Mark L. Rockel and Mary Jo Kealy

I. INTRODUCTION AND MOTIVATION

FOR ESTIMATING THE DEMAND FOR NONCONSUMPTIVE WLLDLIFE RECREATION

Public interest in wildlife and wildliferelated activities extends well beyond the relatiditional hunting and fishing activities. In traditional hunting and fishing activities. In 1980, approximately 29 milion individuals
(16 years and older) took trips primarily to (16 years and older) took trips primarily to
observe wildlife while 83 million (49 percent of population 16 years and older) observed specifically wildlife in both residen tial and nonresidential settings (USFWS 1982). Moreover, there are at least 18 national conservation or wildlife-related organizations with memberships ranging from 5,000 in the American Birding Association to 4.2 million in the National Wildife Federation.

The extent of participation in these activities reflects a substantial demand for the products of wildilife management and yet, with few notable exceptions (Cicchett 1973; Bishop 1978; Hay and McConnell 1979, 1984), the relationship between man agement progrela wildife recreation and nonconsuritigated. Just as ece has not been ive con tributed greatly to managers' knowledge of the value of wildife resources for fishing and hunting (Brown, Singh, and Castle 1965; Hammack and Brown 1974; Gum and Martin 1975; Bishop and Heberlein 1979; McConnell and Strand 1981; Kealy and Bishop 1986), so they can inform on the value and extent of nonconsumptive uses of wildlife, and the sensitivity of those uses to changes in management programs.
In this paper we provide information for the wildlife management community and the public trustees by developing a model to estimate first, the probability of participation and second, the number of hours people observe, photograph, and feed wild-
life away from the home conditional on parlicipation. The model is used to show how participation in these activities may be changed with changes in habitat. In addition, we use it to calculate a lower bound estimate for the total benefits from nonconsumptive wildlife recreation trips in 1980. The data used for estimation are from the 1980 National Survey of Fishing, Hunting, and Wildlife-Associated Recreation (USFWS 1982).

II. BRIEF REVIEW OF PREVIOUS EXAMINATIONS OF NONCONSUMPTIVE USES OF WILDLIFE

Although many economists and other social scientists have studied the demand for consumptive wildlife recreation, relatively few have investigated nonconsumptive recreational demand, and these investigations have been specific rather than comprehensive. Bishop (1978) in his study of the California condor, considered the importance of nonconsumptive use, but his study was narrowly focused on that one species. Using the 1965 national survey of wildlifeassociated recreation, Cicchetti (1973) estimated reduced form equations for bird watching and bird and wildlife photography. Although much broader in scope, this study is outdated. Hay and McConnell (1979) used the 1975 national survey to esti-

The authors are, respectively, economist. Carbon The authors are, respectively, economist, Carbon vironmental Protection Agency, Washington, DC and associgte professor, Department of Economics, Colgate \in niversity. We gratefully acknowledge the contribútions of Richard Aiken, Richard Bishop, Warren Fisher, Anne Grambsch, Thomas Heberlein, James anonymous reviewers. Any remaining errors are our own.

Land Economics • November 1991 • 67(4): 422-34
mate participation equations for wildife watching and wildlife photography, but they could not estimate the intensity of nonconsumptive wildlife activity. Hay and McConnell (1984) then estimated a joint decision model estimating participation between two recreational activities: hunting and nonconsumptive wildlife use.

III. A MODEL OF NONCONSUMPTIVE

 RECREATIONAL USER HOURSSuppose that the individual's total number of hours spent fishing, hunting, and observing, photographing, or feeding wildlife away from the home is separable from all other goods. Then the demand for each of these recreation activities can be estimated independently of the demand for all other goods. As in the typical travel cost demand model, we assume that the length of time the individual engages in the activity is predetermined. However, following Kealy and Bishop (1986) we allow the exogenous time at the site to vary across individuals. Then, from the individual's perspective, the choice of how many trips to take to a particular location is equivalent to the total number of hours decision: ${ }^{1,2}$

If we treat a nonconsumptive user hour as a generic commodity, then one equation is sufficient for estimating the demand for visitor hours at all locations assuming that all site-specific characteristics and the fishing and hunting substitutes are controlled for. In this pooled framework, the equations corresponding to the demand for hours at various locations are constrained th have identical parameters.

 applications of pooled travel cost demand models (i.e., varying parameter models) see Vaughan and Russell (1982) and Smith and
Desvousges (1985). Also, for a favorable Desvousges (1985). Also, formance of the pooled travel cost demand model relative to other demand models see Kling (1988) The single equation demand system
$Z_{i J}=G\left(p_{z U}, p_{f U}, p_{h i j}, s_{z U}, I_{i}, T_{1}, q_{j}, s_{l}\right)+\varepsilon_{U} \quad[1]$
is consistent with utility maximization if the integrability conditions are met. ${ }^{3}$
$Z_{U}=D_{i} N_{U}$ is the i th individual's total number of nonconsumptive recreation hours spent at site j observing, photographing, and/or feeding wildlife at least one mile away from the home;
D_{j} is the ith individual's predetermined length of stay at site $j i^{4}$
N_{y} is the i th individual's number of trips to site j;
$p_{z j}=p_{a j} / D_{i j}$ is the i th individual's hourly monetary cost of nonconsumptive recreation at site j including prorated expenses associated with traveling to and from the recreation site, hourly on-site costs, and prorated hourly overnight expenditures and $p_{\text {n }}$ is the ith indieidual's total monetary cost of a trip to site j for nonconsumptive recreation;
$p_{f J}$ is the l th individual's hourly monetary cost of fishing at site j including prorated expenses associated with traveling to and from the recreation site, hourly on-site costs, and prorated hourly overnight expenditures;
$p_{h j}$ is the i th individual's hourly monetary cost of hunting at site j constructed in the same way as for fishing and nonconsump tive recreation;
$t_{z i j}$ is the i th individual's time spent travel ing to and from site j per hour of nonconsumptive recreation and one hour of on-site time;
I_{i} is the i th individual's income;

If we specify trips as the dependent variable, how we lose the ability to allow time at the site vary across individuals. Therefore, we model the num ber of hours decision.

This formulation remains under dispute by one referee. We are still persuaded that the formulation is
${ }^{3}$ For economic integrability to hold, the implied utility function must be quasi-concave. For the linear demand model this requires that $Z \leq-\varphi / \gamma$. Similarly, or the semi-log specification the integret ion is $\varphi+\boldsymbol{\gamma} \leq \mathbf{S} 0$.
me at the site is less than 0, dherefore, the exogeneity assumption appears plausible for these data.
T_{i} is the i th individual's total discretionary time less time spent recreating at site j; q_{f} is a vector of state and site quality characteristics and resource supply variables pertaining to site j;
s_{i} is a vector of individual i 's characteristics; and
ε_{j} is the error term due to the random component of the individual's preferences for site j.

Suppose that the consumer of nonconsumptive uses of wildife is at an interior solution in the labor market. Then because the individual can trade time for money at the margin, she faces only one constraint, and we can rewrite [1] combining time and income terms. ${ }^{5}$ Then,
$Z_{U}=G\left(p_{U}+k w_{i} t_{U}, p_{f,}, p_{h U}, I_{t}\right.$

$$
\begin{aligned}
& \left.\left(k w_{i} T_{i}, q_{j}, s_{i}\right)+\varepsilon_{U}\right)
\end{aligned}
$$

or simply,
$Z_{U U}=\boldsymbol{G}\left(p_{z U}+k w_{1} I_{z j,} p_{f j,}, p_{h j}, I_{i}^{\prime}, q_{j}, s_{i}\right)+\varepsilon_{U}$
[3]
where, $I_{i}^{\prime}=I_{i}+k w_{i} T_{i}$ and k is a constant proportion of the individual's wage rate, w_{1}. We estimate two distinct specifications for [3], a linear and a semi-log to determine the sensitivity of welfare estimates to functional form. Suppressing the subscript for the individual, the linear demand equation we estimate has the form

$$
Z_{j}=\alpha^{\prime} s+\beta^{\prime} q_{j}+\tau p_{g j}+\xi p_{h j}+\gamma I^{\prime}
$$

$$
\begin{equation*}
+\varphi\left(p_{z j}+k w t_{z j}\right)+\varepsilon_{j} . \tag{4}
\end{equation*}
$$

We estimate equation [4] using two separate values for $k, 30$ and 60 percent, respectively. Similarly, the semi-log form we estimate is
$Z_{j}=\exp \left(\alpha^{\prime} s+\beta^{\prime} q_{J}+\tau p_{j J}+\xi p_{h_{j}}+\gamma I^{\prime}\right.$

$$
\begin{equation*}
\left.+\varphi\left(p_{2 j}+k w t_{z_{j} j}\right)+\varepsilon_{j}\right) . \tag{5}
\end{equation*}
$$

IV. A DESCRIPTION OF THE ESTIMATION PROCEDURE AND HOW IT ACCOUNTS FOR SAMPLE SELECTION PROBLEMS

Of the previous works cited above, only Cicchetti (1973) reported estimates of fre-
quency of nonconsumptive use, but he used ordinarly least squares (OLS) methods. If everyone in the relevant general population participated in nonconsumptive wildlife recreation, then using OLS to estimate the user hours equation would not lead to any selection bias problem. However, as has been documented in the recent recreational demand literature (Smith and Desvousges demand literature (Smith and Desvousges
1985; Bockstael, Hanemann, and Strand 1985; Bockstael, Hanemann, and Strand
1986; Kealy and Bishop 1986; Smith 1988) 1986; Kealy and Bishop 1986; Smith 1988) the failure to account for sample selection
in the estimation of the frequency equation in the estimation of the frequency equation will bias the welfare estimates.
As with most forms of outdoor recre. ation, participation in nonconsumptive wildife-related activities appeals to only a subset of the general population. In addition, it is likely that the parameters that determine participation are different from those that determine the number of nonconsumptive user hours.

There are two alternative models that allow the participation and intensity of use decisions to depend upon different factors.
The first, Heckman's selection bias-corThe first, Heckman's selection bias-corrected regression model, allows for the nonconsumptive recreation decision to be broken down into two potentially different but connected relationships: (1) the decision to participate or not to participate in nonconsumptive recreation, and (2) the choice of frequency of nonconsumptive user hours (Heckman 1979).
To obtain consistent coefficient estimates for the nonconsumptive user hours equation corresponding to the individuals who had positive consumption, first the participation equation must be estimated using a random sample from the general population. The probability of engaging in nonconsumptive recreation may be written $\pi=1-F\left(-X_{2} \beta_{2} / \sigma_{F}\right)$
${ }^{3}$ Asfishown in Kealy and Bishop (1986). eq. [2] also holdsfor individuals at a corner of their labor/leisure trade-off if one assumes that utility from time can be expressed in monetary units as a proportion of the
wage rate. In this case w_{j} is interpreted as the opportunity cost of leisure. See also McConnell (1975) and Bockstael et al. (1986, 4-56).
, F is the standard cumulative norma whenity function and the vector \boldsymbol{X} includes derividual and state characteristics and poly variables. The vector of parameters to icy estimated is β_{2}, and σ_{F} is the standard e estanater the population's error term deviation of the population's error term it is used for predicting population par ticipation rates in nonconsumptive wildlife recreation. In addition, given the estimates of the parameters in [6], the nonconsump tive recreation user hours equations [4] and [5] can be adjusted for the bias from including only individuals with positive user hours. The selection-bias corrected regression demand equation for nonconsumptive user hours is then
$z_{f}=G\left(p_{2 j}+k w t_{2 i} p_{j j}, p_{h j} I^{\prime}, q_{j}, s\right)+\sigma_{F} \lambda_{j}+\xi_{j}$.

The estimate of the selection bias corrected variable, $\hat{\lambda}$ is obtained using the parameter estimates from [6]
$\dot{\lambda}=F\left(-X_{2} \beta_{2} / \sigma_{F}\right) /\left[1-F\left(-X_{2} \beta_{2} / \sigma_{F}\right)\right]$
where $F(\cdot)$ is the standard normal density function. The value for $\bar{\lambda}$ will vary across individuals depending upon the values of their respective X_{2} vectors.
The second approach to modeling the two decisions, the Cragg model, is similar to the Heckman model in that it, too, uses the probit (i.e., equation [6] in the firs stage) to estimate the probability of partici pation. Then, conditional on being a partici pant, in the second stage of the Crags model the intensity of participation mode is estimated independenty of the first-stag probit model. This stage uses only non-zero participants (like the Heckman procedure) but the sample selection rale of the second stage in the Cragg model depends only on second-stage parameters. In this way, the Cragg model permits zero values for the evel of intensity. That is
$Z_{f}=G\left(p_{y}+k w_{j} t_{y}, p_{j,}, p_{b j}, I^{\prime}, q_{j}, s\right)+\sigma_{F} \gamma_{j}+\xi_{j}$
where, $\hat{\gamma}=F\left(X_{1} \beta_{1} / \sigma_{F}\right)\left[1-F\left(X_{1} \beta_{1} / \sigma_{F}\right)\right]$. Thus, factors that influence the participa-
tion decision can bring people in and out of participation, but also factors that influence the intensity of participation (e.g., price) can drive the level of intensity down to zero. It is this last feature that distinguishes the Cragg and Heckman modeis.

V. THE NATIONAL SURVEY AND HOW WE USED IT FOR VARIABLE CONSTRUCTION

A detailed description of the survey design appears in USFWS (1982). The relevant aspects of the survey include first, the telephone screening survey of U.S. households according to U.S. Bureau of the Census sampling design and second, the followup personal interviews of participants in up personal insump wildlife recreation. The screening survey intervieyped about 120,000 screening survey intervieyed about 120,000 people who were asked a variety of so-
cioeconomic questions as well as whether cioeconomic questions as well as whether
anyone in the household had engaged in anyone in the household had engaged in
nonconsumptive wildlife recreation. The nonconsumptive wildlife recreation. The
survey then gathered detailed trip informasurvey then gathered detailed trip information on about 6,000 pa
sumptive activities.

From the initial phone survey, we selected randomly 2 percent (3,136 observations) of those individuals who had not engaged in taking trips to observe, photograph, or feed wildlife. We then exphotograph, or feed wited 1,155 observations from those who tracted at least one trip away from home to took at least one trip away from home to observe, feed, or photograph wildife in the
contiguous United States and who also had contiguous United States and who also had positive values for variable costs and time
costs per hour. ${ }^{6}$ This led to a combined costs per hour. ${ }^{6}$ This led to a combined
working sample of 4,291 observations for working sample of 4,291 observations for
estimating the participation equation [6]. estimating the participation equation [6].
For the second stage we estimated a pooled For the second stage we estimated a pooled travel cost demand equation on a total of than the number of individuals in our sample because individuals who visited multiple sites count as multiple observations. On
${ }^{6}$ As we were unable to determine the mode of travel for individuals, we assumed individuals traveled to the site by automobile and calculated the time and vations of individuals who visited Alaska or Hawaii.
average, the individuals in the sample visited 1.53 sites.

The multistaged stratified sample design of the survey necessitated using a weighting procedure for estimation because the sample was, in part, choice based and nonrandom. To correct for the randomness of the sample, each observation was weighted ussample, campling weight developed by the ung a sampling weight developed by the U.S. Bureau of the Census. The value of
each observation's weight is the number of each observation's weight is the number of
individuals that observation represents. A individuals that observation represents. A
second weight was used to correct for the second weight was used to correct for the
over-representation of nonconsumptive over-representation of nonconsumptive
wildife users in the sample. The true prowildlife users in the sample. The true pro-
portion of nonconsumptive wildlife users in portion of nonconsumptive wildlife users in
the U.S. is 17 percent (USFWS 1983). the U.S. is 17 percent (USFWS 1983).
For our estimation of equation [6] we employed the weighted maximum-likelihood estimator and the corrected covariance matrix as described in Manski and McFadden (1982).?

For the resource supply variables we have the total amount of forested acres by state and 1980 state expenditures (in thousand dollars) on nongame wildife programs. We assigned these variables to our individual observations depending upon the individual's state of residence. For the less than 5 percent of the sample with missing data on nongame expenditures, we replaced these observations with the sample mean. A description of the variables and their construction appears in Table 1.

VI. PARTICIPATION IN NONCONSUMPTIVE WILDLIFE RECREATION

The results from estimating the PROBIT equation for participation appear in Table 2. A number of the variables are quite significant. The χ^{2} statistic with 12 degrees of freedom is $2,461.2$ and the pseudo R^{2} is 0.42 (Judge et al. 1985, 767) indicating a reasonable goodness of fit. We compare our findings with the Hay and McConnell (1979) study who examined the probability of participation for observing wildlife and photographing wildlife using a sample from the 1975 National Wildlife Survey. They found family income divided by household size to
be a statistically significant predictor of par. ticipation as did we. Neither study found the individual's sex to be a statistically sig. nificant variable. Following Hay and McConnell we included both age and age squared in our participation equation [6] and found, as they did, an inverted U. shaped participation-age relationship. They argued that including only a simple linear age variable meant that the marginal effect ofe variable meant that the marginal effect ticipation was constant despite the age. Constant marginal changes are improbable Constant marginal changes are improbable over the range of the variable,
adopted their more realistic model.
adopted their more realistic model.
One socioeconomic characteristic related negatively to participation, minority, indicates that individuals who are nonwhite are less likely to participate. Most other socioeconomic variables were statistically significant and positively related to participation. They were: the individual's years of schooling, whether the individual was married, and a retirement dummy. The employment and homemaker dummies were also ment and homemaker dummies were also positive, but they were not significant. Taken together, the results appear to indj-
cate that income, education, and leisure cate that income, education, and leisure
time all have positive influences on particitime all have positive influences on particiation.

Of particular interest to wildlife managers are the effects of the resource supply variables. To identify the policy variables most likely to have an impact on participation, we communicated with wildlife managers at the Fish and Wildlife Service. It was they who suggested that we use total was they who suggested acres by state both because these forested acres by state both because these
were the best habitat data available and bewere the best habitat data available and because woodland sites are the preferred type
of site for nonconsumptive recreation. ${ }^{8}$ Due of site for nonconsumptive recreation.
to this preference, we hypothesized that forested acres would be related positively to participation, which is what we found.

TThe weights are normalized to sum to the number
'The weights are normalized to sum to the number
of observations to obtain correct asymplotic standard of obser
erroors.
EPer

Personal communication with Warren Fisher Economist, USFWS.

TABLE 1
A Description of the Varlables Used in the Participation and User Days Reoressions

Varible	Description
ACOME	1980 gross houschold income divided by household size. Uses the midpoint from

INCOME

MTNORITY

MINOR
EDUC
AGE
MARRIED
EMPLOYED
HOMEMAKER
National Park
Lake
Hunt price

Fish price

AGESQ
RGESLIRED
REMALE
FEBGALE
User hours
Travel cost

Time cost

Total forested
1980 gross houschold income d
each of 9 income categories.
($0-1$) variable indicating if individual was nonwhite.
Number of an individual's years of schooling.
Age of the individual.
($0-1$) variable indicating whether an individual was married.
(0-1) variable indicating whether an individual was employed.
(0-1) variable indicating whether an individual was a homemaker.
$(0-1)$ variable indicating whether site individual visited was a National park. (0-1) variable indicating whether site individual visited is characterized as a woodland.
($0-1$) variable indicating whether site individual visited is characterized as a lake.
The average price per hour incurred to hunt at the site. Expenditures include the individual's cost of food, lodging, guide fees, pack trip fees, public and private roundtrip miles to the site tines rental fees. Mileage costs were calere than divided by total hours hunting at the site.
The average price per hour incurred to fish at the site. Expenditures include the individual's cost of food, lodging, guide fees, pack trip fees, public and private land-use fees, and equipment rental fees. Mileage costs were calculated as roundtrip miles to the site times $5.20 /$ mile. These expenditures were then divided by total hours fishing at the site.
Amount of State Fish and Wildife spending (in $\$ 1,000$) on nongame programs in an individual
(0-1) variable indicating whether individual was retired.
(0-1) variable indicating if an individual is female.
Dependent variable in user hours equation. Total hours in 1980 to observe, photograph, or feed wildlife at least one mile away from home. Calculated as total days to each site multiplied by the average hours spent at each site.
The average price per day incurred to observe, photograph, or feed widlife away from home. Expendiures in pack trip fees, public and private land-use fees, and equipment rental fees. Mileage costs were calculated as roundtrip miles to the site times $\$.20 /$ mile. These expenditures were then divided by user hours.
Travel tíme divided by average days per trip plus time spent at the site all times the wage rate. The roundtrip miles to each site were first divided by 45 miles per hour and then multiplied by the number of trips to each site divided by the total number of days to all sites. Hourly wage was calculated by dividing household income by 2,080 hours.
Number of forested acres in each state (in acres thousands). ${ }^{\text {b }}$
 indicated otherwise.
Indicated otherwise.
-Source: USFWS
1983, 71.
${ }^{\text {BSource: Statistical Abstract 1984, } 1 .}$

The second state policy variable is the amount of State Fish and Wildlife spending on nongame programs by the state in which the individual participated in nonconsumptive wildlife recreation activities. We included this variable as a proxy for the quality of nonconsumptive user services (e.g.,
nature trails, guided tours, nature centers) and, although it had a positive sign, it was insignificant.

Because each of the policy variables varied only by state, they are but crude approximations for the quality of the particular location where the individual partici-

TABLE 2
Prosit Estimates of the Probability of Taking a Trip to Participate in Nonconsumptive Wildlife Recreation

Vatiable	Coefficient	Std. Error	1 -ratio	Mean	Std. Dev.
Income	. $125 \mathrm{E}-04$.223E-10	2.651	6,828.8	5.582 .7
Minority	-. 579	.128E-01	-5.116	. 1988	. 3992
Age	.540E-01	:168E-03	4.159	33,95	21.13
Female	-.885E-01	.418E-02	-1.368	. 5181	. 4997
Married	. 168	.539E-02	2.292	. 4772	. 4995
Ediucation	.516E-01	.221E-04	10.97	10.53	5.34
Age	-.838E-03	.207E-07	-5.822	1.599	1,734.4
Retired	. 663	. $320 \mathrm{E}-01$	3.703	. 082	. 2759
Employed	. 151	.851E-02	1.639	. 4539	. 4979
Homemaker	. 209	.154E-01	1.681	. 1405	. 3475
Total forested acres	.711E-05	.143E-10	1.880	15,466	10,419
Nongame exp.	.212E-04	.660E-09	. 8230	925.9	1,844
Constant	-2.497	.749E-01	-9.121	1.00	. 00
Log-Likelihood	-1.677.3				
```Restricted (Slopes = 0) Log-L.```	-2,907.9				
Chi-Squared (12 d.f.)	2,461.2				
Significance Level			. 000		
Pseudo-R			. 423		
Number of Observations			4,291		

tion. The results for the linear and semi-log specifications appear in the first seven columns of Table 3." Although we estimated two versions of each of the models, one imposing a value of time of 30 percent of he wage rate and the other a value of 60 percent, only the former are reported in the percent, only the Tormer are reported in the to the value of time is addressed below. We to the value of time is addressed below. We
discuss the results for the semi-log specifidiscuss the results for the semi-log specifcation because it is the better-fitting model. First note that most of the site characteristic variables are significant while the individual's characteristics, in general, are not significant. Travel and time cost is negative and significant. ${ }^{12}$
Total forested acres is positive and significant as are the lake and woodland dummies. The national park dummy also has a positive effect on visitation as does nongame expenditures, but neither variable is significant. We included price proxies for two other recreation activities, hunting and two other recreation activities, hunting and fishing, to control for the influence of substitutes and/or complements on nonconsumptive wildife recreation visitation deci-
sions. The price of hunting has a positive sions. The price of hunting has a positive sign and the price of fishing has a negative sign, but neither are significant. Using a joint participation model, Hay and McConnell (1984) report that hunting and nonconumptive wildlife activities are complements.
Of the individual's characteristics, only the retirement and gender dummies have a positive and significant influence on visitation. Income, age, and education are all insignificant. Finally, we note that the significant. Finally, we note that the and significant. Both estimated equations and significant. Both estimated equations
satisfy economic integrability conditions. ${ }^{13}$
The results for the Cragg model, also reported in Table 3, are quite similar, but here are a few exceptions. First, age appears to have an inverted U-shape with usage first decreasing and then increasing with age. However, the retirement dummy is not significant in the Cragg model, perhaps because the influence of retirement is captured by the age variables. Also, the level of education is negative and significant in the Cragg model. Income has a neg-
ative sign, but it is not statistically different than zero. Finally, the price of hunting is positive and significant suggesting that hunting and nonconsumptive uses of wildlife may be substitutes.
To compute welfare estimates we use the closed form expressions for the appropriate Hicksian welfare measure and Marshallian consumer surplus corresponding to both demand specifications from Bockstael et al. (1986) and Arsanjani, Bockstael, Strand, and McConnell (1989), Welfare esimates for the two estimation methods (i.e., Heckman two-stage and Cragg models), the two functional forms (i.e., linear and semi-log) and two values of time (i.e., 30 and 60 percent of the wage) are all reported in Table 4. Given our assumption involving the source of error in [4] and [5] i.e., random preferences) we use the fitted values for hours of nơnconsumptive wildlife recreation in our computations (Bock tael al 1986) but for comparison we tai el ala hours as well
For the linear model using time valued at 60 percent of wage, we find for our sample, the rayexageranyatronilingessitespay

 From our participation model we estimate the total number of participants in the U.S. in 1980 to be 28.2 million. Multiplying the average willingness to pay per observation by our estimated number of participants and the average number of sites per particiand (1 53) yields a total value of particisource of 164.5 billion 1980 dollars.
The results for the linear specification are insensitive to the source of error as-
"To avoid the problem of truncated trips using the To avoid the problem of truncated trips using the
semi-log specification, we arbitrarily selected a limit point of -5.0 ralher than zero.
${ }^{12}$ We tried several other socioeconomic variables and resource supply variables and found that none were robust to model specification. Because the signs of these variables were sensitive to model specification the price variable was robust and significant for all the price variab
${ }^{13}$ See note 3.

TABLE 3
Estimation of Model Results

(1)	Heckman Linear Model			Heckman Semi-log Model			Cragg Semi-log Model ${ }^{\text {b }}$		
	(2)   Coefficient	(3)   Std. Error ${ }^{*}$	(4)   $t$-Ratio	(5)   Coefficient	(6)   Std. Error ${ }^{*}$	(7)   t-Ratio	(8)   Coefficient	(9)   Std. Error	$\stackrel{(10)}{t \text {-Ratio }}$
Travel cost plus time costs at $\mathbf{3 0 \%}$	-0.56	0.103	-5.43689	$-0.0132$	$0.00185$	$-7.13514$	-0.0132	0.00103	-12.8155
Total forested acres	0.000348	0.000496	0.701613	$0.000016$	$0.000004$	$3.761905$	0.000014	0.000004	3.285372
Site is primarily woodland (0-1)	28.124	5.253	5.353893	0.42	0.0527	7.969639	0.42	0.0651	6.451613
Gross income/houschold size	0.000957	0.00106	0.90283	0.000002	0.000006	0.375221	-9.1E-07	0.000004	-0.20922
Age of respondent	1.404	2.667	0.526434	0.00278	0.0161	0.172671	-0.0226	0.0109	-2.07339
Age squared	-0.0235	0.0364	-0.6456	-0.00011	0.000214	-0.50467	0.00025	0.000136	1.838235
Site is primarily a lake (0-1)	18.042	6.592	2.736954	0.246	0.0565	4.353982	0.245	0.0567	4.320988
Price of hunting	2.656	2.097	1.266571	0.0511	0.0283	1.805654	0.0528	0.0258	2.046512
Price of fishing	-1.126	0.529	-2.12854	-0.0147	0.0953	-0.15425	-0.0149	0.0129	-1.15504
Respendent is retired ( $0-1$ )	53.834	46.153	1.166425	0.46	0.215	2.139535	0.257	0.178	1.44382
State non-game expenditures	0.000822	0.00222	0.37027	0.000012	0.000022	0.571429	0.000014	0.000022	0.621622
Site is a National Park (0-1)	8.548	7.177	1.191027	0.126	0.0743	1.695828	0.127	0.0716	1.773743
$\overline{\hat{\lambda}}$	44.704	45.462	0.983327	0.457	0.204	2.240196			
Respondent's education	-0.485	2.382	-0.20361	-0.0166	0.012	-1.38333 .	-0.0321	0.00947	-3.36\% 5
Respondent is female (0-1)	13.455	5.905	2.278577	0.109	0.0566	1.925795	0.125	0.0557	2.244165
Constant	-27.957	97.816	-0.28581	2.404	0.455	5.283516	3.279	0.238	13.77731
$\sigma$	130.214	2.189	59.48561	1.158	0.0195	59.38462	1.155	0.0194	59.53608
Log-Likelihood	-11,116			-2,762.4			$-2,765$		
Number of Observations	1.769			1,769			1.769		
$R$-squared adjusted	0.03			0.14					

-Corrected for heteroseedasticity following White (1978).
${ }^{6}$ Linear Cragg Model failed to converge.

TABLE 4
Welfare Estimates of Nonconsumptive Uses of Whidlife

	Heckman Linear		Heckman Semi-log		Cragg Semi-log	
	Weighted Sample Mean	Aggregated (Millions)	Weighted Sample Mean	Aggregated (Millions)	Weighted Sample Mean	Aggregated (Millions)
Time valued at $30 \%$ of the wage						
Marshallian fitted	\$3,122 (a)	\$137,673	\$178 (d)	57,849	(j)	
Marshallian actual	\$2,680 (b)	\$118,182	\$1,569 (c)	\$69,189	\$1,569 (h)	\$69,189
Hicksian fitted	\$3,083 (c)	\$135,953	\$178 (f)	\$7,849	(j)	
Time valued at $60 \%$ of the wage						
Marshallian fitted	\$3,731 (a)	\$164,528	\$198 (d)	\$8,731	\$515 (g)	\$22,710
Marshallian actual	\$3,069 (b)	\$135,336	\$1,726 (e)	\$76,112	\$1,801 (b)	\$79,420
Hicksian fitted	\$3,630 (c)	\$160,075	\$198 (f)	\$8.731	\$516 (i)	\$22,754

## al. (1989)

(a) $\left(X_{0} B_{0}\right)^{2 /-2 \beta}$ where $X_{0}$ is a matrix of $T$ observations by $k$ independent variables and $B_{0}$ is a $k \times 1$ vector of estimated coefficients (Table 3 , Columas 1 and 2 ). $\beta$ is the estimated coefficient on own price.
(b) $Z^{2} /-2 \beta$ where $Z$ is the $T \times 1$ dependent variable of individuals' total hours engaged tn nonconsumptive wildilife activities.
(c) $-\beta / \gamma^{2}+\exp \left(\gamma\left(-\left(X_{1} B_{1}\right) / \beta-\rho^{0}\right)\left[X_{0} B_{0} / \beta+\beta / \gamma^{2}\right]\right.$ where $y$ is the estimated coefticient on income, $X_{1}$ is a $T \times k-1$ matrix of observations and independent variables (excluding the price variable), and $B_{1}$ is a $k-1 \times 1$ vector of estimated coefficients (excluding the price coefficient). $p^{1}$ is the $T \times 1$ price variable.
(d) $X_{0} B_{0}-\beta$ (e) $Z /-\beta(\mathrm{O})-1 / \gamma \ln \left(1+\gamma / \beta\left(X_{0} B_{0}\right)\right.$ where $X_{0}$ is a $T \times k$ matrix of independent variables and $B_{0}$ is a $k \times 1$ vector of estimated coefficients (Table 3 , Columns 1 and 5).
( B$) X_{2} B_{2}$ I- $\beta(\mathrm{h}) 2 / \beta(\mathrm{i})-1 / \gamma \ln \left(I+\gamma / \beta\left(X_{2} B_{2}\right)\right.$ where $X_{2}$ is a $T \times k+1$ matrix of independent variables (Table 3, Column I) plus an added selectivity term ( $T \times 1$ ) estimated as: $\phi(N P) / \Phi(N P)$ where $N$ is a $T \times k$ matrix of independent variables and $P$ is the $k \times \beta$ vector of estimated coefficients (Table 3 , Columns 1 and 8 ). $\phi$ is the standard normal density function and $\phi$ is the cumulative normal. $B_{2}$ is a $k \times 1 \times 1$ vector of estimatef cocfficients, with the coefficient on the selectivity term the estimated o (Table 3, Columa 8).
(j) The negative coefficient on income precluded computing these values.
sumption (i.e., omitted variables or measurement error in the dependent variable). Also, the Marshallian and Hicksian welfare estimates are similar, but the different as sumptions about the value of time produce differences of over 10 percent in the estimates. The largest difference in welfare es mates. The largest differe to inctional form The se, hower, is canctional form The semi-log specification estimate of $\$ 198$ per observation and $\$ 8.7$ billion in aggregate is substantially less than the $\$ 164.5$ bil lion estimate for the linear model. The Cragg semi-log estimates are $\$ 515$ per observation and $\$ 22.7$ billion in aggregate sug gesting that the estimation method (i.e., the sample selection rule) can have important effects on welfare estimates. Finally, contrary to the linear specification, for the semi-log specification the welfare estimates are sensitive to the source of error assump tion. This result is most pronounced in the Heckman model where the estimates differ by an order of magnitude. Our estimates of y an order magnitude lour estimates of the welfare loss due to loss of access to nonconsumptive wildife recreation in the contiguous United States is an underesti mate. The pooled travel cost demand mode values loss of access to each site conditional on the unchanged characteristics of all other sites. In theory, the demand for the remaining sites should increase with each additional loss of a substitute site. ${ }^{14}$

## VIII. SUMMARY AND CONCLUSIONS

Nonconsumptive wildlife recreation enoys wider participation than all hunting and fishing activities combined and yet it as received comparatively little attention the literature (USFWS 1982, 5). Th the iter (uS號 demand for and benefits from nonconsump ive wildlife recreation using data from the 1980 Survey of Hunting, Fishing, and Vildlife-Associated Recreation. Given the imitations of the travel cost recreation demand model, we focus only on that segment of the population age 16 or older ( 28.8 mil ion) who took trips at least one mile from home for the primary purpose of observing, photographing, or feeding wildlife. This compares with the total population of parti-
cipants who engaged in a nonconsumptive activity for which wildiife was the primary purpose ( 83.2 million) (USFWS 1982, 4), Therefore, our resultant welfare measures will underestimate the total benefits derived rom all forms of nonconsumptive wildlife related activities.
We treat a nonconsumptive user hour as generic commodity which allows us to ormulate a one-equation pooled travel cost nodel for estimating the demand for visitor hours at each of the locations. To contro for possible substitute activities, we include the prices for fishing and hunting in the de mand equation for nonconsumptive wildlife ecreation. A model for estimating the probability of an individual participating in nonconsumptive wildlife activity away from home was used to account for sample selection bias using a method suggested by Heckman. An alternative method, by Cragg, was also estimated for comparison with the Heckman model. Both models were also used to assess the impact of total orested acres by state on nonconsumptive ecreation decisions and to measure the ef fect of a potential change in this policy varible on those decisions.
Using parameter estimates from the lincar user hours equation, qefingaraturag nnual willingaes to paysoraccess tonnob
 tollarinergbserxationghy forthespmions
 ference in estimates due to functional form outweighed any differences due to estima tion method, assumptions about the source of error or the value of time, or using Mar shallian versus Hicksian welfare measures Ageregating across all users, the total for he linear specification is $\$ 164$ 5 billion but for the semi-log specification the figure is or the semi liven the 8.7 billion. Given the magnitude of partici pation in nonconsumplue wild the fare estimate is sensitive to functional form. fare estimate is sensitive to functional form.
${ }^{14}$ We owe this important observation to an anonymous reviewer.

TABLE 5
A Comparison of Natural Resource Value Estimates

Study	Region and Species Studied; Type of Model Used	Welfare Estimates
Bockstael, Hanemann, and Strand (1986)	Chesapeake Bay and Ocean City (Maryland) fishery: Linear model Box-Cox mode!	$\$ 2,450$ to $\$ 2,564$ yearly   $\$ 2,054$ to $\$ 2,135$ yearly
Balkan and Kahn (1988)	U.S. deer hunting: used a linear model ${ }^{4}$	\$1.043 per year (in 1980 dollars)
Kealy and Bishop (1986)	Lake Michigan fishery (Wisconsin side): used a linear model	$\$ 20$ per day, $\$ 625$ per year (in 1978 dollars)
Beurger and Kahn (1988)	New Yoris Marine flatish fishery: used a linear model	\$968 per year (in 1986 dollars)
Bockstael, McConnell, and Strand (1988)	Nine Chesapeake Bay beaches:	
	Porter's New beach Sandy Point	$\$ 17$ to $\$ 36$ yearly   $\$ 1,080$ to $\$ 2,757$ yearly (in 1984 dollars)
Bockstael, Strand, and Hanemann (1987)	Southern Califomia private boat fishing: used Tobit model	$\$ 2,703$ to $\$ 4,148$ yearly (in 1983 dollars)

Gonconsumptiverecreationzis:anunderestios materecausertienossofaccessio edchisite was calculated assuming the existence of all other sites. For comparison, we include a table of welfare estimates for other natural resources (Table S). ©pirsestimatessapiza pearto lie within the rangeror othersture

$\rightarrow$ see $p .423$ for "observation"
References
Amemiya, Takeshi. 1985. Advanced Econometrics. Cambridge: Harvard University Press. Arsanjani, Firuzeh. Nancy E. Bockstael, Ivar E. Strand, Jr., and Kenneth E. McConnell. 1989. "Sample Selection Bias in the Estimation of Recreation Demand Functions: An Agricultural Economics, University of Maryland, College Park.
Balkan, Errol, and James R. Kahn. 1988. "The Value of Changes in Deer Hunting Quality: A Travel Cost Approach." Applied Economics 20:533-39.
Bishop, Richard C. 1978. "Endangered Species and Uncertainty: The Economics of a Safe Minimum Standard." American Journal of Agricultural Economics 60 (Feb.):10-18
Bishop, Richard C., and Thomas A. Heberlein. 1979. "Measuring Values of Extra Market Goods: Are Indirect Measures Biased?"

American Journal of Agricultural Economics 61 (Dec.):926-30.
Bockstael, Nancy E., W. Michael Hanemann and Ivar E. Strand, 1986. "Benefit Analysis Using Indirect or Imputed Market Methods. Measuring the Benefits of Water Quality Improvements Using Recreation Demand Mod els, Vol. 2. Washington, DC: Environmenta Protection Agency, Office of Policy Analysis Bockstael, Nancy E., Kenneth E. McConnell, and Ivar E. Strand. 1988. "Benefits from Improvements in Chesapeake Bay Water Quality." Benefit Analysis Using Indirec or Imputed Market Methods, Vol. 2. EPA Contract number $811043-01$. April. USEPA. Bockstael, Nancy E., Ivar E. Strand, and W Mecreational Demand Manemann. "Time and the Journal of Abricultural Economicican Journal of Agricultural Economics 69 Brown willian
Brown, William G., Ajmer Singh, and Emery N Castle. 1965, "Net Economic Value of the Oregon Saimon-Steelhead Sport Fishery." Buerger, Robert B., and James R. Kahn. 1988 Buerger, Robert B., and James R. Kahn. 1988 ational Fishing." Prepared for the AERE Workshop on Marine and Sport Fisheries Economic Valuation and Management, June 23, Seattle.
Cicchetti, Charles J. 1973. Forecasting Recre aion in the United States, Lexington, MA: Lexington Books.

Gum, Russell L., and William E. Martin. 1975 "Problems and Solutions in Estimating the Demand for and Value of Rural Outdoor Recreation." American Journal of Agricultural Economics 57 (Nov.):558-66.
Hammack, Judd, and Gardner M. Brown, Jr. 1974. Waterfowl and Wetlands: Toward Bioeconomic Analysis. Baltimore: Resources for the Future, Inc.
Hay, Michael J., and Kenneth E. McConnell. 1979. "An Analysis of Participation in Nonconsumptive Wildife Re
Hay, Michael J., and Kenneth E. McConnell. 1984. "Harvesting and Nonconsumptive Wildife Recreation Decisions." Land Economics 60 (4):388-96.
Heckman, James J. 1979. "Sample Selection Bias as a Specification Error." Econometrica 47 (1):153-61.
Judge, George G., W. E. Griffiths, R. Carter Hill, Helmut Lttkepohl, and Tsoung-Chao Lee. 1985. The Theory and Practice of Econometrics. New York: John Wiley and Sons.
Kealy, Mary Jo, and Richard C. Bishop. 1986. "Theoretical and Empirical Specifications Issues in Travel Cost Demand Studies." American Journal of Agricultural Economics 68 (3):660-67.

Kling, Catherine L. 1987. "Discrete Versus Continuous Choice Approaches to Recreational Demand Modeling. Working paper. University of California, Davis.
1988. Comparing Welfare Estimates of Environmental Quality Changes from Recremental Economics and Management 15 (Sept.):331-40.
Manski, Charles, and Daniel McFadden. 1982. "Alternative Estimates and Sample Designs
for Discrete Choice Analysis." In Structural Analysis of Discrete Data: With Economerric pplicalions, eds. C. Manski and D. McFad den. Cambridge: MIT Press.
McConnell, Keaneth E. 1975. "Some Problems in Estimating the Demand for Outdoor RecreEtion." American Journal of Agricultural Conomics 57 (May): $330-34$
McConnell, Kenneth E., and Ivar E. Strand, Jr. 1981. 'Measuring the Cost of Time in Recreation Demand Analysis: An Application to ricultural Economics 63 (Feb.):153-56. A8
Smith, V. Kerry. 1988. "Selection and Rec ation Demand." American Journal of Ag ricultural Economics 70:29-36.
Smith, V. Kerry, and William H. Desvouges 1985. "The Generalized Travel Cost Mode and Water Quality Benefits: A Reconsid eration." Soulhern Economics Journal 52:371-81.
U.S. Bureau of the Census. 1984. Statistical Ab stract of the United States. 104th ed. Washington, DC: GPO.
U.S. Department of the Interior, Fish and Wildlife Service (USFWS). 1983. "A Summary o Selected Fish and Wildlife Characteristics of the 50 States." Washington, DC: GPO.
U.S. Department of the Interior, Fish and Wildlife Service (USFWS), and U.S. Bureau of the Census. 1982. "1980 National Survey of Fishing, Hunting, and Wildife-Associate Vecran william J and Clifford S
Vaughan, whiam J., and Clifford S. Russell 1982. Valuing a Fishing Day: An ApplicaModel " Land Economics 58 (4):450-63 White, Hal 1980 . White, Hal. 1980. "A Heteroskedasticity Test for Heteroskedasticity " Economerica 48:817-38.

Paying for Safety: Voluntary Reduction of Residential Radon Risks

Jeanette Åkerman, F. Reed Johnson, and Lars Bergman

Radon intrusion into buildings via soil gases, water supply, and building materials is now acknowledged to be a major health hazard throughout the world. In the U.S. alone, the Environmental Protection Agency (EPA) estimates radon-associated lung cancer deaths at between 10,000 and 40,000 per year-more than any other pollutant under its jurisdiction. Because awareness of this hazard is relatively recent in the United States, there is little data on homeowner response to public appeals to homeowner response to public appeals to berg 1989 for a recent review of existing tudies).
Sweden was one of the first countries to dentify radon as a public health problem, o sponsor widespread testing, and to develop reliable, low-cost techniques for reducing indoor exposure levels. Data recently collected in Sweden make it possible to derive the first empirical estimates of homeowner willingness to pay to reduce radon health risks. This paper reports these estimates and discusses their implication or public policy. We conclude that the low value of estimated willingness to pay indicates that homeowners may have interpreted the technology-based recommended exposure as a safety threshold.
After reviewing the nature and regulatory history of the radon hazard, we present a theoretical framework for modeling the value of reduced radon risk. The model employs a conventional state-dependent utility function associated with a discrete decision to mitigate or not to mitigate. In subsequent sections we describe the data collected from a sample of homeowners participating in a health department testing program and report parameter estimates from a binomial port parater estimates nated parameters form the basis for calcu lations of the probability of mitigating and willingness to pay for mitigation at various
exposure levels and for various household characteristics.

## I. BACKGROUND

Radon is a radioactive gas that is formed when radium decays. It is an inert gas and very little is absorbed in the human body. However, radon decay products (so-called radon daughters) are dangerous, being solid particles that can be inhaled, lodge in the lung, and emit alpha particles. Epidemiological studies of minets have attributed increased incidence of lyng cancer to radon exposure. ${ }^{1}$
The radon protection effort in Sweden initially was directed entirely toward radiation from light concrete made of alum shale, a common building material used until 1975. It soon became apparent from measurements that most of the indoor exposures could be traced to soil gas intrusion through the foundation rather than from

The authors are, respectively, economist. Indus trial Institute for Economic and Social Research, Stockholm, Sweden; senior research economist, ReU.S. Naval Academy; and professor of environmental and energy economics, Stockholm School of Economics. Financial support for this research was provided by the Swedish National Environmental Protection Board, the Swedish National Institute for Radiation Protection, and the Swedish Council for Building Research. Helpful comments from Karl-Göran Maler, Claes Cassel, Hakan Lyckeborg, Ann Fisher, and two anonymous referees are gratefully acknowledged, as the Sollentuna, Sweden Department of Health. The views presented here are those of the authors and should not be attributed to either the funding agencies or the authors' affiliated institutions.
'There is some controversy about the implications of the miner data for indoor exposures. Nevertheless. mental risks where the risk assessment requires extrapolating from animal studies.

