborate, expensive, and difficult control efforts. Efforts to control non-native predatory mammals such as red fox and Norway rats and invasive aquatic species such as white bass and northern pike should continue. In addition, a more aggressive effort to manage ballast water discharges, inclusion of invasive plant control in native plant restoration programs, and biological control of introduced invasive aquatic plants should also be undertaken. Future management actions will have to be undertaken recognizing that the full extent of impacts from introduced species on the Estuary is uncertain.

The Council and its technical advisors will need to consider how introduced species help define the Estuary's ecosystem and how they may impede recovery of specific native species. Properly considering introduced species in the context of evaluating alternatives to "fix" the Delta will help define a realistic, achievable plan for restoring the Estuary.

March 30, 1994

MEMORANDUM RE ECOLOGICAL PROBLEMS OF THE SAN FRANCISCO BAY-DELTA ESTUARY by Alex Hildebrand and Stan Barnes, with substantial input from others

3

The ecological problems of the Bay-Delta Estuary are many and varied and their causes are many and varied. See Attachment "A", hereto.

It is evident that there are so many potentially serious causative factors that one cannot assume with any confidence that any selected few are so determinative that the rest need not be addressed in order to achieve substantial environmental improvement. Californians cannot wait until all factors and their interrelations are fully understood and evaluated. On the other hand, we should not implement mitigative measures involving very large financial and/or water costs without at least having a carefully evaluated and considered opinion that such measures can provide significant environmental improvement in the absence of measures addressing other potentially significant factors. In particular, we need to ask that the impact of introduced species of all types be better evaluated. It has not been technically or scientifically established that some of the presently and most seriously proposed water management measures can be substantially effective unless something can be done about the competition within the entire food chain by introduced species.

It is urged that the above points be pursued before proposals by the EPA and other Club-Fed members lead to major disruptions of Delta operations.

Most certainly, Californians can and should protect the environment better than we have in the past, at each increasing level of our human population. However, the environment will not be better protected in the long run if efforts to protect it are inept or disregard human needs. The irreversible impacts of continuing human population growth and of competition by the pervasive populations of introduced aquatic species throughout the food chain simply must be addressed. A social and political backlash will result if mandated Delta standards prove to cause substantial losses in water and associated economic and social costs and most particularly if they prove to be far less effective environmentally than is predicted.

* 3

More attention must be given to six broad areas of concern if we are to be successful:

1) <u>The need to quantify the benefit or injury to fish, wildlife and other</u> <u>environmental values of adding or removing an increment of flow at various</u> <u>times and locations within the Bay-Delta Estuary and streams tributary thereto</u>. The human and economic benefits of water used for municipal, industrial and agricultural purposes are readily determinable on reasonably dependable bases. To justify very large quantities of water being precluded from such traditional beneficial uses, future societies will insist that at least some general quantitative bases be developed on which to measure environmental increments and decrements from changing conditions.

2) <u>The probable limitations of potential environmental improvement</u> <u>through management of diversions and outflows because of the competition</u> <u>between native and introduced species throughout the aquatic food chain</u>. Some introduced species have only recently become recognized to cause serious problems in the Bay-Delta Estuary. This competition between native and exotic species may very well render the proposed new EPA and/or any similar standards

-2-

substantially ineffective, until and unless other effective measures can be implemented to deal with this serious problem. It is important to recognize that the introduction of such exotic species may already be limiting the population of ESA endangered and protected species and, in the future, may limit the effectiveness of proposals to require modifications of Delta water management in order to achieve protection and enhancement of threatened and endangered species.

1

, - <u>1</u>2

3) The impact upon food supply from the proposed Delta standards which are intended to achieve environmental protections. The presently proposed standards will cause urban pain, but the burdens will fall heaviest on the agricultural economy and the State's ability to continue to feed its growing population. There are predicted to be 63% more Californians to feed over the next thirty years. There is no State policy or plan on how to feed these people. Yet there are many proposals to reduce the agricultural water supply substantially. California now provides a substantial portion of the nation's table food. Some of the remainder is being grown in the plains states by overdrafting groundwater at a rate comparable to the flow of the Colorado River. This cannot be sustained. Can we afford to set environmental standards without considering the effect on the food supply?

1

4) <u>Recognition of the overcommitted water yield of streams in the</u> <u>Central Valley watersheds</u>. These supplies were already overcommitted before it was decided that increased flows were needed for fish, for endangered species, and for wildlife refuges. Meeting such mandates and the EPA's proposed striped bass salinity standard will, therefore, not be physically possible without a major reduction in water for the valley's domestic needs and for the agricultural economy of the region. Furthermore, any resulting increase in striped bass

-3-

populations will mean more competition for the salmon which we are trying to restore.

2

5) <u>Potential adverse impact on water quality conditions, particularly</u> in the lower San Joaquin River. As more water is released for spring and fall fish flows, there will be poorer water quality and lower stream flows in the summer. There will then be less food production, some loss of riparian habitat, and the reduction in irrigated agriculture will reduce the associated protection of open space and the habitat provided by agricultural operations.

6) <u>Adverse impacts on the environment resulting from decreased</u> <u>agricultural water supplies</u>. A number of examples can be cited, one being a limitation on water to grow rice in the Sacramento Valley and particularly to flood rice ground in the winter time, which provides feeding and resting areas for wildfowl. The interrelationship between productive agriculture and environmental values should be given more serious attention and study.

Just as we must pay more attention to biodiversity, we must also pay more attention to the interrelationships among water needed for environmental aquatic needs, environmental terrestrial needs, human domestic needs, and the production of food.

If we assume that something approximating 2 ppt (parts per thousand) salinity is required to keep the Estuary's null zone in a productive location (Suisun Bay) during certain parts of different water year types, we should think of this as an <u>objective</u>, not a standard. Such an objective should be implemented gradually, consistent with:

a) Balancing social and economic impacts against environmental objectives;

b) Information gained by monitoring the effects on fisheries

-4-

of gradual, or staged, implementation;

Ł

3

c) Ability to compensate for social and economic impacts by further water development (dams, transfers, conservation, etc.);

d) Ability to allocate water supply impacts consistent with water rights priorities (including "area of origin" rights), and nonproject created impacts.

The <u>initial</u> objective should be to reverse downward trends of significant organisms; long-range objectives should be to create a reasonable balance among competing interests.

I. PROBLEMS

- A. Significant human impacts on the environment of the Bay-Delta Estuary began in the second half of the nineteenth century and have increased over the years as California's population has grown from about 1.5 million at the turn of the century to more than .32 million today. At present rates of growth, there will be 40 million by about 2005 and 50 million by about 2020.
- B. The current physical and hydraulic conditions in the Delta are unsatisfactory for the ecosystem and for users of water within or diverted from the Delta.
- C. Because the complex Estuary conditions change with time, due to a variety of factors, the planned solutions to the Estuary's problems cannot be static.

ł

- D. Because of the complexity of the issues and the limitations on the total water supply and money available, it is highly unlikely that there can be a perfect quick fix solution; therefore, compromises must be made in arriving at a program or programs which will provide satisfactory solutions for each of the interests:
 - 1. ecology of the Estuary;
 - 2. flood control, water supply and water quality within the Delta;
 - 3. adequate quantities of good quality water at reasonable cost for municipal, industrial and agricultural uses, on a reliable basis.
- E. Restrictions on the SWP and CVP export pumps now imposed by administration of the Clean Water Act and the Endangered Species Act have limited diversions by the SWP and the San Luis Division of the CVP in this 1993 wet year.
- F. Federal and/or state water quality standards applying to the Bay-Delta Estuary are often too strict, too inflexible, in conflict with standards of other agencies, and exacerbate potential solutions to Estuary problems. At the root of this serious situation is the fact that the specified standards are often based on very weak scientific evidence.
- G. In some cases, water quality standards may be too "narrow" (i.e. what's good for drinking may not be good for fish); there is not agreement regarding appropriate standards for a diversity of uses.

H. Some technically qualified people have serious reservations regarding the reliability of present computer models of Bay-Delta conditions. There is a need to improve the modeling of hydrologic systems and to link such improved hydrologic models with ecosystem model processes.

II. <u>CAUSATIVE FACTORS RE DETERIORATION OF THE ECOLOGICAL</u> ENVIRONMENT OF THE ESTUARY

- A. Based on many studies and discussions, the following can be stated with some certainty:
 - 1. The fishery problems of the Sacramento and San Joaquin rivers and of the Bay-Delta Estuary are many and varied;
 - 2. The causes of the problems are many and varied;
 - Some of the causative factors, but by no means all of such factors, are attributable to water resource development projects;
 - 4. Some, but not all, of the adverse impacts on fisheries which are attributable to water resource development projects can, in turn, be attributed to the State Water Project and the Central Valley Project.
- B. The causes of fish and wildlife problems in the Bay-Delta Estuary have been indicated by the California Department of Fish and Game and others to include the following:

Category 1 (Directly associated with CVP and/or SWP activities.)

- 1. Reduced flows and altered timing
- 2. Cross Delta flows
- 3. Reverse flows
- 4. Diversions and entrainment
- 5. Reduced egg production
- 6. Food supply
- 7. Predation

¥ 41

4

- 8. Handling of screened fish
- 9. Dams and barriers
- 10. Increased temperatures
- 11. Water quality
- 12. Flooding of upland wildlife habitat
- 13. "Rafting" of ducks in Clifton Court Forebay area

<u>Category 2</u> (Not a direct CVP or SWP responsibility but possible mitigation and/or enhancement opportunities)

- 1. Dams and barriers by nonfederal or state projects
- 2. Reduced flows and altered timing by nonfederal or state projects

- Irrigation return flows and agricultural drainage from saline lands
- 4. Levee management practices
- 5. Channelization and dredging
- 6. Erosion

Category 3 (Not related to CVP or SWP)

- 1. Dams or barriers by nonfederal or state projects
- 2. Agricultural diversions
- .3. Agricultural drainage
- 4. Mine drainage and other contaminants
 - a) Adult mortality
 - b) Egg resorption
- 5. Contaminated discharges from M&I sources
- 6. Water quality, generally
- 7. Increased temperatures due to nonfederal or state projects
- 8. Reduced egg production
- 9. Food supply
- 10. Predation and competition
- 11. Dredging and dredge material disposal
- 12. Recreational use throughout the Bay-Delta Estuary and the Central Valley rivers system
- 13. Fishing mortality (legal and illegal, local and coastwide)
- 14. Hunting mortality (legal and illegal, local and statewide)
- C. In the past few years, new information has become available on changing ecological conditions in the Bay-Delta Estuary. These changes appear to be having a very substantial impact on the food chain of the established fisheries, independent of the operation of any water resource development projects.
- D. Recent examples of dramatic changes in the Bay-Delta ecological system brought about by the inadvertent introduction of exotic species, including the following:
 - 1. Potamocorbula, the clam that has changed the food web in the Suisun Bay area;
 - Sinocalanus, an Asian copepod, not well-liked by young striped bass, that has tended to displace the copepod, Eurytemora, a favorite food of the young striped bass;
 - Pseudodiaptomus, another Asian copepod, also not well-liked by young striped bass;
 - 4. Yellowfin Goby, a fish that eats young striped bass;
 - 5. Melosira, a chain diatom, actually a long-term resident of the Delta that, in the 1980s, became the predominant organism comprising algal blooms in the Delta.

11