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PREDICTIVE ABILITY OF THE STRIPED BASS MODEL 

The purpose of this exhibit is to investigate the ability of 
the Striped Bass Model (IIModeln) to predict the number of adult 
bass in the Sacramento-San Joaquin Estuary (nEstuaryn) that would 
result from a given level of Delta outflow and exports. The 
Model is summarized from WRINT-DFG-Exhibit 3 in Figure 1.' The 
raw data that the California Department of Fish and Game (nCDFG1l) 
re ortedly used to develop the Model is presented in Appendix 
A. P 

1. VALIDATION 

Several reviewers pointed out the need to validate the Model 
using data that had not been used to develop the Model, including 
the Department of Water Resources ("DWRW), Hanson, and Jones & 
~ t o k e s . ~  Regression models are normally validated by comparing 
predictions to actual values that were not used to develo~ the 
model. This can be achieved by collecting fresh data or by 

' David W. Kohlhorst, Donald E. Stevens, and Lee W. Miller, 
A Model for Evaluatina the Im~acts of Freshwater Outflow and - 
Exvort on Stri~ed Bass in the Sacramento-San Joaauin Estuary, 
WRINT-DFG-Exhibit 3, July 1992. 

CDFG1s regression equations were checked using the data in 
Appendix A. All of the equations shown in Figure 1 can be 
duplicated except those that are based on April through July 
flows. The equations obtained using the data in Appendix A are: 

(2) Residual YOY = 1/[0.00995 + (2.41/Eggs) ] - 60 
(3) Suisun Index = 46.61 Log(Mean Apr-Jul Outflow) - 158.86 
(4) Delta Index = 288.827 Log(Mean Apr-Jul Outflow) - 34.445 (Log(Mean Apr-Jul Outflow) ) - 0.00560 (Mean Apr-July Diversions) 

- 527.400 
We suspect that CDFG estimated the above three equations using an 
early version of DAYFLOW. We used CDFG1s data from Appendix A 
and our refit of ~quations 2 through 4 in this footnote in all of 
the analyses reported herein. 

Letter from Edward F. Huntley, DWR, to D.'Beringer, SWRCB, 
November 1, 1992, p. 2, Comment 3; Letter from Charles W. Hanson, 
Hanson Environmental, to David W. Kohlhorst, CDFG, November 7, 
1991, p. 1; Letter from W.J. Shaul, Jones C Stokes, November 1, 
1992, p. 1-2. 
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Figure 1. 
DFG STRIPED BASS MODEL 

(WRINT - DFG - Exhibit 3) 

TI Eggs = 92.25(Adults[inc. hatchery))' + 38.58 [P. 27) 

(p. 27) 

Delta lndex = 292.332 Log(Mean Apr-Jul Outflow) - 34.866 (Log(Mean Apr-Jul Ouflow))2 - 
0.00561 (Mean Apr-Jul Exports+3 108) - 534.5475 (Fig. 7) 

(p. 14) 

I] Log(Loss Rate) = 0.00013593(Mean Aug-Mar Exports) - 
0.00001 553(Mean Aug-Dec Oufflow) + 4.6226 (p. 35) 

When applying Equation 7, multiply Mean YOY and Mean Loss Rate by 0.4238 
" x = 1.08 when adults in Equation 1 = 1.7 million; x - 0.936 when adults in Equation 1 = 1 million 



splitting the data set and using part to fit the model and the 
rest to validate it. 

The CDFG did not validate the version of the Model included 
in WRINT-DFG-Exhibit 3 and has not adequately validated any 
version of the Model. Figure 6 in WRINT-DFG-Exhibit 3 is not a 
validation. Rather, it shows how well one of the six regression 
equations fits the pleasured. data, not how well the Model will 
predict future values. The predicted values in CDFGms Figure 6 
were apparently estimated using the Adult equation (Eq. 7, Fig. 
1) alone with data used to develop the Model in the first place. 
CDFG also apparently aDDlied the Model in the same way that it 
was developed, while in practice, the Model is applied very 
dif ferentl~.~ 

Basic textbooks on regression5 routinely recommend 
validation to assess the predictive accuracy of regression 
models. For example, Drs. Montgomery and Peck in Introduction to 

L - 
Linear Rearession ~nalvsis~ point out that: 

There is no assurance that the equation that provides 
the best fit to existing data will be a successful 
predictor. Influential factors that were unknown 
during the model-building stage may significantly 
affect the new observations, rendering the predictions 
almost useless. Furthermore the correlative structure 
between the regressors may differ in the model-building 

In developing the Model, the mean YOY index and loss rate 
3 to 7 years earlier are used, while in applying the Model, point 
estimates of the YOY index and loss rate are used. Similarly, in 
developing the Model, individual weighting factors for each year 
are used, while in applying the Model, the mean annual weighting 
factor of 0.4238 is used. Finally, when applying the Model, 
adult abundance is multiplied by 1.08 when adults in Equation 1 
average 1.7 million (prior to 1976) and by 0.936 when adults in 
Equation 1 average 1.0 million (after 1976) [WRINT-DFG-Exhibit 3, 
p. 391. This introduces significant uncertainty into the 
predicted results, as discussed in Section 3.3. 

See, for example, Dick R. Wittink, The A~~lication of 
Rearession Analysis, Allyn and Bacon, Inc., Boston, 1988, Chapter 
10; Douglas C. Montgomery and Elizabeth A. Peck, Introduction to 
Linear Rearession Analvsis, 2nd Edition, John Wiley & Sons, Inc., 
New York, 1991, Chapter 10; Norman Draper and Harry Smith, 
A ~ ~ l i e d  Resression Analvsis, 2nd Edition, John Wiley & Sons, New 
York, 1981, p. 419-422. 

D.C. Montgomery and E.A. Peck, Introduction to Linear 
Rearession Analvsis, 2nd Edition, John Wiley & Sons, Inc., New 
York, 1992, p. 443. 



and prediction data. This may result in poor 
predictive performance for the model. Proper 
validation of a model developed to predict new 
observations should involve testing the model in that 
environment before it is released to the user. 

Dr. Wittink, in The A~~lication of Rearession ~nalvsis~, 
likewise writes: 

, The validity of the final model is usually assessed in 
terms of predictive accuracy. That is, the estimated 
equation (from the estimation sample) is used to 
predict values for the criterion variable in the 
validation samples. These predicted values are then 
compared with the actual values. Note that in this 
case the observations in the validation sample are not 
used to estimate parameters. Instead, the parameters 
estimated in the estimation sample are used to obtain 
the predicted values in the validation sample. 

We evaluated the predictive ability of the Model by 
eliminating 1987 through 1991 from the data sets, refitting the 
equations, and using the refitted equations to predict adult 
abundance. The same form of the equations shown in Figure 1 was 
refit to the shorter data sets. The predictions are based on 
point estimates rather than 3 to 7 year backaverages and annual 
reightin~ to accurately reflect the way the Model is actually 
~ppl ied . 

The results of this analysis are shown in Table 1. In three 
~ u t  of the four years, predicted adult abundance is about half of 
xtual abundance, while in one year, predicted abundance is about 
20 percent higher than actual. Thus, the predictive ability of 
the Model is poor. 

1. CONFIDENCE INTERVALS 

The predictive ability of a regression model is normally 
?valuated using 95 percent confidence intervals. A confidence 
interval is a measure of the uncertainty associated with a model. 
rhe 95 percent confidence interval, for example, means that there 
is a 95 percent probability that the true value lies between the 
lpper and lower limits. Although regression equations and their 
zoefficients may be statistically significant (i.e., p<0.05), the 
:quatioris can have wide confidence intervals due to statistical 

Dick R. Wittink, The Application of ~esression Analysis, 
Lllyn and Bacon, Inc., Boston, 1988, p. 267-268. 
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TABLE 1. VAUDATlON OF STRIPED BASS MODEL FOR 1987-1990 

Dala Used for Model Validation 

Log Log I Adults2(inc. Aug-Mar A u p h  AprJul AprJul AprJul Welghtlng 

Refitted Equations 

Year 
1987 

1. Eggs = 96.94(Ad~lls)~+25.33 

hatchery fish) Exports Outflow Outflow Outflow? Diversions Factor 
1.076649039 8.51 3 4,435 3.6667 13.4446 9,721 0.4238 

2. Correction Factor = [ I  /(0.0107+(2.14/Eggs))]-60 

3. Suisun lndex = 46.61 Log(A-J Outflow)-158.86 

Predicted Actual 
1987 129.7 176.0 

4. Delta Index = 288.827 Log(AJ Outflow)-34.445(Log(AJ Outflow))& 1987 14.1 7.3 
0.00560(AJ Diversions)-527.4000 1988 14.3 3.9 

1989 13.8 3.1 
1990 22.3 2.8 

5. YOY lndex = Correction Factor+Suisun Index+Delta lndex 

6. Log Loss Rate = 0.0001 2476(A-M Exports)-0.00001 445(A-D Outflow)+ 1987 5.6353 6.0467 
4.6373 1988 5.5791 5.6271 

1989 5.8900 6.0772 
1990 5.2671 

7. Adults = 0.936[20336 WMYOY-486819 Log(WMLossRate)+3112988] 1987 539,342 998,349 
1988 587,505 903,899 
1989 473,985 786,380 
1990 707,311 591,241 



and structural defects, reducing one's certainty about the 
magnitude of the predicted value 

Three types of confidence intervals are commonly used in 
regression analysis. These are confidence intervals on the 
conditional meant9 predicted values, and fitted coefficients. 

2.1. CDFG1s Confidence Intervals 

In WRINT-DFG Exhibit 3, CDFG estimated 95 percent confidence 
intervals for the Adult equation (Eq. 7, Fig. 1) and reported 
them in Figure 6 of WRINT-DFG-Exhibit 3. The CDFG confidence 
intervals are a very narrow band, implying a high degree of 
confidence in the Model's predictions. Although CDFG did not 
explain how they estimated their confidence intervals, 
backcalculation indicates that CDFG1s confidence intervals are 
estimated for the conditional mean for only the Adult equation 
(Eq. 7, Fig. 1). CDFG1s confidence intervals are not relevant 
for estimating how well the Model predicts because they are on 
the conditional mean not the predicted value, and they are for 
one equation only, rather than the set of seven equations that 
comprise the Model. 

2.1.1 Prediction Intervals. Prediction confidence intervals 
must be used to determine the uncertainty in predicted values. 
The conditional mean confidence intervals that CDFG used are for 
the regression line itself, not individual predicted values. 
Prediction confidence intervals for each of the six regression 
equations are shown in Figure 2. Prediction intervals for the 
Model as a whole must include the uncertainity in each of these 
six equations as well as the uncertainity associated with 
substituting each result into subsquent equations. 

Figure 2f shows confidence intervals on predicted values 
superimposed over confidence intervals on the conditional mean 
for the Adult equation. Note that 35 percent or eight out of 23 
of the observed values for adult abundance, fall outside of the 
conditional mean intervals of CDFG1s Figure 6. The reason that 
so many points fall outside of the band is that the conditional 
mean confidence intervals are not designed to encompass predicted 
values, only the regression line. The uncertainty in individual 
predictions is always greater than the uncertainty in the 

Wittink, 1988, p. 39. 

The llconditional meann is the average predicted value of Y 
based on the condition of a specific value of X. The conditional 
mean, for example, might be the average Suisun YOY Index for all 
years when the April to July Delta outflow was equal to 5,000 
cfs. Confidence intervals on the llconditional meanw are the same 
thing as confidence intervals for the regression line. 
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Figure 2. 95% Confidence Intervals for the Predicted values 
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Figure 2 (Continued). 95% Confidence Intervals for the Predicted Values 
(d) Residual YOY=[1/(0.00995+(2.41/Eggs))]-60 
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conditional mean.'' The predicted value interval is the 
appropriate interval to assess predictive ability. 

2.1.2 Model Intervals. The second problem with CDFGIs 
confidence intervals is that they are for only the Adult 
equation, not the six regression equations that comprise the 
Model (Eqs. 1-4,6,7, Fig. 1). Each of these six equations also 
has 95 percent confidence intervals, as shown in Figure 2. 
Therefore, to determine 95 percent confidence intervals for 
predictions made with the Striped Bass Model, confidence 
intervals that combine the error in all six equations and 
simultaneouslv apply to all six regression equations must be 
constructed. 

CDFG1s confidence intervals only apply when the Adult 
equation (Eq. 7, Fig. 1) is used in isolation to predict the 
conditional mean. In other words, the CDFG intervals apply only 
when a measured YOY (rather than one estimated from Eqs. 1 - 5 in 
Fig. 1) and a measured loss rate (rather 'than one estimated from 
Eq. 6) is used to estimate conditional mean adults. This is not 
how the Model is applied. The Model is applied by using 
hydrologic variables to estimate the Suisun and Delta indices and 
the loss rate, which are then plugged into the Adult equation. 
Thus, the uncertainty in each of the six regression equations 
must be combined to determine the total uncertainty of the Model. 

In sum, CDFGIs confidence intervals give the misleading 
-impression that the Model is a precise predictor of adult 
abundance. As shown below, the Model does not accurately predict 
adult abundance. 

2.2. Confidence Intervals For The Model 

The most straightforward way to estimate confidence 
intervals" for the Model would be to combine the seven 
equations into a single equation and use the raw data (Appx. A) 
in the usual way to compute confidence intervals. When this is 
attempted with the Striped Bass Model, it reduces to an 

. equation12 of the form: 

lo Wittink, 1988, p. 47. 

l1 Henceforth, when the term Itconfidence intervalsw is used, 
it refers to confidence intervals on the predicted value unless 
otherwise stated. 

l2 The actual equation reduces to: 

Adults, = [aw/~dults,~ + bWLog ( W O )  + cW(Log(AJ0) 
+ dW (AJD) + e b g  ('-El + f-g (WxADO) I t,ggd 3-7 yrs 



Adults (without hatchery fish) = a function of (1) 

[l/~dults~ (with hatchery fish) + Outflow + Diversions] ,,, 
Notice that "adultsw is a response variable (Y) and that the 
reciprocal of lagged adults2 is one of the predictor variables 
(X's). The Model, in effect, predicts adults from one over the 
square of 3 to 7 year lagged adults''. 

We fit this single equation to the data, and the results are 
shown in Table 2. Examining the probabilities (p), it is obvious 
that neither the Model as a whole (p=0.07) nor the individual 
fitted coefficients (p=0.14 to 0.75) with the exceptions of 
August to December outflow, are significant at the 5 percent 
level. The p values shown in Table 2 are understated due to 
violations of the underlying assumptions of regression analysis, 
including the requirement that the predictor variables are . 
independent and that the residuals have equal variance.13 

Examining the signs on the various fitted coefficients, 
intuitively, it appears the Model is not correct. The fitted 
Model predicts that adult abundance: (1) decreases when adults 3 
to 7 years earlier increase; (2) increases when August to March 
exports increase; and (3) decreases when the square of April to 
July outflow increases. These results raise significant 
questions about the validity of the seven-equation Model that the 
single equation model was derived from. 

Clearly, the single-equation model is not useful for 
prediction because 5 of the 6 fitted constants are not 
statistically significant and have inconsistent signs. Further, 
the Model as a whole is not statistically significant at the 5 
percent level (r2=0.45, p=0.07). This is in part due to extreme 
collinearity and other statistical defects, as discussed in 
Section 3. Since the single-equation model is useless for 
prediction, confidence limits have no meaning and are not 
calculated. 

2.2.1 Prediction Error. Because confidence intervals are 
not strictly defined for the Model, confidence intervals on the 

where the subscript o indicates adults without hatchery fish, the 
subscript h indicates adults with hatchery fish, W is a weighting 
factor, AJO is the April to ~ u l y  outflow, A J D  is the April to 
July diversions, AME is the August to March exports, ADO is the 
August to December outflow, and "am through 'Ifm are regression 
coefficients. 

l3 Rupert G. Miller, Jr., Beyond ANOVA. Basics of AN  lied 
Statistics, John Wiley & Sons, New York, 1986, Chapter 5. 



Year . 
1969 
1970 
1971 
1972 
1 973 
1974 
1 975 
1976 
1 977 
1978 
1 979 
1980 
1981 
1982 
1983 
1984 
1985 
1986 
1987 
1988 
1989 
1990 
1991 

TABLE 2. LINEAR LEAST SQUARES REGRESSION FOR AN EQUATION OF THE FORM:. : , - , 

Adults[o] = [aWIAdults[h]* + bWLog(AJ0) + cW(Log(AJ0)p + dW(AJD) + 
eLog(WxAME) + fLog(WxAD0)) [lagged 3-7 years] 

where [o] indicates adults &ut hatchery fish, @I] indicates adults with hatchery fish, W is a weighting factor, 
AJO is April to July oublrow, AJD is Apd to July diver~~~ons, AM€ is August to March exports, ADO is 

Augusr to Dmmber outffow, and a through fare regwon amfticients 

Lag INght  Lag Wght Lag Wght Lag Wght Lag Wght Lag Wght 
Adults[o] Adults(hJ2 Log AJO Log AJW AJD Log AME Log ADO 
1.646.026 0.7399 3.0615 1 188.80 1.2034 1.6707 
1,727,394 0.7945 3.541 1 1061.82 1.2321 1.6473 
1,599,715 0.741 4 3.0943 1259.43 1.31 89 1.6006 
1,882,907 0.7875 3.4853 1 179.44 1 2926 1.6405 
1,637,159 0.7492 3.1529 1285.55 1.3037 1 .6878 
1,477.21 3 0.7668 3.2903 1395.37 1.3351 1.6657 
1,849,770 0.7199 2.9051 1566.62 1 3494 1.6470 
1,581,076 0.347332 0.7233 2.9230 162636 1 -3802 1.7004 
924,301 0.399867 0.7698 3.31 93 1 794.8 1 1 .a25 1.6904 

1,151,642 0.353697 0.7826 3.41 99 1682.04 1.4501 1.6554 
1,155,701 0.3721 79 0.7293 2.9851 1546.41 1.4388 1.51 64 
1,115,999 0.750805 0.6800 2.5990 1191.19 1.4241 1 .4369 
91 1,300 0.779775 0.7334 3.0294 1333.48 1.4243 1 A690 
825,126 0.77291 8 0.7267 2.9590 1553.29 1 .4471 1.4966 

1,009,748 0.790352 0.7456 3.1065 1583.91 1 A608 1.4980 
1,042,668 0.994026 0.7246 2.9321 1603.01 1 A690 1.6051 
1,024,188 1 25278  0.7893 3.4974 1621.51 1.4758 1.6987 
1,037.1 27 1.131474 0.8364 3.921 9 1488.16 1.4268 1.791 3 
998,349 1.031 355 0.7897 3.5039 1655.50 1 A492 1.731 7 
903,899 0.9901 85 0.7350 3.0397 1773.63 1.4730 1.5808 
786,380 0.957085 0.7495 3.1462 1704.97 1.4815 1.5358 
591,241 0.96901 3 0.7059 2.7939 1719.77 1.4939 1.4598 
961,063 1.090548 0.6872 2.6373 1785.90 1.4983 1.41 54 

Regression Statistics 

Multiple R 0.81 7581 672 
R Square 0.668439791 
Adjusted R Sq. 0.447399651 
Standard Error 157089.8694 
Observations 16 

d SumdSquares MeanSqwre F SignikamF 

Regression 6 4.47753E+11 74625543253 3.0240651 85 0.066367446 
Residual 
Total 

Variable CoeIdenG StandardEmr I S&Wc P-value Lower%% Upper%% 

Intercept -591 3771.35 12361 974.46 -0.4783840 0.6392747 -33878521.72 22050979.03 
1 /Adults[h]* -277734.89 286649.57 -0.9689004 0.3479592 -9261 81.77 37071 1.99 
Apr-Jul Out 1 2429856.98 3491 2934.9 1 0.3560244 0.7267800 -66548749.00 91 408462.96 
Apr-Jul Out2 -1 995662.99 41 14756.94 -0.485001 4 0.6346820 -1 1303896.98 731 2571 .OO 
Apr-Jul Diversn -643.95 417.60 -1.5420213 0.1438984 -1 588.64 300.73 
Aug-Mar Exp 1038084.05 31 52439.04 0.3292955 0.7464854 -6093233.94 81 69402.03 
Aug-Dec Out 2297247.47 939383.29 2.4454847 0.0272822 17221 3.22 4422281.72 



regression coefficients were used to give an indication of the 
error in predicted values. Model predictions are no better than 
the estimated coefficients. The prediction error was computed by 
first replacing all of the regression coefficients with their 
upper 95 percent confidence limit and using the Model in the 
usual way to predict adult abundance. Then, the regression 
coefficients were replaced with the lower 95 percent limit and 
adult abundance predicted in the usual way. 

The results of this analysis are shown in Figure 3. The 
intervals shown on Figure 3 are not confidence intervals, but 
rather a worst-case estimate of the error associated with Model 
predictions. Additional estimates could be obtained by using 
different combinations of confidence limits on the coefficients. 

Figure 3 shows that errors in the regression coefficients 
could cause errors of over +/- 2000 percent in predicted adult 
abundance. The very wide error band is caused by structural and 
statistical problems such as multicollinearity, which affect the 
accuracy of the estimated coefficients. The large prediction 
error of the Model (Fig. 3) suggests that it is not useful for 
forecasting adult abundance. 

3. FACTORS THAT INFLUENCE THE PREDICTIVE ABILITY OF THE STRIPED 
BASS MODEL 

Many reviewers raised statistical criticisms of the Striped 
Bass Model, including multicollinearity, autocorrelation, 
averaging, and propagation of errors, among others. CDFG 
dismissed these statistical concerns, arguing that as long as the 
equations make biological sense, statistical flaws are 
unimportant. For example, in their November 21, 1991 response to 
comments to the State Water Resources Control Board ("SWRCBW), 
they state: "[w]e also believe that complete statistical rigor is 
not essential ... Nevertheless, the model makes sense conceptually 
and biologically and does a good job at predicting abundance 
within the range of past obser~ations.~'~ 

However, when the errors in CDFG1s analysis are corrected, 
one finds that the Model does not do a good job at predicting 
adult abundance (Secs. 1,2). Further, some of the structural and 
statistical defects discussed below suggest that the Model may 
also have biological flaws. Regardless, a model can make 
biological sense, but not statistical sense, and thus not be able 

l4 Letter from Harold K. Chadwick, CDFG, to Leo WinternitZ, 
SWRCB, Re: Department of Fish and Game Responses to Comments on 
the Striped Bass Model and Additional Analyses, November 21, 
1991, p. 3, Comment 6. 





to make accurate predictions. In order to be useful as a 
management tool, a model must be able to make reasonably accurate 
predictions. The statistical problems raised by the reviewers 
are valid concerns that stronalv affect the abilitv of the Model 
to make accurate ~redictions. Further, because the inter- 
relationships among variables are not accurately modelled due to 
multicollinearity and autocorrelation, the Model also is not 
useful for studying relative changes and differences among 
alternatives because management options necessarily involve 
changing the inter-relationships among variables. 

The large uncertainty in the Model's predictions are due to 
statistical flaws, measurement errors, and model specification 
errors, as discussed below. 

One of the principal assumptions of regression analysis is 
that the predictor or explanatory variables (the X's) are 
independent (i.e., the value of one predictor variable does not 
depend on the value of any of the other predictor variables). 
Multicollinearity or simply Mcollinearity,w refers to the 
situation when the predictor variables are related to each other. 
Severe collinearity indicates that a substantial part of the 
information in one or more of the predictor variables is 
redundant, which makes it difficult to separate the effects of 
the different predictor variables on the response variable (the 
Y) 

When collinearity is present, the standard errors associated 
with the regression coefficients are inflated, the coefficients 
themselves may be unreasonable, and confidence intervals are 
larger than they otherwise would be. In fact, the coefficient of 
determination (9) can be high and the regression equation can be 
statistically significant while the individual fitted parameters 
are not statistically significant and the prediction intervals 
are large.'' Chatterjee and Price warned that "one should be 
extremely cautious about any and all substantive conclusions 
hased on a regression analysis in the presence of 
m~lticollinearity~'~ and that multicollinearity "...can 
seriously limit the use of regression analysis for inference and 
forecasting. Extreme care is required when attempting to 

l5 Wittink, 1988, p. 83-90. 

l6 Samprit Chatterjee and Bertram price, ~eqression ~nalvsis 
BY Example, 2nd Edition, John Wiley & Sons, Inc., New York, 1991, 
p. 174. 

8 



interpret re ression results when multicollinearity is 
suspected. n1 9 

The six individual regression equations were tested for the 
presence of collinearity using principal component analysis. 
The analyses indicate that collinearity is a severe problem for 
the Delta Index equation (Eq. 4, Fig. 1) 'and for the Adult 
equation (Eq. 7, Fig. 1) and is also present to a lesser extent 
in the Loss Rate equation (Eq. 6, Fig. 1). This indicates that 
the regression coefficients in these equations may have been 
degraded and that confidence intervals and redictions could be 
improved by using better conditioned data.18 Collinearity 
appears to be one of the reasons that the error in predicted 
values (Fig. 3) is so large. 

In the Adult equation, collinearity is present because the 
YOY index and loss rate are correlated with each other (9 = 
0.79, ~ ~ 0 . 0 1 )  . Most reviewerst9 correctly noted that in the 
Adult equation, the YOY index is correlated with loss rate 
because loss rate is the ratio of export losses to the YOY index. 
When the log loss rate equation is refitted using export losses 
rather than loss rate, the 9 drops from 0.77 to 0.17, 
demonstrating that August to March exports and outflow explain 
very little of the variability in export losses. In contrast, 
replacing loss rate with export losses in the Adult equation does 
not significantly affect the 9,  indicating that adult abundance 

l7 Chatterjee and Price, 1991, p. 184. 

l8 David A. Belsley, Edwin Kuh, and Roy E. Welsch, 
Reuression Diaunostics: Identifvina Influential Data and Sources 
of Collinearitv, John Wiley & Sons, New York, 1980, Chapter 3. 

l9 Letter from Warren J. Shaul, Jones & Stokes, to Pete 
Chadwick, CDFG, Re: Comments on California Department of Fish and 
Game's Proposed Striped Bass Impact Methodologies for the Bay- 
Delta Water Right Environmental Impact Report (EIR), November 1, 
1992, pp. 3-4; Letter from Roger K. Patterson, Bureau of 
Reclamation, to Pete Chadwick, CDFG, Re: Comments on Draft 
Striped Bass Paper of Department of Fish and Game, Presented at 
State Water Resources Control Board Workshop on October 25, 1991 
(Bay-Delta Hearings) (Water Rights), November 18, 1991, p. 2, 
Comment 5a; Letter from Bruce K. Orr, EA Engineering, Science, 
and Technology, to William Johnston, MID, Re: Comments on the 
CDFG report by Kohlhorst, Stevens, and Miller, November 1, 1991, 
p. 3; Letter from James H. Cowan, Jr., University of South 
Alabama, to Randy Brown, DWR, Re: Comments on Striped Bass Model, 
January 28, 1992, p. 1, Comment 3; J~seph G. Loesch, Critique of 
a Means of Evaluating Impacts of Alternative Outflow and Export 
Criteria on Striped Bass in the Sacramento-San Joaquin Estuary, 
December 2, 1991, p. 2. 



is not significantly affected by August to March exports and 
outflow. 

In the Delta index equation (Eq. 4 ,  Fig. l), collinearity is 
present because April to July outflow and April to July outflow 
squared are highly correlated (9 = 0.99, p<0.01) . As a result, 
at the 5 percent significance level, the fitted coefficients for 
the intercept (p=0.27), log April to July outflow ( ~ 0 . 2 1 ) ~  and 
squared log April to July outflow (~0.20) are not statistically 
significant, even though the regression equation as a whole is 
statistically significant (p=0.026). Further, the negative 
coefficient for squared log April to July outflow is not 
consistent with the positive coefficient for log April to July 
outflow. In fitting polynomials, collinearity can be eliminated 
by centering the measured predictor variables on their mean 
values before computing the power (e.g., squared) and fitting the 
equation. 

In the loss rate equation, collinearity is present because 
August to March exports are correlated with August to December 
outflow. As discussed in section 3.2 and pointed out by Willits, 
''the predictors that are of central interest (water exports) are 
correlated with time (they increase over time) so this creates 
collinearity between exports and time. Moreover, most of the 
additional predictors that have been suggested also vary with 
time, and so it's rather difficult to separate between an effect 
due to water exports and due to other variables that vary 
similarly. . . n2O 

In some cases, collinearity may not adversely affect the 
ability of a model to predict, so long as the relationship 
between the predictor variables does not change. For example, if 
the relationship between YOY index and loss rate remained 
constant in the future, the mis-specified Model could still be 
used to make reasonable predictions if there were no other 
problems. However, if the relationships between these correlated 
variables change, the Model would not be able to make accurate 
predictions. For example, if export losses were reduced by 
structural changes in Clifton Court Forebay, the relationship 
between loss rate (export losses/YOY index) and YOY index would 
change, invalidating predictions with the Model. similarly, if 
reservoir operations were changed, the relationship between 
outflow and exports could change. 

Because the Model would be used to explore exactly these 
types of options, it is of questionable utility as a management 
tool because it does not model the actual inter-relationships 
among variables. Thus, regardless of whether the Model makes 
biological since, collinearity is a serious concern because it 

20 Willits, March 29, 1992, p. 2-3. 



limits the utility of the Model for predicting and for exploring 
management options. 

For time series data, autocorrelation or nself-correlation" 
means that individual values in a time series, such as Delta 
outflow or exports, are correlated with past or future values in 
the series. In other words, for example, April Delta outflow may 
depend on March Delta outflow, and so forth. The presence of 
autocorrelation in time series data is usually tested by using 
the first-order autocorrelation coefficient, which is nothing 
more than the correlation coefficient (r) obtained by regressing 
the time series with the same series shifted by one observation 
(e*g. , Y~,Y, ;Y~,Y~;Y~,Y~-~) 

First-order autocorrelation coefficients were estimated for 
all data sets used to developed the Striped Bass Model. The 
results, shown in Table 3, indicate that strong autocorrelation 
is present in all individual time series, except log April to 
July outflow. Autocorrelation in the response and predictor 
variables can cause badly misleading results when estimating 
regression models due to time-lagged relationships, feedback from 
predictor to response variables, and correlated regression 
residuals, among others. These problems, which are discussed 
below, can be corrected by using dynamic regression which takes 
into account the time-lagged relationships between response and 
predictor variables ." 

3.2.1 Time-Lamed Relationshi~s. The response variable Y, 
may be related to the predictor variable X, with a time lag; that 
is, Y, may be related to X,_ X Xt-3, and so forth, in addition 
to (or instead of) being reYat:d1to X~ For example, instead of 
the usual first order regression equa ion 

which is the basis of the Striped Bass Model, the correct 
relationship may be 

where b is a generic constant that would have different values in 
equations (1) and (2) . If equation (3) is the correct 
formulation, useful information is lost, for example, about the 
roles of X,-, and X,-? in explaining the change in Y,. Thus, the 
estimate of the residual variance would be larger than necessary, 
and predictions would likely be less accurate than otherwise. 

Alan Pankratz, Forecastins with Dynamic Resression 
Models, John Wiley & Sons, Inc., New York, 1991, p. 8-15. 

11 



Variable 

Adults 

Log AprJul Exports 

Log Aug-Dec Outflow 

Aug-Mar Exports 

Delta YOY lndex 

Log Weighted Mean 
Loss Rate 

Log Apr-Jul Outflow 

Log Loss Rate 

I I Export Losses 

p isun  YOY Index 

TABLE 3. AUTOCORRELATlON IN DATA SETS USED TO 
DEVELOP STRIPED BASS MODELS 

Lag-1 
Autocorrelation Standard Bartlett'sl Student's t 

n Coefficient Error t (a = 0.05) Slgntficant2 

31 0.476 0.180 2.64 2.04 yes 

p h t e d  Mean YOY 1 23 0.820 0.209 3.92 2.07 Yes 

I I 
I 

Bartlett's t is the ratio of the Lag-1 autocorrelation coefficient to the standard error. 

, / 
1 
1 , 
I 

If the absolute value of Bartlett's t is greater than Student's t, the Lag-1 autocorrelation  efficient is 
statistically significant at the 5 percent level in a two-tailed test. This means that the data set 
is autoconelated. 



Further, the estimate of the fitted regression coefficients 
associated with X, will be biased and inconsistent if the 
excluded variables (X,_, and X,_2) are correlated with the included 
variable X,. These consequences of autocorrelation affect the 
ability of the Model to make accurate predictions and the 
confidence that one can place in predicted values. 

The Adult equation contains time-lagged relationships, which 
CDFG attempted to address by using the weighted mean YOY index 
and weighted mean loss rate 3 to 7 years earlier. As pointed out 
correctly by several reviewers22, this is an inaccurate way to 
model time-lagged relationships because useful information on the 
correct relationships is lost, reducing the accuracy of 
predictions. Because time averaging is not used when the Striped 
Bass Model is applied, inaccuracies are compounded. 

Although no tests were performed, it is likely that time 
lagged relationships also exist in the Suisun index, Delta index, 
and loss rate equations. All of these equations should be refit 
using dynamic regression to ihprove their predictive ability. 

3.2.2 Misleadina Correlations. As explained by Dr. Pankratz 
in Forecastina with Dynamic Rearession Models, "if there are 
common elements in the autocorrelation structure of Y, and X,, 
then an ordinary regression equation can show a strong 
relationship between these variables when, in fact, X, has no 
real explanatory power.w23 Several reviewers correctly pointed 
out that the apparent good correlations for some regression 
equations in the Striped Bass Model are due to the fact'that the 
predictor variables are related to time in the same way as the 
response variable. 

For example, Jones & Stokes noted that both YOY, exports, 
and outflow are related to time in the same way, suggesting that 
the correlation between exports and the Delta YOY equation is due 
to their common relationship to time.2~ommon time 
relationships are present in the Suisun Index, Delta Index, 
Adult, and Loss Rate equations. As a result of these common time 
relationships, correlation coefficients mistakenly show strong 
relationships among variables that may not be otherwise related, 
adversely affecting the ability of the Model to make accurate 
predictions. 

22 Letter from David G. Hankin, Humboldt State University, 
to Randall L. Brown, DWR, January 7, 1992, p. 2, Comment 1; 
Hanson, November 7, 1991, p. 4; Willits, March 29, 1992, p. 2. 

23 Pankratz, 1991, p. 12. 

Shaul, November 1, 1991, p. 3. 
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The CDFG investigated the effect of common time 
relationships by detrending adult abundance, weighted mean YOY 
index, export losses, and loss rate. They found that when the 
time trend is removed, correlations of adult abundance with 
weighted mean YOY index and weighted mean loss rate disappear. 25 

This suggest that the good correlation for the Adult equation ($ 
= 0.71, pe0.01) is largely due to time trends, as suggested by 
the reviewers, rather than any fundamental relationship between 
variables. 

The effect of time trends was further explored by regressing 
adult abundance on time alone. The resulting regression 
equationz6 explains more of the variance and has lower p values 
for the regression as a whole and individual coefficients than 
the Adult equation. Thus, time alone is a better predictor of 
adult abundance then loss rate and the YOY index. 

Although the CDFG believes that this does not mean that the 
strong relationships are w...spurious, only that they are mostly 
due to simultaneous major changes in yoy striped bass abundance, 
entrainment losses, and loss rate that have occurred over 
time, w27 they are incorrect. They have demonstrated that the 
good correlation obtained for the Adult equation is largely due 
to common time relationships, rather than to a fundamental 
relationship between adults and loss rate and YOY index. Even 
though, theoretically, there may be a biological relationship 
between adults, the YOY index and loss rate, it is obscured by 
common time trends and is not modelled correctly. For example, 
if the time trend associated with Delta outflow shifted relative 
to the time trend in adults due to, for example, a reduction in 
export losses in Clifton Court Forebay, the Model would no longer 
make accurate predictions. 

3.3. Differences In Develo~ment And ~ ~ ~ l i c a t i o n  

In developing the Model, the mean YOY index and loss rate 3 
to 7 years earlier are used to estimate adult abundance, while in 
applying the Model, point estimates of the YOY index and loss 
rate are used. Similarly, in developing the Model, individual 

25 CDFG, Exhibit WRINT-DFG-Exhibit 3, Table 11 and p. 21 and 
24. 

26 Regressing adult abundance on year yields the following 
equation: 

Adults = -47,513(Year) + 95,285,912 
where r2 = 0.74 (p<0.01) and the fitted coefficients are 
statistically significant (p<0.01). 

27 Id., p.  25. 



weighting factors for each year are used, whereas in applying the 
Model, the mean annual weighting factor of 0.4238 is used. 
Finally, in applying the Model, adult abundance is multiplied by 
1.08 when adults in Equation 1 average 1.7 million (prior to 
1976) and by 0.936 when adults in Equation 1 average 1.0 million 
(after 1976) As pointed out by  ans son,^ developing a model 
using a five year average and applying it for single years can 
introduce considerable error into Model predictions. 

The effect of differences in Model development and 
application was tested by repeating the validation shown in Table 
1, using five-year back averages for the YOY index and loss rate. 
The predictions for the backaveraged case (comparable to Model 
development) are 949,027 bass in 1987; 681,645 in 1988; 869,404 
in 1989; and 637,221 in 1990. On average, the ratio of the 
actual to predicted adults is 1.05 for the development case and 
1.50 for the application case (predicted using point estimates). 
This demonstrates that significant errors are introduced into 
Model predictions when the Model is applied without regard for 
time lagged dependencies (Sec. 3.2.1). Flow standards set using 
this Model would have to be met for five consecutive years to be 
consistent with Model assumptions. This problem can be cured by 
using dynamic regression to accurately model the time-lagged 
relationships of the Model, as discussed in Section 3.2. 

3.4. Data Inconsistencies 

The periods of record vary from data set to set. The only 
period common to all data sets is 1969 to 1976. Thus, the 
regressions for the six equations may capture different 
relationships due to fundamental changes in the Estuary over 
time. For example, regressions based on data sets that extend 
back to 1959 (Delta and Suisun index, loss rate) capture 
conditions present in the Estuary before the State Water Project 
pumps came on line in 1968, while those based on post-1969 data 
(eggs, residual YOY, adult abundance) would not reflect pre-SWP 
conditions. Likewise, regressions based on data sets that end in 
1976 (Delta and Suisun index) fail to capture changes that 
occurred after the 1977 drought. 

Data points for 1966 and 1983 appear to have been 
inconsistently included or excluded from the various data sets, 
which could affect the accuracy of predictions made using the 
Model. For example, 1983 was excluded in developing the Residual 
YOY equation (Eq. 2, Fig. I), while 1983 was apparently included 
in developing the Egg, Loss Rate, and Adult equations (Eqs. 
1,6,7, Fig. 1). As another example, the 1966 YOY index was not 

28 WRINT-DFG ~xhibit 3, p. 39, 41. 

Hanson, November 7, 1991, p. 4. 
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used to develop Equations (2) through (4) (Fig. l), while an 
estimate of the 1966 YOY index was used in developing the Adult 
equation (Eq. 7, Fig. 1). 

The use of data sets for different time periods and the use 
of varying assumptions about 1966 and 1983 raise doubts about the 
adequacy of the Model for prediction. The relationships among 
the various variables and equations have shifted since 1959 and 
the six equations reflect different realities. As discussed in 
Section 3.5.2, this is compensated for by lumping the majority of 
the error into a fudge factor referred to as the Hresidual YOY." 

3.5. ~pecification Errors 

In addition to the purely statistical flaws that lead to 
inaccurate predictions, mis-specifying the Model can also cause 
inaccurate predictions. Specification errors present in the 
Model include omission of variables, the use of fudge factors, 
and using the same variable as both the response and predictor 
variable. Sometimes these problems actually cause collinearity 
and autocorrelation. 

3.5.1 Missinu Variables. The Striped Bass Model assumes 
that the only significant variables affecting the abundance of 
striped bass are Delta outflow and exports. In WRINT-DWR Exhibit 
30, a number of other factors were identified that potentially 
affect striped bass, including weather phenomena, over-fishing, 
poaching, pollutants, introduction of exotic species, and 
agricultural  diversion^.^' One reviewer of the Model also noted 
that It[w]hile certainly outflow and exports are major factors, 
they are not the only factors and the model does not appear'to 
recognize anything else, as for example, pesticides and other 
pollutants, introduced species, changes in environmental 
conditions (for example, water clarity), or plantings of hatchery 
raised striped bass.w31 The CDFG admitted that other factors 
may also affect bass abundance but felt that In... their impact 
must be minor for adults to be so well predicted by the 
model. 1t32 

However, Sections 1 and 2 above demonstrate that the Model 
does not accurately predict bass abundance when CDFG1s analysis 
are corrected. It is possible that the poor predictions are due, 

30 Randall Brown, Bay/Delta Fish Resources, WRINT-DWR 
Exhibit 30, July 1992. 

31 Patterson, November 21, 1991, p. 2, Comment 6. 

32 Letter from H.K. Chadwick, CDFG, to Roger K. Patterson, 
Bureau of Reclamation, Re: Responses to Comments on Striped Bass 
Model, November 22, 1991, p. 2, Comment 6. 
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in part, to the failure to specify one or more important 
predictor variables. Additional work is required to explore the 
influence of non-flow predictor variables on adult abundance. 

3.5.2 mdae Factors. The Delta and Suisun Index equations 
( ~ q s ~  3.4, Fig. 1) overpredict the YOY index after 1976 (Fig. 2b. 
2e). To correct for overprediction, CDFG fit a Beverton-Holt 
relationship to the residuals (actual YOY-predicted YOY) from the 
Suisun and Delta index regression equations and used it in the 
Model to predict the YOY index (Fig. 1, Eqs. 2, 4). Of the six 
regression equations comprising the Striped Bass Model, the 
residual YOY equation has the poorest coefficient of 
determination (I? = 0.41) and the widest confidence intervals 
(Fig. 2d), and accounts for much of the uncertainty in Model 
predictions. Absent compelling biological'evidence that a stock 
recruitment or linear relationship between residual YOY and eggs 
is actually present in the Estuary, the residual YOY equation is 
nothing more than a fudge factor that contains all of the error 
associated with the Egg, Delta Index, and Suisun Index equations 
(Eqs. 1,3,4, Fig. 1). 

Several reviewers were not persuaded that a stock 
recruitment relationship makes sense. Jones & Stokes pointed out 
that a stock-recruitment type relationship (e.g., one expressed 
by an equation of the form Y = l/(a + b/X) could be due to other 
changes in the Estuary (e.g., food supply, introduced species) 
after 1977 and that at any rate, the stock recruitment 
relationship likely would not have been constant since 1969.% 
Jones & Stokes1 concerns are supported by cowan3' and EA 
Engineering, Science, and ~echnology.~ Cowan suggests that 
slight, undetectable changes in survival could have a big impact 
on the population. EA Engineering points to the need to use age- 
structured population estimates and age-specific fecundities to 
directly examine the egg-to-YOY relationship to verify that a 
stock recruitment relationship actually exists and to determine 
what portion of the variability is explained by stock recruitment 
versus environmental variables (rather than assigning 100 percent 
to stock recruitment). If stock recruitment or some other 
relationship cannot be verified, the residual YOY should be 
abandoned since it would have no predictive ability and would be 
no more than a fudge factor. 

33 WRINT-DFG-Exhibit 3, p. 27 and Figure 7. 

Shaul, November 1, 1991, p. 1. 

35 Cowan, January 7, 1992, p.3. 

36 Orr, November 1, 1991, p. 2, Comment 1. 
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A fudge factor is also applied to the Adult equation "to 
make predicted values better mimic observed values...n37 The 
factor is 1.08 for an average adult abundance of 1.7 million and 
0.936 for an average adult abundance of 1 million. The only 
justification given for this adjustment is to make the predicted 
values better fit the measured data. It is well known that a 
model that is tightly fit using fudge factors is not robust and 
has limited predictive ability. 

3.6. peasurement Errors 

The difficulty in collecting precise fishery data is well 
known. Some of these problems are discussed el~ewhere.~' As 
several reviewers have pointed out, measurement errors associated 
with variables in each equation are propagated from one component 
of the Model to another, contributing to inaccurate 
predictions. 39 These are valid concerns, and error propagation 
is treated in most basic statistic texts on data reduction. 40 

Part of the uncertainty represented by the wide confidence bands 
shown in Figure 2 and large prediction error shown in Figure 3 is 
due to measurement errors that have been propagated through the 
Model. 

38 Donald E. Stevens, Striped Bass (Morone saxatilis) 
Monitoring Techniques in the Sacramento-San Joaquin Estuary, In: 
Proceedinus of the Conference on Assessinu the Effects of Power- 
Plant-Induced Mortality on Fish Po~ulations, Webster Van Winkle 
(Ed.), Pergamon Press, New York, 1977, pp. 91-109; CDFG, Factors 
Affectins Stri~ed Bass Abundance in the Sacramento-San Joaauin 
River System, Exhibit 25, 1987; CDFG, Strived Bass Euu and Larval 
Monitorina. and Effects of Flow Requlation on the Larval Stri~ed 
Bass Food Chain. in the Sacramento-San Joaauin Estuary, Final 
Report to SWRCB, May 1988. 

39 Orr, November 1, 1991, p. 3, Comment 3; Shaul, November 
1, 1991, p. 1. 

40 See, for example, Philip R. Bevington, Data Reduction and 
Error Analvsis for the Physical Sciences, ~c~raw-Hill Book co., 
New York, 1969, Chapter 4. 



TABLE A-2 (Continued). DAYFLOW 

NOV 
Exp Out 

679 6016 
595 13543 
684 8251 
804 16351 
545 27945 
746 17243 
664 27350 

1026 21505 
1132 16202 
5043 11120 
1072 19964 
2031 26117 
3047 13743 
3309 25943 
4903 59945 
1949 23991 
8010 17921 
4244 3644 
2757 4004 
5572 10928 
5857 12176 
6456 6670 
4717 35971 
6073 39152 
1754 74138 
7996 25953 
7329 6891 
6860 7732 
5460 4291 
6087 6660 

10379 5503 
3857 4558 

OCT 
Ex p Out 

1288 5683 
1573 5013 
1440 4260 
1431 42900 
2081 14978 
2269 8118 
1806 15091 
1904 6610 
1795 16749 
6249 5453 
2006 19484 
2585 13423 
3812 13957 
5847 11919 
5927 14071 
4595 18529 
7561 16900 
4606 3623 
854 2075 

5124 9633 
7730 7821 
6694 7368 
5930 5218 
5285 22986 
2496 32293 
5605 11916 
7703 3378 
7566 10628 
5908 3789 
5631 3226 

10529 4926 
3549 3498 

DEC 
Exp Out 

258 6938 
54 19090 

253 16140 
57 35013 

164 22825 
61 108447 
57 30136 

501 60456 
675 20498 

3765 25682 
821 46190 

1915 85369 
2435 23967 
3432 27133 
3338 76406 
2814 28017' 
7820 19953 
2784 4213 
5983 8488 
6051 8779 
5973 19029 
6763 12488 
5166 86579 
8428 88937 
2142 155458 
8464 31067 
9858 9431 
7260 8987 
8986 9455 
7184 7259 

10442 4422 
5205 6425 

I I 



TABLE A-2. DAYFLOW 

Exp JuN out / 
Delta Outflow and Exports - Monthly Means (cfs) 

Exp JUL Out I ExpAUGOut I Year 
JAN 

Exp Out 
FEB MAR 

Exp Out Exp Out 



TABLE A-1. DATA USED TO DEVELOP STRIPED BASS MODEL 

Year 
1959 
1960 
1961 
1962 
1963 
1964 
1965 
1966 
1967 
1968 
1969 
1 970 
1971 
1972 
1973 
1 974 
1 975 
1976 
1 977 
1978 
1979 
1980 
1981 
1982 
1983 
1984 
1985 
1986 
1987 
1988 
1989 
1990 
1991 

Eggs 

319.1 
267.2 
255.7 
265.3 
354.2 
300.5 
434.2 
269.0 
231.4 
129.6 
90.3 
125.7 
99.9 
68.5 
121.8 
n. i 
97.9 
165.2 

a 176.1 
176.4 
103.5 
91.6 
160.2 

Adults Adults (wl 
(wild) hatchery) Sulsun 

3 
13.6 
6.4 
32.1 
43.5 
20.7 
67.8 

73.6 
17.7 
40.2 
41.9 
45 

21.1 
47.1 
63.4 
42.1 
14.8 
0.7 
13.1 
11.5 
11.2 
13.7 
39.2 

20 
4.1 
41.1 
5.3 
0.7 
2.0 
1.5 
1.6 

Delta 
30.7 
32.0 
25.2 
46.8 
38.2 
54.7 
49.4 

35.1 
39.6 
33.6 
36.6 
24.6 
13.4 
15.6 
17.4 
23.4 
21.1 
8.3 
16.5 
5.4 
2.8 
15.4 
9.5 

6.3 
2.2 
23.8 
7.3 
3.9 
3.1 
2.8 
3.9 

YOY Losses 
33.7 1,668,181 

AprJul 
Outflow 

5,698 
8,844 
6,798 
14,668 
45,180 
6,865 
27,834 
8,599 
59,341 
6,005 
48,420 
8,315 
24,065 
5,446 

1 1,425 
40,350 
24,238 
5,289 
3,204 
28,803 
9,658 

1 8.91 6 
7,672 
61,361 
82,929 
1 1,057 
6,110 

1 9,797 
4,642 
5,841 
8,003 
5,748 
3,858 

AprJul 
Exports 

3,247 
3,303 
3,596 
3,438 
2,937 
3,685 
3.1 13 
3,790 
1,997 
5.21 7 
2,847 
4,722 
5,314 
6,491 
6,225 
7,789 
5,398 
4,697 
1,467 
5,510 
6,952 
5,701 
5,912 
5,891 
4,331 
7,309 
7,388 
5,829 
6,617 
7,175 
7,863 
5,699 
3,671 

AprJul 
Dlvemn 

6,350 
6,407 
6,700 
6,541 
6,040 
6,788 
6.21 6 
6,894 
5,100 
8,320 
5,950 
7,826 
8,418 
9,594 
9,329 
10,892 
8,501 
7,800 
4,570 
8,613 
10,055 
8,804 
9,015 
8,994 
7,434 
10,412 
10,491 
8,933 
9,721 
10,278 
10,967 
8,802 
6,774 

Aug-Mar 
Exports 

1,345 
1,371 
1,254 
1,413 
1,643 
1,719 
1,502 
1,701 
2,251 
5,056 
2,095 
2,997 
3,991 
3,774 
5,177 
5,269 
8,073 
5,249 
4,900 
5,506 
7,011 
7,143 
7,121 
7,359 
4,024 
7,393 
8,105 
7,603 
8,513 
8,059 
10,644 
5,550 

Aug-Dec 
Outflow 

6,758 
9,175 
7,661 
21,561 
16,853 
29,591 
18,792 
20,064 
15,966 
10,705 
23,657 
29,489 
16,863 
16,388 
33,508 
20,860 
15,543 
3,932 
3,974 
9,412 
9,512 
8,136 
27,124 
38,088 
63,591 
18,172 
5,047 
8,652 
4,435 
4,402 
5,208 
4,337 
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DATA USED TO DEVELOP THE STRIPED BASS MODEL 


